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To Francesco and Enrica 



Preface

In recent years the so-called new economic geography and the issue of regional 
economic convergence have increasingly drawn the interest of economists to the 
empirical analysis of regional and spatial data. However, even if the methodology 
for econometric treatment of spatial data is well developed, there does not exist a 
textbook theoretically grounded, well motivated and easily accessible to econo-
mists who are not specialists. Spatial econometric techniques receive little or no 
attention in the major econometric textbooks. Very occasionally the standard 
econometric textbooks devote a few paragraphs to the subject, but most of them 
simply ignore the subject. On the other hand spatial econometric books (such as 
Anselin, 1988 or Anselin, Florax and Rey, 2004) provide comprehensive and ex-
haustive treatments of the topic, but are not always easily accessible for people 
whose main degree is not in quantitative economics or statistics. 

This book aims at bridging the gap between economic theory and spatial statis-
tical methods. It starts by strongly motivating the reader towards the problem with 
examples based on real data, then provides a rigorous treatment, founded on sto-
chastic fields theory, of the basic spatial linear model, and finally discusses the 
simpler cases of violation of the classical regression assumptions that occur when 
dealing with spatial data. I am convinced that, once the reader is introduced to the 
probabilistic and statistical arguments on which the basic linear model is 
grounded, he will be able to understand quite straightforwardly also the more so-
phisticated models and techniques that are present in the spatial econometric lit-
erature. A review of some more advanced topics excluded from the range of inter-
est of this book, is confined to a final chapter which provides the references for 
further, more in-depth going, studies. 

The project of a self-contained statistically based book on spatial econometrics 
dates back to 1996 when I first taught a course on advanced econometric topics in 
the faculty of Economics at the “G. D’Annunzio” University of Pescara. The se-
ries of lecture notes that I drafted in Italian were printed in a provisional working 
paper series and constitute the backbone of the present volume. This preliminary 
version underwent several changes and integrations when it was used in a series of 
post-graduate courses that I have been teaching at the faculty of Economics of 
Rome “Tor Vergata” since 1997. The typical student attending these courses was a 
Master or Doctorate student with a first degree in Economics, Political Sciences or 
one of the other Social Sciences.  

Having in mind such a typology of student during the drafting of the book, the 
only pre-requisites for reading this monograph are a sound first course in Probabil-
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ity at the level of books like Grimmett and Stirzaker (1994) and a course in Statis-
tics at a level of books like Azzalini (1996) or Mood et al. (1974). A prior knowl-
edge of the basic time series analysis methods at a level of the first five chapters of 
Hamilton (1994) helps, because there is a certain analogy between spatial and time 
methodology. 

This volume could be used as a textbook for a post-graduate introductory 
course of around 20/30 hours, or as a reference book for post-graduate students 
engaged in Ph. D. work on quantitative economics (or other social sciences), in-
volving spatial econometric estimation problems. 

Having outlined the general aim of this book, described its genesis and its po-
tential readers, I am now happy to fulfil the pleasant duty of thanking the many 
people who contributed to its preparation and final realization. This is the best 
moment when writing a book (as anyone who has a direct experience knows only 
too well!). There are at least two reasons for this. The first is that these are in fact 
the last words written by the author in this context, which means that the heavy 
work is finally done and that what in the last phase can only be described as an 
“obsession” will eventually give way to other (hopefully less compelling) tasks. 
The second is that this is the only place where one can talk about oneself and 
one’s working environment and family and not merely about abstract concepts and 
formalism and this is an inevitable source of self-satisfaction for all authors. 

It would have been almost impossible to realize this book without the help and 
support I received from many people. I would like to start by thanking Jean Pa-
elinck for being the first author I read on the subject back in 1984 when I was a 
Ph. D. student at Cambridge University and, after knowing him in person, for 
having become a constant reference for my work on this subject. He must be 
thanked specifically for his constant help, the useful corrections and suggestions 
he provided on various drafts of the book and, most of all, for his friendship. 
Thanks are also due to Gianfranco Piras for his daily assistance over this last year 
with all the technical and non-technical problems arising during the volume’s 
preparation, as well as for having co-authored Chapter 6 and the Appendix. My 
thanks also to Francesco Moscone of London School of Economics for his enthu-
siasm and encouragement from the beginning of this project, to Giovanni Lafratta 
and Paolo Postiglione (both from the “D’Annunzio” University of Pescara) for 
having co-authored Sections 2.4.2.10 and 4.4.2.3, respectively, and to Elisa To-
setti of Cambridge University for having read the manuscript at various stages 
and for having provided corrections and most useful suggestions and additions to 
the original text. Needless to say that I alone am wholly responsible for any errors 
remaining in the writing and calculations. I have also to thank Roberto Basile of 
Istituto di Studi ed Analisi Economica (ISAE) and Laura De Dominicis of “Tor 
Vergata” University and of the Free University of Amsterdam for their help in 
some of the computations reported in Section 1.3 and Chapter 5, as well as for 
revising parts of the book. I also wish to thank Robert Haining for providing hos-
pitality at the Cambridge Department of Geography during the summer of 2004 
when I was writing the final draft. Finally I want to thank all my PhD students for 
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their patience and support in the whole period when I could devote less time to 
their research and the actors in the theatre company “Palcoscenico ‘95” who had 
to do without me on many occasions during this period of intense writing. 

A very special mention is due to my beloved parents who both died during the 
last year when I was working on the final version of this book. I have already 
dedicated my second book to them, but I feel I am particularly indebt to them. 
Apart from the immense gratitude I feel towards them for all the aspects of my 
life, I would like to state quite specifically that my parent’s presence, love and 
constant encouragement to aim ever higher have made all the difference to my 
work and professional life as a whole. It will not be the same without them.  

It is common for book prefaces to contain expressions of thanks to the au-
thor’s family, wife and children for having allowed him to devote himself (al-
most) entirely to the burden of writing a book for a long period (during the 
working and non-working hours, during the weeks and the weekends) and for 
having provided him with the right environment to fulfil this task. This is doubt-
less desirable, but I do not believe it corresponds entirely to what happens in 
practice. Most of the time the various members of the family have no choice 
and, if they did they would rather have one book less on the shelf and more time 
to spend in a carefree fashion with their husband/father, more of his patience, 
more of his help in relation to their own tasks. Having said that, in this very 
moment when I am writing these that will (hopefully) be the final words to this 
book, my three kids are joyfully shouting in the neighbouring room and (even if 
I am tempted to join them) they are not providing exactly what one defines as 
the “right environment” for a writer. Nonetheless, this book is dedicated to my 
wonderful family and, in particular, to Francesco and Enrica since I dedicated 
my first book to Paola and Elisa before my two younger children were born. It is 
difficult to say why one deliberately decides to devote time to writing a book at 
the expense of his family. It might be for a pure love of knowledge, its spread or 
perhaps the fallacious illusion of leaving something to posterity, or plane mad-
ness, or again just self-satisfaction or any combination of the above. But, after 
all, the positiveness of our actions and the meaning of any single moment is not 
in our hands: these are things that just happen, as an undeserved gift. Like the 
one that we are celebrating this very day as we do every year. 

Rome, Christmas Day 2005 Giuseppe Arbia 
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‘t is distance lends enchantment to the view … 
 William Wordsworth

While exerting the much valued privilege of reading the manuscript to this book, I 
was brought back in time – and in space…- to the early fifties when I started my 
econometric work. It was like rediscovering the path-breaking demand analyses 
by René Roy (Econometrica, 1947), then wading through Harald Cramer’s 
Mathematical Methods of Statistics, Sixth Printing, 1954, to follow on with Johns-
ton’s Econometric Methods, 1963, and end up with some recent article on Almost 
Ideal Demand Systems. 

Such is indeed the route of Giuseppe Arbia’s book, which starts with an em-
pirical spatial problem, showing the need for a rigorous analytical framework, 
working through a simplified but operational version of this, and then pointing out 
that for both the fundamental models, the assumptions are largely negated by spa-
tial data and their appropriate representations, and this from all three of the prob-
ability model, the statistical generation process and the sampling points of view. 

This synthetic presentation of the spatial model must be considered as particu-
larly helpful to the reader wishing to initiate himself to spatial econometric mod-
els. Especially the fact that the analysis is conducted starting from the fundamental 
notion of random fields is important, as in this way the axiomatic basis is laid for 
any further regional analysis. 

No wonder, thus, that the regional model, initially presented, had to be adapted 
from different angles, as a simple homogeneous approach could not cover the full 
complexity of spatial data. 

These, indeed, show such a complex pattern, in part induced by the fact that 
they are fundamentally biased, as I have shown elsewhere, hence that apparent 
heterogeneity. In fact, from the advanced techniques proposed in the last chapter, 
perhaps the exploratory tools should be given special attention, and this not only 
for the crude variables – which already show more often than not hot spots, as 
spatial statisticians have repeatedly demonstrated – but also for the residuals ob-
tained from a first – even duly spatialised – analysis (the “doggy-bag principle”, as 
I like to call it: never throw away your leftovers…). I think indeed that spatial in-
terdependencies and externalities are more involved than could be covered with 
spatialised multivariate Markov or even Yule schemes. How to model appropri-
ately, i. e. to specify, such complex inter-linkages is, I think, one of the main chal-
lenges for future spatial econometric work. 
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Giuseppe Arbia’s book is another testimony to the vitality of spatial economet-
ric analysis through the last couple of decades. It goes hand in hand with the reali-
sation by general economists that pre-geographic space should be an essential 
component of every economic analysis, which could not be ignorant of topological 
elements in its search for propositions of economic behaviour; as I use to put it 
friendly to my students: “space matters”! But on the other hand, fundamental con-
tributions by general economists should be taken into account to allow spatial 
econometricians to improve on their theoretical specifications, as hinted at higher 
up. Indeed, the mathematical structures used in setting up a spatial model are ut-
termost germane to the use it will be put to; but I suspect that that validity is more 
general, as it refers to the economic processes the spatial econometrician wants to 
picture. 

What I have tried to convey to the reader of this book, is a sense of its impor-
tance as a path-finder for young research workers, not necessarily in the field of 
spatial econometrics proper, but also in other fields of economic analysis, theo-
retical and applied: a price is not just a p, but a stochastic variable in a two-
dimensional random field, in other words it has two-dimensional statistical distri-
bution. Difficult at first to imagine but that is the way things are; our task, like the 
physicists’ one, is to create beauty from garbage … 

Lectori salutem. 

January 2006 Jean H.P. Paelinck 

Post-scriptum and Afterthought 

The price random field mentioned above has been known to spatial observers for 
a long time; less well known is the distribution of spatial regimes, i. e. of behav-
ioural parameters. In the last application chapter of this book it has been shown 
that Northern and Southern Italy could be approached as separate spatial (macro-) 
entities, and other instances have been studied: Northern and Southern Belgium, 
Canada and the United States (the so called “Continental Divide”). In Paelinck 
and Klaassen, Spatial Econometrics, 1979, it has been suggested that, given the 
nature of spatial patterns, a fuzzy subset approach might be appropriate; indeed, 
it is very probable that spatial regimes are not separate in any clear-cut fashion, 
but “overlap”‘ in a fuzzy sense, and that same idea might apply not only to pa-
rameters of a given behavioural pattern, but also to different “varieties” of those 
patterns, i. e. patterns based on different theoretical assumptions. In still other 
words, binary coefficients separating the regimes might themselves be fuzzy. 
The next step is to return to basics, and develop a theory of fuzzy random fields. 
Ars longa, vita brevis … 
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“The hidden harmony is more powerful than the acclaimed one.”  
Heraclitus, 500 B.C. 



1 Motivation 

1.1 Introduction 

Until the end of the last century spatial econometric methods were like the six Pi-
randellian characters in search of an author (Pirandello, 1921). In the great Italian 
playwright’s surreal drama, six characters wandered around in the scene desperately 
seeking an author who could explain to them what they had to do and give them a 
reason to live. The dramatic situation lay in the fact that they knew exactly what 
they had to do, but they did not know why they had to do it! Similarly, until a few 
years ago, spatial econometric methods were well developed in the literature, but the 
drama was that no one used them in the mainstream applied economic analysis! 

Historically, spatial econometric methods stem directly from the twentieth-
century developments in the statistical literature designed to give consideration to 
the problem of the violation of the classical sampling model (the urn paradigm) 
with a big emphasis on similarities caused by spatial proximity. These develop-
ments were necessary to provide the right environment for explaining spatial dif-
fusion phenomena frequently encountered in many applied fields such as epidemi-
ology, geography, agricultural studies, geology, image analysis, regional sciences, 
astronomy, archaeology and many others (see Haining, 2003 for a review). 

The spatial statistical techniques providing the basis for spatial econometrics go 
back about half a century and can be conventionally dated to Peter Whittle’s 
seminal 1954 paper (Whittle, 1954) followed by other important contributions by 
the same author (Whittle, 1962; 1963), by Bartlett (1963; 1975) and by Besag 
(1974) amongst the others. The main results obtained led to a first codification in 
the Seventies with important publications such as the celebrated books by Cliff 
and Ord (1973) and Bennett (1979). Other well-established textbooks followed in 
the Eighties (Ripley, 1981; 1988; Upton and Fingleton, 1985; 1989; Griffith, 1988; 
Arbia, 1989 amongst others), the Nineties (Haining, 1990; Cressie, 1991) and at 
the beginning of the new century (Haining, 2003). 

The term “spatial econometrics” was coined by Jean Paelinck in the late Seven-
ties during the general address he delivered to the annual meeting of the Dutch 
Statistical Association in May 1974 (see Paelinck and Klaassen, 1979), although 
the author himself suggests that the idea had already appeared at a previous con-
ference (see Paelinck, 1967). In the foreword to the first book entirely devoted to 
the subject (Paelinck and Klaassen, 1979) it is suggested that the new branch of 
econometrics is a “blend of economic theory, mathematical formalisation and 
mathematical statistics” (page vii). There are five fundamental characteristics of 
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the new field that can be found in the Paelinck and Klaassen’s seminal book (Pa-
elinck and Klaassen, 1979), namely, (i) the role of spatial interdependence in spa-
tial models, (ii) the asymmetry of spatial relations, (iii) the importance of explana-
tory factors located in other spaces, (iv) the differentiation between ex-post and 
ex-ante interaction, and (v) the explicit modelling of space. It is important to note 
that some of the significant contributions to regional economics (such as those 
well summarised in standard books like Isard (1960), Paelinck and Nijkamp 
(1975), Klaassen et al. (1979)), in this period deal mainly with the phase of speci-
fication placing a great emphasis on the underlying economic theory, rather than 
the phase of statistical estimation and hypothesis testing. When examples are re-
ported of statistical estimation these are limited to the application of existing 
methods (OLS and ML essentially) to the case examined. 

Apart from some remarkable examples of the possibility of using spatial statis-
tical methods in economics (like that of the Nobel laureate Clive Granger, in the 
Sixties and Seventies; see Granger, 1969, 1974), the book published by Luc 
Anselin in the late Eighties (Anselin, 1988), certainly constitutes an important step 
forward in the historical development of the discipline. Collecting previous con-
tributions, here for the first time the author presents a comprehensive treatment of 
topics, such as spatial dependence and spatial heterogeneity, that are fundamental 
in the analysis of spatial economic data as will be shown later in this book. He 
defines the subject as “the collection of techniques that deal with the peculiarities 
caused by space in the statistical analysis of regional science models” (Anselin, 
1988, p. 7). 

Thus at the end of the Eighties the pioneering phase of the discipline seemed to 
have been completed. The methods were there, waiting for someone to use them, 
yet this did not happen! The Pirandellian drama! 

Indeed, it was not until the years bridging the two millennia that mainstream 
econometrics expressed a growing interest in spatial statistical methods: an inter-
est witnessed by the increasing number of papers referring to important spatial 
problems appearing in recent econometric and applied economic journals. Florax 
and De Vlist (2003) and Anselin et al. (2004) review these papers thoroughly and 
survey 11 articles in econometric journals and 30 in applied economic journals for 
the period after the year 2000 alone! 

The integration of spatial methods with econometrics nevertheless remains in 
an early phase and still lags far behind that experienced by time series methods in 
the Seventies after the path-breaking book by Box and Jenkins (1970). In fact, 
while it is true that no standard econometric textbook can ignore the time series 
methodologies, the treatment of spatial methods is conversely still very rare and 
when it does occur no more than a few paragraphs are devoted to the subject. No 
mention is made, for instance, in some of the most recent introductory textbooks 
such as Baltagi (1999), Berndt (1991), Davidson (2000), Davidson and MacKinnon 
(1993), Dougherty (2002), Goldberg (1998), Gourieroux and Montfort (1995), 
Greene (2003), Hayashi (2000), Hendry and Morgan (1995), Holly and Weale 
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(2000), Johnston and Dinardo (1997), Judge et al. (1988), Ruud (2000), Seddighi 
et al. (2000), Spanos (1986), Stewart and Gill (1998), Stock and Watson (2003), 
Thomas (1997), Verbeek (2000) and Woolridge (2002b).  

Remarkable exceptions in this sense are the books by Johnston (1991), Kmenta 
(1997), Maddala (2001), Baltagi (2001), Woolridge (2002a), Gujarati (2003) and 
Kennedy (2003). 

Johnston (1991) devotes few lines to spatial problems pointing out that: “The 
above exposition has implicitly assumed a temporal, or time-series framework, but 
the same phenomenon may arise with cross-section data, where it is often referred 
to as spatial autocorrelation.” (Johnston, 1991; p. 305).  

Kmenta (1997) also acknowledges the problem of the non-independence of sta-
tistical observations in space, stating that: “In many circumstances the most ques-
tionable assumption of the preceding model is that the cross-sectional units are 
mutually independent. For instance, when the cross-sectional units are geographi-
cal regions with arbitrarily drawn boundaries – such as the states of the United 
States – we would not expect this assumption to be well satisfied.” (page 512). No 
mention is made of possible solutions to this problem, however. 

Maddala (2001) only briefly mentions to the problem of spatial dependence 
amongst contiguous residuals of a linear regression: “There are two situations un-
der which error terms in the regression model can be correlated. In cross-section 
data it can arise among contiguous units. For instance, if we are studying the con-
sumption pattern of households, the error terms for households in the same 
neighbourhood can be correlated. This is because the error terms pick up the ef-
fects of omitted variables and these variables tend to be correlated for households 
in the same neighbourhood (because of the “keeping up with the Jones” effect). 
Similarly, if our data are on states, the error terms for contiguous states tend to be 
correlated. All these examples fall in the category of spatial correlation.” (see 
Maddala, 2001, p. 228). 

The second edition of Baltagi’s well known textbook on panel data includes a 
short discussion of the problems generated by treating spatial panels. The author 
states that “When one starts looking at a cross-section of countries, regions, states 
etc. these aggregate units are likely to exhibit cross-sectional correlation that has 
to be dealt with. There is an extensive literature using spatial statistics which deals 
with this type of correlation … Spatial dependence models may use a metric of 
economic distance which provides cross-sectional data with a structure similar to 
that provided by the time index in a time series”. (Baltagi, 2001; pp. 195-197). 

Gujarati presents the problem only briefly by remarking that: “if by chance 
such a correlation is observed in cross sectional units, it is called spatial autocorre-
lation, that is correlation in space rather than over time” (Gujarati, 2003; p. 441). 

Kennedy (2003) warns the reader that: “not all instances of autocorrelated er-
rors relate to time series data […]. Spatial econometrics refers to analysis of spa-
tial data for which errors are correlated with errors associated with nearby regions. 
This type of non-sphericalness is referred to as spatial correlation”. 
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Finally Woolridge (2002a) devotes a mention to the issue of spatial dependence 
in the very first pages of his book: “A situation that does requires special 
consideration occurs when cross section observations are not independent of one 
another. An example is spatial correlation models. This situation arises when 
dealing with large geographical units that cannot be assumed to be independent 
draws from a large population, such as the 50 states in the United States. It is 
reasonable to expect that the unemployment rate in one state is correlated with the 
unemployment in neighboring states. While statistical estimation methods – such 
as Ordinary Least Squares or Two Stages Least Squares – can usually be applied 
in these cases, the asymptotic theory needs to be altered. Key statistics often 
(although not always) need to be modified […]. For better or worse, spatial corre-
lation is often ignored in applied work because correcting the problem can be 
difficult” (Woolridge, 2002; p. 6). This textbook also contains a short section that 
develops the idea a bit more thoroughly when dealing with the various forms of 
dependence amongst residuals “As the previous subsection suggests, cross-section 
data that are not the result of independent sampling can be difficult to handle. 
Spatial correlation, or, more generally, spatial dependence, typically occurs when 
cross-section units are large relative to the population, such as when data are 
collected at the county, state, province, or country level. Outcomes from adjacent 
units are likely to be correlated.” (Woolridge, 2002a; p. 134).  

The only problem mentioned in all these quotes is that of spatial correlation (a 
concept that will be treated at length in this book), but many other important con-
cepts of spatial econometrics are ignored. More importantly, there is no discussion 
of the consequences of the problem on statistical estimation and hypothesis test-
ing, of how to test hypotheses related to spatial relationships and of how to re-
move the emerging problems and derive correct inferential conclusions. 

As a consequence of such lacunae in the standard econometric textbook litera-
ture the author feels obliged to motivate the reader towards these topics (an un-
usual task when dealing with other typologies of economic data, such as time se-
ries, cross-sections or panel data) by showing the emergence of the need for a 
proper modelling framework to analyse spatial data. Such is the purpose of this 
book’s first, introductory, chapter. 

An important event in the history of spatial econometrics is certainly the advent 
of the now-celebrated “new economic geography” theories, starting with Krugman’s 
seminal “Gaston Eyskens lectures” in Louvain in 1990 (then published in Krugman, 
1991; see also Fujta et al., 1999). In fact these lectures provide a theoretical frame-
work justifying a spatial analysis of economic data when approaching issues like 
regional convergence, regional concentration of economic activities and adjustment 
dynamics. Many of these theories have led to the specification of models that are 
susceptible to empirical validation and that have shown the importance of develop-
ing specific econometric tools for data distributed in space. In the remainder of this 
chapter we will review some of these models concentrating, in particular, on the 
regional convergence models (Barro and Sala-i-Martin, 1995) as these are a very 
helpful example for introducing the basic concepts of spatial econometrics. 
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In order to motivate the reader in his/her study of spatial econometric methods, 
we will first discuss the -convergence model at some length (Section 1.2). We 
will then consider some empirical studies on regional convergence in the Euro-
pean Union and use them to show some of the incongruences and black holes left 
in this particular instance by the classical linear regression model (Section 1.3). 
Finally, we will conclude this introductory chapter by reviewing a list of topics 
that have been excluded from the volume and by presenting the latter’s overall 
plan (Section 1.4). 

1.2 Theoretical Economic Models Calling for Spatial 
Econometric Techniques  

1.2.1 Introduction 

Until a few years ago spatial statistics was a topic outside applied economists’ 
range of interest. In recent years, however, there has been a flourishing of eco-
nomic studies that, by developing theoretical models that involve relationships 
between variables observed across countries or regions, have greatly stimulated 
interest in the measurement and statistical modelling of spatial variables. Most of 
these models are linked to the developments in the so-called new economic geog-
raphy (Krugman, 1991, Fujta et al., 1999; Krugman and Venables, 1995; Ottavi-
ano and Puga, 1998; Puga and Venables, 1997; 1999; Durlauf and Quah, 1999) 
and to economists’ renewed interest in problems related to economic growth and 
the conditions under which the per-capita income levels of various regions tend to 
converge over time. This topic is currently of great interest especially in relation to 
the recent European debate. Indeed, in many respects, one of the main reasons for 
a European Union and for agreement on economic policies is the goal of reducing 
disparities in welfare distribution. One important aspect of such a goal concerns 
the reduction of disparities between growth rates of per-capita income levels, on 
the basis that this would, in the long run, guarantee a reduction of welfare dispari-
ties. The analysis of the dispersion of regional incomes is often considered as a 
proxy of the inequality in personal incomes distribution and is used as an indicator 
in economic policy debates (see EU, 2005). As a consequence, substantial empiri-
cal research efforts have been devoted to this topic by European scientists (as wit-
nessed by books like Fingleton, 2003 for example). 

In this section we will briefly review some theoretical models that have been 
introduced to formalize the idea of regional convergence and provide a rigorous 
basis for the empirical testing of such an hypothesis. In particular, in Section 1.2.2 
we will concentrate on the popular -convergence model (see Barro and Sala-i-
Martin, 1995 for a review). This model will be used throughout the book to illus-
trate the various spatial econometric techniques. The reason for this choice is two-
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fold. In the first place, such a model has been the most popular in the field of re-
gional convergence and indubitably the one that has experienced the widest use of 
spatial econometric techniques in the literature (see e. g. Fingleton, 2003; Anselin 
et al., 2004). Secondly, it represents a very simple and intuitively appealing exam-
ple that provides a good basis both for illustrating the peculiarities of the various 
problems raised by a regression based on spatial data and for describing the vari-
ous solutions offered by spatial econometric techniques.  

1.2.2 The -convergence Approach 

The -convergence approach was developed by Mankiw et al. (1992) and Barro and 
Sala-i-Martin (1995) starting from the earlier contributions of Solow (1956) and 
Swan (1956), and, from an economic-theoretic point of view it is considered one of 
the most convincing for explaining the economic convergence of per-capita income. 
The model was originally conceived to explain the differences between different 
national income levels, but indeed it discovered a stronger raison d’être when used 
to explain differentials between regional income within the same country or group of 
countries. In fact, the neoclassical growth model predicts conditional convergence to 
the one steady-state1 of economies characterized by the same structural parameters 
in terms of tastes, endowments and technologies. However, the assumption of uni-
form structural conditions can be accepted more easily when referred to regions 
within a country rather than between countries, as is acknowledged, for instance, by 
Barro and Sala-i-Martin (1995) when they state: “although differences in technolo-
gies, preferences and institutions do exist across regions, these differences are likely 
to be smaller than those across countries (Barro and Sala-i-Martin, 1995; p. 382). 
They also explicitly remark: “Absolute convergence is more likely to apply across 
regions within countries than across countries”. 

The theoretical framework takes its moves from the neo-classical Solow-
Swan model of long-run growth (Solow, 1956; Swan, 1956). The model as-
sumes exogenous saving rates and a production function based on decreasing 
productivity of capital and constant returns to scale. Under these assumptions 
the model predicts that, in the long-run, an economy’s per-capita income con-
verges towards its steady-state. 

The Solow-Swan model assumes constant (exogenously given) saving rates and 
considers the case of a closed economy constituted by isolated regions or coun-
tries. Let us formalize this assumption by defining the structural parameters of an 
economy as: (i) the saving rate (say, s), (ii) the capital depreciation rate (say ), 

and (iii) the population growth defined as n
L
L , L representing the labour force 

and L  its derivative with respect to time.  

                                                          
1  A steady-state is defined as the situation where all variables grow at constant rates. 
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The model also assumes that each country (or region) within the economy is 
characterized by the same production function. If we define the capital stock as K
and the output as Y, then, as a consequence of the previous assumptions, each 
country (or region) would also show the same steady-state values for the capital-
labour ratio, defined as 

L
Kk , and for the per-capita income defined as

L
Yy .

Let us now introduce an explicit expression for the production function and let 
us assume that the technical relationship between the inputs (labour and capital) 
and the output is well described by a Cobb-Douglas-type production function 
(Douglas, 1934). In its basic formulation, this function is characterized by constant 
returns to scale and is defined as: 

aa LAKkfy 1)(  (1.1) 

with A being the level of technology (initially assumed as a constant) and a
( 10 a ) a parameter representing the elasticity of the output with respect to the 
capital stock. 

A second fundamental equation in the model is the accumulation function for 
the physical capital given by: 

KIK  (1.2) 

with I the level of gross investment flows and K  the derivative of the capital 
stock with respect to time. Thus in each period of time the growth of physical 
capital equals the amount of gross investment flows minus the capital deprecia-
tion. By assuming the investment to equal the total saving and the total saving to 
be proportional to income, we have: 

aa LsAKsyI 1  (1.3) 

and hence: 

KLsAKK aa 1  (1.4) 

In order to study the evolution of the economy’s per-capita income y, let us con-
sider the relationship: 

n
K
K

L
L

K
K

k
k  (1.5) 

By multiplying both sides by k we obtain 

nk
L
Knkk

K
Kk  (1.6) 

and, using Equation (1.2) one obtains: 
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nk
L

KIk  (1.7) 

Let us now substitute Equation (1.3) into Equation (1.7). We have: 

)(
1

nksAknk
L
K

L
LsAKk a

aa

 (1.8) 

Finally, by dividing both sides by k, we obtain a formal expression of the capital 
growth, say k , as: 

)(1 nsAk
k
k a

k  (1.9) 

Since, from Equation (1.1), the growth of y is proportional to the growth of k, then 
Equation (1.9) also describes the per-capita income’s growth rate. 

If we assume that the structural parameters s and n, and the level of technology A
are constant through time, Equation (1.9) implies that regions with a lower starting 
value of the capital-labour ratio have higher per-capita growth rates k  and, there-
fore, they tend to catch up or “converge” to those with higher capital-labour ratios. 

In a wider sense, by introducing the idea of “conditional convergence”, the 
neoclassical model predicts that each economy converges towards its own steady-
state and that the speed with which this convergence occurs relates inversely to the 
distance from the steady-state itself. 

This basic model has been augmented to account for technological progress, 
leading to the following expression: 

)()ˆ( 1
ˆ nxksA a
k

 (1.10) 

where k̂  is a transformed version of the capital-labour ratio defined as 

)()(
ˆ

tLA
K

tA
kk , and A(t) is a technological term that grows at a constant rate x

(see e. g. Barro and Sala-i-Martin, 1995, p. 32, for further details) 
By considering a log-linear approximation of Equation (1.10) in the neighbour-

hood of the steady-state, we obtain (see Barro and Sala-i-Martin, 1995; p. 36, for 
the derivation): 

*ˆ ˆ
ˆ

ln/)ˆln(
k
kbdtkd

k
 (1.11) 

where ln represents the natural logarithm, *k̂  the steady-state value of k̂ , and the 
coefficient b  can be obtained from the expression ))(1( nxab .
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Let us now define, by analogy with the term k̂ , a transformed version of the 
per-capita output that accounts for technological changes and let us refer to this 
quantity with the symbol 

)()(
ˆ

tLA
Y

tA
yy . If we substitute this expression into 

Equation (1.10) and use the Cobb-Douglas function (1.1), we obtain a differential 
equation, expressed in terms of )(ˆln ty , that admits a solution at point: 

)0(ˆlnˆln1)(ˆln * yeyety btbt  (1.12) 

where *ŷ  represents the steady-state value of ŷ .
The coefficient b in Equation (1.12) comes from the log-linearization of Equa-

tion (1.10) around the steady-state and determines the speed with which k̂  moves 
towards its steady-state value ( *k̂ ). For this reason, it is referred to as speed of 
convergence (see Barro and Sala-i-Martin, 1995; Appendix to Chapter 1). By us-
ing the simple Cobb-Douglas production function (1.1) we find that the speed of 
convergence coefficient for the per-capita output y equals the speed of conver-
gence for the capital-labour ratio k. Furthermore, its value does not depend on the 
level of technology A(t).

