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Preface

This book is intended for a rigorous introductory Ph.D. level course in econometrics, or

for use in a field course in econometric theory. It is based on lecture notes that I have developed

during the period 1997-2003  for the first semester econometrics course “Introduction to

Econometrics” in the core of the Ph.D. program in economics at the Pennsylvania State

University. Initially these lecture notes were written as a companion to Gallant’s (1997)

textbook, but have been developed gradually into an alternative textbook. Therefore, the topics

that are covered in this book encompass those in Gallant’s book, but in much more depth.

Moreover, in order to make the book also suitable for a field course in econometric theory I have

included various advanced topics as well. I used to teach this advanced material in the

econometrics field at the Free University of Amsterdam and Southern Methodist University, on

the basis of the draft of my previous textbook, Bierens (1994). 

Some chapters have their own appendices, containing the more advanced topics and/or

difficult proofs. Moreover, there are three appendices with material that is supposed to be known,

but often is not, or not sufficiently. Appendix I contains a comprehensive review of linear

algebra, including all the proofs. This appendix is intended for self-study only, but may serve

well in a half-semester or one quarter course in linear algebra. Appendix II reviews a variety of

mathematical topics and concepts that are used throughout the main text, and Appendix III

reviews the basics of complex analysis which is needed to understand and derive the properties

of characteristic functions.

At the beginning of the first class I always tell my students: “Never ask me how. Only ask

me why.”  In other words, don’t be satisfied with recipes. Of course, this applies to other
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economics fields as well, in particular if the mission of the Ph.D. program is to place its

graduates at research universities.  First, modern economics is highly mathematical. Therefore, in

order to be able to make original contributions to economic theory Ph.D. students need to

develop a “mathematical mind.” Second, students who are going to work in an applied

econometrics field like empirical IO or labor need to be able to read  the theoretical econometrics

literature in order to keep up-to-date with the latest econometric techniques. Needless to say,

students interested in contributing to econometric theory need to become professional

mathematicians and statisticians first. Therefore, in this book I focus on teaching “why,” by

providing proofs, or at least motivations if proofs are too complicated, of the mathematical and

statistical  results necessary for understanding modern econometric theory. 

Probability theory is a branch of measure theory. Therefore, probability theory is

introduced, in Chapter 1, in a measure-theoretical way. The same applies to unconditional and

conditional expectations in Chapters 2 and 3, which are introduced as integrals with respect to

probability measures. These chapters are also beneficial as preparation for the study of economic

theory, in particular modern macroeconomic theory. See for example Stokey, Lucas, and Prescott

(1989).  

It usually takes me three weeks (at a schedule of  two lectures of one hour and fifteen

minutes per week) to get through Chapter 1, skipping all the appendices. Chapters 2 and 3

together, without the appendices, usually take me about three weeks as well. 

Chapter 4 deals with transformations of random variables and vectors, and also lists the

most important univariate continuous distributions, together with their expectations, variances,

moment generating functions (if they exist), and characteristic functions. I usually explain only
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the change-of variables formula for (joint) densities, leaving the rest of Chapter 4 for self-tuition.

The multivariate normal distribution is treated in detail in Chapter 5, far beyond the level

found in other econometrics textbooks. Statistical inference, i.e., estimation and hypotheses

testing, is also introduced in Chapter 5,  in the framework of the normal linear regression model.

At this point it is assumed that the students have a thorough understanding of linear algebra. 

This assumption, however, is often more fiction than fact. To tests this hypothesis, and to force

the students to refresh their linear algebra, I usually assign all the exercises in Appendix I as

homework before starting with Chapter 5. It takes me about three weeks to get through this

chapter.

Asymptotic theory for independent random variables and vectors, in particular the weak

and strong laws of large numbers and the central limit theorem, is discussed in Chapter 6,

together with various related convergence results. Moreover, the results in this chapter are

applied to M-estimators, including nonlinear regression estimators, as an introduction to

asymptotic inference. However, I have never been able to get beyond Chapter 6 in one semester,

even after skipping all the appendices and  Sections 6.4 and 6.9 which deals with asymptotic

inference.

Chapter 7 extends the weak law of large numbers and the central limit theorem to

stationary time series processes, starting from the Wold  (1938)  decomposition. In particular, the

martingale difference central limit theorem of McLeish (1974) is reviewed together with

preliminary results. 

Maximum likelihood theory is treated in Chapter 8. This chapter is different from the

standard treatment of maximum likelihood theory in that special attention is paid to the problem
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of how to setup the likelihood function in the case that the distribution of the data is neither

absolutely continuous nor discrete. In this chapter only a few references to the results in Chapter

7 are made, in particular  in Section 8.4.4. Therefore, Chapter 7 is not prerequisite for  Chapter 8, 

provided that the asymptotic inference parts of Chapter 6  (Sections 6.4 and 6.9)  have been

covered. 

Finally, the helpful comments of five referees on the draft of this book, and the comments

of my colleague Joris Pinkse on Chapter 8, are gratefully acknowledged. My students have

pointed out many typos in earlier drafts, and their queries have led to substantial improvements

of the exposition. Of course, only I am responsible for any remaining errors. 



15

Chapter 1

Probability and Measure

1.1. The Texas lotto

1.1.1 Introduction

Texans (used to) play the lotto by selecting six different numbers between 1 and 50,

which cost $1 for each combination1. Twice a week, on Wednesday and Saturday at 10:00 P.M.,

six ping-pong balls are released without replacement from a rotating plastic ball containing 50

ping-pong balls numbered 1 through 50. The winner of the jackpot (which occasionally

accumulates to 60 or more million dollars!) is the one who has all six drawn numbers correct,

where the order in which the numbers are drawn does not matter. What are the odds of winning if

you play one set of six numbers only?

In order to answer this question, suppose first that the order of  the numbers does matter.

Then the number of ordered sets of 6 out of 50 numbers is: 50 possibilities for the first drawn

number, times 49 possibilities for the second drawn number, times 48 possibilities for the third

drawn number, times 47 possibilities for the fourth drawn number, times 46 possibilities for the

fifth drawn number, times 45 possibilities for the sixth drawn number:

k
5

j'0
(50 & j) ' k

50

k'45
k '

k
50

k'1
k

k
50&6

k'1
k

'
50!

(50 & 6)!
.

The notation n!, read: n factorial, stands for the product of the natural numbers 1 through n: 
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n! ' 1×2×.......×(n&1)×n if n > 0, 0! ' 1.

The reason for defining  0! = 1 will be explained below.

Since a set of six given numbers can be permutated in 6! ways, we need to correct the

above number for the 6! replications of each unordered set of six given numbers. Therefore, the

number of sets of six unordered numbers out of 50 is:

50

6
'

def. 50!
6!(50&6)!

' 15,890,700.

Thus, the probability of winning  the Texas lotto if you play only one combination of six

numbers is 1/15,890,700. 2

1.1.2 Binomial numbers

In general, the number of ways we can draw a set of k unordered objects out of a set of n

objects without replacement is:

n

k
'

def. n!
k!(n&k)!

. (1.1)

These (binomial) numbers3, read as: n choose k,  also appear as coefficients in the binomial

expansion

(a % b)n ' j
n

k'0

n

k
a kb n&k . (1.2)

The  reason for defining 0! = 1 is now that the first and last coefficients in this binomial

expansion are always equal to 1: 
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n

0
'

n

n
'

n!
0!n!

'
1
0!

' 1.

For not too large an n the binomial numbers (1.1) can be computed recursively by hand,

using the Triangle of Pascal: 

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 þ þ þ þ þ 1

(1.3)

Except for the 1's on the legs and top of the triangle in (1.3), the entries are the sums of the

adjacent numbers on the previous line, which is due to the easy equality:

n&1

k&1
%

n&1

k
'

n

k
for n $ 2, k ' 1,....,n&1. (1.4)

Thus, the top 1 corresponds to n = 0,  the second row corresponds to n = 1, the third row

corresponds to n = 2, etc., and for each row n+1, the entries are the binomial numbers (1.1) for k

= 0,....,n. For example,  for n = 4  the coefficients of  in the binomial expansion (1.2) cana kb n&k

be found on row 5 in (1.3):  (a % b)4 ' 1×a 4 % 4×a 3b % 6×a 2b 2 % 4×ab 3 % 1×b 4 .
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1.1.3 Sample space

The Texas lotto is an example of a statistical experiment. The set of possible outcomes of

this statistical experiment is called the sample space, and is usually denoted by   In the TexasΩ .

lotto case   contains N  = 15,890,700 elements:  where each element  isΩ Ω ' {ω1 ,.....,ωN} , ωj

a set itself consisting of  six different numbers ranging from 1 to 50, such that for any pair  ,ωi

  with ,   Since in this case the elements  of   are sets themselves, theωj i … j ωi … ωj . ωj Ω

condition   for   is equivalent to the condition that  ωi … ωj i … j ωi _ ωj ó Ω .

1.1.4 Algebras and sigma-algebras of events

A set { ,...., } of different number combinations  you can bet on is called an event.ωj1
ωjk

The collection of all these events, denoted by ,  is a “family” of subsets of the sample spaceö

.  In the Texas lotto case the collection   consists of all subsets of ,  including  itself andΩ ö Ω Ω

the empty set .4  In principle you could bet on all number combinations if you are rich enough  i

(it  will cost you $15,890,700). Therefore, the sample space    itself is included in .  YouΩ ö

could also decide not to play at all. This event can be identified as the empty set  For the sakei .

of completeness it is included in   as well.ö

Since in the Texas lotto case the collection    contains all subsets of   itö Ω ,

automatically satisfies the following conditions:

If A 0 ö then Ã ' Ω\A 0 ö , (1.5)

where  is the complement of the set A (relative to the set ),  i.e., the set of all elements Ã ' Ω\A Ω

of  that are not contained in A;Ω

If A ,B 0 ö then A^B 0 ö . (1.6)
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By induction, the latter condition extends to any finite union of sets in :  If  for  j =ö Aj 0 ö

1,2,...,n, then  ^n
j'1Aj 0 ö .

Definition 1.1: A collection  of subsets of a  non-empty set  satisfying the conditions (1.5)ö Ω

and (1.6) is called an algebra.5 

In the Texas lotto example the sample space  is finite, and therefore the  collection Ω ö

of subsets of    is finite as well. Consequently, in this case the condition  (1.6) extends to:Ω

If Aj 0 ö for j ' 1,2,.... then ^ 4
j'1Aj 0 ö . (1.7)

However, since in this case the collection   of subsets of   is finite, there are only a finiteö Ω

number of distinct sets .  Therefore, in the Texas lotto case the countable infinite  union Aj 0 ö

 in  (1.7)  involves only a finite number of distinct sets Aj; the other sets are replications of^ 4
j'1Aj

these distinct sets. Thus, condition (1.7) does not require that all the sets   are different.Aj 0 ö

Definition 1.2: A collection  of subsets of a  non-empty set  satisfying the conditions (1.5)ö Ω

and (1.7) is called a algebra.6σ&&&&

1.1.5 Probability measure

Now let us return to the Texas lotto example. The odds, or probability,  of winning is 1/N 

for each valid  combination  of six numbers, hence if you play n different valid numberωj

combinations  the probability of winning is n/N:   Thus, in{ωj1
, ...,ωjn

} , P({ωj1
, ...,ωjn

}) ' n/N .

the Texas lotto case the probability  is given by the number n of elements in theP(A) , A 0 ö ,
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set A, divided by the total number N of elements in   In particular we have  and  ifΩ . P(Ω) ' 1,

you do not play at all the probability of winning is zero:  P(i) ' 0.

The function  is called a probability measure: it assigns a numberP(A) , A 0 ö ,

 to each set  Not every function which assigns numbers in [0,1] to the setsP(A) 0 [0,1] A 0 ö .

in  is a probability measure, though: ö

Definition 1.3: A mapping   from a  algebra    of subsets of a set   into theP: ö 6 [0,1] σ& ö Ω

unit interval  is a probability measure on { , } if it satisfies the following three conditions:Ω ö

If A 0 ö then P(A) $ 0, (1.8)

P(Ω) ' 1, (1.9)

For disjoint sets Aj 0 ö , P(^ 4
j'1 Aj) ' '4

j'1P(Aj) . (1.10)

Recall that  sets are disjoint if they have no elements in common: their intersections are

the empty set.

The conditions (1.8) and (1.9) are clearly satisfied for the case of the Texas lotto.  On the

other hand, in the case under review the collection  of events contains only a finite number ofö

sets, so that any  countably infinite sequence of sets in  must contain sets that are the same. Atö

first sight this seems to conflict with the implicit assumption that there always exist countably

infinite sequences of disjoint sets for which  (1.10) holds. It is true indeed that any countably

infinite sequence of disjoint sets in a finite collection    of sets can only contain a finiteö

number of  non-empty sets. This is no problem though, because all the other sets are then equal



21

to the empty set  The empty set is disjoint with itself:  and with any other set:i . i _ i ' i ,

 Therefore, if  is finite then any countable infinite sequence of disjoint setsA _ i ' i . ö

consists of a finite number of  non-empty sets, and an infinite number of replications of the

empty set. Consequently,  if  is finite then  it is sufficient for the verification of condition ö

(1.10) to verify that for any pair of disjoint sets   in    =  +  A1 ,A2 ö , P(A1^A2) P(A1) P(A2) .

Since in the Texas lotto case   and  where P(A1^A2) ' (n1%n2)/N , P(A1) ' n1/N , P(A2) ' n2/N ,

 is the number of elements of  and   is the number of elements of , the latter conditionn1 A1 n2 A2

is satisfied, and so is condition  (1.10).  

The statistical experiment is now completely described by the triple   called{Ω ,ö ,P} ,

the probability space, consisting of the sample space  i.e., the set of all possible outcomes of Ω ,

the statistical experiment involved,  a algebra  of events, i.e., a collection of subsets of  theσ& ö

sample space  such that the conditions  (1.5) and (1.7) are satisfied,  and a probability measureΩ

 satisfying the conditions (1.8), (1.9), and (1.10).P: ö 6 [0,1]

In the Texas lotto case the  collection  of events is an algebra, but because  is finite itö ö

is automatically a algebra.σ&

1.2. Quality control

1.2.1 Sampling without replacement

As a second example, consider the following case. Suppose you are in charge of quality

control in a light bulb factory. Each day N  light bulbs are produced. But before they are shipped

out to the retailers, the bulbs need to meet a minimum quality standard, say: no more than R out

of N  bulbs are allowed to be defective. The only way to verify this exactly is to try all the N 
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bulbs out, but that will be too costly. Therefore, the way quality control is conducted in practice

is to draw randomly n bulbs without replacement, and to check how many bulbs in this sample

are defective. 

Similarly to the Texas lotto case, the number M of different samples  of size n  you cansj

draw out of a set of N elements without replacement is:

M '
N

n
.

Each sample   is characterized by a  number   of defective bulbs in the sample involved. Letsj kj

K  be the actual number of defective bulbs. Then kj 0 {0,1,...,min(n,K)} .

Let    and let the  algebra  be the collection of all subsets of . Ω ' {0,1,....,n}, σ& ö Ω

The number of samples   with   =   defective bulbs is:sj kj k # min(n,K)

K

k

N&K

n&k
,

because there are ”K choose k “ ways to draw k unordered numbers out of K numbers without

replacement, and “N-K choose n-k” ways to draw n - k unordered numbers out of N - K numbers

without replacement. Of course, in the case that n > K the number of samples  with   =  k >sj kj

min (n,K) defective bulbs is zero.  Therefore, let: 

P({k}) '

K

k

N&K

n&k

N

n

if 0 # k # min(n,K) , P({k}) ' 0 elsewhere , (1.11)

and let for each set   (Exercise: Verify that thisA ' {k1 , ...... ,km} 0 ö , P(A) ' 'm
j'1P({kj}) .

function  P satisfies  all the requirements of a probability measure.) The triple  is now{Ω ,ö ,P}
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the probability space corresponding to this statistical experiment. 

The probabilities (1.11) are known as the Hypergeometric(N,K,n) probabilities.

1.2.2 Quality control in practice7

The problem in applying this result in quality control is that K is unknown. Therefore, in

practice the following decision rule as to whether  or not is followed.  Given a particularK # R

number  to be determined below, assume  that the set of N  bulbs meets the minimumr # n ,

quality requirement  if  the number k of defective bulbs in the sample is less or equal to .K # R r

Then the set corresponds to the assumption that  the set of N   bulbs meets theA(r) ' {0,1,...,r}

minimum quality requirement  , hereafter indicated by “accept”,  with probabilityK # R

P(A(r)) ' ' r
k'0P({k}) ' pr(n,K) , (1.12)

say,  whereas its complement   corresponds to the assumption that this set ofÃ(r) ' {r%1,....,n}

N  bulbs does not meet this quality requirement, hereafter indicated by “reject”,  with

corresponding probability 

 P(Ã(r)) ' 1 & pr(n,K) .

Given r, this decision rule yields two types of errors, a type I  error with probability 1 & pr(n,K)

if you reject while in reality , and a type II error with probability   if you accept K # R pr(K,n)

while in reality .  The probability of a type I error  has upper bound:K > R

p1(r,n) ' 1 & min
K#R

pr(n,K), (1.13)

say, and the probability of a type II error  has upper bound

p2(r,n) ' max
K>R

pr(n,K) , (1.14)
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say.

In order to be able to choose r, one has to restrict either  or , or both.p1(r,n) p2(r,n)

Usually it is former which is restricted, because a type I error may cause the whole stock of N 

bulbs to be trashed. Thus,  allow the probability of a type I error to be maximal α, say α =  0.05.

Then  r should be chosen such that  α. Since   is decreasing in r  because (1.12)p1(r,n) # p1(r,n)

is increasing in r,  we could in principle choose r arbitrarily large. But since   is increasingp2(r,n)

in r,  we should not choose r unnecessarily large. Therefore, choose r = r(n|α), where  r(n|α) is

the minimum value of r for which p1(r,n) # α. Moreover, if we allow the type II error to be

maximal β,  we have to choose the sample size n such that  p2(r(n|α),n) # β. 

As we will see later, this decision rule is an example of a statistical test, where

 is called the null hypothesis to be tested at the α×100% significance level, againstH0: K # R

the alternative hypothesis . The number   r(n|α)  is called the critical value of the test,H1: K > R

and the number k of defective bulbs in the sample is called the test statistic.

1.2.3 Sampling with replacement

As a third example, consider the quality control example in the previous section, except

that now the light bulbs are sampled with replacement: After testing a bulb, it is put back in the

stock of N bulbs, even if the bulb involved  proves to be defective. The rationale for this behavior

may be that the customers will accept maximally a fraction R/N of defective bulbs, so that they

will not complain as long as the actual fraction K/N of defective bulbs does not exceed R/N.  In

other words, why not selling defective light bulbs if it is OK with the customers?

The sample space  and the  algebra  are the same as in the case of samplingΩ σ& ö
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without replacement, but the probability measure P is different. Consider again a sample  ofsj

size n containing k defective light bulbs. Since the light bulbs are put back in the stock after

being tested,  there are   ways of drawing an ordered set of k defective bulbs, and K k (N & K)n&k

ways of drawing an ordered set of n-k working bulbs. Thus the number of ways we can draw,

with replacement, an ordered set of n light bulbs containing k defective bulbs is  . K k(N & K)n&k

Moreover, similarly to the Texas lotto case it follows that the number of unordered sets of  k

defective bulbs and n-k working bulbs is: n choose k.  Thus, the total number of ways we can

choose a sample with replacement containing k defective bulbs and n-k working bulbs in any

order is:

n

k
K k(N & K)n&k .

Moreover, the number of ways we can choose a sample of size n with replacement is  .N n

Therefore,

P({k}) '
n

k
K k(N & K)n&k

N n
'

n

k
p k(1 & p)n&k , k ' 0,1,2,....,n,

where p ' K/N ,

(1.15)

and again  for each set   Of course, replacingA ' {k1 , ...... ,km} 0 ö , P(A) ' 'm
j'1P({kj}) .

P({k}) in (1.11) by (1.15)  the argument in Section 1.2.2 still applies. 

The probabilities (1.15) are known as the Binomial(n,p) probabilities.
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1.2.4 Limits of the hypergeometric and binomial probabilities

Note that if N and K are large relative to n, the hypergeometric probability (1.11) and the

binomial probability (1.15) will be almost the same. This follows from the fact that for fixed k

and n:

P({k}) '

K

k

N&K

n&k

N

n

'

K!(N&K)!
k!(K&k)!(n&k)!(N&K&n%k)!

N!
n!(N&n)!

'
n!

k!(n&k)!
×

K!(N&K)!
(K&k)!(N&K&n%k)!

N!
(N&n)!

'
n

k
×

K!
(K&k)!

×
(N&K)!

(N&K&n%k)!
N!

(N&n)!

'
n

k
×

(k
j'1(K&k%j) × (n&k

j'1 (N&K&n%k%j)

(n
j'1(N&n%j)

'
n

k
×

(k
j'1

K
N
&

k
N
%

j
N

× (n&k
j'1 1&K

N
&

n
N
%

k
N
%

j
N

(n
j'1 1& n

N
%

j
N

6
n

k
p k(1&p)n&k if N 6 4 and K/N 6 p .

Thus, the binomial probabilities also arise as limits of the hypergeometric probabilities.

Moreover, if in the case of the binomial probability (1.15)  p is very small and n is very

large, the probability (1.15) can be approximated quite well by the Poisson(λ) probability:

P({k}) ' exp(&λ)
λk

k!
, k ' 0,1,2,.......... , (1.16)
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where This follows from  (1.15) by choosing  with  fixed,λ ' np . p ' λ/n for n > λ , λ > 0

and letting   while keeping  k fixed:n 6 4

P({k}) '
n
k

p k(1 & p)n&k '
n!

k!(n&k)!
λ/n k 1 & λ/n n&k

'
λk

k!
× n!

n k(n&k)!
× 1 & λ/n n

1 & λ/n k
6 exp(&λ) λ

k

k!
for n 6 4 ,

because

n!

n k(n&k)!
'

(k
j'1(n&k%j)

n k
' (k

j'1 1&
k
n
%

j
n

6 (k
j'11 ' 1 for n 6 4 ,

1 & λ/n k 6 1 for n 6 4 ,

and

1 & λ/n n 6 exp(&λ) for n 6 4 . (1.17)

Since (1.16) is the limit of (1.15) for  the Poisson probabilities (1.16)p ' λ/n 9 0 as n 6 4 ,

are often used to model the occurrence of rare events.

Note that the sample space corresponding to the Poisson probabilities is  Ω = {0,1,2,....}, 

and the algebra  of events involved can be chosen to be the collection of  all subsets of ,σ& ö Ω

because any non-empty subset A of   is either countable infinite or finite.  If such a subset  A isΩ

countable infinite,  it takes the form   where the  kj’s are distinctA ' {k1 ,k2 ,k3 , ..........} ,

nonnegative integers, hence  is well-defined. The same applies of course  ifP(A) ' '4
j'1P({kj})

A is finite: if  A =  then   This probability measure clearly{k1 , .... ,km} P(A) ' 'm
j'1P({kj}) .

satisfies the conditions (1.8), (1.9), and (1.10). 
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1.3. Why do we need sigma-algebras of events?

In principle we could define a probability measure on an algebra ö of subsets of the

sample space, rather than on a σ!algebra. We only need to change condition (1.10) to: For

disjoint sets  such that   By letting all but a finiteAj 0 ö ^ 4
j'1 Aj 0 ö , P(^ 4

j'1 Aj) ' '4
j'1P(Aj) .

number of these sets are equal to the empty set, this condition then reads: For disjoint sets

 j = 1,2,...,n < 4,  However, if we would confine a probabilityAj 0 ö , P(^ n
j'1 Aj) ' 'n

j'1P(Aj) .

measure to an algebra all kind of useful results will no longer apply. One of these results is the

so-called strong law of large numbers. See Chapter 6. 

As an example, consider the following game. Toss a fair coin infinitely many times, and

assume that after each tossing you will get one dollar if the outcome it head, and nothing if the

outcome is tail. The sample space Ω  in this case can be expressed in terms of the winnings, i.e.,

each element  ω of  Ω takes the form of a string of infinitely many zeros and ones, for example  ω

= (1,1,0,1,0,1......).  Now consider the event: “After n tosses the winning is k dollars”. This event

corresponds to the set Ak,n of elements  ω of  Ω for which the sum of the first n elements in the

string involved is equal to k. For example, the set A1,2 consists of all  ω of the type (1,0,......) and

(0,1,......).  Similarly to the example in Section 1.2.3 it can be shown that

P(Ak,n) '
n
k

(1/2)n for k ' 0,1,2,....,n, P(Ak,n) ' 0 for k > n or k < 0.

Next, for q = 1,2,.... consider the events: “After n  tosses the average winning k/n is contained in

the interval [0.5!1/q, 0.5+1/q]”. These events correspond to the sets Bq,n ' ^ [n/2%n/q]
k'[n/2&n/q)]%1Ak,n ,

where [x] denotes the smallest integer $ x.  Then the set   corresponds to the event:_4
m'nBq,m

“From the n-th tossing onwards the average winning will stay in the interval  [0.5!1/q, 0.5+1/q]”,



29

and the set  corresponds to the event: “There exists an n (possibly depending on ω)^4
n'1_4

m'nBq,m

such that from the  n-th tossing onwards the average winning will stay in the interval  [0.5!1/q,

0.5+1/q]”. Finally, the set   corresponds to the event: “The average winning_4
q'1^4

n'1_4
m'nBq,m

converges to ½ as n converges to infinity". Now the strong law of large numbers states that the

latter event has probability 1:   = 1. However, this probability is only definedP[_4
q'1^4

n'1_4
m'nBq,m]

if   In order to guarantee this, we need to require that ö is a σ-algebra._4
q'1^4

n'1_4
m'nBq,m 0 ö .

1.4. Properties of algebras and sigma-algebras

1.4.1 General properties

In this section I will review the most important results regarding algebras, algebras,σ&

and probability measures.

Our first result is trivial:

Theorem 1.1: If an algebra contains only a finite number of sets then it is a σ-algebra.

Consequently, an algebra of subsets of a finite set   is  a algebra.Ω σ&

However,  an algebra of subsets of an infinite set   is not necessarily a algebra. AΩ σ&

counter example is the collection   of all subsets of   = (0,1] of the type (a,b], where ö
(

Ω

 are rational numbers in [0,1],  together with their finite unions and the empty set a < b i .

Verify that   is an algebra.  Next, let  pn  = [10n π]/10n  and an = 1/ pn,  where [x] meansö
(

truncation to the nearest integer  Note that  as  Then for n =# x . pn 8 π , hence an 9 π&1 n 6 4 .

1,2,3,....,   but   because  is irrational. Thus,   (an ,1] 0 ö
(

, ^4
n'1(an,1] ' (π&1,1] ó ö

(
π&1 ö

(
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is not a  algebra. σ&

Theorem 1.2: If  is an  algebra, then   hence by induction,ö A ,B 0 ö implies A_B 0 ö ,

 for j = 1,...,n < 4  imply   A collection    of subsets of a nonempty set Aj 0 ö _n
j'1Aj 0 ö . ö Ω

is an algebra if it satisfies condition (1.5) and the condition that for any pair 

A ,B 0 ö , A_B 0 ö .

Proof: Exercise.

Similarly, we have

Theorem 1.3: If  is a algebra,  then for any countable sequence of sets    ö σ& Aj 0 ö ,

 A collection    of   subsets of a nonempty set   is a  algebra if  it  satisfies_ 4
j'1Aj 0 ö . ö Ω σ&

condition (1.5) and the condition that  for any countable sequence of sets      0 Aj 0 ö , _ 4
j'1Aj

ö .

These results will be convenient  in cases where it is easier to prove that (countable) intersections

are included  in   than to prove that (countable) unions are includedö

If   is already an algebra, then condition (1.7) alone would make it a algebra.ö σ&

However, the condition in the following theorem is easier to verify than  (1.7):

Theorem 1.4: If  is an algebra and Aj, j =1,2,3,...  is a countable sequence of sets in , thenö ö

there exists a countable sequence of disjoint sets Bj in   such that  ö ^4
j'1Aj ' ^4

j'1Bj .
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Consequently, an algebra    is also a   algebra if  for any sequence of disjoint sets Bj  in ö σ&

ö, ^ 4
j'1Bj 0 ö .

Proof: Let  Denote    It followsAj 0 ö . B1 ' A1, Bn%1 ' An%1\(^n
j'1Aj) ' An%1_(_n

j'1Ãj) .

from the properties of an algebra (see Theorem 1.2) that all  the Bj ‘s  are  sets in . Moreover, ö

it is easy to verify that the Bj‘s  are disjoint, and that   Thus, if   then ^4
j'1Aj ' ^4

j'1Bj . ^4
j'1Bj 0 ö

 Q.E.D.^4
j'1Aj 0 ö .

Theorem 1.5: Let  be a collection of  algebras of subsets of a given set , öθ , θ 0 Θ , σ& Ω

where  is a possibly uncountable index set. Then   is a  algebra.Θ ö ' _θ0Θöθ σ&

Proof: Exercise.

For example, let   Then   =öθ ' {(0,1] ,i , (0,θ] , (θ,1]} , θ 0 Θ ' (0,1] . _θ0Θöθ

{(0,1],i} is a  algebra (the trivial algebra).σ&

 Theorem 1.5 is important, because it guarantees that for any collection  of subsets of Œ

 there exists a smallest  algebra containing . By adding complements and countableΩ σ& Œ

unions it is possible to extend   to a   algebra. This can always be done, because  isŒ σ& Œ

contained in the   algebra of all subsets of ,  but there is often  no unique way of doing this,σ& Ω

except in the case where   is finite.  Thus, let  be the collection of all  algebras Œ öθ , θ 0 Θ , σ&

containing . Then  ö =    is the smallest  algebra containing  Œ _θ0Θöθ σ& Œ .
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Definition 1.4: The smallest algebra containing a given collection  of sets is called theσ& Œ

algebra generated by  and is usually denoted by  σ& Œ , σ(Œ) .

Note that  is not always a algebra. For example, let  = [0,1],  and letö ' ^θ0Θöθ σ& Ω

for n  1,   Then  $ ön ' {[0,1] ,i , [0,1&n &1] , (1&n &1,1]} . An ' [0,1&n &1] 0 ön d ^4
n'1ön ,

but   the interval   [0,1) =   is not contained in any of the algebras , hence ^4
n'1An σ& ön

^4
n'1An ó ^4

n'1ön .

However, it is always possible to extend  to a  algebra, often in various ways,^θ0Θöθ σ&

by augmenting it with the missing sets. The smallest  algebra containing   is usuallyσ& ^θ0Θöθ

denoted by

ºθ0Θöθ '

def.

σ^θ0Θöθ .

The notion of smallest σ-algebra of subsets of  Ω  is always relative to a given collection

 of subsets of  Ω. Without reference to such a given collection  the smallest  σ-algebra ofŒ Œ

subsets of  Ω  is  which is called the trivial σ-algebra. {Ω ,i} ,

Moreover, similarly to Definition 1.4 we can define the smallest algebra of subsets of   Ω

containing a given collection  of subsets of  Ω, which we will denote by  Œ α(Œ) .

For example, let  Ω = (0,1], and let  be the collection of all intervals of the type (a,b]Œ

with  Then consists of the sets in  together with the empty set i, and all0 # a < b # 1. α(Œ) Œ

finite unions of disjoint sets in  To see this, check first that this collection  is an algebra,Œ . α(Œ)

as follows.

(a)  The complement of (a,b] in  is  If  a = 0  then  and if Œ (0,a]^(b,1] . (0,a] ' (0,0] ' i ,



33

b = 1 then  hence  is a set in  or a finite union of disjoint sets in(b,1] ' (1,1] ' i , (0,a]^(b,1] Œ

. Œ

(b) Let  (a,b] in  and  (c,d] in , where without loss of generality we may assume that a #Œ Œ

c.  If b < c then   is a union of disjoint sets  in . If  c # b # d  then (a,b]^(c,d] Œ

 is a set in  itself, and if b > d  then  is a set in  itself.(a,b]^(c,d] ' (a,d] Œ (a,b]^(c,d] ' (a,b] Œ

Thus, finite unions of sets in  are either sets in  itself or finite unions of disjoint sets in .Œ Œ Œ

(c) Let  where  ThenA ' ^n
j'1(aj ,bj] , 0 # a1 < b1 < a2 < b2 < ......< an < bn # 1.

 where  which is a finite union of disjoint sets inÃ ' ^n
j'0(bj,aj%1] , b0 ' 0 and an%1 ' 1, Œ

itself. Moreover, similarly to part (b)  it is easy to verify that finite unions of sets of the type A

can be written as finite unions of disjoint sets in .  Œ

Thus, the sets in  together with the empty set i and all finite unions of disjoint sets inŒ

 form an algebra of subsets of   Ω = (0,1]. Œ

In order to verify that this is the smallest algebra containing , remove one of the sets inŒ

this algebra that does not belong to  itself. Since all sets in the algebra are of the type A in partŒ

(c), let us remove this particular set A. But then  is no longer included in the collection,^n
j'1(aj ,bj]

hence we have to remove each of the intervals  as well, which however is not allowed(aj ,bj]

because they belong to  Œ .

Note that the algebra   is not a σ-algebra, because countable infinite unions are notα(Œ)

always included in . For example,  is a countable union of sets in α(Œ) ^4
n'1(0,1&n &1] ' (0,1)

 which  itself  is not included in .  However,  we can extend  to  theα(Œ) α(Œ) α(Œ) σ(α(Œ)) ,

smallest  σ-algebra containing ,  which coincides with α(Œ) σ(Œ) .
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1.4.2 Borel sets

An important special case of Definition 1.4 is  where  and  is the collection ofΩ ' ú , Œ

all open intervals:

Œ ' {(a,b) : œ a < b , a,b 0 ú} . (1.18)

Definition 1.5: The algebra generated by the collection (1.18) of all open intervals in  isσ& ú

called the Euclidean Borel  field, denoted by B,  and its members are called the Borel sets. 

Note, however, that  B  can be defined in different ways, because  the  algebras generated byσ&

the collections of open intervals, closed intervals:  and  half-open{[a,b] : œ a # b , a,b 0 ú} ,

intervals,   respectively,  are all the same! We show this for one case only:{(&4,a] : œ a 0 ú} ,

Theorem 1.6:   B  = σ({(&4,a] : œ a 0 ú}) .

Proof:  Let

Œ
(
' {(&4 ,a] : œ a 0 ú} . (1.19)

(a) If the collection  defined by (1.18) is contained in , then  is a  algebraŒ σ(Œ
(
) σ(Œ

(
) σ&

containing .  But  B =  is the smallest algebra containing , hence  B = Œ σ(Œ) σ& Œ σ(Œ) d

 σ(Œ
(
).

In order to prove this, construct an arbitrary set (a,b) in   out of countable unions and/orŒ

complements of sets in , as follows.  Let   and , where a < b areŒ
(

A ' (&4 ,a] B ' (&4 ,b]
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arbitrary real numbers. Then , hence    and thusA ,B 0 Œ
(

A , B̃ 0 σ(Œ
(
) ,

 ~(a,b] ' (&4 ,a]^(b ,4) ' A^B̃ 0 σ(Œ
(
) .

This implies that   contains all sets of the type (a,b] , hence (a,b) =  σ(Œ
(
) ^4

n'1(a ,b & (b&a)/n]

 Thus,  0 σ(Œ
(
) . Œ d σ(Œ

(
) .

(b)  If the collection  defined by (1.19) is contained in  B = , then  is a Œ
(

σ(Œ) σ(Œ)

algebra containing .  But  is the smallest algebra containing ,  henceσ& Œ
(

σ(Œ
(
) σ& Œ

(

 =  B. σ(Œ
(
) d σ(Œ)

In order to prove the latter, observe that for m = 1,2,....,   is aAm ' ^4
n'1(a&n ,a%m &1)

countable union of sets in , hence  and consequently  =Œ Ãm 0 σ(Œ) , (&4 ,a] ' _4
m'1Am

  Thus,    =  B.~(^4
m'1Ãm) 0 σ(Œ) . Œ

(
d σ(Œ)

We have shown now that  B =  and   =  B.  Thus,  B  andσ(Œ) d σ(Œ
(
) σ(Œ

(
) d σ(Œ)

 are the same. Q.E.D.8 σ(Œ
(
)

The notion of Borel set extends to higher dimensions as well:

Definition 1.6:  Bk  =  is the k-dimensional Euclideanσ({×k
j'1(aj,bj) : œ aj < bj , aj , bj 0 ú})

Borel field.  Its members are also called Borel sets (in ). úk

Also this is only one of the ways to define higher-dimensional Borel sets. In particular,

similarly to Theorem 1.6 we have: 

Theorem 1.7:   Bk    = σ({×k
j'1(&4,aj] : œ aj 0 ú}) .
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1.5. Properties of probability measures

The three axioms (1.8), (1.9), and (1.10)  imply a variety of properties of probability

measures. Here we list only the most important ones.

Theorem 1.8: Let be a probability space. The following hold for sets in :{Ω ,ö ,P} ö

(a) P(i) ' 0,

(b) P(Ã) ' 1 & P(A) ,

(c) A d B implies P(A) # P(B) ,

(d) P(A^B) % P(A_B) ' P(A) % P(B) ,

(e) If An d An%1 for n ' 1,2,..., then P(An) 8 P(^4
n'1An) ,

(f) If An e An%1 for n ' 1,2,..., then P(An) 9 P(_4
n'1An) ,

(g) P(^4
n'1An) # '4

n'1P(An) .

Proof: (a)-(c): Easy exercises.

 is a union of disjoint sets, hence by axiom (1.10), (d) A^B ' (A_B̃) ^ (A_B) ^ (B_Ã)

  =  Moreover,  is a union ofP(A^B) P(A_B̃) % P(A_B) % P(B_Ã) . A ' (A_B̃) ^ (A_B)

disjoint sets , hence   and similarly, P(A) ' P(A_B̃) % P(A_B) , P(B) ' P(B_Ã) % P(A_B) .

Combining these results, part (d) follows.

Let  Then   (e) B1 ' A1 , Bn ' An\An&1 for n $ 2. An ' ^n
j'1Aj ' ^n

j'1Bj and ^4
j'1Aj ' ^4

j'1Bj .

Since the ‘s are disjoint, it follows from  axiom (1.10) that Bj
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P(^4
j'1Aj) ' '4

j'1P(Bj) ' 'n
j'1P(Bj) % '4

j'n%1P(Bj) ' P(An) % '4
j'n%1P(Bj) .

Part  follows now from the fact that  (e) '4
j'n%1P(Bj) 9 0.

This part follows from part , using complements. (f) (e)

(g)  Exercise

1.6. The uniform probability measure

1.6.1 Introduction

Fill a bowl with ten balls numbered from zero to nine. Draw randomly a ball from this

bowl, and write down the corresponding number as the first decimal digit of a number between

zero and one. For example, if the first drawn number  is 4, then write down 0.4. Put the ball back

in the bowl, and repeat this experiment. If for example the second ball corresponds to the number

9, then this number becomes the second decimal digit: 0.49. Repeating this experiment infinitely

many times yields a random number between zero and one. Clearly, the sample space involved is

the unit interval: Ω ' [0,1] .

For a given number  the probability that  this  random number is less or equal tox 0 [0,1]

x is: x. To see this, suppose that you only draw two balls, and that x = 0.58. If the first ball has a

number less than 5, it does not matter what the second number is. There are 5 ways to draw a

first number less or equal to 4, and 10 ways to draw the second number. Thus, there are 50 ways

to draw a number with a first digit less or equal to 4.  There is only one way to draw a first

number equal to 5, and 9 ways to draw a second number less or equal to 8. Thus, the total

number of ways we can generate a number less or equal to 0.58 is 59, and the total number of

ways we can draw two numbers with replacement is 100. Therefore, if  we only draw two balls
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with replacement, and use the numbers involved as the first and second decimal digit, the

probability that we get a number less or equal to 0.58 is: 0.59. Similarly, if we draw 10 balls with

replacement, the probability that we get a number less or equal to, say,  0.5831420385 is: 

0.5831420386. In the limit the  difference between x and the corresponding probability

disappears. Thus, for  we have:   By  the same argument  it follows thatx 0 [0,1] P([0,x]) ' x .

for     i.e., the probability that the random number involvedx 0 [0,1] , P({x}) ' P([x,x]) ' 0,

will be exactly equal to a given number  x is zero. Therefore,  for a given     =x 0 [0,1] , P((0,x])

 =   More generally, for any interval in [0,1]  the corresponding probabilityP([0,x)) P((0,x)) ' x .

is the length of the interval involved,  regardless as to whether the endpoints are included or not:

Thus, for  we have   = b!a. Any0 # a < b # 1 P([a,b]) ' P((a,b]) ' P([a,b)) ' P((a,b))

finite union of intervals can be written as a finite union of disjoint intervals by cutting out the

overlap. Therefore,  this probability measure extends to finite unions of intervals, simply by

adding up the lengths of the disjoint intervals involved. Moreover, observe that the collection of

all finite unions of sub-intervals in [0,1], including [0,1] itself and the empty set, is closed under

the formation of complements and finite unions. Thus, we have derived the probability measure

P  corresponding to the statistical experiment under review for an algebra  of subsets of ö0

[0,1], namely

ö0 ' {(a,b),[a,b],(a,b],[a,b) , œa,b0[0,1], a#b, and their finite unions} , (1.20)

where [a,a] is the singleton {a}, and each of the sets (a,a), (a,a] and [a,a) should be interpreted

as the empty set This probability measure is a special case of the Lebesgue measure, whichi .

assigns to each interval its length.  

If you are only interested in making probability statements about the sets in the algebra



39

(1.20), then your are done. However, although the algebra (1.20) contains a large number of sets,

we cannot yet make probability statements involving arbitrary Borel sets in [0,1],  because not all

the Borel sets in [0,1] are included  in (1.20).  In particular, for a countable sequence of  sets

 the probability  is not always defined, because there is no guarantee that Aj 0 ö0 P(^4
j'1Aj)

 Therefore, if you want to make probability statements about arbitrary Borel set in^4
j'1Aj 0 ö0 .

[0,1], you need to extend the probability measure P on  to a probability measure defined onö0

the Borel sets in [0,1]. The standard approach to do this is to use the outer measure:

1.6.2 Outer measure

Any subset A of  [0,1] can always be completely covered by a finite or countably infinite 

union of sets in the algebra :  ,  hence the “probability”  of  A isö0 A d ^4
j'1Aj , where Aj 0 ö0

bounded from above by  .  Taking the infimum of  over all countable'4
j'1P(Aj) '4

j'1P(Aj)

sequences of sets   such that   then yields the outer measure:Aj 0 ö0 A d ^4
j'1Aj

Definition 1.7: Let  be an algebra of subsets of  The outer measure of an arbitrary subsetö0 Ω .

A of   is:Ω

P ((A) ' inf
Ad^4

j'1Aj , Aj0ö0

'4
j'1P(Aj) . (1.21)

Note that it is not required in (1.21) that  ^4
j'1Aj 0 ö0 .

Since a union of sets Aj in an algebra  can always be written as a union of disjoint setsö0

in the algebra  algebra  (see Theorem 1.4),  we may without loss of generality assume that theö0
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infimum in (1.21) is taken over all disjoint sets Aj in  such that  such that   Thisö0 A d ^4
j'1Aj .

implies that

If A 0 ö0 then P ((A) ' P(A) . (1.22)

The question now arises for which other subsets of    the outer measure is a probabilityΩ

measure. Note that the conditions (1.8)  and (1.9)  are satisfied for the outer measure P (

(Exercise: Why?),  but in general condition (1.10) does not hold for arbitrary sets. See for

example Royden  (1968, pp. 63-64).  Nevertheless, it is possible to extend the outer measure to a

probability measure on a σ-algebra  containing :ö ö0

Theorem 1.9: Let P be a probability measure on  { }, where  is an algebra, and let Ω , ö0 ö0

 be the smallest algebra  containing the algebra .  Then the outer measure ö ' σ(ö0) σ& ö0

P*   is a unique probability measure on { } which coincides with P on .Ω , ö ö0

The proof that the outer measure P* is a probability measure on  whichö ' σ(ö0)

coincide with P on  is lengthy and therefore given in Appendix B. The proof of theö0

uniqueness of  P* is even more longer and is therefore omitted.

Consequently,  for the statistical experiment under review there exists a  algebra  ofσ& ö

subsets of , containing the algebra  defined in (1.20),   for which the outer measure Ω ' [0,1] ö0

 is a unique probability measure.  This probability measure assigns in this case toP (: ö 6 [0,1]

each interval in [0,1] its  length as probability. It is called the uniform probability measure.

It is not hard to verify that the algebra   involved  contains all the Borel subsets ofσ& ö

[0,1]:    (Exercise: Why?)  This collection of Borel{[0,1]_B , for all Borel sets B} d ö .
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subsets of [0,1] is usually denoted by [0,1] ,  and is a  algebra itself (Exercise: Why?). _ B σ&

Therefore, we could also describe the probability space of this statistical experiment by the

probability space {[0,1],  [0,1]  B, }, where  is the same as before. Moreover, defining_ P ( P (

the probability measure  on  B  as    we can  describe this statisticalµ µ(B) ' P (([0,1]_B) ,

experiment also by the probability space {  B, }, where in particularú , µ

µ((&4,x]) ' 0 if x # 0, µ((&4,x]) ' x if 0 < x # 1, µ((&4,x]) ' 1 if x > 1,

and more generally for intervals with endpoints a < b, 

µ((a,b)) ' µ([a,b]) ' µ([a,b)) ' µ((a,b]) ' µ((&4,b]) & µ((&4,a]) ,

whereas for all other Borel sets B,

µ(B) ' inf
B d ^4

j'1(aj ,bj)

'4
j'1µ((aj ,bj)) . (1.23)

1.7. Lebesgue measure and Lebesgue integral

1.7.1 Lebesgue measure

Along similar lines as in the construction of the uniform probability measure we can

define the Lebesgue measure, as follows. Consider a function λ which assigns to each open

interval (a,b)  its length:  and define for all other Borel sets B in ú,λ((a,b)) ' b & a ,

λ(B) ' inf
B d ^4

j'1(aj ,bj)

'4
j'1λ((aj ,bj)) ' inf

B d ^4
j'1(aj ,bj)

'4
j'1(bj & aj) .

This function λ is called the Lebesgue measure on ú, which measures the total “length” of a

Borel set, where the measurement is taken from the outside.

Similarly, let now   and define for all other Borel sets B inλ(×k
i'1(ai,bi)) ' (k

i'1(bi &ai) ,

úk,
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λ(B) ' inf
B d ^4

j'1{×k
i'1(ai,j ,bi,j)}

'4
j'1λ ×k

i'1(ai,j ,bi,j) ' inf
B d ^4

j'1{×k
i'1(ai,j ,bi,j)}

'4
j'1 (k

i'1(bi,j & ai,j) .

This is the Lebesgue measure on úk, which measures the area (in the case k = 2) or the volume

(in the case k $ 3) of a Borel set in  úk, where again the measurement is taken from the outside.

Note that in general Lebesgue measures are not probability measures, because the

Lebesgue measure can be infinite. In particular,   λ( úk)  =  4. However, if confined to a set with

Lebesgue measure 1 it becomes the uniform probability measure. More generally,  for any Borel

set  A  0 úk with positive and finite Lebesgue measure, is the uniformµ(B) ' λ(A_B)/λ(A)

probability measure on k A.B _

1.7.2 Lebesgue integral

The Lebesgue measure gives rise to a generalization of the Riemann integral. Recall that

the Riemann integral of a non-negative function f(x) over a finite interval (a,b] is defined as 

m
b

a

f(x)dx ' supj
n

m'1
inf
x0Im

f(x) λ(Im)

where the Im are intervals forming a finite partition of  (a,b] , i.e., they are disjoint, and their

union is  (a,b]:   8(Im ) is the length of  Im , hence 8(Im ) is the Lebesgue measure(a,b] ' ^n
m'1Im ,

of  Im , and the supremum is taken over all finite partitions of (a,b].  Mimicking this definition,

the Lebesgue integral of a non-negative function f(x) over a Borel set A can be defined as

mA
f(x)dx ' supj

n

m'1
inf

x0Bm

f(x) λ(Bm) ,
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where now the Bm ‘s are Borel sets forming a finite partition of A, and the supremum is taken

over all such partitions.

If the function   f(x) is not non-negative, we can always write it as the difference of two

non-negative functions:  where f(x) ' f
%
(x) & f

&
(x) ,

f
%
(x) ' max[0 , f(x)], f

&
(x) ' max[0 ,&f(x)] .

Then the Lebesgue integral over a Borel set A is defined as 

mA
f(x)dx ' mA

f
%
(x)dx & mA

f
&
(x)dx ,

provided that at least one of the right hand side integrals is finite. 

However, we still need to impose a further condition on the function f  in order to be

Lebesgue integrable. A sufficient condition is that for each Borel set B in ú, the set {x: f(x) 0 B}

is a Borel set itself. As we will see in the next chapter, this is the condition for Borel

measurability of f.

Finally, note that if A is an interval and  f(x) is Riemann integrable over A, then the

Riemann integral and the Lebesgue integral coincide.

1.8. Random  variables and their distributions

1.8.1 Random variables and vectors

Loosely speaking, a random  variable is a  numerical translation of the outcomes of a

statistical experiment. For example, flip a fair coin once. Then the sample space is  Ω ' {H ,T} ,

where H stands for Head, and T stands for Tail. The algebra involved  is ö = {Ω,i,{H},{T}},σ&

and the corresponding probability measure is defined by  NowP({H}) ' P({T}}) ' 1/2 .
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define the function   if     if   Then X  is a random variableX(ω) ' 1 ω ' H , X(ω) ' 0 ω ' T .

which takes the value 1 with probability ½ and the value 0 with probability ½:

 
P(X ' 1) '

(short&hand notation)

P({ω0Ω : X(ω) ' 1}) ' P({H}) ' 1/2 ,

P(X ' 0) '

(short&hand notation)

P({ω0Ω : X(ω) ' 0}) ' P({T}) ' 1/2 .

Moreover, for an arbitrary Borel set B we have 

 

P(X 0 B) ' P({ω0Ω : X(ω) 0 B})

' P({H}) ' 1/2 if 1 0 B and 0 ó B ,

' P({T}) ' 1/2 if 1 ó B and 0 0 B ,

' P({H ,T}) ' 1 if 1 0 B and 0 0 B ,

' P(i) ' 0 if 1 ó B and 0 ó B ,

where again  is a short-hand notation9 for P(X 0 B) P({ω0Ω : X(ω) 0 B}) .

In this particular case the set  is  automatically equal to one of the{ω0Ω : X(ω) 0 B}

elements of , and therefore the probability  =  P( )  is well-ö P(X 0 B) {ω0Ω : X(ω) 0 B}

defined. In general, however, we need to confine the mappings  to those for which weX : Ω 6 ú

can  make probability statements about events of the type , where B is an{ω0Ω : X(ω) 0 B}

arbitrary Borel set, which is only possible if these sets are members of :ö

Definition 1. 8: Let  be a probability space. A mapping   is called a{Ω ,ö ,P} X: Ω 6 ú

random variable defined on  if X  is measurable  which means that for every Borel{Ω ,ö ,P} ö ,

set B,  Similarly, a mapping    is called a k-dimensional {ω0Ω : X(ω) 0 B} 0 ö . X: Ω 6 úk

random vector defined on  if  X  is measurable   in the sense that for every Borel{Ω ,ö ,P} ö ,

set B  in  k,  B {ω0Ω : X(ω) 0 B} 0 ö .
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In verifying that a real function  is  measurable  it is not necessary to verifyX: Ω 6 ú ö ,

that for all Borel sets B,    , but only that this property holds for Borel{ω0Ω : X(ω) 0 B} 0 ö

sets of the type (&4 ,x] :

Theorem 1.10: A mapping   is measurable  (hence X is a random variable)  if andX: Ω 6 ú ö

only if  for all  the sets  are members of  Similarly, a mapping x 0 ú {ω0Ω : X(ω) # x} ö .

 is measurable  (hence X is a random vector of dimension k) if and only if  for allX: Ω 6 úk ö

 the sets x ' (x1 ,..... ,xk )T 0 úk

 _k
j'1{ω0Ω : Xj(ω) # xj} ' {ω0Ω : X(ω) 0 ×k

j'1(&4 ,xj]}

are members of  where the Xj’s are the components of X. ö,

Proof: Consider the case k = 1. Suppose that  Let {ω0Ω : X(ω) 0 (&4,x]} 0 ö, œx 0 ú .

D be the collection of all Borel sets B for which . Then D  B, and{ω0Ω : X(ω) 0 B} 0 ö d

 contains the collection of half-open intervals  If  D  is a algebra itself, itD (&4 ,x] , x 0 ú . σ&

is a algebra containing the half-open intervals. But  is the smallest  algebra containingσ& B σ&

the half-open intervals  (see Theorem 1.6), so that then  B  D, hence D  B. Therefore, itd '

suffices to prove that D is a  algebra: σ&

(a) Let D. Then , hence B 0 {ω0Ω : X(ω) 0 B} 0 ö

 ~{ω0Ω : X(ω) 0 B} ' {ω0Ω : X(ω) 0 B̃} 0 ö

and thus  D.  B̃ 0

(b) Next, let     for j = 1,2,.... Then , henceBj 0 D {ω0Ω : X(ω) 0 Bj} 0 ö
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^4
j'1{ω0Ω : X(ω) 0 Bj} ' {ω0Ω : X(ω) 0 ^4

j'1Bj} 0 ö

and thus D. ^4
j'1Bj 0

The proof of the case k > 1 is similar. Q.E.D.10

The sets are usually denoted by {ω0Ω : X(ω) 0 B} X &1(B) :

X &1(B) '

def.

{ω 0 Ω : X(ω) 0 B} .

The collection  B} is  a algebra itself (Exercise: Why?), andöX ' {X &1(B), œB 0 σ&

is called the algebra generated by the random variable X.  More generally:σ&

Definition 1.9: Let X be a random variable (k=1) or a random vector (k > 1). The  algebraσ&

 =   B k} is called the  algebra generated by X.öX {X &1(B), œB 0 σ&

In the coin tossing case,  the mapping X  is one-to-one, and therefore in that case   is the sameöX

as  but in general   will be smaller than  For example, roll a dice, and let X = 1  if theö , öX ö .

outcome is even, and X = 0 if the outcome is odd. Then

 öX ' {{1,2,3,4,5,6} , {2,4,6} , {1,3,5} , i} ,

whereas  in this case consists of all subsets of .ö Ω ' {1,2,3,4,5,6}

Given a k dimensional random vector X, or a random variable X  (the case k=1), define for

arbitrary Borel sets   Bk :B 0

µX(B) ' P X &1(B) ' P {ω0Ω: X(ω) 0 B} . (1.24)

Then  is a probability measure on {  Bk }:µX(@) úk ,
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(a) for all  Bk,  B 0 µX(B) $ 0,

(b) µX(úk) ' 1,

(c) for all disjoint  B k ,  j 0 µX ^4
j'1Bj ' '4

j'1µX(Bj) .

Thus, the random variable X  maps the probability space into a new probability{Ω ,ö ,P}

space, {  B, }, which in its turn is mapped back by   into the (possibly smaller)ú , µX X &1

probability space . Similarly for random vectors.{Ω ,öX ,P}

Definition 1.10: The probability measure   defined by (1.24) is called the probabilityµX(@)

measure induced by X. 

1.8.2 Distribution functions

For Borel sets of the type , or  in the multivariate case,  the value of the(&4 ,x] ×k
j'1(&4 ,xj]

induced probability measure  is called the distribution function:µX

Definition 1.11: Let X  be a random  variable (k=1) or a random vector ( k>1)   with  induced 

probability measure   . The  function    isµX F(x) ' µX(×k
j'1(&4 ,xj]) , x ' (x1 , .... ,xk)

T 0 úk ,

called the  distribution function  of  X. 

It follows from these definitions, and Theorem 1.8 that 

Theorem 1.11: A distribution function of a random variable is always right continuous:
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 and monotonic non-decreasing: œx 0 ú , limδ90F(x % δ) ' F(x) , F(x1) # F(x2) if x1 < x2 ,

with  limx9&4F(x) ' 0, limx84F(x) ' 1.

Proof:  Exercise.

However, a distribution function is not always left continuous. As a counter example,

consider the distribution function of the Binomial (n,p) distribution in Section 1.2.2. Recall that

the corresponding probability space consists of sample space   the σ-algebra ö Ω ' {0,1,2,...,n},

of all subsets of   and probability measure  defined by  (1.15) . The random variable XΩ , P({k})

involved is defined as  X(k) = k,  with distribution function 

F(x) ' 0 for x < 0,

F(x) ' 'k#xP({k}) for x 0 [0,n] ,

F(x) ' 1 for x > n ,

Now let for example  Then for  x ' 1. 0 < δ < 1, F(1 & δ) ' F(0) , and F(1 % δ) ' F(1) ,

hence    limδ90F(1 % δ) ' F(1) , but limδ90F(1 & δ) ' F(0) < F(1) .

The left limit of a distribution function F in x is usually denoted by F(x!):

F(x&) '

def.

limδ90F(x & δ) .

Thus if x is a continuity point then F(x-) = F(x), and if x is a discontinuity point then F(x-) < F(x).

The Binomial distribution involved is an example of a discrete distribution. The uniform

distribution on [0,1] derived  in Section 1.5 is an example of a continuous distribution, with

distribution function
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F(x) ' 0 for x < 0,

F(x) ' x for x 0 [0,1] ,

F(x) ' 1 for x > 1.

(1.25)

In the case of the Binomial distribution (1.15) the number of discontinuity points of  F is

finite, and in the case of the Poisson distribution (1.16) the number of discontinuity points of  F

is countable infinite. In general we have:

Theorem 1.12: The set of discontinuity points of a distribution function of a random variable is

countable.

Proof:  Let D  be the set of all discontinuity points of the distribution function F(x). Every

point x in D is associated with an non-empty open interval (F(x-),F(x)) = (a,b), say, which is

contained in [0,1]. For each of these open intervals (a,b) there exists a rational number q such

 hence the number of open intervals (a,b) involved  is countable, because the rationala < q < b ,

numbers are countable. Therefore, D is countable. Q.E.D.

The results of Theorems 1.11-1.12 only hold for distribution functions of random

variables, though.  It is possible  to generalize these results to distribution functions of random

vectors, but this generalization is far from trivial and therefore omitted.

As follows from Definition 1.11, a distribution function of a  random variable or vector 

X  is completely determined by the corresponding induced probability measure . But whatµX(@)

about the other way around, i.e., given a distribution function F(x), is the corresponding induced

probability measure  unique? The answer is yes, but we prove the result only for theµX(@)
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univariate case:

Theorem 1.13: Given the distribution function F of a random vector X  0 úk,  there exists a

unique probability measure  on  {  Bk} such that for   F(x) = µ úk , x ' (x1,....,xk)
T 0 úk ,

µ ×k
i'1(&4 ,xi] .

Proof: Let k = 1 and let   be the collection of all intervals of the typeT0

(a,b),[a,b],(a,b],[a,b) , (&4,a) , (4,a] , (b,4) , [b,4) , a#b 0 ú , (1.26)

together with their finite unions, where  [a,a] is the singleton {a}, and  (a,a), (a,a] and [a,a)

should be interpreted as the empty set  Then each set in   can be written as a finite union ofi . T0

disjoint sets of the type (1.26) (Compare (1.20) ), hence  is an algebra. Define for !4 < a < b <T0

4, 

µ((a,a)) ' µ((a,a]) ' µ([a,a)) ' µ(i) ' 0

µ({a}) ' F(a) & limδ90F(a&δ) , µ((a,b]) ' F(b) & F(a)

µ([a,b)) ' µ((a,b]) & µ({b}) % µ({a}) , µ([a,b]) ' µ((a,b]) % µ({a})

µ((a,b)) ' µ((a,b]) & µ({b}) , µ((&4,a]) ' F(a)

µ((&4,a]) ' F(a) & µ({a}) , µ((b,4)) ' 1 & F(b)

µ([b,4)) ' µ((b,4)) % µ({b})

and let for disjoint sets   of the type  (1.26),  Then theA1 , ....... ,An µ(^n
j'1Aj ) ' 'n

j'1µ(Aj) .

distribution function F defines a  probability measure   and  this probability measure  µ on T0 , µ

coincides on  with the induced probability measure  It follows now from Theorem 1.9 thatT0 µX .

there exists a -algebra  containing  for which the same applies. This -algebra  may beσ T T0 σ T
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chosen equal to the -algebra  of Borel sets. Q.E.D.σ B

The importance of this result is that there is a one-to-one  relationship between the 

distribution function F of a random variable or vector X and the induced probability measure µX .

Therefore, the distribution function contains all the information about µX .

Definition 1.12: A distribution function F on úk and its associated probability measure   on µ

{  Bk} are called absolutely continuous  with respect to Lebesgue measure if for everyúk ,

Borel set B in  úk with zero Lebesgue measure, (B) = 0.µ

We will need this concept in the next section.

1.9. Density functions

An important concept is that of a density function. Density functions are usually

associated to differentiable distribution functions:

Definition 1.13: The distribution of a random variable X is called absolutely continuous if there

exists a non-negative integrable function f, called the density function of X, such that the

distribution function F of X can be written as the (Lebesgue) integral   =  F(x) m
x

&4
f(u)du .

Similarly, the distribution of a random vector X   is called absolutely continuous if there0 úk

exists a non-negative integrable function f on  , called the joint density, such that theúk

distribution function F of X can be written as the integral 

 F(x) ' m
x1

&4
.....m

xk

&4
f(u1 ,... ,uk)du1....duk ,
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where x ' (x1 , ...... ,xk)
T .

Thus, in the case  the density function f(x) is the derivative of F(x):F(x) ' m
x

&4
f(u)du

and in the multivariate case  the jointf(x) ' F )(x) , F(x1,...,xk) ' m
x1

&4
.....m

xk

&4
f(u1 ,... ,uk)du1....duk

density is  f(x1,...,xk) ' (M/Mx1)......(M/Mxk)F(x1,...,xk) .

The reason for calling the distribution functions in Definition 1.13 absolutely continuous

is that in this case the distributions involved are absolutely continuous with respect to Lebesgue

measure. See Definition 1.12. To see this, consider the case , and verifyF(x) ' m
x

&4
f(u)du

(Exercise) that the corresponding probability measure µ is:

µ(B) ' mB
f(x)dx , (1.27)

where the integral is now the Lebesgue integral over a Borel set B. Since the Lebesgue integral

over a Borel set with zero Lebesgue measure is zero (Exercise), it follows that  µ(B) = 0 if the

Lebesgue measure of B is zero.

For example the uniform distribution (1.25) is absolutely continuous, because we can

write  (1.25) as   with density  f(u) = 1 for 0 < u < 1 and zero elsewhere. NoteF(x) ' m
x

&4
f(u)du ,

that in this case F(x) is not differentiable in 0 and 1, but that does not matter, as long as the set of

points for which the distribution function is not differentiable has zero Lebesgue measure.

Moreover, a density of a random variable always integrates to 1, because

 Similarly for random vectors  X   :1 ' limx64F(x) ' m
4

&4
f(u)du . 0 úk

m
4

&4m
4

&4
.....m

4

&4
f(u1 ,... ,uk)du1....duk ' 1.

Note that continuity and differentiability of a distribution function are not  sufficient
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conditions for absolute continuity. It is possible to construct a continuous distribution function

F(x) that is differentiable on a subset D d ú, with  ú\D a set with Lebesgue measure zero, such

that  on D, so that in this case  Such distributions functions are calledF )(x) / 0 m
x

&4
F )(x)dx / 0.

singular. See Chung (1974, pp. 12-13) for an example of how to construct a singular distribution

function on ú, and Chapter 5 for singular multivariate normal distributions.

1.10. Conditional probability, Bayes’ rule,  and independence

1.10.1 Conditional probability

Consider statistical experiment with  probability space {S,ö,P}, and suppose that it is

known that the outcome of this experiment is contained in a set B with P(B) > 0. What is the

probability of an event A,  given that the outcome of the experiment is contained in B? For

example, roll a dice. Then S = {1,2,3,4,5,6}, ö is the F-algebra of all subsets of S, and P({T}) =

1/6 for T = 1,2,3,4,5,6. Let B be the event: "the outcome is even": B = {2,4,6}, and let A =

{1,2,3}. If we know that the outcome is even, then we know that  the outcomes {1,3} in A will

not occur: if the outcome in contained in A, it is contained in A1B = {2}. Knowing that the

outcome is either 2,4, or 6, the probability that the outcome is contained in A is therefore 1/3 =

P(A1B)/P(B). This is the conditional probability of A, given B, denoted by P(A|B). If it is

revealed that the outcome of a statistical experiment is contained in a particular set B, then the

sample space S is reduced to B, because we then know that the outcomes in the complement of B

will not occur,  the F-algebra ö is reduced to ö1B, the collection of all intersections of the sets

in ö with B:  ö1B ={A1B, A0ö} (Exercise: Is this a F-algebra?), and the probability measure

involved becomes P(A|B) = P(A1B)/P(B),  hence the probability space becomes
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 See Exercise 19 below.{B ,ö_B ,P(@|B)} .

1.10.2 Bayes’ rule

Let A and B be sets in ö. Since the sets A and  form a partition of the sample space S,Ã

we have   henceB ' (B _ A) ^ (B _ Ã) ,

P(B) ' P(B_A) % P(B_Ã) ' P(B*A)P(A) % P(B*Ã)P(Ã) .

Moreover, 

P(A*B) '
P(A_B)

P(B)
'

P(B*A)P(A)
P(B)

.

Combining these two results now yields Bayes' rule:

P(A*B) '
P(B*A)P(A)

P(B*A)P(A) % P(B*Ã)P(Ã)
.

Thus, Bayes’ rule enables us to compute the conditional probability P(A|B) if P(A) and the

conditional probabilities  are given.P(B*A) and P(B*Ã)

More generally, if Aj, j =1,2,.....n (# 4) is a partition of the sample space S, i.e., the  Aj’s

are disjoint sets in ö such that  thenΩ ' ^n
j'1Aj ,

P(Ai*B) '
P(B*Ai)P(Ai)

'n
j'1P(B*Aj)P(Aj)

.

Bayes’ rule plays an important role in a special branch of statistics [and econometrics],

called Bayesian statistics [econometrics].
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1.10.3 Independence

If P(A|B) = P(A), then knowing that the outcome is in B does not give us any information

about A. In that case the events A and B are called independent. For example, if I tell you that the

outcome of the dice experiment is contained in the set {1,2,3,4,5,6} = S, then you know nothing

about the outcome:  P(A|S) = P(A1S)/P(S) = P(A), hence S is independent of any other event A.

Note that  P(A|B) = P(A) is equivalent to P(A1B) = P(A)P(B). Thus,

Definition 1.14: Sets A  and  B in ö are (pairwise) independent if  P(A1B) = P(A)P(B).

If events A and B are independent, and events  B and C are independent, are the events A

and C independent? The answer is: not necessarily. In order to give a counter example, observe

that if  A and B are independent, then so are  and  because Ã and B , A and B̃ , Ã and B̃ ,

P(Ã_B) ' P(B) & P(A_B) ' P(B) & P(A)P(B) ' (1&P(A))P(B) ' P(Ã)P(B) ,

and similarly,  

  P(A_B̃) ' P(A)P(B̃) and P(Ã_B̃) ' P(Ã)P(B̃) .

Now if C =  and 0 < P(A) < 1, then   B and C =  are independent if  A and B are independent,Ã Ã

but  

  P(A_C) ' P(A_Ã) ' P(i) ' 0,

whereas  

P(A)P(C) ' P(A)P(Ã) ' P(A)(1&P(A)) … 0.

Thus, for  more than two events we need a stronger condition for independence than pairwise
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independence, namely:

Definition 1.15: A sequence Aj of sets in ö is independent if for every sub-sequence  i =Aji
,

1,2,..,n,  P(_n
i'1Aji

) ' (n
i'1P(Aji

) .

By requiring that the latter holds for all sub-sequences rather than  weP(_4
i'1Ai ) ' (4

i'1P(Ai ) ,

avoid the problem that a sequence of events would be called independent if one of the events is

the empty set.

The independence of a pair or sequence of random variables or vectors can now be

defined as follows.

Definition 1.16: Let  Xj  be a sequence of random variables or  vectors defined on a common

probability space {S,ö,P}. X1 and X2 are pairwise independent if for all Borel sets B1, B2, the

sets   and  are independent.  The sequenceA1 ' {ω0Ω: X1(ω) 0 B1} A2 ' {ω0Ω: X2(ω) 0 B2}

Xj  is independent if for all Borel sets Bj the sets   are independent.Aj ' {ω0Ω: Xj(ω) 0 Bj}

As we have seen before, the collection B}} =öj ' {{ω0Ω: Xj(ω) 0 B} , B 0

B}} is a sub F-algebra of ö. Therefore, Definition 1.16 also reads:   {X &1
j (B), B 0

The sequence of random variables Xj  is independent if for arbitrary  Aj  0 öj  the sequence of

sets  Aj is independent according to Definition 1.15.

Independence usually follows  from the setup of a statistical experiment. For example,

draw randomly with replacement  n  balls from a bowl containing R red balls and N!R white
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balls, and let Xj = 1 if the j-th draw is a red ball, and Xj =0 if the j-th draw is a white ball. Then

X1,...,Xn are independent (and X1+...+Xn  has the Binomial (n,p) distribution, with p = R/N).

However, if we would draw these balls without replacement, then X1,...,Xn are not independent.

For a sequence of random variables  Xj  it suffices to verify the condition in Definition

1.16 for Borel sets  Bj of the type (!4,xj], xj  0 ú, only:

Theorem 1.14:  Let  X1,...,Xn be random variables, and denote for x  0 ú and  j = 1,....,n, 

  Then   X1,...,Xn  are independent if and only if for arbitraryAj(x) ' {ω0Ω: Xj(ω) # x} .

 the sets  are independent.(x1,.....,xn)
T 0 ún A1(x1),......,An(xn)

The complete proof of Theorem 1.14 is difficult and is therefore omitted, but the result can be

motivated as follow. Let  together with all finiteö0
j ' {Ω,i,X &1

j ((&4,x]),X &1
j ((y,4)), œ x,y0ú,

unions and intersections of the latter two types of sets}. Then  is an algebra such that forö0
j

arbitrary  the sequence of sets  Aj is independent.  This is not too hard to prove. NowAj 0 ö0
j

 B}}  is the smallest σ-algebra containing , and is also the smallestöj ' {X &1
j (B), B 0 ö0

j

monotone class containing . It can be shown (but this is the hard part), using the properties ofö0
j

monotone class (see Exercise 11 below), that for arbitrary   the sequence of sets  Aj  isAj 0 öj

independent as well

It follows now from Theorem 1.14 that:

Theorem 1.15: The random variables X1,...,Xn  are independent if and only if the joint

distribution function F(x) of  X = (X1,...,Xn)
T  can be written as the product of the distribution
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functions Fj(xj) of the  Xj ‘s, i.e.,   F(x) ' (n
j'1Fj(xj) , where x ' (x1 , .... ,xn)

T .

The latter distribution functions Fj(xj) are called the marginal distribution functions. Moreover, it

follows straightforwardly from Theorem 1.15 that if the joint distribution of  isX ' (X1,....,Xn)
T

absolutely continuous with joint density function f(x), then  X1,...,Xn  are independent if and only

if f(x) can be written as the product of the density functions fj(xj) of the  Xj ‘s: 

  f(x) ' (n
j'1fj(xj) , where x ' (x1 , .... ,xn)

T .

The latter density functions are called the marginal density functions.

1.11. Exercises

1. Prove (1.4). 

2. Prove (1.17)  by proving that  ln[(1 & µ/n)n] ' n ln(1 & µ/n) 6 &µ for n 6 4 .

3. Let    be the collection of all subsets of   = (0,1] of the type (a,b], where   areö
(

Ω a < b

rational numbers in [0,1],  together with their finite disjoint unions and the empty set  Verifyi .

that   is an algebra.  ö
(

4. Prove Theorem 1.2.  

5. Prove Theorem 1.5.

6. Let  Ω = (0,1], and let  be the collection of all intervals of the type (a,b] withŒ

 Give as many distinct examples as you can of sets that are contained in 0 # a < b # 1. σ(Œ)

(the smallest σ-algebra containing this collection ), but not in  (the smallest algebraŒ α(Œ)

containing the collection ).Œ
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7. Show that  =  B.σ({[a,b] : œ a # b , a,b 0 ú})

8. Prove part (g) of Theorem 1.8.

9. Prove that  defined by (1.20)  is an algebra.ö0

Prove (1.22).

11.  A collection  of subsets of a set  is called a monotone class if the following twoö Ω

conditions hold:

 imply ,An 0 ö , An d An%1, n ' 1,2,3,..... ^4
n'1An 0 ö

 imply .An 0 ö , An e An%1, n ' 1,2,3,..... _4
n'1An 0 ö

Show that an algebra is a F-algebra if and only if it is a monotone class.

12.  A collection  of subsets of a set  is called a system if  implies öλ Ω λ& A 0 öλ Ã 0 öλ ,

and for disjoint sets  A collection  of subsets of a set   is called aAj 0 öλ , ^4
j'1Aj 0 öλ . öπ Ω

system if  implies that  Prove that if a system is also  a system,π& A,B 0 öπ A_B 0 öπ . λ& π&

then it is a  F-algebra .

13. Let  be  the smallest algebra of subsets of  containing the (countable) collectionö σ& ú

of half-open intervals   with rational endpoints q. Prove that   contains all  the Borel(&4 ,q] ö

subsets of :   = ú B ö .

14.  Consider the following subset of   Explainú2: L ' {(x,y) 0 ú2: y ' x , 0 # x # 1}.

why L is a Borel set. 

15.  Consider the following subset of   Explain why Cú2: C ' {(x,y) 0 ú2: x 2 % y 2 # 1}.

is a Borel set. 

16. Prove Theorem 1.11. Hint: Use Definition 1.12 and Theorem 1.8. Determine first which
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parts of Theorem 1.8 apply.

17. Let  be an absolutely continuous distribution function. Prove thatF(x) ' m
x

&4
f(u)du

corresponding probability measure µ is given by the Lebesgue integral (1.27).

18. Prove that the Lebesgue integral over a Borel set with zero Lebesgue measure is zero.

19. Let  be a probability space, and let  with P(B) > 0. Verify that {Ω,ö,P} B 0 ö

is a probability space.{B ,ö_B,P(@|B)}

20. Are disjoint sets in independent?ö

21. (Application of Bayes’ rule): Suppose that 1 out of 10,000 people suffer from a certain

disease, say HIV+. Moreover, suppose that there exists a medical test for this disease which is

90% reliable: If you don't have the disease, the test will confirm that with probability 0.9, and the

same if you do have the disease. If a randomly selected person is subjected to this test, and the

test indicates that this person has the disease, what is the probability that this person actually has

this disease? In other words, if you were this person, would you be scared or not?

22. Let A  and  B in ö be pairwise independent. Prove that   are independent (andÃ and B

therefore  are independent and  are independent).A and B̃ Ã and B̃

23. Draw randomly without replacement  n  balls from a bowl containing R red balls and

N!R white balls, and let Xj = 1 if the j-th draw is a red ball, and Xj =0 if the j-th draw is a white

ball. Show that X1,...,Xn  are not independent.
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Appendices

1.A. Common structure of the proofs of Theorems 1.6 and 1.10

The proofs of Theorems 1.6 and 1.10 employ a similar argument, namely the following:

Theorem 1.A.1. Let  be a collection of subsets of a set S, and let  be the smallest F-Œ σ(Œ)

algebra   containing . Moreover, let D be a Boolean function on  i.e., D  is a set functionŒ σ(Œ) ,

which takes either the value "True" or "False".  Furthermore, let for all sets A inρ(A) ' True

. If the collection   of sets A in  for which  is a F-algebra itself, then Œ D σ(Œ) ρ(A) ' True

 for  all sets A  in .ρ(A) ' True σ(Œ)

Proof: Since  is a collection of sets in  we have  Moreover, byD σ(Œ) D d σ(Œ) .

assumption, , and  is a F-algebra . But   is the smallest  F-algebra containing ,Œ d D D σ(Œ) Œ

hence . Thus,    and consequently,  for  all sets A in .σ(Œ) d D D ' σ(Œ) , ρ(A) ' True σ(Œ)

Q.E.D.

This type of proof will also be used later on.

Of course, the hard part is to prove that  is F-algebra. In particular, the collection  D D

is not automatically a F-algebra. Take for example the case where S  = [0,1],   is the collectionŒ

of all intervals [a,b] with 0 # a < b # 1, and  if the smallest interval [a,b] containingρ(A) ' True

A has positive length: b-a > 0, and  otherwise. In this case consists of all theρ(A) ' False σ(Œ)

Borel subsets of [0,1], but   does not contain singletons whereas  does, so  is smallerD σ(Œ) D

than , and therefore not a F-algebra. σ(Œ)
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1.B.  Extension of an outer measure to a probability measure

In order to use the outer measure as a probability measure for more general sets that those

in , we have to extend the algebra   to a  σ-algebra  of events for which the outerö0 ö0 ö

measure is a probability measure.  In this appendix it will be shown how  can be constructed,ö

via  the following lemmas.. 

