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Preface

Forecasting is an important activity in economics, commerce, marketing
and various branches of science. This book is concerned with forecasting
methods based on the use of time-series analysis. It is primarily intended
as a reference source for practitioners and researchers in forecasting,
who could, for example, be statisticians, econometricians, operational
researchers, management scientists or decision scientists. The book could
also be used as a text for a graduate-level course in forecasting. Some
application areas, such as meteorology, involve specialist methods which are
not considered in this book. The specialist area of judgemental forecasting
is also not covered. Rather we concentrate on time-series forecasting
methods which are applicable more generally, but especially in economics,
government, industry and commerce.

The scope of the subject is wide and the topics I have chosen to cover
reflect my particular interests and concerns. There are now several books,
both at introductory and intermediate levels, which aim to cover the basic
range of time-series forecasting methods. This book does not attempt to
duplicate this material and is not meant to be a ‘how-to-forecast’ manual. It
would need to be several times longer in order to provide all the necessary
information about theory and applications for all the methods reviewed
in this book. Rather this book was conceived as providing a summary of
the basics of univariate time-series analysis and modelling (Chapters 2 and
3), including recent arrivals such as GRAPH models and neural networks,
followed by a fairly brief catalogue of the many time-series forecasting
methods, both univariate (Chapter 4) and multivariate (Chapter 5). The
latter chapter, together with Chapter 6, also attempt to compare the more
important method, both in terms of their theoretical relationships (if any)
and their practical merits including their empirical accuracy. While the
search for a ‘best’ method continues, it is now well established that no
single method will outperform all other methods in all situations, and, in
any case, it depends on what is meant by ‘best’ ! The context is crucial.

This book also covers two other general forecasting topics, namely the
computation of prediction intervals (Chapter 7) and the effect of model
uncertainty on forecast accuracy (Chapter 8). These important aspects of
forecasting have hitherto received rather little attention in the time-series
literature. Point forecasts are still presented much more frequently than
interval forecasts, even though the latter are arguably much more useful.
There are various reasons for the overemphasis on point forecasts and it is
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hoped that the presentation in Chapter 7 will help to change the position.
The model uncertainty problem arises when the analyst formulates and fits
a model to the same set of data – as is the usual procedure in time-series
analysis. The analyst typically behaves as if the selected model is the correct
model and ignores the biases which arise when the same data are used to
choose, fit and use a model. Standard least-squares theory no longer applies
but is typically used anyway. Prediction intervals are typically calculated
conditional on the fitted model and are often found to be too narrow. This
provides a link with the material in Chapter 7.

While self-contained in principle for a reader with a reasonably thorough
general statistical background, this book will be more accessible for
someone who knows something about the basics of time-series analysis and
has, for example, some understanding of trend, seasonality, autoregressive
(AR) and moving average (MA) models.

I would like to acknowledge helpful comments on draft versions of the
book from various people including Keith Ord, Sandy Balkin and two
anonymous referees. I thank Ken Wallis for providing Figure 7.1. The work
for Example 8.4 was carried out jointly with Julian Faraway (University of
Michigan, USA). As always, any errors or obscurities that remain are my
responsibility, however much I may wish to avoid this!

The time-series data used as examples in this book are available via my
website http://www.bath.ac.uk/∼mascc/ at the University of Bath. They
include an extended S&P 500 series of 9329 observations from 3/07/1962
to 22/07/1999. I would like to have included more examples, but the
manuscript is already long enough and time is pressing. My forecasted
date of delivery has proved remarkedly inaccurate! I hope that you, the
reader, find the book clear and helpful. Please feel free to tell me what you
think as constructive criticism is always welcome.

Chris Chatfield
Department of Mathematical Sciences

University of Bath
Bath, U.K., BA2 7AY

email: cc@maths.bath.ac.uk
October 2000
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Abbreviations and Notation

AR Autoregressive
MA Moving Average
ARMA Autoregressive Moving Average
ARIMA Autoregressive Integrated Moving Average
SARIMA Seasonal ARIMA
ARFIMA Fractionally Integrated ARIMA
TAR Threshold Autoregressive
GARCH Generalized Autoregressive Conditionally Hereoscedastic
SWN Strict White Noise
UWN Uncorrelated White Noise
NN Neural Network
MSE Mean Square Error
PMSE Prediction Mean Square Error
MAPE Mean Absolute Prediction Error
P.I. Prediction Interval

ac.f. Autocorrelation function
acv.f. Autocovariance function

x̂N (h) Forecast of xN+h made at time N
B Backward shift operator
∇ The operator (1 −B)
E Expectation or Expected value
I The identity matrix – a square matrix with ones on the diagonal

and zeroes otherwise
N(µ, σ2) Normal distribution, mean µ and variance σ2

χ2
ν Chi-square distribution with ν degrees of freedom

Zt or εt Uncorrelated white noise with constant mean and variance

Vectors are indicated by boldface type, but not scalars or matrices.
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CHAPTER 1

Introduction

“Don’t never prophesy: If you prophesies right, ain’t nobody going to
remember and if you prophesies wrong, ain’t nobody going to let you forget.”

– Mark Twain

Good forecasts are vital in many areas of scientific, industrial, commercial
and economic activity. This book is concerned with time-series forecasting,
where forecasts are made on the basis of data comprising one or more
time series. A time-series is a collection of observations made sequentially
through time. Examples include (i) sales of a particular product in
successive months, (ii) the temperature at a particular location at noon
on successive days, and (iii) electricity consumption in a particular area for
successive one-hour periods. An example is plotted in Figure 1.1.

Figure 1.1. A graph showing the Standard & Poor (S & P) 500 index for
the U.S. stock market for 90 trading days starting on March 16 1999.
(Note that values for successive trading days are plotted at equal intervals even

when weekends or public holidays intervene.)
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Applications of time-series forecasting include:
1. Economic planning

2. Sales forecasting

3. Inventory (or stock) control

4. Production and capacity planning

5. The evaluation of alternative economic strategies

6. Budgeting

7. Financial risk management

8. Model evaluation
Most of the applications on the above list are self-explanatory. For

example, good forecasts of future sales will obviously make it easier to
plan production. However, the reader may not have realized that forecasts
can help in model evaluation, when trying to fit time-series models. Checks
on fitted models are usually made by examining the goodness-of-fit of the
same data used to estimate the model parameters (called the in-sample
fit). However, time-series data provide an excellent opportunity to look at
what is called out-of-sample behaviour. A time-series model will provide
forecasts of new future observations which can be checked against what is
actually observed. If there is good agreement, it will be argued that this
provides a more convincing verification of the model than in-sample fit; –
see Sections 3.5.3 and 8.5.4.

The book does not attempt to cover the specialist areas of population and
weather forecasting, although time-series techniques could, for example, be
used to forecast a specific variable such as temperature. We also exclude
specific mention of probability forecasting, where the aim is to predict the
probability of occurrence of a specific event outcome such as a turning
point, a change in interest rate or a strike.1

This book is not intended to be a comprehensive manual of forecasting
practice, as several books are already available which describe in detail how
to apply particular forecasting methods. Rather this book aims to give
an overview of the many methods available, and to provide appropriate
up-to-date references for the reader who wants more detail. There is
emphasis on the intuitive ideas underlying the different methods, some
comments on recent research results, and some guidance on coping with
practical problems. The inter-relationships between the different methods
are explored and the methods are compared from both theoretical and
empirical points of view. After revising the basics of time-series analysis in
Chapter 2, Chapter 3 discusses model building for a single series, both
for particular classes of model and in general terms. Chapters 4 and
5 look at univariate and multivariate forecasting methods, respectively,
while Chapter 6 discusses the evaluation of forecasts and gives advice on

1 See, for example, the special issue on Probability Forecasting, Int. J. of Forecasting,
1995, No. 1.

c© 2000 by Chapman & Hall/CRC



which method to choose in different contexts. Chapters 7 and 8 cover two
additional important topics, namely different ways of calculating prediction
intervals (rather than point forecasts), and the effect of model uncertainty
on forecast accuracy, especially in regard to the tendency for empirical
results to suggest that prediction intervals are generally too narrow.

This opening introductory chapter begins by discussing the different
categories of forecasting method in Section 1.1, while some preliminary
practical questions are raised in Section 1.2. Section 1.3 contains a ‘Public
Health Warning’ on the dangers of extrapolation, and Section 1.4 explains
the important distinction between forecasts that are made ‘in-sample’ (and
which are therefore not genuine forecasts) and those which are ‘out-of-
sample’. The chapter ends in Section 1.5 with a brief overview of relevant
literature.

1.1 Types of forecasting method

Suppose we have an observed time series x1, x2, . . . , xN and wish to forecast
future values such as xN+h. The integer h is called the lead time or the
forecasting horizon (h for horizon) and the forecast of xN+h made at time
N for h steps ahead will be denoted by x̂N (h). Note that it is essential to
specify both the time the forecast is made and the lead time. Some of the
literature does not do this and instead uses an ambiguous notation such as
x̂N+h for forecasts of XN+h regardless of when the forecast was made.

A forecasting method is a procedure for computing forecasts from present
and past values. As such it may simply be an algorithmic rule and need
not depend on an underlying probability model. Alternatively it may arise
from identifying a particular model for the given data and finding optimal
forecasts conditional on that model. Thus the two terms ‘method’ and
‘model’ should be kept clearly distinct. It is unfortunate that the term
‘forecasting model’ is used rather loosely in the literature and is sometimes
wrongly used to describe a forecasting method.

Forecasting methods may be broadly classified into three types:

(a) Judgemental forecasts based on subjective judgement, intuition, ‘inside’
commercial knowledge, and any other relevant information.

(b) Univariate methods where forecasts depend only on present and past
values of the single series being forecasted, possibly augmented by a
function of time such as a linear trend.

(c) Multivariate methods where forecasts of a given variable depend, at least
partly, on values of one or more additional time series variables, called
predictor or explanatory variables. Multivariate forecasts may depend on
a multivariate model involving more than one equation if the variables
are jointly dependent.

More generally a forecasting method could combine more than one of
the above approaches, as, for example, when univariate or multivariate

c© 2000 by Chapman & Hall/CRC



forecasts are adjusted subjectively to take account of external information
which is difficult to express formally in a mathematical model.

This book focuses on univariate and multivariate time-series methods,
and does not attempt to cover judgemental forecasting. Instead the reader
is referred, for example, to the literature review by Webby and O’Connor
(1996). The most famous judgmental method is probably that called
the Delphi technique (e.g. Rowe and Wright, 1999), which aims to find
a consensus of opinion for a group of ‘experts’, based on a series of
questionnaires filled in by individuals and interspersed with the controlled
feedback of opinion and information from other experts. Empirical results
suggest that judgemental methods sometimes work well and sometimes do
not (as is true for all forecasting methods!). However, statistical methods
tend to be superior in general, provided that the latter are a practical
proposition. Of course, there are occasions when model-based methods are
not practical, perhaps because some essential information is not available,
and then judgmental methods have to be used anyway. In any case, it is
not sensible to pretend that the modelling and judgemental approaches
are completely distinct, as it often helps to combine the two approaches
and get the best of both worlds. In particular, many macroeconomic
forecasts are obtained by making adjustments to model-based forecasts,
perhaps by adding or subtracting an appropriate constant (sometimes
called an intercept correction). It is, however, unfortunate that it is not
always made clear how such adjustments are made in order to arrive at
a final forecast. As might be expected, the integration of a judgemental
and statistical approach can improve accuracy when the analyst has good
domain knowledge but can harm accuracy when judgement is biased or
unstructured (Armstrong and Collopy, 1998).

While the techniques commonly known as ‘judgemental forecasting’ are
not covered in this book, it should be clearly understood that some element
of judgement is always involved in forecasting, even when using what is
normally regarded as an ‘objective’ statistical method. Good time-series
modelling, like all statistical model building, involves the use of sound
subjective judgement in assessing data, selecting a model, and interpreting
the results. This use of judgement will be covered in what follows.

An alternative important way of classifying forecasting methods is
between automatic methods, which require no human intervention, and
non-automatic methods, which do. As one example of this important
distinction, it is instructive to compare inventory control with economic
planning. In inventory control there may be hundreds, or even thousands,
of items to monitor. It is quite impossible to fit separate models to each
individual time series of sales. Rather, a simple, automatic method is
normally used for the whole range of items. In contrast, economic planning
requires the analyst to carefully build an appropriate model describing
the relationship between relevant economic variables, after which ‘optimal’
forecasts can be produced from the model. This method is certainly not
automatic.
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Yet another classification is between simple and complicated methods.
Univariate methods are generally simpler than multivariate methods and
it is always a matter of judgement as to how much effort should go into
making a prediction. For some economic series, it is hard to beat the very
simple forecast of using the latest observation to predict the next one. A
deterministic series is also easy to forecast when the model is known. For
example, a series which changes periodically through time in a systematic
way is easy to forecast once a full cycle has been observed. At the other
extreme, a series of independent observations is also ‘easy’ (or impossible)
to predict as you cannot do better than use the overall mean value. Our
main interest is in series which are in-between these extremes. They cannot
be predicted exactly but they do contain structure which can be exploited
to make better forecasts.

1.2 Some preliminary questions

In forecasting, as in any statistical exercise, it is essential to carry out
any necessary preliminary work. In particular, it is important to formulate
the problem carefully (see Chatfield, 1995a, Chapter 3). The analyst must
(i) ask questions so as to get sufficient background information, (ii) clarify
the objectives in producing forecasts, and (iii) find out exactly how the
forecast will be used. The context is crucial in all of this. Ideally forecasts
should be an integral part of the planning system and not a separate
exercise. This is sometimes called a systems approach. It requires that
the statistician talks to the people who will actually use the forecasts.
A relatively simple forecasting method, which is widely understood, may
be preferred.

A key related question is whether the forecasts actually influence the
outcome. In some situations the forecast is used as a target value, while in
others the forecasts are used to suggest control action. For example, a sales
forecast may become a target in that workers will try to achieve sales of at
least the forecast value, while a forecast of an increasing death rate for a
particular disease may lead to preventive action to try to reduce the spread
of the disease. Forecasts which prompt control action will be self-defeating,
and yet such forecasts can be very useful even though they may not score
well in terms of accuracy. In one sense, short-term weather forecasting
is easier than econometric forecasting, as short-term weather forecasts
cannot influence the weather, whereas economic forecasts may influence
governmental policy. However, note that long-term weather forecasting
(over a period of years, rather than days) could affect the outcome, in
that predictions of global warming, for example, may influence government
policy to try to reduce greenhouse gases, so as to prevent unwanted changes
to weather patterns.

The analyst should also find out if forecasts only are required, or if there
is a need for a descriptive, interpretable model and whether the forecasts
are going to be used for control purposes. As always there is no point
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in giving the RIGHT answer to the WRONG question (called an error
of the third kind!). For example, a model that gives a good fit to a set
of past data may or may not be the most useful model for predicting
future values. Fitting past values and forecasting future values are two
quite different applications of a model. Similarly the best-fit model may
or may not be the most helpful model for providing ‘policy advice’, such
as deciding whether a proposed change in tax rates is likely to result in a
beneficial effect on future unemployment. The sort of problem that arises in
practice is that economic theory may suggest that one particular variable
should be an important explanatory variable in an econometric model but,
in a given set of recent data, it is found that the variable has been held
more or less constant over the relevant period. Then time-series methods
are likely to show that the inclusion or exclusion of the variable makes little
difference to the overall fit of a model in regard to explaining the variation
in the dependent (or response) variable. Furthermore, on the basis of the
given data, it may be impossible to assess the effect of changes in the
explanatory variable on forecasts of the response variable. Thus a model
derived empirically will be useless for predicting changes in the response
variable if a substantial change to the explanatory variable is envisaged,
even though the analyst knows that the variable cannot be disregarded.
Thus an appropriate model will need to be constructed using economic
theory rather than (just) goodness-of-fit to past data.

The other main preliminary task is to make a careful assessment
of the available data (sometimes called the information set). Have the
‘right’ variables been recorded to the ‘right’ accuracy? How much of the
data is useful and usable? Are there obvious errors, outliers and missing
observations? There is little point in putting a lot of effort into producing
forecasts if the data are of poor quality in the first place.

The analyst may also have to ask various additional questions such
as how many series are there to forecast, how far ahead are forecasts
required, and what accuracy is desired in the forecasts (it may be wise to
dampen unrealistic expectations). The forecaster must also decide whether
to compute a point forecast, expressed as a single number, or an interval
forecast. The latter is often more desirable, though rather neglected in the
literature.

The answers to all the above questions determine, in part, which
forecasting method should be chosen, as do more pragmatic considerations
such as the skill and experience of the analyst and the computer software
available. The analyst is advised to use a method he or she feels ‘happy’
with and if necessary to try more than one method. A detailed comparison
of the many different forecasting methods is given in Chapter 6, based on
theoretical criteria, on empirical evidence, and on practical considerations.

The importance of clarifying objectives cannot be overstressed. The
forecasting literature concentrates on techniques – how to implement
particular forecasting methods – whereas most forecasters probably need
much more help with the strategy of forecasting. For example, there is a
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plenty of software available to make it easy to fit a class of time-series
models called ARIMA models (see Section 3.1) but it is still hard to know
when to use an ARIMA model and how to choose which ARIMA model to
use.

1.3 The dangers of extrapolation

It is advisable to include here a brief warning on the dangers of forecasting.
Time-series forecasting is essentially a form of extrapolation in that it
involves fitting a model to a set of data and then using that model
outside the range of data to which it has been fitted. Extrapolation
is rightly regarded with disfavour in other statistical areas, such as
regression analysis. However, when forecasting the future of a time series,
extrapolation is unavoidable. Thus the reader should always keep in mind
that forecasts generally depend on the future being like the past.

Forecasts also depend on the assumptions which are (implicitly or
explicitly) built into the model that is used, or into the subjective
judgements that are made. Thus forecasts are generally conditional
statements of the form that “if such-and-such behaviour continues in the
future, then ... ”. It follows that one should always be prepared to modify
forecasts in the light of any additional information, or to produce a range of
different forecasts (rather than just one forecast) each of which is based on
a known set of clearly stated assumptions. The latter is sometimes called
scenario forecasting – see Section 8.5.2 – and Schumacher (1974) is correct
when he says that “long-term feasibility studies, based on clearly stated
assumptions, are well worth doing”. However, Schumacher also says that
long-term forecasts “are presumptious”, but it is not clear to me when
a “feasibility study” becomes a forecast. What we can say is that any
really long-term forecast is liable to be way off target. Recent examples
I have seen, which I expect to be wrong, include traffic flow in 2020 and
world population in 2050! Fortunately for the forecaster, most people will
have forgotten what the forecast was by the time it ‘matures’. Celebrated
examples, which have not been forgotten, include the founder of IBM
predicting “a world market for about five computers” in 1947, and the
President of Digital Equipment predicting that “ there is no reason for any
individual to have a computer in their home” in 1977. Going further back
into history, I like the quote attributed to U.S. President Hayes in 1876,
after he had witnessed a telephone call, that it was “an amazing invention
but who would ever want to use one?”

Of course, forecasts can even go horribly wrong in the short-term when
there is a sudden change or ‘structural break’ in the data – see Section
8.5.5. One famous example is that made by a Professor of Economics at
Yale University in September 1929, when he said that “Stock prices have
reached what looks like a permanently high plateau”. This was just before
the stock market ‘crash’, which led on to the Depression!
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1.4 Are forecasts genuinely out-of-sample?

“Prediction is very difficult, especially if it’s about the future” – Nils Bohr

In a real forecasting situation, the analyst typically has data up to time
N , and makes forecasts about the future by fitting a model to the data up
to time N and using the model to make projections. If x̂N (h) only uses
information up to time N , the resulting forecasts are called out-of-sample
forecasts. Economists call them ex-ante forecasts.

One difficulty for the analysts is that there is no immediate way of
calibrating these forecasts except by waiting for future observations to
become available. Thus it is sometimes helpful to check the forecasting
ability of the model using data already at hand. This can be done in various
ways. If the model is fitted to all the data and then used to ‘forecast’ the
data already used in fitting the model, then the forecasts are sometimes
called in-sample forecasts, even though they are not genuine forecasts. The
one-step-ahead in-sample forecasts are in fact the residuals – see Section
3.5.3. An alternative procedure (see Section 8.5.4) is to split the data into
two portions; the first, sometimes called the training set, is used to fit the
model, while the second portion, sometimes called the test set, is used for
calibration purposes to check forecasts made by the model. The properties
of the resulting forecasts are more like those of real forecasts than the
residuals. Of course, if one really believes one has the ‘true’ model, then
the properties of residuals and forecast errors should be similar, but, we see
in later chapters, that, in practice, out-of-sample forecasts are generally not
as accurate as would be expected from in-sample fit. Fortunately, many
of the comparative forecasting studies, which have been reported in the
literature, do use a test set for making comparisons. Even so, there are
many ways in which forecasts can be ‘improved’ by procedures which are
of dubious validity and the reader is strongly advised to check that results
on comparative forecast accuracy really do relate to forecasts made under
similar conditions. In particular, if all forecasts are meant to be out-of-
sample, then the different forecasting methods being compared should only
use historical data in the information set.

There are several ways in which forecasts can be unfairly ‘improved’.
They include:

1. Fitting the model to all the data including the test set.

2. Fitting several different models to the training set, and then choosing
the model which gives the best ‘forecasts’ of the test set. The selected
model is then used (again) to produce forecasts of the test set, even
though the latter has already been used in the modelling process.

3. Using the known test-set values of ‘future’ observations on the
explanatory variables in multivariate forecasting. This will obviously
improve forecasts of the dependent variable in the test set, but these
future values will not of course be known at the time the forecast is
supposedly made (though in practice the ‘forecast’ is made at a later

c© 2000 by Chapman & Hall/CRC



date). Economists call such forecasts ex-post forecasts to distinguish
them from ex-ante forecasts. The latter, being genuinely out-of-sample,
use forecasts of future values of explanatory variables, where necessary,
to compute forecasts of the response variable – see also Section 5.1.2.
Ex-post forecasts can be useful for assessing the effects of explanatory
variables, provided the analyst does not pretend that they are genuine
out-of-sample forecasts.

In my experience, it often seems to be the case that, when one method
appears to give much better forecasts than alternatives, then the ‘good’
method has some unfair advantage. It is therefore unfortunate that some
published empirical studies do not provide sufficient information to see
exactly how forecasts were computed, and, in particular, to assess if they
are genuinely out-of-sample. When this happens, the suspicion remains
that the results are compromised. Of course, there will sometimes be good
reasons for computing alternatives to genuine out-of-sample forecasts. For
example, in scenario forecasting, the analyst wants to assess the effect of
making different assumptions about future values of explanatory variables.
This sort of exercise is perfectly reasonable provided that the assumptions
are clearly stated and the forecaster realizes that it will not be fair to
compare such results with forecasts based solely on past data.

1.5 Brief overview of relevant literature

This section gives a brief review of books on time-series analysis and
forecasting. Some help with scanning research-level journals for articles
(papers) on forecasting is also given. Additional references to more
specialized books and papers are given throughout the book.

General introductory books on time-series analysis include Brockwell and
Davis (1996), Chatfield (1996a), Diggle (1990), Harvey (1993), Janacek
and Swift (1993), Kendall and Ord (1990) and Wei (1990). More advanced
books include the comprehensive two-volume treatise by Priestley (1981)
which is particularly strong on spectral analysis, multivariate time series
and non-linear models. The fourth edition of Volume 3 of Kendall and
Stuart (Kendall, Stuart and Ord, 1983) is also a valuable reference source,
but earlier editions are now rather dated. Other intermediate to advanced
books include Anderson (1971), Brillinger (1981), Brockwell and Davis
(1991) and Fuller (1996). The books by Enders (1995), Hamilton (1994),
Harvey (1990) and Mills (1990, 1999) are more suitable for the reader with
an econometric background.

The famous book by Box and Jenkins (1970) describes an approach
to time-series analysis, forecasting and control which is based on a class
of linear stochastic processes, called ARIMA models. The revised edition
published in 1976 was virtually unchanged, but the third edition (Box et
al., 1994) with G. Reinsel as co-author is a substantial revision of earlier
editions. In particular, Chapters 12 and 13 have been completely rewritten
and include new material on topics such as intervention analysis, outlier
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detection and process control. We therefore generally refer to the new third
edition. However, readers with an earlier edition will find that Chapters
1 to 11 of the new edition retain the spirit and a similar structure to the
old one, albeit with some revisions such as new material on ARMA model
estimation and on testing for unit roots. This book covers ARIMA models
in Section 3.1 and gives a brief description of the Box-Jenkins approach
in Section 4.2.2. Readers with little experience of ARIMA modelling, who
want further details, may be advised to read Vandaele (1983), or one of the
introductory time-series texts given above, rather than Box et al. (1994).

There are a number of books that are targeted more towards forecasting,
rather than general time-series analysis. Granger and Newbold (1986) is a
good general book on the topic, especially for applications in economics.
Some other general texts on time-series forecasting include Abraham and
Ledolter (1983) and Montgomery et al. (1990). The texts by Bowerman
and O’Connell (1987), Diebold (1998), Franses (1998), and Makridakis
et al. (1998) are aimed more at business and economics students. There
is a useful collection of up-to-date review articles in Armstrong (2001).
Some important, more specialized, books include Harvey’s (1989) book on
structural models and West and Harrison’s (1997) book on dynamic linear
models, which is written from a Bayesian viewpoint. Pole et al. (1994)
give some case studies using the latter approach together with a software
package called BATS.

The two main journals devoted to forecasting are the International
Journal of Forecasting (sponsored by the International Institute of
Forecasters and published by North-Holland) and the Journal of
Forecasting (published by Wiley). Papers on forecasting can also appear in
many other statistical, management science, econometric and operational
research journals including the Journal of Business and Economic
Statistics, Management Science and the Journal of Econometrics. A brief
general review of recent developments in time-series forecasting is given
by Chatfield (1997). Keeping up with the literature in an interdisciplinary
subject like forecasting is difficult. Abstract journals may help and ‘word
of mouth’ at specialist conferences is also invaluable.
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CHAPTER 2

Basics of Time-Series Analysis

This chapter gives a brief review of some basic tools and concepts in time-
series analysis. This will be useful for reference purposes, to set up our
notation, and to act as revision material for readers who are hopefully
familiar with some of these ideas.

2.1 Different types of time series

A time series is a set of observations measured sequentially through time.
These measurements may be made continuously through time or be taken
at a discrete set of time points. By convention, these two types of series
are called continuous and discrete time series, respectively, even though
the measured variable may be discrete or continuous in either case. In
other words, for discrete time series, for example, it is the time axis that is
discrete.

For a continuous time series, the observed variable is typically a
continuous variable recorded continuously on a trace, such as a measure
of brain activity recorded from an EEG machine. The usual method of
analysing such a series is to sample (or digitize) the series at equal intervals
of time to give a discrete time series. Little or no information is lost by this
process provided that the sampling interval is small enough, and so there
is no need to say anything more about continuous series.

In fact, discrete time series may arise in three distinct ways, namely
1. by being sampled from a continuous series (e.g. temperature measured

at hourly intervals. Such data may arise either by sampling a continuous
trace, as noted above, or because measurements are only taken once an
hour);

2. by being aggregated over a period of time (e.g. total sales in successive
months);

3. as an inherently discrete series (e.g. the dividend paid by a company in
successive years).

For all three types of discrete time series, the data are typically recorded
at equal intervals of time. Thus the analysis of equally spaced discrete
time series constitutes the vast majority of time-series applications and
this book restricts attention to such data. The treatment of the three types
of discrete series is usually very similar, though one may occasionally wish
to consider the effect of using different sampling intervals for continuous
series or different periods of aggregation for aggregated data.
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It is worth noting that data may be aggregated either across time or
across series, and these two situations are quite different. The first is called
temporal aggregation and the second is called contemporaneous aggregation.
For example, suppose we have sales figures for each of the many different
brand sizes of different products in successive weeks. Such data may be
quite volatile and difficult to forecast without some form of aggregation,
either across time (e.g. over successive 4-week periods) or across products
(e.g. sum all brand sizes for the same brand).

The possibility of aggregating data raises many questions such as how to
choose the best level of aggregation for making forecasts, and how to use
monthly data to improve quarterly forecasts (e.g. Montgomery et al., 1998).
For example, a common problem in inventory control is whether to develop
a summary forecast for the aggregate of a particular group of items and then
allocate this forecast to individual items based on their historical relative
frequency – called the top-down approach – or make individual forecasts
for each item – called a bottom-up approach. Dangerfield and Morris (1992)
present empirical results that suggest the bottom-up approach tends to be
more accurate, but these are difficult and rather specialist problems that
we do not address directly in this book. I have seen rather little general
advice in the literature on aggregation, partly because (as is often the
case in forecasting!) there are no general guidelines, and so contextual
considerations are often paramount.

2.2 Objectives of time-series analysis

Suppose we have data on one or more time series. How do we go about
analysing them? The special feature of time-series data is that successive
observations are usually not independent and so the analysis must take
account of the order in which the observations are collected. Effectively
each observation on the measured variable is a bivariate observation with
time as the second variable.

The main objectives of time-series analysis are:

(a) Description. To describe the data using summary statistics and/or
graphical methods. A time plot of the data is particularly valuable.

(b) Modelling. To find a suitable statistical model to describe the data-
generating process. A univariate model for a given variable is based
only on past values of that variable, while a multivariate model for a
given variable may be based, not only on past values of that variable,
but also on present and past values of other (predictor) variables. In the
latter case, the variation in one series may help to explain the variation
in another series. Of course, all models are approximations and model
building is an art as much as a science – see Section 3.5.

(c) Forecasting. To estimate the future values of the series. Most authors
use the terms ‘forecasting’ and ‘prediction’ interchangeably and we
follow this convention. There is a clear distinction between steady-state
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forecasting, where we expect the future to be much like the past, and
What-if forecasting where a multivariate model is used to explore the
effect of changing policy variables.

(d) Control. Good forecasts enable the analyst to take action so as to
control a given process, whether it is an industrial process, or an economy
or whatever. This is linked to What-if forecasting.

This book is primarily concerned with objective (c), but description and
modelling are often a prerequisite. Thus the objectives are interlinked.

2.3 Simple descriptive techniques

Before trying to model and forecast a given time series, it is desirable to
have a preliminary look at the data to get a ‘feel’ for them and to get
some idea of their main properties. This will be invaluable later on in the
modelling process. The time plot is the most important tool, but other
graphs and summary statistics may also help. In the process, the analyst
will also be able to ‘clean’ the data (see Section 2.3.4) by removing or
adjusting any obvious errors. This whole approach is sometimes described
as Initial Data Analysis (or IDA).

This section also describes some other simple descriptive methods that
are specifically designed for analysing time-series data. The two main
sources of variation in many time series are trend and seasonal variation,
and they are considered in Section 2.3.5 and 2.3.6, respectively.

Little prior knowledge of time-series models is required throughout the
section, but the ideas which are introduced should enhance the reader’s
general understanding of time-series behaviour before we go on to describe
various classes of models.

It may help at this stage to present a brief summary of classical time-
series analysis which aims to decomposes the variation in a time series into
components due to:

(a) Seasonal variation. This type of variation is generally annual in
period and arises for many series, whether measured weekly, monthly or
quarterly, when similar patterns of behaviour are observed at particular
times of the year. An example is the sales pattern for ice cream which is
always high in the summer. Note that if a time series is only measured
annually (i.e. once per year), then it is not possible to tell if seasonal
variation is present.

(b) Trend. This type of variation is present when a series exhibits steady
upward growth or a downward decline, at least over several successive
time periods. An example is the behaviour of the U.K. retail price index
which has shown an increase every year for many years.1 Trend may
be loosely defined as “long-term change in the mean level”, but there

1 Except when re-indexed to 100. I have seen at least one analysis which, sadly, did not
take account of the discontinuity which arises when re-indexing takes place.
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is no fully satisfactory mathematical definition. We will see that the
perception of trend will depend, in part, on the length of the observed
series. Furthermore, the decomposition of variation into seasonal and
trend components is not unique.

(c) Other cyclic variation. This includes regular cyclic variation at periods
other than one year. Examples include business cycles over a period of
perhaps five years and the daily rhythm (called diurnal variation) in the
biological behaviour of living creatures.

(d) Irregular fluctuations. The phrase ‘irregular fluctuations’ is often used
to describe any variation that is ‘left over’ after trend, seasonality and
other systematic effects have been removed. As such, they may be
completely random in which case they cannot be forecast. However,
they may exhibit short-term correlation (see below) or include one-off
discontinuities.

Classical methods work quite well when the variation is dominated by
a regular linear trend and/or regular seasonality. However, they do not
work very well when the trend and/or seasonal effects are changing
through time or when successive values of the irregular fluctuations are
correlated. Correlation between successive values of the same time series is
generally called autocorrelation. It is often found that successive residuals
from a trend-and-seasonal model are correlated when separated by a
short time interval and this is called short-term (auto)correlation. Then
a more sophisticated modelling approach may well be desirable to improve
forecasts.

2.3.1 The time plot

The first step in any time-series analysis or forecasting exercise is to plot
the observations against time, to give what is called a time plot of the data.
The graph should show up important features of the data such as trend,
seasonality, outliers, smooth changes in structure, turning points and/or
sudden discontinuities, and is vital, both in describing the data, in helping
to formulate a sensible model and in choosing an appropriate forecasting
method.

The general principles for producing a clear graph are covered in many
books (e.g. Chatfield, 1995a) and include giving a graph a clear, self-
explanatory title, choosing the scales carefully and labelling axes clearly.
Even so, drawing a time plot is not as easy as it may sound. For example,
it is not always obvious how to choose suitable scales or how to actually
plot the points (e.g. using dots joined by straight lines?). Some software
packages produce surprisingly poor graphs and yet may not allow the user
the flexibility of making alternative choices of the presentational details,
such as how the axes should be labelled. Even with a good package, some
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trial-and-error may still be necessary to get a graph suitable for the task
at hand.

Figure 2.1. The time plot of the Box-Jenkins airline data: Monthly totals, in
thousands, of the numbers of international airline passengers from January
1949 to December 1960.

Figure 2.1 shows a time plot of the airline passenger data listed by Box
et al. (1994, Series G) produced by a software package called S-PLUS which
does allow the user to choose sensible scales and label them properly, to
put in a clear title, to join up the points or not, and so on. However,
the reader should note that the version of the graph given here was not
produced first time, but rather required several iterations to improve it to
an acceptable standard of presentation. Generally speaking, more effort is
needed to produce a ‘good’ graph than some analysts expect. Figure 2.1
shows a clear upward trend from year to year (numbers of passengers are
generally increasing) together with seasonal variation within a year (more
passengers travel in the summer).

Having emphasized the importance of the time plot, it should also be said
that there are occasions when such a graph may be difficult to interpret.
This may simply arise from a poor choice of scales and so it is worth
stressing that a bad graph can be worse than no graph. However, at a
more sophisticated level,2 even a well-produced time plot may not make

2 These comments presuppose some basic knowledge of time-series models
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it easy discern whether a series is generated by a model which is (i) non-
stationary (see Section 2.4 for a definition of stationarity) or (ii) ‘nearly’
non-stationary (see Section 3.1.9), nor whether a series is (iii) linear or
(iv) non-linear (see Section 3.4).

2.3.2 Other graphics

The use of graphics in time-series analysis is a rather neglected topic in
time-series texts – Diebold (1998, Chapter 3) is an exception. This is a pity
because the human eye is very efficient at finding patterns and spotting
anomalies in graphs.

The time plot is by far the most useful graphic, but the time ordering
of data can make it difficult to adapt other types of graph for use with
time series. For example, the histogram, which is a common type of graph
in general statistics for showing the distribution of data, is of limited value
for interpreting most time-series data, because trend and cyclic variation
will typically distort any distributional behaviour. It can, however, be useful
to plot the histogram of values from a detrended, deseasonalized series.

Another well-known type of graph is the scatter plot, which is used to
explore the relationship between two variables. The time plot of a single
variable can be regarded as a form of scatter plot with time being treated
as the second variable. However, the scatter plot does not naturally cope
with exploring the relationship between two time-ordered variables, where
there are effectively four variables, namely the two measured variables and
their corresponding sets of time points. Indeed, plotting multivariate time-
series data, so as to reveal inter-relationships between the variables, is a
difficult operation which preferably requires some practical experience. We
defer further consideration of this topic until Section 5.1.

Another important type of diagnostic graph is the so-called correlogram.
This will be discussed in Section 2.6 after Section 2.4 has introduced a
function called the autocorrelation function for a very general class of
models called stationary stochastic processes.

2.3.3 Transformations

A time plot may also help to decide if any variables need to be transformed
prior to the main analysis. For example, if there is an upward trend in
the time plot, and the variance appears to be increasing with the mean
level, then a transformation may be thought desirable in order to stabilize
the variance (or make it homoscedastic). A transformation may also be
indicated to make the data more normally distributed if the observations
appear to be skewed (e.g. with more ‘spikes’ upwards than down). Finally,
if the seasonal effect appears to be multiplicative (see section on seasonal
variation below), then it may be thought desirable to transform the data
to make the seasonal effect additive, as linear effects are generally easier to
handle.
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One general class of transformations is the Box-Cox transformation.
Given an observed time series {xt}, the transformed series is given by

yt =
{

(xλ
t − 1)/λ λ �= 0
log xt λ = 0 (2.3.1)

where λ denotes the transformation parameter which may be estimated by
subjective judgement or by a formal statistical procedure. When λ �= 0,
the Box-Cox transformation is essentially a power transformation of the
form xλ

t as the rest of the expression is introduced to make yt a continuous
function of λ at the value λ = 0.

Transformations are widely used, but there is, however, little evidence
that the use of a non-linear transformation improves forecasts (Nelson and
Granger, 1979) and there can be difficulties in interpreting a model for
a transformed series. Moreover, when forecasts are transformed back to
the original scale of measurement, they will generally be biased if the
transformed forecasts are unbiased. My personal preference is to avoid
transformations whenever possible and work with the observed data, when
the fitted model and forecasts are readily interpretable. Exceptions arise
when a transformed variable has a direct physical interpretation, as, for
example, when percentage increases are of interest indicating a logarithmic
transformation. A transformation is also advisable when asymmetry and/or
changes in variance are severe.

2.3.4 Cleaning the data

An important part of the initial examination of the data is to assess
the quality of the data and consider modifying them, for example, by
removing any obvious errors. This process is often called cleaning the data,
or data editing, and is an essential precursor to attempting to model data.
Data cleaning could include modifying outliers, identifying and correcting
obvious errors, and filling in (or imputing) any missing observations. The
analyst should also deal with any other known peculiarities such as a change
in the way that a variable is defined during the course of the data-collection
process. Some action may be necessary before doing anything else, such as
trying to fill in missing observations. However, some cleaning may follow
a simple preliminary descriptive analysis, and, in time-series analysis, the
construction of a time plot for each variable should reveal any oddities such
as outliers and discontinuities.

An adequate treatment of time-series outliers is particularly important,
and some useful references include Box et al. (1994, Section 12.2), Chen
and Liu (1993) and Ledolter (1989). It turns out that additive outliers,
that only affect a single observation, are more harmful than so-called
innovation outliers, that affect all subsequent observations after the first
time they appear through the dynamics of the system as expressed in the
model. It can be difficult to tell the difference between outliers caused by
errors, by non-linearity (see Section 3.4) and by having a non-normal ‘error’
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distribution. Robust methods downweight the effect of extreme observations
and are increasingly used. Interval forecasts can also be modified to cope
with outliers – see Section 7.7.

The context is crucial in deciding how to modify data, if at all. This
explains why it is essential to get background knowledge about the problem,
and in particular to clarify the objectives. A corollary is that it is difficult
to make any general remarks or give any general recommendations on data
cleaning. We will simply say that it is essential to combine statistical theory
with sound common sense and knowledge of the particular problem being
tackled.

2.3.5 Trend

The novice time-series analyst may think that the phenomenon known as
trend is relatively easy to understand. However, further thought will suggest
that it is not, in fact, easy to define ‘trend’. One possibility is to describe
it as the “long-term change in the underlying mean level per unit time”.
This may appear reasonable, but what is meant by ‘long-term’ and what is
‘the current mean level’? Our perception of trend, and our understanding
of ‘long-term’, depends partly on the length of the observed time series.
Thus current changes in climate, such as global warming, may be described
as a trend over the period of a single person’s lifetime, even though, over
a very long period of perhaps several hundred years, they may turn out be
cyclic variation at a low-frequency (though I wouldn’t count on it!).

We now present various mathematical models to describe different forms
of trend, both linear and non-linear, and both stochastic and deterministic.
Let µt denote the local mean level at time t. Many older textbooks consider
the case where

µt = α+ βt (2.3.2)
This simple linear trend is often called a deterministic or global linear trend.
However, current thinking (e.g. Newbold, 1988; Chatfield, 1996a, Chapter
10) is to generally avoid models including a deterministic function of time
and to favour local as opposed to global, models. Thus the trend is modelled
as evolving through time in a stochastic, rather than determnistic, way.
One way of representing a local linear trend is to allow the parameters α
and β in 2.3.2 to evolve through time so that

µt = αt + βtt (2.3.3)

where αt denotes the local intercept, and βt denotes the local slope. This
type of model is used much more commonly nowadays, because it has been
found that a deterministic linear trend rarely provides a satisfactory model
for real data. For example, Franses and Kleibergen (1996) show that out-of-
sample forecasts based on modelling the first differences of economic data
are generally better than those obtained by fitting a deterministic trend.
Computer software now exists to fit local trends and the latter seem to be
generally more robust.
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Before we go any further, it is important to realize that there is a
potential for confusion in the literature in regard to the use of the term
‘trend’. Some authors refer to µt in (2.3.2) and (2.3.3) as being the trend
term, while others use the term ‘trend’ to describe the rate of change in µt,
namely the slope, β or βt. These quantities are quite different.3 This book
generally refers to µt as being the local level, and sometimes uses the term
‘trend’ to refer to the rate of change in µt, namely β or βt. However we also
use the term ‘trend’ as in normal parlance to mean any general tendency
for the level to change through time and so generally use the phrase growth
rate to describe the slope, β or βt, in the hope that this will avoid any
confusion.

An alternative way of modelling a local trend is to use a recursive
equation as in state-space or structural models which are described more
fully in Section 3.2. The global trend modelled by (2.3.2) may be rewritten
as

µt = µt−1 + β

and this recursive form of the equation is more convenient for many
purposes. If we allow the change in level, namely β, to change through
time and add a disturbance term, say {w1,t}, then an alternative way of
representing a local linear trend is by

µt = µt−1 + βt−1 + w1,t (2.3.4)

to which must be added a second equation describing the evolution of
{βt}. The latter can be modelled in various ways. The most common
assumption, described more fully in Section 3.2 in regard to what is called
the linear growth model, is that βt = βt−1 + w2,t, where {w2,t} denotes a
second disturbance process. We will see in Section 2.5.2 that this model for
updating βt is usually called a random walk. A recursive form of equation,
such as (2.3.4), is generally used in preference to an equation like (2.3.3).
Note that the level and growth rate, namely µt and βt, are not observable
directly and we will see that the linear growth model is completed by
assuming that the observed value of the given time series is equal to
(µt + nt), where nt denotes measurement error.

In many cases the trend is clearly non-linear. For example, the local
level, µt, may be a polynomial function of time (such as a quadratic), or
may show exponential growth (which can be difficult to handle, even if
logarithms are taken so as to transform the trend to linearity), or may
follow an S-shaped function of time such as the Gompertz curve

logµt = a+ brt (2.3.5)

with 0 < r < 1, or the logistic curve

µt = a/(1 + be−ct) (2.3.6)

3 Even more confusingly, many governmental statistics agencies refer to µt as being the
trend-cycle. I think this term is very misleading.
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The trend may be estimated in two quite distinct ways. Firstly, it is
possible to fit the data with one of the parametric functions mentioned
above, namely a polynomial function, a Gompertz curve or a logistic curve.
Secondly, it is possible to apply a linear filter to the data in the form

x̃t = Σarxt+r (2.3.7)

If Σar = 1, then x̃t may be regarded as a smoothed value of xt, say Sm(xt).
The difference between xt and its smoothed value will then estimate the
deviation from the trend and is a way of producing a detrended series.
Note that [xt − Sm(xt)] is also a linear filter, of the form (2.3.7), but
that the sum of the coefficients, Σar, is now zero, rather than one. The
simplest example of a detrending linear filter, with Σar equal to zero, is that
obtained by taking first differences of a series, namely ∇xt = (xt − xt−1).
The reader should check that this is indeed of the form (2.3.7) with a0 = 1
and a−1 = −1.

Many more complicated filters are available for measuring and/or
removing trend. One important example is the Henderson family of moving
averages which are designed to follow a cubic polynomial trend through
time without distortion (Kenny and Durbin, 1982). It is possible to
find a symmetric filter with this property covering different numbers of
observations, with 9-, 13- or 23-term filters being particularly useful. A
longer filter should be used when there are judged to be higher than average
irregular fluctuations, or the data are monthly rather than quarterly. As
one example, it can be shown that the symmetric 9-term Henderson filter
has weights (−0.041; −0.010; 0.119; 0.267; 0.330) with the last term being
the centre term. The reader is invited to check that the sum of all nine
coefficients is indeed one so that this filter is for trend estimation rather
than trend removal. Of course, by subtracting each smoothed value from
the corresponding observation, a detrended value will result.

The discussion of Ball and Wood (1996) demonstrates how difficult it
still is to distinguish between different types of trend but we defer further
discussion of this topic, including testing for unit roots, until Chapter 3.

It is also important to realize that the treatment of trend depends on
whether or not seasonality is present. If seasonality is present, the analyst
has to decide whether to measure and/or remove the seasonality before or
after measuring the trend. In practice it is usual to adopt an iterative
procedure. Preliminary estimates of trend and seasonality are found,
typically with a fairly simple moving average, and these estimates are then
revised using a more sophisticated smoother, until more refined estimates
are obtained. Thus the treatment of trend and seasonality are inextricably
related, reflecting the fact that there is no unique decomposition of variation
into trend and seasonality. This leads on naturally to a more in-depth study
of the topic of seasonal variation.
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2.3.6 Seasonal variation

We consider variation over a period of one year, though results can readily
be adapted to other periods (e.g. variation on different days of the week).
The seasonal effect at time t will be denoted by it and is called the seasonal
index at time t. The seasonality is said to be additive when it does not
depend on the local mean level, and is said to be multiplicative when the
size of the seasonal variation is proportional to the local mean level. For
example, the seasonal variation in Figure 2.1 appears to be multiplicative,
rather than additive, as it becomes larger towards the end of the series.
In the additive case, the seasonal indices are usually normalized so that
Σit = 0 (where the sum is over one year’s values), while in the multiplicative
case, normalization can be achieved by adjusting the average value of (it)
over one year to equal one. If the seasonal and ‘error’ terms are both
multiplicative so that the observed random variable at time t, say Xt,
may be modelled by

Xt = µt it εt (2.3.8)

where εt denotes the random disturbance at time t, then a logarithmic
transformation will turn this into the fully additive model

logXt = logµt + log it + log εt (2.3.9)

which may be easier to handle. Of course, (2.3.8) only makes sense if εt is
a non-negative random variable which has an expected value close to, or
equal to, one, and it is sometimes more instructive to rewrite (2.3.8) in the
form

Xt = µt it (1 + ε
′

t) (2.3.10)

where ε
′
t = (εt − 1) has a mean close to, or equal to, zero.

There are a variety of methods for measuring and/or removing
seasonality. If you can carry out one of these operations (e.g. remove
seasonality), then you can generally do the other (e.g. estimate seasonality)
very easily as a result. For example, the difference between an observation
and its seasonally adjusted value will provide an estimate of the seasonal
effect in that period.

If the seasonal effect is thought to be constant through time, one
approach is to fit seasonal dummy variables using a regression approach
(e.g. Diebold, 1998, Chapter 5). This effectively fits one parameter for each
period during a year. Alternatively, if variation is thought to be smooth
through the year (e.g. sinusoidal), then it may be possible to model the
seasonality adequately using fewer parameters.

An alternative approach is to use some sort of linear filter, as in (2.3.7),
and various possibilities are available. Seasonal differencing is one very
simple way of deseasonalizing data. For example, with monthly data, where
there are 12 observations per year, the seasonal difference is written as
∇12xt = (xt −xt−12). Note that the sum of the coefficients, Σar, is zero, so
that this filter is removing seasonality, rather than estimating it. Seasonal
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differencing is useful for building seasonal ARIMA models (see Section
3.1.6) but more sophisticated filters are needed for other purposes.

The measurement and removal of seasonal variation is complicated by
the possible presence of calendar (or trading day) effects. The latter are
the effects due to changes in the calendar, as for example when Easter falls
in March one year and in April the next. Another example arises when
a month contains five Sundays one year, but only four the next, so that
the number of days when trading can occur will differ. This sort of event
can make a large difference to some measures of economic and marketing
activity. A review of the problem, which can be very important in practice,
is given for example by Bell and Hillmer (1983). Many packages now allow
such effects to be taken care of.

The U.S. Census Bureau devised a general approach to seasonal
adjustment, called the X-11 method, which has been widely used in
government statistical organizations to identify and remove seasonal
variation. A recursive approach is used. Preliminary estimates of trend
are used to get preliminary estimates of seasonal variation, which in turn
are used to get better estimates of trend and so on. In addition, possible
outliers are identified and adjusted during this process. The seasonality
may be specified as additive or multiplicative. The user is able to select
one of a number of linear filters, including a simple centred moving average
(usually used at the first stage to get a preliminary estimate of trend) and
Henderson filters4 of different lengths. First published in 1967, the method
has developed over the years, giving more options to the user in regard
to the treatment of features such as outliers, calendar effects and sudden
changes in the trend or seasonality.

When using a seasonal adjustment procedure as a precursor to
forecasting, an important aspect of linear filters is what happens at
the end of the series. Many linear filters, such as the Henderson trend-
estimation filters, are symmetric, in that the smoothed value in a given
period is obtained as a weighted average of past and future observations.
Unfortunately, future values will not be available near the end of the series.
This leads to end effects in that the filter cannot be used directly on
the data. Asymmetric one-sided filters can be found which only use past
observations, but they will typically make assumptions about the behaviour
of future observations, as for example that they will project in a linear way
in future.

A major development of the X-11 method was made by Statistics Canada
during the 1980s with a seasonal adjustment program called X-11-ARIMA.
This allows the user to augment the observed series by forecasting future
values with a model called an ARIMA model, which will be described in
Section 3.1.5. It also allows the user to backcast5 extra values before the
start of the series. Seasonal adjustment can then be readily carried out

4 See Section 2.3.5.
5 Backcasting means to forecast backwards.
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by applying symmetric linear filters to the augmented series. The package
allows the user to put in ‘prior adjustments’ to cope with features such as
outliers, trend breaks (also called level shifts) and changes in the seasonal
pattern. These prior adjustments are called ‘temporary’ if they are reversed
at the end of the seasonal adjustment process so as to reflect a real effect
in the data. They are called ‘permanent’ if they are not reversed, as for
example with an outlier that is thought to be an error. Various options
are available, such as ensuring that annual totals are constrained so that
seasonally adjusted data have the same annual total as the original data.
Aggregated series can be similarly handled.

The U.S. Census Bureau has recently developed an updated version of
the X-11-ARIMA seasonal adjustment program, called X-12-ARIMA (see
Findley et al., 1998). Its enhancements include more flexible capabilities for
handling calendar effects, better diagnostics and an improved user interface,
especially for handling large numbers of series. Like X-11-ARIMA,
X-12-ARIMA has a very wide range of options, which should be seen as a
strength, but could also be a weakness in the wrong hands. Clearly, users
need adequate training. There are defaults, but they may not necessarily be
sensible ones, and so it is not advised to use these packages in ‘black-box’
mode. Rather, the user is advised to get as much background knowledge
as possible and have a preliminary look at the data (as in all time-series
analysis).

X-11-ARIMA and X-12-ARIMA are widely used in economics and
government, especially in Canada, the USA and the UK. In mainland
Europe, some government statistics organizations use an alternative
approach, based on a package called SEATS (Signal Extraction in ARIMA
time series), that is described in Gomez and Maravall (2000). This model-
based approach relies on seasonal ARIMA models (see Section 3.1.6), and
involves pre-adjusting the data to cope with missing observations, outliers
and calendar effects using another program called TRAMO (Time-series
regression with ARIMA noise).

Many government statistics are presented in deseasonalized form so as
to better assess the underlying trend, which is generally of prime interest.
However, as noted earlier, there is no unique decomposition of variation
into trend and seasonality, and it is sometimes found that data, thought to
be seasonally adjusted, still contain some residual seasonality. If, instead,
more operations are carried out on data so as to completely remove all
seasonality, then it is sadly possible to distort other properties of the data
such as the trend – see Gooijer and Franses (1997) for references – or even
introduce non-linearities (Ghysels et al., 1996). Of course, the seasonal
patterns are sometimes of interest in their own right and then it could be
a mistake to deseasonalize the data except insofar as this leads to better
estimates of the seasonality.

More information on seasonal adjustment is given by Butter and Fase
(1991) and in the collection of papers from the years 1974–1990 edited by
Hylleberg (1992).
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2.3.7 An important comment

The above preliminary matters are very important and their treatment
should not be rushed. Getting a clear time plot and assessing the properties
of the data is particularly important. Is trend and/or seasonality present?
If so, how should such effects be modelled, measured or removed? In my
experience, the treatment of such problem-specific features as calendar
effects (e.g. noting whether Easter is in March or April in each year),
outliers, possible errors and missing observations can be more important
than the choice of forecasting method.

Even more basic is to assess the structure and format of the data. Have
all important variables been measured? Has the method of measurement
changed during the period of observation? Has there been some sort of
sudden change during the period of observation? If so, why has it occurred
and what should be done about it?

Example 2.1. A seasonal adjustment disaster. While advising a company
on ways of improving their seasonal adjustment procedures, I noticed that
one group of series had been recorded quarterly until 1995, and monthly
thereafter. However, the series had been treated as though they were
monthly throughout. Needless to say, the answers that were produced by
conventional time-series methods were inappropriate, especially towards
the beginning of the series, although it was fortunate that the seasonal
adjustments had largely settled down by the time the 1999 data arrived.

It is easy to say that this is just a silly misapplication of time-series
methodology, which should not happen in a good statistical department.
In fact, many companies have several hundred or even thousands of series
to analyse, and this sort of thing can happen all too easily, even in a well-
run department. It reminds us that it is very easy to get bogged down in
trying to make small improvements to statistical procedures, and lose sight
of more important basic questions. �

2.4 Stationary stochastic processes

This section reviews some basic theory for time series. If future values
can be predicted exactly from past values, then a series is said to be
deterministic. However, most series are stochastic, or random, in that the
future is only partly determined by past values. If an appropriate model for
this random behaviour can be found, then the model should enable good
forecasts to be computed.

A model for a stochastic time series is often called a stochastic process.
The latter can be described as a family of random variables indexed by time,
and will be denoted by (X1, X2, . . .), or more generally by {Xt}, in discrete
time. An alternative, more precise, notation is to use {Xt, t ∈ T} where T
denotes the index set of times on which the process is defined. This notation
is necessary when observations are not equally spaced through time, but we
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restrict attention to the equally spaced case when the index set consisting
of the positive integers is commonly used.

We also restrict attention to real-valued series which are causal. Put
simply, the latter restriction means that the process is only allowed to
move forward through time so that the value at time t is not allowed to
depend on any future values. Of course, if the ‘time series’ consisted of
one-dimensional spatial data, such as the heights of a surface at equally
spaced points on a horizontal line, then causality is inappropriate.

We regard the observed value at time t, namely xt, as an observation
on an underlying random variable, Xt. The observed time series is called
a (finite) realization of the stochastic process and the population of all
possible realizations is called the ensemble. Time-series analysis is different
from other statistical problems in that the observed time series is usually
the one and only realization that will ever be observed. In other words, xt

is usually the only observation we will ever get on Xt. Despite this, we want
to estimate the properties of the underlying stochastic process. Estimation
theory for stochastic processes is partially concerned with seeing whether
and when a single realization is enough to estimate the properties of the
underlying model. Some of these issues are explored in Section 2.6.

At this stage, we concentrate attention on processes which are stationary.
Put loosely, this means that the properties of the underlying model do not
change through time. More formally, a stochastic process is said to be
second-order stationary if its first and second moments are finite and do
not change through time. The first moment is the mean, E[Xt], while the
general second moment is the covariance between Xt and Xt+k for different
values of t and k. This type of covariance is called an autocovariance. The
variance, Var[Xt], is a special case of the latter when the lag k is zero. Thus
a process is second-order stationary if E[Xt] is a finite constant, say µ, for
all t, if Var[Xt] is a finite constant, say σ2, for all t, and, more generally, if
the autocovariance function depends only on the lag, k, so that

Cov [Xt, Xt+k] = E[(Xt − µ)(Xt+k − µ)]

= γk (2.4.1)
for all t. The set of autocovariance coefficients {γk}, for k = 0, 1, 2, . . . ,
constitute the autocovariance function (abbreviated acv.f.) of the process.
Note that γ0 equals the variance, σ2. Second-order stationarity is sometimes
called covariance or weak stationarity.

The acv.f. is often standardized to give a set of autocorrelation
coefficients, {ρk}, given by:

ρk = γk/γ0 (2.4.2)

for k = 0, 1, 2, . . .. The {ρk} constitute the autocorrelation function
(abbreviated ac.f.) For stationary processes, ρk measures the correlation
at lag k between Xt and Xt+k. The ac.f. is an even function of lag,
since ρk = ρ−k, and has the usual property of correlation that |ρk| ≤ 1.
Some additional useful functions, which are complementary to the ac.f.,
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include the partial autocorrelation function (abbreviated partial ac.f.)
which essentially measures the excess correlation at lag k which has not
already been accounted for by autocorrelations at lower lags. Another
potentially useful tool in model identification is the inverse ac.f. (e.g. Wei,
1990, p. 123).

A stochastic process is said to be a Gaussian (or normal) process if the
joint distribution of any set of Xt’s is multivariate normal. Such a process is
completely characterized by its first and second moments but it is advisable
to remember that this is not so for non-Gaussian processes and that it is
possible to find Gaussian and non-Gaussian processes with the same ac.f.
This creates obvious difficulties in interpreting sample ac.f.s when trying
to identify a suitable underlying model. For non-Gaussian processes it may
also be necessary to consider strict rather than second-order stationarity,
wherein the joint distribution of any set of random variables is not changed
by shifting them all by the same time τ , for any value of τ . Although strict
stationarity sounds like (and is) a strong condition, note that it does not
imply second-order stationarity without the additional assumption that the
first and second moments are finite.

An alternative way of describing a stationary stochastic process is by
means of its spectral density function, or spectrum, which is the discrete
Fourier transform of {γk}, namely:

f(ω) =
1
π

(
γ0 + 2

∞∑
k=1

γk cosωk

)
(2.4.3)

for 0 ≤ ω ≤ π. The function describes how the overall variance of the
process is distributed over different frequencies from zero to the Nyquist
frequency, π. The latter frequency is the highest frequency about which
we can get information from data recorded at unit intervals of time
and corresponds to a sine wave which completes one cycle in two time
intervals. Note that there are several alternative ways of writing the
spectrum in terms of the acv.f. In particular, some authors define f(ω)
as an even function over the frequency range [−π, π] with a constant 1/2π
outside the bracket in (2.4.3). This definition generalizes more naturally to
multidimensional processes but involves the artifact of negative frequencies.
A normalized spectrum may also be defined as the discrete Fourier
transform of {ρk}.

The two functions {γk} and f(ω) are equivalent and complementary.
An analysis based primarily on estimates of the autocorrelation (or
autocovariance) function is called an analysis in the time domain. An
analysis based primarily on the spectrum is called an analysis in the
frequency domain or spectral analysis. Sometimes the analyst needs to look
at both functions, but in time-series forecasting it is rather rare to use
frequency domain methods. Thus this book is concerned almost exclusively
with the time-domain and the reader is referred to Priestley (1981) and
Percival and Walden (1993) for two good references on spectral analysis.
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With observations on two or more variables, the cross-correlation
function and its Fourier transform, the cross-spectrum, are important
tools in describing the underlying process. They are natural bivariate
generalizations of the (univariate) autocorrelation function and the
(univariate) spectrum. If two stationary processes, say {Xt} and {Yt},
constitute a bivariate stationary process, then the covariance of Xt and
Yt+k will depend only on the lag k and may be written

Cov [Xt, Yt+k] = E [(Xt − µx)(Yt+k − µy)] = γxy(k) (2.4.4)

The set of coefficients {γxy(k)}, for k = 0,±1,±2, . . . , is called the cross-
covariance function. The function may be standardized to give the cross-
correlation function, ρxy(k), by

ρxy(k) = γxy(k)/
√
γxx(0)γyy(0) (2.4.5)

Here the denominator is just the product of the standard deviations of
the X and Y processes. In many respects, this function has quite different
properties from those of the autocorrelation function. Although the values
are still restricted to the range (−1, 1), the value at lag zero, namely
ρxy(0), will generally not equal unity (as for the autocorrelation function).
Moreover, the cross-correlation function is not in general an even function of
lag, in that ρxy(k) may not equal ρxy(−k) (whereas, for the autocorrelation
function we do have ρk = ρ−k).

The cross-spectrum may be defined as

fxy(ω) =
1
π

[ ∞∑
k=−∞

γxy(k)e−iωk

]
(2.4.6)

for 0 ≤ ω ≤ π. This function is generally complex, rather than real,
unlike the spectrum of a univariate process which is always real. The
interpretation of sample cross-correlations and cross-spectra is rather
difficult in practice and discussion is deferred until Chapter 5.

There are many useful classes of model. Some are for a univariate process,
while others are multivariate. Some are stationary but others are non-
stationary. In the latter case functions like the autocorrelation function
will not be meaningful until sources of non-stationarity have been removed.
Some classes of univariate model are briefly introduced in Section 2.5 below,
and then covered in much greater depth in Chapter 3. Multivariate models
are deferred until Chapter 5.

2.5 Some classes of univariate time-series model

Many forecasting procedures are based on a time-series model. It is therefore
helpful to be familiar with a range of time-series models before starting to
look at forecasting methods. This section aims to give an introductory
flavour of some simple important univariate models. A univariate model
describes the distribution of a single random variable at time t, namely Xt,
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in terms of its relationship with past values of Xt and its relationship with
a series of white-noise random shocks as defined in Section 2.5.1 below.6

2.5.1 The purely random process

The simplest type of model, used as a ‘building brick’ in many other models,
is the purely random process. This process may be defined as a sequence of
uncorrelated, identically distributed random variables with zero mean and
constant variance. This process is clearly stationary and has ac.f. given by

ρk =
{

1 k = 0
0 otherwise (2.5.1)

The spectrum of this process is constant (as would intuitively be expected).
This process is variously called (uncorrelated) white noise, the

innovations process or (loosely) the ‘error’ process. The model is rarely
used to describe data directly, but is often used to model the random
disturbances in a more complicated process. If this is done, the white-noise
assumptions need to be checked.

Some authors use the term ‘purely random process’ to refer to a sequence
of independent, rather than uncorrelated, random variables. There is no
difference in regard to second-order properties and of course independence
implies lack of correlation. Moreover, the converse is true when the process
is a Gaussian process (as it will often be assumed to be). However, for
non-linear models the difference between uncorrelated white noise and
independent white noise may be crucial, and the stronger assumption
of independence is generally needed when looking at non-linear models
and predictors. In future, we will highlight this difference where necessary
by describing a purely random process consisting of independent random
variables as being strict or independent white noise.

By convention, we use {Zt} in this book to denote a purely random
process with zero mean and variance σ2

z when it is a component of a random
walk model, of an autoregressive model or of the more general class of (Box-
Jenkins) ARIMA processes, though for other classes of model we typically
use the alternative notation {εt}. Other writers use a variety of symbols
for the same process, including {at} and {ut}. Some writers always assume
serial independence, rather than a lack of serial correlation, but, as noted
above, for a linear Gaussian process this makes no difference. We generally
make the minimal assumption of zero correlation in the linear case but
assume independence in the non-linear case.

6 Some writers also allow a deterministic function of time to be included, but there are
definitely no terms involving any other explanatory variables.
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2.5.2 The random walk

A model of much practical interest is the random walk which is given by

Xt = Xt−1 + Zt (2.5.2)

where {Zt} denotes a purely random process. This model may be used, at
least as a first approximation, for many time series arising in economics
and finance (e.g. Meese and Rogoff, 1983). For example, the price of a
particular share on a particular day is equal to the price on the previous
trading day plus or minus the change in share price. It turns out that the
latter quantity is generally not forecastable and has properties similar to
those of the purely random process.

The series of random variables defined by (2.5.2) does not form a
stationary process as it is easy to show that the variance increases through
time. However, the first differences of the series, namely (Xt − Xt−1), do
form a stationary series. We will see that taking differences is a common
procedure for transforming a non-stationary series into a stationary one.

2.5.3 Autoregressive processes

A process {Xt} is said to be an autoregressive process of order p
(abbreviated AR(p)) if

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + Zt (2.5.3)

Thus the value at time t depends linearly on the last p values and the model
looks like a regression model – hence the term autoregression.

The simplest example of an AR process is the first-order case, denoted
AR(1), given by

Xt = φXt−1 + Zt (2.5.4)

Clearly, if φ = 1, then the model reduces to a random walk as in (2.5.2),
when the model is non-stationary. If |φ| > 1, then it is intuitively obvious
that the series will be explosive and hence non-stationary. However, if
|φ| < 1, then it can be shown that the process is stationary,7 with ac.f.
given by ρk = φk for k = 0, 1, 2, . . .. Thus the ac.f. decreases exponentially.
Further details about AR models are given in Section 3.1.1.

2.5.4 Moving average processes

A process {Xt} is said to be a moving average process of order q
(abbreviated MA(q)) if

Xt = Zt + θ1Zt−1 + · · · + θqZt−q (2.5.5)

Thus the value at time t is a sort of moving average of the (unobservable)
random shocks, {Zt}. However, the ‘weights’, {θj}, involved in the moving

7 Section 3.1.4 discusses how to make this statement more rigorous.
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average will generally not add to unity and so the phrase ‘moving average’
is arguably unhelpful.

The simplest example of an MA process is the first-order case, denoted
MA(1), given by

Xt = Zt + θZt−1 (2.5.6)

It can be shown that this process is stationary for all values of θ with an
ac.f. given by

ρk =




1 k = 0
θ/(1 + θ2) k = 1

0 k > 1

Thus the ac.f. ‘cuts off’ at lag 1. Further details about MA processes are
given in Section 3.1.2.

2.5.5 The random walk plus noise model

The random walk plus noise model, sometimes called the local level, or
steady model is a simple example of a class of models called state-space
models. The latter are considered in more detail in Section 3.2. Suppose
the observed random variable at time t may be written in the form

Xt = µt + nt (2.5.7)

where the local level, µt, changes through time like a random walk so that

µt = µt−1 + wt (2.5.8)

The two sources of random variation in the above equations, namely nt and
wt, are assumed to be independent white noise processes with zero means
and respective variances σ2

n, σ
2
w. The properties of this model depend on the

ratio of the two error variances, namely σ2
w/σ

2
n, which is called the signal-to-

noise ratio. In the jargon of state-space modelling, the unobserved variable,
µt, which denotes the local level at time t, is called a state variable, (2.5.7)
is called the observation or measurement equation, while (2.5.8) is called
the transition equation.8

2.6 The correlogram

The correlogram is probably the most useful tool in time-series analysis
after the time plot. It can be used at two different levels of sophistication,
either as a relatively simple descriptive tool or as part of a more general
procedure for identifying an appropriate model for a given time series. We
say more about the latter in Chapter 3 and concentrate here on simpler

8 Note that various alternative representations of this model are in common use. For
example, some authors write the transition equation (2.5.8) with µt+1 on the left-
hand side and µt and wt on the right-hand side so that the times match up on the
right-hand side. The reader needs to ensure that any representation makes sense and
gives internally consistent results.
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ideas, though this section does provide the opportunity to comment on
some basic estimation issues in regard to time-series modelling.