A second crucial parameter for judging the convergence of the economy is rep-
resented by the so-called half-life time defined as the time that is necessary for 

)(ˆln ty  to be half way between the initial value )0(ˆln y  and the steady-state 
value *ˆln y . In other words, it represents the time that it takes for half of the ini-
tial gap in the per-capita output to be eliminated. 

This value should satisfy the condition that 5.0bte , as it is evident from 
Equation (1.12). By solving with respect to t we have: 

169.0)2ln( b
b

t lifehalf  (1.13) 

One of model (1.12)’s limitations is that it, quite unrealistically, assumes constant 
saving rates. In order to remove this limitation, some authors have tried to extend 
the previous framework by assuming the saving rate to be a function of the per-
capita capital stock k. The model starts from a system of two differential equations 
that explains the behaviour of the technologically-augmented capital-labour ratio 
k̂  and of the technologically augmented per-capita consumption ĉ , defined as 

L
Cc ˆ

ˆ , C representing the consumption and )(ˆ tLAL .

This again leads to expressing the per-capita output as: 

)0(ˆlnˆln1)(ˆln * yeyety btbt  (1.14) 

For a proof based on Taylor’s expansion around the steady-state, see Barro and 
Sala-i-Martin (1995; p. 87). 
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In any moment of time t  0, the term )(ˆln ty  in Equation (1.14) thus ap-
pears to be a weighted average of the initial value of the per-capita output (that 
is, )0(ˆln y ) and of the steady-state value (that is, *ˆln y ), with weights provided 
by bte  and bte1 . The weight on the initial value, therefore, decreases expo-
nentially at the rate b. Equation (1.14) thus coincides with Equation (1.12) even if, 
in this new setting, the speed of convergence depends on the technological pa-
rameters and on the consumer’s preferences and not only on the structural parame-
ters of the economy. 

If we consider the whole period between time 0 and time T, we obtain that the 
average growth rate of the per-capita output y over the interval is given by: 

)0(ˆ
ˆ

ln1
)0(ˆ
)(ln1 *

y
y

T
ex

y
Ty

T

bt

 (1.15) 

with x the already defined growth rate of the technological term (see Barro and 
Sala-i-Martin, 1995; p. 80-81). If the term x, the convergence speed b and the 
length of the time interval T are constant, then the effect of the initial condition 
depends on the steady-state position *ŷ  and the model predicts conditional con-
vergence.  

Let us now write Equation (1.14) in an operational form by re-expressing it in 
discrete time (e. g. years). If we further re-parametrize it in a convenient way, we 
obtain:

t
t

t y
y
y

ln'ln  (1.16) 

with t = 1, 2, …, T, and t
bt xyex *ˆln1'  assumed to be constant in all 

regions. The parameter  is linked to the speed of convergence by the relation-

ship bte1  and, inversely, 
t

b )1ln( .

In particular, if we consider only two observations at the beginning and at the 
end of the time period, then Equation (1.6) implies that the average growth rate 
over the interval of length T is given by: 

0
0

ln'ln1 y
y
y

T
T  (1.17) 

with *ˆln1' y
T
ex

bT

 and 
T
e bT1  and hence 

T
Tb )1ln( .

Starting from this conceptual basis, authors like Mankiw et al. (1992) and Barro 
and Sala-i-Martin (1995) suggested augmenting Equation (1.17) in order to in-
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clude a random disturbance reflecting unexpected changes in production condi-
tions or preferences and to estimate it using cross-sectional observations. Thus 
they proposed the following statistical model: 

iiTo
i

iT

y
y

T ,,
,0

,ln1 (1.18)

where yt,i (t=0,…, T; i=1,…,n) represents the per-capita income at time t in region 
i, 0,T,i represents the systematic component of the model given by:  

i

bT

iT y
T
e

,0,,0 ln)1('  (1.19) 

with b the speed of convergence, and i the non systematic part of the model.  
From Equations (1.18) and (1.19) we finally obtain: 

ii

bT

i

iT y
T
e

y
y

T ,0
,0

, ln)1('ln1 (1.20)

From an inferential point of view, Equation (1.20) is usually estimated following 
two possible strategies. It is either directly estimated through Non-linear Least 
Squares or, alternatively, is re-parametrized by setting )1( bTe  (and hence 

T
b )1ln( ) and 'T . In this second instance Equation (1.20) becomes: 

ii
i

iT y
y
y

,0
,0

, lnln  (1.21) 

and the parameters are estimated via Ordinary Least Squares (Barro and Sala-i-
Martin, 1995).

According to the formalization contained in Equation (1.21) absolute conver-
gence is said to be favoured by the data if the estimate of  is negative and signifi-
cantly different from 0. Therefore, we can use the usual statistical hypothesis test-
ing procedures to validate the economic-theoretic hypothesis of convergence. 
Specifically, if the null hypothesis (  = 0) is rejected, in favour of the alternative 
hypothesis ( < 0), we can conclude on an empirical basis not only that poor re-
gions grow faster than rich ones, but also that they all converge to the same level 
of per-capita income. 

Let us now take a closer look at Equation (1.21) and let us consider the hy-
potheses made by Barro and Sala-i-Martin (1995) when using it for inferential 
purposes. In order to apply the OLS estimators correctly when dealing with the 
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probability model, the authors implicitly assume that the non-systematic compo-
nent ( i) is normally distributed (0, 2) independently of lny0,i. Furthermore, deal-
ing with the sampling model, they assume that n,...,, 21  are independent ob-
servations of the probability model. In the authors’ words: “We assume that…[the 
error] … has zero mean, the same variance […] for all economies, and is inde-
pendent over time and across economies” (Barro and Sala-i-Martin, 1995; p. 31). 

The hypothesis formulated on the sampling model is particularly crucial and the 
authors themselves admit that it is often unrealistic in empirical cases (see Barro and 
Sala-i-Martin, 1995; p. 385). Many other authors engaged in validating the theoreti-
cal model based on observational data, pointed this out as a weakness in the ap-
proach. For instance, De Long and Summers (1991) state that: “Many comparative 
cross-country regressions have assumed there is no dependence across residuals, and 
that each country provides as informative and independent an observation as any 
other. Yet it is difficult to believe that Belgian and Dutch economic growth would 
ever significantly diverge, or that substantial productivity gaps would appear in 
Scandinavia. The omitted variables that are captured in the regression residuals seem 
ex ante likely to take on similar values in neighbouring countries. This suggests that 
residuals in nearby nations will be correlated” (p. 456).  

Mankiw too, remarks that: “for the reported standard errors to be correct, the 
residuals for Canada must be uncorrelated with the residuals for the US. If country 
residuals are in fact correlated, as it is plausible, then data most likely contain less 
information than the reported standard error indicate”. (see Mankiw, 1995; p. 304) 

Finally Temple (1999; p. 130) acknowledges that: “without more evidence that 
the disturbances are independent, the standard errors in most growth regression 
should be treated with a certain degree of mistrust”. 

Due to the paramount importance of this issue, we will now illustrate it more 
thoroughly by referring to two sets of European regional data. 

1.3 A -convergence Analysis of European and Italian 
Regions

1.3.1 Introduction 

In this section we introduce some regional datasets relating to economic growth 
that will be used throughout the book to illustrate the problems arising when quan-
tifying relationships in space. More specifically, the aim is to illustrate some of the 
geographical features of GDP and growth data used in standard convergence 
analysis and to introduce the need for appropriate corrections in consideration of 
their spatial nature. 

An important source of information regarding to the spatial distribution of in-
come and wealth at a European level may be found in the REGIO database. RE-
GIO is the Eurostat’s harmonized regional statistical database covering the main 
aspects of economic and social life in the European Union. It was created in 1975 
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and is currently divided into ten statistical domains: demography, economic ac-
counts, unemployment, labour force sample survey, energy statistics, transport, 
agriculture, living conditions, tourism and statistics concerning research and de-
velopment. The database is based on the Nomenclature of Statistical Territorial 
Units (NUTS): a coherent system created to provide a geographical subdivision of 
the EU’s territory. The NUTS system is a hierarchical classification. Each Mem-
ber State of the EU is divided into a number of regions at the NUTS-1 level. Each 
of these is further divided into sub-regions at the NUTS-2 level and these, in turn, 
into smaller areas at the NUTS-3 level (Eurostat, 2002). There are 78 European 
Union regions at the NUTS-1 level, 211 basic administrative units at the NUTS-2 
level, and 1093 subdivisions of basic administrative units at the finer NUTS-3 
level of spatial disaggregation. 

Two distinct datasets drawn from the REGIO database will be analysed. The 
first one refers to a time series of the per-capita GDP in the 92 Italian provinces, i. e. 
the NUTS-3 level regions of the official EU classification. A map of the Italian 
provinces is reported in Figure 1.1. The second dataset describes the per-capita 
GDP dynamics in 129 European NUTS-2 regions of 10 European countries whose 
map is displayed in Figure 1.2. We deliberately chose two different levels of spa-
tial disaggregation because, as may easily be imagined, conclusions can be very 
different if we look at an economic phenomenon at a coarse or a fine level of geo-
graphical detail. 

In the following two sections we will analyse GDP growth in the two datasets 
by applying the -convergence framework described in the previous section. 

Fig. 1.1. Map of the 92 Italian NUTS-3 level regions according to the official EU classifi-
cation (provinces). 
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Fig. 1.2. Map of 129 European NUTS-2 level regions of the official EU classification of 
10 European countries. 

1.3.2 A -convergence Analysis of Italian NUTS-3 Provinces 
(1951-1999)

Let us start with a descriptive analysis of the phenomenon of regional growth in 
the Italian provinces during the period 1951 – 1999. Table 1.1 sets out some de-
scriptive statistics and Figures 1.3 and 1.4 display the geographical pattern of per-
capita incomes at the beginning and end of the observed period and their relative 
growth rates, respectively. 

Figure 1.3 is drawn as a quartile map and displays a marked core-periphery pat-
tern in both years: The core is situated in the Northern part of the country, reflect-
ing the well-known Italian dichotomy between the wealthy north and the poorer 
Southern provinces. This feature is evident in both years, with the only difference 
being a shift from the north-western to the north-eastern provinces during the pe-
riod. One of the most remarkable features of this dataset is that the wealthy prov-
inces tend to cluster in space and, as a consequence, the whole map displays a 
quite evident geographical trend decreasing from north to south. Indeed, when 
looking at the two maps, one has the visual impression that per-capita income is 
continuously distributed in space with only a few exceptions. This tendency of 
rich regions to be surrounded by other rich regions (and, conversely, poor regions 
to be surrounded by poor regions) is by no means peculiar to the case-study exam-
ined here and certainly represents one of the most common features displayed by 
spatial economic data. The continuity of economic phenomena in space represents 
the empirical evidence of the feature described in the various econometric textbooks  
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Table 1.1. Descriptive statistics of per-capita incomes and growth rates in the 92 Italian 
provinces (years 1951 and 1999). 

Per-capita income 

Period Min Max Mean First 
quartile 

Second
quartile

Third 
quartile 

Coefficient
of variation Skewness Kurtosis 

1951 3.28 14.00 6.97 4.72 5.90 7.17 0.38 1.14 3.89 

1999 15.77 49.13 30.97 23.08 29.75 35.57 0.27 0.10 2.23 

Growth rate 

Period Min Max Mean First 
quartile

Second
quartile

Third 
quartile

Coefficient
of variation Skewness Kurtosis 

1951-99 1.82 4.43 3.16 2.94 3.33 3.63 0.16 -0.40 0.03 

Italian Provinces
First quartile
Second quartile
Third quartile
Fourth quartile

Italian Provinces
First quartile
Second quartile
Third quartile
Fourth quartile

 (a) (b)

Fig. 1.3. Distribution of the per-capita GDP (expressed in natural log) in the 92 Italian 
provinces; (a) year 1951 and (b) year 1999. 

reviewed in Section 1.1 (Kmenta, 1997, Maddala, 2001, Johnston, 1991, Baltagi, 
2001, Kennedy, 2003 and Woolridge, 2002a). Further on in the book this feature 
will be referred to as “spatial dependence”.

Figure 1.4 shows the growth rates recorded in the observed time interval. Here 
the pattern is quite different, with the higher rates scattered irregularly in the east-
ern part of the country. A closer look at both Figures 1.3 and 1.4 reveals evidence 
of -convergence in that some of the poorer regions (namely, those distributed 
across the Adriatic sea) experienced a faster growth than most of the richer re-
gions in the north during the observed time interval.  
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Italian Provinces
First quartile
Second quartile
Third quartile
Fourth quartile

Fig. 1.4. Distribution of provinces’ (log) per-capita GDP growth rates for the 92 Italian 
provinces during the period 1951-1999. 

Obviously, a more formal analysis is required to corroborate this visual impression 
and to quantify the speed of convergence. 

Figure 1.5 shows the dynamics of the real per-capita GDP dispersion (measured 
in log terms) over the period 1951-1999, synthetically measured by the coefficient 
of variation (the ratio between the standard deviation and the national average). 
The analysis of the geographical variability’s time path is often referred in the lit-
erature as -convergence (Barro and Sala-i-Martin, 1995) an approach that, al-
though heavily criticized e. g. by Arbia (2001b), is the one adopted in the official 
reports of EU (see for instance EU, 2005). Regional inequalities diminished by 
more than one half over the entire period, but the sharp trend towards convergence 
was confined to the period between 1951 and 1970. This is partly due to the sig-
nificant effort to implement territorial development in the South (through the 
Cassa del Mezzogiorno) and partly to the development of the North-Eastern re-
gions. The subsequent period was, instead, characterized by a substantial invari-
ance of income inequalities.  

Finally, Figure 1.6 shows the scatter diagram of the growth rates registered in 
the 92 Italian provinces during the period 1951-1999 plotted against their initial 
per-capita GDP. The graph displays a marked tendency towards a linear decrease 
and indicates how the poorer provinces are those that experienced the faster 
growth in the period considered, thus beginning to catch up with the richest. 

All the elements considered in this first descriptive analysis therefore corrobo-
rate the idea of a long-run convergence of Italian provinces.  
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Fig. 1.5. Italian provinces -convergence of per-capita income in the period 1951-99 (Coef-
ficient of variation). 
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Fig. 1.6. -convergence among the Italian provinces. Scatterplot of the growth rate during 
the period 1951-1999 versus the natural logarithm of per-capita GDP (1951). 

Moving on to a more formal -convergence analysis, we start by computing the 
Ordinary Least Squares estimates of the convergence parameters of Equation 
(1.21) using the data-set referring to the 92 Italian provinces. We will also judge 
the performance of the estimated regression by computing some of the standard 
misspecification tests.

Table 1.2 displays the results of the cross-sectional OLS estimation procedure. 
The dependent variable of the model is the growth rate of the province’s per- 
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Table 1.2. OLS Estimates of the -Convergence regression of per-capita income in the 92 
Italian provinces (1950-1999). (Numbers in brackets refer to the p-values). 

 (Constant) -0.016
(0.735)
-0.909
(0.000)

Speed of convergence (*) 0.047 

Half-life (**)  14,74

Goodness of fit 

Adjusted R2 0.366 

Schwartz Criterion -105.890 

Regression Diagnostics 

Jarque-Bera normality test 2.133 
(0.344)

Breusch-Pagan heteroskedasticity test 0.050 
(0.822)

(*) Speed of Convergence 
T

b 1ln
; (**) Half-life = 169.0)2ln( b

b
t lifehalf

capita income, while the predictor is the initial level of per-capita income (ex-
pressed in natural logarithms). Both variables are scaled to the national average.  

Our results appear very much in line with the previous findings on the devel-
opment of Italian regions/provinces. The coefficient of -convergence for the 
whole period is highly significant with the expected negative sign, confirming the 
presence of convergence over the years 1951-1999. Its value (-0.909) implies an 
annual rate of convergence of 4.7% and an half-life of 14.74 years.  

Table 1.2 also reports some diagnostics for identifying misspecifications in the 
regression model. Firstly, the Jarque-Bera normality test (Jarque and Bera, 1980) 
is not significant. Consequently, we can safely interpret the results of the various 
misspecification tests that depend on the normality assumption. Secondly, since no 
problems were revealed with respect to a lack of normality, the Breusch-Pagan 
statistic is given (Breusch and Pagan, 1979). Its value is also far from significant, 
leading to the acceptance of the homoskedasticity assumption. 

The regression output, therefore, reports a good fit and no misspecification warn-
ing. But, what about the hypothesis of independence assumed in the sampling model? 

When dealing with a dynamic regression model based on time series of data, it 
is usual practice to contrast the assumption of independence of the non-systematic 
component (see Section 1.2) with that of a temporal dependence among residuals. 
In this case, the assumption of independence is formally tested via the Durbin-
Watson test (Durbin and Watson, 1950, 1951) or via the various other alternatives  
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Residuals (1951/99)
More than -1 Std. Dev.
From -1 to 0 Std. Dev.
From 0 to 1 Std. Dev.
More than 1 Std. Dev.

Fig. 1.7. Map of the empirical standardized residuals of Equation (1.21) estimated on the 92 
Italian provinces. Growth rates have been measured for the period 1950-1999. Large re-
siduals are identified as those that exceed plus or minus one standard deviation and are 
displayed in black and white respectively. 

put forward in the literature (for example those proposed by Box and Pierce, 1970; 
Wallis, 1972; Ljung and Box, 1978; Kobayashi, 1991 amongst others). 

In contrast, when dealing with regression estimated on spatial data, the econo-
metric textbooks suggest no rigorous testing of the regression residuals’ independ-
ence because there is no appropriate alternative. Given this lack, let us start, at 
least for the time being, with a simple visual inspection of the geographical map of 
the standardized residuals. This map is shown in Figure 1.7. 

A visual inspection of Figure 1.7 reveals quite a distinct geographical pattern of 
residuals. In fact, large positive geographical residuals are concentrated in the ex-
treme southern regions of the peninsula (Sardinia, Sicily and Apulia) whereas 
large negative residuals are concentrated in the central and northern areas corre-
sponding to large parts of the Veneto, Emilia-Romagna and Umbria regions. Fur-
thermore in only a few cases can we observe large positive residuals (those 
marked in black on the map) juxtaposed to large negative residuals (those marked 
in white). Residuals are rather regularly distributed in space with a smooth transi-
tion from a few “hot spots” of large positive values (located in the south) to lower 
values, giving the visual impression of a sort of spatial continuity. 

From these considerations it appears clear enough that the estimated relation-
ship is rather unsatisfactory notwithstanding the model’s good performances 
measured by the standard model diagnostics. In fact, the model tends to overesti-
mate (producing negative residuals) growth rates in some provinces located in 
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proximity to each other (namely, centre and northern areas). Conversely, the rela-
tionship tends to underestimate the growth rates (producing positive residuals) in 
some other provinces geographically located in the south. In these conditions, the 
relationship estimated in the above regression cannot be taken as a good represen-
tation of reality. Indeed, either the linear specification is not able to capture the 
relationship between the two variables or, alternatively, some relevant explicative 
variables related to the geography of the phenomenon have been omitted. Notice 
that we cannot change the model’s specification in the specific case we are analys-
ing because the economic-theoretic model that we want to test requires the linear-
ity of the relationship as explained in Section 1.2. Thus the only possibility of im-
proving the model’s performances rests on the explicit consideration of space as a 
further variable that explains why some regions occupying a definite position in 
space, grow faster than they should according to the assumed economic theory. 

Such considerations motivate us towards a more formal analysis of the peculiarity 
of space in the study of economic relationships.  

1.3.3 A -convergence Analysis of European NUTS-2 Regions 
(1980-1996)

Let us now consider the second data set referring to the European Union regions at 
a NUTS-2 level. In this analysis, we again consider the per-capita GDP (measured 
in purchasing power parities) of 129 European regions for the period 1980-1996. 
Like the Italian data considered in Section 1.3.2, this second set of observations 
also derive from the REGIO database provided by Eurostat, and refers to the terri-
torial units of ten European countries (i. e. Belgium, Denmark, France, Greece, 
West Germany, Italy, Luxembourg, Portugal, Spain and The Netherlands) at the 
NUTS-2 level. 

We have chosen the NUTS-2 subdivision in this second analysis in that it can 
be considered fine enough to observe spatial effects at a continental level. 

Let us start again with a descriptive analysis based on the -convergence of 
the European regions during the period considered. Figure 1.8 shows the coeffi-
cient of variation’s dynamics over the period 1980-1996. After a phase where 
regional inequalities seem to remain constant, after 1986 we observe a decreas-
ing trend of the coefficient of variation and, hence, a decrease of economic dis-
parities between regions.  

Let us further consider a visual inspection of the geographical pattern of the 
GDP in the initial year (1980) and in the final year of the period (1996), and of the 
growth rate observed over the whole period. The maps of the GDP in the two 
years are reported in Figures 1.9a and 1.9b. Both maps display a spatial trend with 
a marked core-periphery pattern. In fact, the higher GDP values in both years are 
concentrated in the centre of the continent (located somewhere between southern 
Germany, eastern France and northern Italy) with a smooth decline towards the 
lower values that may be observed in the continent’s peripheral regions. 
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Fig. 1.8. European regions’ -convergence of per-capita income during the period 1980-
1996 (coefficient of variation). 

Figure 1.10 reports the growth rates recorded in the period from 1980 and 1996. 
Similarly to Figure 1.4, regions characterized by lower initial levels of per-capita 
GDP (e. g. the Spanish regions) experienced higher growth’s rates in the time in-
terval, whereas regions with a high level of per-capita GDP in 1980 (remarkably 
French and northern Italian regions) display low levels of growth in the interval. 

Since Figures 1.8 to 1.10 show evidence of convergence, we move to a formal 
-convergence analysis by estimating Equation (1.21) on this new set of data. 

To start with, Figure 1.11 displays the scatter diagram of the growth rate with 
respect to the initial level of per-capita income and further corroborates the hy-
pothesis of convergence. Indeed, the poorer regions (corresponding to Portugal) 
display higher growth rates and the richer ones (corresponding to The Nether-
lands) grow relatively less: almost 80% more slowly than the poorer ones. 

The main results of the OLS estimation procedures are summarized in Table 1.3.  
The empirical results highlight convergence. The estimate of the  coefficient 

is negative and highly significant. The implied speed of convergence is 1.87% and 
the half-life is 36.96 years. This result is in agreement with the “empirical law of 
2%” observed by Barro and Sala-i-Martin (1995) and Sala-i-Martin (1996)2.

Table 1.3 also shows some diagnostics for evaluating the regression model’s 
performance. Both the Jarque-Bera normality test and the Breusch-Pagan heteroske-
dasticity test are not significant.

                                                          
2  In Barro and Sala-i-Martin (1995) and Sala-i-Martin (1996), the authors found that, by 

analysing European, North American and Japanese regions separately, the speed of 
convergence was surprisingly similar across different regions and measured approxi-
mately 2%. 
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(a)

(b)

Fig. 1.9. Distribution of the per-capita GDP (expressed in natural log) in the 129 European 
NUTS-2 regions in (a) 1980 and (b) 1996.  
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Fig. 1.10. Distribution of the per-capita GDP growth rates (expressed in natural log) in the 
129 European NUTS-2 regions in the period 1980-1996. 
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Fig. 1.11. -convergence among the European regions. Scatterplot of the growth rate dur-
ing the period 1980-1996 versus the natural logarithm of per-capita GDP (1980). 
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Table 1.3. OLS Estimates of the -Convergence regression of per-capita income in the 129 
European regions (1980-1996). (Numbers in brackets refer to the p-values) 

 (Constant) 3.361 
(0.000)
-0.273
(0.000)

Speed of convergence (*) 0.01875 

Half-life (**)  36,96

Goodness of fit 

Adjusted R2 0.322 

Shwartz criterion -154.545 

Regression Diagnostics 

Jarque-Bera normality test 3.014 
(0.222)

Breusch-Pagan heteroskedasticity test 0.067 
(0.796)

(*) Speed of Convergence 
T

b 1ln ; (**) Half-life = 169.0)2ln( b
b

t lifehalf

Fig. 1.12. Map of the empirical standardized residuals of Equation (1.10) estimated on the 
129 regions at a NUTS-2 level over the period 1980-95. Residuals are classified in the 4 
interquartile classes. 
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Again, the only possibility of investigating the violation of the assumption of in-
dependence among the regression model’s non-systematic component is by visu-
ally inspecting the map of the standardized empirical residuals. This is set out in 
Figure 1.12. The map displays a marked geographical regularity with most of the 
regions in France and all southern Italian regions being systematically underesti-
mated by the -convergence regression. A further geographical feature, already 
observed in the analysis presented in Section 1.3.2, is constituted by evidently 
smooth variation from high positive to low positive residuals (the darker shades in 
Figure 1.11) and from high negative to low negative residuals (the lighter shades 
in Figure 1.11). Only occasionally are regions falling in the fourth interquartile 
class close to regions falling in the first interquartile class. 

Like to the case discussed in Section 1.3.2, this second example shows that, 
notwithstanding its good performance with respect to the standard regression di-
agnostics, the model is not entirely satisfactory. Entire regions, that are not just 
randomly scattered in the geographical space, experience over/underestimation of 
growth rates on the basis of the postulated relationship and this evidence re-
enphasizes the need to include space and spatial relationships formally in the theo-
retical formulation of a convergence model. 

1.4 A list of Omitted Topics and an Outline of the Book 

It is important to remark, at the end of this introductory chapter, that this volume 
does not aim at covering all the possible topics in spatial econometrics (a task that 
is better accomplished by other books such as Anselin, 1988; Anselin and Bera, 
1998; Anselin and Florax, 1995 and Anselin et al., 2004). It is, rather, interested in 
introducing the basic spatial linear regression model by showing its relevance in 
one particular instance: the testing of regional convergence of per-capita income. 
We see this as a paradigmatic example that can help an understanding of more 
complicated models. The book is therefore limited in terms of the topics covered, 
even if it introduces in a rigorous way all the basic statistical concepts and tools so 
that the interested reader will be in a position to understand more advanced me-
thods and techniques if required. 

Thus many important topics and specific aspects of the discipline have been de-
liberately omitted and receive no consideration in this volume. 

In particular, even if there are many ways in which spatial data can manifest 
themselves in economic analysis (e. g. points on a map, as in the case of plants, or 
lines on a map, as in the case of transport flows), this book will concentrate solely 
on the treatment of geographical aggregates i. e. data collected at a regional, cen-
sus tract, county or national level. To date this particularly kind of spatial data has 
clearly been the typology most widely used both in economic analysis and in poli-
tical debates (see Arbia and Espa, 1996a for a comprehensive review of the me-
thods available for the other typologies of spatial economic data). 
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A second limitation of this book lies in the fact that it only considers here the 
inferential problems arising in the phases of estimation and hypothesis testing. No 
attention is given to the important problem of model identification or that of choo-
sing the best specification among competing spatial models (see e. g. Paelinck and 
Klaassen, 1979). 

A third important issue that is left outside the scope of the present book is that 
of spatial aggregation. It is clear that the result of any regression analysis based on 
spatial data depends essentially on the level of geographical aggregation chosen 
and cannot simply be extended from one level of aggregation to the other. For in-
stance (considering once again the example chosen as the thread of this book), it is 
perfectly possible, when analysing the economic convergence process of a set of 
regions, to observe convergence at the European NUTS-2 level, and, conversely, 
divergence at another level (e. g. the NUTS-3 level). This indeterminacy of sta-
tistical results is one of the possible manifestations of the so-called Modifiable 
Unit Problem (Yule and Kendall, 1950), or, better, of its geographical counter-part 
known as Modifiable Areal Unit Problem (or MAUP; see Openshaw and Taylor, 
1981; Arbia, 1989) also termed the “second law of geography” (Arbia et al., 
1996). The choice of the level of aggregation is thus of paramount importance in 
any spatial econometric analysis. Of course, this problem is by no mean typical of 
geographical studies and generally refers to the possible inconsistency between 
micro and macro relationships in economics, a problem that has received much 
attention in economics since Theil’s seminal contribution (Theil, 1954). Yet, as we 
have said, it has been left outside the scope of the present book. 

A fourth limitation of this monograph is represented by the fact that it will only 
consider the case of synchronic spatial series of data. Indeed, especially in recent 
years, there is an increasing availability of spatially distributed data observed 
through time and this fact, in turn, has much stimulated the development of tech-
niques and models that seek to capture simultaneously the spatial and the temporal 
dynamics of economic phenomena. A short account of space-time statistical mo-
dels and of spatial panel data models is reported in Chapter 6 at the end of the 
book, but the topic is not considered in the rest of the monograph.   

Having (I hope) motivated the reader to the study of economic relationships u-
sing spatial data, and having clarified the limits within which we have planned to 
confine ourselves in the present monograph, we can now present the book’s struc-
ture in more detail. 

Chapters 2 and 3 provide the necessary background for introducing the theory 
of spatial linear modelling. More specifically, Chapter 2 is devoted to a rigorous 
treatment of the stochastic fields theory as the natural framework for analysing 
spatial data. Here we will introduce the definition of a random field and the re-
strictions that we need to consider in order to perform statistical inference. We 
will also discuss in detail the characteristics of some basic random fields that are 
particularly useful in econometric analysis. Finally, we will discuss some impor-
tant limiting theorems that are useful for evaluating the results of asymptotic the-
ory of random fields. In Chapter 3 we will introduce the concept of likelihood and 
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its related testing procedures and we will discuss some of the adaptations that are 
necessary in order to define a spatial likelihood.  

Chapter 4 represents the core of the whole book and contains the main topics 
encountered when analysing a spatial linear model. Here we will discuss the major 
violations of the classical linear regression hypotheses that occur when the model 
is estimated with spatial data. In doing so we will analyse the violations related to 
the sampling model (SM) separately from those connected with the underlying 
probability model (PM). 