Lemma 1.B.1: For any sequence  of disjoint sets in ,   Bn Ω P ((^4
n'1Bn) # '4

n'1P
((Bn) .

 Proof: Given an arbitrary  it  follows from (1.21) that there exists a countableg > 0

sequence of sets   in   such that   and   henceAn,j ö0 Bn d ^4
j'1An,j P ((Bn) > '4

j'1P(An,j ) & g2&n ,

'4
n'1P

((Bn) > '4
n'1'4

j'1P(An,j ) & g'4
n'12

&n ' '4
n'1'4

j'1P(An,j ) & g . (1.28)

Moreover,   where the latter is a countable union of sets in , hence  it ^4
n'1Bn d ^4

n'1^4
j'1An,j , ö0

follows from (1.21) that

P ((^4
n'1Bn ) # '4

n'1'4
j'1P(An,j ) . (1.29)

Combining (1.28) and (1.29) it follows that for arbitrary , g > 0

'4
n'1P

((Bn) > P ((^4
n'1Bn ) & g . (1.30)

Letting   the lemma follows now from (1.30) . Q.E.D.g 9 0,

Thus, in order for the outer measure to be a probability measure, we have to impose
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conditions on the collection  of subsets of   such that for any sequence  of disjoint sets inö Ω Bj

     The latter is satisfied if we choose   as follows:ö, P ((^4
j'1Bj) $ '4

j'1P
((Bj) . ö

Lemma 1.B.2: Let   be a collection of subsets sets B of   such that for any subset A of  :ö Ω Ω

P ((A) ' P ((A_B) % P ((A_B̃) . (1.31)

Then for all countable sequences of disjoint sets  Aj 0 ö, P ((^4
j'1Aj) ' '4

j'1P
((Aj) .

Proof: Let   Then    areA ' ^4
j'1Aj , B ' A1 . A_B ' A_A1 ' A1 and A_B̃ ' ^4

j'2Aj

disjoint, hence

P ((^4
j'1Aj) ' P ((A) ' P ((A_B) % P ((A_B̃) ' P ((A1) % P ((^4

j'2Aj) . (1.32)

Repeating (1.32) for  with , k=2,...,n, it follows by induction  that P ((^4
j'kAj) B ' Ak

P ((^4
j'1Aj) ' 'n

j'1P
((Aj) % P ((^4

j'n%1Aj) $ 'n
j'1P

((Aj) for all n $ 1,

 hence   Q.E.D.P ((^4
j'1Aj) $ '4

j'1P
((Aj) .

Note that condition (1.31) automatically holds if : Choose an arbitrary set A andB 0 ö0

an arbitrary small number   Then there exists an  covering   g > 0. A d ^4
j'1Aj, where Aj 0 ö0 ,

such  that   Moreover, since  '4
j'1P(Aj) # P ((A) % g . A_B d ^4

j'1Aj_B, where Aj_B 0 ö0 ,

and    we have     andA_B̃ d ^4
j'1Aj_B̃, where Aj_B̃ 0 ö0 , P ((A_B) # '4

j'1P(Aj_B)

 hence   Since  is arbitrary, itP ((A_B̃) # '4
j'1P(Aj_B̃) , P ((A_B) % P ((A_B̃) # P ((A) % g . g

follows now that    + P ((A) $ P ((A_B) P ((A_B̃) .

We show now that 

Lemma 1.B.3: The collection  in Lemma 1.B.2  is a algebra of subsets of  ,  containingö σ& Ω
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the algebra   ö0 .

Proof:  First, it  follows trivially from (1.31) that  implies  Now letB 0 ö B̃ 0 ö .

 It remains to show that  which I will do in two steps. First, I will showBj 0 ö . ^4
j'1Bj 0 ö,

that   is an algebra, and then I will use Theorem 1.4 to show that    is also a   algebra.ö ö σ&

(a)  Proof that   is an algebra: We have to show that   implies thatö B1,B2 0 ö

  We haveB1^B2 0 ö .

 P ((A_B̃1) ' P ((A_B̃1_B2) % P ((A_B̃1_B̃2) ,

and since

 A_(B1^B2) ' (A_B1)^(A_B2_B̃1)

we have 

P ((A_(B1^B2)) # P ((A_B1) % P ((A_B2_B̃1) .

Thus:

P ((A_(B1^B2)) % P ((A_B̃1_B̃2) # P ((A_B1) % P ((A_B2_B̃1) % P ((A_B̃2_B̃1)

' P ((A_B1) % P ((A_B̃1) ' P ((A) .
(1.33)

Since   and ,  it follows now  ~(B1^B2) ' B̃1_B̃2 P ((A) # P ((A_(B1^B2)) % P ((A_(~(B1^B2))

from (1.33) that  Thus, implies thatP ((A) ' P ((A_(B1^B2)) % P ((A_(~(B1^B2)) . B1,B2 0 ö

 hence   is an algebra (containing the algebra ). B1^B2 0 ö , ö ö0

(b) Proof that   is a algebra:  Since we  have  established that   is an algebra, itö σ& ö

follows from Theorem 1.4 that in proving that  is also a algebra it suffices to  verify that ö σ&

  for disjoint sets    For such sets  we have:  and^4
j'1Bj 0 ö Bj 0 ö : A_(^n

j'1Bj)_Bn ' A_Bn ,



65

 henceA_(^n
j'1Bj)_B̃n ' A_(^n&1

j'1 Bj) ,

P ((A_(^n
j'1Bj)) ' P ((A_(^n

j'1Bj)_Bn) % P ((A_(^n
j'1Bj)_B̃n) ' P ((A_Bn ) % P ((A_(^n&1

j'1 Bj)) .

Consequently, 

P ((A_(^n
j'1Bj)) ' 'n

j'1P
((A_Bj ) . (1.34)

Next, let  Then   henceB ' ^4
j'1Bj . B̃ ' _4

j'1B̃j d _n
j'1B̃j ' ~(^n

j'1Bj) ,

P ((A_B̃) # P ((A_(~[^n
j'1Bj])) . (1.35)

It follows now from (1.34) and (1.35) that for all n $ 1,

P ((A) ' P ((A_(^n
j'1Bj)) % P ((A_(~[^n

j'1Bj])) $ 'n
j'1P

((A_Bj ) % P ((A_B̃) ,

hence

P ((A) $ '4
j'1P

((A_Bj ) % P ((A_B̃) $ P ((A_B) % P ((A_B̃) , (1.36)

where the last inequality is due to

P ((A_B) ' P ((^4
j'1(A_Bj)) # '4

j'1P
((A_Bj) .

Since we always have  (compare Lemma 1.B.1), it follows fromP ((A) # P ((A_B) % P ((A_B̃)

(1.36) that for countable unions  of disjoint sets B ' ^4
j'1Bj Bj 0 ö ,

P ((A) ' P ((A_B) % P ((A_B̃) ,

hence  Consequently,   is a algebra, and  the outer measure P* is a probabilityB 0 ö . ö σ&

measure on { }.  Q.E.D.Ω , ö

Lemma 1.B.4: The  algebra  in Lemma 1.B.3 can be chosen such that   is unique: anyσ& ö P (
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1. In the Spring of 2000 the Texas Lottery has changed the rules: The number of balls has
been increased to 54, in order to create a larger jackpot. The official reason for this change is to
make playing the lotto more attractive, because a higher  jackpot will make the lotto game more
exciting. Of course, the actual reason is to boost the lotto revenues!

2. Under the new rules (see note 1), this probability is: 1/25,827,165.

3. These binomial numbers can be computed using the “Tools  Discrete distribution tools”6
menu of EasyReg International, the free econometrics software package developed by the author.
EasyReg International can be downloaded from web page 
http://econ.la.psu.edu/~hbierens/EASYREG.HTM

4. Note that the latter  phrase is superfluous, because  reads: every element of  isΩ d Ω Ω
included in , which is clearly a true statement, and  is true because Ω i d Ω i d i^Ω ' Ω .

5. Also called a Field. 

6. Also called a Field, or a Borel Field.σ&

7. This section may be skipped.

8. See also Appendix 1.A.

9. In the sequel we will denote the probability of an event involving random variables or
vectors X  as P(“expression involving X”), without referring to the corresponding set in . Forö
example, for random variables X and Y defined on a common probability space  the{Ω ,ö ,P}
short-hand notation P(X > Y) should be interpreted as P ({ω0Ω : X(ω) > Y(ω)}) .

10. See also Appendix 1.A.

probability measure   on  which coincide with P on  is equal to the outer measureP
(

{Ω,ö} ö0

.P (

The proof of Lemma 1.B.4 is too difficult and too long [see Billingsley (1986, Theorems

3.2-3.3)], and is therefore omitted.  

Combining Lemmas 1.B.2-1.B.4,  Theorem 1.9 follows.

Endnotes
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Chapter 2

Borel Measurability,  Integration,

and Mathematical Expectations

2.1. Introduction

Consider the following situation: You are sitting in a bar next to a guy who proposes to

play the following game.  He will roll a dice, and pay you a dollar per dot. However, you have to

pay him an amount y up-front each time he rolls the dice. The question is: which amount y

should you pay him in order for both of you to play even if this game is played indefinitely?

Let X  be the amount you win in a single play. Then in the long run you will receive X = 1

dollar in 1 out of 6 times, X = 2 dollar in 1 out of 6 times, up to X = 6 dollar in 1 out of 6 times.

Thus, in average you will receive (1+2+...+6 )/6 = 3.5 dollar per game, hence the answer is: y =

3.5. 

Clearly, X is a random variable:    where here and in the sequelX(ω) ' '6
j'1 j.I(ω 0 {j}) ,

I(.) denotes the indicator function:

I(true) ' 1, I(false) ' 0.

This random variable is defined on the probability space {Ω, ö,P}, where Ω ={1,2,3,4,5,6},  ö

is the σ-algebra of all subsets of  Ω, and   = 1/6 for each   Moreover,P({ω}) ω 0 Ω .

 This amount y is called the mathematical expectation of X, and isy ' '6
j'1 j/6 ' '6

j'1 jP({j}) .

denoted by E(X).

More generally, if X is the outcome of a game with pay-off function g(X),  where X  is
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discrete:   with  (n is possibly infinite),  and if this game ispj ' P[X ' xj ] > 0 'n
j'1pj ' 1

repeated indefinitely, then the average pay-off will be

y ' E[g(X)] ' 'n
j'1g(xj)pj . (2.1)

Some computer programming languages, such as Fortran, Visual Basic, C++, etc., have a

build-in function which generates uniformly distributed  random numbers  between zero and one.

Now suppose that the guy next to you at the bar pulls out his laptop computer, and proposes to

generate random numbers and pay you X dollar per game if the random number involved is X,

provided you pay him an amount y up front each time. The question is again: which amount y

should you pay  him in order for both of you to play even if this game is played indefinitely? 

Since the random variable X involved is uniformly distributed on [0,1],  it has distribution

function  with densityF(x) ' 0 for x # 0, F(x) ' x for 0 < x < 1, F(x) ' 1 for x $ 1,

function  More formally,   is a  non-negativef(x) ' F )(x) ' I(0 < x < 1) . X ' X(ω) ' ω

random variable defined on the probability space  where Ω = [0,1],  ö = [0,1]1B,{Ω ,ö ,P} ,

i.e., the  σ-algebra of all Borel sets in [0,1], and P is the Lebesgue measure on [0,1]. 

In order to determine y in this case, let

X
(
(ω) ' 'm

j'1[infω0(bj&1,bj]
X(ω)]I(ω 0 (bj&1,bj]) ' 'm

j'1bj&1I(ω 0 (bj&1,bj]) ,

where b0 = 0 and bm =1. Clearly,   with probability 1, and similarly to the dice game0 # X
(
# X

the amount y involved will be greater or equal to  'm
j'1bj&1P((bj&1,bj]) ' 'm

j'1bj&1(bj&bj&1) .

Taking the supremum over all possible partitions   of  (0,1] then yields the integral^m
j'1(bj&1,bj]
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y ' E(X) ' m

1

0
xdx ' 1/2 . (2.2)

More generally, if X is the outcome of a game with pay-off function g(X),  where X  has

an absolutely continuous distribution with density f(x),  then 

y ' E[g(X)] ' m
4

&4

g(x)f(x)dx . (2.3)

Now two questions arise. First, under what conditions is g(X) a well-defined random

variable?  Second, how do we determine  E(X) if the distribution of X is neither discrete nor

absolutely continuous?

2.2. Borel measurability

Let g be a real function and let X be a random variable defined on the probability space

 In order for g(X) to be a random variable, we must have that:{Ω ,ö ,P} .

For all Borel sets B, {ω 0 Ω : g(X(ω)) 0 B} 0 ö . (2.4)

It is possible to construct a real function g and a random variable X  for which this is not the case.

But if

For all Borel sets B, AB ' {x 0 ú : g(x) 0 B} is a Borel set itself , (2.5)

then (2.4) is clearly satisfied, because then for any Borel set B, and AB defined in (2.5),

  {ω0Ω : g(X(ω)) 0 B} ' {ω0Ω : X(ω) 0 AB} 0 ö .

Moreover, if (2.5) is not satisfied, in the sense that there exists a Borel set B for which AB is not a

Borel set itself, then it is possible to construct a random variable X such that the set

  {ω0Ω : g(X(ω)) 0 B} ' {ω0Ω : X(ω) 0 AB} ó ö ,
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hence for such a random variable X,  g(X) is not a random variable itself.1  Thus,  g(X) is

guaranteed to be a random variable if and only if (2.5) is satisfied. Such real functions  g(x) are

called Borel measurable:

Definition 2.1:  A real function g is Borel measurable if and only if   for all Borel sets B in  theú

sets  AB = are Borel sets in  . Similarly, a real function g on  is Borel{x0ú : g(x) 0 B} ú úk

measurable if and only if for all Borel sets B in  the sets AB = are Borel setsú {x0úk : g(x) 0 B}

in  .úk

However, we do not need to verify condition (2.5) for all Borel sets. It suffices to verify it for

Borel sets of the type  only:(&4 ,y] , y 0 ú ,

Theorem 2.1: A real function g  on  is Borel measurable if and only if  for all y  the setsúk 0 ú

Ay = are Borel sets in  . {x0úk : g(x) # y} úk

Proof:  Let D be the collection of all Borel sets B in  for which the setsú

 are Borel sets in , including the Borel sets of the type  {x0úk : g(x) 0 B} úk (&4 ,y] , y 0 ú .

Then  D contains the collection of all intervals of the type  The smallest σ-(&4 ,y] , y 0 ú .

algebra containing the collection {  } is just the Euclidean Borel field  B =(&4 ,y] , y 0 ú

σ({  }), hence if D is a σ-algebra then B d D. But D is a collection of Borel(&4 ,y] , y 0 ú
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sets, hence D d B. Thus, if D is a σ-algebra then B =D.  The proof  that  D is a σ-algebra

is left as an exercise. Q.E.D.

The simplest Borel measurable function is the simple function:

Definition 2.2: A real function g on   is called a simple function if it takes the formúk

 where the ’s are disjoint Borel sets in .g(x) ' 'm
j'1ajI(x 0 Bj) , with m < 4 , aj 0 ú , Bj úk

Without loss of generality we may assume that the disjoint Borel sets ‘s form a  partition ofBj

   because if not, then let   =  with  úk : ^m
j'1Bj ' úk , g(x) 'm%1

j'1 ajI(x 0 Bj) , Bm%1 ' úk \(^m
j'1Bj)

and am+1 = 0.  Moreover, without loss of generality we may assume that the aj ‘s are all different.

For example, if   =  and  then  where g(x) 'm%1
j'1 ajI(x 0 Bj) am ' am%1 g(x) ' 'm

j'1ajI(x 0 B (

j ) ,

 for j = 1,...,m-1 and B (

j ' Bj B (

m ' Bm^Bm%1 .

Theorem 2.1 can be used to prove that:

Theorem 2.2: Simple functions are Borel measurable.

Proof: Let   be a simple function on . For arbitrary ,g(x) ' 'm
j'1ajI(x 0 Bj) úk y 0 ú

{x0úk: g(x) # y} ' {x0úk: 'm
j'1ajI(x 0 Bj) # y} ' ^

aj # y
Bj ,

which is a finite union of Borel sets and therefore a Borel set itself. Since y was arbitrary, it

follows from Theorem 2.1 that g is Borel measurable. Q.E.D.
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Theorem 2.3: If f(x) and g(x) are simple functions, then so are f(x) + g(x), f(x)-g(x), and f(x).g(x).

If in addition g(x) … 0 for all x, then f(x)/g(x) is a simple function.

Proof: Exercise

Theorem 2.1 can also be used to prove:

Theorem 2.4: Let  be a sequence of Borel measurable functions. Then  gj(x) , j ' 1,2,3,....,

(a) are Borelf1,n(x) ' min{g1(x) , ..... ,gn(x)} and f2,n(x) ' max{g1(x) , ..... ,gn(x)}

measurable,

(b)  are Borel measurable,f1(x) ' infn$1gn(x) and f2(x) ' supn$1gn(x)

(c)  are Borel measurable,h1(x) ' liminfn64gn(x) and h2(x) ' limsupn64gn(x)

(d) if   exists, then g is Borel measurable.g(x) ' limn64gn(x)

Proof: First, note that the min, max, inf, sup, liminf, limsup, and lim operations are taken

pointwise in x. I will only prove the min, inf and liminf cases, for Borel measurable real functions

on Again, let  be arbitrary. Then,ú . y 0 ú

(a)  B.{x0ú: f1,n(x) # y} ' ^n
j'1{x0ú: gj(x) # y} 0

(b)  B.{x0ú: f1(x) # y} ' ^4
j'1{x0ú: gj(x) # y} 0

(c)  B.{x0ú: h1(x) # y} ' _4
n'1^4

j'n{x0ú: gj(x) # y} 0

The max, sup, limsup and lim cases are left as exercises. Q.E.D.

Since continuous functions can be written as a pointwise limit of step functions, and step
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functions with a finite number of steps are simple functions, it follows from Theorems 2.1 and

2.4(d) that:

Theorem 2.5: Continuous real functions are Borel measurable.

Proof: Let g be a continuous function on  Define for natural numbers n,  ú . gn(x) ' g(x)

if -n < x # n,   elsewhere. Next, define for j = 0,...,m-1 and m = 1,2,...,gn(x) ' 0

 .B( j,m,n) ' (&n % 2n.j/m,&n % 2(j%1)n/m]

Then the ‘s are disjoint intervals such that   hence the functionBj(m,n) ^m&1
j'0 Bj(m,n) ' (&n,n],

gn,m(x) ' 'm&1
j'0 infx

(
0B( j,m,n)g(x

(
) I x 0 B( j,m,n)

is a step function with a finite number of steps, and thus a simple function. Since trivially

 pointwise in x,   is Borel measurable if the functions   are Borelg(x) ' limn64gn(x) g(x) gn(x)

measurable [see  Theorem 2.4(d)]. Similarly,  the functions    are Borel measurable if forgn(x)

arbitrary fixed n,  pointwise in x, because the ‘s are simple functionsgn(x) ' limm64gn,m(x) gn,m(x)

and thus Borel measurable.  To prove , choose an arbitrary fixed x andgn(x) ' limm64gn,m(x)

choose  Then there exists a sequence of indices  such that  for all m,n > |x| . jn,m x 0 B( jn,m,m,n)

hence

 0 # gn(x) & gn,m(x) # g(x) & infx
(
0B( jn,m,m,n)g(x

(
) # sup*x&x

(
*#2n/m*g(x) & g(x

(
)* 6 0

as   The latter result follows from the continuity of g(x). Q.E.D.m 6 4 .

Next, I will show that real functions are Borel measurable if and only if they are limits of

simple functions, in two steps:
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Theorem 2.6: A nonnegative real function g(x) is Borel measurable if and only if there exists a

non-decreasing sequence gn(x) of nonnegative simple functions such that pointwise in x, 0 # gn(x)

#  g(x) , and  limn64gn(x) ' g(x).

Proof: The “if” case follows straightforwardly from Theorems 2.2 and 2.4.  For proving

the “only if” case, let for 1 # m # n2n, 

 otherwise.  Then  gn(x) is a sequencegn(x) ' (m&1)/2n if (m&1)/2n # g(x) < m/2n , gn(x) ' n

of simple functions, satisfying  0 # gn(x) #  g(x) ,  and   pointwise in x.limn64gn(x) ' g(x),

Q.E.D.

Every real function  g(x) can be written as a difference of two non-negative functions:

g(x) ' g
%
(x) & g

&
(x) , where g

%
(x) ' max{g(x),0} , g

&
(x) ' max{&g(x),0} . (2.6)

Moreover, if g is Borel measurable, then so are  in  (2.6).  It follows thereforeg
%

and g
&

straightforwardly from (2.6) and Theorems 2.3 and 2.6 that:

Theorem 2.7: A real function g(x) is Borel measurable if an only if it is the limit of a sequence of

simple functions.

Proof: Exercise.

Using Theorem 2.7, Theorem 2.3 can now be generalized to:

Theorem 2.8: If f(x) and g(x) are Borel measurable functions, then so are f(x) + g(x), f(x)-g(x),
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and f(x).g(x). Moreover, if g(x) … 0 for all x, then f(x)/g(x) is a Borel measurable function.

Proof: Exercise

2.3. Integrals of Borel measurable functions with respect to a probability measure

If g is a step function on (0,1], say   =  where b0 = 0 and bm+1 =g(x) 'm
j'1ajI(x 0 (bj,bj%1]) ,

1,  then the Riemann integral of g over (0,1] is defined as:

  m
1

0
g(x)dx ' 'm

j'1aj(bj%1&bj) ' 'm
j'1ajµ((bj ,bj%1]) ,

where µ is the uniform probability measure on (0,1]. Mimicking this results for simple functions

and more general probability measures µ, we can define the integral of a simple function with

respect to a probability measure µ as follows:

Definition 2.3: Let µ be a probability measure on { ,Bk}, and let   =  be aúk g(x) 'm
j'1ajI(x0Bj)

simple function on . Then the integral of g with respect to  µ is defined asúk

 2

mg(x)dµ(x) '

def. 'm
j'1ajµ(Bj) .

For non-negative continuous real functions g on (0,1], the Riemann integral of  g over

(0,1] is defined as

  m
1

0
g(x)dx ' sup

0#g
(
#gm

1

0
g
(
(x)dx ,

where the supremum is taken over all step functions  satisfying  for all x ing
(

0 # g
(
(x) # g(x)

(0,1]. Again, we may mimick this result for non-negative Borel measurable functions g and
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general probability measures µ:

Definition 2.4: Let µ be a probability measure on { ,Bk}, and let   be a non-negativeúk g(x)

Borel measurable function on . Then the integral of g with respect to  µ is defined as:úk

mg(x)dµ(x) '

def.

sup
0#g

(
#gmg

(
(x)dµ(x) ,

where the supremum is taken over all simple functions    satisfying  for all xg
(

0 # g
(
(x) # g(x)

in a Borel set B with  µ(B) = 1.

Using the decomposition (2.6), we can now define the integral of an arbitrary Borel

measurable function with respect to a probability measure:

Definition 2.5: Let µ be a probability measure on { , Bk}, and let   be a Borelúk g(x)

measurable function on . Then the integral of g with respect to  µ is defined as:úk

mg(x)dµ(x) ' mg
%
(x)dµ(x) & mg

&
(x)dµ(x) , (2.7)

where  provided that at least one of the integralsg
%
(x) ' max{g(x),0} , g

&
(x) ' max{&g(x),0} ,

at the right hand side of (2.7) is finite.3

Definition 2.6: The integral of a Borel measurable function g with respect to a probability

measure µ over a Borel set A is defined as 

mA
g(x)dµ(x) '

def.

mI(x0A)g(x)dµ(x) .



77

All the well-known properties of Riemann integrals carry over to these new integrals. In

particular:

Theorem 2.9: Let f(x) and g(x) be Borel measurable functions on , let  µ be a probabilityúk

measure on { ,Bk}, and let A be a Borel set in . Then úk úk

(a) mA
(αg(x) % βf(x))dµ(x) ' αmA

g(x)dµ(x) % βmA
f(x)dµ(x) .

(b) For disjoint Borel sets Aj in , úk m̂ 4
j'1Aj

g(x)dµ(x) ' '4
j'1mAj

g(x)dµ(x) .

(c) If g(x) $ 0 for all x in A, then mA
g(x)dµ(x) $ 0.

(d) If g(x) $ f(x) for all x in A, then mA
g(x)dµ(x) $ mA

f(x)dµ(x) .

(e) /0 /0mA
g(x)dµ(x) # mA

|g(x)|dµ(x) .

(f) If µ(A) = 0, then mA
g(x)dµ(x) ' 0.

(g) If  for a sequence of Borel sets An  thenm|g(x)|dµ(x) < 4 and limn64µ(An) ' 0

 =  0.limn64mAn

g(x)dµ(x)

Proofs of (a)-(f): Exercise.

Proof of (g): Without loss of generality we may assume that g(x) $ 0. Let

Ck ' {x0ú: k # g(x) < k%1} and Bm ' {x0ú: g(x) $ m} ' ^4
k'mCk .

Then 

múg(x)dµ(x) ' j
4

k'0 mCk

g(x)dµ(x) < 4 ,

hence

mBm

g(x)dµ(x) ' j
4

k'm mCk

g(x)dµ(x) 6 0 for m 6 4 . (2.8)

Therefore,
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mAn

g(x)dµ(x) ' mAn_Bm

g(x)dµ(x) % mAn_(ú\Bm)
g(x)dµ(x)

# mBm

g(x)dµ(x) % mµ(An) ,

hence for fixed m,

limsupn64mAn

g(x)dµ(x) # mBm

g(x)dµ(x) .

Letting  part (g) of Theorem 2.9 follows from (2.8). Q.E.D.m 6 4 ,

Moreover, there are two important theorems involving limits of a sequence of Borel

measurable functions and their integrals, namely the monotone convergence theorem and the

dominated convergence theorem:

Theorem 2.10: (Monotone convergence) Let  gn  be a non-decreasing sequence of non-negative

Borel measurable functions on , i.e., for any fixed  0  #    #  for n =úk x 0 úk , gn(x) gn%1(x)

1,2,3,..., and let  be a probability measure on { , Bk}. Then µ úk

 limn64mgn(x)dµ(x) ' mlimn64gn(x)dµ(x) .

Proof: First, observe from Theorem 2.9(d) and the monotonicity of  gn  that mgn(x)dµ(x)

is monotonic non-decreasing, and that therefore   exists (but may be infinite),limn64mgn(x)dµ(x)

and exists (but may be infinite), and is Borel measurable. Moreover, sinceg(x) ' limn64gn(x)

for  it follows easily from Theorem 2.9(d) that x 0 úk , gn(x) # g(x), mgn(x)dµ(x) # mg(x)dµ(x) ,

hence 

limn64mgn(x)dµ(x) # mg(x)dµ(x) .

Thus, it remains to be shown that
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limn64mgn(x)dµ(x) $ mg(x)dµ(x) . (2.9)

It follows from the definition on the integral  that (2.9) is true if for any simplemg(x)dµ(x)

function  f(x) with  0 # f(x) # g(x),

limn64mgn(x)dµ(x) $ mf(x)dµ(x) . (2.10)

Given such a simple function f(x), let for arbitrary  > 0,   andg An ' {x0úk : gn(x) $ (1&g)f(x)} ,

let  . Note that, since  f(x) is simple, M < 4. Moreover, note that  sup xf(x) ' M

limn64µ(úk \An) ' limn64µ {x0úk : gn(x) # (1&g)f(x)} ' 0. (2.11)

Furthermore, observe that

mgn(x)dµ(x) $ mAn

gn(x)dµ(x) $ (1&g)mAn

f(x)dµ(x)

' (1&g)mf(x)dµ(x) & (1&g)múk\An

f(x)dµ(x) $ (1&g)mf(x)dµ(x) & (1&g)Mµ(úk\An) .
(2.12)

It follows now from (2.11) and (2.12) that for arbitrary   $ g > 0, limn64mgn(x)dµ(x)

 which implies (2.10). Combining (2.9) and (2.10), the theorem follows. Q.E.D.(1&g)mf(x)dµ(x) ,

Theorem 2.11: (Dominated  convergence) Let  gn  be sequence of Borel measurable functions on

 such that pointwise in x,   , and let   Ifúk g(x) ' limn64gn(x) ḡ(x) ' supn$1|gn(x)| .

where  is a probability measure on { , Bk}, thenmḡ(x)dµ(x) < 4 , µ úk

  limn64mgn(x)dµ(x) ' mg(x)dµ(x) .

Proof:   Let  Then  is non-decreasing and non-negative,fn(x) ' ḡ(x) & supm$ngm(x) . fn(x)

and  = Thus it follows from the condition    and limn64fn(x) ḡ(x) & g(x) . mḡ(x)dµ(x) < 4
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Theorems 2.9(a,d)-2.10 that

mg(x)dµ(x) ' limn64msupm$ngm(x)dµ(x) $ limn64supm$nmgm(x)dµ(x)

' limsupn64mgn(x)dµ(x) .
(2.13)

Next, let  Then  is non-decreasing and non-negative, andhn(x) ' ḡ(x) % infm$ngm(x) . hn(x)

 = Thus it follows again from the condition    and limn64hn(x) ḡ(x) % g(x) . mḡ(x)dµ(x) < 4

Theorems 2.9(a,d)-2.10 that

mg(x)dµ(x) ' limn64minfm$ngm(x)dµ(x) # limn64infm$nmgm(x)dµ(x)

' liminfn64mgn(x)dµ(x) .
(2.14)

The theorem now follows from (2.13) and (2.14). Q.E.D.

In the statistical and econometric literature you will encounter integrals of the form

 where F  is a distribution function. Since each distribution function F(x) on  is mA
g(x)dF(x) , úk

uniquely associated with  a probability measure µ on  Bk,  one should interpret these integrals as

mA
g(x)dF(x) '

def.

mA
g(x)dµ(x) , (2.15)

where µ is the probability measure on  Bk  associated with F,  g is a Borel measurable function

on , and A is a Borel set in .úk úk
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2.4. General measurability, and integrals of random variables with respect to

probability measures

All the definitions and results in the previous sections carry over to mappings X: Ω 6 ú ,

where  Ω is a nonempty set, with ö a σ-algebra of subsets of  Ω. Recall that X is a random

variable defined on a probability space {Ω, ö,P}  if for all Borel sets B in ú, {ω 0 Ω: X(ω) 0 B}

0 ö.  Moreover, recall that it suffices to verify this condition for Borel sets of the type  By  =

In this section I will list these generalizations,  with all random variables(&4 ,y] , y 0 ú .

involved defined on a common probability space {Ω, ö,P}.

Definition 2.7: A random variable X is called simple if it takes the form

 with where the Aj’s are disjoint sets in ö.X(ω) ' 'm
j'1bjI(ω 0 Aj) , m < 4 , bj 0 ú ,

Compare Definition 2.2. (Verify similarly to Theorem 2.2  that a simple random variable is

indeed a random variable.) Again, we may assume without loss of generality that the bj’s are all

different. 

For example, if  X  has a hypergeometric or binomial distribution, then X is a simple

random variable.

Theorem 2.12: If X and Y are simple random variables, then so are X+Y, X-Y and X.Y.  If in

addition Y is non-zero with probability 1, then X/Y is a simple random variable.

Proof: Similar to Theorem 2.3.
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Theorem 2.13: Let Xj  be a sequence of random variables. Then    max1#j#n Xj, min1#j#n Xj,

  and  are random variables. If  supn$1 Xn, infn$1 Xn, limsupn64 Xn, liminfn64 Xn

 for all ω in a set A in ö with P(A) = 1, then X is a random variable.limn64 Xn(ω) ' X(ω)

Proof: Similar to Theorem 2.4.

Theorem 2.14: A mapping X:  is a random variable if and only if there exists a sequenceΩ 6 ú

Xn  of simple random variables such that   for all ω in a set A in ö withlimn64 Xn(ω) ' X(ω)

P(A) = 1.

Proof: Similar to Theorem 2.7.

Similarly to Definitions 2.3, 2.4, 2.5 and 2.6, we may define integrals of a random

variable X with respect to the probability measure P as follows, in four steps.

Definition 2.8: Let X be a simple random variable:  say. Then theX(ω) ' 'm
j'1bjI(ω 0 Aj) ,

integral of X with respect of P is defined as  4

mX(ω)dP(ω) '

def. 'm
j'1bjP(Aj) .

Definition 2.9: Let X be a non-negative random variable (with probability 1). Then the integral

of X with respect of P is defined as     where themX(ω)dP(ω) '

def.

sup0#X
(
#X mX(ω)

(
dP(ω) ,

supremum is taken over all simple random variables X*  satisfying  with probability0 # X
(
# X

1.
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Definition 2.10: Let X be a random variable. Then the integral of X with respect of P is defined

as      where  =  and  =mX(ω)dP(ω) '

def.

mX
%
(ω)dP(ω) & mX

&
(ω)dP(ω) , X

%
max{X,0} X

&

 provided that at least one of the latter two integrals is finite.max{&X,0} ,

Definition 2.11: The integral of a random variable X with respect to a probability measure  P

over a set A in ö  is defined as  mA
X(ω)dP(ω) '

def.

mI(ω 0 A)X(ω)dP(ω) .

Theorem 2.15: Let X and Y be random variables, and let A be a set in  ö. Then 

(a) mA
(αX(ω) % βY(ω))dP(ω) ' αmA

X(ω)dP(ω) % βmA
Y(ω)dP(ω) .

(b) For disjoint  sets Aj in  ö, m̂ 4
j'1Aj

X(ω)dP(ω) ' '4
j'1mAj

X(ω)dP(ω) .

(c) If X (ω) $ 0 for all ω in A, then mA
X(ω)dP(ω) $ 0.

(d) If X (ω) $ Y (ω)  for all ω in A, then mA
X(ω)dP(ω) $ mA

Y(ω)dP(ω) .

(e) /0 /0mA
X(ω)dP(ω) # mA

|X(ω)|dP(ω) .

(f) If P(A) = 0, then mA
X(ω)dP(ω) ' 0.

(g) If   and for a sequence of sets  An  in    then m|X(ω)|dP(ω) < 4 ö, limn64P(An) ' 0,

limn64mAn

X(ω)dP(ω) ' 0.

Proof: Similar to Theorem 2.9. 

Also the monotone and dominated convergence theorems carry over:

Theorem 2.16: Let Xn be a monotonic non-decreasing sequence of non-negative random

variables defined on the probability space {Ω, ö,P}, i.e., there exists a set  with P(A) =A 0 ö
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1 such that for all Thenω 0 A , 0 # Xn(ω) # Xn%1(ω) , n ' 1,2,3,....

 limn64mXn(ω)dP(ω) ' mlimn64Xn(ω)dP(ω) .

Proof: Similar to Theorem 2.10.

Theorem 2.17: Let Xn be a sequence of random variables defined on the probability space {Ω,

ö,P} such that for all  in a set ,  Letω A 0 ö with P(A) ' 1 Y(ω) ' limn64Xn(ω) .

 If   then  X̄ ' supn$1Xn . mX̄(ω)dP(ω) < 4 limn64mXn(ω)dP(ω) ' mY(ω)dP(ω) .

Proof: Similar to Theorem 2.11.

Finally, note that the integral of a random variable with respect to the corresponding

probability measure P is related to the definition of the integral of a Borel measurable function

with respect to a probability measure µ:

Theorem 2.18: Let  be the probability measure induced by the random variable X. ThenµX

 Moreover, if g is a Borel measurable real function on úk, and X is amX(ω)dP(ω) ' mxdµX(x) .

k-dimensional random vector with induced probability measure , then  =µX mg(X(ω))dP(ω)

 Furthermore, denoting in the latter case Y= g(X), with    the probabilitymg(x)dµX(x) . µY

measure induced by Y,  we have  mY(ω)dP(ω) ' mg(X(ω))dP(ω) ' mg(x)dµX(x) ' mydµY(y) .

Proof: Let X be a simple random variable:   say, and recall thatX(ω) ' 'm
j'1bjI(ω 0 Aj) ,

without loss of generality we may assume that the bj ‘s are all different. Each of the disjoint sets
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Aj  are associated with disjoint Borel sets Bj such that  (for example, let Aj ' {ω0Ω: X(ω) 0 Bj}

Bj = {bj}). Then 

mX(ω)dP(ω) ' 'm
j'1bjP(Aj) ' 'm

j'1bjµX(Bj) ' mg
(
(x)dµX(x) ,

where  is a simple function such thatg
(
(x) ' 'm

j'1bjI(x 0 Bj)

g
(
(X(ω)) ' 'm

j'1bjI(X(ω) 0 Bj) ' 'm
j'1bjI(ω 0 Aj) ' X(ω) .

Therefore, in this case the Borel set  has   measure zero:  andC ' {x: g
(
(x) … x} µX µX(C) ' 0,

consequently,

mX(ω)dP(ω) ' mú\C
g
(
(x)dµX(x) % mC

g
(
(x)dµX(x) ' mú\C

xdµX(x) ' mxdµX(x) . (2.16)

The rest of the proof is left as an exercise. Q.E.D.

2.5. Mathematical expectation

With these new integrals introduced, we can now answer the second question stated at the

end of the introduction: How to define the mathematical expectation if the distribution of X is

neither discrete nor absolutely continuous:

Definition 2.12: The mathematical expectation of a random variable X is defined as:

 or equivalently as:   [cf. (2.15)], where F is theE(X) ' mX(ω)dP(ω) , E(X) ' mxdF(x)

distribution function of  X,   provided that the integrals involved are defined. Similarly, if g(x) is

a Borel measurable function on  úk and X is a random vector in   úk  then equivalently,
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 =   provided that the integrals involved are defined.E[g(X)] ' mg(X(ω))dP(ω) mg(x)dF(x) ,

Note that the latter part of Definition 2.12 covers both examples (2.1) and (2.3).

As motivated in the introduction, the mathematical expectation may beE[g(X)]

interpreted as the limit of the average pay-off of a repeated game with pay-off function g. This is

related to the law of large numbers which we will discuss later, in Chapter 7:  If X1, X2, X3,.. ......

is a sequence of independent random variables or vectors each distributed the same as X, and g is

a Borel measurable function such that   then   =E[|g(X)|] < 4 , P limn64(1/n)'n
j'1g(Xj) ' E[g(X)]

1. 

There are a few important special cases of the function g, in particular the variance of X,

which measures the variation of X around its expectation E(X), and the covariance of a pair of

random variables X and Y, which measures how X and Y fluctuate together around their

expectations: 

Definition 2.13: The m’s moment (m = 1,2,3,.... ) of a random variable X is defined as: E(Xm),

and the m’s central moment of X is defined by   where    The secondE(*X&µx*
m) , µx ' E(X) .

central moment is called the variance of  X :   

 var(X) ' E[(X & µx)
2 ] ' σ2

x,

say. The covariance of a pair (X,Y) of random variables is defined as:

  cov(X,Y) ' E[(X & µx)(Y & µy )] ,

where is the same as before, and  The correlation (coefficient) of a pair (X,Y) ofµx µy ' E(Y) .
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random variables is defined as: 

corr(X,Y) '
cov(X,Y)

var(X) var(Y)
' ρ(X,Y),

say.

The correlation coefficient measures the extent to which Y can be approximated by a

linear function of  X, and vice versa. In particular, 

If exactly Y ' α % βX then corr(X,Y) ' 1 if β > 0, corr(X,Y) ' &1 if β < 0. (2.17)

Moreover,

Definition 2.14: Random variables X and Y said to be uncorrelated if cov(X,Y) = 0.  A sequence

of random variables  Xj  is uncorrelated if for all  i … j, Xi and Xj are uncorrelated.

Furthermore, it is easy to verify that

Theorem 2.19: If X1,.....,Xn are uncorrelated, then var 'n
j'1Xj ' 'n

j'1var(Xj) .

Proof: Exercise.
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2.6. Some useful inequalities involving mathematical expectations

There are a few inequalities that will prove to be useful later on, in particular Chebishev’s

inequality, Holder’s inequality, Liapounov’s inequality, and Jensen’s inequality.

2.6.1. Chebishev’s inequality

Let X be a non-negative random variable with distribution function F(x), and let  be aφ(x)

monotonic increasing non-negative Borel measurable function on [0,4). Then for arbitrary

g > 0,

E[φ(X)] ' mφ(x)dF(x) ' m{φ(x)>φ(g)}
φ(x)dF(x) % m{φ(x)#φ(g)}

φ(x)dF(x)

$ m{φ(x)>φ(g)}
φ(x)dF(x) $ φ(g)m{φ(x)>φ(g)}

dF(x) ' φ(g)m{x>g}
dF(x) ' φ(g)(1 & F(g)) ,

(2.18)

hence

P(X > g) ' 1 & F(g) # E[φ(X)]
φ(g)

. (2.19)

In particular, it follows from (2.19)  that for a random variable Y with expected value  µy ' E(Y)

and variance ,σ2
y

P ω0Ω: *Y(ω)&µy* > σ2
y /g # g . (2.20)

2.6.2 Holder’s inequality

Holder’s inequality is based on the fact that ln(x) is a concave function on (0,4):  for 0 < a

< b, and 0 # λ # 1,  henceln(λa % (1&λ)b) $ λln(a) % (1&λ)ln(b) ,

λa % (1&λ)b $ a λb 1&λ . (2.21)
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Now let X and Y be random variables, and put  where pa ' *X*p /E(*X*p) , b ' *Y*q /E(*Y*q) ,

> 1, and   Then it follows from (2.21), with λ = 1/p and 1-λ = 1/q , thatp &1 % q &1 ' 1.

p &1 *X*p

E(*X*p)
% q &1 *Y*q

E(*Y*q)
$ *X*p

E(*X*p)

1/p
*Y*q

E(*Y*q)

1/q

'
*X.Y*

E(*X*p) 1/p E(*Y*q) 1/q
.

Taking expectations yields Holder’s inequality:

E(*X.Y*) # E(*X*p) 1/p E(*Y*q) 1/q , where p > 1 and
1
p

%
1
q

' 1. (2.22)

For the case p = q = 2 inequality (2.22) reads  which is known as theE(*X.Y*) # E(X 2) E(Y 2) ,

Cauchy-Schwartz inequality.

2.6.3 Liapounov’s inequality

Liapounov’s inequality follows from Holder’s inequality (2.22) by replacing Y with 1:

E(*X*) # E(*X*p) 1/p , where p $ 1.

2.6.4 Minkowski’s inequality

If for some p  $ 1,  thenE[|X|p] < 4 and E[|Y|p] < 4

E(*X % Y*) # E(*X*p) 1/p
% E(*Y*p) 1/p . (2.23)

This inequality is due to Minkowski. For p = 1 the result is trivial. Therefore, let p > 1. First note

that   henceE[|X % Y|p] # E[(2.max(|X| , |Y|))p] ' 2pE[max(|X|p , |Y|p)] # 2pE[|X|p % |Y|p] < 4 ,

we may apply Liapounov’s inequality:

E(*X % Y*) # E(*X % Y*p) 1/p . (2.24)

Next, observe that
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E(*X % Y*p) ' E(*X % Y*p&1*X % Y*) # E(*X % Y*p&1*X*) % E(*X % Y*p&1*Y*) . (2.25)

Let  q = p /(p-1). Since 1/q + 1/p = 1 it follows from Holder’s inequality that 

E(*X % Y*p&1*X*) # E(*X % Y*(p&1)q) 1/q E(|X|p) 1/p # E(*X % Y*p) 1&1/p E(|X|p) 1/p , (2.26)

and similarly,

E(*X % Y*p&1*Y*) # E(*X % Y*p) 1&1/p E(|Y|p) 1/p . (2.27)

Combining (2.24),  (2.25), (2.26) and (2.27),  Minkowski’s inequality (2.23) follows.

2.6.5 Jensen’s inequality

A real function  on ú is called convex if for all  a, b  and  0 # λ # 1, φ(x) 0 ú

 φ(λa % (1&λ)b) # λφ(a) % (1&λ)φ(b) .

It follows by induction that then also

φ'n
j'1λjaj # j

n

j'1
λjφ(aj) , where λj > 0 for j ' 1,..,n , and j

n

j'1
λj ' 1. (2.28)

Consequently, it follows from (2.28) that for a simple random variable X,

 φ(E(X)) # E(φ(X)) for all convex real functions φ on ú . (2.29)

This is Jensen’s inequality. Since (2.29) holds for simple random variables, it holds for all

random variables.  Similarly we have

φ(E(X)) $ E(φ(X)) for all concave real functions φ on ú .

2.7. Expectations of products of  independent random variables

Let X and Y be independent random variables, and let f and g be Borel measurable

functions on  . I will show now at then ú

E[f(X)g(Y)] ' (E[f(X)])(E[g(Y)]) . (2.30)
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In general (2.30) does not hold, although there are cases where (2.30) holds for dependent

X and Y.  As an example of a case where (2.30) does not hold, let X = U0.U1 and Y = U0.U2,

where U0, U1 and U2 are independent uniformly [0,1] distributed, and let f(x) ' x , g(x) ' x .

The joint density of U0, U1 and U2 is: 

 h(u0 ,u1 ,u2) ' 1 if (u0 ,u1 ,u2)
T 0 [0,1]×[0,1]×[0,1] , h(u0 ,u1 ,u2) ' 0 elsewhere ,

hence  

 E[f(X)g(Y)] ' E[X.Y] ' E[U 2
0 U1U2] ' m

1

0 m
1

0 m
1

0
u 2

0 u1u2du0du1du2 ' m
1

0
u 2

0 du0m
1

0
u1du1m

1

0
u2du2

' (1/3)×(1/2)×(1/2) ' 1/12 ,

whereas

 E[f(X)] ' E[X] ' m
1

0 m
1

0 m
1

0
u0u1du0du1du2 ' m

1

0
u0du0m

1

0
u1du1m

1

0
du2 ' 1/4 ,

and similarly, E[g(Y)] = E[Y] = 1/4.

As an example of dependent random variables X and Y for which (2.30) holds, let now X

=   and  Y =  where   are the same as before, andU0(U1 & 0.5) U0(U2 & 0.5) , U0 , U1 , and U2

again  Then it is easy to show that f(x) ' x , g(x) ' x . E[X.Y] ' E[X] ' E[Y] ' 0.

In order to prove (2.30) for independent random variables X and Y, let f and g be simple

functions:

f(x) ' 'm
i'1αiI(x 0 Ai) , g(x) ' 'n

j'1βjI(x 0 Bj) ,

where the Ai’s are disjoint Borel sets, and the Bj’s are disjoint Borel sets. Then
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E[f(X)g(Y)] ' E 'm
i'1'n

j'1αiβjI(X 0 Ai and Y 0 Bj)

' m 'm
i'1'n

j'1αiβjI(X(ω) 0 Ai and Y(ω) 0 Bj) dP(ω)

' 'm
i'1'n

j'1αiβjP {ω 0 Ω: X(ω) 0 Ai}_{ω 0 Ω: Y(ω) 0 Bj}

' 'm
i'1'n

j'1αiβjP {ω 0 Ω: X(ω) 0 Ai} P {ω 0 Ω: Y(ω) 0 Bj}

' 'm
i'1αiP {ω 0 Ω: X(ω) 0 Ai} 'n

j'1βjP {ω 0 Ω: Y(ω) 0 Bj}

' E[f(X)] E[g(Y)] ,

because by the independence of X and Y,  FromP(X 0 Ai and Y 0 Bj) ' P(X 0 Ai)P(Y 0 Bj) .

this result it follows more generally:

Theorem 2.20: Let X and Y be random vectors in  respectively. Then X and Y areúp and úq ,

independent if and only if    for all Borel measurable functions E[f(X)g(Y)] ' (E[f(X)])(E[g(Y)])

f and g on   respectively, for which  the expectations involved are defined.úp and úq ,

This theorem implies that independent random variables are uncorrelated. The reverse,

however, is in general not true. A counter example is the case I have considered before, namely 

X =   and  Y =  where    are independent uniformlyU0(U1 & 0.5) U0(U2 & 0.5) , U0 , U1 , and U2

[0,1] distributed.  In this case  hence cov(X,Y) = 0, but X and Y areE[X.Y] ' E[X] ' E[Y] ' 0,

dependent, due to the common factor U0. The latter can be shown formally in different ways, but

the easiest way is to verify that, for example,  , so that theE[X 2.Y 2] … (E[X 2])(E[Y 2])

dependence of X and Y follows from Theorem 2.20.
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2.8. Moment generating functions and characteristic functions

2.8.1 Moment generating functions

The moment generating function of a bounded random variable X , i.e., P[|X|  # M] = 1

for some positive real number M < 4,  is defined as the function

m(t) ' E[exp(t.X)] , t 0 ú , (2.31)

where the argument t is non-random. More generally:

Definition 2.15: The moment generating function of a random vector X in  úk is defined by 

 where Τ is the set of non-random vectors t for which them(t) ' E[exp(t TX)] for t 0 Τ d úk ,

moment generating function exists and is finite. 

For bounded random variables the moment generating function exists and is finite for all

values of t. In particular, in the univariate bounded case we can write

m(t) ' E[exp(t.X)] ' E j
4

k'0

t kX k

k!
' j

4

k'0

t kE[X k]
k!

.

It is easy to verify that the j-th derivative of m(t) is:

m (j)(t) '
d jm(t)

(dt) j
' j

4

k'j

t k&jE[X k]
(k&j)!

' E[X j] % j
4

k'j%1

t k&jE[X k]
(k&j)!

(2.32)

hence the  j-th moment of X is  

m (j)(0) ' E[X j] . (2.33)

This is the reason for calling  m(t) the  “moment generating function”. 

Although the moment generating function is a handy tool for computing moments of a



94

distribution, its actual importance is due to the fact that the shape of the moment generating

function in an open neighborhood of zero uniquely characterizes the distribution of a random

variable. In order to show this, we need the following result.

Theorem 2.21: The distributions of two random vectors X and Y in úk are the same if and only if

for all bounded continuous functions  on  úk,  φ E[φ(X)] ' E[φ(Y)] .

Proof: I shall only prove this theorem for the case where X and Y are random variables: k

= 1. Note that the “only if” case follows from  the definition of expectation. 

Let  F(x) be the distribution function of X  and let  G(y) be the distribution function of Y. 

Let a < b be arbitrary continuity points of F(x) and G(y), and define

φ(x) '

' 0 if x $ b ,

' 1 if x < a ,

'
b&x
b&a

if a # x < b .

(2.34)

Clearly, (2.34) is a bounded continuous function, and therefore by assumption we have E[φ(X)]

=   Now observe from (2.34) thatE[φ(Y)] .

E[φ(X)] ' mφ(x)dF(x) ' F(a) % m
b

a

b&x
b&a

dF(x) $ F(a)

and

E[φ(X)] ' mφ(x)dF(x) ' F(a) % m
b

a

b&x
b&a

dF(x) # F(b) .

Similarly,

E[φ(Y)] ' mφ(y)dG(y) ' G(a) % m
b

a

b&x
b&a

dG(x) $ G(a)

and
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E[φ(X)] ' mφ(y)dG(y) ' G(a) % m
b

a

b&x
b&a

dG(x) # G(b) .

Combining these inequalities with it follows that for arbitrary continuityE[φ(X)] ' E[φ(Y)]

points  a < b of F(x) and G(y),

G(a) # F(b) , F(a) # G(b) . (2.35)

Letting  it follows from (2.35) that  Q.E.D.b 9 a F(a) ' G(a) .

Now assume that the random variables X and Y are discrete, and take with probability 1

the values  Without loss of generality we may assume that xj = j, i.e.,x1 , ..... ,xn .

P[X 0 {1,2,...,n}] ' P[Y 0 {1,2,...,n}] ' 1.

Suppose that all the moments of X and Y match: For k = 1,2,3,...., . I will showE[X k] ' E[Y k]

that then for an arbitrary bounded continuous function  on ú,  φ E[φ(X)] ' E[φ(Y)] .

Denoting pj = P[X = j], qj = P[Y = j] we can write

E[φ(X)] ' j
n

j'1
φ(j)pj , E[φ(Y)] ' j

n

j'1
φ(j)qj .

It is always possible to construct a polynomial   such that  for j =ρ(t) ' 'n&1
k'0ρkt

k φ(j) ' ρ(j)

1,...,n, by solving

1 1 1 þ 1

1 2 22 þ 2n&1

! ! ! " !

1 n n 2 þ n n&1

ρ0

ρ1

!

ρn&1

'

φ(1)

φ(2)

!

φ(n)

.

Then

E[φ(X)] ' j
n

j'1
j
n&1

k'0
ρk j kpj ' j

n&1

k'0
ρk j

n

j'1
j kpj ' j

n&1

k'0
ρk E[X k]

and similarly

E[φ(Y)] ' j
n&1

k'0
ρk E[Y k] .
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Hence, it follows from Theorem 2.21 that if all the corresponding moments of X and Y are the

same, then the distributions of X and Y are the same. Thus if the moment generating functions of

X and Y coincide on a open neighborhood of zero, and if all the moments of X and Y are finite,

then it follows from (2.33) that all the corresponding moments of X and Y are the same:

Theorem 2.22: If the random variables X and Y are discrete, and take with probability 1 only a

finite number of values, then the distributions of X and Y are the same if and only if  the moment

generating functions of X and Y coincide on an arbitrary small open neighborhood of zero.

However, this result also applies without the conditions that X and Y are discrete and take only a

finite number of values, and for random vectors as well, but the proof is complicated and

therefore omitted:

Theorem 2.23: If the moment generating functions mX(t) and mY(t) of the random vectors X and

Y in  úk  are defined and finite in an open neighborhood   =    of theN0(δ) {x 0 úk : 2x2 < δ}

origin of  úk,  then the distributions of X and Y are the same if and only if   for all mX(t) ' mY(t)

t 0 N0(δ) .

2.8.2 Characteristic functions

The disadvantage of the moment generating function is that is may not be finite in an

arbitrarily small open neighborhood of zero. For example, if X has a standard Cauchy

distribution, i.e., X  has density
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f(x) '
1

π(1%x 2)
, (2.36)

then

m(t) ' m
4

&4

exp(t.x)f(x)dx
' 4 if t … 0,

' 1 if t ' 0.
(2.37)

There are many other distributions with the same property as (2.37), hence the moment

generating functions in these cases are of no use for comparing distributions.

The solution to this problem is to replace t in (2.31) with i.t, where   Thei ' &1.

resulting function n(t) = m(i.t) is called the characteristic function of the random variable X:

n(t) ' E[exp(i.t.X)] , t 0 ú .

More generally,

Definition 2.16: The characteristic  function of a random vector X in  úk is defined by 

 where the argument t is non-random. n(t) ' E[exp(i.t TX)] , t 0 úk ,

The characteristic function is bounded, because  Seeexp(i.x) ' cos(x) % i.sin(x) .

Appendix III. Thus, the characteristic function in Definition 2.16 can be written as

n(t) ' E[cos(t TX)] % i.E[sin(t TX)] , t 0 úk .

Note that by the dominated convergence theorem (Theorem 2.11), limt60 n(t) ' 1 ' n(0) ,

hence a characteristic function is always continuous in t = 0. 

Replacing moment generating functions with characteristic functions, Theorem 2.23 now

becomes:
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Theorem 2.24: Random variables or vectors have the same distribution if and only if their

characteristic functions are identical.

The proof of this theorem is complicated, and is therefore given in Appendix 2.A at the end of

this chapter. The same applies to the following useful result, which is known as the inversion

formula for characteristic functions:

Theorem 2.25: Let X be a random vector in  úk  with characteristic function n(t).  If    n(t) is

absolutely integrable, i.e.,  then the distribution of X is absolutely continuousmúk
*n(t)*dt < 4 ,

with joint density   f(x) ' (2π)&kmúk
exp(&i.t Tx)n(t)dt .

2.9. Exercises

1. Prove that the collection  D in the proof of Theorem 2.1 is a σ-algebra.

2. Prove Theorem 2.3.

3. Prove Theorem 2.4 for the max, sup, limsup and lim cases.

4. Complete the proof of Theorem 2.5, by proving that  pointwise ingn(x) ' limm64gn,m(x)

x, and   pointwise in x.g(x) ' limn64gn(x)

5. Why is it true that if g is Borel measurable, then so are  in  (2.6)?g
%

and g
&

6. Prove Theorem 2.7.

7. Prove Theorem 2.8.

8. Let  if x is rational,   if x is irrational. Prove that  is Borelg(x) ' x g(x) ' &x g(x)

measurable.
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9. Prove parts (a)-(f) of Theorem 2.9 for simple functions

  g(x) ' 'n
i'1aiI(x 0 Bi) , f(x) ' 'm

j'1bjI(x 0 Cj) .

10. Why can you conclude from exercise 9 that parts (a)-(f) of Theorem 2.9 hold for arbitrary

non-negative Borel measurable functions?

11. Why can you conclude from exercise 10 that Theorem 2.9 holds for arbitrary Borel

measurable functions, provided that the integrals involved are defined?

12. From which result on probability measures does (2.11)  follow?

13. Determine for each inequality in (2.12)  which part of  Theorem 2.9 has been used.

14. Why do we need the condition in Theorem 2.11 that mḡ(x)dµ(x) < 4?

15. Note that we cannot generalize Theorem 2.5 to random variables, because something

missing prevents us from defining  a continuous mapping  X: . What is missing?Ω 6 ú

16. Verify (2.16), and complete the proof of Theorem 2.18.

17. Prove equality (2.2).

18.  Show that   and -1 #var(X) ' E(X 2) & (E(X))2 , cov(X,Y) ' E(X.Y) & (E(X))(E(Y)) ,

 # 1. Hint: Derive the latter result from  for all λ.corr(X,Y) var(Y & λX) $ 0

19. Prove (2.17).

20. Which parts of Theorem 2.15 have been used in (2.18)?

21. How does (2.20) follow from (2.19)?

22. Why does it follows from (2.28) that (2.29) holds for simple random variables?

23 Prove Theorem 2.19.

24. Complete the proof of Theorem 2.20 for the case p = q = 1.

25. Let   X =   and  Y =  where    areU0(U1 & 0.5) U0(U2 & 0.5) , U0 , U1 , and U2
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independent uniformly [0,1] distributed. Show that .E[X 2.Y 2] … (E[X 2])(E[Y 2])

26. Prove that if (2.29) holds for simple random variables, it holds for all random variables.

Hint: Use the fact that convex and concave functions are continuous (See Appendix II).

27. Derive the moment generating functions of the Binomial (n,p) distribution.

28. Use the results in exercise 27 to derive the expectation and variance of the Binomial (n,p)

distribution.

29. Show that the moment generating function of the Binomial (n,p) distribution converges

pointwise in t to the moment generating function of the Poisson (λ) distribution if n 6 4 and p 90

such that n.p 6 λ.

30. Derive the characteristic function of the uniform [0,1] distribution. Is the inversion

formula for characteristic functions applicable in this case ?

31. If the random variable X has characteristic function exp(i.t), what is the distribution of X?

32. Show that the characteristic function of a random variable X is real-valued if and only if

the distribution of X is symmetric, i.e., X and !X  have the same distribution.

33. Use the inversion formula for characteristic functions to show that  isn(t) ' exp(&*t*)

the characteristic function of the standard Cauchy distribution [see (2.36) for the density

involved]. 

Hints: Show first, using Exercise 32 and the inversion formula, that     

f(x) ' π&1m
4

0
cos(t.x)exp(&t)dt ,

and then use integration by parts.
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Appendix

2.A. Uniqueness of characteristic functions

In order to understand characteristic functions, you need to understand the basics of

complex analysis, which is provided in Appendix III. Therefore, it is recommended to read

Appendix III first.  

In the univariate case, Theorem 2.24 is a straightforward corollary of the following link

between a probability measure and its characteristic function.

Theorem 2.A.1: Let µ be a probability measure on the Borel sets in ú with characteristic

function n, and let a < b be continuity points of µ:  Then µ({a}) ' µ({b}) ' 0.

µ((a,b]) ' lim
T64

1
2πm

T

&T

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt . (2.38)

Proof: Using the definition of characteristic function, we can write

m
T

&T

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt ' m
T

&T
m
4

&4

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dµ(x)dt

' m
T

&T

lim
M64 m

M

&M

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dµ(x)dt

(2.39)

Next, observe that

/00000
/00000m

M

&M

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dµ(x) # /00 /00
exp(&i.ta)&exp(&i.t.b)

i.t
µ([&M,M])

# |exp(&i.t.a)&exp(&i.t.b)|
|t|

'
2(1 & cos(t.(b&a))

t 2
# b&a
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Therefore, it follows from the bounded convergence theorem that 

m
T

&T

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt ' lim
M64m

T

&T
m
M

&M

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dµ(x)dt

lim
M64 m

M

&M
m
T

&T

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dtdµ(x) ' m
4

&4
m
T

&T

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dt dµ(x

(2.40)

The integral between square brackets can be written as

m
T

&T

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dt ' m
T

&T

exp(i.t(x&a))&1
i.t

dt & m
T

&T

exp(i.t.(x&b))&1
i.t

dt

' m
T

&T

cos(t(x&a))&1%i.sin(t(x&a))
i.t

dt & m
T

&T

cos(t(x&b))&1%i.sin(t(x&b))
i.t

dt

' m
T

&T

sin(t(x&a))
t

dt & m
T

&T

sin(t(x&b))
t

dt ' 2m
T

0

sin(t(x&a))
t(x&a)

dt(x&a) & 2m
T

0

sin(t(x&b))
t(x&b)

dt(x&b)

' 2 m
T(x&a)

0

sin(t)
t

dt & 2 m
T(x&b)

0

sin(t)
t

dt ' 2sgn(x&a) m
T|x&a|

0

sin(t)
t

dt & 2sgn(x&b) m
T|x&b|

0

sin(t)
t

dt ,

(2.41)

where sgn(x) = 1 if x > 0, sgn(0) = 0, and sgn(x) =  !1 if x < 0. The last two integrals in (2.41) are

of the form

m
x

0

sin(t)
t

dt ' m
x

0

sin(t)m
4

0

exp(&t.u)dudt ' m
4

0
m
x

0

sin(t)exp(&t.u)dtdu

' m
4

0

du

1%u 2
& m

4

0

[cos(x) % u.sin(x)] exp(&x.u)

1%u 2
du .

(2.42)

where the last equality follows from integration by parts:
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m
x

0

sin(t)exp(&t.u)dt ' &m
x

0

dcos(t)
dt

exp(&t.u)dt ' cos(t)exp(&t.u) x
0 & u.m

x

0

cos(t)exp(&t.u)dt

' 1 & cos(x)exp(&x.u) & u.m
x

0

dsin(t)
dt

exp(&t.u)dt

' 1 & cos(x)exp(&x.u) & u.sin(x)exp(&x.u) & u 2m
x

0

sin(t)exp(&t.u)dt .

Clearly, the second integral at the right-hand side of (2.42) is bounded in x > 0, and converges to

zero as x 64. The first integral at the right-hand side of (2.42) is

m
4

0

du

1%u 2
' m

4

0

darctan(u) ' arctan(4) ' π/2 .

Thus, the integral  (2.42) is bounded, hence so is (2.41), and

lim
T64 m

T

&T

exp(i.t(x&a))&exp(i.t.(x&b))
i.t

dt' π[sgn(x&a) & sgn(x&b)] (2.43)

It follows now from (2.39) , (2.40), (2.43) and the dominated convergence theorem that

lim
T64

1
2πm

T

&T

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt '
1
2m[sgn(x&a) & sgn(x&b)]dµ(x)

' µ((a,b)) %
1
2

µ({a}) %
1
2

µ({b}) .

(2.44)

The last equality in (2.44) follow from the fact that 

sgn(x&a) & sgn(x&b) '

0 if x < a or x > b ,

1 if x ' a or x ' b ,

2 if a < x < b .

The result (2.38) now follows from (2.44) and the condition  Q.E.D.µ({a}) ' µ({b}) ' 0.

Note that  (2.38) also reads as
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F(b) & F(a) ' lim
T64

1
2πm

T

&T

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt , (2.45)

where F is the distribution function corresponding to the probability measure µ. 

Next, suppose that n is absolutely integrable:  Then (2.45) can bem
4

&4
*n(t)*dt < 4 .

written as

F(b) & F(a) '
1
2π m

4

&4

exp(&i.t.a)&exp(&i.t.b)
i.t

n(t)dt ,

and it follows from the dominated convergence theorem that

F )(a) ' lim
b9a

F(b) & F(a)
b&a

'
1
2π m

4

&4

lim
b9a

1&exp(&i.t.(b&a))
i.t.(b&a)

exp(&i.t.a)n(t)dt

'
1
2π m

4

&4

exp(&i.t.a)n(t)dt .

This proves Theorem 2.25 for the univariate case.

In the multivariate case Theorem 2.A.1 becomes:

Theorem 2.A.2: Let µ be a probability measure on the Borel sets in  úk  with characteristic

function n. Let  where  aj < bj  for j = 1,2,...,k, and let MB be the border of B, i.e., B ' ×k
j'1(aj ,bj] ,

 If   then MB ' {×k
j'1[aj ,bj]}\{×k

j'1(aj ,bj)}. µ(MB) ' 0

µ(B) ' lim
T164

.... lim
Tk64

m
×k

j'1(&Tj,Tj)

k
k

j'1

exp(&i.tj.aj)&exp(&i.tj.bj)

i.2πtj

n(t)dt , (2.46)

where t = (t1,...,tk)
T.

This result proves Theorem 2.24 for the general case.
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1. The actual construction of such a counter example is difficult, though, but not impossible.

2. The notation  is somewhat odd, because  has no meaning. It would bemg(x)dµ(x) µ(x)

better to denote the integral involved by  (which some authors do), where dxmg(x)µ(dx)

represents a Borel set. The current notation, however, is the most common, and therefore adopted
here too.

3. Because 4 ! 4 is not defined.

4. Again, the notation  is odd because  has no meaning. Some authors usemX(ω)dP(ω) P(ω)

the notation , where  represents a set in  The former notation is the mostmX(ω)P(dω) dω ö.

common, and therefore adopted.

Moreover, if   then (2.46) becomesmúk
*n(t)*dt < 4

µ(B) ' m
úk

k
k

j'1

exp(&i.tj.aj)&exp(&i.tj.bj)

i.2πtj

n(t)dt ,

and by the dominated convergence theorem we may take partial derivatives inside the integral:

Mkµ(B)
Ma1.....Mak

'
1

(2π)k m
úk

exp(&i.t Ta)n(t)dt , (2.47)

where a = (a1,...,ak)
T.  The latter is just the density corresponding to F in point a. Thus, (2.47)

proves Theorem 2.25. 

Endnotes
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Chapter 3

Conditional Expectations

3.1. Introduction

Roll a dice, and let the outcome be Y. Define the random variable X = 1 if Y is even, and

X = 0 if Y is odd. The expected value of Y is E[Y] = (1+2+3+4+5+6)/6 = 3.5. But what would the

expected value of Y be if it is revealed that the outcome is even: X = 1? The latter information

implies that Y is either 2, 4 or 6, with equal probabilities 1/3, hence the expected value of Y,

conditional on the event X = 1, is E[Y|X=1] = (2+4+6)/3 = 4. Similarly, if it is revealed that X = 0,

then Y is either 1, 3, or 5, with equal probabilities 1/3, hence the expected value of Y, conditional

on the event X = 0, is E[Y|X=0] = (1+3+5)/3 = 3. Both results can be captured in a single

statement:

E[Y|X] ' 3%X . (3.1)

In this example the conditional probability of Y = y, given X = x, is1

P(Y ' y|X'x) '
P(Y ' y and X'x)

P(X'x)

'
P({y}_{2,4,6})

P({2,4,6})
'

P({y})
P({2,4,6})

'
1/6
1/2

'
1
3

if x ' 1 and y 0 {2,4,6}

'
P({y}_{2,4,6})

P({2,4,6})
'

P(i)
P({2,4,6})

' 0 if x ' 1 and y ó {2,4,6} (3.2)

'
P({y}_{1,3,5})

P({1,3,5})
'

P({y})
P({1,3,5})

'
1/6
1/2

'
1
3

if x ' 0 and y 0 {1,3,5}
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'
P({y}_{1,3,5})

P({1,3,5})
'

P(i)
P({1,3,5})

' 0 if x ' 0 and y ó {1,3,5}

hence

j
6

y'1
yP(Y'y|X'x)

'
2%4%6

3
' 4 if x '1

'
1%3%5

3
' 3 if x '0

' 3 % x .

Thus in the case where both Y and X are discrete random variables, the conditional expectation

 can be defined asE[Y|X]

E[Y|X] ' '
y

yp(y|X) , where p(y|x) ' P(Y'y|X'x) for P(X'x) > 0

A second example is where X is uniformly [0,1] distributed, and given the outcome  x of

X, Y  is randomly drawn from the uniform [0,x] distribution. Then the distribution function F(y)

of Y is:

F(y) ' P(Y # y) ' P(Y # y and X # y) % P(Y # y and X > y)

' P(X # y) % P(Y # y and X > y) ' y % E[I(Y # y)I(X > y)]

' y % m
1

0 m
x

0
I(z # y)x &1dz I(x > y)dx ' y % m

1

y m
min(x,y)

0
x &1dz dx

' y % m
1

y
(y/x)dx ' y(1 & ln(y)) for 0# y #1.

Hence, the density of Y is:

  f(y) ' F )(y) ' &ln(y) for y 0 [0,1] , f(y) ' 0 for y ó [0,1] .

Thus,  the expected value of Y is:    But what would the expectedE[Y] ' m
1

0
y(&ln(y))dy ' 1/4 .

value be if it is revealed that   for a given number  The latter informationX ' x x 0 (0,1) ?
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implies that Y is now uniformly [0,x] distributed, hence the conditional expectation involved is

E[Y|X'x] ' x &1m
x

0
ydy ' x/2 .

More generally, the conditional expectation of Y given X is:

E[Y|X] ' X &1m
X

0
ydy ' X/2 . (3.3)

The latter example is a special case of a pair (Y,X) of absolutely continuously distributed 

random variables with joint density function f(y,x) and marginal density fx(x) . The conditional

distribution function of Y given the event  is:X 0 [x ,x%δ] , δ > 0,

P(Y # y* X 0 [x,x%δ]) '
P(Y # y and X 0 [x,x%δ])

P(X 0 [x,x%δ])
'

m
y

&4

1
δ m

x%δ

x

f(u,v)dvdu

1
δ m

x%δ

x

fx(v)dv

.

Letting   then yields the conditional distribution function of  Y given the event  X = x:δ 9 0

F(y|x) ' lim
δ90

P(Y # y* X 0 [x,x%δ]) ' m
y

&4

f(u,x)du /fx(x), provided fx(x) > 0. 

Note that we cannot define this conditional distribution function directly as 

  F(y|x) ' P(Y # y and X ' x)/P(X ' x) ,

because for continuous random variables X,  P(X = x) = 0. 

The conditional density of Y given the event  X = x is now

 = f(y,x)/fx(x), f(y|x) ' MF(y|x)/My

and the conditional expectation of  Y given the event  X = x can therefore be defined as: 
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E[Y|X'x] ' m
4

&4

yf(y|x)dy ' g(x) , say.

Plugging in X  for x then yields:

E[Y|X] ' m
4

&4

yf(y|X)dy ' g(X) . (3.4)

These examples demonstrate two fundamental properties of conditional expectations. The

first one is that E[Y|X] is a function of X, which can be translated as follows: Let Y and X be two

random variables defined on a common probability space  and let  be the{Ω,ö,P} , öX

algebra generated by X: B}, where X-1(B) is a short-hand notation forσ& öX ' {X &1(B) , B 0

the set and B  is the Euclidean Borel field.  Then:{ω0Ω : X(ω) 0 B} ,

Z ' E[Y|X] is measurable öX , . (3.5)

which means that for all Borel sets B,   Secondly, we have{ω0Ω: Z(ω) 0 B} 0 öX .

E[(Y & E[Y|X])I(X 0 B)] ' 0 for all Borel sets B . (3.6)

In particular in the case (3.4)  we have

E[(Y & E[Y|X])I(X 0 B)] ' m
4

&4
m
4

&4

y & g(x) I(x0B)f(y,x)dydx

' m
4

&4
m
4

&4

yf(y|x)dy I(x0B)fx(x)dx & m
4

&4
m
4

&4

f(y|x)dy g(x)I(x0B)fx(x)dx

' m
4

&4

g(x)I(x0B)fx(x)dx & m
4

&4

g(x)I(x0B)fx(x)dx ' 0.

(3.7)
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Since B}, property (3.6) is equivalent toöX ' {X &1(B) , B 0

m
A

Y(ω) & Z(ω) dP(ω) ' 0 for all A 0 öX .
(3.8)

Moreover, note that  so that (3.8) implies  Ω 0 öX ,

E(Y) ' m
Ω

Y(ω)dP(ω) ' m
Ω

Z(ω)dP(ω) ' E(Z) ,
(3.9)

provided that the expectations involved are defined. A sufficient condition for the existence of

is thatE(Y)

E( |Y| ) < 4 . (3.10)

We will see later that (3.10) is also a sufficient condition for the existence of  . E(Z)

I will show now that the condition  (3.6)  also holds  for the examples (3.1) and (3.3).  Of

course, in the case  (3.3) I have already shown this in (3.7), but it is illustrative to verify it again

for the special case involved.  

In the case (3.1) the random variable Y.I(X=1) takes the value 0 with probability ½, and

the values 2, 4, or 6 with probability 1/6, and the random variable Y.I(X=0) takes the value 0 with

probability ½, and the values 1, 3, or 5 with probability 1/6, so that  

E[Y.I(X0B)] ' E[Y.I(X'1)] ' 2 if 1 0 B and 0 ó B ,

E[Y.I(X0B)] ' E[Y.I(X'0)] ' 1.5 if 1 ó B and 0 0 B ,

E[Y.I(X0B)] ' E[Y] ' 3.5 if 1 0 B and 0 0 B ,

E[Y.I(X0B)] ' 0 if 1 ó B and 0 ó B ,

which by (3.1) and (3.6) is equal to
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E[(E[Y|X])I(X0B)] ' 3E[I(X0B)] % E[X.I(X0B)]

' 3P(X0B) % P(X'1 and X0B)

' 3P(X'1) % P(X'1) ' 2 if 1 0 B and 0 ó B ,

' 3P(X'0) % P(X'1 and X'0) ' 1.5 if 1 ó B and 0 0 B ,

' 3P(X'0 or X'1) % P(X'1) ' 3.5 if 1 0 B and 0 0 B ,

' 0 if 1 ó B and 0 ó B .

Moreover, in the case  (3.3) the distribution function of  is:Y.I(X0B)

FB(y) ' P(Y.I(X0B) # y) ' P(Y # y and X 0 B) % P(X ó B)

' P(X 0 B_[0,y]) % P(Y # y and X 0 B_(y,1)) % P(X ó B)

' m
y

0

I(x0B)dx % ym
1

y

x &1I(x 0 B)dx % 1 & m
1

0

I(x 0 B)dx

' 1 & m
1

y

I(x0B)dx % ym
1

y

x &1I(x 0 B)dx for 0 # y # 1,

hence the density involved is

 
fB(y) ' m

1

y

x &1I(x 0 B)dx for y 0 [0,1] , fB(y) ' 0 for y ó [0,1] .

Thus

E[Y.I(X 0 B)] ' m
1

0

y m
1

y

x &1I(x 0 B)dx dy '
1
2m

1

0

y.I(y 0 B)dy ,

which is equal to
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E E[Y|X]I(X0B) '
1
2

E[X.I(X 0 B)] '
1
2m

1

0

x.I(x 0 B)dx .

The two conditions (3.5) and (3.8) uniquely define  in the sense that if thereZ ' E[Y|X] ,

exist two versions of   say  and  satisfying the conditions  (3.5)E[Y|X] , Z1 ' E[Y|X] Z2 ' E[Y|X] ,

and (3.8), then  To see  this, letP(Z1 ' Z2) ' 1.

A ' {ω 0 Ω: Z1(ω) < Z2(ω)} . (3.11)

Then , hence it follows from  (3.8)  thatA 0 öX

m
A

Z2(ω) & Z1(ω) dP(ω) ' E (Z2&Z1)I(Z2&Z1 > 0) ' 0.

The latter equality implies  as I will show in Lemma 3.1 below. ReplacingP(Z2 & Z1 > 0) ' 0,

the set A by   it follows similarly that A ' {ω 0 Ω: Z1(ω) > Z2(ω)} , P(Z2 & Z1 < 0) ' 0.

Combining these two cases it follows that   P(Z2 … Z1) ' 0.

Lemma 3.1:  implies P(Z > 0) = 0. E[Z.I(Z > 0)] ' 0

Proof: Choose  arbitrary. Theng > 0

0 ' E[Z.I(Z > 0)] ' E[Z.I(0 < Z < g)] % E[Z.I(Z $ g)] $ E[Z.I(Z $ g)]

$ gE[I(Z $ g)] ' gP(Z $ g) ,

hence  for all .  Now take  and let P(Z > g) ' 0 g > 0 g ' 1/n , n ' 1,2,..... ,

 Cn ' {ω0Ω: Z(ω) > n &1} .

Then  hence Cn d Cn%1 ,
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P(Z > 0) ' P[ ^4
n'1Cn] ' limn64P[Cn] ' 0. (3.12)

Q.E.D.