Denote the observed time series by {x1, x2, . . . , xN}. The sample
autocovariance coefficient at lag k is usually calculated by

ck =
N−k∑
t=1

(xt − x̄)(xt+k − x̄)/N (2.6.1)

for k = 0, 1, 2, . . . , and the sample autocorrelation coefficient at lag k is
then calculated by

rk = ck/c0 (2.6.2)

The graph of rk against k is called the sample autocorrelation function
(abbreviated ac.f.) or the correlogram. It is an important tool in assessing
the behaviour and properties of a time series. It is typically plotted for
the original series and also after differencing or transforming the data as
necessary to make the series look stationary and approximately normally
distributed.

For data from a stationary process, it can be shown that the correlogram
generally provides an estimate of the theoretical ac.f. defined in (2.4.2).
Although intuitively ‘obvious’, this is mathematically hard to prove because
it requires that averages over time for an observed time series (like x̄)
enable us to estimate the ensemble properties of the underlying process (like
E(Xt)); in other words, that we can estimate the properties of the random
variable at time t with the help of observations made at other times.9

It follows that, for data from a non-stationary process, the correlogram
does not provide an estimate of anything! In that case, the values in the
correlogram will typically not come down to zero except at high lags, and
the only merit of the correlogram is to indicate that the series is not
stationary.

Interpreting a correlogram is one of the hardest tasks in time-series
analysis, especially when N is less than about 100 so that the sample
autocorrelations have relatively large variance. For a stationary series, the
pattern of the correlogram may suggest a a stationary model with an ac.f. of
similar shape. The simplest case is that of a purely random process, where
it can be shown that rk is asymptotically normally distributed with mean
−1/N , and standard deviation 1/

√
N for k �= 0. As the mean, −1/N , is

small compared with the standard deviation, it is customary to take the
mean as being approximately zero and regard values outside the range
0 ± 2/

√
N as being significantly different from zero. Several significant

9 Strictly speaking, the process needs to have appropriate ‘ergodic’ properties so that
averages over time from a single realization provide estimates of the properties of the
underlying process (e.g. Priestley, 1981, Section 5.3.6). For example a covariance-
stationary process is said to be ‘ergodic in the mean’ if the sample mean, x̄ =∑N

t=1
xt, converges in probability to E(Xt) asN → ∞ so that x̄ provides a consistent

estimate of the ensemble average. A sufficient condition is that ρk → 0 as k → ∞.
We will assume appropriate ergodic properties are satisfied throughout the book.
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coefficients, especially at important low lags, provide strong evidence that
the data do not come from a purely random process.

One common pattern for stationary time series is to see short-term
correlation typified by finding perhaps the first three or four values of
rk to be significantly different from zero. If they seem to decrease in an
approximately exponential way then an AR(1) model is indicated. If they
behave in a more complicated way, then a higher-order AR model may be
appropriate. If the only significant autocorrelation is at lag one, then a
MA(1) model is indicated. For seasonal series, there is likely to be a large
positive value of rk at the seasonal period, and this may still be present to
a (much) lesser extent even after the seasonal effect has supposedly been
removed. Thus the correlogram is often used to see if seasonality is present.
For series with a trend, the correlogram will not come down to zero until a
high lag has been reached, perhaps up towards half the length of the series.
The correlogram provides little information in the presence of trend other
than as an indicator that some form of trend-removal is necessary to make
the series stationary.

As with other material in this brief introduction to time-series analysis,
the reader is referred to the many introductory texts on time series for a
more complete guide to the interpretation of the correlogram. In addition,
the novice is advised to get experience of looking at correlograms, both for
simulated data from a known model and for real data. As is often the case,
practical experience is the best teacher.

Example 2.2. Correlograms for the S&P 500 series. We give one simple
example to indicate how to interpret correlograms. The S&P 500 index
series is plotted in Figure 1.1. The plot shows no evidence of seasonality and
no systematic trend, although the local mean does seem to change (both
up and down). The more experienced reader will realize that the changes
in local mean indicate that the series is not stationary, and the correlogram
of the series, shown in Figure 2.2(a), confirms this. The autocorrelations
up to lag 13 are all positive, after which there is a sequence of negative
autocorrelations from lag 14 to a lag in excess of 20 (actually until lag
37). This is typical behaviour for a non-stationary series. The dotted lines
on the graph, at around 0.21, indicate that values outside these dotted
lines are significantly different from zero. In this case, there are so many
‘significant’ values that modelling is clearly problematic. The series must
be made more stationary (whatever that means) before we can usefully
interpret the correlogram.

If there were an obvious linear trend in the mean, we could fit a straight
line to the data and look at the deviations from the line. This is not
appropriate here. Instead we form the series of first differences and compute
its correlogram. This is shown in Figure 2.2(b). Apart from the value at
lag zero (which is always one and tells us nothing), the autocorrelations all
lie inside the dotted lines. There is effectively little or no autocorrelation
left in the series. In other words, the first differences of the S&P 500 series
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are very close to being a completely random series. Put another way, this
means that the original series is very close to being a random walk (see
Section 2.5.2).

Figure 2.2. The sample correlogram of (a) the S & P500 index series
plotted in Figure 1.1; (b) The first differences of the S & P500 series.

The econometrician might prefer to induce stationarity by looking at
the series of percentage changes, namely 100 ×(It − It−1)/It−1, where It

denotes the value of the index at time t. An alternative is to work with the
series of so-called (compounded) returns given by 100 × log(It/It−1). The
first series involves the first differences, (It−It−1), while the second involves
the first differences of the logs, namely (log It − log It−1). For the relatively
short series considered here, where It does not vary much in size, it makes
little difference which series is used. For example the correlogram of the
first differences of the logarithms is virtually identical to that in Figure
2.2(b). For longer financial series, some form of percentage variation will
normally be preferred to first differences. �

With observations on two or more series, it is possible to look, not only at
the correlogram of each series, but also to look at the correlations between
the series. The sample cross-correlation function is defined in Chapter 5
and discussion is deferred until then.
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CHAPTER 3

Univariate Time-Series Modelling

Many univariate forecasting procedures are based explicitly or implicitly on
a univariate time-series model. It is therefore necessary for the forecaster
to be familiar with a range of possible models and have a thorough
understanding of the modelling process as applied to time-series data.

A few simple models were briefly introduced in Section 2.5 and some
general hints on model building were made throughout Chapter 2,
especially in regard to using the time plot and the correlogram. This chapter
discusses a wider variety of models in greater depth and then makes some
general comments on models and the model-building process. Some topics
will be familiar to some readers, but the chapter also introduces some
important topics which are likely to be new to many readers, including
long-memory models, some non-linear models, and some aspects of model
formulation and model selection.

3.1 ARIMA models and related topics

The ARIMA class of models is an important forecasting tool, and is the
basis of many fundamental ideas in time-series analysis. The acronym
ARIMA stands for ‘autoregressive integrated moving average’, and the
different components of this general class of models will be introduced in
turn. The original key reference1 is Box and Jenkins (1970), and ARIMA
models are sometimes called Box-Jenkins models. Some closely related
models will also be discussed.

We concentrate here on the theoretical properties of the models. Some
general comments on modelling are given later in Section 3.5, while some
specific comments on fitting ARIMA models are given in Section 4.2. Many
more detailed accounts are given elsewhere in the literature, but, with so
much good software now available to fit ARIMA models, it is no longer
necessary for the user to have detailed knowledge of what is involved
(though, as always, it is a good idea to know what computer software
is doing in broad terms so as to avoid inappropriate software use).

3.1.1 Autoregressive (AR) processes

A time series {Xt} is said to be an autoregressive process of order p
(abbreviated AR(p)) if it is a weighted linear sum of the past p values

1 Now revised as Box et al. (1994).
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plus a random shock so that

Xt = φ1Xt−1 + φ2Xt−2 + · · · + φpXt−p + Zt (3.1.1)

where {Zt} denotes a purely random process with zero mean and variance
σ2

z . Using the backward shift2 operator B, such that BXt = Xt−1, the
AR(p) model may be written more succinctly in the form

φ(B)Xt = Zt (3.1.2)

where φ(B) = 1 − φ1B − φ2B
2 − · · · − φpB

p is a polynomial in B of order
p. The properties of AR processes defined by (3.1.1) can be examined
by looking at the properties of the function φ. As B is an operator,
the algebraic properties of φ have to be investigated by examining the
properties of φ(x), say, where x denotes a complex variable, rather than by
looking at φ(B). It can be shown that (3.1.2) has a unique causal stationary
solution provided that the roots of φ(x) = 0 lie outside the unit circle. This
solution may be expressed in the form

Xt =
∞∑

j≥0

ψjZt−j (3.1.3)

for some constants ψj such that
∑

|ψj | < ∞.
The above statement about the unique stationary solution of (3.1.2)

may be unfamiliar to the reader who is used to the more customary time-
series literature. The latter typically says something like “an AR process is
stationary provided that the roots of φ(x) = 0 lie outside the unit circle”.
This will be good enough for most practical purposes but is not strictly
accurate; for further remarks on this point, see Section 3.1.4 and Brockwell
and Davis (1991).

The simplest example of an AR process is the first-order case given by

Xt = φXt−1 + Zt (3.1.4)

The time-series literature typically says that an AR(1) process is stationary
provided that |φ| < 1. It is more accurate to say that there is a unique
stationary solution of (3.1.4) which is causal, provided that |φ| < 1. The
ac.f. of a stationary AR(1) process3 is given by ρk = φk for k = 0, 1, 2, . . ..
For higher-order stationary AR processes, the ac.f. will typically be a
mixture of terms which decrease exponentially or of damped sine or cosine
waves. The ac.f. can be found by solving a set of difference equations called
the Yule-Walker equations given by

ρk = φ1ρk−1 + φ2ρk−2 + · · · + φpρk−p (3.1.5)

2 Note that economists typically use the notation L (for lag operator) rather than B
(for backward shift operator).

3 Strictly speaking we should say that it is the ac.f. of the unique stationary solution of
(3.1.4) – see the later theoretical subsection. In future we will not continue to make
these rather pedantic points but revert throughout to the usual time-series usage of
the phrase ‘stationary AR process’ as meaning the unique causal stationary solution
of an equation of the form (3.1.1).
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for k = 1, 2, . . ., where ρ0 = 0. Notice that the AR model is typically written
in mean-corrected form with no constant on the right-hand side of (3.1.1).
This makes the mathematics much easier to handle.

A useful property of an AR(p) process is that it can be shown that the
partial ac.f. is zero at all lags greater than p. This means that the sample
partial ac.f. can be used to help determine the order of an AR process
(assuming the order is unknown as is usually the case) by looking for the
lag value at which the sample partial ac.f. ‘cuts off’ (meaning that it should
be approximately zero, or at least not significantly different from zero, for
higher lags).

3.1.2 Moving average (MA) processes

A time series {Xt} is said to be a moving average process of order q
(abbreviated MA(q)) if it is a weighted linear sum of the last q random
shocks so that

Xt = Zt + θ1Zt−1 + · · · + θqZt−q (3.1.6)

where {Zt} denotes a purely random process with zero mean and constant
variance σ2

z . (3.1.6) may alternatively be written in the form

Xt = θ(B)Zt (3.1.7)

where θ(B) = 1 + θ1B + · · · + θqB
q is a polynomial in B of order q.

Note that some authors (including Box et al., 1994) parameterize an MA
process by replacing the plus signs in (3.1.6) with minus signs, presumably
so that θ(B) has a similar form to φ(B) for AR processes, but this seems
less natural in regard to MA processes. There is no difference in principle
between the two notations but the signs of the θ values are reversed and
this can cause confusion when comparing formulae from different sources
or examining computer output.

It can be shown that a finite-order MA process is stationary for all
parameter values. However, it is customary to impose a condition on the
parameter values of an MA model, called the invertibility4 condition, in
order to ensure that there is a unique MA model for a given ac.f. This
condition can be explained as follows. Suppose that {Zt} and {Z ′

t} are
independent purely random processes and that θ ∈ (−1, 1). Then it is
straightforward to show that the two MA(1) processes defined by Xt =
Zt + θZt−1 and Xt = Z

′
t + θ−1Z

′
t−1 have exactly the same autocorrelation

function (ac.f.). Thus the polynomial θ(B) is not uniquely determined
by the ac.f. As a consequence, given a sample ac.f., it is not possible to
estimate a unique MA process from a given set of data without putting
some constraint on what is allowed. To resolve this ambiguity, it is usually
required that the polynomial θ(x) has all its roots outside the unit circle.

4 Control engineers use the term ‘minimum phase’ rather than ‘invertible’.
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It then follows that we can rewrite (3.1.6) in the form

Xt −
∑
j≥1

πjXt−j = Zt (3.1.8)

for some constants πj such that
∑

|πj | < ∞. In other words, we can invert
the function taking the Zt sequence to the Xt sequence and recover Zt from
present and past values of Xt by a convergent sum. The negative sign of the
π-coefficients in (3.1.8) is adopted by convention so that we are effectively
rewriting an MA process of finite order as an AR(∞) process. The astute
reader will notice that the invertibility condition (roots of θ(x) lie outside
unit circle) is the mirror image of the condition for stationarity of an AR
process (roots of φ(x) lie outside the unit circle).

The ac.f. of an MA(q) process can readily be shown to be

ρk =




1 k = 0∑q−k
i=0 θiθi+k/

∑q
i=0 θ

2
i k = 1, 2, . . . , q

0 k > q

(3.1.9)

where θ0 = 1. Thus the ac.f. ‘cuts off’ at lag q. This property may be
used to try to assess the order of the process (i.e. What is the value of q?)
by looking for the lag beyond which the sample ac.f. is not significantly
different from zero.

The MA process is relevant to a mathematical theorem called the Wold
decomposition theorem – see, for example, Priestley, 1981, Section 10.1.5. In
brief simplified form, this says that any stationary process can be expressed
as the sum of two types of processes, one of which is non-deterministic
while the other is (linearly) deterministic. These terms are defined as
follows. If the process can be forecast exactly by a linear regression on past
values, even if recent values are not available, then the process is called
deterministic (or singular). However, if linear regression on the remote
past is useless for prediction purposes, then the process is said to be non-
deterministic (or purely indeterministic or regular or stochastic).

The connection with MA processes is as follows. It can be shown that the
non-deterministic part of the Wold decomposition can be expressed as an
MA process of possibly infinite order with the requirement that successive
values of the Zt sequence are uncorrelated rather than independent as
assumed by some authors when defining MA processes. Formally, any
stationary nondeterministic time series can be expressed in the form

Xt =
∞∑

j=0

ψjZt−j (3.1.10)

where ψ0 = 1 and
∑∞

j=0 ψ
2
j < ∞, and {Zt} denotes a purely random process

(or uncorrelated white noise) with zero mean and constant variance, σ2,
which is uncorrelated with the deterministic part of the process (if any).
The {Zt} are sometimes called innovations, as they are the one-step-ahead
forecast errors when the best linear predictor is used to make one-step-
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ahead forecasts. The formula in (3.1.10) is an MA(∞) process, which is
often called the Wold representation of the process. It is also sometimes
called a linear process or, as in this book, a general linear process. However,
note that the latter terms are used by some writers when the Zt’s are
independent, rather than uncorrelated, or when the summation in (3.1.10)
is from −∞ to +∞, rather than 0 to ∞. Of course, if the Zt’s are normally
distributed, then zero correlation implies independence anyway and we have
what is sometimes called a Gaussian linear process.

In practice the Wold decomposition is of rather limited value. If the
generating sequence of the process is non-linear, the Wold decomposition is
generally unhelpful as the best mean square predictor may be quite different
from the best linear predictor. Moreover, even if the process is linear, the
MA(∞) representation of a stochastic process involves an infinite number of
parameters which are impossible to estimate from a finite set of data. Thus
it is customary to search for a model that is a parsimonious approximation
to the data, by which is meant using as few parameters as possible. One
common way to proceed is to consider the class of mixed ARMA processes
as described below.

3.1.3 ARMA processes

A mixed autoregressive moving average model with p autoregressive terms
and q moving average terms is abbreviated ARMA(p, q) and may be written
as

φ(B)Xt = θ(B)Zt (3.1.11)

where φ(B), θ(B) are polynomials in B of finite order p, q, respectively. This
combines (3.1.2) and (3.1.7). Equation 3.1.11 has a unique causal stationary
solution provided that the roots of φ(x) = 0 lie outside the unit circle. The
process is invertible provided that the roots of θ(x) = 0 lie outside the
unit circle. In the stationary case, the ac.f. will generally be a mixture of
damped exponentials or sinusoids.

The importance of ARMA processes is that many real data sets may
be approximated in a more parsimonious way (meaning fewer parameters
are needed) by a mixed ARMA model rather than by a pure AR or pure
MA process. We know from the Wold representation in (3.1.10) that any
stationary process can be represented as a MA(∞) model, but this may
involve an infinite number of parameters and so does not help much in
modelling. The ARMA model can be seen as a model in its own right or
as an approximation to the Wold representation. In the latter case, the
generating polynomial in B, which gives (3.1.10), namely

ψ(B) =
∞∑

j=0

ψjB
j

may be of infinite order, and so we try to approximate it by a rational
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polynomial of the form

ψ(B) = θ(B)/φ(B)

which effectively gives the ARMA model.

3.1.4 Some theoretical remarks on ARMA processes

This subsection5 takes a more thorough look at some theoretical aspects of
ARMA processes (and hence of pure AR and MA processes by putting q or p
equal to one). The general ARMA(p, q) process is defined by (3.1.11). Time-series
analysts typically say that this equation is an ARMA(p, q) process. However,
strictly speaking, the above equation is just that – an equation and not a process.
In contrast, the definition of a process should uniquely define the sequence
of random variables {Xt}. Like other difference equations, (3.1.11) will have
infinitely many solutions (except for pure MA processes) and so, although it
is possible to say that any solution of (3.1.11) is an ARMA(p, q) process, this
does not of itself uniquely define the process.

Consider, for example, the AR(1) process, defined earlier in (3.1.4), for which

Xt = φXt−1 + Zt (3.1.12)

for t = 0,±1,±2, . . .. As noted earlier, it is customary for the time-series
literature to say that an AR(1) process is stationary provided that |φ| < 1.
However, the first-order difference equation defined by (3.1.12) has infinitely
many solutions. For example, the reader may check that the following process
is a solution to (3.1.12):

Xt =
∑
r≥0

φrZt−r + φtK (3.1.13)

where K denotes a constant. If we take K to be zero, then we obtain the
unique stationary solution, but for any other value of K, the process will not
be stationary. However, it is readily apparent that the general solution will tend
to the stationary solution as t → ∞. In this regard the question of whether or not
the equation is stable becomes important. The property of stability is linked to
stationarity. If we regard (3.1.12) as a linear filter for changing an input process
{Zt} to an output process {Xt}, then it can be shown that the system is stable
provided that |φ| < 1. This means that the effect of any perturbation to the input
will eventually die away. This can be used to demonstrate that any deviation from
the stationary solution will also die away. Thus the general solution tends to the
stationary solution as t increases.

From both a practical and theoretical point of view, it is usually advisable to
restrict attention to the unique stationary solution of an ARMA equation. This
book follows current time-series practice in using the phrase ‘stationary ARMA
process’ to mean the unique causal stationary solution of an ARMA equation.
Some writers (e.g. Brockwell and Davis, 1996) avoid this difficulty by defining a
process {Xt} to be an ARMA process only if it is stationary and hence have no
need to add the adjective ‘stationary’.

The reader will recall that we have restricted attention to so-called causal

5 This subsection may be omitted by the reader with little interest in rigorous theory.
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processes, where the value of an observed time series is only allowed to depend on
present and past values of other variables. In other words, time is only allowed to
move in one direction, namely forwards. If we allow φ to exceed unity for an AR(1)
process, then it is readily seen that the series defined by (3.1.12) will typically
‘explode’. In fact, it is possible to find a stationary sequence which satisfies
(3.1.12), with |φ| > 1, by allowing Xt to depend on future values of Zt. However,
for time-series data, this is usually regarded as unnatural. In any case it can be
shown that any stationary AR(1) process, with |φ| > 1, can be re-expressed as
an AR(1) process, with |φ| < 1 and the same second-order properties, but based
on a different white noise sequence. Thus nothing is lost by restricting attention
to the case |φ| < 1. Note that if φ = 1, then there is no stationary solution.

A stationary ARMA process may be written as an MA(∞) process by rewriting
(3.1.11) in the form

Xt = [θ(B)/φ(B)]Zt

and expanding θ/φ as a power series in B. For a causal process, the resulting
representation may be written in the same form as the Wold representation in
(3.1.10), or (3.1.3), namely

Xt =

∞∑
j=0

ψjZt−j (3.1.14)

or as
Xt = ψ(B)Zt (3.1.15)

where ψ(B) = ψ0 +ψ1B +ψ2B
2 + . . .. A finite MA process is always stationary

as there is a finite sum of Z’s. However, for an infinite sequence, such as that in
(3.1.14), the weighted sum of Z’s does not necessarily converge. From (3.1.14),
it can readily be shown that

Variance(Xt) = σ2
Z

∑
ψ2

j (3.1.16)

and so we clearly require
∑

ψ2
j < ∞ for the variance to be finite. In fact, we

really need the stronger condition that
∑

|ψj | < ∞ in order to ensure that the
system is stable and that necessary sums converge (see Box et al., 1994; Brockwell
and Davis, 1991). The latter condition (which is sufficient rather than necessary)
is equivalent to the requirement for (causal) stationarity that the roots of φ(x)
lie outside the unit circle.

It may not be immediately obvious why it may be helpful to re-express the
ARMA process in (3.1.11) as an MA(∞) process in the form (3.1.14). In fact,
the MA(∞) representation is generally the easiest way to find the variance of
forecast errors – see Chapter 7. For computing point forecasts, it may also be
helpful to try to re-express the process as an AR(∞) process. It turns out that,
if the process is invertible, then it is possible to rewrite (3.1.11) in the form of
(3.1.8) as

π(B)Xt = Zt (3.1.17)

where, by convention, we take π(B) = 1 −
∑∞

j=1
πjB

j , and where
∑

|πj | < ∞
so that the π’s are summable.

The ARMA process in (3.1.11) has φ(B) and θ(B) of finite order, whereas when
a mixed model is expressed in pure MA or AR form, the polynomials π(B) and
ψ(B) will be of infinite order. We have seen that an ARMA process is stationary
if the roots of φ(x) = 0 lie outside the unit circle and invertible if the roots of θ(x)
lie outside the unit circle. We can find corresponding conditions in terms of π(B)
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or ψ(B). It can be shown that the process is stationary if ψ(x) converges on, and
within, the unit circle, and invertible if π(x) converges on and within the unit
circle. The connection between the corresponding conditions here may not be
immediately obvious but arises in the following way. Suppose, for example, that
the roots of φ(x) all lie outside the unit circle so that the process is stationary.
Then there are no roots on or inside the unit circle and so 1/φ(x) cannot become
infinite on or within the unit circle. A similar argument applies to the invertibility
condition.

Finally, we comment that whether or not a process is stationary is unrelated
to whether or not it is invertible. It is possible for any combination of the
two properties to occur. Note that a pure (i.e. finite-order) AR process is
always invertible, even if it is non-stationary, while a pure MA process is always
stationary, even if it is not invertible.

Example 3.1 For a mixed model, it is usually easiest to check whether the process
is (a) stationary and (b) invertible, by looking to see if the roots of φ(x) and of
θ(x) lie outside the unit circle, rather than looking at whether ψ(x) and π(x)
converge on, and within, the unit circle. For example, consider the ARMA(1, 1)
process

(1 − 1.3B)Xt = (1 − 0.5B)Zt (3.1.18)

The root of φ(x) = 0 is x = 1/1.3 which lies inside the unit circle. Thus the
process is non-stationary. If we try to write the process as an MA(∞) process,
we would find that the coefficients of Bj get larger and larger in amplitude
and so the process does not converge on the unit circle. However, note that by
equating coefficients of Bj in the equation θ(B) = φ(B)ψ(B), we can evaluate
the ψj coefficients for any finite value of j and this can be helpful in assessing
the forecasts from a non-stationary model, for example, to evaluate the forecast
error variance.

Returning to (3.1.18), the root of θ(B) = 0 is x = 1/0.5 which does lie outside
the unit circle. Thus the process is invertible. This means that the sequence of π-
weights will converge on and within the unit circle. We find π(B) = φ(B)/θ(B) =
(1− 1.3B)/(1− 0.5B) = (1− 1.3B)(1 + 0.5B + 0.52B2 + . . .), from which we see
that πj , the coefficient of Bj is 0.5j − 1.3 × 0.5j−1 = (−0.80) × 0.5j−1 which
clearly gets smaller as j increases. �

3.1.5 ARIMA processes

We now reach the more general class of models which is the title of
the whole of this section. In practice many (most?) time series are non-
stationary and so we cannot apply stationary AR, MA or ARMA processes
directly. One possible way of handling non-stationary series is to apply
differencing so as to make them stationary. The first differences, namely
(Xt − Xt−1) = (1 − B)Xt, may themselves be differenced to give second
differences, and so on. The dth differences may be written as (1−B)dXt. If
the original data series is differenced d times before fitting an ARMA(p, q)
process, then the model for the original undifferenced series is said to be
an ARIMA(p, d, q) process where the letter ‘I’ in the acronym stands for
integrated and d denotes the number of differences taken.
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Mathematically, (3.1.11) is generalized to give:

φ(B)(1 −B)dXt = θ(B)Zt (3.1.19)

The combined AR operator is now φ(B)(1−B)d. If we replace the operator
B in this expression with a variable x, it can be seen straight away that
the function φ(x)(1 − x)d has d roots on the unit circle (as (1 − x) = 0
when x = 1) indicating that the process is non-stationary – which is why
differencing is needed, of course!

Note that when φ(B) and θ(B) are both just equal to unity (so that
p and q are both zero) and d equals one, then the model reduces to an
ARIMA(0, 1, 0) model, given by

Xt −Xt−1 = Zt (3.1.20)

This is obviously the same as the random walk model in (2.5.2) which can
therefore be regarded as an ARIMA(0, 1, 0) model.

When fitting AR and MA models, the main difficulty is assessing the
order of the process (i.e. what is p and q?) rather than estimating the
coefficients (the φ’s and θ’s). With ARIMA models, there is an additional
problem in choosing the required order of differencing (i.e. what is d?). Some
formal procedures are available, including testing for the presence of a unit
root (see Section 3.1.9), but many analysts simply difference the series until
the correlogram comes down to zero ‘fairly quickly’. First-order differencing
is usually adequate for non-seasonal series, though second-order differencing
is occasionally needed. Once the series has been made stationary, an ARMA
model can be fitted to the differenced data in the usual way.

3.1.6 SARIMA processes

If the series is seasonal, with s time periods per year, then a seasonal
ARIMA (abbreviated SARIMA) model may be obtained as a generalization
of (3.1.19). Let Bs denote the operator such that BsXt = Xt−s. Thus
seasonal differencing may be written as (Xt − Xt−s) = (1 − Bs)Xt. A
seasonal autoregressive term, for example, is one where Xt depends linearly
on Xt−s. A SARIMA model with non-seasonal terms of order (p, d, q)
and seasonal terms of order (P,D,Q) is abbreviated a SARIMA(p, d, q) ×
(P,D,Q)s model and may be written

φ(B)Φ(Bs)(1 −B)d(1 −Bs)DXt = θ(B)Θ(Bs)Zt (3.1.21)

where Φ,Θ denote polynomials in Bs of order P,Q, respectively.
One model, which is particularly useful for seasonal data, is the SARIMA

model of order (0, 1, 1)×(0, 1, 1)s. For monthly data, with s = 12, the latter
may be written

(1 −B)(1 −B12)Xt = (1 + θB)(1 + ΘB12)Zt (3.1.22)

This model is often called the airline model because it was used by Box
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et al. (1994) to model the logarithms6 of the airline data, which is plotted
in Figure 2.1. Although a series modelled by (3.1.22) is non-stationary, it
can readily be shown that the differenced series (after one seasonal and one
non-seasonal difference) is stationary with ‘significant’ autocorrelations at
lags 1 and 12 only – see Example 3.3 at the end of this chapter.

When fitting SARIMA models, the analyst must first choose suitable
values for the two orders of differencing, both seasonal (D) and non-seasonal
(d), so as to make the series stationary and remove (most of) the seasonality.
Then an ARMA-type model is fitted to the differenced series with the
added complication that there may be AR and MA terms at lags which
are a multiple of the season length s. The reader is referred to Box et al.
(1994, Chapter 9) for further details.

3.1.7 Periodic AR models

If seasonal variation exists through the year, there is no particular reason
why model coefficients should stay constant throughout the year. Periodic
Autoregressive (abbreviated PAR) models provide a variant to SARIMA
models wherein the values of the autoregressive parameters are allowed to
vary through the seasonal cycle. More generally periodic correlation arises
when the size of autocorrelation coefficients depends, not only on the lag,
but also on the position in the seasonal cycle.

The above ideas will be illustrated with the simplest possible PAR
model, namely a stationary zero-mean first-order PAR model, denoted
PAR(1). The ordinary AR(1) model has a single AR parameter, say
φ1, where Xt = φ1Xt−1 + Zt. For a PAR(1) model, the autoregressive
parameter at lag one, φ1, depends on the position within the seasonal
cycle. Thus for quarterly data, there will be four first-order parameters,
say φ1,1, φ1,2, φ1,3, φ1,4 corresponding to the four quarters. In order to write
down an equation for the model, we need a new notation that indicates
time and the position within the seasonal cycle. Let Xr,m denote the
random variable observed in the mth seasonal period in the rth year, where
m = 1, 2, . . . , s. For quarterly data, s = 4 and a PAR(1) model may be
written in the form

Xr,m = φ1,mXr,m−1 + Zr,m

for m = 2, 3, 4, while the value in the first quarter of the year depends on
the value in the last quarter of the previous year and so we have

Xr,1 = φ1,1Xr−1,4 + Zr,1

Procedures are available for choosing the order of the periodic
autoregression, for estimating the model parameters and for testing
whether there are significant differences between the estimated parameters

6 Logarithms are taken because the seasonality is multiplicative – see Sections 2.3.3
and 2.3.6.
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at a particular lag. If not, an ordinary (non-periodic) AR model may be
adequate. The author has no practical experience with PAR models and so
the reader is referred, for example, to McLeod (1993) and Franses (1996).

3.1.8 Fractional integrated ARMA (ARFIMA) and long-memory models

An interesting variant of ARIMA modelling arises with the use of what
is called fractional differencing. This idea dates back about 20 years (e.g.
Granger and Joyeux, 1980) and is the subject of much current research. In
the usual ARIMA(p, d, q) model in (3.1.19), the parameter d is an integer,
usually zero or one. Fractional integrated ARMA (abbreviated ARFIMA)
models extend this class by allowing d to be non-integer. When d is non-
integer, then the dth difference (1 − B)dXt may be represented by the
binomial expansion, namely

(1 −B)dXt = (1 − dB + d(d− 1)B2/2! − d(d− 1)(d− 2)B3/3! . . .)Xt

As such, it is an infinite weighted sum of past values. This contrasts with
the case where d is an integer when a finite sum is obtained. Then Xt is
called an ARFIMA(p, d, q) model if

φ(B)(1 −B)dXt = θ(B)Zt

where φ and θ are polynomials of order p, q, respectively. In other words,
the formula is exactly the same as for an ARIMA(p, d, q) model, except that
d is no longer an integer. It can be shown (e.g. Brockwell and Davis, 1991,
Section 13.2) that the process is stationary provided that −0.5 < d < 0.5.
If the value of d indicates non-stationarity, then integer differencing can be
used to give a stationary ARFIMA process. For example, if an observed
series is ARFIMA(p, d = 1.3, q), then the first differences of the series will
follow a stationary ARFIMA(p, d = 0.3, q) process.

A drawback to fractional differencing is that it is difficult to give an
intuitive interpretation to a non-integer difference. It is also more difficult
to make computations based on such a model because the fractional
differenced series has to be calculated using the binomial expansion given
above. As the latter is an infinite series, it will need to be truncated in
practice, say at lag 36 for monthly data. Thus the computation involved is
(much) more difficult than that involved in taking integer differences and
will result in more observations being ‘lost’.7 Moreover, the parameter d
has to be estimated. Although this is not easy, substantial progress has
been made, though the literature is technically demanding. Details will not
be given here and the reader is referred, for example, to Crato and Ray
(1996) and the earlier references therein.

A fractionally integrated variant of SARIMA models can also be defined
by allowing both the seasonal and non-seasonal differencing parameters,
namely d and D, to take non-integer values (Ray, 1993).

7 For example, only one observation is ‘lost’ when first differences are taken.

c© 2000 by Chapman & Hall/CRC



Stationary ARFIMA models, with 0 < d < 0.5, are one type of
a general class of models called long-memory models (see Beran, 1992;
1994; and the special issue of J. Econometrics, 1996, 73, No. 1). For
most stationary time series models (including stationary ARMA models),
the autocorrelation function decreases ‘fairly fast’, as demonstrated, for
example, by the exponential decay in the autocorrelation function of the
AR(1) model. However, for some models the correlations decay to zero very
slowly, implying that observations far apart are still related to some extent.
An intuitive way to describe such behaviour is to say that the process has
a long memory, or that there is long-range dependence. More formally a
stationary process with autocorrelation function ρk is said to be a long-
memory process if

∑∞
k=0 |ρk| does not converge (a more complete technical

definition is given by Beran (1994, Definition 2.1)).
Long-memory models have a number of interesting features. Although

it can be difficult to get good estimates of some parameters of a long-
memory model, notably the mean, it is usually possible to make better
forecasts, at least in theory. As regards estimating the mean, the usual
formula for the variance of a sample mean is σ2/N , but this applies to
the case of N independent observations having constant variance σ2. In
time-series analysis, successive observations are generally correlated and
the variance of a sample mean can be expressed as σ2ΣN−1

k=0 (1 − k
N )ρk/N .

When the correlations are positive, as they usually are, the latter expression
can be much larger than σ2/N , especially for long-memory processes where
the correlations die out slowly. In contrast to this result, it is intuitively
clear that the larger and longer lasting the autocorrelations, the better will
be the forecasts from the model. This can readily be demonstrated, both
theoretically and practically (Beran, 1994, Section 8.7), but this topic will
not be pursued here.

3.1.9 Testing for unit roots

In earlier sections of this chapter, we concentrated on the theoretical
properties of the different models, and left most inferential issues until
Sections 3.5 and 4.2. However, there is one topic of immediate application
to ARIMA-type models, which may conveniently be considered here. This
is the problem of testing for unit roots.

A major problem in practice is distinguishing between a process that is
stationary and one which is non-stationary. This problem is exacerbated
by the possibility that a process may be ‘nearly non-stationary’ in some
general sense. Long-memory stationary processes are arguably in the latter
category, as are ordinary AR stationary processes with roots near the unit
circle. For example, the (stationary) AR(1) process with parameter 0.95,
namely Xt = 0.95Xt−1 + Zt, will yield data which, for short series, will
have properties which look much like those of data generated by a (non-
stationary) random walk, namely Xt = Xt−1 +Zt. The time plots will look
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similar, and we see later that the short-term forecasts from the two models
will be close to each other.8

Non-stationary, long-memory and other nearly non-stationary processes
will all yield data whose sample autocorrelation function dies out (very)
slowly with the lag and whose sample spectrum will be ‘large’ at zero
frequency. This makes it hard to distinguish between these very different
types of process on the basis of sample data. In particular, this means that
it will be hard to answer one important question, often asked in regard
to ARIMA models, namely whether the parameter d in (3.1.19) is exactly
equal to one. If it is, then that would mean that a unit root is present. Put
another way, if the original data are non-stationary but the first differences
are stationary, then a unit root is said to be present.

There is a large and growing literature in econometrics (e.g. Dejong and
Whiteman, 1993; Stock, 1994; Hamilton, 1994, Chapter 15) on testing for
a unit root. There are several types of test designed for different alternative
hypotheses, one example being the so-called augmented Dickey-Fuller test,
details of which may be found in Enders (1995, Chapter 4) or Harvey (1993,
Section 5.4). The tests generally take the null hypothesis to be that there is
a unit root (so that d = 1), presumably on the grounds that many economic
series are known to be ‘close’ to a random walk or ARIMA(0, 1, 0) process.
However, it is not obvious that this is necessarily a sensible choice of null
hypothesis. The statistician, who is interested in fitting an ARIMA model,
will generally make no prior assumption other than that some member of
the ARIMA class is appropriate. Thus, rather than assume (albeit perhaps
supported by a test) that d = 1, the statistician is likely to be interested
in assessing an appropriate value for d (and also for p and q, the orders of
the AR and MA parts of the model) without any prior constraints.

The question as to whether it is sensible to test for the presence of
a unit root is a good example of the different ways that statisticians
and econometricians may go about formulating a time-series model – see
Section 3.5. Econometricians tend to carry out a series of tests, not only
for the presence of a unit root, but also for other features such as constant
variance, autocorrelated residuals and so on. In contrast, statisticians are
more likely to choose a model by selecting a general class of models and
then selecting a member of this family so as to minimize a criterion such
as Akaike’s Information criterion (AIC). Tests may only be used to check
the residuals from the ‘best’ model. Bayesian statisticians will also avoid
tests and attempt to assess the strength of evidence as between competing
models by calculating posterior odds ratios (Marriott and Newbold, 1998).

Tests for unit roots have particular problems in that they generally
have poor power, even for moderate size samples, because the alternative
hypothesis is typically ‘close’ to the null hypothesis and the testing

8 But note that long-term forecasts may be substantially different asymptotically. For
the AR(1) model the long-run forecasts revert to the overall mean, whereas those for
the random walk are all equal to the most recent observed value.
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procedures are usually sensitive to the way that lag structure is modelled
(Taylor, 1997). It is possible to devise tests with somewhat better power
for specific situations (Diebold, 1998, Chapter 10), but some analysts will
agree with Newbold et al. (1993), who go so far as to say that “testing for
unit autoregressive roots is misguided”.

My own view is that choosing an appropriate description of any non-
stationary behaviour is crucial in modelling and forecasting, but that a
formal test for a unit root can only ever be a small contribution to this task.
The fact that we cannot reject a unit root, does not mean that we should
necessarily impose one, as, for example, if we want an explicit estimate of
the trend rather than difference it away. Conversely, there could still be
practical reasons why we might wish to difference our data, even when a
unit root is rejected, as, for example, when a model for the differenced data
appears to be more robust to unexpected changes. The key question for the
forecaster is not whether a unit-root test helps select the ‘true model’, but
whether the chosen model (which we fully expect to be misspecified in some
respects) gives better out-of-sample forecasts than alternatives. There is,
in fact, some simulation evidence (Diebold and Kilian, 2000) that unit root
tests can help to select models that give superior forecasts. Even so, at the
time of writing, there are still unresolved questions as to when, or even if,
unit root tests can help the forecaster. Thus this complex topic will not be
further considered here.

While rejecting the testing for unit roots as the principal tool for
assessing non-stationarity, some further remarks on different types of non-
stationarity may be helpful. Section 2.3.5 distinguished between various
types of trend, notably between a global and a local linear trend.
Econometricians make a similar distinction but use a different vocabulary,
by referring to what they call difference-stationary series, where stationarity
can be induced by first differencing, and trend-stationary series where the
deviations from a deterministic trend are stationary. The random walk is
a simple example of a difference-stationary series, as is any ARIMA model
with a unit root, meaning that d ≥ 1. In contrast, if Xt = a+bt+εt, where
{εt} is stationary, then the series is trend-stationary. In the latter case,
the trend is deterministic, while econometricians generally say that there
is a stochastic trend for difference-stationary series. The general consensus
is that most economic series are difference-stationary rather than trend-
stationary, and there is empirical evidence that difference-stationary models
tend to give better out-of-sample forecasts for non-stationary data (Franses
and Kleibergen, 1996).

Spurious autocorrelations can readily be induced in a series showing
trend, either by mistakenly removing a deterministic trend from difference-
stationary data, or by differencing trend-stationary data. This illustrates
the importance of identifying the appropriate form of trend so that the
appropriate level of differencing may be applied. However, from what is
said above, it is clear that it is generally rather difficult to distinguish
between the cases (i) d = 1, (ii) 0 < d < 1, (iii) d = 0, and (iv) trend-
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stationarity. This is perhaps not too surprising given that it is possible
to construct examples where models with different orders of differencing
or with different trend structures can be made in some sense arbitrarily
close. This is illustrated by considering the AR(1) model in (3.1.4) as the
coefficient φ tends to one. For φ < 1, we have a stationary model with
d = 0, but, when φ = 1, then the model reduces to a difference-stationary
random walk model with d = 1. A somewhat more complicated example is
given in Example 3.2.

Example 3.2 This example shows that an ARIMA model with d = 0 can
be made ‘arbitrarily close’ to a model with d = 1. Consider the model

Xt = αXt−1 + Zt + βZt−1.

When α = 0.95 and β = −0.9, the process is a stationary ARMA(1, 1)
model so that d = 0 when expressed as an ARIMA(1, 0, 1) model. When
the value of α is changed ‘slightly’ to α = 1, the operator (1 −B) appears
on the left-hand side of the equation so that the process becomes a non-
stationary ARIMA(0, 1, 1) model with d = 1. However, if, in addition,
we now change the value of β ‘slightly’ to −1, then the character of the
model will change again. The error term is now (1 − B)Zt which appears
to mean that the process is no longer invertible. However, the operator
(1 −B) appears on both sides of the equation. A general solution is given
by Xt = Zt + µ, where µ denotes a constant (which disappears on taking
first differences), and this is stationary white noise with a non-zero mean.
With a typical sample size, it would be nearly impossible to distinguish
between the above three cases. For short-term forecasting, it makes little
difference which model is chosen to make forecasts, but, for long-range
forecasts, choosing a stationary, rather than non-stationary, model can be
very influential both on the point forecasts and on the width of prediction
intervals. As the forecast horizon tends to infinity, point forecasts revert
to the overall mean for a stationary series, but not for a non-stationary
one, while the forecast error variance stays finite for a stationary model
but becomes infinite for a non-stationary model. �

Given the difficulty in distinguishing between different types of stationarity
and non-stationarity, there is much to be said for choosing a forecasting
method which makes few assumptions about the form of the trend, but
is designed to be adaptive in form and to be robust to changes in the
underlying model. One class of models which arguably give more robust
forecasts than ARIMA models are state-space models.

3.2 State space models

The phrase ‘state space’ derives from a class of models developed by control
engineers for systems that vary through time. When a scientist or engineer
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tries to measure a signal, it will typically be contaminated by noise so that

observation = signal + noise (3.2.1)

In state-space models the signal at time t is taken to be a linear combination
of a set of variables, called state variables, which constitute what is called
the state vector at time t. Denote the number of state variables by m, and
the (m× 1) state vector by θt. Then (3.2.1) may be written

Xt = hT
t θt + nt (3.2.2)

where ht is assumed to be a known (m × 1) vector, and nt denotes the
observation error, assumed to have zero mean.

What is the state vector? The set of state variables may be defined as
the minimum set of information from present and past data such that the
future behaviour of the system is completely determined by the present
values of the state variables (and of any future inputs in the multivariate
case). Thus the future is independent of past values. This means that the
state vector has a property called the Markov property, in that the latest
value is all that is needed to make predictions.

It may not be possible to observe all (or even any of) the elements of the
state vector, θt, directly, but it may be reasonable to make assumptions
about how the state vector changes through time. A key assumption of
linear state-space models is that the state vector evolves according to the
equation

θt = Gtθt−1 + wt (3.2.3)

where the (m×m) matrix Gt is assumed known and wt denotes an m-vector
of disturbances having zero means. The two equations 3.2.2 and 3.2.3
constitute the general form of a univariate state-space model. The equation
modelling the observed variable in (3.2.2) is called the observation (or
measurement) equation, while (3.2.3) is called the transition (or system)
equation.9 An unknown constant, say δ, can be introduced into a state-
space model by defining an artificial state variable, say δt, which is updated
by δt = δt−1 subject to δ0 = δ. The ‘error’ terms in the observation and
transition equations are generally assumed to be uncorrelated with each
other at all time periods and also to be serially uncorrelated through time.
It may also be assumed that nt is N(0, σ2

n) while wt is multivariate normal
with zero mean vector and known variance-covariance matrix Wt. If the
latter is the zero matrix, then the model reduces to time-varying regression.

Having expressed a model in state-space form, an updating procedure
can readily be invoked every time a new observation becomes available,
to compute estimates of the current state vector and produce forecasts.
This procedure, called the Kalman filter, only requires knowledge of the
most recent state vector and the value of the latest observation, and will
be described in Section 4.2.3.

There are many interesting special cases of the state-space model. For

9 Actually a set of m equations.
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example, the random walk plus noise model of Section 2.5.5, also called
the local level or steady model, arises when θt is a scalar, µt, denoting the
current level of the process, while ht and Gt are constant scalars taking the
value one. Then the local level, µt, follows a random walk model. This model
depends on two parameters which are the two error variances, namely σ2

n

and Var(wt) = σ2
w. The properties of the model depend primarily on the

ratio of these variances, namely σ2
w/σ

2
n, which is called the signal-to-noise

ratio.
In the linear growth model, the state vector has two components, θT

t =
(µt, βt) say, where µt, βt may be interpreted as the local level and the local

growth rate, respectively. By taking hT
t = (1, 0) and Gt =

[
1 1
0 1

]
, we

have a model specified by the three equations

Xt = µt + nt (3.2.4)

µt = µt−1 + βt−1 + w1,t (3.2.5)

βt = βt−1 + w2,t (3.2.6)

Equation (3.2.4) is the observation equation, while (3.2.5) and (3.2.6)
constitute the two transition equations. Of course, if w1,t and w2,t have
zero variance, then there is a deterministic linear trend, but there is much
more interest nowadays in the case where w1,t and w2,t do not have zero
variance giving a local linear trend model – see Section 2.3.5.

Harvey’s basic structural model adds a seasonal index term, it say, to the
right-hand side of (3.2.4) and adds a third transition equation of the form

it = −
s−1∑
j=1

it−j + w3,t (3.2.7)

where there are s periods in one year. The state vector now has (s + 2)
components, as the transition equations involve the current level, the
current trend and the s most recent seasonal indices. None of these state
variables can be observed directly, but they can be estimated from the
observed values of {Xt} assuming the model is appropriate.

The above models have been proposed because they make intuitive sense
for describing data showing trend and seasonal variation, and they are in
state-space format directly. Many other types of model, including ARIMA
models, can be recast into state-space format, and this can have some
advantages, especially for estimation. For example, consider the AR(2)
model

Xt = φ1Xt−1 + φ2Xt−2 + Zt (3.2.8)

Given the two-stage lagged dependence of this model, it is not obvious
that it can be rewritten in state-space format with (one-stage) Markovian
dependency. However, this can indeed be done in several different ways
by introducing a two-dimensional state vector which involves the last two
observations. One possibility is to take θT

t = [Xt, Xt−1] and rewrite (3.2.8)
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as follows. The observation equation is just

Xt = (1, 0)θt (3.2.9)

while the transition equation is

θt =
[
φ2 φ2

0 1

]
θt−1 +

[
1
0

]
Zt (3.2.10)

This formulation is rather artificial, and we would normally prefer the usual
AR(2) formulation, especially for descriptive purposes. However, the one-
stage Markovian state-space format does enable the Kalman filter to be
applied.

Alternative ways of re-expressing an AR(2) model in state-space form
include using the state vector θT

t = (Xt, φ2Xt−1) or θT
t = (Xt, X̂t−1(1).

Note that two of the state vectors suggested above are observable directly,
unlike the state vectors in earlier trend-and-seasonal models.

The lack of uniqueness in regard to state vectors raises the question
as to how the ‘best’ formulation can be found, and what ‘best’ means in
this context. We would like to find a state vector which summarizes the
information in the data set in the best possible way. This means, first of all,
choosing an appropriate dimension so as to include all relevant information
into the state vector, but avoid including redundant information. Given
a set of data, where the underlying model is unknown, there are various
ways of trying to find an appropriate state vector (see, for example, Aoki,
1987, Chapter 9) which essentially involve looking at the dimension of
the data using techniques like canonical correlation analysis, where we
might, for example, look for relationships between the set of variables
(Xt, Xt−1, Xt−2) and (Xt+1, Xt+2, Xt+3). Details will not be given here,
because my own experience has been with formulating a model, such as
Harvey’s Basic Structural Model, using common sense and a preliminary
examination of the data.

In the general state-space model defined in (3.2.2) and (3.2.3), it may
seem unnatural to assume that the deviations in the transition equations
(the wt’s) should be independent with respect to the deviation nt in the
observation equation. An alternative possibility explored by Ord et al.
(1997) is to consider the linear model

Xt = hT θt + nt (3.2.11)

where
θt = Gθt−1 + αnt (3.2.12)

and α is a vector of constant parameters. Thus there is only a single source
of ‘error’ here and there is perfect correlation between the deviations in the
two equations. It turns out that the Kalman filter for some examples of
this model are closely related to various exponential smoothing updating
equations (see Section 4.3). The latter are computed using the one and
only observed one-step-ahead forecasting error that arises and smoothing
parameters which are akin to the components of α.
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The different state-space formulations cover a very wide range of models
and include the so-called structural models of Harvey (1989) as well as
the dynamic linear models of West and Harrison (1997). The latter enable
Bayesians to use a Bayesian formulation. The models called unobserved
component models by econometricians are also of state-space form.

Except in trivial cases, a state-space model will be non-stationary and
hence will not have a time-invariant ac.f. Thus state-space models are
handled quite differently from ARIMA models in particular. State-space
models deal with non-stationary features like trend by including explicit
terms for them in the model. In contrast, the use of ARIMA models for
non-stationary data involves differencing the non-stationarity away, so as
to model the differenced data by a stationary ARMA process, rather than
by modelling the trend explicitly. The advantages and disadvantages of
state-space models are considered further in Chapters 4 and 6.

Alternative introductions to state-space models are given by Chatfield
(1996a, Chapter 10) and Janacek and Swift (1993). A more advanced
treatment is given by Aoki (1987) and Priestley (1981).

3.3 Growth curve models

The general form of a growth curve model is

Xt = f(t) + εt (3.3.1)

where f(t) is a deterministic function of time only and {εt} denotes a series
of random disturbances. The εt’s are often assumed to be independent
with constant variance, but in some situations both assumptions may be
unwise as the disturbances may be correlated through time and/or their
variance may not be constant but may, for example, depend on the local
mean level. The function f(t) could be a polynomial function of time
(e.g. a + bt), or a Gompertz or logistic curve (see Section 2.3.5). In the
latter cases, the model is not only non-linear with respect to time, but also
non-linear with respect to the parameters. This makes such models more
difficult to fit and more difficult to superimpose a suitable error structure.
Depending on the context, it may be advisable to choose a function which
incorporates a suitable asymptote, for example, to model market saturation
when forecasting sales.

Although growth curve models are sometimes used in practice,
particularly for long-term forecasting of non-seasonal data, they raise
rather different problems than most other time-series models and are not
considered further in this book (except for some brief remarks on the
construction of prediction intervals in Section 7.5.6). The reader is referred
to the review in Meade (1984).
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3.4 Non-linear models

The time-series literature has traditionally concentrated on linear methods
and models, partly no doubt for both mathematical and practical
convenience. Despite their simplicity, linear methods often work well and
may well provide an adequate approximation for the task at hand, even
when attention is restricted to univariate methods. Linear methods also
provide a useful yardstick as a basis for comparison with the results from
more searching alternative analyses. However, there is no reason why real-
life generating processes should all be linear, and so the use of non-linear
models seems potentially promising.

Many observed time series exhibit features which cannot be explained
by a linear model. As one example, the famous time series showing
average monthly sunspot numbers exhibits cyclic behaviour with a period of
approximately 11 years, but in such a way that the series generally increases
at a faster rate than it decreases.10 Similar asymmetric phenomena may
arise with economic series, which tend to behave differently when the
economy is moving into recession rather than when coming out of recession.
As a completely different type of example, many financial time series show
periods of stability, followed by unstable periods with high volatility. An
example is shown in Figure 3.1.

The time series in Figure 3.1 is the absolute values of daily returns on the
Standard & Poor 500 index11 on 300 successive trading days. The reader
should be able to see a period of instability starting at about trading
day 75, after the sudden stock market fall12 on August 31 1998. The
series in Figure 3.1 looks stationary in the mean but is non-stationary
in variance. Behaviour like this cannot be explained with a linear model,
and so non-linear models are usually needed to describe data where the
variance changes through time.

Non-linear models have, as yet, been used rather little for serious
forecasting but there is increasing interest in such models and they have
exciting potential. Thus a brief introduction is given in this section, with
some emphasis on the results of empirical forecasting studies. Alternative
introductions are given by Chatfield (1996a, Chapter 11), Granger and
Newbold (1986, Chapter 10) and Harvey (1993, Chapter 8). More detailed
accounts are given by Priestley (1981, Chapter 11; 1988) and by Tong
(1990).

10 These data are plotted in Figure 11.1 of Chatfield (1996a). The vertical axis of that
graph is much more compressed than might be expected in order that the observer
can ‘see’ the angle of rise and fall more clearly.

11 This is a weighted index, say It, of the top 500 U.S. stocks. Figure 1.1 showed It
for 90 trading days and Figure 2.2 showed its correlogram. Figure 3.1 shows absolute
daily returns measured by |log(It/It−1)| for 300 trading days. The returns can be
multiplied by 100 to give a percentage but this has not been done here. The data,
part of a much longer series, may be accessed at http://www.bath.ac.uk/∼mascc/

12 This was partially due to concerns about credit failure following a major default on
a bonds issue.

c© 2000 by Chapman & Hall/CRC

http://www.bath.ac.uk/~mascc/


Figure 3.1. A time plot of the absolute values of daily returns for the
S&P500 index on 300 trading days starting on May 14 1998.

Questions about non-linearity also arise when considering the possible
transformation of an observed variable using a non-linear transformation
such as the Box-Cox transformation – see Section 2.3.3. If a linear model can
be fitted to the transformed data, then a non-linear model is appropriate
for the original data. In particular, a series which shows multiplicative
seasonality can be transformed to additive seasonality by taking logs which
can then be handled using linear methods. However, the multiplicative
model for the original data will be non-linear.

A simple, but important, tool for spotting non-linearities is a careful
inspection of the time plot. Features such as asymmetric behaviour and
changing variance will be self-evident provided the scales of the time plot
are chosen carefully, especially when allied to expert contextual knowledge.
However, note that it can be difficult to distinguish between data from (i) a
non-linear model, (ii) a linear model with normally distributed disturbances
to which some outliers have been added, and (iii) a linear process with
disturbances that are not normally distributed.

It is possible to supplement a visual inspection of the time plot with one
or more tests for linearity, whose power depends on the particular type
of non-linearity envisaged for the alternative hypothesis (e.g. Brock and
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Potter, 1993; Patterson and Ashley, 2000). These tests generally involve
looking at the properties of moments of {Xt} which are higher than second-
order, or (working in the frequency domain) by looking at the Fourier
transform of suitable higher moments (the so-called cumulants), which
are called polyspectra. All polyspectra which are higher than second-order
vanish when the process is Gaussian. The tests can be made robust to
outliers and will then tend to choose linearity more often than would
otherwise be the case. The author has little experience with such tests
which tend to be used more by econometricians on long financial series.

What is a non-linear model?
Given that we are talking about non-linear models, the reader might
reasonably expect that such models can be clearly defined. However, there
is no clear consensus as to exactly what is meant by a linear stochastic time-
series model and hence no consensus as to what is meant by a non-linear
model. The general linear process arises when the value of a time series,
say Xt, can be expressed as a (possibly infinite but converging) linear sum
of the present and past values of a purely random process so that it is
an MA(∞) process – see (3.1.14). This class of models includes stationary
AR, MA, and ARMA models. Many state-space models are also generally
regarded as linear, provided the disturbances are normally distributed, ht

is a constant known vector and Gt,Wt are constant known matrices in the
notation of Section 3.2. The status of (non-stationary) ARIMA models is
not immediately obvious. Because of the non-stationarity, they cannot be
expressed as a general linear process, but they look linear in other respects.
A further complication is that it is possible to have models which are locally
linear, but globally non-linear (see Section 2.3.5). Thus, rather than try
to define linearity and non-linearity precisely, it may be more fruitful to
accept that there may be no clearcut distinction between linear and non-
linear models, and that in some respects, it is possible to move gradually
away from linearity towards non-linearity.

The situation in regard to linearity is much clearer in regard to
forecasting methods, as opposed to models. A linear forecasting method is
one where the h-steps-ahead forecast at time t can be expressed as a linear
function of the observed values up to, and including, time t. As well as
exponential smoothing methods (see Section 4.3), this applies to minimum
mean square error (abbreviated MMSE) forecasts derived from stationary
ARMA models with known parameters (see Section 4.2.1). Moreover,
MMSE forecasts from (non-stationary) ARIMA models (assuming known
model parameters) will also be linear functions of past data. This suggests
that it might be possible to define a linear model as any model for which
MMSE forecasts are linear functions of observed data. However, while this
is a necessary condition, it is not sufficient, because some models give
linear prediction rules while exhibiting clear non-linear properties in other
respects.

To avoid getting into a sterile debate on the above issue, this section
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restricts attention to certain classes of model that are conventionally
regarded as non-linear models, even though some of them have some
linear characteristics, while excluding some models that have non-linear
characteristics.

What sort of white noise?

As for linear models, some form of white noise is usually an integral
building brick of non-linear models, but we will see that it can now
be crucial to distinguish between independent and uncorrelated noise. In
Section 2.5.1, white noise (or a purely random process) was defined to
be a sequence of uncorrelated, identically distributed random variables.
This is sometimes called uncorrelated white noise (UWN) to distinguish
it from strict white noise (SWN) when successive values are assumed
to be independent – a stronger condition. When successive values follow
a multivariate normal distribution, the noise is generally described as
Gaussian, rather than normal, and in this case zero correlation implies
independence so that Gaussian UWN is SWN. However, with non-linear
models, distributions are generally non-normal and zero correlation need
not imply independence. While UWN has known second-order (linear)
properties (constant mean and zero autocorrelations), nothing is specified
about the non-linear properties of such series. In particular, although {Xt}
may be UWN, the series of squared observations {X2

t } need not be. Only
if {Xt} is SWN will {X2

t } be UWN. Given that non-linear models often
involve moments higher than second order, it is necessary to assume that
noise is SWN in order to make progress.

When reading the literature about non-linear models, it will also be
helpful to know what is meant by a martingale and a martingale difference.
Consider a series of random variables, {Xt}, and let Dt denote the observed
values of Xt available at time t, namely {xt, xt−1, xt−2, . . .}. Then {Xt} is
called a martingale if E[Xt+1|Dt] is equal to the observed value of Xt,
namely xt. Thus future expected values do not depend on past values of
the series but only on the present value. Following on from this definition,
a series {Yt} is called a martingale difference (MD) if E[Yt+1|Dt] = 0.
This last result can readily be explained by letting {Yt} denote the
first differences of a martingale, namely Yt = Xt − Xt−1, in which case
E[Yt+1|Dt] = E[Xt+1 −Xt|Dt] = E[Xt+1|Dt] − E[Xt|Dt] = xt − xt = 0.
An MD is like UWN except that it need not have constant variance. If an
MD is Gaussian and has constant variance, then it is SWN.

This section briefly introduces some classes of non-linear stochastic time-
series models of particular interest at the current time. Further details may
be found in Tong (1990) and in other references cited below. Throughout
this section, we impose the stronger condition that the noise sequence
(variously denoted by {Zt} or {εt}) is independent rather than just
uncorrelated, so that it is SWN.
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3.4.1 Non-linear autoregressive processes

An obvious way to generalize the (linear) autoregressive model of order p
is to assume that

Xt = f(Xt−1, Xt−2, . . . , Xt−p) + Zt (3.4.1)

where f is some non-linear function and {Zt} denotes strict white noise.
This is called a Non-Linear AutoRegressive model of order p (abbreviated
NLAR(p)). Note that the ‘error’ term is assumed to be additive. For
simplicity consider the case p = 1. Then we can rewrite (3.4.1) as

Xt = g(Xt−1)Xt−1 + Zt (3.4.2)

where g is some non-constant function so that the overall function of the
previous value is non-linear. It can be shown that a sufficient condition
for model (3.4.2) to be stable is that g must satisfy the constraint that
|g(x)| < 1, at least for large |x|. A model such as

Xt = αX2
t−1 + Zt, (3.4.3)

which does not satisfy this condition, will generally be explosive (unless Zt

is constrained to an appropriate finite interval).
Various models have been proposed which allow the parameter(s) of the

AR model to change through time. For example, we could let

Xt = αtXt−1 + Zt

where the autoregressive coefficient αt itself follows an AR(1) process

αt = γ + βαt−1 + εt

where γ, β are constants and {εt} denotes a second strict white noise
sequence independent of {Zt}. Such models are called time-varying
parameter models (e.g. see Nicholls and Pagan 1985). In the case when
β = 0, the above model reduces to what is sometimes called a random
coefficient model.

Another class of models arises if we assume that the function f in (3.4.1)
is piecewise linear and allow the parameters to be determined partly by past
data. This leads to the idea of a threshold autoregressive model (abbreviated
TAR model). A simple first-order example of a TAR model (with zero mean
for extra simplicity) is

Xt =
{

α(1)Xt−1 + Zt if Xt−1 < r
α(2)Xt−1 + Zt if Xt−1 ≥ r

(3.4.4)

where α(1), α(2), r are constants and {Zt} denotes strict white noise. This
is like an AR(1) model, but the AR parameter depends on whether Xt−1

exceeds the value r called the threshold. The AR parameter is α(1) below the
threshold, but α(2) above the threshold. This feature makes the model non-
linear. The model can readily be generalized to higher-order autoregressions
and to more than one threshold. Tong calls a TAR model self-exciting (and
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uses the abbreviation SETAR) when the choice from the various sets of
possible parameter values is determined by just one of the past values, say
Xt−d where d is the delay. In the above first-order example, the choice is
determined solely by the value of Xt−1 and so the model is indeed self-
exciting with d = 1.

Some theory for threshold models is presented by Tong (1990) and
Priestley (1988). In general this theory is (much) more difficult than for
linear models. For example, it is quite difficult to give general conditions
for stationarity or to compute autocovariance functions. For the first-order
model given above, it is intuitively reasonable that the model is likely to
be stationary if |α(1)| < 1 and |α(2)| < 1, and this is indeed a sufficient
condition. Proving it is something else.

Another feature of many threshold models is the presence of periodic
behaviour called a limit cycle. This type of behaviour has links with the
behaviour of solutions of some non-linear differential equations in that,
if the noise process is ‘switched off’, then one solution of the process
equation has an asymptotic periodic form. This means that, if we plot
xt against xt−1, or more generally against xt−k, then the nature of this
cyclic behavior should become obvious. Even when noise is added, the
cyclic behaviour may still be visible. The plots of xt against appropriate
lagged values are sometimes called phase diagrams or phase portraits. They
are a useful tool not only for identifying threshold models, but also for
investigating other linear and non-linear models. For example, if the plot
of xt against xt−1 looks roughly linear, then this indicates an AR(1) model
may be appropriate, whereas if the plot looks piecewise linear, but non-
linear overall, then a threshold model may be appropriate.

Statistical inference for non-linear models in general, and threshold
models in particular, may be substantially different in character from
that for linear models. A basic difference is that the (conditional) sum
of squared errors surface may no longer be concave. For threshold models,
the presence of the threshold parameter creates discontinuities, which can
make optimization difficult. It can be helpful to distinguish between what
may be called ‘regular parameters’, such as α(1) and α(2) in the threshold
model in (3.4.4), and what may be called ‘structural parameters’, such as
the threshold, r, in (3.4.4), the delay, d, and the orders of the AR models
in each of the threshold regions. The latter quantities are all one for the
threshold model in (3.4.4). If the structural parameters, especially the value
of the threshold, are known, then the sum of squares surface is well behaved
with respect to the other (regular) parameters. Then each of the component
threshold models can be fitted, using the appropriate subset of observations,
to estimate all the regular parameters. However, identifying sensible values
for the structural parameters, and then estimating them, is much more
tricky, and will not be discussed here. The computation of forecasts for a
threshold model is discussed in Section 4.2.4.

Several applications of TAR models have now appeared in the literature.
For example, Chappell et al. (1996) analysed exchange rates within the
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European Union. These rates are supposed to stay within prescribed
bounds so that thresholds can be expected at the upper and lower ends
of the allowed range. The threshold model led to improved forecasts as
compared with the random walk model. Another interesting example, using
economic data, is given by Tiao and Tsay (1994). Although the latter
authors found little improvement in forecasts using a threshold model,
the modelling process led to greater economic insight, particularly that the
economy behaves in a different way when going into, rather than coming out
of, recession. Montgomery et al. (1998) compared various non-linear models
(including TAR models) with various linear models for forecasting the U.S.
unemployment rate. They found little difference in overall out-of-sample
forecasting accuracy but the non-linear models were better in periods of
sudden economic contraction (but worse otherwise!). Computing forecasts
for threshold models more than one step ahead is not easy and Clements
and Smith (1997) report a simulation study on a first-order SETAR model
which compares different ways of computing the forecasts. Even assuming
the analyst knows that the delay, d, is one (normally this would also need
to be estimated), the results indicate that forecasts from a linear AR model
are often nearly as good, and sometimes better, than those from the SETAR
model. Similar findings are presented by Clements and Krolzig (1998) for
both real and simulated data. It really does appear that linear models are
robust to departures from non-linearity in regard to producing (out-of-
sample) forecasts, even when a non-linear model gives a better (in-sample)
fit.

TAR models have a discontinuous nature as the threshold is passed,
and this has led researchers to consider alternative ways of allowing
the AR parameter to change. Smooth Threshold AutoRegressive models
(abbreviated STAR models) were proposed by Tong (1990) so as to give a
smooth continuous transition from one linear AR model to another, rather
than a sudden jump. A more recent review of this class of models is given
by Teräsvirta (1994), but note that the latter author uses the description
Smooth Transition AutoRegressive model which leads to the same acronym
(STAR).

3.4.2 Some other non-linear models

The bilinear class of non-linear models may be regarded as a non-linear
extension of the ARMA model, in that they incorporate cross-product
terms involving lagged values of the time series and of the disturbance
process. A simple example is

Xt = αXt−1 + βZt−1Xt−1 + Zt (3.4.5)

where α and β are constants and {Zt} denotes strict white noise with zero
mean and variance σ2

Z . This model includes one ordinary AR term plus
one cross-product term involving Zt−1 and Xt−1. The second term is the
non-linear term.
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Some theory for bilinear models is given by Granger and Andersen (1978)
and Subba Rao and Gabr (1984). As for threshold models, this theory is
generally much more difficult than for linear models, and it is not easy
to give general conditions for stationarity or compute autocovariance and
autocorrelation functions. It can be shown, for example, that the first-
order model given above is stationary provided that α2 + σ2

Zβ
2 < 1, but

the proof is tricky to say the least, as is the calculation of autocorrelations.
Estimation is also tricky, especially when the structural parameters (e.g.
the ‘orders’ of the model) are unknown – see, for example, Priestley (1988,
Section 4.1). Computing forecasts is easier than for threshold models – see
Section 4.2.4 – but still not as easy as in the linear case.

Bilinear models are like many other non-linear models in that there is no
point in looking only at the second-order properties of the observed time
series, and hoping that this will identify the underlying model, because it
won’t! Consider, for example, the bilinear model

Xt = βZt−1Xt−2 + Zt.