In Chapter 5 we will return to the introductory examples discussed in the pre-
sent chapter and we will re-analyse the same data set in order to show how the 
lesson learnt about the treatment of spatial data can modify the conclusions con-
cerning to the convergence of Italian and European regions. 

Finally Chapter 6 is devoted to all those who want to learn more about spatial 
econometrics and consider this book only as a first reading before attacking the 
deeper questions and the more recent developments in the topics. Here we will 
briefly review the recent literature and provide a guided tour of the various more 
advanced techniques proposed in the last decades.  

The book’s Appendix contains some references to the statistical software that is 
currently available for the actual application of spatial econometric procedures to 
empirical datasets. 



2 Random Fields and Spatial Models 

2.1 Introduction 

An econometric model amenable to statistical estimation is built starting from a 
set of n (possibly multivariate) empirical observations, say x=(x1, x2,...., xn), that 
are conceived as the result of a single experiment related to a set of random vari-
ables (X1, X2,...., Xn). In order to progress along this path it is necessary to intro-
duce a series of hypotheses on the nature of such random variables and the way in 
which they are related to the observed values. It is useful to classify these hy-
potheses within two distinct categories, namely: 

1. Hypotheses related to a probability model (PM) that postulate a plausible 
form for the joint distribution of the random variables involved. It is convenient 
to express such a model in the form of a parametric family of density func-
tions ),;,...,,( 21,...,, 21 nXXX xxxf

n
, with );,...,,( 21,...,, 21 nXXX xxxf

n

the joint density function of the random variables associated with the n ob-
servations,  the vector of unknown parameters to be estimated,  the pa-
rametric space and  the parametric family of density functions; and 

2. Hypotheses concerning a sampling model (SM) for the n observations avail-
able, which incorporates information about the criterion of selection from the 
PM and provides a link between such a PM and the observational data. 

The hypotheses underlying the PM and the SM are expressed by taking the nature 
of the specific economic data considered into account. 

Broadly speaking, we can distinguish between four major typologies of eco-
nomic data arising in empirical research. 

(i)  A first typology is represented by cross-sectional data referring either to a 
single economic agent (household or firm) or to groups of them (such as eco-
nomic sectors). When building a statistical model for such economic data, the 
more adequate form of sampling model is the one based on the notion of a 
random sample in which we assume that each random variable is independ-
ently distributed with a density function );( iX xf

i
. In this case, the joint 

probability density function considered in the PM can be simplified as the 
product of the marginal densities, that is:  

);,...,,( 21,...,, 21 nXXX xxxf
n

 = 
n

i
iX xf

i
1

);(
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(ii) A second typology of data relates to a time series, referring once again 
to either single economic agents, or to groups of them, observed in dif-
ferent moments of time. In this case the probability model can  
be expressed as ,),;,...,,(

2121 ,...,, Ttxxxf itttXXX nnttt
 in which 

nttt XXX ,...,,
21  represent a collection of random variables ordered with re-

spect to time (a random process), and );,...,,(
2121 ,...,, nnttt tttXXX xxxf  their 

joint density function. In building a statistical model based on time series 
observations it is not possible to break the joint probability density func-
tion down into the same simple form as in the previous case. However, 
due to the intrinsic order of temporal data, it can be written as the product 
of the conditional densities, that is:  

);,...,,(
2121 ,...,, nnttt tttXXX xxxf  = 

n

i
ttttXXX iinttit

xxxxf
1

,...,
);,...,,(

1212

(iii) A third typology of economic data relates to spatial series, i. e. the ty-
pology to which the present book is devoted. This kind of data arises 
when observing individual economic agents (or groups of them), with 
additional information about their position in space. This is the first time 
that we use the word “space” in this monograph and, given that the 
whole book is devoted to this subject, it is important to provide a formal 
definition of it. Indeed various definitions are possible according to 
whether we refer to a geographical space, an economic space, a technical 
space or other forms of it. Paelinck (1983) defines a “space” in the most 

general terms as the pair ROS ,  with O representing the objects of the 
study and R the relationships existing between them. The set of objects 
O can represent any geometrical figure such as points, lines, or polygons 
in k . As for the relationship between objects Paelinck (1983) considers 
different definitions and lists the three remarkable cases of topological 
structures, economic structure, and technical structures leading to differ-
ent definitions of space. We will go back to these concepts in Section 
2.2.1.  

When data provide extra information about their position in space, the 
observed sample can be though of as drawn from a Probability Model 
specified as ,),;,...,,(

2121 ,...,, Ssxxxf isssXXX nnsss
 in which 

nsss XXX ,...,,
21

 represent a collection of random variables ordered with re-
spect to their geographical location, );,...,,(

2121 ,...,, nnsss sssXXX xxxf  repre-

sents their joint probability density function, and S is an index referring 
to the spatial location whose nature will be clarified in the following 
pages. In this third instance none of the previous simplifications of the 
joint probability density function are feasible in the probability model. 
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The problem therefore arises as to how to fully redefine the probability 
model in order to be able to take account of the geographical dependence 
structure among the random variables involved. 

(iv) Finally a fourth typology of economic information relates to panel data re-
ferring to either single economic agent or spatial units such as regions or 
states. In this second case we refer, more specifically, to spatial panel data.
This typology is originated by the combination of typologies (i) and (ii) or, 
alternatively (ii) and (iii) above. When we avail a spatial panel data set, the 
observed sample is generated by the PM specified as: 

;,),;,...,,,...,,(
211121121,11211 ,...,,...,, TtSsxxxxxf iitststststsXXXXX mnnmtnststnststs

and the random variables are simultaneously ordered with respect to a 
temporal index T and a spatial index S.

The most natural way of keeping into account the problems of geographical de-
pendence emerging in the probability model for spatial data is represented by the 
extension of the familiar concepts relating to a temporal random process (see e. g. 
Hamilton, 1994) to the idea of a two-dimensional random process (also referred to 
in the literature as a random field).  

The idea of a random field was first introduced by Yaglom (1957; 1961; 
1962) and then studied by Matern (1960) (more recently reprinted in Matern, 
1986) and Whittle (1954; 1963). This chapter provides an introduction to this 
topic by concentrating only on those aspects that are necessary to specify a sta-
tistical linear regression model based on spatial data. For a more thorough re-
view see Guyon (1995). 

2.2 The Concept of a Random Field 

Let us start by introducing the following definition. 

Definition 1. Let (.),, PB  be the triplet defining a probability space, with 
representing the sample space, B the associated Borel set and P(.) a probability 
measure. Moreover, let S be a non-empty set in R2, and let us define the function 
X(.,.), with X(.,.) such that:  x S R. The ordered sequence of random vari-
ables X(.,s), s S  = X(s), s S , indexed with respect to s, is called a spatial 
random process or random field.

There are two fundamental characteristics of a random field X(s), s S . The first 
relates to the nature of the indices s S, i. e. to the topology of the observations. 
The second concerns the spatial dependency structure displayed by the set of ran-
dom variables constituting the field. These two features will now be discussed in 
turn in Sections 2.2.1 and 2.2.2. 
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2.2.1 The Nature of the Index S

2.2.1.1 Generalities 

The indices belonging to the set S can be either continuous or discrete. In the first 
instance, the index s represents the coordinates of n points in R2 (see Figure 2.1a); 
in the second case it represents the coordinates on a regular (usually squared) grid 
(see Figure 2.1b) or an ordered series of values relating to a finite set of polygons 
(or “regions” in economic geography) (see Figure 2.1c). In this last instance, the 
vector s actually represents a scalar s I + relating to an arbitrary number assigned 
to each polygon. Just to give the reader an idea, some real cases of point and poly-
gon spatial data are given in Figures 2.2 and 2.3. 

*      (1,1) (1,2)     1   2  

 *     (2,1)         3  

            4  5   

 *   *           6  

 **  *            7  

**  *          8     

(a)      (b)      (c)     

Fig. 2.1. Three possible typologies of discrete spatial data: (a) Points, (b) Regular lattice 
grid and (c) Irregular lattice.  

The statistical information in economic data analysis usually refers either to 
points in the space economy relating to the position of a single economic agent, 
or to aggregates observed within sub-national territorial units such as munici-
palities or regions. The case of data distributed on a regular grid (a case that is 
extremely interesting in other applied fields such as remote sensing and image 
analysis, see e. g. Arbia, 1993) is, conversely, still very limited in economic 
analysis. For some examples of this typology of economic spatial data the reader 
is referred to (e. g.) Arbia (1996a). 

The remainder of this book will concentrate on the study of random fields relat-
ing only to point data and regional data with a greater emphasis on regional data. 
We will refer to the first case as to a continuous-parameter random field and we 
will define it as X(s), s=(r,s), r,s R . In the second instance we will refer to a 
discrete-parameter random field that will be defined as X(s), s=s, s  I+ .
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Fig. 2.2. Example of point data: the location of textile companies within the Prato council 
area. Each point represents a firm. Reported from Arbia and Espa (1996a). 
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Fig. 2.3. Example of polygon data: Spatial distribution of mobile phones in the US states 
in 2004. 

2.2.1.2 The Topology of a Random Field 

In the case of a continuous-parameter random field, the topology of the reference 
space is fully specified through the concept of metric or distance. In the case of an 
Euclidian distance in n-space, for instance, one has: 

ji
T

jijiij dd ssssss ),(

with ijd the distance between point is and point js . Conversely, in the case of dis-
crete-parameter random fields, the topology needs to be specified exogenously by 
the researcher, thus inevitably introducing a certain degree of subjectivity into the 
analysis.

A common way of proceeding is to consider the distance between the centroids 
of the polygons as representative of the distance between them. This solution is 
not entirely satisfactory, however, especially in the presence of very irregularly 
shaped polygons. As an alternative, one may use the Hausdorff concept of inter-
polygon distance named after Felix Hausdorff and defined as the maximum dis-
tance of a polygon to the nearest point in the other polygon. (See Hausdorff, 1914 
and Edgard, 1995). More formally, Hausdorff distance from the polygon A and 
the polygon B is a maxmin function, defined as badBAH

BbAa
,minmax),( ,

where a and b are points of polygons A and B respectively, and d(a, b) is any 
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measure of distance between these points. Many other alternative definitions have 
been suggested in the literature. For a review see, e. g., Paelinck (1983).  

In an economic context it is questionable whether a simple Euclidean distance 
is the most appropriate to capture the geographical links between economic agents 
and regions. Alternative definitions include a distance based on the time required 
to reach site js  from site is  or on the economic cost involved in the trip. Further-
more, some authors suggest the use of social distances (Doreian, 1980) or a wider 
definition of economic distance (Case et al., 1993; Conley and Topa, 2002). Dis-
tances measured in terms of the empirically observed flows (Murdoch et al, 1997) 
or on trade-based interaction measures (Aten, 1996, 1997) could also be taken into 
account in empirical research. 

An important definition in the analysis of the topological links within continu-
ous and discrete parameters random fields is that of the neighbourhood of a site. 
Various definitions are possible. Here we review some of the most commonly 
used in the spatial econometric literature. 

Definition 2. Critical cut-off neighbourhood. Two sites is  and js are said to be 
neighbours if *0 ddij , with ijd  the appropriate distance adopted, and *d
representing the critical cut-off. 

Definition 3. Nearest neighbour. Two sites is  and js are said to be neighbours if 
kidMind ikij , .

Definition 4. Contiguity-based neighbourhood. In the case of discrete-parameter 
random fields, a simple definition of neighbourhood could be based on the mere 
adjacency between two polygons. In this case two polygons indexed by is  and 

js are said to be neighbours if they share a common boundary. 

Let us define )(iN  as the set of all neighbours (however defined) of site is  and 
i  as the cardinality of this set. By definition we have that )(iNis .
It needs to be stressed here that the result of any econometric analysis will be 

dependent on the specific topology (and, hence, of the neighbouring structure) 
chosen for the random field. Consequently it is always wise to test the robustness 
of the results obtained by adopting several definitions of neighbourhood.

Having clarified the idea of a distance between sites both in the continuous-
parameter and in the discrete-parameter case, and also the concept of a neighbour-
hood, let us now introduce a fundamental tool that will be used extensively in the 
remainder of the book to express these concepts analytically. This is the so-called 
connectivity matrix (or weights’ matrix). 

The general form of a binary connectivity matrix W of generic element ijw  is 
provided by: 

otherwise
iNjif

wij 0
)(1

 (2.1) 
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with )(iN  specified according to any of the previous definitions. Notice that we 
can now express the cardinality of )(iN  as 

j
iji w . A connectivity matrix thus 

formally expresses the proximity links existing between all pairs of sites that con-
stitute a random field according to a pre-specified concept of neighbourhood. 

Instead of a simple binary weights’ matrix, one can introduce a generalized set 
of weights that allows the researcher to incorporate his prior knowledge on the 
geography of the phenomenon under study. This allows a greater flexibility and 
the possibility of introducing items such as natural barriers, polygon dimensions 
and shapes. On the other hand, however, the more complex the structure of the 
connectivity matrix, the more difficult it will be to distinguish between what is a 
genuine spatial effect and an effect that is forced in by the investigator. 

The general expression for a generalized weights’ matrix is provided by: 

][ ijij dgw  (2.2) 

with g an inverse function of the distance. An example is provided by the gravita-
tional-type weighting: 

0-
ijij dw  (2.3) 

It is sometimes useful to consider weights’ matrices that are row-standardized, in 
the sense that each row sums up to 1. This is achieved by defining a set of weights 

** Wijw  such that  

i

ij

j
ij

ij
ij

w
w

w
w*  (2.4) 

so that 1*

j
ijw . This last definition is particularly useful for introducing the 

notion of a spatially lagged variable. In time series analysis it is well known that, 
given a sequence of random variables constituting a random process, say 

nttt XXX ,...,,
21 , the lag operator is defined as: 

1
)(

ii tt XXL

so that the lagged variable is the variable adjacent to 
it

X  in the temporal scale. 
In a spatial context, however, the concept is of difficult extension. In fact, due 

to the multilaterality of proximity in space, the lagged value of the variable )( iX s
can be any of the neighbours of is  according to the neighbourhood definition cho-
sen. The solution commonly adopted in the literature is that of defining the spatial 
lag of a random variable )( iX s  as the mean of the random variables observed in the 
neighbourhood of site is . Consequently we have the following definition. 
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Definition 5. Given a random field X(s), s S = )();...,();( 21 nXXX sss , and 
given the topology induced by the neighbourhood definition )(iN , the spatially 
lagged value of the random variable )( iX s  is defined as: 

)(
)(1

iN
j

i
i

j

XXL
s

ss  (2.5) 

or, equivalently, by 

n

j
jij

n

j
jij

i
i XwXwXL

1

*

1

)()(1 sss  (2.6) 

using Equation (2.4), or, in matrix notation, for the whole field 

)(* sXWsXL  (2.7) 

where sX  is the column vector ( T
ns,...,s,s 21 XXX .

2.2.2 The Dependence Structure of a Random Field  

Let us now move to the second fundamental characteristic of a random field that, 
as we anticipated, refers to the dependence structure of the random variables 
X(s), s S . Such a structure can be determined by the cumulative joint probabil-

ity distribution function of the field, say: 

)](),...,(),([ 21 nxxxF sss  = )()(),...,.()(),()(Pr 2211 nn xXxXxX ssssss   (2.8) 

or, in the case of random variables that are absolutely continuous, by the joint 
probability density function )](),...,.(),([ 21),()...,(),( 21 nXXX xxxf

n
ssssss  defined in such 

a way that: 

)](),...,(),([ 21 nxxxF sss = n

x x

nuuu dududuuuuf
n

n
...],...,,[... 21

)( )(

21,,...,,

1

21

s s

 (2.9) 

Note that the continuity of the random variables should not be confused with the 
continuity of the index s. We can have continuous random variables distributed 
over a continuous or a discrete space and, similarly, we can have discrete random 
variables distributed over a continuous or a discrete space. An example of a dis-
crete random variable distributed on a continuous space is represented by the 
number of employees in a set of industrial locations in 2  space (for an example 
see, e. g., Arbia, 2001a) ; an example of a discrete random variable on a discrete 
space is represented by the number of employees in a set of regions; an example 
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of a continuous random variable on a discrete space is represented by the regional 
GDP; and, finally, an example of a continuous random variable on a continuous 
space is represented by the value of the production realized in different industrial 
locations. 

The advantage of operating with random variables distributed in the space is rep-
resented by the fact that the geographical position of the random variable can sug-
gest restrictions onto the probability density function, as we will see in the future. 

Definition 6. For each sequence of random variables ,1),(),...,( 1 nXX nss  be-
longing to the field X(s), s S , the marginal density function of )( 1sX  can be 
defined as: 

)(),...,()](),...,(),([...)( 221)(),...,(),(1)( 211 nnXXXX dXdXxxxfxf
n

ssssss ssss  (2.10)

Definition 7. For each random variable iX s  belonging to the random field 
sX , s S , the mean, the variance and the higher moments of iX s  can be 

defined as: 

iXE ii ss

iXVar ii
2 ss

Ssss ,1, riXE ir
r

i

As we can see, such characteristics of sX , can generally be expressed as func-
tions of the index s since, at least in principle, any random variable sX  has a 
different probability density function )()( ss xf X  at any point s of the geographical 
space.

Definition 8. For each pair of random variables 1sX  and 2sX  belonging to 
the random field sX , s S , the joint bivariate probability density function is 
defined as: 

)](),([ 21)(),( 21
sxsxf sXsX =

= )(),...,()](),...,(),([... 321)(),...,(),( 21 nnXXX dXXdxxxf
n

ssssssss  (2.12) 

The various joint moments relating to the joint distributions described under Defi-
nition 8 assume a particular meaning, given the importance of the index s S in a 
geographical context. In particular, let us consider the following definition: 
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Definition 9. Given the field X(s), s S , the quantity: 

jijjiiji XXE ssssssss ,)()()()(, R2 (2.13) 

is called the spatial auto-covariance function of the field. Furthermore, its standard-
ised version, given by: 

)()(
)()(

2

2
2 ss

ssss
1

1
1 s1, s2 R2 (2.14) 

is said to be the spatial autocorrelation function on the field. 
One of the most important examples of random fields in econometrics is the 

Gaussian (or Normal) field. In fact, members of this family have convenient ma-
thematical properties that enormously simplify calculations. Furthermore, it has 
been found that the distribution of many empirical processes can be satisfactorily 
approximated by it. We therefore introduce the following definition: 

Definition 10. A random field X(s), s S  is called Gaussian if, for each finite 
subset in R2, say (s1, s2,…,sn), (X(s1),…,X(sn)) = X(s) is such that: 

X(s)  MVN ( , V)

or:

)](),...,(),([ 21)(),...,(),( 21 nXXX xxxf
n

ssssss =
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n

 (2.15) 

with njniji ,...,1;,...,1;Vss ; V an n-by-n auto-covariance matrix and 
T

n )(),...,(),( 21 sssµ  a n-by-1 vector of expected values. 
A spatial Gaussian field is fully specified in terms of its first two moments 

which, in turn, are functions of the index s.
In econometric analysis, we often jointly analyse various phenomena that are 

spatially distributed, for instance regional growth rate and regional GDP, or prices 
and quantities sold in various locations in space. To tackle this important aspect it 
is necessary to introduce the concept of a vector random field of dimension k.

Definition 11. A vector random field X(s), s S  is defined as the field 
X(s)=(X1(s), X2(s),…,Xk(s))T in which each component Xi(s) represents a random 
field Xi(s), s S .
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Such a definition introduces an extra dimension to the analysis because a random 
vector X(s) of dimension k is associated with each site considered, si, i=1,...,n. The 
cumulative joint probability distribution function of the random vector is defined as: 

)](),...,(),([ 21 nF sxsxsx  = P X(s1) x1, X(s2) x2,…, X(sn) xn  (2.16) 

and, in the case of continuous random variables, the joint probability density func-
tion is: 

)](),...,(),([ 21)(),...,(),( 21 nn
f sxsxsxsXsXsX (2.17) 

Many of the definitions introduced for random fields can be extended to vector 
random fields (e. g. mean, variance and r-th moment) with a simple change of no-
tation. However, it is necessary to emphasize the importance of concepts that de-
scribe the complex relationships between pairs of random variables. For this rea-
son, we introduce the following further definitions: 

Definition 12. Given the vector random field X(s), s S  the quantities: 

jijmjmililjilm l,mXXE ssssssss ,;)()()()(, R2 (2.18)

and

)( jilm ss ji
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ss
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are called, respectively, the spatial cross-covariance and the spatial cross-
correlation functions of the field. 

By using the notation employed in Definition 11, we can now introduce the 
concept of a vector Gaussian field. 

Definition 13. A vector random field X(s), s S  is said to be Gaussian if: 
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with (si) k-by-1 vectors of expected values, and V(si) and C(si, sj), respectively, 
represent the k-by-k matrices of cross-covariance at site si, and the k-by-k matrices 
of spatial auto-covariance and spatial cross-covariance between pairs of sites, de-
fined by: 
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The definition of random fields given so far is too general to allow the construc-
tion of estimable statistical models. In fact, in econometric analysis, the researcher 
almost invariably has only one single realization of the field, i. e. one single obser-
vation for each site. Hence the number of parameters to be estimated is much 
higher than the size of the available information. 

The purpose of the next sections is to consider some particular forms of random 
fields on which a number of restrictions are imposed, so as to obtain a situation 
where the number of parameters is reduced to a point where their value can be 
inferred from the single realization available. These restrictions refer to: 

1. the spatial heterogeneity of the field (Section 2.2.1), and 
2. the spatial dependence of the field (Section 2.2.2). 

2.3 Restrictions on Random Fields 

2.3.1 Restrictions on the Spatial Heterogeneity of a Random Field 

Generally speaking, for a random field X(s), s S  the joint probability distribu-
tion function F(X(s), s) depends on the site s and is characterized by a set of pa-
rameters s which are also dependent on the site. Such a general definition, how-
ever, is not operational. Indeed, due to the non-experimental nature of economic 
data, the standard situation is that of dealing with a single replication available for 
each random variable of the field. Thus the number of parameters to be estimated 
is far larger than the available observations in empirical circumstances. For this 
reason, one is forced to restrict one’s attention to a sub-class of random fields 
which, whilst preserving an acceptable degree of generality, presents a certain 
level of spatial homogeneity and can be used to model real phenomena. One ex-
ample of these fields is represented by the class of stationary random fields.  
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Definition 14: A random field X(s), s S  is said to be stationary (in a strict 
sense) if, for each subset of sites (s1, s2, ..., sn) belonging to the space S, the joint 
probability density function f(X(s), s  S) does not change when the subset is 
shifted in the space. 

When dealing with stationarity in time, the notion of (unidimensional) shift does 
not present any problem. In contrast, when dealing with spatial data (since space is 
-at least- two-dimensional) a subset of random variables can have two different 
kinds of shifts. A set of random variables can be rotated at a certain angle, or 
translated with a rigid motion. If a random field remains unchanged in terms of its 
joint probability density function after a translation, it is said to be stationary un-
der translations, or homogeneous (a concept that is the opposite of heterogeneous),
which implies that the kind of dependence structure within the random field does 
not change systematically from one place to the other. If a random field remains 
unchanged in terms of its joint probability density function after a rotation, it is 
said to be stationary under rotations around a fixed point or isotropic (as opposed 
to anisotropic), which implies that the dependence structure does not change sys-
tematically along different directions. The two cases are illustrated in Figure 2.4. 

X(si) X(si)

X(si)

Translation

Rotation

Fig. 2.4. If the process characteristics are unchanged under translation, the process is said to 
be homogeneous. If they are unchanged under rotation, the process is said to be isotropic. 
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In the case of continuous-parameter random fields, having defined a vector of ar-
bitrary constants (l,m); l, m R, stationarity implies that the joint probability 
density function is : 

)](),...,(),([ 21)(),...,(),( 21 nXXX xxxf
n

ssssss =

)](),...,(),([ 21)(),...,(),( 21 nXXX xxxf
n

ssssss  R (2.22) 

In the case of discrete-parameter random fields, on the other hand, the extension 
of the concept of stationarity from one to two dimensions is much more compli-
cated, because the polygons that constitute the georeference of the random field 
are characterized, not only by their position in the plane, but also by their size and 
(irregular) shape. 

If a random field is homogeneous and isotropic, it is said to be stationary in the 
strict sense. 

A consequence of strict sense stationarity is that all univariate moments and all 
mixed moments of any order do not vary when the reference space is modified.  

Such a concept of stationarity, however, is very rarely realized in empirical cir-
cumstances and one therefore has to introduce the weaker concept of stationarity 
of order k which can be defined on the basis of the first k moments of the random 
field.

Definition 15. A random field X(s), s S  is said to be stationary of order k if, 
for each subset (s1, s2, ..., sn) of S, its moments up to order k do not change when 
the subset is subject to translations or rotations. We will consider two particular 
instances:

(i)  First-order stationarity: 

A random field X(s), s S  is said to be stationary of order 1 if E(|X(s)|) < 
+ , s  S and, furthermore,  

E(X(s)) = E(X(s+ ) = s, (2.23)

(ii) Second-order stationarity (or weak sense):

The random field X(s), s S  is said to be stationary of order 2 if 
E(|X(s)|)2 < , s  S and, furthermore  

a.  E(X(s)) = E(X(s+ )) = s,

b.  E[X(s)]2 = E(X(s+ ))2 = 2 s, (2.24)

c.  E[X(si) X(sj)] =  (dij) si, sj

where the symbol dij denotes the distance between si and sj.
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Stationarity of order 2, therefore, implies that the mean and the variance of a ran-
dom field do not depend on s and that the spatial covariances of the random field 
(si,sj) depend only on the distance between si and sj and not on their absolute 

position in the plane. 
In the case of Gaussian random fields, stationarity in the weak sense implies 

stationarity in the strict sense and this explains the emphasis in the literature de-
voted to a weak sense concept. 

2.3.2 Restrictions on The Spatial Dependence of a Random Field 

The restrictions on spatial dependence play a fundamental role in the study of ran-
dom fields. Their role in this field is definitely much more crucial than the analo-
gous restrictions in the study of temporal random processes. 

In the case of series of spatially distributed economic data that are conceived as 
a single realization of a random field X(s), s S , one usually expects the follow-
ing proposition to hold. 

First Law of Geography: “Everything is correlated with everything else, but 
close things are more correlated than things that are far away” (Tobler, 1970). 

For instance, if X(s) refers to the price of a good produced by a firm located at the 
site with coordinates s, we expect the dependence between X(s1) and X(s2) to be 
stronger when the two sites are close to each other, and tends to decrease when the 
distance increases. Similarly, the income of a region will depend much more on 
the income of the neighbouring regions rather than on regions that are distant in 
the geographical space. Furthermore, it is reasonable to assume that blocks of spa-
tial units which are sufficiently distant in space (e. g. groups of individuals living 
in regions very far apart) tend to assume an independent behaviour. 

A formal description of such a spatial friction can be derived in terms of the 
joint probability density function of a random field through the following defini-
tion.

Definition 16. A random field X(s), s S  is said to be asymptotically independ-
ent if, by taking two subsets of sites s1, s2,..., sn S and t1, t2,..., tn S in such 
a way that d(si, ti) =  (with d(si, ti) a distance measure) one has: 

)(),...,()(),...,()(),...,(),(),...,( 1111 nnnn XXFXXFXXXXFAbs ttssttss

and

0lim  (2.25) 

A weaker form of the restriction can be obtained through the concept of asymp-
totic uncorrelation summarised in the following definition: 
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Definition 17. A random field X(s), s S  is said to be asyptotically uncorrelated
if there exists a sequence of constants (dij) , with dij the distance between the 
site located at si and the site located at sj, defined by: 

| (si, sj)| ( dij) (2.26) 

such that 0 (dij)  1 and
ijd

(dij) < + , with the summation extended over all 

possible distances within the spatial system. 
In other words, asymptotical uncorrelation can be expressed by an upper limit, 

depending on the distance dij, that is imposed on the autocorrelation coefficients. 
Obviously, in the case of Gaussian random fields, the concept of asymptotical un-
correlation and the concept of asymptotical independence coincide. 

A further form of restriction on the dependence structure of a random field 
which will prove useful for developing asymptotical theories for spatial fields, can 
be derived from the following definition. 

Definition 18. A random field X(s), s S  is said to be strongly mixing if, by 
taking two subsets of sites (s1, s2,...,sn) S and (t1, t2,..., tn) S, in such a manner 
that d(si, ti) = , and defining A as the -algebra generated by the random vari-
ables X(s1),...,X(sn), and B as the -algebra generated by the random variables 
X(t1), ...., X(tn), one has for each event A A and B B:

lim + ( ) = 0 

with ( ) =  

B
A

sup  [P(A B)-P(A)P(B)]  (2.27)

The quantity ( ) intuitively represents a measure of the dependence between two 
groups of variables which constitute the two subsets of sites at a given distance .
In fact, in the case of independence, one has P(A B)=P(A)P(B) and, therefore, 

( ) = 0 (see Joe, 1997). 
An alternative measure of dependence between groups of random variables is 

supplied by the quantity: 

( ) =  

B
A

sup  [P(A|B)-P(A)] P(B)>0 (2.28) 

In fact, even in this case one has P(A|B)=P(A), or, alternatively, ( ) = 0 in the 
case of independence (see again Joe, 1997). Based on this a further measure of 
dependence it is possible to introduce the concept of uniformly mixing fields 
through the following definition. 
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Definition 19. A random field X(s), s S  is said to be uniformly mixing if, by 
taking two subsets of sites (s1, s2,..., sn) S and (t1, t2,..., tn) S in such a way that 
d(si, ti) = , and calling A the -algebra associated to the random variables 
X(s1),...,X(sn), and B the -algebra associated with the random variables X(t1), ...., 
X(tn), one has, for each event A A e B B:

lim  + ( ) = 0 (2.29)

The weakest form of restriction on the dependence between random variables be-
longing to a random field, derives from the so-called ergodicity property. Ergodic-
ity is a term borrowed from statistical mechanics (Khinchin, 1949) used exten-
sively in time series literature and extended to random fields (Christakos, 1992). 
In a temporal random process it is a condition ensuring that the memory of the 
process, measured by the pairwise correlations, “weakens by averaging over time” 
(Spanos, 1986; Hamilton, 1994). This implies that the mean and covariance of 
X(s) coincide with those calculated by means of the single available realizations. 
Applying a similar idea to a random field leads to the following definition. 