The conditions  (3.5) and (3.8) only depend on the conditioning random variable X  via

the sub- algebra  of   Therefore, we can define the conditional expectation of aσ& öX ö .

random variable Y relative to an arbitrary sub- algebra  of   denoted by E[Y| ], asσ& ö0 ö , ö0

follows:

Definition 3.1: Let Y be a random variable defined on a probability space   satisfying{Ω,ö,P} ,

 and let    be a sub- algebra of The conditional expectation of YE(|Y|) < 4 , ö0 d ö σ& ö .

relative to the sub- algebra , denoted by E[Y| ] = Z, say,  is a random variable Z whichσ& ö0 ö0

is measurable  and is  such that for all sets A  , ö0 , 0 ö0

 mA
Y(ω)dP(ω) ' mA

Z(ω)dP(ω) .

3.2. Properties of conditional expectations

As said before, the condition E(|Y|) <  4 is also a sufficient condition for the existence of

E(E[Y|ö 0]). The reason is two-fold. First, I have already established in (3.9) that

Theorem 3.1:  = E(Y).E[E(Y|ö0)]

Second, conditional expectations preserve inequality:
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Theorem 3.2:  If P(X # Y) ' 1 then P(E(X|ö0) # E(Y|ö0)) ' 1.

Proof: Let  Then  andA ' {ω0Ω: E(X|ö0)(ω) > E(Y |ö0)(ω)} . A 0 ö0 ,

m
A

X(ω)dP(ω) ' m
A

E(X|ö0)(ω)dP(ω) # m
A

Y(ω)dP(ω) ' m
A

E(Y|ö0)(ω)dP(ω) ,

hence

0 # m
A

E(Y|ö0)(ω) & E(X|ö0)(ω) dP(ω) # 0.
(3.13)

It follows now from (3.13) and Lemma 3.1 that P({ω0Ω: E(X|ö0)(ω) > E(Y|ö0)(ω)}) ' 0.

Q.E.D. 

Theorem 3.2 implies  that   with probability 1, and applying|E(Y|ö0)| # E(|Y| |ö0)

Theorem 3.1 it follows that    Therefore,  the condition  is  aE[|E(Y|ö0)|] # E(|Y|) . E(|Y|) < 4

sufficient condition for the existence of E( E [Y| ö 0] ).

Conditional expectations also preserve linearity: 

Theorem 3. 3: If  then  =  + E[|X|] < 4 and E[|Y|] < 4 P[E(αX % βY|ö0) αE(X|ö0) βE(Y|ö0)]

= 1.

Proof: Let , , . For every  weZ0 ' E(αX %βY|ö0) Z1 ' E(X|ö0) Z2 ' E(Y|ö0) A 0 ö0

have:

mA
Z0(ω)dP(ω) ' mA

(αX(ω) %βY(ω))dP(ω) ' αmA
X(ω)dP(ω) % βmA

Y(ω)dP(ω) ,

mA
Z1(ω)dP(ω) ' mA

X(ω)dP(ω) ,
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and

mA
Z2(ω)dP(ω) ' mA

Y(ω)dP(ω) ,

hence

mA
Z0(ω) & αZ1(ω) & βZ2(ω) dP(ω) ' 0. (3.14)

Taking it follows from (3.14) and Lemma 3.1 thatA ' {ω0Ω: Z0(ω) & αZ1(ω) & βZ2(ω) > 0}

P(A) = 0,  and taking  it follows similarly that P(A)A ' {ω0Ω: Z0(ω) & αZ1(ω) & βZ2(ω) < 0}

= 0,  hence   Q.E.D.P({ω0Ω: Z0(ω) & αZ1(ω) & βZ2(ω) … 0}) ' 0.

If we condition a random variable Y on itself, then intuitively we may expect that E(Y|Y)

= Y, because then Y acts as a constant. More formally, this result can be stated as:

Theorem 3.4: Let   If Y is measurable   then E[|Y|] < 4 . ö , P(E(Y|ö) ' Y) ' 1.

Proof: Let  For every   we have:Z ' E(Y|ö) . A 0 ö

mA
Y(ω) & Z(ω) dP(ω) ' 0. (3.15)

Take  hence it follows from (3.15) and LemmaA ' {ω0Ω: Y(ω) & Z(ω) > 0} . Then A 0 ö ,

3.1 that P(A) = 0. Similarly, taking  it follows that P(A) = 0.A ' {ω0Ω: Y(ω) & Z(ω) < 0}

Thus  Q.E.D.P({ω0Ω: Y(ω) & Z(ω) … 0}) ' 0.

In Theorem 3.4 I have conditioned Y on the largest sub- algebra of namely σ& ö , ö

itself. The smallest  sub- algebra of  is T  = which is called the trivial algebra. σ& ö {Ω,i} , σ&
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Theorem 3.5: Let   Then P[  T  ) = E(Y)] = 1.E[|Y|] < 4 . E(Y|

Proof: Exercise, along the same lines as the proofs of Theorems 3.2-3.4.

The following theorem, which plays a  key-role in regression analysis, follows from

combining the results of Theorems 3.3 and 3.4:

Theorem 3.6: Let   Then  E[|Y|] < 4 and U ' Y & E[Y|ö0] . P[E(U|ö0) ' 0] ' 1.

Proof: Exercise.

Next, let (Y, X, Z) be jointly continuously distributed with joint density function f(y,x,z)

and marginal densities fy,x(y,x),  fx,z(x,z) and  fx(x). Then the conditional expectation of  Y given  X

= x and Z = z is 

E[Y|X,Z] ' m
4

&4

yf(y|X,Z)dy ' gx,z(X,Z) , say,

where f(y|x,z) = f(y,x,z)/fx,z(x,z) is the conditional density of Y given  X = x and Z = z. The

conditional expectation of  Y given  X = x alone is

E[Y|X] ' m
4

&4

yf(y|X)dy ' gx(X) , say,

where  f(y|x) = fy,x(y,x)/fx(x) is the conditional density of  Y given  X = x alone.  Denoting the

conditional density of Z given X = x by fz(z|x) = fz,x(z,x)/fx(x), it follows now that
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E E[Y|X,Z] |X ' m
4

&4
m
4

&4

yf(y|X,z)dy fz(z|X)dz ' m
4

&4
m
4

&4

y
f(y,X,z)
fx,z(X,z)

dy
fx,z(X,z)

fx(X)
dz

' m
4

&4

y m
4

&4

f(y,X,z)dzdy 1
fx(X)

' m
4

&4

y
fy,x(y,X)

fx(X)
dy ' m

4

&4

yf(y|X)dy ' E[Y|X] .

This is one of the versions of the Law of Iterated Expectations. Denoting by  the algebraöX,Z σ&

generated by (X,Z), and by  the  algebra generated by X, this result can be translated as:öX σ&

E E[Y|öX,Z] |öX ' E[Y|öX] .

Note that   because öX d öX,Z ,

 B} = B}öX ' {{ω0Ω: X(ω) 0 B1} , B1 0 {{ω0Ω: X(ω) 0 B1 , Z(ω) 0 ú} , B1 0

  B} =  d {{ω0Ω: X(ω) 0 B1 , Z(ω) 0 B2} , B1 ,B2 0 öX,Z .

Therefore, the law of iterated expectations can be stated more generally as:

Theorem 3.7: Let  be sub- algebras  of    Then E[|Y|] < 4 , and let ö0 d ö1 σ& ö .

P E E[Y|ö1] |ö0 ' E(Y|ö0) ' 1.

Proof: Let ,   and  It has to be shown thatZ0 ' E[Y|ö0] Z1 ' E[Y|ö1] , Z2 ' E[Z1|ö0] .

 Let  .  Then also . It follows from Definition 3.1 thatP(Z0 ' Z2) ' 1. A 0 ö0 A 0 ö1

 impliesZ0 ' E[Y|ö0]

m
A

Y(ω)dP(ω) ' m
A

Z0(ω)dP(ω) ,

 impliesZ1 ' E[Y|ö1]
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m
A

Y(ω)dP(ω) ' m
A

Z1(ω)dP(ω) ,

and  impliesZ2 ' E[Z1|ö0]

m
A

Z2(ω)dP(ω) ' m
A

Z1(ω)dP(ω) ,

Combining these equalities it follows that for all ,A 0 ö0

m
A

Z0(ω) & Z2(ω) dP(ω) ' 0. (3.16)

Now choose . Note that . Then it follows from (3.16)A ' {ω0Ω: Z0(ω) & Z2(ω) > 0} A 0 ö0

and Lemma 3.1 that     Similarly,  if  we  choose  P(A) ' 0. A ' {ω0Ω: Z0(ω) & Z2(ω) < 0}

then   again   Therefore,   Q.E.D.P(A) ' 0. P(Z0 ' Z1) ' 1.

The following monotone convergence theorem for conditional expectations  plays a key-

role in the proofs of Theorems 3.9 and 3.10 below.

Theorem 3.8: (Monotone convergence). Let Xn  be a sequence of non-negative random variables

defined on a common probability space  such that  = 1 and{Ω ,ö ,P} , P(Xn # Xn%1)

 <  4.   Then  E[supn$1Xn] P limn64 E[Xn|ö0] ' E[limn64Xn|ö0] ' 1.

Proof: Let    It follows from Theorem 3.2 that Zn isZn ' E[Xn|ö0] and X ' limn64Xn .

monotonic non-decreasing, hence   exists. Let be arbitrary, and denote forZ ' limn64Zn A 0 ö0

    Then also Yn is nonnegative andω 0 Ω , Yn(ω) ' Zn(ω).I(ω 0 A) , Y(ω) ' Z(ω).I(ω 0 A) .

monotonic non-decreasing, and  hence it follows from  the monotone convergenceY ' limn64Yn,
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theorem  that which is equivalent tolimn64mYn(ω)dP(ω) ' mY(ω)dP(ω) ,

limn64mA
Zn(ω)dP(ω) ' mA

Z(ω)dP(ω) . (3.17)

Similarly, denoting  it follows from  theUn(ω) ' Xn(ω).I(ω0A) , U(ω) ' X(ω).I(ω0A) ,

monotone convergence theorem  that  which is equivalentlimn64mUn(ω)dP(ω) ' mU(ω)dP(ω) ,

to 

limn64mA
Xn(ω)dP(ω) ' mA

X(ω)dP(ω) . (3.18)

Moreover, it follows from the definition of   thatZn ' E[Xn|ö0]

mA
Zn(ω)dP(ω) ' mA

Xn(ω)dP(ω) . (3.19)

It follows now from (3.17), (3.18) and (3.19) that

mA
Z(ω)dP(ω) ' mA

X(ω)dP(ω) . (3.20)

Theorem 3.8 easily follows from (3.20). Q.E.D.

The following theorem extends the result of Theorem 3.4:

Theorem 3.9: Let  X  be measurable  and let both   and  be finite.   Then ö0 , E(|Y|) E(|XY|)

P[E(XY|ö0) ' X.E(Y|ö0)] ' 1.

Proof: I will prove the theorem involved only for the case that both X and Y are non-

negative with probability 1, leaving the general case as an easy exercise. 
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Denote  IfZ ' E(XY|ö0) , Z0 ' E(Y|ö0) .

œA0 ö0: mA
Z(ω)dP(ω) ' mA

X(ω)Z0(ω)dP(ω), (3.21)

then the theorem under review holds.

(a) First, consider the case that X is discrete: say, where the Aj ‘s areX(ω) ' 'n
j'1βjI(ω 0 Aj) ,

disjoint sets in  and the ‘s are non-negative numbers.  Let   be arbitrary, andö0 βj A 0 ö0

observe that  for j = 1,..,n. Then by Definition 3.1, A_Aj 0 ö0

 

m
A

X(ω)Z0(ω)dP(ω) ' m
A

j
n

j'1
βjI(ω0Aj)Z0(ω)dP(ω) ' j

n

j'1
βj m

A_Aj

Z0(ω)dP(ω)

' j
n

j'1
βj m

A_Aj

Y(ω)dP(ω) ' j
n

j'1
βjm

A

I(ω0Aj)Y(ω)dP(ω) ' m
A

j
n

j'1
βjI(ω0Aj)Y(ω)dP(ω)

'm
A

X(ω)Y(ω)dP(ω) ' m
A

Z(ω)dP(ω) ,

which proves the theorem for the case that X is discrete.

(b) If X is not discrete then there exists a sequence of discrete random  variables Xn   such that

for  each   and  monotonic, hence also ω 0 Ω we have: 0 # Xn(ω) # X(ω) Xn(ω) 8 X(ω)

 8   monotonic. Therefore, it follows from Theorem 3.8 and part (a) that,Xn(ω)Y(ω) X(ω)Y(ω)

E[XY|ö0] ' lim
n64

E[XnY|ö0] ' lim
n64

Xn E[Y|ö0] ' XE[Y|ö0]

with probability 1. Thus the theorem under review holds for the case that both  X and Y are non-

negative with probability 1. 

(c) The rest of the proof is left as an exercise. Q.E.D.

We have seen for the case that Y and X are jointly absolutely continuous distributed that
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the conditional expectation E[Y|X] is a function of X. This holds also more generally:

Theorem 3.10:  Let Y and X be random variables defined on the probability space { },Ω ,ö ,P

and assume that . Then there exists a Borel measurable function g such that E(*Y*) < 4

This result carries over to the case where X is a finite-dimensionalP[E(Y|X) ' g(X)] ' 1.

random vector.

Proof: The proof involves the following steps:

(a) Suppose that Y  is non-negative and bounded:  = 1, ›K < 4: P({ω0Ω: 0 # Y(ω) # K})

and let Z = , where  is the algebra generated by X.  ThenE(Y*öX ) öX σ&

P({ω0Ω: 0 # Z(ω) # K}) ' 1. (3.22)

(b) Under the conditions of part (a) there exists a sequence of discrete random variables Zm,

 where  Ai,m , ,Zm(ω) ' 'm
i'1αi,mI(ω 0 Ai,m) , 0 öX Ai,m_Aj,m ' i if i … j , ^m

i'1Ai,m ' Ω

 for  i = 1,..,m, such that  monotonic. For each Ai,m we can find a0 # αi,m < 4 Zm(ω) 8 Z(ω)

Borel set Bi,m such that . Thus, if we take   then Zm =Ai,m ' X &1(Bi,m) gm(x) ' 'm
i'1αi,mI(x 0 Bi,m)

gm(X) with probability 1. 

Next, let  This function is Borel measurable, andg(x) ' limsupm64gm(x) .

  =   with probability 1. Z ' limsupm64Zm ' limsupm64gm(X) g(X)

(c) Let Yn = Y.I(Y < n). Then  monotonic.  By part (b) it follows that thereYn(ω) 8 Y(ω)

exists a Borel measurable function gn(x) such that .  Let g(x) =E(Yn*öX) ' gn(X)

 which is Borel measurable. It follows now from Theorem 3.8 thatlimsupn64gn(x),
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 E(Y*öX) ' limn64 E(Yn*öX) ' limsupn64 E(Yn*öX) ' limsupn64 gn(X) ' g(X) .

(d) Let . Then , and therefore by part (c),Y % ' max(Y,0) , Y & ' max(&Y,0) Y ' Y % & Y &

, say, and , say. Then  =  =E(Y %*öX) ' g %(X) E(Y &*öX) ' g &(X) E(Y*öX) g %(X) & g &(X)

g(X). Q.E.D.

If random variables X and Y are independent, then knowing the realization of X will not

reveal anything about Y, and vice versa. The following theorem formalizes this fact.

Theorem 3. 11: Let X and Y be independent random variables. If E[|Y|] <  then P(E[Y|X] = 4

E[|Y|]) = 1. More generally, let Y be defined on the probability space {S,ö,P}, let  öY  be the

F!algebra generated by Y, and let ö0  be a sub-F!algebra of ö such that öY   and ö0   are

independent, i.e.,  for all   If E[|Y|] <  thenA 0 öY and B 0 ö0 , P(A_B) ' P(A)P(B) . 4

P(E[Y|ö0] =  E[|Y|]) = 1.

Proof: Let  be the algebra generated by X, and let  be arbitrary. ThereöX σ& A 0 öX

exists a Borel set B such that  ThenA ' {ω0Ω: X(ω) 0 B} .

mA
Y(ω)dP(ω) ' mΩY(ω)I(ω 0 A)dP(ω)' mΩY(ω)I(X(ω) 0 B)dP(ω)

' E[YI(X0B)] ' E[Y]E[I(X0B)] ,

where the last equality follows from the independence of Y and X. Moreover

E[Y]E[I(X0B)] ' E[Y]mΩI(X(ω)0B)dP(ω) ' E[Y]mΩI(ω0A)dP(ω) ' mA
E[Y]dP(ω) .

Thus
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mA
Y(ω)dP(ω) ' mA

E[Y]dP(ω).

By the definition of conditional expectation, this implies that E[Y|X] = E[Y]  with probability 1.

Q.E.D.

3.3. Conditional probability measures and conditional independence

The notion of a probability measure relative to a sub-F-algebra can be defined similar to

Definition 3.1, using the conditional expectation of an indicator function:

Definition 3.2:  Let {S,ö,P} be a probability space, and let   be a σ-algebra. Then forö0 d ö

any set A in ö,   where P(A |ö0) ' E[IA |ö0] , IA(ω) ' I(ω 0 A) .

In the sequel I will use the shorthand notation  to indicate the conditional probability P(Y 0 B |X)

 where B is a Borel set and  is the F-algebra generated by X,P({ω 0 Ω: Y(ω) 0 B} |öX ) , öX

and to indicate for any sub-F-algebra  of ö.  TheP(Y 0 B |ö0) P({ω 0 Ω: Y(ω) 0 B} |ö0 ) ö0

event  involved may be replaces by any equivalent expression.Y 0 B

Similar to the notion of independence of sets and random variables and/or vectors (see

Chapter 1) we can now define conditional independence:

Definition 3.3: A  sequence of sets  is conditional independent relative to a  sub-F-Aj 0 ö

algebra  if  for any subsequence jn,  Moreover, aö0 of ö P(^nAjn
|ö0) ' (nP(Ajn

|ö0) .

sequence Yj  of random variables or vectors defined on a common probability space {S,ö,P} is
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conditional independent relative to a  sub-F-algebra  if  for any sequence Bj  ofö0 of ö

conformable Borel sets the sets are conditional independent relativeAj ' {ω 0 Ω: Yj(ω) 0 Bj}

to  ö0 .

3.4. Conditioning on increasing sigma-algebras

Consider a random variable Y defined on the probability space {S,ö,P}, satisfying E[|Y|]

< 4,  and let ön be an non-decreasing sequence of sub-F-algebras of ö:  Theön d ön%1 d ö .

question I will address is: What is the limit of  for n 64?  As will be shown below, theE[Y|ön]

answer to this question is fundamental for time series econometrics.

We have seen in Chapter 1 that the union of  F-algebras is not necessarily a F-algebra

itself. Thus,   may not be a F-algebra. Therefore, let^4
n'1ön

ö4 ' »4
n'1 ön '

def.

σ ^4
n'1ön , (3.23)

i.e.,  ö4 is the smallest F-algebra containing  Clearly,   because the latter also^4
n'1ön . ö4 d ö ,

contains ^4
n'1ön .

The answer to our question is now:

Theorem 3.12: If Y is measurable ö,  E[|Y|] < 4,  and {ön } is a non-decreasing sequence of

sub-F-algebras of ö, then   with probability 1, where ö4 is definedlimn64E[Y|ön] ' E[Y|ö4]

by (3.23).

This result is usually proved by using martingale theory. See Billingsley (1986),   Chung
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(1974) and Chapter 7. However,  in Appendix 3.A I will provide an alternative proof of Theorem

3.12 which does not require martingale theory.

3.5. Conditional expectations as the best forecast schemes

I will show now that the conditional expectation of a random variable Y given a random

variable or vector X is the best  forecasting scheme for Y, in the sense that  the mean square

forecast error is minimal. Let  be a forecast of Y, where  is a Borel measurable function.ψ(X) ψ

The mean square forecast  error (MSFE) is defined by  The questionMSFE ' E[(Y & ψ(X))2] .

is: for which function  is the MSFE minimal. The answer is: ψ

Theorem 3.13: If  then  is minimal for E[Y 2] < 4 , E[(Y & ψ(X))2] ψ(X) ' E[Y|X] .

Proof: According to Theorem 3.10 there exists a Borel measurable function g such that

 with probability 1. Denote  It follows fromE[Y|X] ' g(X) U ' Y & E[Y|X] ' Y & g(X) .

Theorems 3.3, 3.4 and 3.9 that

E[(Y & ψ(X))2|X] ' E[(U % g(X) & ψ(X))2|X]

' E[U 2|X] % 2E[(g(X) & ψ(X))U|X] % E[(g(X) & ψ(X))2|X]

' E[U 2|X] % 2(g(X) & ψ(X))E[U|X] % (g(X) & ψ(X))2 ,

(3.24)

where the last equality follows from Theorems 3.9 and 3.4. Since by Theorem 3. 6,  E(U|X) ' 0

with probability 1, equation (3.24)  becomes

E[(Y & ψ(X))2|X] ' E[U 2|X] % (g(X) & ψ(X))2 . (3.25)
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Applying Theorem 3.1 to (3.25), it follows now that 

E[(Y & ψ(X))2] ' E[U 2] % E[(g(X) & ψ(X))2] ,

which is minimal if According to Lemma 3.1, this condition isE[(g(X) & ψ(X))2] ' 0.

equivalent to the condition that  Q.E.D. P[g(X) ' ψ(X)] ' 1.

Theorem 3.13 is the basis for regression analysis. In parametric regression analysis, a

dependent variable Y is "explained" by a vector of explanatory (also called "independent")

variables X according to a regression model of the type   where  is aY ' g(X ,θ0) % U , g(x,θ)

known function of x and an unknown vector  of parameters, and U is the error term which isθ

assumed to satisfy the condition  (with probability 1). The problem is then toE[U|X] ' 0

estimate the unknown parameter vector  For example, a Mincer-type wage equation explainsθ .

the log of the wage, Y, of a worker out of the years of education, X1, and the years of experience

on the job, X2, by a regression model of the type   so that inY ' α % βX1 % γX2 & δX 2
2 % U ,

this case   and   The conditionθ ' (α,β,γ,δ)T , X ' (X1 ,X2)
T , g(X,θ) ' α % βX1 % γX2 & δX 2

2 .

that  with probability 1 now implies that  with probability 1 forE[U|X] ' 0 E[Y|X] ' g(X,θ)

some parameter vector  It follows therefore from Theorem 3.12 that  minimizes the meanθ . θ

square error function E[(Y & g(X,θ))2] :

θ ' argmin
θ
(

E[(Y & g(X ,θ
(
))2] , (3.26)

where "argmin" stands for the argument for which the function involved is minimal.

Next, consider a strictly stationary time series process Yt. 
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Definition 3.4: A time series process Yt  is said to be strictly stationary if for arbitrary integers

m1 < m2  <....< mk  the joint distribution of   does not depend on the time index t.Yt&m1
,......,Yt&mk

Consider the problem of forecasting Yt on the basis on the past  Yt!j , j $1, of  Yt. Usually

we do not observe the whole past of Yt , but only Yt!j  for  j =1,...,t-1, say.  It follows from

Theorem 3.13 that the optimal MSFE  forecast of Yt  given the information on Yt!j  for  j =1,...,m 

is the conditional expectation of Yt  given Yt!j  for  j =1,...,m. Thus, if  then E[Y 2
t ] < 4

E [Yt|Yt&1,.....,Yt&m ] ' argmin
ψ

E [ (Yt & ψ(Yt&1,.....,Yt&m ) )2].

Similarly as before, the minimum is taken over all Borel measurable functions  R on úm. 

Moreover, because of the strict stationarity assumption, there exists a Borel measurable function

gm  on  úm which does not depend on the time index t such that with probability 1,

 =  for all t.   Theorem 3.12 now tells us thatE [Yt|Yt&1,...,Yt&m ] gm(Yt&1,...,Yt&m )

limm64E [Yt|Yt&1,.....,Yt&m ] ' limm64gm(Yt&1,.....,Yt&m ) ' E [Yt|Yt&1 ,Yt&2 ,Yt&3 , ......... ] (3.27)

where the latter is the conditional expectation of Yt  given its whole past Yt!j, j $1.  More

formally, let   Then (3.27) readsö t&1
t&m ' σ(Yt&1 , .... ,Yt&m) and ö t&1

&4 ' º4
m'1ö

t&1
t&m .

limm64E [Yt|ö
t&1
t&m ] ' E [Yt|ö

t&1
&4 ] .

The latter conditional expectation is also denoted by Et!1[Yt]:

Et&1[Yt] '

def.

E [Yt|Yt&1 ,Yt&2 ,Yt&3 , ......... ] '

def.

E [Yt|ö
t&1
&4 ] . (3.28)

In practice we do not observe the whole past of time series processes. However, it follows
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from Theorem 3.12 that if t is large then approximately,  E[Yt|Yt&1 , ... ,Y1 ] . Et&1 [Yt ] .

In time series econometrics the focus is often on modeling (3.28)  as a function of past

values of  Yt  and an unknown parameter vector 2, say. For example, an autoregressive  model of

order 1, denoted by AR(1),  takes the form  whereEt&1[Yt] ' α % βYt&1 , θ ' (α ,β)T , |β| < 1 .

Then  where Ut  is called the error term. If this model is true, then Yt ' α % βYt&1 % Ut ,

 which by Theorem 3. 6 satisfies    Ut ' Yt & Et&1[Yt] , P(Et&1[Ut] ' 0) ' 1.

The condition  is one of the two necessary conditions for strict stationarity of  Yt ,|β| < 1

the other one being that Ut  is strictly stationary. To see this, observe that  by backwards

substitution we can write provided that   The strictYt ' α/(1&β) % '4
j'0βjUt&j , |β| < 1 .

stationarity of Yt follows now from the strict stationarity of Ut.

3.6. Exercises:

1. Why is property (3.6) equivalent to (3.8)?

2. Why is the set A defined by (3.11) contained in  ?öX

3. Why does (3.12) hold? 

4. Prove Theorem 3.5.

5. Prove Theorem 3.6.

6. Verify (3.20) . Why does Theorem 3.8 follow from (3.20)? 

7. Why does (3.21) imply that Theorem 3.9 holds ? 

8. Complete the proof of  Theorem 3.9  for the general case, by writing  X ' max(0,X)

  =     say, and   =  say, and& max(0,&X) X1 & X2 , Y ' max(0,Y) & max(0,&Y) Y1 & Y2 ,

applying the result of part (b) of the proof  to each pair  Xi , Yj .
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9. Prove (3.22).

10. Let Y and X  be random variables, with  and let M be a Borel measurableE[*Y*] < 4 ,

one-to-one mapping from  into . Prove that  with probability 1.ú ú E[Y|X] ' E[Y|Φ(X)]

11. Let Y and X  be random variables, with E[Y 2] < 4 , P(X ' 1) ' P(X ' 0) ' 0.5 ,

 and   Derive  Hint: Use Theorems 3.10 and 3.13.E[Y] ' 0, E[X.Y] ' 1. E[Y|X] .

Appendix 

3.A.  Proof of Theorem 3.12

Let  and let  be arbitrary.  Note that theZn ' E[Y|ön] and Z ' E[Y|ö4] , A 0 ^4
n'1ön

latter implies   Because of the monotonicity of {ön } there exists an index kA A 0 ö4 .

(depending on A) such that  for all n $  kA, hence

limn64m
A

Zn(ω)dP(ω) ' m
A

Y(ω)dP(ω) .
(3.29)

If Y is bounded:  for some positive real number M, then Zn  is uniformlyP[|Y| < M] ' 1

bounded:   hence it follows from (3.29), the dominated|Zn| ' |E[Y|ön]| # E[|Y||ön] # M ,

convergence theorem and the definition of Z that

m
A

limn64Zn(ω)dP(ω) ' m
A

Z(ω)dP(ω)
(3.30)

for all sets A 0 ^4
n'1ön .

Although  is not necessarily a F-algebra, it is easy to verify from the monotonicity^4
n'1ön

of {ön }  that   is an algebra.  Now let  be the collection of all subsets of ^4
n'1ön ö

(
ö4
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satisfying the following two conditions:

(a) For each set  equality (3.30) holds with A = BB 0 ö
(

(b) For each pair of sets  equality  (3.30) holds with  B1 0 ö
(

and B2 0 ö
(

A ' B1^B2 .

Since  (3.30) holds for A = S because  it is trivial that (3.30) also holds for theΩ 0 ^4
n'1ön ,

complement  of A:Ã

m̃
A

limn64Zn(ω)dP(ω) ' m̃
A

Z(ω)dP(ω) ,

hence if  then  Thus,  is an algebra. Note that this algebra exists, because B 0 ö
(

B̃ 0 ö
(

. ö
(

  is an algebra satisfying the conditions (a) and (b).  Thus,   ^4
n'1ön ^4

n'1ön d ö
(
d ö4 .

I will show now that   is a  F-algebra, so that   because the former is theö
(

ö4 ' ö
(

,

smallest F-algebra containing  For any sequence of disjoint sets  it follows^4
n'1ön . Aj 0 ö

(

from (3.30)  that 

m
^4

j'1Aj

limn64Zn(ω)dP(ω) ' j
4

j'1 m
Aj

limn64Zn(ω)dP(ω) ' j
4

j'1 m
Aj

Z(ω)dP(ω)' m
^4

j'1Aj

Z(ω)dP(ω) .

hence  . This implies that  is a F-algebra containing , because we have^4
j'1Aj 0 ö

(
ö

(
^4

n'1ön

seen in Chapter 1 that an algebra which is closed  under countable unions of disjoint sets is a F-

algebra. Hence   and consequently,  (3.30) holds for all sets   This impliesö4 ' ö
(

, A 0 ö4 .

that  = 1 if Y is bounded.P[Z ' limn64Zn]

Next, let Y be non-negative:  and denote for natural numbers m $ 1,P[|Y $ 0] ' 1,

    and  = Bm ' {ω 0 Ω: m&1 # Y(ω) < m} , Ym ' Y.I(m&1 # Y < m) , Z (m)
n ' E[Ym|ön] Z (m)

 I have just  shown that for fixed  m $ 1 and arbitrary  E[Ym|ö4] . A 0 ö4 ,
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m
A

limn64Z (m)
n (ω)dP(ω) ' m

A

Z (m)(ω)dP(ω) ' m
A

Ym(ω)dP(ω) ' m
A_Bm

Y(ω)dP(ω)

where the last two equalities follow from the definitions of  and  SinceZ (m) Ym .

 it follows that  henceYm(ω)I(ω 0 B̃m) ' 0 Z (m)
n (ω)I(ω 0 B̃m) ' 0,

m
A_Bm

limn64Z (m)
n (ω)dP(ω) ' m

A_Bm

Y(ω)dP(ω)

Moreover, it follows from the definition of conditional expectations and Theorem 3.7 that

Z (m)
n ' E[Y.I(m&1 # Y < m)|ön] ' E[Y|Bm_ön] ' E[E(Y|ön)|Bm_ön] ' E[Zn|Bm_ön] ,

hence for every set  A 0 ^4
n'1ön ,

limn64 m
A_Bm

Z (m)
n (ω)dP(ω) ' limn64 m

A_Bm

Zn(ω)dP(ω) ' m
A_Bm

limn64Zn(ω)dP(ω) ' m
A_Bm

Y(ω)dP(ω) ,

which by the same argument as in the bounded case carries over to the sets  Thus weA 0 ö4 .

have

m
A_Bm

limn64Zn(ω)dP(ω) ' m
A_Bm

Y(ω)dP(ω)

for all sets  ConsequentlyA 0 ö4 .

m
A

limn64Zn(ω)dP(ω) ' j
4

m'1 m
A_Bm

limn64Zn(ω)dP(ω) ' j
4

m'1 m
A_Bm

Y(ω)dP(ω) ' m
A

Y(ω)dP(ω)

for all sets  This proves the theorem for the case  The general case isA 0 ö4 . P[|Y $ 0] ' 1.

now easy, using the decomposition Y ' max(0,Y) & max(0,&Y) .
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1. Here and in the sequel the notations   and P(Y ' y|X'x) , P(Y ' y and X'x) , P(X'x)
(and similar notations involving inequalities) are merely short-hand notations for the
probabilities  P({ω0Ω: Y(ω) ' y}|{ω0Ω: X(ω)'x}) , P({ω0Ω: Y(ω) ' y}_{ω0Ω: X(ω)'x}) ,
and  respectively.P({ω0Ω: X(ω)'x}) ,

Endnote



133

Chapter 4

Distributions and Transformations

In this chapter I will review the most important univariate distributions and derive their

expectation, variance, moment generating function (if they exist), and characteristic function.

Quite a few distributions arise as transformations of random variables or vectors. Therefore I will

also address the problem how for a Borel measure function or mapping  g(x) the distribution of Y

= g(X) is related to the distribution of X.

4.1. Discrete distributions

In Chapter 1 I have introduced three " natural" discrete distributions, namely the

hypergeometric, binomial, and Poisson distributions. The first two are natural in the sense that

they arise from the way the random sample involved is drawn, and the latter because it is a limit

of the binomial distribution. A fourth "natural" discrete distribution I will discuss is the negative

binomial distribution.

4.1.1 The hypergeometric distribution

Recall that a random variable X  has a hypergeometric distribution if

P(X ' k) '

K
k

N&K
n&k

N
n

for k ' 0,1,2,.....,min(n,K) , P(X ' k) ' 0 elsewhere , (4.1)
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where 0 < n < N and 0 < K < N are natural numbers. This distribution arises, for example, if we

draw randomly without replacement n balls from a bowl containing K red balls and N !K white

balls. The random variable X is then the number of red balls in the sample. In almost all

applications of this distribution, n < K, so that I will focus on that case only.

The moment generating function involved cannot be simplified further than its definition

mH(t) =  and the same applies to the characteristic function. Therefore, we'm
k'0exp(t.k)P(X ' k) ,

have to derive the expectation directly:

E[X] ' j
n

k'0
k

K
k

N&K
n&k

N
n

' j
n

k'1

K!(N&K)!
(k&1)!(K&k)!(n&k)!(N&K&n%k)!

N!
n!(N&n)!

'
nK
N j

n&1

k'0

(K&1)!((N&1)&(K&1))!
k!((K&1)&k)!((n&1)&k)!((N&1)&(K&1)&(n&1)%k)!

(N&1)!
(n&1)!((N&1)&(n&1))!

'
nK
N j

n&1

k'0

K&1
k

(N&1)&(K&1)
(n&1)&k

N&1
n&1

'
nK
N

.

Along similar lines it follows that

E[X(X&1)] '
n(n&1)K(K&1)

N(N&1)
, (4.2)

hence

var(X) ' E[X 2] & (E[X])2 '
nK
N

(n&1)(K&1)
N&1

% 1 &
nK
N

.
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4.1.2 The binomial distribution

A random variable X  has a binomial distribution if

P(X ' k) '
n
k

p k(1 & p)n&k for k ' 0,1,2,....,n, P(X ' k) ' 0 elsewhere , (4.3)

were 0 < p < 1. This distribution arises, for example, if we draw randomly with replacement n

balls from a bowl containing K red balls and N!K white balls, where K/N = p. The random

variable X is then the number of red balls in the sample. 

We have seen in Chapter 1 that the binomial probabilities are limits of hypergeometric

probabilities: If both N and K converge to infinity such that K/N 6 p then for fixed n and k, (4.1) 

converges to (4.3). This suggests that also the expectation and variance of the binomial

distribution are the limits of the expectation and variance of the hypergeometric distribution,

respectively:

E[X] ' np , (4.4)

var(X) ' np(1&p) . (4.5)

As we will see later, in general convergence of distributions does not imply convergence of

expectations and variances, except if the random variables involved are uniformly bounded.

Therefore, in this case the conjecture is true because the distributions involved are bounded:

 = 1. However, it is not hard to verify (4.4) and (4.5) from the moment generatingP[0 # X < n]

function:

B(t) ' j
n

k'0
exp(t.k) n

k
p k(1 & p)n&k ' j

n

k'0

n
k

(pe t)k(1 & p)n&k ' (p.e t % 1 & p)n . (4.6)

Similarly, the characteristic function is  nB(t) ' (p.e i.t % 1 & p)n .
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4.1.3 The Poisson distribution

A random variable X is Poisson(λ) distributed if for k = 0,1,2,3,......., and some λ > 0, 

P(X ' k) ' exp(&λ)
λk

k!
. (4.7)

Recall that the Poisson probabilities are limits of the binomial probabilities (4.3) for    andn 6 4

 such that   It is left as exercises to show that the expectation, variance, momentp 9 0 np 6 λ .

generating function, and characteristic function of the Poisson(λ) distribution are:

E[X] ' λ , (4.8)

var(X) ' λ , (4.9)

mP(t) ' exp[λ(e t & 1)] , (4.10)

and

nP(t) ' exp[λ(e i.t & 1)] , (4.11)

respectively.

4.1.4 The negative binomial distribution

Consider a sequence of independent repetitions of a random experiment with constant

probability p of success. Let the random variable X be the total number of failures in this

sequence before the m-th success, where m $1. Thus, X+m is equal to the number of trials

necessary to produce exactly m successes. The probability P(X = k),  k = 0,1,2,...., is the product

of the probability of obtaining exactly m-1 successes in the first k+m-1 trials, which is equal to
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the binomial probability

k%m&1
m&1

p m&1(1&p)k%m&1&(m&1)

and the probability p of a success on the (k+m)-th trial. Thus 

P(X ' k) '
k%m&1

m&1
p m(1&p)k, k ' 0,1,2,3,....

This distribution is called the Negative Binomial (m,p) [shortly: NB(m,p)] distribution. 

It is easy to verify from the above argument that a NB(m,p) distributed random variable

can be generated as the sum of m independent NB(1,p) distributed random variables, i.e., if

 are independent NB(1,p) distributed, then   is NB(m,p) distributed. TheX1,1,.....,X1,m X ' 'n
j'1X1,j

moment generating function of the NB(1,p) distribution is

mNB(1,p)(t) ' j
4

k'0
exp(k.t) k

0
p(1&p)k ' p j

4

k'0
(1&p)e t k

'
p

1&(1&p)e t
,

provided that  t < !ln(1!p), hence the moment generating function of the NB(m,p) distribution is 

mNB(m,p)(t) '
p

1&(1&p)e t

m

, t < &ln(1&p) . (4.12)

Replacing t by i.t  in (4.12) yields the characteristic function:

nNB(m,p)(t) '
p

1&(1&p)e i.t

m

'
p(1%(1&p)e i.t)

1%(1&p)2

m

.

It is now easy to verify, using the moment generating function, that for a NB(m,p) distributed

random variable X,

E[X] ' m(1&p) /p ,
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var(X) ' m(1&p)2/p 2 % m(1&p)/p .

4.2. Transformations of discrete random variables and vectors

In the discrete case the question "Given a random variable or vector X and a Borel

measure function or mapping  g(x), how is the distribution of Y = g(X) related to the distribution

of X?" is easy to answer.  If   = 1  and  are all different, theP[X 0 {x1 ,x2 , ....... }] g(x1) ,g(x2) , ....

answer is trivial:  =   If some of the values  are theP(Y ' g(xj)) P(X ' xj) . g(x1) , g(x2) ,......

same, let   be the set of distinct values of  Then{y1 ,y2 , ......} g(x1) , g(x2) ,......

P(Y ' yj) 'j
4

i'1
I[yj ' g(xi)]P(X ' xi ) . (4.13)

It is easy to see that (4.13) carries over to the multivariate discrete case.

For example, if X is Poisson(8) distributed and , so that for mg(x) ' sin2(πx) ' sin(πx) 2

= 0,1,2,3,....,   then   =g(2m) ' sin2(πm) ' 0, g(2m%1) ' sin2(πm%π/2) ' 1, P(Y ' 0)

  and  e &λ'4
j'0λ2j/(2j)! P(Y ' 1) ' e &λ'4

j'0λ2j%1/(2j%1)! .

As an application, let , where X1 and X2 are independent Poisson(8)X ' (X1 ,X2)
T

distributed, and let Y =  X1 + X2 . Then for y = 0,1,2,.......

P(Y ' y) ' j
4

i'0
j
4

j'0
I[y ' i%j]P(X1 ' i , X2 ' j ) ' exp(&2λ) (2λ)y

y!
. (4.14)

Hence, Y is Poisson(28) distributed. More generally, we have

Theorem 4.1: If for j = 1,.....,k the random variables Xj are independent Poisson(8j) distributed

then  distributed.'k
j'1Xj is Poisson('k

j'1λj)
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4.3. Transformations of absolutely continuous  random variables

If X is absolutely continuously distributed, with distribution function  F(x) ' m
x

&4
f(u)du ,

the derivation of the distribution function of Y = g(X) is less trivial. Let us assume first that g is

continuous and monotonic increasing: g(x) < g(z) if x < z. Note that these conditions imply that g

is differentiable1. Then g is a one-to-one mapping, i.e., for each   there existsy 0 [g(&4) ,g(4)]

one and only one such that y = g(x).  This unique x is denoted by  x 0 ú^{&4}^{4} x ' g &1(y) .

Note that the inverse function  is also monotonic increasing and differentiable. Now letg &1(y)

H(y) be the distribution function of Y. Then:

H(y) ' P(Y # y) ' P(g(X) # y) ' P(X # g &1(y)) ' F(g &1(y)) . (4.15)

Taking the derivative of (4.15) yields the density h(y) of Y:

h(y) ' H )(y) ' f(g &1(y))
dg &1(y)

dy
. (4.16)

If g is differentiable and monotonic decreasing: g(x) < g(z) if x > z, then   is alsog &1(y)

monotonic decreasing, so that  (4.15) becomes

H(y) ' P(Y # y) ' P(g(X) # y) ' P(X $ g &1(y)) ' 1 & F(g &1(y)) ,

and (4.16) becomes

h(y) ' H )(y) ' f(g &1(y)) &
dg &1(y)

dy
. (4.17)

Note that in this case the derivative of   is negative, because   is monotonicg &1(y) g &1(y)

decreasing. Therefore, we can combine (4.16) and (4.17) into one expression:
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h(y) ' f(g &1(y))/000 /000
dg &1(y)

dy
. (4.18)

Theorem 4.2: If X is absolutely continuously distributed with density f, and Y = g(X), where g is

a differentiable monotonic real function on ú, then Y is absolutely continuously distributed, with

density h(y) given by  (4.18)  if   and  h(y) = 0min[g(&4),g(4)] < y < max[g(&4),g(4)] ,

elsewhere.

4.4. Transformations of absolutely continuous random vectors

4.4.1 The linear case

Let  be a bivariate random vector, with distribution functionX ' (X1 ,X2)
T

F(x) ' m
x1

&4
m
x2

&4

f(u1 ,u2)du1 du2 ' m
(&4,x1]×(&4,x2]

f(u)du , where x ' (x1 ,x2)
T, u ' (u1 ,u2)

T

In this section I will derive the joint density of Y = AX + b, where A is a (non-random)

nonsingular 2×2 matrix and b is a non-random 2×1 vector. 

Let us first consider the case that A is equal to the unit matrix I, so that  Y = X + b with 

 Then the joint distribution function  H(y) of Y is b ' (b1 ,b2)
T .

H(y) ' P(Y1 # y1 , Y2 # y2) ' P(X1 # y1&b1 , X2 # y2&b2) ' F(y1&b1 ,y2&b2) ,

hence the density if Y is



141

h(y) '
M2H(y)
My1My2

' f(y1&b1 ,y2&b2) ' f(y&b).

Recall from linear algebra (see Appendix I) that any square matrix A can be decomposed

into

A ' R &1L.D.U, (4.19)

where R is a permutation matrix (possibly equal to the unit matrix I), L is a lower-triangular

matrix with diagonal elements all equal to 1, U is an upper-triangular matrix  with diagonal

elements all equal to 1, and D is a diagonal matrix. Therefore, I will consider the four cases, A =

U, A = D, A = L, and A = R!1 separately, for b = 0, and then apply the results involved

sequentially according to the decomposition (4.19)  to X+b, which then yields the general result.

Consider the case that Y = AX, with A an upper-triangular matrix:

A '
1 a

0 1
. (4.20)

Then

Y '

Y1

Y2

'

X1%aX2

X2

,

hence the joint distribution function H(y) of Y is

H(y) ' P(Y1 # y1 , Y2 # y2) ' P(X1%aX2 # y1 , X2 # y2)

' E I(X1 # y1 & aX2)I(X2 # y2) ' E E I(X1 # y1 & aX2 )|X2 I(X2 # y2)

' m
y2

&4
m

y1&ax2

&4

f1|2(x1|x2)dx1 f2(x2)dx2 ' m
y2

&4
m

y1&ax2

&4

f(x1,x2)dx1 dx2 ,

(4.21)
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where  is the conditional density of X1 given X2 = x2, and  is the marginal densityf1|2(x1|x2) f2(x2)

of  X2 . Taking partial derivatives, if follows from (4.21)  that for Y = AX  with A given by (4.20),

h(y) '
M2H(y)
My1My2

'
M
My2

m
y2

&4

f(y1&ax2,x2)dx2 ' f(y1&ay2,y2) ' f(A &1y) .

Along the same lines it follows that if A is a lower-triangular matrix then  the joint density of Y =

AX is

h(y) '
M2H(y)
My1My2

' f(y1 ,y2&ay1) ' f(A &1y) . (4.22)

Next, let A be a nonsingular diagonal matrix

A '

a1 0

0 a2

.

where   Then  and , hence  the joint distribution functiona1 … 0, a2 … 0. Y1 ' a1X1 Y2 ' a2X2

H(y) is:

H(y) ' P(Y1 # y1 , Y2 # y2) ' P(a1X1 # y1 , a2X2 # y2) '

P(X1 # y1/a1 , X2 # y2/a2) ' m
y1/a1

&4
m

y2/a2

&4

f(x1 ,x2)dx1dx2 if a1 > 0 , a2 > 0 ,

P(X1 # y1/a1 , X2 > y2/a2) ' m
y1/a1

&4
m
4

y2/a2

f(x1 ,x2)dx1dx2 if a1 > 0 , a2 < 0 ,

P(X1 > y1/a1 , X2 # y2/a2) ' m
4

y1/a1

m
y2/a2

&4

f(x1 ,x2)dx1dx2 if a1 < 0 , a2 > 0 ,

P(X1 > y1/a1 , X2 > y2/a2) ' m
4

y1/a1

m
4

y2/a2

f(x1 ,x2)dx1dx2 if a1 < 0 , a2 < 0 .

(4.23)

It is a standard calculus exercise for verify from (4.23) that in all four cases
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h(y) '
M2H(y)
My1My2

'
f(y1/a1 ,y2/a2)

|a1a2|
' f(A &1y) det(A &1) . (4.24)

Finally, consider the case where A  is the inverse of a permutation matrix ( which is a

matrix that permutates the columns of the unit matrix), say:

A '
0 1

1 0

&1

'
0 1

1 0

Then the joint distribution function H(y) of Y =AX  is

H(y) ' P(Y1 # y1 , Y2 # y2) ' P(X2 # y1 , X1 # y2) ' F(y2 ,y1) ' F(Ay) ,

and the density involved is

h(y) '
M2H(y)
My1My2

' f(y2 ,y1) ' f(Ay) .

Combining these results, it is not hard to verify, using the decomposition (4.19),  that for the

bivariate case (k = 2):

Theorem 4.3: Let X be k-variate absolutely continuously distributed with joint density f(x), and

let Y = AX + b, where A is a nonsingular square matrix. Then Y is k-variate  absolutely

continuously distributed, with joint density h(y) ' f(A &1(y&b)) |det(A &1)| .

However, this result holds for the general case as well

4.4.2 The nonlinear case

If we denote  then the result of Theorem 4.3 reads:G(x) ' Ax%b , G &1(y) ' A &1(y&b) ,

 This suggests that Theorem 4.3 can be generalized ash(y) ' f(G &1(y)) |det(MG &1(y)/My)| .
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follows.

Theorem 4.4: Let X be k-variate absolutely continuously distributed with joint density f(x),

 and let Y = G(X), where  is a one-to-one mappingx ' (x1 , .... ,xk)
T , G(x) ' (g1(x) , .... ,gk(x))T

with inverse mapping   whose components are differentiablex ' G &1(y) ' (g (

1 (y) , ..... ,g (

k (y))T ,

in the components of   Let , i.e.,  is the matrixy ' (y1 , .... ,yk)
T . J(y) ' Mx/My ' MG &1(y)/My J(y)

with i,j’s element , which is  called the Jacobian. Then Y is k-variate absolutelyMg (

i (y)/Myj

continuously distributed, with joint density   for y in the seth(y) ' f(G &1(y)) |det(J(y))|

 and h(y) = 0 elsewhere.G(úk) ' {y 0 úk: y ' G(x) , f(x) > 0 , x 0 úk} ,

This conjecture is indeed true. Its formal proof is given in Appendix 4. B.

An application of Theorem 4.4 is the following problem. Consider the function

f(x) ' c.exp(&x 2/2) if x $ 0,

' 0 if x < 0.
(4.25)

For which value of  c is this function a density?.

In order to solve this problem, consider the joint density f(x1 ,x2) ' c 2exp[&(x 2
1%x 2

2 )/2] ,

 which is the joint distribution of X = (X1,X2)
T, where X1 and X2 are independentx1 $ 0, x2 $ 0,

random drawings from the distribution with density (4.25).  Next, consider the transformation Y

= (Y1,Y2)
T = G(X) defined by:

Y1 ' X 2
1%X 2

2 0 (0,4)

Y2 ' arctan(X1/X2) 0 (0,π/2).
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The inverse  of this transformation is X ' G &1(Y)

X1 ' Y1sin(Y2) ,

X2 ' Y1cos(Y2) ,

with Jacobian:

J(Y) '

MX1/MY1 MX1/MY2

MX2/MY1 MX2/MY2

'

sin(Y2) Y1cos(Y2)

cos(Y2) &Y1sin(Y2)
.

Note that  Consequently, the density  is:det[J(Y)] ' &Y1 . h(y) ' h(y1 ,y2) ' f(G &1(y)) |det(J(y))|

h(y1,y2) ' c 2y1exp(&y 2
1 /2) for y1 > 0 and 0 < y2 < π/2 ,

' 0 elsewhere ,

hence,

1 ' m
4

0
m
π/2

0

c 2y1exp(&y 2
1 /2)dy2dy1' c 2(π/2)m

4

0

y1exp(&y 2
1 /2)dy1' c 2π/2 .

Thus the answer is  c ' 2/π :

m
4

0

exp(&x 2/2)

π/2
dx ' 1.

Note that this result implies that

m
4

&4

exp(&x 2/2)

2π
dx ' 1. (4.26)
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4.5. The normal distribution

I will now review a number of univariate continuous distributions that play a key role in

statistical and econometric inference, starting with the normal distribution. The standard normal

distribution emerges as a limiting distribution of an aggregate of random variables. In particular,

if X1,....Xn are independent random variables with expectation µ and finite and positive variance

F2 then for large n the random variable  is approximately standardYn ' (1/ n)'n
j'1(Xj&µ)/σ

normally distributed. This result, known as the central limit theorem, will be derived in Chapter

6, and carries over to various types of dependent random variables (see Chapter 7). 

4.5.1 The standard normal distribution

The standard normal distribution is an absolutely continuous distribution with density

function

f(x) '
exp(&x 2/2)

2π
, x 0 ú , (4.27)

Compare with (4.26).  Its moment generating function is 

mN(0,1)(t) ' m
4

&4

exp(t.x)f(x)dx ' m
4

&4

exp(t.x) exp(&x 2/2)

2π
dx

' exp(t 2/2)m
4

&4

exp[&(x 2&2t.x%t 2)/2]

2π
dx ' exp(t 2/2)m

4

&4

exp[&(x&t)2/2]

2π
dx

' exp(t 2/2)m
4

&4

exp[&u 2/2]

2π
du ' exp(t 2/2) ,

(4.28)

which exists for all   and its characteristic function ist 0 ú ,
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nN(0,1)(t) ' m(i.t) ' exp(&t 2/2) .

Consequently, if X is standard normally distributed then

E[X] ' m )(t) t'0 ' 0, E[X 2] ' var(X) ' m ))(t) t'0 ' 1.

Due to this the standard normal distribution is denoted by N(0,1), where the first number is the

expectation and the second number is the variance, and the statement "X is standard normally

distributed" is usually abbreviated as "X ~ N(0,1)".

4.5.2 The general normal distribution

Now let Y = µ + FX,  where X ~ N(0,1). It is left as an easy exercise to verify that the

density of Y takes the form

f(x) '
exp&½(x&µ)2/σ2

σ 2π
, x 0 ú ,

with corresponding moment generating function

mN(µ,σ2)(t) ' E[exp(t.Y)] ' exp(µt)exp(σ2t 2/2) , t 0 ú,

and characteristic function

nN(µ,σ2)(t) ' E[exp(i.t.Y)] ' exp(i.µt)exp(&σ2t 2/2) .

Consequently,   This distribution is the general normal distribution,E[Y] ' µ , var(Y) ' σ2 .

denoted by N(µ,F2). Thus, Y~ N(µ,F2).
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4.6. Distributions related to the standard normal distribution

The standard normal distribution gives rise, via various transformations, to other

distributions, such as the chi-square, t, Cauchy, and F distribution. These distributions are

fundamental in testing statistical hypotheses, as we will see later.

4.6.1 The chi-square distribution

Let X1,....Xn be independent N(0,1) distributed random variables, and let

Yn ' 'n
j'1X

2
j . (4.29)

The distribution of Yn is called the chi-square distribution with n degrees of freedom, denoted by

 Its distribution and density functions can be derived recursively, starting from theχ2
n or χ2(n) .

case n = 1:

G1(y) ' P[Y1 # y] ' P[X 2
1 # y] ' P[& y # X1 # y] ' m

y

& y

f(x)dx ' 2m
y

0

f(x)dx

for y > 0,
G1(y) ' 0 for y # 0,

hence

g1(y) ' G )

1(y) ' f y / y '
exp(&y/2)

y 2π
for y > 0,

g1(y) ' 0 for y # 0,

where f (x) is defined by (4.27).  Thus, g1(y) is the density of the  distribution. Theχ2
1

corresponding moment generating function is
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mχ2
1
(t) '

1

1&2t
for t < 1/2 , (4.30)

and the characteristic function is

nχ2
1
(t) '

1

1&2.i.t
'

1%2.i.t

1%4.t 2
. (4.31)

It follows easily from (4.29), (4.36) and (4.31) that the moment generating and

characteristic functions of the  distribution areχ2
n

mχ2
n
(t) '

1
1&2t

n/2

for t < 1/2 (4.32)

and

nχ2
n
(t) '

1%2.i.t

1%4.t 2

n/2

.

respectively. Therefore, the density of the   distribution isχ2
n

gn(y) '
y n/2&1exp(&y/2)

Γ(n/2)2n/2
, (4.33)

where for " > 0,

Γ(α) ' m
4

0

x α&1exp(&x)dx . (4.34)

The result (4.33) can be proved by verifying that for t < 1/2,  (4.32) is the moment generating

function of (4.33). The function (4.34) is called the Gamma function. Note that
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Γ(1) ' 1, Γ(1/2) ' π , Γ(α%1) ' αΓ(α) for α > 0. (4.35)

Moreover, the expectation and variance of the  distribution areχ2
n

E[Yn] ' n , var(Yn) ' 2n . (4.36)

4.6.2 The Student t distribution

Let X ~ N(0,1) and Yn ~ , where X and Yn are independent. Then the distribution of theχ2
n

random variable

Tn '
X

Yn/n

is called the (Student2) t distribution with n degrees of freedom, denoted by tn.

The conditional density hn(x|y) of Tn  given Yn = y is the density of the N(1,n/y)

distribution, hence the unconditional density of Tn  is 

hn(x) ' m
4

0

exp(&(x 2/n)y/2)

n/y 2π
× y n/2&1exp(&y/2)

Γ(n/2)2n/2
dy '

Γ((n%1)/2)

nπ Γ(n/2) (1%x 2/n)(n%1)/2
.

The expectation of Tn does not exist if n = 1, as we will see below, and is zero for n $ 2, by

symmetry. Moreover, the variance of Tn  is infinite for n = 2., whereas for  n $ 3,

var(Tn) ' E[T 2
n ] '

n
n&2

. (4.37)

See Appendix 4.A . 

The moment generating function of the  tn  distribution does not exist, but it characteristic

function does, of course:
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ntn
(t) '

Γ((n%1)/2)

nπ Γ(n/2) m
4

&4

exp(it.x)

(1%x 2/n)(n%1)/2
dx '

2.Γ((n%1)/2)

nπ Γ(n/2) m
4

0

cos(t.x)

(1%x 2/n)(n%1)/2
dx .

4.6.3 The standard Cauchy distribution

The t1 distribution is also known as the standard Cauchy distribution. Its density is:

h1(x) '
Γ(1)

π Γ(1/2) (1%x 2 )
'

1

π(1%x 2 )
. (4.38)

where the second equality follows from (4.35), and its characteristic function is

nt1
(t) ' exp(&|t|) .

The latter follows from the inversion formula for characteristic functions: 

1
2π m

4

&4

exp(&i.t.x)exp(&|t|)dt '
1

π(1%x 2)
. (4.39)

See Appendix 4.A. Moreover, it is easy to verify from  (4.38)  that the expectation of the Cauchy

distribution does not exist, and that the second moment is infinite.

4.6.4 The F distribution

Let Xm ~  and Yn ~ , where Xm and Yn are independent. Then the distribution of theχ2
m χ2

n

random variable

F '
Xm/m

Yn/n

is said to be F with m and n degrees of freedom, denoted by Fm,n.  Its distribution function is
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Hm,n(x) ' P[F # x] ' m
4

0
m

m.x.y/n

0

z m/2&1exp(&z/2)

Γ(m/2)2m/2
dz

y n/2&1exp(&y/2)

Γ(n/2)2n/2
dy , x > 0,

and its density is

hm,n(x) '
m m/2Γ(m/2%n/2)x m/2&1

n m/2Γ(m/2)Γ(n/2) 1%m.x/n m/2%n/2
, x > 0, (4.40)

See Appendix 4.A  

Moreover, it is shown in Appendix 4.A that

E[F] ' n/(n&2) if n $ 3,

' 4 if n ' 1,2 ,

var(F) '
2n 2(m%n&4)

m(n&2)2(n&4)
if n $ 5,

' 4 if n ' 3,4 ,

' not defined if n ' 1,2 .

(4.41)

Furthermore, the moment generating function of the Fm,n distribution does not exist, and 

the computation of the characteristic function is too tedious an exercise, and therefore omitted. 

4.7. The uniform distribution and its relation to the standard normal distribution

As we have seen before in Chapter 1, the uniform [0,1] distribution has density

f(x) ' 1 for 0 # x # 1, f(x) ' 0 elsewhere.

More generally, the uniform [a,b] distribution (denoted by U[a,b]) has density

f(x) '
1

b&a
for a # x # b, f(x) ' 0 elsewhere ,

moment generating function 

mU[a,b](t) '
exp(t.b)&exp(t.a)

(b&a)t
,
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and characteristic function

nU[a,b](t) '
exp(i.b.t)&exp(i.a.t)

i.(b&a)t
'

(sin(b.t)%sin(a.t)) & i.(cos(b.t)%cos(a.t))
b&a

.

Most computer languages such as Fortran, Pascal, and Visual Basic have a build-in

function which generates independent random drawings from the uniform [0,1] distribution.3

These random drawings can be converted into independent random drawings from the standard

normal distribution via the transformation

X1 ' cos(2πU1) . &2.ln(U2) ,

X2 ' sin(2πU1) . &2.ln(U2) ,
(4.42)

where U1 and U2 are independent U[0,1] distributed. Then X1 and X2 are independent standard

normally distributed.   This method is called the Box-Muller algorithm.

4.8. The Gamma distribution

The  distribution is a special case of a Gamma distribution. The density of the Gammaχ2
n

distribution is

g(x) '
x α&1exp(&x/β)

Γ(α)βα
, x > 0, α > 0, β > 0.

This distribution is denoted by '(",$). Thus, the  distribution is a Gamma distribution with " =χ2
n

n/2 and $ = 2. 

The Gamma distribution has moment generating function
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mΓ(α,β)(t) ' [1&βt]&α , t < 1/β , (4.43)

and characteristic function   Therefore, the  '(",$) distribution hasnΓ(α,β)(t) ' [1&β.i.t]&α .

expectation "$ and variance "$2. 

The   '(",$) distribution with " = 1 is called the exponential distribution.

4.9. Exercises

1. Derive (4.2).

2. Derive (4.4) and (4.5) directly from (4.3).

3. Derive (4.4) and (4.5) from the moment generating function (4.6).

4. Derive (4.8), (4.9), and (4.10).

5. If X is discrete and Y = g(X), do we need to require that g is Borel measurable?

6. Prove the last equality in (4.14).

7. Prove Theorem 4.1, using characteristic functions.

8. Prove that (4.24)  holds for all four cases in (4.23).

9. Let X  be a random variable with continuous distribution function F(x).  Derive the

distribution of Y = F(X).

10. The standard normal distribution has density Let X1 andf(x) ' exp(&x 2 /2)/ 2π , x 0 ú .

X2  be independent random drawings from the standard normal distribution involved, and let Y1 =

X1 + X2,  Y2 = X1 ! X2. Derive the joint density   say, of Y1 and Y2 , and show that Y1 andh(y1 ,y2) ,

Y2  are independent.  Hint: Use Theorem 4.3.

11. The exponential distribution has density   if x $ 0,  f(x) = 0 if x < 0,f(x) ' θ&1exp(&x/θ)
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where 2 > 0 is a constant. Let X1 and X2  be independent random drawings from the exponential

distribution involved, and let Y1 = X1 + X2,  Y2 = X1 ! X2. Derive the joint density  say,h(y1 ,y2) ,

of Y1 and Y2 .  Hints: Determine first the support  of   and{(y1,y2)
T 0 ú2: h(y1 ,y2) > 0} h(y1 ,y2) ,

then use Theorem 4.3.

12. Let X ~ N(0,1). Derive E[X2k] for k = 2,3,4, using the moment generating function.

13. Let X1,X2,...,Xn be independent standard normally distributed. Show that  is(1/ n)'n
j'1Xj

standard normally distributed.

14. Prove (4.30).

15. Show that for t < 1/2, (4.32) is the moment generating function of (4.33).

16. Explain why the moment generating function of the  tn distribution does not exist

17. Prove (4.35).

18. Prove (4.36).

19. Let X1,X2,...,Xn be independent standard Cauchy distributed. Show that  is(1/n)'n
j'1Xj

standard Cauchy distributed. 

20. The class of standard stable distributions consists of distributions with characteristic

functions of the type   Note that the standard normaln(t) ' exp(&|t|α/α) , where α 0 (0 ,2].

distribution is stable with " = 2, and the standard Cauchy distribution is stable with " = 1. Show

that for a random sample X1,X2,...,Xn from a standard stable distribution with parameter ", the

random variable    has the same standard stable distribution (this is the reasonYn ' n &1/α'n
j'1Xj

for calling these distributions stable).

21. Let X and Y be independent standard normally distributed. Derive the distribution of  X/Y. 

22. Derive the characteristic function of the distribution with density exp(-|x|) /2, ! 4 < x < 4.
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23. Explain why the moment generating function of the Fm,n distribution does not exist.

24. Prove (4.43).

25. Show that if U1 and U2 are independent U[0,1] distributed then X1 and X2 in (4.42) are

independent standard normally distributed.

26. If X and Y are independent '(1,1) distributed, what is the distribution of X-Y?

Appendices

4.A. Tedious derivations

Derivation of (4.37): 

E[T 2
n ] '

nΓ((n%1)/2)

nπ Γ(n/2) m
4

&4

x 2/n

(1%x 2/n)(n%1)/2
dx

'
nΓ((n%1)/2)

nπ Γ(n/2) m
4

&4

1%x 2/n

(1%x 2/n)(n%1)/2
dx &

nΓ((n%1)/2)

nπ Γ(n/2) m
4

&4

1

(1%x 2/n)(n%1)/2
dx

'
nΓ((n%1)/2)

π Γ(n/2) m
4

&4

1

(1%x 2)(n&1)/2
dx & n '

nΓ((n&1)/2%1)
Γ(n/2)

Γ(n/2&1)
Γ((n&1)/2)

& n '
n

n&2
.

In this derivation I have used (4.35) and the fact that

1 ' m
4

&4

hn&2(x)dx '
Γ((n&1)/2)

(n&2)π Γ((n&2)/2) m
4

&4

1

(1%x 2/(n&2))(n&1)/2
dx

'
Γ((n&1)/2)

π Γ((n&2)/2) m
4

&4

1

(1%x 2)(n&1)/2
dx .
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Derivation of (4.39): For m > 0 we have:

1
2π m

m

&m

exp(&i.t.x)exp(&|t|)dt '
1
2πm

m

0

exp(&i.t.x)exp(&t)dt %
1
2πm

m

0

exp(i.t.x)exp(&t)dt

'
1
2πm

m

0

exp[&(1%i.x)t]dt %
1
2πm

m

0

exp[&(1&i.x)t]dt

'
1
2π /00

exp[&(1%i.x)t]
&(1%i.x)

m

0

%
1
2π /00

exp[&(1&i.x)t]
&(1&i.x)

m

0

'
1
2π

1
(1%i.x)

%
1
2π

1
(1&i.x)

&
1
2π

exp[&(1%i.x)m]
(1%i.x)

&
1
2π

exp[&(1&i.x)m]
(1&i.x)

'
1

π(1%x 2)
&

exp(&m)

π(1%x 2)
[cos(m.x)&x.sin(m.x)] .

Letting m 6 4, (4.39) follows.

Derivation of (4.40):

hm,n(x) ' H )

m,n(x) ' m
4

0

m.y
n

× (m.x.y/n)m/2&1exp(&(m.x.y/(2n)

Γ(m/2)2m/2
× y n/2&1exp(&y/2)

Γ(n/2)2n/2
dy

'
m m/2x m/2&1

n m/2Γ(m/2)Γ(n/2)2m/2%n/2 m
4

0

y m/2%n/2&1exp & 1%m.x/n y/2 dy

'
m m/2x m/2&1

n m/2Γ(m/2)Γ(n/2) 1%m.x/n m/2%n/2 m
4

0

z m/2%n/2&1exp &z dz

'
m m/2Γ(m/2%n/2)x m/2&1

n m/2Γ(m/2)Γ(n/2) 1%m.x/n m/2%n/2
, x > 0,
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Derivation of (4.41): It follows from (4.40) that

m
4

0

x m/2&1

(1%x)m/2%n/2
dx '

Γ(m/2)Γ(n/2)
Γ(m/2%n/2)

,

hence if k < n/2 then 

m
4

0

x khm,n(x)dx '
m m/2Γ(m/2%n/2)

n m/2Γ(m/2)Γ(n/2)m
4

0

x m/2%k&1

(1%m.x/n)m/2%n/2
dx

' (n/m)k Γ(m/2%n/2)
Γ(m/2)Γ(n/2)m

4

0

x (m%2k)/2&1

(1%x)(m%2k)/2%(n&2k)/2
dx ' (n/m)kΓ(m/2%k)Γ(n/2&k)

Γ(m/2)Γ(n/2)

' (n/m)k kk&1
j'0 (m/2%j)

kk
j'1 (n/2&j)

where the last equality follows from the fact that by (4.35),    for " > 0.Γ(α%k) ' Γ(α)(k&1
j'0 (α%j)

Thus,

µm,n ' m
4

0

xhm,n(x)dx '
n

n&2
if n $ 3, µm,n ' 4 if n # 2, (4.45)

m
4

0

x 2hm,n(x)dx '
n 2(m%2)

m(n&2)(n&4)
if n $ 5,

' 4 if n # 4.

(4.46)

The results in (4.41) follow now from (4.45) and (4.46).
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4.B. Proof of Theorem 4.4

For notational convenience I will prove Theorem 4.4 for the case k = 2 only. First note

that the distribution of Y is absolutely continuous, because for arbitrary Borel sets B in ú2,

P[Y 0 B] ' P[G(X) 0 B] ' P[X 0 G &1(B)] ' mG &1(B)
f(x)dx.

If B has Lebesgue measure zero then, since G is a one-to-one mapping, the Borel set A = G!1(B)

has Lebesgue measure zero. Therefore, Y has density h(y), say, so that for arbitrary Borel sets B

in ú2,

P[Y 0 B] ' mB
h(y)dy .

Choose a fixed  in the support  of Y such that  is a continuityy0 ' (y0,1 ,y0,2)
T G(ú2) x0 ' G &1(y0)

point of the density f of X and  is a continuity point of the density h of Y.  Let for some positivey0

numbers  and   Then, with 8 the Lebesgueδ1 δ2 , Υ(δ1 ,δ2) ' [y0,1 ,y0,1%δ1]×[y0,2 ,y0,2%δ2] .

measure,

P[Y 0 Υ(δ1 ,δ2)] ' mG &1(Υ(δ1 ,δ2))
f(x)dx # supx0G &1(Υ(δ1 ,δ2))f(x) λ(G &1(Υ(δ1 ,δ2)))

' supy0Υ(δ1 ,δ2)f(G
&1(y)) λ(G &1(Υ(δ1 ,δ2)))

(4.47)

and similarly,

P[Y 0 Υ(δ1 ,δ2)] $ infy0Υ(δ1 ,δ2)f(G
&1(y)) λ(G &1(Υ(δ1 ,δ2))) (4.48)

It follows now from (4.47) and (4.48)  that

h(y0) ' lim
δ190

lim
δ290

P[Y 0 Υ(δ1 ,δ2)]

δ1δ2

' f(G &1(y0)) lim
δ190

lim
δ290

λ(G &1(Υ(δ1 ,δ2)))

δ1δ2

(4.49)
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It remains to show that the latter limit is equal to |det[J(y0)]| .

Denoting  it follows from the mean value theorem that for eachG &1(y) ' (g (

1 (y) ,g (

2 (y))T ,

element   there exists a  depending on y and y0  such that    + g (

j (y) λj 0 [0,1] g (

j (y) ' g (

j (y0)

  where  is the j-th row of J(y).  Thus, denoting Jj(y0%λj(y&y0))(y&y0) , Jj(y)

D0(y) '

J1(y0%λ1(y&y0)) & J1(y0)

J2(y0%λ2(y&y0)) & J2(y0)
' J̃0(y) & J(y0) , (4.50)

say, we have   Now put   A  =  and  b = G &1(y) ' G &1(y0) % J(y0)(y&y0) % D0(y)(y&y0) . J(y0)
&1

  Then  y0 & J(y0)
&1G &1(y0) .

 
G &1(y) ' A &1(y&b) % D0(y)(y&y0) , (4.51)

hence

G &1(Υ(δ1 ,δ2)) ' {x 0 ú2 : x ' A &1(y&b) % D0(y)(y&y0) , y 0 Υ(δ1 ,δ2)} (4.52)

The matrix A  maps the set (4.52) onto

A[G &1(Υ(δ1 ,δ2))] ' {x 0 ú2 : x ' y & b % A.D0(y)(y&y0) , y 0 Υ(δ1 ,δ2)} (4.53)

where for arbitrary Borel sets B conformable with a matrix A, A[B]  {x: x = Ay, y 0 B}.  Since'

def.

the Lebesgue measure is invariant for location shifts (i.e.,  the vector b in (4.53)) , it follows that

λ A[G &1(Υ(δ1 ,δ2))] ' λ {x 0 ú2 : x ' y % A.D0(y)(y&y0) , y 0 Υ(δ1 ,δ2)} (4.54)

Observe from  (4.50) that 

A.D0(y) ' J(y0)
&1D0(y) ' J(y0)

&1J̃0(y) & I2 (4.55)
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and

limy6y0
J(y0)

&1J̃0(y) ' I2 . (4.56)

Then

λ A[G &1(Υ(δ1 ,δ2))] ' λ {x 0 ú2 : x ' y0 % J(y0)
&1J̃0(y)(y&y0) , y 0 Υ(δ1 ,δ2)} (4.57)

It can be shown, using (4.56),  that 

lim
δ190

lim
δ290

λ A[G &1(Υ(δ1 ,δ2))]

λ Υ(δ1 ,δ2)
' 1. (4.58)

Recall from Appendix I that the matrix A can be written as A = QDU, where Q is an

orthogonal matrix, D is a diagonal matrix, and U is an upper-triangular matrix with diagonal.

elements all equal to 1. Let B = (0,1)×(0,1). Then it is not hard to verify in the 2×2 case that U

maps B onto a parallelogram  U[B] with the same area as B, hence  λ(U[B]) ' λ(B) ' 1.

Consequently, the Lebesgue measure of the rectangle D[B] is the same as the  Lebesgue measure

of the set D[U[B]]. Moreover, an orthogonal matrix rotates a set of point around the origin,

leaving all the angles and distances the same. Therefore, the set A[B] has the same Lebesgue

measure as  the rectangle D[B]:  =   Along the same linesλ(A[B]) ' λ(D[B]) ' |det[D]| |det[A]|.

the following more general result can be shown.

Lemma 4.B.1: For a k×k matrix A and a Borel set B in úk,   where 8 isλ(A[B]) ' |det[A]|λ(B) ,

the Lebesgue measure on the Borel sets in  úk.
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1. Except perhaps on a set with Lebesgue measure zero.

2. The t distribution was discovered by W. S. Gosset, who published the result under the
pseudonym Student.  The reason for the latter was that his employer, an Irish brewery, did not
want its competitors to know that statistical methods were being used. 

3. See for example Section 7.1 in Press, Flannery, Teukolsky, and Vetterling (1989).  

Thus, (4.58) now becomes

lim
δ190

lim
δ290

λ A[G &1(Υ(δ1 ,δ2))]

λ Υ(δ1 ,δ2)
' |det[A]|lim

δ190
lim
δ290

λ G &1(Υ(δ1 ,δ2))

δ1δ2

' 1,

hence 

lim
δ190

lim
δ290

λ G &1(Υ(δ1 ,δ2))

δ1δ2

'
1

|det[A]|
' |det[A &1]| ' |det[J(y0)]| . (4.59)

Theorem 4.4 follows now from  (4.49) and (4.59).

Endnotes
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Chapter 5

The Multivariate Normal Distribution

and its Application to Statistical  Inference

5.1. Expectation and variance of random vectors

Multivariate distributions employ the concepts of expectation vector and variance matrix.

The expected "value", or more precisely, the expectation vector (sometimes also called the "mean

vector") of a random vector    is defined as the vector of expected values: X ' (x1 , .... ,xn)
T

E(X) '

def.

(E(x1) , .... ,E(xn))
T .

Adopting the convention that the expectation of a random matrix is the matrix of the

expectations of its elements, we can define the variance matrix of X as:1

Var(X) '

def.

E[(X & E(X))(X & E(X))T ]

'

cov(x1 ,x1) cov(x1 ,x2) ... cov(x1 ,xn)

cov(x2 ,x1) var(x2) ... cov(x2 ,xn)

: : " :

cov(xn ,x1) cov(xn ,x2) ... cov(xn ,xn)

.

(5.1)

Recall that the diagonal elements of the matrix (5.1) are variances:cov(xj ,xj) ' var(xj) .

Obviously, a variance matrix is symmetric and positive (semi-)definite. Moreover, note that (5.1)

can be written as

Var(X) ' E[XX T] & (E[X])(E[X])T . (5.2
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Similarly, the covariance matrix of a pair of random vectors X and Y is the matrix of covariances

of their components:2

Cov(X,Y) '

def.

E[(X & E(X))(Y & E(Y))T] . (5.3)

Note that   Thus, for each pair X, Y there are two covariance matrices,Cov(Y,X) ' Cov(X,Y)T .

one being the transpose of the other.

5.2. The multivariate normal distribution

Now let the components of  X =   be independent standard normally(x1 , .... ,xn)
T

distributed random variables. Then   and     Moreover, the jointE(X) ' 0 (0 ún) Var(X) ' In .

density f(x) = f(x1,...,xn)  of X in this case is the product of the standard normal marginal densities:

f(x) ' f(x1 , ... ,xn) ' k
n

j'1

exp &x 2
j /2

2π
'

exp& 1

2
'n

j'1x
2
j

( 2π)n
'

exp &
1

2
x Tx

( 2π)n
.

The shape of this density for the case n = 2 is displayed in Figure 5.1:

Figure 5.1: The bivariate standard normal density on [-3,3]×[-3,3]
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Next, consider the following linear transformations of X: Y = F + AX,  where µ = 

 is a vector of constants and A is a non-singular n × n matrix with non-random(µ1 , ... ,µn)
T

elements.  Because A is nonsingular and therefore invertible, this transformation is a one-to-one

mapping, with inverse  Then the density function g(y) of Y is equal to:X ' A &1(Y&µ) .

g(y) ' f(x)*det(Mx/My)* ' f(A &1y & A &1µ)*det M(A &1y&A &1µ)/My *

' f(A &1y&A &1µ)*det(A &1)* '
f(A &1y&A &1µ)

*det(A)*
'

exp &
1

2
(y&µ)T(A &1)TA &1(y&µ)

( 2π)n*det(A)*

'

exp &
1

2
(y&µ)T(AA T)&1(y&µ)

( 2π)n *det(AA T )*
.