After some difficult algebra, it can be shown (Granger and Andersen, 1978)
that ρ(k) = 0 for all k �= 0. If the analyst simply inspects the sample
autocorrelation function in the usual way, then this would suggest to the
unwary that the underlying process is uncorrelated white noise (UWN).
However, if we examine the series {X2

t }, then its autocorrelation function
turns out to be of similar form to that of an ARMA(2, 1) model. Thus this
bilinear model is certainly not strict white noise (SWN), even if it appears
to be UWN. Clearly, the search for non-linearity must rely on moments
higher than second order. As noted earlier, one general approach is to look
at the properties of both {Xt} and {X2

t }. If both series appear to be UWN,
then it is reasonable to treat {Xt} as SWN (though this is not a conclusive
proof).

Although bilinear models have some theoretical interest, they are perhaps
not particularly helpful in providing insight into the underlying generating
mechanism of a given time series. Moreover, although they sometimes give
a good fit to data (e.g. the sunspots data – see Priestley, 1988, Section 4.1),
this does not guarantee good out-of-sample forecasts. De Groot and Würtz
(1991) demonstrate that bilinear models are unable to capture the cyclic
behaviour of the sunspots data so that out-of-sample forecasts become
unstable. Other applications of bilinear models to forecasting have been
rather rare.

Another general class of non-linear models are the state-dependent models
described by Priestley (1988), which can be thought of as locally linear
ARMA models. They have also been used rather rarely in forecasting and
will not be pursued here.

Finally, we mention regime-switching models (e.g. Harvey, 1993, Section
8.6; Hamilton, 1994, Chapter 22), where the generating mechanism is
different at different points in time, depending on which regime the process
is in. The regime cannot be observed directly (e.g. economic ‘expansion’
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or ‘contraction’), although it can be inferred from data. For example,
the description hidden Markov process is used to describe a process
that switches between several different AR processes, with transition
probabilities that depend on the previous unobservable regime, or state.
When there are two states, the process is called a two-state Markov
switching AR model. The model is similar in spirit to a TAR model in that
the AR parameters depend on the current (unobservable) regime. When the
model changes, it is said to switch between regimes. While it is generally
easy to compute forecasts within a given regime, there is now the added
complication of having to forecast the appropriate regime in some future
time period.

If it is possible to compute the probability that a regime-switching
process will be in any particular regime in some future period, the analyst
may forecast conditional on the regime with the highest probability, or
(better) compute unconditional forecasts by taking the weighted average
over the conditional forecast for each regime with respect to the probability
of being in that regime. Sadly, the examples presented by Clements and
Krolzig (1998) and Montgomery et al. (1998) are not encouraging. Dacco
and Satchell (1999) are even more discouraging.

3.4.3 Models for changing variance

A completely different class of models are those concerned with modelling
changes in variance, often called changes in volatility in this context. The
objective is not to give better point forecasts of the observations in the given
series but rather to give better estimates of the (local) variance which in
turn allows more reliable prediction intervals to be computed. This can
lead to a better assessment of risk.

The estimation of local variance is especially important in financial
applications, where observed time series often show clear evidence of
changing volatility when the time plot is appropriately presented.13 An
example was shown in Figure 3.1 using the (compounded) returns on the
Standard & Poor 500 index. For such series, large absolute values tend to
be followed by more large (absolute) values, while small absolute values
are often followed by more small values, indicating high or low volatility,
respectively.

Many financial series, from which series of returns are calculated, are
known to be (very close to) a random walk. For example, the raw data for
the Standard & Poor 500 index, plotted in Figure 1.1, were analysed in
Example 2.2 and the correlograms suggested a random walk. This means
that there is little scope for improving point forecasts of the original series.
However, accurate assessment of local variance, by modelling data such

13 The series may also give ‘significant’ results when a test for homoscedastic variance
is carried out (e.g. Gouriéroux, 1997, Section 4.4), although such tests are not really
recommended by this author. If the effect is not obvious in the time plot, it is probably
not worth modelling.
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as that in Figure 3.1, should allow more accurate prediction intervals
to be calculated. Note that financial series are often found not to be
normally distributed (another indication of non-linearity), and this means
that prediction intervals may not be symmetric.

Suppose we have a time series from which any trend and seasonal effects
have been removed and from which linear (short-term correlation) effects
may also have been removed. Thus {Yt} could, for example, be the series of
residuals from a regression or autoregressive model for the first differences
of a financial time series such as (natural log of) price. The notation {Yt},
rather than {Xt}, is used to emphasize that models for changing variance
are rarely applied directly to the observed data. The derived series, {Yt},
should be (approximately) uncorrelated but may have a variance that
changes through time. Then it may be represented in the form

Yt = σtεt (3.4.6)

where {εt} denotes a sequence of independent random variables with zero
mean and unit variance and σt may be thought of as the local conditional
standard deviation of the process. The εt may have a normal distribution
but this assumption is not necessary for much of the theory. In any case
the unconditional distribution of data generated by a non-linear model will
generally be fat-tailed rather than normal. Note that σt is not observable
directly.

Various assumptions can be made about the way that σt changes through
time. The AutoRegressive Conditionally Heteroscedastic model of order p,
abbreviated ARCH(p), assumes that σ2

t is linearly dependent on the last
p squared values of the time series. Thus Yt is said to follow an ARCH(1)
model if it satisfies (3.4.6) where the conditional variance evolves through
time according to the equation

σ2
t = γ + αy2

t−1 (3.4.7)

where the constant parameters γ and α are chosen to ensure that σ2
t must

be non-negative, and yt−1 denotes the observed value of the derived series
at time (t− 1). Note the absence of an ‘error’ term in (3.4.7). If Yt can be
described by an ARCH model, then it is uncorrelated white noise, but it
will not be strict white noise. For example, if {Yt} is ARCH(1), then it can
be shown (e.g. Harvey, 1993, Section 8.3) that the autocorrelation function
of {Y 2

t } has the same form as that of an AR(1) model.
The ARCH model has been generalized to allow linear dependence of the

conditional variance, σ2
t , on past values of σ2

t as well as on past (squared)
values of the series. The Generalized ARCH (or GARCH) model of order
(p, q) assumes the conditional variance depends on the squares of the last
p values of the series and on the last q values of σ2

t . For example, the
conditional variance of a GARCH(1, 1) model may be written

σ2
t = γ + αy2

t−1 + βσ2
t−1 (3.4.8)

where the parameters γ, α, β must satisfy (α+ β) < 1 for stationarity.
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The idea behind a GARCH model is similar to that behind an ARMA
model, in the sense that a high-order AR or MA model may often be
approximated by a mixed ARMA model, with fewer parameters, using a
rational polynomial approximation. Thus a GARCH model can be thought
of as an approximation to a high-order ARCH model.

The GARCH(1, 1) model has become the ‘standard’ model for describing
changing variance for no obvious reason other than relative simplicity. In
practice, if such a model is fitted to data, it is often found that (α+β) � 1
so that the stationarity condition may not be satisfied. If α + β = 1, then
the process does not have finite variance, although it can be shown that the
squared observations are stationary after taking first differences leading to
what is called an Integrated GARCH or IGARCH model. Other extensions
of the basic GARCH model include Quadratic GARCH (QGARCH), which
allows for negative ‘shocks’ to have more effect on the conditional variance
than positive ‘shocks’, and exponential GARCH (EGARCH) which also
allows an asymmetric response by modelling log σ2

t , rather than σ2
t . These

extensions will not be pursued here.
Identifying an appropriate ARCH or GARCH model is difficult, which

partially explains why many analysts assume GARCH(1, 1) to be the
‘standard’ model. A (derived) series with GARCH(1, 1) variances may
look like uncorrelated white noise if second-order properties alone are
examined, and so non-linearity has to be assessed by examining the
properties of higher order moments (as for other non-linear models). If
{Yt} is GARCH(1, 1), then it can be shown (e.g. Harvey, 1993, Section
8.3) that {Y 2

t } has the same autocorrelation structure as an ARMA(1, 1)
process. Estimating the parameters of a GARCH model is also not easy.
Fortunately, software is increasingly available, either as a specialist package
(e.g. S+GARCH) or as an add-on to one of the more general packages (e.g.
EViews or RATS).

Forecasting the conditional variance one step ahead follows directly from
the model. Forecasting more than one step ahead is carried out by replacing
future values of σ2

t and of y2
t by their estimates. GARCH models have now

been used in forecasting a variety of financial variables, where estimation
of variance is important in the assessment of risk. These include share
prices, financial indices and the price of derivatives such as options to buy
a certain share at a pre-specified time in the future. The evidence I have
seen indicates that it is often important to allow for changing variance,
but that GARCH models do not always outperform alternative models.
Sometimes a random walk model for the variance is better than GARCH,
while GARCH may not cope well with sudden changes in volatility or with
asymmetry. In the latter case, something like EGARCH or a stochastic
volatility model (see below) may be better.

The study of ARCH and GARCH models is a fast-growing topic.
Alternative introductory accounts are given, for example, by Enders (1995,
Chapter 3), Franses (1998, Chapter 7), Harvey (1993, Chapter 8) and
Shephard (1996). More advanced details, together with applications in
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economics and finance, can be found in Bollerslev et al. (1992, 1994),
Hamilton (1994, Chapter 21) and Gouriéroux (1997).

An alternative to ARCH or GARCH models is to assume that σ2
t follows a

stochastic process. This is usually done by modelling log(σ2
t ) to ensure that

σ2
t remains positive. Models of this type are called stochastic volatility or

stochastic variance models. It seems intuitively more reasonable to assume
that σt changes stochastically through time rather than deterministically,
and the resulting forecasts are often at least as good as those from GARCH
models. More details may be found in Harvey (1993, Section 8.4) and Taylor
(1994).

Another alternative is to apply intervention analysis (see Section 5.6) to
describe sudden changes in variance. For example, Omran and McKenzie
(1999) analysed the daily U.K. FTSE All-share index, say It, from 1970
to 1997. There is clear evidence that the variance of the returns series,
100 × log(It/It−1), is not constant over time, but that changes in variance
can largely be explained by two exceptional shifts in variance during the
1973 oil crisis and the 1987 market crash (the interventions). Outside these
periods, the returns can reasonably be described as covariance stationary.

It can be difficult to distinguish between different models for changing
variance even with long (greater than 1000) observations. It should be made
clear that the point forecasts of time series using models which allow for
changing variance will generally be little, if any, better than forecasts from
alternative models assuming a constant variance. Rather models that allow
for changing variance may be better for predicting second moments of the
process. Thus models which allow for changing variance need to be checked
and compared by forecasting values of Y 2

t (assuming the conditional mean
of Yt is zero), but this is not easy given that the proportional variability in
the squared values is much higher than that of the series itself – see West
and Cho (1995). Thus the modelling implications of models for changing
variance may be more important than forecasting applications.

Note that McKenzie (1999) has suggested that it is not necessarily
appropriate to look at the series of square values, as specified in ARCH-
type models, but that some other power transformation may be better. In
McKenzie’s examples, a power term of 1.25, rather than 2, was indicated.

3.4.4 Neural networks

A completely different type of non-linear model is provided by Neural
networks (abbreviated NNs), whose structure is thought to mimic the
design of the human brain in some sense. NNs have been applied
successfully to a wide variety of scientific problems, and increasingly to
statistical applications, notably pattern recognition (e.g. Ripley, 1996).
The topic is a rapidly expanding research area. NN models are arguably
outside the scope of this book, partly because they are not conventional
time series models in the sense that there is usually no attempt to model
the ‘error’ component, and partly because they really form a subject in
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their own right and need much more space to cover adequately. However,
in view of the striking, perhaps exaggerated, claims which have been
made about their forecasting ability, it seems sensible to say something
about them. Alternative introductions, and further references, are given by
Faraway and Chatfield (1998), Stern (1996) and Warner and Misra (1996).
The introductory chapter in Weigend and Gershenfeld (1994) presents a
computer scientist’s perspective on the use of NNs in time-series analysis.

A neural net can be thought of as a system connecting a set of inputs to
a set of outputs in a possibly non-linear way. In a time-series context, the
‘output’ could be the value of a time series to be forecasted and the ‘inputs’
could be lagged values of the series and of other explanatory variables.
The connections between inputs and outputs are typically made via one or
more hidden layers of neurons or nodes. The structure of an NN is usually
called the architecture. Choosing the architecture includes determining the
number of layers, the number of neurons in each layer, and how the inputs,
hidden layers and output(s) are connected. Figure 3.2 shows a typical NN
with three inputs, and one hidden layer of two neurons.

Figure 3.2. Architecture for a typical NN for time-series forecasting with
three inputs (the lagged values at (t− 1) and (t− 4), and a constant), one
hidden layer of two neurons, and one output (the forecast).

The net in Figure 3.2 is of the usual feed-forward type as there are
no feedback loops. A suitable architecture for a given problem has to
be determined from the context, perhaps using external considerations
and perhaps using the properties of the data. Sometimes trial-and-error
is needed, for example, to choose a sensible number of hidden neurons.
Thus if we want to forecast quarterly data, for example, then it is natural
to include the values at lags one and four as inputs when determining the
one-step-ahead forecast. In addition, it is usually advisable to include a
constant input term which for convenience may be taken as unity. One
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hidden layer of two neurons, as in Figure 3.2, is usually large enough unless
the series is very non-linear. Thus the architecture in Figure 3.2 seems
reasonable for forecasting quarterly data, and can be likened to a sort of
non-linear (auto)regression model.

In Figure 3.2, each input is connected to both the neurons, and both
neurons are connected to the output. There is also a direct connection
from the constant input to the output. The ‘strength’ of each connection
is measured by a parameter called a weight. There may be a large number
of such parameters to estimate. A numerical value is calculated for each
neuron at each time period, t, as follows. Let yi,t denote the value of the
ith input at time t. In our example, the values of the inputs are y1,t =
unity, y2,t = xt−1 and y3,t = xt−4. Let wij denotes the weight of the
connection between input yi and the jth neuron. This is assumed to be
constant over time. For each neuron, we now calculate a weighted linear
sum of the inputs, say

∑
wij yi,t = νj,t, for j = 1, 2. The analyst then has

to choose a function, called an activation function, for transforming the
values of νj into a final value for the neuron. This function is typically non-
linear. A commonly used function is the logistic function, z = 1/(1 + e−ν),
which gives values in the range (0,1). In our example this gives values z1,t

and z2,t for the two neurons at each time period, t. A similar operation can
then be applied to the values of z1,t, z2,t and the constant input in order to
get the predicted output. However, the logistic function should not be used
at the output stage in time-series forecasting unless the data are suitably
scaled to lie in the interval (0,1). Otherwise the forecasts will be of the
wrong order of magnitude. Instead, a linear function of the neuron values
may be used, which implies the identity activation function at the output
stage.

The introduction of a constant input unit, connected to every neuron in
the hidden layer and also to the output, avoids the necessity of separately
introducing what computer scientists call a bias, and what statisticians
would call an intercept term, for each relation. Essentially the ‘biases’ are
replaced by weights which measure the strength of each connection from
the unit input and so become part of the overall set of weights (the model
parameters) which can all be treated in the same way.

For an NN model with one hidden level of H neurons, the general
prediction equation for computing a forecast of xt (the output) using
selected past observations, xt−j1 , . . . , xt−jk

, as the inputs, may be written
(rather messily) in the form:

x̂t = φo

(
wco +

H∑
h=1

who φh

(
wch +

k∑
i=1

wih xt−ji

))
(3.4.9)

where {wch} denote the weights for the connections between the constant
input and the hidden neurons, for h = 1, . . . , H, and wco denotes the weight
of the direct connection between the constant input and the output. The
weights {wih} and {who} denote the weights for the other connections

c© 2000 by Chapman & Hall/CRC



between the inputs and the hidden neurons and between the neurons
and the output, respectively. The two functions φh and φo denote the
the activation functions used at the hidden layer and at the output,
respectively.

We use the notation NN(j1, . . . , jk;H) to denote the NN with inputs at
lags j1, . . . , jk and with H neurons in the one hidden layer. Thus Figure
3.2 represents an NN(1, 4; 2) model.

The weights to be used in the NN model are estimated from the data by
minimizing the sum of squares of the within-sample one-step-ahead forecast
errors, namely S =

∑
t(x̂t−1(1)− xt)2, over a suitable portion of the data.

This non-linear optimization problem is no easy task. It is sound practice
to divide the data into two sections, to fit the NN model to the first section,
called the training set, but to hold back part of the data, called the test set,
so as to get an independent check on predictions. Various fitting algorithms
have been proposed for NN models, and many specialist packages are now
available to implement them. However, even the better procedures may
take several thousand iterations to converge, and yet may still converge to a
local minimum. This is partly because there are typically a large number of
parameters (the weights) to estimate, and partly because of the non-linear
nature of the objective function. The NN literature tends to describe the
iterative estimation procedure as being a ‘training’ algorithm which ‘learns
by trial and error’. Much of the available software used a popular algorithm
called back propagation for computing the first derivatives of the objective
function, so that S may be minimized. The starting values chosen for the
weights can be crucial and it is advisable to try several different sets of
starting values to see if consistent results are obtained. Other optimization
methods are still being investigated and different packages may use different
fitting procedures.

The last part of the time series, the test set, is kept in reserve so that
genuine out-of-sample forecasts can be made and compared with the actual
observations.

Equation (3.4.9) effectively produces a one-step-ahead forecast of xt,
namely x̂t−1(1), as it uses the actual observed values of all lagged variables
as inputs, and they could include the value at lag one. If multi-step-
ahead forecasts are required, then it is possible to proceed in one of two
ways. Firstly, one could construct a new architecture with several outputs,
giving forecasts at one, two, three . . . steps ahead, where each output
(forecast) would have separate weights for each connection to the neurons.
Alternatively, the one-step-ahead forecast can be ‘fed back’ to replace the
lag-one value as one of the input variables. The same architecture could
then be used to construct the two-step-ahead forecast, and so on. The
latter option is usually preferred.

Note that some analysts fit NN models so as to get the best forecasts of
the test set data, rather than the best fit to the training data. In this case
the test set is no longer ‘out-of-sample’ in regard to model fitting and so a
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third section of data should be kept in reserve so that genuine out-of-sample
forecasts can be assessed. This does not always happen!

The number of parameters in an NN model is typically much larger
than in traditional time-series models, and for a single-layer NN model is
given by p = (k + 2)H + 1 where k is the number of input variables
(excluding the constant) and H is the number of hidden neurons. For
example, the architecture in Figure 3.2 (where k and H are both two)
contains 9 connections and hence has 9 parameters (weights). The large
number of parameters means there is a real danger that model-fitting will
‘overtrain’ the data and produce a spuriously good fit which does not lead
to better forecasts. This motivates the use of model comparison criteria,
such as BIC, which penalize the addition of extra parameters. It also
motivates the use of an alternative fitting technique called regularization
(e.g. Bishop, 1995, Section 9.2) wherein the ‘error function’ is modified
to include a penalty term which prefers ‘small’ parameter values. This
is analogous to the use of a ‘roughness’ penalty term in nonparametric
regression with splines. Research is continuing on ways of fitting NN models,
both to improve the numerical algorithms used for doing this, and to explore
different ways of preventing over-fitting.

A detailed case study of NN modelling is given by Faraway and Chatfield
(1998), and a summary of that case study, focussing on forecasting aspects,
is given later in Example 8.4. The empirical evidence regarding the
forecasting ability of NNs is mixed and is reviewed in Section 6.4.2.

3.4.5 Chaos

The topic of chaos is currently a ‘hot’ research topic in many areas
of mathematical science. Some of the results are relevant to non-linear
time-series forecasting. Non-linear dynamical systems typically arise in
mathematics in the form of discrete-time maps, such as xt = f(xt−1)
where f is non-linear, or as differential equations in continuous time. Such
equations are usually deterministic (though noise can be added), and so,
in principle at least, can be forecast exactly. In practice, this is usually not
the case, partly because the system equations may not be known exactly,
and partly because the presence of the phenomenon, called chaos, means
that future behaviour may be critically dependent on small perturbations
to initial conditions.

Some deterministic time series, generated in a non-linear way, exhibit
behaviour which is clearly deterministic, in that the series tends to a fixed
point, called a limit point, or to a limit cycle (see Section 3.4.1), regardless of
initial conditions. Such series are not chaotic. However, other deterministic
non-linear series appear to be ‘random’ in many respects, and it is series
like this that are often called chaotic (though this is not meant to be a
formal definition of chaos). As we see below, it can be difficult in practice
to decide whether an apparently random time series has been generated
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by a stochastic model or by a chaotic deterministic model or by some
combination of the two.

The classic example of a chaotic series is provided by what
mathematicians call the logistic, or quadratic, map. This is defined by

xt = kxt−1(1 − xt−1) (3.4.10)

for t = 1, 2, 3, . . . with x0 ∈ (0, 1). This is a quadratic deterministic
equation, and for 0 < k ≤ 4, any resulting series, generated by the equation,
will stay within the range (0, 1). For low values of k, the deterministic nature
of the series is self-evident after plotting the time plot. For example, if
0 < k < 1, a series generated by the logistic map will always decline
to zero. In the jargon of chaos theory, we say that all possible trajectories
(meaning all series generated by this model with 0 < k < 1) are attracted to
zero – the limit point – and the latter value is called an attractor. However,
although we have expressed this in the language of chaos theory, such a
series is not chaotic. However, for values of k approaching 4, the character
of the series changes completely and the resulting sequence of observations
will look chaotic with no apparent pattern. Indeed, when k = 4, it can be
shown that a series, generated by the logistic map, has a flat spectrum with
the second-order properties of uncorrelated white noise, regardless of the
starting value that is used for the series. Thus, although the series is actually
deterministic, it will appear to be completely random if examined in the
usual way that we try to identify a suitable linear model, namely examining
the time plot and the second-order properties such as the correlogram. And
yet, if we were to plot xt against xt−1, the quadratic deterministic nature
of the underlying model will quickly become apparent, because the plotted
points will all lie on a curve. This emphasizes, once again, that methods
applicable for linear models do not carry over to the non-linear case.

A chaotic system has the property that a small change in initial
conditions will generally magnify through time rather than die out. This is
exemplified in the so-called butterfly effect, whereby a butterfly flapping its
wings may set in train a tropical storm. The sensitivity to initial conditions
(the rate at which a small perturbation is magnified) is measured by a
quantity called the Lyapunov exponent. This will not be defined here, but
values greater than zero indicate that a perturbation of the system leads
to divergence of the series, so that chaos is present.14

The study of chaos leads to much fascinating mathematics and also
to many interesting ideas that will not be pursued here. One important
concept is that of the dimension of a dynamical system. This may be
defined in several different ways, none of which are easy to understand. The
dimension of a chaotic system is typically non-integer. Another important
finding is that chaotic series often tend, not to a simple limit point or cycle,
but to an attractor set with a complicated geometrical shape. The latter

14 If a system has a stable fixed point, then it is not chaotic and the Lyapunov exponent
is less than zero. A series which consists entirely of noise has an infinite exponent.
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is called a strange attractor. It will typically be composed of a type of set
called a fractal which has unusual self-similar properties.

Which, if any, of the results on non-linear dynamical systems in general,
and chaos in particular, are useful to a statistician? One obvious question
is whether it is possible to forecast a chaotic series. Because of sensitivity
to initial conditions, long-term forecasting of chaotic series is usually not
possible. However, short-term forecasting of low-dimensional chaotic series
is often possible, as the uncertainty induced by perturbations is amplified
at a finite rate. Thus, the use of a chaotic model equation may give much
better forecasts than linear methods in the short-term (e.g. Kantz and
Schreiber, 1997, Example 1.1). It obviously helps if the model is known
(Berliner, 1991), or there is lots of data from which to formulate the model
accurately. Note that some starting values lead to greater instability than
others (e.g. Yao and Tong, 1994) so that the width of ‘error bounds’ on
predictions depends on the latest value from which forecasts are to be made.

Unfortunately, the statistician is generally concerned with the case where
the model is usually not known a priori, and where the data are affected
by noise. This leads to the difficult question as to whether it is possible to
identify a model for a deterministic chaotic series, or distinguish between a
chaotic series, a stochastic series or some combination of the two. As to the
first question, very large samples are needed to identify attractors in high-
dimensional chaos. As to the second problem, we must first distinguish two
quite distinct ways in which noise can affect a system. For one type of noise,
the true state of the system, say xt, is affected by measurement error, which
is usually of an additive form, so that we actually observe yt = xt+nt, where
nt denotes the measurement error, even though the system equation for the
{xt} series remains deterministic. An alternative possibility is that there
is noise in the system equation, so that xt = f(xt−1, εt), where εt denotes
what is sometimes called dynamical noise. Unfortunately, it may not be
possible to distinguish between these two types of situation, or between
chaotic series and stochastic series, solely on the basis of data. Noise
reduction techniques generally aim to separate the observed series into
the signal and the remaining random fluctuations, but classical smoothing
methods can actually make things worse for chaotic series (e.g. Kantz and
Schreiber, 1997, Section 4.5). Thus the forecaster may find it difficult to
disentangle the systematic component of a chaotic model from the ‘noise’
which will almost certainly affect the system.

A few years ago, there were high hopes that the use of chaos theory
might lead to improved economic forecasts. Sadly, this has not yet occurred.
It seems unlikely that the stock market obeys a simple deterministic
model (Granger, 1992), and, while there is strong evidence of nonlinearity,
the evidence for chaos is much weaker (Brock and Potter, 1993).15

Thus, although chaos theory can be applied in the physical sciences and
engineering, my current viewpoint is that it is difficult to apply chaos theory

15 This paper includes details of the so-called BDS test for the presence of chaos.
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to forecasting stochastic time-series data. However, research is continuing
(e.g. Tong, 1995) and it is possible that the position may change in the
future.

A non-technical overview of chaos is given by Gleick (1987) while Isham
(1993) gives a statistical perspective. There is also some helpful material in
Tong (1990, especially Section 2.11). An interesting, readable introduction
from the point of view of mathematical physics is given by Kantz and
Schreiber (1997).

3.4.6 Summary

In summary, the possible need for non-linear models may be indicated as
a result of:
• Looking at the time plot and noting asymmetry, changing variance, etc.

• Plotting xt against xt−1 (or more generally against xt−k for k = 1, 2, . . .),
and looking for limit points, limit cycles, etc.

• Looking at the properties of the observed series of squared values, namely
{x2

t}, as well as at the properties of {xt}.
• Applying an appropriate test for non-linearity.

• Taking account of context, background knowledge, known theory, etc.
Non-linear models are mathematically interesting and sometimes work

well in practice, notably for long financial time series. However, the fitting
procedure is more complicated than for linear models, and it is difficult
to give general advice on how to choose an appropriate type of non-linear
model. Nevertheless, the search for a suitable model may lead to greater
insight into the underlying mechanism even though the accuracy of the
resulting forecasts may show little improvement on those from simpler
models.

3.5 Time-series model building

As with most statistical activities, time-series analysis and forecasting
usually involves finding a suitable model for a given set of data, and a
wide variety of univariate models have now been introduced. This final
section explains why models are important and how to go about finding a
suitable model for an observed time series. As in other areas of statistics,
it is relatively easy to look at the theoretical properties of different models,
but much harder to decide which model is appropriate for a given set of
data.

A model is generally a mathematical representation of reality and can
be used for a variety of purposes including the following:
1. It may provide a helpful description of the data, both to model

the systematic variation and the unexplained variation (or ‘error’
component).
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2. By describing the systematic variation, a model may help to confirm
or refute a theoretical relationship suggested a priori, or give physical
insight into the underlying data-generating process. It may also facilitate
comparisons between sets of data.

3. The systematic part of the model should facilitate the computation of
good point forecasts, while the description of the unexplained variation
will help to compute interval forecasts.

This book is primarily concerned with the latter objective, but it is clear
that the various objectives are, to some extent, inter-related.

From the outset, it should be realized that a fitted model is (just) an
approximation to the data. There will be departures from the model to a
greater or lesser extent depending on the complexity of the phenomenon
being modelled and the complexity and accuracy of the model. A modern
economy, for example, is very complex and is likely to require a more
complicated model than the sales regime of a single company. In general,
the analyst should try to ensure that the approximation is adequate for the
task at hand, and that the model contains as few parameters as necessary
to do this.

Statistical model building usually has three main stages, namely:
(a) Model specification (or model identification);
(b) Model fitting (or model estimation);
(c) Model checking (or model verification or model criticism).

In practice, a model may be modified, improved, extended or simplified
as a result of model checking or in response to additional data. Thus model
building is generally an iterative, interactive process (see also Section 8.2).
Textbooks typically concentrate on stage (b), namely model fitting, both
in time-series analysis and in other areas of Statistics. In fact, computer
software is now available to fit most classes of statistical model, including
a wide variety of time-series models, so that model fitting is generally
straightforward. Chapters 3 to 5 give appropriate references on model
fitting for particular classes of time-series model and there is no need to
replicate such material in this book.

The real problem is deciding which model to fit in the first place, and
model specification is the difficult stage where more guidance is needed. The
literature sometimes gives the impression that a single model is formulated
and fitted, but in practice, especially in time-series analysis, it is more
usual to formulate a set or class of candidate models and then select one of
them. Thus it can be helpful to partition model specification into (i) model
formulation and (ii) model selection and we consider these two aspects of
modelling in turn.

3.5.1 Model formulation

Choosing an appropriate model or class of models is as much an art as a
science. There is no single approach that is ‘best’ for all situations, but it
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is possible to lay down some general guidelines. The analyst will generally
have to (i) get as much background information as is necessary, (ii) assess
costs, (iii) clarify objectives, and (iv) have a preliminary look at the data.
This requires a combination of technical and personal skills. The former
include knowledge of appropriate statistical theory as well as experience
in analysing real time-series data. The latter include communication skills,
general knowledge and common sense. Model building will often be a team
effort which will call on the skills of specialists in the phenomenon being
studied as well as statisticians. The single clear message is that the context
is crucial in determining how to build a model.

Many of the above points are amplified in Granger (1999, Chapter 1),
whose main example discusses the difficulties involved when trying to model
the dynamics of deforestation in the Amazon region. Even with a team of
experts, who understand the context, there are still some relevant variables
that are difficult to define or difficult to measure. Any model that results
is tentative and approximate and one model is unlikely to be ‘best’ for all
purposes.

In any study, it is important to decide at an early stage which variables
should be included. It is unwise to include too many, but no key variables
should be omitted. It is also unwise to include variables which are linearly
related. For example, it is dangerous to include the sum (X1 + X2) when
X1 and X2 are already included. If the statistician is provided with data
without pre-consultation, it is important to find out how accurate they
are and, more fundamentally, whether an appropriate set of variables have
been recorded.

A key question is the relative importance to be given to theory and
to observed data, although in an ideal world there will be no conflict
between these two criteria. The analyst should find out whether there is
any accepted theory which should be incorporated. For example, known
limiting behaviour and any known special cases should agree with any
tentative specification. The analyst should also find out what models have
been fitted in the past to similar sets of data, and whether the resulting fit
was acceptable. Theory based on past empirical work is more compelling
than armchair speculation.

Time-series modelling will also generally take account of a preliminary
analysis of the given set of data, sometimes called initial data analysis
or exploratory data analysis (see Section 2.3). This will suggest what
assumptions are reasonable from an empirical point of view, and is, in any
case, vital for getting a ‘feel’ for the data, for cleaning the data and so on.
It will also help determine whether there is enough relevant data available
to solve the given problem. The time plot is particularly important and
any modelling exercise must take account of any observed features, such as
trend and seasonality. A preliminary examination of the correlogram of the
data may also be useful at the preliminary stage – see Section 2.6.

One key decision is whether to use a black-box or structural type
of model. The latter will account for specific physical features and
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requires substantive subject-matter knowledge in order to construct an
intelligent model. This makes it difficult to make general remarks on such
models. In contrast, black-box models typically require little subject-matter
knowledge, but are constructed from data in a fairly mechanical way. An
alternative description for them is empirical models, and they may give
rather little physical insight into the problem at hand. Univariate time-
series models are generally regarded by economists as being of black-
box character as they make no attempt to explain how the economy
works. Neural network models are another class of models which are often
implemented in a black-box way (though whether they should be is another
matter – see Faraway and Chatfield, 1998).

Of course, different types of model are required in different situations and
for different purposes. The best model for (out-of-sample) forecasting may
not be the same as the best model for describing past data. Furthermore
some models are ‘in-between’ the two extremes of being fully ‘black-box’ or
completely structural, while other models can be implemented in different
ways depending on context. The class of univariate autoregressive (AR)
processes is generally regarded as being of a black-box type but still has a
useful role in forecasting. In contrast, the multivariate version (called vector
autoregressive (VAR) models – see Section 5.3.3) are of a more structural
nature and can be fitted in various ways giving more or less emphasis, as
appropriate, to prior knowledge.

Whatever decisions are made during modelling, it may be wise to
document them with appropriate explanations. Some statistical theory
assumes that the model is given a priori, but most modelling is iterative
in nature and the class of candidate models may even change completely
as more information comes in or existing information is re-evaluated. If
the choice of model depends on the same data used to fit the model,
then biases may result – see Chapter 8. Analysts often like to think that
modelling is objective but in reality subjective judgement is always needed,
and experience and inspiration are important.

3.5.2 Model selection

In some scientific areas, the analyst may formulate a fairly small number
of plausible models (e.g. three or four), and then choose between them in
some way. However, in time-series modelling it is more usual to proceed by
specifying a broad class of candidate models (such as the ARIMA family)
and then selecting a model from within that family which is ‘best’ in
some sense. Some analysts prefer to make this selection using subjective
judgment by examining diagnostic tools such as the correlogram and the
sample partial autocorrelation function of the raw data and of suitably
differenced series. The correlogram is particularly useful when selecting
an appropriate ARMA model, essentially by finding an ARMA model
whose theoretical autocorrelation function (ac.f.) has similar properties to
the corresponding observed ac.f. – see Section 4.2.2. The sample partial
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autocorrelation function is helpful for indicating the likely order of an
autoregressive (AR) model, if such a model is thought appropriate – see
Section 3.1.1. Another diagnostic tool, called the variogram,16 has recently
been proposed for use in time-series modelling (e.g. Haslett, 1997), but its
use is still at an experimental stage.

Rather than rely entirely on applying subjective judgement to diagnostic
tools, many analysts like to choose a model by combining subjective skills
with a range of helpful, arguably more ‘objective’, diagnostic procedures.
The latter include hypothesis tests and the use of model-selection criteria.
Some comments on the relative utilities of tests and model-selection criteria
were made in Section 3.1.9 in the context of testing for a unit root, and
doubts were suggested about using hypothesis tests on a routine basis. More
generally, many tests have been proposed in the literature, particularly with
econometric applications in mind. There are various misspecification tests,
such as tests for normality and constant variance, as well as more general
tests, such as tests for the presence of seasonality, of non-linearity or of unit
roots. It is not uncommon to see a whole battery of tests being applied to
the same set of data in the econometric literature but this raises questions
about the overall P-value, about how to choose the null hypotheses and
about the existence or otherwise of a ‘true’ model. Some econometricians
have suggested that difficulties can be reduced by using a testing procedure
with a ‘top-down’ approach, rather than a ‘bottom-up’ approach, meaning
that we should put more assumptions, based on background theory, into
our null model before starting the testing procedure. However, this does not
avoid the problems of knowing what null model to choose, of poor power,
and of multiple testing. The author confesses to rarely, if ever, using many
of the tests now available in the literature and doubts whether it is ever
prudent to carry out a series of hypothesis tests in order to make model-
selection decisions (see Granger et al., 1995).

The preference of the author (and of many statisticians) is generally
to choose a model by using subjective judgement guided by a variety
of statistical diagnostic tools. First select a potentially plausible set
of candidate models, perhaps based partly on external contextual
considerations. Then examine a variety of statistical pointers. For example,
the time plot will indicate if trend and seasonal terms are present, in
which case they need to be allowed for, either explicitly in the model,
or by filtering them away as in ARIMA-differencing. The correlogram and
partial ac.f. of various differenced series will help to indicate an appropriate
structure if an ARIMA model is contemplated (see Example 3.3). As for
the secondary ‘error’ assumptions, assume normality and constant variance
unless the time plot clearly indicates otherwise. I do not usually carry out
misspecification tests, given that most procedures are robust to modest

16 This function has been used to analyse spatial data for many years. The theoretical
variogram exists for both stationary and (some) non-stationary time series, and is
therefore more general in some sense than the autocorrelation function.
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departures from the usual ‘error’ assumptions anyway. Instead, if the choice
of model is not yet clear (and perhaps even if it appears to be), I may search
over the set of candidate models and select the one which is ‘best’ according
to a suitably selected model-selection criterion. Several possible criteria are
described below. This type of procedure is easy to implement in a fairly
automatic way once the candidate models have been selected. A thorough
treatment of model selection tools is given elsewhere for various classes
of time-series model (e.g. de Gooijer et al., 1985; Choi, 1992) and only a
brief introduction will be given here. An example illustrating their use in
selecting a neural network model is given later in Example 8.4.

What criterion should we use to select a model in the ‘best’ way? It is
not sensible to simply choose a model to give the best fit by minimizing
the residual sum of squares or equivalently by maximizing the coefficient of
determination, R2. The latter measures the proportion of the total variation
explained by the model and will generally increase as the number of
parameters is increased regardless of whether additional complexity is really
worthwhile. There is an alternative fit statistic, called adjusted-R2, which
makes some attempt to take account of the number of parameters fitted,
but more sophisticated model-selection statistics are generally preferred.
Akaike’s Information Criterion (AIC) is the most commonly used and is
given (approximately) by:

AIC = −2 ln(max. likelihood) +2p

where p denotes the number of independent parameters estimated in the
model. Thus the AIC essentially chooses the model with the best fit,
as measured by the likelihood function, subject to a penalty term that
increases with the number of parameters fitted in the model. This should
prevent overfitting. Ignoring arbitrary constants, the first (likelihood) term
is usually approximated by N ln(S/N), where S denotes the residual (fit)
sum of squares, and N denotes the number of observations. It turns out
that the AIC is biased for small samples and may suggest a model with
a (ridiculously?) high number of parameters as demonstrated empirically
later in Example 8.4. Thus a bias-corrected version, denoted by AICC,
is increasingly used. The latter is given (approximately) by adding the
quantity 2(p+1)(p+2)/(N−p−2) to the ordinary AIC, and is recommended
for example by Brockwell and Davis (1991, Section 9.3) and Burnham
and Anderson (1998). An alternative widely used criterion is the Bayesian
Information Criterion (BIC) which essentially replaces the term 2p in the
AIC with the expression p + p lnN . The BIC, like the AICC, penalizes
the addition of extra parameters more severely than the AIC, and should
be preferred to the ordinary AIC in time-series analysis, especially when
the number of model parameters is high compared with the number of
observations.

When searching for, and selecting a model, it is common to try many
different models. This latter activity is sometimes called data dredging or
data mining and is discussed further in Section 8.2. Although statistics,
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like the AIC and BIC, penalize more complex models, the reader should
realize that there is still a danger that trying lots of different models on
the same data may give a spuriously complex model that appears to give
a good fit, but which nevertheless gives poor out-of-sample predictions.
However, despite the dangers inherent in any form of data dredging, I would
still recommend choosing a model with the aid of informed judgement,
supplemented where necessary with the use of a model-selection criterion,
rather than a series of hypothesis tests, for the following reasons:

1. A model-selection criterion gives a numerical-valued ranking of all
models, so that the analyst can see if there is a clear winner or,
alternatively, if there are several close competing models. This enables
the analyst to assess the strength of evidence when comparing any pair
of models, and this is more enlightening than the results of testing one
particular model, which might simply be recorded as ‘significant’ or ‘not
significant’.

2. A model-selection criterion can be used to compare non-nested models,
as would arise, for example, when trying to decide whether to compute
forecasts using an ARIMA, neural network or econometric model.

3. Hypothesis tests require the specification of appropriate null hypotheses,
which effectively means that some models are given more prior weight
than others. Tests also assume that a true model exists and that it is
contained in the set of candidate models.

3.5.3 Model checking

Having selected a model, it can now be fitted to the data. As noted
earlier, this is usually straightforward and nothing further need be said
here on model fitting, except to note that some classes of model (e.g. neural
networks and GARCH models) may require substantial computing.

The next modelling stage is variously called model checking, model
verification or model criticism and is arguably as important as model
formulation. If any checks fail, the analyst may need to modify the original
model.

Model checking involves ensuring that the fitted model is consistent with
background knowledge and also with the properties of the given data. As
regards the former, the model should be consistent with external knowledge
and with known limiting behaviour. As regards empirical properties, a
series of checks will be carried out on the data and will typically involve
some sort of residual analysis. In time-series analysis, the residuals are
generally the one-step-ahead forecasting errors, namely

et = xt − x̂t−1(1) (3.5.1)

If the model is a good one, then the residuals should form a random series.
They can be examined in several ways, both to check the systematic part of
the model and also to check the assumptions made about the innovations.
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For example, the residuals can be plotted against time over the whole period
of fit and treated as a time series in its own right in order to assess the
overall fit of the model. The plot may help to indicate, for example, if there
is evidence that the model is changing through time. The mean residual
provides a check on forecast bias; it should be (nearly) zero if forecasts are
unbiased. It may also be worth calculating the mean residual over shorter
sections of the time series to see, for example, if forecasts are biased at
particular times (e.g. during an economic recession). A large individual
residual may indicate an outlying observation, which may need to be
looked at specially and perhaps adjusted in some way. The autocorrelation
function of the residual series provides an overall check on whether a
good model has been fitted or whether there is still some structure left
to explain. The residual autocorrelations may be examined individually, to
see if any exceed 2/

√
N in absolute magnitude, or the analyst can look at

the residual autocorrelations as a whole by calculating the sum of squares
of the residual autocorrelations up to some suitably chosen lag and seeing if
this is larger than expected if the correct model has been fitted. This forms
the basis of the Box-Ljung portmanteau lack-of-fit test. Full details of such
diagnostic checks are given for example by Box et al. (1994, Chapter 8). If
the diagnostic checks suggest that the fitted model is inadequate, then the
forecasting method based on it will not be optimal.

The above checks are essentially made in-sample. In fact, time-series
modelling provides an excellent opportunity to look at out-of-sample
behaviour, especially when prediction is the main objective. In many ways,
the production of reliable forecasts provides a more convincing verification
of a model than in-sample tests (where there is always the danger that
over-fitting may lead to a spuriously good fit).

Out-of-sample predictions can be checked in two ways. One approach
is to divide the complete data set into two parts, fit the model to the
first part, but keep back the second part, called the test set, so that
predictions from the model can be compared with the observed values. An
alternative approach is by means of forecast monitoring, where the (out-of-
sample) one-step-ahead forecast errors are looked at one at a time as each
new observation becomes available. The same formula is used as for the
residuals in (3.5.1), but the forecasts are now made on an out-of-sample
basis. These forecast errors are typically plotted one at a time against time
and examined on an ongoing basis. If, for example, a method which has been
working well suddenly produces a series of one-step-ahead errors which are
all positive, then this systematic under-forecasting indicates that the model
may have changed. Such a change will usually be evident from the graph,
although various graphical devices are available to assist the forecaster.
After spotting a change in behaviour, appropriate corrective action can be
taken.

The one-step-ahead forecast errors can also be used to provide routine
checks on forecasts, with a variety of procedures based on what are often
called tracking signals (e.g. Gardner, 1983; McLain, 1988). These methods
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should be used when there are a large number of series to forecast. One
possibility is to calculate the cumulative sum, or cusum, of the forecast
errors to give what is called the cusum tracking signal. When this is plotted
against time, an appropriate rule may be used to indicate if the system is
‘in control’ or if the forecast errors have become biased.

3.5.4 Further comments on modelling

We close with the following general remarks on modelling:

(a) If the time plot shows that a discontinuity is present, or that part of the
series has different properties to the rest, then it may not be possible to
find a single model to satisfactorily describe all, or perhaps even part of,
the data. Forecasting then becomes particularly difficult.

(b) If outliers are present, it is essential to accommodate them in the model
(e.g. with a long-tailed innovation distribution), to adjust them in some
way, or to use robust estimation and forecasting methods which are not
affected too much by departures from the model assumptions.

(c) If the variation is dominated by trend and seasonality, then it is often
advisable to model these effects explicitly rather than to simply remove
the effects by some sort of filtering or differencing, especially if trend
and seasonality are of intrinsic interest anyway.

(d) The problems involved in modelling a short series of perhaps 50
observations (e.g. sales figures) are quite different from those involved
in modelling long series of several hundred, or even several thousand
observations (e.g. daily temperature readings or daily stock prices). With
longer series, statistics, such as the correlogram, can be calculated more
accurately, non-linear modelling becomes a possibility and it is often
easier to assess if the future is likely to be similar to the past. However,
if a series is very long, there is a danger that the early part of the data
is not relevant to making forecasts from the end of the series, perhaps
because of changes in the underlying model. Thus longer series do not
necessarily yield better forecasts.

(e) Univariate or multivariate? An important question is whether forecasts
should be based on a univariate or multivariate model. A multivariate
econometric model, for example, is generally much harder to formulate
and fit than a univariate model and the required tools are much more
complex. In Chapter 5, we will see that there are particular difficulties
in the multivariate case when the variables are interdependent rather
than exhibiting what may be described as a one-way causal relationship.
Nevertheless, the pay-off for successful multivariate modelling can be
high.

(f) Does a true, known model exist? Traditional statistical inference
generally assumes that there is a true model, and that its structure
is known. If this is not the case, then theory formally requires that
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a model be formulated using one set of data, fitted to a second, and
checked on a third. Unfortunately, this is generally impossible in time-
series analysis where there is usually only a single realization of a given
stochastic process. Splitting a single time series into three parts is not the
same as collecting three independent samples, and, in any case, a series
may be too short to split into three usable sections. Thus the standard
time-series model-building paradigm (see Section 8.2) is to formulate,
fit and check a model on the same set of data, and yet most theoretical
results ignore the biases that result from this as well as ignoring the more
general effects of model uncertainty – see Chapter 8. This book adopts
the pragmatic approach that all models are approximations, which may,
or may not, be adequate for a given problem. Different approximate
models may be appropriate for different purposes.

(g) What is meant by a ‘good’ model? A good model should be (i) consistent
with prior knowledge; (ii) consistent with the properties of the data;
(iii) be unable to predict values which violate known constraints, and
(iv) give good forecasts ‘out of sample’ as well as ‘within sample’. A
model with many parameters is not necessarily ‘good’ by these criteria.
A more complicated model may give a better within-sample fit but worse
out-of-sample forecasts, and may reduce bias but increase variance.
Thus a simple model is often to be preferred to a complicated one.
Box et al. (1994) use the adjective ‘parsimonious’ to describe a model
containing a relatively small number of parameters, but which still
manages to provide an adequate description of the data for the task
at hand. The Principle of Parsimony, sometimes referred to as Occam’s
Razor, suggests that models should contain as few parameters as possible
consistent with achieving an adequate fit.

(h) What is the problem? Traditional statistical inference is primarily
concerned with the interesting, but rather narrow, problem of
estimating, and/or testing hypotheses about, the parameters of a
pre-specified family of parameter-indexed probability models. Chatfield
(1995b) has argued that statistical inference should be expanded to
include the whole model-building process. Setting our sights even wider,
model building is just part of statistical problem solving (e.g. Chatfield,
1995a) where contextual considerations, including objectives, are critical.
While emphasizing the importance of getting good forecasts, we should
not forget that there is usually an underlying problem that needs to be
solved (e.g. Should we buy a particular currency? How many items of a
particular product should we manufacture? What will the temperature
be tomorrow?) and we should not lose sight of that problem.

Example 3.3 Modelling the airline data. The airline data are plotted in
Figure 2.1 and have been analysed by many authors. The model fitted by
Box et al. (1994) to the logarithms of the data is the so-called airline model
in (3.1.22), which is a special type of SARIMA model. This model involves
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taking logs, taking one non-seasonal difference and then one seasonal
difference. The use of logs follows from examining the time plot, noting the
multiplicative seasonal effect, and trying to transform it to an additive form.
The application of one seasonal and one non-seasonal difference follows
from examining the correlograms of various differences of the logged series.
The correlogram of the raw (logged) data (not shown here) does not come
down to zero at low lags and shows little apart from the need for some sort
of differencing. The correlogram of the first differences (also not shown)
shows a strong seasonal cycle indicating the need for a further seasonal
difference. The correlogram of the logged series after taking one seasonal
and one non-seasonal difference is plotted in Figure 3.3. ‘Spikes’ can be seen
at lags one month and twelve months only, and these indicate the need for
one non-seasonal and one seasonal MA term.

Figure 3.3. The correlogram of the logged airline data after taking one
seasonal and one non-seasonal difference.

The choice of the airline model is not the only one that might be made,
and other analysts might reasonably identify alternative SARIMA models.
For example, if you analyse the raw data, rather than the logs, and take one
seasonal and one non-seasonal difference, the resulting correlogram looks,
if anything, more stationary than that in Figure 3.3. The only ‘spike’ is at
lag one, suggesting an ARIMA(0, 1, 1) × (0, 1, 0)12 or (1, 1, 0) × (0, 1, 0)12
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model. However, it turns out that these models give worse values for most
model-selection criteria and worse out-of-sample forecasts of the last two
years data (if we fit the model to the first 10 years data) than the airline
model.

Having selected the airline model, by whatever means, the analyst should
then check the fit, by calculating the residuals (the one-step-ahead forecast
errors) and then plotting them against time as well as calculating their
correlogram. These checks are very easy to carry out with most modern
software for fitting ARIMA models. In this case, they indicate the model
is adequate.

Of course, the class of SARIMA models is not the only choice that
could be made as the set of candidate models. Given the strong trend and
seasonal effects, it may seem more natural to fit a model that explicitly
models these terms. A traditional trend-and-seasonal model does quite
well here, either by fitting multiplicative seasonality to the raw data or
additive seasonality to the logarithms. Of course, a model for the raw
data is generally more helpful and so this suggests using the former. It
turns out that the Holt-Winters method (see Section 4.3.3), which involves
finding explicit estimates of trend and seasonality,17 gives forecasts which
are nearly as good as those from the airline model.

Many other models have also been tried on the airline data. State-space
models work quite well but neural network models fail to improve on Box-
Jenkins and Holt-Winters forecasts (Faraway and Chatfield, 1998). �

17 The multiplicative version of Holt-Winters should be used for the raw data in this
case and the additive version for the logs.
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CHAPTER 4

Univariate Forecasting Methods

“Forecasting is like driving a car blindfolded with help from someone looking
out of the rear window” – Anonymous

This chapter turns attention directly to the topic which is the prime
focus of this book, namely forecasting the future values of a time series.
In particular, this chapter describes a variety of univariate forecasting
methods. Suppose we have observations on a single time series denoted
by x1, x2, . . . , xN and wish to forecast xN+h for h = 1, 2, . . .. A univariate
forecasting method is a procedure for computing a point forecast, x̂N (h),
based only on past and present values of the given series (possibly
augmented with a function of time such as a linear trend).

As discussed more fully in Chapter 6, univariate methods are particularly
appropriate when there is a large number of series to forecast, when the
analyst’s skill is limited or when multivariate methods require forecasts to
be made of explanatory variables. We also say more in Chapter 6 about
the choice of a particular method and how it will depend on important
contextual considerations such as the objectives, the data available (the
information set), the quality of data, the software available, and so on. The
preliminary questions discussed in Chapter 1 really are vital.

As noted in Section 1.1, it is important to distinguish between a
forecasting method and a model. A model is a mathematical representation
of reality, while a method is a rule or formula for computing a forecast. The
latter may, or may not, depend on a model. Arising from this distinction, we
look in turn at univariate forecasting methods based on fitting a univariate
model to the given data (Section 4.2) and then at intuitively reasonable,
but essentially ad-hoc, computational procedures (Section 4.3). These two
types of method are quite different in character. Before introducing all
these forecasting methods, Section 4.1 considers the prediction problem in
general and discusses what is meant by a ‘good’ point forecast.

4.1 The prediction problem

As this chapter deals with univariate forecasting, the following general
remarks on the prediction problem are written in the context of univariate
forecasts, which has the added advantage of simplicity. Some of the
discussion, such as the comments on a choice of loss function, can readily
be extended to other types of forecasting, such as the multivariate case.
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Given observations on a single time series up to time N , we can denote
any univariate forecast of XN+h by x̂N (h). This could involve a function of
time, such as a deterministic linear trend, but we concentrate attention on
the more usual case where the forecast can be expressed as some function
of the observed data xN , xN−1, xN−2, . . ., say x̂N (h) = g(xN , xN−1, . . .).
Several questions follow immediately such as: (i) What function, g, should
we choose? (ii) What properties will it have? (iii) Is it the ‘best’ forecast?
and finally (iv) What is meant by ‘best’?

Before answering these questions, the analyst must decide how forecasts
should be evaluated and, in particular, what choice of loss function is
appropriate. A loss function is defined in the following way. Let e denote a
forecast error which we may write in words as

e = (observed value − forecast). (4.1.1)

Then the loss function, say L(e), specifies the ‘loss’ associated with a
forecast error of size e. This function typically has the properties that
(i) L(0) = 0; and (ii) L(e) is a continuous function which increases with
the absolute value of e. It may be symmetric, so that L(e) = L(−e),
but could be asymmetric. Two common symmetric loss functions are
quadratic loss, where L(e) = k1e

2, and the absolute error loss function
where L(e) = k2|e|, where k1, k2 denote constants. An asymmetric loss
function arises in production planning if, for example, the loss in losing
orders because of understocking exceeds the loss due to overstocking by
the same margin. Indeed, the costs attached to over- and under-forecasting
are sometimes quite different. However, the loss function is defined, a ‘good’
forecast may be defined as a forecast which minimizes average loss when
averaged over the probability distribution of forecast errors. In practice,
it may be difficult to write down a context-specific loss function and so
quadratic loss is used more than any other function (perhaps without
enough thought being given to this potentially important decision!).

Rather than specify a loss function, some analysts prefer to specify a
measure of forecast accuracy in order to evaluate forecasts. The simplest
and most widely used measure of forecast accuracy is the Mean Square
Error (abbreviated MSE), namely E[(XN+h − x̂N (h))2]. In fact, it can
be shown that this measure of accuracy implies a quadratic loss function
for departures from prediction and so implicitly assumes a quadratic loss
function. In this case, it can readily be shown that the ‘best’ forecast, in
the sense of minimizing MSE, is the conditional expectation of XN+h given
the available data at time N , namely1

x̂N (h) = E[XN+h|xN , xN−1, . . .] (4.1.2)

1 Note that we generally denote a forecast by x̂N (h) regardless of the criterion and
method used to find the forecast. Normally, it will be the conditional expectation
given a particular set of data and model, but, if more than one forecast is computed
in different ways, then some additional notation will be needed to distinguish between
them.
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The reader will hopefully find this result intuitively obvious or self-evident,
given various well-known results on properties of the mean. For example,
in a much simpler context, it is known that the mean of a probability
distribution is the value such that the mean square deviation from it is
minimized. It is straightforward to extend this result to show that, for time-
series data, the conditional expectation of a future value provides minimum
MSE forecast accuracy, but the proof is unenlightening and algebraically
tedious and will not be repeated here – see, for example, Hamilton (1994,
Section 4.1) or Priestley (1981, p. 728). In future we generally assume that
the ‘best’ forecast is the minimum MSE forecast, though it is perfectly
reasonable on occasion to use an alternative loss function2 and hence an
alternative measure of forecast accuracy – see Section 6.3.

In order to evaluate a general expression for the conditional expectation
of a future value, namely E[XN+h|XN , XN−1, . . .], we really need to
know the complete conditional distribution of XN+h given XN , XN−1, . . .
and this is the aim of so-called density forecasting – see Section 7.1.4.
Alternatively we need to be able to find the joint probability distribution
of {XN+h, XN , XN−1, . . .}. This is usually only possible for certain models,
notably linear models with normal errors. Partly for this reason, much of
the general theory of prediction restricts attention to linear predictors of
the form

x̂N (h) =
N−1∑
i=0

wixN−i (4.1.3)

where the problem reduces to finding suitable weights {wi} so as to
minimize the forecast MSE. Then the forecasts are sometimes called linear
least squares forecasts. If the process is jointly Gaussian, then it can indeed
be shown that a linear predictor is appropriate as the minimum MSE
forecast. Even if the process is not Gaussian, a linear predictor may still
provide a good approximation to the best MSE forecast.

A variety of results were derived by A. Kolmogorov, N. Wiener, A.M.
Yaglom, P. Whittle (Whittle, 1983) and others starting in the 1940’s. The
material makes challenging reading for the more theoretically inclined and
the reader is advised to read the summary in Priestley (1981, Section 10.1).
If we know the true correlation function of the process, or equivalently its
spectrum, then it is possible to write down the linear least squares predictor,
meaning the predictor of linear form which minimizes the expected mean
square difference between the actual future value and its forecast. However,
this work not only assumes exact knowledge of the correlation function or
the spectrum, but may also assume an infinite amount of past data. Neither
condition will be satisfied in practice and it is usually only possible to make
progress if the estimated spectrum can be readily factorized as a rational
function. This happens when the underlying process is an ARMA process

2 Indeed, different users may sometimes quite reasonably choose different loss functions
for the same problem depending on their subjective judgement, and this may suggest
different measures of forecast accuracy or even lead to different models.
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and then it is generally easier to make progress via the ARMA model
rather than via the sort of results available in the Wiener-Kolmogorov linear
prediction theory. The Wiener-Kolmogorov approach can be thought of as
non-parametric in that it is generally based on knowledge of the correlation
function or spectrum rather than directly on a fitted model, and so does
not lead to a model with the descriptive power to illuminate the situation.

This chapter, like much of the forecasting literature, concentrates on
finding ‘best’ point forecasts using MSE. In practice, we will often want to
produce interval forecasts, rather than (just) point forecasts, so as to better
assess future uncertainty, and this important topic is discussed in Chapter
7. However an ability to calculate good point forecasts is a prerequisite. As
regards the use of MSE, the assumption of a quadratic loss function is not
always the most sensible choice, and alternative loss functions may lead to
alternative forecasting methods.

This chapter also restricts attention to single-period forecasts.
Occasionally it may be desirable to forecast the sum of values over a
sequence of periods, as for example if we want to plan production over
an extended period. These cumulative forecasts are typically found simply
by adding the relevant single-period point forecasts. However, note that
computing the standard error of the uncertainty involved in such a forecast
is difficult because the errors in forecasts made from the same time origin
will inevitably be correlated.

No numerical illustrations are given in this chapter, as they would not
be particularly enlightening. What is important is that the reader should
try out selected methods on appropriate data using some of the excellent
software now widely available. Having produced some point forecasts, it is
always a good idea to plot them as an add-on to the time plot of the data
to make sure that they look intuitively reasonable. If they do not, then
there is more work to do.

4.2 Model-based forecasting

Suppose we identify a particular model for a given time series, estimate
the model parameters and then wish to compute forecasts from the fitted
model. We denote the true model by M and the fitted model by Mf . From
Section 4.1, the use of a quadratic loss function implies that the best way
to compute a forecast is to choose x̂N (h) to be the expected value of XN+h

conditional on the model, M , and on the information available at time N ,
which will be denoted by IN . Thus we take

x̂N (h) = E(XN+h|M, IN ) (4.2.1)

For a univariate procedure, IN consists of xN , xN−1, . . . plus the current
value of time, namely N . Of course, in practice, we have to use the fitted
model, Mf , rather than the true model.
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4.2.1 Forecasting with general linear processes

In Section 3.1, we saw that a stationary ARMA process may generally
be rewritten as an MA process of possibly infinite order (the Wold
representation) in the form

Xt =
∞∑

j=0

ψjZt−j (4.2.2)

Conditions for convergence are given in Section 3.1, and, when they apply,
a sequence of random variables satisfying this equation is called a general
linear process. The MMSE forecast of XN+h for the general linear process
is given by

x̂N (h) =
∞∑

j=h

ψjzN+h−j (4.2.3)

(see Box et al., 1994, Equation 5.1.13) where it is assumed, not only that
the values of {ψj} are known, but also that data for the infinite past up to
time N , namely {xt, t ≤ N}, are known and hence that the realized values
of {Zt, t ≤ N}, denoted by {zt}, can be found. Equation (4.2.3) is then
intuitively obvious since it follows from (4.2.2) by replacing future values
of Zt by zero, and present and past values of Zt by their observed values.
This merely requires that the MMSE forecast of all future Z’s is zero as is
obviously the case when the Z’s are uncorrelated with mean zero.

As an example of the above result, consider the MA(2) process

Xt = Zt + θ1Zt−1 + θ2Zt−2

This process has MMSE forecast at time N given by

x̂N (h) =




θ1zN + θ2zN−1 h = 1
θ2zN h = 2

0 h ≥ 3

More generally, forecasts from an ARMA model are not obtained via
(4.2.3), but can be computed directly from the ARMA model equation
(which Box et al. (1994) call the difference equation form) by replacing
(1) future values of Zt by zero, (2) future values of Xt by their conditional
expectation, (3) present and past values of Xt and Zt by their observed
values. For example, the ARMA(1, 1) process

Xt = φ1Xt−1 + Zt + θ1Zt−1

has MMSE forecast at time N given by

x̂N (h) =
{

φ1xN + θ1zN h = 1
φ1x̂N (h− 1) h ≥ 2 (4.2.4)

Thus the forecasts are generally calculated recursively.
In practice the model parameters are not known exactly but have to be

estimated from the data. Moreover, we do not have an infinite number of

c© 2000 by Chapman & Hall/CRC



past observations available as assumed in (4.2.3), while the values of Zt for
t = 1, . . . , N will not be known exactly, but rather are estimated by the
one-step-ahead forecasting errors (the residuals). It seems natural to denote
the latter here by {ẑt}, though they are denoted by et more generally - see
for example Equation (3.5.1).These practical points are often given little
attention in textbooks, but it must be realized that the prediction formula
actually used is not as given in (4.2.3) or in other similar formulae. Instead
parameter estimates are used together with the observed residuals, rather
than the true innovations. This is the difference between using the true
model, M , and the fitted model, Mf , in (4.2.1). For example, the working
version of the ARMA(1, 1) MMSE forecast in (4.2.4) is

x̂N (h) =
{

φ̂1xN + θ̂1ẑN h = 1
φ̂1x̂N (h− 1) h ≥ 2

(4.2.5)

The use of parameter estimates, and of residuals, increases the prediction
error variance, as we will see in Chapter 7.

The above rules for computing MMSE forecasts also apply to (non-
stationary) ARIMA models and seasonal ARIMA (or SARIMA) models.
For example, the ARIMA(1, 1, 1) model

(Xt −Xt−1) = φ1(Xt−1 −Xt−2) + Zt + θ1Zt−1

may be rewritten as

Xt = (1 + φ1)Xt−1 − φ1Xt−2 + Zt + θ1Zt−1

from which we see that the MMSE forecasts at time N may be calculated
recursively by

x̂N (h) =




(1 + φ1)xN − φ1xN−1 + θ1zN h = 1
(1 + φ1)x̂N (1) − φ1xN h = 2
(1 + φ1)x̂N (h− 1) − φ1x̂N (h− 2) h ≥ 3

Here again the working version of this formula would actually use parameter
estimates, φ̂1 and θ̂1, and the observed residual, ẑN .

The forecast resulting from the ARIMA(0, 1, 1) model, (Xt − Xt−1) =
Zt + θZt−1, is of particular interest. Here we find

x̂N (1) = xN + θzN

= xN + θ[xN − x̂N−1(1)]
= (1 + θ)xN − θx̂N−1(1)
= αxN + (1 − α)x̂N−1(1)

(4.2.6)

where α = 1 + θ. This simple updating formula, which only utilizes the
latest observation and the previous forecast, is the basis of many forecasting
methods and is called simple exponential smoothing (see Section 4.3.1).

General formulae for the forecast error variance for MSE forecasts from
a general linear process can be found in terms of the ψ-coefficients when
the model is expressed in the MA(∞) form of (4.2.2) – see Section 7.5.2.
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4.2.2 The Box-Jenkins forecasting procedure

Section 4.2.1 has shown that it is straightforward to find MMSE forecasts
for general linear processes, including ARMA models. The forecasting
procedure based on the more general class of ARIMA models is often called
the Box-Jenkins forecasting procedure, and involves much more than just
writing down formulae for point forecasts based on all the different models.
Good forecasting depends on finding a suitable model for a given time-
series, and the Box-Jenkins approach involves an iterative procedure of
(i) formulating a plausible model, (ii) fitting the model, and (iii) checking,
and if necessary adjusting, the model. By including ARIMA and SARIMA
models, the approach can handle non-stationarity and seasonality. Full
details are given in Box et al. (1994) and in many other books, and so
the details need not be repeated here.

In brief, the method usually involves (i) looking at the time plot and
assessing whether trend and seasonality are present, (ii) taking non-
seasonal and seasonal differences until the differenced series is judged to be
stationary, (iii) looking at the correlogram and the sample partial ac.f. of
the differenced series, and perhaps also at model-selection criteria, in order
to identify an appropriate ARIMA model, (iv) estimating the parameters of
this model, and (v) carrying out various diagnostic checks on the residuals
from the fitted model. If necessary the identified model will be adjusted
or alternative models entertained until a model is found which does seem
to describe the data adequately. Only then will forecasts be computed as
described in Section 4.2.1.

The following points are worth noting:
1. Interpreting the correlogram and the sample partial ac.f. is difficult and

the analyst needs to build up considerable experience in choosing a model
from these sample functions. Analysts sometimes prefer to circumvent
this tricky process by trying a range of models and simply choosing
the one which optimizes one of the model-selection statistics defined in
Section 3.5.

2. There are several different estimation procedures for fitting ARIMA
models which depend primarily on how the first few observations are
treated. They include exact maximum likelihood (ML) and conditional
least squares (CLS). For example, when CLS is applied to data from an
AR(p) process, the first p values of the series are assumed to be fixed. In
contrast, exact ML essentially averages over the first few observations
in an appropriate way. For long series (several hundred observations),
the choice of estimation algorithm usually makes little difference, but for
short series, the choice of estimation procedure becomes more important.
While asymptotically unbiased, parameter estimates are likely to be
biased for short series (e.g. Ansley and Newbold, 1980), and different
computer packages, using different estimation routines, can produce
parameter estimates with non-trivial differences (Newbold et al., 1994),
especially when the model has roots near the unit circle. The analyst is
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advised to use software that specifies exactly what estimation procedure
is adopted. For short series, exact ML is recommended, while the use of
Yule-Walker estimates for AR processes (essentially method of moments
estimates) is not recommended, especially when the roots are close to
the unit circle.

3. Diagnostic tests, such as the portmanteau test based on the ac.f. of the
fitted residuals, typically have poor power properties so that models are
rarely rejected. This is partly because series tend to be short, but also
because time-series models are typically formulated, fitted and checked
on the same data set – see Chapter 8. It is hardly surprising that the
best-fitting model for a given time series is found to be consistent with
the same data used to formulate and fit the model.

There are a number of forecasting procedures which are related to, or
are arguably a subset of, the Box-Jenkins method. They include subset
autoregression and Parzen’s ARARMA approach. As they are implemented
in an automatic way, the latter methods are covered in Section 4.3.4. It can
also be argued that some exponential smoothing methods are special cases
of Box-Jenkins, but this is not a view I subscribe to (see Section 4.4) and
they will be considered separately in Section 4.3.

For non-stationary data, the way that trend is removed before applying
the Box-Jenkins approach can be vital. If differencing is applied, the order
of differencing can be crucial. Makridakis and Hibon (1997) show that
alternative methods of removing trend, prior to fitting an ARMA model,
can lead to better forecasts.