Definition 20. A random field X(s), s S  which is stationary up to the second 
order is said to be ergodic if: 

ij
ij d

jid
),(1lim ss = 0 (2.30)

with the summation extended to all possible distances in the spatial system, and 
the number of such distances. 

As a consequence of the ergodicity property we have that the spatial averages 
converge in probability to the set averages (on the concept of convergence in 
probability, see Definition 35 in Section 3.2 below). Therefore: 
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All the restrictions introduced, both on the heterogeneity and on the dependence of 
a random field, enable a reduction in the number of parameters needed to charac-
terize the field and allows their statistical estimation. They will be reconsidered 
further on in this chapter when dealing with asymptotical results (see Section 2.5 
below).
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2.4 Some Special Random Fields 

The aim of this section is to introduce several typologies of random field models 
that can be used in spatial modelling. Some of these models have already been 
extensively exploited in the literature; others represent the basis for setting up 
models that are more sophisticated than those currently used in applied spatial 
econometrics literature. 

2.4.1 Spatial White Noise 

The simplest of all random fields is the extension to two dimensions of the con-
cept of a white noise time process. Let us introduce the following definition: 

Definition 21. A random field u(s), s S  is said to be a spatial white noise if: 

(i) E(u(s)) = 0 s (2.32)

(ii) E(u(si), u(sj)) = 
otherwise0

for2
ji ss

that is if the random variables constituting it have zero mean and are pairwise 
uncorrelated, no matter what their position is on the plane. The spatial white noise 
is obviously of no interest per se in a spatial context where we need to model 
dependent events. It does, however, represent the basis for building up more 
meaningful fields.  

An important class of parametric random fields models is that based on the 
two-dimensional Markov property. This class of models will be introduced in the 
next section. 

2.4.2 Markov Random Fields 

2.4.2.1 Generalities 

An important class of random fields much studied in the literature is that of the 
Markov random fields. The concept of a Markov random field is essentially due to 
Dobrushin (1968) and represents a way of extending the Markov property, 
originally defined for time processes, to more than one dimension. As is well 
known, for random processes in time, the Markov property can be expressed by 
the fact that the “future” of the process, given the “present”, is not affected by the 
“past”. For spatial random fields the extension has to take into account the 
multilaterality of dependence in space. Generally speaking, it is possible to intro-
duce the following definition. 
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Definition 22. A random field X(s), s S  is called a Markov field if, for each 
si S one has: 

iXE s

and (2.33) 

)(: iNXXEBXE jjii i
ssss s

where 
i

B s  represents the -algebra associated with all the X(sj) excluding X(si)
and )(: iNX jj ss  represents the -algebra associated only with the random 
variables X(sj) belonging to the neighbourhood of X(si).

An important result useful for particularizing a family of parametric Markov 
random fields is represented by the Hammersley and Clifford theorem. Due to the 
paramount importance of this result we will devote the next section to its discussion 
before introducing some special parametric Markov random fields. 

2.4.2.2 The Hammersley and Clifford Theorem 

A way in which Markov random fields can be specified in practice consists of 
assuming a particular functional form for the conditional density function of each 
random variable and, subsequently, deriving the resulting joint density function. 
Nevertheless, except in trivial cases, there is no obvious way of deducing the joint 
probability structure of a process deriving from a conditional distribution set. 
Moreover, the conditional probability structure is subject to a series of internal 
coherence conditions and, as a consequence, in some cases it is impossible to 
define well-conditioned variance-covariance matrices departing from hypotheses 
about the conditional distributions. 

In order to guarantee that the joint density function of the random field exists, is 
unique and well-conditioned, it is necessary to impose a set of restrictions on the 
conditional densities that are related to their functional form. These restrictions are 
identified by the Hammersey-Clifford theorem, a celebrated result that circulated 
for many years in a private form (Hammersey and Clifford, 1971) before being 
published by other authors (see e. g. Besag, 1974; Preston, 1973; and Grimmett, 
1973 for a simplified version). 

Let us start by defining the quantity  

)(
)(ln)(

0
xx

X

X

f
fQ  (2.34) 

with )(xXf  the joint density function of a single realization x = ( nxxx ,......., 21 ) of 
a field X(s), and )(0Xf  the value assumed by joint density function at point x0 = 
( 0,.......0,0 ). The function Q(x) is sometimes referred to as the “negpotential 
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function” of a random field (Kaiser and Cressie, 1997). Let us further assume that 
)(0Xf > 0, which means that such a realisation has a non-zero probability of 

occurring. The Hammersley and Clifford theorem identifies the most general form 
of )(xQ  that ensures a joint probability structure that is valid and consistent for 
the spatial system under study. 

Such a general form is provided by the expression: 
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   (2.35) 

where the interaction terms G(.) are non-zero only if the set of random variables 
included are neighbours. In such a way, one can define valid conditional 
probabilities. In fact from Equation (2.35) one has:  
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QQExp
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ji

ji xx

 (2.36) 

with ),...,,0,,...,( 111 niii xxxxx .
The importance of the previous result lies not only in the fact that it guarantees 

the existence of a joint density function given some restrictions on the conditional 
densities of spatially interacting random variables, but also in that it suggests the 
constraints to be imposed on such conditional densities in order to obtain valid 
representations. Through the Hammersley-Clifford theorem, the joint densities can 
always be broken down into the interaction between pairs of variables, triplets of 
variables and so on. In practice, however, Markovian fields have been usually 
studied by restricting to only pairwise interaction (Ripley, 1990). This is an obvious 
simplification, but with some empirical foundations. In physics, for example, 
gravitational and electrostatic forces provide two examples in which the interac-
tion between the various elements in space is purely pairwise (Künsch, 1981). In 
natural sciences, moreover, many animal species have only pairwise struggles 
when defending their territories (Ripley, 1990). There nevertheless exist many 
other instances, including economic situations, where it would be interesting to 
deepen our knowledge of higher order interaction. The case of spatial price com-
petition (Haining, 1990) constitute one such instance. The pairwise spatial interac-
tion models of random fields are also known as auto-models, after Besag (1974). 
For these models, Equation (2.35) reduces to: 
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and
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n

j
jijiiii xxGxQQ

1
)(exp)()( xx  (2.38) 

where the parameters ij  represent pairwise spatial interaction terms and are such 
that ij  = 0 unless )(iNj  and ij  = ji . In such a way, the restrictions to be 
imposed on the joint probability density function reduce to restrictions on the 
possible range of values assumed by the parameters ij .

Starting from the results of the Hammersley-Clifford theorem, Besag (1974) 
examined what kind of distribution functions can possibly be defined, leading to 
valid models for random fields. Some of these processes are potentially very 
useful in economic analyses and will be reviewed in the following sections. 

2.4.2.3 Ising’s Law  

A simple case which occurs in practical instances is the situation where the observed 
variable is dichotomous. This occurs when we detect the presence of a certain 
economic agent in one location, or the presence of a certain characteristic in one 
region (for instance a technological innovation or a particular type of industrial 
settlement). In this case it is necessary to model the conditional probability: 

)();()(),()( iNXXPXXP jjijiji sssssss  (2.39) 

where the random variables X(si) can only assume the values 0 and 1. On this basis 
one can therefore define the probabilities: 

)();()(1)( iNxXXPp jjjii ssss
(2.40) 

and

)();()(0)( iNxXXPq jjjii ssss
(2.41) 

(with 1ii qp ), representing the presence and absence probabilities at site is ,
conditional upon the presence or absence of the phenomenon in the neighbouring 
sites )(, iNjjs .

If, in particular, the non-zero parameters are those associated with a neighbouring 
structure that consists of only a single site or pairs of sites, the result is a pairwise 
interaction model such that: 
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From Equations (2.35) and (2.36) one has: 
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with ij  = 0 unless )(iNjs  and ij  = ji .
On the basis of the previous notions we can now introduce the following 

definition. 

Definition 23. A random field X(s), s S  is said to obey to the auto-logistic (or 
Ising’s) law, if the conditional density function of each random variable with 
respect to the others can be written as: 

)()(
)()( jiXX

xxf
ji

ss
ss

= )();()(
)()(

iNxxf jjiXX ji
sss

ss
=

=
))](exp[(1

))]()((exp[(

jiji

jijii

X
XX
s

ss
 (2.44) 

with X(si) = (0, 1), and i and ij  parameters. In particular one has:  
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and
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Equations (2.45) and (2.46) show how our expectation of the “presence” of the 
phenomenon at site si is modified as a function of the number of presences in the 
neighbouring sites. The set of parameters ij  represent the pairwise interaction 
between neighbouring sites. The parameters i  are, in contrast, local parameters, 
and can be used to model the smooth variation of a variable across space. The 
meaning of the parameters i  can also be clarified, considering that, in the case of 
no spatial interaction, one obviously has ij = 0 and, hence: 
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]exp[1
]exp[)(,)(1)(Pr

i

i
jii iNjxXp ss  (2.47) 

In those cases where ij  0, these parameters regulate the intensity with which 
the information on the local context modifies the probability of presence.  

In order to illustrate the meaning of the parameters, let us consider a simple 
example and let us assume that a random field obeys Ising’s law, with i = =1
for each i and, furthermore: 

otherwise0
)(if iNj

ij

s

or, equivalently, that ij = ijw , with ijw  the generic element of a simple contigu-

ity matrix W such that 
otherwise0

)(if1 iN
w j

ij

s
.

Let us also consider the following spatial configuration: 

X(si) = 1 
si    

   X(sj) = 0 

The probability that location si presents a value equal to 1 will be given by: 
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In the case of no spatial interaction between the sites, we simply have: 

73.0
]1exp[1

]1exp[)(,)(1)( iNxXPp jjii sss

for each location. This value represents the probability that a priori (i. e. before 
observing what happens in the neighbourhood) we attribute to the event 1)( iX s ,
and it depends on the parameter  alone. In our example, three neighbours out of 
four present a value equal to 1. 

In the more general case we therefore have: 

]31exp[1
]31exp[)(,)(1)( iNxXPp jjii sss
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In the case of moderate spatial dependence (e. g. with = 0.33), we have that 
ip =0.88, a value that is greater than the unconditional value previously obtained 

(0.73). In the case of a high level of spatial interaction (e. g. = 1) we have, in-
stead, that ip = 0.98 which is even greater. Finally, in the case of a negative inter-
action (e. g. = -0.33), the conditional probability will assume the value ip = 0.5, 
which shows how the unconditional probability (0.73) is reduced by conditioning 
upon the values assumed in the neighbourhood. 

The auto-logistic model corresponds in physics to Ising’s law of ferromagnet-
ism (Ising, 1925) and has been exploited in economics, e. g., by Haining (1990) 
amongst the others. It can be considered an extension to the spatial version of the 
classical logistic model (Cox, 1970), apart from the fact that the explanatory vari-
ables are represented, in this instance, by the spatial neighbouring variables. Some 
interesting simulated realisations of an auto-logistic field, that are useful for un-
derstanding the mechanism underlying this process, can be seen, for instance, in 
Cross and Jain (1983).  

2.4.2.4 The Strauss Auto-model 

The immediate extension of the auto-logistic field is represented by the case in 
which the observed variable is categorical, with a discrete number of, say, c
unordered outcomes. This instance is quite common in economics and occurs, for 
example when modelling an individual agent’s discrete choices. In this case, from 
Equation (2.37) one has:  
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where nk represents the number of sites belonging to class k and, similarly nkl the 
number of pairs of sites belonging to classes k and l respectively. Finally, k and

kl  are parameters. From (2.48) and remembering (2.38), one can derive the fol-
lowing definition. 

Definition 24. A random field X(s), s S  is said to obey the Strauss law if the 
conditional density function of each random variable with respect to the others can 
be written as: 
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with )(lu
is  representing the number of neighbours of sites si belonging to class l.
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In the hypothesis that the classes are interchangeable, and, furthermore that 
kl = , the expression simplifies to: 
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Such a Markovian model was proposed for the first time by Strauss (1977) and 
obviously reduces to the auto-logistic when c = 2. 

2.4.2.5 The Auto-binomial Field 

A second extension of the auto-logistic field is represented by the case in which 
the observed variable can assume a discrete set of numerical outcomes (e. g. the 
number of industrial plants in one region, or the number of people employed by 
one firm).  

In such an instance, the value in each site can be represented as the outcome of, 
say, c trials where the probability of success in each trial is p. In other words, we 
can assume that each random variable constituting the field is conditionally 
distributed with a binomial density. This leads to the following definition. 

Definition 25. A random field X(s), s S  is said to obey an auto-binomial law 
(Besag, 1974), if the conditional density function of each random variable with 
respect to the others can be written as: 
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with k = 0, 1,…, c, and pi being a spatially varying parameter. In this case, 
following the Hammersley and Clifford theorem, we have: 
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and, therefore, 
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with i  and ij  parameters and, for example ij  = ijw , with Wijw  an appro-
priate contiguity matrix. For c = 1 the model obviously reduces to the simpler 
auto-logistic field.

2.4.2.6 The Auto-Poisson Model 

Another interesting instance occurs when the random field is constituted by 
variables which represent counts of events (tallies), but where these events present 
a very low probability of occurrence. In this case, it is reasonable to assume that 
the conditional distribution of each random variable in each site follows a Poisson 
probability law with an expected value, say i , at site i, that depends on the 
occurrences in the neighbouring sites. In this case, the following definition holds. 

Definition 26. A random field X(s), s S  is said to obey the auto-Poisson law 
(Besag, 1974), if the conditional density function of each random variable with 
respect to the others can be written as: 
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and
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1
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Besag (1974) demonstrated that the consistency conditions deriving from the 
Hammersley-Clifford theorem impose the constraint ij <0 on the parameter ij

for each pair of sites i and j, and that therefore within this framework only nega-
tive spatial dependence can be modelled. This fact has strongly limited the use of 
such a model in economic analysis where the phenomena of positive spatial depend-
ence are of paramount importance. More recently, however, Kaiser and Cressie 
(1997) developed a model that also allows positive spatial dependence by specifying 
conditional distributions based on a truncated Poisson (often termed Winsorized 
Poisson after Galambos, 1988). This Winsorized Poisson random field can be used 
to model either positive or negative dependencies among spatially distributed ran-
dom variables and has been used in the literature to describe the mortality and mor-
bidity pattern in epidemiological studies (Clayton and Kaldor, 1987). 

2.4.2.7 The Auto-normal (or CAR ) Field 

If the variable observed is of the continuous type then it is often possible to 
formulate a Markov process based on a normal distribution. In this case the 
following definition holds: 
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Definition 28. A random field X(s), s S  is called auto-normal, or Conditional 
AutoRegressive (CAR) (Besag, 1974), if the conditional density function of each 
random variable with respect to the others can be expressed as: 
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where i = E( )( iX s ), 2
i  = Var( )( iX s ), and ij  is a set of constants such that, 

for example, ijij w , with Wijw  and W an appropriate connectivity matrix. 
From these definitions it follows that: 
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and

2)(,)()( ijji iNXxXVar sss
 (2.58) 

From the previous definitions it also follows that the joint probability density 
function of the random field is MVN(µ,V), with a vector of means µ  (µ1, µ2,..., 
µn) and a variance-auto-covariance matrix V such that: 

V = (I – B)–1 (2.59) 
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 and B ={ ij }, with B symmetrical, in order to 

guarantee the symmetry of V.
The Markov field described is by far the most used in practice in the 

applications (see Besag 1986; Mardia, 1990; and Ripley, 1988 for a review).  

2.4.2.8 The Intrinsic Gaussian Field  

Besag et al. (1991) introduced a different specification for an auto-normal model 
based on the direct specification of the joint probability density function of the 
field. This is expressed as
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with Wijw  and W a connectivity matrix. Such a joint probability density func-
tion is defined by the conditional expected values: 
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with i  already defined in Section 2.2.1.2, and  
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and possesses zero unconditional expected values and a variance-covariance ma-
trix defined as: 
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For further details on the intrinsic Gaussian random field see also Molliè (1996). 

2.4.2.9 The Bivariate Auto-normal Field 

Given its importance in spatial econometrics, (as will become patent in Chapter 
4) in this and the following section we will extend the idea of an autonormal 
field to encompass the case of vector random fields. To start with, in the present 
section we will define the bivariate auto-normal random field. In the next section 
we will extend this concept further and introduce the multivariate auto-normal 
field. 

Definition 29. A random field Z(s), s S , Z(s)T=(Y(s)T, X(s)T) is said to be 
bivariate auto-normal (or twofold CAR; see Kim et al., 2001) if the conditional 
density function of each random variable with respect to the others is given by: 
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where X i = E(X(si)), Y i = E(Y(si)), ),( iiii
f xXx  = Var(X(si)) and 2

iY  = 
Var(Y(si)), with , ,  a set of parameters such that ijij w , ijij w , Wijw
and W a properly defined connectivity matrix. 

Note that, from Equation (2.64), the conditional expectation of Y(si) given all 
other random variables can be expressed as: 
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that is as a linear function both of )( isX and of the spatially lagged values of the 
variables )( jsX and )( jsY .

The joint probability density function of the resulting random field is provided by: 
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with the variance-covariance matrix Q given by 
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2.4.2.10 The Multivariate Auto-normal (or MCAR) Field 

Definition 30. A k-dimensional random field nii ,,1,sXX , isX Rk,
is said to be a multivariate CAR (or MCAR, or a multivariate auto-normal random 
field; see Mardia, 1988) if it admits the following conditional distributions: 

,,
:),()( ijjijijjiij

Nf
ji

VsXC
sXsX

 (2.67) 

where i  is a column vector of expected values each of dimension k , CCij  are 
the elements of a k-by-k matrix of parameters (such that, for example, ijij wC ), 
and iV  is the variance-covariance matrix of )( isX  conditional upon ijj ),(sX .

Let us now consider the k-by-1 vector T
nsXsXZ 1 .Under specific 

conditions, Z can be considered distributed as the Gaussian field: 
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,,Z N  (2.68) 

where T
n1 and, by setting pii IC ,
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nnnnn

n

CVCV

CVCV
 (2.69) 

In particular, Equation (2.68) holds true if we assume the following hypotheses: 

1.  T
jiijij CVVC  , nji ,,1,  ; 

2. at least one among matrices  

11

1
1

1
1

nn VV

VV

and

nnn

n

CC

CC

1

111

is positive definite. 

The previous result can be proved as follows. Observe that the joint density Zf  is 
related to the conditional densities 

ijji
f

),(sXsX
 by the property (see, for example, 

Brook, 1964): 
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where ix  stands as a short form for isx  and T
nxxZ ,...,1 . Furthermore, from 

Equation (2.67) we can write 
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111),( ii
T
ii

k
niiiijji
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 (2.71) 

where 

,1

1 jjij
i

jiii xCxd  (2.72) 
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and

2

ˆˆ

J
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XyWXy  (2.73) 

where 
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iji xC  (2.74) 

As a consequence, from Equation (2.70) we can write 
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 (2.75) 

so that  

,2ln2ln2 12/12/ yyzZ
Tnkf  (2.76) 

which implies 

,
2
1exp2 12/12/ zzzZ

Tnkf  (2.77) 

as previously stated. 
The simple univariate CAR field presented in Section 2.4.2.7 can thus be ob-

tained from the previous formulae by setting 1k . In fact, in this case, X col-
lapses to the univariate random field, the variance-covariance matrices ijC  be-
come scalars and can be referred to as dependency parameters ijc  , with 1iic  , 
and, finally, iV  represents the (scalar) conditional variance of iX s , say 2

i . In 
addition, we have ,1 n

T XX ssY ,1 n
T and
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 (2.78) 

or, in a compact matrix notation, as: 

,11 BIM  (2.79) 

which is formally equivalent to Equation (2.59). Further details on MCAR fields 
may be found in Banerjee et al. (2004) .

2.4.3 Non-Markovian Fields 

Even if the class of Markovian random fields is sufficiently wide to encompass 
most empirical situations, other random field models deriving from different 
hypotheses have been introduced in the literature. Some of those that have been 
exploited in the spatial econometric literature will be reviewed below. 

2.4.3.1 The Simultaneous Autoregressive Random Field (SAR) 

A first class of non-Markov random fields derives from the extension of the tem-
poral autoregressive model, making use of the concept of spatial lag presented in 
Definition 5. We have the following definition. 

Definition 31. A random field X(s), s S  is said to be simultaneous 
autoregressive (or SAR; Whittle, 1954), if it satisfies the following stochastic 
difference equation: 

)()()( i
ji

jjijii uXX sss  (2.80) 

with ijij w , Wwij  and W an appropriate connectivity matrix, and u(si), 

s S  a spatial white noise process. In this way each of the random variables that 
constitute the field is seen as a weighted sum of the neighbouring random variables 
through the weighting matrix W. In this sense, the term 

ji
jjij X )(s  as-

sumes the meaning of a spatial lag of the centred variable iiX )(s , and Equa-
tion (2.80) could also be written as: 

)()()( iiiii uXLX sss  (2.81) 

with .L  the spatial lag operator introduced in Section 2.2.1.2.  
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From this equation we can obtain some properties of the joint distribution of 

X(si). Specifically, if we set Var(X (si)) = i
2 and  = 

2

2
2

2
1

0

0
000

n

, the 

matrix of variances and spatial auto-covariances deriving from this model is given 
by:

T)()( 1 BIBIV  (2.82) 

with B ij , and V subject to the restriction that (I – B) be non-singular to 
ensure the existence of the inverse (I – B) -1. If, in particular, i

2= 2 i, Equation 
(2.82) reduces to:  

12 )()( BIBIV T  (2.83) 

The SAR field is certainly the most widely used in spatial econometrics (Anselin, 
1988; Anselin et al., 2004). 

Note that (as stressed by Anselin, 2001a), due to the fact that the diagonal ele-
ments in Equation (2.83) are not constant even with i.i.d. error terms, the model 
generally defines fields that are not covariance-stationary. One exception to this 
occurs when each site has an identical number of neighbours, but this is a case of 
limited practical use in econometrics. This lack of stationarity has an important 
bearing when one is interested in the application of central limit theorems and 
laws of large numbers for the purpose of deriving asymptotic properties for the 
estimators and test statistics. This point has recently been raised by Anselin 
(2001a), but, so far, has not received in the literature the attention it deserves. 

The relationship between a CAR model (Equation 2.56) and the SAR specifica-
tion is the same as that existing between a fixed start-up and a random start-up 
autoregressive model in the time series literature (Hamilton, 1994). Indeed, in a 
time series autoregression theory too, we can specify a model in two alternative 
ways: either as the expectations of the dependent variable conditional upon the 
independent variables, or, alternatively, as a linear relationship imposed a-priori
between the dependent variable on one side and the independent variables on the 
other with an additional stochastic term. There is a remarkable difference with the 
spatial case, however. In the case of a time series autoregression under the hy-
pothesis of normality, both specifications lead to the same inferential conclusions 
in terms both of point estimates and of their second-order properties. In the spatial 
case, conversely, the second-order properties of the two specifications are differ-
ent, as is clear by comparing the variance-covariance matrix obtained in Equation 
(2.59) with that obtained in Equation (2.83). Furthermore, the CAR specification 
leads to a stationary model, while the SAR specification generally does not. Note 
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also that, in the Gaussian case, any simultaneous model defined by the matrix B
(call it Bs) can be expressed as a conditional autoregressive model defined by the 
matrix Bc = Bs + Bs

T – BsBs
T. On the relationships between the CAR and the SAR 

models the interested reader is referred to Brook (1964). Note, finally, that in this 
context we use the acronym SAR as it is used in the spatial statistics literature (see 
e. g. Cressie, 1991), with a meaning different to that used in the spatial economet-
ric literature where it indicates the spatial mixed regression- autoregression model 
(LeSage, 1999; see Chapter 4.3.6 below). 

2.4.3.2 The Moving Average Random Field 

A second class of non-Markov random field models can be constructed by 
extending the concept of a moving average (or filtering) to more than one 
dimension. This leads to the following definition. 

Definition 32. A random field X(s), s S  is said to be moving average (SMA; 
Haining, 1978), if the random variable X(si) can be expressed as: 

)()()( i
ji

jijii uumX sss  (2.84) 

with mij a set of constants such that ijij mwm , Wijw , W an appropriate 
connectivity matrix and u(si), s S  a spatial white noise process. 

If we assume that Var(u(si)) = 2
i, and  = 

2

2
2

2
1

0

0
000

n

 , then the 

matrix of variances and spatial auto-covariances resulting for the model X(s), 
s S  is given by: 

T)()( MIMIV  (2.85) 

with M ijm . If, in addition, 2
i=

2 i, the expression simplifies to: 

T))((2 MIMIV  (2.86) 

This field represents the spatial analogue to the temporal moving average models. 
Here, dependence is introduced by filtering a white noise field in a fashion that 
closely resembles the Slutsky-Yule effect in time series analysis. Again, as in the 
case of the spatial autoregressive processes, the diagonal elements in Equation 
(2.85) are not constant even if the error term is a white noise. The model, there-
fore, defines fields that are not covariance-stationary. 
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2.4.3.3 The Autoregressive Moving Average Random Field 

Definition 33. A random field X(s), s S  is said to be autoregressive moving 
average (or SARMA; see Huang, 1984), if the random variable X(si) can be 
expressed as: 

)()()()( i
ji

jij
ji

jjijii uumXX ssss  (2.87) 

where mij is a set of constants so that ijij mwm ; ijij w , Wijw , W is an 

appropriate connectivity matrix and u(si), s S  a spatial white noise field. 

If we assume that Var(X (si)) = 2
i, and  = 

2

2
2

2
1

0

0
000

n

, the matrix of 

variances and spatial auto-covariances resulting for the model X(s), s S  is 
given by: 

T))(()()( 1 BIMIMIBIV  (2.88) 

with M ijm  and B ij . This process represents the spatial analogue of 

the ARMA models in a time series context. In the simpler case where 2
i = 2

si, the variance covariance matrix reduces to: 

T))()(()( 12 BIMIMIBIV (2.89) 

2.4.3.4 The Spatial Error Component Random Field 

Related to the previous specification is the so-called spatial error component
model introduced by Keleijan and Robinson (1993, 1995, 1997). This spatial field 
is very similar to an SMA field, but, rather than being specified in terms of a sin-
gle white noise term, it contains two independent white noise components. 

Definition 34. A random field X(s), s S  is called spatial error component 
(SEC), if the random variable X(si) can be expressed as: 

)()()( i
ji

jijii uvmX sss  (2.90) 
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with ijij mwm  a set of constants, Wijw , W an appropriate connectivity matrix 

and u(si), s S  and v(si), s S  two independent spatial white noise fields. The 

term 
ji

jijvm )(s implies a smoothing of neighbouring values referred to as 

“regional effect” (Anselin, 2001a), whereas the term u(si) is a location-specific 
innovation effect. 

The resulting matrix of variances and spatial auto-covariances is given by 
(Keleijan and Robinson, 1993; Anselin, 2001a): 

T
vu MMIV 22  (2.91) 

where M ijm  and u
2  and 2

v  are the variances components relative to the 
innovation and regional effect, respectively. 

2.4.3.5 The Direct Representation of a Random Field 

An alternative way of specifying a random field model consists of expressing the 
elements of the variance covariance matrix in a parsimonious way as some func-
tion of the distance between pairs of sites. If we adopt this strategy, we can intro-
duce the following definition. 

Definition 35. A random field X(s), s S  is directly represented (DR) (Mardia, 
1990; Anselin, 2001a; Anselin et al. 2004), if each element of the matrix of 
variances and spatial auto-covariances between the random variables X(si) can be 
expressed as: 

(s1, s2) = ),(2
ijdf  (2.92) 

with ijd  the distance between site i and site j, (.)f a distance decay function such 

that 0
ijd

f , 1),( ijdf  and  represents an appropriate vector of parame-

ters. For instance, Mardia and Watkins (1989) proposed the function: 

(s1, s2) = 
4

2 1 ijd
 (2.93) 

Using Equation (2.93) to define each individual element of covariance, the full 
matrix of variance and spatial auto-covariances is given by: 

),(2V ijd  (2.94) 
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which must be positive definite with elements ij  such that 1ii  and 
1ii  for each i and j. Since each element of the variance-covariance matrix is 

modelled directly, we can use the “direct representation” to overcome the problem 
of non-stationarity in variance observed with SAR, SMA and SARMA models. In 
the econometric literature the direct representation has been employed to analyse 
the urban housing market by, e. g., Dubin (1988, 1992), Olmo (1995) and Basu 
and Thibodeau (1998) amongst the others. A series of problems emerging with the 
direct representation have been analysed by Anselin (2001a). Further extensions 
of this approach are considered within a semi-parametric approach to spatial 
modelling: a topic that is not treated in details here. See Section 6.2.8 below both 
for a more thorough discussion and for references. 

2.5 Limiting Theorems for Random Fields 

2.5.1 Introduction 

At the heart of the various problems of estimation, inference and hypothesis 
testing in econometrics there lies the problem of determining the distribution of a 
set of parameters’ estimators relating to the probability model ,,Xf .

Generally speaking, these estimators can be written as functions of the random 
vector X. The classical results of statistical inference are almost exclusively based 
on the case of normally and independently distributed random variables, or 
variables that can be reduced to this paradigm using asymptotic arguments. 

The non-independence nature of observations in space, however, precludes the 
application of most of the traditional inferential theory’s results. 

On the other hand, even the asymptotic theory (on which much of the inference 
for dynamic economic models is based), seems to find obstacles when translated 
into the spatial domain. Indeed, in this context, it is not always clear how spatial 
data can approach infinity considering that, unlike time, geographical space is 
inherently limited. 

Cressie (1991) provides some clarification in this respect by distinguishing 
between two types of asymptotic theories applicable to spatial fields. The number 
of spatial units on which a random process is observed can tend to infinity, either 
within a domain that also tends to infinity, or within a domain that is still bounded, 
but with an increasing number of (more densely distributed) units within it. 
Cressie calls the first type increasing-domain asymptotic, and the second infill 
asymptotic. While in the time series context the increasing-domain asymptotic 
type seems the most appropriate, in spatial econometrics the choice depends on 
the nature of the problem being addressed. In the case of a discrete-parameter 
random field (e. g. one observed in geographical partitions of economic space) one 
can apply the increasing-domain approach by expanding the number of observed 
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random variables outside the border of the observed area. Alternatively, one can 
apply an infill asymptotic theory by considering a limited area and levels of 
increasingly detailed subregional partitions by subsequently disaggregating the 
existing units. It is important to notice, however, that even in this case it is not 
always possible to apply a criterion which ensures that the observations tend to 
infinity in a regular manner: This is due both to the different shape and size of 
the various spatial units and to the arbitrariness with which a subsequent 
disaggregation may take place (see Arbia, 1989, for a thorough discussion of 
this topic). 