Observe that F is the expectation vector of Y:   =  F. But what isE(Y) ' µ % A E(X)

AAT?  We know from (5.2) that Var(Y) = E[YYT] ! FFT.  Therefore, substituting Y = F + AX

yields:

Var(Y) ' E[(µ%AX)(µT%X TA T) & µµT]

' µ E(X T) A T % A E(X) µT % A E(XX T) A T ' AA T ,

because E(X) = 0 and  Thus, AAT is the variance matrix of Y. This argument givesE[XX T] ' In .

rise to the following definition of the n-variate normal distribution:

Definition 5.1: Let Y be an n×1 random vector satisfying E(Y) = F and Var(Y) = E, where E is

nonsingular. Then Y is distributed  Nn(F,E) if the density g(y) of Y is of the form

g(y) '

exp &
1

2
(y&µ)TΣ&1(y&µ)

( 2π)n det(Σ)
. (5.4)



166

In the same way as before we can show that a nonsingular (hence one-to-one) linear

transformation of a normal distribution is normal itself:

Theorem 5.1: Let Z = a + BY, where Y is distributed Nn(F,E) and B is a non-singular matrix of

constants.  Then Z is distributed Nn(a + BF, BEBT).

Proof: First, observe that: Z = a + BY implies Y = B!1(Z!a). Let h(z) be the density of Z

and g(y) the density of Y.  Then

h(z) ' g(y)*det(My/Mz)* ' g(B &1z&B &1a)*det(M(B &1z&B &1a)/Mz)* '
g(B &1z&B &1a)

*det(B)*

'
g(B &1(z&a))

det(BB T)
'

exp &
1

2
(B &1(z&a)&µ)TΣ&1(B &1(z&a)&µ)

( 2π)n det(Σ) det(BB T)

'

exp &
1

2
(z&a&Bµ)T(BΣB T)&1(z&a&Bµ)

( 2π)n det(BΣB T)
.

Q.E.D.

I will now relax the assumption in Theorem 5.1 that the matrix B is a nonsingular n × n

matrix. This more general version of Theorem 5.1 can be proved using the moment generating

function or the characteristic function of the multivariate normal distribution.

Theorem 5.2: Let Y be distributed Nn(F,E). Then the moment generating function of Y is 

 and the characteristic of Y is  m(t) ' exp(t Tµ % t TΣ t /2) , n(t) ' exp(i.t Tµ & t TΣ t /2) .
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Proof: We have

m(t) ' mexp[t Ty]
exp &

1

2
(y&µ)TΣ&1(y&µ)

( 2π)n det(Σ)
dy

' m
exp &

1

2
y TΣ&1y & 2µTΣ&1y % µTΣ&1µ & 2t Ty

( 2π)n det(Σ)
dy

' m
exp &

1

2
y TΣ&1y & 2(µ%Σ t)TΣ&1y % (µ%Σ t)TΣ&1(µ%Σ t)

( 2π)n det(Σ)
dy

× exp 1

2
(µ%Σ t)TΣ&1(µ%Σ t) & µTΣ&1µ

' m
exp &

1

2
(y&µ&Σ t)TΣ&1(y&µ&Σ t)

2π n
det(Σ)

dy × exp t Tµ %
1

2
t TΣt .

Since the last integral is equal to one, the result for the moment generating function follows. The

result for the characteristic function follows from  Q.E.D.n(t) ' m(i.t) .

Theorem 5.3: Theorem 5.1 holds for any linear transformation  Z = a + BY.

Proof: Let Z = a + BY, where B is m × n. It is easy to verify that the characteristic function

of Z is:  =nZ(t) ' E[exp(i.t TZ)] ' E[exp(i.t T(a%BY))] ' exp(i.t Ta)E[exp(i.t TBY)]

 Theorem 5.3 follows now from Theorem 5.2.. Q.E.D.exp i.(a%Bµ)Tt & ½t TBΣB Tt .

Note that this result holds regardless whether the matrix  is nonsingular or not. InBΣB T

the latter case the normal distribution involved is called "singular":
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Definition 5.2: An n × 1 random vector Y has a singular Nn(F,E) distribution if its characteristic

function is of the form   with  E a singular positive semi-definenY(t) ' exp(i.t Tµ & ½ t TΣt)

matrix..

Because of the latter, the distribution of the random vector Y involved is no longer absolutely

continuous, but the form of the characteristic function is the same as in the nonsingular case, and

that is all that matters. 

For example, let n = 2 and 

µ '
0

0
, Σ '

1 0

0 σ2
,

where  > 0 but small. The density of the corresponding  N2(F,E) distribution of  σ2 Y ' (Y1 ,Y2)
T

is

f(y1 ,y2|σ) '
exp(&y 2

1 /2)

2π
×

exp(&y 2
2 /(2σ2))

σ 2π
. (5.5)

Then   Thus, a singularlimσ90 f(y1 ,y2|σ) ' 0 if y2 … 0, limσ90 f(y1 ,y2|σ) ' 4 if y2 ' 0.

multivariate normal distribution does not have a density. 

In Figure 5.2 the density (5.5) for the near-singular case  is displayed. Theσ2 ' 0.00001

height of the picture is actually rescaled to fit in the the box [-3,3]×[-3,3]×[-3,3]. If we let F

approach zero the height of the ridge corresponding to the marginal density of  will increase toY1

infinity.
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Figure 5.2: Density of a near-singular normal distribution on [-3,3]×[-3,3]

The next theorem shows that uncorrelated multivariate normal distributed random

variables are independent. Thus, while for most distributions uncorrelatedness does not imply

independence, for the multivariate normal distribution it does.

Theorem 5.4: Let X be n-variate normally distributed, and let X1 and X2 be sub-vectors of 

components of X. If X1 and X2 are uncorrelated, i.e.,  then X1 and X2 areCov(X1 ,X2) ' O ,

independent.

Proof: Since  X1 and X2 cannot have common components, we may without loss of

generality assume that    Partition the expectation vectorX ' (X T
1 ,X T

2 )T , X1 0 úk , X2 0 úm .

and variance matrix of X conformably as: 
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E(X) '

µ1

µ2

, Var(X) '

Σ11 Σ12

Σ21 Σ22

.

Then E12 = O and  E21 = O because they are covariance matrices, and X1 and X2 are uncorrelated,

hence the density of X is:

f(x) ' f(x1 ,x2) '

exp &
1

2

x1

x2

&

µ1

µ2

T Σ11 0

0 Σ22

&1 x1

x2

&

µ1

µ2

( 2π)n det
Σ11 0

0 Σ22

'

exp &
1

2
(x1&µ1)

TΣ&1
11(x1&µ1)

( 2π)k det(Σ11)
×

exp &
1

2
(x2&µ2)

TΣ&1
22(x2&µ2)

( 2π)m det(Σ22)
.

This implies independence of X1 and X2. Q.E.D.

5.3. Conditional distributions of multivariate normal random variables

Let  Y be a scalar random variable and X be a k-dimensional random vector. Assume that

Y

X
- Nk%1

µY

µX

,
ΣYY ΣYX

ΣXY ΣXX

.

where  andµY ' E(Y) , µX ' E(X) ,

ΣYY ' Var(Y) , ΣYX ' Cov(Y ,X T) ' E[(Y&E(Y))(X&E(X))T] ,

ΣXY ' Cov(X ,Y) ' E(X&E(X))(Y&E(Y)) ' ΣT
YX , ΣXX ' Var(X) .
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In order to  derive the conditional distribution of Y, given X, let   where " isU ' Y & α & βTX ,

a scalar constant and $ is a k × 1 vector of constants, such that E(U) = 0 and U and X are

independent. It follows from Theorem 5.1 that 

U

X
'

&α
0

%
1 &B T

0 Ik

Y

X

- Nk%1

&α % µY & βTµX

µX

,
1 &βT

0 Ik

ΣYY ΣYX

ΣXY ΣXX

1 0T

&β Ik

The variance matrix involved can be rewritten as:

Var
U

X
'

ΣYY&ΣYXβ&β
TΣXY%β

TΣXXβ ΣYX&β
TΣXX

ΣXY&ΣXXβ ΣXX

. (5.6)

Next, choose $ such that U and X are uncorrelated and hence independent. In view of (5.6) a

necessary and sufficient condition for that is:  hence  Moreover,ΣXY & ΣXXβ ' 0, β ' Σ&1
XXΣXY .

E(U) = 0 if   Thenα ' µY & βTµX .

ΣYY & ΣYXβ & βTΣXY % βTΣXXβ ' ΣYY & ΣYXΣ
&1
XXΣXY ,

ΣYX & βTΣXX ' 0T , ΣXY & ΣXXβ ' 0,

and consequently 

U

X
- Nk%1

0

µX

,
ΣYY&ΣYXΣ

&1
XXΣXY 0T

0 ΣXX

. (5.7)

Thus U and X are independent normally distributed, and consequently  = 0. E(U*X) ' E(U)

Since   we now have  Y ' α % βTX % U , E(Y*X) ' α % βT E(X*X) % E(U*X) ' α % βTX .
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Moreover, it is easy to verify from (5.7) that the conditional density of Y, given X = x, is

f(y*x) '

exp& 1

2
(y&α&βTx)2 /σ2

u

σu 2π
, where σ2

u ' ΣYY & ΣYXΣ
&1
XXΣXY .

Furthermore, note that  is just the conditional variance of Y, given X:σ2
u

σ2
u ' var(Y*X) '

def.

E Y & E(Y*X) 2*X .

Summarizing:

Theorem 5.5: Let

Y

X
- Nk%1

µY

µX

,
ΣYY ΣYX

ΣXY ΣXX

,

where , and EXX  is nonsingular.  Then conditionally on X, Y is normally distributedY0ú , X0úk

with conditional expectation   andE(Y*X) ' α%βTX , where β ' Σ&1
XXΣXY and α ' µY&β

TµX ,

conditional variance var(Y*X) ' ΣYY & ΣYXΣ
&1
XXΣXY .

The result in Theorem 5.5 is the basis for linear regression analysis. Suppose that Y

measures an economic activity that is partly caused or influenced by other economic variables,

measured by the components of the random vector X. In applied economics the relation between

Y, called the dependent variable, and the components of X, called the independent variables or

the regressors, is often modeled linearly as Y = " + $TX + U, where  " is the intercept, $ is the

vector of slope parameters (also called regression coefficients), and U is an error term which is
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usually assumed to be independent of X and normally N(0,F2) distributed. Theorem 5.5 shows

that if Y and X are jointly normally distributed, then such a linear relation between Y and X exists. 

 

5.4. Independence of linear and quadratic transformations of multivariate normal

random variables

Let X be distributed Nn(0,In), i.e., X is n-variate standard normally distributed. Consider

the linear transformations Y = BX, where B is a k × n matrix of constants, and Z = CX, where  C

is an m × n matrix of constants. It follows from Theorem 5.4 that

Y

Z
- Nk%m

0

0
,

BB T BC T

CB T CC T
.

Then Y and Z are uncorrelated and therefore independent if and only if CBT = O. More generally

we have:

Theorem 5.6: Let X be distributed Nn(0,In), and consider the linear transformations Y = b + BX,

where b is a k × 1 vector and B a k × n matrix of constants, and Z = c + CX, where c is an m × 1

vector and C an m × n matrix of constants. Then Y and Z are independent if and only if BCT = O.

This result can be used to set forth conditions for independence of linear and quadratic

transformations of standard normal random vectors:

Theorem 5.7: Let X and Y be defined as in Theorem 5.6, and let Z = XTCX, where C is a

symmetric n × n matrix of constants. Then Y and Z are independent if BC = O.
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Proof: First, note that the latter condition only makes sense if C is singular, as otherwise

B = O. Thus, let rank(C) = m < n.  We can write  where 7 is a diagonal matrix withC ' QΛQ T ,

the eigenvalues of C on the diagonal, and Q is the orthogonal matrix of corresponding

eigenvectors.  Let V = QTX, which is Nn(0,In) distributed because QQT = In. Since n ! m

eigenvalues of C are zero, we can partition Q, 7 and V such that

Q ' (Q1 ,Q2) , Λ '
Λ1 O

O O
, V '

V1

V2

'

Q T
1 X

Q T
2 X

, Z ' V T
1 Λ1V1 ,

where 71 is the diagonal matrix with the m nonzero eigenvalues of C on the diagonal. Then

BC ' B(Q1 ,Q2)
Λ1 O

O O

Q T
1

Q T
2

' BQ1Λ1Q
T

1 ' O

implies   which in itsBQ1Λ1 ' BQ1Λ1Q
T

1 Q1 ' O (because Q TQ ' In implies Q T
1 Q1 ' Im) ,

turn implies that BQ1 = O. The latter is a sufficient condition for the independence of V1 and Y,

hence of the independence of Z and Y. Q.E.D.

Finally, consider the conditions for independence of two quadratic forms of standard

normal random vectors:

Theorem 5.8: Let  where A and B are symmetric n × nX - Nn(0,In) , Z1 ' X TAX , Z2 ' X TBX ,

matrices of constants. Then Z1 and Z2 are independent if and only if  AB = O.

The proof of Theorem 5.8 is not difficult but quite lengthy and therefore given in the
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Appendix 5.A.

5.5. Distributions of quadratic forms of multivariate normal random variables

As we will see in Section 5.6 below,  quadratic forms of multivariate normal random

variables play a key-role in statistical testing theory. The two most important results are stated in

Theorems 5.9 and 5.10:

Theorem 5.9: Let X be distributed Nn(0,E), where E is nonsingular. Then XTE!1X is distributed 

as Pn
2.

Proof: Denote   Then Y is n-variate standard normallyY ' (Y1 ,.... ,Yn)
T ' Σ&½X .

distributed, hence Y1,...,Yn are i.i.d. N(0,1) and thus   Q.E.D.X TΣ&1X ' Y TY ' 'n
j'1Y

2
j - χ2

n .

The next theorem employs the concept of an idempotent matrix. Recall from Appendix I

that a square matrix M is idempotent if M2 = M. If M is also symmetric, we can write M = Q7QT,

where 7 is the diagonal matrix of eigenvalues of M and Q is the corresponding orthogonal matrix

of eigenvectors. Then M2 = M implies 72 = 7, hence the eigenvalues of M are either 1 or 0. If all

eigenvalues are 1, then 7 = I, hence M = I. Thus the only nonsingular symmetric idempotent

matrix is the unit matrix. Consequently, the concept of a symmetric idempotent matrix is only

meaningful if the matrix involved is singular.

The rank of a symmetric idempotent matrix M equals the number of nonzero eigenvalues,

hence trace(M) = trace(Q7QT) = trace(7QTQ) = trace(7) = rank(7) = rank(M), where trace(M) is

defined as the sum of the diagonal elements of M. Note that we have used the property trace(AB)
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= trace(BA) for conformable matrices A and B.

Theorem 5.10: Let X be distributed Nn(0,I), and let M be a symmetric idempotent n × n matrix of

constants with rank k. Then XTMX is distributed Pk
2.

Proof: We can write

M ' Q
Ik O

O O
Q T ,

where Q is the orthogonal matrix of eigenvectors. Since  weY ' (Y1 , ... ,Yn)
T ' Q TX - Nn(0 , I)

now have

X TMX ' Y T
Ik O

O O
Y ' j

k

j'1
Y 2

j - χ2
k .

Q.E.D.

5.6. Applications to statistical inference under normality

5.6.1 Estimation

Statistical inference is concerned with parameter estimation and parameter inference. The

latter will be discussed in the next subsections.

Loosely speaking, an estimator of a parameter is a function of the data which serves as an

approximation of the parameter involved. For example, if X1, X2,...,Xn is a random sample from

the N(F,F2) distribution then the sample mean  may serve as an estimator of theX ' (1 /n)'n
j'1Xj

unknown parameter µ (the population mean). More formally,  given a data set {X1, X2,...,Xn } for



177

which the joint distribution function depends on an unknown parameter (vector) 2, an estimator

of 2 is a Borel measurable function  =  gn(X1,...,Xn) of the data which serves as anθ̂

approximation of 2. Of course, the function gn should not depend on unknown parameters itself.

In principle we can construct many functions of the data that may serve as an

approximation of an unknown parameter. For example, one may consider using  X1 only as an

estimator of µ. So the question arises which function of the data should be used. In order to be

able to select among the many candidates for an estimator, we need to formulate some desirable

properties of estimators. The first one is unbiasedness:

Definition 5.3: An estimator   of a  parameter (vector) 2 is unbiased if   = 2.θ̂ E[θ̂]

The unbiasedness property is not specific to a particular value of the parameter involved, but

should hold for all possible values of this parameter, in the sense that if we draw a new data set

from the same type of distribution but with a different parameter value, the estimator should stay

unbiased. In other words, if the joint distribution function of the data is Fn(x1,...,xn|2), where 2 0

1 is an unknown parameter (vector) in a parameter space 1, i.e., the space of all possible values

of 2,  and   is an unbiased estimator of 2, thenθ̂ ' gn(X1,....,Xn) mgn(x1,....,xn)dFn(x1,....,xn|θ) ' θ

for all 2 0 1. 

Note that in the above example both  and  X1 are unbiased estimators of µ. Thus, weX

need a further criterion in order to select an estimator. This criterion is efficiency:

Definition 5.4: An unbiased estimator   of an unknown scalar parameter 2 is efficient  if for allθ̂
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other unbiased estimators    In the case that 2 is a parameter vector theθ̃ , var(θ̂) # var(θ̃) .

latter reads:    is a positive semi-definite matrix..Var(θ̃) & Var(θ̂)

In our example,   X1  is not an efficient  estimator of  µ, because   andvar(X1) ' σ2

 But is  efficient?  In order to answer this question, we need to derive thevar(X) ' σ2 /n . X

minimum variance of an unbiased estimator, as follows. For notational convenience, stack the

data  in a vector X. Thus,  in the univariate case, X = (X1, X2,...,Xn )
T, and in the multivariate case,

X =   Assume that the joint distribution of X is absolutely continuous with density(X T
1 ,....,X T

n )T .

fn(x|2), which for each x is twice continuously differentiable in 2. Moreover, let  be anθ̂ ' gn(X)

unbiased estimator of 2. Then

mgn(x)fn(x|θ)dx ' θ (5.8)

Furthermore, assume for the time being that 2 is a scalar, and let

d
dθmgn(x)fn(x|θ)dx ' mgn(x)

d
dθ

fn(x|θ)dx . (5.9)

Conditions for (5.9)  can be derived from the mean-value theorem and the dominated

convergence theorem. In particular, (5.9) is true for all 2 in an open set 1 if

  < 4. m|gn(x)|supθ0Θ |d 2fn(x|θ)/(dθ)2|dx

Then if follows from (5.8) and (5.9) that 

mgn(x)
d
dθ

ln(fn(x|θ)) fn(x|θ)dx ' mgn(x)
d
dθ

fn(x|θ)dx ' 1 (5.10)

Similarly, if 
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d
dθmfn(x|θ)dx ' m

d
dθ

fn(x|θ)dx (5.11)

which is true for all 2 in an open set 1 for which  then, sincemsupθ0Θ |d 2fn(x|θ)/(dθ)2|dx < 4 ,

 = 1, we havemfn(x|θ)dx

m
d
dθ

ln(fn(x|θ)) fn(x|θ)dx ' m
d
dθ

fn(x|θ)dx ' 0. (5.12)

Denoting  it follows now from (5.10) that  and from (5.12) thatβ̂ ' d ln(fn(X|θ))/dθ , E[θ̂.β̂] ' 1

 = 0. Therefore, Since by the  Cauchy-SchwartzE[β̂] cov(θ̂,β̂) ' E[θ̂.β̂] & E[θ̂]E[β̂] ' 1.

inequality,   we now have that |cov(θ̂,β̂)| # var(θ̂) var(β̂) , var(θ̂) $ 1/var(β̂) :

var(θ̂) $ 1

E d ln(fn(X|θ))/dθ 2
. (5.13)

This result is known as the Cramer-Rao inequality, and the right-hand side of (5.13) is called the

Cramer-Rao lower bound. More generally we have:

Theorem 5.11: (Cramer-Rao) Let  fn(x|2) be the joint density of the data, stacked in a vector X, 

where 2 is a parameter vector. Let   be an unbiased estimator of  2. Then   =θ̂ Var(θ̂)

 where D is a  positive semi-definite matrix.E (Mln(fn(X|θ)/MθT) (Mln(fn(X|θ)/Mθ) &1
% D ,

Now let us return to our problem whether the sample mean   of a random sample fromX

the N(F,F2) distribution is an efficient estimator of µ. In this case the joint density of the sample

is  hence   andfn(x |µ,σ2) ' (n
j'1exp(&½(xj&µ)2/σ2) / σ22π , Mln(fn(X|µ,σ2)) /Mµ ' 'n

j'1(Xj&µ)/σ2

thus the Cramer-Rao lower bound is
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1

E Mln(fn(X|µ,σ2)) /Mµ 2
' σ2/n. (5.14)

This is just the variance of the sample mean  hence  is an efficient estimator of µ.  This resultX , X

holds for the multivariate case as well:

Theorem 5.12: Let X1, X2,...,Xn be a random sample from the  distribution. Then theNk[µ ,Σ]

sample mean   is an unbiased and efficient estimator of  µ.X ' (1/n)'n
j'1Xj

The sample variance of a random sample X1, X2,...,Xn  from a univariate distribution with

expectation µ and variance   is defined byσ2

S 2 ' (1/(n&1))'n
j'1(Xj&X )2 , (5.15)

which serves as an estimator of F2.  An alternative form of the sample variance is 

σ̂2 ' (1/n)'n
j'1(Xj&X )2 '

n&1
n

S 2 , (5.16)

but as I will show for the case of a random sample from the N(F,F2) distribution, (5.15) is an

unbiased estimator, and (5.16) is not:

Theorem 5.13: Let S2 be the sample variance of a random sample X1,...,Xn from the N(F,F2)

distribution. Then (n!1)S2/F2 is distributed χ2
n&1 .

The proof of Theorem 5.13 is left as an exercise. Since the expectation of the  distribution isχ2
n&1

n!1, this result implies that   whereas by (5.16), Moreover,E(S 2) ' σ2 , E(σ̂2) ' σ2(n&1)/n .
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since the variance of the  distribution is 2(n!1), it follows from Theorem 5.13 thatχ2
n&1

Var(S 2) ' 2σ4/(n&1) . (5.17)

The Cramer-Rao lower bound for an unbiased estimator of   is  so that   is notσ2 2σ4 /n , S 2

efficient, but it is close if n is large.

For a random sample X1, X2,...,Xn  from a multivariate distribution with expectation vector

µ and variance matrix G the sample variance matrix takes the form

Σ̂ ' (1/(n&1))'n
j'1(Xj&X )(Xj&X )T . (5.18)

This is also an unbiased estimator of  even if the distibution involved is notΣ ' Var(Xj) ,

normal.

5.6.2 Confidence intervals

Since estimators are approximations of unknown parameters, the question arises how

close they are. I will answer this question for the sample mean and the sample variance in the

case of a random sample X1, X2,...,Xn from the N(F,F2) distribution. 

It is almost trivial that henceX - N(µ ,σ2/n) ,

n(X&µ)/σ - N(0,1) . (5.19)

Therefore, for given " 0 (0,1) there exists a $ > 0 such that 

P [*X&µ* # βσ/ n] ' P * n(X&µ)/σ* # β ' m
β

&β

exp(&u 2 /2)

2π
du ' 1 & α . (5.20)

For example, if we choose " = 0.05 then $ = 1.96, so that in this case 

P [X&1.96σ/ n # µ # X%1.96σ/ n] ' 0.95

The interval  is called the 95% confidence interval of µ. If F would be[X&1.96σ/ n ,X%1.96σ/ n]
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known, then this interval can be computed and will tell us how close   and µ are, with a marginX

of error of 5%. But in general F is not known, so how do we proceed then?

In order to solve this problem, we need the following corollary of Theorem 5.7:

Theorem 5.14: Let X1, X2,...,Xn be a random sample from the N(F,F2) distribution. Then the

sample mean   and the sample variance   are independent.X S 2

Proof: Observe that    +X
(
' ((X1&µ)/σ , (X2&µ)/σ , ..... , (Xn&µ)/σ)T - Nn(0 , In) , X ' µ

 say,  and(σ/n , ... ,σ/n)X
(
' b % BX

(
,

(X1&X̄)/σ

:

(Xn&X̄)/σ

' I &
1
n

1

1

:

1

(1 ,1 , ... ,1) X
(
' CX

(
, say .

The latter implies that    because C is(n&1)S 2 /σ2 ' X T
( C TCX

(
' X T

( C 2X
(
' X T

( CX
(

,

symmetric and idempotent, with rank(C) = trace(C) = n ! 1. Therefore, by Theorem 5.7  the

sample mean and the sample variance are independent if BC = 0, which in the present case is

equivalent to the condition CBT = 0. The latter is easily verified:

CB T '
σ
n

I &
1
n

1

1

:

1

(1 , ..... ,1)

1

1

:

1

'
σ
n

1

1

:

1

&
1
n

1

1

:

1

n ' 0

Q.E.D.

It follows now from (5.19),  Theorems 5.13 and 5.14, and the definition of the Student t

distribution  that:
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Theorem 5.15: Under the conditions of Theorem 5.14, n(X̄ & µ) /S - tn&1 .

Recall from Chapter 4 that the tn!1 distribution has density

hn&1(x) '
Γ(n/2)

(n&1)π Γ((n&1)/2) (1%x 2/(n&1))n/2
, (5.21)

where  Thus, similarly to (5.20), for each  " 0 (0,1) and sampleΓ(y) ' m
4

0
x y&1exp(&x)dx , y > 0.

size n there exists a $n > 0 such that

P [*X&µ* # βnS/ n] ' m
βn

&βn

hn&1(u)du ' 1 & α , (5.22)

so that   is now the (1!")×100% confidence interval of µ[X&βnS/ n ,X%βnS/ n]

Similarly, on the basis of Theorem 5.13 we can construct confidence intervals of  σ2 .

Recall from Chapter 4 that the   distribution has density χ2
n&1

gn&1(x) '
x (n&1)/2&1exp(&x/2)

Γ((n&1)/2)2(n&1)/2
.

For given  " 0 (0,1) and sample size n we can choose   $1,n   <   $2,n   be such that  

P[(n&1)S 2/β2,n # σ2 # (n&1)S 2/β1,n] ' P[β1,n # (n&1)S 2/σ2# β2,n]

' m
β2,n

β1,n

gn&1(u)du ' 1 & α .
(5.23)

There are different ways to choose $1,n  and  $2,n  such that the last equality in (5.23) holds.

Clearly, the optimal choice is  such that   is minimal because it will yield the smallestβ&1
1,n&β

&1
2,n

confidence interval, but that is computationally complicated. Therefore, in practice $1,n  and  $2,n
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are often chosen such that

m
β1,n

0
gn&1(u)du ' α/2 , m

4

β2,n

gn&1(u)du ' α/2 . (5.24)

A practical point is how to solve the integral equations in (5.20), (5.22) and (5.24). Most

statistics and econometrics textbooks contain tables from which you can look op the values of the

$’s involved, given ". Moreover,  there are various web pages from which you can download 

programs to calculate these values.3

5.6.3 Testing parameter hypotheses

Suppose  you consider starting up a business to sell a new product in the USA, say a

particular type of European car which is not yet imported in the US. In order to determine

whether there is a market for this car in the US, you have selected randomly n persons from the

population of potential buyers of this car. Each person j in the sample is asked how much he or

she would be willing to pay for this car. Let the answer be Yj. Moreover, suppose that the cost of

importing this car  is a fixed amount Z per car. Denote   and assume that  Xj is Xj ' ln(Yj /Z) ,

N(F,F2) distributed.  If F > 0 then your planned car import business will be profitable, otherwise

you should forget about this idea. 

In order to decide whether F > 0 or F # 0, you need a decision rule based on the random

sample   X = (X1, X2,...,Xn )
T.  Any decision rule takes the following form. Given a subset C of ún,

to be determines below, decide that F > 0 if X 0 C, and decide that F # 0 if X ó C.  Thus, you

decide that the hypothesis  F # 0 is true if  and you decide that the hypothesis F >I(X 0 C) ' 0,

0 is true if  In this case the hypothesis  F # 0 is called the null hypothesis, usuallyI(X 0 C) ' 1.
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denoted by H0: F # 0, and the hypothesis  F > 0 is called the alternative hypothesis, denoted by 

H1:  F > 0.  The procedure itself is called a statistical test.

This decision rule yields two types of errors. The first one, called the type I error, is that

you decide that H1 is true while in reality H0 is true. The other error, called the type II error, is

that you decide that H0 is true while in reality  H1 is true. Both errors come with costs. If the type

I error occurs you will  incorrectly assume that your car import business will be profitable, so that

you will loose your investment if you start up you business. If the type II error occurs you will

forgo a profitable business opportunity. Clearly, the type I error is the more serious of the two. 

Now choose C such that  if and only if   for some fixed $ > 0. ThenX 0 C n (X /S ) > β

P[X 0 C] ' P[ n(X /S ) > β] ' P[ n(X&µ) /S % nµ /S > β]

' P[ n (X&µ) /σ % n µ /σ > β.S/σ]

' m
4

&4
P[S/σ < (u % n µ /σ)/β]exp[&u 2 /2]/ 2π du ,

(5.25)

where the last equality follows from Theorem 5.14 and (5.19).  If F # 0 this probability is the

probability of a type I error. Clearly, the probability (5.25) is an increasing function of µ, hence

the maximum probability of a type I error is obtained for µ = 0. But if µ = 0 then it follows from

Theorem 5.15 that  hencen(X /S ) - tn&1 ,

maxµ# 0P[X 0 C] ' m
4

β
hn&1(u)du , (5.26)

where  is the density of the  distribution.  See (5.21). The probability (5.26) is called thehn&1 tn&1

size of the test of the null hypothesis involved, which is the maximum risk of a type I error, and

"×100% is called the significance level of the test.  Depending on how risk averse you are, you
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have to choose a size " 0 (0,1), and therefore you have to choose  $ =  $n such

that  This value $n is called the critical value of the test involved, and since it ism
4

βn

hn&1(u)du ' α.

based on the distribution of  the latter is called the test statistic involved.  n(X /S ) ,

Replacing $ in  (5.25) by  $n , 1 minus the probability of a type II error is a function of µ/F

> 0:

 

ρn(µ/σ) ' m
4

& n µ /σ

P[S/σ < (u % n µ /σ)/βn]
exp(&u 2 /2)

2π
du , µ > 0. (5.27)

This function is called the power function, which is the probability of correctly rejecting the null

hypothesis H0 in favor of the alternative hypothesis H1. Consequently,  is1 & ρn(µ/σ) , µ > 0,

the probability of a type II error. 

The test in this example is called a t-test, because the critical value  $n  is derived from

the t-distribution. 

A test is said to be consistent if the power function converges to 1 as n 6 4 for all values

of the parameter(s) under the alternative hypothesis.  Using the results in the next chapter it can

be shown that the above test is consistent:

limn64ρn(µ/σ) ' 1 if µ > 0. (5.28)

Now let us consider the test of the null hypothesis   H0: F = 0 against the alternative

hypothesis  H1: F … 0.  Under the null hypothesis,   exactly. Given the size " 0n(X /S ) - tn&1

(0,1), choose the critical value  $n > 0 as in (5.22). Then H0  is accepted  if   and| n(X /S )| # βn

rejected in favor of H1 if   The power function of this test is| n(X /S )| > βn .
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ρn(µ/σ) ' m
4

&4
P[S/σ < |u % nµ/σ | /βn]exp[&u 2 /2]/ 2π du , µ … 0. (5.29)

This test is known as is the two-sided t-test. Also this test is consistent:

limn64ρn(µ/σ) ' 1 if µ … 0. (5.30)

5.7. Applications to regression analysis

5.7.1 The linear regression model

Consider a random sample   j = 1,2,...,n,  from a k-variate nonsingularZj ' (Yj ,X
T

j )T ,

normal distribution, where  We have seen in Section 5.3 that we can write Yj 0 ú , Xj 0 úk&1 .

Yj ' α % X T
j β % Uj , Uj - N(0 ,σ2) , j ' 1,..,n, (5.31)

where    is independent of Xj.   This is the classical linear regression model,Uj ' Yj & E[Yj|Xj]

where Yj is the dependent variable, Xj is the vector of independent variables, also called the

regressors, and Uj is the error term. This model is widely used in empirical econometrics, even in

the case where Xj  is not known to be normally distributed. 

Denoting 

Y '

Y1

!

Yn

, X '

1 X T
1

! !

1 X T
n

, θ0 '
α
β

, U '

U1

!

Un

,

model (5.31) can be written in vector/matrix form as

Y ' Xθ0 % U , U|X - Nn[0 ,σ2In] , (5.32)

where U|X is a short-hand notation for " U conditional on X".  

In the next subsections I will address the problems how to estimate the parameter vector
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20 and how to test various hypotheses about 20 and its components.

5.7.2 Least squares estimation

Observe that

E[(Y & Xθ)T(Y & Xθ)] ' E[(U % X(θ0&θ))T(U % X(θ0&θ))]

' E[U TU] % 2(θ0&θ)TE X TE[U |X] % (θ0&θ)T E[X TX] (θ0&θ)

' n.σ2 % (θ0&θ)T E[X TX] (θ0&θ) .

(5.33)

Hence it follows from (5.33) that4

θ0 ' argmin
θ0úk

E[(Y & Xθ)T(Y & Xθ)] ' E[X TX] &1E[X TY] , (5.34)

provided that the matrix  is nonsingular. However, the nonsingularity of the distributionE[X TX]

of   guarantees that   is nonsingular, because it follows from Theorem 5.5Zj ' (Yj ,X
T

j )T E[X TX]

that the solution (5.34)  is  unique if GXX =   is nonsingular.Var(Xj)

The expression (5.34) suggests to estimate 20  by the Ordinary5  Least Squares (OLS)

estimator 

θ̂ ' argmin
θ0úk

(Y & Xθ)T(Y & Xθ) ' X TX &1X TY . (5.35)

It follows easily from (5.32) and (5.35) that

θ̂ & θ0 ' X TX &1X TU , (5.36)

hence  is conditionally unbiased:   and therefore also unconditionally unbiased:θ̂ E[θ̂|X] ' θ0 ,

 More generally, E[θ̂] ' θ0 .



189

θ̂|X - Nk[θ0 ,σ2(X TX)&1] . (5.37)

Of course, the unconditional distribution of  is not normal. θ̂

Note that  the OLS estimator is not efficient, because  is  the Cramer-Raoσ2(E[X TX])&1

lower bound of an unbiased estimator of (5.37), and  Var(θ̂) ' σ2E[(X TX)&1] … σ2(E[X TX])&1.

However, the OLS estimator is the most efficient of all conditionally unbiased estimators  ofθ̃

(5.37) that are linear functions of Y. In other words, the OLS estimator is the  Best Linear

Unbiased Estimator (BLUE).  This result is known as the Gauss-Markov theorem:

Theorem 5.16: (Gauss-Markov theorem) Let C(X)  be a k×n matrix whose elements are Borel

measurable functions of the random elements of X, and let  If   then forθ̃ ' C(X)Y . E[θ̃|X] ' θ0

some positive semi-definite k×k matrix D,    + D. Var[θ̃|X] ' σ2C(X)C(X)T ' σ2(X TX)&1

Proof: The conditional unbiasedness condition implies that C(X)X = Ik, hence   =   20  +θ̃

C(X)U, and thus   NowVar(θ̃|X) ' σ2C(X)C(X)T .

D ' σ2[C(X)C(X)T & (X TX)&1] ' σ2[C(X)C(X)T & C(X)X(X TX)&1X TC(X)T]

' σ2C(X)[In & X(X TX)&1X T]C(X)T ' σ2C(X)MC(X)T ,

say, where the second equality follows from the unbiasedness condition CX = Ik. The matrix

M ' In & X X TX &1X T (5.38)

is idempotent, hence its eigenvalues are either 1 or 0.  Since all the eigenvalues are non-negative,

M is positive semi-definite, and so is C(X)MC(X)T.  Q.E.D.

Next, we need an estimator of the error variance F2.  If we would observe the errors Uj,
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then we could use the sample variance  of the Uj ‘s as an unbiasedS 2 ' (1/(n&1))'n
j'1(Uj&U )2

estimator. This suggests to use OLS residuals,

Ûj ' Yj & X̃ T
j θ̂ , where X̃j '

1

Xj

, (5.39)

instead of the actual errors Uj in this sample variance.  Taking into account that

'n
j'1Ûj / 0, (5.40)

the feasible variance estimator involved takes the form  However, thisŜ
2
' (1/(n&1))'n

j'1Û
2
j .

estimator is not unbiased, but a minor correction will yield an unbiased estimator of  F2, namely

S 2 ' (1/(n&k))'n
j'1Û

2
j , (5.41)

which is called the OLS estimator of F2:  The unbiasedness of this estimator is a by-product of

the following more general result, which is related to the result of Theorem 5.13.

Theorem 5.17:  Conditional on X and well as unconditionally,    hence(n&k)S 2/σ2 - χ2
n&k ,

E[S 2] ' σ2 .

Proof: Observe that 

'n
j'1Û

2
j ' 'n

j'1(Yj & X̃ T
j θ̂ )2 ' 'n

j'1 Uj & X̃ T
j (θ̂&θ0 )

2

' 'n
j'1U

2
j & 2 'n

j'1UjX̃
T

j (θ̂&θ0 ) % (θ̂&θ0 )T 'n
j'1X̃

T
j X̃j (θ̂&θ0 )

' U TU & 2U TX(θ̂&θ0 ) % (θ̂&θ0 )X TX (θ̂&θ0 )

' U TU & U TX(X TX)&1X TU ' U TMU ,

(5.42)

where the last two equalities follow from (5.36) and (5.38), respectively. Since the matrix M is
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idempotent, with rank 

rank(M) ' trace(M) ' trace(In) & trace X X TX &1X T ' trace(In) & trace X TX &1X TX

' n&k

it follows from Theorem 5.10 that conditional on X, (5.42) divided by  has a  distribution:σ2 χ2
n&k

'n
j'1Û

2
j /σ2 |X - χ2

n&k . (5.43)

It is left as an exercise to prove that (5.43) implies that also the unconditional distribution of

(5.42)  divided by  is :σ2 χ2
n&k

'n
j'1Û

2
j /σ2 - χ2

n&k . (5.44)

Since the expectation of the  distribution is n!k, it follows from (5.44) that the OLSχ2
n&k

estimator (5.41) of  is unbiased. Q.E.D.σ2

Next, observe from (5.38) that XTM = O, so that by Theorem 5.7 (XTX)!1XTU and UTMU

are independent, conditionally on X, i.e.

 P[X TU # x and U TMU # z|X] ' P[X TU # x|X].P[U TMU # z|X] , œ x 0 úk , z $ 0.

Consequently,

Theorem 5.18: Conditional on X,   are independent,θ̂ and S 2

but unconditionally they can be dependent.

Theorems 5.17 and 5.18 yield two important corollaries, which I will state in the next

theorem. These results play a key role in statistical testing.
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Theorem 5.19:

(a)  Let  be a given nonrandom vector. Then c 0 úk

c T(θ̂&θ0)

S c T(X TX)&1c
- tn&k . (5.45)

(b) Let R be a given nonrandom m×k matrix with rank m # k. Then 

(θ̂&θ0)
T R T R X TX &1R T &1

R (θ̂&θ0)

m.S 2
- Fm,n&k . (5.46)

Proof of (5.45): It follows from (5.37) that   hencec T(θ̂&θ0)|X - N[0 ,σ2c T(X TX)&1c] ,

c T(θ̂&θ0)

σ c T(X TX)&1c
/00 X - N[0 ,1] . (5.47)

If follows now from Theorem 5.18 that conditional on X the random variable in (5.47) and S2 are

independent, hence it follows from Theorem 5.17 and the definition of the t-distribution that

(5.45) is true conditional on X, and therefore also unconditionally.

Proof of  (5.46): It follows from (5.37) that    henceR(θ̂&θ0)|X - Nm[0 ,σ2R(X TX)&1R T] ,

it follows from Theorem 5.9 that 

(θ̂&θ0)
T R T R X TX &1R T &1

R (θ̂&θ0)

σ2
/00 X - χ2

m . (5.48)

Again it follows from Theorem 5.18 that conditional on X  the random variable in (5.48) and S2

are independent, hence it follows from Theorem 5.17 and the definition of the F-distribution that

(5.46)  is true conditional on X, and therefore also unconditionally. Q.E.D.
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Note that the results in  Theorem 5.19 do not hinge on the assumption that the vector Xj in

model  (5.31) has a multivariate normal distributed. The only conditions that matter for the

validity of Theorem 5.19 are that in (5.32),   and U|X - Nn(0,σ2In) , P[0 < det(X TX) < 4] ' 1.

5.7.3 Hypotheses testing

Theorem 5.19 is the basis for hypotheses testing in linear regression analysis. First,

consider the problem whether a particular components of the vector Xj of explanatory variables in

model (5.31) has an effect on Yj or not. If not, the corresponding component of $ is zero. Each 

component of $ corresponds to a component  Thus, the null hypothesisθi,0, i > 0, of θ0 .

involved is 

H0: θi,0 ' 0. (5.49)

Let  be component i of  and let the vector  be column i of the unit matrix  Then itθ̂i θ̂ , ei Ik .

follows from Theorem 5.19(a) that under the null hypothesis (5.49), 

t̂ i '
θ̂i

S e T
i (X TX)&1ei

- tn&k . (5.50)

The statistic  in (5.50) is called the t-statistic or t-value of the coefficient  If it conceivablet̂ i θi,0.

that   can take negative or positive values, the appropriate alternative hypothesis isθi,0

H1: θi,0 … 0. (5.51)

Given the size " 0 (0,1) of the test, the critical value ( corresponds to   where P[|T| > γ] ' α ,

 Thus, the null hypothesis (5.49) is accepted if  and rejected in favor of theT - tn&k . |t̂ i| # γ ,

alternative hypothesis (5.51) if   In the latter case we say that  is significant at the|t̂ i| > γ . θi,0

"×100% significance level. This test is called the two-sided t-test.
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If the possibility that  is negative can be excluded, the appropriate alternativeθi,0

hypothesis is

H %

1 : θi,0 > 0 . (5.52)

Given the size " the critical value  (+  involved now corresponds to   where P[T > γ
%
] ' α ,

again  Thus the null hypothesis (5.49) is accepted if   and rejected in favor ofT - tn&k . t̂ i # γ
%

,

the alternative hypothesis (5.52)  if    This is the right-sided t-test. Similarly, if thet̂ i > γ
%

.

possibility that  is positive can be excluded, the appropriate alternative hypothesis isθi,0

H &

1 : θi,0 < 0 . (5.53)

Then the null hypothesis (5.49) is accepted if   and rejected in favor of the alternativet̂ i $ &γ
%

,

hypothesis (5.53)  if    This is the left-sided t-test. t̂ i < &γ
%

.

If the null hypothesis (5.49) is not true, then it can be shown, using the results in the next

chapter, that for n 6 4 and arbitrary M > 0,   and  if P[t̂ i > M] 6 1 if θi,0 > 0 P[t̂ i < &M] 6 1

 <  0. Therefore, the t-tests involved are consistent.θi,0

Finally, consider a null hypothesis of the form

H0: Rθ0 ' q ,

where R is a given m×k matrix with rank m#k , and q is a given m×1 vector .
(5.54)

For example, the null hypothesis that the parameter vector $ in model (5.31) is a zero

vector corresponds to   This hypothesis implies thatR ' (0 , Ik&1) , q ' 0 0 úk&1 , m ' k&1.

none on the components of Xj have any effect on Yj. In that case Yj = " + Uj, and since Uj and Xj

are independent, so are Yj and Xj.

It follows from Theorem 5.19(b) that under the null hypothesis (5.54),
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F̂ '
(Rθ̂&q)T R X TX &1R T &1

(Rθ̂&q)

m.S 2
- Fm,n&k . (5.55)

Given the size " the critical value  ( is chosen such that    where  P[F > γ] ' α , F - Fm,n&k .

Thus the null hypothesis (5.54) is accepted if   and rejected in favor of the alternativeF̂ # γ ,

hypothesis   if For obvious reasons, this test is called the F test. Moreover, it canRθ0 … q F̂ > γ .

be shown, using the results in the next chapter, that if the null hypothesis (5.54) is false then for

any M > 0,   Thus the F test is a consistent test. limn64P[F̂ > M] ' 1.

5.8. Exercises

1. Let

Y

X
- N2

1

0
,

4 1

1 1
.

(a) Determine E(Y,X).

(b) Determine var(U), where U = Y ! E(Y,X).

(c) Why are U and X independent?

2. Let X be n-variate standard normally distributed, and let A be a non-stochastic n×k matrix

with rank k < n. The projection of X on the column space of A is a vector p such that the

following two conditions hold:

(1) p is a linear combination of the columns of A; 

(2) the distance between X and p, , is minimal.2X&p2 ' (X&p)T(X&p)

(a) Show that p = A(ATA)-1ATX.  

(b) Is it possible to write down the density of p? If yes, do it. If no, why not? 
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(c) Show that  has a P2 distribution. Determine the degrees of freedom  involved. 2p22 ' p Tp

(d) Show that  has a P2 distribution. Determine the degrees of freedom involved.2X&p22

(e) Show that  and  are independent.2p2 2X&p2

3. Prove Theorem 5.13.

4. Show that (5.11) is true for 2 in an open set 1 if  is for each x continuousd 2fn(x|θ)/(dθ)2

on 1, and  Hint. Use the mean value theorem and the dominatedmsupθ0Θ |d 2fn(x|θ)/(dθ)2|dx < 4 .

convergence theorem.

5. Show that for a random sample X1, X2,...,Xn   from a distribution with expectation µ and

variance   the sample variance (5.15) of is an unbiased estimator of even if the distributionσ2 σ2 ,

involved is not normal.

6. Prove (5.17).

7. Show that or a random sample X1, X2,...,Xn  from a multivariate distribution with

expectation vector µ and variance matrix G the sample variance matrix (5.18) is and unbiased

estimator of G.

8. Given a random sample of size n from the  distribution, prove that the Cramer-N(µ ,σ2)

Rao lower bound for an unbiased estimator of   is  σ2 2σ4 /n .

9. Prove Theorem 5.15.

10. Prove the second equalities in (5.34) and (5.35).

11. Show that the Cramer-Rao lower bound of an unbiased estimator of (5.37)  is equal to

σ2(E[X TX])&1 .

12. Show that the matrix (5.38) is idempotent.
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13. Why is (5.40) true?

14. Why does (5.43) imply (5.44)?

15. Suppose your econometric software package reports that the OLS estimate of a regression

parameter is 1.5, with corresponding t-value  2.4. However, you are only interested in whether

the true parameter value is 1 or not. How would you test these hypotheses? Compute the test

statistic involved. Moreover,  given that the sample size is n = 30 and that your model has 5 other

parameters,  conduct the test  using size 0.05. You have to look up the critical value involved  in

one of the statistics or econometrics textbook that contain tables of the t-distribution.6

Appendix 

5.A. Proof of Theorem 5.8 

Note again that the condition AB = O only makes sense if both A and B are singular, if

otherwise either A, B or both are O. Write   where QA and QB areA ' QAΛAQ T
A , B ' QBΛBQ T

B ,

orthogonal matrices of eigenvectors and 7A and 7B are diagonal matrices of corresponding

eigenvalues. Then    Since A and B are both singular,Z1 ' X TQAΛAQ T
A X , Z2 ' X TQBΛBQ T

B X .

it follows that 7A and 7B are singular. Thus let

ΛA '

Λ1 O O

O &Λ2 O

O O O

,

where 71 is the k × k diagonal matrix of positive eigenvalues, and !72 the m × m diagonal matrix

of negative eigenvalues of A, with k + m < n. Then



198

Z1 ' X TQA

Λ1 0 0

0 &Λ2 0

0 0 0

Q T
A X ' X TQA

Λ
1

2

1 0 0

0 Λ
1

2

2 0

0 0 0

Ik 0 0

0 &Im 0

0 0 In&k&m

Λ
1

2

1 0 0

0 Λ
1

2

2 0

0 0 0

Q T
A X .

Similarly, denote

ΛB '

Λ(

1 O O

O &Λ(

2 O

O O O

,

where 71
* is the p × p diagonal matrix of positive eigenvalues, and !72

* is the q × q diagonal

matrix of negative eigenvalues of B, with p + q < n. Then

Z2 ' X TQB

(Λ(

1)
1

2 0 0

0 (Λ(

2)
1

2 0

0 0 0

Ip 0 0

0 &Iq 0

0 0 In&p&q

(Λ(

1)
1

2 0 0

0 (Λ(

2)
1

2 0

0 0 0

Q T
B X .

Next, let

Y1 '

Λ
1

2

1 O O

O Λ
1

2

2 O

O O O

Q T
A X ' M1X , say , Y2 '

(Λ(

1)
1

2 O O

O (Λ(

2)
1

2 O

O O O

Q T
B X ' M2X , say .

Then
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Z1 ' Y T
1

Ik O O

O &Im O

O O In&k&m

Y1 ' Y T
1 D1Y1 , say ,

and

Z2 ' Y T
2

Ip O O

O &Iq O

O O In&p&q

Y2 ' Y T
2 D2Y2 , say ,

where the diagonal matrices D1 and D2 are nonsingular but possibly different. Clearly, Z1 and Z2 

are independent if Y1 and Y2 are. Now observe that 

AB ' QA

Λ
1

2

1 0 0

0 Λ
1

2

2 0

0 0 In&k&m

Ik 0 0

0 &Im 0

0 0 In&k&m

Λ
1

2

1 0 0

0 Λ
1

2

2 0

0 0 0

Q T
A QB

(Λ(

1)
1

2 0 0

0 (Λ(

2)
1

2 0

0 0 0

×

Ip 0 0

0 &Iq 0

0 0 In&p&q

(Λ(

1)
1

0 0 0

0 (Λ(

2)
1

2 0

0 0 In&p&q

Q T
B .

The first three matrices are nonsingular, and so are the last three. Therefore, AB = O if and only

if

M1M
T

2 '

Λ
1

2

1 0 0

0 Λ
1

2

2 0

0 0 0

Q T
A QB

(Λ(

1)
1

2 0 0

0 (Λ(

2)
1

2 0

0 0 0

' O .
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1. In order to distinguish the variance of a random variable from the variance matrix of a
random vector, the latter will be denoted by Var, with capital V.

2. The capital C in Cov indicates that this is a covariance matrix rather than a covariance of
two random variables.

3. These calculators are also included in my free econometrics software package EasyReg
International, which you can download from http://econ.la.psu.edu/~hbierens/EASYREG.HTM.

4. Recall that "argmin" stands for the argument for which the function involved takes a
minimum.

5. The OLS estimator is called "ordinary" to distinguish it from the nonlinear least squares
estimator. See Chapter 6 for the latter.

6.  Or use the author’s  free econometrics software package EasyReg International.  The t-
distribution calculator can be found under "Tools".

It follows now from Theorem 5.7 that the latter implies that Y1 and Y2 are independent, hence the

condition AB = O implies that Y1 and Y2 are independent. Q.E.D.

Endnotes
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Chapter 6

Modes of Convergence

6.1. Introduction

Toss a fair coin n times, and let Yj = 1 if the outcome of the j-th tossing is head, and Yj =

!1 if the outcome involved is tail. Denote  For the case n = 10 the left-handXn ' (1/n)'n
j'1Yj .

side panel of Figure 6.1 displays the distribution function Fn(x)1  of Xn on the interval [!1.5, 1.5],

and the right-hand side panel displays a typical plot of Xk  for k =1,2,...,10, based on simulated

Yj‘s.2 

Figure 6.1. n = 10. Left: Distribution function of Xn .  Right: Plot of Xk for k=1,2,...,n.

Now let us see what happens if we increase n: First, consider the case n = 100, in Figure 6.2. The

distribution function Fn(x) becomes steeper for x close to zero, and Xn seems to tend towards

zero.  

Figure 6.2. n = 100. Left: Distribution function of Xn .  Right: Plot of Xk for k=1,2,...,n.
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These phenomena are even more apparent for the case n = 1000, in Figure 6.3.

Figure 6.3.  n = 1000. Left: Distribution function of Xn .  Right: Plot of Xk for k=1,2,...,n.

What you see in Figures 6.1-6.3 is the law of large numbers:   inXn ' (1/n)'n
j'1Yj 6 E[Y1] ' 0

some sense, to be discussed below, and the related phenomenon that Fn(x) converges pointwise in

x … 0  to the distribution function  F(x) = I(x $ 0) of a "random" variable X satisfying  P[X ' 0]

= 1.

Next, let us have a closer look at the distribution function of  =  nXn : Gn(x) Fn(x/ n) ,

with corresponding probabilities   k = 0,1,...,n, and see what happens if nP[ nXn ' (2k&n)/ n] ,

64. These probabilities can be displayed in the form of a histogram:

Hn(x) '
P 2(k&1)/ n& n < nXn # 2k/ n& n

2/ n

if x 0 2(k&1)/ n& n , 2k/ n& n , k '0,1,....,n ,

Hn(x) ' 0 elsewhere.

Figures 6.4-6.6 compare Gn(x) with the distribution function of the standard normal

distribution, and Hn(x) with the standard normal density, for n = 10, 100 and 1000.
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Figure 6.4.  n = 10: Left: Gn(x), right: Hn(x), compared with the standard normal distribution.

Figure 6.5.  n = 100: Left: Gn(x), right: Hn(x), compared with the standard normal distribution.

Figure 6.6.  n = 1000: Left: Gn(x), right: Hn(x), compared with the standard normal distribution.

What you see in the left-hand side panels in Figures 6.4-6.6  is the central limit theorem: 

lim
n64

Gn(x) ' m
x

&4

exp[&u 2/2]

2π
du ,

pointwise in x, and what you see in the right-hand side panels is the corresponding fact that

lim
δ90

lim
n64

Gn(x%δ) & Gn(x)

δ
'

exp[&x 2/2]

2π
.
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The law of large numbers and the central limit theorem play a key role in statistics and

econometrics. In this chapter I will review and explain these laws.

6.2. Convergence in probability and the weak law of large numbers

Let Xn  be a sequence of random variables (or vectors) and let X a random or constant

variable (or conformable vector). 

Definition 6.1: We say that Xn converges in probability to X, also denoted as plimn64Xn = X or

,  if for an arbitrary g > 0 we have  = 0, or equivalently,Xn 6p X limn64P(*Xn & X* > g)

 = 1.limn64P(*Xn & X* # g)

In this definition, X may be a random variable or a constant. The latter case, where P(X = c) = 1

for some constant c, is the most common case in econometric applications. Also, this definition

carries over to random vectors, provided that the absolute value function  is replaced by the*x*

Euclidean norm .2x2 ' x Tx

The right-hand side panels of Figures 6.1-6.3 demonstrate the law of large numbers. One

of the versions of this law is the Weak Law of Large Numbers (WLLN), which also applies to

uncorrelated random variables.

Theorem 6.1: (WLLN for  uncorrelated random variables).  Let X1 ,...,Xn be a sequence of

uncorrelated random variables with E(Xj) =  and var(Xj) = , and let  = .µ σ2 < 4 X (1/n)'n
j'1Xj
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Then   = .plimn64X µ

Proof: Since , it follows from Chebishev inequality thatE(X ) ' µ and Var(X ) ' σ2 /n

. Q.E.D.P(*X & µ* > g) # σ2/(ng2) 6 0 if n 6 4

The condition of a finite variance can be traded in for the i.i.d. condition:

Theorem 6.2: (The WLLN  for i.i.d. random variables). Let X1,...,Xn be a sequence of

independent identically distributed random variables with E [|Xj|] < 4 and E(Xj) = , and let µ

. Then   = .X ' (1/n)'n
j'1Xj plimn64X µ

Proof: Let  Yj  = Xj .I(|Xj|  # j) and Zj =  Xj .I(|Xj| > j), so that Xj = Yj + Zj. Then

E*(1 /n)'n
j'1(Zj & E(Zj))* # 2(1/n)'n

j'1E[*Zj*] ' 2(1/n)'n
j'1E[|X1|I(|X1| > j)] 6 0, (6.1)

and

E[*(1 /n)'n
j'1(Yj & E(Yj))*

2] # (1 /n 2)'n
j'1E[Y 2

j ] ' (1 /n 2)'n
j'1E[X 2

1 I(|X1| # j)]

' (1 /n 2)'n
j'1'j

k'1E[X 2
1 I(k & 1 < |X1| # k)]

# (1 /n 2)'n
j'1'j

k'1k.E[|X1|.I(k & 1 < |X1| # k)]

(1 /n 2)'n
j'1'j&1

k'1'j
i'kE[|X1|.I(i & 1 < |X1| # i)] # (1 /n 2)'n

j'1'j&1
k'1E[|X1|.I(|X1| > k & 1)

# (1 /n)'n
k'1E[|X1|.I(|X1| > k & 1)] 6 0

(6.2)

as n 64, where the last equality in (6.2) follows from  the easy equality 'j
k'1 k.αk ' 'j&1

k'1'j
i'kαi ,
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and the convergence results in (6.1)  and (6.2) follow from the fact that  E[|X1|I(|X1| > j)] 6 0

for j 6 4,  because  Using Chebishev’s inequality it follows now from (6.1)  andE[*X1*] < 4 .

(6.2) that for arbitrary g > 0,

P[*(1/n)'n
j'1(Xj & E(Xj))* > g] # P[*(1/n)'n

j'1(Yj & E(Yj))*

% *(1/n)'n
j'1(Zj & E(Zj))*> g]

# P[*(1/n)'n
j'1(Yj & E(Yj))* > g/2] % P[*(1/n)'n

j'1(Zj & E(Zj))*> g/2]

# 4E[*(1/n)'n
j'1(Yj & E(Yj))*

2]/g2 % 2E[*(1/n)'n
j'1(Zj & E(Zj))*]/g 6 0

(6.3)

as n 64.  Note that  the second inequality in (6.3) follow from the fact that for non-negative

random variables X and Y,    #   The theorem underP[X%Y > g] P[X > g/2] % P[Y > g/2] .

review follows now from (6.3), Definition 6.1 and the fact that g is arbitrary. Q.E.D.

Note that Theorems 6.1-6.2 carry over to finite-dimensional random vectors Xj, by

replacing the absolute values  by Euclidean norms: , and the variance by the*.* 2x2 ' x Tx

variance matrix. The reformulation of Theorems 6.1-6.2 for random vectors is left as an easy

exercise.

Convergence in probability carries over after taking continuous transformations. This

results is often referred to as Slutky's theorem:

Theorem 6.3: (Slutsky's theorem). Let Xn a sequence of random vectors in   satisfying  Xn 6p c,úk

where c is non-random .  Let  Q(x) be an   -valued function on   which is continuous in c.úm úk

Then Q(Xn) 6p  Q(c).
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Proof: Consider the case m = k = 1.  It follows from the continuity of  Q that for an

arbitrary g > 0 there exists a  * > 0 such that  implies , hence*x & c* # δ *Ψ(x) & Ψ(c)* # g

P(*Xn & c* # δ) # P(*Ψ(Xn) & Ψ(c)* # g) .

Since  = 1, the theorem follows for the case under review. The morelimn64P(*Xn & c* # δ)

general case with m > 1 and/or k > 1, can be proved along the same lines.  Q.E.D.

The condition that  c is constant is not essential. Theorem 6.3 carries over to the case

where c is a random variable or vector, as we will see in Theorem 6.7 below.

Convergence in probability does not automatically imply convergence of expectations. A

counter-example is Xn = X +1/n, where X  has a Cauchy distribution (see Chapter 4). Then E[Xn]

and E(X) are not defined, but Xn 6p X.  However,

Theorem 6.4: (Bounded convergence theorem) If   Xn   is bounded:  = 1 for someP(*Xn* # M)

M < 4 and all n, then Xn 6p  X  implies limn64E(Xn) = E(X).

Proof: First, X  has to be bounded too, with the same bound M, because otherwise Xn 6p 

X  is not possible. Without loss of generality we may now assume that P(X = 0) = 1 and that Xn is

a non-negative random variable, by replacing Xn with |Xn ! X|, because E[|Xn ! X|] 6 0 implies

limn64E(Xn) = E(X). Next, let Fn(x) be the distribution function of Xn, and let g > 0 be arbitrary.

Then

0 # E(Xn) ' m
M

0
xdFn(x) ' m

g

0
xdFn(x) % m

M

g
xdFn(x) # g % M.P(Xn $ g) . (6.4)
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Since the latter probability converges to zero (by the definition of convergence in probability and

the assumption that Xn is nonnegative, with zero probability limit), we have 0 # limsupn64E(Xn)

# g for all g > 0, hence  = 0. Q.E.D. limn64E(Xn)

The condition that Xn  in Theorem 6.4 is bounded can be relaxed, using the concept of

uniform integrability:

Definition 6.2: A sequence Xn  of random variables is said to be uniformly integrable if 

limM64supn$1E[|Xn| . I(|Xn| > M)] ' 0.

Note that this Definition 6.carries over to random vectors by replacing the absolute value

|.| with the Euclidean norm ||.||. Moreover, it is easy to verify that if  with probability 1*Xn* # Y

for all  n $1, where E(Y) < 4,  then Xn  is uniformly integrable.

Theorem 6.5: (Dominated convergence theorem) Let  Xn   be uniformly integrable. Then Xn 6p  X 

implies limn64E(Xn) = E(X).

Proof: Again, without loss of generality we may assume that P(X = 0) = 1 and that Xn  is a

non-negative random variable. Let 0 <  g < M  be arbitrary. Then similarly to (6.4),

0 # E(Xn) ' m
4

0
xdFn(x) ' m

g

0
xdFn(x) % m

M

g
xdFn(x) % m

4

M
xdFn(x)

# g % M.P(Xn $ g) % supn$1m
4

M
xdFn(x) .

(6.5)

For fixed M the second term at the right-hand side of (6.5) converges to zero. Moreover, by
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uniform integrability we can choose M so large that the third term is smaller than  g. Hence, 0 #

 # 2g for all g > 0, and thus  = 0. Q.E.D.  limsupn64E(Xn) limn64E(Xn)

Also Theorems 6.4 and 6.5 carry over to random vectors, by replacing the absolute value

function  by the Euclidean norm .*x* 2x2 ' x Tx

6.3. Almost sure convergence, and the strong law of large numbers

In most (but not all!) cases where convergence in probability and the weak law of large

numbers apply, we actually have a much stronger result:

Definition 6.3: We say that Xn  converges almost surely (or: with probability 1) to X, also

denoted by Xn 6 X a.s. (or: w.p.1), if

for all g > 0, limn64P(supm$n*Xm & X* # g) ' 1, (6.6)

or equivalently,

P(limn64Xn ' X) ' 1. (6.7)

The equivalence of the conditions (6.6) and (6.7)  will be proved  in Appendix 6.B (Theorem

6.B.1). 

It follows straightforwardly from (6.6) that almost sure convergence implies convergence

in probability. The converse, however, is not true. It is possible that a sequence Xn converges in

probability but not almost surely. For example, let Xn  = Un /n, where the Un’s are i.i.d. non-

negative random variables with distribution function  for u > 0,  forG(u) ' exp(&1/u) G(u) ' 0

u # 0.  Then for arbitrary g > 0,
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P(|Xn| # g) ' P(Un # ng) ' G(ng) ' exp(&1/(ng)) 6 1 as n 6 4 ,

hence Xn 6p  0. On the other hand, 

P(|Xm| # g for all m $ n) ' P(Um # mg for all m $ n) ' Π4
m'nG(mg)

' exp&g&1'4
m'nm

&1 ' 0,

where the second equality follows from the independence of the Un’s, and the last equality

follows from the fact that   Consequently, Xn does not converge to 0 almost'4
m'1m

&1 ' 4 .

surely.

Theorems 6.2-6.5 carry over to the almost sure convergence case, without additional

conditions:

Theorem 6.6: (Kolmogorov's strong law of large numbers). Under the conditions of Theorem

6.2, X̄ 6 µ a.s.

Proof: See Appendix 6.B.

The result of Theorem 6.6 is actually what you see happening in the right-hand side

panels of Figures 6.1-6.3. 

Theorem 6.7: (Slutsky's theorem). Let Xn a sequence of random vectors in úk  converging a.s. to

a (random or constant) vector X. Let Q(x) be an   úm -valued function on  úk  which is

continuous on an open subset 3 B of  úk for which  = 1). Then Ψ(Xn) 6 Ψ(X) a.s.P(X 0 B)
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Proof: See Appendix 6.B.

Since a.s. convergence implies convergence in probability, it is trivial that:

Theorem 6.8: If Xn 6 X a.s., then the result of Theorem 6.4 carries over.

Theorem 6.9: If Xn 6 X a.s., then the result of Theorem 6.5 carries over.

6.4. The uniform  law of large numbers and its applications

6.4.1 The uniform weak law of large numbers

In econometrics we often have to deal with means of random functions. A random

function is a function that is a random variable for each fixed value of its argument. More

precisely:

Definition 6.4:  Let {S,ö,P} be the probability space. A random function f(2) on a subset 1 of a

Euclidean space is a mapping  such that for each Borel set B in ú and each 2f(ω,θ): Ω×Θ 6 ú

0 1, {ω 0 Ω: f(ω ,θ) 0 B} 0 ö .

Usually random functions take the form of a function g(X,2) of a random vector X and a non-

random vector 2. For such functions we can extend the weak law of large numbers for i.i.d.

random variables to a Uniform Weak Law of Large Numbers (UWLLN):
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Theorem 6.10: (UWLLN). Let Xj, j = 1,..,n, be a random sample from a k-variate distribution,

and let  be non-random vectors in a closed and bounded (hence compact4) subsetθ 0 Θ

.  Moreover, let g(x,2) be a Borel measurable function on  such that for each x, Θ d úm úk × Θ

g(x,2) is a continuous function on 1.  Finally, assume that  < 4.  Then E[supθ0Θ*g(Xj ,θ)*]

plimn64supθ0Θ*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]* ' 0.

Proof: See Appendix 6.A.

6.4.2 Applications of the uniform weak law of large numbers

6.4.2.1 Consistency of M-estimators

In Chapter 5 I have introduced the concept of a parameter estimator, and listed a few

desirable properties of estimators, i.e., unbiasedness and efficiency.  Another obviously desirable

property is that the estimator gets closer to the parameter to be estimated if we use more data

information. This is the consistency property:

Definition 6.5: An estimator  of a parameter θ, based on a sample of size n, is called consistentθ̂

if  plimn64θ̂ ' θ.

Theorem 6.6 is an important tool in proving consistency of parameter estimators. A large

class of estimators are obtained by maximizing or minimizing  an objective function of the form 

  where g, Xj and θ are the same as in Theorem 6.10.  These estimators are(1/n)'n
j'1g(Xj ,θ) ,

called M-estimators (where the M indicates that the estimator is obtained by Maximizing or
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Minimizing a Mean of random functions). Suppose that the parameter of interest is  θ0 =

argmaxθ0ΘE[g(X1,θ)],  where Θ is a given closed and bounded set.  Note that "argmax" is a short-

hand notation for the argument for which the function involved is maximal. Then it seems a

natural choice to use  as an estimator of  Indeed, under someθ̂ ' argmaxθ0Θ(1/n)'n
j'1g(Xj ,θ) θ0 .

mild conditions the estimator involved is consistent:

Theorem 6.11: (Consistency of M- estimators) Let  =   = θ̂ argmaxθ0ΘQ̂(θ) , θ0 argmaxθ0ΘQ(θ) ,

where  =  and  with g, Xj and θ the sameQ̂(θ) (1/n)'n
j'1g(Xj ,θ) , Q(θ) ' E [Q̂(θ)] ' E[g(X1 ,θ)] ,

as in Theorem 6.10.  If  20  is unique, in the sense that for arbitrary  g > 0 there exists a * > 0

such that ,  then  .Q(θ0) & sup2θ&θ02>g
Q(θ) > δ plimn64θ̂ ' θ0

Proof: First, note that  and  because g(x,2) is continuous in 2. Seeθ̂ 0 Θ θ0 0 Θ ,

Appendix II.  By the definition of 20, 

0 # Q̄(θ0) & Q̄(θ̂) ' Q̄(θ0) & Q̂(θ0) % Q̂(θ0) & Q̄(θ̂)

# Q̄(θ0) & Q̂(θ0) % Q̂(θ̂) & Q̄(θ̂) # 2sup
θ0Θ

*Q̂(θ) & Q̄(θ)* ,
(6.8)

and it follows from Theorem 6.3 that the right-hand side of (6.8) converges in probability to zero.

Thus:

plimn64 Q(θ̂) ' Q(θ0) . (6.9)

Moreover, the uniqueness condition implies that for arbitrary g > 0 there exists a * > 0 such that 

 if , henceQ(θ0) & Q(θ̂) $ δ 2θ̂ & θ02 > g

P 2θ̂ & θ02 > g # P Q̄(θ0) & Q̄(θ̂) $ δ . (6.10)
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Combining (6.9) and (6.10), the theorem under review follows from Definition 6.1. Q.E.D.

It is easy to verify that Theorem 6.11 carries over to the "argmin" case, simply by

replacing g by -g.

As an example, let  be a random sample from the non-central CauchyX1 , ... ,Xn

distribution, with density   =   and suppose that we know that   ish(x|θ0) 1/[π(1%(x&θ0)
2] , θ0

contained in a given closed and bounded interval Θ.  Let   where  = g(x ,θ) ' f(x&θ) , f(x)

 is the density of the standard normal distribution. Thenexp(&x 2/2)/ 2π

E[g(X1 ,θ)] ' m
4

&4

exp(&(x%θ0&θ)2)/ 2π

π(1%x 2)
dx 'm

4

&4

f(x&θ%θ0)h(x|0)dx ' γ(θ&θ0) , (6.11)

say, where  is a density itself, namely the density of  with U and Z independentγ(y) Y ' U % Z ,

random drawings form the standard normal and standard Cauchy distribution, respectively.  This

is called the convolution of the two densities involved.  The  characteristic function of Y is

 so that by the inversion formula for characteristic functionsexp(&|t|&t 2/2) ,

γ(y) '
1
2π m

4

&4

cos(t.y)exp(&|t|&t 2/2)dt . (6.12)

This function is maximal in y = 0, and this maximum is unique, because for fixed y … 0 the set

 is countable and therefore has Lebesgue measure zero. In particular, it{t 0 ú: cos(t.y) ' 1}

follows from (6.12) that for arbitrary  g > 0, 

sup|y|$gγ(y) # 1
2π m

4

&4

sup|y|$g|cos(t.y)|exp(&|t|&t 2/2)dt < γ(0) . (6.13)

Combining  (6.11) and (6.13) yields   Thus, all thesup|θ&θ0|$gE[g(X1 ,θ)] < E[g(X1 ,θ0)] .
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conditions of Theorem 6.11 are satisfied, hence  plimn64θ̂ ' θ0 .

Another example is the nonlinear least squares estimator. Consider a random sample

 and assume that: Zj ' (Yj ,X
T

j )T , j ' 1,2,....,n , with Yj 0 ú , Xj 0 úk ,

Assumption 6. 1: For a given function   with 1 a given compact subset of  f(x,θ) on úk×Θ , úm ,

there exists a  such that  Moreover, for each   θ0 0 Θ P[E[Yj|Xj] ' f(Xj ,θ0)] ' 1. x 0 úk , f(x,θ)

is a continuous function on  1, and for each  is a Borel measurable function on θ 0 Θ, f(x,θ)

 Furthermore, let   and úk . E[Y 2
1 ] < 4 , E[supθ0Θf(X1 ,θ)2] < 4 ,

 inf||θ&θ0||$δE [(f(X1 ,θ) & f(X1 ,θ0))
2] > 0 for δ > 0.

Denoting    we can writeUj ' Yj & E[Yj|Xj]

Yj ' f(Xj ,θ0) % Uj , where P(E[Uj|Xj] ' 0) ' 1. (6.14)

This is the general form of a nonlinear regression model. I will show now that under Assumption

6.1 the nonlinear least squares estimator

θ̂ ' argminθ0Θ(1/n)'n
j'1(Yj & f(Xj ,θ))2 (6.15)

is a consistent estimator of θ0 .

Let   Then it follows from Assumption 6.1 and Theorem 6.10g(Zj ,θ) ' (Yj & f(Xj ,θ))2 .

that 

plimn64supθ0Θ|(1/n)'n
j'1[g(Zj,θ)&E[g(Z1,θ)]| ' 0.

Moreover,  
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E [g(Z1,θ)] ' E[(Uj % f(Xj ,θ0) & f(Xj ,θ))2] ' E[U 2
j |] % 2E[E(Uj|Xj)(f(Xj ,θ0) & f(Xj ,θ))]

% E[(f(Xj ,θ0) & f(Xj ,θ))2] ' E[U 2
j |] % E[(f(Xj ,θ0) & f(Xj ,θ))2] ,

hence it follows from Assumption 6.1 that  Therefore theinf||θ&θ0||$δE [|g(Z1 ,θ)|] > 0 for δ > 0.

condition of Theorem 6.11 for the argmin case are satisfied, and consequently, the nonlinear least

squares estimator (6.15) is consistent.

6.4.2.2 Generalized Slutsky’s theorem

Another easy but useful corollary of Theorem 6.6 is the following generalization of

Theorem 6.3:

Theorem 6.12: (Generalized Slutsky’s theorem) Let Xn a sequence of random vectors in  úk

converging in probability to a nonrandom vector c.  Let  Mn(x) be a sequence of random

functions on  satisfying  = 0, where B is a closed and boundedúk plimn64supx0B*Φn(x) & Φ(x)*

subset of   containing c, and  M is a continuous nonrandom function on B. Then úk Φn(Xn) 6p

Φ(c) .

Proof: Exercise.

This theorem can be further generalized to the case where c = X  is a random vector, simply by

adding the condition that  but the current result suffices for the applications ofP[X 0 B] ' 1,

Theorem 6.12.

This theorem plays a key-role in deriving the asymptotic distribution of an M-estimator,
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together with the central limit theorem discussed below.

6.4.3 The uniform strong law of large numbers and its applications

The results of Theorems 6.10-6.12 also hold almost surely. See Appendix 6.B for the

proofs.

Theorem 6.13: Under the conditions of Theorem 6.10,  supθ0Θ*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]*

6 0 a.s.

Theorem 6.14: Under the conditions of Theorems 6.11 and 6.13, θ̂ 6 θ0 a.s.

Theorem 6.15: Under the conditions of Theorem 6.12 and the additional condition that Xn  6 c

a.s.,   a.s.Φn(Xn) 6 Φ(c)

6.5. Convergence in distribution

Let Xn be a sequence of random variables (or vectors) with distribution functions Fn(x),

and let X  be a random variable (or conformable random vector) with distribution function F(x). 

Definition 6.6: We say that Xn converges to X in distribution (denoted by  Xn 6d  X ) if 

limn64Fn(x) = F(x), pointwise in x , possibly except in the discontinuity points of F(x).
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Alternative notation: If X has a particular distribution, for example N(0,1), then  Xn 6d  X 

is also denoted by Xn 6d  N(0,1).

The reason for excluding discontinuity points of F(x) in the definition of convergence in

distribution is that in these discontinuity points, limn64Fn(x) may not be right-continuous. For

example, let Xn = X + 1/n. Then Fn(x) = F(x-1/n). Now if F(x) is discontinuous in x0, then

limn64F(x0-1/n) < F(x0), hence limn64Fn(x0) < F(x0). Thus, without the exclusion of discontinuity

points, X + 1/n would not converge in distribution to the distribution of X, which would be

counter-intuitive.

If each of the components of a sequence of random vectors converge in distribution, then

the random vectors themselves may not converge in distribution. As a counter-example, let

Xn '

X1n

X2n

- N2

0

0
,

1 (&1)n/2

(&1)n/2 1
. (6.16)

Then X1n 6d  N(0,1) and X2n 6d  N(0,1), but Xn does not converge in distribution. 

Moreover, in general Xn  6d  X  does not imply that  Xn  6p  X. For example, if we replace

X  by an independent random drawing Z from the distribution of X, then Xn  6d  X   and Xn  6d Z 

are equivalent statements, because these statements only say that the distribution function of Xn

converges to the distribution function of X (or Z), pointwise in the continuity points of the latter

distribution function. If Xn  6d  X   would imply  Xn  6p  X, then  Xn  6d  Z in distr. would imply

that X = Z, which is not possible, because X and Z are independent. The only exception is the

case where the distribution of X is degenerated: P(X = c) = 1 for some constant c:

Theorem 6.16: If Xn converges in distribution to X, and P(X = c) = 1, where c is a constant, then
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Xn  converges in probability to c.

Proof:  Exercise.

Note that this result is demonstrated in the left-hand side panels of Figures 6.1-6.3. 

On the other hand,  

Theorem 6.17: Xn  6p X  implies  Xn  6d  X. 

Proof: Theorem 6.17  follows straightforwardly from Theorem 6.3, Theorem 6.4, and

Theorem 6.18 below. Q.E.D.

There is a one-to-one correspondence between convergence in distribution and

convergence of expectations of bounded continuous functions of random variables: 

Theorem 6.18: Let  and X be random vectors in . Then  Xn  6d X  if and only if for allXn úk

bounded continuous functions  on , .φ úk limn64E[φ(Xn)] ' E[φ(X)]

Proof: I will only prove this theorem for the case where Xn and X are random variables.

Throughout the proof the distribution function of Xn is denoted by Fn(x), and the distribution

function of X by F(x).