4.2.3 Forecasting with state-space models – the Kalman filter

Point forecasts may readily be obtained for the general state-space model
of Section 3.2 by appropriate computations, based on a procedure called
the Kalman filter, which is described below. If we knew the exact form of
the state-space model, including the exact value of the current state vector,
then (3.2.2) suggests we take

x̂N (h) = hT
N+hθN+h (4.2.7)

where hN+h is assumed known, and θN+h = GN+hGN+h−1 . . . GN+1θN ,
assuming future values of G are also known. In practice, the exact value of
θN will not be known and has to be estimated from data up to time N .
Then (4.2.7) is replaced by x̂N (h) = hT

N+hθ̂N+h. In the important special
case where ht and Gt are (known) constant functions, say h and G, then
the forecast formula becomes

x̂N (h) = hTGhθ̂N (4.2.8)

Assuming the structure of the model is known, the computation of forecasts
therefore hinges on being able to get good estimates of the current state
vector, θN . A key property of state-space models is that the latter quantity

c© 2000 by Chapman & Hall/CRC



can readily be obtained with the updating formulae of the Kalman filter as
each new observation becomes available. The Kalman filter will also give
estimates of the variance-covariance matrix of θ̂ to indicate the likely size
of estimation errors.3

The Kalman filter is usually carried out in two stages. Suppose we have an
estimate of θt−1, say θ̂t−1, based on data up to time (t− 1) together with
an estimate of its variance-covariance matrix which we denote by P t−1.
The first stage, called the prediction stage, is concerned with forecasting θt

using the data up to time (t − 1). If we denote the resulting estimate by
θ̂t|t−1, then (3.2.3) suggests we use the formula

θ̂t|t−1 = ˆGtθt−1 (4.2.9)

It can be shown that the variance-covariance matrix of this estimate is
given by

P t|t−1 = GtP t−1G
T
t +Wt (4.2.10)

using the notation of Section 3.2.
When the new observation at time t, xt, becomes available, the second

stage of the Kalman filter, called the updating stage, is carried out using
the formulae

θ̂t = θ̂t|t−1 +Ktet (4.2.11)

and
P t = P t|t−1 −Kth

T
t P t|t−1 (4.2.12)

where
et = xt − hT

t θ̂t|t−1

is the prediction error at time t, and

Kt = P t|t−1ht/[hT
t P t|t−1ht + σ2

n]

is called the Kalman gain matrix. Further details will not be given here –
see, for example, Chatfield (1996, Chapter 10), Harvey (1993, Chapter 4)
or Janacek and Swift (1993).

As the name suggests, the Kalman filter is primarily intended for filtering,
which usually implies getting an estimate of quantities relating to the
most recent observation. However it can also be used in prediction, as
noted above, and in smoothing, which usually implies estimating quantities
relating to observations within the body of the data, as for example to
interpolate missing observations. The Kalman filter is also now used in a
variety of additional statistical applications, such as in updating estimates
of the parameters of an ARMA model. All in all, Kalman filtering has
become an important statistical tool, with applications outside its original
intended use in handling state-space models.

The forecasting procedure, called Bayesian forecasting (Pole et al., 1994;

3 The diagonal elements of the variance-covariance matrix are the variances of the

different elements of θ̂, while the off-diagonal elements are the covariances between
the different elements.
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West and Harrison, 1997), is based on a general model, called the dynamic
linear model. This looks like a state-space model, but forecasts are based
on a Bayesian rationale which involves updating prior estimates of model
parameters to get posterior estimates. The set of recurrence relationships
that result appears to be equivalent to the Kalman filter. The approach
is particularly useful for short series when there really is some prior
information, and some convincing illustrative examples are given by Pole
et al. (1994).

4.2.4 Forecasting with non-linear models

The topic of forecasting with non-linear models has been rather neglected in
the literature, partly, no doubt, because it is generally (much) more difficult
to compute forecasts from a non-linear model than from a linear model (Lin
and Granger, 1994; Tong, 1990, especially Chapter 6). In particular, closed-
form analytic formulae only exist in certain special cases for forecasts more
than one step ahead. To illustrate the problems, we consider some simple
threshold and bilinear models. As in the linear case, the minimum mean
square error predictor of XN+h is given by the conditional expectation in
(4.1.2), namely

x̂N (h) = E[XN+h|data to time N ]
Consider the simple first-order SETAR model in (3.4.4), namely:

Xt =
{

α(1)Xt−1 + Zt if Xt−1 < r
α(2)Xt−1 + Zt if Xt−1 ≥ r

where α(1), α(2) are constants and {Zt} denotes strict white noise. Suppose
we have data up to time N and that xN happens to be larger than
the threshold, r. Then it is obvious from the model that x̂N (1) =
E[XN+1|data to time N ] = α(2)xN , and so the one-step-ahead forecast
is easy to find.

However, finding the two-steps-ahead forecast for the above model
is much more complicated, as it will depend on whether the next
observation happens to exceed the threshold. The expectation that arises
is algebraically intractable, as we would need to take expectations over
future error terms and the corresponding thresholds. In practice, analysts
sometimes use an ad hoc ‘deterministic’ rule, whereby future errors are
set equal to zero. Thus, for the above model, if we find, for example, that
x̂N (1) happens to be smaller than the threshold, r, then we could take
x̂N (2) = α(1)x̂N (1) = α(1)α(2)xN . However, this is only an approximation
to the true conditional expectation, namely E[XN+2|data to time N ]. More
generally, when the delay is d, it is easy to write down exact formulae for
the conditional expectation up to d steps ahead, but forecasts more than d
steps ahead cannot generally be found analytically.

Consider now the simple first-order bilinear model from Section 3.4.2,
namely:

Xt = αXt−1 + βZt−1Xt−1 + Zt (4.2.13)
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where α and β are constants such that the process is stationary, and
{Zt} denotes a strict white noise sequence with zero mean and variance
σ2

Z . Now Zt is independent of Xs for s < t, and so we have such
general results as E[ZtXs|Data to time N ] = 0 for t > s > N and
E[ZtXs|Data to time N ] = σ2

Z for t = s > N . The latter result follows
because we may write Xt as Zt plus terms which are independent of Zt.
In order to evaluate the conditional expectation of ZtXs when t < s, we
would have to write Xs in terms of Xs−1, Xs−2, . . . , Zs, Zs−1, . . . and then
iteratively repeat this process until the subscripts of the X-terms are ≤ t.
Applying these results to the simple model above, we have

x̂N (1) = αXN + βZNXN

and

x̂N (2) = αx̂N (1) + βσ2
Z

Forecasts for longer lead times may be similarly obtained. Depending
on the structure of the model, this may be relatively straightforward or
algebraically messy.

When analytic point forecasts are difficult, or even impossible, to
evaluate, some sort of numerical evaluation is usually needed. This may
involve numerical integration, bootstrapping or some sort of Monte Carlo
method.

As well as being difficult to evaluate conditional expectations more than
one step ahead, another complication with most non-linear models is that
the predictive distribution is unlikely to be normally distributed, even if the
innovations distribution is assumed to be normal. Furthermore, its variance
need not increase monotonically with the forecast horizon. Sometimes, the
predictive distribution may not even be unimodal. This means that it is not
enough to just calculate the point forecast together with the forecast error
variance. Rather, the analyst needs to compute the complete predictive
distribution. This can be costly in terms of computer time, though packages
are becoming available for carrying out the necessary numerical work. For
example, Tong (1990) publicizes a package called STAR. Clements and
Smith (1997) describe a simulation study to compare several different ways
of computing forecasts for a SETAR model, but no clear picture emerges.

4.3 Ad hoc forecasting methods

This section introduces a number of forecasting methods that are not based
explicitly on a probability model, and so might be regarded to some extent
as being of an ad hoc nature. However, they will generally be based, at
least partly, on a preliminary examination of the data to determine, for
example, whether a seasonal or non-seasonal method should be used. Thus
they may well depend, at least implicitly, on some sort of model, albeit of
a simple form.
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4.3.1 Simple exponential smoothing

Perhaps the best known forecasting method is that called exponential
smoothing (ES). This term is applied generically to a variety of methods
that produce forecasts with simple updating formulae and can follow
changes in the local level, trend and seasonality. The simplest version,
called simple exponential smoothing (SES), computes the one-step-ahead
forecast by a formula that is equivalent to computing a geometric sum of
past observations, namely

x̂N (1) = αxN + α(1 − α)xN−1 + α(1 − α)2xN−2 + . . . (4.3.1)

where α denotes the smoothing parameter in the range (0,1). In practice,
the above equation is always rewritten in one of two equivalent updating
formats, either the recurrence form

x̂N (1) = αxN + (1 − α)x̂N−1(1) (4.3.2)

(which is the same as (4.2.6)) or the error-correction form

x̂N (1) = x̂N−1(1) + αeN (4.3.3)

where eN = xN − x̂N−1(1) = prediction error at time N .
The original motivation for SES (Brown, 1963) came from applying

discounted least squares to a model with a constant local mean, µ, and
white noise errors, {εt}, such that

Xt = µ + εt (4.3.4)

where µ was estimated, not by least squares, but by applying geometrically
decaying weights to the squared prediction error terms. In other words, we
estimate µ by minimizing

S =
N−1∑
j=0

βj(xN−j − µ)2 (4.3.5)

It turns out that the resulting estimate of µ using data up to time N is
such that it can be updated by SES (e.g. Kendall and Ord, 1990, Section
8.19).

The above procedure is intuitively reasonable but theoretically dubious in
that if one really believes the underlying mean is constant, then ordinary
least squares should be used. This implies that the analyst really has in
mind a model where the level is locally constant but may change through
time, and SES is sometimes said to be applicable for series showing no
seasonal variation or long-term trend but with a locally constant mean that
shows some ‘drift’ over time, whatever that means. In fact, it can be shown
that SES is optimal for several underlying models where the form of the
‘drift’ is mathematically specified. One such model is the ARIMA(0, 1, 1)
model given by

(1 −B)Xt = Zt + (α− 1)Zt−1 (4.3.6)

where the coefficient of εt−1 is expressed in the form (α − 1), rather than
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as the more usual θ, to clarify the connection with SES having smoothing
parameter α. Then it was shown in Section 4.2.1 that the optimal one-step-
ahead prediction, namely the conditional mean of the next observation,
for the model in (4.3.6) is updated by SES as in (4.3.2) with smoothing
parameter α. The invertibility condition for the ARIMA(0, 1, 1) model in
(4.3.6) leads to the restriction 0 < α < 2 on the smoothing parameter. This
is wider than the more usual range of 0 < α < 1. When α takes a value in
the range (1, 2), then (4.3.1) shows that the weights attached to past values
when producing a forecast will oscillate in sign. This is rather unusual in
practice, though it could occasionally be appropriate, for example, when
there is ‘over-adjustment’ to share prices, or when sales are mis-recorded
by being credited to the one sales period at the expense of the previous
period. Note that when α = 1, (4.3.6) reduces to the simple random walk
for which x̂N (1) = xN .

The second model, for which SES is well known to be optimal, is the
random walk plus noise state-space model (see Section 2.5.5). When the
Kalman filter (see Section 4.2.3) is applied to this model, it can be shown
that SES results in the steady state with a smoothing parameter, α, which is
a function of the signal-to-noise ratio. If we denote the latter by c = σ2

w/σ
2
n,

then we find α = 1
2 [(c2 + 4c)0.5 − c)], Thus exponential smoothing can

be regarded as a (very simple) Kalman filter. It can be shown that α is
restricted to the range [0,1], essentially because the two error variances
must both be non-negative so that c is non-negative.

The ARIMA(0, 1, 1) and ‘random walk plus noise’ models are both
non-stationary, but have first differences which are stationary with an
autocorrelation function of the same form, namely a non-zero coefficient
at lag one only. Thus the two models have the same second-order structure
and it is generally impossible to decide which is the ‘better’ model for a
given set of observed data. Despite this, the two models are quite different
in character. The ARIMA model is constructed from a single white noise
process, while the ‘random walk plus noise’ model is constructed from two
independent error processes. The invertible ARIMA(0, 1, 1) model allows a
smoothing parameter in the range (0, 2), while the random walk plus noise
model restricts α to the range (0, 1). So is the ARIMA model more general
or is the state-space model more realistic? The answer to this question
depends partly on the context. For example, if weights with alternating
signs in (4.3.1) do not make sense, then it seems unwise to allow α to
exceed unity. We say more about this in Section 4.4.

In fact, several other models can be found (Chatfield et al., 2001)
for which exponential smoothing gives MMSE predictions, including a
state-space model with a non-constant variance. This helps to explain
why methods based on exponential smoothing seem to give such robust
predictions and suggests that further research is needed to find ways of
identifying an appropriate underlying model for such smoothing methods.
After all, if exponential smoothing is optimal for models with both constant
and non-constant variance, then it will, for example, be important to
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know which is the more plausible assumption when computing prediction
intervals even if the point forecasts are unaffected.

The smoothing parameter, α, is normally constrained to the range (0,1)
and is often estimated by minimizing the sum of squared one-step-ahead
‘forecast’ errors over the period of fit (so that the ‘forecasts’ are really
within-sample fits). The starting value for x̂1(1) is typically taken to equal
x1. More details are given, for example, by Gardner (1985). The method is
now available in many software packages, and is very easy to implement.
However, it is inappropriate for series showing trend and seasonality and
should therefore be seen primarily as a building block for more general
versions of ES, which can cope with trend and seasonal variation.

Before introducing these more general versions, it will be helpful to recast
SES in the following way, by regarding it as being a method for producing
an estimate of the local level at time t, say Lt. Then (4.3.2), for example,
is rewritten as

LN = αxN + (1 − α)LN−1 (4.3.7)

The one-step-ahead forecast is then given by

x̂N (1) = LN (4.3.8)

and the h-steps-ahead forecast, x̂N (h), is also equal to LN .

4.3.2 Holt’s linear trend method

The first generalization is to include a local trend term, say Tt, which
measures the expected increase or decrease per unit time period in the
local mean level. This term is also updated using an equation akin to ES,
albeit with a different smoothing parameter, say γ. The updating equation
for the local level, Lt, is obtained by generalizing (4.3.7) in an obvious way
to give

LN = αxN + (1 − α)(LN−1 + TN−1) (4.3.9)

In addition, we update the local estimate of the growth rate by

TN = γ(LN − LN−1) + (1 − γ)TN−1 (4.3.10)

The h-steps-ahead forecast is then given by

x̂N (h) = LN + hTN (4.3.11)

Equations (4.3.9) and (4.3.10) correspond to the recurrence form of ES
in (4.3.2). Alternative formulae, which correspond to the error-correction
form of ES in (4.3.3) are also available to update LN and TN , though they
make the smoothing parameters look different. For example, some simple
algebra shows that the formula for updating the growth rate, TN , in (4.3.10)
is given by

TN = TN−1 + αγeN (4.3.12)

where it looks as though the smoothing parameter has changed to αγ.
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The above procedure is described as being appropriate for series showing
a ‘local linear trend’ and is usually known as Holt’s linear trend procedure.
It can be shown that the method is optimal when the underlying process is
either an ARIMA(0, 2, 2) model or a linear growth state-space model. There
are now two smoothing parameters to estimate and starting values for both
the level and trend must be provided. The latter are usually calculated from
the first year or two’s data in a simple-minded way.

A useful variant of Holt’s linear trend method is to include a damping
parameter, say φ, where 0 < φ < 1, such that the estimate of the trend
or growth rate at time t, say Tt, is damped to φTt in the subsequent time
period. The h-steps-ahead forecast at time N is then

xN (h) = LN + (
h∑

i=1

φi)TN (4.3.13)

This method involves estimating one more parameter, φ, and is optimal
for a particular ARIMA(1, 1, 2) model. Further details may be found in
Gardner and McKenzie (1985) who show that the method often gives good
empirical results.

There is a technique called double exponential smoothing which is a
special case of Holt’s linear trend method (and also of general exponential
smoothing – see Section 4.3.4). As the name implied, SES is used to update
the local estimate of level and then the same operation, with the same
smoothing parameter, is applied to the sequence of estimates of level. It
can be shown that this method arises when the underlying ARIMA(0, 2, 2)
model has equal roots. When the double exponential smoothing equations
are rewritten in the Holt form, the two Holt smoothing parameters are
related to each other but in a less obvious way – Gardner (1985) gives
the necessary formulae. Thus this method effectively reduces the number
of smoothing parameters to one. There seems little point in making this
restriction and the method is seldom used today.

4.3.3 The Holt-Winters forecasting procedure

Exponential smoothing can further be generalized to cope with seasonal
variation of either an additive or multiplicative form. Let It denote the
seasonal index in time period t, s the number of periods in one year (e.g.
s = 4 for quarterly data), and δ the smoothing parameter for updating the
seasonal indices. In the additive case, the seasonal indices are constrained
so that they sum to zero over a full year, while in the multiplicative case
they should average to unity. Taking the additive case as an example, the
recurrence form of the updating equations for the level, LN , the growth
rate, TN , and the seasonal index, IN , are

LN = α(xN − IN−s) + (1 − α)(LN−1 + TN−1) (4.3.14)
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TN = γ(LN − LN−1) + (1 − γ)TN−1 (4.3.15)

IN = δ(xN − LN ) + (1 − δ)IN−s (4.3.16)

The forecasts at time N are then given by

x̂N (h) = LN + hTN + IN−s+h (4.3.17)

for h = 1, 2, . . . , s. Alternative error-correction formulae are also available
to update LN , TN , and IN , though, as for Holt’s linear trend method, they
make the smoothing parameters appear to be different.

The seasonal form of exponential smoothing is usually called Holt-
Winters seasonal forecasting. It can be shown that the version assuming
additive seasonality is optimal for a seasonal ARIMA model of a rather
complicated form which would probably never be identified in practice.
The multiplicative version has a non-linear form and so has no ARIMA
representation (as ARIMA models are inherently linear). However, recent
work by Ord et al. (1997) on a class of non-linear state space models has
led to several models for which the optimal set of updating equations is
very close to the usual multiplicative Holt-Winters formulae. This will help
to provide some statistical foundation to the method.

A graph of the data should be examined to see if seasonality is present,
and, if so, whether it is additive or multiplicative. The user must provide
starting values for Lt, Tt and It at the start of the series, estimate the three
smoothing parameters over some suitable fitting period, and then produce
forecasts from the end of the series. The method is straightforward and
widely used. It can be implemented in an automatic way for use with a
large number of series or can be implemented in a non-automatic way
with, for example, a careful assessment of outliers. Empirical results (see
Chapter 6) suggest that the method has accuracy comparable to that of
other seasonal procedures.

For further details and practical guidance on implementing the different
versions of ES, the reader is referred to Gardner (1985), Chatfield and Yar
(1988) and Chatfield (1996a).

4.3.4 Other methods

This subsection briefly introduces several more forecasting methods of a
generally ad hoc nature.

(i) Stepwise autoregression. This automatic procedure can be regarded as
a subset of the Box-Jenkins procedure in that first differences are taken
of the series of observations to remove (most of) any trend, and then a
subset regression package is used to fit an AR model to the first differences.
The lags that are included in the model are chosen by applying a forward
selection procedure of a similar type to that used in subset selection in
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multiple regression. In other words, the analyst starts by fitting the ‘best’
lagged variable, and then introduces a second lagged variable, provided this
leads to a significant reduction in the residual sum of squares, and so on. It
is sensible to choose a maximum possible lag of perhaps twice the number
of observations in a season. Thus the analyst could go up to a maximum lag
of say 8 or 9 periods for quarterly data. The rationale behind the method
is that AR models are much easier to fit than MA models, and the analyst
effectively ends up with an integrated AR model with d = 1. Further details
are given in Granger and Newbold (1986, Section 5.4). Now that the full
Box-Jenkins procedure is much easier to implement, the method is rarely
used.

(ii) The ARARMA method. This method, proposed by Parzen (1982) and
also described in Makridakis et al. (1984), relies on fitting a possibly non-
stationary AR model to the data to remove any trend, before fitting an
ARMA model to the detrended data. This explains the title of the method.
If, for example, an AR(1) model is fitted to data which exhibits trend, then
the fitted AR parameter will typically be close to one (Parzen calls it a long-
memory model if the estimated coefficient exceeds 0.9) or could even exceed
one (a non-stationary value). An empirical study by Meade and Smith
(1985) suggests that the benefits of the ARARMA approach may lie in the
increased emphasis on correctly identifying the form of the trend, allied to
a reluctance to over-difference, rather than because the AR transformation
to stationarity is inherently superior to differencing. Brockwell and Davis
(1996, Section 9.1.1) describe a variant of this procedure in which no MA
terms are fitted so that the procedure is called the ARAR algorithm.

(iii) General exponential smoothing (GES). This method was proposed by
Brown (1963) and was very influential in its day. More recent accessible
summaries are included in Gardner’s (1985) review and in Abraham and
Ledolter (1986). Suppose we can represent a time series in terms of standard
functions of time such as polynomials and sinusoids, in the form

Xt =
k∑

i=1

aifi(t) + εt (4.3.18)

where {ai} denote a set of constants and fi(t) is a known function of time.
Although the latter are deterministic functions, the method recognizes that
the coefficients {ai} will change through time, so that the model only
applies locally. Thus estimates of the {ai} are updated through time as
more data become available. As the model only holds locally, it is natural to
estimate the parameters at time t, not by least squares, but by giving more
weight to recent observations. This suggests using discounted least squares,
wherein the analyst minimizes the discounted sum of squared errors at time
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t, namely

S =
∞∑

j=0

βj(xt−j −
k∑

i=1

ai(t)fi(t− j))2 (4.3.19)

where we now write the {ai} as functions of t to show that they are
local parameters. The estimating equations that result give estimates
of the {ai(t)}, say {âi(t)}, which can usually be updated in a fairly
straightforward way using the latest observation and the most recent
parameter estimates, namely {âi(t− 1)}.

In practice, the GES model is usually formulated so that the {fi} are
functions of the time difference from the end of the series rather than from
the origin. For example, when there are k = 2 functions, with f1 a constant
and f2 a linear trend, then we want the forecast function to be of the form

x̂t(h) = â1(t) + â2(t)h (4.3.20)

where â1(t), â2(t) denote estimates of the level and trend at time t, and so
we would replace the sum of squares in (4.3.19) by

S =
∞∑

j=0

βj(xt−j − a1(t) − a2(t)j)2 (4.3.21)

When the only function fitted is a constant, then it can readily be shown
that GES reduces to simple exponential smoothing. When a constant and
a linear trend is fitted, then it can be shown that GES reduces to double
exponential smoothing, which is a special case of Holt’s linear trend method
as noted in Section 4.3.2. Thus Gardner (1985) concludes that, if data are
non-seasonal, then there is little point in using GES.

If data are seasonal, then GES is very different from Holt-Winters. The
latter fits one seasonal index for each period, while GES fits several sine
and cosine terms. With s periods per year, no more than (s− 1) sinusoidal
terms are needed and it may be possible to use fewer terms. GES has one
smoothing parameter, while Holt-Winters has three. Is it reasonable to
expect one smoothing parameter to do all the work for which Holt-Winters
requires three parameters?

Several variants of seasonal GES have been proposed, incorporating
more than one smoothing parameter and alternative ways of representing
seasonal variation. Examples include the methods called SEATREND and
DOUBTS in Harrison (1965). Various empirical studies are reviewed by
Gardner (1985, Section 4.7) and my impression is that there is rather little
to choose between these methods, provided they are implemented in a
sensible way.

(iv) Others. Several other univariate time-series methods have been
proposed over the years, such as AEP, adaptive filtering, and the FORSYS
method, but are not now generally in use, either because of theoretical
problems, or because it is unclear how to implement the method in practice,
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or because empirical evidence suggests that other methods are better
anyway. Thus these methods will not be covered here.

4.3.5 Combining forecasts

In some situations, the analyst may have more than one possible forecast.
Rather than choose one of these as somehow ‘best’, the analyst may choose
to combine the forecasts in some way, perhaps by taking the average of
the different forecasts. This idea goes back many years, at least to Bates
and Granger (1969). A comprehensive review is given by Clemen (1989)
in a special section on Combining Forecasts in the Int. J. of Forecasting,
1989, No. 4. Another review is given by Granger (1989). The recent text
by Diebold (1998, Section 12.3) also covers some of the material. Empirical
results are very encouraging in that the average of several forecasts typically
gives better forecasts than the individual forecasts.

A combined forecast is generally a weighted average of two or more
forecasts. For simplicity, consider the case of two forecasts, say f1 and f2.
A simple linear combination of these quantities produces a new forecast,
say

f3 = λf1 + (1 − λ)f2 (4.3.22)

where λ is usually restricted to the range (0, 1). If the entire weight is placed
on one forecast, then that forecast is said to encompass the other forecast(s).
For example, for the simple linear combination in (4.3.22), f1 encompasses
f2 if λ = 1. The value of λ can sometimes be chosen by theory. For example,
if f1 and f2 are both unbiased with respective variances v1 and v2, then,
under certain assumptions, it can be shown that the ‘optimal’ unbiased
forecast (meaning the unbiased forecast with minimum variance) is given
by (4.3.22) with λ = v2/(v1 + v2). However, in practice we are unlikely to
know if the forecasts really are unbiased, while the true variances will have
to be estimated. Moreover, different forecasts are likely to be correlated.
Thus it is more common to simply adopt the pragmatic approach of taking
the average. It is for this reason that the approach is included in Section
4.3.

Although good point forecasts may result, a drawback to combining
forecasts is that the analyst does not end up with a single model to
interpret, so as to better understand the data. Moreover, there is no
obvious theoretical way to compute prediction intervals, though alternative
empirical methods can be found (Taylor and Bunn, 1999). Thus, although
some combination of forecasts may serve the immediate purpose of getting
a forecast which is better than the individual forecasts, Clements and
Hendry (1998a, Chapter 10) suggest this is nothing more than a convenient
stop-gap. The fact that forecasts need to be combined suggests that all the
models are mis-specified and so it may be better to devote more effort to
refining the best of the models so that it encompasses the rest, or to find
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a more theoretically satisfying way of combining several plausible models,
such as Bayesian Model Averaging – see Section 7.5.7.

4.3.6 Monitoring ad hoc forecasts

Whatever forecasting method is adopted, it is essential to continually check
the forecasts so that, if things go wrong, the method or model can be revised
as necessary. In Section 3.5.3, we described how the one-step-ahead forecast
errors can be used to carry out diagnostic checks on a model, and can also
be used for forecast monitoring by plotting them one-at-a-time as each new
observation becomes available.

For ad hoc methods, there is no model to check, but it is still sensible
to look at the in-sample forecast errors to make sure that the method
is performing in a reasonably sensible way. The out-of-sample forecast
errors can then be used for forecast monitoring in much the same way
as for a model-based method. Is the mean forecast error about zero over
some suitable interval? If not, the forecasts are biased. Are the forecast
errors autocorrelated? If they are, then the method is not optimal. Are
the errors normally distributed? If not, then prediction intervals will not
be symmetric. Any indication that the forecast errors have unexpected
properties may lead to appropriate corrective action. Devices like tracking
signals (see Section 3.5.3) may help.

4.4 Some interrelationships and combinations

This section explores some of the many interrelationships between different
linear models and between different forecasting methods in the univariate
case. Methods that involve fitting a probability model to the data, and then
finding optimal forecasts conditional on that model, are quite different in
spirit to forecasts which are not based on a model. Even so, the different
approaches may, on occasion, give identical forecasts. Model-based methods
are customarily used in statistical forecasting exercises involving a small
number of series, while operational research problems, such as inventory
control with many items, are customarily tackled with automatic methods
which are not model-based.

To illustrate the different approaches, consider exponential smoothing.
This is optimal for an ARIMA(0, 1, 1) model or a ‘random walk plus noise’
model, but is sometimes used in practice for series showing no obvious trend
or seasonality without any formal model identification. In other words it
can be used, either as the outcome of a model-based approach, or in an ad
hoc way.

More generally, the Box-Jenkins forecasting procedure involves
formulating, fitting and then checking an appropriate ARIMA model. The
corresponding optimal forecasts from that model can then be computed.
This approach may be appropriate with only a few series to forecast and
with adequate statistical expertise available. At the other extreme, the
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practitioner with a large number of series to forecast, may decide to use
the same all-purpose procedure whatever the individual series look like.
For example, the Holt-Winters forecasting procedure may be used for a
group of series showing trend and seasonal variation. As no formal model
identification is involved, it is inappropriate to talk about the Holt-Winters
model, as some authors have done.

We concentrate on relationships between models, while making links to
methods where appropriate. First we note that interrelationships between
models need not necessarily be helpful. For example, it is possible to
represent some growth curve models in state-space form or to regard them
as a type of non-linear model. However, they are usually best considered
simply in their original growth curve form. Thus we concentrate here on
relationships which will hopefully help to improve understanding.

First we look at state-space models. In Section 3.2, we pointed out that
there are several classes of model which are all essentially of this form.
They include the dynamic linear models of West and Harrison (1997), the
structural models of Harvey (1989) and the unobserved component models
used primarily by econometricians (e.g. Nerlove et al., 1979). Furthermore,
there are also close links between state-space models and ARIMA models
in that an ARIMA model can generally be expressed in state-space form,
though not necessarily in a unique way. For example, in Section 3.2, we
showed that an AR(2) model can be expressed as a state-space model in
several ways with state vectors involving the last two observations. It is
doubtful if this rather contrived piece of mathematical trickery improves
our understanding of the model, but it does replace two-stage dependence
with one-stage dependence and allows the Kalman filter to be used to
update model parameter estimates.

In order to explore the link between ARIMA and state-space models
further, we reconsider the two models for which exponential smoothing
is well known to be optimal, namely the ARIMA(0, 1, 1) model and the
random walk plus noise model. As noted in Section 4.3.1, both models are
non-stationary, but can be made stationary by first differencing when they
both yield ac.f.s having a non-zero value at lag one only. The parameter θ of
the ARIMA(0, 1, 1) model, expressed in the form Xt −Xt−1 = Zt + θZt−1,
must lie within the range (-1,+1) for invertibility, so that the smoothing
parameter α = (1+θ) will lie in the range (0,2). However, the parameters of
the random walk plus noise model are constrained so that 0 < α < 1). This
restriction can be seen as good (more realistic) or bad (more restrictive).
When the smoothing parameter is larger than unity, the weights attached
to past values when making a forecast will oscillate in sign. This would not
usually make sense from a practical point of view and it is arguable that
the ‘random walk plus noise’ model is intuitively more helpful in providing
an explicit model of changes in the local level. Thus the the use of the
state-space model seems generally more helpful and prudent.

Moving on to the seasonal case, the links between seasonal ARIMA
models and seasonal state-space models are rather more tenuous. We
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use the seasonal version of exponential smoothing, namely the Holt-
Winters method, to explore these links. It can be shown (Abraham and
Ledolter, 1986) that the additive version of Holt-Winters is optimal for
a SARIMA model having one non-seasonal and one seasonal difference
and with moving average terms at all lags between one and (s + 1). The
latter coefficients can all be expressed in terms of the three Holt-Winters
smoothing parameters for adjusting the level, trend and seasonal index,
respectively. This SARIMA model is so complicated that it is unlikely that
it would ever be identified in practice. As to the relationship with structural
(state-space) models, it can be argued that the use of the Basic Structural
Model (BSM – see Section 3.2) is similar in spirit to the results produced by
the additive Holt-Winters method. The latter depends on three smoothing
parameters which correspond in some sense to the three error variance
ratios of the BSM, namely σ2

1/σ
2
n, σ2

2/σ
2
n, and σ2

3/σ
2
n in an obvious notation.

However, there is not an exact equivalence. Thus the three forecasting
methods, namely Box-Jenkins, Holt-Winters and structural modelling, are
different to a greater or lesser extent. The Holt-Winters method is clearly
the easiest to use and understand, but the use of a proper probability
model, such as an ARIMA or structural model, means, for example, that it
is easier to make valid probability statements about forecasts, while models
are easier to extend to incorporate explanatory variables.

The above remarks help to explore the relationship between ad hoc
forecasting methods and time-series models, in that most examples of the
former are optimal for a particular model. Thus, although no formal model
identification is typically carried out, it is customary to employ some simple
descriptive tools to ensure that the method is at least not unreasonable. For
example, a check of the time plot will indicate the possible presence of trend
and seasonality and hence indicate which type of exponential smoothing
to use. Thus, there is less of a clearcut distinction between ad hoc and
model-based forecasting methods than might be thought.

A more difficult question is whether, and when, it is reasonable to
use the properties of the implicit ‘optimal’ model even when no formal
identification has been made. For example, forecasters often use results
relating to the ARIMA(0, 1, 1) model when using simple exponential
smoothing. This is not strictly valid but is arguably reasonable provided
that some preliminary assessment of the data has been made to ensure
the method is plausible and that checks on the forecasts also indicate no
problems.

Linked to the above is the question as to whether exponential smoothing
should be regarded as a special case of the Box-Jenkins method as has
been suggested elsewhere (e.g. Jenkins, 1974). My view is that it should
not be so regarded. The way that the methods are implemented in practice
is quite different even if some exponential smoothing methods are optimal
for some special cases of the ARIMA class. The way that the model or
method is identified, the way that starting values are chosen and the way
that parameters are estimated are quite different. Moreover, non-ARIMA

c© 2000 by Chapman & Hall/CRC



models, including models with changing variance, can be found for which
exponential smoothing methods are optimal (see Section 4.3.1), so that
the latter are, in some ways, more general than Box-Jenkins. As regards
seasonal exponential smoothing, it was noted earlier that, although the
additive version of Holt-Winter is optimal for a complicated SARIMA
model, it is unlikely that such a model would ever be identified in practice.
Moreover, the multiplicative version of Holt-Winters does not correspond
to any ARIMA model. Thus, for all practical purposes, Holt-Winters is not
a special case of the Box-Jenkins method.

Turning now to the combination of methods and models, Section 4.3.5
pointed out that better forecasts can often be obtained by taking a weighted
average of forecasts from different methods. This implies that none of
the methods is optimal by itself, which ties in with the suggestion that
there is usually no such thing as a ‘true’ model. A drawback to combining
forecasts is that no single model applied. This makes it potentially attractive
to consider ways in which models may be combined in order to get a
better approximation to reality with a single model. There are, of course,
many different ways in which this can be done as, for example, combining
regression models with ARCH disturbances. However, it is not always
straightforward to combine models as Example 4.1. is meant to illustrate.

Example 4.1 Suppose we postulate a model which has systematic variation
following a deterministic linear trend with time, but with innovations that
are not independent, but rather follow an AR(1) process. In other words,
we combine a linear trend with autocorrelated errors, and our model is

Xt = α+ βt+ ut (4.4.1)

with
ut = φut−1 + εt (4.4.2)

where α, β and φ are constants and εt denotes a purely random process.
With some simple algebra, this can be rewritten in reduced form as the
single equation

Xt = γ + δt+ φXt−1 + εt (4.4.3)

where γ = α(1 − φ) + βφ, and δ = β(1 − φ). When φ = 1, it is easy to see
that δ = 0 and the equation has a unit root, so that the model is difference-
stationary (see Section 3.1.9). However, if φ < 1 and β �= 0, then the model
is trend-stationary. (Of course, if φ < 1 and β = 0, then Xt is stationary
anyway.) When β �= 0, an interesting feature of the revised formulation
is that the coefficients of t in (4.4.1) and (4.4.3) are not the same, since
δ �= β, and so the slope may appear to be different when expressed as in
(4.4.3). As it is non-stationary (for β �= 0), it seems natural to take first
differences, but the resulting model will not be invertible, and is therefore
not identifiable, when φ < 1. Thus this innocent-looking model is actually
rather hard to handle and there can be problems fitting it. �

A moral of Example 4.1 is that great care is needed when combining models
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of different types as their properties may prove incompatible. If you want
to model a deterministic linear trend, it is unwise to add innovations which
follow an AR(1) process. More generally, this section demonstrates that
many univariate models and methods are interlinked, that studying these
links may lead to greater insight, but that ad hoc methods nominally
optimal for a particular model should not be confused with a model-based
method.

c© 2000 by Chapman & Hall/CRC



CHAPTER 5

Multivariate Forecasting Methods

“Forecasting is the art of saying what will happen and then explaining why
it didn’t! ” – Anonymous
“An economist is an expert who will know tomorrow why the things he
predicted yesterday didn’t happen today.” – Evan Esar

5.1 Introduction

Observations are often taken simultaneously on two or more time series.
For example, we might observe various measures of economic activity
in a particular country at regular intervals of time, say monthly. The
variables might include the retail price index, the level of unemployment
and a weighted index of share prices. Given such multivariate data, it
may be desirable to try to develop a multivariate model to describe the
interrelationships among the series, and then to use this model to make
forecasts. With time-series data, the modelling process is complicated by
the need to model, not only the interdependence between the series, but
also the serial dependence within the component series.

This chapter introduces a variety of multivariate time-series models
and the forecasting methods which are based on them. The models
include multiple regression, transfer function and distributed lag models,
econometric models and multivariate versions of AR and ARMA models,
including vector autoregressive (VAR) models. Alternative introductions
are given by Granger and Newbold (1986, Chapters 7 and 8), Priestley
(1981, Chapter 9) and Wei (1990, Chapters 13 and 14).

Fitting multivariate models to time-series data is still not easy despite
enormous improvements in computer software in recent years. There is
much ongoing research, partly stimulated by improved computational
resources, but much remains to be done.

The presentation of material in this chapter differs from that used for
univariate methods which was presented over two chapters, one on models
(Chapter 3) and a second on methods (Chapter 4). Here the emphasis
is primarily on models. In particular, there is no section analogous to
Section 4.3, which discussed univariate ad hoc forecasting methods not
based explicitly on a model. This is because there are essentially no ad
hoc multivariate methods. Furthermore there is no need to re-present the
general material on prediction from Section 4.1 as the comments therein
will also apply to multivariate forecasting with obvious amendments. In
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particular, we assume Equation (4.2.1) throughout, namely that, having
identified a model, M say, the optimum forecast of XN+h at time N is
obtained by finding E[XN+h|M, IN ] where IN denotes the information
available at time N . However, there is one important difference in that
this latter expression may need to incorporate forecasts of explanatory
variables. As we see below, this may make forecasts of the dependent
variable less accurate than might be expected.

While univariate models can be useful for many purposes, including
forecasting large numbers of series, and providing a benchmark in
comparative forecasting studies, it seems clear that multivariate models
should also have much to offer in gaining a better understanding of the
underlying structure of a given system and (hopefully) in getting better
forecasts. Sadly, we will see that the latter does not always happen.
While multivariate models can usually be found which give a better fit
than univariate models, there are several reasons why better forecasts need
not necessarily result (though of course they sometimes do). The reasons
include the following (in roughly ascending order of importance):

(i) With more parameters to estimate, there are more opportunities
for sampling variation to increase parameter uncertainty and affect
forecasts.

(ii) With more variables to measure, there are more opportunities for errors
and outliers to creep in.

(iii) Observed multivariate data may not necessarily be suitable for fitting
a multivariate model – see Section 5.1.1 below.

(iv) The computation of forecasts of a dependent variable may require
future values of explanatory variables which are not available at the
time the forecast is to be made. Then the explanatory variables must be
predicted in some way before forecasts of the dependent variable can be
found and this inevitably leads to a reduction in accuracy. If forecasts of
explanatory variables have poor accuracy, then the resulting forecasts
of the dependent variable may have worse accuracy than univariate
forecasts (Ashley, 1988).

(v) The computation of multivariate forecasts depends on having a good
multivariate model, but this cannot be guaranteed. As for univariate
models, a multivariate model may be incorrectly identified or may change
over the period of fit or in the future. It appears that multivariate models,
being more complicated, are more vulnerable to misspecification than
univariate models. Moreover, multivariate modelling is generally much
more difficult to carry out than fitting univariate models.

Experience in searching for an appropriate multivariate model substantiates
the importance of getting sufficient background information so as to
understand the context and identify all relevant explanatory variables. This
may not be easy and, as always, it is vital to ask lots of questions and
see, for example, if there are any previously known empirical relationships
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between the measured variables. It is also vital to formulate the problem
carefully. An iterative approach to model building (see Sections 3.5, 8.2
and 8.4) is generally required, and the use to which the model will be
put (e.g. forecasting) should be considered as well as the goodness-of-
fit. There is always tension between including unnecessary explanatory
variables, which appear to improve the fit but actually lead to worse out-
of-sample forecasts, and omitting crucial variables which are needed. Put
another way, it is desirable to seek a parsimonious model (so that fewer
parameters need to be estimated) while ensuring that important variables
are not ignored. However, whatever model is eventually fitted, statistical
inference is normally carried out conditional on the fitted model, under the
assumption that the model is ‘true’. As a result it focusses on uncertainty
due to sampling variation and having to estimate model parameters, even
though specification errors (due to using the wrong model) are likely to
be more serious. The topic of model uncertainty is explored in depth in
Chapter 8.

This introductory section goes on the consider two important questions
that arise with respect to multivariate forecasting, namely (i) Is feedback
present? and (ii) Are forecasts genuinely out-of-sample? Then Section
5.1.3 defines the cross-covariance and cross-correlation matrix functions
for stationary multivariate processes, while Section 5.1.4 describes how to
carry out an initial data analysis in the multivariate case. Finally, Section
5.1.5 mentions some difficulties in multivariate modelling.

5.1.1 Is feedback present?

One basic question is whether a multivariate model should involve a single
equation or several equations. In a (single) multiple regression equation,
for example, the model explains the variation in a dependent or response
variable, say Y , in terms of the variation in one or more predictor or
explanatory variables, say X1, X2, . . . . There should be no suggestion
that the value of the response variable could in turn affect the predictor
variables, giving rise to what is often called feedback. In other words the
regression equation assumes that the variables constitute what is called
an open-loop system. Some people would then say that there is a causal
relationship between the explanatory variables and the response variable,
though in practice it is difficult to decide if there is a direct link or if there
is an indirect link via additional variables not included in the model.

A completely different situation arises when the ‘outputs’ affect the
‘inputs’ so that there is a closed-loop system. As a simple example of such
a system in economics, it is known that a rise in prices will generally lead
to a rise in wages which will in turn lead to a further rise in prices. Then a
regression model is not appropriate and could well give misleading results
if mistakenly applied. Rather a model with more than one equation will be
needed to satisfactorily model the system.

Building a ‘good’ model from data subject to feedback can be difficult.
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A well-controlled physical system, such as a chemical reactor, is typically
managed by some sort of feedback control system. Then there may not be
enough information available in observed data, taken while the system is
‘in control’, to successfully identify the structure of the system, and it may
be necessary to superimpose known perturbations on the system in order
to see what effect they have. In contrast an economy is typically subject
to some sort of feedback, either from government decisions and/or from
personal choice, but is generally not as well controlled as a physical system
such as a chemical reactor. Efforts to control the economy are often made in
a subjective way and the amount of information in the system may be less
than one would like. Furthermore, it is difficult to carry out experiments on
an economy in the same sort of way that perturbations can be added to a
physical system. Further comments on economic data are made in Section
5.5.

5.1.2 Are forecasts out-of-sample?

In Section 1.4, the importance of distinguishing between in-sample and
out-of-sample forecasts was emphasized. This distinction is fairly clear for
univariate forecasting, but is much less clear for multivariate forecasting
where various types of forecast are possible depending on the type of model
and what is known or assumed about the values of explanatory variables.

Given multivariate data measured up to timeN , forecasts of future values
of the response variable that only use information up to time N about
both the response and explanatory variables, are definitely out-of-sample
forecasts (often called ex-ante forecasts in an economic context). If forecast
formulae for the response variable involve future values of the explanatory
variables, then an out-of-sample forecast will require the computation
of forecasts of such values, either using judgement or by applying some
univariate or multivariate procedure. However, it is helpful to consider the
following variants. Suppose the observed data are divided into a training
sample of length N1 and a test sample of length N2. Typically N1 is (much)
larger than N2. If a model is fitted to the training sample, an assessment
of its forecasting accuracy can be made by ‘forecasting’ the known values
of the response variable in the test period. This is often done by using
the known values of the explanatory variables, and this procedure is called
ex-post forecasting in an economic context. The results can help to assess
the suitability of the model for forecasting but the forecast accuracy will
appear to be more accurate than would be the case in a true out-of-sample
(ex-ante) situation where future values of the explanatory variables are
unknown.

Some writers (e.g. Granger and Newbold, 1986) distinguish between what
are sometimes called conditional and unconditional forecasts (though the
reader may not find these terms particularly helpful). If forecasts of a
response variable are calculated given known or assumed future values of
explanatory variables, then they are said to be conditional forecasts. They
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arise in ex-post forecasting, and also in ex-ante economic forecasting where
a policy maker wants to look at the forecasts of a variable of interest which
would result from setting future values of explanatory variables according
to various policy decisions, rather than by forecasting them. This latter case
is an example of ‘What-if’ forecasting (sometimes called scenario analysis or
contingency analysis). In contrast, unconditional forecasts of the response
variable are said to be obtained if nothing is known or assumed about the
future and any future values of explanatory variables which are required are
themselves forecasted. This terminological distinction between conditional
and unconditional forecasts seems rather unhelpful given that all forecasts
are conditional on information of some sort.

As discussed further in Section 5.2, the search for genuine out-of-
sample forecasts, and the desirability of not having to forecast explanatory
variables, explains the search for what are called leading indicators.
Consider a simple regression equation, such as

Yt = a+ bXt−d + εt (5.1.1)

where Yt, Xt denote the response and explanatory variables, respectively,
a, b, d are constants, with d a non-negative integer, and {εt} denotes a white
noise process. If d is an integer greater than zero, then Xt is said to be a
leading indicator for Yt, and the model enables forecasts of Yt to be made
for up to d steps ahead without having to forecast the Xt series as well.
To forecast more than d steps ahead, the required value of Xt will not
be available and must itself be forecasted, but the necessary lead time for
forecasting a leading indicator will at least be less than for the response
variable. Generally speaking, a multivariate model is able to give ‘good’
forecasts of the response variable provided that any necessary explanatory
variables are known (because they are leading indicators) or can be forecast
accurately.

5.1.3 Cross-correlations for stationary multivariate processes

A key tool in modelling multivariate time-series data is the cross-correlation
function which is used to help describe models having the property of
stationarity. Univariate stationary processes were introduced in Section
2.4. This subsection extends the concept of stationarity to the multivariate
case and then defines the cross-covariance and cross-correlation matrix
functions.

The cross-covariance function and cross-spectrum for a bivariate
stationary process were defined in Section 2.4 and we now generalize the
discussion to a set of m processes, say X1t, X2t, . . . , Xmt. The vector of
values at time t will be denoted by Xt where XT

t = (X1t, X2t, . . . , Xmt).
Let µt denote the vector of mean values at time t so that its ith component
is µit = E(Xit). Let Γ(t, t+ k) denote the cross-covariance matrix between
Xt and Xt+k, so that its (i,j)th element is the cross-covariance coefficient
of Xit and Xj,t+k, namely E[(Xit − µit)(Xj,t+k − µj,t+k)] – see Equation
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(2.4.4). Then this multivariate process is said to be second-order stationary
if the mean and the cross-covariance matrices at different lags do not
depend on time. In particular, µt will be a constant, say µ, while Γ(t, t+k)
will be a function of the lag, k, only and may be written as Γ(k).

In the stationary case, the set of cross-covariance matrices, Γ(k) for
k = 0,±1,±2, . . ., is called the covariance matrix function. It appears to
have rather different properties to the (auto)covariance function in that it
is not an even function of lag, but rather we find the (i, j)th element of
Γ(k) equals the (j, i)the element of Γ(−k) so that Γ(k) = ΓT (−k) (though
the diagonal terms, which are auto- rather than cross-covariances, do have
the property of being an even function of lag). Given the covariance matrix
function, it is easy to standardize any particular element of any matrix
(by dividing by the product of the standard deviations of the two relevant
series) to find the corresponding cross-correlation and hence construct the
set of (m×m) cross-correlation matrices, P (k) for k = 0,±1,±2, . . ., called
the correlation matrix function of the process.

5.1.4 Initial data analysis

In Sections 2.3 and 3.5, we stressed the importance of starting any analysis
with an initial examination of the data, and in particular of looking at
the time plot of a given series. That recommendation is now extended to
multivariate data. With two or more time series, it is essential to begin
by plotting each variable and looking carefully at the resulting graphs.
As indicated in Section 2.3.1, the time plots should reveal the presence of
trend, seasonality, outliers and discontinuities in some or all of the series.

As a result of looking at the data, it may be evident that some data
cleaning is necessary. In Section 2.3.4, we saw that dealing with outliers,
missing observations and other peculiarities can be difficult and that it is
hard to give general advice on such context-dependent problems. It is,
however, worth reiterating the general advice, from Section 2.3.7, that
the choice of action on such matters can be at least as important as
the choice of forecasting model. As well as cleaning the data, it may be
appropriate to transform the data so as to remove trend and/or seasonality
and/or changing variance, perhaps by applying differencing and/or a power
transformation. This important topic is discussed elsewhere, notably in
Section 2.3.3.

In order to look at the interrelationships between series, it can be helpful
to construct some alternative, more complicated, graphs, such as plotting
more than one series on the same time plot. However, we defer discussion of
such graphs to later in this subsection after we have introduced the sample
cross-correlation function.

For series which appear to be (at least approximately) stationary, it is
usually helpful to calculate the sample mean vector, the autocorrelation
function for each series, and, in addition, the sample cross-correlation
function for all meaningful pairs of variables. Suppose we have N pairs of
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observations {(xt, yt), t = 1, . . . , N} on two series labelled x and y such that
xt and yt are measured at the same time, t. Then the sample mean vector,
denoted by (x̄, ȳ), provides an estimate of the population mean vector, say
(µx, µy), on the assumption that the bivariate process is stationary (and
ergodic). The sample cross-covariance function is given by

cxy(k) =

{ ∑N−k
t=1 (xt − x̄)(yt+k − ȳ)/N k = 0, 1, . . . , N − 1∑N
t=1−k(xt − x̄)(yt+k − ȳ)/N k = −1,−2, . . . ,−(N − 1)

(5.1.2)
Assuming stationarity, the coefficient for lag k, namely cxy(k), provides
an estimate of the population cross-covariance coefficient, γxy(k), defined
in (2.4.4) or equivalently the (x, y)-th element of the population cross-
covariance matrix, Γ(k), defined in Section 5.1.3.

The sample cross-correlation function is given by

rxy(k) = cxy(k)/
√

[cxx(0)cyy(0)] (5.1.3)

where cxx(0) and cyy(0) are the sample variances of the observations on
the x- and y-series, respectively. For stationary series, the sample cross-
correlation function provides an estimate of the theoretical cross-correlation
function defined in Equation (2.4.5). Unlike the autocorrelation function,
the cross-correlation function is not an even function of lag and the value of
the lag which gives the maximum cross-correlation may help to indicate
which series is ‘leading’ the other.

For appropriate data, the size and position of the maximum cross-
correlation may be used to indicate the strength and direction of the
relationship between the two series. But what is meant by ‘appropriate
data’? In practice, the sample cross-correlation function is notoriously
difficult to interpret, as illustrated in Section 5.2.1 with a discussion of
the famous example in Box and Newbold (1971). In brief, cross-correlations
between series are affected by serial dependence (autocorrelation) within the
component series and so may, on occasion, present misleading information.
This statement depends on the following results.

In the univariate case, it is easy to test whether an autocorrelation
coefficient is significantly different from zero, by seeing whether it exceeds
the bounds ±2/

√
N . Unfortunately, the corresponding test for cross-

correlations is much more difficult because the formula for the variance
of rxy(k), assuming the series are not cross-correlated, involves the
autocorrelations of both series, and is given by

∑i=+∞
i=−∞ ρxx(i)ρyy(i)/(N−k)

where ρxx(.), ρyy(.) denote the autocorrelation functions of the x- and
y-series, respectively. (This is a special case of the general formula for
computing standard errors of cross-correlations, usually called Bartlett’s
formula – see Box et al., 1994, equation (11.1.7).) The only case where the
sample cross-correlation function is easy to interpret is when (i) the two
processes are not cross-correlated and (ii) one process is white noise, and
hence has no autocorrelations except at lag zero. In this case, the sample
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cross-correlation coefficient has an expected value which is approximately
zero and a variance equal to 1/(N − k). Thus cross-correlations exceeding
±2/

√
(N − k) may indeed be taken to be significantly different from zero.

This test is used during the identification of transfer function models to
assess the size of cross correlations between the input and output after the
input has been transformed, or prewhitened, to white noise – see Section
5.2.2. However, it should be emphasized that testing cross-correlations
based on the critical values ±2/

√
(N − k) is not valid when both series

exhibit non-zero autocorrelation, as is usually the case for the original
observed data.

In view of the difficulties in interpreting the sample cross-correlation
function, it usually needs to be supplemented by additional graphical and
numerical tools. Here we present some additional graphical tools. As well
as plotting the series one at a time, it can be fruitful to scale all the series
to have the same variance, and then to plot pairs of variables on the same
graph in order to reveal possible relationships between the series. Note that
if the cross-correlation between two series at zero lag is negative, then one
series should be turned ‘upside-down’ in order to get a good match, by
reversing the sign of any difference from the overall mean. If one series lags
the other, in that the behaviour of one series (such as the presence of a
peak) follows similar behaviour in the other series after a constant time
interval, then it may help to move one series forwards or backwards in
time by an appropriate time interval in order to ‘see’ the relationship more
clearly by making the visible characteristics of the series agree as closely as
possible. Some trial-and-error may be needed to get an appropriate choice
of scalings and of any time lags. A good interactive graphics package is
essential to do all this. This strategy may be helpful in alerting the analyst
to the possible presence of linear relationships, perhaps with a built-in
delay mechanism. However, the approach suffers from the same drawback as
attempts to interpret the sample cross-correlation function in that apparent
relationships may be spurious because they are induced by autocorrelations
within the series. Thus it is advisable to remove large autocorrelations from
series (by applying the same transformation to both series) before looking
at such time plots.

With two time series, an alternative possibility is to plot pairs of
contemporaneous1 observations on a single scatter plot, but then the
resulting graph will give no indication of time ordering or of relationships
at non-zero lags, unless each point on the graph is labelled in some way to
indicate time or the graph is redrawn at selected lag differences. With more
than two variables, modern graphics makes it easy to plot what is called a
scatterplot matrix, which comprises a scatterplot of every pair of variables.
This can also be difficult to interpret for time-series data.

1 Contemporaneous measurements are those measured at the same time.
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5.1.5 Some difficulties

The remarks in Section 5.1.4 have already indicated that there can be
difficulties in analysing and interpreting multivariate time series. In my
experience, the modelling process is fraught with danger, and this will
become further evident in the rest of this chapter. It is difficult enough
trying to fit a model to multivariate data which are not time series, and the
complications induced by having time-ordered data naturally exacerbates
these problems.

With a large number of variables, it is particularly difficult to build a
good multivariate time-series model when some cross-correlations between
the predictor variables are ‘large’. Then it may be fruitful to make some
sort of multivariate transformation of the data (e.g. by using principal
component analysis or factor analysis) so as to reduce the effective
dimensionality of the data. This type of approach will not be considered
here – see, for example, Pena and Box (1987).

Apart from the difficulties in interpreting sample cross-correlations and
related statistics, there are, more generally, many practical difficulties
involved in collecting multivariate time-series data. Put crudely, the data
that have been recorded may not be in the form that we would have
preferred but we, nevertheless, have to make the best of them. There
may of course be outliers and missing observations, which can be more
prevalent, and even more difficult to deal with, than in the univariate
case. Moreover, we might have liked data on some variables which have not
been recorded or we might have preferred more controlled perturbations to
input variables so as to better assess their effect on response variables. We
might have preferred data recorded at different time intervals or to different
levels of accuracy. All such issues should ideally have been considered
prior to collecting the data, but, in practice, it is not always possible to
prejudge such matters until some data have been collected, and then careful
judgement may be needed to assess what can be done with the data.

5.2 Single-equation models

5.2.1 Regression models

A seemingly obvious class of single-equation models to apply to multivariate
time-series data is the multiple regression model. This class of models is
probably the most widely used in practice, especially in business, economics
and the forecasting of public utilities, such as electricity. Regression models
feature prominently in many texts on forecasting for management science
and business students (e.g. Farnum and Stanton, 1989; Levenbach and
Cleary, 1984; Makridakis and Wheelwright, 1989), partly because they can
be used for data that are not time series. However, as outlined below, there
can be serious problems in applying regression models to time-series data.
Thus their use is often inadvisable or inappropriate, and they feature much
less prominently in time-series books written by statisticians. Nevertheless,
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it seems advisable to include a full discussion of them, not only because
they are widely used, but also because it is important to understand their
drawbacks and because they provide a helpful lead-in to some alternative
classes of model.

Revision of linear regression. We assume the reader has some familiarity with the
linear regression for bivariate data, but include a brief summary for completeness.
The standard model may be written

Y = α + βx + ε

where Y denotes a response variable, x an explanatory variable, α, β are
constant parameters, and the observation errors, {ε}, are usually assumed to
be independent and normally distributed, with mean zero and constant variance
σ2. Alternatively we can write

E(Y |x) = α + βx

Var(Y |x) = σ2

so that observations on Y , for a given value of x, are independent N(α + βx, σ2).
The values of the explanatory variable, x, are often assumed to be, in principle
at least, under the control of the experimenter and explains why the variable is
written here in lower case (in contrast to the response variable, Y , which is a
random variable and so is written in capitals). Given n pairs of observations, say
{(yi, xi) for i = 1, 2 . . . n}, least squares estimates of α and β may be found as

α̂ = ȳ − β̂x̄

β̂ =
∑

xi(yi − ȳ)/
∑

(xi − x̄)2

We also assume some familiarity with the generalization of the above to the
case where there are p explanatory variables, say xT = (x1, x2, . . . , xp). If the
conditional expectation of Y is linearly related to x, then we write

E(Y |x) = β1x1 + β2x2 + . . . + βpxp = βT x (5.2.1)

where βT = (β1, . . . , βp) is the vector of regression coefficients. A constant
(intercept) term can be included by setting one of the x-variables to be a constant.
The deviations from the conditional mean are also generally assumed to be
independent N(0, σ2). Given n sets of observations, say {(yi, xi1, . . . , xip) for
i = 1, 2, . . . , n}, least squares estimates of β are given by

β̂ = (XTX)−1XT y (5.2.2)

where the (n×p) matrix X, often called the design matrix, has (i, j)th element xij

and yT = (y1, . . . , yn). Further details may be found in many statistics textbooks.

Application to time-series data. Considerable care is needed to apply
regression models to time-series data. If, for example, we simply write a
regression model relating a response variable, Yt, to a single explanatory
variable, xt, in the form

Yt = α+ βxt + εt

with successive values of εt assumed to be independent, then this model
fails to capture the temporal dependence among the observed variables and
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among the ‘error’ terms. In other words, it ignores the fact that the variables
are all ordered through time. With time-series data, the order of the data
is usually crucial, because successive values are typically (auto)correlated
and this needs to be taken into account when modelling the data. Failure
to do so can produce a flawed model.

Some adjustment to notation is necessary to cope with time-series data
We use t, rather than i, as the dummy subscript and N , rather than n, for
the length of the series. With p explanatory variables, say x1, x2, . . . , xp, it is
customary in the time-series literature to reverse the order of the subscripts
of the x-variables so that the data are written as {(yt, x1t, x2t, . . . , xpt) for
t = 1, . . . , N}. In other words, the first subscript now denotes the relevant
variable. Given that most models will involve lagged values, it is generally
impossible to make the subscripts correspond to the position in the design
matrix as in ordinary multiple regression, and so there is no advantage in
adopting the conventional regression notation.2

When modelling time-series data, it is helpful to distinguish between
the various types of measured explanatory variables which can arise. One
distinction is between variables measured at the same time as the response
variable, called contemporaneous variables, and those measured at an
earlier time, called lagged variables. The latter may include past values
of the explanatory variables and of the response variable. In this case the
number of usable multivariate data points will be less than N . Lagged
values of explanatory variables can be regarded as leading indicators –
see (5.1.1) – and they can help to improve the forecasting ability of
the model. However, the inclusion of ‘explanatory variables’ which are
actually lagged values of the response variable (i.e. autoregressive terms)
will change the character of the model substantially, as such variables are
almost certainly correlated with each other and with the response variable,
and will often explain much of the variation in the response variable before
any explanatory variables are introduced.

Another distinction is between variables which can, or which cannot, be
controlled. This is particularly important when trying to model data where
feedback is present. A further distinction is between explanatory variables
which are thought to have some causal effect on the response variable
and those that do not. The former are clearly more reliable for making
forecasts, as, for example, when orders are used to forecast production.
Indeed Clements and Hendry (1998a, Chapter 9) suggest that it is unwise
to use explanatory variables unless there is a causal relationship, as they
say that “leading indicator systems are altered sufficiently frequently to
suggest that they do not systematically lead for long”. A final distinction is
between measured explanatory variables and those that are predetermined
quantities such as a deterministic function of time itself. For example, a

2 Of course, the ordering of the subscripts is arbitrary as long as the treatment is self-
consistent. The notation adopted here is fairly standard in the time-series literature
and has some advantages.
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linear regression on time can be obtained by setting x1t = kt, where k is
a constant. Note that regression on time alone is normally regarded as a
univariate procedure.

The time-series version of the multiple regression model (c.f. (5.2.1)) may
be written

Yt = βT xt + ut (5.2.3)

where xt denotes the vector of explanatory variables at time t and
ut denotes the observation error at time t. At first sight, it may look
straightforward to fit this model to time-series data. If we can assume
that xt are predetermined variables which do not include any lagged
variables (either of the response or of the explanatory variables), and if we
can also assume that the ut are independent N(0, σ2) variables which are
uncorrelated with the values of xt, then it is indeed easy to fit the model by
least squares using (5.2.2). This is called fitting by Ordinary Least Squares,
which is abbreviated OLS in the econometric literature. However, as noted
above, these assumptions are highly unlikely to apply to time-series data.
In particular, the observation errors are likely to be correlated and this
explains why we use the notation ut, rather than εt.

Econometricians have developed some alternative estimation procedures
to cope with various different assumptions that could reasonably be made.
For example, Generalized Least Squares (GLS) may be used when the ut are
assumed to be (auto)correlated with a known structure, while an iterative
procedure called the Cochrane-Orcutt procedure may be used when the ut

are thought to follow an AR(1) process but with an unknown parameter.
If the ut are thought to be correlated with some of the xt variables, then a
procedure called two-stage least squares may be appropriate. Some theory
is also available to handle further departures from the basic regression
assumptions, such as having explanatory variables that are stochastic,
rather than predetermined, and having non-Gaussian innovations. Clearly
there is a need to identify an appropriate error structure. More details can
be found in econometric texts such as Hamilton (1994). An overview of
the many approaches to time-series regression is given by Choudhury et al.
(1999), who recommend exact maximum likehood now that there is less
need to search for computational convenience.

Having said all this, it is my experience that forecasters still typically
use OLS, rightly or wrongly, even when the necessary assumptions may
not apply, partly because OLS software is readily available and easy to use,
and partly because it may not be easy to decide what alternative fitting
procedure should be used. It is therefore worth considering the problems
that may arise when fitting regression models to time-series data, and see
why such models are viewed with scepticism by most statisticians with who
have experience in time-series analysis.

More problems. Given the wide availability of suitable software, it is
computationally easy to fit any given regression model to any given set of
data. However, building a successful model, when the structure is unknown
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a priori (as it usually will be), is anything but easy, especially for time-series
data. An iterative procedure is usually adopted, trying (i) different subsets
of the available explanatory variables, (ii) different lagged structures,
(iii) different transformations of the variables, (iv) fits with and without
any outliers; and so on. After doing all this, it is comparatively easy to get
a good fit to virtually any given set of data. For example, Armstrong (1970)
describes an alarming study where a plausible multiple regression model
was fitted to data which were actually completely random. Armstrong
(1985, p. 487) later describes some rules for ‘cheating’ to get a high (within-
sample) multiple correlation coefficient, R2, by (i) omitting ‘annoying’
outliers which degrade the fit, (ii) using R2 as the measure of fit rather
than a statistic, like the adjusted-R2-statistic or AIC, which takes account
of the number of variables fitted, (iii) including lots of variables. As regards
(iii), in business and commerce, it is easy to think of many plausible
explanatory variables to include and the ready availability of easy-to-use
subset selection software, has led to excessive numbers of explanatory
variables being tried in some modelling exercises. With up to, say, 20
explanatory variables it is often possible to get a value of R2 close to one.
However, a good (within-sample) fit does not necessarily translate into
good out-of-sample forecasts and regression models fitted to time-series
data, especially when non-stationary, may be spurious, as can readily be
demonstrated both empirically (Granger and Newbold, 1974; 1986, Section
6.4) and theoretically (Phillips, 1986; Hamilton, 1994, Section 18.3).

The difficulties in applying multiple regression to time-series data often
relate to the quality and structure of the data. These difficulties can be
particularly acute with economic data. If, for example, the explanatory
variables are highly correlated with each other, as well as autocorrelated
through time, there can be singularity problems when inverting the (XTX)
matrix. In such situations it is misleading to refer to explanatory variables
as being the independent variables, and this terminology, widely used
before about 1980, has still not completely lapsed, especially in the
economic literature. It is advisable to look at the correlation matrix of
the explanatory variables before carrying out a multiple regression so that,
if necessary, some variables can be transformed or excluded. It is not
necessary for the explanatory variables to be completely independent, but
large correlations should be avoided.

Another difficulty with some observed regression data is that a crucial
explanatory variable may have been held more or less constant in the past
so that it is impossible to assess its quantitative effect accurately.3 For
example, a company may be considering increasing its advertising budget
and would like a model to predict the likely effect on sales. Unfortunately,
if advertising has been held more or less constant in the past, then it
is not possible to estimate empirically the effect on sales of a change in
advertising. Yet a model which excludes the effect of advertising could

3 This point was briefly introduced in Section 1.2.
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be useless if the advertising budget were to be changed. Thus it may be
necessary to appeal to economic theory during the modelling process.

Yet another problem in modelling multivariate data is that there may
be feedback from the response to the explanatory variables (see Section
5.1.1), in which case it is unwise to try to fit any single-equation model,
but rather it will be necessary to set up a model with more than one
equation such as the vector autoregressive model (see Section 5.3) or an
econometric simultaneous equation model (see Section 5.5).

The problems listed above may generally be described as resulting
from the unsuitable nature of some datasets for fitting regression models.
However, the final problem noted here relates to the basic unsuitability of
the model, as mentioned earlier in this section. The usual regression model
fails to take account of the temporal dependence in time-series data. In
particular, a key reason why spurious multiple regression models may be
constructed is that the assumed error structure may be overly simplistic for
describing time-series data. The usual multiple regression model assumes
that observation errors are independent and hence uncorrelated through
time. Unfortunately, this is usually not the case for time-series data.

A celebrated example is discussed by Box and Newbold (1971). An earlier
analysis of some financial data appeared to show a relationship between
the Financial Times ordinary share index and the U.K. car production
six months earlier. This resulted in a leading indicator-type model of the
form given by (5.1.1) with observation errors that were assumed to be
uncorrelated. The identification of this model relied heavily on the ‘large’
cross-correlations which were observed between the two series at a lag of
six months. In fact, the latter were a direct result of the autocorrelations
within the series, rather than from any relationship between the series,
and Box and Newbold (1971) showed that the two series involved were
essentially uncorrelated random walks. In the earlier analysis, the failure
to difference the series to make them stationary, before calculating the
cross-correlations, was unwise and meant that the variance of the cross-
correlations was highly inflated. This illustrates the difficult in interpreting
cross-correlations – see also Section 5.1.4. Box and Newbold (1971) went on
to stress the importance of making diagnostic checks on any fitted model,
including an analysis of the (one-step-ahead forecast) residuals. If the latter
are found to be autocorrelated, then an alternative model should be sought.

Some precautions. There are various precautionary measures which can be
taken to try to avoid spurious regressions. They include the following:

1. Choose the explanatory variables with great care using external
knowledge. Limit the maximum number of variables to perhaps five or
six.

2. Consider including lagged values of both the response and explanatory
variables as necessary.

3. Remove trend and seasonal variation before carrying out regression.
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Consider the use of differencing to make data stationary, but note that
this can lead to misspecification if a phenomenon called cointegration is
present – see Section 5.4.