In the instance of continuous parameter random fields, the infill asymptotic 
theory is probably conceptually more appropriate. In fact, in this second instance, 
it is possible to imagine a mechanism which leads to an increasing number of 
observations within the same domain, given that in this case the economic 
phenomenon may be observed in any of the infinite points of space, but the 
domain should often be thought of as delimited. 

According to Anselin (2001a) “to date some formal results for the spatial 
dependence case are still lacking”, but “the intuition behind the asymptotics is 
fairly straightforward in that regularity conditions are needed to limit the extent of 
spatial dependence (memory) and heterogeneity of the spatial series in order to 
obtain appropriate (uniform) laws of large numbers and central limit theorems to 
establish consistency and asymptotic normality” (Anselin, 2001a). 

Even with the precautions stated above it is possible to identify conditions 
within which the asymptotic properties of a random field are valid for inferential 
purposes. In the remainder of this chapter we will thus consider some extensions 
of traditional asymptotic theory to spatial random fields. 

2.5.2 Some Limit Theorems for Random Fields 

Given the importance of the subject, we will now cite some convergence concepts 
useful for understanding the limit theorems in spatial analysis. 

Definition 36. A sequence of random variables Xn(s), n N  is said to converge 
almost surely (or with probability 1) to the random variable X(s), and is indicated 

as )()( ss XX
AS

n , if: 

1)()(lim: ss XXsP nn  (2.95) 

Definition 37. We say that a sequence of random variables Xn(s), n N
converges in probability to the random variable X(s), and is indicated as 

)()( ss XX
P

n , if: 

limn + P s: |Xn(s) – X(s)|<  = 1 (2.96)
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Definition 38. We say that a sequence of random variables Xn(s), n N ,
characterised by distribution function Fn(X), n N , converges in distribution to 

the random variable X(s), and we indicate this Xn(s)
D

 X(s), if: 

limn + Fn(X) = F(X) (2.97) 

in all points where F(X) is continuous. 
We can now introduce the two fundamental probabilistic laws on which the 

asymptotic inferential theory is based. 
The almost certain convergence criterion is associated with the so-called: 

Strong Law of Large Numbers (Kolmogorov Theorem 2): Let Xn, n 1  be a 
sequence of independent random variables so that E(Xi) = i, and Var(Xi) = 2

i

exist for all i = 1,2,… and that 
1

2 )(1
k

kXVar
k

, then: 

n

i

n

i

AS

ii n
X

n 1 1
0)11(  (2.98) 

The SLLN states the conditions under which random variables’ averages converge 
to their expected values, and therefore it constitutes the basis for obtaining the 
distribution of estimators and tests statistics that are built as linear combinations of 
the observed values. 

Once again, the independence hypothesis among random variables considered 
in the formulation of the law precludes its use in the case of spatial data. However, 
McLeish (1975) and White (1984) demonstrated that the SLLN can be extended to 
the case of dependent random variables as long as they obey particular forms of 
restriction. More specifically, the following result is valid:

Strong Law of Large Numbers for Mixing Fields: Let Xn, n 1  be a mixing 
random field (strongly or uniformly: see Definitions 18 and 19) where we have: 

(m) = O(m- )  > 
12r

r  (2.99) 

For strongly mixing fields or, alternatively, 

(m) = O(m- )  > 
1r

r

for uniformly mixing fields, and such that it is dominated by the process Zn,
n 1 in the sense that |Xn|  Zn. Then: 
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n
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n

i
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ii n
X

n 1 1
0)11(  (2.100) 

provided that 
1

2 )(1
k

kXVar
k

, and in addition, E(|Zr+d|) < D < + , n 1, 

d>0. In this formulation, the value of r is connected with m) and (m), i. e.
with the degree of dependence among the random variables. The higher the degree 
of dependence, the more the constraints are extended to the higher-order moments. 

The criterion of convergence in probability is associated with the so-called: 

Central Limit Theorem (CLT): Let Xn, n 1  be a sequence of random 
variables independently and identically distributed so that E(Xi) = i, and Var(Xi)
= 2

i i=1,2...,n Furthermore, let us define the random variable 

)(
)(

n

nn
n

SVar
SESY , with 

n

i
in XS

1
, and characterised by a distribution function 

Fn(Y). Then: 

Yn
D

 Z  N(0,1) (2.101) 

The CLT is the basis for computing the limiting distributions of many estimators 
and test statistics. Nevertheless, like the SLLN, it cannot be applied as such to 
sequences of random variables ordered in space, due to the conditions of 
independence that is imposed. It has, however, been extended to the case of mixed 
random variables through the following result 

Central Limit Theorem for Mixing Fields. Let Xn, n 1  be a (strongly or 
uniformly) mixing random field where we have: 

(m) = O(m- )  > 
12r

r

or (2.102) 

(m) = O(m- )  > 
1r

r

so that it is dominated by the process Zn, n 1  in the sense that |Xn|  Zn, and so 

that E(Xn)=0, n 1, and E(|Xn|2r) k < + . Furthermore, let Sn( ) = 
n

i
iX

n 1

1  be 

defined so that V 0 and , it happens that lim  +  [E(Sn( ))2-V] = 0. Then: 
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D
n

nV
S )0( Z  N(0,1) (2.103) 

(see White and Domowitz, 1984). 
A second way of extending the CLT to spatial processes is obtained by 

introducing the concepts of regular random fields and locally covariant random 
fields.

Definition 39. A random field X(s), s S  with E(X(si))= i, and Var(X(si))= 2
i,

is said to be regular if (Smith, 1980): 
i) 2

i    (non-degenerate uniform condition) 

and (2.104) 

ii)  E(|X(si)- i|2+ )   (Lyapunov limitation condition) 

Definition 40. A random field X(s), s S  with E(X(si))= i, and Var(X(si)) = 2
i

< , is said to be locally covariant if: 

E(X(si) X(sj))=
otherwise0

if0 *ddij  (2.105) 

with dij any measure of distance between sites si and sj (see Section 2.2.1). 
The concept of a locally covariant random field (due to Smith, 1980, and studied 

in detail by Arbia, 1989) is based on a form of restriction on the process dependence 
analogous to the asymptotic independence of temporary random processes. 

In developing these concepts Smith (1980) demonstrated the following result. 

Central Limit Theorem for Regular and Locally Covariant Fields. Let Xn,
n 1  be a regular and locally covariant random field such that E(Xi)= i, and 
Var(Xi) = 2

i i=1,2,…,n. Moreover, consider the random variable 
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n

nn
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SVar
SES

Y  with 
n

i
in XS

1
, characterised by the cumulative distribution 

function Fn(Y). Then: 

Yn
D

 Z  N(0,1) (2.106) 

Serfling (1980) further extended CLT to processes presenting more complex 
forms of dependence than those considered in the present context (see also 
Wooldridge and White, 1988).



3 Likelihood Function for Spatial Samples  

3.1 Introduction 

The most common estimation and hypothesis testing procedures in econometrics 
are those based on the notion of likelihood introduced last century by Sir Ronald 
Fisher in the 1920s and 1930s and subsequently extended by the work of several 
statisticians. Before introducing the specificity of spatial likelihood, let us first 
introduce the basic notation and concepts. 

Definition 39. Let  be a probability model ),;,...,,(
2121 ,...,, nnsss ssSXXX xxxf

,Ssi  and let X be a random vector, such that X  (X(s1), X(s2),…, X(sn)), 
relating to an observed sample ),...,,(

21 nsss xxxx , drawn according to a certain 
sampling model from the population. The joint probability density function of the 
sample is defined as );,...,,(

2121 ,...,, nnsss sssXXX xxxf , with  the set of 
parameters to be estimated. This function represents the probability that, prior to 
the experiment, we had to draw the sample that we actually observed. The likeli-
hood function is defined as:  

L = L( ) = L( , x) = );,...,,()(
2121 ,...,, xxxfc

nnsss sssXXXx  (3.1) 

with ),...,,()(
21 nsss xxxcc x  a function of just the observed data.  

Due to the exponential nature of many density functions it is often useful to 
operate with the logarithmic transformation of the likelihood (or log-likelihood) 
defined as ln[L( , x)] = l( , x) = l( ). Associated with the log-likelihood there is a 
set of so-called likelihood quantities, and a set of functions of their moments, that 
are of interest in statistical inference. In particular, the following definitions are 
essential in developing estimation and hypothesis testing procedures. 

Definition 40. The first derivative of the log-likelihood function with respect to 
the unknown parameters is defined as the score function and is expressed as: 

)(
),()(q Xl  (3.2) 
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Definition 41. The matrix of the second derivative of the log-likelihood function 
with respect to pairs of parameters is called the Fisher’s observed information ma-
trix and is expressed as: 

j kl
kl

Xl ,),()(
2

 (3.3) 

Definition 42. The expected value of the matrix of the second derivative of the 
log-likelihood function with respect to pairs of parameters is called the Fisher’s 
expected information matrix and is expressed as: 

)()()( qVarjEi  (3.4) 

Given the previous definitions, it is natural to introduce the following definition. 

Definition 43. Given a likelihood function L( , x) the maximum likelihood 
estimator of the parameters  is the Borel function x:ˆ , such that: 

)(max)ˆ( x;x; LL  (3.5) 

In the case of absolutely continuous and differentiable density functions, the 
maximum likelihood estimator can be obtained as the solution to the equations: 

0x;

0x;

2

2 )(

)()(

L

qL

 (3.6) 

The maximum likelihood estimators thus obtained satisfy a set of optimal proper-
ties. In particular, if independence between observations can be assumed in the 
sampling model, it has been proved that they are fully-efficient and (under certain 
regularity conditions on the probability model) consistent, asymptotically unbiased 
and asymptotically normally distributed (see Azzalini, 1996). 

As we have already remarked in Section 2.1, if the observations represent a 
cross-section of individuals, it is often legitimate to assume the independence of 
the random variables so that the joint probability density function of the sample 
may be written as: 

);,...,,( 21,...,, 21 nXXX xxxf
n

 = 
n

i
iX xf

i
1

);( (3.7)
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On this basis the log-likelihood of the sample may be written as: 

);,...,,()(ln)( 21,...,, 21
x nXXX xxxfcl

n
= )(xc +

n

i
iX xf

i
1

);(ln =

= )(xc +
n

i
iX xf

i
1

);(ln  (3.8) 

where the term );(ln iX xf
i

 represents the log-likelihood for a single observation 

ix .

For observations drawn from a time series it is no longer legitimate to assume 
the independence of the component random variables. Nevertheless, it is possible 
to break down the joint probability density function of the sample (see again 
Section 2.1) as: 
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The log-likelihood can, therefore, be written as: 
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where );,...,,(log
12111 ,..., iiittit

ttttXXX
xxxxf  now represents the log-likelihood for 

a single observation 
it

x  conditional on its past. 

As regards observations drawn from a spatial random field, however, it is not 
possible to break down the joint probability density function of the sample in a 
manner similar to that seen for cross-sections or time series, given the greater 
complexity of dependence in space. Two alternative appoaches can be followed in 
this respect. The first consists of obtaining some approximate solutions in order to 
derive the likelihood from the marginal or the conditional densities of the random 
field. This approach will be followed in this chapter. The second approach consists 
of deriving the full likelihood on the basis of one of the models for random fields 
presented in the previous Section 2.4. This second approach will be presented in 
Chapter 4 when discussing the various estimation and hypothesis testing proce-
dures within the context of regression modelling. 



76 3    Likelihood Function for Spatial Samples 

3.2 Some Approximations for the Likelihood of 
Random Fields 

3.2.1 The Coding Technique 

A first way of proceeding for deriving the likelihood function based on spatial 
samples is the so-called coding technique suggested by Besag (1972). The 
technique is based on the consideration that if a random field is Markovian (see 
Section 2.4.2) then pairs of random variables associated with two non-
neighbouring locations (either points or regions) are mutually independent 
conditionally upon the remaining random variables. Consequently, by selecting ad
hoc a subset of locations which are not neighbours, the likelihood can be derived 
in terms of the product of the conditional probability density functions. 

To better illustrate the coding technique, let us look at Figure 3.1.  

 (a) (b)

Fig. 3.1. Coding model for a continuous-parameter field (a) and for a discrete-parameter 
field (b). 

In Figure 3.1 each location is labelled either with a cross or with a circle in such a 
way that the locations labelled with a cross do not neighbour one another. Let us 
call Q  the set of location labelled with a cross and let us assume that its 
cardinality is qQ# . In this way, if the observed field is Markovian, the 
random variables associated with the location cross-coded are all mutually 
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conditionally independent and, as a consequence, the joint probability density 
function of the sample can be expressed as: 
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In this way, we can obtain the conditional log-likelihood of the sample as: 
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where );)(,(ln iNsxxf jssXX ji
jsis

 represents the log-likelihood of the single 
observation 

isx  (i=1, 2, ...., q) conditional on its neighbours. 
Obviously, in any specific case, there are many possible alternatives for coding 

the locations and, as a result, all the inferential conclusions will be dependent on 
the choice made. It is, therefore, necessary to test how the results are robust to the 
choice made when applying this methodology to empirical cases. 

The basic philosophy behind the technique described is that it is preferable to 
discard information (in our case, the locations marked as circles) rather than lose 
the optimal properties of the estimates and tests based on likelihood. In this sense, 
the technique is applied in cases where a large set of data is available (so that the 
loss of information does not compromise the number of degrees of freedom) from 
complete surveys (e. g. surveys related to individual economic agents, or complete 
coverage of regional data). The technique is also recommended in cases where the 
data come from sampling surveys and it is possible to control the sampling design 
by introducing non-neighbourhood constraints between the locations (see, e. g.,
the sampling plans suggested by Arbia and Switzer, 1994; Arbia, 1995a; and 
Arbia and Lafratta, 1997, 2002). 

3.2.2 The Unilateral Approximation 

An alternative way of deriving the likelihood function consists of constructing 
(starting from the observed field) a random field which has approximately the 
same probabilistic structure, but which is simpler to treat. In order to achieve this 
aim, let us first consider the following definitions. 
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Definition 44. Given a set of locations (s1, s2,…, sn), si = (s1i, s2i), then, for each 
location si let us define the set of predecessors of si, say P(i), as the set of 
locations sj such that: 

)()(:)( 2211 ijijj ssssiP s  (3.13) 

Definition 45. Given a set of locations (s1, s2, ...., sn), si = (s1i, s2i), given the 
neighbouring structure )(iN  and the definition of predecessors )(iP , provided by 
Definition 44, for each location si let us define the set of predecessors-neighbours
of si, say )(iPN , as the set of locations sj such that: 

)()(:)( iNiPiPN js  (3.14) 

See Figure 3.2 for an illustration. 

 (a) (b) 

Fig. 3.2. Predecessors of location si ( )(iP ), neighbours of si ( )(iN ) and predecessor-
neighbours ( )(iPN ) of si in the case of continuous-parameter (a) and discrete-parameter 
(b) fields. 

If we suppose that the random field under study is isotropic (see Section 2.3.1), 
then its dependence structure will be identical in all four directions originated in 
the four corners of the area (NW, NE, SE, SW). Thus it is not limiting to study the 
random field based on the random variables which fall (e. g.) into the upper left 
quadrant of every si (see Figure 3.2). 
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In this way, we can generate a unilateral random field X(s), s  by 
specifying each component random variable conditionally upon the values of its 
predecessors. Moreover, if the field is of a Markov type, the distribution of each 
X(si) can be specified in terms of just those predecessors )(iP  which are also the 
neighbours of si. This type of field represents the natural extension of the classic 
time series autoregressive process as long as we are able to specify a reasonable 
start-up as the initial value. (For these fields see Bartlett and Besag, 1969; Bartlett, 
1971; Besag, 1972; 1974). 

The great advantage of using a unilateral approximation lies in the fact that the 
likelihood function can now be written using a breakdown similar to that 
considered for time series, i. e.:
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where ));(;( ss ijssXX
PNxxf

ji
jsis

 now assumes the meaning of the log-
likelihood for a single observation 

isx conditional on sj which are predecessors-
neighbours of si.

While this technique provides an excellent solution to the problem of 
computing a likelihood in the case of continuous-parameter random fields, it 
does not seem advisable in the case of discrete-parameter random fields, given 
the necessary arbitrariness in the definition of predecessors in cases where the 
partition is particularly complex and the polygons are of irregular shape and 
size. 

3.2.3 The Pseudo-Likelihood à la Besag

The previously discussed approximations are subject to some limitations. For data 
deriving from complete surveys or surveys based on rigorous statistical design and 
drawn from a Markov field, the coding technique seems to be the most 
appropriate. Conversely, in the case of Markov isotropic fields specified with a 
continuous-parameter, a unilateral approximation can be used. 

If none of these conditions occurs, the only solution appears to be based on the 
so-called Besag’s pseudo-likelihood (PL). As is well known, a pseudo-likelihood 
is a function that, even if not a properly defined likelihood, satisfies all or some of 
the properties of a likelihood function (Pace and Salvan, 1997). Besag (1974) 
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suggested the use in a spatial context of a pseudo-likelihood function simply 
defined as the product of the various conditional densities or: 
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Geman and Graffigne (1987) proved that the technique leads to consistent 
estimators of the unknown parameters. The element that appears to be most in 
favour of Besag’s pseudo-likelihood, however, is the very practical circumstance 
that it provides good results in real cases (Ripley, 1990). 

3.2.4 Computational Aspects 

When the above methods were proposed during the 1970s, there were still huge 
computational limits when using the maximum likelihood method for parameters 
estimation and building hypothesis testing procedures. These problems now seem 
to be obsolete, since it is possible to solve the problem fairly quickly using 
numeric approximations (see Ripley, 1990). 

In the case where the number of locations constituting the field is very high, 
however, it is still necessary to consider potential computational problems when 
deriving the likelihood function. By way of example, let us consider the case of an 
auto-normal (CAR) field (see Definition 28), that is a MVN(µ, V) field with mean 
vector µ  (µ1, µ2,…,µn) and variance-covariance matrix V, such that 

BIV 1)( . Up to a few years ago, calculation of the determinant |I – B| was 
considered prohibitive even with a small number of locations. In fact, in many 
practical applicatons, the matrix B is scattered and quasi-singular (see e. g. Arbia, 
1986). If we define i as the eigenvalues of the matrix W, Ord (1975) suggested 
using the breakdown: 

n

i
i

1

1WIBI  (3.17) 

For other approximations see Mead (1967) and Whittle (1954) and, more recently, 
Smirnov and Anselin (2001), Griffith (2000, 2004), Pace and LeSage (2004), Pace 
and Zou (2000), Pace (1997), Pace and Barry (1997b, 1997c). 
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3.3 Maximum Likelihood Estimation Properties in Spatial 
Samples

As is known, the maximum likelihood estimators satisfy a set of optimal 
properties under the hypotheses of the probability model’s regularity and the 
sampling model’s independence (Azzalini, 1996). In the case of dependent 
observations, Bates and White (1985) and Heijmans and Magnus (1986) 
demonstrated that the maximum likelihood estimates maintain their properties of 
consistency, full efficiency, asymptotic unbiasedness and normality, even if they 
are based on observations drawn from random processes with non-independent 
components if, in addition, the following conditions hold: 

(i) )(L exists

(ii) the following derivatives exist 

),()(' XLL  ; )(''L  = 2

2 ),( XL  and )('''L  = 3

3 ),( XL

(iii) )('L  = ),( XL  < 

(iv) V exists and is non-singular; with V = (si, sj)  the variance-covariance 
matrix of the random field generating the data. 

From the Maximum Likelihood estimators’ asymptotic efficiency it follows that 
their asymptotic variance achieves the Cramer and Rao lower bound: 

Var( ) = i ( )-1 = [limn (
n
1 in( ))]-1 (3.18)

with in( ) being Fisher’s expected information matrix based on n observations. 
However, as stated by Anselin (1988), this expression can only be obtained in an 
explicit analytic form in very particular spatial fields. 

3.4 Tests Based on Likelihood 

The most commonly used statistical testing procedures in econometrics derive 
from the notion of likelihood and are incorporated in three fundamental criteria 
leading to three asymptotically equivalent uniformly most powerful tests. These 
are the likelihood ratio, the Lagrange multiplier (or score test) and Wald’s 
criterion (Greene, 2003). Let us now summarize the main definitions related to 
these tests.
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Definition 46. Let the likelihood function be );( XL , 0 the vector of the 
parameters under the null hypothesis H0 and ˆ  the maximum likelihood estimator 
of . The ratio:  

(X) = 
);ˆ(
);( 0

XL
XL  (3.19) 

is termed the likelihood ratio. Since a monotonic transformation does not alter the 
conclusions of the test, it is equivalent to consider the transformation:  

)(log2 XLRT  (3.20) 

which represents the likelihood ratio test. It can be proved that, under the 
hypotheses of regularity required for the optimality of the maximum likelihood 
estimators, the likelihood ratio test is distributed asymptotically under H0 as a 2

(m) with m degrees of freedom, where m is the number of constraints under the 
null hypothesis. 

Definition 47. Under the usual assumptions of regularity, by expanding the 
likelihood ratio test according to Taylor’s series around ˆ  and stopping at the 
second term, we obtain: 

)1()(ˆ
0

2

0 poinLRT (3.21)

with )(i  being Fisher’s expected information and )1(po  a term asymptotically of 
order 1. The term  

)(ˆ
0

2

0 inWT (3.22)

is an alternative test called the Wald test. It can be seen from Equation (3.21) that 
WT is asymptotically equivalent to the LRT and, as a consequence, it is also 
distributed asymptotically as a 2(m).

Definition 48. A third alternative testing procedure can be obtained by expanding 
the score function according to Taylor’s series. This leads to: 
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which, substituted into Equation (3.21) gives: 
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The term  
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is asymptotically equivalent to the LRT and the WT. It was termed the “score 
test” by Rao (1948) and the “Lagrange multiplier test” by Aitchinson and Silvey 
(1958, 1960) and by Silvey (1959). Due to the asymptotical equivalence to the 
other two tests, the LMT, too, has an asymptotic distribution of 2 (m).

There are many reasons for considering all three procedures even though they 
lead to asymptotically equivalent inferential results. First of all, it is certainly true 
that in large samples if we apply any of them to the same system of hypotheses 
will yield exactly the same results in terms of the statistical decision. It should not 
be forgotten, however, that the three tests can lead to quite different results when 
dealing with small samples. Secondly, none of the three tests dominates in 
absolute the others in terms of their power when dealing with small samples. 
Hence, different situations may require different choices. Thirdly, there are some 
relative advantages/disadvantages in choosing one test over the other in particular 
circumstances. For instance, the Wald test is not invariant to transformations and 
this may be seen as a drawback in some inferential procedures. Similarly, the 
score test has the advantage of not requiring the evaluation of the point estimators 
prior to its computation. This advantage is only an apparent one because in most 
inferential processes the point estimation phase often preceeds that of hypothesis 
testing.

The asymptotic distribution of the three tests presented above is based on the 
optimal properties of the maximum likelihood estimator and, in particular, on 
those properties deriving from the estimators’ asymptotic normality. 

Therefore, if the conditions for the optimality of the maximum likelihood 
estimators are valid and, furthermore, the conditions for applying the limit 
theorems to the case of random fields are verified (see Section 2.5), the tests also 
maintain their validity in the case of spatial observations. 

The three criteria introduced here will be used in the next chapter to test 
hypotheses on the linear model with spatial data. Most of the procedures 
employed in random fields hypothesis testing are based on the likelihood ratio and 
Wald’s criteria. Tests based on the Lagrange multiplier have been proposed at a 
theoretical level (Anselin, 1988), but, to date, have never been used in practical 
cases.
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3.5 Tests Based on Residual Sums of Squares 

A very popular way of deriving test statistics in regression analysis is based on the 
comparison between the residual sums of squares obtained under two constrasting 
situations; i. e. the case in which the null hypothesis holds true and that in which a 
properly specified alternative hypothesis is valid. 

If 0
ˆ denotes the set of estimates under the null hypothesis and 1

ˆ  the set of 
estimates under the alternative hypothesis, then an F statistic for testing H1 against 
H0 can be computed by 

)ˆ(
)ˆ()ˆ(

0

01

RSS
RSSRSS

r
rn  (3.26) 

with n the number of observations, r the number of constraints under the null hy-
pothesis, )ˆ( 1RSS  the residuals’ sum of squares under the alternative hypothesis 
and )ˆ( 0RSS the residuals’ sums of squares under the null.  

In cases when the random variables involved in the regression are jointly nor-
mal, the quantity expressed in Equation (3.26) is distributed as a Fisher’s F with r
and n-r degrees of freedom.  



4 The Linear Regression Model with 
Spatial Data 

4.1 Introduction 

The linear regression model represents the benchmark for other, more sophisti-
cated statistical models of econometric relationships. In this chapter we will begin 
by presenting the basic concepts of linear regression and then introduce the speci-
ficity arising when estimating it on the basis of spatially distributed data. We shall 
be discussing into details only the standard linear regression model and its more 
common violations in the spatial context. We are nevertheless confident that the 
framework presented here is sufficiently general for it to be easily extended to 
more complex models simply by adapting the notions introduced in Chapter 2 
when discussing models of random fields. 

Let Y(si) be the dependent variable of the model at location si, X(si) a vector of 
esplicative variables of dimension k (including the constant term) and Z(si) = 
Y(si), X(si)T T a collection of random variables belonging to the vector random 

field Z(s) s  defined on the probability space ( , B, P(.)) which generates a 
set of data observed in n locations of coordinates (s1, s2,...,sn) on a continuous or a 
discrete space. Let us assume that we want to build up a model which explains the 
behaviour of the economic variable Y(si) in location si in terms of the behaviour of 
the other random variables X(si) constituting the random field. Having clarified 
the meaning of different spatial indices si in the previous chapters, henceforth we 
shall simplify the notation by indicating the random field Z(si) = Y(si), X(si)T T as 
Zi = (Yi, Xi

 T)T and the sample observations z(si) = y(si), x(si)T T as zi = yi, xi
T T . 

4.2 Specification of a Linear Regression Model 

In this section we will summarize the basic assumptions underlying a linear re-
gression model. Two alternative specifications of the model will be presented. In 
Section 4.2.1 we will present a model based on the full specification of the joint 
behaviour of the variables Zi = (Yi, Xi

 T)T in which we model the systematic part 
through conditional expectations. We will refer to this as the conditional 
specification. In Section 4.2.2 we will consider the more standard textbook 
specification based on the modelling of the stochastic error component. Both 
specifications will be then used when discussing the violations of the hypotheses 
when using spatial samples. 
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4.2.1 The Conditional Specification 

We will now summarize the basic assumptions on which a linear regression model 
is based. We will group the hypotheses into three blocks: (i) hypotheses 
concerning the probability model (PM), (ii) hypotheses concerning the statistical 
generating mechanism (GM), and (iii) hypotheses on the data sampling model 
(SM).

4.2.1.1 Hypotheses on the Probability Model (PM) 

The fundamental assumption on which the standard linear regression model is 
based is that the joint distribution of the random variables involved (both Yi and 
the explicative variables Xi ) is multivariate Gaussian, i. e.: 

PM i
1         Zand;);,( k

iiii
f zZZ MVN 

where represents a parametric family of density functions, the associated 
parametrization and  the parametric space. 

All other hypotheses concerning the probability model are consequences of this 
basic assumption. In fact the normality of the conditional distributions follows 
directly from the joint normality. Hence 

PM1 ),( iiiiiY yYf
ii

xXX  N  

And, from PM1, the linearity of the expected value (regression function), 

PM2 E(Yi = yi| Xi = xi) = T xi

 being a k-by-1 column vector of parameters and xi a k-by-1 column vector of 
observations of the random variables Xi. From PM1 it also follows the constancy 
of the conditional variance (also called the skedasticity function) independently of 
the value of xi (homoskedasticity): 

PM3 Var(Yi | Xi = xi) = 2 xi

and, finally, the hypothesis of the spatial invariance of the parameters 

PM4 i ( , ²)= i

PM1 to PM4 summarize all the aspects of the Probability Model that are necessary 
to build the statistical inferential procedures. 
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4.2.1.2 Hypotheses on the Statistical Generating Mechanism (GM) 

The basic assumption behind the statistical generating mechanism is that it is con-
stituted by a systematic (forecastable) component and a non-systematic (non fore-
castable) component. In the basic linear regression model, the two components are 
combined linearly. As it is obvious, this linearity has nothing to do with the linearity 
of the conditional mean assumed under PM2 as a consequence of the postulated 
multinormality. In particular, the systematic component (say i) is represented by 
the conditional expectation of yi given xi whilst the non-systematic component is 
simply the unexplained part of the model, measured by the difference between the 
observed value and the systematic component. We have therefore:  

GM1 i = E(Yi| Xi = xi)
 ui = Yi – i

 Yi = i + ui = E(Yi| Xi = xi) + ui

From the linearity of the mean, assumed in PM2, we then have : 

Yi = T xi + ui

From the normality postulated in the PM, we also have that the model’s only 
parameters of interest are represented by the vector and the conditional variance 
of y given X (say 2).

GM2  ( ; 2) ; 1k

Of course the parametrization depends on the specific hypotheses made for the 
PM. Changing the PM (as we will do when introducing some of the procedures to 
treat spatial data) will, in general, result in a different parametrization.

The fact of concentrating on modelling the conditional distribution of Yi given 
Xi = xi (and, specifically, the expected value of this distribution) rather than 
modelling their joint distribution directly, implies that in the identity: 

),( iii
f zZ = ),( iiiiY yf

ii
xXX ),( iiiX i

f xX

we deliberately decide to neglect all relevant information contained in the mar-
ginal density ),( iiii

f xXx . Operationally, this means that all information con-
tained in ),( iiii

f xXx  is inferentially irrelevant with respect to the problem of 
estimating the vector of parameters of interest . This simplifying hypothesis leads 
to the following assumption: 

GM3 Xi is weakly exogenous with respect to  ( ; 2)

See Engle et al. (1983) for details on exogeneity. 
Furthermore, no restrictions are imposed a priori on the range (if deterministic) 

or on the distribution (if stochastic) of the parameters .
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GM4 We do not have a priori information on  ( ; 2).

Finally, for reasons related to the estimation procedures and, in particular, to avoid 
the singularity of the variance-covariance matrix, we assume that the observed 
data matrix is of full rank, whatever the observed sample, i. e.:

GM5 Rank (X) = k

with X = (x1, x2,...,xn)T, xi a k-by-1 vector of observations and X an n-by-k data 
matrix such that n > k.