Proof of the "only if" case: Let Xn  6d  X. Without loss of generality we may assume that

 for all x. For any g > 0 we can choose continuity points a and b of F(x) such thatφ(x) 0 [0,1]

F(b) - F(a) > 1!g. Moreover, we can choose continuity points a = c1 < c2 <...< cm = b of F(x) such



220

that for j = 1,..,m-1,

sup
x0(cj,cj%1]

φ(x) & inf
x0(cj,cj%1]

φ(x) # g . (6.17)

Now define

ψ(x) ' inf
x0(cj,cj%1]

φ(x) for x 0 (cj,cj%1] , j ' 1,..,m&1, ψ(x) ' 0 elsewhere. (6.18)

Then , , hence0 # φ(x) & ψ(x) # g for x 0 (a,b] 0 # φ(x) & ψ(x) # 1 for x ó (a,b]

limsup
n64

*E[ψ(Xn)] & E[φ(Xn)]*

# limsup
n64 m

x0(a,b]

*ψ(x)&φ(x)*dFn(x) % m
xó(a,b]

*ψ(x)&φ(x)*dFn(x)

# g % 1 & lim
n64

Fn(b) & Fn(a) ' g % 1 & F(b) & F(a) # 2g .

(6.19)

Moreover, we have

*E[ψ(X)] & E[φ(X)]* # 2g , (6.20)

and

limn64E[ψ(Xn)] ' E[ψ(X)] . (6.21)

Combining (6.19), (6.20) and (6.21), the "only if" part easily follows.

Proof of the "if" case: Let a < b be arbitrary continuity points of F(x), and let

φ(x) '

' 0 if x $ b ,

' 1 if x < a ,

'
b&x
b&a

if a # x < b .

(6.22)

Then clearly (6.22) is a bounded continuous function. Next, observe that

E[φ(Xn)] ' mφ(x)dFn(x) ' Fn(a) % m
b

a

b&x
b&a

dFn(x) $ Fn(a) (6.23)
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hence

E[φ(X)] ' lim
n64

E[φ(Xn)] $ limsup
n64

Fn(a) . (6.24)

Moreover,

E[φ(X)] ' mφ(x)dF(x) ' F(a) % m
b

a

b&x
b&a

dF(x) # F(b) . (6.25)

Combining (6.24) and (6.25) yields  hence, since b (> a) was arbitrary,F(b) $ limsupn64Fn(a) ,

letting  it follows that.b 9 a

F(a) $ limsup
n64

Fn(a) . (6.26)

Similarly, for c < a we have , hence letting  it follows thatF(c) # liminfn64Fn(a) c 8 a

F(a) # liminf
n64

Fn(a) . (6.27)

Combining (6.26) and (6.27), the "if" part now follows, i.e.,  Q.E.D.F(a) ' limn64Fn(a) .

Note that the "only if" part of Theorem 6.18 implies another version of the bounded

convergence theorem:

Theorem 6.19: (Bounded convergence theorem) If  Xn  is bounded:  = 1  for someP(*Xn* # M)

M < 4 and all n, then Xn  6d X  implies  limn64E(Xn) = E(X).

Proof: Easy exercise.

Using Theorem 6.18, it is not hard to verify that the following result holds.

Theorem 6.20: (Continuous Mapping Theorem) Let Xn and X be random vectors in  such thatúk
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Xn  6d X, and let  Φ(x) be a continuous mapping from  into . Then  Φ(Xn)  6d  Φ(X).úk úm

Proof: Exercise.

Examples of applications of Theorem 6.20 are:

(1) Let Xn 6d X, where X is N(0,1) distributed. Then X 2
n 6d χ2

1 .

(2) Let Xn 6d X, where X is Nk(0,I) distributed. Then X T
n Xn 6d χ2

k .

If  Xn 6d X, Yn 6d Y, and Φ(x,y) is a continuous function, then in general it does not follow

that Φ(Xn ,Yn) 6d  Φ(X,Y), except if either X or Y has a degenerated distribution: 

Theorem 6.21: Let X and Xn be random vectors in  such that Xn 6d  X, and let Yn be a randomúk

vector in  such that plimn64Yn = c, where c 0  is a nonrandom vector. Moreover, let  Φ(x,y)úm úm

be a continuous function on the set   for some δ > 0. 5 Thenúk × {y 0 úm: 2y & c2 < δ}

Φ(Xn,Yn) 6d  Φ(X,c). 

Proof: Again, we prove the theorem for the case k = m = 1 only. Let Fn(x) and F(x) be the

distribution functions of Xn and X, respectively, and let  be a bounded continuous functionΦ(x,y)

on   for some δ > 0. Without loss of generality we may assume that # 1.ú × (c&δ,c%δ) *Φ(x,y)*

Next, let g > 0 be arbitrary, and choose continuity points a < b of F(x) such that F(b) - F(a) >

1!g. Then for any γ > 0,
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*E[Φ(Xn,Yn)] & E[Φ(Xn,c)* # E[*Φ(Xn,Yn) & Φ(Xn,c)*I(*Yn&c*#γ)]

% E[*Φ(Xn,Yn) & Φ(Xn,c)*I(*Yn&c*>γ)]

# E[*Φ(Xn,Yn) & Φ(Xn,c)*I(*Yn&c*#γ)I(Xn0[a,b])]

% 2P(Xnó[a,b]) % 2P(*Yn&c*>γ)

# sup
x0[a,b], *y&c*#γ

*Φ(x,y)&Φ(x,c)* % 2(1&Fn(b)%Fn(a)) % 2P(*Yn&c*>γ) .

(6.28)

Since a continuous function on a closed and bounded subset of an Euclidean space is uniformly

continuous on that subset (see Appendix II), we can choose γ so small that

sup
x0[a,b], *y&c*#γ

*Φ(x,y)&Φ(x,c)* < g . (6.29)

Moreover, 1 - Fn(b) + Fn(a) 6 1 - F(b) + F(a) < g, and . Therefore, it followsP(*Yn&c*>γ) 6 0

from (6.28) that:

limsup
n64

*E[Φ(Xn,Yn)] & E[Φ(Xn,c)* # 3g . (6.30)

The rest of the proof is left as an exercise. Q.E.D.

 

Corollary 6.1: Let Zn be t-distributed with n degrees of freedom. Then Zn  6d  N(0,1).

Proof: By the definition of the t-distribution with n degrees of freedom we can write
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Zn '
Uo

1
nj

n

j'1
U 2

j

,
(6.31)

where U0 , U1 ,..,Un are i.i.d. N(0,1). Let Xn = U0 and X = U0, so that trivially Xn 6d  X. Let

. Then by the weak law of large numbers (Theorem 6.2) we have: plimn64Yn =Yn ' (1/n)'n
j'1U

2
j

E(U1
2) = 1. Let Φ(x,y) = x/%y. Note that  Φ(x,y) is continuous on R × (1-g,1+g) for 0 < g < 1. Thus

by Theorem 6.21,  in distribution. Q.E.D.Zn ' Φ(Xn,Yn) 6 Φ(X,1) ' U0 - N(0,1)

Corollary 6.2: Let U1...Un be a random sample from Nk(F,Σ), where Σ is non-singular. Denote

, , and let Zn = . ThenŪ ' (1/n)'n
j'1Uj Σ̂ ' (1/(n&1))'n

j'1(Uj&Ū )(Uj&Ū )T n(Ū&µ)T Σ̂&1(Ū&µ)

.Zn 6d χ2
k

Proof: For a k×k matrix A = (a1,..,ak), let vec(A) be the k2×1 vector of stacked columns aj,

j = 1,...,k, of A: , say, with inverse vec-1(b) = A. Let c = vec(Σ), Yn =vec(A) ' (a T
1 , ... ,a T

k )T ' b

vec( ), Xn = , X , and . Since Σ is nonsingular,Σ̂ n(Ū&µ) - Nk(0,Σ) Ψ(x,y) ' x T(vec&1(y))&1x

there exists a neighborhood C(δ) =  of c such that for all y in C(δ), vec-1(y){y0úk×k: 2y&c2 < δ}

is nonsingular (Exercise: Why?), and consequently,  is continuous on  (Exercise:Ψ(x,y) úk×C(δ)

Why?). The corollary follows now from Theorem 6.21 (Exercise: Why?). Q.E.D.
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6.6. Convergence of characteristic functions

Recall that the characteristic function of a random vector X in  is defined asúk

 φ(t) ' E[exp(it TX)] ' E[cos(t TX)] % i.E[sin(t TX)]

for  where .  The last equality is due to the fact that exp(i.x) = cos(x) + i.sin(x). t 0 úk , i ' &1

Also recall that distributions are the same if and only if their characteristic functions are

the same. This property can be extended to sequences of random variables and vectors:

Theorem 6.22: Let Xn  and X be random vectors in  with characteristic functions  andúk φn(t)

 respectively.  Then Xn 6d  X  if and only if  for all  . φ(t) , φ(t) ' limn64φn(t) t 0 úk

Proof: See Appendix 6.C for the case k = 1.

Note that the "only if" part of Theorem 6.22  follows from Theorem 6.18:  Xn 6d  X 

implies that for any t 0 úk ,

limn64E[cos(t TXn)] ' E[cos(t TX)] , limn64E[sin(t TXn)] ' E[sin(t TX)] ,

hence

limn64φn(t) ' limn64E[cos(t TXn)] % i.limn64E[sin(t TXn)]

' E[cos(t TX)] % i.E[sin(t TX)] ' φ(t) .

Theorem 6.22 plays a key-role in the derivation of the central limit theorem, in the next

section.
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6.7. The central limit theorem

The prime example of the concept of convergence in distribution is the central limit

theorem, which we have seen in action in Figures 6.4-6.6:

Theorem 6.23: Let X1,....,Xn be i.i.d. random variables satisfying E(Xj) = , var(Xj) = ,µ σ2 < 4

and let .  Then X̄ ' (1/n)'n
j'1Xj n(X̄ & µ) 6d N(0,σ2) .

Proof: Without loss of generality we may assume that F = 0 and F = 1. Let  be theφ(t)

characteristic function of Xj. The assumptions F = 0 and F = 1 imply that the first and second

derivatives of  at t = 0 are equal to   respectively, hence by Taylor'sφ(t) φ)(0) ' 0, φ))(0) ' &1,

theorem,  applied to Re[N(t)] and Im[N(t)] separately, there exists numbers  suchλ1,t,λ2,t 0 [0,1]

that

φ(t) ' φ(0) % tφ)(0) %
1
2

t 2 Re[φ))(λ1,t.t)] % i.Im[φ))(λ2,t.t)] ' 1 &
1
2

t 2 % z(t)t 2 ,

say, where    Note that z(t) is bounded andz(t) ' (1 % Re[φ))(λ1,t.t)] % i.Im[φ))(λ2,t.t)]) /2 .

satisfies limt60z(t) ' 0.

Next, let  be the characteristic function of . Thenφn(t) nX̄

φn(t) ' φ(t/ n)
n
' 1 &

t 2

2n
%

z(t/ n)t 2

n

n

' 1 &
t 2

2n

n

% j
n

m'1

n

m
1& t 2

2n

n&m
z(t/ n)t 2

n

m
(6.32)
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For n so large that t2/(2n) < 1 we have

/0000
/0000j

n

m'1

n

m
1& t 2

2n

n&m
z(t/ n)t 2

n

m

# j
n

m'1

n

m
*z(t/ n)*t 2

n

m

' 1 %
*z(t/ n)*t 2

n

n

& 1

(6.33)

Now observe that for any real valued sequence an which converges to a,

lim
n64

ln (1%an/n )n ' lim
n64

n ln(1%an/n) ' lim
n64

an × lim
n64

ln(1%an/n) & ln(1)

an/n

' a × lim
δ60

ln(1%δ)&ln(1)
δ

' a ,

hence

limn64an ' a Y lim
n64

1 % an/n
n ' e a . (6.34)

Letting an = , which has limit a = 0, it follows from (6.34)  that the right-hand side*z(t/ n)*t 2

expression in (6.33) converges to zero, and letting an = a = -t2/2 it follows then from (6.32) that

lim
n64

φn(t) ' e &t 2/2. (6.35)

The right-hand side of (6.35) is the characteristic function of the standard normal distribution.

The theorem follows now from Theorem 6.22. Q.E.D.

There is also a multivariate version of the central limit theorem:

Theorem 6.24: Let X1,....,Xn be i.i.d. random vectors in  satisfying E(Xj) = , Var(Xj) =úk µ

 is finite, and let . Then Σ , where Σ X̄ ' (1/n)'n
j'1Xj n(X̄ & µ) 6d Nk(0 ,Σ) .
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Proof: Let   be arbitrary but not a zero vector. Then it follows from Theorem 6.23ξ 0 úk

that   hence it follows from Theorem 6.22 that for all  nξT(X̄&µ) 6d N(0 ,ξTΣξ) , t 0 ú ,

Choosing t = 1, we thus have that for arbitrarylimn64E(exp[i.t nξT(X̄&µ)]) ' exp(&t 2ξTΣξ /2) .

,  Since the latter is the characteristicξ 0 úk limn64E(exp[i.ξT n(X̄&µ)]) ' exp(&ξTΣξ /2) .

function of the  distribution, Theorem 6.24 follows now from Theorem 6.22. Q.E.D.Nk(0 ,Σ)

Next, let M be a continuously differentiable mapping from  úk to úm, and let the

conditions of Theorem 6.24 hold. The question is: What is the limiting distribution of

 if any? In order to answer this question, assume for the time being that k = mn(Φ(X) & Φ(µ)) ,

= 1, and let var(Xj) = F2, so that   It follows from the mean valuen(X & µ) 6d N(0 ,σ2) .

theorem (see Appendix II) that there exists a random variable 8 0 [0,1] such that

n(Φ(X) & Φ(µ)) ' n (X & µ)Φ)(µ%λ(X&µ))

Since  implies  which by Theorem 6.16 implies thatn (X & µ) 6d N(0 ,σ2) (X & µ) 6d 0,

 it follows that  Moreover, since the derivative   is continuousX 6p µ , µ % λ(X & µ) 6p µ . Φ)

in µ  it follows now from Theorem 6.3 that   Therefore, it followsΦ)(µ % λ(X & µ)) 6p Φ)(µ) .

from Theorem 6.21 that   Along similar lines, applyingn(Φ(X) & Φ(µ)) 6d N[0,σ2(Φ)(µ))2] .

the mean value theorem to each of the components of  M  separately,  the following more general

result can be proved. This approach is known as the ****-method.

Theorem 6.25: Let Xn be a random vector in  satisfying   where µúk n(Xn & µ) 6d Nk[0 ,Σ] ,

0  is nonrandom. Moreover, let   be aúk Φ(x) ' (Φ1(x) , .... ,Φm(x))T with x ' (x1 , .... ,xk)
T

mapping from  úk to  úm such that the m×k matrix of partial derivatives
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∆(x) '

MΦ1(x) /Mx1 þ MΦ1(x) /Mxk

! " !

MΦm(x) /Mx1 þ MΦm(x) /Mxk

(6.36)

exists in an arbitrary small open neighborhood of µ  and its elements are continuous in µ. Then

n(φ(Xn) & Φ(µ)) 6d Nm[0 ,∆(µ)Σ∆(µ)T ] .

6.8. Stochastic boundedness, tightness, and the Op and op notations.

The stochastic boundedness and related tightness concepts are important for various

reasons, but one of the most important reasons is that they are necessary conditions for

convergence in distribution.

Definition 6.7: A sequence of random variables or vectors Xn  is said to be stochastically

bounded if for every  g 0 (0,1) there exists a finite M > 0 such that   infn$1P[||Xn|| # M] > 1&g .

Of course, if Xn   is bounded itself, i.e.,  for all n,  it is stochastically boundedP[||Xn|| # M] ' 1

as well, but the other way around may not be true. For example, if the Xn  are equally distributed

(but not necessarily independent)  random variables with common distribution function F, then

for every  g 0 (0,1) we can choose continuity points !M and M of F such that  = P[|Xn| # M]

 = 1!g. Thus, the stochastic boundedness condition limits the heterogeneity of theF(M)&F(&M)

Xn ‘s. 

Stochastic boundedness is usually denoted by Op(1):  Xn = Op(1) means that the sequence 

Xn  is stochastically bounded. More generally:
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Definition 6.8: Let an be a sequence of positive non-random variables. Then Xn = Op(an) means

that Xn /an is stochastically bounded, and Op(an) by itself represents a generic random variable or

vector Xn  such that  Xn = Op(an).

The necessity of stochastic boundedness for convergence in distribution follows from the

fact that:

Theorem 6.26: Convergence in distribution implies stochastic boundedness.

Proof: Let Xn and X be random variables with corresponding distribution functions Fn and

F, respectively, and assume that Given an g 0 (0,1) we can choose continuity pointsXn 6d X .

!M1 and M1 of F such that   Since  F(M1) > 1&g/4 , F(&M1) < g/4 . limn64Fn(M1) ' F(M1)

there exists an index n1 such that  hence  if|Fn(M1) & F(M1)| < g/4 if n $ n1 , Fn(M1) > 1&g/2

  Similarly,  there exists an index  n2  such that   Let m = n $ n1 . Fn(&M1) < g/2 if n $ n2 .

 Then  Finally, we can always choose an M2  so largemax(n1 ,n2) . infn$mP[|Xn| # M1] > 1&g .

that   Taking  the theorem follows.  Themin1#n#m&1P[|Xn| # M2] > 1&g . M ' max(M1 ,M2)

proof of the multivariate case is almost the same. Q.E.D.

Note that since convergence in probability implies convergence in distribution, it follows

trivially from Theorem 6.26 that convergence in probability implies stochastic boundedness. 

For example, let   are  i.i.d. random variables withSn ' 'n
j'1Xj , where the Xj's

expectation µ and variance F2 < 4.  If µ = 0 then   because by the central limitSn ' Op( n) ,

theorem,    converges in distribution to N(0,F2). However, if µ … 0 then only Sn/ n Sn ' Op(n) ,
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because then  hence   and thus Sn/ n & µ n 6d N(0 ,σ2) , Sn/ n ' Op(1) % Op( n)

 = Sn ' Op( n) % Op(n) Op(n) .

In Definition 6.2 I have introduced the concept of uniform integrability. It is left as an

exercise to prove that

Theorem 6.27: Uniform integrability implies stochastic boundedness.

Tightness is the version of stochastic boundedness for probability measures:

Definition 6.9: A sequence of probability measures µn on the Borel sets in úk is called tight if for

an arbitrary  g 0 (0,1) there exists a compact subset K of  úk such that   > 1!g.infn$1µn(K)

Clearly, if   Xn = Op(1) then the sequence of corresponding induced probability measures 

µn is tight, because the sets of the type   are closed and bounded for MK ' {x 0 úk : ||x|| # M}

< 4 and therefore compact.

For sequences of random variables and vectors the tightness concept does not add much

over the stochastic boundedness concept, but the tightness concept is fundamental in proving so-

called functional central limit theorems.

If  Xn = Op(1) then obviously for any * > 0,  But  is now more thanXn ' Op(n
δ) . Xn/n

δ

stochastically bounded, because then we also have that  The latter is denoted byXn/n
δ 6p 0.

Xn ' op(n
δ) :
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Definition 6.10: Let an be a sequence of positive non-random variables. Then Xn = op(an) means

that Xn /an converges in probability to zero (or a zero vector if Xn is a vector), and op(an) by itself

represents a generic random variable or vector Xn  such that  Xn = op(an). Moreover, the

sequence 1/an  represents that rate of convergence of Xn .  

Thus,  can also be denoted by This notation is handy if the differenceXn 6p X Xn ' X % op(1) .

of Xn and X is a complicated expression. For example, the result of Theorem 6.25 is due to the

fact that by the mean value theorem  n(φ(Xn) & Φ(µ)) ' ∆̃n(µ) n(Xn & µ) ' ∆(µ) n(Xn & µ)

+ op(1),  where

∆̃n(µ) '

MΦ1(x) /Mx
x'µ%λ1,n(Xn&µ)

!

MΦm(x) /Mx
x'µ%λk,n(Xn&µ)

, with λj,n 0 [0,1], j ' 1, .... ,k .

The remainder term   can now be represented by op(1), because(∆̃n(µ) & ∆(µ)) n(Xn & µ)

 hence by Theorem 6.21 this remainder term∆̃n(µ) 6p ∆(µ) and n(Xn & µ) 6d Nk[0 ,Σ] ,

converges in distribution to the zero vector and thus it converges in probability to the zero vector. 

6.9. Asymptotic normality of M-estimators

In this section I will set forth conditions for the asymptotic normality of M-estimators, in

addition to the conditions for consistency. An estimator  of a parameter  isθ̂ θ0 0 úm

asymptotically normally distributed if there exist an increasing sequence of positive numbers an 

and a positive semi-definite m×m matrix G such that  Usually, an(θ̂&θ0) 6d Nm[0,Σ] . an ' n ,

but there are exceptions to this rule. 
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Asymptotic normality is fundamental for econometrics. Most of the econometric tests rely

on it. Moreover, the proof of the asymptotic normality theorem below also illustrates nicely the

usefulness of the main results in this chapter.

Given that the data is a random sample, we only need a few addition conditions over the

conditions of Theorems 6.10 and 6.11:

Theorem 6.28: Let in addition to the conditions of Theorems 6.10 and 6.11 the following

conditions be satisfied:

(a) 1 is convex;

(b)  is an interior point of  1;θ0

(c) For each   g(x,2) is twice continuously differentiable on 1;.  x 0 úk ,

(d) For each pair  of components of 2,   < 4;θi1
,θi2

E[supθ0Θ*M
2g(X1 ,θ)/(Mθi1

Mθi2
)*]

(e) The m×m matrix  is nonsingular;A ' E
M2g(X1 ,θ0)

Mθ0Mθ
T
0

(f) The  m×m matrix  is finite.B ' E
Mg(X1 ,θ0)

MθT
0

Mg(X1 ,θ0)

Mθ0

Then  n(θ̂&θ0) 6d Nm[0 ,A &1BA &1] .

Proof: I will prove the theorem for the case m = 1 only, leaving the general case as an

exercise.

I have already established in Theorem 6.11 that  Since  is an interior point of θ̂ 6p θ0 . θ0
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1, the probability that  is an interior point converges to 1, and consequently the probability thatθ̂

the first-order condition for a maximum of  =  holds convergesQ̂(θ) (1/n)'n
j'1g(Xj ,θ) in θ ' θ̂

to 1. Thus:

 limn64P[Q̂ )(θ̂) ' 0] ' 1, (6.37)

where as usual,   Next, observe from the mean value theorem that there existsQ̂ )(θ) ' dQ̂(θ)/dθ .

a  such thatλ̂ 0 [0,1]

nQ̂
)(θ̂) ' nQ̂

)(θ0) % Q̂
))(θ0%λ̂(θ̂&θ0)) n(θ̂&θ0) , (6.38)

where  Note that by the convexity of 1,Q̂ ))(θ) ' d 2Q̂(θ)/(dθ)2 .

P[θ0%λ̂(θ̂&θ0) 0 Θ] ' 1, (6.39)

and by the consistency of  θ̂ ,

plimn64[θ0%λ̂(θ̂&θ0)] ' θ0 (6.40)

Moreover, it follows from Theorem 6.10 and conditions (c) and (d), with the latter adapted to the

univariate case, that 

plimn64supθ0Θ*Q̂
))(θ) & Q))(θ)* ' 0. (6.41)

where  is the second derivative of  Then it follows from (6.39), (6.40),Q))(θ) Q(θ) ' E [g(X1 ,θ)] .

(6.41) and Theorem 6.12 that

plimn64Q̂ ))(θ0%λ̂(θ̂&θ0)) ' Q))(θ0) … 0. (6.42)

Note that   corresponds to the matrix A in condition (e), so that   is positive in theQ))(θ0) Q))(θ0)

"argmin" case and negative in the "argmax" case. Therefore, it follows from (6.42) and Slutsky’s

theorem (Theorem 6.3) that

plimn64Q̂ ))(θ0%λ̂(θ̂&θ0))
&1 ' Q))(θ0)

&1 ' A &1. (6.43)

Now (6.38) can be rewritten as 



235

n(θ̂&θ0) ' &Q̂
))(θ0%λ̂(θ̂&θ0))

&1 nQ̂
)(θ0) % Q̂

))(θ0%λ̂(θ̂&θ0))
&1 nQ̂

)(θ̂)

' &Q̂
))(θ0%λ̂(θ̂&θ0))

&1 nQ̂
)(θ0) % op(1) ,

(6.44)

where the op(1) term follows from (6.37), (6.43) and Slutsky’s theorem. 

Because of condition (b), the first-order condition for  applies, i.e.,θ0

Q)(θ0) ' E [dg(X1 ,θ0)/dθ0] ' 0. (6.45)

Moreover, condition (f), adapted to the univariate case, now reads as:

var [dg(X1 ,θ0)/dθ0] ' B 0 (0,4) . (6.46)

Therefore, it follows from (6.45), (6.46), and the central limit theorem (Theorem 6.23) that

nQ̂ )(θ0) ' (1/ n)'n
j'1dg(Xj ,θ0)/dθ0 6d N[0,B] . (6.47)

Now it follows from (6.43), (6.47) and Theorem 6.21 that

&Q̂ ))(θ0%λ̂(θ̂&θ0))
&1 nQ̂ )(θ0) 6d N[0 ,A &1BA &1] , (6.48)

hence the result of the theorem under review for the case m = 1 follows from (6.44), (6.48) and

Theorem 6.21. Q.E.D.

The result of Theorem 6.28 is only useful if we are able to estimate the asymptotic

variance matrix consistently, because then we will be able to design tests of variousA &1BA &1

hypotheses about the parameter vector θ0 .

Theorem 6.29: Let

Â '
1
nj

n

j'1

M2g(X1 , θ̂)

Mθ̂Mθ̂T
, (6.49)

and 



236

B̂ '
1
nj

n

j'1

Mg(X1 , θ̂)

Mθ̂T

Mg(X1 , θ̂)

Mθ̂
. (6.50)

Under the conditions of Theorem 6.28,  and under the additional condition thatplimn64Â ' A ,

  Consequently, E[supθ0Θ||Mg(X1 ,θ)/MθT||2] < 4, plimn64B̂ ' B . plimn64Â &1B̂Â &1
' A &1BA &1 .

Proof: The theorem follows straightforwardly from  the uniform weak law of large

numbers and various Slutsky’s theorems, in particular Theorem 6.21. 

6.10. Hypotheses testing

As an application of Theorems 6.28 and 6.29, consider the problem of testing a null

hypothesis against an alternative hypothesis of the form

H0 : Rθ0 ' q , H1 : Rθ0 … q , (6.51)

respectively, where R is a given r×m matrix of rank r # m, and q is a given  r×1 vector. Under the

null hypothesis in (6.51) and the conditions of Theorem 6.2, n(Rθ̂&q) 6d Nr[0 ,RA &1BA &1R T] ,

and if the matrix B is nonsingular then the asymptotic variance matrix involved is nonsingular.

Then is follows from Theorem 6.21 that:

Theorem 6.30: Under the conditions of Theorems 6.28 and 6.29, the additional condition that B

is nonsingular, and the null hypothesis in (6.51) with R of full rank r,

Wn ' n(Rθ̂&q)T RÂ &1B̂Â &1R T &1
(Rθ̂&q) 6d χ2

r . (6.52)

On the other hand, under the alternative hypothesis in (6.51),

 Wn/n 6p (Rθ0&q)T RA &1BA &1R T &1(Rθ0&q) > 0. (6.53)
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The statistic Wn is now the test statistic of the Wald test of the null hypothesis in (6.51).

Given the size " 0 (0,1), choose a critical value $ such that for a  distributed random variableχ2
r

Z,  so that under the null hypothesis in (6.51),  6 ". Then the nullP[Z > β] ' α , P[Wn > β]

hypothesis is accepted if and rejected in favor of the alternative hypothesis if Wn # β Wn > β .

Due to (6.53), this test is consistent.

In the case that r = 1, so that R is a row vector, we can modify (6.52) to

tn ' n RÂ &1B̂Â &1R T &1/2
(Rθ̂&q) 6d N(0,1) , (6.54)

whereas under the alternative hypothesis, (6.53) becomes

tn/ n 6p RA &1BA &1R T &1/2(Rθ0&q) … 0. (6.55)

These results can be used to construct a two-sided or one sided  test, similarly to the t-test we

have seen before in the previous chapter. In particular, 

Theorem 6.31: Assume that the conditions of Theorem 6.30 hold. Let   be component i of  θi,0 θ0 ,

and let   be component i of   Consider the hypotheses     θ̂i θ̂ . H0 : θi,0 ' θ(i,0 , H1 : θi,0 … θ(i,0 ,

where  is given  (often the value  is of special interest). Let the vector  ei be column iθ(i,0 θ(i,0 ' 0

of the unit matrix Im. Then under H0,

t̂ i '
n(θ̂i & θ(i,0)

e T
i Â &1B̂Â &1ei)

6d N(0,1) , (6.56)

whereas under H1,

t̂ i/ n 6p

θ̂i,0 & θ(i,0

e T
i A &1BA &1ei)

… 0. (6.57)
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Given the size " 0 (0,1), choose a critical value $ such that for a standard normally

distributed random variable U,   so that by (6.56),    6 " if the nullP[|U| > β] ' α , P[|t̂ i| > β]

hypothesis is true. Then the null hypothesis is accepted if and rejected in favor of the|t̂ i| # β

alternative hypothesis if   It is obvious from (6.57) that this test is consistent. |t̂ i| > β .

The statistic  in (6.56)  is usually referred to as a t-test statistic because of the similarityt̂ i

of this test with the t-test in the normal random sample case. However, its finite sample

distribution under the null hypothesis may not be of the t distribution type at all. Moreover, in the

case   the statistic   is called the t-value (or pseudo t-value) of the estimator  and ifθ(i,0 ' 0 t̂ i θ̂i ,

the test rejects the null hypothesis  this estimator is said to be significant at the "×100%

significance level.

6.12. Exercises

1. Let  and . Prove that  if and only if Xn ' (X1,n , ... ,Xk,n)
T c ' (c1 , ... ,ck)

T plimn64Xn ' c

  for i = 1,..,k.plimn64Xi,n ' ci

2. Prove that if  = 1 and Xn 6p  X  then   = 1.P(*Xn* # M) P(*X* # M)

3. Complete the proof of Theorem 6.5.

4. Prove Theorem 6.12.

5. Explain why the random vector Xn in (6.16)  does not converge in distribution.

6. Prove Theorem 6.16.

7. Prove Theorem 6.17.

8. Prove (6.21). 

9. Prove Theorem 6.19.
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10. Prove Theorem 6.20,  using Theorem 6.18.

11. Finish the proof of Theorem 6.21. 

12. Answer the questions “Why?” in the proof of Corollary 6.2.

13. Prove that the limit  (6.35) is just the characteristic function of the standard normal

distribution. 

14. Prove the first and the last equality in (6.32).

15. Prove Theorem 6.25.

16. Prove Theorem 6.27. Hint: Use Chebishev’s inequality for first absolute moments.

17. Adapt the proof of Theorem 6.28 for m = 1 to the multivariate case m > 1.

18. Prove Theorem 6.29.

19. Formulate the conditions (additional to Assumption 6.1 ) for the asymptotic normality of

the nonlinear least squares estimator (6.15) for the special case that  P[E(U 2
1 |X1) ' σ2] ' 1.

Appendices 

6.A. Proof of the uniform weak law of large numbers

First, recall that "sup" denotes the smallest upper bound of the function involved, and

similarly, "inf" is the largest lower bound. Now let for arbitrary * > 0 and ,  = θ
(
0 Θ Θδ(θ()

 Using the fact that {θ0Θ : 2θ&θ
(
2 < δ} .

supx*f(x)* # max{|supxf(x)|,|infxf(x)|} # |supxf(x)| % |infxf(x)| ,

it follows that 
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sup
θ0Θδ(θ()

*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)*

# * sup
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)] *

% * inf
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)] *

  (6.58)

Moreover,

sup
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)] # (1/n)'n

j'1 sup
θ0Θδ(θ()

g(Xj ,θ) & inf
θ0Θδ(θ()

E[g(X1 ,θ)]

# |(1/n)'n
j'1 sup

θ0Θδ(θ()
g(Xj ,θ) & E[ sup

θ0Θδ(θ()
g(X1 ,θ)]|

% E[ sup
θ0Θδ(θ()

g(X1 ,θ)] & E[ inf
θ0Θδ(θ()

g(X1 ,θ)]

(6.59)

and similarly,

inf
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)] $ (1/n)'n

j'1 inf
θ0Θδ(θ()

g(Xj ,θ) & sup
θ0Θδ(θ()

E[g(X1 ,θ)]

$ &|(1/n)'n
j'1 inf

θ0Θδ(θ()
g(Xj ,θ) & E[ inf

θ0Θδ(θ()
g(X1 ,θ)]|

% E[ inf
θ0Θδ(θ()

g(X1 ,θ)] & E[ sup
θ0Θδ(θ()

g(X1 ,θ)]

(6.60)

Hence

| sup
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ)&E[g(X1 ,θ)] | # |(1/n)'n

j'1 sup
θ0Θδ(θ()

g(Xj ,θ)&E[ sup
θ0Θδ(θ()

g(X1 ,θ)]|

% |(1/n)'n
j'1 inf

θ0Θδ(θ()
g(Xj ,θ) & E[ inf

θ0Θδ(θ()
g(X1 ,θ)]|

% E[ sup
θ0Θδ(θ()

g(X1 ,θ)] & E[ inf
θ0Θδ(θ()

g(X1 ,θ)]

(6.61)
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and similarly

| inf
θ0Θδ(θ()

(1/n)'n
j'1g(Xj ,θ)&E[g(X1 ,θ)] | # |(1/n)'n

j'1 sup
θ0Θδ(θ()

g(Xj ,θ)&E[ sup
θ0Θδ(θ()

g(X1 ,θ)]|

% |(1/n)'n
j'1 inf

θ0Θδ(θ()
g(Xj ,θ) & E[ inf

θ0Θδ(θ()
g(X1 ,θ)]|

% E[ sup
θ0Θδ(θ()

g(X1 ,θ)] & E[ inf
θ0Θδ(θ()

g(X1 ,θ)]

(6.62)

Combining (6.58), (6.61), and (6.62) it follows that 

sup
θ0Θδ(θ()

*(1/n)'n
j'1g(Xj ,θ)&E[g(X1 ,θ)* # 2|(1/n)'n

j'1 sup
θ0Θδ(θ()

g(Xj ,θ)&E[ sup
θ0Θδ(θ()

g(X1 ,θ)]|

% 2|(1/n)'n
j'1 inf

θ0Θδ(θ()
g(Xj ,θ) & E[ inf

θ0Θδ(θ()
g(X1 ,θ)]|

% 2 E[ sup
θ0Θδ(θ()

g(X1 ,θ)] & E[ inf
θ0Θδ(θ()

g(X1 ,θ)]

  (6.63)

It follows from the continuity of g(x,θ) in θ and the dominated convergence theorem [Theorem

6.5] that

limsup
δ90

sup
θ
(
0Θ

E [ sup
θ0Θδ(θ()

g(X1 ,θ) & inf
θ0Θδ(θ()

g(X1 ,θ)]

# lim
δ90

E sup
θ
(
0Θ

[ sup
θ0Θδ(θ()

g(X1 ,θ) & inf
θ0Θδ(θ()

g(X1 ,θ)] ' 0,

hence we can choose δ so small that

sup
θ
(
0Θ

E [ sup
θ0Θδ(θ()

g(X1 ,θ) & inf
θ0Θδ(θ()

g(X1 ,θ)] < g/4 . (6.64)

Furthermore, by the compactness of Θ it follows that there exist a finite number of θ*'s, say

θ1,...,θN(δ), such that 
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Θ d ^N(δ)

i'1
Θδ(θi) . (6.65)

Therefore, it follows from Theorem 6.2,  (6.63),  (6.64), and (6.65), that

P supθ0Θ*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]* > g

# P max1#i#N(δ) supθ0Θδ(θi)
*(1/n)'n

j'1g(Xj ,θ) & E[g(X1 ,θ)]* > g

# 'N(δ)
i'1 P supθ0Θδ(θi)

*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]* > g

# 'N(δ)
i'1 P |(1/n)'n

j'1supθ0Θδ(θ()g(Xj ,θ) & E[supθ0Θδ(θ()g(X1 ,θ)]|

% |(1/n)'n
j'1infθ0Θδ(θ()g(Xj ,θ) & E[infθ0Θδ(θ()g(X1 ,θ)]| > g/4

(6.66)

# 'N(δ)
i'1 P |(1/n)'n

j'1supθ0Θδ(θ()g(Xj ,θ) & E[supθ0Θδ(θ()g(X1 ,θ)]| > g/8

% 'N(δ)
i'1 P |(1/n)'n

j'1infθ0Θδ(θ()g(Xj ,θ) & E[infθ0Θδ(θ()g(X1 ,θ)]| > g/8 6 0 as n 6 4 .

6.B. Almost sure convergence and strong laws of large numbers

6.B.1. Preliminary results

First, I will show the equivalence of (6.6) and (6.7) in Definition 6.3:

Theorem 6.B.1: Let Xn  and X be random variables defined on a common probability space

{S,ö,P}.  Then  = 1  for arbitrary g > 0  if and only if limn64P(*Xm & X* # g for all m $ n)

 = 1. This result carries over to random vectors, by replacing |.| with theP(limn64Xn ' X)
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Euclidean norm ||.||.

Proof: Note that the statement  = 1 reads: There exists a set N  0 ö withP(limn64Xn ' X)

P(N) = 0 such that  pointwise in T 0 S\N.  Such a set N is called a null set. limn64Xn(ω) ' X(ω)

Denote

An(g) ' _4
m'n{ω 0 Ω : *Xm(ω) & X(ω)* # g} . (6.67)

First, assume that for arbitrary  g > 0,   Since   it follows that limn64P(An(g)) ' 1. An(g) d An%1(g)

 hence   is a null set, and so is theP[^4
n'1An(g)] ' limn64P(An(g)) ' 1, N(g) ' Ω \^4

n'1An(g)

countable union Now let T 0 S\N.  Then = N ' ^4
k'1N(1/k) . ω 0 Ω \^4

k'1N(1/k) ' _4
k'1Ñ(1/k)

 hence for each positive integer k,  Since  _4
k'1^4

n'1An(1/k) , ω 0 ^4
n'1An(1/k) . An(1/k) d An%1(1/k)

it follows now that for each positive integer k there exists a positive integer nk(ω) such that

 for all n $ nk(ω).  Let k(g) be the smallest integer  $ 1/g, and let ω 0 An(1/k) n0(ω ,g) ' nk(g)(ω) .

Then for arbitrary  g > 0, Therefore,  *Xn(ω) & X(ω)* # g if n $ n0(ω ,g) . limn64Xn(ω) ' X(ω)

pointwise in T 0 S\N,  hence  = 1.P(limn64Xn ' X)

Next, assume that the latter holds, i.e., the exists a null set N such that   =  limn64Xn(ω)

pointwise in T 0 S\N. Then for arbitrary  g > 0 and  T 0 S\N  there exists a positive integerX(ω)

 such that and therefore also  Thus, andn0(ω ,g) ω 0 An0(ω ,g)(g) ω 0 ^4
n'1An(g) . Ω \N d ^4

n'1An(g)

consequently, 1 = Since   it follows now that P(Ω \N) # P[^4
n'1An(g) ] . An(g) d An%1(g)

 =   = 1. Q.E.D.limn64P(An(g)) P[^4
n'1An(g)]

The following theorem, known as the Borel-Cantelli lemma, provides a convenient

condition for almost sure convergence.
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Theorem 6.B.2: (Borel-Cantelli). If for arbitrary  g > 0,  then'4
n'1P(*Xn & X* > g) < 4 ,

Xn 6 X a.s.

Proof: Let  be the complement of the set in  (6.67). ThenÃn(g) An(g)

 P(Ãn(g)) ' P[^4
m'n{ω 0 Ω : *Xm(ω) & X(ω)* > g}] # '4

m'nP[|Xn & X| > g] 6 0,

where the latter conclusion follows from the condition that 6  Thus, '4
n'1P(*Xn & X* > g) < 4 .

 hence  Q.E.D.limn64P(Ãn(g)) ' 0, limn64P(An(g)) ' 1.

The following theorem establishes the relationship between convergence in probability

and almost sure convergence:

Theorem 6.B.3:  if and only if every subsequence nm  of n = 1,2,3,... contains a furtherXn 6p X

subsequence  such that for k 6 4, nm(k) Xnm(k) 6 X a.s.

Proof: Suppose that  is not true, but every subsequence nm of n = 1,2,3,... containsXn 6p X

a further subsequence   such that for k 6 4, Then there exist numbers g > 0,  δnm(k) Xnm(k) 6 X a.s.

0 (0,1) and a subsequence  nm such that  Clearly, the same holdssupm$1P[|Xnm
& X| # g] # 1&δ .

for every further subsequence , which contradicts the assumption that there exists a furthernm(k)

subsequence  such that for k 6 4, This proves the “only if” part.nm(k) Xnm(k) 6 X a.s.

Next, suppose that . Then for every subsequence  nm,  . Consequently,Xn 6p X Xnm
6p X

for each positive integer k,   =  0,  hence for each k we can find alimm64P[|Xnm
& X| > k &2]

positive integer  such that  Thus,   # nm(k) P[|Xnm(k) & X| > k &2] # k &2 . '4
k'1P[|Xnm(k) & X| > k &2]

 The latter implies that  for each g > 0, hence by'4
k'1k

&2 < 4 . '4
k'1P[|Xnm(k) & X| > g] < 4
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Theorem 6.B.2,  Q.E.D.Xnm(k) 6 X a.s.

6.B.2. Slutsky’s theorem

Theorem 6.B.1 can be used to prove Theorem 6.7. Theorem 6.3 was only proved for the

special case that the probability limit X is constant. However, the general result of Theorem 6.3

follows straightforwardly from Theorems 6.7 and 6.B.3.

Let us restate Theorems 6.3 and 6.7 together:

Theorem 6.B.4: (Slutsky's theorem). Let Xn a sequence of random vectors in úk  converging a.s.

[in probability] to a (random or constant) vector X. Let Q(x) be an   úm -valued function on  úk 

which is continuous on an open (Borel) set B in  úk  for which  = 1). Then Q(Xn)P(X 0 B)

converges a.s.  [in probability] to Q(X).

Proof: Let and let  {S ,ö,P} be the probability space involved. According toXn 6 X a.s.

Theorem 6.B.1 there exists a null set N1 such that   pointwise in T 0 S\N1. limn64Xn(ω) ' X(ω)

Moreover, let  Then also N2 is a null set, and so is N2 ' {ω 0 Ω : X(ω) ó B} . N ' N1 ^ N2 .

Pick an arbitrary  T 0 S\N.  Since Q is continuous in it follows from standard calculus thatX(ω)

 =  By Theorem 6.B.1 this result implies that    a.s. Sincelimn64Ψ(Xn(ω)) Ψ(X(ω)) . Ψ(Xn) 6 Ψ(X)

the latter convergence result holds along any subsequence, it follows from Theorem 6.B.3 that 

 implies  Q.E.D.Xn 6p X Ψ(Xn) 6p Ψ(X) .
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6.B.3. Kolmogorov’s strong law of large numbers

I will now provide the proof of Kolmogorov’s strong law of large numbers, based on the

elegant and relatively simple approach of Etemadi (1981). This proof (and other versions of the

proof as well) employs the notion of equivalent sequences:

Definition 6.B.1: Two sequences of random variables, Xn and Yn, n $1, are said to be equivalent

if   '4
n'1P[Xn … Yn] < 4.

The importance of this concept lies in the fact that if one of the equivalent sequences obeys a

strong law of large numbers, then so does the other one:

Lemma 6.B.1: If Xn and Yn are equivalent and   then  µ a.s.(1/n)'n
j'1Yj 6 µ a.s. (1/n)'n

j'1Xj 6

Proof: Without loss of generality we may assume that µ = 0. Let {S ,ö,P} be the

probability space involved, and let  

 An ' ^4
m'n{ω 0 Ω: Xm(ω) … Ym(ω)} .

Then  hence   and thus  TheP(An) # '4
m'nP(Xm … Ym) 6 0, limn64P(An) ' 0 P(_4

n'1An) ' 0.

latter implies that for each  there exists a natural number   such thatω 0 Ω \{_4
n'1An} n

(
(ω)

 for all  because if not there exists a countable infinite subsequenceXn(ω) ' Yn(ω) n $ n
(
(ω),

 such that  hence  for all n $1 and thusnm(ω) , m ' 1,2,3,.... , Xnk(ω)(ω) … Ynk(ω)(ω) , ω 0 An

Now let N1 be the null set on which  fails to hold, and let N  =ω 0 _4
n'1An . (1/n)'n

j'1Yj 6 0 a.s.

Since for each  differ for at most a finite number of j’s,N1^{_4
n'1An} . ω 0 Ω\N , Xj(ω) and Yj(ω)
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and   it follows that also  Q.E.D.limn64(1/n)'n
j'1Yj(ω) ' 0, limn64(1/n)'n

j'1Xj(ω) ' 0.

The following construction of equivalent sequences plays a key-role in the proof of the

strong law of large numbers.

Lemma 6.B.2: Let  Xn ,  n $1, be i.i.d., with   and let  Then Xn E[|Xn|] < 4 , Yn ' Xn . I(|Xj| # n) .

and Yn  are equivalent.

Proof: The lemma follows from:

 '4
n'1P[Xn … Yn] ' '4

n'1P[|Xn| > n] ' '4
n'1P[|X1| > n] # m

4

0

P[|X1| > t]dt ' m
4

0

E[I(|X1| > t)]dt

# E m
4

0
I(|X1| > t)]dt ' E m

|X1|

0
dt ' E[|X1|] < 4 .

Q.E.D.

Now let  Xn ,  n $1, be the sequence in Lemma 6.B.2, and suppose that  (1/n)'n
j'1max(0,Xj)

6  a.s. and   6  a.s. Then it is easy to verify fromE[max(0,X1)] (1/n)'n
j'1max(0,&Xj) E[max(0,&X1)]

Theorem 6.B.1, by taking the union of the null sets involved, that 

1
nj

n

j'1

max(0,Xj)

max(0,&Xj)
6

E[max(0,X1)]

E[max(0,&X1)]
a.s.

Applying Slutsky’s theorem (Theorem 6.B.4) with Φ(x,y) = x !y it follows that  6(1/n)'n
j'1Xj

 a.s. Therefore, the proof of Kolmogorov’s strong law of large numbers is completed byE[X1]

Lemma 6.B.3 below.
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Lemma 6.B.3: Let the conditions of Lemma 6.B.2 hold, and assume in addition that  =P[Xn $ 0]

1. Then   (1/n)'n
j'1Xj 6 E[X1] a.s.

Proof: Let   and observe thatZ(n) ' (1/n)'n
j'1Yj

Var(Z(n)) # (1/n 2)'n
j'1E[Y 2

j ] ' (1/n 2)'n
j'1E[X 2

j I(Xj # j)]

# n &1E[X 2
1 I(X1 # n)] .

(6.68)

Next let α > 1 and g > 0 be arbitrary. It follows from (6.68) and Chebishev’s inequality that

j
4

n'1
P[|Z([αn]) & E[Z([αn])]| > g] # j

4

n'1
Var(Z([αn]))/g2 # j

4

n'1

E[X 2
1 I(X1 # [αn])]

g2[αn]

# g&2E X 2
1 '4

n'1I(X1 # [αn])/[αn] ,

(6.69)

where  is the integer part of  Let k be the smallest natural number such that  [αn] αn . X1 # [αk] ,

and note that  Then the last sum in (6.69) satisfies[αn] > αn/2 .

'4
n'1I(X1 # [αn])/[αn] # 2j

4

n'k
α&n ' 2. '4

n'0α
&n α&k # 2α

(α&1)X1

,

hence 

E X 2
1 '4

n'1I(X1 # [αn])/[αn] # 2α
α&1

E[X1] < 4.

Consequently, it follows from  the Borel-Cantelli lemma that  a.s. Z([αn]) & E[Z([αn]) 6 0

Moreover, it is easy to verify that  Hence,  a.s.E[Z([αn]) 6 E[X1] . Z([αn]) 6 E[X1]
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For each natural number k > α  there exists a natural number nk such that  [αnk] # k #

 and since the Xj’s are non-negative we have [αnk%1
] ,

[αnk]

[αnk%1
]
Z([αnk]) # Z(k) # [αnk%1

]

[αnk]
Z([αnk%1

]) (6.70)

The left-hand side expression in  (6.70) converges a.s. to  as and the right-handE[X1]/α k 6 4 ,

side converges a.s. to  hence we have with probability 1, αE[X1] ,

1
α

E[X1] # liminfk64Z(k) # limsupk64Z(k) # αE[X1]

In other words, denoting , there exists a null set Z ' liminfk64Z(k), Z ' limsupk64Z(k) Nα

(depending on α) such that for all Taking theω 0 Ω\Nα , E[X1]/α # Z(ω) # Z(ω) # αE[X1] .

union N of   over all rational α > 1, so that  N  is also a null set7,  the same holds for allNα

 and all  rational α > 1. Letting α 91 along the rational values then yields  = ω 0 Ω\N limk64Z(k)

 for all    Therefore, by Theorem 6.B.1,Z(ω) ' Z(ω) ' E[X1] ω 0 Ω\N .

 which by Lemmas 6.B.2 and 6.B.3 implies that(1/n)'n
j'1Yj 6 E[X1] a.s.,

Q.E.D. (1/n)'n
j'1Xj 6 E[X1] a.s..

This completes the proof of Theorem 6.6.

6.B.5. The uniform strong law of large numbers and its applications

Proof of Theorem 6.13: It follows from (6.63) , (6.64) and Theorem 6.6 that

limsup
n64

sup
θ0Θδ(θ()

*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)*

# 2 E[ sup
θ0Θδ(θ()

g(X1 ,θ)] & E[ inf
θ0Θδ(θ()

g(X1 ,θ)] < g/2 a.s. ,
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hence (6.66) can now be replaced by

limsup
n64

sup
θ0Θ

*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]*

# limsup
n64

max
1#i#N(δ)

sup
θ0Θδ(θi)

*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]* # g/2 a.s.

(6.71)

Replacing  g/2 with 1/m, m $ 1, the last inequality in (6.71) reads: 

Let {S ,ö,P} be the probability space involved. For m = 1,2,3, ... there exist a null sets Nm 

such that for all ω 0 Ω\Nm ,

limsup
n64

sup
θ0Θ

*(1/n)'n
j'1g(Xj(ω) ,θ) & E[g(X1 ,θ)]* # 1/m (6.72)

and the same holds for all   uniformly in m. Letting m 6 4 in (6.72), Theorem 6.13ω 0 Ω\^4
k'1Nk ,

follows.

Note that this proof is based on a seminal paper by Jennrich (1969).

An issue that has not yet been addressed is whether  supθ0Θ*(1/n)'n
j'1g(Xj ,θ)&E[g(X1 ,θ)*

is a well-defined random variable. If so, we must have that for arbitrary y > 0, 

{ω 0 Ω: supθ0Θ*(1/n)'n
j'1g(Xj(ω) ,θ)&E[g(X1 ,θ)* # y}

' _θ0Θ{ω 0 Ω: *(1/n)'n
j'1g(Xj(ω) ,θ)&E[g(X1 ,θ)* # y} 0 ö .

However, this set is an uncountable intersection of sets in ö and therefore not necessarily a set in

ö itself. The following lemma, which is due to Jennrich (1969), shows that in the case under

review there is no problem.

Lemma 6.B.4: Let   be a real function on  where B is a Borel setf(x,θ) B×Θ , B d úk , Θ d úm ,
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and  Θ  is compact (hence  Θ is a Borel set) such that for each x in B,  is continuous inf(x,θ)

 and for each    is Borel measurable. Then there exists a Borel measurableθ 0 Θ , θ 0 Θ , f(x,θ)

mapping  such that  hence the latter is Borel measurableθ(x): B 6 Θ f(x,θ(x)) ' infθ0Θf(x,θ) ,

itself.  The same result holds for the “sup” case.

Proof: I will only prove this result for  the special case k = m = 1, B = ú, Θ = [0,1]. 

Denote   and observe thatΘn ' ^n
j'1{0 ,1/j ,2/j , .... ,(j&1)/j ,1} ,

 is the set of all rational numbers in [0,1].  Since  is finite,Θn d Θn%1, and that Θ
(
' ^4

n'1Θn Θn

for each positive integer n there exists a Borel measurable function   such that θn(x): ú 6 Θn

 Let  = Note that is Borel measurable. For each xf(x,θn(x)) ' infθ0Θn
f(x,θ) . θ(x) liminfn64θn(x) . θ(x)

there exists a subsequence nj (which may depend on x) such that  Hence byθ(x) ' limj64θnj
(x) .

continuity,  =   Now suppose that for some g > 0f(x,θ(x)) limj64f(x,θnj
(x)) ' limj64infθ0Θnj

f(x,θ) .

the latter is greater or equal to  g + Then, since forinfθ0Θ
(

f(x,θ) .

 and the latter is monotonic non-increasing in m, it followsm # nj , infθ0Θnj

f(x,θ) # infθ0Θm
f(x,θ) ,

that for all n $1,   It is not too hard to show, using the continuityinfθ0Θn
f(x,θ) $ g % infθ0Θ

(

f(x,θ) .

of  that this is not possible. Therefore,  hence by continuity, f(x,θ) in θ , f(x,θ(x)) ' infθ0Θ
(

f(x,θ) ,

 Q.E.D.f(x,θ(x)) ' infθ0Θf(x,θ) .

Proof of Theorem 6.14: Let {S ,ö,P} be the probability space involved, and denote

. Now  (6.9) becomes   a.s., i.e., there exists a null set N such that for allθn ' θ̂ . Q(θn) 6 Q(θ0)

ω 0 Ω\N ,

limn64Q(θn(ω)) ' Q(θ0) . (6.73)

Suppose that for some  there exists a subsequence  and an  g > 0 such that ω 0 Ω\N nm(ω)
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 Then by the uniqueness condition there exists a  δ(ω) > 0 such that infm$12θnm(ω)(ω) & θ02 > g .

 for all   which contradicts (6.73). Hence, for everyQ(θ0) & Q(θnm(ω)(ω)) $ δ(ω) m $ 1,

subsequence  we have  which implies that   nm(ω) limm64θnm(ω)(ω) ' θ0 , limn64θn(ω) ' θ0 .

Proof of Theorem 6.15: The condition  a.s. translates as: There exists a null set N1Xn 6 c

such that for all    By the continuity of  M on B the latter implies thatω 0 Ω\N1 , limn64Xn(ω) ' c.

 and that for at most a finite number of indices n,   limn64|Φ(Xn(ω)) & Φ(c)| ' 0, Xn(ω) ó B .

Similarly, the uniform a.s. convergence condition involved translates as: There exists a null set N2 

such that  for all  Take  Then for allω 0 Ω\N2 , limn64supx0B*Φn(x,ω) & Φ(x)* 6 0. N ' N1^N2 .

ω 0 Ω\N ,

limsupn64|Φn(Xn(ω),ω) & Φ(c)|

# limsupn64|Φn(Xn(ω),ω) & Φ(Xn(ω))| % limsupn64|Φ(Xn(ω)) & Φ(c)|

# limsupn64supx0B*Φn(x,ω) & Φ(x)* % limsupn64|Φ(Xn(ω)) & Φ(c)| ' 0.

6.C. Convergence of characteristic functions and distributions

In this appendix I will provide the proof of the univariate version of Theorem 6.22. Let Fn

be a sequence of distribution functions on ú with corresponding characteristic functions  nn(t),

and let F  be a distribution function on ú with characteristic function Denote n(t) ' limn64nn(t) .

 F(x) ' limδ90liminfn64Fn(x%δ) , F(x) ' limδ90limsupn64Fn(x%δ) .

The function   is  right continuous and monotonic non-decreasing in x but not necessarily aF(x)

distribution function itself, because  may be less than one, or even zero. On the otherlimx84 F(x)
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hand, it is easy to verify that  = 0.  Therefore, if  = 1 then  is alimx9&4 F(x) limx64 F(x) F

distribution function. The same applies to   If   = 1 then  is a distributionF(x): limx64 F(x) F

function.

I will first show that   and then that  limx64 F(x) ' limx64 F(x) ' 1, F(x) ' F(x) .

Lemma 6.C.1:  Let Fn be a sequence of distribution functions on ú with corresponding

characteristic functions  nn(t), and suppose that   pointwise for each t in ú,n(t) ' limn64nn(t)

where n is continuous in t = 0. Then  is a distribution function,F(x) ' limδ90liminfn64Fn(x%δ)

and so is F(x) ' limδ90limsupn64Fn(x%δ) .

Proof: For T > 0 and A > 0 we have

1
2T m

T

&T

nn(t)dt '
1

2T m
T

&T
m
4

&4

exp(i.t.x)dFn(x)dt '
1

2T m
4

&4
m
T

&T

exp(i.t.x)dtdFn(x)

'
1

2T m
4

&4
m
T

&T

cos(t.x)dtdFn(x) ' m
4

&4

sin(Tx)
Tx

dFn(x)

' m
2A

&2A

sin(Tx)
Tx

dFn(x) % m
&2A

&4

sin(Tx)
Tx

dFn(x) % m
4

2A

sin(Tx)
Tx

dFn(x)

(6.74)

Since |sin(x)/x| # 1 and  it follows from (6.74) that |Tx|&1 # (2TA)&1 for |x| > 2A

/00000
/00000

1
T m

T

&T

nn(t)dt # 2 m
2A

&2A

dFn(x) %
1

AT m
&2A

&4

dFn(x) %
1

AT m
4

2A

dFn(x)

' 2 1 &
1

2AT m
2A

&2A

dFn(x) %
1

AT
' 2 1 &

1
2AT

µn([&2A,2A]) %
1

AT
,

(6.75)

where  is the probability measure on the Borel sets in ú corresponding to Fn.  Hence, puttingµn
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 it follows from (6.75) that T ' A &1

µn([&2A,2A]) $ /00000
/00000

A m
1/A

&1/A

nn(t)dt & 1, (6.76)

which can be rewritten as

Fn(2A) $ /00000
/00000

A m
1/A

&1/A

nn(t)dt & 1 % Fn(&2A) & µn({&2A}) (6.77)

Now let 2A and !2A be continuity points of  Then it follows from (6.77) , the conditionF .

that   pointwise for each t in ú, and the bounded8 convergence theorem thatn(t) ' limn64nn(t)

F(2A) $ /00000
/00000

A m
1/A

&1/A

n(t)dt & 1 % F(&2A) (6.78)

Since  = 1 and n is continuous in 0 the integral in (6.78) converges to 2  for n(0) A 6 4 .

Moreover,  if  Consequently, it follows from (6.78) thatF(&2A) 9 0 A 6 4 .

By the same argument it follows that Thus,  and  arelimA64 F(2A) ' 1. limA64 F(2A) ' 1. F F

distribution functions. Q.E.D.

Lemma 6.C.2:  Let Fn be a sequence of distribution functions on ú such that = F(x)

  and   are distribution functions. Then forlimδ90liminfn64Fn(x%δ) F(x) ' limδ90limsupn64Fn(x%δ)

every bounded continuous function φ on  ú and every g > 0 there exist subsequences  andn
k
(g)

 such thatnk(g)
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limsupk64/ /mφ(x)dFn
k
(g)(x) & mφ(x)dF(x) < g , limsupk64/ /mφ(x)dFn k(g)

(x) & mφ(x)dF(x) < g .

Proof: Without loss of generality we may assume that  for all x. For any g > 0φ(x) 0 [0,1]

we can choose continuity points a < b of F(x)  such that   > 1!g. Moreover, we canF(b) & F(a)

choose continuity points a = c1 < c2 <...< cm = b of F(x) such that for j = 1,..,m-1,

sup
x0(cj,cj%1]

φ(x) & inf
x0(cj,cj%1]

φ(x) # g . (6.79)

Furthermore, there exists a subsequence nk (possibly depending g) on such that

limk64Fnk
(cj) ' F(cj) for j '1,2.,...,m . (6.80)

Now define

ψ(x) ' inf
x0(cj,cj%1]

φ(x) for x 0 (cj,cj%1] , j ' 1,..,m&1, ψ(x) ' 0 elsewhere. (6.81)

Then by (6.79),  , and ,0 # φ(x) & ψ(x) # g for x 0 (a,b] 0 # φ(x) & ψ(x) # 1 for x ó (a,b]

hence

limsup
n64 / /mψ(x)dFn(x) & mφ(x)dFn(x)

# limsup
n64 m

x0(a,b]

*ψ(x)&φ(x)*dFn(x) % m
xó(a,b]

*ψ(x)&φ(x)*dFn(x)

# g % 1 & limsup
n64

Fn(b) & Fn(a) # g % 1 & F(b) & F(a) # 2g .

(6.82)

Moreover, if follows from (6.79) and (6.81) that 

/ /mψ(x)dF(x) & mφ(x)dF(x) # 2g , (6.83)
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and from (6.80) that

limk64mψ(x)dFnk
(x) ' mψ(x)dF(x) . (6.84)

Combining (6.82), (6.83) and (6.84) it follows that

limsupk64/ /mφ(x)dFnk
(x) & mφ(x)dF(x) # limsupk64/ /mφ(x)dFnk

(x) & mψ(x)dFnk
(x)

% limsupk64/ /mψ(x)dFnk
(x) & mψ(x)dF(x) % limsupk64/ /mψ(x)dF(x) & mφ(x)dF(x) < 4g

(6.85)

A similar result holds for the case   Q.E.D.F .

Let  be the characteristic function of  Since  it follows fromn
(
(t) F . n(t) ' limn64nn(t) ,

Lemma 6.C.2 that for each t and arbitrary g > 0,    The|n(t) & n
(
(t)| < g , hence n(t) ' n

(
(t) .

same result holds for the characteristic function   of   Consequently,  =n((t) F : n(t) ' n((t) . n(t)

is the characteristic function of both  and , which by Lemma 6.C.1 are distributionlimn64nn(t) F F

functions. By the uniqueness of characteristic functions (see Appendix 2.C in Chapter 2) it

follows that both distributions are equal:   say. Thus, for each continuityF(x) ' F(x) ' F(x) ,

point x of F,  F(x) ' limn64Fn(x) .

Note that we have not assumed from the outset that is a characteristicn(t) ' limn64nn(t)

function, but only that this pointwise limit exists and is continuous in zero. Consequently, the 

univariate version of the “if” part of Theorem 6.22 can be restated more generally as follows.

Theorem 6.C.1: Let Xn be a sequence of random variables with corresponding characteristic

functions If  exists for all  and  is continuous in t = 0, i.e.,φn(t) . φ(t) ' limn64φn(t) t 0 ú φ(t)

 then:limt60φ(t) ' 1,
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1. Recall that   =  has a Binomial (n,1/2) distribution, so that then(Xn % 1)/2 'n
j'1(Yj % 1)/2

distribution function Fn(x) of  Xn is

Fn(x) ' P[Xn # x] ' P[n(Xn%1)/2 # n(x % 1)/2] ' 'min(n,[n(x % 1)/2])
k'0

n

k
(1/2)n ,

where [z] denotes the largest integer # z, and the sum  is zero if m < 0.'m
k'0

2. The Yj’s have been generated as Yj = 2.I(Uj > 0.5) !1, where the Uj ‘s are random
drawings from the uniform [0,1] distribution, and I(.) is the indicator function.

3. Recall that open subsets of a Euclidean space are Borel sets.

4. See Appendix II.

5. Thus M is continuous in y on a little neighborhood of c.

6. Let am, m $1, be a sequence of non-negative numbers such that = K  <  4. Then '4
m'1am

 is monotonic non-decreasing in n  $ 2, with limit  hence'n&1
m'1am limn64'n&1

m'1am ' '4
m'1am ' K ,

 Thus,  = 0.K ' '4
m'1am ' limn64'n&1

m'1am % limn64'4
m'nam ' K % limn64'4

m'nam . limn64'4
m'nam

7. Note that  is an uncountable union and may therefore not be a null set.^α0(1,4)Nα

Therefore, we need to confine the union to all rational " > 1, which is countable.

8. Note that  # 1.|n(t)|

(a)  is a characteristic function itself.  φ(t)

(b)  Xn 6d X, where X is a random variable with characteristic function φ(t) .

This result carries over to the multivariate case, but the proof is rather complicated, and

therefore omitted. See Section 29 in Billingsley (1986).

Endnotes
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Chapter 7

Dependent Laws of Large Numbers and Central Limit Theorems 

In Chapter 6 I have focused on convergence of sums of i.i.d. random variables, in

particular the law of large numbers and the central limit theorem. However, macroeconomic and

financial data are time series data, for which the independence assumption does not apply. 

Therefore, in this chapter I will generalize the weak law of large numbers and the central limit

theorem to certain classes of time series.

7.1. Stationarity and the Wold decomposition

In Chapter 3 I have introduced the concept of strict stationarity, which for convenience

will be restated here: 

Definition 7.1: A time series process Xt  is said to be strictly stationary if for arbitrary integers

m1 < m2  <....< mn  the joint distribution of   does not depend on the time index t.Xt&m1
,......,Xt&mn

A weaker version of stationarity is covariance stationarity, which requires that the first

and second moments of any set  of time series variables do not depend on theXt&m1
,......,Xt&mn

time index t.
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Definition 7.2: A time series process  Xt  0 úk  is covariance stationary (or weakly stationary)  if 

 <  4,  and for all integers t and m,   and  =    do notE[||Xt||
2] E[Xt] ' µ E[(Xt&µ)(Xt&m&µ)T] Γ(m)

depend on the time index t.

Clearly, a strictly stationary time series process  Xt is covariance stationary if   <  4.E[||Xt||
2]

For zero-mean covariance stationary processes the famous Wold (1938) decomposition

theorem holds. This theorem is the basis for linear time series analysis and forecasting, in

particular the Box-Jenkins (1979) methodology,  and vector autoregression innovation response

analysis. See Sims (1980, 1982, 1986) and Bernanke (1986) for the latter.

Theorem 7.1: (Wold decomposition)  Let  Xt  0 ú be a zero-mean covariance stationary process.

Then we can write  where  the Ut’s are zero-meanXt ' '4
j'0αjUt&j % Wt , α0 ' 1, '4

j'0α
2
j < 4 ,

covariance stationary and uncorrelated random variables, and Wt is a deterministic process, i.e.,

there exist coefficients  such that    Moreover, Ut  = βj P[Wt ' '4
j'1βjWt&1] ' 1. Xt & '4

j'1βjXt&1

and  E[Ut%mWt] ' 0 for all integers m and t .

Intuitive proof: The exact proof employs Hilbert space theory, and will therefore be given

in the Appendix to this chapter. However, the intuition behind the Wold decomposition is not too

difficult. 

It is possible to find a sequence  j = 1,2,3,....., of real numbers such that βj ,

  is minimal. The random variableE[(Xt & '4
j'1βjXt&j)

2]
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X̂t ' '4
j'1βjXt&j (7.1)

is then called the linear projection of Xt on Xt!j, j $ 1.  Denoting 

Ut ' Xt & '4
j'1βjXt&j (7.2)

it follows from the first-order condition  thatME[(Xt & '4
j'1βjXt&j)

2] /Mβj ' 0

E[UtXt&m] ' 0 for m ' 1,2,3,..... (7.3)

Note that (7.2) and (7.3) imply

E[Ut] ' 0, E[UtUt&m] ' 0 for m ' 1,2,3,..... (7.4)

Moreover, note that by (7.2) and (7.3), 

 E[X 2
t ] ' E[(Ut % '4

j'1βjXt&j)
2] ' E[U 2

t ] % E[('4
j'1βjXt&j)

2] ,

so that by the covariance stationarity of Xt, 

E[U 2
t ] ' σ2

u # E[X 2
t ] (7.5)

and 

E[X̂ 2
t ] ' E[('4

j'1βjXt&j)
2] ' σ2

X̂
# E[X 2

t ] (7.6)

for all t. Thus it follows from (7.4) and (7.5) that Ut is a zero-mean covariance stationary time

series  process itself. 

Next, substitute  in (7.1). Then (7.1) becomesXt&1 ' Ut&1 % '4
j'1βjXt&1&j

X̂t ' β1(Ut&1 % '4
j'1βjXt&1&j) % '4

j'2βjXt&j ' β1Ut&1 % '4
j'2(βj%β1βj&1)Xt&j

' β1Ut&1 % (β2%β
2
1)Xt&2 % '4

j'3(βj%β1βj&1)Xt&j .
(7.7)

Now replace   in (7.7) by   Then (7.7) becomes:Xt&2 Ut&2 % '4
j'1βjXt&2&j .
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X̂t ' β1Ut&1 % (β2%β
2
1)(Ut&2 % '4

j'1βjXt&2&j) % '4
j'3(βj%β1βj&1)Xt&j

' β1Ut&1 % (β2%β
2
1)Ut&2 % '4

j'3[(β2%β
2
1)βj&2%(βj%β1βj&1)]Xt&j

' β1Ut&1 % (β2%β
2
1)Ut&2 % [(β2%β

2
1)β1%(β3%β1β2)]Xt&3 % '4

j'4[(β2%β
2
1)βj&2%(βj%β1βj&1)]Xt&j .

Repeating this substitution m times yields an expression of the type

X̂t ' 'm
j'1αjUt&j % '4

j'm%1θm,jXt&j , (7.8)

say. It follows now from  (7.3), (7.4), (7.5) and (7.8) that 

 Hence, letting m 6 4, we have E[X̂ 2
t ] ' σ2

u'm
j'1α

2
j % E[('4

j'm%1θm,jXt&j)
2] .

E[X̂ 2
t ] ' σ2

u'4
j'1α

2
j % limm64E[('4

j'm%1θm,jXt&j)
2] ' σ2

X̂
< 4 .

Therefore, we can write Xt as

Xt ' '4
j'0αjUt&j % Wt , (7.9)

where   with   a remainder term whichα0 ' 1 and '4
j'0α

2
j < 4 , Wt ' plimm64'4

j'm%1θm,jXt&j

satisfies

E[Ut%mWt] ' 0 for all integers m and t . (7.10)

Finally, observe from (7.2) and (7.9) that

Ut & Wt & '4
j'1βjWt&j ' (Xt&Wt) & '4

j'1βj(Xt&j&Wt&j)

' '4
j'0αj Ut&j&'4

m'1βmUt&j&m ' Ut % '4
j'1δjUt&j , say .

(7.11)

It follows now straightforwardly from (7.4), (7.5) and (7.10) that  henceδj ' 0 for all j $ 1,

Wt ' '4
j'1βjWt&j (7.12)

with probability 1. Q.E.D.
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Theorem 7.1 carries over to vector-valued covariance stationary processes:

Theorem 7.2: (Multivariate Wold decomposition)  Let  Xt  0 úk be a zero-mean covariance

stationary process. Then we can write  where    isXt ' '4
j'0AjUt&j % Wt , A0 ' Ik, '4

j'0AjA
T

j

finite,  the Ut’s are zero-mean covariance stationary and uncorrelated random vectors, i.e.,

 and Wt is a deterministic process, i.e., there exist matrices  suchE[UtU
T

t&m] ' O for m $ 1, Bj

that    Moreover, Ut  = and P[Wt ' '4
j'1BjWt&1] ' 1. Xt & '4

j'1BjXt&1

E[Ut%mW T
t ] ' O for all integers m and t .

Although the process Wt is deterministic, in the sense that it is perfectly predictable from

its past values, it still may be a random process. If so, let  be theöt
W ' σ(Wt ,Wt&1 ,Wt&2 , .......)

F!algebra generated by Wt!m  for m $ 0. Then all Wt ’s are measurable  for arbitrary naturalöt&m
W

numbers  m, hence all Wt ’s are measurable  However, it follows from (7.2) andö&4
W ' _4

t'0ö
&t
W .

(7.9) that each Wt can be constructed from Xt!j  for j $ 0,

hence  and consequently, all Wt ’s are measurableöt
X ' σ(Xt ,Xt&1 ,Xt&2 , .......) e öt

W ,

 This implies that  See Chapter 3. ö&4
X ' _4

t'0ö
&t
X . Wt ' E[Wt|ö

&4
X ] .

The F!algebra  represents the information contained in the remote past of Xt.ö&4
X

Therefore,  is called the remote F!algebra, and the events therein are called the remoteö&4
X

events.  If  is the trivial F!algebra  so that the remote past of Xt is uninformative, ö&4
X {Ω ,i},

then  =   hence  Wt  =  0. However, the same result holds if all the remoteE[Wt|ö
&4
X ] E[Wt] ,

events have either probability zero or one, as is easy to verify from the definition of conditional

expectations with respect to a  F!algebra. This condition follows automatically from
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Kolmogorov’s zero-one law  if the Xt’s are independent (see Theorem 7.5 below) , but for

dependent processes this is not guaranteed. Nevertheless, for economic time series this is not too

farfetched an assumption, as in reality they always start from scratch somewhere in the far past,

say five hundred years ago for US time series. 

Definition 7.3: A time series process Xt has a vanishing memory if the events in the remote

F!algebra  have either probability zero or one. ö&4
X ' _4

t'0σ(X
&t ,X&t&1 ,X

&t&2 , .......)

Thus, under the conditions of Theorems 7.1 and 7.2 and the additional assumption that

the covariance stationary time series process involved has a vanishing memory, the deterministic

term Wt in the Wold decomposition is zero or is a zero vector, respectively.

7.2. Weak laws of large numbers for stationary processes

I will show now that covariance stationary time series processes with a vanishing memory

obey a weak law of large numbers, and then specialize this result to strictly stationary processes.

Let Xt  0 ú be a covariance stationary process, i.e., for all t,   = µ,   E[Xt] var[Xt] ' σ2,

and  If Xt   has a vanishing memory then by Theorem 7.1 there existcov(Xt ,Xt&m) ' γ(m) .

uncorrelated random variables Ut  0 ú with zero expectations and common finite variance σ2
u

such that   where  ThenXt & µ ' '4
m'0αmUt&m , '4

m'0α
2
m < 4.

γ(k) ' E '4
m'0αm%kUt&m '4

m'0αmUt&m . (7.13)

Since  it follows that   Hence it follows from (7.13) and'4
m'0α

2
m < 4, limk64'4

m'kα
2
m ' 0.

Schwarz inequality that
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|γ(k)| # σ2
u '4

m'kα
2
m '4

m'0α
2
m 6 0 as k 6 4 (7.14)

Consequently,

var (1/n)'n
t'1Xt ' σ2/n % 2(1/n 2)'n&1

t'1 'n&t
m'1γ(m) ' σ2/n % 2(1/n 2)'n&1

m'1(n&m)γ(m)

# σ2/n % 2(1/n)'n
m'1|γ(m)| 6 0 as n 6 4 .

(7.15)

Using Chebishev’s inequality, it follows now from (7.15) that:

Theorem 7.3: If Xt is a covariance stationary time series process with vanishing memory then

plimn64(1/n)'n
t'1Xt ' E[X1] .

This results requires that the second moment of Xt is finite. However, this condition can

be relaxed by assuming strict stationarity:

Theorem 7.4: If Xt is a strictly stationary time series process with vanishing memory, and E[|X1|]

< 4,  then  plimn64(1/n)'n
t'1Xt ' E[X1] .

Proof: Assume first that  For any positive real number M,  P[Xt $ 0] ' 1. Xt I(Xt # M)

is a covariance stationary process with vanishing memory, hence by Theorem 7.3,  

plimn64(1/n)'n
t'1 Xt I(Xt # M) & E[X1 I(X1 # M)] ' 0 (7.16)

Next, observe that 
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|(1/n)'n
t'1(Xt & E[X1])| # |(1/n)'n

t'1(Xt I(Xt # M) & E[X1 I(X1 # M)])|

% |(1/n)'n
t'1(Xt I(Xt > M) & E[X1 I(X1 > M)])|

(7.17)

Since for nonnegative random variables Y and Z,   itP[Y%Z > g] # P[Y > g/2] % P[Z > g/2] ,

follows from (7.17) that for arbitrary g > 0,

P[|(1/n)'n
t'1(Xt & E[X1])| > g]

# P[|(1/n)'n
t'1(Xt I(Xt # M) & E[X1 I(X1 # M)])| > g/2]

% P[|(1/n)'n
t'1(Xt I(Xt > M) & E[X1 I(X1 > M)])| > g/2].

(7.18)

For an arbitrary * 0 (0,1) we can choose M so large that   Hence, usingE[X1 I(X1 > M)] < gδ/8 .

Chebishev’s inequality for first moments, the last  probability in (7.18) can be bounded by */2:

P[|(1/n)'n
t'1(Xt I(Xt > M) & E[X1 I(X1 > M)])| > g/2] # 4E[X1 I(X1 > M)]/g < δ/2. (7.19)

Moreover, it follows from (7.16) that there exists a natural number such that n0(g,δ)

P[|(1/n)'n
t'1(Xt I(Xt # M) & E[X1 I(X1 # M)])| > g/2] < δ/2 if n $ n0(g,δ) . (7.20)

Combining (7.18), (7.19) and (7.20), the theorem follows for the case  TheP[Xt $ 0] ' 1.

general case follows easily from   and Slutsky’s theorem. Q.E.D.Xt ' max(0,Xt) & max(0,&Xt)

Most stochastic dynamic macroeconomic models assume that the model variables are

driven by independent random shocks, so that the model variables involved are functions of these

independent random shocks and their past. These random shock are said to form a base for the

model variables involved:
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Definition 7.4: A time series process  Ut  is a base for a time series process Xt  if for each t, Xt is 

measurable   =  öt
&4 σ(Ut ,Ut&1 ,Ut&2 , ....).