4. Carefully identify the error structure and use an appropriate fitting
procedure.

5. Carry out careful diagnostic checks on any fitted model. In addition, it is
generally advisable to divide the data into two parts, fit the model to the
first (and usually larger) part of the data and then check it by making
forecasts of the later part. Wherever possible, such forecasts should be
genuine out-of-sample forecasts – see Section 5.1.2.

However, even with the above precautions, it can still be dangerous to
use multiple regression models for time-series forecasting. Thus the best
precaution may be to avoid using regression models at all! There are various
alternative classes of models, which will generally be preferred to regression
models. Transfer function models – see Section 5.2.2 – are usually a safer
option for a single-equation model, as they allow a more general error
structure and a more general lead-lag relationship. Alternatively, if a model
comprising more than one equation is indicated (e.g. if feedback is thought
to be present in the data), then there are various classes of models available
– see Sections 5.3 to 5.5.

In summary, the use of multiple regression models, with uncorrelated
errors, for describing time-series data is generally not recommended.

5.2.2 Transfer function models

This class of single-equation models generally provides a sounder basis for
modelling time-series data than regression models. The general structure of
such models may be introduced by noting that the most useful regression
model for forecasting time series appears to be the leading indicator type
of model given in (5.1.1), namely

Yt = a+ bXt−d + εt (5.2.4)

where a, b, d are constants, with d a positive integer. Note that the
explanatory variables will henceforth be written in capitals, rather than
lower case, as they may be stochastic, rather than predetermined. This
model enables forecasts of Yt to be made for up to d steps ahead without
having to forecast the explanatory variable.

However, some of the problems listed in Section 5.2.1 will sadly apply
to models of this type. In particular, the observation errors, the {εt},
are unlikely to be independent, as typically assumed in regression, but
rather are likely to be autocorrelated in a way which is unknown a priori.
Moreover, if Xt has a (delayed) effect on the response variable, there is no
obvious reason why it should only be at one particular time lag (even if
we can assume that there is no feedback from the response variable to the
explanatory variable). Thus it is usually safer to try to fit an alternative
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class of models, which allows the observation errors to be autocorrelated
and which also allows the explanatory variable to affect the response
variable in more than one time period. This suggests trying the following
equation, namely

Yt = ν0Xt + ν1Xt−1 + . . .+ nt = ν(B)Xt + nt (5.2.5)

where ν(B) = ν0 + ν1B + ν2B
2 + . . . is a polynomial in the backward shift

operator, B, and {nt} denotes the observation errors which are sometimes
called the ‘noise’ in this context. The latter series is generally not an
independent series, but it is necessary to assume that it is uncorrelated with
the input series. This model is called a transfer function-noise model or,
more simply, a transfer function model. Such models provide a safer, more
general class of models than regression models, to enable the forecaster to
describe the dynamics of an open-loop causal relationship between a single
predictor variable and a single response. The input has an effect on the
output over a possibly infinite number of lags. As a result, models of this
type are often called (free-form) distributed lag models by econometricians,
because they ‘distribute the lead-lag relationship’ over many lags.

Two further points can be made about (5.2.5). Firstly, notice that there
is no constant on the right-hand side of the equation as there is in (5.2.4),
for example. It is possible to add a constant but it is not customary to do so,
partly because it complicates the mathematics, and partly because the data
are usually analysed in a form which makes it unnecessary, as for example
if the variables are mean-corrected, or are deviations from equilibrium.
Secondly, note that if ν0 is not zero, then there is a contemporaneous
relationship between Xt and Yt and, in order to avoid feedback, the analyst
must be prepared to attribute this relationship to a dependence of Y on
X, rather than vice versa.

Readers with a general knowledge of linear systems will recognize (5.2.5)
as being a (physically realizable or causal) linear system plus noise. (An
introduction to linear systems is given for example by Chatfield, 1996a,
Chapter 9.) Looking at the linear system part of the model, namely

Yt = ν(B)Xt (5.2.6)

it turns out that the sequence of weights, namely ν0, ν1, ν2, . . ., constitute
what is called the impulse response function of the system, because νt

is the response of the system at time t to an input series which is zero
except for an impulse of unity at time zero. If the first few values of the
impulse response function are zero, then Xt is a leading indicator for Yt.
In particular, if ν0 = ν1 = . . . = νd−1 = 0, then there is a delay, d, in the
system and ν(B) = νdB

d + νd+1B
d+1 + . . . = Bd(νd + νd+1B + . . .). Then

it may be convenient to write (5.2.6) in the form

Yt = ν∗(B)Xt−d (5.2.7)

or equivalently as
Yt = ν∗(B)BdXt (5.2.8)
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where ν∗(B) = νd + νd+1B + . . ..
Note that Box et al. (1994) restrict the use of the phrase transfer function

model to models as in Equation (5.2.6) to distinguish them from transfer
function-noise models as in (5.2.5), which have noise added, but most other
writers use the term transfer function model for models with or without
noise. We generally adopt the latter usage, while making clear when noise
is present or not.

The transfer function model is typically applied to data in the physical
sciences, where feedback is unlikely to be a problem. It is also worth noting
that the general linear process in Equation (3.1.14) is an MA model of
infinite order and hence can be thought of as a linear system, or as a transfer
function model, which converts an ‘input’ consisting of white noise, {Zt},
to an ‘output’, namely the measured series, {Xt}.

We now explore the possibility of writing a transfer function model
in a rather different way. Recall that a general linear process can often
be parsimoniously represented as a mixed ARMA process of low order.
This means that, instead of working with a model which has a possibly
infinite number of parameters, the analyst can use a model where the
number of parameters is finite and usually quite small. By the same token,
(5.2.5) has an infinite number of parameters which will be impossible to
estimate from a finite sample. Moreover, even if the parameter values
were available, it would be impossible to evaluate terms in the linear
sum involving observations before the beginning of the observed data.
Fortunately, there are mathematical theorems which tell us that an infinite-
order power series, like ν(x) (where we replace the operator B with a real
variable x), can usually be approximated to an arbitrary degree of accuracy
by the ratio of two finite-order polynomials, say ω(x)/δ(x), provided that
the νi coefficients converge in an appropriate way.4

Writing δ(B) = (1−δ1B−. . .−δrB
r) and ω(B) = (ω0+ω1B+. . .+ωsB

s),
the above remarks suggest that the transfer function model in (5.2.7) or
(5.2.8) can usually be parsimoniously rewritten in the form

δ(B)Yt = ω(B)Xt−d = ω(B)BdXt (5.2.9)

where δ(B), ω(B) are low-order polynomials in B, of order r, s, respectively,
such that ω(B) = δ(B)ν∗(B). This follows the notation of Box et al. (1994)
except that, like most other authors, the coefficients in ω(B) are taken to
be positive so that the sign of ωi corresponds to the sign of the change in Y
for a positive change in X. In this revised form, (5.2.9) may include lagged
values of Yt as well as of Xt. The same is true of the corresponding transfer
function-noise model. As the ratio of two polynomials is called a rational
function by mathematicians, (5.2.9) is often called a rational distributed lag
model by econometricians.

4 Note that a sufficient condition for the linear system to be stable is that
∑

|νi| is
finite, but we will not go into the mathematical details here.
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Example 5.1. This example demonstrates that (5.2.9) may provide a much
simpler working formula than the general linear system in (5.2.6) or (5.2.7).
Suppose that a change in the input has no effect for the first three time
periods, but that, thereafter, there is an exponentially decaying effect, such
that ν3 = λ, ν4 = λ2 and so on. Then ν∗(x) = λ

∑∞
i=0(λx)i = λ/(1 − λx)

so that ν∗(x) is the ratio of a constant and a first-order polynomial. Then,
taking δ(B) = (1 − λB) and ω(B) = λ, we may write (5.2.9) in the form

(1 − λB)Yt = λXt−3 (5.2.10)

or
Yt = λ(Yt−1 +Xt−3) (5.2.11)

This is a nice simple form with just one parameter to estimate once the
values d = 3, r = 1 and s = 0 have been identified. More generally, if the
{νi} decay exponentially from the general value, ν3, so that νi = ν3λ

i−3

for i ≥ 3 (and zero otherwise), then (5.2.11) becomes

Yt = λYt−1 + ν3Xt−3 (5.2.12)

This is a special case of the Koyck econometric model. �

If we multiply through (5.2.9) by δ−1(B) and then add noise as in (5.2.5),
we get

Yt = δ−1(B)ω(B)Xt−d + nt (5.2.13)

If we can model the noise as an ARIMA process, say

φn(B)nt = θn(B)Zt (5.2.14)

where Zt denotes a white noise process, then we may further rewrite (5.2.13)
in the form

Yt = δ−1(B)ω(B)Xt−d + φ−1
n (B)θn(B)Zt (5.2.15)

If the data have been differenced before the start of the analysis, then
an ARMA, rather than ARIMA, model will probably be adequate for
modelling the noise. Otherwise, φn(B) may have roots on the unit circle.

Note that (5.2.15) reduces to a simple linear regression model, with
a leading indicator as input, when δ(B) = φn(B) = θn(B) = 1 and
ω(B) = νdB

d. Note also that if nt in (5.2.13) is white noise, then the
model can be regarded as a regression model with both lagged dependent
and explanatory variables. As a final special case of the transfer function
model, consider (5.2.5), where ν(B) is a polynomial of finite order and nt

follows an AR(1) process. Then the model can be regarded as regression
with (first-order) autoregressive ‘errors’ for which the Cochrane-Orcutt
estimation procedure can be used (see Section 5.2.1).

Fitting a transfer function model. Given this book’s focus on forecasting, only a
brief summary of the (rather complicated) procedure for fitting transfer function
models will be given here. Full details may be found in Box et al. (1994, Chapters
10 and 11). Note that there are several minor variants to the procedure, although
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these alternative procedures are generally closely related to the Box-Jenkins
approach. For example, Pankratz (1991) describes a procedure based on a class
of models called dynamic regression models which appear to be equivalent to
transfer function-noise models.

It is important to begin the analysis, as always, by looking at time plots of
the data to check for any errors or outliers, so that, if necessary, the data can
be ‘cleaned’. The next step in the analysis is usually to transform the input and
output series, if necessary, in order to make them stationary in the mean (and
more rarely in the variance). This is usually accomplished by differencing (and
applying a power transformation), but note that there could be occasions when
it is unwise to difference both series as for example if external theory suggests
that the level of Y is related to the change in X. Both series can also be mean-
corrected, and, in the remainder of this section, Xt and Yt denote the transformed
series which are assumed to have mean zero.

At first sight, the next step would be to calculate the cross-correlation function
of the input and output. However, we have seen that this function is very difficult
to interpret while autocorrelations exist within both series, primarily because the
variance of cross-correlations is inflated by autocorrelations. The usual way of
overcoming this problem is to fit an ARIMA model to the input, so that

φx(B)Xt = θx(B)αt (5.2.16)

where αt denotes a white noise process. This can be regarded as a way of
transforming the input series, Xt, to white noise, a procedure that is sometimes
called prewhitening. The same transformation that has been applied to do this,
namely φx(B)θ−1

x (B), is now applied to the output series, Yt, to give

φx(B)θ−1
x (B)Yt = βt (5.2.17)

This means that (5.2.5) may be rewritten in the form

βt = ν(B)αt + ηt (5.2.18)

where ηt is the transformed noise series, namely φx(B)θ−1
x (B)nt. The big

advantage of expressing the model as in (5.2.18) is that the cross-correlation
function of the two transformed series is now much easier to interpret, as it
can readily be shown (e.g. Box et al, 1994, Section 11.2.1) that it is now directly
proportional to the impulse response function. Thus, if rαβ(k) denotes the sample
cross-correlation coefficient between the transformed series {αt} and {βt} at lag
k, then the natural estimate of νi turns out to be given by

ν̂i = rαβ(i)sβ/sα (5.2.19)

where sα, sβ denote the observed standard deviations of the transformed
series. The pattern of the estimated ν-weights is compared with some common
theoretical patterns of ν-weights for different low-order rational models of the
form in (5.2.9) and this should enable the analyst to identify appropriate values
of the integers r, s and d, and hence fit an appropriate model of the form in (5.2.9).
As always, it is important to use any external knowledge in doing this, as, for
example, if there is a known delay time. If the latter is not known, then the first
few values of ν̂i should be tested to see if they are significantly different from zero
by comparing the value of rαβ(i) with ±2/

√
(N − i) – see Section 5.1.4. A simple

way to identify the value of d, the delay, is to choose the smallest integer, k, such
that |rαβ(k)| > 2/

√
(N − k). Having identified preliminary values of d, r and s,
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preliminary estimates of the parameters of the model in (5.2.9) can be found
using (5.2.19).

The analyst also needs to identify an appropriate ARIMA model for the
noise as in (5.2.14). A first assessment is made by computing the residuals
from the preliminary estimate of the model in (5.2.13), and identifying
an appropriate ARIMA model for these preliminary residuals by the usual
(univariate) identification procedure. Then the whole model of the form in
(5.2.15) can be refitted, estimating the parameters of (5.2.9) and of the noise
model in (5.2.14), all at the same time. The residuals from this re-estimated
model of the form in (5.2.13) can now be (re)calculated and used to check that
the structure of the ARIMA model for the noise still seems appropriate. If checks
indicate that a different ARIMA model should be tried, then the whole model
will need to be refitted once again. This iterative process continues until the
analyst is satisfied with the results of appropriate diagnostic checks which should
include checking the residuals from the ARIMA noise model, and also checking
the cross-correlations between (i) the residuals from the ARIMA noise process
and (ii) the residuals, αt, which arise when fitting an ARIMA model to the input
as in (5.2.13). In the absence of feedback, these two series should be uncorrelated.

Forecasting with a transfer function model. When the analyst is eventually
satisfied with the fitted model, it may be used in forecasting. The
computation of forecasts for (5.2.13) is carried out in an ‘obvious’ way
by computing forecasts for the linear system part of the model (5.2.9),
and also for the noise part of the model (5.2.14), and then adding them
together. The rules for doing this, so as to compute the minimum mean
square error (MMSE) prediction, are natural multivariate extension of the
rules for computing MMSE forecasts for an ARIMA model – see Section
4.2.1. Forecast formulae are found by writing out the model equation and
substituting observed values as follows:

(i) Present and past values of the input and output variables are replaced
by their observed values.

(ii) Future values of the output, Yt, are replaced by their conditional
expectation or MMSE forecast from the full transfer-function noise
model.

(iii) Future values of the input, Xt, are replaced by their conditional
expectation or MMSE forecast using the univariate model fitted to the
input as in (5.2.16).

(iv) Present and past values of nt are obtained from (5.2.13) as the residual
from the linear system part of the forecast, namely

nt = Yt − δ−1(B)ω(B)Xt−d

(v) Future values of nt are replaced by their MMSE prediction using the
ARIMA model in (5.2.14).

(vi) If needed, present and past values of Zt can be found from the noise
series, nt, using (5.2.14) via Zt = θ−1

n (B)φn(B)nt, or more simply as
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Zt = nt− n̂t−1(1) or, equivalently, as the overall one-step-ahead forecast
error using the complete equation, (5.2.15), namely

Zt = Yt − Ŷt−1(1)

where Ŷt−1(1) is the overall forecast including the forecast of the linear
system part of the model and the forecast of the noise component. Of
course, future values of Zt are best predicted as zero.

(vii) In practice, the model will not be known exactly so that model
parameters have to be estimated, giving estimates of nt, Zt, and of the
conditional expectations that can be substituted into the appropriate
formulae.

Example 5.1 continued. The above procedure for computing forecasts will
be illustrated using the Koyck model in (5.2.12), together with added noise
which is assumed to follow an AR(1) process with parameter φn. Then the
model expressed in the form of (5.2.15) is

Yt = (1 − λ)−1ν3Xt−3 + nt

where nt = (1 − φnB)−1Zt. We look separately at forecasts of the two
components of this model.

At time N, the MMSE h-step-ahead forecast of the AR(1) noise process,
nt, is given by

n̂N (h) = φh
nnN

In this case, it is unnecessary to find the values of Zt that correspond
to the {nt} series in order to compute predictions, though it is probably
advisable to look at them in order to check that the structure of the model
is adequate. However, if nt followed an MA or ARMA process, rather than
an AR process, then the values of Zt would be needed for prediction as well
as model-checking.

When computing forecasts for the transfer function part of the model,
we rewrite (5.2.9) in the form of (5.2.12). Thus, if there were no noise, the
one-step-ahead forecast at time N would be given by

ŶN (1) = λYN + ν3Xt−2 (5.2.20)

where the values on the right-hand side of the equation are all known.
However, to forecast two steps ahead using (5.2.12), we find

ŶN (2) = λYN+1 + ν3Xt−1 (5.2.21)

where the value of YN+1 is of course not available at time N . Then, using
the general guidelines, future values of the output should be replaced by
MMSE forecasts (as is intuitively ‘obvious’?) and the forecast of YN+1 has
already been computed in (5.2.20). Putting this into (5.2.21), gives

ŶN (2) = λŶN (1) + ν3Xt−1 (5.2.22)

A forecast for YN+3 can be similarly computed using ŶN (2) and this
recursive way of calculating forecasts is common practice. To forecast four
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steps ahead, the value of XN+1 is needed but is also not available. Using
the general guidelines again, this value should be replaced with the ARMA
forecast based on the model fitted to the input (see (5.2.16)) as part of the
model-identification process. Suppose, for example, that the input follows
an AR(1) process with parameter φx. Then the best forecast of XN+1

made at time N is given by X̂N (1) = φxXN . Forecasts further ahead can
be computed by X̂N (h) = φh

xXN .
Having found how to compute forecasts for the linear system part of

the model, we can now combine them with forecasts of the noise. For
the Koyck model with AR(1) noise and AR(1) input, the forecasts are
calculated recursively and we find, for example, that the MMSE forecasts
for one and four steps ahead are

ŶN (1) = λYN + ν3Xt−2 + φnnN

ŶN (4) = λŶN (3) + ν3X̂N (1) + n̂N (4) = λŶN (3) + ν3φxXN + φ4
nnN

If the original data were differenced or otherwise transformed, forecasts of
the original observed variable can readily be found from the above.

In practice, the model parameters, and the values of nt will not be
known exactly and so must be replaced with estimates. The one-step-ahead
forecast, for example, will be ŶN (1) = λ̂YN + ν̂3Xt−2 + φ̂N n̂N �

Note that it can also be helpful to fit a univariate ARIMA model to the
original output (as well as fitting an ARIMA model to the input). This
univariate model can be used for comparison purposes. If the transfer
function model cannot give a better fit to the output, or more importantly
better out-of-sample forecasts than the univariate model, then it is probably
not worth using. However, there are now many convincing examples in the
literature (e.g. Jenkins, 1979) to demonstrate that transfer function models
can lead to improved performance.

5.3 Vector AR and ARMA models

When data are generated by a closed-loop system (see Section 5.1.1), it
no longer makes much sense to talk about an ‘input’ and an ‘output’,
and a single-equation model will no longer be adequate to describe the
data. Subsequent sections consider the case where there are two, or more,
variables which are all interrelated and which are sometimes described as
‘arising on an equal footing’. Modelling a set of interrelated variables is
often called multiple time-series modelling. Econometricians would say that
instead of having one endogenous variable (the output) and one or more
exogenous variables (the input), we have two or more endogenous variables.
Roughly speaking, an exogenous variable is one which affects the system
but is not affected by it, whereas an endogenous variable is affected by the
system and is therefore typically correlated with the series of observation
errors.
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With m variables which arise on an equal footing, we use the notation
of Section 5.1.3, namely that we observe an (m × 1) vector Xt where
XT

t = (X1t, . . . , Xmt). Note that there is no particular reason to label
one variable as the ‘output’, Yt, as in Section 5.2. For simplicity we
give examples concentrating on the bivariate case when m = 2 and
XT

t = (X1t, X2t).
An ‘obvious’ way to define a useful class of linear multivariate processes is

to generalize the class of univariate autoregressive-moving average (ARMA)
models, introduced in Section 3.1, by requiring that each component of Xt

should be a linear sum of present and past values of (all) the variables and
of (all) the white noise innovations. The latter are the basic building block
of many multivariate time-series models and we therefore begin by defining
multivariate white noise.

5.3.1 Multivariate white noise

Let ZT
t = (Z1t, Z2t, . . . , Zmt) denote an (m×1) vector of random variables.

This multivariate time series will be called multivariate white noise if it is
stationary with zero mean vector, 0, and if the values of Zt at different
times are uncorrelated. Thus the covariance matrix function (see Section
5.1.3) of Zt is given by

Γ(k) =
{

Γ0 k = 0
0m k �= 0

where Γ0 denotes an (m ×m) symmetric positive-definite matrix and 0m

denotes an (m×m) matrix of zeroes.
Notice that all the components of Zt are uncorrelated with all the

components of Zs for t �= s. Thus each component of Zt behaves like
univariate white noise. Notice also that the covariance matrix at lag zero,
namely Γ0, need not be diagonal (though it often is). It could happen
that a measurement error at a particular time point affects more than one
measured variable at that time point. Thus it is possible for the components
of Zt to be contemporaneously correlated.

It is sometimes necessary to make a stronger assumption about the values
of Zt at different time points, namely that they be independent, rather
than just uncorrelated. As in the univariate case, independence implies
zero correlation, but the reverse need not be true (although it is when Zt

follows a multivariate normal distribution).

5.3.2 Vector ARMA models

A mathematically succinct way of representing a class of linear multivariate
models is to generalize the univariate ARMA model by writing

Φ(B)Xt = Θ(B)Zt (5.3.1)
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where Xt and Zt are m-vectors, and Φ(B),Θ(B) are matrix polynomials in
the backward shift operator B of order p and q, respectively. Thus we take
Φ(B) = I − Φ1B − . . .− ΦpB

p and Θ(B) = I + Θ1B + . . .+ ΘqB
q, where

I is the (m × m) identity matrix and Φ1,Φ2, . . .Φp and Θ1,Θ2, . . . ,Θq

are (m × m) matrices of parameters. If Zt denotes multivariate white
noise, then the observed m-vector of random variables, Xt, is said to
follow a vector ARMA (or VARMA) model of order (p, q). Note that (5.3.1)
reduces to the familiar univariate ARMA model when m = 1. We restrict
attention to stationary multivariate processes, and hence, without loss of
generality, we may assume the variables have been scaled to have zero
mean. The condition for stationarity is that the roots of the equation:
determinant{Φ(x)} = |I−Φ1x−Φ2x

2 − . . .−Φpx
p| = 0, should lie outside

the unit circle. Note that this condition reduces to the familiar condition
for stationarity in the univariate case when m = 1.

There is a corresponding condition for invertibility, namely that the roots
of the equation: determinant{Θ(x)} = |I + Θ1x+ Θ2x

2 + . . .+ Θqx
q| = 0,

should lie outside the unit circle. This condition also reduces to the
corresponding univariate condition when m = 1.

One problem with VARMA models is that there may be different, but
equivalent (or exchangeable), ways of writing what is effectively the same
model (meaning that its correlation structure is unchanged). There are
various ways of imposing constraints on the parameters involved in (5.3.1)
to ensure that a model has the property of being identifiable, meaning that
we can uniquely determine the order of the model (i.e. the values of p and q)
and the matrices of coefficients (i.e. Φ1, . . . ,Φp and Θ1, . . . ,Θq), given the
correlation matrix function of the process. However, the conditions required
for uniqueness of representation are complicated and will not be given here.

The definition of a VARMA model involves matrix polynomials, which
may look rather strange at first. However, they can readily be clarified
with examples. For simplicity, we begin by considering vector autoregressive
processes.

5.3.3 VAR models

Vector autoregressive models (usually abbreviated as VAR models) arise
when there are no moving average terms in (5.3.1) so that Θ(B) = I
and q = 0. As in the univariate case, many people find AR processes
intuitively more straightforward to understand than MA processes, and,
in the multivariate case, they are certainly much easier to handle. The
class of models is best illustrated with an example.

Example 5.2. A bivariate VAR(1) model. Suppose two time series, X1t and
X2t, have been observed where each variable is thought to depend linearly
on the values of both variables in the previous time period. Then a suitable
model for the two time series could consist of the following two equations:

X1t = φ11X1,t−1 + φ12X2,t−1 + Z1t (5.3.2)
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X2t = φ21X1,t−1 + φ22X2,t−1 + Z2t (5.3.3)

where {φij} are constants and the innovations Z1t and Z2t constitute
bivariate white noise. This means that the innovations have zero mean, and
are uncorrelated through time (both within and between series), though it
is possible that values of Z1t and Z2t could be correlated at the same time
point. The model can be rewritten in matrix form as

Xt = Φ1Xt−1 + Zt (5.3.4)

where ZT
t = (Z1t, Z2t) and

Φ1 =
[
φ11 φ12

φ21 φ22

]

Since Xt depends on Xt−1, it is natural to call it a vector autoregressive
model of order 1, abbreviated VAR(1). Equation (5.3.4) can be further
rewritten as

(I − Φ1B)Xt = Zt (5.3.5)

where B denotes the backward shift operator, I is the (2 × 2) identity

matrix, and Φ1B represents the operator matrix
[
φ11B φ12B
φ21B φ22B

]
. Then

Φ(B) = (I − Φ1B) is a matrix polynomial of order one in B when written
in the general form of a VARMA model as in (5.3.1). �

More generally a VAR model of order p, abbreviated VAR(p), can be
written in the form

Φ(B)Xt = Zt (5.3.6)

where Xt is an (m×1) vector of observed variables, Zt denotes multivariate
white noise, and Φ is a matrix polynomial of order p in the backward shift
operator B.

Looking back at Example 5.2, we notice that if φ12 is zero in (5.3.2), then
X1t does not depend on lagged values of X2t. This means that, while X2t

depends on X1t, there is no feedback from X2t to X1t. Put another way,
this means any causality goes in one direction only, namely from X1t to
X2t.

5 Thus, in this case, the two equations constitute an open-loop transfer
function model as defined in Section 5.2.2 (see also Reinsel, 1997, Example
2.4). The second of the two equations in the VAR-form of the model, namely
(5.3.3), corresponds to (5.2.9) on realizing that the second component of
Xt, namely X2t, is now the output, Yt, in (5.2.9), with δ(B) = (1−φ22B),
d = 1 and ω(B) = φ21. The first of the two equations in the VAR-form of
model, namely (5.3.2), corresponds to a univariate ARMA model for the
input X1t as in (5.2.16) with φx(B) = (1−φ11B) and θx(B) equal to unity.
Thus, in this case, Z1t follows an AR(1) process.

More generally, if a set of m variables, which follow a VAR(1) model,

5 In economic jargon, we say there is no Granger-causality from X2t to X1t – see
Lütkepohl, 1993, Section 2.3.1.
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can be ordered in such a way that Φ1 is lower triangular (meaning that all
coefficients above the diagonal are zero), then the model in (5.3.4) becomes
a series of unidirectional transfer function equations, each involving one
more variable than the previous equation, with the last variable, Xmt, being
the final output. More generally again, if m variables follow a VAR(p) or
VARMA(p, q) model, then there is unidirectional causality if the {Φi} and
{Θi} matrices can be arranged so that they are all lower triangular.

Notice that the ordering of the variables in the above discussion is
somewhat arbitrary. In particular, if φ21 in (5.3.3) is zero, rather than
φ12 in (5.3.2), then we get a transfer-function model in which the variable
X1t becomes the output while X2t becomes the input. In this case the
coefficient matrices become upper (rather than lower) triangular.

In contrast to the open-loop situation, a closed-loop system has ‘outputs’
which feed back to affect the ‘inputs’, and then the {Φi} matrices will not
be triangular. Then we have a set of mutually dependent variables for which
the general VAR model may well be appropriate.

The definition of a VAR model in (5.3.6) does not attempt to account
for features such as trend and seasonality. Some authors add appropriate
deterministic terms to the right-hand side of the equation to account for
a constant term, for trend and for seasonality. For example, seasonality
can be handled by using seasonal dummy variables. Other people prefer
alternative approaches. For example, the data could be deseasonalized
before modelling the data, especially if the aim is to produce seasonally
adjusted figures and forecasts. Another way of treating seasonality is to
incorporate it into the VAR model by allowing the maximum lag length to
equal the length of the seasonal cycle, but this may increase the number
of model parameters to an uncomfortable level. Differencing may also be
employed, with seasonal differencing used to remove seasonality and first
differencing used to remove trend. However, the use of differencing is also
not without problems, particularly if cointegration is present (see Section
5.4).

5.3.4 VMA, VARIMA and VARMAX models

Vector moving average (VMA) models arise when Φ(B) = I and p = 0
in (5.3.1). It is rather unusual to use VMA models in practice, but they
have some theoretical interest arising from the multivariate generalization
of Wold’s theorem which effectively says that any purely nondeterministic
process can be represented as a VMA process of infinite order. A VARMA
process can then be seen as a rational approximation to this infinite VMA.

Various further generalizations of VARMA models can readily be made.
If Φ(B) includes a factor of the form I(1−B), then the model acts on the
first differences of the components of Xt. By analogy with the acronym
ARIMA, such a model is called a vector ARIMA or VARIMA model.
However, it should be emphasized that different series may require different
orders of differencing in order to make them stationary and so it may not be
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appropriate in practice to difference each component of Xt in the same way.
Thus differencing is not, in general, a satisfactory way of fitting VAR models
to non-stationary data. Section 5.4 considers an alternative approach, based
on the possible presence of a phenomenon called cointegration, which needs
to be considered before differencing multivariate data.

VARMA models can be further generalized by adding terms involving
additional exogenous variables to the right-hand side of (5.3.1) and such
a model is sometimes abbreviated as a VARMAX model (X stands for
eXogenous). Further details are given by Reinsel (1997, Chapter 8).
A specialist reference on the aggregation of VARMA models is Lütkepohl
(1987).

5.3.5 Fitting VAR and VARMA models

There are various approaches to the identification of VARMA models,
which involve assessing the orders p and q, estimating the parameter
matrices in (5.3.1) and estimating the variance-covariance matrix of the
‘noise’ components. A variety of software has become available and this
section does not attempt to give details of all these methods. Rather the
reader is referred to Priestley (1981) for an introduction, to Watson (1994)
for a brief review, and to Lütkepohl (1993) for a thorough treatment.
Reinsel (1997) covers material similar to the latter book but in a somewhat
terser style. It is interesting to note that, although VARMA models are a
natural generalization of univariate ARMA models, they are not covered
by Box et al. (1994).

The identification of VAR and VARMA models is inevitably a difficult
and complicated process because of the large number of model parameters
which may need to be estimated. The number of parameters increases
quadratically with m and can become uncomfortably large when a
VARMA(p, q) model has p or q larger than two, even with only two or three
variables. This suggests that some constraints need to be placed on the
model and restricted VAR modelling is the term used when some coefficients
are set equal to zero. This may be done using external knowledge, perhaps
allied with a preliminary data analysis, to identify coefficients which can, a
priori, be taken to be zero. The zeroes often arise in blocks, and a matrix,
where most of the parameters are zero, is called a sparse matrix. However,
even with such restrictions, VARMA models are still quite difficult to
fit, even with only two or three explanatory variables, and most analysts
restrict attention to vector AR (VAR) models as a, hopefully adequate,
approximation to VARMA models. Even then, there is still a danger of
over-fitting and VAR models do not appear to provide as parsimonious an
approximation to real-life multivariate data as AR models do for univariate
data. Thus many analysts restrict attention even further to low-order VAR
models.

The latter suggestion lies behind a technique called Bayesian vector
autoregression (abbreviated BVAR) which is increasingly used to fit
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VAR models. The approach can be used whether or not the analyst
is a Bayesian. The technique essentially aims to prevent over-fitting by
shrinking parameters higher than first order towards zero. The usual prior
that is used for the parameters, called the Minnesota prior, has mean
values which are consistent a priori with every series being a random walk.
Other priors have also been tried (e.g. Kadiyala and Karlsson, 1993). A
tutorial paper showing how to select an appropriate BVAR model is given
by Spencer (1993).

One important tool in VARMA model identification is the correlation
matrix function (see Section 5.1.3). The diagonal elements of the cross-
correlation matrices at different lags are, of course, all unity and therefore
contain no information about the process. It is the off-diagonal elements
which are the cross-correlation coefficients and which, in theory at least,
should be helpful in model identification. In practice, we have already seen
in Section 5.2.2 that the cross-correlation function of two time series can be
very difficult to interpret, because, as previously noted, the standard error
of a cross-correlation is affected by the possible presence of autocorrelation
within the individual series and by the possible presence of feedback
between the series. Indeed the author readily admits that he has typically
found it difficult to utilize cross-correlation (and cross-spectral) estimates
in model identification. The analysis of three or more series is in theory a
natural extension of bivariate data analysis, but in practice can be much
more difficult and is best attempted by analysts with substantial experience
in univariate and bivariate ARIMA model building.

In transfer function modelling (see Section 5.2.2), the problems with
interpreting cross-correlations were (partially) overcome by prewhitening
the input before computing the cross-correlations so as to estimate
the impulse response function. As regards VARMA model building, an
unresolved general question is the extent to which the component series
should be filtered or prewhitened before looking at cross-correlations.
Another unresolved question is whether and when it is better to difference
data before trying to fit VAR or VARMA models. There is conflicting
evidence on this point, some of which can be found in a special issue of
the Journal of Forecasting (1995, No. 3) which is entirely devoted to VAR
modelling and forecasting and gives many more references on this and other
aspects of VAR modelling. Research on fitting VAR and VARMA models
is ongoing.

5.3.6 Forecasting with VAR, VARMA and VARIMA models

Minimum mean square error (MMSE) forecasts can readily be computed for
VAR, VARMA and VARIMA models by a natural extension of methods
employed for univariate and transfer function models (see especially the
rules in Section 5.2.2 for computing forecasts for transfer function models).
Generally speaking, future values of the white noise are replaced with
zeroes while future values of Xt are replaced with MMSE forecasts. Present
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and past values of Xt and of Zt are replaced by the observed values and
the (one-step-ahead forecast) residuals, respectively. The procedure is best
illustrated by examples.

Example 5.3. Forecasting a VAR(1) model. For simplicity, suppose m = 2
and that XT

t = (X1t, X2t) follows a VAR(1) process which may be written

Xt = Φ1Xt−1 + Zt

where Φ1 is a 2 × 2 matrix. Given data up to time N , find the (h-steps-
ahead) forecast of XN+h, for h = 1, 2, . . .

Using the model equation, the best one-step-ahead forecast is given by
X̂N (1) = Φ1XN , as the best forecast of ZN+1 is zero. In order to forecast
two steps ahead, the model equation suggests using X̂N (2) = Φ1XN+1.
However, since XN+1 is unknown at time N , it is replaced by its forecast,
giving X̂N (2) = Φ1X̂N (1) = Φ2

1XN , where Φ2
1 = Φ1Φ1 is, of course,

a 2 × 2 matrix found by matrix multiplication. More generally, we find
X̂N (h) = Φh

1XN , and the reader will recognize that this has the same
form as the forecast for a univariate AR(1) model except that scalar
multiplication changes to a series of matrix multiplications. �

Example 5.4. Forecasting a VARMA(1, 1) model. Suppose we have data up
to time N for a VARMA(1, 1) model, which may be denoted by

Xt = Φ1Xt−1 + Zt + Θ1Zt−1

Then applying the procedure described above, the MMSE forecasts at time
N are given by

X̂N (1) = Φ1XN + Θ1ZN

and
X̂N (h) = Φh−1

1 X̂N (1)
for h = 2, 3, . . .

Of course, these formulae assume complete knowledge of the model,
including the values of the model parameters, and also assume that the
white noise series is known exactly. In practice, the model parameters
have to be estimated and the white noise process has to be inferred
from the forecast errors (the residuals). For models like a VARMA(1, 1)
model, that involve an MA term, it is necessary to generate the entire
white noise sequence from the beginning of the series in order to get the
latest value of ẐN . This is done recursively using all the past data values
together with appropriate starting values for the initial values of Zt, namely
Z1,Z0,Z−1, . . .). The latter are sometimes set to zero, or can themselves be
estimated by backcasting, wherein the series is ‘turned round’ and estimated
values of the white noise before the start of the series are ‘forecast’ in a
backward direction. Details will not be given here. �

Example 5.5. Forecasting with a VARIMA(0, 1, 1) model. By analogy with
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the notation in the univariate case, a VARIMA(0, 1, 1) model is a model
which, when differenced once, gives a VARMA(0, 1) model, which is, of
course, a VMA model of order 1. This may be written in the form

(I −B)Xt = Zt + Θ1Zt−1

The reader may note that this is the multivariate generalization of the
ARIMA(0, 1, 1) model for which exponential smoothing is optimal, and is
therefore sometimes called the vector exponential smoothing model. The
model may be rewritten in the form

Xt = Xt−1 + Zt + Θ1Zt−1

Given data up to time N , we may derive MMSE forecasts by applying the
general procedure described above. We find

X̂N (1) = XN + Θ1ZN (5.3.7)

and
X̂N (h) = X̂N (h− 1) = X̂N (1)

for h > 1.
Equation (5.3.7) is the multivariate error-correction prediction formula

for multivariate exponential smoothing corresponding to (4.3.3) for simple
exponential smoothing – see Section 4.3.1. Equation (5.3.7) can also be
rewritten as

X̂N (1) = (I + Θ1)XN − Θ1X̂N−1(1)

which corresponds to the recurrence form of exponential smoothing –
Equation (4.3.2). �

Empirical evidence. Having seen how to find forecast formulae for VAR,
VARMA and VARIMA models, the really important question is whether
good forecasts result, meaning more accurate forecasts than alternative
methods. The empirical evidence is reviewed in Section 6.4.2, where we find,
as ever, that results are mixed. VAR models, for example, sometimes work
well, but sometimes do not. The reader should note in particular that some
studies give an unfair advantage to more complicated multivariate models,
by assuming knowledge of future values of explanatory variables, so that
forecasts are not made on an out-of-sample basis. The main motivation for
VAR modelling often lies in trying to get a better understanding of a given
system, rather than in trying to get better forecasts.

5.4 Cointegration

Modelling multivariate time series data is complicated by the presence of
non-stationarity, particularly with economic data. One possible approach
is to difference each series until it is stationary and then fit a vector
ARMA model, thus effectively fitting a VARIMA model. However, this
does not always lead to satisfactory results, particularly if different degrees
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of differencing are appropriate for different series or if the structure
of the trend is of intrinsic interest in itself, particularly in regard to
assessing whether the trend is deterministic or stochastic. An alternative
promising approach, much used in econometrics, is to look for what is called
cointegration.

As a simple example, we might find that X1t and X2t are both non-
stationary but that a particular linear combination of the two variables,
say (X1t − kX2t) is stationary. Then the two variables are said to be
cointegrated. If we now build a model for these two variables, the constraint
implied by the stationary linear combination (X1t − kX2t) needs to be
incorporated into the model and the resulting forecasts, and may enable
the analyst to avoid differencing the data before trying to fit a model.

A more general definition of cointegration is as follows. A (univariate)
series {Xt} is said to be integrated of order d, written I(d), if it needs to
be differenced d times to make it stationary. If two series {X1t} and {X2t}
are both I(d), then any linear combination of the two series will usually be
I(d) as well. However, if a linear combination exists for which the order of
integration is less than d, say I(d − b), then the two series are said to be
cointegrated of order (d, b), written CI(d, b). If this linear combination can
be written in the form αT Xt, where XT

t = (X1t, X2t), then the vector α
is called a cointegrating vector. If α is a cointegrating vector, then so is 2α
and −α, and so the size and sign of α is arbitrary. It is conventional to set
the first element of α to be unity.

For the example given earlier in this section, where (X1t − kX2t) is
stationary, suppose that X1t and X2t are both I(1). Then d = b = 1,
Xt is CI(1, 1), and a cointegrating vector is αT = (1,−k).

In a non-stationary vector ARIMA model, there is nothing to constrain
the individual series to ‘move together’ in some sense, yet the laws of
economics suggest that there are bound to be long-run equilibrium forces
which will prevent some economic series from drifting too far apart. This
is where the notion of cointegration comes in. The constraint(s) implied by
cointegration imply long-run relationships that enable the analyst to fit a
more realistic multivariate model.

Error-correction models. A class of models with direct links to cointegration
are the error-correction models (ECMs) of economists. Suppose, for
example, that two variables, X1t and X2t, which are both non-
stationary, are thought to have an equilibrium relationship of the form
(X1t − kX2t) = 0. Then it is reasonable to suppose that any changes in
the variables could depend on departures from this equilibrium. We can
therefore write down a plausible model in the form

∇X1t = (X1t −X1,(t−1)) = c1(X1,(t−1) − kX2,(t−1)) + ε1t

∇X2t = (X2t −X2,(t−1)) = c2(X1,(t−1) − kX2,(t−1)) + ε2t

where c1, c2 are constants. Clearly we can rewrite these two equations
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to express X1t and X2t in terms of the values at time (t − 1), namely
X1,(t−1) and X2,(t−1). The resulting model is a VAR(1) model which is
non-stationary but for which a cointegrating relationship exists, namely
(X1t − kX2t) = 0.

Early work on cointegration was often carried out within a regression-
model format. After fitting a regression model to non-stationary series,
the residuals were tested for stationarity. If the residuals were found to be
stationary, then the linear relationship determined by the fitted regression
model could be regarded as a cointegrating relationship. Nowadays tests
for cointegration are usually carried out within a VAR-model framework
using the above ECM form which also enables us to explore and estimate
cointegrated models more efficiently.

Suppose, for example, that the m-vector Xt follows a VAR(2) model

Xt = Φ1Xt−1 + Φ2Xt−2 + Zt (5.4.1)

where Φ1 and Φ2 are (m × m) matrices such that the process is non-
stationary, and Zt denotes an (m × 1) multivariate white-noise vector.
This may be rewritten in the form

Φ(B)Xt = Zt (5.4.2)

where Φ(B) = I − Φ1B − Φ2B
2 is a matrix polynomial of order two

in the backward shift operator B and I denotes the (m × m) identity
matrix. If some components of Xt are non-stationary, then it follows
that the equation: determinant{Φ(x)} = |Φ(x)| = 0 has one or more
roots on the unit circle, when x = 1. Now, when x = 1, Φ(x) becomes
Φ(1) = (I −Φ1 −Φ2) = C say, where C is an (m×m) matrix of constants.
(Note: Do not confuse Φ(1) with Φ1.) Thus, if the process is non-stationary,
the determinant of C must be zero, which in turn means that C is not of
full rank. We denote the rank of C by r where the values of interest are
0 < r < m. (If r = m, then C is of full rank and Xt is stationary. If r = 0,
C reduces to the null matrix which is of no interest here as it means that
there are no cointegrating relationships, but rather a VAR(1) model could
be fitted to the series of first differences, namely ∇Xt.) We see below that
the rank of C is crucial in understanding cointegrating relationships.

The VAR(2) process given in (5.4.1) was defined to be non-stationary,
and this normally makes it difficult to identify and estimate the model
directly. Thus it may seem natural to take first differences of every
term in the equation. However, that would induce non-invertibility in the
innovation process. Instead we simply subtract Xt−1 from both sides of
the equation to give

∇Xt = Xt − Xt−1 = (Φ1 − I)Xt−1 + Φ2Xt−2 + Zt (5.4.3)

The right-hand side of this equation can be rewritten in two different ways
to incorporate ∇Xt−1, namely

∇Xt = −Φ2∇Xt−1 − CXt−1 + Zt (5.4.4)
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and

∇Xt = (Φ1 − I)∇Xt−1 − CXt−2 + Zt (5.4.5)

Notice that the coefficient of Xt−1 in (5.4.4) and the coefficient of Xt−2

in (5.4.5) are both equal to C = (I − Φ1 − Φ2) as defined earlier in this
section. Both these equations are of ECM form. If the first differences are
stationary, and the innovations are stationary, then it follows that CXt−1

or CXt−2 will also be stationary and this explains why the matrix C is
the key to determining any cointegrating relationships that exist. When C
has rank r, it turns out that there are r cointegrating relationships and, by
writing C as a product of matrices of order (m× r) and (r×m) which are
both of full rank r, it can be shown that the latter is the matrix consisting
of the r cointegrating vectors. It turns out that it is usually easier to test for
the order of cointegration, to estimate the resulting model parameters and
to enforce the resulting cointegration constraints by employing an ECM
model form such as that in (5.4.4) or (5.4.5).

There is a rapidly growing literature concerned with these procedures,
such as Johansen’s test for the order of cointegration (i.e. the number
of cointegrating relationships). There is also guidance on what to do if
a cointegrating relationship is suspected a priori, namely to form the series
generated by the cointegrating relationship and then test this series for the
presence of a unit root. If cointegration exists, the generated series will be
stationary and the null hypothesis of a unit root will hopefully be rejected.
Further details on cointegration are given, for example, by Banerjee et
al. (1993), Dhrymes (1997), Engle and Granger (1991), Hamilton (1994,
Chapters 19, 20), Johansen (1996) and Lütkepohl, 1993, Chapter 11).
An amusing non-technical introduction to the concept of cointegration is
given by Murray (1994). Note that another class of models which exhibit
cointegration, called common trend models, will be introduced in Section
5.6.

Despite all the above activity, the literature has hitherto paid little
explicit attention to forecasting in the presence of cointegration. Clements
and Hendry (1998a, Chapter 6) and Lütkepohl (1993, Section 11.3.1)
are exceptions. A key question is whether one wants to forecast the
individual variables (the usual case) or a linear combination of variables
that makes the system cointegrated. The individual variables will typically
be non-stationary and will therefore generally have prediction intervals
that get wider and wider as the forecasting horizon increases. In contrast
a stationary linear combination of variables will generally have finite
prediction intervals as the horizon increases. Lütkepohl (1993) shows that
the minimum MSE forecast for the individual variables in a cointegrated
VAR process is given by a conditional expectation of the same form as in the
stationary case. Lütkepohl (1993) also demonstrates that, in cointegrated
systems, the MSE of the h-step-ahead forecast error will be unbounded
for some variables but could approach an upper bound for other variables,
even though they may be non-stationary. Clements and Hendry (1998a)
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are particularly concerned with evaluating forecasts when the model may
possibly be misspecified.

I have not seen much empirical evidence on forecasts from cointegrated
models. In theory, the presence of cointegrating relationships should help
to improve forecasts particularly at longer lead times. However, although
this is true for simulated data, improved forecasts do not necessarily result
for real data (Lin and Tsay, 1996). Christoffersen and Diebold (1998) found
that cointegrated models gave more accurate forecasts at short horizons but
(surprisingly?) not for longer horizons. This may be because the standard
measures of forecast accuracy fail to value the maintenance of cointegrating
relationships among variables. The results in Kulendran and King (1997)
appear to suggest that ECMs do not always lead to improved forecasts at
short horizons, but the models that they call ECMs do not appear to include
any cointegrating relationships but rather restrict attention to models for
first differences.

I recommend that cointegration should always be considered when
attempting to model and understand multivariate economic data, although
there is, as yet, little evidence on whether the use of cointegration will lead
to improved out-of-sample forecasts.

5.5 Econometric models

The term econometric model has no consistent usage but in this section is
used to describe the large-scale models built by econometricians to reflect
known theory about the behaviour of the economy and the relationships
between economic variables. Given that economic data are influenced by
policy decisions which involve ‘feedback’ from output variables to those
input variables that can be controlled, it is clear that a single-equation
model will be inadequate. Thus a sensible model for economic data should
comprise more than one equation, and will typically contain tens, or even
hundreds, of simultaneous equations.

There are some similarities with VAR models, which also comprise more
than one equation, but there may also be fundamental differences, not
only in the number of equations (econometric models are typically much
‘larger’) but also in the structure of the model and in the way that they are
constructed. In econometric modelling, the variables are typically divided
into endogenous and exogenous variables (see Section 5.3) where the latter
may affect the system but are not affected by it. There is one equation for
each endogenous variable. Econometric models allow exogenous variables to
be included and so are more akin to VARMAX models (see Section 5.3.4).
Econometric models also allow contemporaneous measurements on both
the endogenous and exogenous variables to be included on the right-hand
side of the equations.

As a simple example, suppose there are just two endogenous variables,
say Y1,t and Y2,t, and one exogenous variable, say xt. Then we need
two simultaneous equations to describe the system. A general way of
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representing the system will include both current and lagged values of the
endogenous and exogenous variables and may be written as

Y1,t = aY2,t + f1(lagged values of Y1,t and Y2,t)
+bxt + g1(lagged values of xt) + u1,t (5.5.1)

Y2,t = cY1,t + f2(lagged values of Y1,t and Y2,t)
+dxt + g2(lagged values of xt) + u2,t (5.5.2)

where a, b, c, d are constants (some of which could be zero), f1, f2, g1, g2
are assumed to be linear functions and u1,t, u2,t are error terms which are
often assumed to be uncorrelated, both individually through time and with
each other. This pair of equations is sometimes called the structural form
of the model. If terms involving the current values of Y1,t and Y2,t are
taken over to the left-hand side, and the pair of equations are written in
matrix form, then the left-hand side of (5.5.1) and (5.5.2) may be written

as
(

1 −a
−c 1

) (
Y1,t

Y2,t

)
or ΓY t say, where Γ is the requisite (2 × 2)

matrix and Y T
t = (Y1,t, Y2,t). If we now multiply through the matrix form

of the structural model equation on the left by the inverse of Γ, then we
obtain what is called the reduced form of the model in which the left-hand
side of each equation is a single endogenous variable, while the right-hand
side of the equations do NOT involve current values of the endogenous
variables. The reduced form of the model is often easier to handle for the
purpose of making forecasts. The variables on the right-hand side of the
equations are now what economists call the predetermined variables, in that
they are determined outside the model. However, the term is something of
a misnomer in that current values of exogenous variables may be included,
and the value for time (N+1) may not be known at time N when a forecast
is to be made. Partly for this reason, econometric models are often used
for making ex-post forecasts, rather than ex-ante forecasts.

Three other differences from VAR models should be noted. First, there
is no obvious reason why an econometric model should be restricted to
a linear form (as in the mathematical discussion above), and non-linear
relationships are often incorporated, especially in regard to the exogenous
variables. Secondly, econometric modelling typically gives less attention
to identifying the ‘error’ structure than statistical modelling, and may
make assumptions that are overly simplistic. Thirdly, and perhaps most
importantly, econometric models are generally constructed using economic
theory rather than being identified from data.

Following up this last point, the contrasting skills and viewpoints
of econometricians and statisticians were briefly mentioned earlier
in comments on modelling in Section 3.5 and elsewhere. While
econometricians tend to rely on economic theory, statisticians tend to
rely on the data. As is usually the case in such situations, a balanced
middle way, which utilizes the complementary nature of the skills used by
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both groups, may well be ‘best’. It is certainly true that models based on
economic theory need to be validated with real data. On the other hand, a
statistical data-based approach will not get very far by itself without some
economic guidelines for two reasons. First, an unrestricted analysis will
find it difficult to select a sensible model from a virtually infinite number
of choices, given that an economy may have a complex, non-linear structure
which may be changing through time. Second, the nature of economic data
makes it difficult to use for making inferences. Data sets are often quite
small and will have other drawbacks, such as being collected while policy
decisions are unclear or changing through time. Klein (1988) discusses the
non-experimental nature of economics and the (lack of) precision in much
economic data. In a time-series text, it is not appropriate to say more
about this topic, except to say that econometric modelling is an iterative
procedure which should normally involve both theory and data. Some
further comments may be found in Granger and Newbold (1986, Section
6.3).

By including relevant policy variables, econometric models may be used
to evaluate alternative economic strategies, and improve understanding
of the system (the economy). These objectives are outside the scope of
this book. Rather we are concerned with whether econometric models
can also be used to produce forecasts. Although forecasting may not be
the prime objective of econometric modelling, it does occur but in a
rather different way to other forms of time-series forecasting. It is often
necessary to use future values of exogenous variables, which can be done
by forecasting them, by using the true values or by making assumptions
about possible future scenarios. Thus forecasts may be either of the ‘What-
if’ or of the ex-post variety, rather than being ex-ante or genuine out-of-
sample. Moreover, despite their complexity, econometric forecasts are often
judgmentally adjusted. For example, Clements and Hendry (1996, p. 101)
say that econometric “forecasts usually represent a compromise between the
model’s output and the intuition and experience of the modeller”. Even so,
there is not much evidence that econometric models provide better forecasts
than alternative time-series approaches – see Chapter 6. It is particularly
galling to economists that univariate time-series models, which neither
explain what is going on nor give any economic insight, may give better
out-of-sample forecasts than econometric models. This may be because
univariate models are more robust to structural breaks – see Section 8.6.3.
Thus, despite their importance to economists, it seems that econometric
models are often of limited value to forecasters.

5.6 Other approaches

Multivariate state-space (or structural) models have also been investigated
(Harvey, 1989, especially Chapters 7 and 8). By analogy with Section
5.2, we can generalize the single-equation state-space model introduced
in Section 3.2 by adding explanatory variables to the right-hand side of the
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equation. For example, the observation equation of the linear growth model
may be generalized by adding a linear term in an explanatory variable. In
keeping with the notation in this chapter, we denote the response variable
by Yt and the explanatory variable by xt, but we denote the regression
coefficient by ν, rather than β, to avoid confusion with the notation for the
growth rate, βt, which is the change in the current level, µt, at time t. The
observation equation can then be written as

Yt = µt + νxt + nt (5.6.1)

where {nt} denotes the observation errors which are usually assumed to be
white noise. The two transition equations for updating the level, µt, and
the growth rate, βt, can be written in the same form as in the linear growth
model, namely

µt = µt−1 + βt−1 + w1,t

βt = βt−1 + w2,t

where {w1,t} and {w2,t} denote white noise processes, independent of {nt},
as in Section 3.2. Some advantages of trying to express regression-type
terms within the context of a state-space model is that the model can
be handled using state-space methods, there is no need to difference the
variables to make them stationary before commencing the analysis, and
there is no need to assume that all model parameters are unchanging
through time. While inference about the ‘regression’ parameter ν may be
of prime concern, the model does allow the analyst to estimate local values
of the level and trend in an adaptive way which does not force the analyst
to make inappropriate assumptions. Using a regression model, it is more
usual to impose a deterministic time trend which could, of course, give
misleading results if an alternative model for the trend is appropriate.

By analogy with Section 5.3, we can further generalize the single-equation
state-space models to the case where there is more than one ‘response’
variable and so more than one observation equation. In keeping with the
notation in this chapter, we denote the (m×1) vector of observed variables
by Xt. We could, for example, generalize the random walk plus noise model
of Section 2.5.5 by considering the model

Xt = µt + nt (5.6.2)

where
µt = µt−1 + wt (5.6.3)

denotes the current mean level at time t, and nt and wt denote vectors
of disturbances of appropriate length. It is usually assumed that all the
components of nt are uncorrelated with all components of wt, but that
the components of nt (and perhaps of wt) may be correlated. The model
implies that the observed series are not causally related but, when applied
to economic data, allows for the possibility that the series are affected
by the same market conditions and so tend to move together because the
observation errors (the elements of nt) are correlated. The set of equations
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constituting the above model are sometimes called a system of Seemingly
Unrelated Time Series Equations – abbreviated SUTSE.

A variation on the SUTSE model is to include a vector of common trends
which may affect all of the response variables. Then (5.6.2) is revised to
become

Xt = Θµt + µ∗
t + nt (5.6.4)

where Θ is a (m× r) matrix of constants, sometimes called factor loadings,
µt is the (r×1) vector of common trends which is updated as in (5.6.3), and
µ∗

t is an (m× 1) vector of constants for which the first r elements are zero.
The elements of µt may affect all the elements of Xt, whereas the non-zero
elements of µ∗

t only affect the corresponding element of Xt. Restrictions
need to be placed on the values of Θ and on the covariance matrix of wt

in order to make the model identifiable. Because of the common trends,
it turns out that the model is cointegrated. There are in fact (m − r)
cointegrating vectors.

A simple example may help to demonstrate this. Suppose m = 2, r = 1,
so that Θ is a (2 × 1) vector. In order to make the model identifiable, it is
convenient to set the first element of Θ to unity and write the model as

X1t = µt + 0 + n1t

X2t = θµt + µ̄+ n2t

µt = µt−1 + w1t

Thus we take ΘT = (1, θ) and µ∗T = (0, µ̄). As µt follows a random walk,
it is clearly non-stationary. As X1t and X2t both depend on µt, they will
also be non-stationary. However, if we use simple algebra to eliminate µt,
it can easily be shown that the linear combination

X2t − θX1t = µ̄− θn1t + n2t

is a stationary process. Thus X1t and X2t are cointegrated and, in the
notation of Section 5.4, we say that Xt is CI(1, 1) with cointegrating vector
given by αT = (−θ, 1). The latter can readily be rewritten into the more
conventional form, where the first element of α is unity, as αT = (1,−1/θ).

Multivariate Bayesian forecasting has been fully described by West
and Harrison (1997, especially Chapters 9 and 16). Models with a single
observation equation incorporating regression type terms can be handled
by a single-equation dynamic linear model (DLM), while the multivariate
DLM can be used to describe data with several response variables.

Intervention analysis aims to model the effect of one-off external events,
such as might arise due to the effect of a labour dispute on sales, or of a
change in the law on criminal statistics. A full account is given by Box et
al. (1994, Chapter 12). The basic idea is to suppose that an intervention is
known to occur in time period τ say, and to model its effect with a dummy
variable, It say, which could have one of several forms. For example, if the
intervention has an immediate effect for one time period only then we take
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It to be of the form

It =
{

1 t = τ
0 t �= τ

This is sometimes called a pulse function and can be recognized as a type
of indicator variable. Alternatively, if the intervention causes a permanent
shift in the response variable, then we take It to be of the form

It =
{

0 t < τ
1 t ≥ τ

This is a step change type of variable. Other forms of It are also possible.
A simple example of a model for a response variable, Yt, incorporating

an intervention term is the following linear regression model, which, for
simplicity, assumes no lag structure:

Yt = α+ βxt + γIt + εt

Here xt denotes an explanatory variable, α, β and γ are constants and
the intervention effect, It, is assumed to be of a known form such as one
of those given above. Thus the time the intervention occurs, namely τ , is
also a parameter of the model. The value of γ, as well as the values of α
and β, can readily be estimated, for example, by least squares or maximum
likelihood. Algebraically the indicator variable can be treated like any other
explanatory variable and intervention variables can be incorporated into
many other types of time-series model such as structural models (Harvey,
1989). The presence of an intervention is usually indicated by external
knowledge, perhaps supplemented, or even instigated, by seeing an outlier
or a step change or some other change in character in the observed time
series. It is customary to assume that the value of τ , the time when the
intervention occurs, is known from external knowledge, though it is possible
to estimate it if necessary.

The use of multivariate non-linear time-series models for forecasting is
still in its infancy and will not be discussed in detail here. Granger and
Teräsvirta (1993) and Teräsvirta et al. (1994) introduce various types of
multivariate non-linear model and discuss how they may be applied to
economic data. Tong (1990, p. 101) introduces two generalizations of the
threshold model to incorporate an observable input under either open-loop
or closed-loop conditions, and later (Tong, 1990, Section 7.4) presents some
examples on riverflow with precipitation and temperature as explanatory
variables. As another example of the many variants of a multivariate
nonlinear model which can be introduced, Niu (1996) proposes a class
of additive models for environmental time series where with a response
variable, Yt, and p explanatory variables x1t, x2t, . . . , xpt, the model for Yt
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is of the (nonlinear) generalized additive form6

Yt = f0(t) +
p∑

j=1

fj(xjt) + ξt

where f0(t) denotes seasonal pattern and/or trend, the fj(.)’s are arbitrary
univariate functions and the noise series {ξt} is described by an ARMA
process formed from a white noise process {Zt} whose variance is not
constant but depends exponentially on the explanatory variables in the
form

σ2
t = exp{

p∑
j=1

βjxjt}

Thus both the mean level and variance of the process are modelled as
nonlinear functions of relevant meteorological variables. The model has
been successfully applied to environmental data giving more accurate
estimates of the percentiles of the distribution of maximum ground-level
ozone concentration. The focus is on with-sample fit rather than out-of-
sample forecasting, but the scope for this, and many other classes of model,
to be used in forecasting appear promising.

5.7 Some relationships between models

Section 4.4 showed that there are some close relationships between the
many different linear models and forecasting methods in the univariate
case. Likewise, in the multivariate case, we have already indicated some
of the interrelationships that exist among the different classes of linear
multivariate models, and this inevitably leads to connections between the
resulting forecasts. This section briefly extends these ideas.

Consider, for example, a regression model, such as the leading indicator
model in (5.1.1), namely

Yt = a+ bXt−d + εt (5.7.1)

For a regression model, it is customary to assume that the error terms, εt,
are uncorrelated through time, even though this might be thought fairly
unlikely! The above model may be regarded as a transfer function model,
of the type given by (5.2.5), namely

Y ∗
t = ν0Xt + ν1Xt−1 + . . .+ nt = ν(B)Xt + nt

by setting Y ∗
t = Yt − a, νj = b when j = d and zero otherwise, and

nt = εt. Of course, if you really believe this model, there is not much point
in expressing it as a transfer function model, as the forecast formulae will
be identical. However, it does clarify the fact that a regression model is a
very special, and arguably unlikely, case of the more general model, and,

6 Note that Niu (1996) reverses the order of the subscripts so that Xti is the t-th
observation on xi.
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by fitting the more general transfer function model, the analyst can see if
the estimated impulse response function (the {ν̂i}) really does indicate a
model of the form (5.7.1).

A transfer function model can, in turn, be expressed as a special type of
VAR model by ensuring that the multivariate AR coefficient matrices are
of triangular form, so that there is no feedback. For the simple regression
model above, this can be achieved by something of a mathematical ‘fiddle’
in that one equation is a simple identity, namely Xt = Xt. Writing
Y ∗

t = Yt − a = bXt−d + εt, the corresponding VAR(d) model can be
expressed as (

Xt

Y ∗
t

)
=

(
1 0
b 0

)
Bd

(
Xt

Y ∗
t

)
+

(
0
εt

)

Clearly, there would generally be little point in expressing a regression
model in the above VAR form, where one equation is just an identity.
Thus the above example should be seen simply as a way of linking
the different types of model and demonstrating the crude nature of
regression time-series models, particularly in regard to the way that the
‘error’ terms are modelled. Allowing for autocorrelation between successive
observation errors for the same variable, and allowing contemporaneous
cross-correlations between the various observation errors for the different
observed variables, is very important for setting up an adequate
multivariate model.

A VAR model can, in turn, be expressed as a linear state space model
– see, for example, Lütkepohl (1993, Section 13.2), but this representation
will generally not be unique. A state space formulation could be helpful if
we wish to make use of the Kalman filter to estimate the current ‘state’ of
the system and make forecasts. However, the details will not be given here.

Earlier in the chapter, we noted the connection between error-correction
models, common trend models and cointegrated VAR models, which should
lead hopefully to a better understanding of the relationships that exist
among these particular multivariate time series models, which are not easy
to understand at first. More generally, the task of modelling relationships
through time and between a set of variables, can make multivariate time-
series modelling appear to be very complex. It is not for the faint-hearted,
and should only be attempted by analysts with experience in analysing
univariate time-series data as well as multivariate data that are not of time-
series form. Indeed, in many situations there is much to be said for sticking
to simpler forecasting methods and the reader who chooses to avoid the
multivariate methods described in this chapter, will often find that little
has been lost in terms of forecasting accuracy.
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CHAPTER 6

A Comparative Assessment of
Forecasting Methods

This chapter makes a comparative assessment of the many different
methods and approaches which can be used to make forecasts. After a
brief introduction, Section 6.2 considers criteria for comparing alternative
forecasting methods, and Section 6.3 looks in particular at different ways
of measuring forecast accuracy. Section 6.4 describes the different types
of empirical study which have been carried out, including their general
advantages and disadvantages, and then summarizes the main findings of
empirical studies. Finally, Section 6.5 makes some suggestions on how to
choose an appropriate forecasting method for a particular situation. The
recommendations are based on research evidence up to the time of writing
and update and expand earlier reviews by the author (Chatfield, 1988a;
1996a, Section 5.4; 1997).

6.1 Introduction

Chapters 4 and 5 introduced a wide variety of forecasting methods. It seems
natural at this point to ask a question along the lines of:

“What is the best method of forecasting?”

This question, while superficially attractive, is in fact inadequately specified
and admits no simple answer. The response can only be that it depends on
what is meant by ‘best’. Thus a method which is appropriate for forecasting
one particular series in one particular context may be completely
inappropriate for forecasting different data in a different context. A method
appropriate for a single series may not be suitable for use with a large
collection of series, especially when they have heterogeneous properties. A
method used successfully by one analyst may be inappropriate for another
forecaster, perhaps because he/she does not have the requisite knowledge
or the necessary computer software.

When choosing a forecasting method, the reader is reminded (Section 1.2)
that the first step in any forecasting exercise is to formulate the problem
carefully by asking questions to clarify the context. As part of this exercise,
the analyst will try to assess what is meant by ‘best’ when choosing a
forecasting method. The next section therefore looks at the various criteria
which need to be considered when choosing a forecasting method.
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6.2 Criteria for choosing a forecasting method

The factors which need to be considered when choosing a forecasting
method include the following:
(a) Forecast accuracy
(b) Cost
(c) Expertise of the analyst
(d) Availability of computer software
(e) The properties of the series being forecasted
(f) The way the forecast will be used
(g) Any other relevant contextual features
Much of the literature assumes (often implicitly) that ‘best’ means
achieving the most accurate forecasts over the required time span, while
ignoring other factors. This is unfortunate because accuracy is not always
the overriding factor. A simple procedure, which is only marginally less
accurate than a much more complicated one, will generally be preferred
in practice. In any case, it is not always clear how accuracy should
be measured and different measures of accuracy may yield different
recommendations. However, forecast accuracy is a criterion which can be
considered from a general statistical viewpoint and is the most obviously
compelling to a statistician. Thus it is the only one considered in detail in
this chapter – see Section 6.3. The other criteria, while important, are too
context-dependent to say much about from a general methodological point
of view.

6.3 Measuring forecast accuracy

As indicated above, we limit consideration of the ‘best’ forecasting method
to mean the ‘most accurate’. However, we still have the problem of deciding
what is meant by ‘most accurate’. This section discusses ways of measuring
forecast accuracy, and hence of comparing forecasting results given by
several different methods on the same data.

We have seen that the evaluation of forecasts is an important part of
any forecasting exercise. Section 3.5.3 discussed various ways of checking
the forecasts that arise from a single method, such as looking at the
forecast bias (if any) and computing the residual autocorrelations (which
should preferably be ‘small’). Some of the ideas from these diagnostic
checks, and from the related activity of forecast monitoring, are helpful
in the problem we consider here, namely comparing the relative accuracy
of several different forecasting methods on the same data. The diagnostic
checks typically look at the residuals, namely the within-sample one-step-
ahead forecast errors given by

et = xt − x̂t−1(1) (6.3.1)

as in Equation (3.5.1). The same formula is used to compute forecast errors
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made in out-of-sample mode, which we have seen is the preferred option.
Clearly we want to make these forecast errors as small as possible (whatever
that means) over the series as a whole.

Statisticians are used to measuring accuracy by computing mean square
error (MSE), or its square root conventionally abbreviated by RMSE (for
root mean square error). The latter is in the same units as the measured
variable and so is a better descriptive statistic. However, the former is more
amenable to theoretical analysis and that is where we begin.