Hypotheses GM1 to GM5 represent what we call the Statistical Generating 
Mechanism. 

4.2.1.3 Hypotheses on the Sampling Model (SM) 

The basic assumption behind the sampling model is that the data are drawn with a 
simple random criterion from the conditional distribution of Y given X. In other 
words:

SM1 y (y1, y2,...,yn)T is an independent sample drawn from the density 
),( iiiiY yf

ii
xXX , i = 1,.....,n 

The set of hypotheses presented above defines all the elements required to imple-
ment statistical inferential procedures. The distinction between assumptions re-
garding the probability sphere, the data generation process and the sampling 
scheme is purely for clarity of presentation and to facilitate the discussion of the 
violations of the basic assumptions. However, the reader may be more familiar 
with an alternative and equivalent specification of the linear regression more 
commonly found in standard econometric textbooks, in which the three aspects are 
treated together. Before discussing the basic hypotheses in the case of samples 
drawn from a spatial field, we will therefore review this second specification and 
compare it with the one presented above.  

4.2.2 Standard Textbook Specification 

An equivalent formulation of the linear regression model more commonly used in 
econometrics manuals (and which we will use in some circumstances in this book) 
concentrates on the modelling of a stochastic error component and derives from it 
all the hypotheses on the PM and on the SM. 

In this second formulation, a linear relationship between yi and xi is assumed a
priori (and not derived from the Probability Model as before) and all the 
probabilistic assumptions are concentrated on a stochastic error term rather than 
directly on the stochastic relationship between yi and the xi

T.
In particular, the linearity assumption first of all implies 
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A1  yi = T xi + ui

or, more compactly:  

A1 y = X  + u

with u a n-by-1 column vector of the error terms and X an n-by-k data matrix (n > 
k). Assumption A1 parallels assumption GM1 in the previous specification. 

Furthermore, we assume that the error component, conditionally upon the ob-
served values of X, is distributed in a Gaussian form with zero expected value and 
constant variance 

A2 )( Xuuf  N(0, 2In)

In being an n-by-n identity matrix. 
Note that A2 implies assumptions PM1 to PM4 and SM1 of the previous 

alternative formulation. 
Finally, parallel to assumption GM4 of the previous formulation, we assume 

that no restrictions are imposed a priori on the parameters 1k

A3 we do not have any prior information on  ( , 2)

And, parallel to GM5, we postulate that the observed data matrix is of full rank 
whatever is the observed sample,  

A4 Rank (X) = k

with X = (X1, X2, ....., Xn) T an n-by-k matrix containing the sample information (n
> k).

In line with our proposed aim of describing the basic methodologies for testing 
spatial relationships, we are not going to discuss here the whole set of assumptions 
on which the linear regression model is based in the two alternative formulations. 
On the contrary, we are going to limit ourselves to considering only those viola-
tions which assume a precise meaning and have an easy interpretation in cases 
where the empirical data come from spatial observations. 

In particular, we are not going to discuss the assumptions relating to the data 
generation statistical model (GM). The next sections of this Chapter will 
concentrate on the assumptions relating just to the Probability Model (PM) and the 
Sampling Model (SM). More specifically, Section 4.3 will discuss the most crucial 
hypothesis (systematically violated with spatial data) of independence of the 
spatial observations. Section 4.4 will discuss the violations of the hypotheses 
behind the probability model and, in particular, those connected with spatial 
homoskedasticity and the spatial invariance of parameters that are more frequently 
encountered in empirical instances in economic analysis. 
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4.3 Violation of the Hypotheses on the Sampling Model 

4.3.1 Introduction 

The SM1 assumption of simple random sampling is certainly the most important 
among those the linear regression model is based on. In practice none of the 
results relating to the estimation and hypothesis testing remain valid if they are 
rejected on the basis of empirical data. More precisely, the implications of the 
violation of the simple random sampling hypothesis on SM are that the OLS 
estimates of  and 2 are inefficient and inconsistent even if still unbiased. 
Moreover, the sampling variances are biased and in most cases significantly 
underestimated. As a consequence, the coefficient of determination (R2) as well as 
the test statistics t and F tend to be inflated, leading to accept the model more 
frequently than it should (Maddala, 2001). As stated in Section 1.1, many 
econometric textbooks are aware of the problem of non independence arising 
when dealing with spatially collected data. Kmenta (1997) warns that: “In many 
circumstances the most questionable assumption […] is that the cross-sectional 
units are mutually independent […] when the cross-sectional units are geographi-
cal regions […] we would not expect this assumption to be well satisfied”. Simi-
larly, Maddala (2001) points out that: “In cross-section data [correlation] can arise 
among contiguous units […] Similarly, if our data are on states, the error terms for 
contiguous states tend to be correlated”. Woolridge (2002a), too, is aware of the 
problem when he says that “… cross section data that are not the result of inde-
pendent sampling can be difficult to handle. Spatial correlation, or, more gener-
ally, spatial dependence, typically occurs when […] data are collected at the 
county, state, province, or country level. Outcomes from adjacent units are likely 
to be correlated”. In this respect, the quotes from Baltagi (2001), Gujarati (2003), 
Johnston (1991) and Kennedy (2003) cited in Chapter 1.1 should also be recalled. 

At the level to which this book has been kept we will limit ourselves to the 
Gaussian paradigm. Thus the study of how the ideal situation of independence in 
space is violated reduces to the simpler study of the correlation between spatial 
units or spatial correlation. Historically, the study of spatial correlation (or spatial 
autocorrelation, as we called it in Chapter 2) was the first topic addressed by spa-
tial statistics (see Whittle, 1954; Besag; 1974; Cliff and Ord, 1981). It led to the 
specification of a first spatial independence test that is still very popular in the 
spatial econometric literature. This is the so-called Moran’s I spatial autocorrela-
tion test named after the statistician who introduced it in the 1950s (Moran, 1950). 
Moran’s I has several disadvantages. First of all, it is not a correlation coefficient 
in that it does not range between –1 and 1. Secondly, it is not a proper statistical 
test because, although based on the implicit null hypothesis of spatial independ-
ence, it does not consider an explicit alternative hypothesis. Other critiques to the 
Moran’s I may be found in Arbia (1989). On the other hand Moran’s I does repre-
sent the simplest and most commonly used test statistics in the spatial econometric 
literature. Furthermore, the fact it does not require the specification of an alterna-
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tive hypothesis may turn out to be an advantage when initially approaching prob-
lems in an exploratory way, before specifying a definite random field model as an 
alternative to the basic assumptions. Finally, Burridge (1980) proved that Moran’s 
I test is asymptotically equivalent to a Lagrange multiplier test if the alternative to 
the null hypothesis of spatial independence is expressed by a SAR or a SMA 
random field model.

For these reasons, we will devote the next section to a discussion of this test. 

4.3.2 A General-Purpose Testing Procedure for Spatial 
Independence

While studying spatial autocorrelation Moran (1950) and Cliff and Ord (1972) 
proposed a test that can be applied to the study of the dependence pattern of a 
linear regression model’s residuals at least in an exploratory analysis. The test 
assumes the form: 
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with n the number of spatial observations, i
T

ii ye xˆˆ  the OLS regression 
residuals, Wijw  and W a properly defined n-by-n contiguity matrix, ix a k-by-

1 data vector, ˆ  the OLS estimates of the (k-by-1) parameters’ vector , and h a 

normalizing factor such that h = n
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In matrix notation, Equation (4.1) becomes 

)ˆˆ(ˆˆ 1 eWeee TThI (4.2)

with ê = y – X ˆ  and X an n-by-k data matrix. 
Equivalently, by referring to the standardized connectivity matrix W* (see

Section 2.2.1.2), the test statistic simplifies as: 

)ˆˆ(ˆˆ *1 eWeee TTI  (4.3) 

Let us first of all note that the most celebrated analogous time-series test for 
temporal autocorrelation, the Durbin-Watson test, can be expressed in a like 
manner. It is sufficient to show this point to define an appropriate connectivity
matrix which accounts for the temporal dependence pattern.  
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In particular, if we substitute the matrix TLLW*  in Equation (4.3) with L
such that: 

11.00000
.

.
...

0..01100
0..00110
0..00010

L  (4.4) 

and if we, further, replace the spatial index i (i = 1, 2, …….n) with a time index t
(t = 1, 2,…, T), and, finally, set h = 1, Equation (4.2) becomes: 
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which is the familiar expression of the Durbin-Watson test (Maddala, 2001). 
Cliff and Ord (1972, 1981) studied the asymptotic distribution of the statistic I

computed on OLS regression residuals. If the residuals are normally distributed 
(as postulated explicitly in Section 4.2.2) the test statistic is also asymptotically 
normal with expected value  
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and variance  
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with the symbol (.)tr  denoting the trace of a matrix, M the idempotent projection 
matrix derived from the data matrix X in such a way that TT XXX(XIM 1) ,
and k the number of independent variables of the model including the constant 
term. 

Where normality cannot be assumed for the residuals, Cliff and Ord (1972) 
have proved the normality of the test using a non-parametrical permutational ar-
gument. 
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4.3.3 The Respecification of the Linear Regression as a 
Multivariate CAR Field

4.3.3.1 Introduction 

In this section we will refer to a linear regression model specified in a conditional 
form as described in Section 4.2.1. If we maintain the basic assumptions about the 
probability model (i. e. that the vector of random variables Z is multivariate 
Gaussian), we can consider the particular instance where the assumption SM1 of 
independence of the sample observations is violated. 

In these circumstances, we need to re-specify our model as a vector Gaussian 
random field (see Section 2.2.2) for which we have: 
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where each i represents a k-by-1 vector of expected values at site i, and Vi and Cij
the matrices of cross-covariance and, respectively, of spatial auto-covariance and 
spatial cross-covariance between pairs of sites defined by: 
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)(iikl being the covariance between the random variables Xk and Xl at location i
and )(ijkl  the cross- covariance between Xk and Xl at locations i and j. (see Sec-
tion 2.2.2). 
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However, as already noted, such a definition of a random field is too general 
and requires a very high number of parameters (all the elements in the matrices). 
The latter cannot be estimated on the basis of a single realization unless we 
introduce some restrictions on both the heterogeneity and the structure of 
dependence of the field. 

In practice, in order to obtain an operational sampling model, it is useful to 
limit ourselves to one of the random fields introduced in Section 2.4 the properties 
of which are known. Given the continuous nature of many economic variables, 
and due to their simplicity, the spatial econometric literature has concentrated al-
most exclusively on random fields that obey the simultaneous autoregressive field. 
The framework presented here, however, is general enough to allow application to 
any other random fields in those cases when the phenomenon under study requires 
a different specification. In the present section, we shall redefine the basic hy-
pothesis of the linear regression model in the case of a non-independent sampling 
model by making explicit reference to the auto-normal random field. In the fol-
lowing section we shall exploit a framework based on the simultaneous autore-
gressive field.

4.3.3.2 Respecification of the PM, GM and SM Hypotheses 

Probability Model 

A first way of redefining the linear regression model to take account of the spatial 
nature of data is by redefining the probability model in such a way that the vector 
of random variables involved is assumed to obey an autonormal field, that is:  

PM i
)1(2         Zand;);,( k

iiii
f zZZ MVN 

From this, fundamental, assumption we can derive a series of consequences in 
terms of the probability model. First of all, we have the normality of the 
conditional distributions: 
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As a consequence of PM1, we have the linearity of the expected values that (re-
calling the definition of an autonormal random field set out in Section 2.4.2.7) can 
now be expressed as: 
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the parameters to be estimated. In particular,  and  are the parameters that 
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regulate the amount of spatial dependence in the independent variables and in the 
lagged dependent variable respectively. A second consequence of PM1 is the 
constancy of the conditional variance (homoskedasticity) i. e.:

PM3 Var(Yi| Xi = xi; Yj =yj; j N(i), ) = 2 xi yi

We also derive the constancy of all parameters with respect to space, i. e.:  

PM4 i ( T,  T, , ²) = i

Statistical Model 

Here we can maintain the main hypothesis that the observations of the random 
variable Yi are generated by a linear combination of a systematic component and a 
non-systematic component 

Yi = i + ui  (4.11) 

The systematic component i is constituted by the conditional expectation of the 
variable Y in location i, conditional upon the variable Y in the surrounding 
locations and on the variables X recorded at the same location i and in the 
surrounding locations (see Section 2.4.2.8): 

));(;;( xX ii iNjyYYE jjii

From the linearity of the conditional expectation derived from PM2 and 
substituting into Equation (4.11) we obtain 
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From the normality postulated in the PM we also have that the parameters of 
interest are

GM2  ( T, T, , ²)

We also keep the hypothesis of weak exogeneity of Xi with respect to :

GM3 Xi is weakly exogenous with respect to 

The model considered here imposes some restrictions on the parameters connected 
with the symmetry of the variance-covariance matrix. In particular, we have: 

GM4 The parameters  ( T,  T, , ²) are subject to the restrictions: 
jijlijil ww 22 ; jijlijil ww 22 ; jijiji ww 22 ; lji ,,
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ensuring that the variance-covariance matrix of the field is symmetrical. In practi-
cal terms, due to the PM3 assumption of constant variance, this restriction only 
requires the choice of a symmetrical W matrix, a condition that is almost invaria-
bly respected in the generality of geographical applications. 

Finally, in order to avoid singularity of the variance-covariance matrix, we need 
also to assume that X (x1, x2,..., xn)T is a full rank (n-by-k) matrix for all the 
observed values of the random variables X:

GM5 Rank (X) = k

Sampling Model 

Finally, in the sampling model, we shall assume that y  (y1, y2,...,yn)T is a sample 
drawn from a stationary random field characterised by the conditional distribution  

));(;,(
,
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iNjyYyf jjiiiyY jii
that is: 

SM1 y  (y1, y2, …, yn)T is independently drawn from  

));(;,( xX
X

iNjyYyf jjiiiyY jii

The model thus specified will be referred to as the multivariate CAR spatial linear 
regression model. Notwithstanding its sound probabilistic foundations, it is not 
encountered in the applied spatial econometric literature. It should also be 
remarked that part of the problem may reside in the fact that there is no routine 
currently available for estimation and hypothesis testing based on this modelling 
framework (see Chapter 6 below). 

4.3.3.3 Likelihood of a Bivariate CAR Spatial Linear Regression Model 

In this section we shall limit ourselves simply to bivariate auto-normal fields Zi = 
(Yi, Xi)T. The extension to higher dimensional fields is more complicated in its 
formalism and is outlined in the next section.  

If Y and X are jointly distributed as a bivariate random field we know (from 
Section 2.4.2.8) that we can express the conditional expected value of Yi as:

ji
jYjijiXi

ji
jXjijiYijji YXXXYXYE )()()(;;  (4.12) 

To simplify a notation that runs the risk of becoming too cumbersome, we shall 
express (without loosing in generality) each random variable as a deviation from 
its respective expected value. Equation (4.12) now becomes 
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with ijij w , ijij w , ,  and  parameters and Wijw . the elements of 
a contiguity matrix properly defined.  

This expression of the expected conditional value provides an operational form 
for the model’s systematic component. Thus if we define the non-systematic 
component as: 

ji
jiji

ji
jijiijjiii YXXYXYXYEYu ;;  (4.14) 

and we redefine the data generation statistical model as the sum of the systematic 
and the non-systematic components: 

iijjii uXYXYEY ;;  (4.15) 

we have: 
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jiji uYwXXwY  (4.16) 

In this way each observation of the random variable Y at location i is expressed as 
a function of the observation of the variable X in the same location (as in a 
standard linear regression model), but also of the spatially lagged values of the 
variable X and of the variable Y. In other words it is expressed as a function of the 
mean of the neighbouring values for both variables.  

We know that a bivariate CAR field has a variance-covariance matrix given by 
Equation (2.66) (reported here again for convenience): 
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with  = 2
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xn
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, Il are l-by-l identity matrices and 2
x  and 2

y  are the 

unconditional variances of X and Y respectively. 
Therefore it is immediate to redefine the likelihood function of the sample as a 

bivariate Gaussian density function having ),,,,( 22
yxQQ  as a variance-

covariance matrix, i. e.:
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and, consequently, the log-likelihood is defined as: 
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zQzQzz 122
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This expression is highly non-linear in the parameters and can therefore only be 
maximized by using numerical algorithms (see e. g. LeSage, 1998) in order to 
obtain maximum likelihood estimators. The likelihood thus derived also constitutes 
the basis for building various hypothesis testing procedures, as we will show in the 
next section.  

4.3.3.4 Hypothesis Testing in the Bivariate CAR Spatial Linear Regression Model 

As we said in Section 3.4, the most popular general tests used in econometrics are 
based on the three asymptotically equivalent statistics deriving from the concept 
of likelihood, namely, the Likelihood ratio (LRT), the Wald test (WT) and the 
Lagrange multiplier test (LMT). Now that we have fully specified the alternative 
hypothesis to the null hypothesis of spatial independence in the regression model, 
we are in a position to apply these general procedures to this particular instance. 
This is the aim of the present section. 

Indeed, once the model is respecified (as indicated in Section 4.3.3.1 above), 
the system of hypotheses can be explicitly obtained by contrasting the null hy-
pothesis 0: 000H , with the alternative hypothesis 0;0:1H

In terms of the likelihood we have, under the null: 
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with 0Q  the variance-covariance matrix that, in this case, is ),,( 2
0,

2
0,00 yxQQ
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* , implying independence between observations. 

As a consequence, the log-likelihood can be expressed as: 
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In contrast, under the alternative hypothesis of a bivariate CAR random field, the 
likelihood assumes the expression 
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with ),,,,( 22
yxQQ  provided by Equation (2.62). Consequently, under 

the alternative hypothesis, the log-likelihood becomes: 
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A test of spatial independence can therefore easily be derived from the likelihood 
ratio test criterion, by simply taking minus the log-difference between (4.20) and 
(4.22). This leads to: 
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with 2
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2
0,00 ,, yx , and );,,,,( 22

1 zyx . Substituting (4.21) and 
(4.23) into (4.24) we obtain:
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that represents the formal expression of a likelihood ratio test in the case of a 
bivariate Gaussian field. 

An alternative way of obtaining a test statistics for the hypothesis of 
independence in a bivariate CAR linear regression model lies in considering the 
different formulations assumed by the data generation mechanism according to 
whether or not the random sampling hypothesis is verified. Indeed, when such a 
condition is respected, the data generation model can be expressed as: 

iii uxY  (4.26) 

Whereas, in the second case, if we postulate a bivariate auto-normal random field 
as an alternative, it is conversely given by: 
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Consequently, a simple test for the independence hypothesis can be constructed 
using the general test statistic introduced in Section 3.5: 
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with n the number of observations, r the number of constraints under the null hy-
pothesis, 1RSS  the residuals’ sum of squares of model (4.27) and 0RSS the residu-
als’ sums of squares of model (4.26). Expression (4.28) has a Fisher central F-
distribution with r and n-r degrees of freedom. 
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4.3.3.5 Likelihood of a Multivariate CAR Spatial Linear Regression Model 

Let us now consider the more general case of a multivariate linear regression 
model and the extension of the derivation of the likelihood considered in Equation 
(4.19).

From Equation (2.77), the likelihood of the multivariate CAR model is given 
by:
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and, hence, the log-likelihood by 
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Equation (4.30) can be expressed differently way by assuming the following repara-
metrizations for i , ijC  and iV : ii :  and ,diag 22

1 pi VV

,:, ijij wijji C  where  is a k-by-k symmetric matrix and Wijw
is the generic element of a weights matrix.  

Under these assumptions, we can write: 
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so that the log-likelihood becomes: 
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 (4.32) 

and can be used in the estimation and hypothesis testing procedures. 

4.3.4 The Respecification of the Linear Regression with SAR 
Residuals (the Spatial Error Model)

4.3.4.1 Introduction 

In the previous Section 4.3.2 we attacked the problem of non-independence in the 
sampling model by considering the spatial observations as drawn from a multi-
variate CAR field. Let us now approach the problem following a different strategy. 
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In this section, we will start from the alternative formulation of the linear regression 
model introduced in Section 4.2.2. Following this formulation, the model can be 
written as: 

A1 iii uy xT

Or, more compactly, as 

A1 y = X  + u 

If we use such a specification, we know (from Section 4.2.2) that the hypothesis of 
simple random sampling is incorporated in the error component by assuming it to 
be conditionally distributed as a Gaussian spatial white-noise: 

A2 )( Xuuf  N(0, 2In) 

with In an n-by-n identity matrix.  
A way to express formally the violation of this unrealistic condition is to 

considering, as an alternative, a random field u  characterised by a particular 
known distribution. In this way, the problem shifts from the direct modelling of 
the random field Zi = (Yi, Xi

 T)T to the simpler problem of postulating a 
plausible form of dependence for the random field ui . Of course, at least in 
principle, any of the random field models introduced in Section 2.4 could be 
used to achieve this aim. However, one of the most popular alternatives to the 
spatial white noise hypothesis adopted in the econometeric literature is that of 
postulating a SAR model for the non-systematic component. This formulation is 
referred to in the econometric literature as the “Spatial Error Model” or SEM 
(see Anselin and Bera, 1998; Anselin et al., 2004). It is without doubt the model 
most commonly used in applied spatial econometrics partly because specific 
software and routines are readly available for estimation purposes (see Chapter 6 
below). The terminology used in most of the spatial econometric literature, 
however, runs the risk of creating confusion in those who are more familiar with 
the spatial statistical literature. In fact, the acronym SAR adopted here, is used 
(in accordance with the spatial statistics literature; see e. g. Whittle, 1954; 
Cressie, 1991) to indicate the Simultaneous AutoRegressive field model 
discussed in Section 2.4.3.1. In the spatial econometric literature, on the other 
hand, the term usually indicates the so-called Spatial AutoRegressive model (see 
Anselin and Bera, 1998; Anselin et al., 2004; LeSage, 1999). The latter has a 
completely different formulation (and a less justified one, under the probabilistic 
point of view) with respect to the one presented here and that will be examined 
in Section 4.3.6 below. 
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4.3.4.2 Derivation of the Likelihood 

If we decide to model the non-systematic component as a SAR random field, we 
need to redefine the linear regression model by supplementing the fundamental 
equation:

ii
T

i ey x (4.29)

with the simultaneous autoregressive expression (see Section 2.4.3.1) for the error 
term:

n

j
ijiji

ji

uewe
1

(4.30)

where ui is a Gaussian spatial white noise, Wijw  and W a properly defined 
weights’ matrix. 

In compact matrix notation, Equations (4.29) and (4.30), become respectively 

y = X  + e (4.31) 

with X an n-by-k matrix of observations and  

uWee  (4.32) 

Since u is a Gaussian white noise field, then e is also Gaussian. On these 
assumptions, the problem is transformed into a situation where it is necessary to 
make inference on the vector of unknown parameters  ( , 2, ) and, with the 
additional feature of normality introduced through the hypothesis on the random 
field u, the violation of the random sampling hypothesis is reduced to the study of 
the spatial autocorrelation which is present in the non-systematic component. 

We know (from Section 2.4.3.1) that a SAR process is characterised by a 
variance-covariance matrix: 

TBIBIV )()( 1  (4.33) 

with B ij , ij =  wij and  a diagonal matrix of generic element i
2=

Var(ui).
We will refer to this matrix as V ( , i

2) in order to make explicit reference to 
the parameters of inferential interest. In the case of constant variances i

2 = 2,
matrix V in Equation (4.33) becomes  

T)()(),( 122 BIBIVV (4.34)

From Equation (4.31) we then derive 
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e = y – X (4.35)

and, since e is assumed to be distributed as a Gaussian SAR random field, we 
easily obtain the likelihood function given by: 
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Substituting the expression e = y – X  in this last equation we obtain: 
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and by substituting the explicit expression for the matrix V reported in Equation 
(4.34) we can write:  
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and, finally, the log-likelihood can be expressed as 
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)()()()(
2

1)()(ln
2
1)ln(

2
),( 11

2
12 XyBIBIXyBIBIXy TTTnc

Equation (4.39) cannot be maximized analytically due to the high degree of non-
linearity in the parameters. It can, however, be maximized numerically in order to 
produce estimates of the parameters , ² and . For the computational aspects, 
the reader is referred to LeSage (1999). We must, however, remark that the com-
putational procedures employed in the available software are all approximated in 
that they are based on a pseudo-likelihood version of Equation (4.30) and, more 
specifically, on a partial likelihood function (Pace and Salvan, 1997). The log-
likelihood derived in Equation (4.39) can also be used to construct hypothesis 
testing procedures. 

4.3.4.3 Equivalence of the Statistical Model Implied by the Bivariate CAR and 
the SAR Residual  

It is instructive to show the relationship existing between the SAR residual 
model and the previously introduced bivariate CAR modelling. In order to 
achieve this aim, let us consider the row-standardized connectivity matrix of 
generic element ** Wijw introduced in Equation (2.4) and let us re-write the 
SAR residual model as: 
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iii exy (4.40)
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with ieL  the spatially lagged value of ie (See Definition 5). From Equation (4.41), 
rearranging the elements, we have: 
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and, finally: 
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Now let us multiply both sides of Equation (4.40) by )1( L . We obtain: 
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and, by writing the explicit expression of a spatial lag, this becomes: 
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This expression is formally equivalent to a bivariate CAR model with the 
reparametrization . However, even if the statistical model is equivalent 
in the two specifications, the implications in terms of statistical inference are quite 
different as is patent by comparing the two likelihood functions derived in Equa-
tions (4.19) and (4.39). In particular, from a comparison it emerges that the ri-
parametrization  imposes a restriction in Equation (4.39) that is not present 
in Equation (4.19). Furthermore, in the bivariate CAR, we have two parameters 
referring to the unconditional variances of the random fields X and Y ( 2

X  and 
2
y ) instead of the single parameter 2  appearing in the residual SAR model rep-

resenting the variance of the non-systematic component u. Thus the results ob-
tained in the two modelling frameworks are different in terms of point estimation, 
the estimates’ properties and hypothesis testing procedures. 
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4.3.4.4 Hypothesis Testing in the Spatial Error Model 

If we adopt the approach based on the residual autocorrelation modelling, it is 
possible to construct independence tests starting from the likelihood function set 
out in Equation (4.30). Indeed, if we consider that the model’s non-systematic 
component obeys a SAR random field as postulated in this section, the test can be 
built up by considering the null hypothesis =0 against the alternative hypothesis 

0.
Under the alternative hypothesis, the likelihood of the model was obtained in 

Equation (4.38) and is given by: 

)()()()(
2

1exp)()(),(

),;,,(
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n

c

L
 (4.46) 

Consequently, the log-likelihood is given by: 

),;,,( 2 Xyl
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1)()(ln
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2
12 XyBIBIXyBIBIXy TTTnc  (4.47) 

In contrast, under the null hypothesis of spatial independence, the likelihood is 
defined as: 

)()(
2

1exp),(),;,( 2
222

0 XyXyXXy T
n

ycL  (4.48) 

and the log-likelihood is thus defined by: 

)()(
2

1ln
2

),(),;,( 2
22

0 XyXyXXy Tnycl  (4.49) 

From Equations (4.47) and (4.49), a likelihood ratio test for the hypothesis of 
spatial independence can thus be easily obtained as: 

Xy,Xy, ;,,;,,2 2
0

2 llLRT  (4.50) 

Substituting Equations (4.47) and (4.49) into Equation (4.50) we have: 

)()()()(
2

1)()(ln
2
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2
2 11

2
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)()(
2

1ln
2 2

2 XyXy Tn  (4.51) 
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And, after some algebra, one eventually obtains: 

)()()()(1)()(ln 11
2

1 XyBIBIXyBIBI TTTLRT

)()(1
2 XyXy T  (4.52) 

The above test is distributed asymptotically as a 2 with one degree of freedom. 
Based on the same hypotheses considered above, Anselin (1988) derived two 

further tests of spatial independence using the general expressions of the Wald test 
and the Lagrange multiplier Test introduced in Section 3.4. The Wald test assumes 
the following expression: 

WT = 2ˆ  [a + b – c2/n] (4.53) 

with ˆ the maximum likelihood estimator of the non-systematic component’s auto-
regressive parameter  of the and with a = tr  [W(I- ˆ W)-1]T [W(I- ˆ W)-1] , b
= tr [W(I- ˆ W)-1]2, and c = tr [W(I- ˆ W)-1].

The Lagrange multiplier test is, instead, given by: 

LMT = 
2

ˆˆ

J

T
XyWXy  (4.54) 

with WWW TtrJ . Like the LRT, both the WT and the LMT are asymp-
totically distributed as a 2 with one degree of freedom. 

4.3.4.5 Generalized Least Squares Estimators 

We have seen in the previous pages that, by following the approach based on the 
SAR modelling of the non-systematic component, it is possible to obtain maxi-
mum likelihood estimators by using the likelihood function derived in Equation 
(4.36). In this case, however, it is also possible to use the estimators based on the 
Generalised Least Squares (GLS) as an alternative. 

First, let us remember that, in this case, the model is specified as: 

yi = Txi + ei (4.55)

and

ei = i j wij ej + ui (4.56)

or, equivalently, in more compact matrix notation, as: 

y = X  + e (4.57)
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and

e = B e + u (4.58)

with u a white noise field, B = W and W wij  a properly defined contiguity 
matrix.  

Therefore, by minimising the GLS equation with respect to :

X)(yVX)(y 1)( Tgls (4.59)

and using the variance-covariance matrix V as specified in Equation (4.34) above, 
we obtain: 

B)y(IB)(IXB)X(IB)(IX TTTT 1ˆ  (4.60) 

It is easy to convince ourselves that, in numerical terms, this last expression is 
equivalent to the OLS estimator applied to a transformation of the variables X and 
Y. Let us define a new pair of variables *X  and *Y such that 

XBIX )(* (4.61)

and

YBIY )(* (4.62)

From Equations (4.61) and (4.62) we can interpret the transformed variables *X
and *Y  as the original variables with the spatial effects “filtered” away (on filtering 
spatially correlated variables see Griffith, 2003). By deriving the OLS estimators of 
the vector of parameters ˆ  for the transformed variables, one obtains: 

**1**ˆ YXXX TT  = (X*T X*)-1 X*T Y* (4.63)

and, by substituting Equations (4.61) and (4.62) into Equation (4.63) we again 
obtain Equation (4.60). 