If  Xt has an independent base then it has a vanishing memory, due to Kolmogorov’s zero-one

law:

Theorem 7.5: (Kolmogorov’s zero-one law). Let Xt  be a sequence of independent random

variables or vectors, and let   Then the sets in the remote F!algebra öt
&4 ' σ(Xt ,Xt&1 ,Xt&2 , ....).

 have either probability zero or one.ö
&4 ' _4

t'1ö
t
&4

Proof:  Denote by  the F!algebra  generated by  Moreover, denote by öt%k
t Xt , .... ,Xt%k .

 the F!algebra generated by  Each set A1 in  takes the form öt&1
t&m Xt&1 , ... ,Xt&m . öt%k

t

A1 ' {ω 0 Ω: (Xt(ω) , .... ,Xt%k(ω))T 0 B1}

for some Borel set   Similarly, each set A2  in  takes the form B1 0 úk%1 . ^4
m'1ö

t&1
t&m

A2 ' {ω 0 Ω: (Xt&1(ω) , .... ,Xt&m(ω))T 0 B2}

for some m $ 1 and some Borel set   Clearly,  A1 and  A2 are independent. B2 0 úm.

I will now show that the same holds for sets A2  in   the smallest öt&1
&4 ' σ(^4

m'1ö
t&1
t&m) ,

F!algebra containing  Note that   may not be a F!algebra itself, but it is^4
m'1ö

t&1
t&m. ^4

m'1ö
t&1
t&m

easy to verify that it is an algebra, because   For a given set C in   withöt&1
t&m d öt&1

t&m&1. öt%k
t

positive probability, and for all sets  A  in   we have   Thus   is a^4
m'1ö

t&1
t&m P(A|C) ' P(A) . P(@|C)

probability measure on the algebra , which has a unique extension to the smallest^4
m'1ö

t&1
t&m

F!algebra containing .  See Chapter 1.  Consequently,  is true for all^4
m'1ö

t&1
t&m P(A|C) ' P(A)
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sets A in  Moreover, if C has probability zero then öt&1
&4 . P(A_C) # P(C) ' 0 ' P(A)P(C) .

Thus for all sets C in  and all sets A in  öt%k
t öt&1

&4 , P(A_C) ' P(A)P(C) .

Next, let   where the intersection is taken over all integers t, and let A 0 _tö
t&1
&4 ,

 Then for some k,  C is a set in , and A is a set in  andC 0 ^4
k'1ö

t
t&k . öt

t&k öm
&4 for all m,

therefore   hence  By a similar argument as before it can beA 0 öt&k&1
&4 , P(A_C) ' P(A)P(C) .

shown that   for all sets  and  ButP(A_C) ' P(A)P(C) A 0 _tö
t&1
&4 C 0 σ(^4

k'1ö
t
t&k) .

  d  so that we may choose C = A. Thus for all sets   ö
&4 ' _tö

t&1
&4 σ(^4

k'1ö
t
t&k) , A 0 _tö

t&1
&4 ,

  which implies that P(A) is either zero or one.   Q.E.D.P(A) ' P(A)2 ,

7.3. Mixing conditions

Inspection of the proof of Theorem 7.5 reveals that the independence assumption can be

relaxed. We only need independence of an arbitrary set A  in   and an arbitrary set C  inö
&4

 for k  $ 1. A sufficient condition for this is that the process Xt isöt
t&k ' σ(Xt ,Xt&1 ,Xt&2 , ... ,Xt&k)

"!mixing or n!mixing:

Definition 7.5: Denote   and letöt
&4 ' σ(Xt ,Xt&1 ,Xt&2 , ... ) , ö4

t ' σ(Xt ,Xt%1 ,Xt%2 , ... ) ,

α(m) ' sup
t

sup
A 0 ö4

t , B 0 öt&m
&4

|P(A_B) & P(A).P(B)| ,

n(m) ' sup
t

sup
A 0 ö4

t , B 0 öt&m
&4

|P(A|B) & P(A)| .

If  then the time series process  Xt involved is said to be "!mixing, and if limm64α(m) ' 0

 then  Xt is said to be n!mixing.limm64n(m) ' 0
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Note that in the "!mixing case

sup
A 0 öt

t&k , B 0 ö
&4

|P(A_B) & P(A).P(B)| # limsup
m64

sup
t

sup
A 0 ö4

t&k , B 0 öt&k&m
&4

|P(A_B) & P(A).P(B)|

' limsup
m64

α(m) ' 0,

hence the sets   are independent. Moreover, note that  so thatA 0 öt
t&k , B 0 ö

&4 α(m) # n(m) ,

n!mixing implies "!mixing. Thus the latter is the weaker condition, which is sufficient for a

zero-one law:

Theorem 7.6: Theorem 7.5 carries over for "!mixing processes.

Therefore, another version of the weak law of large numbers is:

Theorem 7.7: If Xt is a strictly stationary time series process with an "!mixing base, and E[|X1|]

< 4,  then  plimn64(1/n)'n
t'1Xt ' E[X1] .

7.4. Uniform weak laws of large numbers

7.4.1 Random functions depending on finite-dimensional random vectors

Due to Theorem 7.7, all the convergence in probability results in Chapter 6 for i.i.d.

random variables or vectors carry over to strictly stationary time series processes with an

"!mixing base. In particular, the uniform weak law of large numbers can now be restated as

follows.
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Theorem 7.8(a): (UWLLN). Let Xt  a strictly stationary k-variate time series process with an  

"!mixing base, and let  be non-random vectors in a compact subset .  Moreover,θ 0 Θ Θ d úm

let g(x,2) be a Borel measurable function on  such that for each x,  g(x,2) is aúk × Θ

continuous function on 1.  Finally, assume that  < 4.  ThenE[supθ0Θ*g(Xj ,θ)*]

 plimn64supθ0Θ*(1/n)'n
j'1g(Xj ,θ) & E[g(X1 ,θ)]* ' 0.

Theorem 7.8(a) can be proved along the lines as in the proof of the uniform weak law of large

numbers for the i.i.d. case in Appendix 6.A of Chapter 6, simply by replacing the reference to the

weak law of large numbers for i.i.d random variables by a reference to Theorem 7.7. 

7.4.2 Random functions depending on infinite-dimensional random vectors 

In time series econometrics we quite often have to deal with random functions that

depend on a countable infinite sequence of random variables or vectors. As an example, consider

the time series process:

Yt ' β0Yt&1 % Xt , with Xt ' Vt & γ0Vt&1 , (7.21)

where the Vt’s are i.i.d. with zero expectation and finite variance F2, and the parameters involved

satisfy |$0| < 1 and |(0| < 1.  The part 

Yt ' β0Yt&1 % Xt (7.22)

is an Auto-Regression of order 1, denoted by AR(1), and the part 

Xt ' Vt & γ0Vt&1 (7.23)

is a Moving Average process or order 1, denoted by MA(1). Therefore, model  (7.21) is called an

ARMA(1,1) model. See Box and Jenkins (1976). The condition |$0| < 1 is necessary for the strict
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stationarity of Yt because then by backwards substitution of (7.21) we can write model (7.21) as

Yt ' '4
j'0β

j
0(Vt&j & γ0Vt&1&j) ' Vt % (β0 & γ0)'4

j'1β
j&1
0 Vt&j . (7.24)

This is the Wold decomposition of Yt .  The MA(1) model (7.23) can be written as an AR(1)

model in Vt :

Vt ' γ0Vt&1 % Ut . (7.25)

If |(0| < 1 then by backwards substitution of (7.25) we can write (7.23)  as  

Xt ' &'4
j'1γ

j
0Xt&j % Vt. (7.26)

Substituting  in (7.26), the ARMA(1,1) model (7.21) can now be written as anXt ' Yt & β0Yt&1

infinite-order AR model:

Yt ' β0Yt&1 & '4
j'1γ

j
0(Yt&j & β0Yt&1&j) % Vt ' (β0 & γ0)'4

j'1γ
j&1
0 Yt&j % Vt. (7.27)

Note that if  then (7.27) and (7.24) reduce to , so that then there is noβ0 ' γ0 Yt ' Vt

way to identify the parameters. Thus, we need to assume that  Moreover, observe fromβ0 … γ0 .

(7.24) that Yt is strictly stationary, with an independent (hence "-mixing) base.

There are different ways to estimate the parameters  in model (7.21) on the basis ofβ0 , γ0

observations on Yt  for t = 0,1,....,n only. If we assume that the Vt’s are normally distributed we

can use maximum likelihood. See Chapter 8. But it is also possible to estimate the model by

nonlinear least squares (NLLS). 

If we would observe all the Yt’s for t < n then the nonlinear least squares estimator of 

 isθ0 ' (β0 ,γ0)
T

θ̂ ' argminθ0Θ(1/n)'n
t'1(Yt & ft(θ))2 , (7.28)

where 

ft(θ) ' (β & γ)'4
j'1γ j&1Yt&j , with θ ' (β ,γ)T , (7.29)
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and

Θ ' [&1%g ,1&g]×[&1%g ,1&g] , g 0 (0,1) , (7.30)

say, where  g is a small number. If we only observe the Yt’s for t = 0,1,....,n, which is the usual

case,  then we still can use NLLS by setting the Yt’s for t < 0  to zero. This yields the feasible

NLLS estimator

θ̃ ' argminθ0Θ(1/n)'n
t'1(Yt & f̃ t(θ))2 , (7.31)

where

f̃ t(θ) ' (β & γ)'t
j'1γ j&1Yt&j . (7.32)

For proving the consistency of (7.31) we need to show first that 

plimn64supθ0Θ* (1/n)'n
t'1 (Yt & f̃ t(θ))2 & (Yt & ft(θ))2] * ' 0 (7.33)

(Exercise), and

plimn64supθ0Θ* (1/n)'n
t'1 (Yt & ft(θ))2 & E[(Y1 & f1(θ))2] * ' 0. (7.34)

(Exercise) However,  the random functions  depend on  infinite-dimensionalgt(θ) ' (Yt & ft(θ))2

random vectors   so that Theorem 7.8(a) is not applicable to (7.34).(Yt ,Yt&1 ,Yt&2 ,Yt&2 , .......)T ,

Therefore, we need to generalize Theorem 7.8(a) in order to prove (7.34):

Theorem 7.8(b): (UWLLN). Let  where Vt is a time series process withöt ' σ(Vt ,Vt&1 ,Vt&2 , ....),

an  "!mixing base. Let   be a sequence of random function on a compact subset  1 of agt(θ)

Euclidean space.  Denote for  and * $ 0,  If   for eachθ
(
0 Θ Nδ(θ() ' {θ 0 Θ: ||θ&θ

(
|| # δ} .

 and each * $ 0,θ
(
0 Θ

(a)   and  are measurable  and strictly stationary,supθ0Nδ(θ()gt(θ) infθ0Nδ(θ()gt(θ) öt

(b)  and  E[supθ0Nδ(θ()gt(θ)] < 4 E[infθ0Nδ(θ()gt(θ)] > &4 ,
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(c) ,  limδ90E[supθ0Nδ(θ()gt(θ)] ' limδ90E[infθ0Nδ(θ()gt(θ)] ' E[gt(θ()]

then  plimn64supθ0Θ|(1/n)'n
t'1gt(θ) & E[g1(θ)]| ' 0.

Theorem 7.8(b) can also be proved easily along the lines of the proof of the uniform weak

law of large numbers in Appendix 6.A of Chapter 6.

Note that it is possible to strengthen the (uniform) weak laws of large numbers  to

corresponding strong laws or large numbers by imposing conditions on the speed of convergence

to zero of "(m). See McLeish (1975).

It is not too hard (but rather tedious) to verify that the conditions of Theorem 7.8(b) apply

to the random functions  =  with Yt defined by (7.21) and   by (7.29).gt(θ) (Yt & ft(θ))2 ft(θ)

7.4.3 Consistency of M-estimators

Further conditions for the consistency of M-estimators are stated in the next theorem,

which is a straightforward generalization of a corresponding result in Chapter 6 for the i.i.d. case:

Theorem 7.9: Let the conditions of Theorem 7.8(b) hold, and let  θ0 ' argmaxθ0ΘE[g1(θ)],

 If for * > 0,   then  = θ̂ ' argmaxθ0Θ(1/n)'n
t'1gt(θ) . supθ0Θ\Nδ(θ0)E[g1(θ)] < E[g1(θ0)] plimn64θ̂

  Similarly, if    and for * > 0, θ0. θ0 ' argminθ0ΘE[g1(θ)], θ̂ ' argminθ0Θ(1/n)'n
t'1gt(θ) ,

  then  infθ0Θ\Nδ(θ0)E[g1(θ)] > E[g1(θ0)], plimn64θ̂ ' θ0 .

Again, it is not too hard (but also rather tedious) to verify that the conditions of Theorem 7.9

apply to (7.28),  with Yt defined by (7.21) and   by (7.29). Thus the feasible NLLS estimatorft(θ)
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(7.31) is consistent..

7.5. Dependent central limit theorems 

7.5.1 Introduction

Similarly to the conditions for asymptotic normality of M-estimators in the i.i.d. case (see

Chapter 6), the crucial condition for asymptotic normality of the NLLS estimator (7.28) is that

1

n
j

n

t'1
Vt Mft(θ0) /MθT

0 6d N2[0 ,B] , (7.35)

where 

B ' E V 2
1 Mf1(θ0) /MθT

0 Mf1(θ0) /Mθ0 . (7.36)

It follows from (7.24) and (7.29) that

ft(θ0) ' (β0 & γ0)'4
j'1β

j&1
0 Vt&j , (7.37)

which is measurable   and so isöt&1 ' σ(Vt&1 ,Vt&2 ,Vt&3 , ....),

Mft(θ0)/Mθ
T
0 '

'4
j'1 β0 % (β0 & γ0)(j&1) β j&2

0 Vt&j

&'4
j'1β

j&1
0 Vt&j

. (7.38)

Therefore, it follows from the law of iterated expectations (see Chapter 3) that

B ' σ2E Mf1(θ0) /MθT
0 Mf1(θ0) /Mθ0

' σ4
'4

j'1 β0 % (β0 & γ0)(j&1) 2β 2(j&2)
0 &'4

j'1 β0 % (β0 & γ0)(j&1) β 2(j&2)
0

&'4
j'1 β0 % (β0 & γ0)(j&1) β 2(j&2)

0 '4
j'1β

2(j&1)
0

(7.39)

and
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P E[Vt (Mft(θ0) /MθT
0 ) |öt&1] ' 0 ' 1. (7.40)

The result (7.40) makes  a bivariate martingale difference process, and for anVt (Mft(θ0) /MθT
0 )

arbitrary nonrandom  the process  is then a univariateξ 0 ú2 , ξ … 0, Ut ' Vtξ
T(Mft(θ0) /MθT

0 )

martingale difference process:

Definition 7.4: Let Ut be a time series process defined on a common probability space {S,ö,P},

and let  öt  be a sequence of  sub- F-algebra of  ö . If for each t,

(a) Ut  is measurable öt,

(b) öt-1  d öt,

(c) E[|Ut|] <   4,

(d) P(E[Ut|öt-1] = 0) = 1,

then {Ut, öt } is called a martingale difference process.   

If condition (d) is replace by  then {Ut, öt } is called a martingale. InP(E[Ut|öt&1] ' Ut&1) ' 1

that case  satisfies  This is the∆Ut ' Ut & Ut&1 ' Ut & E[Ut|öt&1] P(E[∆Ut|öt&1] ' 0) ' 1.

reason for calling the process in Definition 7.4 a martingale difference process.

Thus, what we need for proving (7.35) is a martingale difference central limit theorem.

7.5.2 A generic central limit theorem

In this section I will explain McLeish (1974) central limit theorems for dependent random

variables, with a specialization to stationary martingale difference processes.

The following approximation of exp(i.x) plays a key role in proving central limit
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theorems for dependent random variables.

Lemma 7.1. For  x 0 ú with |x| < 1,   where  exp(i.x) ' (1%i.x)exp(&x 2/2 % r(x)) , |r(x)| # |x|3.

Proof: It follows from the definition of the complex logarithm and the series expansion of

log(1+i.x) for |x| < 1 (see Appendix III) that

log(1%i.x) ' i.x % x 2/2 % '4
k'3(&1)k&1i kx k/k % i.m.π ' i.x % x 2 /2 & r(x) % i.m.π,

  

where  Taking the exp of both sides of the equation for log(1+i.x) r(x) ' &'4
k'3(&1)k&1i kx k/k .

yields  In order to prove the inequality , observeexp(i.x) ' (1%i.x)exp(&x 2/2 % r(x)) . |r(x)| # |x|3

that

r(x) ' &'4
k'3(&1)k&1i kx k/k ' x 3'4

k'0(&1)k i k%1x k/(k%3)

' x 3'4
k'0(&1)2k i 2k%1x 2k/(2k%3) % x 3'4

k'0(&1)2k%1 i 2k%2x 2k%1/(2k%4)

' x 3'4
k'0(&1)kx 2k%1/(2k%4) % i.x 3'4

k'0 (&1)kx 2k/(2k%3)

' '4
k'0(&1)kx 2k%4/(2k%4) % i.'4

k'0 (&1)kx 2k%3/(2k%3)

' m
x

0

y 3

1%y 2
dy % i.m

x

0

y 2

1%y 2
dy

(7.41)

where the last equality follows from

d
dx

'4
k'0(&1)kx 2k%4/(2k%4) ' '4

k'0(&1)kx 2k%3 ' x 3'4
k'0(&x 2)k '

x 3

1%x 2
(7.42)

for  |x| < 1,  and similarly
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d
dx

'4
k'0 (&1)kx 2k%3/(2k%3) '

x 2

1%x 2
. (7.43)

The theorem now follows from the easy inequalities

/00000
/00000m

x

0

y 3

1%y 2
dy # m

|x|

0

y 3dy '
1
4

|x|4 # |x|3 / 2

and

/00000
/00000m

x

0

y 2

1%y 2
dy # m

|x|

0

y 2dy '
1
3

|x|3 # |x|3 / 2

which hold for |x| < 1.  Q.E.D.

The result of Lemma 7.1 plays a key-role in the proof of the following generic central

limit theorem:

Lemma 7.2: Let Xt, t = 1,2,...,n,..., be a sequence of random variables satisfying the following

four conditions:

plimn64max1#t#n|Xt| / n ' 0, (7.44)

plimn64(1/n)'n
t'1X

2
t ' σ2 0 (0,4) , (7.45)

limn64E (n
t'1(1%i.ξ.Xt/ n) ' 1, œξ 0ú , (7.46)

and

supn$1E (n
t'1(1%ξ2X 2

t /n) < 4, œξ 0 ú . (7.47)

Then 
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1

n
j

n

t'1
Xt 6d N(0,σ2) . (7.48)

Proof: Without loss of generality we may assume that F2 = 1, because if not we may

replace Xt by Xt /F.  It follows from the first part of Lemma 7.1 that 

exp iξ(1/ n)'n
t'1Xt ' k

n

t'1
1%iξXt/ n exp&(ξ2 /2)(1/n)'n

t'1X
2
t exp 'n

t'1r ξXt / n (7.49)

Condition (7.45) implies that 

plimn64exp&(ξ2 /2)(1/n)'n
t'1X

2
t ' exp(&ξ2 /2) . (7.50)

Moreover, it follows from (7.44), (7.45) and the inequality    for |x| <1  that|r(x)| # |x|3

/ /'n
t'1r ξXt / n I |ξXt / n| < 1 # |ξ|3

n n
j

n

t'1
|Xj|

3 I |ξXt / n | < 1

# |ξ|3
max1#t#n|Xt|

n
(1/n)'n

t'1X
2
t 6p 0,

(7.51)

Next, observe that

/ /'n
t'1r ξXt / n I |ξXt / n| $ 1 # 'n

t'1/ /r ξXt / n I |ξXt / n| $ 1

# I |ξ|.max1#t#n|Xt| / n| $ 1 'n
t'1/ /r ξXt / n

(7.52)

The latter and condition (7.44) imply that

P 'n
t'1r ξXt / n I |ξXt / n| $ 1 ' 0 $ P |ξ|.max1#t#n|Xt| / n < 1 6 1. (7.53)

Therefore, it follows from (7.44) and (7.45) that
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plimn64exp 'n
t'1r ξXt / n ' 1. (7.54)

Thus we can write

exp iξ(1/ n)'n
t'1Xt ' k

n

t'1
1%iξXt/ n exp(&ξ2 /2) % k

n

t'1
1%iξXt/ n Zn(ξ) (7.55)

where

Zn(ξ) ' exp(&ξ2 /2) & exp&(ξ2 /2)(1/n)'n
t'1X

2
t exp 'n

t'1r ξXt / n 6p 0 (7.56)

Since    with probability 1 because|Zn(ξ)| # 2

|exp(&x 2/2 % r(x))| # 1, (7.57)

it follows from (7.56) and the dominated convergence theorem that 

limn64E[|Zn(ξ)|
2] ' 0. (7.58)

Moreover, condition (7.47) implies (using   and  ) thatz w ' z̄ .w̄ |z| ' z z̄

supn$1 E / /(n
t'1(1%iξXt / n)

2
' supn$1E (n

t'1(1%iξXt / n)(1&iξXt / n)

' supn$1E (n
t'1(1%ξ2X 2

t /n) < 4.

(7.59)

Therefore, it follows from the Cauchy-Schwarz inequality that  

/000 /000limn64 E Zn(ξ) k
n

t'1
1%iξXt / n # limn64E[|Zn(ξ)|

2] supn$1E [ (n
t'1(1%ξ2X 2

t /n)]

' 0

(7.60)

Finally, it follows now from (7.46),  (7.55) and (7.60) that

limn64E[exp(iξ(1/ n)'n
t'1Xt)] ' exp(&ξ2 /2) . (7.61)

Since the right-hand side of (7.61) is the characteristic function of the N(0,1) distribution, the



279

theorem follows for the case  F2 = 1. Q.E.D.

Lemma 7.2 is the basis for various central limit theorems for dependent processes. See for

example Davidson’s (1994) textbook. In the next section I will specialize Lemma 7.2  to

martingale difference processes.

7.5.3 Martingale difference central limit theorems

Note that Lemma 7.2 carries over if we replace the Xt’s  by a double array  Xn,t, t =1,2,...,n,

n = 1,2,3,..... In particular, let 

Yn,1 ' X1 , Yn,t ' Xt I (1/n)'t&1
k'1X

2
k # σ2%1 for t $2. (7.62)

Then by condition (7.45),

P[Yn,t … Xt for some t # n] # P[(1/n)'n
t'1X

2
t > σ2%1] 6 0 (7.63)

hence (7.48) holds if 

1

n
j

n

t'1
Yn,t 6d N(0,σ2) . (7.64)

Therefore, it suffices to verify the conditions of Lemma 7.2 for (7.62). 

First, it follows straightforwardly from (7.63) that condition (7.45) implies

plimn64(1/n)'n
t'1Y

2
n,t ' σ2 . (7.65)

Moreover, if Xt is strictly stationary with an "!mixing base, and  then itE[X 2
1 ] ' σ2 0 (0,4)

follows from Theorem 7.7 that  (7.45) holds, and so does (7.65).
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Next, let us have a closer look at condition (7.44). It is not hard to verify that for arbitrary

g > 0,

P[max1#t#n|Xt|/ n > g] ' P[(1/n)'n
t'1X

2
t I(|Xt|/ n > g) > g2] (7.66)

hence, (7.44) is equivalent to the condition that for arbitrary g > 0,

(1/n)'n
t'1X

2
t I(|Xt| > g n) 6p 0. (7.67)

Note that (7.67) is true if Xt is strictly stationary, because then

E[(1/n)'n
t'1X

2
t I(|Xt| > g n)] ' E[X 2

1 I(|X1| > g n)] 6 0 (7.68)

Now  consider condition (7.47) for the  Yn,t’s.  Observe that

(n
t'1(1%ξ2Y 2

n,t /n) ' (n
t'1 1%ξ2X 2

t I (1/n)'t&1
k'1X

2
k # σ2%1 /n ' k

Jn

t'1
1%ξ2X 2

t /n , (7.69)

where 

Jn ' 1 % j
n

t'2
I (1/n)'t&1

k'1X
2
k # σ2%1 . (7.70)

Hence

ln (n
t'1(1%ξ2Y 2

n,t /n) ' j
Jn&1

t'1
ln 1%ξ2X 2

t /n % ln 1%ξ2X 2
Jn

/n

# ξ2 1
n j

Jn&1

t'1
X 2

t % ln 1%ξ2X 2
Jn

/n # (σ2%1)ξ2% ln 1%ξ2X 2
Jn

/n

(7.71)

where the last inequality follows (7.70).  Therefore,
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sup
n$1

E (n
t'1(1%ξ

2Y 2
n,t /n) # exp((σ2%1)ξ2) 1%ξ2sup

n$1
E[X 2

Jn
] /n

# exp((σ2%1)ξ2) 1%ξ2supn$1 (1/n)'n
t'1E[X 2

t ] .

(7.72)

Thus (7.72) is finite if

supn$1(1/n)'n
t'1E[X 2

t ] < 4 , (7.73)

which in its turn is true if Xt is covariance stationary.  

Finally, it follows from the law of iterated expectations that for a martingale difference

process Xt,

E (n
t'1(1%iξXt / n) ' E (n

t'1(1%iξE[Xt|öt&1] / n) ' 1, œξ 0 ú , (7.74)

and therefore also

E (n
t'1(1%iξYn,t / n) ' E (n

t'1(1%iξE[Yn,t|öt&1] / n) ' 1, œξ 0 ú (7.75)

We can now specialize Lemma 7.2 for martingale difference processes:

Theorem 7.10: Let Xt 0 ú be a martingale difference process satisfying the following three

conditions:

(a)  (1/n)'n
t'1X

2
t 6p σ2 0 (0,4) ;

(b) For arbitrary g > 0, (1/n)'n
t'1X

2
t I(|Xt| > g n) 6p 0;

(c) supn$1(1/n)'n
t'1E[X 2

t ] < 4 .

Then (1/ n)'n
t'1Xt 6d N(0,σ2) .
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Moreover, it is not hard to verify that the conditions of Theorem 7.10 hold if the martingale

difference process Xt is strictly stationary with an "!mixing base, and   E[X 2
1 ] ' σ2 0 (0,4):

Theorem 7.11: Let Xt, 0 ú be a strictly stationary martingale difference process with an

"!mixing base, satisfying   Then E[X 2
1 ] ' σ2 0 (0,4) . (1/ n)'n

t'1Xt 6d N(0,σ2) .

7.6. Exercises

1. Let U and V  be independent standard normal random variables, and let for all integers t

and some nonrandom number 8 0 (0,B),   Prove that Xt is covarianceXt ' U.cos(λt) % V.sin(λt).

stationary and deterministic.

2. Show that the process Xt in problem 1 does not have a vanishing memory, but that

nevertheless  plimn64(1/n)'n
t'1Xt ' 0.

3. Let Xt be a time series process satisfying and suppose that the events in theE[|Xt|] < 4 ,

remote F!algebra  have either probability zero or one. Showö
&4 ' _4

t'0σ(X
&t ,X&t&1 ,X

&t&2 , .......)

that P(E[Xt|ö&4] ' E[Xt]) ' 1.

4. Prove (7.33) .

5. Prove (7.34) by verifying the conditions on Theorem 7.8(b) for  = gt(θ) (Yt & ft(θ))2 ,

with Yt defined by (7.21) and   by (7.29).ft(θ)

6. Verify the conditions of Theorem 7.9 for  =  with Yt defined by (7.21)gt(θ) (Yt & ft(θ))2 ,

and   by (7.29).ft(θ)

7. Prove (7.57).
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8. Prove (7.66).

Appendix 

7.A. Hilbert spaces

7.A.1 Introduction

Loosely speaking, a Hilbert space is a space of elements for which similar properties hold

as for Euclidean spaces. We have seen in Appendix I that the Euclidean space   is a specialún

case of a vector space, i.e., a space of elements endowed with two arithmetic operations:

addition, denoted by "+", and scalar multiplication, denoted by a dot. In particular, a space V is a

vector space if  for all x, y and z in V, and all scalars c, c1 and c2,

(a) x + y = y + x;

(b) x + (y + z) = (x + y) + z;

(c) There is a unique zero vector 0 in V such that x + 0 = x;

(d) For each x there exists a unique vector !x in V such that x + (!x) = 0;

(e) 1.x = x;

(f) (c1c2).x = c1.(c2.x);

(g) c.(x + y) = c.x + c.y;

(h) (c1 + c2).x = c1.x + c2.x.

Scalars are real or complex numbers. If the scalar multiplication rules are confined to real
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numbers, the vector space V is a real vector space. In the sequel I will only consider real vector

spaces. 

The inner product of two vectors x and y in  is defined by xTy. Denoting <x,y> =  xTy, itún

is trivial that this inner product obeys the rules in the more general definition of inner product: 

Definition 7.A.1: An inner product on a real vector space V is a  real function <x,y>  on V×V

such that for all x, y, z in V and all c in ú,

(1) <x,y> = <y,x>

(2) <cx,y> = c<x,y>

(3) <x+y,z> = <x,z> + <y,z>

(4) <x,x> > 0 when x … 0. 

A vector space endowed with an inner product is called an inner product space. Thus,  ún

is an inner product space. In  the norm of a vector x is defined by Therefore, theún ||x|| ' x Tx .

norm on a real inner product space is defined similarly as   Moreover, in  the||x|| ' <x ,x>. ún

distance between two vectors x and y is defined by   Therefore, the||x&y|| ' (x&y)T(x&y) .

distance between two vectors  x and y in a real inner product space is defined similarly as

 The latter is called a metric.||x&y|| ' <x&y ,x&y>.

An inner product space with associated norm and metric is called a pre-Hilbert space. The

reason for the "pre" is that still one crucial property of  is missing, namely that every Cauchyún

sequence in  has a limit in .ún ún
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Definition 7.A.2: A sequence of elements xn of a inner product space with associated norm and

metric is called a Cauchy sequence if for every g > 0 there exists an n0 such that for all k,m $ n0,

||xk!xm|| < g.

Theorem 7.A.1: Every Cauchy sequence in   has a limit in the space involved.úR, R < 4 ,

Proof: Consider first the case ú. Let  where xn is a Cauchy sequence. Ix ' limsupn64xn ,

will show first that x < 4 .

There exists a subsequence nk such that   Note that   is also a Cauchyx ' limk64xnk
. xnk

sequence. For arbitrary  g > 0 there exists an index k0 such that   <  g if k,m  $ k0.|xnk
& xnm

|

Keeping k fixed and letting m 6 4 it follows that   < g, hence   Similarly,|xnk
& x| x < 4 .

 Now we can find an index k0 and sub-sequences  nk and  nm such that forx ' liminfn64xn > &4 .

k,m  $ k0,    < g,    < g, and    < g, hence    < 3g. Since g is|xnk
& x| |xnm

& x| |xnk
& xnm

| |x & x|

arbitrary, we must have  Applying this argument to each component of ax ' x ' limn64xn .

vector-valued Cauchy sequence the result for the case   follows. Q.E.D.úR

In order for an inner product space to be a Hilbert space we have to require that the result

in Theorem 7.A1 carries over to the inner product space involved:

Definition 7.A.3: A Hilbert space H  is a vector space endowed with an inner product and

associated norm and metric, such that every Cauchy sequence in H has a limit in H. 
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7.A.2 A Hilbert space of random variables

Let U0 be the vector space of zero-mean random variables with finite second moments

defined on a common probability space  endowed with the inner product <X,Y> ={Ω,ö,P},

E[X.Y], norm  and metric ||X-Y||.  ||X|| ' E[X 2]

Theorem 7.A.2: The space  U0 defined above is a Hilbert space.

Proof: In order to show that U0  is a Hilbert space, we need to show that every Cauchy

sequence Xn ,n $ 1, has a limit in U0.  Since by Chebishev’s inequality, 

P[|Xn&Xm| > g] # E[(Xn&Xm)2]/g2 ' ||Xn&Xm||2/g2 6 0 as n,m 6 4

for every g > 0, it follows that  In Appendix 6.B of Chapter 6 we have|Xn&Xm| 6p 0 as n,m 6 4.

seen that convergence in probability implies convergence a.s. along a subsequence. Therefore

there exists a subsequence nk such that  The latter implies that|Xnk
&Xnm

| 6 0 a.s. as n,m 6 4.

there exists a null set N such that for every  is a Cauchy sequence in ú, henceω 0 Ω\N , Xnk
(ω)

 exists for every  Now for every fixed m,limk64Xnk
(ω) ' X(ω) ω 0 Ω\N .

  (Xnk
&Xm)2 6 (X&Xm)2 a.s. as k 6 4.

By Fatou’s lemma (see below) and the Cauchy property the latter implies that 

 #  ||X&Xm||2 ' E[(X&Xm)2] liminfk64E[(Xnk
&Xm)2] 6 0 as m 6 4 .

Moreover, it is easy to verify that Thus, every Cauchy sequence in E[X] ' 0 and E[X 2] < 4 .

U0  has a limit in  U0 , hence  U0 is a Hilbert space. Q.E.D.
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Lemma 7.A.1: (Fatou’s lemma). Let Xn ,n $ 1, be a sequence of non-negative random variables.

Then E[liminfn64Xn] # liminfn64E[Xn] .

Proof: Put  and let n be a simple function satisfyingX ' liminfn64Xn 0 # n(x) # x.

Moreover, put  Then  because for arbitrary g > 0,Yn ' min(n(X) ,Xn). Yn 6p n(X)

P[|Yn & n(X)| > g] ' P[Xn < n(X)&g] # P[Xn < X&g] 6 0.

Since  because n is a simple function, and  it follows from E[n(X)] < 4 Yn # n(X) , Yn 6p n(X)

and the dominated convergence theorem that 

E[n(X)] ' limn64E[Yn] ' liminfn64E[Yn] # liminfn64E[Xn] . (7.76)

Taking the supremum over all simple functions n satisfying  it follows now  from0 # n(x) # x

(7.76) and the definition of E[X] that  Q.E.D.E[X] # liminfn64E[Xn] .

7.A.3 Projections

Similarly to the Hilbert space  two elements x and y in a Hilbert space H are said to beún ,

orthogonal if <x,y> = 0, and orthonormal is in addition ||x|| = 1 and ||y|| = 1. Thus, in the Hilbert

space U0  two random variables are orthogonal if they are uncorrelated.

Definition 7.A.4: A linear manifold of a real Hilbert space H is a non-empty subset M of H such

that for each pair x, y in M and all real numbers " and $,  The closure  of Mα.x % β.y 0 M . M

is called a subspace of H. The subspace spanned by a subset C of H is the closure of the
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intersection of all linear manifolds containing C.

In particular, if S is the subspace spanned by a countable infinite sequence   of x1 ,x2 ,x3 , .....

vectors in H then each vector x in S takes the form  where the coefficients cn arex ' '4
ncn.xn ,

such that ||x|| < 4.

It is not hard to verify that a subspace of a Hilbert space is a Hilbert space itself. 

Definition 7.A.5: The projection of an element y in a Hilbert space H on a subspace S of H is an

element x of S such that ||y&x|| ' minz0S ||y&z|| .

For example, if S is a subspace spanned by vectors  in H and  then thex1 , ... ,xk y 0 H\S

projection of y on S is a vector   where the coefficients cj are chosenx ' c1.x1% ...%ck.xk 0 S

such that  is minimal. Of course, if  then the projection of y on S is y||y & c1.x1& ...&ck.xk|| y 0 S

itself.

Projections always exist and are unique: 

Theorem 7.A.3: (Projection theorem) If S is a subspace of a Hilbert space H and y is a vector in

H then there exists a unique vector x in S such that ||y!x|| = Moreover, the residualminz0S ||y&z|| .

vector u = y!x is orthogonal to any z in S.

Proof: Let   and   By the definition of infimum it is possible toy 0 H\S infz0S ||y&z|| ' δ .

select vectors xn in S such that The existence of the projection x of y on S||y&xn|| # δ % 1/n .
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then follows by showing that xn is a Cauchy sequence, as follows. Observe that

||xn&xm||2 ' ||(xn&y)&(xm&y)||2 ' ||xn&y||2 % ||xm&y||2 & 2<xn&y,xm&y>

and 

4||(xn%xm)/2&y||2 ' ||(xn&y)%(xm&y)||2 ' ||xn&y||2 % ||xm&y||2 % 2<xn&y,xm&y>.

Adding these two equations up yields

||xn&xm||2 ' 2||xn&y||2 % 2||xm&y||2 & 4||(xn%xm)/2&y||2 (7.77)

Since  it follows that  hence it follows from (7.77) that(xn%xm)/2 0 S ||(xn%xm)/2&y||2 $ δ2 ,

||xn&xm||2 # 2||xn&y||2 % 2||xm&y||2 & 4δ2 # 4δ/n % 1/n 2 % 4δ/m % 1/m 2 .

Thus xn is a Cauchy sequence in S, and since S is a Hilbert space itself,  xn has a limit x in S.

As to the orthogonality  of  u = y!x  with any vector z in S, note that for every real

number c and every z in S, x+c.z is a vector in S, so that 

δ2 # ||y&x&c.z||2 ' ||u&c.z||2 ' ||y&x||2% ||c.z||2&2<u,c.z> ' δ2%c 2||z||2&2c<u,z>. (7.78)

Minimizing the right-hand side of (7.78) to c yields the solution  andc0 ' <u,z>/||z||2,

substituting this solution in (7.78) yields the inequality  Thus <u,z> = 0.(<u,z>)2/||z||2 # 0.

Finally, suppose that there exists another vector p in S such that  Then y!p is||y&p|| ' δ .

orthogonal to any vector z in S: But x!p is a vector in S, so that <y&p ,z> ' 0. <y&p ,x&p> ' 0

and  hence    Thus,<y&x ,x&p> ' 0, 0 ' <y&p ,x&p> & <y&x ,x&p> ' <x&p ,x&p> ' ||x&p||2 .
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 Q.E.D.p ' x .

7.A.5 Proof of the Wold decomposition

Let Xt be a zero-mean covariance stationary process, and denote Then theE[X 2
t ] ' σ2 .

Xt‘s are members of the Hilbert space  U0 defined in Section 7.A.2. Let   be the subspaceS t&1
&4

spanned by Xt!j, j $1, and let  be the projection of Xt on    Then  isX̂t S t&1
&4 . Ut ' Xt & X̂t

orthogonal to all  Xt!j, j $1, i.e.,  =  0 for j $1.  Since for j $1, the Ut ‘s areE[Ut Xt&j] Ut&j 0 S t&1
&4

also orthogonal to each other:  =  0 for j $1.  E[Ut Ut&j]

Note that in general   takes the form  where the coefficients $t,j areX̂t X̂t ' '4
j'1βt,jXt&j ,

such that   However, since Xt is covariance stationary the coefficients $t,j do||Yt||
2 ' E[Y 2

t ] < 4 .

not depend on the time index t, because they are the solutions of the normal equations

γ(m) ' E[XtXt&m] ' '4
j'1βjE[Xt&jXt&m] ' '4

j'1βjγ(|j&m|) , m ' 1,2,3,.......

Thus the projections   are covariance stationary, and so are the Ut ‘s becauseX̂t ' '4
j'1βjXt&j

σ2 ' ||Xt||
2 ' ||Ut % X̂t||

2 ' ||Ut||
2 % ||X̂t||

2 % 2<Ut , X̂t> ' ||Ut||
2 % ||X̂t||

2 ' E[U 2
t ] % E[X̂ 2

t ] ,

so that E[U 2
t ] ' σ2

u # σ2 .

Next, let  Then Zt,m ' 'm
j'1αjUt&j , where αj ' <Xt ,Ut> ' E[XtUt&j].

||Xt&Zt,m||2 ' ||Xt&'m
j'1αjUt&j||

2 ' E[X 2
t ] & 2'm

j'1αjE[XtUt&j] % 'm
i'1'm

j'1αiαjE[UiUj]

' E[X 2
t ] & 'm

j'1α
2
j $ 0,

for all m $ 1, hence  The latter implies that  so that for'4
j'1α

2
j < 4 . '4

j'mα
2
j 6 0 for m 6 4 ,
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fixed t,  is a Cauchy sequence in , and   is a Cauchy sequence in Zt,m S t&1
&4 Xt&Zt,m S t

&4 .

Consequently,   and  !  0   exist.Zt ' '4
j'1αjUt&j 0 S t&1

&4 Wt ' Xt '4
j'1αjUt&j S t

&4

As to the latter, it follows easily from (7.8) that   for every m, henceWt 0 S t&m
&4

Wt 0 _
&4<t<4S t

&4 . (7.79)

Consequently,  for all integers t and m. Moreover, it follows from (7.79) that theE[Ut%mWt] ' 0

projection of Wt on any   is Wt  itself, hence Wt is perfectly predictable from any setS t&m
&4

 of past values of Xt, as well as from any set of past values of Wt. {Xt&j , j $ 1} {Wt&j , j $ 1}
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Chapter 8

Maximum Likelihood Theory

8.1. Introduction

Consider a random sample Z1,...,Zn  from a  k-variate distribution with density ,f(z*θ0)

where  is an unknown parameter vector, with 1 a given parameter space. As isθ0 0 Θ d úm

well known, due to the independence of the Zj's, the joint density function of the random vector

 is the product of the marginal densities: .  The likelihood functionZ ' (Z T
1 , .... ,Z T

n )T (n
j'1f(zj*θ0)

in this case is defined as this joint density, with the non-random arguments zj replaced by the

corresponding random vectors Zj, and  by :θ0 θ

L̂n(θ) = (n
j'1f(Zj*θ) . (8.1)

The maximum likelihood (ML) estimator of  is now   or equivalentlyθ0 θ̂ = argmaxθ0ΘL̂n(θ) ,

θ̂ = argmaxθ0Θ ln L̂n(θ) , (8.2)

where "argmax" stands for the argument for which the function involved takes its maximum

value.  

The ML estimation method is motivated by the fact that in this case

E[ln(L̂n(θ))] # E[ln(L̂n(θ0))] . (8.3)

To see this, note that ln(u) =   u!1 for u = 1, and ln(u) <  u!1 for 0 < u < 1 and u > 1. Therefore,
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taking   it follows that for all 2,   #  ! 1, andu ' f(Zj|θ)/f(Zj|θ0) ln(f(Zj|θ)/f(Zj|θ0)) f(Zj|θ)/f(Zj|θ0)

taking expectations it follows now that

E[ln(f(Zj|θ)/f(Zj|θ0))] # E[f(Zj|θ)/f(Zj|θ0)] & 1

' m
úk

f(z*θ)
f(z*θ0)

f(z*θ0)dz & 1 ' m{z0úk: f(z|θ0)>0}
f(z*θ)dz & 1 # 0

Summing up, (8.3) follows.

This argument reveals that neither the independence assumption of the data Z =

 nor the absolute continuity assumption are necessary for (8.3). The only thing that(Z T
1 , .... ,Z T

n )T

matters is that 

E[L̂n(θ)/L̂n(θ0)] # 1 (8.4)

for all 2 0 1 and n $ 1. Moreover, if the support of Zj is not affected by the parameters in 20, i.e.,

if in the above case the set  is the same for all 2 0 1,  then the inequality in{z 0 úm: f(z|θ) > 0}

(8.4) becomes an equality:

E[L̂n(θ)/L̂n(θ0)] ' 1 (8.5)

for all 2 0 1 and n $ 1. Equality (8.5) is the most common case in econometrics .

In order to show that absolute continuity is not essential for (8.3), suppose that  the Zj’s

are independent and identically discrete distributed with support =, i.e., for all  z 0 Ξ ,

 > 0 and  = 1. Moreover, let now  where  isP[Zj ' z] 'z0ΞP[Zj ' z] f(z|θ0) ' P[Zj ' z], f(z|θ)

the probability model involved. Of course,   should be specified such that f(z|θ) 'z0Ξf(z|θ) ' 1

for all 2 0 1.  For example, suppose that the  Zj’s are independent Poisson (20) distributed, so
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that   and  = = {0,1,2,.....}. Then the likelihood function involved also takes thef(z|θ) ' e &θθz/z!

form (8.1), and

E[f(Zj|θ)/f(Zj|θ0)] ' j
z0Ξ

f(z*θ)
f(z*θ0)

f(z*θ0) ' j
z0Ξ

f(z*θ) ' 1,

hence (8.5) holds in this case as well, and therefore so does (8.3). 

In this and the previous case the likelihood function takes the form of a product.

However, also in the dependent case we can write the likelihood function as a product. For

example, let Z =   be absolutely continuously distributed with joint density(Z T
1 , .... ,Z T

n )T

 where the  Zj’s are no longer  independent. It is always possible to decompose afn(zn,......,z1|θ0),

joint density as a product of conditional densities and an initial marginal density. In particular,

denoting for t $ 2,   

 ft(zt|zt&1,...,z1,θ) ' ft(zt,...,z1|θ)/ft&1(zt&1,...,z1|θ),

we can write 

fn(zn,...,z1|θ) ' f1(z1|θ)(n
t'2 ft(zt|zt&1,...,z1,θ) .

 

Therefore, the likelihood function in this case can be written as

L̂n(θ) ' fn(Zn,...,Z1|θ) ' f1(Z1|θ)(n
t'2 ft(Zt|Zt&1,...,Z1,θ) . (8.6)

It is easy to verify that in this case (8.5) holds also, and therefore so does (8.3). Moreover, it

follows straightforwardly from (8.6) and the above argument that in the time series case involved



295

P E /00000
L̂t(θ)/L̂t&1(θ)

L̂t(θ0)/L̂t&1(θ0)
Zt&1,...,Z1 # 1 ' 1 for t ' 2,3,...,n, (8.7)

hence

P E /ln(L̂t(θ)/L̂t&1(θ)) & ln(L̂t(θ0)/L̂t&1(θ0)) Zt&1,...,Z1 # 0 ' 1 for t ' 2,3,...,n. (8.8)

Of course, these results hold in the independent case as well.

8.2. Likelihood functions

There are quite a few cases in econometrics where the distribution of the data is neither

absolute continuous nor discrete. The Tobit model discussed below is such a case. In these cases

we cannot construct a likelihood function in the way I have done here, but still we can define a

likelihood function indirectly, using the properties (8.4) and (8.7):

Definition 8.1:  A sequence   of non-negative random functions on a parameterL̂n(θ) , n $ 1,

space 1 is a sequence of likelihood functions if the following conditions hold:

(a) There exists an increasing sequence  of  F-algebras such that for each 2 0 1ön , n $ 0,

and n $ 1,  is measurable L̂n(θ) ön .

(b) There exists a   such that for all  2 0 1,   andθ0 0 Θ P(E [L1(θ)/L1(θ0)*ö0] # 1) ' 1,

for n $ 2,

P E /00000
L̂n(θ)/L̂n&1(θ)

L̂n(θ0)/L̂n&1(θ0)
ön&1 # 1 ' 1.

(c) For all     and for  n $ 2,θ1 … θ2 in Θ, P[L̂1(θ1) ' L̂1(θ2)*ö0] < 1,
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 1 P[L̂n(θ1)/L̂n&1(θ1) ' L̂n(θ2)/L̂n&1(θ2)*ön&1] < 1.

The conditions in (c) exclude the case that  is constant on 1. Moreover, these conditionsL̂n(θ)

also guarantee that  is unique:θ0 0 Θ

Theorem 8.1: For all 2 0 1\{ } and n $ 1 , θ0 E[ln(L̂n(θ)/L̂n(θ0))] < 0.

Proof: First, let n = 1. I have already established that  ! 1ln(L̂1(θ)/L̂1(θ0)) < L̂1(θ)/L̂1(θ0)

if   Thus, denoting   and  =L̂n(θ)/L̂n(θ0) … 1. Y(θ) ' L̂n(θ)/L̂n(θ0) & ln(L̂n(θ)/L̂n(θ0)) & 1 X(θ)

  we have  and  if and only if  Now suppose thatL̂n(θ)/L̂n(θ0) Y(θ) $ 0, Y(θ) > 0 X(θ) … 1.

 Then  a.s.  because  henceP(E[Y(θ)|ö0] ' 0) ' 1. P[Y(θ) ' 0 |ö0] ' 1 Y(θ) $ 0,

 a.s. Condition (c) in Definition 8.1 now excludes the possibility thatP[X(θ) ' 1|ö0] ' 1

 hence   if and only if   In turn this resultθ … θ0 , P(E[ln(L̂1(θ)/L̂1(θ0))|ö0] < 0) ' 1 θ … θ0 .

implies that

E[ln(L̂1(θ)/L̂1(θ0))] < 0 if θ … θ0. (8.9)

By a similar argument it follows that for n $ 2,

E [ln(L̂n(θ)/L̂n&1(θ)) & ln(L̂n(θ0)/L̂n&1(θ0))] < 0 if θ … θ0. (8.10)

The theorem now follows from (8.9) and (8.10). Q.E.D.

As we have seen for the case (8.1), if the support {z: f(z|2) > 0}of f(z|θ) does not depend

on 2 then the inequalities in condition (b) becomes equalities, with  for  n $ 1,ön ' σ(Zn,.....,Z1)

and   the trivial F-algebra. Therefore,ö0
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Definition 8.2: The sequence  of  likelihood functions has invariant support if  forL̂n(θ) , n $ 1,

all  θ 0 Θ,   and for n $ 2,P(E [L̂1(θ)/L̂1(θ0)*ö0] ' 1) ' 1,

P E /00000
L̂n(θ)/L̂n&1(θ)

L̂n(θ0)/L̂n&1(θ0)
ön&1 ' 1 ' 1.

As said before, this is the most common case in econometrics.

8.3. Examples

8.3.1 The uniform distribution

Let be independent random drawings from the uniform [0,20] distribution,Zj , j ' 1,...,n ,

where 20 > 0.  The density function of Zj is  so that the likelihoodf(z|θ0) ' θ&1
0 I(0 # z # θ0) ,

function involved is:

L̂n(θ) '
1

θn k
n

j'1
I(0 # Zj # θ) . (8.11)

In this case  for  n $ 1, and   is the trivial F-algebra {S,i}. The conditionsön ' σ(Zn,.....,Z1) ö0

(b) in Definition 8.1 now read as

E[L̂1(θ)/L̂1(θ0)|ö0] ' E[L̂1(θ)/L̂1(θ0)|] ' min(θ,θ0)/θ # 1,

E /00000
L̂n(θ)/L̂n&1(θ)

L̂n(θ0)/L̂n&1(θ0)
ön&1 ' E[L̂1(θ)/L̂1(θ0)|] ' min(θ,θ0)/θ # 1 for n $ 2.

Moreover, the conditions (c) in Definition 8.1 read as
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P[θ&1
1 I(0 # Z1 # θ1) ' θ&1

2 I(0 # Z1 # θ2)] ' P(Z1 > max(θ1 ,θ2)) < 1 if θ1 … θ2.

Hence, Theorem 8.1 applies. Indeed, 

E[ln(L̂n(θ)/L̂n(θ0))] ' nln(θ0/θ) % nE[ln(I(0 # Z1 # θ))] & E[ln(I(0 # Z1 # θ0))]

' nln(θ0/θ) % nE[ln(I(0 # Z1 # θ))] '

&4 if θ < θ,0

nln(θ0/θ) < 0 if θ > θ0,

0 if θ ' θ0.

8.3.2 Linear regression with normal errors

Let   be independent random vectors such that Zj ' (Yj ,X
T

j )T , j ' 1,...,n ,

Yj ' α0 % βT
0Xj % Uj , Uj|Xj - N(0 ,σ2

0) ,

where the latter means that the conditional distribution of Uj given Xj is a normal N(0 ,σ2
0)

distribution. The conditional density of Yj given Xj is

f(y|θ0 ,Xj) '
exp[&½(y&α0&β

T
0Xj)

2/σ2
0]

σ0 2π
, where θ0 ' (α0,β

T
0,σ2

0)
T .

Next, suppose that the  Xj’s are absolutely continuously distributed with density g(x). Then the

likelihood function is
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L̂n(θ) ' (n
j'1f(Yj|θ,Xj) (n

j'1g(Xj) '
exp[&½'n

j'1(Yj&α&β
TXj)

2/σ2]

σn( 2π)n
(n

j'1g(Xj) (8.12)

where  However, note that in this case the marginal distribution of  Xj does notθ ' (α,βT,σ2)T .

matter for the ML estimator  because this distribution does not depend on the parameterθ̂ ,

vector  More precisely, the functional form of the ML estimator  as function of the data isθ0 . θ̂

invariant to the marginal distributions of the Xj’s, although the asymptotic properties of the ML

estimator (implicitly) depend on the distributions of the Xj’s. Therefore, without loss of generality

we may ignore the distribution of the  Xj’s in (8.12) and work with the conditional likelihood

function:

L̂
c

n (θ) ' k
n

j'1
f(Yj|θ,Xj) '

exp[&½'n
j'1(Yj&α&β

TXj)
2/σ2]

σn( 2π)n
, where θ ' (α,βT,σ2)T . (8.13)

As to the F-algebras involved, we may take  and for n $1, ö0 ' σ({Xj}
4
j'1)

 where w denotes the operation "take the smallest F-algebra containing theön ' σ({Yj}
n
j'1)wö0 ,

two F-algebras involved". 2 The conditions (b) in Definition 8.1 then read  

E[L̂ c
1 (θ)/L̂ c

1 (θ0)|ö0] ' E[f(Y1|θ,X1)/f(Y1|θ0,X1)|X1] ' 1,

E /00000
L̂ c

n (θ)/L̂ c
n&1(θ)

L̂ c
n (θ0)/L̂

c
n&1(θ0)

ön&1 ' E[f(Yn|θ,Xn)/f(Yn|θ0,Xn)|Xn] ' 1 for n $ 2.

Thus, Definition 8.2 applies. Moreover, it is easy to verify that the conditions (c) of  Definition

8.1 now read as  This is true, but  tedious toP[f(Yn|θ1,Xn) ' f(Yn|θ2,Xn)|Xn] < 1 if θ1 … θ2.

verify.
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8.3.3 Probit and Logit models

Again, let   be independent random vectors, but now Yj takesZj ' (Yj ,X
T

j )T , j ' 1,...,n ,

only two values, 0 and 1, with conditional Bernoulli probabilities

P(Yj'1|θ0 ,Xj) ' F(α0%β
T
0Xj), P(Yj'0|θ0 ,Xj) ' 1 & F(α0%β

T
0Xj), (8.14)

where F is a given distribution function and  For example, let the sample be aθ0 ' (α0,β
T
0)T .

survey of households, where Yj indicates home ownership, and Xj is a vector of household

characteristics such as marital status, number of children living at home, and income.  

If F is the logistic distribution function,  then model (8.14) isF(x) ' 1/[1%exp(&x)],

called the Logit model, and if F is the distribution function of the standard normal distribution

then  model (8.14) is called the Probit model. 

In this case the conditional likelihood function is

L̂ c
n (θ) ' k

n

j'1
[YjF(α%βTXj) % (1&Yj)(1 & F(α%βTXj))] , where θ ' (α,βT)T . (8.15)

Also in this case the marginal distribution of  Xj does not affect the functional form of the ML

estimator as function of the data. 

The  F-algebras involved are the same as in the regression case, namely ö0 ' σ({Xj}
4
j'1)

and for n $1,   Moreover, note that ön ' σ({Yj}
n
j'1)wö0 .

E[L̂ c
1 (θ)/L̂ c

1 (θ0)|ö0] ' '1
y'0[yF(α%βTX1) % (1&y)(1 & F(α%βTX1))] ' 1,

and similarly

E /00000
L̂ c

n (θ)/L̂ c
n&1(θ)

L̂
c

n (θ0)/L̂
c

n&1(θ0)
ön&1 ' '1

y'0[yF(α%βTXn) % (1&y)(1 & F(α%βTXn))] ' 1,
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hence the conditions (b) of Definition 8.1 and the conditions of Definition 8.2 apply. Also the

conditions (c) in Definition 8.1 apply, but again it is rather tedious to verify this.

8.3.4 The Tobit model

Let   be independent random vectors such that Zj ' (Yj ,X
T

j )T , j ' 1,...,n ,

Yj ' max(Y (

j ,0) , where Y (

j ' α0 % βT
0Xj % Uj with Uj|Xj - N(0 ,σ2

0). (8.16)

The random variables  are only observed if they are positive. Note that Y (

j

P[Yj'0|Xj] ' P[α0 % βT
0Xj % Uj # 0|Xj] ' P[Uj > α0 % βT

0Xj|Xj]

' 1 & Φ (α0 % βT
0Xj)/σ0 , where Φ(x) ' m

x

&4
exp(&u 2/2)/ 2π du .

This is a Probit model. Since model (8.16) was proposed by Tobin (1958) and involves a Probit

model for the case Yj = 0 it is called the Tobit model. For example, let the sample be a survey of

households, where  Yj is the amount of money household j spends on tobacco products, and Xj is

a vector of household characteristics. But there are  households where nobody smokes, so that for

these households  Yj = 0.  

In this case the setup of the conditional likelihood function is not as straightforward as in

the previous examples, because the conditional distribution of Yj given Xj is neither absolutely

continuous nor discrete. Therefore, in this case it is easier to derive the likelihood function

indirectly from Definition 8.1, as follows.

First note that the conditional distribution function of Yj given Xj  and Yj > 0 is
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P[Yj # y|Xj ,Yj>0] '
P[0 < Yj # y |Xj]

P[Yj > 0|Xj]
'

P[&α0 & βT
0Xj < Uj # y & α0 & βT

0Xj|Xj]

P[Yj > 0|Xj]

'
Φ (y & α0 & βT

0Xj)/σ0 & Φ (&α0 & βT
0Xj)/σ0

Φ (α0 % βT
0Xj)/σ0

I(y > 0) ,

hence the conditional density function of Yj given Xj  and Yj > 0 is

h(y|θ0 ,Xj ,Yj>0) '
n (y & α0 & βT

0Xj)/σ0

σ0Φ (α0 % βT
0Xj)/σ0

I(y > 0) , where n(x) '
exp(&x 2/2)

2π
.

Next, observe that for any Borel measurable function g of (Yj,Xj) such that E[|g(Yj,Xj)|] < 4 we

have

E[g(Yj,Xj)|Xj] ' g(0,Xj)P[Yj ' 0|Xj] % E[g(Yj,Xj)I(Yj > 0)|Xj]

' g(0,Xj)P[Yj ' 0|Xj] % E E[g(Yj,Xj)|Xj ,Yj > 0)|Xj]I(Yj > 0)|Xj

' g(0,Xj) 1 & Φ (α0 % βT
0Xj)/σ0 % E m

4

0
g(y,Xj)h(y|θ0 ,Xj ,Yj>0)dy.I(Yj > 0)|Xj (8.17)

' g(0,Xj) 1 & Φ (α0 % βT
0Xj)/σ0 % m

4

0
g(y,Xj)h(y|θ0 ,Xj ,Yj>0)dy.Φ (α0 % βT

0Xj)/σ0

' g(0,Xj) 1 & Φ (α0 % βT
0Xj)/σ0 %

1
σ0

m
4

0
g(y,Xj)n (y & α0 & βT

0Xj)/σ0 dy .

Hence, choosing

g(Yj ,Xj) '
1 & Φ (α % βTXj)/σ I(Yj ' 0) % σ&1n (Yj & α & βTXj)/σ I(Yj > 0)

1 & Φ (α0 % βT
0Xj)/σ0 I(Yj ' 0) % σ&1

0 nYj & α0 & βT
0Xj)/σ0 I(Yj > 0)

(8.18)

it follows from (8.17) that 
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E[g(Yj,Xj)|Xj] ' 1 & Φ (α % βTXj)/σ %
1
σm

4

0
n (y & α & βTXj)/σ dy

' 1 & Φ (α % βTXj)/σ % 1 & Φ (&α & βTXj)/σ ' 1.
(8.19)

In view of Definition 8.1,  (8.18) and  (8.19) suggest to define the conditional likelihood function

of the Tobit model as

L̂ c
n (θ) ' k

n

j'1
1 & Φ (α % βTXj)/σ I(Yj ' 0) % σ&1n (Yj & α & βTXj)/σ I(Yj > 0) .

The conditions (b) in Definition 8.1 now follow from (8.19), with the  F-algebras involved

defined similar as in the regression case. Moreover, also the conditions (c) apply.

 Note that

E[Yj|Xj ,Yj>0] ' α0 % βT
0Xj %

σ0n (α0 % βT
0Xj)/σ0

Φ (α0 % βT
0Xj)/σ0

. (8.20)

Therefore, if one would estimate a linear regression model using the observations with Yj > 0

only, the OLS estimates will be inconsistent, due to the last term in (8.20). 

8.4. Asymptotic properties of ML estimators

8.4.1 Introduction

Without the conditions (c) in Definition 8.1 the solution θ0 = argmaxθ0ΘE[ln(L̂n(θ) )]

may not be unique. For example, if Zj  = cos(Xj+20) with the Xj ‘s independent absolutely

continuously distributed  random variables with common density, then the density function  

f(z|20) of Zj satisfies  f(z|20) = f(z|20+2sB) for all integers s. Therefore, the parameter space 1 has

to be chosen small enough to make 20 unique. 
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Also, the first and second-order conditions for a maximum of   at  E[ln(L̂n(θ) )] θ ' θ0

may not be satisfied. The latter is for example the case for the likelihood function (8.11): if 

 then  and if   then   so that the leftθ < θ0 E[ln(L̂n(θ) )] ' &4 , θ $ θ0 E[ln(L̂n(θ) )] ' &n.ln(θ) ,

derivative of    in   is    = 4,  andE[ln(L̂n(θ) )] θ ' θ0 limδ90(E[ln(L̂n(θ0) )] & E[ln(L̂n(θ0&δ) )]) /δ

the right-derivative  is    =   Since the first andlimδ90(E[ln(L̂n(θ0%δ) )] & E[ln(L̂n(θ0) )]) /δ &n/θ0 .

second-order conditions play a crucial role in deriving the asymptotic normality and efficiency of

the ML estimator (see below), the rest of this chapter does not apply to the case (8.11). 

8.4.2 First and second-order conditions

The following conditions guarantee that the first and second-order conditions for a

maximum hold.

Assumption 8.1: The parameter space 1 is convex, and 20 is an interior point of  1. The

likelihood function  is, with probability 1, twice continuously differentiable in an openL̂n(θ)

neighborhood   and for  Θ0 of θ0 , i1 , i2 ' 1,2,3,...,m ,

E sup
θ0Θ0

/00000
/00000

M2L̂n(θ)

Mθi1
Mθi2

< 4 (8.21)

and 

E sup
θ0Θ0

/00000
/00000

M2ln L̂n(θ)

Mθi1
Mθi2

< 4 . (8.22)
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Theorem 8.2: Under Assumption 8.1,

 and  E
Mln (L̂n(θ))

MθT
*θ'θ0

= 0 E
M2ln(L̂n(θ) )

MθMθT
*θ'θ0

= &Var
Mln(L̂n(θ) )

MθT
*θ=θ0

.

Proof: For notational convenience I will prove this theorem for the univariate parameter

case m = 1 only. Moreover, I will focus on the case that   is a random sampleZ ' (Z T
1 , .... ,Z T

n )T

from an absolutely continuous distribution with density f(z|20).  

Observe that

E ln (L̂n(θ) ) /n = 1
nj

n

j'1
E ln (f(Zj*θ) ) = mln (f(z*θ) )f(z*θ0)dz , (8.23)

It follows from Taylor’s theorem that for  and  every * … 0 for which  thereθ 0 Θ0 θ%δ 0 Θ0

exists a 8(z,*) 0 [0,1] such that 

ln (f(z*θ%δ) ) & ln (f(z*θ) ) ' δ dln (f(z*θ) )
dθ

%
1
2
δ2 d 2ln(f(z*θ%λ(z,δ)δ) )

(d(θ%λ(z,δ)δ))2
. (8.24)

Note that by the convexity of   Therefore, it follows from conditionΘ , θ0 % λ(z,δ)δ 0 Θ .

(8.22), the definition of a derivative, and the dominated convergence theorem that

d
dθmln (f(z*θ) )f(z*θ0)dz ' m

dln (f(z*θ) )
dθ

f(z*θ0)dz (8.25)

Similarly, it follows from condition (8.21) , Taylor’s theorem and the dominated convergence

theorem that 
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m
df(z*θ)

dθ
dz '

d
dθm f(z*θ)dz '

d
dθ

1 ' 0. (8.26)

Moreover, 

m
dln (f(z*θ) )

dθ
f(z*θ0)dz *θ'θ0

= m
df(z*θ) /dθ

f(z*θ)
f(z*θ0)dz *θ=θ0

' m
df(z*θ)

dθ
dz *θ=θ0

(8.27)

The first part of theorem now follows from (8.23) through (8.27).

Similarly to (8.25) and (8.26) it follows from the mean value theorem and the conditions 

(8.21) and  (8.22) that

d 2

(dθ)2 mln (f(z*θ) )f(z*θ0)dz ' m
d 2ln(f(z*θ) )

(dθ)2
f(z*θ0)dz (8.28)

and

m
d 2f(z*θ)

(dθ)2
dz '

d

(dθ)2 m f(z*θ)dz ' 0. (8.29)

The second part of the theorem follows now from (8.28), (8.29) and

m
d 2ln f(z*θ)

(dθ)2
f(z*θ0)dz *θ'θ0

= m
d 2f(z*θ)

(dθ)2

f(z*θ0)

f(z*θ)
dz *θ=θ0

& m
df(z*θ) /dθ

f(z*θ)

2

f(z*θ0)dz *θ=θ0

' m
d 2f(z*θ)

(dθ)2
dz *θ=θ0

& m dln f(z*θ) /dθ 2f(z*θ0)dz *θ=θ0
.

The adaptation of the proof to the general case is pretty straightforward and is therefore left as an

exercise. Q.E.D.

The matrix 
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Hn = VarMln(L̂n(θ) )/MθT *θ=θ0
. (8.30)

is called the Fisher information matrix.  As we have seen in Chapter 5, the inverse of the Fisher

information matrix is just the Cramer-Rao lower bound of  the variance matrix of an unbiased

estimator of θ0 .

8.4.3 Generic conditions for consistency and asymptotic normality

The ML estimator is a special case of an M-estimator. In Chapter 6 I have derived generic

conditions for consistency and asymptotic normality of M-estimators, which in most cases apply

to ML estimators as well. The case (8.11) is one of the exceptions, though. In particular, if 

Assumption 8.2:    andplimn64supθ0Θ | ln (L̂n(θ) /L̂n(θ0)) & E[ln(L̂n(θ) /L̂n(θ0))] | ' 0

 where  is a continuous function in θ0limn64supθ0Θ |E[ln(L̂n(θ) /L̂n(θ0))] & R(θ |θ0)| ' 0, R(θ |θ0)

such that for arbitrary * > 0, supθ0Θ: ||θ&θ0||$δ R(θ |θ0) < 0 ,

then the ML estimator is consistent:

Theorem 8.3: Under Assumption 8.2,  =  plimn64θ̂ θ0 .

The conditions in Assumption 8.2 need to be verified on a case-by-case basis. In

particular, the uniform convergence in probability condition has to be verified  from the
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conditions of the uniform weak law of large numbers. The last condition in Assumption 8.2, i.e., 

 follows easily from Theorem 8.1 and the continuity of  . supθ0Θ: ||θ&θ0||$δ R(θ |θ0) < 0 , R(θ |θ0)

Some of the conditions for asymptotic normality of  the ML estimator are already listed in

Assumption 8.1, in particular the convexity of the parameter space 1, and the condition that 20 is

an interior point of 1. The other (high-level) conditions are:

Assumption 8.3: For  i1 , i2 ' 1,2,3,...,m ,

plimn64 sup
θ0Θ

/00000
/00000

M2ln L̂n(θ) /n

Mθi1
Mθi2

& E
M2ln L̂n(θ) /n

Mθi1
Mθi2

' 0 (8.31)

and

limn64 sup
θ0Θ

/00000
/00000

E
M2ln L̂n(θ) /n

Mθi1
Mθi2

% hi1 , i2
(θ) ' 0, (8.32)

where  is continuous in 20. Moreover, the m×m matrix  with elements  is non-hi1 , i2
(θ) H hi1 , i2

(θ0)

singular. Furthermore, 

Mln(L̂n(θ0) ) / n

MθT
0

6d Nm[0 ,H ] . (8.33)

Note that the matrix   is just the limit of Hn /n, with Hn the Fisher information matrixH

(8.30). Condition (8.31) can be verified from the uniform weak law of large numbers. Condition

(8.32) is a regularity condition which accommodates data-heterogeneity. In quite a few cases we

may take   =   Finally, condition (8.33) can be verified fromhi1 , i2
(θ) &n &1E[M2ln(L̂n(θ)) /(Mθi1

Mθi2
)].
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the central limit theorem. 

Theorem 8.4: Under Assumptions 8.1-8.3, n(θ̂ - θ0) 6d Nm[0 ,H&1] .

Proof:  It follows from the mean value theorem (see Appendix II) that for each  i  0

{1,...,m} there exists a   such thatλ̂i 0 [0,1]

Mln (L̂n(θ) ) / n

Mθi

*θ'θ̂ =
Mln (L̂n(θ) ) / n

Mθi

*θ'θ0

%
M2ln(L̂(θ)) /n

MθMθi

*θ'θ0%λ̂i(θ̂&θ0) n(θ̂ - θ0) ,

(8.34)

The first-order condition for (8.2) and the condition that 20 is an interior point of 1 imply

plimn64n &1/2Mln(L̂n(θ)) /Mθi|θ'θ̂ ' 0. (8.35)

Moreover, the convexity of 1 guarantees that the mean value  is contained in 1. Itθ0%λ̂i(θ̂&θ0)

follows now from the consistency of   and the conditions (8.31) and (8.32) thatθ̂

H̃ '

M2ln(L̂n(θ)) /n

MθMθ1

*θ'θ0%λ̂1(θ̂&θ0)

!

M2ln(L̂n(θ)) /n

MθMθm

*θ'θ0%λ̂m(θ̂&θ0)

6p H . (8.36)

The condition that  is nonsingular allows us to conclude from (8.36) and Slutsky’s theoremH

that

plimn64H̃
&1

' H&1 , (8.37)
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hence it follows from (8.34) and (8.35) that

n(θ̂ & θ0) ' &H̃ &1(Mln (L̂n(θ0) ) /MθT
0 ) / n + op(1) . (8.38)

Theorem 8.4 follows now from condition (8.33) and the results  (8.37) and (8.38).  Q.E.D.

In the case of a random sample  Z1,...,Zn  the asymptotic normality condition (8.33) can

easily be derived from the central limit theorem for i.i.d. random variables. For example, let

again the Zj’s be  k-variate distributed with density . Then it follows from Theorem 8.2f(z*θ0)

that under Assumption 8.1, 

E[Mln(f(Zj*θ0)) /MθT
0] ' n &1E[Mln (L̂n(θ0))/Mθ

T
0 ] ' 0

and

Var[Mln(f(Zj*θ0)) /MθT
0] ' n &1Var[Mln (L̂n(θ0))/Mθ

T
0 ] ' H ,

say, so that (8.33) straightforwardly follows from the central limit theorem for i.i.d. random

vectors. 

8.4.4 Asymptotic normality in the time series case

In the time series case (8.6) we have

Mln(L̂n(θ0))/Mθ
T
0

n
'

1

n
j

n

t'1
Ut , (8.39)

where 

U1 ' Mln( f1(Z1|θ0))/Mθ
T
0 , Ut ' Mln( ft(Zt|Zt&1,...,Z1,θ0))/Mθ

T
0 for t $ 2. (8.40)

The process Ut  is a martingale difference process (see Chapter 7):  Denoting for t $ 1,
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 and letting be the trivial F-algebra {S,i}, it is easy to verify that  for t $ 1, öt ' σ(Z1,...,Zt), ö0

 a.s.  Therefore, condition (8.33) can in principle be derived from the conditionsE[Ut|öt&1] ' 0

of the martingale difference central limit theorems (Theorems 7.10-7.11)  in Chapter 7.

Note that even if Zt is a strictly stationary process, the Ut’s may not be strictly stationary.

In that case condition  (8.33) can be proved by specializing Theorem 7.10 in Chapter 7.

An example where condition  (8.33) follows from Theorem 7.11 in Chapter 7 is the Auto-

Regressive (AR) model of order 1:

Zt ' α % βZt&1 % gt , where gt is i.i.d. N(0,σ2) and |β| < 1. (8.41)

The condition |$| < 1 is necessary for strict stationarity of Zt. Then for t $ 2 the conditional

distribution of Zt given  is   so that, with   =  öt&1 ' σ(Z1,...,Zt&1) N(α % βZt&1 ,σ2) , θ0 (α ,β ,σ2)T ,

(8.40) becomes

Ut '
M &½(Zt&α&βZt&1)

2/σ2 & ½ln(σ2) & ln( 2π)

M(α,β,σ2)
'

1

σ2

gt

gtZt&1

½(g2
t /σ2 & 1)

. (8.42)

Since the ‘s are i.i.d.   and  and  are mutually independent it follows that  (8.42)gt N(0,σ2) gt Zt&1

is a martingale difference process, not only with respect to  but also with respectöt ' σ(Z1,...,Zt)

to  = 0 a.s. ö t
&4 ' σ({Zt&j}

4
j'0) , i.e., E[Ut|ö

t&1
&4 ]

By backwards substitution of (8.41) it follows that  so that theZt ' '4
j'0βj (α%gt&j)

marginal distribution of Z1 is   However, there is no need to derive U1 inN[α/(1&β) ,σ2/(1&β2)].

this case, because this term is irrelevant for the asymptotic normality of  (8.39). Therefore, the

asymptotic normality of  (8.39) in this case follows straightforwardly from the stationary

martingale difference central limit theorem, with asymptotic variance matrix
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H ' Var(Ut) '
1

σ2

1
α

1&β
0

α
1&β

α2

(1&β)2
%

σ2

1&β2
0

0 0
1

2σ2

.
 

8.4.5 Asymptotic efficiency of the ML estimator

As said before, the ML estimation approach is a special case of the M-estimation

approach discussed in Chapter 6. However, the position of the ML estimator among the M-

estimators is a special one, namely the ML estimator is (under some conditions) asymptotically

efficient.

In order to explain and prove asymptotic efficiency, let

θ̃ ' argmaxθ0Θ(1/n)'n
j'1g(Zj,θ) (8.43)

be an M-estimator of

θ0 ' argmaxθ0ΘE[g(Z1,θ)] , (8.44)

where again  Z1,...,Zn is a random sample from a  k-variate absolutely continuous distribution

with density   and   is the parameter space. In Chapter 6 I have set forthf(z*θ0) , Θ d úm

conditions such that 

n(θ̃&θ0) 6d Nm[0 ,A &1BA &1] , (8.45)

where
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A ' E
M2g(Z1 ,θ0)

Mθ0Mθ
T
0

' múk

M2g(z ,θ0)

Mθ0Mθ
T
0

f(z|θ0)dz (8.46)

and

B ' E Mg(Z1 ,θ0)/Mθ
T
0 Mg(Z1 ,θ0)/Mθ0 ' múk

Mg(z ,θ0)/Mθ
T
0 Mg(z ,θ0)/Mθ0 f(z|θ0)dz (8.47)

As will be shown below, the matrix  is positive semi-definite, hence theA &1BA &1 & H &1

asymptotic variance matrix of  is "larger" (or at least not smaller) than the asymptotic varianceθ̃

matrix  of the ML estimator  In other words, the ML estimator is an asymptoticallyH &1 θ̂.

efficient M-estimator. 

This proposition can be motivated as follows. Under some regularity conditions, similarly

to Assumption 8.1, it follows from the first-order condition for (8.44) that

múk
Mg(z,θ0)/Mθ

T
0 f(z|θ0)dz ' múk

ME[g(z,θ)]/MθT f(z|θ0)dz|θ'θ0
' 0 (8.48)

Since equality (8.48) does not depend on the value of 20 it follows that for all 2,

múk
Mg(z,θ)/MθT f(z|θ)dz ' 0. (8.49)

Taking derivatives inside and outside the integral (8.49) again yield:

múk

M2g(z,θ)

MθMθT
f(z|θ)dz % múk

Mg(z,θ)/MθT Mf(z|θ)/Mθ dz

' múk

M2g(z,θ)

MθMθT
f(z|θ)dz % múk

Mg(z,θ)/MθT Mln(f(z|θ))/Mθ f(z|θ)dz ' O .

(8.50)

Replacing 2 by 20 it follows from (8.46) and  (8.50) that

E
Mg(Z1,θ0)

MθT
0

Mln(f(Z1|θ0))

Mθ0

' &A. (8.51)

Since the two vectors in (8.51) have zero expectation, (8.51) also reads as
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Cov
Mg(Z1,θ0)

MθT
0

,
Mln(f(Z1|θ0))

MθT
0

' &A. (8.52)

It follows now from (8.47),  (8.52) and Assumption 8.3 that

Var
Mg(Z1,θ0)/Mθ

T
0

Mln(f(Z1|θ0))/Mθ
T
0

'
B &A

&A H
,

which of course is positive semi-definite, and therefore so is 

A &1,H&1
B &A

&A H

A &1

H&1
' A &1BA &1 & H&1 .