When comparing forecasts from several different methods, the MSE form
of statistic that is customarily calculated is the prediction mean square
error (abbreviated PMSE), which is the average squared forecast error and
is usually computed in the form

PMSE =
N∑

t=N−m+1

e2t/m (6.3.2)

There are several aspects of (6.3.2) which deserve consideration. Firstly,
statisticians often use MSE to measure accuracy without giving this choice
much thought. In fact, the use of MSE implies an underlying quadratic loss
function (or equivalently a quadratic cost function) and this is the assumed
loss function for which the conditional mean is the ‘best’ forecast, meaning
that it is the minimum MSE forecast (see Section 4.1). The concept of a
loss function is a key component of forecasting but is often glossed over
without much thought. It was introduced in Section 4.1 and attempts to
quantify the loss (or cost) associated with forecast errors of various sizes
and signs. For example, if the forecast error doubles, is this twice as bad
(linear) or four times as bad (quadratic)? Is a positive error equally good
(or bad) as a negative error of the same size? In other words, is the loss
function symmetric? These and other questions need to be addressed in
the context of the given situation and may depend partly on subjective
judgement. Different users may on occasion prefer to choose different loss
functions for the same problem, and this could lead to different models and
different point forecasts.

Suppose, for example, that one analysts thinks the loss function is linear,
rather than quadratic. Then the preferred estimate of accuracy is given by
the Mean Absolute Error (abbreviated MAE), namely

MAE =
N∑

t=N−m+1

|et|/m (6.3.3)

Minimizing this measure of accuracy, rather than the MSE, will in general
lead to different parameter estimates and could even lead to a different
model structure.

Of course, if the modulus signs in (6.3.3) are omitted, then we have the
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mean error (abbreviated ME) given by

ME =
N∑

t=N−m+1

et/m (6.3.4)

which measures the overall forecast bias (if any), which is merely one
component of the accuracy or precision. Note that it may be worth checking
the bias for selected subsets of the data, as well as for all the data. For
example, with economic data, it is worth checking to see if there is a bias
of one sign during economic expansion and a bias of the opposite sign
during economic contraction.

A second feature of (6.3.2) is that the sum is over the last m observations.
When a comparative forecasting study is made, it is customary to split the
data into two parts. The model is fitted to the first part of the data, and
then forecasts are compared over the second part of the data, sometimes
called the test set. If forecasts are to be genuine out-of-sample forecasts,
as they should be, then this partitioning should be carefully carried out so
that the test set is not used in fitting the model. Thus the model is fitted
to the first (N − m) observations and the last m observations constitute
the test set.

A third feature of (6.3.2) is that all forecasts are one-step-ahead forecasts.
Now when a time-series model is fitted by least squares, this will normally
involve minimizing the sum of squared residuals, where the residuals are
the within-sample one-step-ahead forecast errors. When assessing forecasts,
it is best to look at out-of-sample forecast errors, and it is not immediately
obvious whether all forecasts should be made from the same time origin
at the end of the training set (and hence be at different lead times) or
whether all forecasts be made for the same lead time (and hence be made
from different time origins). Equation (6.3.2) effectively assumes that the
observations in the test set are made available one at a time as successive
forecasts are computed.

If forecasts are required h steps ahead, the question arises as to whether
(6.3.2) should be modified in an obvious way to incorporate h-step-ahead
forecasts and whether the model should be fitted by minimizing the within-
sample h-step-ahead errors. If the analyst really believes that the true
model has been found, then the answer to the last question is ‘No’. In
practice the analyst usually realizes that the fitted model is at best a good
approximation and then it is advisable to focus on h-step-ahead errors for
both fitting and forecasting if that is the horizon of interest (see Section
8.5).

The final feature of the PMSE statistic in (6.3.2), which needs
highlighting, is that it depends on the scale in which the variable is
measured. For example, if a series of temperatures are measured in degrees
Fahrenheit, rather than Centigrade, then the PMSE will increase even if
an identical forecasting procedure is used for both series. This means that,
although PMSE may be appropriate for assessing the results for a single
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time series, it should not be used to assess accuracy across (many) different
series, especially when the series have substantially different variances or
are measuring different things on different scales. Failure to appreciate this
point has resulted in misleading results being published (Chatfield, 1988b).

Various alternatives to MSE are available for assessing forecast accuracy
either for a single series, or for averaging across series as in the sort of
forecasting competition reviewed in Section 6.4. A good discussion is given
by Armstrong and Collopy (1992) and Fildes (1992) and in the commentary
which follows those papers. Clearly the measure of forecast accuracy should
match the loss function thought to be appropriate. The user should also be
clear whether the measure depends on the units in which the observations
have been taken. In particular, if two or more forecasting methods are to
be compared on more than one series, it is essential that any error measure,
used for assessing accuracy across series, should be scale-independent. As
noted above, this excludes the raw MSE.

There are several commonly used types of scale-independent statistic.
The first type essentially relies on pairwise comparisons. If method A and
method B, say, are tried on a number of different series, then it is possible
to count the number of series where method A gives better forecasts than
B (using any sensible measure of accuracy). Alternatively, each method can
be compared with a standard method, such as the random walk forecast
(where all forecasts equal the latest observation), and the number of times
each method outperforms the standard is counted. Then the percentage
number of times a method is better than a standard method can readily
be found. This statistic is usually called ‘Percent Better’.

Another type of scale-independent statistic involves percentage errors
rather than the raw errors. For example, the mean absolute prediction error
(MAPE) is given by

MAPE =
N∑

t=N−m+1

|et/xt|/m (6.3.5)

Statistics involving percentage errors only make sense for non-negative
variables having a meaningful zero. Fortunately, this covers most variables
measured in practice.

The so-called Theil coefficients, named after Henri Theil, are also scale-
independent. There are (at least) two different Theil coefficients, which are
often labelled as U1 and U2. For both coefficients, a value of zero indicates
perfect forecasts. However, whereas U1 is constrained to the interval (0,1),
with values near unity indicating poor forecasts, the value of U2 may
exceed unity, and equals unity when it is no better or worse than the
‘no-change’ forecast. For this and other reasons, the coefficients are not
easy to interpret. The values frequently appear on computer output, but
few software users seem to understand them. Moreover, they cannot be
recommended on theoretical grounds (Granger and Newbold, 1986, Section
9.3). Thus they will not be described here.
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Even using a good scale-independent statistic, such as MAPE, it is
possible that one series will give such poor forecasts using one or more of
the methods being considered, that the results are dominated by this one
series. For this reason, some sort of robust procedure is often used, either by
trimming the set of data series (e.g. by removing one or more series which
give much worse forecasts than the rest) or by using the geometric mean
instead of the arithmetic mean when averaging across series.1 Armstrong
and Collopy (1992) and Fildes (1992) both recommend a scale-independent
statistic based on the use of the geometric mean. However, my impression is
that statistics involving the geometric mean are little used, partly because
few people understand them and partly because computer software is not
readily available to compute them. Note that the statistic ‘Percent Better’
is immune to outliers anyway.

Robust procedures can also be used when calculating measures of
accuracy for a single series (rather than across series), if the distribution
of forecast errors is clearly not normal. A few large errors, caused by
sudden breaks or outliers in the time series, could dominate the remaining
results. One approach is to downweight extreme errors (sometimes called
Winsorizing) or remove them altogether. Another possibility is to use
a geometric mean of the errors over the forecast period. Clements and
Hendry (1998a, Section 3.6) have proposed a measure which they claim is
invariant to non-singular, scale-preserving linear transformations (such as
differencing), but this looks rather complicated to use in practice.

Finally it is worth noting that the use of standard statistical criteria,
such as MAPE, which are chosen for their scale-independent properties,
may not be consistent with alternative criteria such as those arising from
economic considerations (Gerlow et al., 1993). For example, we noted earlier
that the real loss function may be asymmetric (e.g. underforecasting is
worse than overforecasting). Alternatively, it may be particularly important
to forecast the direction of movement (will the next first difference be
positive or negative?) or to predict large movements. As always, the use
of standard statistical procedures may need to be modified as necessary
within the context of the problem, although it may not be possible to select
a measure of forecast accuracy that is scale-independent and yet satisfies
the demands of the appropriate loss function. In a similar vein, the usual
measures of forecast accuracy fail to value the maintenance of cointegrating
relationships among the forecasted variables, when forecasting with a
cointegrated model. Christoffersen and Diebold (1998) suggest alternatives
that explicitly do so.

In conclusion, we can say that the search for a ‘best’ measure of forecast
accuracy is likely to end in failure. There is no measure suitable for all types
of data and all contexts. Moreover, there is plenty of empirical evidence
that a method which is ‘best’ under one criterion need not be ‘best’ under

1 The geometric mean of the values s1, s2, . . . , sk, is the product of the values raised to
the power 1/k.
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alternative criteria (e.g. Swanson and White, 1997). However, it has been
possible to make some general recommendations, notably that a measure of
accuracy must be scale-independent if comparisons are made across series,
and that the choice of measure must take account of the distribution
of individual forecast errors for a single series, or the distribution of
accuracy statistics from different series when averaging across a set of series,
particularly in deciding when it is advisable to use a robust approach.

6.3.1 Testing comparative forecast accuracy

Whichever measure of forecast accuracy is selected, the analyst will often
find that the results for different forecasting methods appear to be quite
similar, so that there is no clear ‘winner’. Rather, the ‘best’ method may be
only a little better than alternatives as judged by the measure of forecast
accuracy. Then the question arises as to whether there is a ‘significant’
difference between the methods. This is a rather hard question to answer
as it is not immediately obvious what is meant by significance in this
context. In asking if the differences between forecasting methods can be
attributed to sampling variability, it is not clear what sampling mechanism
is appropriate. Nor is it obvious what assumptions should be made about
the different methods and about the properties of the forecast errors that
arise from the different methods. Clements and Hendry (1998a, Section
13.3) describe some tests, but I would be reluctant to rely on them.

The real test of a method lies in its ability to produce out-of-sample
forecasts. For a single series, the test set will often be quite small. Then
significance tests will have poor power anyway. With a group of series,
any assumptions needed for a significance test are likely be invalid and a
robust nonparametric approach may be indicated. For example, if a method
is better than alternatives for a clear majority of the series, then that is a
good indication that it really is better. Practical significance is usually more
interesting than theoretical significance and it will be often be a matter of
judgement as to whether, for example, it is worth the extra effort involved
in a more complicated method to improve a measure of accuracy by, say,
5%.

6.4 Forecasting competitions and case studies

Leaving theoretical issues to one side for the time being, the real test of a
forecasting method is whether it produces good forecasts for real data. In
other words, we want to know if a method works when applied in real-life
situations.

Over the years, many investigations have been made in order to provide
empirical evidence to try to answer this question. These empirical studies
can loosely be divided into two types, usually called forecasting competitions
and case studies, though there is no standard usage for these terms. This
section explains how the two types of study are conducted, discusses
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their general advantages and disadvantages and then reviews the empirical
evidence.

6.4.1 General remarks

A key feature of all empirical investigations is the number of series analysed.
The term ‘case study’ is typically used when a small number of datasets
are analysed, say between one and five. Such studies may also be called
empirical examples or, when a new method has been proposed, an empirical
application. In contrast, the term ‘forecasting competition’ is typically
used when at least 25 datasets are analysed and perhaps many more. For
example, the forecasting competition usually known as the M-competition
(Makridakis et al., 1982, 1984) analysed 1001 series, which is a very large
sample. However, there is no clear dividing line between these two types
of study, and it is certainly true that ‘bigger’ is not necessarily ‘better’, as
a smaller number of series can be analysed more carefully. Many studies
use an intermediate number of datasets (e.g. between 10 and 50) and some
authors use the term ‘forecasting competition’ even when the number of
datasets is quite small. However, it will be convenient here to restrict the
use of the term ‘competition’ to larger datasets.

In case studies, the analyst will typically be able to devote detailed
attention to each dataset, apply the different forecasting methods carefully
and take account of context. In contrast, forecasting competitions may
analyse so many series that it is impractical for analysts to pay much
attention to each series. In the M-competition, for example, it was decided
to apply the Box-Jenkins method, not to all 1001 series, but to a
systematic subsample of 111 series. Even so, it was reported that each
series took over one hour to analyse and this enormous commitment can
only rarely be made. Thus forecasting competitions, with large datasets,
seem more suitable for assessing automatic univariate procedures, while
case studies seem more suitable for assessing multivariate procedures and
non-automatic univariate procedures.

Empirical studies can help to show whether the success or failure of
particular forecasting methods depends on such factors as
(a) the type of data
(b) the length of the forecasting horizon
(c) the skill of the analyst in using the method (e.g. in selecting an

appropriate model from the ARIMA class for Box-Jenkins forecasting)
and

(d) the numerical methods used to fit a model or implement a method and
compute predictions

Case studies are better suited for shedding light on factors such as (c)
and (d), and few would dispute that case studies are an essential part
of the development of any forecasting method. They may also shed some
light on (a) and (b), but, by their restricted nature, make generalization
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problematic. Large-scale competitions are much more controversial. They
seem particularly useful for shedding light on features such as (a) and
(b) above, but mainly for simple automatic procedures (Chatfield, 1988a,
Section 4.1). A historical review of the results of forecasting competitions is
given in Section 6.4.2 but first their general advantages and disadvantages
are assessed.

Over the years, many different forecasting competitions have been carried
out, of which some were good and some not so good. By ‘good’ is
meant that the data were carefully selected, that methods were applied
competently and that the results were evaluated fairly and presented
clearly. This has not always been the case, but even when it has, there
have been wildly diverging views as to the value of competition results.
Thus McLaughlin (Armstrong and Lusk, 1983, p. 274) described the M-
competition (Makridakis et al., 1982, 1984) as ‘a landmark for years to
come’, while Jenkins and McLeod (1982, preface) described forecasting
competitions as being ‘ludicrous’.

It will be helpful to examine the criticisms that have been levelled at
competitions over the years.
(1) The data. It is impossible to take a random sample of time series, so
that it is never clear to what extent the results from any competition can be
generalized. One strategy is to take data from a variety of application areas,
apply the different methods and hope the results will apply more generally.
One danger with this is that one method may work well on data from one
field of study but poorly on data from another area. There is, therefore,
something to be said for restricting attention in any one competition to
data from one particular area so that more specific conclusions can be
made, while recognizing that the results may not generalize to other types
of data. Case studies, by their nature, will often be small-scale versions of
the latter type of study. This general criticism of the way that data are
selected can be made of many competitions. There is no easy answer but
it is surely the case that experience with particular datasets is generally
better than nothing, even if the sample of datasets cannot be randomly
selected.
(2) The skill of the participants. When method A outperforms method B in
a competition, there can be no certainty that this necessarily implies that
method A is better. It may be that method B has been applied imperfectly,
especially when method B is of a complicated form. This argument has been
used to criticize the way that some methods (notably Box-Jenkins) have
been applied in competitions but it is possible to turn this argument on its
head. The more complicated the method or model used to make forecasts,
the more likely it is that it will be misapplied. Given that participants
in competitions are likely to be (much) more competent than the average
forecaster, it is arguable that competitions overestimate the likely accuracy
of forecasts from complicated methods when applied in real-life situations.
A similar argument would suggest that new methods are likely to have an
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unfair advantage when applied by their originator. New methods need to
be tried out by independent investigators.
(3) Replicability. It is a feature of good science that the results can be
replicated by other researchers. This has not always been the case with
forecasting competitions in the past, but it is increasingly true today and
many journals now demand sufficient information about the methods and
data to enable others to check the results. For example, the data from the
M-competition are widely available and several researchers have carried out
follow-up studies.
(4) Accuracy criteria. As noted in Section 6.3, there are many different ways
of assessing the accuracy of forecasts. While there are obvious dangers in
averaging results across different series which might have very different
properties (and hence give very different percentage forecast errors), many
competitions present more than one measure to summarize the results.
Provided the measures are scale-independent, they should give some idea
on relative accuracy. Of course, a method which is best by one criteria need
not be best by another, and that is another indication that the search for
a global best method is doomed to failure. In any case, accuracy is only
one indicator of the ‘goodness’ of a forecast. Practitioners think cost, ease
of use and ease of interpretation are of comparable importance (Carbone
and Armstrong, 1982) but these other criteria are typically ignored in
forecasting competitions.
(5) Ignoring context? Perhaps the most serious criticism of large-scale
forecasting competitions is the objection to analysing large numbers of
series in a predominantly automatic way, with no contact with a ‘client’
and no opportunity to take account of the context. Jenkins and Mcleod
(1982) describe this as ‘manifestly absurd’ and go on to describe several
one-off case studies where statistician and client collaborate to develop
an appropriate multivariate model. The results of forecasting competitions
would not help in such situations. However, there are some situations, such
as stock (inventory) control, where large numbers of series are involved
and it would be quite impractical to develop a model tailored to each
series. Then a relatively simple, predominantly automatic, procedure is
needed and the results of forecasting competitions are likely to be relevant.
Clearly both automatic and non-automatic approaches to forecasting have
their place, and the distinction between them is sometimes more important
than the difference between forecasting methods.

I conclude that well-run forecasting competitions and case studies do
provide some information, but that the results will only form part of
the story. Competitions are mainly helpful for comparing predominantly
automatic methods while case studies are better placed to tell us about
non-automatic procedures. However, poorly managed studies could be
worse than useless, and a key objective of this chapter is to encourage
high standards when carrying out empirical studies. In particular, (i) data
should be carefully chosen, (ii) forecasts should be made out of sample, (iii)
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good software should be used by an experienced analyst, (iv) more than
one measure of accuracy should be tried, (v) sufficient information should
be provided to make the results replicable.

6.4.2 Review of empirical evidence

This subsection reviews the results of the many empirical studies which
have been carried out over the years to assess the forecasting accuracy
of different forecasting methods on a variety of datasets. The review
is necessarily selective and concentrates on the large-scale forecasting
competitions which have been carried out since the early 1970’s. Such
competitions often restrict attention to comparing automatic univariate
procedures, although some non-automatic methods (e.g. Box-Jenkins) have
also been tried. Multivariate methods, and complicated univariate methods,
have generally been investigated by means of case studies, and a brief
summary of relevant results is given, though the results are often more
concerned with shedding light on one particular method, rather than with
making general comparisons. As such they may have been cited elsewhere
in Chapters 4 and 5.

The review of empirical accuracy studies, given by Fildes and Makridakis
(1995), has a rather different emphasis in that they are concerned to point
out that empirical findings have often been ignored by the theoreticians.
For example, sophisticated methods often fail to out-perform simpler
methods, and yet the published methodology continues to emphasize more
complicated methods. Likewise, out-of-sample forecasts are typically found
to be much worse than expected from within-sample fit and yet many
researchers continue to assume the existence of a known true model. In
order to illustrate the above points, it is worth considering a very simple
forecast procedure, namely that given by the random walk. Here the ‘best’
forecast of the next value is the same as the most recent value. This is a
disarmingly simple method, but is often quite sensible, and has been widely
applied to detrended, deseasonalized economic data even though many
analysts expect that more complicated methods will generally be superior.
Efforts to find a better way of predicting such series have often been
unsuccessful. For example, Meese and Rogoff (1983) have shown empirically
that the random walk will often give as good, or even better, forecasts
out of sample than those given by various alternative univariate and
multivariate models, while White (1994) found that the random walk often
outperformed neural networks for economic data. Of course, alternative
models may give a somewhat better fit, but this is often not a reliable
guide to out-of-sample behaviour (see also Chapters 7 and 8).

We now attempt a summary of the results of forecasting competitions. As
will be seen below, the results are not always consistent and may only be
partially relevant to a new forecasting problem in a particular context.
Nevertheless, the findings are (much) better than nothing and provide
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pointers for the choice of forecasting method, as will be clarified in Section
6.5.

Two early competitions were described by Newbold and Granger
(1974) and Reid (1975). The first of these compared Box-Jenkins with
Holt-Winters exponential smoothing, stepwise autoregression and various
combinations of methods. They showed Box-Jenkins gave more accurate
out-of-sample forecasts on average than the other two methods although
Box-Jenkins required much more effort and could sometimes be beaten by a
combination of methods. They recommended using Holt-Winters for short
series (less than 30 observations) and Box-Jenkins for longer series. They
also recommended considering the possibility of combining forecasts from
different methods. In addition, they emphasized that any guidelines should
not be followed blindly when additional information is available about a
particular series and the recommendation to use contextual information
wherever possible is one I would echo today. Reid’s study used a larger
selection of univariate methods and also found that Box-Jenkins was ‘best’,
although its advantage decreased as the lead time increased.

The next major competition is the M-competition (Makridakis et al.,
1982, 1984) which was mentioned at the start of Section 6.4.1. Compared
with earlier studies, this was much larger, with more analysts (9), more
methods (24) and more series (1001) of a very varied nature (see specimen
graphs in Makridakis et al. 1984, pp. 281-287). The Box-Jenkins, ARARMA
and FORSYS methods were applied to a systematic subsample of 111 series
in view of their relative complexity. Various measures of accuracy were
computed and tabulated, though the resulting tables are hard to ‘read’
(and the table of mean square errors should be disregarded as this statistic
is not scale-independent – Chatfield, 1988b). Moreover, the interpretation
of the results is unclear, perhaps because the nine analysts had difficulty
in reaching a consensus. The reader is therefore recommended to read
Armstrong and Lusk (1983) as well as Chapter 1 of Makridakis et al.
(1984). The results were as expected in that no one method is best in
every sense, but rather the choice of method depends on the type of data,
the forecasting horizon, the way accuracy is measured and so on. What was
perhaps not expected, given earlier results, is that Box-Jenkins did not give
more accurate forecasts than several simpler methods.

The two most accurate methods, on the basis of the M-competition
results, are the ARARMA method (Parzen, 1982) and FORSYS. The latter
is a German proprietary method. However, both were implemented by their
originators and, for the reasons explained in Chatfield (1998a, p. 30), the
results should be treated with caution. This may explain why these two
methods have not become more widely used, although there has been some
subsequent interest in the ARAR algorithm (e.g. Brockwell and Davis,
1996, Section 9.1). There were four other methods which appeared to be at
least as accurate as Box-Jenkins, namely deseasonalized Holt’s exponential
smoothing, Holt-Winters, Bayesian forecasting and a combination of six
different methods called the combining A method. Of these methods,
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Fildes (1983) says that “Bayesian forecasting is apparently not worth
the extra complexity compared with other simpler methods”, although
later developments (e.g. Pole et al., 1994) may negate this comment. The
combining A method is tedious and does not give an interpretable model.
This leaves two types of exponential smoothing as general all-purpose
automatic procedures and both can be recommended. In particular, the
author has much experience with one of these methods, namely the Holt-
Winters method. The latter is straightforward to implement and generally
gives intuitively sensible results. Moreover, there is evidence that Holt-
Winters is robust to departures from the model for which the method is
optimal (Chen, 1997).

Recently, Hibon and Makridakis (1999) have reported the results of a
follow-up to the M-competition, called the M3-competition, which analyses
as many as 3003 series and 24 methods. The latter include neural networks
and several expert systems. As in earlier studies, there was no clear winner
but the results help to identify which methods are doing better than others
for specific types of data, and for different horizons, though my impression
of the results is that overall average differences are generally small.

There has been growing interest in structural models since the publication
of Harvey (1989), though there has so far been rather little systematic
empirical examination of the forecasts which result. The empirical study of
Andrews (1994) is one exception and suggests the models do quite well in
practice, especially for long horizons and seasonal data.

Competitions are much more difficult to organize for comparing non-
automatic univariate methods and multivariate methods. Then smaller case
studies may be more fruitful. This is illustrated by the M2-competition
(Makridakis et al., 1993) which involved 29 time series and a variety of
multivariate and non-automatic univariate methods as well as automatic
univariate methods. Participants also received a variety of additional
contextual information. I was one of the participants but found the exercise
rather unsatisfactory in some ways, mainly because there was no direct
contact with the ‘client’. As a result, it was difficult to take full account
of the additional information. Thus the conditions did not really mimic
those likely to hold in practice when using such methods. Although called
a competition, it is not clear whether a sample size of 29 series should
make the M2-competition a large case study rather than a small forecasting
competition, or neither. It is arguable that the number of series is too small
to call it a competition but too large for a properly controlled case study.
Put another way, the M2-competition suffers from using an ‘in-between’
sample size which is too large to allow proper attention to all the series,
but too small to offer generalizable results. Thus the remainder of this
subsection reports empirical results for assessing non-automatic univariate
and multivariate methods, which really are of the smaller case study form.
Given the difficulties in fitting such models, small case studies are more
feasible and may well give more reliable results. We start with results for
multivariate methods.
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Results for multivariate models
Many forecasters expect multivariate forecasts to be at least as good as
univariate forecasts, but this is not true either in theory or practice, for the
reasons listed in Section 5.1. For example, multivariate models are more
difficult to identify, and appear to be less robust to departures from the
model than univariate models. An earlier review of empirical results is given
by Chatfield (1988a). There have been some encouraging case studies using
transfer function models (e.g. Jenkins, 1979, Jenkins and McLeod, 1982),
but such models assume there is no feedback from the response variable to
the explanatory variables and that will not apply in many situations (e.g.
with most economic data). Econometric simultaneous equation models have
a rather patchy record (e.g. Makridakis and Hibon, 1979, Section 2), not
helped by the fact that economists often fail to compare their models with
simpler alternatives and are usually more interested in description and
explanation, rather than forecasting. Regression models also have a rather
patchy record (Fildes, 1985).

The situation in regard to VAR models is more difficult to summarize
and we devote more space to this topic. (Results for VARMA models are
much less common and will not be reviewed here.) Many studies have
been published in which forecasts from VAR models are compared with
alternative methods. The results look promising in rather more than half
the case studies that I have seen in such journals as the International
Journal of Forecasting, the Journal of Forecasting (especially 1995, Part
3) and the Journal of Business and Economic Statistics. The reader is
encouraged to browse in these and other journals. It is clear that the VAR
models need to be carefully applied, but, even so, the results are not always
consistent. Moreover, in some studies, the choice of alternative methods
may seem inappropriate and designed to give an advantage to VAR models,
while in others, insufficient information is given to enable the analyst to
replicate the results. In addition, it is not always clear when VAR forecasts
are genuine out-of-sample forecasts. I have seen several studies which claim
that VAR forecasts are superior, but which are computed on an ex-post
basis, meaning that future values of explanatory variables are assumed
known. I have also seen examples where random walk forecasts are as good
as VAR forecasts, and, with economic data, it is particularly important
to ensure that out-of-sample VAR forecasts are at least superior to those
given by the random walk model.

The literature is too large to cover thoroughly and so we simply refer
to a couple of specimen studies. The results in Boero (1990) suggest
that a Bayesian VAR model is better than a large-scale econometric
model for short-term forecasting, but not for long-term forecasts where
the econometric model can benefit from judgemental interventions by the
model user and may be able to pick up non-linearities not captured by
(linear) VAR models. As is often the case, different approaches and models
are complementary. The results in Kadiyala and Karlsson (1993) suggest
that unrestricted VAR models do not forecast as well as when using
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Bayesian vector autoregression presumably because unrestricted models
generally contain too many parameters and give a spuriously good fit
(within sample), while giving out-of-sample forecasts which are poorer than
alternatives.

Thus, although it can be fruitful, VAR modelling is not the universal
panacea that some writers claimed it to be in the late 1980’s (nor
is any forecasting method!). To have a chance of success, it needs to
be implemented carefully, using contextual information and subjective
modelling skills, and the ‘black-box’ approach evident in some published
case studies should be avoided.

The very limited empirical evidence on the use of cointegrated VAR
models for forecasting was briefly reviewed in Section 5.4. No general
recommendations can, as yet, be made.

Results for periodic and long-memory models
Turning to univariate models, we have already seen that there is a wealth
of empirical evidence on the use of ARIMA (and SARIMA) models in
forecasting. However, there is much less evidence to date on the many
variants of ARIMA models, such as periodic and fractionally integrated
ARMA models.

Periodic AR and ARMA models have been fitted to economic data
(Novales and Flores de Frato, 1997) and to riverflow data (McLeod, 1993).
They suffer the usual danger of more complicated models that they may
give an improvement in fit, as compared with simpler models, but do not
necessarily give better out-of-sample forecasts. Moreover, it appears that
about 25 years data are needed in order to have a reasonable chance of
success in detecting changing seasonal behaviour and in estimating such
effects reasonably accurately. This length of series is not always available.

As regards fractionally integrated ARMA and SARMA models, there are
some encouraging results (e.g. Ray, 1993; Sutcliffe, 1994), but the results
in Smith and Yadav (1994) suggest that little will be lost by taking first,
rather than fractional, differences, while Crato and Ray (1996) say that
the use of ARFIMA models for forecasting purposes can only be justified
for long time series (meaning at least several hundred observations) which
are strongly persistent. Otherwise they say that “simple ARMA models
provide competitive forecasts” to FARIMA models.

Many analysts might think that periodic ARMA and ARFIMA models
are already complicated enough, but further extensions have been
considered. For example, Franses and Ooms (1997) combine the ideas
of periodicity and fractional integration by allowing the differencing
parameter d to vary with the season to give what is called a periodic
ARFIMA model. They found evidence from 33 years data on U.K. quarterly
inflation that d is significantly larger in the last two quarters of the year.
This enabled them to obtain a better fit but, sadly, they found that out-
of-sample forecasts were not better than alternative approaches, echoing a
major finding regarding (over)complicated models. Many other complicated
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combinations of models are being looked at, including one paper I saw
recently which combined fractional integration with two ideas from non-
linear models to give a double threshold, conditionally heteroscedastic
ARFIMA model. The problems involved in estimating such a model are
formidable and there is no evidence to date that the resulting out-of-sample
forecasts are likely to be worth the effort.

Results for non-linear models
Turning now to non-linear models, the rewards from using such models can
occasionally be worthwhile, but, in the majority of cases, empirical results
suggest that non-linear methods are not worth the extra effort as compared
with linear methods. Section 3.4 included a brief review of the empirical
results on the forecasting accuracy for threshold and bilinear models, for
models for changing variance and for chaos, and will not be repeated here.
Further empirical evidence, in regard to financial time series, is given in the
Journal of Forecasting (1996, No. 3). The simulation results in Clements
and Krolzig (1998) suggest that linear methods are often adequate, even
when the data are known to be generated in a non-linear way. Thus it
appears that “neither in-sample fit, nor the rejection of the null of linearity
in a formal test for non-linearity, guarantee that SETAR models (or non-
linear models more generally) will forecast more accurately than linear AR
models” (Clements and Smith, 1997, p. 463). Gooijer and Kumar (1992)
also suggest that the evidence for non-linear models giving better out-of-
sample forecasts is at best mixed.

Given that non-linear models are generally more difficult to fit than linear
models (see Section 3.4), and that it can be difficult to compute forecasts
more than one step ahead (see Section 4.2.4), it is understandable that
many research studies focus attention on the theoretical and descriptive
aspects of non-linear models, rather than on forecasting. Much work has
been done on theoretical properties of different non-linear models, on
estimation and testing, and on modelling issues. For example, it certainly
seems to be the case that non-linear models are better suited for modelling
long financial series rather than shorter series, such as sales data and
many economic series. Indeed, in many cases, it seems that the benefits
of non-linear modelling (and also of multivariate modelling!) arise from
the thought that needs to be given to modelling issues rather than from
improved forecasts.

Results for neural nets
One particular class of non-linear models are neural networks (NNs). We
consider their forecasting ability separately, in more depth, because of their
novelty, the special interest they have generated and the impressive claims
that have been made on their behalf. NNs are unlike other non-linear time-
series models, in that there is usually no attempt to model the innovations,
and much work has been carried out by computer scientists, rather than
by statisticians.
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NN modelling is nonparametric in character and it is sometimes claimed
that the whole process can be automated on a computer “so that people
with little knowledge of either forecasting or neural nets can prepare
reasonable forecasts in a short space of time” (Hoptroff, 1993). Put another
way, this means that NNs can ‘learn’ the behaviour of a system and produce
a good fit and good forecasts in a black-box way. While this could be seen
as an advantage, black-box modelling is also potentially dangerous. Black
boxes can sometimes give silly results and NN models obtained like this
are no exception. In my experience (Faraway and Chatfield, 1998), a good
NN model for time-series data must be selected by combining traditional
modelling skills with knowledge of time-series analysis and of the particular
problems involved in fitting NN models. Many questions need to be tackled
when fitting a neural net, such as what explanatory variables to include,
what structure (architecture) to choose (e.g. how many neurons and how
many hidden layers?), how the net should be fitted, and so on.

Earlier reviews of the empirical evidence regarding NNs are given by
Faraway and Chatfield (1998), Hill et al. (1994; 1996) and Zhang et
al. (1998). One important empirical study was the so-called Santa Fe
competition (Weigend and Gershenfeld, 1994) where six series were
analysed. The series were very long compared with most time series that
need to be forecasted (e.g. 34,000 observations) and five were clearly non-
linear when their time plots were inspected. There was only one economic
series. The organizers kept holdout samples for three of the series. Little
contextual information was provided for participants and so I decided not
to take part myself. Participants chose their own method of forecasting. As
well as using neural nets, some participants chose methods unfamiliar to
most statisticians such as the visual matching of segments or multivariate
adaptive regression splines. The results showed that the better NN forecasts
did comparatively well, but that some of the worst forecasts were also
produced by NNs when applied in ‘black-box’ mode without using some
sort of initial data analysis before trying to fit an appropriate NN model.
The results also showed that there are “unprecedented opportunities to
go astray”. For the one economic series on exchange rates, there was a
“crucial difference between training set and test set performance” and “out-
of-sample predictions are on average worse than chance”. In other words,
better forecasts could have been obtained with the Random Walk!

Other empirical evidence suggests that while neural nets may give
better forecasts for long series with clear non-linear properties (e.g. the
sunspots data), the evidence for shorter series is indecisive. Simulations
show linear methods do better than neural nets for data generated by
a linear mechanism, as one would intuitively expect. For many economic
series, a ‘No change’ forecast is still found to be better than using a non-
linear model or relying on ‘experts’, while the results of Church and Curram
(1996) suggest that neural nets give forecasts which are comparable to
(but no better than) those from econometric models, and that “whichever
approach is adopted, it is the skill of choosing the menu of explanatory
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variables which determines the success of the final results”. Callen et
al. (1996) found that linear methods gave better out-of-sample forecasts
than NNs for some seasonal financial series containing 296 observations
even though the series appeared non-linear. While it may be too early
to make a definitive assessment of the forecasting ability of NNs, it is
clear that they are not the universal panacea that some advocates have
suggested. Although they can be valuable for long series with clear non-
linear characteristics, it appears that the analyst needs several hundred,
and preferably several thousand, observations to be able to fit an NN with
confidence. Even then, the resulting model is usually hard to interpret,
and there is plenty of scope for going badly wrong during the modelling
process. For series shorter than about 200 observations, NNs cannot be
recommended.

Concluding remarks
It is increasingly difficult to keep up with the wealth of empirical evidence
appearing in the literature. Fortunately (or unfortunately depending on
your viewpoint), empirical results with real data rarely show anything
surprising. An inappropriate method (e.g. using a non-seasonal method
on seasonal data) will typically give poor forecasts, as expected, but it is
often found that there is little to choose between the forecasting accuracy
of several sensible methods. Indeed, whenever I see claims that one method
is much better than all alternatives, I get suspicious. Close examination
of the results may show that the ‘winner’ has some unfair advantage. For
example, the winning forecasts may not be genuinely out-of-sample (see
Section 1.4) or alternative methods may have been implemented poorly
or silly alternatives have been chosen. The possibilities for ‘cheating’ in
some way are endless. Sometimes the analyst manages to hide this by not
presenting enough background information to make the study replicable.
This is also to be deplored.

A related point is that empirical results tend to be reported when they
are ‘exciting’, but quietly dropped otherwise.2 For example, several studies
have been reported that show neural nets can do as well as, or better than,
existing forecasting methods. However, Chatfield (1995c) reported at least
one study where poor results with neural nets were suppressed, and this
may be a more general phenomenon than realized. Sadly, we will never know
what has not been reported. Thus it is essential to be aware of potential
biases in reported results and treat some results with caution.

6.5 Choosing an appropriate forecasting method

This section gives general advice on how to choose an appropriate
forecasting method for a given forecasting problem from the rather
bewildering choice available. It updates earlier advice in Chatfield (1988a;

2 This is similar to the well-known publication bias whereby significant statistical results
are easier to publish than non-significant ones.
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1996a, Section 5.4). Empirical and theoretical results both suggest that
there is no single ‘best’ forecasting method, but rather that the choice of
method depends on the context, and in particular on the objectives, the
type of data being analysed, the expertise available, the underlying model
thought to be appropriate, the number of series which have to be forecasted
and so on. The answer to the question “Which is best?” also depends on
what is meant by ‘best’ – see Sections 6.2 and 6.3.

There is a wide variety of problems requiring different treatment, and
the sensible forecaster will naturally wish to be discriminating in order
to try to solve a given problem (e.g. to get more accurate forecasts).
For example, Tashman and Kruk (1996) investigated various protocols for
choosing a forecasting method and demonstrated, as might be expected,
that substantial gains in accuracy can sometimes be made by choosing a
method that is appropriate to the given situation. As a trivial example,
some forecasting competitions have applied simple exponential smoothing
to all series in the given study regardless of whether they exhibited trend
or not. This hardly seems fair to simple exponential smoothing as it does
not pretend to be able to cope with trend.

Unfortunately, it is not easy to give simple advice on choosing a
forecasting method. A good illustration of the difficulty in making general
recommendations is provided by Collopy and Armstrong (1992) who list
no less than 99 rules to help make the most appropriate choice from among
four univariate methods for annual data. Even so, it is not clear whether an
expert system based on such a complicated set of rules will lead to better
forecasts. Past empirical work is also only of limited help. The results of
forecasting competitions apply mainly to the use of automatic univariate
methods on large groups of disparate series and need not generally apply
to problems involving a small number of datasets or a homogeneous group
of series such as sales of similar items in the same company (Fildes,
1992). Likewise, the results of case studies, using a small number of
series, need not apply to data in other application areas. Thus the analyst
cannot avoid the difficult task of choosing a method using the context and
background knowledge, a preliminary examination of the data, and perhaps
a comparative evaluation of a short list of methods.

The first key question in choosing a forecasting method is whether to
use (i) an automatic univariate method, (ii) a non-automatic univariate
method, or (iii) a multivariate method. We consider these three cases in
turn.

A simple automatic univariate method, such as exponential smoothing,
should be used when there are a large number of series to forecast, when
the analyst’s skill is limited, or such an approach is otherwise judged
to be appropriate for the context and the client’s needs and level of
understanding. It can also be helpful as a norm for comparison with
more complicated forecasts, and as a preliminary forecast to be adjusted
subjectively. The first general comment is that the analyst still has to be
careful to choose a sensible method, even if it is to be simple and automatic.
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Thus it would be ridiculous to apply simple exponential smoothing to data
showing trend and seasonality. The empirical results, reviewed in Chatfield
(1988a), suggest that there is little overall difference in accuracy between
several methods (although one or two more obscure methods should be
discarded). Thus it seems sensible to choose a method that is simple, easily
interpreted, appropriate for the type of data and for which software is
readily available. My personal recommendation is to use an appropriate
form of exponential smoothing (e.g. Holt-Winters for seasonal data) but
there are several good alternatives.

Some analysts have proposed procedures for using Box-Jenkins in
automatic mode, but empirical results suggest that alternative simpler
methods have comparable accuracy. In any case, the main virtue of Box-
Jenkins ARIMA modelling is to provide the flexibility for finding an
appropriate model for a given set of data. Thus, using Box-Jenkins in
automatic mode seems to go against the whole rationale of the method.

Suppose now that a non-automatic approach is indicated, perhaps
because the number of series is small, the analyst’s skill is more advanced,
and there is contextual information which needs to be taken into account.
Good forecasters will use their skill and knowledge to interact with their
client, incorporate background knowledge, have a careful ‘look’ at the data,
and generally use any relevant information to build a suitable model so as
to construct good forecasts. There are then two possibilities, namely to use
a non-automatic type of univariate method, or a multivariate method. We
consider the latter approach first.

Multivariate methods are worth considering when appropriate expertise
is available, and when there is external information about relationships
between variables which needs to be incorporated into a model. This is the
case if suitable explanatory variables have been identified and measured,
especially when one or more of them is a leading indicator. Multivariate
models are particularly useful if they are to be used, not only for making
forecasts, but also to help gain understanding of the system being modelled.
In other words, the model is to be used for description and interpretation,
as well as forecasting.

We have seen that a multivariate model can usually be found to give a
better fit to a given set of data than the ‘best’ univariate model. However,
out-of-sample forecasts from multivariate models are not necessarily more
accurate than those from univariate models either in theory or practice,
for the reasons listed in Section 5.1. It is worth examining these reasons in
turn to see if, how, and when they can be overcome.

(i) More parameters to estimate means more opportunities for parameter
uncertainty to affect multivariate forecasts. This suggests aiming for a
parsimonious model. It is a common mistake to try to include too many
explanatory variables.

(ii) More variables to measure means more opportunities for the data to
be affected by errors and outliers. This reminds us that it is essential
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to carry out careful data cleaning as part of the initial data analysis of
both the response and explanatory variables.

(iii) Many time series are of an observational nature, rather than coming
from a designed experiment. This may make them unsuitable for fitting
some multivariate models. Open-loop data are easier to fit and likely to
give more reliable results, especially if a transfer function model is fitted.

(iv) One way to avoid having to forecast exogenous variables is to use
explanatory variables which are leading indicators, whenever possible.

(v) The more complicated the model, the more liable it is to mis-
specification and to change. Like (i) above, this suggests aiming for as
simple a model as possible. Of course, multivariate models are inherently
more complicated than univariate models, and one reason why univariate
methods sometimes outperform multivariate methods is that univariate
models are more robust to model misspecification and to changes in the
model than multivariate models.

As summarized more fully in Section 6.4, multivariate out-of-sample
forecasts are more accurate than univariate extrapolations in about half
the case studies I have seen, but the reverse is true in the remainder.
This contest remains unresolved. Even if multivariate forecasts are better,
the question arises as to whether they are worth the extra effort entailed.
This can be difficult to assess. However, despite these cautionary remarks,
there will be of course be occasions when it does seem promising to try
a multivariate approach. The question then arises as to which family of
models should be tried.

It is difficult to make general remarks about the choice of a multivariate
model as it depends so much on the context, the skill and knowledge of
the analyst and the software available. Despite all the dangers outlined in
Section 5.2.1, my impression is that multiple regression models are still the
most commonly used multivariate model, no doubt because of simplicity
and familiarity. This is a pity, and explains why I devoted so much space to
this family of models in Chapter 5, even though I do not usually recommend
their use in time-series forecasting. I really do urge the reader to make sure
that he or she understands the reasons why multiple regression models are
usually inappropriate for time-series data.

Once the analyst understands that most time series exhibit
autocorrelation within series, and that this may affect the cross-correlations
between series, the reader will be well on the way to realizing that multiple
regression models (with independent errors) are usually inappropriate.
Then more complicated models, such as transfer function and VAR
models, which do allow for both auto- and cross-correlation, are a more
sensible choice. Recent research on multivariate time-series models has
focussed on VAR models, and, in particular, on cointegration. With
developing methodology and more widely available software, VAR models
are becoming much more of a practical possibility, particularly as they make
intuitive sense (as do univariate AR models). Before fitting a VAR model
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to economic data, it is usually wise to check if cointegration is present. If
it is, then the cointegration relationship(s) should be incorporated into the
model. Before fitting a VAR model to experimental data, it is advisable
to ask if the explanatory variables are such as to produce an open-loop
system. If they are then a transfer function model should be considered, as
this special type of VAR model has been particularly effective in modelling
data where the ‘outputs’ do not affect the ‘inputs’.

On many occasions, a ‘half-way’ house is needed between the complexities
of a multivariate approach and the over-simplification of automatic
univariate extrapolation. Then a non-automatic univariate method should
be considered.

The first general point to make is that there is often no clear distinction
between an automatic and a non-automatic univariate approach. Few
methods are completely automatic in the sense that the analyst must
decide, for example, whether to allow for seasonality in the method.
Likewise, the analyst can choose to put a lot of effort into making a
particular non-automatic forecast, or not very much. For example, the
analyst can devote a lot of effort looking for outliers, or just have a quick
look at a time plot. He or she can devote a lot of time to assessing the type
of trend (e.g. by carrying out a test for unit roots), or choose between no
trend, a damped trend and a linear trend by just looking at the time plot.
Thus there is really a near-continuous scale measuring the degree of effort
employed in applying a particular univariate method, from fully automatic
to a high degree of subjective judgement and intervention. What is clear is
that fully automatic forecasts can easily be improved with a little skill and
effort (e.g. Chatfield, 1978).

One possibility is to use a Box-Jenkins ARIMA-modelling approach. This
has advantages and disadvantages. The Box-Jenkins approach has been
very influential in the development of time-series modelling and it can be
beneficial to be able to choose from the broad class of ARIMA models.
However, the accuracy of the resulting forecasts has not always been as good
as hoped for, and some forecasters have found it difficult to interpret sample
diagnostic tools so as to get a suitable model. When the variation in the
data is dominated by trend and seasonal variation, I would not particularly
recommend the Box-Jenkins approach as the effectiveness of the ARIMA-
modelling procedure is mainly determined by the choice of differencing
procedure for removing trend and seasonal effects. The resulting model
will not explicitly describe these features and that can be a drawback.
However, when the variation is dominated by short-term correlation effects,
then ARIMA modelling can be rewarding.

Note that some writers have suggested that exponential smoothing
methods are effectively special cases of the Box-Jenkins approach and
should therefore not need to be used. Indeed, Newbold (1997), in a
recent review of business forecasting methods, says that there is now
little justification for using exponential smoothing for non-seasonal data,
given the ease with which ARIMA models can be identified using current
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computer software. However, I would argue that exponential smoothing
does still have an important role to play, because the methods are
implemented in a completely different way from the Box-Jenkins approach
(see Chatfield and Yar, 1988), and they are much easier to apply when
there are a large number of series to forecast. Thus I regard the Box-Jenkins
approach as being most suitable when there are a small number of series
to forecast, when the variation is not dominated by trend and seasonality,
and when the analyst is competent to implement the method.

The above remarks raise the general question as to whether it is better
to difference away trend and seasonal effects (as in the Box-Jenkins
approach), remove trend and seasonality by some other detrending and
seasonal adjustment procedure, or use a method which models these effects
explicitly. For example, in structural modelling, the Kalman filter can be
used to update the Basic Structural Model so that local estimates of level,
trend and seasonality are automatically produced. Such estimates can be
invaluable for descriptive purposes as well as for forecasting. On other
occasions, the basic goal may be to remove seasonal effects and produce
seasonally adjusted figures and forecasts. The latter is a quite different
problem. As always the context is the key to deciding which approach to
adopt.

Having made these general remarks, Section 6.5.1 presents a more
detailed outline strategy for choosing an appropriate non-automatic
univariate forecasting method, where such an approach is deemed suitable
for the given forecasting problem. This is arguably the commonest type of
problem in practice.

6.5.1 A general strategy for making non-automatic univariate forecasts

This subsection presupposes that the forecasting problem is such that the
analyst is willing to put in a reasonable amount of effort to get a good
forecast, but has decided to use a non-automatic univariate forecasting
procedure, rather than a multivariate one. The following remarks describe
a general strategy for choosing and implementing such a procedure. The
following steps are recommended:

1. Get appropriate background information and carefully define the
objectives. The context is crucial. The type of forecast required (e.g.
Point or interval forecasts? Single-period or cumulative forecasts?) will
have a strong influence on the choice of method.

2. Make a time plot of the data and inspect it carefully. Look for trend,
seasonal variation, outliers and discontinuities. Inspection of the time
plot is an essential start to the analysis.

3. Clean the data if necessary by correcting obvious errors, adjusting
outliers, and imputing missing observations. The treatment is
determined primarily by the context.

4. Try to decide if seasonal variation is present, and, if so, whether it is
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additive, multiplicative or something else. Consider the possibility of
transforming the data so as to make the seasonal effect additive.

5. Try to decide if long-term trend is present, and, if so, whether it is a
global linear trend, a local linear trend or non-linear.

6. Assess the general structure of the time series and, if possible, allocate
to one of the following four types of series.

• (i) One or more discontinuities is present. Examples include a sudden
change in the level, a sudden change in slope, or a large and
obvious change in the seasonal pattern. Such changes are often called
structural breaks and are further discussed in Section 8.5.5, where
Figure 8.1 shows an example time plot with a clear change in seasonal
pattern. Any univariate forecasting method will have difficulty in
coping with sudden changes like this, and so it may be unwise
to try such methods. If the context tells you when and why the
structural break has occurred, then it may be possible to apply an
ad hoc modification to some extrapolation method, such as applying
intervention analysis within a Box-Jenkins approach. Alternatively a
multivariate or judgemental approach may be considered.

• (ii) Trend and seasonality are present. In many series, the variation
is dominated by trend and seasonality. The data in Figure 2.1 are
of this type. There is usually little point in applying Box-Jenkins to
such data, but rather a simple trend and seasonal method should be
used. The Holt-Winters version of exponential smoothing is as good
as any. While such a method can be handled automatically, better
results can be obtained by a careful choice of the type of seasonality
(additive or multiplicative), by carefully choosing starting values
for the trend and seasonals and by estimating the three smoothing
constants, rather than just guessing them. Structural modelling is an
alternative approach that is worth considering.

• (iii) Short-term correlation is present. For series showing little trend
and seasonality, but instead showing short-term correlation effects,
it may be worth trying the Box-Jenkins approach. Many economic
indicators are of this form. Examples include the daily economic index
plotted earlier in Figure 1.1 and quarterly unemployment in the USA
which is plotted later in Figure 7.2.

• (iv) Exponential growth is present. Many economic series show
exponential growth in the long term. For example, an index, like
that plotted in Figure 1.1, would show non-linear growth if plotted
annually over, say, 20 years. This type of behaviour is particularly
difficult to model and forecast. Three alternative possibilities are to
fit a model which includes exponential growth terms, to fit a model to
the logarithms of the data (or some other suitable transformation), or
to fit a model to percentage changes which are typically more stable
– see Example 2.2.
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7. Whatever method or model is selected to make forecasts, the analyst
needs to carry out post-fitting checks to check the adequacy of the
forecast. This is usually done by assessing the properties of the fitted
residuals and of the out-of-sample forecast errors.

8. Finally the method or model selected can be used to actually make
forecasts. An optional extra is to allow such forecasts to be adjusted
subjectively, perhaps because of anticipated changes in other variables.

It is worth stressing that all the above stages are important. None can be
skipped. Indeed, as already noted in Section 2.3.7, the treatment of (i) trend
and seasonality and (ii) outliers, missing observations and calendar effects
can be more important than the choice of forecasting method, as is the
necessity to clarify objectives carefully.

The alert reader will have noticed that the above discussion has not
mentioned two alternative general approaches, namely the use of non-linear
models and the possibility of combining forecasts. As regards the former,
my overall impression of their current status, summarized in Sections 3.4
and 6.4.2, is that they constitute a valuable addition to the time-series
analyst’s toolkit, but that the resulting gains in forecasting accuracy are
often modest. As yet, their application to forecasting is likely to be of a
specialized nature. As regards the combination of forecasts, it sometimes
happens that there are several forecasting methods that appear reasonable
for a particular problem. Then it is now well established – see Section
4.3.5 – that more accurate forecasts can often be obtained by taking a
weighted average of the individual forecasts rather than choosing a single
‘best’ method. Unfortunately, this combination of methods does not give an
interpretable model and there may be difficulties in computing prediction
intervals, as opposed to point forecasts. Thus this approach is also restricted
to specialized applications.

6.5.2 Implementation in practice

This subsection makes some brief remarks on implementing forecasting
methods in practice. A key requirement is good computer software, but the
scene is changing so rapidly that it is difficult to make general remarks
on this subject. New packages, and new versions of existing packages,
continue to come out at ever-decreasing intervals. A comprehensive listing
of forecasting software was given by Rycroft in 1999. In order to keep up
to date, the reader is advised to read software reviews such as those in the
International Journal of Forecasting and the American Statistician.

Desirable features of ‘good’ software include: (i) Flexible facilities for
entering and editing data; (ii) Good facilities for exploring data and
producing a good clear time plot; (iii) The algorithms should be technically
sound and computationally efficient; (iv) The output should be clear
and self-explanatory; (v) The software should be easy to use with clear
documentation.
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Many general statistics packages now include some forecasting capability.
For example, MINITAB, GENSTAT, S-PLUS and SPSS will all fit ARIMA
models. There are many more specialized forecasting packages, written
primarily for PCs. They include Forecast Pro for exponential smoothing,
AUTOBOX for Box-Jenkins forecasting, STAMP for structural modelling,
MTS for transfer function and VARMA modelling, RATS for time series
regression, EViews for VAR and econometric modelling, and TSP for VAR
and regression modelling.

One final comment on time-series computing is that it is one area of
statistics where different packages may not give exactly the same answer
to what is apparently the same question. This may be due to different
choices in the way that starting values are treated. For example, when
fitting an AR(1) model, conditional least squares estimation treats the
first observation as fixed, while full maximum likelihood does not. More
generally, the choice of algorithm can make a substantial difference as
McCullough (1998) demonstrates when comparing Yule-Walker estimates
with maximum likelihood. Fortunately, the resulting differences are usually
small, especially for long series. However, this is not always the case as
demonstrated by the rather alarming examples in Newbold et al. (1994).
Thus the forecaster would be wise to give much more attention to the choice
of software, as recommended persuasively by McCullough (2000).

A second general requirement for good forecasting is that the forecaster
should work in an environment where good quantitative forecasting is
encouraged and appreciated. The recommendations in this book have
obviously been concerned with what might be called ‘best practice’, but it
should be recognized that real-life forecasting may not always achieve such
standards. Most academic research has concentrated on methodological
issues such as developing new forecasting methods or improvements to
existing ones. The practitioner may be more interested to ask how
forecasting practice (as opposed to theory) has changed in recent years.
Are the newer forecasting methods actually being used in a commercial
setting? How are they used? Do they work well? How are they evaluated?
What software is used? Winklhofer et al. (1996) reviewed a large number
of surveys and case studies that have been carried out in order to assess
the answers to these and other questions.

It appears that many companies still rely mainly on judgemental
methods. There are several reasons for this, including a lack of relevant data
(series are often too short to use time-series methods), lack of knowledge
and suitable software, and a lack of organizational support. Fortunately,
familiarity with quantitative methods is increasing. Sometimes, the
objectives and role of forecasting are not as clear as they should be, and
this can cause problems when interpreting forecasts. When choosing a
forecasting method, commercial users typically rate accuracy as the most
important criterion followed by factors such as ease of use, time horizon and
the number of items to forecast. However, despite the stress on accuracy, it
is not always clear how this is actually measured in practice, and many
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companies do not have routine procedures in place to assess accuracy,
highlight large forecast errors and make any resulting revisions that are
indicated. It seems that companies still need further help in choosing an
appropriate method for a given situation and that further research is needed
to establish the importance (or lack of it) of such variables as the type of
data. Winklhofer et al. (1996) go on to suggest several aspects of forecasting
practice where further research would be helpful.

Overall, we can say that the implementation of forecast methods in
practice calls for good judgement by the forecaster, good support from
the parent organization and appropriate access to good computer software.

Example 6.1 A forecasting consultancy. Suppose that a client contacts
you for help in producing forecasts for a particular time series. Your
response depends in part on whether that person is within your own
organisation or outside. Either way, you will need to meet the client
face-to-face and ask many questions in order to get sufficient background
knowledge. You should not underestimate the time required to do this.

As well as finding out exactly how the forecast will be used and what
horizon is required, you will need to find out how many observations are
available and how reliable they are, whether any explanatory variables
are available and so on. Availability of computer software can also be a
major consideration, especially if the client wants to do the actual forecast
computation. It really helps this briefing discussion if time plots of any
observed time series are available. This can lead to a fruitful discussion
about whether trend and seasonality are present, and also to related issues
such as the possible presence of calendar effects. It is also much better to
discuss the possible presence of outliers with the client rather than to jump
in with formal tests of possible outliers. There is often a well-understood
explanation for ‘funny’ values, which the client can explain to you. Similar
remarks apply to obvious discontinuities, which may on occasion make
formal forecasting unwise.

After all these preliminary matters have been addressed, the forecaster
can, at last, turn to the topic that is the subject of this chapter, namely
deciding which forecasting method should be used. In my experience, this is
often largely determined by the preliminary discussion about context, but,
if not, then the guidelines given earlier in this section should be helpful. If
no explanatory variables are available, then a univariate forecasting method
has to be used. If there are hundreds of series to forecast, then a simple
method has to be used. If there is no software available to apply a particular
method, then a decision must be taken whether to acquire such software
or use an alternative method. Apart from the operational researcher trying
to set up an inventory control system, or the econometrician trying to
forecast a key economic variable, many forecasting consultancies are likely
to fall into the general category of choosing a non-automatic univariate
method – see Section 6.5.1. Here the time plot is the key to understanding
the properties of the data and choosing an appropriate method. It really
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is the case that many series show regular trend and seasonality and can
therefore be adequately forecast using the Holt-Winters procedure. It is
also the case that many economic series show short-term correlation, when
ARIMA-modelling may be fruitful, or show exponential growth, when the
analysis of percentage changes may help.

Having chosen a method, the duties of the forecaster are still not
complete. If the client wants to compute the forecasts, the forecaster needs
to check that the client has adequate expertise to do this. Advice on
interpreting the results and producing interval forecasts should also be
given. If the forecaster is instructed to compute the forecasts, this should
be done promptly, the results explained clearly and the assumptions on
which any forecast is based should be clearly stated. The most common,
but often overlooked, assumption is that the future will continue to behave
like the past. If the client knows that this will not be the case (e.g. a
competitor is organising a sales campaign; the government is planning to
change tax rates), then appropriate modifications may be possible. It can
be instructive to give the client more than one set of forecasts based on
different, explicitly stated, assumptions.

My final piece of advice is to be ready with your excuses when the actual
values arrive to be compared with the forecasts you made! Forecast errors
have an uncanny knack of being larger than expected! �

6.6 Summary

We conclude this chapter with the following summary, general comments
and closing remarks:

1. There are many different types of forecasting problems requiring
different treatments.

2. There is no single ‘best’ method. The choice depends on such factors as
the type of data, the forecasting horizon, and, more generally, on the
context. The context may also be crucial in deciding how to implement
a method. Techniques may need to be adapted to the given situation,
and the analyst must be prepared to improvise.

3. Rather than ask which forecasting method should be used, it may be
better to ask what strategy should be used, so as to produce sensible,
robust and hopefully accurate forecasts in the particular context.

4. A good forecasting strategy starts by clarifying exactly how a forecast
will be used, and drawing a careful time plot of the data.

5. Time-series model building is generally a tricky process requiring an
iterative/interactive approach. Any fitted model is an approximation
and different approximations may be useful in different situations.

6. For univariate forecasting, structural modelling and exponential
smoothing methods are strong competitors to ARIMA modelling,
especially for data showing large trend and seasonal components.
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7. Multivariate models are still much more difficult to fit than univariate
ones. Multiple regression remains a treacherous procedure when applied
to time-series data.

8. Many observed time series exhibit non-linear characteristics, but non-
linear models may not give better out-of-sample forecasts than linear
models, perhaps because the latter are more robust to departures from
model assumptions. Claims for the superiority of neural network models
seem particularly exaggerated.

9. The ‘best’ model for fitting historical data may not be ‘best’ for
generating out-of-sample forecasts, especially if it has a complex form.
Whatever method is used, out-of-sample forecasts are generally not as
good as would be expected from within-sample fit – see Chapter 8. The
comparative accuracy of different forecasting methods should always be
assessed on out-of-sample results.

10. It is always a good idea to end with the so-called eyeball test. Plot the
forecasts on a time plot of the data and check that they look intuitively
reasonable. If not, there is more work to do!
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CHAPTER 7

Calculating Interval Forecasts

Earlier chapters (and indeed most of the forecasting literature) have been
concerned with methods for calculating point forecasts. This chapter turns
attention to methods for calculating interval forecasts, which we call
prediction intervals. After describing and reviewing some good and some
not-so-good methods for doing this, some general comments are made as
to why prediction intervals tend to be too narrow in practice to encompass
the required proportion of future observations.

7.1 Introduction

Predictions are often given as point forecasts with no guidance as to their
likely accuracy. Even more misleadingly, point forecasts are sometimes
given with an unreasonably high number of significant digits implying
spurious accuracy. Of course, point forecasts may sometimes appear
adequate; for example, a sales manager may request a single ‘target’ point
forecast of demand because he or she is unable or unwilling to cope with
the uncertainty posed by an interval forecast. The latter requires a more
sophisticated level of understanding. In fact, the sales manager, whether
he or she likes it or not, will typically have to face the diametrically
opposed risks involved in deciding how much stock to manufacture. Too
much will result in high inventory costs, while too little may lead to
unsatisfied demand and lost profits. Other forecast users often face a similar
quandary and so the provision of interval forecasts is helpful to many
forecast users even though it may raise potentially awkward questions
about the assessment of risk, the preparation of alternative strategies for
different possible outcomes, and so on. Thus most forecasters do realize the
importance of providing interval forecasts as well as (or instead of) point
forecasts so as to:

(i) Assess future uncertainty.

(ii) Enable different strategies to be planned for the range of possible
outcomes indicated by the interval forecast.

(iii) Compare forecasts from different methods more thoroughly.

Point (iii) above raises the question as to how forecasts should be compared.
For example, is a narrower interval forecast necessarily better? We see later
on that the answer is NO. I suggest that the provision of realistic interval
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forecasts enables the analyst to explore different scenarios based on different
assumptions more carefully.

7.1.1 Terminology

The first obvious question is “What is an interval forecast”? An interval
forecast usually consists of an upper and lower limit between which a
future value is expected to lie with a prescribed probability. The limits are
sometimes called forecast limits (Wei, 1990) or prediction bounds (Brockwell
and Davis, 1991, p. 182), while the interval is sometimes called a confidence
interval (e.g. Granger and Newbold, 1986) or a forecast region (Hyndman,
1995). This book prefers the more widely used term prediction interval (e.g.
Abraham and Ledolter, 1983; Bowerman and O’Connell, 1987; Chatfield,
1996a; Harvey, 1989), both because it is more descriptive and because
the term ‘confidence interval’ is usually applied to estimates of (fixed but
unknown) parameters. In contrast, a prediction interval (abbreviated P.I.)
is an estimate of an (unknown) future value which can be regarded as a
random variable at the time the forecast is made. This involves a different
sort of probability statement to a confidence interval as discussed, for
example, by Hahn and Meeker (1991, Section 2.3) in a non-time-series
context.

7.1.2 Some reasons for neglect

Given their importance, it is perhaps surprising and rather regrettable that
many companies do not regularly produce P.I.s (e.g. Dalrymple, 1987), and
that most economic predictions are still given as a single value (though this
is slowly changing). Several reasons can be suggested for this, namely:

(i) The topic has been rather neglected in the statistical literature.
Textbooks on time-series analysis and forecasting generally give
surprisingly scant attention to interval forecasts and little guidance
on how to compute them, except perhaps for regression and ARIMA
modelling. There are some relevant papers in statistical and forecasting
journals, but they can be demanding, unhelpful or even occasionally
misleading or even wrong. This chapter attempts to rectify this problem
by developing and updating the literature review given by Chatfield
(1993). In particular, the chapter incorporates the research described by
Chatfield (1996b) concerning the effects of model uncertainty on forecast
accuracy, and hence on the the width of P.I.s. The recent summary in
Chatfield (2001) is at a lower mathematical level.

(ii) Another reason why interval forecasts are rarely computed in practice is
that there is no generally accepted method of calculating P.I.s except for
procedures based on fitting a probability model for which the theoretical
variance of forecast errors can be readily evaluated.

(iii) Theoretical P.I.s are difficult orimpossible to evaluate for many
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econometric models, especially multivariate models containing many
equations or which depend on non-linear relationships. In any case, when
judgemental adjustments are made during the forecasting process (e.g. to
forecast exogenous variables or to compensate for anticipated changes
in external conditions), it is not clear how the analyst should make
corresponding adjustments to interval forecasts.

(iv) A forecasting method is sometimes chosen for a group of series (e.g. in
inventory control) in a somewhat ad hoc way, by using domain knowledge
and the obvious common properties of the various series (e.g. seasonal
or non-seasonal). In this sort of situation, no attempt is made to find a
probability model for each individual series. Then it is not clear if P.I.s
should be based on the model, if any, for which the method is optimal.
In other cases a method may be selected which is not based explicitly,
or even implicitly, on a probability model, and it is then unclear how to
proceed.

(v) Various ‘approximate’ procedures for calculating P.I.s have been
suggested, but there are justified doubts as to their validity.

(vi) Empirically based methods for calculating P.I.s, which are based
on within-sample residuals rather than on theory, are not widely
understood, and their properties have been little studied.

(vii) Various methods involving some form of resampling (see Section 7.5.6)
have been suggested in recent years but have, as yet, been little used in
practice.

(viii) Some software packages do not produce P.I.s at all, partly because
of (i) to (iv) above. Others produce them for regression and ARIMA
modelling only or use ‘approximate’ formulae which are invalid.

(ix) Whatever method is used to compute P.I.s, empirical evidence suggests
they will tend to be too narrow on average. This is particularly true for
methods based on theoretical formulae, though less so for empirically
based and resampling methods. The fact that P.I.s are not well calibrated
in general is another reason why forecast users may not compute P.I.s,
or, if they do, may not trust them.

7.1.3 Computing a simultaneous prediction region

This chapter concentrates attention on computing a P.I. for a single
observation at a single time horizon. It does not cover the more difficult
problem of calculating a simultaneous prediction region for a set of
related future observations, either forecasts for a single variable at different
horizons, or forecasts for different variables at the same horizon. Thus if the
analyst computes a 95% P.I. for a particular variable for every month over
the next year, the overall probability that at least one future observation
will lie outside its P.I. is (much) greater than 5%, and specialized methods
are needed to evaluate such a probability. The reader is referred to
Ravishankar et al. (1987, 1991) and Lütkepohl (1993, Section 2.2.3).
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7.1.4 Density forecasts and fan charts

One topic, closely related to the computation of P.I.s, is that of finding the
entire probability distribution of a future value of interest. This is called
density forecasting. This activity is easy enough for linear models with
normally distributed innovations, when the density forecast is typically
taken to be a normal distribution with mean equal to the point forecast and
variance equal to that used in computing a prediction interval. Conversely,
given the density forecast, it is easy to construct prediction intervals for
any desired level of probability.

A rather different situation arises when the forecast error distribution
is not normal. Then density forecasting is more difficult, but seems likely
to become more prevalent as it is more rewarding in the non-normal case.
One particular application area for non-normal density forecasting is in
forecasting volatility, which is important in risk management. When the
forecast error distribution is not normal, it may not be possible to compute
density forecasts analytically, and so effort has been expended looking
at alternative ways of estimating the different percentiles, or quantiles,
of the conditional probability distribution of future values (e.g. Taylor,
1999; Taylor and Bunn, 1999). For example, if the 5th percentile and 95th
percentile can be estimated, then a 90% prediction interval lies between
these two values. An up-to-date review of density forecasting is given by
Tay and Wallis (2000), together with several more specialist articles, in a
special issue of the Journal of Forecasting (Volume 19, No. 4, July 2000).

Figure 7.1. A fan chart showing prediction intervals for U.K. price
inflation (%) up to 2 years ahead from 1997, Q1. The darkest strip covers
10% probability and the lightest covers 90%.
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One interesting development in economic forecasting is the production
of what are called fan charts. The latter may be thought of as being
somewhere between a single prediction interval and a density forecast. The
idea is to construct several prediction intervals for different probabilities
(e.g. 10%, 30%, 50%, 70%, and 90%), and plot them all on the same
graph using different levels of shading to highlight different probabilities.
Darker shades are used for central values and lighter shades for outer
bands which cover less likely values. If plotted for several steps ahead, the
intervals typically ‘fan out’ as the forecast horizon increases. Fan charts
could become a valuable tool for presenting the uncertainty attached to
forecasts, especially when the loss function is asymmetric or the forecasts
errors are not Gaussian. The origin of fan charts is unclear but they are
implicit in Figures 3 and 4 in Thompson and Miller (1986) which give
50% and 90% prediction intervals with shading. Wallis (1999) reviews the
work on fan charts carried out by the Bank of England and gives some nice
examples, one of which is copied in Figure 7.1. Note how the prediction
intervals get wider as the forecast horizon increases.