The fundamental problem in using of Generalised Least Squares is that they 
assume a previous knowledge of the parameter  which represents the argument 
of the matrix B. In practice, however, this condition is hardly ever realized 
unless we avail a preliminary estimate based on previous surveys or a pre-
sample. Some of the proposals for overcoming this limitation will be reviewed 
in the next section. 
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4.3.4.6 Approximate Estimation Techniques 

In this section we will review a set of techniques designed to overcome the GLS’s 
procedure above mentioned limitations. These are two iterative techniques 
proposed by Hordijk (1974), Bartels (1979) and Anselin (1980) by analogy with 
those proposed by Cochrane and Orcutt (1949) and by Durbin (1960) in the 
context of time series analysis. 

A first technique derives from the analogous procedure introduced by Durbin 
(1960) for time series autoregressive processes. It suggests a way of deriving an 
estimate of the unknown parameter  necessary to activate the GLS procedure 
described in the previous section. In order to introduce Durbin’s spatial technique, 
let us write once again set out the basic formulation of the model written in matrix 
notation:

eXy (4.64)

and

uBee (4.65)

By pre-multiplying both sides of the Equation (4.64) by the term (I – B) we 
obtain:

eBIXBIyBI )()()( (4.66)

and, since ueBI )( , this reduces to: 

uXBIyBI )()( (4.67)

From Equation (4.67), by developing the matrix products, we finally obtain:  

uBXXByy (4.68)

Written as in Equation (4.68) the model is formally equivalent to a simple linear 
regression model characterized by a non-systematic component u that is a white 
noise. As a consequence the parameters can be estimated with the Ordinary Least 
Squares subject to the constraint B = W. Thus we obtain an estimate of the 
parameter , say ˆ .

In a second step, we can use this estimate to filter the variables X and y as indi-
cated in Equations (4.61) and (4.62) and we can apply the OLS to the transformed 
data. In this way, we obtain the GLS estimates of the parameters’ vector .

The second approximate method (known as the Cochrane – Orcutt spatial 
method) is an iterative technique proposed by Hordijk (1974) for obtaining 
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estimates of the parameters of a spatial regression model. The procedure develops 
through a number of steps.  

In the first step, an a-spatial regression model is assumed obeying to the equation  

eXy (4.69)

and the Ordinary Least Squares estimates are obtained for the vector of parameters 
 through the familiar OLS expression: 

yXXX TT 1)(ˆ
)1( (4.70)

Correspondingly, the residuals are obtained as:  

)1(
ˆ

)1( Xye (4.71) 

In a second step, the residuals thus obtained are used to derive an estimate of 
(the parameter that defines the spatial autocorrelation of the non-systematic 
component in the supplementary equation), say )1(ˆ , through the equation: 

)1()1(

1

)1()1()1(ˆ Weeee TT  (4.72) 

with W the usual contiguity matrix.  
Finally, in the third step the parameter estimate )1(ˆ  is used to obtain a new 

estimate of the vector of parameters , say )2(
ˆ by applying the Generalised Least 

Squares technique described in Section 4.3.3.4. In particular, by applying 
Equation (4.60), one obtains: 

B)y(IXXBIBIX TTT 1
)2( ))()(ˆ  (4.73) 

with WB )1(ˆ .
The three steps are then iterated so that, at the k-th step, we have:  

)1()( ˆˆ
kk f  (4.74) 

and

)()1(
ˆˆ kk g  (4.75) 

The process is iterated until convergence is achieved and we obtain:  

)1()(
ˆˆ

kk  (4.76) 
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and

)1()( ˆˆ kk  (4.77) 

At each step therefore, the new values of )(ˆ k  and )(
ˆ

k  are the ones that minimize 
the sums of squared residuals conditional upon the previous value. It can be 
proved that the technique eventually converges to a local minimum (for the proof 
in time series analysis see Sargan, 1964 and Oberhofer and Kmenta, 1971). It 
should be remarked, however, that there is no guarantee that this local minimum 
will also be the desired absolute minimum.  

4.3.5 The Re-specification of the Linear Regression by Adding a 
Spatial Lag (the Spatial Lag Model) 

4.3.5.1 Introduction 

The two models presented in the previous sections (i. e. the bivariate CAR model 
and the residual SAR) represent a formal way of tackling the problem of spatial 
data dependence by replacing the classical paradigm of random sampling with two 
alternative random field models. In this sense, the two models provide a sound 
probabilistic background to a spatial linear regression model. 

A further alternative, particularly popular in the spatial econometric literature, 
is not based on any specific random field model. It consists rather of a technical 
expedient that seeks to account for the spatial dependence between data by adding 
the spatially lagged value of y as an extra independent variable in a manner similar 
to the inclusion of a serially autoregressive term in a time series context. This mo-
del is often referred to as the spatial lag model (e. g. in Anselin and Bera, 1998), 
or as the mixed regressive spatial autoregressive model (Anselin, 1988) or, 
finally, as the spatial autoregressive or SAR model (LeSage, 1999). As already 
observed in Section 4.3.4.1, this last definition is particularly misleading because 
the acronym SAR is used in spatial statistics to indicate a specific random field: 
the Simultaneous AutoRegressive field (see Section 2.4.3.1). Due to the popularity 
of this model, this section we will focus on describing this alternative specification 
of a spatial regression model. 

4.3.5.2 Derivation of the Likelihood 

For the purpose of introducing of the spatial lag model, we will refer to the alter-
native formulation of a linear regression model introduced in Section 4.2.2. Fol-
lowing this formulation the model can be written as the set of the following hy-
potheses: 



4.3    Violation of the Hypotheses on the Sampling Model 111 

A1 i
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jiji
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i uywy
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where  is the usual k-by-1 vector of regressive parameters, xi the k-by-1 vector 
of explicative variables at site i,  an autoregressive parameter, Wijw  the 
elements of a (possibly row-standardized) weight matrix and u a Gaussian spatial 
random field such that: 

A2 )( Xuuf  N(0, 2In)

with In an n-by-n identity matrix.  
Unlike the case of the time series analogous specification, the presence of the 

spatially lagged term amongst the explicative variables induces a correlation 
between the error term and the lagged variable itself (see Anselin and Bera, 1998). 
Thus Ordinary Least Squares do not provide consistent estimators in this 
specification. It is important to note that this specific result (proved by Anselin, 
1988) does not depend on assumption A2 and holds irrespectively of the proper-
ties of the non-systematic component. 

Let us write assumption A1 in a more compact matrix notation as: 

 y = X  + Wy + u (4.78) 

with X now indicating a n-by-k matrix of observations.  
We will now provide a probabilistic justification of Equation (4.78), using 

concepts of the random fields theory, before deriving the likelihood function for 
this alternative spatial regression model. Equation (4.78) can be interpreted as a 
non-stochastic linear regression where the matrix of observations X is assumed to 
be a fixed set of numbers. As a consequence of the lack of probabilistic 
assumptions on the dependent variables X, Equation (4.78) can be interpreted as a 
stochastic differential equation leading to a simultaneous Autoregressive (SAR) 
random field (see Section 2.4.3.1) in which the additional constant term X
appears. The introduction of this term only affects the expected value of the 
random field: neither its variance nor its dependence structure are altered. We can 
therefore exploit the results relating to the SAR field (and, more specifically, use 
the variance-covariance matrix defined in Equation (2.69)) once we have 
introduced the necessary amendments.  

Formally, let us re-write our model as: 

Wyy  (4.79) 
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with a non-systematic component  defined as uX  and with u a spatial 
white noise field such that );( 2

nN I0u . As a consequence of the Gaussian 
assumption on the white noise component, we have that  is also Gaussian, but 
with non-zero expected values such that );( 2IXN .

Let us now isolate the variable y in Equation (4.79) and reformulate the model 
as:

WIy 1  (4.80) 

It is now possible to derive the properties of the random field y thus generated 
(and, consequently, the likelihood associated with a set of empirical observations) 
in the following way.  

To start with, the expected value of the random field y is given by: 

XWIWIy 11)( EE
 (4.81) 

Secondly, using Equation (2.70), the variance-covariance matrix of the random 
field is given by: 

TTE WIWIVyy 122 ),()(  (4.82) 

From (4.81) and (4.82) we then derive the Gaussian likelihood of a sample of ob-
servations and obtain: 

XWIyVXWIyy
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 (4.83) 

and, therefore, the log-likelihood can be expressed as: 

XWIyVXWIyVy
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2
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l
 (4.84) 

Remembering Equation (4.82), the determinant of the matrix ),( 2V  can be 
written as: 

TnT WIWIWIWIV 12122 ),(
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and, since TWIWI 1 = TWIWI 1 , it eventually can be 

expressed as: 

222 ),( WIV n  (4.85) 

Let us now go back to the log-likelihood and substitute Equations (4.82) and 
(4.85) into Equation (4.84). We obtain: 
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and, since XWIyWI 1)()( = XyWI )( , we eventually obtain: 

);,,( 2 yl

XyWIXyWIWIy )()(
2

1lnln
2

)( 2
2 Tnc   (4.86) 

which represents the formal expression of the likelihood of a spatial lag linear 
regression model. (See Anselin, 1988; p. 63, for an alternative derivation). 

4.3.5.3 Estimation 

Once the log-likelihood of the spatial lag linear regression model has been 
derived, we can maximize it in order to obtain maximum likelihood estimates of 
the parameters of interest. Unfortunately, this cannot be achieved analytically 
because Equation (4.86) is highly non linear in the parameters and there exists no 
exact solution to the maximization problem. Furthermore, a simple univariate 
simplex optimization algorithm cannot be used because this leaves the problem of 
finding an estimate of the parameter 2  unresolved, as remarked by LeSage (1999). 
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Anselin (1988) proposed an approximate solution based on a pseudo-likelihood and 
LeSage (1999) utilizes it to derive the software procedures for its computation.  

The procedure is based on the idea of the profile likelihood (PL). This is ob-
tained by reducing the number of unknowns in the problem by replacing in the 
original likelihood some of the parameters that are not of direct inferential interest 
(or nuisance parameters) with consistent estimates of them (see Pace and Salvan, 
1997). Obviously, a profile likelihood is not a genuine likelihood in that it is not 
deduced from a joint density function. It therefore does not posses all the properties 
of a true likelihood (for instance, the profile score does not have null expectation). It 
does, however, have some interesting properties similar to those of a true likelihood. 

Following Anselin (1988), LeSage (1999) proposes the following procedure.  
In a first step, we build up a partial model by regressing variable y only on the 

variables X

00 uXy (4.87)

and we derive the OLS estimate of 0 , say yXXX TT 1
0 )(ˆ .

In a second step, we build up a second partial model by regressing the spatially 
lagged variable Wy  only on the variables X

LL uXWy (4.88)

and we derive the OLS estimate of L , say WyXXX TT
L

1)(ˆ .
In the third step, we compute the estimated residuals of the two reduced models 

contained in Equations (4.87) and (4.88) as: 

00
ˆˆ Xyu (4.89)

and

LL XWyu ˆˆ (4.90)

In the fourth step, we use the estimated residuals obtained in Equations (4.89) and 
(4.90) to build the partial log-likelihood: 

WIuuuuuuuu lnˆˆˆˆ1ln
2

)ˆ,ˆ()ˆ,ˆ;( 0000 L
T

LLL n
ncl  (4.91) 

and we maximize it in order to derive an estimate of , say ˆ .
Finally, we use ˆ  to obtain the final estimates of 2  and , given by: 
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L
T

Ln
uuuu ˆˆˆˆˆˆ1ˆ 00

2  (4.92) 

and

)ˆˆˆ(ˆ
0 L  (4.93) 

respectively.

4.3.5.4 Hypothesis Testing 

Once the likelihood of the model has been derived, it is immediate to define a test 
statistics by specifying the null and the alternative hypotheses. We already know 
that, under the alternative hypothesis of a linear regression with an additional spa-
tial lag, the log-likelihood assumes the expression: 

);,,( 2 yl

XyWIXyWIWIy )()(
2

1lnln
2

)( 2
2 Tnc  (4.94) 

Under the null hypothesis, on the other hand, we have that 0:0H  and, 
hence, the log-likelihood can be expressed as: 

);,( 2
0 yl XyXyy Tnc 2

2

2
1ln

2
)(  (4.95) 

As a consequence, the likelihood ratio test statistics is equal to: 

yy ;,;,,2 2
0

2 llLRT  (4.96) 

By substituting Equations (4.94) and (4.95) into Equation (4.96) we have: 

XyWIXyWIWI )()(
2

1lnln
2

2 2
2 TnLRT

XyXy Tn
22

1ln
2

 (4.97) 

that, after some straightforward algebra, simplifies into 

XyXyXyWIXyWIWI TTLRT 22

1)()(1ln2  (4.98) 
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As is known Equation (4.98) is distributed asymptotically as a ² random variable 
with one degree of freedom and can be used to test the hypothesis of spatial depend-
ence within the framework of the linear regression model treated in this section. 

4.3.6 Anselin’s General Spatial Model 

When discussing possible alternatives to the specifications of the linear regression 
model presented in the two preceding sections the one suggested by Anselin 
(1988) (and christened by him as the general spatial model) deserves a special 
mention. Following this specification, the linear regression model can be written as: 

A1 ii
T

n

j
ji eywy

ji

ij x
1

)1(  (4.99)

where  is the usual k-by-1 vector of regressive parameters, xi the k-by-1 vector 
of explicative variables at site i,  an autoregressive parameter, )1()1( Wijw  the 
elements of a (possibly row-standardized) weights’ matrix and e is an autoregres-
sive spatial random field such that: 

A1
n

j
iji

ji

ij uewe
1

)2( (4.100) 

defined in terms of the weights’ matrix )2()2( Wijw , the autoregressive parameter 
 and the Gaussian spatial white noise field: 

A2 )( Xuuf  N(0, 2In)

with In an n-by-n identity matrix.  
It is important to note that the two weights’ matrices )1(W  and )2(W  do not 

necessarily have to be the same. Indeed it can be proved that the spatial 
autoregressive parameters of the model cannot be identified when they are exactly 
the same. To show this, let us express the A1 assumptions (contained in Equations 
(4.99) and (4.100)) in a compact matrix form as: 

y = X  + yW )1( + e (4.101) 

and

e = eW )2( + u (4.102) 

Rearranging Equations (4.101) and (4.102), we obtain: 
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y = X  + yW )1( + eW )2( + u (4.103) 

and, substituting e = y – X  + yW )1(  in Equation (4.101), we have: 

y = X  + yW )1( + yWXyW )1()2(  + u = 
uyWWXWyWyWX )2()1()2()2((1)  (4.104) 

Two remarkable instances can be analysed. The first regards the case where )1(W
and )2(W  do not have any element in common (e. g. when they refer to different 
orders of contiguity). In such a case, we have that )1(W )2(W  = 0. Equation (4.104) 
then becomes: 

y uXWyWyWX )2()2((1) (4.105) 

and reduces to a biparametric spatial lag with some additional constraints on the 
parameters.  

Conversely, when )1(W  = )2(W , Equation (4.104) becomes: 

y uyWWXWyX 2 (4.106) 

and the parameters  and  are subject to two (possibly conflicting) constraints. 
Thus they cannot be identified univocally (Anselin and Bera, 1998; p. 252). 

Likewise the spatial lag model, Ordinary Least Squares do not provide 
consistent estimators of the parameters of the model expressed in Equations 
(4.101) and (4.102) because of the presence of a spatially lagged term amongst the 
explicatives.

In order to introduce the maximum likelihood estimators, let us now derive the 
likelihood function associated with the general spatial model. First of all, from 
Equation (4.101) we obtain:  

eXyWI )( )1( (4.107) 

and

uWIe 1)2( )( (4.108) 

From Equations (4.107) and (4.108) we have: 

uWIXyWI 1)2()1( )()( (4.109) 

and, finally: 
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XyWIWIu )()( )1()2( (4.110) 

We are now in a position to derive the likelihood function of the Gaussian vari-
ables u given by: 

uVuVuu 12
1

2

2
1exp)();( TcL (4.111) 

with V  the variance-covariance matrix of the random field u. Since IV 2 , we 
have that nn 22 IV . Furthermore, the inverse of the variance-covariance 
matrix is IV 21 . Hence  

uuuu TncL 2
2
1

22

2
1exp)();( (4.112) 

Let us now operate a change of the variable from u to y by using the transforma-
tion expressed in Equation (4.109). The Jacobian of the transformation is: 

)1()2( WIWI
y
uJ (4.113) 

Hence, expressing Equation (4.112) as a function of y and multiplying by the 
Jacobian obtained in (4.113), we obtain the likelihood of y as: 
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and, consequently, the log-likelihood as: 

XyWIWIXyWIWI
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(4.115)

As in the case of the spatial lag model considered in Section 4.3.5, Equation 
(4.115) cannot be maximized analytically for estimation purposes, due to the high 
degree of non linearity in the parameters contained in the expression. As a 
consequence, once again we have to rely on a profile likelihood approach obtained 



4.3    Violation of the Hypotheses on the Sampling Model 119 

by replacing some of the parameters (considered, at least initially, as nuisance 
parameters) with consistent estimates of them. 

A particular way of proceeding is described in LeSage (1999) and consists in 
estimating the parameter’s vector with the weighted least squares estimator of 
the reduced model:  

XyWI )2( (4.116) 

using )1()1( WIWI T  as the weights’ matrix, thus obtaining: 

yWIXXX )2(1ˆ TT (4.117) 

Secondly, we define the estimated residuals of model (4.116) as: 

XyWI ˆˆ )2(  (4.118) 

and use them to produce a consistent estimator of the variance of the white noise 
field given by: 

n

T ˆˆˆ 2  (4.119) 

Substituting Equations (4.117) and (4.119) into Equation (4.115) one obtains: 

XyWIWIXyWIWI

WIWIyy
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that can be maximized numerically to obtain a maximum pseudo-likelihood esti-
mate of the parameters  and , say ˆ  and ˆ .

Now substituting ˆ  and ˆ  into Equations (4.117), (4.118) and (4.119), we ob-
tain the estimates for the parameters ² and .

As far as the hypothesis testing is concerned we can again exploit the likelihood 
ratio approach to test the hypothesis of spatial independence in the general spatial 
model’s framework by specifying the null as 0:0H  against the alternative 

0;0:1H .
Using this approach, under the null the likelihood becomes: 
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and, by using Equation (4.115) and Equation (4.121), the likelihood ratio test sta-
tistics is equal to: 
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 (4.122) 

a quantity that, as is known, is asymptotically distributed as a 2 with two degree 
of freedom. 

4.4 Violation of the Hypotheses on the Probability Model 

4.4.1 Introduction  

This section will focus on the violations relating to the probability model that may 
arise in the basic regression model presented in Section 4.2. 

As we stated in Section 4.2.1, the fundamental assumption concerning the 
probability model is that of normality, all other hypotheses following as mere con-
sequences. This hypothesis can be expressed either in the form of multinormality 
of the joint distribution (if we use the conditional specification of the linear re-
gression model as in Section 4.2.1) or, alternatively, in the form of the normality 
of the conditional distribution of the non-systematic component given the set of 
observed values of the independent variables (if we adopt the standard textbook 
specification as in Section 4.2.2). Given its importance, it is sensible to analyse the 
violations of the probability model hypotheses starting from this basic assumption 
(Section 4.4.2). The two remaining sections of this chapter (4.4.3 and 4.4.4) will 
deal with the violation of the homoskedasticity hypothesis and the violation of the 
hypothesis of parameters spatial invariance, respectively. 

4.4.2 Normality  

4.4.2.1 Generalities 

The first important point to note is that, if we relax the normality hypothesis, 
whilst retaining those of the conditional mean’s linearity and of homoskedasticity, 
the consequences are not dramatic in terms of the model’s specification. In fact, 
the major drawback is that, in this case, the maximum likelihood method and the 
related testing procedures can only be applied if we are able to fully specify an 
alternative probability model. It should be remarked that, in the spatial case, this 
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appears to be the only viable alternative to the maximum likelihood estimators 
since the OLS estimators cannot be exploited (as is usual in non-spatial regres-
sions) because of the presence of the spatially lagged terms amongst the 
explicative variables. This section will first consider the problem of testing for 
normality in a spatial regression (Section 4.2.2.2) and then moves on to consider 
possible solutions to the violation of this hypothesis (Section 4.2.2.3).  

4.4.2.2 Testing for Departures from Normality  

The normality hypothesis can be tested in different ways according to the particu-
lar specification of the spatial linear model considered. When a model is specified 
in a conditional form as a multivariate random field (as in Section 4.3.3.5), the 
normality assumption refers, in fact, to the joint distribution of all the variables 
involved. Conversely, when we adopt one of the alternative specifications consid-
ered in this chapter (e. g. the spatial error model, the spatial lag model or the gen-
eral spatial model; see Sections from 4.3.4 to 4.3.6), the normality hypothesis re-
fers to the conditional distribution of the non-systematic component of the model 
given the set of observed values of the independent variables. 

Let us start by tackling the problem of testing the non-systematic component’s 
univariate normality. We will then generalize the approach for testing multivariate 
normality. 

In the case of a model specified as in the standard textbook specification, the 
usual normality tests are available. In this respect, we can distinguish between 
non-parametric and parametric tests depending on whether the alternative hy-
pothesis is expressed in a parametric or in a non-parametric form. Tests of the first 
kind are the Kolmogorov-Smirnov test (Kolmogorov, 1933; Feller, 1948) and the 
Shapiro-Wilk test (Shapiro and Wilk, 1965). The most popular of the tests of the 
second typology is the Bera-Jarque test (Jarque and Bera, 1980; Bera and Jarque, 
1982).

The Kolmogorv-Smirnov test is a general test to measure how well a set of em-
pirical observations fit to a given probability distribution. It is based on the Kol-
mogorov statistic given by: 

)()(sup 0 zFzFK n
z

(4.123) 

)(zFn  being the empirical cumulative distribution function based on n observa-
tions and )(0 zF  the theoretical cumulative distribution function under the null 
hypothesis. (See Kendall and Stuart, 1979 for details, and Durbin, 1973 for a dis-
cussion).

Shapiro and Wilk (1965) introduced a further non-parametric test for normality 
based on order-statistics. The test is based on the statistics: 
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)(iz being the i-th order statistics, z  the sample mean of the variable Z and ia  a 
set of tabulated coefficients. Small values of the statistics SW are critical in the test 
procedure (Kendall and Stuart, 1979). 

The Bera-Jarque test uses the Pearson family of distributions as the parametric 
alternative to the white noise Gaussian random field. The Pearson family of den-
sity functions (Kendall and Stuart, 1979) is characterized by the expected value, 
the variance and by the third and the fourth standardized moments defined as 
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3  and 4
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4 , respectively, r  being the central unstandardized r-th 
order moment. Let us now consider the sampling analogue of 3  and 4 , say 3ˆ
and 4ˆ , based on the regression residuals, say iû , and defined as: 
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It is known that, under the null hypothesis of normality, 3ˆ
6
n  and 

24
n ( 4ˆ -3)

are asymptotically independent and both asymptotically distributed as standard-
ized normal distributions (Kendall and Stuart, 1979). As a consequence, their 
squared sum is asymptotically distributed, under the null, as a ² with 2 degrees of 
freedom. This provides Bera-Jarque test with an operational form: 
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In the case of a model specified as a conditional multivariate field, a test of multi-
variate normality should, in principle, be considered. Similar tests are suggested in 
the literature. For example, Mardia (1970, 1974, 1980) proposed a k-variate skew-
ness and kurtosis statistics for samples drawn from a k-variate distribution. The 
author suggests using the k-variate skewness and kurtosis statistics defined, re-
spectively, as: 

31
,3 )()( ii

T
iik EEE zzVzz (4.128) 

and

41
,4 )()( ii

T
iik EEE zzVzz (4.129) 

iz  being the n-dimensional observations of the variable iZ  and V  the spatial 
variance-covariance matrix. 

The author also derives the result that, under the null hypothesis of multinormal-

ity, the limiting distribution of k
n

,36
 is a 2  with 

6
)2)(1( kkk  degrees of free-

dom, while the limiting distribution of 
)2(8

)2(,4

kk

kkn k  is the standard normal 

distribution. In the univariate case, these reduce to the usual skewness and kurtosis 
test (see also Mardia, 1986, for references). 

The previous k-variate multinormality tests assume that we can dispose of more 
than one replication of the random variable at each location. In spatial economet-
rics, however, almost invariably, we have only one single observation at each lo-
cation in space. Hence the methods described are not applicable and the only al-
ternative for testing normality in a conditionally-specified regression model is to 
apply one of the above-mentioned tests for univariate normality to the non-
systematic component of the model provided by ui = Yi – E(Yi| Xi = xi).

4.4.2.3 Solutions to the Problem of Non-normality 

When the hypothesis of normality is rejected on the basis of one of the tests 
presented in the previous section, only two approaches are possible. The first 
consists in exploiting one of the common normalising transformations so as to 
modify the empirical data and reduce them to normality. The second consists in 
postulating a different distribution for the joint behaviour of X and y (in the 
conditional specification) or for the conditional distribution of the disturbance (in 
the standard textbook specification). This second choice is rarely adopted in the 
literature due to its greater complexity. These two alternatives will now be 
considered. 
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Transformations to Normality 

A general expression for a class of data transformations to normality is provided 
by the Box-Cox transform (Box and Cox, 1964), given by: 

1* ZZ (4.130) 

 being a parameter such that 10 .
Equation (4.130) can be particularized to the three cases of the reciprocal trans-

formation ( =-1), the square root transformation ( =0,5), and the logarithmic 
transformation ( = 0). In particular, the logarithmic transformation is one of the 
most commonly used in the econometric literature and Spanos (1986) lists three 
major reasons for its popularity. First of all, many random variables characterized 
by a positive skew (like a gamma, a log-normal or a chi-square) are reduced to 
normality through this transformation. Secondly, the logarithmic transformation 
produces a stabilizing effect on the variance that helps in solving certain problems 
of heteroskedasticity. Finally it has an intuitive appeal in that it quantifies con-
cepts like elasticities and growth rates, as in the case of the -convergence model 
presented in Chapter 1.  

Alternative Non-normal Specifications 

In some instances, the normality hypothesis is rejected and it is not possible sim-
ply to transform our data to produce normality. A typical instance occurs when we 
have dichotomous variables or, more generally, discrete random variables. It is 
certainly not the aim of this book to discuss all the possible alternative formula-
tions of a regression model when normality cannot be accepted. Simply by way of 
an example we will now briefly discuss the case of the spatial autologistic model 
as this represents one of the most common violations of the normality hypothesis 
encountered in empirical spatial econometric analysis. 

Let us suppose that we are considering n locations in space and that at each lo-
cation we observe a binary dependent variable Y together with a vector of k co-
variates T

ikiii xxx ,...,, 21x . This is the case that occurs, for example, when we 
try to explain the presence or absence of an economic agent in one location or the 
presence of a technological innovation in one region. 

In general terms, binary data can be analysed through logistic regression mod-
els (Collett, 1991; Cox and Snell, 1989). In this case, the variable Y is assumed to 
be distributed as a Bernoulli and the regression model is respecified in terms of the 
logit transform leading to the so-called logistic model (Agresti, 1990): 
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In Equation (4.131) we define the term ip  as the systematic component of the 
regression model, expressed in terms of the conditional expectation: 
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x

xxx
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exp|1)|(  (4.132) 

Furthermore, the constant  represents the overall intercept and  is a vector of k
regression parameters. 

If in the SM the independent random sampling can be assumed, the estimators 
of the model’s parameters can be derived through the maximum likelihood or by 
using methods based on the sufficient statistics (see Aitkin et al., 1989; Collett, 
1991; McCullagh and Nelder, 1989). The standard framework of the logistic 
approach, however, is not applicable when the hypothesis of random sampling 
has to be rejected on empirical bases, as happens to be the case when dealing 
with spatial data. 

The first attempt to extend the logistic model to spatially distributed data was 
made by Besag (1974) who introduced the so-called auto-logistic random field 
already discussed in Section 2.4.2.3. Besag’s auto-logistic field, however, does not 
incorporate any explanatory variable.  

A further extension was proposed by Arbia and Espa (1996b) when analysing 
archaeological data and considers both the logistic and the autologistic compo-
nent. It was exploited by Alfò and Postiglione (2002) in a semi-parametric spatial 
context. 

In this case, the statistical model assumes the form: 
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where, in addition to the previous notation, ijij w ,  represents an autore-
gressive parameter and Wijw are the elements of the usual connectivity matrix. 

Equation (4.133) can be rewritten in terms of logit transformation as: 
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The major problem in drawing statistical inference on the parameters contained in 
Equation (4.134) lies in the fact that, given the dependence postulated in this 
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model, no closed form is available for the resulting likelihood (Besag, 1974). In 
order to solve this problem, Besag (1975) suggested estimating model parameters 
via the maximum pseudo-likelihood procedure presented in Section 3.2.3. 

In this case, Strauss and Ikeda (1990) demonstrated that the maximum pseudo-
likelihood estimates of the vector of parameters ),,(  are formally equiva-
lent to the maximum likelihood estimates of a logistic regression parameters 
where a new spatially lagged variable 

)(

)(
iNj

jiji yyL , with *
ijij w , is intro-

duced among the independent variables. This formal result is obtained by applying 
an iteratively reweighted least squares method (see Cressie, 1991). As a conse-
quence, in order to estimate the parameters of model (4.134) in a logistic-
autologistic context, one can simply use the logistic regression options available in 
the standard computer packages. 

4.4.3 Spatial Heteroskedasticity 

4.4.3.1 Introduction 

As already observed in Section 4.2.1.1, the assumption of constancy of the condi-
tional variance (or homoskedasticity) stems directly from the hypothesis of nor-
mality considered within the probability model. Thus one cannot simply accept 
one hypothesis and reject the other without considering the intrinsic links between 
the two. It is important to remark, preliminarily, that when dealing with spatial 
samples (and, in particular, with regional data), heteroskedasticity is a common 
phenomenon due to the nature of data collection. Obvious sources of non-constant 
variances are linked with the different dimensions of the various regions constitut-
ing the study area, the unequal concentration both of population and of economic 
activity, and the alternance of rural and urban areas. 

In terms of parameter estimations classical econometric theory (Davidson and 
MacKinnon, 1993) suggests that in those circumstances where the PM3 hypothe-
sis is violated, the Ordinary Least Squares estimators of the vector , under rea-
sonable assumptions, maintain some desirable properties such as unbiasedness, 
consistency, and asymptotic normality. However, since the asymptotic variance-
covariance matrix of the estimators differs from the usual one, they can be highly 
inefficient.