Note that this argument does not hinge on the independence and absolute continuity

assumptions made here.  We only need that (8.45) holds for some positive definite matrices A

and B, and that

1

n

'n
j'1Mg(Zj,θ0)/Mθ

T
0

Mln(L̂n(θ0))/Mθ
T
0

6d N2m

0

0
,

B &A

&A H
.

8.5. Testing parameter restrictions

8.5.1 The pseudo t test and the Wald test

In view of Theorem 8.2 and Assumption 8.3 the matrix   can be estimated consistentlyH

by the matrix  in (8.53):Ĥ
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Ĥ ' & /0000
M2ln(L̂n(θ))/n

MθMθT
θ'θ̂

6p H. (8.53)

Denoting by ei the i-th column of the unit matrix Im, it follows now from  (8.53),  Theorem 8.4

and the results in Chapter 6 that: 

Theorem 8.5: (Pseudo t-test) Under Assumptions 8.1-8.3,   N(0,1) if t̂ i = ne T
i θ̂ / e T

i Ĥ &1ei 6d

e T
i θ0 = 0 .

Thus the null hypothesis ,  which amounts to the hypothesis that the i-thH0: e T
i θ0 = 0

component of  is zero, can now be tested by the pseudo t-value   in the same way as for M-θ0 t̂ i

estimators.

Next, consider the partition 

θ0 =
θ1,0

θ2,0

, θ1,0 0 úm&r , θ2,0 0 úr , (8.54)

and suppose that we want to test the null hypothesis . This hypothesis corresponds to theθ2,0 ' 0

linear restriction , where R = (O,Ir). It follows from Theorem 8.4 that under this nullRθ0 = 0

hypothesis

nRθ̂ 6d Nr(0 ,RH̄ &1R T ). (8.55)

Partitioning  conformably to (8.54) asθ̂ , Ĥ &1 and H&1

θ̂ =
θ̂1

θ̂2

, Ĥ &1 =
Ĥ (1,1) Ĥ (1,2)

Ĥ (2,1) Ĥ (2,2)
, H̄ &1 =

H̄ (1,1) H̄ (1,2)

H̄ (2,1) H̄ (2,2)
, (8.56)
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it follows that , hence it follows from (8.55)θ̂2 = Rθ̂ , Ĥ (2,2) = RĤ &1R T , and H (2,2) = RH&1R T

that  and consequently:Ĥ (2,2) &1/2
nθ̂2 6d Nr(0 , Ir)

Theorem 8.6: (Wald test) Under Assumptions 8.1-8.3,   = 0.nθ̂T
2 Ĥ (2,2) &1θ̂2 6d χ2

r if θ2,0

8.5.2 The Likelihood Ratio test

An alternative to the Wald test is the Likelihood Ratio (LR) test, which is based on the

ratio

λ̂ =
maxθ0Θ: θ2'0L̂n(θ)

maxθ0ΘL̂n(θ)
=

L̂n(θ̃)

L̂n(θ̂)
,

where  is partitioned conformably to (8.54) asθ

θ =
θ1

θ2

.

and

θ̃ =
θ̃1

θ̃2

=
θ̃1

0
= argmax

θ0Θ: θ2'0
L̂n(θ) , (8.57)

is the restricted ML estimator. Note that  is always between zero and one. The intuition behindλ̂

the LR test is that if  = 0 then  will approach 1 (in probability) as n 64 because then bothθ2,0 λ̂

the unrestricted ML estimator   and the restricted ML estimator  are consistent .  In particular:θ̂ θ̃
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Theorem 8.7: (LR test) Under Assumptions 8.1-8.3,  = 0.&2ln(λ̂) 6d χ2
r if θ2,0

Proof: Similarly to (8.38) we have

n(θ̃1 - θ1,0) = &H&1
1,1

Mln (L̂n(θ) ) / n

MθT
1

*θ'θ0
+ op(1) ,

where  is the upper-left  block of H 1,1 (m&r)×(m&r) H:

H '

H1,1 H1,2

H2,1 H2,2

,

and consequently,

n(θ̃ - θ0) = &
H&1

1,1 O

O O

Mln (L̂n(θ0) ) / n

MθT
0

+ op(1). (8.58)

Subtracting (8.58) from (8.34) and using condition (8.33)  yield

n(θ̂ - θ̃) = & H̄ &1 -
H̄ &1

1,1 O

O O

Mln (L̂n(θ0) ) / n

MθT
0

+ op(1) 6d Nm(0 ,∆) , (8.59)

where

∆ = H̄ &1 -
H̄ &1

1,1 O

O O
H̄ H̄ &1 -

H̄ &1
1,1 O

O O
= H̄ &1 -

H̄ &1
1,1 O

O O
. (8.60)

The last equality in (8.60)  follows straightforwardly from the partition (8.56).

Next, it follows from the second-order Taylor expansion around the  unrestricted ML
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estimator   that for some θ̂ η̂ 0 [0,1],

ln(λ̂) = ln L̂n(θ̃) - ln(L̂n(θ̂) ) = (θ̃-θ̂)T
Mln L̂n(θ)

MθT
*θ=θ̂

+ 1
2

n(θ̃-θ̂)T
M2ln(L̂n(θ) ) /n

MθMθT
*θ=θ̂%η̂(θ̃&θ̂) n(θ̃-θ̂) = - 1

2
n(θ̃-θ̂)T H n(θ̃-θ̂) + op(1) ,

(8.61)

where the last equality in (8.61)  follows from the fact that similarly to (8.36),

/000
M2ln(L̂(θ) ) /n

MθMθT
θ'θ̂%η̂(θ̃&θ̂)

6p &H . (8.62)

Thus we have

&2ln(λ̂) = ∆&1/2 n(θ̂-θ̃)
T∆1/2H̄∆1/2 ∆&1/2 n(θ̂-θ̃) + op(1) . (8.63)

Since by (8.59),  Nm(0,Im) is distr., and by (8.60) the matrix  is∆&1/2 n(θ̂&θ̃) 6 ∆1/2H∆1/2

idempotent with rank( ) = trace( ) = r, the theorem follows from the results in∆1/2H∆1/2 ∆1/2H∆1/2

Chapters 5 and 6. Q.E.D.

8.5.3 The Lagrange Multiplier test

The restricted ML estimator  can also be obtained from the first-order conditions of theθ̃

Lagrange function   where  is a vector of Lagrange‹(θ ,µ) = ln(L̂n(θ)) - θT
2µ , µ 0 úr

multipliers. These first-order conditions are:
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M‹(θ ,µ)/MθT
1 *θ'θ̃ , µ'µ̃ ' Mln L̂(θ) /MθT

1 *θ'θ̃ ' 0,

M‹(θ ,µ)/MθT
2 *θ'θ̃ , µ'µ̃ ' Mln L̂(θ) /MθT

2 *θ'θ̃ & µ̃ ' 0,

M‹(θ ,µ)/MµT *θ'θ̃ , µ'µ̃ ' θ̃2 ' 0.

Hence

1

n

0

µ̃
'

Mln L̂(θ) / n

MθT
*θ'θ̃ . (8.64)

Again, using the mean value theorem we can expand this expression around the unrestricted ML

estimator  which then yieldsθ̂ ,

1

n

0

µ̃
' &H n(θ̃&θ̂) % op(1) , (8.65)

hence

µ̃TH̄ (2,2,)µ̃
n

'
1
n

(0T , µ̃T)H̄ &1 0

µ̃
' n(θ̃&θ̂)TH̄ n(θ̃&θ̂) % op(1) 6d χ2

r . (8.66)

Replacing  in this expression by a consistent estimator on the basis of the restricted MLH

estimator , say:θ̃

H̃ ' & /0000
M2ln(L̂n(θ))/n

MθMθT
θ'θ̃

. (8.67)

and partitioning  similarly to (8.56) asH̃
&1
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H̃ &1
'

H̃ (1,1) H̃ (1,2)

H̃ (2,1) H̃ (2,2)
, (8.68)

we have

Theorem 8.8: (LM test) Under Assumptions 8.1-8.3,   = 0.µ̃TH̃
(2,2)µ̃ /n 6d χ2

r if θ2,0

8.5.4 Which test to use?

The Wald, LR and LM tests basically test the same null hypothesis against the same

alternative, so which one should we use? The Wald test employs only the unrestricted ML

estimator , so that this test is the most convenient if we have to conduct unrestricted MLθ̂

estimation anyhow. The LM test is entirely based on the restricted ML estimator , and there areθ̃

situations where we start with restricted ML estimation, or where restricted ML estimation is

much easier to do than unrestricted ML estimation, or even where unrestricted ML estimation is

not feasible because without the restriction imposed the model is incompletely specified. Then

the LM test is the most convenient test. Both the Wald and the LM tests require the estimation of

the matrix  That may be a problem for complicated models because of the partial derivativesH.

involved. In that case use the LR test.

Although I have derived the Wald, LR and LM tests for the special case of a null

hypothesis of the type , the results involved can be modified to general linear hypothesesθ2,0 ' 0
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of the form , where R is a r  m matrix of rank r, by reparametrizing the likelihoodRθ0 ' q ×

function, as follows. Specify a (m-r)  m matrix R* such that the matrix×

Q '
R
(

R

is nonsingular. Then define new parameters by

β '

β1

β2

'
R
(
θ

Rθ
&

0

q
' Qθ &

0

q
.

Substituting

θ ' Q &1β % Q &1
0

q

in the likelihood function, the null hypothesis involved is equivalent to .β2 ' 0

8.6. Exercises

1. Derive  for the case (8.11), and show that if Z1,...,Zn is a randomθ̂ ' argmaxθL̂n(θ)

sample then the ML estimator involved is consistent.

2. Derive  for the case (8.13).θ̂ ' argmaxθL̂n(θ)

3. Show that the log-likelihood function of the Logit model is unimodal, i.e., the matrix

 is negative-definite for all 2. M2ln[L̂n(θ)]/(MθMθT)

4. Prove (8.20).

5. Extend the proof of Theorem 8.2 to the multivariate parameter case.



322

6. Let (Y1,X1),...,(Yn,Xn) be a random sample from a bivariate continuous distribution with

conditional density

f(y*x ,θ0) ' x /θ0 exp&y .x /θ0 if x > 0 and y > 0; f(y*x ,θ0) ' 0 elsewhere ,

where 20 > 0 is an unknown parameter. The marginal density h(x) of Xj is unknown, but we do

know that h does not depend on 20, and h(x) = 0 for x # 0.

(a) Specify the conditional likelihood function .  L̂ c
n (θ)

(b) Derive the maximum likelihood estimator  of  20.θ̂

(c) Show that  is unbiased.  θ̂

(d) Show that the variance of  is equal to   θ̂ θ2
0 /n .

(e) Verify that this variance is equal to the Cramer-Rao lower bound.  

(f) Derive the test statistic of the LR  test of the null hypothesis 20 = 1,  in the form for which

it has an asymptotic  null distribution.χ2
1

(g) Derive the test statistic of the Wald test of the null hypothesis 20 = 1.

(h) Derive the test statistic of the LM test of the null hypothesis 20 = 1.

(i) Show that under the null hypothesis  20 = 1 the LR test in part (f) has a limiting   χ2
1

distribution.

7. Let Z1,....,Zn be a random sample from the (nonsingular) Nk[µ,E] distribution. Determine

the maximum likelihood estimators of µ and E.

8. In the case where the dependent variable Y is a duration, for example an unemployment

duration spell, the conditional distribution of Y given a vector X of explanatory variables is often

modeled by the proportional hazard model
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 P[Y # y|X ' x] ' 1 & exp &n(x)*y
0λ(t)dt , y > 0, (8.70)

where 8(t) is a positive function on (0,4) such that  and n is a positive function.*40λ(t)dt ' 4 ,

The reason for calling this model a proportional hazard model is the following. Let f(y|x)

be the conditional density of Y given X = x, and let  TheG(y|x) ' exp &n(x)*y
0λ(t)dt , y > 0.

latter function is called the conditional survival function. Then is calledf(y|x)/G(y|x) ' n(x)λ(y)

the hazard function, because for a small * > 0,   is approximately the conditionalδf(y|x)/G(y|x)

probability (hazard) that  given that Y > y and X = x. Y 0 (y ,y%δ],

Convenient specifications of  8(t) and n(x) are:

λ(t) ' γt γ&1 , γ > 0 (Weibull specification)

n(x) ' exp(α % βTx)
(8.71)

Now consider a random sample of size n of unemployed workers. Each unemployed

worker j is interviewed twice. The first time worker j tells the interviewer how long he or she has

been unemployed, and reveals his or her vector Xj of characteristics. Call this time  A fixedY1,j .

period of length T later the interviewer asks worker j whether he or she is still (uninterruptedly)

unemployed, and if not how long it took during this period to find employment for the first time.

Call this duration  In the latter case the observed unemployment duration is Y2,j. Yj ' Y1,j % Y2,j,

but if the worker is still unemployed we only know that  The latter is calledYj > Y1,j % T .

censoring. Assuming that the  Xj’s do not change over time, setup the conditional  likelihood

function for this case, using the specifications (8.70) and (8.71).
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1. See Chapter 3 for the definition of these conditional probabilities.

2. Recall from Chapter 1 that the union of F-algebras is not necessarily a F-algebra.

Endnotes
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Appendix I  

Review of Linear Algebra

I.1. Vectors in a Euclidean space

A vector is a set of coordinates which locates a point in a Euclidean space. For example,

in the two-dimensional Euclidean space  the vectorú2

a '

a1

a2

'
6

4
(I.1)

is the point which location in a plane is determined by moving  units away from thea1 ' 6

origin along the horizontal axis (axis 1), and then moving  units away parallel to thea2 ' 4

vertical axis (axis 2),  as displayed in Figure I.1.

Figure I.1: A vector in ú2

The distances  and  are called the components of the vector a involved. a1 a2

An alternative interpretation of the vector a is a force pulling from the origin (the

intersection of the two axes). This force is characterized by its direction (the angle of the line in

Figure I.1) and its strength (the length of the line piece between point a and the origin). As to the
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latter, it follows from Pythagoras’ Theorem that this length is the square root of the sum of the

squared distances of point a from the vertical and horizontal axes: a 2
1%a 2

2 ' 62%42 ' 3 6,

and is denoted by  More generally, the length of a vector2a2 .

x '

x1

x2

!

xn

(I.2)

in   is defined byún

2x2 '

def. 'n
j'1x

2
j . (I.3)

There are two basic operations that apply to vectors in . The first basic operation isún

scalar multiplication:

c.x '

def.

c.x1

c.x2

!

c.xn

, (I.4)
 

where c   is a scalar. Thus, vectors in are multiplied by a scalar by multiplying each of the0 ú ún

components by this scalar. The effect of scalar multiplication is that the point x is moved a factor

c along the line through the origin and the original point x. For example, if we multiply the vector

a in Figure I.1 by c = 1.5, the effect is the following:
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Figure I.2: Scalar multiplication

The second operation is addition: Let x be the vector (I.2), and let

y '

y1

y2

!

yn

. (I.5)

Then

x % y '

def.

x1%y1

x2%y2

!

xn%yn

. (I.6)

Thus, vectors are added by adding up the corresponding components. Of course, this operation is

only defined for conformable vectors, i.e., vectors with the same number of components. 

As an example of the addition operation, let a be the vector (I.1), and let
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b '

b1

b2

'
3

7
(I.7)

Then 

a % b '
6

4
%

3

7
'

9

11
' c , (I.8)

say. This result is displayed in Figure I.3 below. We see from Figure I.3 that the origin together

with the points a, b and  c = a + b form a parallelogram (which is easy to prove). In terms of

forces, the combined forces represented by the vectors a and b result in the force represented by

the vector c = a + b.

Figure I.3: c = a + b

The distance between the vectors a and b in Figure I.3 is  To see this, observe2a & b2 .

that the length of the horizontal line piece between the vertical line through b and point  a is

 and similarly the vertical line piece between b and the horizontal line through a hasa1&b1 ,

length These two line pieces, together with the line piece connecting the points a and b,b2&a2 .

form a triangle for which Pythagoras’ Theorem applies: The squared distance between a and b is
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equal to . More generally, (a1&b1)
2 % (a2&b2)

2 ' 2a&b22

The distance between the vector x in (I.2) and the vector y in (I.5)  is   

2x & y2 ' 'n
j'1(xj & yj)

2 . (I.9)

Moreover, it follows from (I.9) and the Law of Cosines1 that:

The angle N between the vector x in (I.2) and the vector y in (I.5) satisfies   

cos(φ) '
2x22 % 2y22 & 2x&y22

22x2.2y2
'

'n
j'1xj yj

2x2.2y2
. (I.10)

 

I.2. Vector spaces

The two basic operations, addition and scalar multiplication, make a Euclidean space ún

a special case of a vector space:

Definition I.1: Let  V be a set endowed with two operations, the operation "addition", denoted

by "+", which maps each pair (x,y) in V V into V, and the operation "scalar multiplication",×

denoted by a dot (.), which maps each pair (c,x) in  into V.  The set V is called a vectorú × V

space if  the addition and multiplication operations involved satisfy the following rules, for all x,

y and z in V, and all scalars c, c1 and c2 in :ú

(a) x + y = y + x;

(b) x + (y + z) = (x + y) + z;

(c) There is a unique zero vector 0 in V such that x + 0 = x;

(d) For each x there exists a unique vector !x in V such that x + (!x) = 0;
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(e) 1.x = x;

(f) (c1c2).x = c1.(c2.x);

(g) c.(x + y) = c.x + c.y;

(h) (c1 + c2).x = c1.x + c2.x.

It is trivial to verify that with addition "+" defined by (I.6) and scalar multiplication c.x

defined by (I.4) the Euclidean space  is a vector space. However, the notion of a vector spaceún

is much more general. For example, let V  be the space of all continuous functions on , withú

pointwise addition and scalar multiplication defined the same way as for real numbers. Then it is

easy to verify that this space is a vector space. 

Another (but weird) example of a vector space  is the space V of positive real numbers

endowed with the "addition" operation x + y = x.y and the "scalar multiplication" c.x = xc. In this

case the null vector 0  is the number 1, and !x = 1/x.

Definition I.2: A subspace V0 of a vector space V is a non-empty subset of V which satisfies the

following two requirements:

(a) For any pair x, y in V0, x + y is in V0;

(b) For any x in V0 and any scalar c, c.x is in V0.

It is not hard to verify that a subspace of a vector space is a vector space itself, because

the rules (a) through (h) in Definition I.1 are inherited from the "host" vector space V. In

particular, any subspace contains the null vector 0, as follows from part (b) of Definition I.2 with
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c = 0. For example, the line through the origin and point a in Figure I.1, extended indefinitely in

both directions, is a subspace of  . This subspace is said to be spanned by the vector a. Moreú2

generally,

Definition I.3: Let x1,x2,....,xn be vectors in a vector space V. The space V0 spanned by x1,x2,....,xn 

is the space of all linear combinations of x1,x2,....,xn , i.e., each y in V0 can be written as

 for some coefficients cj in y ' 'n
j'1cjxj ú .

Clearly, this space V0 is a subspace of V. 

For example, the two vectors a and b in Figure I.3 span the whole Euclidean space ,ú2

because any vector x in  can be written as,ú2

 

x '

x1

x2

' c1

6

4
% c2

3

7
'

6c1%3c2

4c1%7c2

,

where 

c1 '
7
30

x1 &
1
10

x2 , c2 ' &
2
15

x1 %
1
5

x2 .

The same applies to the vectors a, b and c in Figure I.3: They also span the whole Euclidean

space . However, in this case any pair of  a, b and c does the same, so one of these threeú2

vectors is redundant, because each of the vectors  a, b and c can already be written as a linear

combination of the other two. Such vectors are called linear dependent:
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Definition I.4: A set of vectors x1,x2,....,xn in a vector space V is linear dependent if one or more

of these vectors  can be written as a linear combination of the other vectors, and the set is called

linear independent if none of them can be written as a linear combination of the other vectors.

In particular, x1,x2,....,xn  are linear independent if and only if   = 0 implies that 'n
j'1cjxj

c1 ' c2 'þþ' cn ' 0.

For example, the vectors a and b in Figure I.3 are linear independent, because if not then

there would exists a scalar c such that b = c.a,  hence 6 = 3c and 4 = 7c,  which is impossible. A

set of such linear independent vectors is called a basis for the vector space they span:

Definition I.5: A basis for a vector space is a set of vectors having the following two properties:

(a) It is linear independent;

(b) The vectors span the vector space involved.

We have seen that each of the subsets {a,b}, {a,c} and {b,c} of  the set {a, b, c} of

vectors in Figure I.3 is linear independent, and span the vector space . Thus, there are inú2

general many bases for the same vector space, but what they have in common is their number:

This number is called the dimension of V. 

Definition I.6: The number of vectors that form  a basis of a vector space is called the dimension

of this vector space.
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In order to show that this definition is unambiguous, let  {x1,x2,....,xn} and {y1,y2,....,ym} be

two different bases for the same vector space, and  let m = n +1. Each of the yi‘s can be written as

a linear combination of x1,x2,....,xn : . If  {y1,y2,....,yn+1} is linear independent thenyi ' 'n
j'1ci,jxj

 = 0  if and only if    But since {x1,x2,....,xn} is'n%1
i'1 ziyi ' 'n

j'1'n%1
i'1 zici,jxj z1 ' ...... ' zn%1 ' 0.

linear independent we must also have that   for j = 1,...,n.  The latter is a system of'n%1
i'1 zici,j ' 0

n linear equations in n+1 unknown variables zi and therefore has a non-trivial solution, in the

sense that there exists a solution such that least one of the z’s is non-zero. Consequently, z1,...,zn%1

 {y1,y2,....,yn+1} cannot be linear independent. 

Note that in principle the dimension of a vector space can be infinite. For example,

consider the space   of all countable infinite sequences  of realú4 x ' (x1 ,x2 ,x3 , ............)

numbers, endowed with the addition operation

x % y ' (x1 ,x2 ,x3 , ............) % (y1 ,y2 ,y3 , ............) ' (x1%y1 ,x2%y2 ,x3%y3 , ............)

and the scalar multiplication operation

c.x ' (c.x1 ,c.x2 ,c.x3 , ............) .

Let  yi be a countable infinite sequence of zeros, except for the i-th element in this sequence,

which is equal to 1. Thus,   etc. Then  {y1,y2,y3,...} is a basisy1 ' (1 ,0 ,0 ,þ) , y2 ' (0 ,1 ,0 ,þ) ,

for  , with dimension  4. Also in this case there are many different bases; for example, anotherú4

basis for   is      etc. ú4 y1 ' (1 ,0 ,0 ,0 ,þ) , y2 ' (1 ,1 ,0 ,0 ,þ) , y3 ' (1 ,1 ,1 ,0 ,þ) ,
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I.3. Matrices

In Figure I.3 the location of point c can be determined by moving nine units away from

the origin along the horizontal axis 1, and then moving eleven units away from axis 1 parallel to

the vertical axis 2. However, given the vectors a and b an alternative way of determining the

location of point c is: Move 2a2 units away from the origin along the line through the origin and

point a (the subspace spanned by a),  and then move 2b2 units away  parallel to the line through

the origin and point b (the subspace spanned by b). Moreover, if we take 2a2 as the new distance

unit along the subspace spanned by a, and 2b2 as the new distance unit along the subspace

spanned by b, then point c can be located by moving one (new) unit away from the origin along

the new axis 1 formed by the subspace spanned by a, and then move one (new) unit away from

this new axis 1 parallel to the subspace spanned by b (which is now the new axis 2). We may

interpret this as moving the point   to a new location: point c. This is precisely what a matrix1

1

does: moving points to a new location by changing the coordinate system. In particular, the

matrix

A ' a,b '
6 3

4 7
(I.11)

moves any point 

x '

x1

x2

(I.12)

to a new location, by changing the original perpendicular coordinate system to a new coordinate

system, where the new axis 1 is  the subspace spanned by the first column, a, of the matrix A,

with new unit distance the length of a, and the new axis 2 is the subspace spanned by the second
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column, b, of  A, with new unit distance the length of b. Thus, this matrix A moves point x to

point 

y ' Ax ' x1.a % x2.b ' x1.
6

4
% x2.

3

7
'

6x1%3x2

4x1%7x2

. (I.13)

In general, an  matrixm × n

A '

a1,1 þ a1,n

! " !

am,1 þ am,n

(I.14)

moves the point in  corresponding to the vector  x in (I.2) to a point  in the subspace of  ún úm

spanned by the columns of A, namely to point

y ' Ax ' j
n

j'1
xj

a1,j

!

am,j

'

'n
j'1a1,jxj

!

'n
j'1am,jxj

'

y1

!

ym

. (I.15)

Next, consider the  matrixk × m

B '

b1,1 þ b1,m

! " !

bk,1 þ bk,m

. (I.16)

and let y be given by (I.15). Then 

By ' B(Ax) '

b1,1 þ b1,m

! " !

bk,1 þ bk,m

'n
j'1a1,jxj

!

'n
j'1am,jxj

'

'n
j'1 'm

s'1b1,sas,j xj

!

'n
j'1 'm

s'1bk,sas,j xj

' Cx, (I.17)

where 
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C '

c1,1 þ c1,n

! " !

ck,1 þ ck,n

with ci,j ' 'm
s'1bi,sas,j . (I.18)

This matrix C is called the product of the matrices B and A, and is denoted by BA. Thus, with A

given by (I.14) and B given by (I.16),  

BA '

b1,1 þ b1,m

! " !

bk,1 þ bk,m

a1,1 þ a1,n

! " !

am,1 þ am,n

'

'm
s'1b1,sas,1 þ 'm

s'1b1,sas,n

! " !

'm
s'1bk,sas,1 þ 'm

s'1bk,sas,n

, (I.19)

which is a   matrix. Note that the matrix BA only exists if the number of columns of B isk × n

equal to the number of rows of A. Such matrices are called conformable. Moreover, note that if

A and B are also conformable, so that AB is defined2,  then the commutative law does not hold,

i.e., in general AB … BA.  However, the associative law (AB)C = A(BC) does hold, as is easy to

verify.

Let A be the  matrix (I.14), and let now B be another   matrix:m × n m × n

B '

b1,1 þ b1,n

! " !

bm,1 þ bm,n

. (I.20)

As argued before, A maps a point x  0 ún  to a point y = Ax 0 úm, and B maps x to a point z = Bx 0

úm. It is easy to verify that y+z = Ax + Bx = (A+B)x = Cx, say, where C = A + B  is the m × n

formed by adding up the corresponding elements of A and B:
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A % B '

a1,1 þ a1,n

! " !

am,1 þ am,n

%

b1,1 þ b1,n

! " !

bm,1 þ bm,n

'

a1,1%b1,1 þ a1,n%b1,n

! " !

am,1%bm,1 þ am,n%bm,n

. (I.21)

Thus, conformable matrices are added up by adding up the corresponding elements. 

Moreover, for any scalar c we have A(c.x) = c.(Ax) = (c.A)x, where c.A is the matrix

formed by multiplying each element of A by the scalar c:

c.A ' c.

a1,1 þ a1,n

! " !

am,1 þ am,n

'

c.a1,1 þ c.a1,n

! " !

c.am,1 þ c.am,n

. (I.22)

Now with addition and scalar multiplication defined in this way, it is easy to verify that

all the conditions in Definition I.1 hold for matrices as well, i.e., the set of all  matrices ism × n

a vector space. In particular, the "zero" element involved is the   matrix with all elementsm × n

equal to zero:

Om,n '

0 þ 0

! " !

0 þ 0

. (I.23)

I.4. The inverse and transpose of a matrix

The question I now will address is whether for a given   matrix A there exists a m × n

 matrix B such that, with y = Ax, By = x. If so, the action of A is undone by B, i.e., Bn × m

moves y back to the original position x. 

If m < n there is no way to undo the mapping y = Ax, i.e., there does not exists an n × m

matrix B such that By = x. To see this, consider the  matrix A = ( 2,1). Then with x as in1 × 2
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(I.12), Ax = 2x1 + x2 = y, but if we know y and A, then we only know that x is located on the line

x2 = y - 2x1, but there is no way to determine where on this line. 

If m = n in (I.14), so that the matrix A involved is a square matrix,  we can undo the

mapping A if the columns3 of the matrix A are linear independent. Take for example the matrix A

in (I.11) and the vector y in (I.13), and let

 

B '

7
30

&
1
10

&
2
15

1
5

(I.24)

Then 

By '

7
30

&
1
10

&
2
15

1
5

6x1%3x2

4x1%7x2

'

x1

x2

' x , (I.25)

so that this matrix B moves the point y = Ax back to x. Such a matrix is called the inverse of A,

and is denoted by  Note that for an invertible  matrix A,    is theA &1 . n × n A &1A ' In , where In

 unit matrix:n × n

In '

1 0 0 þ 0

0 1 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

. (I.26)

Note that a unit matrix is a special case of a diagonal matrix, i.e., a square matrix with all off-

diagonal elements equal to zero.

We have seen that the inverse of A is a matrix  such that 4 But what aboutA &1 A &1A ' I .
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 Does the order of multiplication matter? The answer is no:AA &1 ?

Theorem I.1: If A is invertible, then A A!1 =  I, i.e., A is the inverse of  A!1,

because it is trivial that

Theorem I.2: If A and B are invertible matrices then (AB)!1 = B!1A!1.

Now let us give a formal proof of our conjecture that:

Theorem I.3: A square matrix is invertible if and only if its columns are linear independent. 

Proof: Let A be  the matrix involved. I will show first that:n × n

(a) The columns  a1,....,an  of A are linear independent if and only if for every   theb 0 ún

system of n linear equations Ax =  b has a unique solution. 

To see this, suppose that there exists another solution y: Ay = b.  Then A(x!y) = 0 and

x!y … 0, which imply that the columns a1,....,an of A are linear dependent. Similarly, if for every 

  the system Ax =  b has a unique solution, then the columns a1,....,an  of  A must be b 0 ún

linear independent, because if not then there exists a vector c … 0  in  such that Ac = 0, henceún

if x is a solution of Ax = b then so is x + c. 

Next, I will show that:
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(b) A is invertible if and only if for every   the system of n linear equations Ax =  bb 0 ún

has a unique solution. 

First, if A is invertible then the solution of Ax = b is x = A!1b, which for each   isb 0 ún

unique. Second, let b = ei be the i-th column of the unit matrix In, and let xi be the unique

solution of Axi  =  ei. Then the matrix X with columns x1,...,xn satisfies 

 AX ' A(x1 ,þ ,xn) ' (Ax1 ,þ ,Axn) ' (e1 ,þ ,en) ' In ,

hence A is the inverse of X:  A = X!1. It follows now from Theorem I.1 that X is the inverse of A:

X = A!1.  Q.E.D.

If the columns of a square matrix A are linear dependent, then Ax maps point x into a

lower-dimensional space, namely the subspace spanned by the columns of A. Such a mapping is

called a singular mapping, and the corresponding matrix A is therefore called singular.

Consequently, a square matrix with linear independent columns is called non-singular. It

follows from Theorem I.3 that a non-singularity is equivalent to invertibility, and singularity  is

equivalent to absence of invertibility.

If m > n in (I.14), so that the matrix A involved has more rows than columns,  we can also

undo the action of A if the columns of the matrix A are linear independent, as follows. First,

consider the transpose5 AT  of the matrix A in (I.14):

A T '

a1,1 þ am,1

! " !

a1,n þ am,n

, (I.27)

i.e., AT  is formed by filling its columns with the elements of the corresponding rows of A. Note

that
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Theorem I.4: (AB)T = BTAT. Moreover, if A and B are square and invertible then

(A T )&1 ' (A &1)T , (AB)&1 T
' B &1A &1 T

' A &1 T B &1 T
' A T &1 B T &1 , and similarly ,

(AB)T &1
' B TA T &1

' A T &1 B T &1
' A &1 T B &1 T .

Proof: Exercise.

Since a vector can also be interpreted as a matrix with only one column, the transpose

operation also applies to vectors. In particular, the transpose of the vector x in (I.2) is:

x T ' (x1 ,x2 .þ ,xn) , (I.28)

which may be interpreted as a 1×n matrix. 

Now if y = Ax then  ATy =  ATAx, where ATA is an   matrix. If ATA is invertible, thenn × n

(ATA)!1ATy =  x, so that then the action of the matrix A is undone by the  matrix (ATA)!1AT.n × m

Thus, it remains to be shown that:

Theorem I.5:  ATA is invertible if and only if the columns of the matrix A are linear independent.

Proof: Let  a1,....,an be the columns of A. Then  ATa1,....,A
Tan are the columns of ATA.

Thus, the columns of ATA are linear combinations of the columns of A. Suppose that the columns

of ATA are linear dependent. Then there exists coefficients cj not all equal to zero such that

. This equation can be rewritten as  Sincec1A
Ta1 %þ% cnA

Tan ' 0 A T(c1a1 %þ% cnan) ' 0.

a1,....,an are linear independent, we have  hence the columns of  AT arec1a1 %þ% cnan … 0,

linear dependent. However, this is impossible, because of the next theorem. Therefore, if the

columns of A are linear independent, then so are the columns of  ATA. Thus, the theorem under
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review follows from Theorem I.3 and Theorem I.6 below. 

Theorem I.6: The dimension of the subspace spanned by the columns of a matrix A is equal to

the dimension of the subspace spanned by the columns of its transpose AT.

The proof of Theorem I.6 has to be postponed, because we need for it the results in the

next sections. In particular, Theorem I.6 follows from Theorems I.11, I.12 and I.13 below.

Definition I.7: The dimension of the subspace spanned by the columns of a matrix A is called the

rank of A.

Thus, a square matrix is invertible if and only if its rank equals its size, and if a matrix is

invertible then so is its transpose.

I.5. Elementary matrices and permutation matrices

Let A be the  matrix in (I.14). An elementary  matrix E is a matrix suchm × n m × m

that the effect of  EA is that a multiple of one row of A is added to another row of A. For

example, let Ei,j(c) be an elementary matrix such that the effect of Ei,j(c)A is that c times row j is

added to row i < j:
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Ei,j(c)A '

a1,1 þ a1,n

! " !

ai&1,1 þ ai&1,n

ai,1%caj,1 þ ai,n%caj,n

ai%1,1 þ ai%1,n

! " !

aj,1 þ aj,n

! " !

am,1 þ am,n

. (I.29)

Then Ei,j(c)6  is equal to the unit matrix Im (compare (I.26)), except that the zero in the (i,j)'s

position is replaced with a nonzero constant c. In particular, if i=1 and j = 2 in (I.29), so that

E1,2(c)A adds c times row 2 of A to row 1 of A, then 

E1,2(c) '

1 c 0 þ 0

0 1 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

.

This matrix is a special case of an upper-triangular matrix; that is a square matrix with all the

elements below the diagonal equal to zero. Moreover, E2,1(c)A adds c times row 1 of A to row 2

of A:

E2,1(c) '

1 0 0 þ 0

c 1 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

, (I.30)
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which is a special case of a lower-triangular matrix, i.e., a square matrix with all the elements

above the diagonal equal to zero. 

Similarly, if E is an elementary matrix, then the effect of AE is that one of then × n

columns of A, times a nonzero constant, is added to another column of A.  Thus, 

Definition I.8: An elementary matrix is a unit matrix with one off-diagonal element replaced

with a nonzero constant.

Note that the columns of an elementary matrix are linear independent, hence an

elementary matrix is invertible. The inverse of an elementary matrix is easy to determine: If the

effect of EA is that c times row j of A is added to row i of A, then E!1 is an elementary matrix

such that the effect of  E!1EA is that -c times  row j of EA is added to row i of A, so that then 

E!1EA restores A. For example, the inverse of the elementary matrix  (I.30) is:

E2,1(c)&1 '

1 0 0 þ 0

c 1 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

&1

'

1 0 0 þ 0

&c 1 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

' E2,1(&c) .

 We now turn to permutation matrices:

Definition I.9: An elementary permutation matrix is a unit matrix with two columns or rows

swapped.  A permutation matrix is a matrix whose columns or rows are permutations of the

columns or rows of a unit matrix.
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In particular, the elementary permutation matrix that is formed by swapping the columns i

and j of a unit matrix will be denoted by  Pi,j.

The effect of an (elementary) permutation matrix on A is that PA swaps two rows, or

permutates the rows, of A. Similarly, AP swaps or permutates the columns of A. Whether you

swap or permutate columns or rows of a unit matrix does not matter, because the resulting

(elementary) permutation matrix is the same. An example of an elementary permutation matrix is

P1,2 '

0 1 0 þ 0

1 0 0 þ 0

0 0 1 þ 0

! ! ! " !

0 0 0 þ 1

.

Note that a permutation matrix P can be formed as a product of elementary permutation matrices,

say . Moreover, note that if an elementary permutation matrix Pi,j is applied toP ' Pi1,j1
.......Pik,jk

itself, i.e., Pi,jPi,j,  then the swap is undone, and the result is the unit matrix: Thus, the inverse of

an elementary permutation matrix Pi,j is Pi,j itself.  This result holds only for elementary

permutation matrices, though. In the case of the permutation matrix   we haveP ' Pi1,j1
.......Pik,jk

. Since elementary permutation matrices are symmetric:  itP
&1 ' Pik,jk

.......Pi1,j1
Pi,j ' P T

i,j ,

follows that   Moreover, if E is an elementary matrix and Pi,j anP &1 ' P T
ik,jk

.......P T
i1,j1

' P T .

elementary permutation matrix then . Combining these results, it follows:Pi,jE ' EPi,j

Theorem I.7: If E is an elementary matrix and P is a permutation matrix, then PE ' EP T .

Moreover, P &1 ' P T .
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I.6. Gaussian elimination of a square matrix, and the Gauss-Jordan iteration for

inverting a matrix

I.6.1 Gaussian elimination of a square matrix

The results in the previous section are the tools we need to derive the following result:

Theorem I.8: Let A be a square matrix. 

(a) There exists a permutation matrix P, possibly equal to the unit matrix I, a lower-

triangular matrix L with diagonal elements all equal to 1, a diagonal matrix D, and an upper-

triangular matrix U with diagonal elements all equal to 1, such that PA = LDU.  

(b) If A is non-singular and P = I  this decomposition is unique, i.e., if A  = LDU = L*D*U*, 

then   and  L
(
' L , D

(
' D , U

(
' U .

The proof of part (b) is as follows: LDU = L*D*U*  implies

L &1L
(
D

(
' DUU &1

( (I.31)

It is easy to verify that the inverse of a lower triangular matrix is lower triangular, and that the

product of lower triangular matrices is lower triangular. Thus the left-hand side of (I.31) is lower

triangular. Similarly, the right-hand side of (I.31) is upper triangular. Consequently, the off-

diagonal elements in both sides are zero: Both matrices in (I.31) are diagonal. Since   isD
(

diagonal and non-singular, it follows from (I.31) that   is diagonal.L &1L
(
' DUU &1

( D &1
(

Moreover, since the diagonal elements of  and  are all equal to one, the same applies toL &1 L
(

 Similarly we have   Then  L &1L
(

, i.e., L &1L
(
' I , hence L ' L

(
. U ' U

(
. D ' L &1AU &1

and  D
(
' L &1AU &1 .
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Rather than giving a formal proof of part (a) of Theorem I.8, I will demonstrate the result

involved by two examples, one for the case that A is non-singular, and one for the case that A is

singular.

Example 1: A is nonsingular.

Let 

A '

2 4 2

1 2 3

&1 1 &1

. (I.32)

We are going to multiply A by elementary matrices and elementary permutation matrices such

that the end-result will be a upper-triangular matrix. This is called Gaussian elimination. 

First, add !½ times row 1 to row 2 in (I.32). This is equivalent to multiplying A by the

elementary matrix E2,1(!½). (Compare  (I.30), with c = !½.). Then 

E2,1(!½)A '

1 0 0

!0.5 1 0

0 0 1

2 4 2

1 2 3

&1 1 &1

'

2 4 2

0 0 2

&1 1 &1

. (I.33)

Next, add ½ times row 1 to row 3, which is equivalent to multiplying (I.33) by the elementary

matrix E3,1(½):

E3,1(½)E2,1(!½)A '

1 0 0

0 1 0

0.5 0 1

2 4 2

0 0 2

&1 1 &1

'

2 4 2

0 0 2

0 3 0

. (I.34)

Now swap the rows 2 and 3 of the right-hand side matrix in (I.34). This is equivalent to

multiplying (I.34) by the elementary permutation matrix P2,3 formed by swapping the columns 2
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and 3 of the unit matrix I3. Then

P2,3E3,1(½)E2,1(!½)A '

1 0 0

0 0 1

0 1 0

2 4 2

0 0 2

0 3 0

'

2 4 2

0 3 0

0 0 2

'

2 0 0

0 3 0

0 0 2

1 2 1

0 1 0

0 0 1

' DU ,

(I.35)

say. Moreover, since  P2,3 is an elementary permutation matrix, we have that  henceP &1
2,3 ' P2,3 ,

it follows from Theorem I.7 and (I.35) that

P2,3E3,1(½)E2,1(!½)A ' E3,1(½)P2,3E2,1(!½)A ' E3,1(½)E2,1(!½)P2,3A ' DU . (I.36)

Furthermore, observe that 

E3,1(½)E2,1(!½) '

1 0 0

!0.5 1 0

0 0 1

1 0 0

0 1 0

0.5 0 1

'

1 0 0

&0.5 1 0

0.5 0 1

(I.37)

hence

E3,1(½)E2,1(!½) &1 '

1 0 0

&0.5 1 0

0.5 0 1

&1

'

1 0 0

0.5 1 0

&0.5 0 1

' L , (I.38)

say. Combining (I.36) and (I.38), it follows now that P2,3A ' LDU .

Example 2: A is singular.

Theorem I.8 also holds for singular matrices. The only difference with the non-singular

case is that if A is singular then the diagonal matrix D will have zeros on the diagonal. To

demonstrate this, let now
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A '

2 4 2

1 2 1

&1 1 &1

. (I.39)

Since the first and last column of this matrix A are equal, the columns are linear dependent,

hence A is singular. Now (I.33) becomes

E2,1(!½)A '

1 0 0

!0.5 1 0

0 0 1

2 4 2

1 2 1

&1 1 &1

'

2 4 2

0 0 0

&1 1 &1

, (I.40)

(I.34) becomes

E3,1(½)E2,1(!½)A '

1 0 0

0 1 0

0.5 0 1

2 4 2

0 0 0

&1 1 &1

'

2 4 2

0 0 0

0 3 0

, (I.41)

and (I.35) becomes

P2,3E3,1(½)E2,1(!½)A '

1 0 0

0 0 0

0 1 0

2 4 2

0 0 0

0 3 0

'

2 4 2

0 3 0

0 0 0

'

2 0 0

0 3 0

0 0 0

1 2 1

0 1 0

0 0 1

' DU .

(I.42)

The formal proof of part (a) of  Theorem I.8 is similar to the argument in these two

examples, and is therefore omitted.

Note that the result (I.42) demonstrates that:
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Theorem I.9: The dimension of the subspace spanned by the columns of a square matrix A is

equal to the number of non-zero diagonal elements of the matrix D in Theorem I.8.

Example 3: A is symmetric and nonsingular

Next, consider the case that A is symmetric, that is, AT = A. For example, let

A '

2 4 2

4 0 1

2 1 &1

. (I.43)

Then

E3,2(&3/8)E3,1(&1)E2,1(&2)AE1,2(&2)E1,3(&1)E2,3(&3/8)

'

2 0 0

0 &8 0

0 0 &15/8

' D ,
(I.44)

hence

A ' E3,2(&3/8)E3,1(&1)E2,1(&2) &1D E1,2(&2)E1,3(&1)E2,3(&3/8) &1 ' LDL T . (I.45)

Thus, in the symmetric case we can eliminate each pair of non-zero elements opposite of the

diagonal jointly by multiplying A from the left by an appropriate  elementary matrix and

multiplying A from the right by the transpose of the same elementary matrix.

Example 4: A is symmetric and singular

Although I have demonstrated this result for a non-singular symmetric matrix, it holds for

the singular case as well. For example, let now

A '

2 4 2

4 0 4

2 4 2

. (I.46)
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Then

E3,1(&1)E2,1(&2)AE1,2(&2)E1,3(&1) '

2 0 0

0 &8 0

0 0 0

' D . (I.47)

Example 5: A is symmetric and has a zero in a pivot position

If there is a zero in a pivot position7, then we need a row exchange. In that case the result

A = LDLT  will no longer be valid.  For example, let

A '

0 4 2

4 0 4

2 4 2

. (I.48)

Then

E3,2(&1)E3,1(&1/2)P1,2A '

4 0 4

0 4 2

0 0 &2

'

4 0 0

0 4 0

0 0 &2

1 0 1

0 1 1/2

0 0 1

' DU

L ' E3,2(&1)E3,1(&1/2) &1 ' E3,1(1/2)E3,2(1) '

1 0 0

0 1 0

1/2 1 1

… U T .

(I.49)

Thus, examples 3, 4 and 5 demonstrate that:

Theorem I.10: If A is symmetric and the Gaussian elimination can be conducted without need

for row exchanges, then there exists a lower triangular matrix L with diagonal elements all equal

to one, and a diagonal matrix D, such that A = LDLT.
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I.6.2 The Gauss-Jordan iteration for inverting a matrix

The Gaussian elimination of the matrix A in the first example in the previous section

suggests that this method can also be used to compute the inverse of A, as follows. Augment the

matrix A in (I.32) to a 3 × 6 matrix, by augmenting the columns of A with the columns of the unit

matrix I3:

B ' (A, I3) '

2 4 2 1 0 0

1 2 3 0 1 0

&1 1 &1 0 0 1

. (I.50)

Now follow the same procedure as in Example 1, up to (I.35), with A replaced by B. Then (I.35)

becomes: 

P2,3E3,1(½)E2,1(!½)B ' P2,3E3,1(½)E2,1(!½)A , P2,3E3,1(½)E2,1(!½)

'

2 4 2 1 0 0

0 3 0 0.5 0 1

0 0 2 &0.5 1 0

' U
(

, C ,
(I.51)

say, where U*  in (I.51) follows from (I.35) and  

C ' P2,3E3,1(½)E2,1(!½) '

1 0 0

0.5 0 1

&0.5 1 0

. (I.52)

Now multiply (I.51) by elementary matrix E13(-1), i.e., subtract row 3 from row 1:
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E1,3(&1)P2,3E3,1(½)E2,1(!½)A , E1,3(&1)P2,3E3,1(½)E2,1(!½)

'

2 4 0 1.5 &1 0

0 3 0 0.5 0 1

0 0 2 &0.5 1 0

,
(I.53)

multiply (I.53) by elementary matrix E12(-4/3), i.e., subtract 4/3 times row 3 from row 1:

E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)A , E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)

'

2 0 0 5/6 &1 &4/3

0 3 0 0.5 0 1

0 0 2 &0.5 1 0

,
(I.54)

and finally, divide row 1 by 2, row 2 by 3, and row 3 by 2, or equivalently, multiply (I.54) by the

diagonal matrix D* with diagonal elements 1/2, 1/3 and 1/2:

D
(
E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)A , D

(
E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)

' I3 , D
(
E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)

'

1 0 0 5/12 &1/2 &2/3

0 1 0 1/6 0 1/3

0 0 1 &1/4 1/2 0

.

(I.55)

Observe from (I.55) that the matrix (A,I3) has been transformed into a matrix of the type (I3,A
*)  =

(A*A,A*) , where  is the matrix consisting of theA ( ' D
(
E1,2(&4/3)E1,3(&1)P2,3E3,1(½)E2,1(!½)

last three columns of (I.55). Consequently, A ( ' A &1 .

This way of computing the inverse of a matrix is called the Gauss-Jordan iteration. In

practice the Gauss-Jordan  iteration is done in a slightly different but equivalent way, using a

sequence of tableaus.  Take again the matrix A in  (I.32). The Gauss-Jordan iteration then starts
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from the initial tableau:

Tableau 1

A I

2 4 2 1 0 0

1 2 3 0 1 0

&1 1 &1 0 0 1

If there is a zero in a pivot position, you have to swap rows, as we will see below. In the

case of Tableau 1 there is not yet a problem, because the first element of row 1 is non-zero.  

The first step is to make all the non-zero elements in the first column equal to one, by

dividing all the rows by their first element, provided that they are non-zero. Then we get:

Tableau 2

1 2 1 1/2 0 0

1 2 3 0 1 0

1 &1 1 0 0 &1

Next, wipe out the first elements of rows 2 and 3, by subtracting row 1 from them:

Tableau 3

1 2 1 1/2 0 0

0 0 2 &1/2 1 0

0 &3 0 &1/2 0 &1

Now we have a zero in a pivot position, namely the second zero of row 2. Therefore, swap rows

2 and 3:
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Tableau 4

1 2 1 1/2 0 0

0 &3 0 &1/2 0 &1

0 0 2 &1/2 1 0

Divide row 2 by -3 and row 3 by 2:

Tableau 5

1 2 1 1/2 0 0

0 1 0 1/6 0 1/3

0 0 1 &1/4 1/2 0

The left 3×3 block is now upper-triangular. 

Next, we have  to wipe out, one by one, the elements in this block above the diagonal.

Thus, subtract row 3 from  row 1:

Tableau 6

1 2 0 3/4 &1/2 0

0 1 0 1/6 0 1/3

0 0 1 &1/4 1/2 0

Finally, subtract 2 times row 2 from row 1:

Tableau 7

I A &1

1 0 0 5/12 &1/2 &2/3

0 1 0 1/6 0 1/3

0 0 1 &1/4 1/2 0

This is the final tableau. The last three columns now form A!1. 

Once you have calculated A!1, you can solve the linear system Ax = b by computing x =

A!1b. However, you can also incorporate the latter in the Gauss-Jordan iteration, as follows. Let

again A be the matrix  in  (I.32), and let for example
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b '

1

1

1

.

Insert this vector in Tableau 1:

Tableau 1(

A b I

2 4 2 1 1 0 0

1 2 3 1 0 1 0

&1 1 &1 1 0 0 1

and perform the same row operations as before. Then Tableau 7 becomes:

Tableau 7(

I A &1b A &1

1 0 0 &5/12 5/12 &1/2 &2/3

0 1 0 1/2 1/6 0 1/3

0 0 1 1/4 &1/4 1/2 0

This is how matrices were inverted and system of linear equations were solved fifty and

more years ago, using only a mechanical calculator. Nowadays of course you would use a

computer, but the Gauss-Jordan method is still handy and not too time consuming for small

matrices like the one in this example.

I.7. Gaussian elimination of a non-square matrix

The Gaussian elimination of a non-square matrix is similar to the square case, except that

in the final result the upper-triangular matrix now becomes an echelon matrix:
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Definition I.10: An   matrix U is an echelon matrix if for i = 2,...,m  the first non-zerom × n

element of row i is farther to the right than the first non-zero element of the previous row i!1.

Theorem I.8 can now be generalized to:

Theorem I.11: For each matrix A there exists a permutation matrix P, possibly equal to the unit

matrix I, a lower-triangular matrix L with diagonal elements all equal to 1, and an echelon

matrix U, such that PA = LU. If A is a square matrix then U is an upper-triangular matrix.

Moreover, in that case PA = LDU, where now U is an upper-triangular matrix with diagonal

elements all equal to 1, and D is a diagonal matrix.8

Again, I will only prove the general part this theorem by examples. The parts for square

matrices follow trivially from the general case.  

First, let 

A '

2 4 2 1

1 2 3 1

&1 1 &1 0

. (I.56)

which is the matrix (I.32) augmented with an additional  column. Then it follows from (I.52) that

P2,3E3,1(½)E2,1(!½)A '

1 0 0

0.5 0 1

&0.5 1 0

2 4 2 1

1 2 3 1

&1 1 &1 0

'

2 4 2 1

0 3 0 1/2

0 0 2 1/2

' U ,

(I.57)
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where U is now an echelon matrix. 

As another example, take the transpose of the matrix A in (I.56):

A T '

2 1 &1

4 2 1

2 3 &1

1 1 0

. (I.58)

Then

P2,3E4,2(&1/6)E4,3(1/4)E2,1(&2)E3,1(&1)E4,1(&1/2)A T '

2 1 &1

0 2 0

0 0 3

0 0 0

' U , (I.59)

where again U is an echelon matrix.

I.8. Subspaces spanned by the columns and rows of a matrix

The result in Theorem I.9 also reads as: A = BU, where B = P!1L is a non-singular matrix.

Moreover, note that the size of U is the same as the size of A, i.e., if A is an  matrix, thenm × n

so is U.  Denoting the columns of U  by u1,...,un, it follows therefore that the columns a1,...,an, of

A are equal to Bu1,...,Bun, respectively. This suggests that the subspace spanned by the columns

of A has the same dimension as the subspace spanned by the columns of U. To prove this

conjecture, let VA be the subspace spanned by the columns of A, and let VU  be the subspace

spanned by the columns of U.  Without loss or generality we may reorder the columns of A such 

that the first k columns a1,...,ak of A form a basis for VA . Now suppose that u1,...,uk are linear

dependent, i.e., there exist constants c1,...,ck  not all equal to zero such that But then'k
j'1cjuj ' 0.

also  = 0, which by the linear independence of a1,...,ak implies that all the'k
j'1cjBuj ' 'k

j'1cjaj
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cj’s are equal to zero. Hence,  u1,...,uk are linear independent, and therefore the dimension of  VU  

is greater or equal to the dimension of VA . But since U = B!1A, the same argument applies the

other way around: the dimension of  VA   is greater or equal to the dimension of VU . Thus we

have:

Theorem I.12: The subspace spanned by the columns of A has the same dimension as the

subspace spanned by the columns of the corresponding echelon matrix U  in Theorem I.9.

Next, I will show that

Theorem I.13: The subspace spanned by the columns of AT is the same as the subspace spanned

by the columns of the transpose  UT of  the corresponding echelon matrix U  in Theorem I.9.

Proof: Let A be an  matrix. The equality A = BU implies that   Them × n A T ' U TB T .

subspace spanned by the columns of  AT consists of all vectors   for which there exists ax 0 úm

vector   such that   and similarly the subspace spanned by the columns of   UTc1 0 ún x ' A Tc1 ,

consists of all vectors   for which there exists a vector   such that  x 0 úm c2 0 ún x ' U Tc2 .

Letting   the theorem follows. Q.E.D.c2 ' B Tc1

Now let us have a closer look at a typical echelon matrix:
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U '

0 þ 0 ( þ ( ( þ ( ( þ ( ( þ (

0 þ 0 0 þ 0 ( þ ( ( þ ( ( þ (

0 þ 0 0 þ 0 0 þ 0 ( þ ( ( þ (

0 þ 0 0 þ 0 0 þ 0 0 þ 0 ( þ (

! " ! ! " ! ! " ! ! " ! ! þ !

0 þ 0 0 þ 0 0 þ 0 0 þ 0 0 þ 0

, (I.60)

where each smiley face ( (called a pivot) indicates the first nonzero elements of the row

involved,  and the *’s indicate possible nonzero elements. Since the elements below the pivot in

each column with a smiley face  ( are zero, the columns involved are linear independent. In

particular, it is impossible to write the last column with a pivot as a linear combination of the

other ones. Moreover, it is easy to see that all the columns without a pivot can be formed as

linear combinations of the columns with a pivot. Consequently, the columns of U with a pivot

form a basis for the subspace spanned by the columns of U. But the transpose UT of U is also an

echelon matrix, and the number of rows of U with a pivot is the same as the number of columns

with a pivot, hence:

Theorem I.14: The dimension of the subspace spanned by the columns of an echelon matrix U is

the same as the dimension of the subspace spanned by the columns of its transpose UT.

Combining Theorems I.11, I.12 and I.13, it follow now that Theorem I.6 holds..

The subspace spanned by the columns of a matrix A is called the column space of A, and

is denoted by R(A). The row space of A is the space spanned by the columns of AT, i.e., the row

space of A is R(AT).  Theorem I.14 implies that the dimension of  R(A)  is equal to the
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dimension of  R(AT). 

There is also another space associated with a matrix A, namely the null space of A,

denoted by N(A). This the space of all vectors x for which Ax = 0, which is also a subspace of a

vector space. If A is square and non-singular, then N(A) = {0}, but if not it follows from

Theorem I.12 that N(A) = N(U), where U is the echelon matrix in Theorem I.12. 

In order to determine the dimension of N(U), suppose that A is an m × n matrix with

rank r, and thus U is an m × n matrix with rank r. Let R be an n × n permutation matrix such that

the first r columns of UR are the r columns of U with a pivot. Clearly, the dimension of N(U) is

the same as the dimension of N(UR). We can partition UR as (Ur, Un!r), where Ur is the m × r

matrix consisting of  the columns of U with a pivot, and Un!r is the m × (n!r) matrix consisting

of the other columns of U. Partitioning a vector x in N(UR) accordingly, i.e.,  x ' (x T
r ,x T

n&r)
T ,

we have

URx ' Urxr % Un&rxn&r ' 0. (I.61)

It follows from Theorem I.5 that  is invertible, hence it follows from (I.61) and theU T
r Ur

partition  that x ' (x T
r ,x T

n&r)
T

x '
&(U T

r Ur)
&1U T

r Un&r

In&r

xn&r . (I.62)

Therefore, N(UR) is spanned by the columns of the matrix in (I.62), which has rank n!r, and

thus the dimension of N(A) is  n!r. By the same argument it follows that the dimension of
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N(AT) is  m!r. 

The subspace N(AT) is called the left null space of A, because it consists of all vectors y

for which y TA ' 0T .

Summarizing, it has been shown that the following results hold.

Theorem I.15: Let A be an m × n matrix with rank r. Then  R(A) and R(AT) have dimension r,

N(A) has dimension n!r, and N(AT) has dimension   m!r.

Note that in general the rank of a product AB is not determined by the ranks r and s of A

and B, respectively. At first sight one might guess that the rank of  AB is min(r,s), but that is in

general not true. For example, let A = (1,0)  and BT = (0,1). Then A and B have rank 1, but AB =

0, which has rank zero. The only thing we know for sure is that the rank of AB cannot exceed

min(r,s). Of course, if A and B are conformable invertible matrices, then AB is invertible, hence

the rank of AB is equal to the rank of A and the rank of B, but that is a special case. The same

applies to the case in Theorem I.5.

I.9. Projections, projection matrices, and idempotent matrices

Consider the following problem: Which point on the line through the origin and point a in

Figure I.3 is the closest to point b? The answer is: point p in Figure I.4 below. The line through b

and p is perpendicular to the subspace spanned by a, and therefore the distance between b and

any other point  in this subspace is larger than the distance between b and p. Point p is called the



363

projection of b on the subspace spanned by a. In order to find p, let p = c.a, where c is a scalar.

The distance between b and p is now , so the problem is to find the scalar c which2b & c.a2

minimizes this distance. Since  is minimal if and only if2b & c.a2

2b & c.a22 ' (b&c.a)T(b&c.a) ' b Tb & 2c.a Tb % c 2a Ta

is minimal, the answer is:  hence c ' a Tb/a Ta , p ' (a Tb/a Ta).a .

Figure I.4: Projection of b on the
subspace spanned by a

 

Similarly, we can project a vector y in  on the subspace of    spanned by a basisún ún

{x1,...,xk}, as follows. Let X be the n× k matrix with columns x1,...,xk. Any point p in the column

space   R(X) of X can be written as  p = Xb, where  Then the squared distance between yb 0 úk .

and p = Xb is
2y & Xb22 ' (y & Xb)T(y & Xb) ' y Ty & b TX Ty & y TXb % b TX TXb

' y Ty & 2b TX Ty % b TX TXb ,
(I.63)

where the last equality follows from the fact that   is a scalar (or equivalently,  a 1×1y TXb

matrix), hence Given X and y, (I.63) is a quadratic function of b.y TXb ' (y TXb)T ' b TX Ty .
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The first-order condition for a  minimum of (I.63) is given by

M2y & Xb22

Mb T
' &2X Ty % 2X TXb ' 0 , (I.64)

which has solution

b ' (X TX)&1X Ty . (I.65)

Thus, the vector p in  R(X) closest to y is 

p ' X(X TX)&1X Ty , (I.66)

which is the projection of  y on   R(X) . 

Matrices of the type in (I.66) are called projection matrices: 

Definition I.11: Let A be an  n× k matrix with rank k. Then the   n× n  matrix P =  A(A TA)&1A T

is called a projection matrix: For each vector x in ,  Px is the projection of x on the columnún

space of A.

Note that this matrix P is such that   ThisPP ' A(A TA)&1A TA(A TA)&1A T) ' A(A TA)&1A T ' P .

is not surprising, though, because  p = Px is already in  R(A), hence the point in  R(A) closest to

p is p itself. 

Definition I.12: An n× n matrix M is called idempotent if MM = M.

Thus, projection matrices are idempotent.
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I.10. Inner product, orthogonal bases, and orthogonal matrices

It follows from (I.10) that the cosines of the angle N between the vectors x in (I.2) and y

in  (I.5) is

cos(φ) '
'n

j'1xj yj

2x2.2y2
'

x Ty
2x2.2y2

. (I.67)

Definition I.13: The quantity  is called the inner product of the vectors x and y.x Ty

If   then cos(N) = 0, hence N = B/2 or N = 3B/4. This corresponds to an angle ofx Ty ' 0

90 degrees and 270 degrees, respectively, hence x and y are then perpendicular. Such vectors are

said to be orthogonal.

Definition I.14: Conformable vectors x and y are orthogonal if their inner product  is zero.x Ty

Moreover, they are orthonormal if in addition their lengths are 1: 2x2 ' 2y2 ' 1.

If we flip in Figure I.4 point p over to the other side of the origin along the line through

the origin and point a, and add b to !p, then the resulting vector c = b ! p is perpendicular to the

line through the origin and point a. This is illustrated in Figure I.5. More formally,

a Tc ' a T(b&p) ' a T(b & (a Tb/2a22)a ' a Tb & (a Tb/2a22)2a22 ' 0.
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Figure I.5: Orthogonalization

This procedure can be generalized to convert any basis of a vector space into an

orthonormal basis, as follows. Let be a basis for a subspace of , and leta1,......,ak, k # n , ún

 The projection of   is now   henceq1 ' 2a12
&1.a1 . a2 on q1 p ' (q T

1 a2).q1 ,

 is orthogonal to . Thus, let   The next step is to erect a (

2 ' a2 & (q T
1 a2).q1 q1 q2 ' 2a (

2 2
&1a (

2 .

 perpendicular to  and , which can be done by subtracting from  its projections on  a3 q1 q2 a3 q1

and :   Using the facts that by construction,q2 a (

3 ' a3 & (a T
3 q1)q1 & (a T

3 q2)q2 .

q T
1 q1 ' 1, q T

2 q2 ' 1, q T
1 q2 ' 0, q T

2 q1 ' 0,

we have indeed that   andq T
1 a (

3 ' q T
1 a3 & (a T

3 q1)q
T

1 q1 & (a T
3 q2)q

T
1 q2 ' q T

1 a3 & a T
3 q1 ' 0

similarly,  Thus, let now   Repeating this procedure yields :q T
2 a (

3 ' 0. q3 ' 2a (

3 2
&1a (

3 .

Theorem I.16: Let  be a basis for a subspace of  , and construct  a1,......,ak ún q1,......,qk

recursively by:
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q1 ' 2a12
&1.a1 and a (

j ' aj & j
j&1

i'1
(a T

j qi)qi , qj ' 2a (

j 2
&1a (

j for j ' 2,3,....,k. (I.68)

Then  is an orthonormal basis for the subspace spanned by .q1,......,qk a1,......,ak

The construction (I.68) is known as the Gram-Smidt process. The orthonormality of q1,......,qk

has already been shown, but it still has to be shown that  spans the same subspace asq1,......,qk

. To show the latter, observe from (I.68) that  is related to  bya1,......,ak a1,......,ak q1,......,qk

aj ' j
j

i'1
ui,jqi , j ' 1,2,...,k , (I.69)

where

uj,j ' 2a (

j 2, ui,j ' q T
i aj for i < j , ui,j ' 0 for i > j, i,j ' 1,....,k ,. (I.70)

 with  It follows now from (I.69) that  are linear combinations of ,a (

1 ' a1 . a1,......,ak q1,......,qk

and it follows from (I.68) that   are linear combinations of , hence the twoq1,......,qk a1,......,ak

bases span the same subspace. 

Observe from (I.70) that the k×k  matrix U with elements ui,j is an upper triangular matrix

with positive diagonal elements. Moreover, denoting by A the n×k matrix with columns 

 and by Q the n×k matrix with columns   it follows from (I.69) that A = QU.a1,......,ak q1,......,qk

Thus it follows from Theorem I.16,  (I.69) and (I.70):

Theorem I.17: Let A be an  n×k matrix with rank k. There exists an  n×k matrix Q with

orthonormal columns, and an upper triangular  k×k  matrix U with positive diagonal elements,

such that A = QU.

In the case k = n the matrix Q in Theorem I.17 is called an orthogonal matrix:
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Definition I.15: An orthogonal matrix Q is a square matrix with orthonormal columns: QTQ = I.

In particular, if Q is an orthogonal n×n matrix with columns  then the elementsq1,......,qn

of the matrix QTQ are  where I(.) is the indicator function9, hence QTQ = In.q T
i qj ' I(i ' j) ,

Thus QT = Q!1. It follows now from Theorem I.1 that also QQT = In, i.e, the rows of an

orthogonal matrix are also orthonormal.

Orthogonal transformations of vectors leave the angles between the vectors, and their

lengths,  the same. In particular, let x and y be vectors in , and let Q be an orthogonal n×nún

matrix. Then  hence it(Qx)T(Qy) ' x TQ TQy ' x Ty , 2Qx2 ' (Qx)T(Qx) ' x Tx ' 2x2 ,

follows from (I.67) that the angle between Qx and Qy is the same as the angle between x and y. 

In the case n = 2 the effect of an orthogonal transformation is a rotation. A typical

orthogonal 2×2 matrix takes the form

Q '
cos(θ) sin(θ)

sin(θ) &cos(θ)
(I.71)

This matrix transforms the unit vector e1 = (1, 0)T  into the vector  and itqθ ' (cos(θ) , sin(θ))T ,

follows from  (I.67) that 2 is the angle between the two. By moving 2 from 0 to 2B the vector qθ

rotates anti-clockwise from the initial position e1 back to e1. 
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I.11. Determinants: Geometric interpretation and basic properties

The area enclosed by the parallelogram in Figure I.3  has a special meaning, namely the

determinant of the matrix

A ' (a,b) '

a1 b1

a2 b2

'
6 3

4 7
. (I.72)

The determinant is denoted by det(A). This area is two times the area enclosed by the triangle

formed by the origin and the points  a and b in  Figure I.3, which in its turn is the sum of the

areas enclosed by the triangle formed by the origin, point b, and the projection 

 p ' (a Tb/a Ta).a ' (a Tb/2a22).a

of  b on a, and the triangle formed by the points p, a, and b, in Figure I.4. The first triangle has

area  ½  times the distance of p to the origin, and the second triangle has area equal to2b & p2

½ times the distance between p and a, hence the determinant of A is:2b & p2

det(A) ' 2b & p2.2a2 ' 2b & (a Tb/2a22)2.2a2 ' 2a222b22 & (a Tb)2

' (a 2
1%a 2

2 )(b 2
1%b 2

2 ) & (a1b1%a2b2)
2 ' (a1b2 & b1a2)

2 ' ±*a1b2 & b1a2*

' a1b2 & b1a2 .

(I.73)

The latter equality is a matter of normalization, as  would also fit (I.73), but the&(a1b2 & b1a2)

chosen normalization is appropriate for (I.72), because then

det(A) ' a1b2 & b1a2 ' 6×7 & 3×4 ' 30. (I.74)

However, as I will show below, a determinant can be negative or zero. 

Equation (I.73) reads in  words:



370

Definition I.16: The determinant of a 2×2 matrix is the product of the diagonal elements minus

the product of the off-diagonal elements.

We can also express (I.73) in terms of the angles Na and Nb  of the vectors a and b,

respectively,  with the right hand side of the horizontal axis: 

a1 ' 2a2cos(φa) , a2 ' 2a2sin(φa) ,

b1 ' 2b2cos(φb) , b2 ' 2b2sin(φb) ,

hence

det(A) ' a1b2 & b1a2 ' 2a2.2b2. cos(φa)sin(φb) & sin(φa)cos(φb)

' 2a2.2b2.sin(φb & φa)
(I.75)

Since in Figure I.3,   we have that  0 < φb & φa < π , sin(φb & φa) > 0 .

As an example of a negative determinant, let us swap the columns of A, and call the result

matrix B:

B ' AP1,2 ' (b,a) '

b1 a1

b2 a2

'
3 6

7 4
, (I.76)

where

P1,2 '
0 1

1 0

is the elementary permutation matrix involved. Then

det(B) ' b1a2 & a1b2 ' &30. (I.77)

At first sight this looks odd, because it seems that the area enclosed by the parallelogram in

Figure I.3 has not been changed. However, it has! Recall the interpretation of a matrix as a
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mapping: A matrix moves a point to a new location, by replacing the original perpendicular

coordinate system by a new system formed by the columns space of the matrix involved, with

new units of measurement  the lengths of the columns. In the case of the matrix B in (I.76)  we

have:

Unit vectors

Axis Original New

1: e1 '
1

0
6 b '

3

7

2: e2 '
0

1
6 a '

6

4

Thus,  b is now the first unit vector, and a is the second. If we adopt the convention that the

natural position of unit vector 2 is above the line spanned by the first unit vector,  as is the case

for e1 and e2, then we are actually looking at the parallelogram in Figure I.3 from the backside, as

in Figure I.6:

Figure I.6: Backside of Figure I.3

Thus, the effect of swapping the columns of the matrix A in (I.72) is that  Figure I.3 is flipped
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over vertically 180 degrees. Since we are now looking at Figure I.3 from the back, which is the

negative side, the area enclosed by the parallelogram is negative too! Note that this corresponds

to (I.75): If we swap the columns of A, then we swap the angles Na and Nb   in (I.75), and

consequently the determinant flips sign.

Figure I.7: det(a,b) > 0

Figure I.8: det(a,b) < 0
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As another example, let a be as before, but now position b in the south-west quadrant, as

in Figure I.7 and Figure I.8. The fundamental difference between these two cases is that in Figure

I.7 point b is above the line through a and the origin, so that  Nb ! Na < B,  whereas in Figure I.8

point b is below that line:  Nb ! Na  > B. Therefore, the area enclosed by the parallelogram in

Figure I.7 is positive, whereas the area enclosed by the paralelllogram in Figure I.8 is negative.

Hence in the case of Figure I.7, det(a,b) > 0, and in the case of Figure I.8,  det(a,b) <  0. Again, in

Figure I.8 we are looking at the backside of the picture; you have to flip it vertically to see the

front side.

What I have demonstrated here for 2×2 matrices is that if the columns are interchanged

then the determinant changes sign. It is easy to see that the same applies to the rows. This

property holds for general n×n matrices as well, in the following way.

Theorem I.18: If two adjacent columns or rows of a square matrix are swapped10 then the

determinant changes sign only.

Next, let us consider determinants of special 2×2 matrices. The first special case is the

orthogonal matrix. Recall that the columns of an orthogonal matrix are perpendicular, and have

unit length. Moreover, recall that an orthogonal 2×2 matrix rotates a set of points around the

origin, leaving angles and distances the same. In particular, consider the set of points in the unit

square formed by the vectors (0,0)T, (0,1)T, (1,0)T and (1,1)T. Clearly, the area of this unit square

equals 1, and since the unit square corresponds to the  2×2 unit matrix I2., the determinant of I2

equals 1. Now multiply I2 by an orthogonal matrix Q. The effect is that the unit square is rotated,
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without affecting its shape or size. Therefore, 

Theorem I.19: The determinant of an orthogonal matrix is either 1 or -1, and the determinant of

a unit matrix is 1.

The "either-or" part  follows from Theorem I.18: swapping adjacent columns of an orthogonal

matrix preserves orthonormality of the columns of the new matrix, but switches the sign of the

determinant. For example, consider the orthogonal matrix Q in (I.71). Then it follows from

Definition I.16 that

det(Q) ' &cos2(θ) & sin2(θ) ' &1.

Now swap the columns of the matrix  (I.71):

Q '
sin(θ) &cos(θ)

cos(θ) sin(θ)
.

Then it follows from Definition I.16 that

det(Q) ' sin2(θ) % cos2(θ) ' 1.

Note that Theorem I.19 is not confined to the  2×2 case: it is true for orthogonal and unit

matrices of any size.

Next, consider the lower-triangular matrix

L '
a 0

b c
. (I.78)

According to Definition I.16, det(L) = a.c - 0.c = a.c, so that in the  2×2 case the determinant of a
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lower-triangular matrix is the product of the diagonal elements. This is illustrated in Figure I.9

below.  The determinant of L is the area in the parallelogram, which is the same as the area in the

rectangle formed by the vectors (a,0)T and (0,c)T .  This area is a.c. Thus, you can move b freely

along the vertical axis without affecting the determinant of L. If you would flip the picture over

vertically, which corresponds to replacing a by -a, the parallelogram will be viewed from the

backside, hence the determinant flips sign. 

Figure I.9: det(L)

The same result applies of course to upper-triangular and diagonal 2×2 matrices. Thus we have:

Theorem I.20: The determinant of a lower-triangular matrix is the product of the diagonal

elements. The same applies to an upper-triangular matrix and a diagonal matrix.

Again, this result is not confined to the  2×2 case, but holds in general.

Now consider the determinant of a transpose matrix. In the  2×2 case the transpose AT of

A can be formed by first swapping the columns and then swapping the rows. Then it follows

from Theorem I.18 that in each of the two steps only the sign flips, hence
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Theorem I.21: det(A) = det(AT). 

The same applies to the general case: the transpose of A can be formed by a sequence of column

exchanges and a corresponding sequence of row exchanges, and the total number of column and

row exchanges is an even number.

It follows from Theorem I.11 that in the case of a square matrix A there exist a

permutation matrix P, possibly equal to the unit matrix I, a lower-triangular matrix L with

diagonal elements all equal to 1, a diagonal matrix D, and an upper-triangular matrix U with

diagonal elements all equal to 1, such that PA = LDU.  Moreover, recall that a permutation

matrix is orthogonal, because it consists of permutations of the columns of the unit matrix. Thus

we can write A = PTLDU.

Now consider the parallelogram formed by the columns of U. Since the diagonal elements

of U are 1, the area of this parallelogram is the same as the area of the unit square: det(U) =

det(I). Therefore, the effect of the transformation  PTLD on the area of the parallelogram formed

by the columns of U is the same as the effect of PTLD on the area of the unit square, and

consequently det(PTLDU) = det(PTLD).  The effect of multiplying D  by L is that the rectangle

formed by the columns of D  is tilted and squeezed, without affecting the area itself. Therefore,

det(LD) = det(D), and consequently det(PTLDU) = det(PTD).   Next, PT permutates the rows of D,

so the effect on det(D) is a sequence of sign switches only. The number of sign switches involved

is the same as the number of column exchanges of PT necessary to convert  PT into the unit

matrix. If this number of swaps is even, then det(P) = det( PT) = 1, else det(P) = det(PT) = -1.

Thus, in the 2×2 case (as well as in the general case) we have. 
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Theorem I.22: det(A) = det(P).det(D), where P and D are the permutation matrix and the

diagonal matrix, respectively, in the decomposition PA = LDU in Theorem I.11 for the case of a

square matrix A.

This result yields two important corollaries. First:

Theorem I.23: The determinant of a singular matrix is zero. 

To see this, observe from the decomposition PA = LDU that A is singular if and only if D is

singular. If D is singular then at least one of the diagonal elements of D is zero, hence det(D) = 0.

Second, for conformable square matrices A and B we have

Theorem I.24: det(AB) = det(A).det(B).

This result can be shown in the same way as Theorem I.22, i.e., by showing that det(A) =

det(PTLDUB) = det(P).det( DB) and det(DB) = det(D).det(B).

Moreover, Theorems I.20 and I.24 imply that

Theorem I.25: Adding or subtracting a constant times a row or column to another row or

column, respectively, does not change the determinant.

The reason is that this operation is equivalent to multiplying a matrix by an elementary matrix,
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and that an elementary matrix is triangular with diagonal elements equal to 1.

Furthermore, we have:

Theorem I.26: Let A be an n×n matrix and let c be a scalar.  If one of the columns or rows is

multiplied by c, then the determinant of the resulting matrix is c.det(A). Consequently,  det(c.A) =

cn.det(A).

This theorem follows straightforwardly from Theorems I.20 and I.24. For example, let B be a

diagonal matrix with diagonal elements 1, except for one element, say diagonal element i, which

equals  c. Then BA is the matrix A with the i-th column multiplied by c. Since by Theorem I.20,

det(B) = c, the first part of Theorem I.26 for the "column" case follows from Theorem I.24, and

the "row" case follows from det(AB) = det(A).det(B) = c.det(A).  The second part follows by

choosing B = c.In..

The results in this section merely serve as a motivation for what a determinant is, and its

geometric interpretation and basic properties. All the results so far can be derived from three

fundamental properties, namely the results in Theorems I.18, I.20 and I.21. If we would assume

the that the results in Theorems I.18, I.20 and I.21 hold, and treat these properties as axioms, all

the other results follow from these properties and the decomposition PA = LDU. Moreover, the

function involved is unique. 