7.2 Notation

As in earlier chapters, an observed time series, containing N observations,
is denoted by x1, x2, . . . , xN , and is regarded as a finite realization of a
stochastic process {Xt}. The point forecast of XN+h made conditional on
data up to time N for h steps ahead will be denoted by X̂N (h) when
regarded as a random variable, and by x̂N (h) when it is a particular value
determined by the observed data.

The forecast error conditional on the data up to time N and on the
particular forecast which has been made, is given by

eN (h) = XN+h − x̂N (h) (7.2.1)

which is of course a random variable even though x̂N (h) is not. In future we
simply call this the conditional forecast error. The observed value of eN (h),
namely (xN+h− x̂N (h)), may later become available. In Section 7.4 we also
refer to the unconditional forecast error, namely EN (h) = (XN+h−X̂N (h))
where both terms on the RHS of the equation are random variables, and
so it is arguably more precise to write eN (h) as

eN (h) = {XN+h − x̂N (h) | data up to time N } (7.2.2)

It is important to understand the distinction between the out-of-sample
forecast errors, eN (h), the fitted residuals (or within-sample ‘forecast’
errors) and the ‘error’ terms (or innovations) arising in the mathematical
representation of the model.

The within-sample one-step-ahead observed ‘forecasting’ errors, namely
[xt − x̂t−1 (1) ] for t = 2, 3, . . . , N , are the residuals from the fitted model
as they are the differences between the observed and fitted values. They
will not be the same as the true model innovations because the residuals
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depend on estimates of the model parameters and perhaps also on estimated
starting values. They are also not true forecasting errors when the model
parameters (and perhaps even the form of the model) have been determined
from all the data up to time N .

As in earlier chapters, we typically use {εt} to denote the innovations
process so that a model with additive innovations can generally be
represented by

Xt = µt + εt (7.2.3)

where µt describes the predictable part of the model. For example, the
predictable part of an AR model is the linear combination of lagged values.
Engineers typically refer to µt as the signal at time t and call {εt} the
noise. The innovations, or noise, are usually assumed to be a sequence of
independent normally distributed random variables with zero mean and
constant variance σ2

ε .
If the analyst has found the ‘true’ model for the data, and if it does

not change in the future, then it may seem reasonable to expect the one-
step-ahead out-of-sample forecast errors to have similar properties to the
residuals, while the variance of h-steps-ahead out-of-sample forecast errors
will get larger as the horizon gets longer in a way that may be determined by
theory from the within-sample fit. In practice, the out-of-sample forecast
errors tend to be larger than expected from within-sample fit, perhaps
because the underlying model has changed. We return to this point later.

7.3 The need for different approaches

We have seen that time-series forecasting methods come in a wide variety
of forms. They can helpfully be categorized as univariate or multivariate,
as automatic or non-automatic, and as methods which involve fitting an
optimal probability model, and those which do not. The latter distinction
is particularly useful when computing P.I.s.

In Chapter 6 we saw that the choice of forecasting method depends on a
variety of factors such as the objectives and the type of data. We also saw
that the results of previous forecasting competitions apply mainly to the
use of automatic methods on large groups of disparate series and need not
generally apply when forecasting a single series or a large homogeneous
group of series (such as sales of similar items in the same company).
Thus the analyst still has the difficult task of choosing a method using
background knowledge, a preliminary examination of the data, and perhaps
a comparative evaluation of a short list of methods.

Given such a wide range of methods, strategies and contexts, it can be
expected that a variety of approaches will be needed to compute P.I.s,
and this is indeed the case. In particular, P.I.s for a model-based method
can often be computed using theoretical results based on the fitted model.
However, for ad hoc methods, P.I.s may need to be based on the empirical
properties of the residuals. The various approaches will be introduced in
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Section 7.5. All such methods require the analyst to assess the size of
prediction errors, and so we first look at ways of doing this.

7.4 Expected mean square prediction error

The usual way of assessing the uncertainty in forecasts of a single variable
is to calculate the mean square error for the h-steps-ahead prediction given
by E[eN (h)2]. This quantity is described by the phrase Prediction Mean
Square Error, which will henceforth be abbreviated to PMSE. If the forecast
is unbiased, meaning that x̂N (h) is the mean of the predictive distribution
(i.e. the conditional expectation of XN+h given data up to time N), then
E[eN (h)] = 0 and E [eN (h)2 ] = Var [eN (h) ]. Forecasters often assume
unbiasedness (explicitly or implicitly) and work with the latter quantity
when computing P.I.s – see (7.5.1) below. For many linear models, such as
ARMA models, the MMSE point forecast will indeed be unbiased and so
much of the literature is devoted to evaluating the PMSE as the forecast
error variance.

A potential pitfall here is to think that the quantity required to assess
forecast uncertainty is the variance of the forecast rather than the variance
of the forecast error. In fact, given data up to time N and a particular
method or model, the forecast x̂N (h) will be determined exactly and hence
have a conditional variance of zero, whereas XN+h and eN (h) are random
variables, albeit conditioned by the observed data.

At first sight, the evaluation of expressions such as E [eN (h)2 ] or
Var [eN (h) ] may seem to pose no particular problems. In fact, it is
not always clear how such expectations should be evaluated and what
assumptions should be made. Textbooks rarely consider the problem
thoroughly, if at all, though Kendall and Ord (1990, Chapter 8) is a partial
exception. There have been a number of technically difficult papers on
different aspects of the problem, but they give few numerical illustrations,
little qualitative comment and say little or nothing about the construction
of P.I.s, which should surely be one of the main objectives.

Consider for simplicity the zero-mean AR(1) process given by

Xt = αXt−1 + εt (7.4.1)

where {εt} are independent N(0, σ2
ε). Assuming complete knowledge of the

model, including the values of α and σ2
ε , it can be shown (Box et al., 1994,

Equation 5.4.16) that

E[eN (h)2] = σ2
ε(1 − α2h)/(1 − α2) (7.4.2)

This will be called the ‘true-model’ PMSE. Formulae for ‘true-model’
PMSEs can readily be derived for many types of time-series model (see
Section 7.5.2).

In practice, even if a model is assumed known, the model parameters
will not be known exactly and it will be necessary to replace them with
sample estimates when computing both point and interval forecasts. Thus
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the point forecast x̂N (h) will be α̂hxN rather than αhxN . When computing
interval forecasts, the PMSE or forecast error variance will also need to be
estimated. Even assuming that the true model is known a priori (which it
will usually not be), there will still be biases in the usual estimate obtained
by substituting sample estimates of the model parameters and the residual
variance into the true-model PMSE formula (Ansley and Newbold, 1981).
Restricting attention to the case h = 1 for simplicity, and conditioning on
XN = xN , we consider eN (1) = XN+1 − x̂N (1). If the model parameters
were known, then x̂N (1) would equal αxN and eN (1) would reduce to εN+1,
but as the parameters are not known, we find

eN (1) = XN+1 − x̂N (1) = αxN +εN+1−α̂xN = (α−α̂)xN +εN+1 (7.4.3)

Finding the expectation of the square of expressions like this is not easy
and the rest of this section considers the effect of parameter uncertainty on
estimates of the PMSE. We assume throughout that parameter estimates
are obtained by a procedure which is asymptotically equivalent to maximum
likelihood.

First we look at the expected value of eN (1) rather than its square.
Looking back at (7.4.3), for example, it is clear that if xN is fixed and α̂
is a biased estimator1 for α, then the expected value of eN (1) need not be
zero (Phillips, 1979). If, however, we average over all possible values of xN ,
as well as over εN , then it can be shown that the expectation will indeed
be zero giving an unbiased forecast. The former operation is conditional
on xN while the latter involves the unconditional forecast error, namely
EN+1(1) = (XN+1 − X̂N (1)). It is important to be clear what one is, or is
not, conditioning on and it could also be useful to have additional notation
to distinguish between forecasts involving true and estimated parameters.
There has been much confusion because of a failure to distinguish the
different types of situation.

The distinction between conditional and unconditional expectations can
also be important when computing PMSE. Many authors (e.g. Yamamoto,
1976, for AR processes; Baillie, 1979, and Reinsel, 1980, for vector AR
processes; and Yamamoto, 1981, for vector ARMA processes) have looked
at the PMSE by averaging over the distribution of future innovations (e.g.
εN+1 in (7.4.3)) and over the distribution of the current observed values,
(e.g. xN in (7.4.3)), to give the unconditional PMSE. This approach was also
used by Box et al. (1994, Appendix A7.5) to assess the effect of parameter
uncertainty on the PMSE when they concluded that correction terms would
generally be of order 1/N . The unconditional PMSE can be useful to
assess the ‘success’ of a forecasting method on average. However, if used to
compute P.I.s, it effectively assumes that the observations used to estimate
the model parameters are independent of those used to construct the
forecasts. While this assumption can be justified asymptotically, Phillips

1 Did you realize, for example, that the least-squares estimator for α can have a sizeable
bias for short series (Ansley and Newbold, 1980)?
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(1979) points out that “it is quite unrealistic in practical situations” and
goes on to look at the distribution of the forecast errors for the AR(1) case
conditional on the final observed value, xN . The resulting mean square
error is called the conditional PMSE.

Phillips’ results for the conditional PMSE of an AR(1) process have been
extended, for example, by Fuller and Hasza (1981) to AR(p) processes and
by Ansley and Kohn (1986) to state-space models. As the general ARMA
model can be formulated as a state-space model, the latter results also
cover ARMA models (and hence AR processes) as a special case. Note that
PMSE formulae for regression models are typically of conditional form and
do allow for parameter uncertainty – see Section 7.5.2.

From a practical point of view, it is important to know if the effect
of incorporating parameter uncertainty into PMSEs has a non-trivial
effect. Unfortunately, the literature appears to have made little attempt
to quantify the effect.

Consider, for example, a K-variable vector AR(p) process, with known
mean value. It can be shown that the ‘true-model’ PMSE at lead time one
has to be multiplied by the correction factor [1 + Kp/N ] + o(1/N) to give
the corresponding unconditional PMSE allowing for parameter uncertainty
(e.g. Lütkepohl, 1993, Equation 3.5.13). Thus the more parameters there
are, and the shorter the series, the greater will be the correction term
as would intuitively be expected. When N = 50,K = 1 and p = 2, for
example, the correction to the square root of PMSE is only 2%. Findley’s
(1986, Table 3.1) bootstrapping results also suggest the correction term
is often small, though results from more complex models suggest it can
be somewhat larger. When N = 30,K = 3 and p = 2, for example, the
correction to the square root of PMSE rises to 6%. However, the effect on
probabilities is much smaller (see Lütkepohl, 1993, Table 3.1). This may be
readily demonstrated with the standard normal distribution where 95% of
values lie in the range ±1.96. Suppose the standard deviation is actually
6% larger because the above correction factor has not been used. Then
the percentage of values lying inside the range ±(1.96 × 1.06) or ±2.08
is 96.2% rather than 95%. Thus the change in the probability coverage
is relatively small. This non-linear relation between corrections to square
roots of PMSEs and corrections to the resulting probabilities is worth
noting.

In the AR(p) case, the formula for the conditional one-step-ahead PMSE
will also involve the last p observed values. In particular, when p = 1, the
correction term involves an expression proportional to x2

N . Thus if the last
observed value is ‘large’, then the conditional PMSE will be inflated which
is also intuitively reasonable.2

2 There is a natural analogy here with standard linear regression where the P.I. for
a future observation on the response variable at a new value of the explanatory
variable, say x∗, relies on an expression for the conditional PMSE which involves
a term proportional to (x∗ − x̄ )2 (e.g. Weisberg, 1985, Equation 1.36), where x̄ is the
average x-value in the sample used to fit the model.
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More work needs to be done to assess the size of correction terms in
the conditional case for time-series models, but few authors actually use
the conditional PMSE in computing P.I.s (except when using regression
models), presumably because of the difficulty involved in evaluating the
conditional expression and in having to recompute it every time a new
observation becomes available.

Overall, the effect of parameter uncertainty seems likely to be of a smaller
order of magnitude in general than that due to other sources, notably the
effects of model uncertainty and the effect of errors and outliers (see Section
7.7). Thus I agree with Granger and Newbold (1986, p. 158) that “for most
general purposes, it should prove adequate to substitute the parameter
estimates” into the true-model PMSE. However, for models with a large
number of parameters in relation to the length of the observed series, this
strategy could lead to a more serious underestimate of the length of P.I.s
(Luna, 2000).

7.5 Procedures for calculating P.I.s

This section reviews various approaches for calculating P.I.s.

7.5.1 Introduction

Most P.I.s used in practice are essentially of the following general form. A
100(1 − α)% P.I. for XN+h is given by :

x̂N (h) ± zα/2

√
Var[eN (h)] (7.5.1)

where zα/2 denotes the percentage point of a standard normal distribution
with a proportion α/2 above it, and an appropriate expression for
Var[eN (h)] is found from the method or model being used.

As the P.I. in (7.5.1) is symmetric about x̂N (h), it effectively assumes
that the forecast is unbiased with PMSE equal to the forecast error variance
(so that E[eN (h)2] = Var[eN (h)]). The formula also assumes that the
forecast errors are normally distributed.

When Var[eN (h)] has to be estimated (as it usually must), some authors
(e.g. Harvey, 1989, p. 32) suggest replacing zα/2 in (7.5.1) by the percentage
point of a t-distribution with an appropriate number of degrees of freedom,
but this makes little difference except for very short series (e.g. less than
about 20 observations) where other effects, such as model and parameter
uncertainty, are likely to be more serious.

The normality assumption may be true asymptotically but it can be
shown that the one-step-ahead conditional forecast error distribution will
not in general be normal, even for a linear model with normally distributed
innovations, when model parameters have to be estimated from the same
data used to compute forecasts. This also applies to h-steps-ahead errors
(Phillips, 1979), although the normal approximation does seem to improve
as h increases, at least for an AR(1) process. Looking back at (7.4.3), for
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example, we have already noted that the expected value of the conditional
distribution of eN (1) need not be zero, and Phillips (1979) shows that the
conditional distribution will generally be skewed. This is another point to
bear in mind when computing P.I.s.

Whether the departure from normality caused by parameter uncertainty
is of practical importance seems doubtful. The only guidance offered by
Phillips (1979) is that when N is ‘small’ (how small?), the correction
to the normal approximation can be ‘substantial’, and that the normal
approximation becomes less satisfactory for the AR(1) process in (7.4.1) as
the parameter α increases in size. However, the correction term is of order
1/N and seems likely to be of a smaller order of magnitude in general than
that due to model uncertainty, and to the effect of errors and outliers and
other departures from normality in the distribution of the innovations. The
possibility of departures from normality for reasons other than having to
estimate model parameters is considered in Section 7.7.

Rightly or wrongly, (7.5.1) is the formula that is generally used to
compute P.I.s, though preferably after checking that the underlying
assumptions (e.g. forecast errors are approximately normally distributed)
are at least reasonably satisfied. For any given forecasting method, the
main problem will then lie with evaluating Var[eN (h)].

7.5.2 P.I.s derived from a fitted probability model

If the true model for a given time series is known, then it will usually
be possible to derive minimum MSE forecasts, the corresponding PMSE
and hence evaluate P.I.s, probably using (7.5.1). The practitioner typically
ignores the effect of parameter uncertainty and acts as though the estimated
model parameters are the true values. Thus it is the ‘true-model’ PMSE
which is usually substituted into (7.5.1).

Formulae for PMSEs are available for many classes of model. Perhaps
the best-known equation is for Box-Jenkins ARIMA forecasting, where the
PMSE may be evaluated by writing an ARIMA model in infinite-moving-
average form as

Xt = εt + ψ1εt−1 + ψ2εt−2 + . . . (7.5.2)

– see Equation (3.1.3). Then eN (h) = [XN+h − X̂N (h)] can be evaluated
using Equation (4.2.3) to give eN (h) = εN+h +

∑h−1
j=1 ψjεN+h−j so that

Var[eN (h)] = [1 + ψ2
1 + . . . + ψ2

h−1]σ
2
ε (7.5.3)

This is a ‘true-model’ PMSE and we would of course have to insert
estimates of {ψi} and σ2

ε into this equation in order to use it in practice.3

3 Note that (7.5.3) involves a finite sum and so will converge even when the sequence
of ψ’s does not. For a non-stationary ARIMA model, the values of ψj for any finite j
can be calculated (even though the whole series diverges) by equating coefficients of
Bj in the equation θ(B) = φ(B)ψ(B) using the notation of Section 3.1.4.
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The equations (7.5.1) and (7.5.3) are sometimes the only equations for P.I.s
given in textbooks.

Formulae for PMSEs can also be derived for vector ARMA models (e.g.
Lütkepohl, 1991, Sections 2.2.3 and 6.5) and for structural state-space
models (Harvey, 1989, Equation 4.6.3). PMSE formulae are also available
for various regression models (e.g. Weisberg, 1985, Section 1.7; Miller, 1990,
Section 6.2; Kendall and Ord, 1990, Equation 12.32), but these formulae do
typically allow for parameter uncertainty and are conditional in the sense
that they depend on the particular values of the explanatory variables from
where a prediction is being made. One application of these regression results
is to the (global) linear trend model when the explanatory variable is time.

Finally, we mention two classes of model where PMSE formulae may
not be available. For some complicated simultaneous equation econometric
models, it is not possible to derive Var[eN (h)], particularly when some of
the equations incorporate non-linear relationships and when judgement is
used in producing forecasts (for example, in specifying future values of
exogenous variables). Then an empirically based approach must be used
as in Sections 7.5.5 and 7.5.6. Equation (7.5.1) is also inappropriate for
many non-linear models. In Section 4.2.4, we noted that it can be difficult
to evaluate conditional expectations more than one step ahead, and that
the forecast error variance need not necessarily increase with lead time.
Moreover, the predictive distribution will not in general be normal (or
Gaussian) and may, for example, be bimodal. In the latter case a single
point forecast could be particularly misleading (see Tong, 1990, Figure
6.1) and a sensible P.I. could even comprise two disjoint intervals. Then
the description forecast region, suggested in Hyndman (1995), seems more
appropriate than the term P.I.

For stochastic volatility and ARCH models, which aim to model the
changing variance of a given variable rather than the variable itself, there
has been little work on the computation of P.I.s. for the original variable.
Most work has concentrated on forecasting the changing variance rather
than using this to construct P.I.s for the original variable. The conditional
predictive distribution of the original variable will not in general be normal,
and so the problem is not an easy one and will not be pursued here.

Thus for non-linear models, there may be little alternative to attempting
to evaluate the complete predictive distribution even though this may be
computationally demanding. Note that economists also work with what
they call non-linear models, though they are different in kind from the
mainly univariate models considered in Tong (1990), in that they are
typically multivariate and involve non-linear power transformations. Even
in the univariate case, the application of a power transformation (e.g. taking
logs to make a variable exhibit additive seasonality) may introduce non-
linearities (see Section 7.5.8).

Most of the above assumes that the ‘true model’ for the given time series
is known. In practice, the true model is not known and so the fitted model is
typically formulated from the data. This is usually done by pre-specifying a
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broad class of models, such as ARIMA or state-space models, and choosing
the most appropriate model from within that class. Unfortunately, the
practitioner then typically acts as though the selected model was known
a priori and is the true model. This inevitably leads to over-optimism in
regard to the accuracy of the forecasts as will be explored more fully in
Chapter 8. Put another way, this means that P.I.s calculated using PMSEs
for the best-fitting model may be poorly calibrated. For example, it is
typically found that more than 5% of future observations will lie outside a
95% P.I.

Note that models are customarily fitted by minimizing one-step-ahead
‘errors’ in some way even when h-steps-ahead forecasts are required. This
is valid provided one has specified the correct model, but it is more robust
to fit models using a fit statistic appropriate to the forecast requirement,
meaning that within-sample h-steps-ahead errors should be minimized.
Further comments on this point are given in Section 8.5 – see especially
Example 8.6.

7.5.3 P.I.s derived by assuming that a method is optimal

A forecasting method is sometimes selected without applying any formal
model identification procedure (although one should certainly choose a
method which does or does not cope with trend and seasonality as
appropriate). The question then arises as to whether P.I.s should be
calculated by some empirical procedure (see Sections 7.5.5 – 7.5.6) or by
assuming that the method is optimal in some sense.

Consider exponential smoothing (ES), for example. This well-known
forecasting procedure can be used for series showing no obvious trend or
seasonality without trying to identify the underlying model. Now ES is
known to be optimal for an ARIMA(0, 1, 1) model or for the random walk
plus noise model, and both these models lead to the PMSE formula (Box
et al., 1994, p. 153; Harrison, 1967)

Var[eN (h)] = [1 + (h− 1)α2]σ2
e (7.5.4)

where α denotes the smoothing parameter and σ2
e = Var[en(1)] denotes the

variance of the one-step-ahead forecast errors. Should this formula then be
used in conjunction with (7.5.1) for ES even though a model has not been
formally identified? My answer would be that it is reasonable (or at least
not unreasonable) to use (7.5.4) provided that the observed one-step-ahead
forecast errors show no obvious autocorrelation and provided that there are
no other obvious features of the data (e.g. trend) which need to be modelled.

There are, however, some P.I. formulae for ES which I would argue should
be disregarded. For example, Abraham and Ledolter (1983) follow Brown
(1963) in deriving formulae for various smoothing methods based on a
general regression model. In particular, it can be shown that ES arises
from the model

Xt = β + εt (7.5.5)
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when β is estimated by discounted least squares and expressed as an
updating formula. Then P.I.s can be found for model (7.5.5) assuming
that β is constant. Although these formulae can take account of the
sampling variability in β̂, they have the unlikely feature that they are of
constant width as the lead time increases (e.g. Abraham and Ledolter,
1983, Equation 3.60; Bowerman and O’Connell, 1987, p. 266). Intuitively
this is not sensible. It arises because β is assumed constant in (7.5.5). But
if this were true, then ordinary least squares should be used to estimate
it. The use of discounted least squares suggests that β is thought to be
changing. If indeed β follows a random walk, then we are back to the
random walk plus noise model for which (7.5.4) is indeed appropriate.
More generally, the many formulae given in the literature based on General
Exponential Smoothing derived by applying discounted least squares to
global models such as (7.5.5) should be disregarded, since ordinary least
squares is optimal for a global model (Abraham and Ledolter, 1983, p. 126).
As a related example, Mckenzie (1986) derives the variance of the forecast
error for the Holt-Winters method with additive seasonality by employing
a deterministic trend-and-seasonal model for which Holt-Winters is not
optimal. These results should also be disregarded.

Some forecasting methods are not based, even implicitly, on a probability
model. What can be done then? Suppose we assume that the method is
optimal in the sense that the one-step-ahead errors are uncorrelated (this
can easily be checked by looking at the correlogram of the one-step-ahead
errors; if there is correlation, then there is more structure in the data which
it should be possible to capture so as to improve the forecasts). From the
updating equations, it may be possible to express eN (h) in terms of the
intervening one-step-ahead errors, namely eN (1), eN+1(1), . . . , eN+h−1(1).
If we assume that the one-step-ahead errors are not only uncorrelated but
also have equalvariance, then it should be possible to evaluate Var[eN (h)]
in terms of Var[eN (1)]. It may also be possible to examine the effects of
alternative assumptions about Var[eN (1)].

Yar and Chatfield (1990) and Chatfield and Yar (1991) have applied
this approach to the Holt-Winters method with additive and multiplicative
seasonality, respectively. In the additive case it is encouraging to find that
the results turn out to be equivalent to those resulting from the seasonal
ARIMA model for which additive Holt-Winters is optimal (although this
model is so complicated that it would never be identified in practice).
The results in the multiplicative case are of particular interest because
there is no ARIMA model for which the method is optimal. Chatfield
and Yar (1991) show that, assuming one-step-ahead forecast errors are
uncorrelated, Var[eN (h)] does not necessarily increase monotonically with
h. Rather P.I.s tend to be wider near a seasonal peak as would intuitively
be expected. More self-consistent results are obtained if the one-step-ahead
error variance is assumed to be proportional to the seasonal effect rather
than constant. The phenomenon of getting wider P.I.s near a seasonal
peak is not captured by most alternative approaches (except perhaps
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by using a variance-stabilizing transformation). The lack of monotonicity
of Var[eN (h)] with h is typical of behaviour resulting from non-linear
models (see comments in Section 7.5.2 and Tong, 1990, Chapter 6) and
arises because multiplicative Holt-Winters is a non-linear method in that
forecasts are not a linear combination of past observations. Note that Ord
et al. (1997) have investigated a dynamic nonlinear state-space model
for multiplicative Holt-Winters which allows model-based P.I.s to be
calculated.

7.5.4 P.I.s based on ‘approximate’ formulae

For some forecasting methods and models, theoretical P.I. formulae are
not available. As one alternative, a variety of approximate formulae have
been suggested, either for forecasting methods in general or for specific
methods. Because of their simplicity, they have sometimes been used even
when better alternatives are available. This is most unfortunate given that
the approximations turn out to have poor accuracy in many cases. Some
readers may think the proposed approximations are too silly to warrant
serious discussion, but they are being used and do need to be explicitly
repudiated.

(i) One general ‘approximate’ formula for the PMSE is that

Var[eN (h)] = hσ2
e (7.5.6)

where σ2
e = Var[eN (1)] denotes the variance of the one-step-ahead

forecast errors. This formula is then substituted into (7.5.1) to give
P.I.s. Equation (7.5.6) is given by Makridakis et al. (1987, Equation 1),
Lefrancois (1989, Equation 1) and verbally by Makridakis and Winkler
(1989, p. 336). It is stated to depend on an unchanging model having
independent normal errors with zero mean and constant variance. In
fact, these assumptions are not enough and (7.5.6) is true only for a
random walk model (Koehler, 1990). For other methods and models it
can be seriously in error (e.g. see Table 7.1 in Section 7.6 and Yar and
Chatfield, 1990) and should not be used.

(ii) Equation (7.5.6) may have arisen from confusion with a similar-looking
approximation for the error in a cumulative forecast (see Lefrancois,
1990, and the reply by Chatfield and Koehler, 1991). Let

eC
N (h) = eN (1) + . . . + eN (h) (7.5.7)

= cumulative sum of forecast errors at time N over next h periods.

Brown (1963, p 239) suggests verbally that

Var[eC
N (h)] =

h∑
i=1

Var[eN (i)] (7.5.8)

and by assuming that Var[eN (i)] is a constant (!??) it is but a short step
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to the approximation (e.g. Johnston and Harrison, 1986, p. 304) that

Var[eC
N (h)] = hσ2

e (7.5.9)

However, (7.5.8) ignores the correlations between errors in forecast made
from the same time origin and Brown’s statement has been the source of
much confusion. There is no theoretical justification for (7.5.9), which,
like (7.5.6), can give very inadequate results.

(iii) Brown (1967, p. 144) also proposes an alternative approximation for
the variance of the cumulative error, namely that

Var[eC
N (h)] = (0.659 + 0.341h)2σ2

e (7.5.10)

This approximation, like (7.5.6) and (7.5.9), cannot possibly be accurate
for all methods and models and in some cases is seriously inadequate.
Makridakis et al. (1987, Equation 2) have cited Brown’s formula but
applied it, not to the cumulative error, but to a single forecast error, so
that they effectively take

Var[eN (h)] = (0.659 + 0.341h)2σ2
e (7.5.11)

This appears to be a simple error from misreading Brown’s book
and is another example of the confusion between single-period and
cumulative forecasts (Chatfield and Koehler, 1991). Equation (7.5.11)
should therefore not be used.

(iv) Only one example of an approximation aimed at a specific method
will be given here. Bowerman and O’Connell (1987, Section 6.4) give
approximate formulae for P.I.s for the Holt-Winters method. The
formulae are rather complicated and depend on the maximum of the
three smoothing parameters. As such they appear to be producing
conservative limits in some way but the exact reasoning behind these
formulae is unclear. They are not compatible with the exact results
given by Yar and Chatfield (1990) and Chatfield and Yar (1991). (Note
that some of Bowerman and O’Connell’s (1987) formulae look unfamiliar
because they effectively estimate σe as 1.25 times the mean absolute
one-step-ahead forecasting error over the fit period which is a standard
alternative to the use of root mean square error.)

7.5.5 Empirically based P.I.s

When theoretical formulae are not available, or there are doubts about the
validity of the ‘true’ model anyway, the reader should not use the so-called
‘approximate’ formulae, but should use a more computationally intensive
approach based either on using the properties of the observed distribution
of ‘errors’, as described in this subsection, or based on simulation or
resampling methods (see Section 7.5.6).
(i) One simple empirically based type of procedure (e.g. Gilchrist, 1976,

p. 242) involves applying the forecasting method to all the past
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data, finding the within-sample ‘forecast’ errors at 1, 2, 3, . . . steps
ahead from all available time origins, and then finding the variance of
these errors at each lead time over the period of fit. Let se,h denote
the standard deviation of the h-steps-ahead errors. Then, assuming
normality, an approximate empirical 100(1−α)% P.I. for XN+h is given
by x̂N (h) ± zα/2se,h, where we replace

√
Var[eN (h)] by se,h in (7.5.1). If

N is small, zα/2 is sometimes replaced by the corresponding percentage
point of the t-distribution with ν degrees of freedom, where se,h is based
on ν degrees of freedom. However, there is no real theoretical justification
for this. A reasonably long series is needed in order to get reliable values
for se,h. Even so, it may be wise to smooth the values over neighbouring
values of h, for example, to try to make them increase monotonically
with h. The approach often seems to work reasonably well, and gives
results comparable to theoretical formulae when the latter are available
(Yar and Chatfield, 1990; Bowerman and Koehler, 1989). However, the
values of se,h can be unreliable for small N and large h, and are based on
in-sample residuals rather than on out-of-sample forecast errors. There
is evidence that the latter tend to have a larger variance – see Section
7.7. Thus P.I.s calculated in this way may be calibrated poorly (as may
P.I.s calculated in other ways).

(ii) An earlier related method (Williams and Goodman, 1971) involves
splitting the past data into two parts, fitting the method or model to
the first part and make predictions of the second part. The resulting
‘errors’ are much more like true forecast errors than those in (i) above,
especially for long series where model parameters can be estimated
with high precision. The model is then refitted with one additional
observation in the first part and one less in the second part; and so
on. For some monthly data on numbers of business telephone lines in
service, Williams and Goodman found that the distribution of forecast
errors tended to approximate a gamma distribution rather than a normal
distribution. P.I.s were constructed using the percentage points of the
empirical distribution, thereby avoiding any distributional assumptions.
Promising results were obtained. However, although the approach is
attractive in principle, it seems to have been little used in practice,
presumably because of the heavy computational demands. However, the
latter problem has not prevented developments as in Section 7.5.6, and
it may be that the Williams-Goodman method was ahead of its time
and should now be reassessed.

7.5.6 Simulation and resampling methods

This type of approach is even more computationally intensive than that
described in Section 7.5.5, but is increasingly used for the construction
of P.I.s (and many other problems). The approach can be used when
theoretical formulae are not available, for short series when only asymptotic
results are available and when there are doubts about model assumptions.
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Given a probability time-series model, it is possible to simulate both
past and future behaviour by generating an appropriate series of random
innovations and hence constructing a sequence of possible past and future
values. This process can be repeated many times, leading to a large set
of possible sequences, sometimes called pseudo-data. From such a set it
is possible to evaluate P.I.s at different horizons by finding the interval
within which the required percentage of future values lie. This approach
was tried out by Ord et al. (1997) for a particular nonlinear state-space
model underlying the multiplicative Holt-Winters method and found, for
both simulated and real data, that a simulation method of computing P.I.s
gave better coverage than alternative approximation methods. The use
of simulation is sometimes called a Monte Carlo approach. It generally
assumes that the model has been identified correctly.

Instead of sampling the innovations from some assumed parametric
distribution (usually normal), an alternative is to sample from the empirical
distribution of past fitted ‘errors’. This is called resampling or bootstrapping.
The procedure effectively approximates the theoretical distribution of
innovations by the empirical distribution of the observed residuals. Thus
it is a distribution-free approach. As for simulation, the idea is to use the
knowledge about the primary structure of the model so as to generate a
sequence of possible future values and find a P.I. containing the appropriate
percentage of future values by inspection. It may also be possible to extend
the use of resampling to forecasting methods which are not based on a
proper probability method, but rely instead on a set of recursive equations
involving observed and forecast values.

For the reader who has not come across bootstrapping before, the
term is usually used to describe the process of taking a random sample
of size n from a sample of independent observations of the same size
n, where observations are selected with replacement. This means that
some observations will occur twice in the bootstrap sample while others
will not occur at all. In a time-series context, this type of sampling
would make no sense because successive observations are not independent
but are correlated through time. This explains why time-series data are
usually bootstrapped by resampling the fitted errors (which the analyst
will hope are at least approximately independent) rather than the actual
observations. However, the reader should be aware that it is generally
more difficult to resample correlated data, such as time series, rather than
resample independent observations. Moreover, the effect of resampling the
fitted errors makes the procedure much more dependent on the choice of
model which has been fitted. Some model-free methods have been proposed
(e.g. Carlstein, 1992) but I think they are harder to understand and
technically more difficult.

The literature in this area, particularly on bootstrapping, is growing
rapidly. Veall (1989) reviews the use of computationally intensive methods
for complex econometric models, where they are particularly useful,
and gives many references. He suggests that “most applied econometric
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exercises should include bootstrapping or some other form of simulation
as a check”. Bootstrapping can, of course, be used for other aspects of
time-series-analysis such as evaluating the standard errors of estimates of
model parameters (e.g. Freedman and Peters, 1984a, 1984b), where the
normality assumption may be less critical than in the evaluation of P.I.s
(Veall, 1989, Section 3.2). However, it can be a mistake to concentrate
on departures from the secondary model assumptions (e.g. normal errors),
when departures from the primary assumptions (or specification error) can
be much more serious.

One classic simulation study reviewed by Veall (1989) is that of Fair
(1980) who showed how to assess four sources of uncertainty in forecasts
from econometric models namely (i) the model innovations; (ii) having
estimates of model parameters rather than true values; (iii) having forecasts
of exogenous variables rather than true values; and (iv) misspecification
of the model. Fair sampled from a multivariate normal distribution for
two example models, one a large (97 equations!) model and the other a
much simpler autoregressive model. Fair pointed out that assessing the
uncertainty due to misspecification is the most difficult and costly part
of model assessment and his approach rested on some rather restrictive
assumptions.

We now concentrate on references not covered by Veall (1989). Early work
on the use of resampling for calculating P.I.s (e.g. Butler and Rothman,
1980) was for regression models and not really concerned with time-series
forecasting. Freedman and Peters (1984b, Section 6) give one example of
forecasting no less than 24 years ahead and show how to compute what they
call “standard errors of forecasts”. Peters and Freedman (1985) show how
to use bootstrapping to get standard errors for multi-step-ahead forecasts
for the complex 10-equation model of Freedman and Peters (1984a). They
show that the results are more reliable for short series than those given by
the so-called delta method (Schmidt, 1977). Note that exogenous variables
are forecast “by some process external to the equation”. Bianchi et al.
(1987) discuss various simulation and resampling methods as applied to a
large macro model of the French economy involving over 20 equations.

There have been several papers which are specifically concerned with AR
models. Findley (1986) shows how to compute bootstrap estimates of both
the unconditional and conditional PMSE for an AR(p) process. As forecasts
for an AR(p) model depend on the last p observed values, Findley says that
it is the error associated with conditional predictions from sample paths
through these last p observations which is usually of most interest, but
went on to say that satisfactory methods for obtaining such sample paths
were not then available. Latterly Stine (1987) and Thombs and Schucany
(1990) have both shown how to overcome this problem for AR processes
by using the backward representation of the series conditional on the last
p observations. For example, in the zero-mean AR(1) case, fix yN equal
to the latest observation, xN , and generate backward sample paths from
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(c.f. (7.4.1) )

yt = α̂yt+1 + ε̂t (7.5.12)

for t = (N − 1), (N − 2), . . . where α̂ is the least-squares estimate of α
from the (original) observed series and ε̂t are independent samples from
the empirical distribution of the observed backward residuals. Each sample
path can then be used to re-estimate the parameter α in (7.4.1), after
which conditional bootstrap replicates of the future can be constructed
using the bootstrap estimate of α and further random drawings from
the empirical distribution of forward residuals. Full details are given
by Thombs and Schucany (1990). Stine (1987) looked at unconditional
P.I.s for AR(p) processes as well as conditional P.I.s, and carried out
various simulations. He showed that bootstrap P.I.s compare favourably
with normal-based P.I.s, particularly when the innovations are not normal
as would intuitively be expected. Thombs and Schucany (1990) also
simulated various AR(1) and AR(2) models with innovations which are
normal, exponential or a mixture of two normals. They also concluded
that bootstrap P.I.s are a useful non-parametric alternative to the usual
Box-Jenkins intervals. Masarotto (1990) also looked at bootstrap P.I.s for
AR models but appears to only have considered the unconditional (and
less interesting?) case. Most authors have assumed that the order of the
AR process is known, but Masarotto does explicitly take into account the
possibility that the order, as well as the model parameters, are generally
unknown. Masarotto presented simulation results for AR(1), AR(3) and
AR(5) processes with innovations which are normal or from the centered
extreme value distribution. One feature of interest is that innovations were
sampled not only from a parametric distribution and from the empirical
distribution of residuals, but also from a smoothed version of the latter
using a kernel density estimate. There seems to be little difference in
the results from the last two types of distribution, so that the extra
computation needed to smooth the empirical residual distribution was not
worthwhile in this case. McCullough (1994) applied bootstrapping to the
calculation of ‘forecast intervals’ for AR(p) models and found “substantial
differences between Box-Jenkins, naive bootstrapping and bias-correction
bootstrapping” though the differences look less than substantial to me.
McCullough (1996) later applied bootstrapping to the derivation of P.I.s
for multiple regression models when future-period values of exogenous
variables are not known with certainty, and claimed successful results.
Grigoletto (1998) has proposed a new method for finding P.I.s for AR
models which takes account of the additional uncertainty induced by
estimating the order of the model as well as the model parameters.

The book by Hjorth (1994) includes discussion of methods for
bootstrapping time-series, together with applications to road safety,
forecasting the stock market and meteorology. Hjorth’s work is also referred
to in Chapter 8 because of his investigation of the effects of model selection
uncertainty.
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Monte Carlo simulation has been used by Pflaumer (1988) to calculate
P.I.s for population projections by letting fertility and net immigration
rates vary as random variables with specified distributions. This is arguably
superior to the ‘alternative scenarios’ approach where high, medium and
low assumptions are made about different components leading to a range of
possible population trajectories. However, no probabilities can be attached
to the latter and a single P.I. may well be easier to interpret. An
alternative approach for a large (non-linear) econometric model, which
involves stochastic perturbation of input variables, is described by Corker
et al. (1986). Finally, we mention that Thompson and Miller (1986) also
used simulation and their paper is referred to in Sections 7.5.7 and 7.8.

As a closing comment, it should also be said that bootstrapping is not
always successful. For example, the problem of finding P.I.s for growth curve
models is difficult because of the non-linear nature of the model and because
it is not always clear how to sensibly specify the model error structure.
Meade and Islam (1995, p. 427) tried bootstrapping growth curves but
found that it gave P.I.s which were “far too narrow” and so preferred an
alternative procedure, called the ‘explicit density approach’ which gave
more plausible (asymmetric) intervals.

7.5.7 The Bayesian approach

If the analyst is willing to consider adopting a Bayesian approach, then the
following brief summary of Bayesian possibilities should be read. Although
the author of this book is not a Bayesian (meaning someone who insists
on using the Bayesian approach for every problem), a fair assessment of
the approach will be attempted. Many statisticians try to avoid labels like
‘Bayesian’ and ‘frequentist’ and adopt whatever approach seems sensible
for a particular problem.

In principle, given a suitable model, the Bayesian approach will allow
the complete probability distribution for a future value to be computed.
From this distribution it should be possible to derive interval forecasts,
either by a decision-theoretic approach along the lines of Winkler (1972),
or (more usually) by calculating symmetric intervals, using the Bayesian
version of (7.5.1), when the predictive distribution is normal. If the
predictive distribution has some other symmetric distribution (e.g. Student
t), then (7.5.1) can readily be adapted by inserting appropriate percentiles.
Unfortunately, the multi-period ahead predictive density does not have
a convenient closed form for many forecasting models, and so Bayesian
statisticians may need to use some sort of approximation when interval
forecasts are required (e.g. Thompson and Miller, 1986, Section 3).
Alternatively, it is possible to simulate the predictive distribution, rather
than try to obtain or approximate its analytic form. Thompson and
Miller (1986) compare the resulting percentiles of the simulated predictive
distribution for an AR(2) process with the Box-Jenkins P.I.s based on
(7.5.1) and (7.5.3). As the latter do not allow for parameter uncertainty,
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the Bayesian intervals are naturally somewhat wider (although they still
do not include all the ensuing observed values – see Section 7.8).

West and Harrison (1997) and Pole et al. (1994) provide a comprehensive
treatment of Bayesian forecasting based on a general class of models
called dynamic linear models. The latter are much more amenable to the
Bayesian approach than ARIMA models. Unfortunately, the two books
say little explicitly about interval forecasts although they are computed
in several examples. It seems to be assumed implicitly that the mean and
variance of the forecast distribution are substituted into (7.5.1) together
with normal or t-percentiles as appropriate. The results are variously called
‘probability limits’, ‘prediction intervals’, ‘symmetric intervals’, ‘intervals
for the one-step-ahead forecast’ and ‘forecast intervals’ by West and
Harrison (1997), and ‘uncertainty limits’ by Pole et al. (1994). If the
error terms in the observation and system equations are assumed to be
normal with known variances and if (conjugate) normal priors are assumed,
then the distribution of forecast errors will also be normal. However, the
error variances will generally be unknown (as will the parameters in the
corresponding ARIMA model) and if they are allowed to evolve as a normal
process, then a Student t-distribution will result. All in all, there are a lot
of assumptions but the identification process seems (to me) to lack the
cohesive strength of the Box-Jenkins approach. There will, of course, be
certain situations where a ‘dynamic’ or local model is indicated, but then
the non-Bayesian may prefer the conceptual approach of Harvey’s (1989)
structural modelling.

A Bayesian approach does seem very natural when the analyst decides
to rely, not on a single model (which is likely to be a good approximation
at best), but on a mixture of models. The idea for this follows on from
the well-known result that combining forecasts from different methods and
models (e.g. by averaging) generally gives more accurate point forecasts on
average (e.g. Clemen, 1989) than any of the constituent point forecasts.
Unfortunately, there is no simple analytic way of computing P.I.s for a
combined forecast of this type, although it should be possible to use some
sort of resampling method or an empirical approach (Taylor and Bunn,
1999). An alternative to combining forecasts in a more-or-less ad hoc
way is to use Bayesian methods to find a sensible set of models that
appear plausible for a given set of data, and then to average over these
models in an appropriate way. While similar in spirit, this approach has
a stronger theoretical foundation than simply combining forecasts, and
is called Bayesian model averaging. It will be reviewed in Section 8.5.3,
where the emphasis will be on its use for overcoming the effects of model
uncertainty. Here we simply present a brief summary of the main example
in Draper (1995, Sections 2.2 and 6.1) which is particularly concerned with
getting a sensible P.I.

Draper’s example is concerned with forecasting oil prices, and is
particularly instructive in demonstrating that conditioning on a single
model or scenario can seriously underestimate the uncertainty in forecasts,
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because the effects of model uncertainty are not allowed for. The problem
was to forecast the 1986 price per barrel of crude oil from data up to
1980. Ten different econometric models were considered together with
twelve different scenarios embodying a variety of assumptions about the
input to the models, such as low demand elasticity or a drop in OPEC
production. Thus 120 different point forecasts could be made, which could
then be averaged across a particular scenario, across a particular model,
or across all scenarios and models. The point forecasts averaged across
a particular scenario ranged from $29 to $121. Although this range is
(staggeringly?) high, the P.I.s for an individual scenario did not reflect this
level of uncertainty. For example, the 90% P.I. for the reference scenario
was from $27 to $51. In fact, the actual price in 1986 turned out to be
$11 per barrel!! This was a long way outside all the different P.I.s that
were computed. The prime reason for this was that the P.I.s did not reflect
uncertainty about the model. Draper went on to use a Bayesian model
averaging approach which gave a 90% P.I. of ($20, $92) when taking account
of both model and scenario uncertainty. This is much wider, and therefore
better (meaning more realistic), than the P.I.s found for individual models
and individual scenarios. However, it was still not wide enough! Further
comments on this example follow in Section 8.4.1.

7.5.8 P.I.s for transformed variables

Whichever approach is used to calculate P.I.s, the possibility of working
with a transformed variable needs to be considered (e.g. Granger and
Newbold, 1986, Section 10.5; West and Harrison, 1997, Section 10.6). It
may be sensible for a variety of reasons to work, not with the observed
variable Xt, but with some non-linear transformation of it, say Yt = g(Xt),
where g may, for example, be the logarithmic transformation or the more
general Box-Cox transformation which is defined in Section 2.3.3. A
transformation may be taken in order to stabilize the variance, to make
the seasonal effect additive, to make the data more normally distributed
or because the transformed variable makes more sense from a practical
point of view. For example, logs of economic variables are often taken when
percentage growth is of prime interest.

P.I.s may be calculated for YN+h in an appropriate way, but the literature
says very little about transforming the P.I.s back to get P.I.s for the
original observed variable if this is desired. (Collins, 1991 is an exception
but he considers regression models.) It is well known that the ‘naive’
point forecast of XN+h, namely g−1[ŷN (h)], is generally not unbiased,
essentially because the expected value E[g−1(Y )] is not generally equal
to g−1[E(Y )]. If the predictive distribution of YN+h is symmetric with
mean ŷN (h), then g−1[ŷN (h)] will be the median, rather than the mean, of
the predictive distribution of XN+h. Fortunately, the situation regarding
P.I.s for a retransformed variable is more straightforward. A ‘naive’ P.I.
can be constructed by retransforming the upper and lower values of the
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P.I. for YN+h using the operator g−1. If the P.I. for YN+h has a prescribed
probability, say (1−α), then it is immediately clear that the retransformed
P.I. for XN+h should have the same prescribed probability (e.g. Harvey,
1990, Equation 4.6.7) apart from any additional uncertainty introduced
by trying to identify the transformation, g. Fortunately, the results of
Collins (1991) suggest that uncertainty about the Box-Cox transformation
parameter may be relatively unimportant. As an aside, it is worth noting
that Collins’ results indicate that model parameter estimates are likely to
be correlated with the transformation parameter when the latter has to be
estimated. It is also worth noting that Collins uses the description ‘plug-in
density’ to describe forecasts arising from replacing unknown parameters
with their estimated values, and the term ‘deterministic prediction’ to
describe forecasts made by applying the inverse Box-Cox transformation
to forecasts of YN+h which do allow for parameter uncertainty, though I do
not understand why this is termed ‘deterministic’.

If the P.I. for YN+h is based on a normality assumption, and hence is
symmetric, then the transformed P.I. for XN+h will be asymmetric (which
is often intuitively sensible). The width of the transformed P.I. will depend
on the level as well as the lead time and the variability. It may be possible to
derive a symmetric P.I. for XN+h (Collins (1991) refers to this as a “mean-
squared error analysis”), but this is not sensible unless Xt is thought to be
normally distributed – in which case a transformation will probably not
be sensible anyway. In regard to this point, I note that some forecasting
software I have seen does retransform both the point forecast and its
standard error in order to compute symmetric P.I.s using (7.5.1). This
is definitely not recommended!

Although point forecasts may be relatively little affected by whether or
not a transformation is used, the P.I.s will typically be affected rather more
by the use of transformation, particularly in becoming asymmetric. My
own preference, stemming from my early experiences with transformations
and the problems they can cause (Chatfield and Prothero, 1973), is to
avoid transformations wherever possible except where the transformed
variable is of interest in its own right (e.g. taking logarithms to analyse
percentage increases) or is clearly indicated by theoretical considerations
(e.g. Poisson data has non-constant variance). Thus I agree with West and
Harrison (1997, p. 353) that “uncritical use of transformations for reasons of
convenience should be guarded against” and that generally “it is preferable
to model the series on the original data scale”.

7.5.9 Judgemental P.I.s.

Judgement may be used in time-series forecasting, not only to produce
point forecasts, but also to produce P.I.s. Empirical evidence (e.g.
Armstrong, 1985, pp. 138-145; O’Connor and Lawrence, 1989, 1992; Webby
and O’Connor, 1996) suggests that the P.I.s will generally be too narrow,
indicating over-confidence in the forecasts. In a special issue on ‘Probability
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Judgemental Forecasting’ in the International Journal of Forecasting (1996,
No. 1), Wright et al. (1996) summarize the evidence on the accuracy
and calibration of judgemental prediction intervals as being “not very
encouraging”. Judgemental forecasting, even when applied to time series,
is rather outside the scope of this book and so will not be pursued here.

7.6 A comparative assessment

The choice of procedure for calculating P.I.s in a particular situation
depends on various factors. The most important of these is the choice of
forecasting method which depends in turn on such factors as the objectives
and type of data. However, there will sometimes be a choice of methods
for computing P.I.s and this section attempts a general assessment of how
to decide which one to choose. Note that Yar and Chatfield (1990) made a
more restricted comparison of the different approaches which could be used
for additive Holt-Winters.

Theoretical P.I. formulae based on (7.5.1), with the PMSE determined
by a fitted probability model, are easy to implement, but do assume that
the fitted model has been correctly identified, not only in regard to the
primary assumptions (e.g. Xt is a linear combination of lagged variables as
in an AR process), but also in regard to the secondary ‘error’ assumptions
(e.g. the innovations are independent N(0, σ2) ). Allowance can be made
for parameter uncertainty but the formulae are complex and generally give
corrections of order 1/N and so are rarely used. A more serious problem is
that the model may be misspecified or may change in the forecast period.
Nevertheless, the formulae are widely used, although they are not available
for some complex and/or non-linear models.

Formulae which simply assume that a given forecasting method is
optimal (see Section 7.5.3) are also widely used because of their simplicity,
but it is then important to check that the method really is a sensible one
(see Section 7.7). Formulae based on a model for which the method is not
optimal should be disregarded.

Empirically based and resampling methods are always available and
require fewer assumptions, but can be much more computationally
demanding (especially when resampling is used). Nevertheless, they have
much potential promise, particularly when theoretical formulae are not
available or there are doubts about the error assumptions. However,
it is important to remember that resampling does still usually depend
on the primary assumptions made regarding the selected model. For
example, Thombs and Schucany (1990) compute bootstrap P.I.s under the
assumption that an AR(p) model really does fit the data even though they
make no assumptions about the ‘error’ component of the model. We also
remind the reader that resampling time-series data, which are naturally
ordered in time, is usually more difficult than resampling other types of
data where order is not important. It can also be difficult to tell whether
the results of a resampling exercise are intuitively reasonable, given the
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Stationary N o n - s t a t i o n a r y m o d e l s
models [ARIMA

[ARIMA (0, 2, 2)]
(0, 1, 1)] Holt Linear

“Approximate” ARIMA ES γ = 0.1
[RW] AR(1) MA(1) (1, 1, 0) α = α =

h (7.5.6) (7.5.11) φ = 0.5 θ = 0.5 φ = 0.5 0.3 0.7 0.3 0.9

2 2 1.8 1.250 1.25 3.2 1.09 1.5 1.1 2.0
4 4 4.1 1.328 1.25 9.8 1.27 2.5 1.4 4.5
8 8 11.5 1.333 1.25 25.3 1.63 4.4 2.2 12.3

12 12 22.6 1.333 1.25 41.3 1.99 6.4 3.6 24.7

Table 7.1 Values of Var [eN (h)]/ Var [eN (1)] for various equations,
models and methods. Notes: The “approximate” formulae in Equations (7.5.6)

and (7.5.11) are h and (0.659 + 0.341h)2, respectively; formula (7.5.6) gives the

same ratios as the random walk (RW) or ARIMA(0, 1, 0) model; the AR(1),

MA(1) and ARIMA(1, 1, 0) models use the notation of Section 3.1; the smoothing

parameters for exponential smoothing (ES) and Holt’s linear smoothing use the

notation of Section 4.3; ES is optimal for an ARIMA(0, 1, 1) model and Holt’s

Linear method for an ARIMA(0, 2, 2) model.

absence of a theoretical basis to check results. When a researcher tries
several different methods of resampling a time series, gets rather different
results and chooses the one which seems intuitively most reasonable (as
I have seen take place) the outcome is less than convincing. Generally
speaking, this is an area where further research is particularly required.

It is hard to envisage any situation where the approximate formulae
should be used. They have no theoretical basis and cannot possibly capture
the varied properties of P.I.s resulting from different methods. Table 7.1
shows the ratio of Var[eN (h)] to Var[eN (1)] for the two approximate
formulae in (7.5.6) and (7.5.11) as well as the theoretical results for various
methods and models. The disparate relationship with h is evident. For
stationary models, such as an AR(1) or MA(1) model, the width of P.I.s
will increase rather slowly with h to a finite upper bound (or even be
constant for the MA(1) model), whereas for non-stationary models the
width of P.I.s will increase without bound. This applies to the random
walk and ARIMA(1, 1, 0) models, to exponential smoothing (optimal for
an ARIMA(0, 1, 1) model) and to Holt’s linear trend method (optimal for
an ARIMA(0, 2, 2) model). The inadequacy of (7.5.6) and (7.5.11) is clear.

7.7 Why are P.I.s too narrow?

Wallis (1974) noted many years ago that it is a “common experience
for models to have worse error variances than they should when used in
forecasting outside the period of fit”. Subsequent empirical studies have
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generally borne this out by showing that out-of-sample forecast errors
tend to be larger than model-fitting residuals so that P.I.s tend to be too
narrow on average. In other words, more than 5% of future observations
will typically fall outside the 95% P.I.s on average. The evidence is reviewed
by Fildes and Makridakis (1995) and Chatfield (1996b) and includes, for
example, results reported by Makridakis and Winkler (1989), by Newbold
and Granger (1974, p. 161) for Box-Jenkins models, by Williams and
Goodman (1971) for regression models, by Gardner (1988) in respect
of empirical formulae, and by Makridakis et al. (1987) for Box-Jenkins
models.4 More generally the “in-sample fit of a model may be a poor guide
to ex-ante forecast performance” (Clements and Hendry, 1998b) and out-
of-sample forecast accuracy tends to be worse than would be expected from
within-sample fit. Further remarks on this important phenomenon are made
in Chapter 8 (especially Example 8.2).

There are various possible reasons why P.I.s are too narrow, not all of
which need apply in any particular situation. They include:
(i) Model parameters have to be estimated;

(ii) For multivariate forecasts, exogenous variables may have to be
forecasted;

(iii) The innovations may not be normally distributed, but could, for
example, be asymmetric or heavy-tailed. The latter effect could be due
to occasional outliers. There may also be errors in the data which will
contaminate the apparent ‘error’ distribution.

(iv) Unconditional, rather than conditional, P.I.s are typically calculated;

(v) The wrong model may be identified;

(vi) The underlying model may change, either during the period of fit or
in the future.

Problem (i) can often be dealt with by using PMSE formulae incorporating
correction terms for parameter uncertainty, though the corrections are
typically of order 1/N and smaller than those due to other sources of
uncertainty.

Problem (ii) goes some way to explaining why multivariate forecasts
need not be as accurate as univariate forecasts, contrary to many people’s
intuition (e.g. Ashley, 1988). P.I.s for multivariate models can be found
which take account of the need to forecast other endogenous variables,
and also exogenous variables when the latter are forecast using a separate
model (Lütkepohl, 1993, Section 10.5.1). However, when future values of
the exogenous variables are assumed known, or are guessed (e.g. assumed
to grow at a constant inflation rate), then the P.I.s will not take account
of this additional uncertainty.

Problem (iii) is very common. For non-linear models, it is generally
the case that the innovations are known not to be normal anyway (e.g.

4 The latter study is flawed in its use of ‘approximate’ formulae (see Section 7.6), but
the results for one-step-ahead forecasts and for Box-Jenkins should still be relevant.
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Hyndman, 1995) and so the following remarks are aimed primarily at
linear models. The analyst will typically be concerned about two types
of departure from normality, namely (i) asymmetry and (ii) heavy tails.
Some empirical evidence (e.g. Makridakis and Winkler, 1989) suggests
neither is a serious problem when averaged over many series, but there
is evidence of asymmetry in other studies (e.g. Williams and Goodman,
1971; Makridakis et al., 1987) and asymmetry can sometimes be expected
from theoretical considerations. Many measured variables are inherently
non-negative (i.e. have a natural zero) and show steady growth (in that
the average percentage change is approximately constant). Then it is
typically found that the residuals from a fitted model are skewed to the
right. This applies particularly to annual economic data. The residuals can
often be made (more) symmetric by taking logs and by taking account
of explanatory variables (Armstrong and Collopy, 2001). If a model is
formulated for the logs, and then used to compute point and interval
forecasts for future values of the logged variable, then these will need to
be transformed back to the original units in order to give forecasts of what
is really required – see Section 7.5.8. The resulting P.I.s will generally be
asymmetric.

One alternative to transforming the data is to modify (7.5.1) by changing
the Gaussian percentage point, zα/2, to a more appropriate value for
describing the ‘error’ distribution, when standardized to have unit variance.
This can be done parametrically by utilizing a probability distribution
with heavier tails than the normal. Possible distributions include the t-
distribution and the stable distribution. The latter can be generalized
to cope with asymmetry (Lambert and Lindsey, 1999). A non-parametric
approach is also possible, and there is extensive literature on the treatment
of heavy tails (e.g. Resnick, 1997). The simplest type of approach, already
mentioned briefly in Section 7.5.6, is to find appropriate upper and lower
percentage points of the empirical standardized error distribution for one-
step-ahead forecasts for the raw data, say z

1−α/2 and z
α/2, and use them to

modify 7.5.1 in an obvious way. The revised 100(1 − α)% P.I. for XN+h is
given by (x̂N (h)+z

1−α/2

√
Var[eN (h)], x̂N (h)+z

α/2

√
Var[eN (h)]), bearing

in mind that lower percentage points, such as z
1−α/2, will be negative.

Note that, if outliers arise as a result of large errors in the data, then
this will affect the perceived distribution of innovations even if the true
underlying distribution really is normal. More generally, the presence of
outliers and errors can have an effect out of all proportion to the number
of such observations, both on model identification, and on the resulting
point forecasts and P.I.s (e.g. see Ledolter, 1989). The effect is particularly
marked when the outlier is near the forecast origin, but fortunately “the
impact of outliers that occur well before the forecast origin is usually
discounted rapidly” (Ledolter, 1989, p. 233).

Problem (iv) reminds us that, even when the innovations are normal,
the conditional prediction errors need not be normal, but will typically
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be asymmetric and have a larger variance than those calculated in the
usual unconditional way. Forecasters generally use unconditional forecasts,
because of their simplicity. However, more attention should be given to
the possibility of using the more reliable conditional forecasts, especially
for ARCH-type models, where volatility can change. Prediction intervals
need to be wider when behaviour is more volatile, and then the difference
between conditional and unconditional interval forecasts can be substantial.
Christofferson (1998) describes a framework for evaluating conditional
interval forecasts.

Problems (v) and (vi), relating to model uncertainty, are discussed more
fully in Chapter 8. Problem (v) may arise for various reasons. In particular,
it is always tempting to overfit the data with more and more complicated
models in order to improve the fit but empirical evidence suggests that
more complicated models, which give a better fit, do not necessarily give
better forecasts. Indeed, it is strange that we admit model uncertainty by
searching for the best-fitting model, but then ignore such uncertainty by
making forecasts as if the fitted model is known to be true. As we see in
Chapter 8, one reason why model uncertainty is often ignored in practice
is that there is no general theoretical way of taking it into account. It is,
however, worth noting that the use of bootstrapping may be able to take
account of the possibility of identifying the wrong model from within a
given class (e.g. Masarotto, 1990).

Problem (v) should, of course, be circumvented whenever possible by
carrying out appropriate diagnostic checks. For example, when fitting
ARIMA models, model checking is an integral part of the identification
process (Box et al., 1994, Chapter 8). Even when using a forecasting
method which does not depend explicitly on a probability model, checks
should still be made on the (possibly implicit) assumptions. In particular,
checks should be made on the one-step-ahead fitted errors to see if they (i)
are uncorrelated, and (ii) have constant variance. It may be sufficient to
calculate the autocorrelation coefficient at lag one and at the seasonal lag (if
there is a seasonal effect). If the values are significantly different from zero
(i.e. exceed about 2/

√
N in modulus), then this suggests that the optimal

method or model is not being used and there is more structure to find. To
check constant variance, it is a good idea to compare the residual variances
in the first and second halves of the data and also to compare periods near a
seasonal peak with periods near a seasonal trough. It often seems to be the
case that the residual variance increases with the mean level and is higher
near a seasonal peak. These features need to be explicitly dealt with (e.g.
see Chatfield and Yar, 1991) or alternatively the data could be transformed
so as to stabilize the variance (see Section 7.5.8).

Problem (vi) may arise for all sorts of reasons which can often be
classified into one of two possible states, namely that the underlying
structure is evolving slowly through time or that there is a sudden shift or
turning point. As regards the first possibility, there is plenty of empirical
evidence that the economies of many countries evolve through time, often
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rather slowly, and that this effect manifests itself in fixed specification
linear models by finding that estimates of model parameters evolve through
time (e.g. Swanson and White, 1997). Two economic examples of the
second possibility are the sudden changes which occurred in many economic
variables as a result of the 1973 oil crisis and the 1990 Gulf war. Change
points can have a particularly devastating effect on forecast accuracy and
so the prediction of change points is a topic of continuing interest even
though it is notoriously difficult to do (see Makridakis, 1988). There is
therefore much to be said for using a forecasting method which adapts
quickly to real change but which is robust to occasional ‘blips’ or outliers.
Unfortunately, it is not easy to devise a method that gets the balance ‘right’
as between reacting to a permanent change but not reacting to a temporary
fluctuation.

For all the above reasons, post-sample forecast errors tend to be larger
than model-fitting errors, as already noted in Section 7.5.5 and earlier
in this section. This explains why it is essential that different forecasting
models and methods are compared on the basis of out-of-sample forecasts
rather than on measures of fit. Because P.I.s tend to be too narrow, Gardner
(1988) suggested modifying (7.5.1) to

x̂N (h) ±
√

Var[eN (h)]/
√
α (7.7.1)

where the constant 1/
√
α (which replaces zα/2) is selected using an

argument based on Chebychev’s inequality. However, Bowerman and
Koehler (1989) point out that this may give very wide P.I.s in some cases
which are of little practical use. In any case they may be unnecessarily wide
for reasonably stable series where the usual normal values will be adequate.
On the other hand, when there is a substantial change in the forecast period
(e.g. a change in trend), then the Chebychev P.I.s may still not be wide
enough.

The use of 50%, rather than 95%, P.I.s has been suggested (e.g.
Granger, 1996) as being more robust to outliers and to departures from
model assumptions and this will also help overcome the problem of
computing P.I.s. only to find they are embarrassingly wide. However, using
a probability of 50% will mean that a future value is equally likely to lie
inside or outside the interval. This seems undesirable.

My own preference is generally to use (7.5.1), incorporating the normality
assumption, rather than (7.7.1), but, as a compromise, to use 90% (or
perhaps 80%) intervals rather than 95%. I also recommend stating explicitly
that this assumes (i) the future is like the past, with all the dangers that
entails; (ii) the errors are approximately normal. If an observation does fall
outside a computed P.I., it is not necessarily a disaster, but can indeed
be enlightening. It may, for example, indicate a change in the underlying
model. The possible diagnostic use of P.I.s in this sort of way deserves
attention and may perhaps usefully be added to other diagnostic tools for
detecting trouble (e.g. Gardner, 1983).

But whatever checks are made and whatever precautions are taken, it
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is still impossible to be certain that one has fitted the correct model or to
rule out the possibility of structural change in the present or future, and
problems (v) and (vi) above are, in my view, the most important reasons
why P.I.s are too narrow. Section 7.8 gives an instructive example where
two plausible models give substantially different P.I.s for the same data.

7.8 An example

This example is designed, not to compare different approaches to computing
P.I.s (as reviewed in Section 7.6), but to illustrate the overriding importance
of careful model identification. The data shown in Figure 7.2 were analysed
by Thompson and Miller (1986) to compare Box-Jenkins P.I.s with a
Bayesian approach which simulates the predictive distribution. The fourth
quarter in 1979 was taken as the base month and forecasts were computed
up to 12 steps (3 years) ahead.
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Figure 7.2. Time plot of U.S. quarterly unemployment rate (%) 1968–1982
(seasonally adjusted). The model-fitting period ends in 1979, Q4.

The point forecasts computed by Thompson and Miller (1986)
were generally poor because of the large (unforeseeable?) increase in
unemployment. The Bayesian P.I.s were somewhat wider than the
Box-Jenkins P.I.s because the Bayesian method allows for parameter
uncertainty, and this is clearly advantageous here. However, the Bayesian
P.I.s still fail to include the actual values for 10, 11 and 12 steps ahead.
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Thompson and Miller go on to hypothesize a shift in level which does
produce better forecasts. But could this hypothesis reasonably have been
made in 1979? If it could, then perhaps a multivariate model, including any
known leading variable(s), should have been constructed. (Indeed, some
readers may think such a model is intrinsically more sensible anyway than
a univariate model, but that is not the main point of this example).

Thompson and Miller (1986) identified an AR(2) model with a non-
zero mean. However, Figure 5.1 suggests to me that the series is non-
stationary, rather than stationary. This view is reinforced by the sample
autocorrelation function (ac.f.) of the first 12 years data that decreases
slowly and is still positive up to lag 9. The ac.f. of the first differences
decreases much faster, with a significant value at lag one (0.65), while
the value at lag two (0.28) is nearly significant (c.f. ±2/

√
48 � 0.29).

Subsequent values are small with the value at lag three equal to 0.08.
This suggests an AR(1) model for the first differences or, equivalently, an
ARIMA(1, 1, 0) model for the original data. The latter model was fitted,
and the resulting sum of squared residuals is a little higher (4.08 rather than
3.64 for the AR(2) model), but diagnostic checks on the residuals suggest
the model is adequate (the modified Box-Pierce χ2 statistic of 12.3 on 11
D.F. is actually better than the 12.2 on 10 D.F. for the AR(2) model).

The point forecasts from the ARIMA(1, 1, 0) model are perhaps a little
better than those from the AR(2) model (e.g. 6.00 versus 5.69 for 12
steps ahead), but it is the P.I.s which concern us here. At 12 steps ahead,
for example, the 95% P.I. for the ARIMA(1, 1, 0) model is (0.86, 11.14)
while that for the AR(2) model is (2.66, 8.73). Thus the P.I.s from the
ARIMA(1, 1, 0) model are much wider and do include the actual values.
Wide P.I.s are sometimes seen as indicating ‘failure’, either to fit the right
model or to get a usable interval, but here the wider P.I.s are arguably
more realistic in allowing for high uncertainty.

The crucial difference between an AR(2) and an ARIMA(1, 1, 0) process
is that the first is stationary, but the second is non-stationary. For
stationary processes, Var[eN (h)] tends to the variance of the process as
h → ∞. In other words, P.I.s will tend to a constant finite width as the
lead time increases. But for non-stationary processes, there is no upper
bound to the width of P.I.s. This is noted in passing by Box et al. (1994,
p. 159) but the result is perhaps not as widely appreciated as it should be.
The higher the degree of differencing needed to make a series stationary, the
larger in general will be the rate at which the width of the resulting P.I.s.
will diverge. Thus for an ARIMA(0, 1, 1) process, Var[eN (h)] is of order h,
while for an ARIMA(0, 2, 2) process, Var[eN (h)] is of order h3 [Box et al.,
1994, Equations (5.4.7) and (5.4.14)].

There is a similar dichotomy for multivariate time-series models. For
stationary series, the PMSE for each series tends to its variance, while that
for non-stationary series increases without bound (e.g. Lütkepohl, 1993,
p. 377), although it is relevant to note that for non-stationary series which
are ‘tied together’ or cointegrated, a multi-step forecast which satisfies the
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cointegrating relationship will have a finite limiting PMSE (Engle and Yoo,
1987).

Returning to the example, the wider P.I.s for the non-stationary
ARIMA(1, 1, 0) process seem to capture the observed uncertainty better
than the narrower stationary alternative, given that a univariate model is
to be fitted. The difference in the P.I. widths is much larger than that
resulting from parameter uncertainty, for example, and confirms the over-
riding importance of model identification, particularly in regard to deciding
whether the data are stationary or not.

7.9 Summary and recommendations

The computation of interval forecasts is of vital importance in planning and
deserves more attention. A variety of approaches for computing P.I.s have
been described and compared. The main findings and recommendations
can be summarized as follows:

(i) A theoretically satisfying way of computing prediction intervals (P.I.s) is
to formulate a model which provides a reasonable approximation for the
process generating a given series, derive the resulting prediction mean
square error (PMSE), and then use (7.5.1). Formulae for the PMSE are
available for various classes of models including regression, ARIMA and
structural models. A correction term to allow for parameter uncertainty
can sometimes be incorporated into the PMSE but the correction is
usually of order 1/N and is often omitted.
This approach assumes, not only that the correct model has been fitted,
but also that ‘errors’ are normally distributed. It is important to check
that the normality assumption is at least approximately true. The
normality assumption for forecast errors also implicitly assumes that
unconditional forecasting results are used. The arguably more correct
use of conditional results is rarely utilized.

(ii) The distinction between a forecasting method and a forecasting model
should be borne in mind. The former may, or may not, depend
(explicitly or implicitly) on the latter. For large groups of series, an
ad hoc forecasting method is sometimes selected. Then P.I. formulae are
sometimes based on the model for which the method is optimal, but
this should only be done after appropriate checks on the one-step-ahead
forecasting errors. Conversely it seems silly to derive P.I.s from a model
for which a given method is known not to be optimal, as sometimes
happens.
Formulae are also now available for the Holt-Winters method which are
based, not on a model, but on assuming that the method is optimal in the
sense of giving uncorrelated one-step-ahead errors. When seasonality is
multiplicative, these results have the interesting property that the PMSE
does not necessarily increase with the lead time, such behaviour being
typical of non-linear systems.
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(iii) Various ‘approximate’ formulae for calculating P.I.s can be very
inaccurate and should not be used.

(iv) When theoretical formulae are not available, or there are doubts about
model assumptions, the use of empirically based or resampling methods
should be considered as a general-purpose alternative. More research on
this sort of approach is to be encouraged. In particular, methods for
smoothing the values of the h-steps-ahead forecast standard deviations
need to be found for empirically based methods, while clearer guidance
is needed on how to resample time-series data.

(v) P.I.s tend to be too narrow in practice for a variety of reasons, not
all of which can be foreseen. The most important reasons why out-of-
sample forecasting ability is typically worse than within-sample fit is
that the wrong model may have been identified or may change through
time. More research is needed on whether it is possible to allow for
model uncertainty. Rather than systematically widen all intervals as in
(7.7.1), my current recommendation is that (7.5.1) should generally be
used but that a 90% (or 80%) interval should be calculated and that the
implied assumptions should be made more explicit. In particular, (7.5.1)
assumes that a model has been identified correctly, that the innovations
are normally distributed and that the future will be like the past.

(vi) The example in Section 7.8 demonstrates the difficult but overriding
importance of model specification. In particular, for a series that is
‘nearly non-stationary’, it may be hard to distinguish between models
which give stationary or non-stationary outcomes. Yet the difference
between the limiting PMSE which results (finite for a stationary process
and unbounded for a non-stationary process) is critical.

(vii) Rather than compute P.I.s based on a single ‘best’ model (which may
be wrongly identified or may change through time), it may be worth
considering a completely different approach based either on using a
mixture of models, by means of Bayesian model averaging, or on using a
forecasting method that is not model-based but is deliberately designed
to be adaptive and robust.

(viii) Perhaps the main message of this chapter is that it is generally wise
to compute P.I.s, rather than rely solely on point forecasts. However, the
analyst should not trust the results blindly, and, in particular, should
spell out the assumptions on which any P.I. is based.

c© 2000 by Chapman & Hall/CRC



CHAPTER 8

Model Uncertainty and Forecast
Accuracy

Much of the time-series literature implicitly assumes that there is a true
model for a given time series and that this model is known before it is fitted
to the data and then used to compute forecasts. Even assuming that there
is a true model (a big IF!), it is rarely, if ever, the case that such a model
will be known a priori and there is no guarantee that it will be selected
as the best fit to the data. Thus there is usually considerable uncertainty
as to which model should be used, as noted earlier in Sections 3.5 and
7.7. This book has adopted the standpoint that a ‘true’ model usually
does not exist, but rather that the analyst should try to find a model
that provides an adequate approximation to the given data for the task at
hand. The question then is how uncertainty about the model will affect the
computation of forecasts and estimates of their accuracy, and that is the
theme of this chapter.

8.1 Introduction to model uncertainty

There are typically three main sources of uncertainty in any statistical
problem:
(a) Uncertainty about the structure of the model;

(b) Uncertainty about estimates of the model parameters, assuming the
model structure is known;

(c) Uncertainty about the data even when the model structure and the
values of the model parameters are known. This will include unexplained
random variation in the observed variables, as well as measurement and
recording errors.
In this chapter, the focus is on component (a), which may succinctly

be described as model uncertainty. It is possible to further partition this
component into some of the many distinct reasons why model uncertainty
may arise. For example, two distinct reasons are (i) the structure of the
model is misspecified a priori, and (ii) the model parameters are assumed to
be fixed when, in fact, they change through time. In time-series forecasting,
there is particular interest in a third source of uncertainty, namely (iii) that
arising from formulating, fitting and testing a model using the same
set of data. Clements and Hendry (1998a) provide a detailed alternative
taxonomy of uncertainty as applied to forecast errors.
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However uncertainty is partitioned, it should become clear to the reader
that doubts about the model may sometimes have a more serious effect
on forecast accuracy than uncertainty arising from other sources, as the
following example will demonstrate.

Example 8.1. Fitting an AR model. Suppose we think that an AR model
is appropriate for a given time series. It is quite common to simply assume
that a suitable model for the mean-corrected data is first order, namely

Xt = φXt−1 + Zt (8.1.1)

using the notation of Section 3.1.1. If we were to fit an AR(1) model,
theory tells us about the errors resulting from having an estimate of the
autoregression coefficient, φ̂, rather than its true value, φ. Theory also
tells us about the effect of the innovations {Zt} on prediction intervals.
However, it is much more difficult for theory to tell us about the effects of
misspecifying the model in the first place. For example, suppose that the
true model is AR(2), but that we mistakenly fit an AR(1). What effect will
this have? Alternatively, what happens if we fit completely the wrong type
of model, as, for example, if non-linear terms should be included, or the
error variance is not constant through time, or we should have included
appropriate trend and seasonal terms? Then the forecasts from an AR(1)
model would clearly be seriously biased and estimates of forecast accuracy
based on the AR(1) model would be inappropriate.

A rather different possibility is that the autoregressive term at lag one
has not been assumed a priori, but rather has been found by some sort of
subset selection approach. For example, the analyst might initially allow
the model to include AR terms from lags one to five, and then carry out
a series of tests to see which lags to include. If the term at lag one is the
only one found to be statistically significant, what effect will choosing the
model in this way have on subsequent inference and prediction? It is clear
that a series of tests need not lead to the correct model being selected, but
even if it does, the resulting estimates of model parameters may be biased
by the model selection procedure, and we will see that this is indeed the
case. �

Despite the obvious importance of model uncertainty, there is not much
help in the statistical literature on the implications in regard to forecasting,
although some research findings are summarized in Section 8.4. In
particular, they help to explain why prediction intervals tend to be too
narrow, as discussed earlier in Section 7.7. Various ways of coping with
model uncertainty will be reviewed in Section 8.5, but we first discuss, in
Section 8.2, some general issues in time-series model building, especially
the issues raised by data-driven inference. Then Section 8.3 presents two
extended examples.
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8.2 Model building and data dredging

A key ingredient of time-series analysis, and hence of forecasting, is the
selection of a plausible approximating model that represents a given set of
time series data with adequate precision for the task at hand. Some general
remarks on the whole process of time-series model building were made in
Section 3.5. We saw that fitting a particular known time-series model to
a given set of data is usually straightforward nowadays, thanks to a wide
range of computer software. Packages also typically carry out a range of
routine diagnostic checks such as calculating the autocorrelation function
of the residuals. In contrast, formulating a sensible time-series model for a
given set of data can still be difficult, and this will be the prime focus of
this section.

It is the exception, rather than the rule, for a model to be specified
exactly from external subject-matter considerations, though a general class
of models may have been suggested. As a result, it is common practice for
most time-series models to be determined empirically by looking at the
given time series data in an iterative, interactive way. This is exemplified
by the Box-Jenkins model-building procedure, which involves an iterative
cycle of model specification, model fitting, and model checking. Originally
proposed by Box et al. (1994, Section 1.3.2) for building an ARIMA model,
a similar iterative approach has since become standard for selecting an
appropriate candidate from other classes of time-series model, and also
more generally for model building in other areas of statistics. Example 8.2
outlines a typical application.

Example 8.2. A typical forecasting application. Suppose that a statistician
is given monthly sales data for the past five years for a particular product
and asked to make forecasts for up to 12 months ahead in order to plan
production. How would the statistician go about this task?

There is no simple answer in that all decisions depend on the context,
but the analyst will typically entertain a plausible family of possible
models, such as the ARIMA class, look at a time plot of the data and
at various diagnostic tools, such as the autocorrelation function, and then
try appropriate models within the chosen family. A ‘best’ model will be
selected in some way, and then inferences and forecasts will be computed
conditional on the selected model being ‘true’. This is done even though the
model has actually been selected from the same data which are now being
(re-)used to make predictions. The question is “Is this approach sound?”

Suppose, for example, that the time-series analyst starts the analysis by
entertaining the class of ARIMA(p, d, q) models for say 0 ≤ p, d, q ≤ 2.
This looks fairly innocent, but actually allows a total of 27 possible
models. Moreover, when the analyst looks at the data, there are additional
possibilities to consider such as finding seasonality (which suggests trying
a seasonal ARIMA model even though such a model was not entertained
initially) or finding non-linearities (which would suggest a completely
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different class of models). This all means that the analyst effectively looks
at many different models. Nevertheless the analyst typically ignores the
effect of having tried many models when it comes to making forecasts. �

Most time-series forecasting is carried out conditional on the best-fitting
model being true. But should it be? Many years ago it may have been
normal to fit a single model to a given set of data. Nowadays the increase
in computing power has completely changed the way in which time-series
analysis is typically carried out (not necessarily for the better!). A model is
often selected from a wide class of models by optimizing a statistic such as
the AIC. As well as choosing from a wide class of models, the data-analysis
procedure may also involve strategies such as (i) excluding, down-weighting
or otherwise adjusting outliers; (ii) transforming one or more variables to
achieve normality and/or constant residual variance. As a result of all this,
the analyst may in effect consider tens, or even hundreds of models, either
explicitly or sometimes implicitly (it is not always clear just how many
models are considered).

Having selected a model, the analyst typically proceeds to estimate the
parameters of this best-fitting model using the same techniques that would
be used in traditional statistical inference where the model is assumed
known a priori. The properties of forecasts from the resulting model are also
generally calculated as if the model were known in the first place. Thus the
standard analysis does not take account of the fact that (i) the model has
been selected from the same data used to make inferences and predictions
and (ii) the model may not be correct anyway. Thus the standard analysis
ignores model uncertainty. Unfortunately, this is “logically unsound and
practically misleading” (Zhang, 1992). In particular, least squares theory
is known not to apply when the same data are used to formulate and fit
a model, as happens routinely in time-series analysis. Example 8.3 below
illustrates this point for a particular situation.

Statisticians have typically ignored this type of problem, partly because
it is not clear what else could or should be done. Little theory is available
for guidance, and the biases which result when a model is formulated and
fitted to the same data are not well understood. Such biases can be called
model-selection biases (Chatfield, 1995b).

8.2.1 Data dredging

When a model is selected from a large set of candidate models, and then
used for inference and prediction, statisticians often refer to the general
process as data dredging or data mining – see Section 3.5.2. Data snooping
is another possible description. In fact, the term data mining is now used by
computer scientists in a rather different way to mean knowledge discovery
in very large databases. Thus it will be prudent to avoid the phrase ‘data
mining’, and so we opt for ‘data dredging’. An alternative description
of data dredging is as a form of data-driven inference. Although widely
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practiced, data dredging is rightly seen as a rather suspect activity, partly
because over-fitting may occur, and partly because the analyst may not
know how to allow for the effect of formulating the model from the data
prior to using the fitted model. Thus the term is often used in a rather
derogatory way.

In econometrics, there is much activity that might be classified as data
dredging, although some users may not realize what they are doing. One
example is the search for calendar effects in stock market behaviour. If you
look hard enough at lots of financial series over many different time periods,
the analyst will eventually be able to spot some apparently interesting
regularity, even if the effect is actually spurious and fails to generalize to
other time periods or to other similar measured variables. For example, all
sorts of rules have been suggested for investing in the stock market, such as
‘Sell on the first day of the month’ or ‘Buy on Friday’. Tested in isolation,
such effects may well appear to be highly significant. However, the effect
has only been tested because it has been spotted in the data. In other
words, the hypothesis has been generated by the same data used to test it.
Sadly, this sort of data-driven inference is likely to produce spurious results.
If the analyst takes into account all the other rules which have implicitly
been considered and rejected, then the significance of the interesting-
looking effects is highly diminished. There are literally thousands of rules
which might be considered and Timmermann (1998) uses bootstrapping to
show that many calendar effects are not significant when the hypothesis-
generation process is taken into account. This is, of course, what would be
expected for a properly performing market.

In econometrics, the difficulties in model building are further complicated
by the common practice of pretesting various hypotheses, such as testing
for a unit root, for autocorrelated residuals, or for the presence of a change
point. The desire to carry out such tests indicates awareness of model
uncertainty, but is viewed with suspicion by many statisticians, especially
when a large number of tests is performed – see the remarks in Section
3.5.2. Why, for example, should the presence of a unit root be taken as
the null hypothesis when examining the possible presence of trend (see
Section 3.1.9 and Chatfield, 1995b, Example 2.5)? We do not pursue these
matters here except to note that (i) inference following model testing is
biased, (ii) testing implicitly assumes the existence of a true model that is
included in the set of models entertained,1 (iii) the more models that are
entertained, and the more tests that are carried out, the lower the chance
of choosing the ‘correct’ model. In fact, most model-builders would admit
(privately at least!) that they do not really believe there is a true model
(see Chatfield, 1995b, Section 3.1). Rather, a model is seen as a useful
description of the given data which provides an adequate approximation
for the task at hand. Here the context and the objectives are key factors in
making such a judgement.

1 Note that this is called the M-closed view by Bernado and Smith (1994, Section 6.1.2).
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8.3 Examples

Given the difficulty of finding general theoretical results about the effects
of model selection on subsequent inference, the use of specific examples,
perhaps employing simulation, can be enlightening. This section presents
expanded versions of the two main examples in Chatfield (1996b) to show
that data-dependent model-specification searches can lead to non-trivial
biases, both in estimates of model parameters and in the forecasts that
result.

Further examples are given by Miller (1990) and Chatfield (1995b,
Examples 2.2 and 2.3) on regression modelling, and by Hjorth (1987,
Examples 5 and 7), Hjorth (1994, Example 2.2) and Chatfield (1995b,
Examples 2.4 and 2.5) on time-series analysis and forecasting.

Example 8.3. Fitting an AR(1) model. Consider the first-order
autoregressive (AR(1)) time-series model, namely:

Xt = φXt−1 + Zt (8.3.1)

where |φ| < 1 for stationarity and {Zt} are uncorrelated N(0, σ2
Z) random

variables. Given a sample of mean-corrected data, it is straightforward to
fit the above AR(1) model and estimate φ. However, in practice with real
data, the analyst is unlikely to know a priori that the AR(1) model really
is appropriate, and will typically look at the data first to see what model
should be adopted.

A simple (perhaps oversimplified) identification procedure consists of
calculating the first-order autocorrelation coefficient, r1, and fitting the
AR(1) model if, and only if, r1 is significantly different from zero. What
this procedure does is to eliminate the possibility of getting small values
of φ̂ which correspond to small values of r1. Instead, large values of φ̂
are more likely to occur, as can readily be demonstrated theoretically or
by simulation. Then the properties of the resulting estimate of φ should be
found, not by calculating the unconditional expectation of φ̂, but rather the
conditional expectation E(φ̂ | r1 is significant). It is intuitively clear that
the latter will not equal φ so that a bias results. This bias can be substantial
as demonstrated by Chatfield (1995b, Example 2.4) for the case where time
series of length 30 were simulated from an AR(1) model with φ = 0.4. Then
it was found that E(φ̂ | r1 is significant) is nearly 0.5, which is substantially
larger than the true value of 0.4.

This example emphasizes that, in assessing bias, the analyst must be
clear exactly what the inference is conditioned on. Theory tells us about
the properties of the unconditional expectation of φ̂ where it is assumed
that an AR(1) model is always fitted to a given set of data. However, when
the model is selected from the data, the model-selection process needs to
be taken into account.

There is also a third estimator which may arguably be preferred to the
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unconditional estimator, φ̂, namely

φ̂PT =
{

φ̂ if r1 is significant
0 otherwise

This estimator can be recognized as a simple example of what
econometricians call a pre-test estimator (e.g. Judge and Bock, 1978). It
arises by recognizing that, when r1 is not significant and an AR(1) model is
not fitted, this could be regarded as fitting an AR(1) model with φ = 0. It is
immediately apparent that the three quantities E(φ̂), E(φ̂ | r1 is significant)
and E(φ̂PT ) will generally not be equal, and will, moreover, have different
sampling distributions and hence different variances. In any case, the
expectations will depend on the actual estimation procedure used. For
example, in the case considered above, where series length 30 were
simulated from an AR(1) with φ = 0.4, it was found that the Yule-Walker
unconditional estimator (based on r1) gave φ̂ = 0.32, which is seriously
biased, whereas the MINITAB package, using a non-linear routine, gave
φ̂ = 0.39, which is nearly unbiased. When series with non-significant values
of r1 are excluded, it was found that E(φ̂ | r1 is significant) is about 0.5,
while if excluded series are counted as AR(1) series with φ = 0, then φ̂PT is
about 0.3. These two conditional expectations are about equidistant from
the true value of 0.4.

Given that estimators of model coefficients are biased, it is not surprising
to find that estimates of the residual standard deviation are also likely to
be biased (see further remarks on this point in Section 8.4).

By now, the reader may be wondering which estimator to use, and it is
hard to offer general advice on this. The choice of ‘best’ estimator may well
depend on the context. We usually prefer estimators to be unbiased and to
have the smallest possible mean square error (MSE), but correcting bias
may actually increase MSE. What we can say is that, if a model is selected
using a given set of data, then this should be recognized when computing
estimators from the same data.

Of course, the above model-selection procedure is simpler than would
normally be the case in time-series analysis. More typically the analyst
will inspect autocorrelations and partial autocorrelations of a suitably
differenced series, allow the removal or adjustment of outliers and entertain
all ARIMA models up to say third order. Choosing a ‘best’ model from such
a wide set of possibilities seems likely to make model selection biases even
larger.

While this example has focussed on estimates of model parameters,
the results are of course relevant to forecasting since point forecasts
and prediction intervals are calculated conditional on the fitted model.
If estimates of model parameters are biased, then the resulting forecasts
can also be expected to be biased, and this is indeed the case, as will be
illustrated below.

Suppose, for example, that a time series of length 30 is taken from a zero-
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mean AR(1) process with φ = 0.4 and σZ = 1. Further suppose we only fit
the AR(1) model if r1 is significantly different from zero. Then, as noted
earlier, the conditional expectation of φ̂ is about 0.5, rather than 0.4. Then
the one-step-ahead point forecast, x̂30(1) = φ̂ x30, will have a conditional
expectation equal to 0.5 × x30 rather than 0.4 × x30. This is a 25% bias.
What effect will this have on the accuracy of the forecast, as measured
by prediction mean square error (PMSE)? If the true model is known, the
variance of the correct one-step-ahead forecast is unity, so that the PMSE
(= variance + square bias) of the biased forecast is (1 + 0.12x2

30). Thus,
although the bias is quite large, the effect on the accuracy of point forecasts
is minimal except when x30 is large, say bigger than about 2. However, it
should be remembered that this AR(1) model, with a relatively low value
for φ, has poor forecasting ability anyway, since it explains less than 20%
of the total variance (σ2

X = σ2
Z/(1− φ2) = 1.19σ2

Z . For models with better
intrinsic forecasting accuracy, the effect of biased parameters is likely to
have a greater proportionate effect on forecast accuracy.

As regards prediction intervals, the estimate of residual variance is also
likely to be biased but in a downward direction – see Section 8.4. A bias
of 10% in σ̂Z is probably conservative. Taking x30 = 1.5 for illustrative
purposes, the true 95% prediction interval should be 0.4 × 1.5 ± 1.96 × 1,
while the estimated interval will on average be 0.5× 1.5± 1.96× 0.9. Thus
the true interval is (−1.36, 2.56) but the estimated interval will on average
be (−1.01, 2.51). These intervals are non-trivially different.

Unfortunately, there appears to be no easy general way to quantify the
theoretical extent of these biases and progress seems likely to be made
primarily by simulation and by empirical experience. �

Example 8.4. Fitting neural network models. Neural network (NN) models
were introduced in Section 3.4.4. They can be thought of as a type of
non-linear regression model, and have recently been applied to various
time-series forecasting problems. NNs comprise a large class of models
which allows the analyst to try many different architectures with different
numbers of hidden layers and units. The parameters of an NN model are
the weights which indicate the strength of particular links between the
input variables and the different hidden units or between the hidden units
and the output(s). Thus NN models typically have a (much) larger number
of parameters than time-series models. When this feature is combined with
the large number of models which can be tried, a good (within-sample)
fit can usually be obtained with an NN model. However, there is a real
danger of overfitting, and the forecasting ability of NNs is still uncertain –
see Section 6.4.2.

Faraway and Chatfield (1998) presented a case study where they applied
a variety of NN models to forecasting the famous airline data which was
plotted in Figure 2.1. The accuracy of the out-of-sample forecasts was
generally disappointing. The relationship between in-sample and out-of-
sample forecast accuracy was further investigated by Chatfield (1996b,
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Example 2). This example summarizes the earlier results and also extends
the work in two ways; first, by giving more attention to the bias-corrected
version of AIC, denoted by AICC, which was introduced in Section 3.5,
and second, by demonstrating the clarification introduced by standardizing
tabulated values of information criteria statistics.

All NN models fitted by Faraway and Chatfield (1998) were of the usual
feedforward type with one hidden layer of neurons. The input variables
were the values of the given variable (the number of airline passengers)
at selected lags so that attention was restricted to univariate forecasts
where forecasts of Xt depend only on past values of the series. The output
variables were the forecasts for different horizons. The logistic activation
function was used at each neuron in the hidden layer and the identity
activation function was used at the output stage. Initially the models were
fitted to the first eleven years of data (the training set in NN jargon) and
the data in the twelfth year (the test set) was used for making genuine
out-of-sample forecast comparisons. There were many practical problems
in practice, such as avoiding local minima and choosing sensible starting
values, but the reader is referred to Faraway and Chatfield (1998) for
details.

We divide our comments on the results into two parts, namely (i) those
concerned with selecting an NN model, and (ii) those concerned with
evaluating the out-of-sample forecasts.

Model selection. When fitting NN models, the data summary tools, such as
correlograms, have less value than with other classes of time-series model
because the theoretical functions for different NN models are not available.
However, the time plot and correlogram might help to give some indication
as to what lagged variables should be included as inputs (e.g. include lag 12
for seasonal data having large autocorrelation at lag 12). There seems little
scope for using tests to help identify an NN model, and so this analysis
was based primarily on looking at the model-selection criteria introduced
in Section 3.5. By inspecting the time plot and sample correlograms, it
seems clear that, in order to avoid silly NN models, the values at lags
one and twelve should always be included as input variables. Some other
NN models (e.g. using values at lags one to four only as input variables)
were tried just to make sure that they did indeed give poor results. Some
selected results, taken from Chatfield (1996b), are shown in Table 8.1. The
quantities tabulated (and the notation adopted) are as follows:

1. The ‘lags’ shows the lag values of the input variables used. The number
of input variables is denoted by k.

2. The number of neurons selected for the hidden layer. This is denoted
by H. We use the notation NN(j1, j2, . . . jk;H) to denote the NN model
having input variables at lags j1, j2, . . . jk, and with H neurons in the
hidden layer.
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no. of
hidden no. of Measures of Fit

lags neurons (H) params. (p) σ̂ AIC BIC

1,12,13 1 6 0.102 −537.1 −514.4
1,12,13 2 11 0.098 −543.1 −501.4
1,12,13 4 21 0.093 −546.8 −467.4
1,12 2 9 0.144 −456.3 −422.2
1,12 4 17 0.145 −447.7 −383.5
1,12 10 41 0.150 −423.7 −268.4
1,2,12 2 11 0.141 −459.4 −417.7
1,2,12 4 21 0.139 −454.6 −375.1
1,2,12,13 2 13 0.097 −543.5 −494.4
1,2,12,13 4 25 0.093 −543.1 −448.7
1 – 13 2 31 0.091 −544.8 −427.6
1 – 13 4 61 0.067 −605.1 −374.6

Table 8.1 Some measures of fit for various NN models for the airline data
using the first 132 observations as the training set

3. The ‘no. of pars.’ gives the number of weights (parameters) which have
to be estimated. This is given by p = (k + 2)H + 1.

4. σ̂ = estimated residual standard deviation for the training set. This
was calculated as

√
[S/(N − p)] where S denotes the sum of squared

residuals over the training period and N denotes the number of
observations in the training set.

5. AIC = Akaike’s information criterion. This was approximated by
N ln(S/N) + 2p.

6. BIC = the Bayesian information criterion. This was approximated by
N ln(S/N) + p + p lnN .

As k and H are increased, the number of parameters (p) increases
alarmingly. Several models have in excess of 20 parameters even though
the number of observations in the training set is only 132. Many (most?)
analysts would guess that it would be unwise to have more than about
10 parameters with so few observations. Generally speaking, Table 8.1
demonstrates that the more parameters are fitted, the lower will be the
value of σ̂, as would be expected. Thus these values tell us very little
and could even lead the analyst to wrongly choose a model with too
many parameters. Instead, we look at some model-selection criteria which
penalize the addition of extra parameters. The values of AIC are tabulated
but are hard to read from Table 8.1 as presented. It takes some effort
to search for, and find, the minimum value of AIC which occurs for the
61-parameter NN(1 – 13; 4) model. However, it is very doubtful whether
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any experienced statistician would seriously entertain a model with so
many parameters. The model which gives the next lowest AIC, namely
NN(1, 12, 13; 4), still has 21 parameters. In contrast, the model giving the
lowest BIC (which penalizes extra parameters more severely than the AIC)
has just six parameters, namely NN(1, 12, 13; 1). Thus the use of BIC rather
than AIC leads to a completely different choice of model!

We will now give a revised version of Table 8.1 in two respects. First, the
values of AIC and BIC contain an arbitrary constant. It is the differences
between them which are of interest. The statistics are scale-independent
and a useful guideline is that any model whose AIC is within about 4 of
the minimum AIC is still a good model. This suggests standardizing the
values so that the minimum value is at zero. This will make the values
much easier to read and compare, and is recommended by Burnham and
Anderson (1998). The second extension is to include values of the bias-
corrected version of AIC, which was denoted by AICC in Section 3.5.
Many statisticians are, as yet, unaware of this statistic, and most software
does not tabulate it. Fortunately, it is easy to calculate (approximately) by
adding 2(p+1)(p+2)/(N−p−2) to the AIC. This correction term is small
when p is small compared with N , but can become large if p/N exceeds
about 0.05. The resulting values of the (standardized) values of AIC, AICC

and BIC are shown in Table 8.2. The notation ∇AIC, for example, denotes
the difference between the AIC for a given model and the minimum value of
AIC over all models. Of course, some care is needed if new models are added
during the analysis resulting in a lower minimum value. All standardized
values would need to be recalculated by differencing with respect to the
new minimum.

This table is much easier to read. As well as making it easier to pick
the ‘best’ model corresponding to each statistic, the table also helps to get
a ranking of models – which models are ‘best’ or ‘nearly best’, which are
clearly inferior and which are intermediate. The AICC is midway between
the AIC and BIC in its effect on the size of the model chosen as it chooses
the 11-parameter NN(1, 12, 13; 2) model. There are three other models
within 4 of the minimum value of AICC, including that chosen by the
BIC. However, the model chosen by the (ordinary) AIC has AICC about
49 above the minimum value and this suggests it is a poor model.

There is no single obvious choice as the ‘best’ model based on all these
measures of fit. The models selected by AICC and by BIC both seem
plausible, as do one or two other models. What is clear is that the model
selected by the ordinary AIC is not acceptable. On the basis of Table 8.2,
two recommendations can be made:

1. Values of AIC-type statistics should be standardized to have a minimum
value of zero in order to make them easier to compare.

2. The bias-corrected version of AIC, namely AICC, is preferred to the
ordinary AIC.

One general remark is that model uncertainty is clearly high. Of course,
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no. of
hidden no. of

neurons pars. Measures of Fit
lags (H) (p) σ̂ ∇AIC ∇AICC ∇BIC Notes

1,12,13 1 6 0.102 68 4 0 Best BIC
1,12,13 2 11 0.098 62 0 13 Best AICC

1,12,13 4 21 0.093 58 3 47
1,12 2 9 0.144 149 86 92
1,12 4 17 0.145 157 99 131
1,12 10 41 0.150 182 158 246
1,2,12 2 11 0.141 146 84 97
1,2,12 4 21 0.139 150 95 139
1,2,12,13 2 13 0.097 62 1 20
1,2,12,13 4 25 0.093 62 11 66
1 – 13 2 31 0.091 60 17 87
1 – 13 4 61 0.067 0 49 140 Best AIC

Table 8.2 Some standardized measures of fit for various NN models for the
airline data using the first 132 observations as the training set

some models may be discarded as having high values for all the model-
selection criteria. For example, one silly model we fitted, namely the
NN(1, 2, 3, 4; 2) model, gave very high values for AIC, AICC and BIC as
did the NN(1, 12; 10) model in Table 8.2. However, several other models are
close competitors to those selected as ‘best’ by AICC or BIC. If forecasts,
and especially forecast error variances, are calculated conditional on just
one selected model, the results will not reflect this uncertainty.

One final remark is that we have confined attention to NN models in the
discussion above. However, it could be worth trying an alternative family
of models. In fact, results for a good Box-Jenkins ARIMA model (the so-
called ‘airline’ model) gave measures of fit which were better than the best
NN model in terms of both AICC and BIC.

Forecast accuracy. We now compare forecast accuracy for the different NN
models. As always, we look at out-of-sample forecasts as the critical issue
in applying NN models (or any data-driven model) is the performance on
data not used for training the model. Table 8.3 presents three measures of
forecast accuracy. SSMS and SS1S are the sums of squares of multi-step
and one-step-ahead (out-of-sample) forecast errors for the last year’s data.
The multi-step forecasts were all made in month 132. The one-step-ahead
forecasts were made by forecasting one step ahead from month 132, then
bringing in observation 133 so as to forecast observation 134, and so on to
the end of the series. In all, there are twelve one-step-ahead forecasts for
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no. of
hidden no. of Measures of

neurons params. Fit Forecast Accuracy
lags (H) (p) σ̂ SSMS SS1S σ̂pred Notes

1,12,13 1 6 0.102 0.33 0.51 0.20 Best BIC
1,12,13 2 11 0.098 0.33 0.50 0.20 Best AICC

1,12,13 4 21 0.093 0.54 0.62 0.23
1,12 2 9 0.144 0.35 0.34 0.17
1,12 4 17 0.145 0.38 0.44 0.19
1,12 10 41 0.150 0.51 0.59 0.22
1,2,12 2 11 0.141 0.34 0.29 0.16
1,2,12 4 21 0.139 6.82 1.03 0.29
1,2,12,13 2 13 0.097 0.37 0.52 0.21
1,2,12,13 4 25 0.093 0.34 0.52 0.21
1 – 13 2 31 0.091 1.08 0.71 0.24
1 – 13 4 61 0.067 4.12 1.12 0.31 Best AIC

Table 8.3 Some measures of forecast accuracy for various NN models for
the airline data using the last 12 observations as the test set

each model. The prediction error standard deviation, denoted by σ̂pred, is
estimated by

√
(SS1S/12). In order to compare (out-of-sample) forecast

accuracy with (within-sample) fit, Table 8.3 also gives the fit residual
standard deviation, σ̂, for comparison with σpred.

Table 8.3 tells us that getting a good fit – meaning a low value of σ̂ – is a
poor guide to whether good predictions result. Indeed models with a smaller
numbers of parameters generally give better (out-of-sample) predictions
even though they may appear to give a worse fit than less parsimonious
models. In particular, the model selected as ‘best’ by AICC or by BIC gives
much better out-of-sample predictions than the model selected as ‘best’ by
AIC. This finding confirms the recommendation that AICC and BIC are
better model-selection criteria than AIC.

Table 8.3 also allows us to compare fit with forecast accuracy more
generally. The results might be surprising to the reader with little
experience of making genuine out-of-sample forecasts. The within-sample
estimate of the error standard deviation (i.e. σ̂) is typically much less than
the (out-of-sample) one-step-ahead prediction error standard deviation (i.e.
σ̂pred), whereas if we have selected the true model, we would expect these
two statistics to be estimates of the same quantity. For the better models
(with a small number of parameters and low AICC or BIC), we find
σ̂ � 0.1 and σ̂pred � 0.2. So the latter is about double the former. For the
more dubious models (with low σ̂ and low AIC, but with higher numbers
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of parameters), the ratio of σ̂pred to σ̂ becomes disturbingly large – for
example, it rises to 4.6 for the 61-parameter model with the best AIC.

The above results report what happens when different NN models are
fitted to the airline data using the first 132 observations as the training
set. Qualitatively similar results were found using the first 126 observations
as the training set and also using a completely different data-set, namely
the Chatfield-Prothero sales data (Chatfield and Faraway, 1996). It was
also found that the relatively poor accuracy of out-of-sample forecasts
(as compared with within-sample fit) is not confined to NN models. For
example, when Box-Jenkins seasonal ARIMA models were fitted to the
airline data, it was also found that σ̂pred was typically at best twice as
large as σ̂ as for NN models. �

Why is σ̂pred so much larger than σ̂ in Example 8.4, and is this a finding
which generalizes to other data sets and models? The answer to the second
question seems to be “Yes” judging by the empirical evidence which is
reviewed by Fildes and Makridakis (1995) and Chatfield (1996b) – see
Section 7.7. Out-of-sample forecast accuracy is generally (much) worse than
would be expected from within-sample fit. Some theoretical results, such
as the optimism principle (see Section 8.4), help to explain the above.
While there are other contributory factors, it seems likely that model
uncertainty is the prime cause. Either an incorrect model is identified or
the underlying model is changing through time in a way which is not
captured by the forecasting mechanism. This gives further justification
to our earlier recommendation (Chapter 6) that comparisons of different
forecasting models and methods should be made on the basis of out-of-
sample predictions.

8.4 Inference after model selection: Some findings

This section reviews previous research on model uncertainty and, in
particular, on data dredging, which here means inference on a given set
of data during which the same data are used both to select an appropriate
model and then to test, fit and use it. Chatfield (1995b) has given a general
review of work in this area up to 1995. Other general references include
Hjorth (1994), Burnham and Anderson (1998, Chapter 4) and, in the
econometrics literature, Clements and Hendry (1998a, especially Chapters
7 and 11).

Assuming that a ‘true’ model does not usually exist, the analyst looks
for a model that provides an adequate approximation for the task at hand.
However, if we search widely for a best-fitting model, but then carry out
inferences and prediction as if we believe that the best-fitting model is true,
then problems inevitably arise. It seems illogical to effectively admit that
we do not know what model is appropriate by searching for a ‘best’ model,
but then ignore this uncertainty about the model in subsequent inferences
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and predictions. Unfortunately, it is not easy to specify how we should
proceed instead.

Statistical theory has generally not kept pace with the computer-led
revolution in statistical modelling practice and there has been rather
little progress in understanding how inference is affected by prior model-
selection. It is now known that large biases can arise when model
parameters are estimated from the same data previously used to select
the model, but there is no simple way of deciding how large these biases
will be. One key message is that the properties of an estimator may depend,
not only on the selected model, but also on the selection process. For this
reason, the analyst who reports a best-fitting model should also say how
the selection was made and, ideally, report the full set of models that have
been investigated. In practice, it can be difficult to comply with the latter
requirement, as many models may be investigated implicitly, rather than
explicitly.

The use of a model-selection statistic essentially partitions the sample
space into disjoint subsets, each of which leads to a different model.
This vantage point enables the derivation of various inequalities regarding
the expectation of the optimized statistic and provides a theoretical
justification for what Picard and Cook (1984) call the Optimism Principle,
namely that the fitting of a model typically gives optimistic results in that
performance on new data is on average worse than on the original data.
In particular, if a time-series model is selected by minimizing the within-
sample prediction mean square error (PMSE), then the Optimism Principle
explains why the fit of the best-fitting model is typically better than the
resulting accuracy of out-of-sample forecasts. This is reminiscent of the
shrinkage effect in regression (e.g. Copas 1983), and of experience with
discriminant analysis where discrimination on a new set of data is typically
worse than for the data used to construct the discrimination rule.

8.4.1 Prediction intervals are too narrow

One important consequence of formulating and fitting a model to the same
data is that prediction intervals are generally too narrow. This phenomenon
is well documented, and empirical studies (see Section 7.7) have shown that
nominal 95% prediction intervals will typically contain (much) less than
95% of actual future observations. A variety of contributory reasons have
been suggested for this effect, but model uncertainty is arguably the most
important. If the best-fitting model is chosen from many alternatives, the
residual variance, and hence the prediction mean square error (PMSE), are
typically underestimated. Moreover, the wrong model may be identified, or
the model may change through time.

Although prediction intervals tend to be too narrow, there is an alarming
tendency for analysts to think that narrow intervals are somehow better
than wider ones, even though the latter may well reflect model uncertainty
more realistically. This is illustrated by Draper’s (1995) example on
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forecasting the price of oil, as discussed earlier in Section 7.5.7. Draper
entertained a variety of models and scenarios, giving a wide range of point
forecasts. Sadly, the point forecasts and prediction intervals were all well
away from the actual values that resulted. A model uncertainty audit
suggested that only about 20% of the overall predictive variance could
be attributed to uncertainty about the future of oil prices conditional on
the selected model and on the assumptions (the scenario) made about the
future. Thus prediction intervals, calculated in the usual way, will be too
narrow. Yet the variance conditional on the model and on the scenario
is all that would normally be taken into consideration when calculating
prediction intervals. Other case studies (e.g. Wallis, 1986), which have
examined the decomposition of forecast errors, have also found that the
contribution of uncertainty in model specification to predictive variance
can be substantial.

Model uncertainty is increasingly important for longer lead times where
prediction intervals, conditional on a single model, are likely to be much too
narrow. It is easy to demonstrate that models which are mathematically
very different may be virtually indistinguishable in terms of their fit2 to a
set of data and in the short-term forecasts which result, but may give very
different long-term predictions. This is illustrated in the following example.

Example 8.5. For some near-non-stationary sets of data, an AR(1) model
with a parameter close to unity will give a similar fit and similar one-
step-ahead forecasts to those from a (non-stationary) random walk model.
However, the multistep-ahead forecasts from these two models are quite
different, especially in terms of their accuracy. For simplicity, we consider
an AR(1) model with zero mean, namely

Xt = φXt−1 + Zt (8.4.1)

where |φ| < 1 for stationarity and {Zt} are uncorrelated N(0, σ2) random
variables. Given mean-corrected data to time N , the one-step-ahead
forecast is x̂N (1) = φxN , with forecast error variance σ2. For comparison,
we look at the random walk model given by

Xt = Xt−1 + Zt (8.4.2)

This model could be regarded as a non-stationary AR(1) model with φ = 1.
Given data to time N , the one-step-ahead forecast for the random walk is
x̂N (1) = xN with the same forecast error variance as for the AR(1) model.
If φ is close to unity, the point forecasts are also very similar. However,
when we look at the multistep-ahead forecasts, the picture is very different.
For h steps ahead, the point forecasts for the two models are φhxN and
xN , respectively. Thus, for the stationary AR(1) model, the forecasts tend
to the process mean (zero in this case), while those for the random walk
are constant and equal to the most recent value. The discrepancy between

2 Remember that the fit is usually measured by the within-sample one-step-ahead
forecast errors.
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the limiting forecast error variances is even more startling. For the AR(1)
model, the forecast error variance is given by σ2(1 − φ2h)/(1 − φ2). As
h increases, this tends to a finite value, namely σ2/(1 − φ2) which is the
variance of the AR(1) process. However, for the random walk model, the
forecast error variance is hσ2. This increases without bound as h increases.
More generally, as noted in Section 7.8, the forecast error variance for a
stationary model tends to a finite value as h increases, but tends to infinity
for a non-stationary model. �

Example 8.5 demonstrates that getting the wrong form of differencing may
make little difference to short-term point forecasts, but can make a large
difference for long-term forecasts. This means that, if there is uncertainty
about the model (as there usually will be), then the effects on multi-step-
ahead forecasts could be substantial. It really is a mistake to ignore model
uncertainty.

Similar remarks apply to extrapolating from any model. An instructive
example concerns the Challenger space shuttle disaster data where it is
hard to distinguish between several models in terms of fit, but where
the long-term extrapolations are very different (Draper, 1995, Section
6.2). Forecasting the spread of AIDS provides another convincing example
(Draper, 1995, reply to the discussion).

8.4.2 The results of computational studies

The difficulty in making theoretical progress has led to a number of
studies, using a variety of computational procedures, including simulation,
resampling, bootstrapping, and cross-validation. Only a brief summary
will be given here as many studies were more concerned with parameter
estimation than with forecasting per se, and early results were reviewed
in some detail by Chatfield (1995b, Section 4). As one example, Miller
(1990, p. 160) found alarmingly large biases, of the order of one to two
standard errors, in the estimates of regression coefficients when using
subset selection methods in multiple regression. Hjorth (1987, Example
5) simulated data from an ARMA(1, 1) model, but found that the correct
form of ARMA model was identified in only 28 out of 500 series, using
a standard identification procedure. For the other 472 series, a variety of
alternative AR, MA and ARMA models were identified. The properties
of the estimates of the ARMA(1, 1) model parameters for the 28 series
differed greatly from those arising when the ARMA(1, 1) model was fitted
to all 500 series. Furthermore (and this deserves special emphasis) the
average estimated PMSE was less than one-third of the true PMSE for the
model which was actually fitted. In other words, by allowing a choice of
ARMA model, the estimate of forecast accuracy was hopelessly optimistic
as compared with the true forecast accuracy of the ARMA(1, 1) model.
More recently, Pötscher and Novak (1998) simulated various MA and
AR models but selected the order from the data. They found that “the
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distribution of post-model-selection estimators frequently differs drastically
from the distribution of LS estimates based on a model of fixed order”. It
is unfortunate that results such as these continue to be largely ignored in
practice.

Some data-dependent model-selection procedures are quite complicated
but computational methods can still be used to study their effect on
subsequent inference provided the model-selection procedure is clearly
defined. For example, Faraway (1992) simulated the actions taken during
regression analysis, including the handling of outliers and transformations.
However, it is worth noting that some model-selection procedures may
involve subjective judgement and then it may not be possible to simulate
them computationally.

Apart from simulating the behaviour of model-selection procedures, it
may be possible to use other computational approaches to assess model
uncertainty. For example, Sauerbrei (1999) shows how to use resampling
and cross-validation to simplify regression models in medical statistics and
assess the effect of model uncertainty. However, as noted in Section 7.5.6,
resampling time-series data is particularly difficult because of the ordered
nature of the data and because one has to avoid conditioning on the
fitted model – otherwise any results would not reflect model uncertainty.
Nevertheless, careful bootstrapping can overcome much of the bias due to
model uncertainty.

8.4.3 Model checking

We have concentrated on inferential biases, but it should be noted that
the literature on model checking in time-series analysis is also suspect. In
statistical model-building, it is theoretically desirable for a hypothesis to
be validated on a second confirmatory sample. However, this is usually
impossible in time-series analysis. Rather, diagnostic checks are typically
carried out on the same data used to fit the model. Now diagnostic
tests assume the model is specified a priori and calculate a P-value as
Probability(more extreme result than the one obtained | model is true).
But if the model is formulated, fitted and checked using the same data,
then we should really calculate Probability(more extreme result than the
one obtained | model has been selected as ‘best’ by the model-selection
procedure). It is not clear in general how this can be calculated. However,
it is clear that the good fit of a best-fitting model should not be surprising,
and empirical experience suggests that diagnostic checks hardly ever reject
the best-fitting time-series model precisely because it is the best fit!

A striking example of the above phenomenon is provided by the many
attempts to find calendar effects in stock market data. As described in
Section 8.2.1, if you look hard enough at financial data, you are likely to
spot what appear to be interesting and significant regularities. However, if
tested in the light of the hypothesis-generation procedure, such effects are
usually not significant.
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8.5 Coping with model uncertainty

The choice of model is crucial in forecasting as the use of an inappropriate
model will lead to poor forecasts. Even after the most diligent model-
selection process, the analyst should realize that any fitted model is at
best a useful approximation. In view of the potential seriousness of model-
specification error, it is usually inadequate to describe uncertainty by
computing estimates of forecast accuracy which are conditional on the fitted
model being true. Instead, we need to find ways of getting more realistic
estimates of prediction error, perhaps based on resampling methods, or on
mixing several models. More generally, we need to find ways of coping with,
allowing for, or circumventing, the effects of model uncertainty on forecasts.
This section discusses various alternatives to the rigidity of assuming the
existence of a single known true model, and considers the implications in
regard to the choice of forecasting method.

8.5.1 Choosing a single model

There are many procedures for selecting a best-fit model (see Section 3.3),
but they are not our concern here. Instead, we focus on some more general
questions that need to be considered when choosing a single model to
describe a set of data, if that is the approach to be adopted.

Global or local model? Some forecasters aim to fit what may be described as
a global model, where the structure of the model and the values of the model
parameters are assumed to be constant through time. Regression models
with constant coefficients, and growth curve models may arguably be
described in this way. However, it is rather inflexible to assume that a global
model is appropriate for a given time series. For example, regression models,
with time as an explanatory variable, were used for many years to model
trend in a deterministic way, but such models have now largely fallen out of
favour, as compared with techniques that allow the trend to change through
time – see Section 2.3.5. More generally, models which allow parameters
to adapt through time are sometimes called local models. Models of this
type include structural and state-space models. In particular, the dynamic
linear models of West and Harrison (1997) put parameter nonconstancy to
centre stage (Clements and Hendry, 1998b). Local models are often fitted
by some sort of updating procedure, such as the Kalman filter, which is easy
to apply using a computer, and the use of such techniques seems likely to
increase.

In this regard it is interesting to remember that simple exponential
smoothing (which is a very simple type of Kalman filter) is optimal for
two models which appear to be of a completely different type, namely the
ARIMA(0, 1, 1) model (which has constant parameters and appears to be
more of global type) and the random walk plus noise model (which allows
the local mean level to change through time and so is more of local type).
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In fact, there are similarities in that both models are non-stationary but
neither implies that the trend is a deterministic function of time. This does
illustrate that there may be no clearcut distinction between global and
local models. Even so, the analyst may be wise to lean towards local-type
models.

Simple or complicated? The model-building Principle of Parsimony (or
Occam’s Razor – see Section 3.5.4) says that the smallest possible number
of parameters should be used so as to give an adequate representation of the
given data. The more complicated the model, the more possibilities there
will be for departures from model assumptions. The dangers of overfitting
are particularly acute when constructing multiple regression, autoregressive
and neural network models, as illustrated in the latter case by Example 8.4.
Unfortunately, these dangers are not always heeded.

The inexperienced analyst may intuitively expect more complicated
models to give better forecasts, but this is usually not the case. A more
complicated model may reduce bias (though not if unnecessary terms
are included), but may also increase variance, because more parameters
have to be estimated (Breiman, 1992, p. 738). For example, Davies and
Newbold (1980) show that, although an MA(1) model can be approximated
arbitrarily closely by an AR model of high order, the effect of having to
estimate additional parameters from finite samples is that forecast error
variance gets worse for higher order models. Empirical evidence (e.g. Fildes
and Makridakis, 1995) also points towards simpler models, and it is sad
that empirical findings are often ignored by theoreticians, even though the
Optimism Principle, introduced in Section 8.4, provides an explanation as
to why complicated models may give better fits but worse predictions.

Is the method robust? There is much to be said for choosing a forecasting
method, not because it is optimal for a particular model, but rather because
it can adapt to changes in the underlying model structure and because
it gives good forecasts in practice. Exponential smoothing is an excellent
example of a robust forecasting procedure, because it is optimal for several
different types of underlying model. For example, the empirical results of
Chen (1997) suggest that the seasonal version of exponential smoothing
(Holt-Winters) is more robust to departures from the implied underlying
model than alternative methods based on seasonal ARIMA, structural and
regression models.

When a model is finally chosen for a given set of data, it is always sensible
to ask if the model is robust to changes in the model assumptions. One way
of doing this is to carry out some sort of sensitivity analysis. This involves
making small changes to the model assumptions in order to see how stable
the deductions (including forecasts) from the model are. Sensitivity analysis
is well established in some areas of science and engineering (e.g. Saltelli and
Scott, 1997), but has not yet received the attention it deserves in time-series
analysis.
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8.5.2 Using more than one model

Rather than identifying a single model, the model-selection procedure may
suggest several competing models which all appear plausible and provide a
reasonable approximation to the given data for the required objective (e.g.
Poskitt and Tremayne, 1987). If these models yield very similar forecasts,
then the choice of model may not be critical for forecasting purposes.
However, in some situations, the forecasts may be very different. Then
it may not be clear which model/forecast to choose or how to assess the
forecast accuracy. Rather than try to choose a single ‘best’ model, it may be
sensible to make use of more than one model. This can be done in various
ways.

Use scenario analysis. This approach is widely used in long-range
forecasting. Rather than rely on a single model, and hence on a single
point forecast, the analyst makes a variety of different assumptions about
the future. Each set of assumptions effectively defines a different model,
and the forecasts conditional on each model are found, giving a range
of forecasts across the different scenarios. Each forecast is linked clearly
to the assumptions it depends on, and the spread of forecasts should
clarify the extent of model uncertainty. The aim of scenario analysis is to
allow organizations to make contingency plans for different possible futures.
Further details and references are given by Schoemaker (1991).

Combine forecasts from different methods and models. Scenario analysis
gives a range of forecasts. If a single forecast is required, there are various
ways that different forecasts might be combined. One simple approach for
doing this, outlined in Section 4.3.5, takes a weighted linear combination
of the forecasts. It has been established empirically that the resulting
combined point forecast will often be more accurate on average than any of
the individual forecasts (e.g. Clemen, 1989). Unfortunately, the combined
model implied by the weighted averaging may be rather complicated and
the stochastic properties of the combined forecast may also be unclear,
making it difficult, for example, to compute prediction intervals.

The idea of mixing several models, rather than using a single model, is
the idea behind the use of multi-process or mixture models in Bayesian
forecasting as described by West and Harrison (1997, Chapter 12). This
topic will not be pursued here. An alternative Bayesian approach to
averaging over different models, called Bayesian model averaging, will be
reviewed separately in Section 8.5.3, below.

Use different models to describe different parts of the data. Suppose that a
series exhibits seasonality over the early part of its history but then changes
to being non-seasonal. Then it would seem silly to fit a seasonal model to
all the data. Instead, we can fit a non-seasonal model to the later part of
the data. More generally, it is sometimes the case that the properties of
recent observations differ markedly from those of earlier values. Then the

c© 2000 by Chapman & Hall/CRC



properties of the recent observations are clearly more relevant for producing
forecasts and it may be sensible to largely ignore the earlier observations
during the modelling process.

Use different models for different lead times. It has been established
empirically (e.g. Gersch and Kitagawa, 1983; Meese and Geweke, 1984)
that the model which works best for, say, short-term forecasting may not
be so good for longer lead times. The criterion for choosing a model needs
to be matched to the given application rather than relying on theoretical
results which assume there is a true known model. In particular, when
h-steps-ahead forecasts are required, it may be advisable to fit a model by
minimizing prediction errors h-steps-ahead, rather than one step ahead
(e.g. Stoica and Nehorai, 1989; Tiao and Xu, 1993). There is further
discussion of this point in Haywood and Tunnicliffe Wilson (1997) and
Clements and Hendry (1998a, Chapter 11) who demonstrate that, even
though an incorrect model may be used, if the model parameter is tuned to
the appropriate lead time then the relative loss of forecasting performance
may be negligible at higher lead times. However, if an incorrect model is
used at higher lead times with a parameter tuned to lead time one, then
the loss of forecasting performance may be excessive.

Example 8.6. This example illustrates the need to match model fitting to
the sort of forecast required. Suppose a set of time-series data are generated
by an MA(1) process, but that the analyst mistakenly thinks an AR(1)
process is applicable.3 Then, all is not lost, provided the model is fitted in
an appropriate way.

Suppose the autocorrelation at lag one is ρ. Then for the MA(1) model
all subsequent autocorrelations are zero, while those for the AR(1) model
are of the form ρh at lag h. Assume, for simplicity, that the process has
zero mean. Then the best forecast for two or more steps ahead will be zero.
However, if an AR(1) model is entertained, the analyst will think the best
forecast will be of the form xN (h) = ρ̂hxN , where ρ is estimated in the
usual way. As h gets larger, this forecast tends to the correct value anyway,
which is comforting, but we can speed the process by not estimating ρ from
the one-step-ahead forecast errors.

Suppose, for example, that we are really interested in forecasting two
steps ahead. If the analyst is certain that the true model is known, then
the use of one-step-ahead errors is optimal for estimating model parameters.
However, one is rarely in this position. Thus, to guard against the possibility
of having the wrong model, we should estimate the AR coefficient, ρ, by
minimizing the two-steps-ahead errors. If the value of ρ was known, the
two-steps-ahead forecast for the AR(1) model would be xN (2) = ρ2 xN ,
and the sum of squares of the two-steps-ahead forecast errors can be shown
to be minimized when ρ2 equals the sample autocorrelation coefficient at

3 In fact, it can be very difficult to tell the difference between the two models with
series of perhaps 100 observations, unless the MA coefficient at lag one is large.
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lag 2. The resulting estimate of ρ2 will have an expectation very close to
zero if the true model is MA(1), rather than AR(1), and this will result in
better two-steps-ahead forecasts than if we had fitted the (wrong) AR(1)
model using one-step-ahead forecasts. �

8.5.3 Bayesian model averaging

Section 8.5.2 suggested that it is not always sensible to have to choose a
single ‘best’ model, but rather that it may make more sense to average
over several plausible competing models in some way. Bayesian model
averaging attempts to do this in a theoretically satisfying way that uses
Bayesian principles, but which will hopefully appeal to any broad-minded
statistician. Prior knowledge is used to select a set of plausible models
and prior probabilities are attached to them. The data are then used to
evaluate posterior probabilities for the different models, after which models
with low posterior probabilities may be discarded to keep the problem
manageable. Finally, a weighted sum of the predictions from the remaining
competing models is calculated. Under certain assumptions, the combined
forecast from Bayesian model averaging will have a lower PMSE in the long
run than the forecasts from any of the individual models. Reviews of the
approach, including some interesting examples, are given by Draper (1995)
and Raftery et al. (1997).

The idea behind Bayesian model averaging – that is, relying on a group of
plausible models rather than on picking a single ‘best’ model – suggests that
it is worth re-examining the way that time-series models are customarily
fitted. For example, suppose it is desired to fit an AR model to a set of
data. The appropriate order is usually unknown a priori, and the approach
generally adopted at present is to assess the order by minimizing a criterion
such as AICC, and then estimate model parameters and make predictions
conditional on the selected order being correct. The alternative suggested
by Bayesian model averaging is to recognize that it is unlikely that an
AR model is the true model, and, even if it is, the correct order may
not be chosen. This suggests approximating the data by a mixture of AR
models of different orders, rather than relying on a single model of fixed
order. Prior probabilities for different orders would need to be assessed
and posterior probabilities evaluated from the data, for example, by Gibbs
sampling (Barnett et al., 1996). Successful applications of Bayesian model
averaging to AR processes are reported by Schervish and Tsay (1988) and
Le et al. (1996).

Despite its promise, there are difficulties in applying Bayesian model
averaging. Prior probabilities for the different models have to be specified
and this is not easy, especially if some models are entertained only after
looking at the data. The calculation of posterior probabilities from the
prior probabilities requires the computation of Bayes factors which may
not be easy, even in this computer age. Kass and Raftery (1995) discuss
this general problem. Finally, Bayesian model averaging does not lead to a
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simple model, and although this does not matter for forecasting purposes,
it does matter for the purposes of description and interpretation.

8.5.4 Check out-of-sample forecast accuracy with data splitting

Much of statistical inference is concerned with estimating unobservable
quantities, such as population parameters, where the analyst may
never know if the inferences are good, since the estimates cannot be
compared directly with the truth. However, time-series analysis involves the
prediction of observable quantities, which provides an excellent opportunity
to check or calibrate a model (Geisser, 1993).

Chapter 6 and Example 8.4 recommended that different forecasting
models and methods should be compared on the basis of genuine out-of-
sample (or ex-ante) predictions, and not on within-sample fit. This should
avoid the dangers inherent in formulating and fitting a model to the same
set of data. Of course, the ideal way to test a model is to check forecast
accuracy on a completely new set of data, but it would usually take too
long to wait for new time-series data to become available. Thus the usual
way of checking out-of-sample forecast accuracy for time-series data is to
use a computational technique called data splitting. This involves dividing
the series into two parts, fitting the model to the first part (sometimes
called the construction, training or calibration sample) and using the second
part (sometimes called the hold-out, test or validation sample) to check
inferences and predictions. As in our Example 8.4, the predictions of the
hold-out sample are often worse than expected – see Armstrong (1985,
pp. 338-339) for further empirical evidence.

One problem with data splitting is deciding how to split the data (e.g. see
Picard and Cook, 1984). Unfortunately, there are no general guidelines on
this. Moreover, fitting a model to just part of a time-series will result in a
loss of efficiency and so some compensatory effect is needed. Unfortunately,
Faraway (1992, 1998) has shown that, in regression modelling, data splitting
may increase the variability in estimates without the reward of eliminating
bias. This result may well generalize to time-series modelling. For statistical
applications other than time-series analysis, hold-out samples are a poor
substitute for taking a true replicate sample (Chatfield, 1995b, Section 6).
Unfortunately, it is usually impossible to replicate time-series data, except
by waiting for many time periods which is hardly a practicable proposition.
Thus, despite its drawbacks, data splitting is widely used in forecasting to
provide a salutary check on over-optimistic forecasts. Analysts typically
‘hold back’ about 10% of the data, but this percentage has no theoretical
foundation.

One final cautionary remark on data splitting is to note that the hold-out
sample is sometimes erroneously used to help select the ‘best’ model. In
particular, a model that is selected to give the best forecasts of the ‘holdout
sample’, rather than the best fit to the construction sample, would already
have used the second part of the data so that the latter is no longer a
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genuine hold-out sample. It is a sad fact that many analysts overlook this
point and regard the forecast accuracy obtained in this way as being a
genuine out-of-sample result. However, the Optimism Principle applies here
as well. The real forecast accuracy will generally be worse than that found
for the ‘holdout’ sample which has already been used to help select the
‘best’ model.

8.5.5 Handling structural breaks

The most difficult type of model uncertainty to cope with is that associated
with a sudden change to the underlying model leading to what is variously
called a structural break or change point or regime switch. This may reveal
itself as a sudden jump in level, a sudden change in gradient (e.g. from
positive to negative) or some other obvious change in structure. An example
of the latter is a change from a regular seasonal pattern to a completely
different seasonal pattern, or to no discernible seasonal pattern at all,
perhaps as a result of a change in government policy. Figure 8.1 shows
a time series where the seasonal effect appears to disappear for about
two years and then re-appear. This makes life particularly difficult for the
analyst!
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Figure 8.1 The time plot, from April 1992 to February 2000, of monthly
ILO unemployment in the U.K. for males aged 25–49 who have been
unemployed for less than 6 months.
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History shows that structural breaks do occur and may ruin forecasts.
Indeed, structural breaks will sometimes be revealed precisely because
a forecast has failed, perhaps because a realized outcome is outside its
prediction interval or because the forecasting system systematically over-
or under-forecasts over several consecutive periods.

Thus there are (at least) two separate issues here. (1) How can we detect
a structural break in past data and how should we respond when such a
break does occur? (2) Is it possible to anticipate a structural break that
may occur some time in the future, and how should forecasts be made when
such an eventuality is thought to be possible?

Starting with the second issue, it is well established that sudden changes
are difficult to forecast (e.g. Makridakis, 1988). This is particularly true
when they are caused by an unforeseen event, such as the Gulf war, but
even when they are caused by a known external event such as an expected
change in government fiscal policy. Of course, univariate methods cannot be
expected to forecast structural breaks as there are no explanatory variables
to act as leading indicators. For multivariate modelling, there is more
chance of anticipating sudden change, although this will still depend on
how the break affects the relationship between variables. When a break
occurs, it may, or may not, manifest itself in such a way that the change
is related across variables in an analogous way to cointegration. If not,
then predictive failure is more likely to occur. In particular, a model
that imposes cointegration may fail to ‘error-correct’ following a structural
break and this will cause problems (Clements and Hendry, 1998b, p. 213).
Similar considerations may help to explain the poor performance of those
econometric models, which are not robust to structural breaks. The ideal
type of predictor variable is one that is causally related to the output and
also cointegrated with it through sudden changes, so that it can continue
to be useful for forecasting in the presence of a structural break.

Returning to the first issue, it may seem easier to detect sudden changes
in past data, perhaps simply by looking at the time plot as in Figure
8.1. However, sudden changes may only become clear retrospectively when
quite a few observations have been taken after the break. Thus, in Figure
8.1, the sudden disappearance of the seasonal effect in 1996/97 would only
become clear when at least one year’s data is available after the change.
The same applies when the seasonal effect returns. This break was probably
caused by a government decision to change the way that unemployment
benefits were paid and this contextual knowledge might have led to an
earlier diagnosis of the first change. However, the return of the seasonal
effect in 1999 was completely unexpected and still unexplained at the time
of writing. Some tests have been devised for assessing structural breaks, but
they need careful specification (e.g. is the test for a permanent or temporary
change in level), and may need many observations after the change. Thus
they are primarily intended for retrospective analysis, rather than for an
immediate assessment of a new unusual observation.
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When a structural break has been found in past data, this should be
taken into account when computing forecasts. This can be done in various
ways, such as incorporating an intervention effect into an ARIMA model
(see Section 5.6), applying a suitable multivariate or judgemental approach,
or using a method that is robust to sudden changes. As regards the
last possibility, one useful general effect, that is relevant to handling
structural breaks, is that differencing can mitigate the effects of a jump
in level (Clements and Hendry, 1998b). Although a model fitted to all the
differenced data will not be exactly true (especially at the break point),
the use of a model for differenced data means that it will adapt quickly
away from the actual break point. Thus, in some sense, the model is robust
to sudden changes. The alternative of using undifferenced data and fitting
a different intercept before and after the change, will be less robust and
harder to implement.

Although univariate models are generally unable to predict structural
breaks, it is worth adding that such models do have other attractive
properties. In particular, a simple model may be more robust to changes
in the underlying model than more complicated alternatives. On the
other hand, a multivariate model will be needed if the analyst wants to
understand the reasons for a structural break, as will be necessary if policy
analysis is to be attempted as well as forecasting.

8.6 Summary and discussion

The forecasting literature relies heavily on classical theory which generally
assumes that the model for a given set of data is known and pre-specified.
However, this bears little resemblance to the situation typically faced by
forecasters in practice. A model for time-series data is usually formulated
from the same data used to produce forecasts. Many models may be
entertained and a single model is usually selected as the ‘winner’ even
when other models give nearly as good a fit. Given that the wrong model
may be selected or that a true model may not exist anyway, it follows that
model uncertainty will affect most real statistical problems. It is therefore
unfortunate that the topic has received little attention from forecasters.
The main message of this chapter is that, when a time-series model is
formulated and fitted to the same data, then inferences and forecasts made
from the fitted model will be biased and seriously over-optimistic when the
prior data-dependent model-selection process is ignored.

In more detail, the following general points can be made:

(a) Standard least-squares theory does not apply when the same data are
used to formulate and fit a model. Estimates of the model parameters,
including the residual variance, are likely to be biased.

(b) Models with more parameters may give a better fit, but worse out-of-
sample predictions. Thus, when comparing the fit of different models, a
measure of fit must be used that penalizes the introduction of additional
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parameters. The AICC or BIC is recommended in preference to the
ordinary AIC for choosing between time-series forecasting models.

(c) The analyst typically thinks the fit is better than it really is (the
Optimism Principle), and prediction intervals are generally too narrow,
partly because residual variance tends to be underestimated and partly
because prediction intervals fail to take full account of model uncertainty.

(d) The frequentist approach does not adapt naturally to cope with
model uncertainty, though some progress can be made with resampling
and other computational methods. Bayesian model averaging offers a
promising alternative approach, even to analysts who are not Bayesian.
However, difficulties arise whichever approach is adopted, and there
appears to be no simple general theoretical ‘fix’.

So how should the results in this chapter affect the way that a forecaster
proceeds? Despite the difficulties in giving general advice, the following
guidelines will be given to round off this book. First, the following well-
established guidelines should always be followed:
(i) Clarify the objectives of the forecasting exercise.
(ii) Find out exactly how a forecast will actually be used.
(iii) Find out if a model is required for descriptive purposes as well as for

prediction.
(iv) Ask questions to get background information as to a suitable class of

models.
(v) Carry out a preliminary examination of the data to check for errors,

outliers and missing observations as well as to see if the data have
important features such as trend, seasonality, turning points and
structural breaks. Incorporate the latter features into any model that
is built.
The following additional guidelines arise from the material in this

chapter, namely:
(vi) Be alert to the insidious existence of model uncertainty but be aware

that there is no simple, general way of overcoming the problem.
(vii) Realise that the computer-based revolution in time-series modelling

means that the analyst typically looks at a (very) large number of
models. This may lead to biases when inference and forecasting follows
data-based model selection.

(viii) Realise that more complicated models, while often appearing to give
a better fit, do not necessarily produce better out-of-sample forecasts.
Select a model on the basis of within-sample fit by using the AICC

or BIC, so as to adequately penalize the addition of extra parameters.
Realise that forecasts from a best-fitting model will generally not be as
good as expected and that prediction intervals will generally be too
narrow. The use of data splitting to check out-of-sample forecasting
ability should avoid being fooled by optimistic within-sample results.
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(ix) Consider the following alternatives to the use of a single best-fitting
model; (i) use different models for different purposes; (ii) use scenario
analysis to get a range of forecasts based on different assumptions about
the future; (iii) use more than one model by some sort of mixing, such
as taking a weighted combination of forecasts or using Bayesian model
averaging; (iv) use a forecasting method which is not model based but
which is designed to be robust to outliers and other peculiarities, as well
as to changes in the underlying model.
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