As to the latter, suppose that *(A) is a function satisfying

(a) If two adjacent rows  or columns are swapped then  * switches sign only.

(b) If A is triangular then  *(A) is the product of the diagonal elements of A.
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(c) *(AB) = *(A). *(B)

Then it follows from the decomposition A = PTLDU and axiom (c) that 

*(A) = *(PT)*(L)*(D)*(U). 

Moreover, it follows from axiom (b)  that *(L) = *(U) =1 and *(D) = det(D).  Finally, it follows

from axiom (b) that  the functions *(.) and det(.) coincide for unit matrices, so that by axiom (a),

*(PT) = *(P) = det(P). Thus, *(A) = det(A), hence, the determinant is uniquely defined by the

axioms (a), (b) and (c). Therefore,

Definition I.17: The determinant of a square matrix is uniquely defined by three fundamental

properties:

(a) If two adjacent rows or columns are swapped then the determinant switches sign only.

(b) The determinant of a triangular matrix is the product of the diagonal elements.

(c) The determinant of AB is the product of the determinants of A and B.

These three axioms can be used to derive a general expression for the determinant, together with

the results below regarding determinants of block-triangular matrices.
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I.12. Determinants of block-triangular matrices

Consider a square matrix A partitioned as

A '

A1,1 A1,2

A2,1 A2,2

. (I.79)

where  and   are sub-matrices of size k×k and m×m, respectively,   is a k×m matrixA1,1 A2,2 A1,2

and  is an m×k matrix.  This matrix A is block-triangular if either   or is a zeroA2,1 A1,2 A2,1

matrix, and it is block-diagonal if both   and  are zero matrices. In the latter case A1,2 A2,1

A '

A1,1 O

O A2,2

, (I.80)

where the two O blocks represent zero elements. For each block   and    we can applyA1,1 A2,2

Theorem I.11, i.e.  henceA1,1 ' P T
1 L1D1U1 , A2,2 ' P T

2 L2D2U2 ,

A '

P T
1 L1D1U1 O

O P T
2 L2D2U2

'

P1 O

O P2

T

.
L1 O

O L2

.
D1 O

O D2

U1 O

O U2

' P TLDU ,

(I.81)

say. Then det(A) = det(P).det(D) = det(P1).det(P2).det(D1).det(D2) =  Moredet(A1,1).det(A2,2) .

generally, we have that

Theorem I.27: The determinant of a block-diagonal matrix is the product of the determinants of

the diagonal blocks.

Next, consider the lower block-diagonal matrix
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A '

A1,1 O

A2,1 A2,2

. (I.82)

where again  and   are k×k and m×m matrices, respectively, and  is an m×k matrix.A1,1 A2,2 A2,1

Then it follows from Theorem I.25 that for any  k×m matrix C,

det(A) ' det
A1,1 O

A2,1&CA1,1 A2,2

. (I.83)

If  is nonsingular, then we can choose  so that    In that case itA1,1 C ' A &1
1,1A2,1 A2,1&CA1,1 ' O .

follows from Theorem I.27 that det(A) =  If  is singular, then the rows ofdet(A1,1).det(A2,2) . A1,1

 are linear dependent, and so are the first k rows of A. Hence, if   is singular then A isA1,1 A1,1

singular, so that by Theorem I.23, det(A) =  Thusdet(A1,1).det(A2,2) ' 0.

Theorem I.28: The determinant of a block-triangular matrix is the product of the determinants

of the diagonal blocks.

I.13. Determinants and co-factors

Consider the  matrixn × n

A '

a1,1 þ a1,n

! " !

an,1 þ an,n

(I.84)

and define the following matrix-valued function of A:

Definition I.18: The transformation  is a matrix formed by replacing in rows kρ(A | i1 , i2 ,..... , in)
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= 1,..,n of matrix (I.84) all but the ik’s element by zeros. Similarly, the transformation ak,ik

 is a matrix formed by replacing in columns k = 1,..,n of matrix (I.84) all but theκ(A | i1 , i2 ,..... , in)

ik’s element by zeros.aik ,k

For example, in the 3×3 case, 

ρ(A |2 ,3 ,1) '

0 a1,2 0

0 0 a2,3

a3,1 0 0

, κ(A |2 ,3 ,1) '

0 0 a1,3

a2,1 0 0

0 a3,2 0

.

Recall that a permutation of the numbers 1,2,....,n is an ordered set of these n  numbers,

and that there are n! of these permutations, including the trivial permutation 1,2,...,n. Moreover,

it is easy to verify that for each permutation  of  1,2,....,n  there exists a uniquei1 , i2 ,..... , in

permutation  such that   =  and vice versa. Nowj1 , j2 ,..... , jn ρ(A | i1 , i2 ,..... , in) κ(A | j1 , j2 ,..... , jn)

define the function

δ(A) ' j det[ρ(A | i1 , i2 ,..... , in)] ' j det[κ(A | i1 , i2 ,..... , in)] , (I.85)

where the summation is over all permutations   of  1,2,....,n. i1 , i2 ,..... , in

Note that  where the sign depends on howdet[ρ(A | i1 , i2 ,..... , in)] ' ±a1,i1
a2,, i2

.....an, in
,

many row or column exchanges are needed to convert into a diagonal matrix. Ifρ(A | i1 , i2 ,..... , in)

the number of exchanges is even, the sign is + and the sign is ! if this number is odd. Clearly,

this sign is the same as the sign of the determinant of the permutation matrix ρ(Εn | i1 , i2 ,..... , in)] ,

where +n is the  matrix with all elements equal to 1. n × n

I will show now that  *(A) in (I.85) satisfies the axioms in Definition I.17, so that:
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Theorem I.29: The function *(A) in (I.85)  is the determinant of A:  *(A) = det(A). 

Proof: First, exchange rows of A, say rows 1 and 2. The new matrix is P12A, where P12 is

the elementary permutation matrix involved, i.e., the unit matrix with the first two columns

exchanged. Then , hence =ρ(P12A | i1 , i2 ,..... , in) ' P12ρ(A | i1 , i2 ,..... , in) δ(P12A) ' det(P1,2)δ(A)

Thus, *(A) satisfies axiom (a) in Definition I.17.&δ(A) .

Second, let A be lower-triangular. Then  is lower-triangular, but has atρ(A | i1 , i2 ,..... , in)

least one zero diagonal element for all permutations     except for the triviali1 , i2 ,..... , in

permutation 1,2,....,n. Thus in this case The same appliesδ(A) ' det[ρ(A |1, ,2 , .... ,n) ' det(A) .

of course to upper-triangular and diagonal matrices. Consequently  *(A) satisfies axiom (b) in

Definition I.17.

Finally, observe that  is a matrix with elements  in positionρ(AB | i1 , i2 ,..... , in) 'n
k'1am,kbk, im

(m,im), m = 1,....,n, and zeros elsewhere. Hence

  = ρ(AB | i1 , i2 ,..... , in) A.ρ(B | i1 , i2 ,..... , in) ,

which implies that

δ(AB) ' det(A).δ(B) . (I.86)

Now write B as B = PTLDU , and observe from  (I.86) and axiom (b) that 

δ(B) ' δ (P TLD)U ' det(P TLD)δ(U) ' det(P TLD)det(U) ' det(B) .

The same applies to A. Thus, 

δ(AB) ' det(A).det(B) ' δ(A).δ(B) . (I.87)

Q.E.D.

Next, consider the transformation:
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Definition I.19: The transformation  is a matrix formed by replacing all elements inτ(A |k,m)

row k and column m by zeros, except element ak,m itself .

For example, in the 3×3 case, 

τ(A |2 ,3) '

a1,1 a1,2 0

0 0 a2,3

a3,1 a3,2 0

. (I.88)

Then it follows from (I.85)  and Theorem I.29 that

det[τ(A |k,m)] ' j
ik'm

det[ρ(A | i1 , i2 ,..... , in)] ' j
ik'k

det[κ(A | i1 , i2 ,..... , in)] (I.89)

hence:

Theorem I.30: For n×n matrices A,  and det(A) ' 'n
m'1det[τ(A|k,m)] for k ' 1,2,....,n ,

det(A) ' 'n
k'1det[τ(A|k,m)] for m ' 1,2,....,n .

Now let us evaluate the determinant of the matrix (I.88). Swap rows 1 and 2, and then

swap recursively columns 2 and 3 and columns 1 and 2. The total number of row and column

exchanges  is 3, hence

det[τ(A |2 ,3)] ' (&1)3det

a2,3 0 0

0 a1,1 a1,2

0 a3,1 a3,2

' a2,3(&1)2%3det
a1,1 a1,2

a3,1 a3,2

' a2,3cof2,3(A) ,

(I.90)

say, where  is the co-factor of element Note that the second equality followscof2,3(A) a2,3 of A .
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from Theorem I.27. Similarly, we need k-1 row exchanges and m-1 column exchanges to convert

 into a block-diagonal matrix. More generally: τ(A |k,m)

Definition I.20: The co-factor  of an n×n matrix A  is the determinant of the cofk,m(A)

(n!1)×(n!1)  matrix formed by deleting row k  and column m, times (&1)k%m .

Thus, Theorem I.30 now reads as:

Theorem I.31: For n×n matrices A,  and alsodet(A) ' 'n
m'1ak,mcofk,m(A) for k ' 1,2,....,n ,

det(A) ' 'n
k'1ak,mcofk,m(A) for m ' 1,2,....,n .

I.14. Inverse of a matrix in terms of  co-factors

Theorem I.31 now enables us to write the inverse of a matrix A in terms of co-factors and

the determinant, as follows. Define

Definition I.20: The matrix

Aadjoint '

cof1,1(A) þ cofn,1(A)

! " !

cof1,n(A) þ cofn,n(A)

(I.91)

is called the adjoint matrix of A.

Note that the adjoint matrix is the transpose of the matrix of co-factors with typical (i,j)’s
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element cofi , j(A) .

Now observe from Theorem I.31 that  is just diagonal element idet(A) ' 'n
k'1ai,kcofi,k(A)

of  Moreover, suppose that row j of A is replaced by row i, and call this matrix B. ThisA.Aadjoint .

has no effect on  but  is now the determinant of B,cofj,k(A) , 'n
k'1ai,kcofj,k(A) ' 'n

k'1ai,kcofi,k(B)

and since the rows of B are linear dependent, det(B) = 0. Thus we have:

'n
k'1ai,kcofj,k(A) ' det(A) if i ' j ,

' 0 if i … j ,
(I.92)

hence:

Theorem I.32: If det(A) … 0 then A &1 '
1

det(A)
Aadjoint .

Note that the co-factors do not depend on ai,j. It follows therefore from Theoremcofj,k(A)

I.31 that

Mdet(A)
Mai,j

' cofi,j(A) . (I.93)

Using the well-known fact that  it follows now from Theorem I.32 and (I.93)dln(x)/dx ' 1/x

that 

Theorem I.33: If det(A)  > 0 then
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Mln[det(A)]
MA

'

def.

Mln[det(A)]
Ma1,1

þ Mln[det(A)]
Man,1

! " !

Mln[det(A)]
Ma1,n

þ Mln[det(A)]
Man,n

' A &1 . (I.94)

Note that Theorem I.33 generalizes the formula   to matrices. This result will bed ln(x) /dx ' 1/x

useful in deriving the maximum likelihood estimator of the variance matrix of the multivariate

normal distribution.

I.15. Eigenvalues and eigenvectors

I.15.1 Eigenvalues

Eigenvalues and eigenvectors play a key role in modern econometrics, in particular in

cointegration analysis. These econometric applications are confined to eigenvalues and

eigenvectors of symmetric matrices, i.e., square matrices A for which A = AT.  Therefore, I will

mainly focus on the symmetric case.

Definition I.21: The eigenvalues11 of an n×n matrix A are the solutions for 8 of the equation

det(A!8In) = 0. 

It follows from Theorem I.29 that  where the summation isdet(A) ' ' ±a1,i1
a2,, i2

.....an, in
,

over all permutations   of  1,2,....,n. Therefore, replacing A by A ! 8In  it is not hard toi1 , i2 ,..... , in

verify that det(A ! 8In) is a polynomial of order n in 8: det(A ! 8In) = where the'n
k'0 ckλ

k ,
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coefficients ck are functions of the elements of A. 

For example, in the 2×2 case 

A '

a1,1 a1,2

a2,1 a2,2

we have

det(A & λI2) ' det
a1,1 & λ a1,2

a2,1 a2,2&λ
' (a1,1 & λ)(a2,2&λ) & a1,2a2,1

' λ2 & (a1,1 % a2,2)λ % a1,1a2,2 & a1,2a2,1 ,

which has two roots, i.e., the solutions of  = 0:λ2 & (a1,1 % a2,2)λ % a1,1a2,2 & a1,2a2,1

λ1 '
a1,1 % a2,2 % (a1,1 & a2,2)

2 % 4a1,2a2,1

2
,

λ2 '
a1,1 % a2,2 & (a1,1 & a2,2)

2 % 4a1,2a2,1

2
.

There are three cases to be distinguished. If > 0 then  are(a1,1 & a2,2)
2 % 4a1,2a2,1 λ1 and λ2

different and real valued.  If   +  = 0  then  and real valued.(a1,1 & a2,2)
2 4a1,2a2,1 λ1 ' λ2

However, if  <  0  then  are different but complex  valued: (a1,1 & a2,2)
2 % 4a1,2a2,1 λ1 and λ2

λ1 '
a1,1 % a2,2 % i . &(a1,1 & a2,2)

2 & 4a1,2a2,1

2
,

λ2 '
a1,1 % a2,2 & i. &(a1,1 & a2,2)

2 & 4a1,2a2,1

2
,

where i = In this case   are complex conjugate: 12  Thus, eigenvalues can&1. λ1 and λ2 λ2 ' λ̄1 .

be complex-valued!
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Note that if the matrix A involved is symmetric :  then a1,2 ' a2,1 ,

λ1 '
a1,1 % a2,2 % (a1,1 & a2,2)

2 % 4a 2
1,2

2
,

λ2 '
a1,1 % a2,2 & (a1,1 & a2,2)

2 % 4a 2
1,2

2
,

so that in the symmetric 2×2 case the eigenvalues are always real valued. It will be shown below

that this is true for all symmetric n×n  matrices.

I.15.2 Eigenvectors

By Definition I.21 it follows that if 8 is an eigenvalue of an  n×n matrix A, then A !8In  is

a singular matrix (possibly complex-valued!). Suppose first that  8 is real valued. Since the rows 

of  A !8In   are linear dependent there exists a vector x  0 ún such that (A !8In)x = 0 (0 ún ),

hence Ax  = 8x. Such a vector x is called an eigenvector of A corresponding to the eigenvalue 8.

Thus in the real eigenvalue case: 

Definition I.22: An eigenvector13 of an n×n matrix A corresponding to an eigenvalue 8 is a

vector x such that Ax = 8x.

However, this definition also applies to the complex eigenvalue case, but then the eigenvector x

has complex-valued components: x  0 ÷n.  To show the latter, consider the case that 8 is

complex-valued: 8 = " + i.$, ",$ 0 ú, $ … 0. Then  

 A !8In   =  A !"In   ! i.$In  



390

is complex-valued with linear dependent rows, in the following sense. There exist a vector x =

a+i.b with a,b  0 ún and length14  > 0,  such that2x2 ' a Ta % b Tb

   (A !"In   ! i.$In)(a +  i.b)  = [(A !"In )a + $b] +  i.[(A !"In )b   !$a] =  0 (0 ún ).  

Consequently,  (A !"In )a + $b = 0 and (A !"In )b  ! $a = 0, and thus,

A&αIn βIn

&βIn A&αIn

a

b
'

0

0
0 ú2n . (I.95)

Therefore, in order for the length of x to be positive, the matrix in (I.95) has to be singular, and

then  can be chosen from the null space of this matrix.a

b

I.15.3 Eigenvalues and eigenvectors of symmetric matrices

On the basis of  (I.95) it is easy to show that in the case of a symmetric matrix A, $ = 0

and b = 0:  

Theorem I.34: The eigenvalues of a symmetric  n×n matrix A are all real valued, and the

corresponding eigenvectors are contained in ún.

Proof: First, note that  (I.95) implies that for arbitrary >  0 ú,

0 '
b

ξa

T A&αIn βIn

&βIn A&αIn

a

b

' ξa TAb % b TAa &αb Ta&ξαa Tb% βb Tb & ξβa Ta

(I.96)

Next observe that  and by symmetry,   whereb Ta ' a Tb b TAa ' (b TAa)T ' a TA Tb ' a TAb ,

the first equality follows from the fact that   is a scalar (or 1×1 matrix). Then we have forb TAa
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arbitrary  >  0 ú,

(ξ%1)a TAb & α(ξ%1)a Tb % β(b Tb & ξa Ta) ' 0. (I.97)

If we choose  > = !1 in (I.97)  then   so that  $ = 0 and thus 8 = " β(b Tb % a Ta) ' β.2x22 ' 0,

0 ú. It is now easy to see that b no longer matters, so that we may choose b = 0. Q.E.D.

There is more to say about the eigenvectors of symmetric matrices, namely:

Theorem I.35: The eigenvectors of a symmetric n×n matrix A can be chosen orthonormal.

Proof: First assume that all the eigenvalues  of A are different. Letλ1 ,λ2 , ..... ,λn

 be the corresponding eigenvectors. Then for   and  x1 ,x2 , ..... ,xn i … j , x T
i Axj ' λjx

T
i xj

 because by symmetry,x T
j Axi ' λix

T
i xj , hence (λi &λj)x

T
i xj ' 0,

 x T
i Axj ' (x T

i Axj)
T ' x T

j A Txi ' x T
j Axi .

Since  it follows now that  Upon normalizing the eigenvectors asλi … λj , x T
i xj ' 0.

 the result follows.qj ' 2xj2
&1xj

The case where two or more eigenvalues are equal requires a completely different proof.

First, normalize the eigenvectors as   Using the approach in Section I.10 we canqj ' 2xj2
&1xj .

always construct vectors  0 ún  such that is an orthonormal basis of ún. y2 , ... ,yn q1 ,y2 , ... ,yn

Then  is an orthogonal matrix. The first column of    isQ1 ' (q1 ,y2 , ... ,yn) Q T
1 AQ1

 But by the orthogonality of  Q1 ,Q T
1 Aq1 ' λQ T

1 q1 .

 q T
1 Q1 ' q T

1 (q1 ,y2 , ... ,yn) ' (q T
1 q1 ,q T

1 y2 , ... ,q T
1 yn) ' (1 ,0 ,0 ,.... ,0)

hence the first column of    is   and by symmetry of   the firstQ T
1 AQ1 (λ1 ,0 ,0 , ...... ,0)T Q T

1 AQ1

row is . Thus   takes the form(λ1 ,0 ,0 , ...... ,0) Q T
1 AQ1
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Q T
1 AQ1 '

λ1 0T

0 An&1

. (I.98)

Next, observe that 

det(Q T
1 AQ1 & λIn) ' det(Q T

1 AQ1 & λQ T
1 Q1)

' det[Q T
1 (A & λIn)Q1] ' det(Q T

1 )det(A & λIn)det(Q1) ' det(A & λIn)

so that the eigenvalues of    are the same as the eigenvalues of A, and consequently theQ T
1 AQ1

eigenvalues of An!1 are Applying the same argument as above to  An!1 , there exists anλ2 , ..... ,λn .

orthogonal (n!1)×(n!1) matrix  such that  Q (

2

Q ( T
2 An&1Q

(

2 '
λ2 0T

0 An&2

. (I.99)

Hence, denoting 

Q2 '
1 0T

0 Q (

2

, (I.100)

which an orthogonal  n×n matrix, we can write

Q T
2 Q T

1 AQ1Q2 '

Λ2 O

O An&2

(I.101)

where 72 is a diagonal matrix with diagonal elements  Repeating this procedure n-3λ1 and λ2 .

more times yields 

Q T
n þQ T

2 Q T
1 AQ1Q2þQn ' Λ (I.102)

where 7 is the diagonal matrix with diagonal elements  λ1 ,λ2 , ..... ,λn .

Note that  is an orthogonal matrix itself, and it is now easy to verify thatQ ' Q1Q2þQn
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the columns of Q are the eigenvectors of A. Q.E.D.

In view of this proof, we can now restate Theorem I.35 as:

Theorem I.36: A symmetric matrix A can be written as A = Q7QT, where 7 is a diagonal matrix

with the eigenvalues of A on the diagonal, and Q is the orthogonal matrix with the

corresponding eigenvectors as columns.

This theorem yields a number of useful corollaries. The first one is trivial:

Theorem I.37: The determinant of a symmetric matrix is the product of its eigenvalues.

The next corollary concerns idempotent matrices [see Definition I.12]:

Theorem I.38: The eigenvalues of a symmetric idempotent matrix are either 0 or 1.

Consequently, the only nonsingular symmetric idempotent matrix is the unit matrix I.

Proof: Let the matrix A in Theorem I.36 be idempotent: A.A = A. Then A = Q7QT = A.A

= Q7QTQ7QT = Q72QT, hence 7 = 72. Since 7 is diagonal, each diagonal element 8j satisfies

Moreover, if A is non-singular and idempotent then none of theλj ' λ2
j , hence λj(1 & λj) ' 0.

eigenvalues can be zero, hence they are all equal to 1: 7 = I. Then  A = QIQT = A = QQT   = I. 

Q.E.D.
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I.16. Positive definite and semi-definite matrices

Another set of corollaries of  Theorem I.36 concern positive [semi-] definite matrices.

Most of the symmetric matrices we will encounter in econometrics are positive [semi-] definite

or negative [semi-] definite. Therefore, the results below are of utmost importance to

econometrics.

Definition I.23: An  n×n matrix A is called positive definite if for arbitrary vectors x 0  ún 

unequal to the zero vector, xTAx > 0, and it is called positive semi-definite if for such vectors x,

xTAx $ 0. Moreover, A is called negative [semi-] definite if !A is positive [semi-] definite.

Note that symmetry is not required for positive [semi-] definiteness. However,  xTAx can always

be written as 

x TAx ' x T 1
2

A %
1
2

A T x ' x TAs x , (I.103)

say, where As is symmetric, so that A is positive or negative [semi-] definite if and only if As is

positive or negative [semi-] definite.

Theorem I.39: A symmetric matrix is positive [semi-] definite if and only if all its  eigenvalues

are positive [non-negative].

Proof: This result follows easily from xTAx = xTQ7QTx = yT7y = , where y = QTx'jλjy
2
j

with components yj. Q.E.D.
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Due to Theorem I.39, we can now define arbitrary powers of positive definite matrices:

Definition I.24: If A is a symmetric  positive [semi-]definite  n×n matrix, then for " 0 ú [" > 0]

the matrix A to the power """" is defined by A" =Q7"QT, where 7" is a diagonal matrix with

diagonal elements the eigenvalues of A to the power ":  7" =  and Q is thediag(λα1 , ..... ,λαn) ,

orthogonal matrix of corresponding eigenvectors.  

The following theorem is related to Theorem I.8. 

Theorem I.40: If A is symmetric and positive semi-definite then the Gaussian elimination can be

conducted without need for row exchanges. Consequently, there exist a lower triangular matrix

L with diagonal elements all equal to one, and a diagonal matrix D, such that A = LDLT.

Proof: First note that by Definition I.24 with " = 1/2,  A1/2 is symmetric and (A1/2)TA1/2 =

A1/2 A1/2 = A. Second, recall that according to Theorem I.17 there exist an orthogonal matrix Q

and an upper-triangular matrix U such that A1/2 = QU, hence A = (A1/2)TA1/2 =UTQTQU = UTU. The

matrix UT is lower-triangular, and can be written as UT = LD*, where D*  is a diagonal matrix and

L is a lower-triangular matrix with diagonal elements all equal to 1. Thus,  A = LD*D*L
T = LDLT,

where D = D*D*. Q.E.D.
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I.17. Generalized eigenvalues and eigenvectors

The concepts of generalized eigenvalues and eigenvectors play a key role in cointegration

analysis. Cointegration analysis is an advanced econometric time series topic, and will therefore

likely not be covered in an introductory Ph.D. level econometrics course for which this review of

linear algebra is intended.  Nevertheless, to conclude this review I will briefly discuss what

generalized eigenvalues and eigenvectors are, and how they relate to the standard case.

Given two n×n matrices A and B, the generalized eigenvalue problem is: Find the values

for 8 for which

det(A & λB) ' 0. (I.104)

Given a solution  8, which is called the generalized eigenvalue of  A and B, the corresponding

generalized eigenvector (relative to B) is a vector x in ún such that Ax = 8Bx. 

However, if B is singular then the generalized eigenvalue problem may not have n

solutions as in the standard case, and may even have no solution at all. To demonstrate this,

consider the 2×2 case:

A '

a1,1 a1,2

a2,1 a2,2

, B '

b1,1 b1,2

b2,1 b2,2

.

Then 
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det(A & λB) ' det
a1,1&λb1,1 a1,2&λb1,2

a2,1&λb2,1 a2,2&λb2,2

' (a1,1&λb1,1)(a2,2&λb2,2) & (a1,2&λb1,2)(a2,1&λb2,1)

' a1,1a2,2&a1,2a2,1 % (a2,1b1,2&a2,2b1,1&a1,1b2,2%b2,1a1,2)λ % (b1,1b2,2&b2,1b1,2)λ
2

If B is singular then  so that then the quadratic term vanishes. But things canb1,1b2,2&b2,1b1,2 ' 0,

even be worse! It is possible that also the coefficient of 8 vanishes, whereas the constant term

  remains nonzero. In that case the generalized eigenvalues do not exist at all.a1,1a2,2&a1,2a2,1

This is for example the case  if

A '
1 0

0 &1
, B '

1 1

1 1
.

Then 

det(A & λB) ' det
1&λ &λ
&λ &1&λ

' &(1&λ)(1%λ) & λ2 ' &1,

so that the generalized eigenvalue problem involved has no solution. 

Therefore, in general we need to require that the matrix B is non-singular. In that case the

solutions of  (I.104) are the same as the solutions of the standard eigenvalue problems

det(AB!1!8I) = 0 and det(B &1A&λI) ' 0.

The generalized eigenvalue problems that we shall encounter in advanced econometrics

always involve a pair of symmetric matrices A and B, with B positive definite. Then the solutions

of  (I.104) are the same as the solutions of the symmetric standard eigenvalue problem

det(B &1/2AB &1/2 & λI) ' 0. (I.105)

The generalized eigenvectors relative to B corresponding to the solutions of  (I.104) can be
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derived from the eigenvectors corresponding to the solutions of (I.105):

B &1/2AB &1/2x ' λx ' λB 1/2B &1/2x Y A(B &1/2x) ' λB(B &1/2x) (I.106)

Thus if x is an eigenvector corresponding to a solution 8 of (I.105)  then y = B!1/2x is the

generalized eigenvector relative to B corresponding to the generalized eigenvalue 8. 

Finally, note that  generalized eigenvectors are in general not orthogonal, even if the two

matrices involved are symmetric. However, in the latter case the generalized eigenvectors are

"orthogonal with respect to the matrix B", in the sense that for different generalized eigenvectors

y1 and y2,    = 0. This follows straightforwardly from the link  y = B!1/2x betweeny T
1 By2

generalized eigenvectors y and standard eigenvectors x.

I.18. Exercises

1. Consider the matrix

A '

2 1 1

4 &6 0

&2 7 2

.

(a) Conduct the Gaussian elimination by finding a sequence Ej of elementary matrices such

that (Ek Ek-1 .... E2 . E1) A = U = upper triangular.

(b) Then show that by undoing the elementary operations Ej involved one gets the LU

decomposition A = LU, with L a lower triangular matrix with all diagonal elements equal to 1.

(c) Finally, find the LDU  factorization.

2. Find the 3×3 permutation matrix that swaps rows 1 and 3 of a 3×3 matrix.
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3. Let

A '

1 v1 0 0

0 v2 0 0

0 v3 1 0

0 v4 0 1

.

where v2 … 0.

(a) Factorize A into LU.

(b) Find A-1, which has the same form as A.

4. Compute the inverse of the matrix

A '

1 2 0

2 6 4

0 4 11

.

by any method.

5. Consider the matrix

A '

1 2 0 2 1

&1 &2 1 1 0

1 2 &3 &7 &2

.

(a) Find the echelon matrix U in the factorization PA = LU.

(b) What is the rank of A?

(c) Find a basis for the null space of A.

(d) Find a basis for the column space of A.
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6. Find a basis for the following subspaces of ú4:

(a) The vectors  for which x1 = 2x4. (x1 ,x2 ,x3 ,x4)
T

(b) The vectors  for which x1 + x2 + x3 = 0 and x3 + x4 = 0.(x1 ,x2 ,x3 ,x4)
T

(c) The subspace spanned by (1,1,1,1)T, (1,2,3,4)T, and (2,3,4,5)T. 

7.  Let

A '

1 2 0 3

0 0 0 0

2 4 0 1

and b '

b1

b2

b3

.

(a) Under what conditions on b does Ax = b have a solution?

(b) Find a basis for the nullspace of A.

(c) Find the general solution of Ax = b when a solution exists.

(d) Find a basis for the column space of A.

(e) What is the rank of AT ?

8. Apply the Gram-Smidt process to the vectors

a '

0

0

1

, b '

0

1

1

, c '

1

1

1

and write the result in the form A = QU, where Q is an orthogonal matrix and U is upper

triangular.

9. With a, b and c as in problem 8, find the projection of c on the space spanned by a and b.

10. Find the determinant of the matrix A in problem 1.
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11. Consider the matrix

A '
1 a

&1 1

For which values of a  has this matrix

(a)  two different real valued eigenvalues?

(b)  two complex valued eigenvalues?

(c)  two equal real valued eigenvalues?

(d)  at least one zero eigenvalue?

12.  For the case a = -4, find the eigenvectors of the matrix A in problem 11 and standardized

them to unit length.

13. Let A be a matrix with eigenvalues 0 and 1 and  corresponding eigenvectors (1,2)T and

(2,!1)T.

(a)  How can you tell in advance that A is symmetric?

(b) What is the determinant of A?

(c) What is A?

14.  The trace of a square matrix is the sum of the diagonal elements. Let A be a positive

definite k×k  matrix. Prove that the maximum eigenvalue of A can be found as the limit of the

ratio trace(An)/trace(An!1)  for n 6 4.
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1. Law of Cosines:  Consider a triangle ABC, let N be the angle between the legs C6A and
C6B, and denote the lengths of the legs opposite to the points A, B and C by ", $, and (,
respectively. Then γ2 ' α2 % β2 & 2αβcos(φ) .

2. In writing a matrix product it is from now on implicitly assumed that the matrices
involved are conformable.

3. Here and in the sequel the columns of a matrix are interpreted as vectors.

4. Here and in the sequel I denotes a generic unit matrix.

5. The transpose of a matrix A is also denoted in the literature by A ) .

6. The notation Ei,j(c) will be used for a specific elementary matrix, and a generic
elementary matrix will be denoted by "E".

7. A pivot is an element on the diagonal to be used to wipe out the elements below that
diagonal element.

8. Note that the diagonal elements of D are the diagonal elements of the former upper-
triangular matrix U.

9. I(true) ' 1, I(false) ' 0.

10. The operation of swapping a pair of adjacent columns or rows is also called a column or
row exchange, respectively.

11. Eigenvalues are also called characteristic roots. The name "eigen" comes from the
German word "Eigen" , which  means "inherent", or "characteristic". 

12. Recall that the complex conjugate of  x = a + i.b,   a,b  0 ú,  is  Seex̄ ' a & i.b .
Appendix III.

13. Eigenvectors are also called characteristic vectors.

14. Recall (see Appendix III) that the length (or norm) of a complex number  x = a + i.b,   a,b 

0 ú,  is defined as  Similarly, in the vector case  x = a +|x| ' (a %i.b ).(a & i.b ) ' a 2%b 2 .

i.b,   a,b  0 ún,  the length of x is defined as  =2x2 (a % i.b )T(a & i.b ) ' a Ta%b Tb .

Endnotes
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Appendix II

Miscellaneous Mathematics

In this appendix I will review various mathematical concepts, topics and related results

that are used throughout the main text.

II.1. Sets and set operations

II.1.1 General set operations

 The union AcB of two sets A and B is the set of elements that belong to either A or B or to

both. Thus, denoting "belongs to" or "is element of" by the symbol 0, x 0  AcB implies that  x 0 

A or  x 0 B, or in both, and vice versa.  A finite union  of sets A1,...,An is the set with the^n
j'1Aj

property that for each  there exists an index i, 1 # i # n,  for which  and vicex 0 ^n
j'1Aj x 0 Ai ,

versa: If   for some index i, 1 # i # n,  then  Similarly, the countable union x 0 Ai x 0 ^n
j'1Aj .

 of an infinite sequence of sets Aj,  j = 1,2,3,....., is a set with the property that for each^4
j'1Aj

 there exists a finite index i $ 1 for which  and vice versa: If   for somex 0 ^4
j'1Aj x 0 Ai , x 0 Ai

finite index i $ 1 then  x 0 ^4
j'1Aj .

 The intersection A1B of two sets A and B is the set of elements which belong to both A

and B. Thus, x 0A1B implies that  x 0 A and  x 0 B, and vice versa.  The finite intersection _n
j'1Aj

of sets A1,...,An is the set with the property that if  then for all  i = 1,...,n,   andx 0 _n
j'1Aj x 0 Ai ,

vice versa: If   for all i = 1, ..., n,  then  Similarly, the countable intersection x 0 Ai x 0 _n
j'1Aj .

 of an infinite sequence of sets Aj, j = 1,2,..., is a set with the property that if _4
j'1Aj x 0 _4

j'1Aj
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then for all indices i $ 1,  and vice versa: If   for all indices i $ 1 then  x 0 Ai , x 0 Ai x 0 _4
j'1Aj .

 A set A is a subset of a set B, denoted by AdB, if all the elements of A are contained in B.

If  AdB and BdA then A = B.

 The difference A\B (also denoted by A-B) of sets A and B is the set of elements of A that

are not contained in B. The symmetric difference of two sets A and B is denoted and defined by

A∆B ' (A/B)^ (B/A) .

 If  AdB then the set  = B/A ( also denoted by ~A) is called the complement of A withÃ

respect to B. If  Aj for j = 1,2,3,..... are subsets of B then  and  for~^jAj ' _jÃj ~_jAj ' ^jÃj ,

finite as well as countable infinite unions and intersections.

. Sets A and B are disjoint if they do not have elements in common:  A1B = i, where i

denotes the empty set, i.e., a set without elements. Note that Aci = A and A1i = i. Thus the

empty set i is a subset of any set, including i itself.  Consequently, the empty set is disjoint with

any other set, including  i itself. In general, a finite or countable infinite sequence of sets is

disjoint if their finite or countable intersection is the empty set  i.  

 For every sequence of sets Aj , j = 1,2,3,....., there exists a sequence Bj , j = 1,2,3,....., of

disjoint sets such that for each j,  BjdAj, and   In particular, let B1 = A1 and Bn =^jAj ' ^jBj .

 for n = 2,3,4,.....An \ ^n&1
j'1 Aj

The order in which unions are taken does not matter, and the same applies to

intersections. However, if you take unions and intersections sequentially it matters what is done 

first. For example, (AcB)1C  =  (A1C)c(B1C), which is in general different from  Ac(B1C),

except if AdC.  Similarly, (A1B)c C  =  (AcC)1(BcC), which is in general different from 

A1(BcC), except if AdB.
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II.1.2 Sets in Euclidean spaces

An open  g-neighborhood of a point x in a Euclidean space úk is a set of the form

Ng(x) ' {y 0 úk : ||y&x|| < g} , g > 0,

and a closed  g-neighborhood is a set of the form

Ng(x) ' {y 0 úk : ||y&x|| # g} , g > 0.

A set A is called open if for every x 0  A there exists a small open  g-neighborhood  Ng(x)

contained in A. In short-hand notation:  where œ stands for “for all”œx 0 A ›g > 0: Ng(x) d A ,

and › stands for “there exists”. Note that the g’s may be different for different x.

A point x called a point of closure of a subset A of  úk  if every open  g-neighborhood 

 contains a point in A as well as a point in the complement  of A. Note that points ofNg(x) Ã

closure may not exist, and if one exists it may not be contained in A. For example, the Euclidean

space   úk   itself has no points of closure because its complement is empty.  Moreover, the

interval (0,1) has two points of closure, 0 and 1, both not included in (0,1).  The boundary of a

set A, denoted by MA, is the set of points of closure of A. Again,  MA may be empty. A set A is

closed if it contains all its points of closure if they exist. In other words, A is closed if and only if  

MA … i and  MA  d A. Similarly, a set A is open if either MA = i or MA  d  The closure of a set A,Ã .

denoted by  is the union of A and its boundary MA:  The set  A\MA is the interiorA , A ' A^MA .

of A.

Finally, if for each pair x, y of points in a set A and an  arbitrary  the convexλ 0 [0,1]

combination   is also a point in A then the set A is called  convex. z ' λx % (1&λ)y
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II.2. Supremum and infimum

The supremum of a sequence of real numbers, or a real function, is akin to the notion of a

maximum value. In the latter case the maximum value is taken at some element of the sequence,

or in the function case some value of the argument. Take for example the sequence  an = (!1)n/n

for n = 1,2,......., i.e., a1 = -1, a2 = 1/2,  a3 = -1/3, a4 = 1/4, ..... Then clearly the maximum value is

½, which is taken by a2. The latter is what distinguishes a maximum from a supremum. For

example, the sequence   an = 1!1/n  for n = 1,2,....... is bounded by 1: an < 1 for all indices n $1,

and the upper bound 1 is the lowest possible upper bound, but there does not exist a finite index

n for which  an  = 1. More formally, the (finite) supremum of a sequence an (n = 1,2,3,.......)  is a

number b,  denoted by supn$1an , such that an # b for all indices  n $1, and for every arbitrary

small positive number g there exists a finite index n such that  an > b!g. Clearly, this definition

fits a maximum as well: a maximum is a supremum, but a supremum is not always a maximum.

If the sequence an  is unbounded from above, in the sense that for every arbitrary large

real number M there exists an index n $1 for which  an > M, then we say that the supremum is

infinite: supn$1an =  4.

The notion of a supremum also applies to functions. For example the function f(x) =

exp(!x2) takes its maximum 1 at x = 0, but the function  f(x) = 1!exp(!x2) does not have a

maximum; it has supremum 1 because   f(x) # 1 for all x but there does not exists a finite x for

which  f(x) = 1.  As another example, let  f(x) = x on the interval [a,b]. Then b is the maximum of

  f(x) on [a,b] but b is only the supremum f(x) on [a,b) because b is not contained in [a,b). More

generally, the finite supremum of a real function f(x) on a set A, denoted by  is a realsupx0A f(x) ,

number b such that  f(x) # b for all x in A, and for every arbitrary small positive number g there
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exists an x in A such that  f(x) > b!g. If f(x) = b for some x in A then the supremum coincides

with the maximum. Moreover, the supremum involved is infinite,  if for everysupx0A f(x) ' 4 ,

arbitrary large real number M  there exists an x in A for which  f(x)  > M.

The minimum versus infimum cases are similar: infn$1an = !supn$1(!an) and   =infx0A f(x)

&supx0A (&f(x)) .

The concepts of supremum and infimum apply to any collection {c", " 0 A} of real

numbers, where the index set A may be uncountable, as we may interpret c" as a real function on

the index set A, say  c" = f("). 

II.3. Limsup and liminf

Let an  (n = 1,2,.......) be a sequence of real numbers, and define the sequence bn as

bn ' supm$n am . (II.1)

Then bn  is a non-increasing sequence: bn  $ bn+1 because if  an is greater than the smallest upper

bound of  is the maximum of  hencean%1 ,an%2 ,an%3 ,...... then an an ,an%1 ,an%2 ,an%3 ,...... ,

 and if not then   Non-increasing sequences always have a limit,bn ' an > bn%1 , bn ' bn%1 .

although the limit may be !4. The limit of bn  in (II.1) is called the limsup of an : 

limsup
n64

an '

def.

lim
n64

supm$n am . (II.2)

Note that since bn is non-increasing, the limit of bn is equal to the infimum of bn . Therefore, the

limsup of an  may also be defined as
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limsup
n64

an '

def.

inf
n$1

supm$n am . (II.3)

Note that the limsup may be +4 or !4, for example in the cases  an = n and  an = !n,

respectively. 

Similarly, the liminf of an  is defined by

liminf
n64

an '

def.

lim
n64

infm$n am (II.4)

or equivalently by 

liminf
n64

an '

def.

sup
n$1

infm$n am . (II.5)

Again, it is possible that the liminf is +4 or !4.

Note that  because  for all indices nliminfn64 an # limsupn64 an , infm$n am # supm$n am

$1, and therefore the inequality must hold for the limits as well.

Theorem II.1: 

(a) If   and if   < liminfn64 an ' limsupn64 an then limn64 an ' limsup
n64

an , liminfn64 an

then the limit of an does not exist.limsupn64 an

(b) Every sequence an  contains a sub-sequence  such that  andank
limk64 ank

' limsupn64 an ,

 an  also contains a sub-sequence  such that anm
limm64 anm

' liminfn64 an .

Proof: The proof of (a) follows straightforwardly from (II.2), (II.4) and the definition of a

limit. The construction of the sub-sequence  in part (b) can be done recursively, as follows.ank
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Let  Choose n1 = 1, and suppose that we have already constructed  forb ' limsupn64 an < 4 . anj

j=1,...,k $1. Then there exists an index nk+1 >  nk such that , becauseank%1
> b & 1/(k%1)

otherwise  for all m $  nk , which would imply that b !1/(k+1).am # b & 1/(k%1) limsupn64 an #

Repeating this construction yields a sub-sequence  such that from large enough k onwards,ank

 Letting k64, the limsup case of part (b) follows. If    thenb & 1/k < ank
# b . limsupn64 an ' 4

for each index nk we can find an index  nk+1 >  nk such that , hence then   =ank%1
> k%1 limk64 ank

4.   The sub-sequence in the case   and in the  liminf case can be constructedlimsupn64 an ' &4

similarly. Q.E.D.

The concept of a supremum can be generalized to sets. In particular, the countable union  

 may be interpreted as the supremum of the sequence of sets Aj, i.e., the smallest set^4
j'1Aj

containing all the sets  Aj.  Similarly, we may interpret the countable intersection  as the_4
j'1Aj

infimum of the sets  Aj, i.e., the largest set contained in each of  the sets  Aj. Now let for n =

1,2,3,..., This is a non-increasing sequence of sets: Bn+1 d Bn , hence  Bn ' ^4
j'nAj . _n

j'1Bn ' Bn .

The limit of this sequence of sets is the limsup of An for n 64, i.e., similarly to (II.3) we have

limsup
n64

An '

def. _4
n'1

^4
j'n

Aj .

Next, let for n = 1,2,3,..., This is a non-decreasing sequence of sets: Cn d Cn+1,Cn ' _4
j'nAj .

hence  The limit  of this sequence of sets is the liminf of An for n 64, i.e. similarly^n
j'1Cn ' Cn .

to (II.5) we have

liminf
n64

An '

def. ^4
n'1

_4
j'n

Aj .
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II.4. Continuity of concave and convex functions

A real function φ on a subset of a Euclidean space is convex if for each pair of points a,b

and every λ 0 [0,1],  For example,  is a convexφ(λa%(1&λ)b) $ λφ(a) % (1&λ)φ(b) . φ(x) ' x 2

function on the real line, and so is  Similarly,  φ is concave if for each pair ofφ(x) ' exp(x) .

points a,b and every λ 0 [0,1], φ(λa%(1&λ)b) # λφ(a) % (1&λ)φ(b) .

I will prove the continuity of convex and concave functions  by contradiction. Suppose

that   is convex but not continuous in a point a. Then  φ

φ(a%) ' lim
b9a

φ(b) … φ(a) (II.6)

or

φ(a&) ' lim
b8a

φ(b) … φ(a) (II.7)

or both. In the case (II.6) we have

φ(a%) ' lim
b9a

φ(a % 0.5(b&a)) ' lim
b9a

φ(0.5a%0.5b)

# 0.5φ(a) % 0.5lim
b9a

φ(b) ' 0.5φ(a) % 0.5φ(a%) ,

hence  and therefore by  (II.6), . Similarly, if (II.7) is true thenφ(a%) # φ(a) φ(a%) < φ(a)

.  Now let δ > 0. By the convexity of    it follows thatφ(a&) < φ(a) φ

 φ(a) ' φ(0.5(a&δ) % 0.5(a%δ)) # 0.5φ(a&δ) % 0.5φ(a%δ) ,

and consequently, letting  and using the fact that , or , orδ 9 0, φ(a%) < φ(a) φ(a&) < φ(a)

both, we have  Since this result is impossible, it followsφ(a) # 0.5φ(a&) % 0.5φ(a%) < φ(a) .

that (II.6) and (II.7) are impossible, hence  is continuous. φ

If  is concave, then  is convex and thus continuous, hence concave functions areφ &φ

continuous.
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II.5. Compactness

An (open) covering of a subset  Θ of a Euclidean space  is a collection of (open)úk

subsets U(α), α 0 A, of , where A is a possibly uncountable index set, such thatúk

 A set is called compact if every open covering has a finite sub-covering, i.e., ifΘ d ^α0AU(α) .

U("), " 0 A, is an open covering of  1 and  1 is compact then there exists a finite subset B of A

such that Θ d ^α0BU(α) .

The notion of compactness extends to more general spaces than only Euclidean spaces.

However, 

Theorem II.2: Closed and bounded subsets of Euclidean spaces are compact.

Proof: I will prove the result for sets Θ  in ú only. First note that boundedness is a

necessary condition for compactness, because a compact set can always be covered by a finite

number of bounded open sets.

Next let Θ is a closed and bounded subset of the real line. By boundedness, there exists

points a and b in such that  Θ is contained in [a,b]. Since every open covering of Θ  can be

extended to an open covering of [a,b], we may without loss of generality assume that Θ = [a,b].

For notational convenience, let Θ = [0,1].  There always exists an open covering of [0,1], because

for arbitrary  g > 0,  [0,1] d   Let U(α), α 0 A, be an open covering of [0,1].^0#x#1(x&g,x%g) .

Without loss of generality we may assume that each of the open sets U(α) takes the form

(a(α),b(α)). Moreover, if for two different indices α and β, a(α) = a(β), then either  (a(α),b(α)) d

(a(β),b(β)), so that  (a(α),b(α)) is superfluous, or   (a(α),b(α)) e (a(β),b(β)), so that  (a(β),b(β)) is
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superfluous. Thus, without loss of generality we may assume that the a(α)’s are all distinct and

can be arranged in increasing order. Consequently, we may assume that the index set A is the set

of the  a(α)’s themselves, i.e., U(a) = (a,b(a)), a 0 A, where A is a subset of ú such that

Furthermore, if   then , as otherwise  is[0,1] d ^a0A(a,b(a)) . a1 < a2 b(a1) < b(a2) (a2,b(a2))

superfluous. Now let  and define for n = 2,3,4,..., . Then0 0 (a1 ,b(a1)) , an ' (an&1%b(an&1))/2

This implies that 1 0   hence there exists an n such that[0,1] d ^4
n'1(an,b(an)) . ^4

n'1(an,b(an)) ,

 Consequently, [0,1] d  Thus, [0,1] is compact. This argument1 0 (an,b(an)) . ^n
j'1(aj,b(aj)) .

extends to arbitrary closed and bounded subsets of a Euclidean space. Q.E.D.

A limit point of a sequence xn of real numbers is a point x*  such that for every  g > 0 there

exists an index n for which   Consequently, a limit point is a limit along a|xn&x
(
| < g .

subsequence. Sequences  xn  confined to an interval [a,b] always have at least one limit point, and

these limit points are contained in [a,b], because  and  are limit pointslimsupn64xn liminfn64xn

contained in [a,b], and any other limit point must  lie between  and  . Thisliminfn64xn limsupn64xn

property carries over to general compact sets:

Theorem II.3: Every infinite sequence  of points in a compact set Θ has at least one limitθn

point, and all the limit points are contained in Θ.

Proof: Let  Θ. be a compact subset of a Euclidean space and let  be aΘk, k ' 1,2,....,

decreasing sequence of compact subsets of  Θ each containing infinitely many ‘s , to beθn

constructed as follows. Let  and  k $ 0.  There exist a finite number of pointsΘ0 ' Θ

 such that, which    Θk  is contained inθ(k,j , j ' 1,....,mk, Uk(θ
() ' {θ: ||θ&θ(|| < 2&k},
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 Then at least one of these open sets contains infinity many points , say ^mk

j'1Uk(θ
(

k,j). θn Uk(θ
(

k,1).

Next, let 

  Θk%1 ' {θ: ||θ&θ(k,1|| # 2&k}_Θk ,

which is compact, and contains infinity many points .  Repeating this construction it is easy toθn

verify that   is a singleton, and that this singleton is a limit point contained in  Θ . Finally,_4
k'0Θk

if a limit point is located outside Θ then for some large k,   which contradictsθ( Uk(θ
()_ Θ ' i,

the requirement that  contains infinitely many ‘s. Q.E.D.Uk(θ
() θn

Theorem II.4: Let  be a sequence of points in a compact set Θ. If all the limit points of   areθn θn

the same, then  exists and is a point in Θ.limn64θn

Proof: Let  be the common limit point. If the limit does not exists, then  thereθ
(
0 Θ

exists a δ > 0 and an infinite subsequence  such that  for all k. But  has alsoθnk
|θnk

&θ
(
| $ δ θnk

limit point  so that there exists a further subsequence  which converges to Therefore,θ
(

, θnk(m) θ
(

.

the theorem follows by contradiction. Q.E.D.

Theorem II.5: For a continuous function g on a compact set Θ,   =  and supθ0Θg(θ) maxθ0Θg(θ)

 =  Consequently,  and infθ0Θg(θ) minθ0Θg(θ) . argmaxθ0Θg(θ) 0 Θ argminθ0Θg(θ) 0 Θ.

Proof: It follows from the definition of  that or each k  $ 1 there exists a pointsupθ0Θg(θ)

 such that   hence  Since Θ isθk 0 Θ g(θk) > supθ0Θg(θ) & 2&k , limk64g(θk) ' supθ0Θg(θ) .

compact the sequence  has a limit point  (see Theorem II.3),  hence by the continuityθk θ
(
0 Θ
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of g,  Consequently,   =  Q.E.D. g(θ
(
) ' supθ0Θg(θ) . supθ0Θg(θ) maxθ0Θg(θ) ' g(θ

(
) .

II.6. Uniform continuity

A function g on  is called uniformly continuous if for every g > 0 there exists a  δ > 0úk

such that  if In particular, |g(x) & g(y)| < g 2x & y2 < δ .

Theorem II.6: If a function  g  is continuous on a compact subset  Θ of  then it is uniformlyúk

continuous on  Θ. 

Proof: Let  g > 0 be arbitrary, and observe from the continuity of g that for each x in  Θ

there exists a  > 0 such that  if   Now let U(x) =δ(x) |g(x) & g(y)| < g/2 2x & y2 < 2δ(x) .

Then the collection {U(x), x 0  Θ} is an open covering of  Θ, hence{y 0 úk: 2y & x2 < δ(x)} .

by compactness of  Θ there exists a finite number of  points  in  Θ such that θ1 ,..... ,θn

 Next, let   Each point x 0  Θ belongs to at least one of theΘ d ^n
j'1U(θj) . δ ' min1#j#nδ(θj) .

open sets  for some j. Then  hence   <U(θj): x 0 U(θj) 2x & θj2 < δ(θj) < 2δ(θj) , |g(x) & g(θj)|

g/2.  Moreover,  if  then 2x & y2 < δ

2y & θj2 ' 2y & x % x & θj2 # 2x & y2 % 2x & θj2 < δ % δ(θj) # 2δ(θj) ,

hence  Consequently,   |g(y) & g(θj)| < g/2 . |g(x) & g(y)| # |g(x) & g(θj)| % |g(y) & g(θj)| < g

if  Q.E.D.2x & y2 < δ .
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II.7. Derivatives of functions of vectors and matrices

Consider a real function  Recall thatf(x) ' f(x1 , ..... ,xn) on ún , where x ' (x1 , ..... ,xn)
T .

the partial derivative of f  to a component xi of x is denoted and defined by

Mf(x)
Mxi

'
Mf(x1 , ..... ,xn)

Mxi

'

def.

lim
δ60

f(x1 , .. ,xi&1 ,xi%δ ,xi%1 , ... ,xn) & f(x1 , .. ,xi&1 ,xi ,xi%1 , ... ,xn)

δ
.

For example, let   Thenf(x) ' βTx ' x Tβ ' β1x1 % ... βnxn .

Mf(x)/Mx1

!

Mf(x)/Mxn

'

β1

!

βn

' β .

This result could also have been obtained by treating xT as a scalar and taking the derivative of 

 to  xT:   This motivates the convention to denote the column vectorf(x) ' x Tβ M(x Tβ)/Mx T ' β .

of partial derivative of f(x) by  Similarly, if we treat x as a scalar and take theMf(x)/Mx T .

derivative of   to x, then the result is a row vector:   Thus in general,f(x) ' βTx M(βTx)/Mx ' βT .

Mf(x)

Mx T
'

def.
Mf(x)/Mx1

!

Mf(x)/Mxn

, Mf(x)
Mx

'

def.

Mf(x)/Mx1 , .... ,Mf(x)/Mxn .

If the function H is vector-valued, say  then applyingH(x) ' (h1(x) , ..... ,hm(x))T , x 0 ún ,

the operation   to each of the components yields an m×n matrix:M/Mx

MH(x)
Mx

'

def.
Mh1(x)/Mx

!

Mhm(x)/Mx

'

Mh1(x)/Mx1 þ Mh1(x)/Mxn

! !

Mhm(x)/Mx1 þ Mhm(x)/Mxn

.

Moreover, applying the latter to a column vector of  partial derivatives of a real function f  yields
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M(Mf(x)/Mx T)
Mx

'

M2f(x)
Mx1Mx1

þ M2f(x)
Mx1Mxn

! " !

M2f(x)
MxnMx1

þ M2f(x)
MxnMxn

'
M2f(x)

MxMx T
,

say.

In the case of an m×n matrix X with columns  and ax1 , ..... ,xn 0 úk , xj ' (x1,j , .... ,xm,j)
T ,

differentiable function f(X) on the vector space of  k×n matrices, we may interpret X = (x1 , ... ,xn)

as a “row” of column vectors, so that

Mf(X)
MX

'
Mf(X)

M(x1 ,.....,xn)
'

def.
Mf(X)/Mx1

!

Mf(X)/Mxn

'

def.
Mf(X)/Mx1,1 þ Mf(X)/Mxm,1

! " þ

Mf(X)/Mx1,n þ Mf(X)/Mxm,n

is an n×m matrix. For the same reason,   An example of such aMf(X)/MX T '

def.

(Mf(X)/MX)T .

derivative to a matrix is given by Theorem I.33 in Appendix I, which states that if X is a square

nonsingular matrix then  Mln[det(X)]/MX ' X &1 .

Next, consider the quadratic function  f(x) = a + xTb + xTCx,  where

x '

x1

:

xn

, b '

b1

:

bn

, C '

c1,1 .... c1,n

: .... :

cn,1 .... cn,n

, with ci,j ' cj,i .

Thus, C is a symmetric matrix. Then
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Mf(x)/Mxk '
M a % 'n

i'1bixi % 'n
i'1'n

j'1xici,jxj

Mxk

' j
n

i'1
bi

Mxi

Mxk

% j
n

i'1
j

n

j'1

Mxici,jxj

Mxk

' bk % 2ck,kxk % j
n

i'1
i…k

xici,k % j
n

j'1
j…k

ck,jxj

' bk % 2j
n

j'1
ck,jxj , k ' 1, ... ,n ,

hence, stacking these partial derivatives in a column vector yields

Mf(x)/Mx T ' b % 2Cx . (II.8)

If C is not symmetric, we may without loss of generality replace C in the function f(x) by the

symmetric matrix (C + CT)/2, because xTCx = (xTCx)T = xTCTx, so that then

Mf(x)/Mx T ' b % Cx % C Tx .

The result (II.8) for the case b = 0 can be used to give an interesting alternative

interpretation of eigenvalues and eigenvectors of symmetric matrices, namely as the solutions of

a quadratic optimization problem under quadratic restrictions. Consider the optimization problem

max or min x TAx s.t. x Tx ' 1, (II.9)

where A is a symmetric matrix, and “max” and “min” include local maxima and minima, and

saddle-point solutions. The Lagrange function for solving this problem is

‹(x ,λ) ' x TAx % λ(1 & x Tx) ,

with first-order conditions

M‹(x ,λ)/Mx T ' 2Ax & 2λx ' 0 Y Ax ' λx , (II.10)

M‹(x ,λ)/Mλ ' 1 & x Tx ' 0 Y 2x2 ' 1. (II.11)

Condition (II.10) defines the Lagrange multiplier λ. as the eigenvalue and the solution for x as the
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corresponding eigenvector of A, and (II.11)  is the normalization of the eigenvector to unit length.

Combining (II.10) and (II.11) it follows that  λ = xTAx.

II.8. The mean value theorem

Consider a differentiable real function f(x), displayed as the curved line in the following

figure:

Figure II.1. The mean value theorem

We can always find a point c in the interval [a,b] such that the slope of  f(x) at  x = c, which is

equal to the derivative  is the same as the slope of the straight line connecting the pointsf )(c) ,

(a,f(a)) and (b,f(b)), simply by shifting the latter line parallel to the point where it be comes

tangent to  f(x).  The slope of this straight line through the points  (a, f(a)) and (b,f(b)) is:

(f(b)!f(a))/(b!a).  Thus, at x = c we have   or  equivalentlyf )(c) ' (f(b) & f(a)) / (b & a) ,
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This easy result is called the mean value theorem. Since this point  cf(b) ' f(a) % (b & a)f )(c) .

can also be expressed as  with  we can nowc ' a % λ(b & a) , 0 # λ ' (c & a) / (b & a) # 1,

state the mean value theorem as:

Theorem II.7(a): Let f(x) be a differentiable real function on an interval [a,b], with derivative

 For any pair of points there exists a  such that  f(x) =   f )(x) . x ,x0 0 [a,b] λ 0 [0,1]

 f(x0) % (x & x0)f
)(x0 % λ(x&x0)) .

This result carries over to real functions of more than one variable:

Theorem II.7(b): Let f(x) be a differentiable real function on a convex  subset C of   For anyúk .

pair of  points  there exists a  such thatx , x0 0 C λ 0 [0,1]

 f(x) ' f(x0) % (x & x0)
T(M/My T)f(y)*y'x0%λ(x&x0) .

II.9. Taylor’s theorem

The mean value theorem implies that if for two points a < b,  f(a)  =  f(b), then there

exists a point such that This fact is the core of the proof of Taylor’sc 0 [a,b] f )(c) ' 0.

theorem:

Theorem II.8(a): Let f(x) be an n-times continuously differentiable  real function on an interval

[a,b], with the n-th derivative denoted by  For any pair of points  there existsf (n)(x) . x ,x0 0 [a,b]
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a  such that λ 0 [0,1]

 f(x) ' f(x0) % j
n&1

k'1

(x & x0)
k

k!
f (k)(x0) %

(x & xn)
n

n!
f (n)(x0 % λ(x&x0)) .

Proof:  Let   be fixed.  We can always writea # x0 < x # b

f(x) ' f(x0) % j
n&1

k'1

(x & x0)
k

k!
f (k)(x0) % Rn , (II.12)

where Rn  is the remainder term. Now let   be fixed, and consider the functiona # x0 < x # b

g(u) ' f(x) & f(u) & j
n&1

k'1

(x & u)k

k!
f (k)(u) &

Rn(x & u)n

(x & x0)
n

with derivative

g )(u) ' &f )(u) % j
n&1

k'1

(x & u)k&1

(k&1)!
f (k)(u) & j

n&1

k'1

(x & u)k

k!
f (k%1)(u) %

nRn(x & u)n&1

(x & x0)
n

' &f )(u) % j
n&2

k'0

(x & u)k

k!
f (k%1)(u) & j

n&1

k'1

(x & u)k

k!
f (k%1)(u) %

nRn(x & u)n&1

(x & x0)
n

' &
(x & u)n&1

(n&1)!
f (n)(u) %

nRn(x & u)n&1

(x & x0)
n

.

Then  hence there exists a point  such that g(x) ' g(x0) ' 0, c 0 [x0,x] g )(c) ' 0:

0 ' &
(x & c)n&1

(n&1)!
f (n)(c) %

nRn(x & c)n&1

(x & x0)
n

.

Therefore, 

Rn '
(x & xn)

n

n!
f (n)(c) '

(x & xn)
n

n!
f (n) x0 % λ(x&x0) , (II.13)

where  Combining (II.12) and (II.13)  the theorem follows. Q.E.D.c ' x0 % λ(x&x0).
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Also Taylor’s theorem carries over to real functions of more than one variable, but the

result involved is awkward to display for n > 2. Therefore, we only state the second-order Taylor

expansion theorem involved:

Theorem II.8(b): Let f(x) be a twice continuously differentiable real function on a convex 

subset  Ξ of   For any pair of  points   there exists a  such thatún . x , x0 0 Ξ λ 0 [0,1]

f(x) ' f(x0) % (x & x0)
T /000

Mf(y)

My T
y'x0

%
1
2

(x & x0)
T /000

M2f(y)

MyMy T
y'x0%λ(x&x0)

(x & x0) . (II.14)
 

II.10. Optimization

Theorem II.8(b) shows that the function  f(x) involved is locally quadratic. Therefore, the

conditions for a maximum or a minimum of  f(x) in a point   can be derived from (II.14)x0 0 Ξ

and the following theorem. 

Theorem II.9: Let C be a symmetric n×n matrix, and let f(x) = a + xTb + xTCx,  x 0 ún,

where a is a given scalar and b is a given vector in  ún.  If C is positive [negative] definite then

f(x) takes a unique minimum [maximum], at  x ' &½C &1b .

Proof: The first-order condition for a maximum or minimum is  Mf(x)/Mx T ' 0 (0 ún) ,

hence  As to the uniqueness issue, and the question whether the optimum is ax ' &½C &1b .

minimum or a maximum, recall that C = QΛQT, where Λ is the diagonal matrix of the

eigenvalues of C and Q is the corresponding matrix of eigenvectors. Thus we can write  f(x)  as 
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f(x) = a + xT QQT b + xT QΛQT x. Let y = QT x = (y1,...,yn)
T and β = QT b =  (β1,...,βn)

T . Then  

f(Qy) = a + yT β + yT Λ y =   The latter is a sum of quadratic functions ina % 'n
j'1(βjyj % λjy

2
j ) .

one variable which each has a unique minimum if λj > 0 and a unique maximum if  λj < 0. 

Q.E.D.

It follows now from (II.14) and Theorem II.9 that:

Theorem II.10: The function  f(x) in Theorem II.8(b) takes a local maximum [minimum] in a

point  i.e., x0  is contained in an open subset  Ξ0  of  Ξ  such that for all x 0  Ξ0\{x0},   x0 0 Ξ ,

f(x) <   f(x0) [f(x) >   f(x0)], if and only if   and the matrix Mf(x0)/Mx T
0 ' 0 (0 ún) , M2f(x0)/(Mx0Mx T

0 )

is negative [positive] definite.

A practical application of the Theorems II.8(a), II.9 and II.10 is the Newton iteration for

finding a minimum or a maximum of a function. Suppose that the function  f(x) in Theorem

II.8(b) takes a unique global maximum at  Starting from an initial guess x0 of  x*, let forx
(
0 Ξ .

k $ 0,

xk%1 ' xk &
M2f(xk)

MxkMx T
k

&1
Mf(xk)

Mx T
k

.

Thus, the Newton iteration maximizes or minimized the local quadratic approximation of f in xk.

The iteration is stopped if for some small threshold  g > 0, ||xk%1 & xk|| < g .
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Appendix III

A Brief Review of Complex Analysis

III.1. The complex number system

Complex numbers have many applications. The complex number system allows to

conduct computations that would be impossible to perform in the real world. In probability and

statistics we mainly use complex numbers in dealing with characteristic functions, but in time

series analysis complex analysis plays a key-role. See for example Fuller (1996). Therefore, in

this appendix I will review the basics of complex analysis. 

Complex numbers are actually two-dimensional vectors endowed with arithmetic

operations that make them act as numbers. Therefore, I will introduce the complex numbers in

their "real" form, as vectors in ú2.  

Next to the usual addition and scalar multiplication operators on the elements of   ú2  (see

Appendix I), define the vector multiplication operator  "×" by:

a

b
×

c

d
'

def. a.c&b.d

b.c%a.d
. (III.1)

Observe that 

a

b
×

c

d
'

c

d
×

a

b
. (III.2)

Moreover, define the inverse operator “!1" by
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a

b

&1

'

def. 1

a 2%b 2

a

&b
, provided that a 2%b 2 > 0 , (III.3)

so that

a

b

&1

×
a

b
'

a

b
×

a

b

&1

'
1

a 2%b 2

a

&b
×

a

b
'

1

0
. (III.4)

The latter vector plays the same role as the number 1 in the real number system. Furthermore, we

can now define the division operator “/” by

a

b
/

c

d
'

def. a

b
×

c

d

&1

'
1

c 2%d 2

a

b
×

c

&d
'

1

c 2%d 2

a.c%b.d

b.c&a.d
, (III.5)

provided that   > 0. Note thatc 2%d 2

1

0
/

c

d
'

1

c 2%d 2

c

&d
'

c

d

&1

. (III.6)

In the subspace   these operators work the same as for realú2
1 ' { (x,0)T , x 0 ú}

numbers:

a

0
×

c

0
'

a.c

0
,

c

0

&1

'
1/c

0
,

a

0
/

c

0
'

a/c

0
, (III.7)

provided that c … 0. Therefore, all the basic arithmetic operations (addition, subtraction, 

multiplication, division) of the real number system ú apply to , and vice versa.ú2
1

In the subspace the multiplication operator × yieldsú2
2 ' { (0,x)T , x 0 ú}

0

b
×

0

d
'

&b.d

0
(III.8)

In particular, note that
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0

1
×

0

1
'

&1

0
(III.9)

Now denote 

a % i.b '

def. 1

0
a %

0

1
b , where i '

0

1
, (III.10)

and interpret a + i.0 as  the mapping

a % i.0 :
a

0
6 a . (III.11)

Then it follows from (III.1) and (III.10) that

(a%i.b)×(c%i.d) '
a

b
×

c

d
'

a.c&b.d

b.c%a.d
' (a.c&b.d) % i.(b.c%a.d) . (III.12)

However, the same result can be obtained by using standard arithmetic operations, treating the

identifier i as &1:

(a%i.b)×(c%i.d) ' a.s%i 2.b.d%i.b.c%i.a.d ' (a.s&b.d)%i.(b.c%a.d) (III.13)

In particular,  it follows from (III.9), (III.10) and (III.11) that

i×i '
0

1
×

0

1
'

&1

0
' &1%i.0 6 &1 (III.14)

which can also be obtained by standard arithmetic operations, treating  i as  and i.0 as 0. &1

Similarly, we have  

(a%i.b)/(c%i.d) '
a

b
/

c

d
'

1

c 2%d 2

a.c%b.d

b.c&a.d
'

a.c%b.d

c 2%d 2
%i.

b.c&a.d

c 2%d 2
(III.15)

provided that   > 0. Again, this result can also be obtained by standard  arithmeticc 2%d 2
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operations,  treating  i as &1:

(a%i.b)/(c%i.d) '
a%i.b
c%i.d

×
c&i.d
c&i.d

'
(a%i.b)×(c&i.d)
(c%i.d)×(c&i.d)

'
a.c%b.d

c 2%d 2
%i.

b.c&a.d

c 2%d 2
. (III.16)

The Euclidean space  ú2 endowed with the arithmetic operations (III.1),  (III.3) and (III.5)

resembles a number system, except that the “numbers” involved cannot be ordered. However, it

is possible to measure the distance between these “numbers”, using the Euclidean norm:

|a%i.b| '

def. 4555 4555
a

b
' a 2%b 2 ' (a%i.b)×(a&i.b). (III.17)

If the “numbers” in this system are denoted  by (III.10), and standard arithmetic operations are

applied, treating   i as  and  i.0 as 0, the results are the same as for the arithmetic operations&1

(III.1),  (III.3) and (III.5) on the elements of  ú2.  Therefore, we may interpret  (III.10) as a

number, bearing in mind that this number has two dimensions if b… 0.

From now on I will use the standard notation for multiplication, i.e., (a%i.b)(c%i.d)

instead of (III.13).

The part a of  is called the real part of the complex number involved, denoted bya%i.b

 and b is called the imaginary part, denoted by  Moreover, Re(a%i.b) ' a , Im(a%i.b) ' b . a&i.b

is called the complex conjugate of  and vice versa. The complex conjugate of  isa%i.b z ' a%i.b

denoted by a bar:  It follows from (III.12) that for  and w = c + i.d, z̄ ' a&i.b. z ' a%i.b

 Moreover,   Finally, the complex number system itself is denoted by  ÷.z w ' z̄ .w̄ . |z| ' z z̄ .
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III.2. The complex exponential function

Recall that for real-valued x the exponential function  also denoted by   hase x , exp(x) ,

the series representation 

e x ' j
4

k'0

x k

k!
. (III.18)

The property  corresponds to the equalitye x%y ' e xe y

j
4

k'0

(x%y)k

k!
' j

4

k'0

1
k! j

k

m'0

k
m

x k&my m ' j
4

k'0
j

k

m'0

x k&m

(k&m)!
y m

m!

' j
4

k'0

x k

k! j
4

m'0

y m

m!

(III.19)

The first equality in (III.19) is due to the binomial expansion, and the last equality follows easily

by rearranging the summation. It is easy to see that (III.19) also holds for complex valued x and y.

Therefore, we can define the complex exponential function by the series expansion (III.18):

e a%i.b '

def.

j
4

k'0

(a%i.b)k

k!
' j

4

k'0

a k

k! j
4

m'0

(i.b)m

m!
' e a j

4

m'0

i m.b m

m!

' e a j
4

m'0

(&1)m.b 2m

(2m)!
% i.j

4

m'0

(&1)m.b 2m%1

(2m%1)!
.

(III.20)

Moreover, it follows from Taylor’s theorem that

cos(b) ' j
4

m'0

(&1)m.b 2m

(2m)!
, sin(b) ' j

4

m'0

(&1)m.b 2m%1

(2m%1)!
, (III.21)

so that 

e a%i.b ' e a [cos(b) % i.sin(b)] . (III.22)

Setting a = 0, the latter equality yields the following expressions for the cosines and sinus in
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terms of the complex exponential function:

cos(b) '
e i.b%e &i.b

2
, sin(b) '

e i.b&e &i.b

2.i
. (III.23)

These expressions are handy in recovering the sinus-cosines formulas:

sin(a)sin(b) ' [cos(a & b) & cos(a % b)]/2
sin(a)cos(b) ' [sin(a % b) % sin(a & b)]/2
cos(a)sin(b) ' [sin(a % b) & sin(a & b)]/2
cos(a)cos(b) ' [cos(a % b) % cos(a & b)]/2
sin(a % b) ' sin(a)cos(b) % cos(a)sin(b)
cos(a % b) ' cos(a)cos(b) & sin(a)sin(b)
sin(a & b) ' sin(a)cos(b) & cos(a)sin(b)
cos(a & b) ' cos(a)cos(b) % sin(a)sin(b

(III.24)

Moreover, it follows from (III.22) that for natural numbers n,

e i.n.b ' [cos(b) % i.sin(b)]n ' cos(n.b) % i.sin(n.b) . (III.25)

This result is known as DeMoivre’s formula. It also holds for real numbers n, as we will see

below.

Finally, note that any complex number z = a + i.b can be expressed as

z ' a %i .b ' |z|.
a

a 2%b 2
% i.

b

a 2%b 2
' |z|.[cos(2πφ) % i.sin(2πφ)]

' |z|.exp(i.2πφ) ,

(III.26)

where φ 0 [0,1] is such that 2πφ ' arccos(a/ a 2%b 2) ' arcsin(b/ a 2%b 2) .

III.3. The complex logarithm

Similarly to the natural logarithm ln(.), the complex logarithm log(z),  z 0 ÷, is a complex

number a+i.b = log(z) such that exp(a+i.b) = z, hence it follows from  (III.25) that z =
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exp(a)[cos(b) + i.sin(b)] and consequently, since 

|exp(-a).z| = |cos(b)+ i.sin(b)| =   = 1, cos2(b)%sin2(b)

we have that exp(a) = |z| and  exp(i.b) = z/|z|. The first equation has a unique solution, a = ln(|z|),

as long as z … 0. The second equation reads as

cos(b) % i.sin(b) ' (Re(z) % i.Im(z))/|z|, (III.27)

hence cos(b) =  Re(z)/|z|, sin(b) = Im(z)/|z|, so that b = arctan(Im(z)/Re(z)). However, equation

(III.27) also holds if we add or subtract multiples of B to or from b, because tan(b) = tan(b+m.B)

for arbitrary integers m, hence 

log(z) ' ln(|z|) % i.[arctan(Im(z)/Re(z)) % mπ] , m ' 0,±1,±2,±3,..... (III.28)

Therefore, the complex logarithm is not uniquely defined. 

The imaginary part of (III.28) is usually denoted by

arg(z) ' arctan(Im(z)/Re(z)) % mπ , m ' 0,±1,±2,±3,..... (III.29)

It is the angle in radians indicated in Figure 1, eventually rotated multiples of 180 degrees

clockwise or anticlockwise:

Figure III.1: arg(z)
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Note that Im(z)/Re(z) is the tangents of the angle arg(z), hence arctan(Im(z)/Re(z)) is the angle

itself.

With the complex exponential function and logarithm defined, we can now define the

power zw as the complex number a+i.b such that a+i.b = exp(w.log(z)), which exists if |z| > 0.

Consequently, DeMoivre’s formula carries over to all real-valued powers n:

[cos(b) % i.sin(b)]n ' e i.b n
' e i.n.b ' cos(n.b) % i.sin(n.b) . (III.30)

III.4 Series expansion of the complex logarithm

For the case x 0 ú, |x| < 1, it follows from Taylor’s theorem that ln(1+x) has the series

representation

ln(1%x) ' j
4

k'1
(&1)k&1x k/k . (III.31)

The question I will address now is whether this series representation carries over if we replace x

by i.x, because this will yield a useful approximation of exp(i.x) which plays a key role in proving

central limit theorems for dependent random variables.1 See Chapter 7.

If (III.31) carries over we can write, for arbitrary integers m,

log(1%i.x) ' j
4

k'1
(&1)k&1i kx k/k % i.mπ

' j
4

k'1
(&1)2k&1i 2kx 2k/(2k) % j

4

k'1
(&1)2k&1&1i 2k&1x 2k&1/(2k&1) % i.mπ

' j
4

k'1
(&1)k&1x 2k/(2k) % i.j

4

k'1
(&1)k&1x 2k&1/(2k&1)% i.mπ

(III.32)

On the other hand, it follows from  (III.28) that

log(1%i.x) '
1

2
ln(1%x 2) % i.[arctan(x) % mπ] . (III.33)
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Therefore, we need to verify that for  x 0 ú, |x| < 1,

1
2

ln(1%x 2) ' j
4

k'1
(&1)k&1x 2k/(2k) (III.34)

and 

arctan(x) ' j
4

k'1
(&1)k&1x 2k&1/(2k&1). (III.35)

Equation (III.34) follows from (III.31) by replacing x with x2.  Equation (III.35) follows from

d
dxj

4

k'1
(&1)k&1x 2k&1/(2k&1) ' j

4

k'1
(&1)k&1x 2k&2 ' j

4

k'0
&x 2 k

'
1

1%x 2
(III.36)

and the facts that arctan(0) = 0 and

darctan(x)
dx

'
1

1%x 2
. (III.37)

Therefore, the series representation (III.32) is true. 

III.5. Complex integration

In probability and statistics we encounter complex integrals mainly in the form of

characteristic functions, which for absolutely continuous random variables are integrals over

complex-valued functions with real-valued arguments. Such functions take the form  

f(x) ' φ(x) % i.ψ(x) , x 0 ú , (III.38)

where N and R are real-valued functions on ú. Therefore, we may define the (Lebesgue) integral

of f over an interval [a,b] simply as
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1. For  x 0 ú with |x| < 1,   where  exp(i.x) ' (1%i.x)exp(&x 2/2 % r(x)) , |r(x)| # |x|3.

m
b

a

f(x)dx ' m
b

a

φ(x)dx % i.m
b

a

ψ(x)dx , (III.39)

provided of course that the latter two integrals are defined. Similarly, if µ is a probability

measure on the Borel sets in úk and Re(f(x)) and Im(f(x)) are Borel measurable real functions on 

úk,  then 

mf(x)dµ(x) ' mRe(f(x))dµ(x) % i.mIm(f(x))dµ(x) , (III.40)

provided  that the latter two integrals are defined.

Integrals of complex-valued functions of complex variables are much trickier, though.

See for example Ahlfors (1966). However, these types of integrals have limited applicability in

econometrics, and are therefore not discussed here.

Endnote
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