In such circumstances, the Generalised Least Squares (GLS) estimator could be 
derived by minimising the equation: 

)()()( 1 XyVXy Tl (4.135) 

where V is the matrix of variances and spatial auto-covariances of the random 
field assumed in the probability model. 
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If we consider, for the sake of simplicity, that the independence hypothesis can 
still be accepted in the sampling model, such a matrix is diagonal and can be writ-
ten as: 

V 2
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0
0

0
0

n

(4.136)

From the minimisation of l( ) we obtain the estimator: 

yXXXyVXXVX 1111 TTTT  (4.137) 

and the problem to be solved thus becomes the proper definition of the matrix V
or, in other words, the specification of a particular form for the non-homo-
skedasticity of the data generation process. 

Indeed, if the matrix V were known a priori, there would be no need to use es-
timators other than the OLS (or, equivalently, Maximum Likelihood). In fact, in 
this case, the matrix of variances and spatial auto-covariances can be broken down 
using the spectral decomposition: 

HHT1 (4.138) 

If we now transform the vector y and the matrix X according to the following es-
pression 

Hyy* (4.139) 

and

HXX* (4.140) 

the statistical model can be respecified as 

*uXy ** (4.141) 

and the vector estimated with the OLS, obtaining: 

**** yXXX TT (4.142) 

By substituting the Equations (4.139) and (4.140) into Equation (4.142) one ob-
tains Equation (4.137). 

On the other hand, if V is unknown (as occurs in the majority of empirical 
cases in economic applications) we need to estimate it on the basis of our sample. 
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White (1980) proposed a way out of this problem by the suggesting that, for infer-
ential purposes, we don’t need an estimate of the matrix V, but rather an estimate 
of the variance-covariance matrix of ˆ , given by the product VXXT . A consis-
tent estimator of this quantity is provided by: 
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and does not require the skedasticity function to be explicitly specified. This esti-
mator is called Heteroskedasticity-Consistent Covariance Matrix Estimator 
(HCCME) and can be proved to be asymptotically justifiable (see Davidson and 
MacKinnon, 1993 for details). 

4.4.3.2 Testing for Spatial Heteroskedasticity 

When dealing with spatial regressions, the situation is much more complicated 
than the one described above. In fact, when dealing with spatial data, it is purely 
academic to discuss the case of the violation of the condition of homoskedasticity 
separately from that of the independent sampling hypothesis since both are likely 
to occur in practice (for the links between spatial dependence and spatial hetero-
skedasticity, see Kelejian and Robinson, 2004). Anselin (1987a) showed that, 
when the spatial independence hypothesis is violated, all traditional homoskedas-
ticity tests are distorted in favour to the null or to the alternative hypothesis and 
their power is significantly reduced. 

As a matter of fact, it is not conceivable to test homoskedasticity separately 
from spatial independence. If we relax the hypothesis of independent sampling, all 
the statistical tests proposed in the econometric literature concerning the PM3 hy-
pothesis of homoskedasticity can be adapted to the case of spatial econometric 
models. Some of them will now be reviewed here.  

Historically, the first test for heteroskedasticity was the one proposed by Gold-
feld and Quandt (1965). The authors suggested starting by ordering the data ac-
cording to the values of some variable that can constitute the basis of the het-
eroskedastic behaviour. In a spatial context, obvious choices for these ordering 
variables are the dimensions of the region (in terms of its surface, its population or 
other dimensional indicators) where the variables are observed, as well as their spa-
tial co-ordinates. In a second step, the procedure develops by dividing the full sam-
ple into three portions of dimensions, respectively, 21,nn  and 3n  ( 321 nnnn )
and by estimating the regression model by using only the first and the last sets of 
observations. Finally, the regression residuals are computed and, based on these, 
the test statistic GQ is calculated as the ratio: 
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with 1RSS  and 3RSS denoting the residual sum of squares based on the first and 
the last portion of the sample, respectively. The GQ statistics under the null hy-
pothesis of homoskedasticity is distributed as an );( 13 knknF . This distribu-
tion is exact in the case we can accept normality and holds asymptotically in the 
case normality has to be rejected. 

A second, possible testing procedure is the White test (White, 1980). This au-
thor suggests that we can use the consistent estimator of the variance-covariance 
matrix of the estimates (reported in Equation (4.143)) to construct a test of depar-
ture from homoskedasticity. Although the White test is consistent with respect to a 
wide range of parametric alternatives, it may not be very powerful in finite sam-
ples (Davidson and MacKinnon, 1993). 

A third option to test heteroskedasticity in linear regression is offered by artifi-
cial regressions. Let us introduce this approach by referring to the standard text-
book specification of the linear regression model presented in Section 4.2.2 where 
we have:  
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or, equivalently, 

)u( 2
i XE 2  (4.146) 

Let us further consider Equation (4.146) as our null hypothesis and let us contrast 
it with the alternative implicitly expressed as: 

i
ThE QX)u( 2

i (4.147) 

where iQ  is a vector of exogenously predetermined variables (e. g. the regional 
dimension or the spatial coordinates) and and  unknown parameters. The 
hypothesis of homoskedasticity can then be tested by using the parametric hy-
pothesis that 0  through an ordinary F-statistic. For instance an explicit alter-
native hypothesis is provided by (Davidson and MacKinnon, 1993): 

i
TE XX)u( 2

i (4.148) 

On a similar basis, it is also possible to derive a Lagrange multiplier test under the 
assumption of normality by following the approach originally introduced by God-
frey (1978) and by Breusch and Pagan (1979).  
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In particular, Breusch and Pagan (1979) proposed a generic form of homoske-
dasticity expressed by the following equation 

)u( 2
i XE = kikii XXX ...2211 (4.149) 

with T ( 1, 2,... k) a set of constants, 1X  the constant term of the regression and 
kXX ,...,2  the regressors. In the case of homoskedasticity, quite obviously, we have: 

0...: 20 kH (4.150) 

so that, under H0 we have 2
i = 1 = constant. 

In these circumstances, the Breusch-Pagan test statistics can be derived using 
the general expression of the Lagrange multiplier test (Section 3.4). Following 
Anselin (1988), this could be expressed as: 
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Under the null hypothesis of constant conditional variance, the test-statistic 
contained in Equation (4.151) is distributed as a 2 with k-1 degrees of freedom. 
Anselin (1987b) nevertheless demonstrated that, in the presence of a positive spa-
tial dependence in the sampling model, the Breusch and Pagan test (4.151) pre-
sents a distortion towards the alternative hypothesis of heteroskedasticity, while 
the White’s test presented above shows a distortion in favour of the null hypothe-
sis of homoskedasticity. 

On these bases Anselin (1988) proposed to consider a joint test statistic that 
considers both the homoskedasticity and the independence hypothesis simultane-
ously. As we have already seen (Equation (4.54)), the Lagrange multiplier test for 
the spatial independence hypothesis assumes the expression: 
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with WWW TtrJ  and is distributed asymptotically as a 2 (1). The proce-
dure suggested by Anselin (1987b) considers the sum of the two tests statistics 
contained in Equations (4.151) and (4.152) leading to the joint spatial heteroske-
dasticity and independence test expressed as: 
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If BP and LMT can be assumed to be independently distributed, then SHI is a sum 
of two independent 2 and, thus, is also distributed as a 2 with k degrees of free-
dom. The strategy suggested by Anselin (1988) is that, once the joint null hy-
potheses of no spatial independence and no heteroskedasticity are rejected, one 
could test the two hypotheses separately. 

There are many other test statistics proposed in the literature for testing the hetero-
skedasticity hypothesis, including the celebrated Glejser test (Glejser, 1969) and 
those proposed by Szroeter (1978), Harrison and McCabe (1979), Ali and Giacotto 
(1984) Evans and King (1988) and Newey and Powell (1987). In principle, all of 
these can be adapted to test spatial independence and spatial homoskedasticity jointly. 

4.4.3.3 Solution to the Problem of Spatial Heteroskedasticity 

When the hypothesis of non-constant conditional variance is rejected on the basis 
of one of the foregoing testing procedures, the problem to be solved becomes that 
of finding alternatives to the regression model in order to accommodate for this 
situation.

Due to the links between the two problems, the standard solutions to the het-
eroskedasticity problem are closely related to those of non-normality already dis-
cussed. In particular, one could consider a couple of alternatives. 

The first alternative consists in applying an appropriate normalising transforma-
tion of the kind discussed in Section 4.4.2.3. As previously noted, this has the 
side-effect of stabilising the variance. The inverse and the logarithmic transforma-
tions are examples of this kind. 

A second alternative is that of postulating a different, non-normal, random field 
in the probability model that better captures the peculiarities of the empirical data. 
If we follow this strategy, the next step is to derive an explicit formulation for the 
conditional expected value E(Yi | Xi = xi) and the conditional variance Var(Yi | Xi
= xi) and substitute these expressions in the PM2 and PM3 assumptions in the 
probability model. It must be observed, however, that the results in this direction 
so far have beed very limited in the literature because of the complexity of 
specifying multivariate random fields (already discussed in Chapter 2) and 
because of the problems in deriving explicit expressions for the conditional mean 
and variance when we move from the normality assumption. 

4.4.4 Spatial Invariance of the Parameters 

4.4.4.1 Testing Parameters’ Spatial Invariance 

An important assumption that stays behind the linear regression model is that the 
vector of the parameters = ( , 2) is constant with respect to the observations. In 
a spatial context, this implies constancy of the parameters when the location 
changes. Clearly, this hypothesis occurs only rarely in practical instances: typi-
cally different sites in space react in a different way to similar stimuli. 
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The present discussion will be limited to a particular form of violation of this 
assumption most likely to occur in empirical cases: i. e. a shift in the parameters 
due to structural changes. For other forms of violation of the parameter spatial 
invariance hypothesis see Anselin (1988). 

One situation that is particularly common in the econometric analysis of spatial 
data is the case in which the model assumes different regimes in different regions 
of the space. In particular, for the sake of simplicity, we will consider the case 
where only one structural change takes place along a boundary line delimiting two 
regions of the space S, say S1 and S2, such that S1 S2 = S. Extensions to more 
than two regimes are straightforward. Let us further assume that the total number 
of locations considered is n  and that the two regions are made up of 1n  and 2n
locations respectively so that nnn 21 .

In this case, the statistical model (GM) can be specified through the equations: 
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for the first region, and 
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for the second. In Equations (4.154) and (4.155) the sets S are defined as S1

= 1,...,2,1 n , and S2 = nnn ,...,2,1 11  and the vectors of the parameters of 

interest as 2
111 ,  and 2

222 , . In a more compact matrix notation, 
Equations (4.154) and (4.155) can be re-written as: 

1111 uXy  i S1  (4.156) 

and

2222 uXy  i S2 (4.157) 

In this case we can postulate the following probability model: 
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where, 
inI  is a unitary matrix of dimension ii nn -by- 2,1i , and 0 an

21 -by- nn  matrix of zeroes. In such a framework, the hypothesis of no structural 
changes can be specified by the system of hypotheses: 
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In the time series analysis context Chow (1960) proposed a test based on the sta-
tistic:

k
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21

21  (4.159) 

where SQRT , 1SQR  and 2SQR  represent the total sum of squares, the sum of 

squares referring only to i S1, and the sum of squares referring to i S2 respec-
tively. This quantity is distributed under 0H as a Fisher-F with k and (n-2k) de-
grees of freedom. 

Consigliere (1981) and Corsi et al. (1982) showed that, if the hypothesis of in-
dependence is rejected in the sampling model, the Chow test can lead to invalid 
results. In this situation, Anselin (1988) proposed using the following test statistics 
based on Wald’s asymptotic test: 
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where 0ê and 1ê  are the maximum likelihood estimates of the residuals under the 
null hypothesis and under the alternative hypothesis respectively, and V the vari-
ance- covariance matrix of the field. The AT statistic is distributed as a 2 with k
degrees of freedom, k being the dimension of the vector .

In particular, if we consider the approach based on autocorrelation (Section 
4.3.4) and the additional hypothesis that the non-systematic component follows a 
SAR field, we know that the matrix V-1 assumes the form: 

)()(ˆ 21 BIBIV T (4.161) 

(see Section 2.4.3.1) and, consequently, the test statistic can be written as: 
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with 2ˆ  the maximum likelihood estimate of the variance of field u.
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4.4.4.2 Estimation in the Presence of Structural Changes 

By analogy with the time series analysis, to estimate structural changes we can use 
the test procedure proposed by Quandt (1958). 

Let us first consider the formulation presented in the previous section and let us 
introduce the following notation: 
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With these definitions, we can write the statistical model compactly as: 

**** uXy  (4.164)

If we consider the approach based on the residual spatial autocorrelation model-
ling, then the model is complemented by the equation: 

ueBe *** (4.165) 

with u a spatial white noise with its variance-covariance matrix given by: 
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B* being a connectivity matrix which can also assume a two-regime structure. For 
instance, we can assume 
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with W1 and W2 the contiguity matrices referring, to the set of locations included 
in S1 e S2 respectively. 

The log-likelihood function of the model thus specified assumes the form 
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Equation (4.168) can be employed to derive the maximum likelihood estimates 
following the usual procedures. 



5 Italian and European -convergence Models 
Revisited

5.1 Introduction 

In Section 1.3 we presented two European regional datasets that were used infor-
mally to illustrate, on a mere intuitive basis, some of the problems that may arise 
in linear regression modelling of spatial economic data. The whole range of prob-
lems emerging in spatial economic modelling has now been discussed at length in 
the preceding chapters and a series of techniques has been introduced that define 
the basic elements on which a formal spatial econometric analysis may be 
founded. At this stage, therefore, it is useful to go back to the same set of data and 
re-analyse them in the light of the approach presented here. This will enable us to 
see the spatial econometric techniques at work and discuss, albeit briefly, some of 
the problems of interpretation that may arise in this context. Such is the aim of the 
present chapter.  

It must be noted at the outset that the standard statistical and econometric pack-
ages do not contain the routines needed to implement all the methodologies de-
scribed in Chapter 4. This fact strongly limits the possibility of applying spatial 
econometric techniques in practice and the interested researcher can only rely on 
the few existing softwares that are dedicated to this specific topic. As a conse-
quence, this chapter will present examples of applications that are limited to the 
model estimation and hypothesis testing procedures supported by existing soft-
ware. In particular, the examples given in this chapter are developed by making 
use of the SpaceStat package (Anselin, 1992a; 1992b). We will discuss aspects 
connected with the software for spatial econometric analysis more thoroughly in 
the Appendix. 

5.2 A Spatial Econometric Analysis of the Italian 
Provinces -convergence Model 

5.2.1 Violation of the Hypotheses on the Sampling Model 

Let us start revisiting the results of the -convergence analysis we performed in 
Section 1.3.2 by examining the long-run growth dynamics for the 92 Italian prov-
inces during the years 1950 – 1999. An analysis of the regression diagnostic led us 
to accept the hypotheses of normality and homoskedasticity, but we questioned the 
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hypothesis of independence of the OLS regression residuals on the basis of the 
visual inspection of Figure 1.7. Indeed, we noticed that the residuals were ar-
ranged in that map with a sort of spatial continuity and displayed a gradual decline 
from large positive to negative residuals. We also noted that the model had the 
tendency to overestimate the growth rates in some definite portions of the geo-
graphical space and to underestimate them in others, thus indicating that some 
explicative factor of geographical differentiation was missing from the analysis. 

We are now in a position to face the problem in a more formal way and to test 
the null hypothesis of spatial independence. To do so, we will employ some of the 
tests of spatial dependence presented in Section 4.3 when discussing violations of 
the sampling model assumption. In particular, three different tests for spatial de-
pendence will be considered in the present context. The first is the general-
purpose Moran’s I test which (as noted in Section 4.3.2) does not admit an explicit 
alternative hypothesis to contrast the null. The other two are Lagrange multiplier 
tests (LMT) that consider the “spatial lag” and the “spatial error” models as alter-
natives to the hypothesis of spatial independence. In computing these tests, and in 
all the subsequent analyses, we have assumed that the topology of the area can be 
described by a connectivity matrix built according to the simple contiguity-based 
neighbourhood structure (see Definition 4). Other definitions of neighbourhood 
were also tested and the results did not change in substance. 

The results of the computations on the spatial dependence tests are displayed in 
Table 5.1. All tests lead to the rejection of the null hypothesis. Both the LMT 
(tested against the spatial error alternative) and the LMT (tested against the spatial 
lag alternative) present very high values and are both highly significant. 

These results highlight the fact that the original model, which has been the 
workhorse of much previous empirical research, suffers (at least in the particular 
instance examined here) from a serious misspecification due to omitted spatial 
dependence.  

It would be useful to attempt some alternative specifications in order to remove 
the problem of spatial dependence. Unfortunately, the available software (in our 
case the SpaceStat package) only allows the spatial error model and the spatial 
lag model as alternative specifications to the classical linear regression model. The 
parameters are estimated via the maximum likelihood methods using the pseudo-
likelihood definition and the approximate non-linear maximization method dis-
cussed in Sections 4.3.4.2 and 4.3.5.1.  

Table 5.1. Spatial dependence tests for the OLS residuals of the -convergence in the 92 
Italian provinces (1950-1999) (figures in brackets refer to the p-values). 

Moran’s I 7.226 
(0.000)

LMT (spatial error model as 
alternative hypothesis) 

45.866 
(0.000)

LMT (spatial lag model as 
alternative hypothesis) 

15.959 
(0.000)
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The results of the estimation and of the hypothesis testing procedures are reported 
in Table 5.2. All parameters in both specifications are highly significant. The table 
reveals a big change in the estimated value of the parameter  and, consequently, 
in the speed of convergence and half-life evaluation. In fact, in the classical linear 
model considered in Section 1.3, the speed of convergence was estimated at 0.047 
(see Table 1.2) whereas now it is 0.0187 in the spatial error model and 0.0181 in 
the spatial lag model. This, in turn, results in a longer half-life time. In Table 1.2 it 
was estimated at 14.74 years and it is now equal to 36 years in the spatial error

Table 5.2. Convergence of per-capita income in the 92 Italian provinces (1950-1999)– Spa-
tial Dependence Models – ML Estimates (numbers in brackets refer to the p-values). 

Spatial error model Spatial lag model 

 (Constant) 0.122 
(0.046)

0.110 
(0.003)

-0.608
(0.000)

-0.5955 
(0.000)

Speed of convergence (*) 0.0187 00181 

Half-life (**) 36.87 37.95 

 (see Equation (4.30))  0.437 
(0.000)

 (see Equation (4.78)) 0.265 
(0.001)

Goodness of fit 

Schwartz Criterion -40.326 -47.061

Regression Diagnostics 

1. Spatial heteroskedasticy 

Breusch-Pagan heteroskedasticity test 1.107 
(0.575)

0.682 
(0.711)

2. Spatial dependence 

LRT (Spatial error model vs. OLS) 10.973 
(0.000)

LMT (spatial lag model as alternative hypothesis) 0.307 
(0.578)

LRT (Spatial lag model vs. OLS) 8.759 
(0.003)

LMT (spatial error model as alternative hypothesis)  2.167 
(0.141)

(*) Speed of Convergence 
T

b 1ln ; (**) Half-life = 
b

t lifehalf
)2ln( .
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model and to 37 years in the spatial lag model. It should be noted, however, that 
in this new specification we cannot attach to the speed and half-life parameters 
exactly the same meaning they had in the original Barro and Sala-i-Martin specifi-
cation. On the interpretation of the parameters in different regional convergence 
models see Arbia et al. (2005).

A second feature emerging from Table 5.2 is that the new specifications do not 
induce problems from a heteroskedasticity point of view: the Breusch-Pagan tests 
are non-significative in both cases. 

From a spatial dependence point of view, we can observe a general reduction of 
the problem. In fact, according to the Lagrange multiplier tests, the residuals no 
longer display a spatial pattern (the p-values are now 0.578 and 0.141, respec-
tively). However, the Likelihood ratio test still reports significant values, thus 
showing that there could still be a component of spatial dependence in the em-
pirical residuals of the two regression models. 

5.2.2 Violation of the Hypotheses on the Probability Model 

The regression results reported in the previous section have assumed homogeneity 
of variances in space and constancy of the parameters’ value in the various geo-
graphical regions. In this section, we will consider the violation of the hypothesis 
of constant parameters and we will test whether, in the study area as a whole it is 
possible to distinguish differentials in the speed of convergence that may lead to 
the identification of spatial regimes. The issue of spatial regimes is a very important 
aspect and one often neglected in the empirical studies, it is although strongly em-
phasised in the “convergence club” literature (Quah, 1996a, 1996b; 1997; Baumont 
et al., 2003). The idea of convergence clubs is that regions within a country or inte-
grated area (such as the European Union) might experience not so much a global 
convergence process, but instead a convergence by “clubs”, having the initial con-
ditions in common. The initial conditions, in turn, can be strongly correlated to 
geographical (e. g. a center-periphery or a North-South dichotomy) or socio-
economic peculiarities (like human capital, unemployment rate, public infrastruc-
ture, R&D activity or financial deepening). The convergence club hypothesis has 
an unequivocal implication in terms of the distribution of per-capita GDP: if the 
parameters characterising each regime are different, a threshold process should 
be consistent with a bimodal distribution of the per-capita incomes. It is known, 
from previous studies, that the data relating to the per-capita GDP of the Italian 
provinces do exhibit such bimodality (see Arbia et al. 2002, 2003; Arbia and 
Basile, 2005 amongst the others). This implies that the assumption of a fixed 
relationship between regional growth rate and initial per-capita incomes for the 
dataset as a whole is untenable. Rather, heterogeneity may be present, in the 
form of different intercepts and/or slopes in the regression equation relating to 
data subsets. 
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Empirical tests of convergence between Italian provinces often take the pos-
sibility of different intercepts into account by including dummy variables in the 
regression specification, typically, variables which indicate whether the region or 
the province belongs to the South or to the North-Centre (see e. g. Fabiani and 
Pellegrini, 1997). Generally speaking, however, they do not consider any of the 
spatial regime specifications discussed in Section 4.4.4.  

Here we wish to test the hypothesis of the existence of two distinct spatial re-
gimes: the first corresponding to the Centre-North area and the second to the 
southern part of the country. The provinces falling within to the two sub-areas are 
displayed in Figure 5.1. They refer to the specific policy programme (known in 
Italy as Cassa del Mezzogiorno) that provided the southern Italian regions with 
additional financial resources during the period considered.  

In order to test the hypothesis of the existence of two different speeds of con-
vergence in the 2 sub-areas, we considered a Chow test of spatial regimes (see 
Equation (4.159) in Section 4.4.4.1). The results of such test are reported in Table 
5.3. The tests are highly significant as regards both the spatial error and the spatial 
lag specification. They lead, in both cases, to a rejection of the hypothesis of con-
stant parameters’ values. 

Italian Provinces

Nord
Sud

Fig. 5.1. Classification of the 92 Italian provinces within the two geographical regimes. 
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Table 5.3. Convergence of per-capita income in the 92 Italian provinces (1950-1999). Spa-
tial invariance of parameters. 

Spatial error model Spatial lag model 

Chow test 42.623 
(0.000)

71.273 
(0.000)

Table 5.4. Convergence of per-capita income in the 92 Italian provinces (1950-1999). Spa-
tial Dependence Models with spatial regimes (ML Estimates) (numbers in brackets refer to 
the p-values).

Spatial error model Spatial lag model 
 (Constant) 

North-Centre 
0.146 
(0.014)

0.111 
(0.003)

North-Centre 
-0.6172 
(0.000)

-0.6004 
(0.000)

Speed of convergence (*) 0.019248 0.01834 
Half-life (**)  35.84 37.61

 (Constant) 
Mezzogiorno 

-0.551
(0.000)

-0.563
(0.000)

Mezzogiorno 
-0.5899 
(0.000)

-0.585
(0.000)

Speed of convergence (*) 0.01783 0.01759 
Half-life (**)  38.69 39.22

 (see Equation (4.30))  0.421 
(0.000)

 (see Equation (4.78)) 0.259 
(0.002)

Goodness of fit 
Schwartz Criterion -42.156 -51.479
Regression Diagnostics 
1. Spatial heteroskedasticy

Breusch-Pagan heteroskedasticity test 0.977 
(0.322)

0.504 
(0.477)

2. Spatial dependence 

LRT (Spatial error model vs. OLS) 12.961 
(0.000)

LMT (spatial lag model as alternative 
hypothesis) 

0.249 
(0.617)

LRT test (Spatial lag model vs. OLS)  8.159 
(0.004)

LMT (spatial error model as alternative 
hypothesis) 

2.183 
(0.139)

(*) Speed of Convergence 
T

b 1ln ; (**) Half-life = 
b

t lifehalf
)2ln( .
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Having ascertained the existence of multiple regimes, we can now estimate the 
two alternative specifications of the regression model by considering two distinct 
regimes in the two partitions displayed in Figure 5.1. We will allow the parame-
ters  and  to change in the two regimes, as postulated in Equation (4.164). In 
contrast, we will consider the spatial effects incorporated by the two alternative 
models in the two sub-regions as constant and we will therefore assume 1 = 2 in 
Equation (4.167). The results of the analysis are displayed in Table 5.4. 

We can see from the table that, in the spatial error model, the speed of conver-
gence (originally estimated with a value of 0.0187) is now estimated at 0.0192 in 
the Centre-North and at 0.0178 in the Mezzogiorno. Consequently, the half-life
time (originally 36.87 years for the whole country) is now estimated at 35.84 years 
in the Centre-North and at 38.69 years in the South. It is therefore patent that con-
vergence was more rapid in the Centre-North than in the South during the period 
considered. 

The same kind of result is evident when exploring the effects of the two re-
gimes in the spatial lag model. Here we see that the speed of convergence (origi-
nally estimated at 0.0181) is now estimated at 0.0183 in the Centre-North and at 
0.0175 in the Mezzogiorno. Consequently, the half-life time (37.95 years for the 
whole country), is now estimated at 37.61 years in the Centre-North and at 39.22 
years in the South. 

In conclusion, the results reported in this section provide strong evidence of 
spatial effects in the convergence model. These effects have some important im-
plications for the estimated convergence speed. In particular, our results clearly 
suggest that, in the presence of a positive spatial autocorrelation in the OLS re-
siduals, convergences rates estimated via the traditional non-spatial regression 
model, may be strongly biased due to the fact that regional spill-over effects allow 
regions to grow faster or slower than one would expect.  

5.3 A Spatial Econometric Analysis of the European 
Regions -convergence Model1

5.3.1 Violation of the Hypotheses on the Sampling Model 

Let us now reconsider the -convergence process of the 129 NUTS-2 European 
regions already considered in Section 1.3.3 for the period 1980-1996. As in the 
case of the Italian provinces discussed above, when we considered the European 
NUTS-2 regions in Section 1.3.3, we noticed some indications of spatial depend-
ence among the residuals of the OLS a-spatial regression (see Figure 1.12). In this 
section we will therefore try to provide more formal grounds for the visual im-
pression reported there. The results of the spatial dependence analysis of the OLS  

                                                          
1  The empirical results presented here are partly based on Postiglione et. al. (2002). 
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Table 5.5. Spatial dependence tests for the OLS residuals of the -convergence in the 129 
European NUTS-2 regions (1950 – 1999). (Figures in brackets refer to the p-values). 

Moran’s I 5.055 
(0.000)

LMT (spatial error model as alternative hypothesis) 22.235 
(0.000)

LMT (spatial lag model as alternative hypothesis) 14.757 
(0.000)

residuals are reported in Table 5.5. Here, again, we examine the Moran’s I test 
together with two versions of the Lagrange multiplier test, considering the spatial 
lag and the spatial error model as alternatives to the hypothesis of spatial inde-
pendence. In the computation of the test (and in all subsequent analysis) we con-
sidered the spatial data topology incorporated into a simple contiguity-based defi-
nition of weights. Again, more sophisticated definitions of neighbourhood did not 
lead to significant differences. 

As is patent from Table 5.5, all three tests are highly significant and lead to the 
rejection of the hypothesis of independence among the residuals. This conclusion 
leads us to try and eliminate the disturbing effects caused by spatial dependence 
using one of the spatial regression models discussed in Chapter 4.  

The results of the estimation procedures are given in Table 5.6. Parameters are 
estimated via the maximum pseudo-likelihood procedure. All parameters are 
highly significant in both specifications. They lead to a convergence speed of 
0.015 and 0.025, respectively, in the two models (it was 0.019 in the a-spatial 
model reported in Section 1.3.3) and, consequently, to a half-life time of 44 and 27 
years respectively in the two models (it was 34 years in the a-spatial model). Thus 
the introduction of spatial effects leads to a faster speed of convergence amongst 
the regions. 

As far as the model’s diagnostics, we observe that the Breusch-Pagan test leads 
to accept the hypothesis of constant variances. 

Regarding the problem of spatial dependence amongst residuals in the spatial 
lag model, both the Likelihood ratio test and the Lagrange multiplier tests lead us 
to reject the hypothesis of spatial independence while, in the case of the spatial 
error model, there is a contrast between the results of the likelihood ratio test (that 
leads us to reject spatial independence) and those provided by the Lagrange multi-
plier test (that, conversely, lead to acceptance). 

The general conclusions are thus not very different from those of the previous 
analysis referring to the Italian provinces. When a high degree of positive spatial 
autocorrelation is detected amongst residuals, the convergence’s speed estimated 
through the a-spatial linear regression are strongly biased with respect to those 
obtained through the spatial regressions. In this case, however, the model is not 
entirely satisfactory because it leaves a high degree of residual spatial dependence. 
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Table 5.6. Convergence of per-capita income in the 129 European NUTS-2 regions (1950-
1999)– Spatial Dependence Models – Maximum Likelihood Estimates (numbers in brack-
ets refer to the p-values). 

Spatial error model Spatial lag model 

 (Constant) 2.539 
(0.000)

3.623 
(0.000)

-0.222
(0.002)

-0.302
(0.002)

Speed of convergence (*) 0.01568 0.0251 

Half-life (**) 44.20 27.60 

 (see Equation (4.30))  0.501 
(0.000) ---

 (see Equation (4.78)) --- 0.385 
(0.000)

Goodness of fit 

Schwartz Criterion -168.613 -177.472 

Regression Diagnostics 

1. Spatial heteroskedasticy 

Breusch-Pagan heteroskedasticity test 0.776 
(0.378)

0.692 
(0.452)

2. Spatial dependence 

LRT test (Spatial error model vs. OLS) 21.259 
(0.000) ---

LMT (spatial lag model as alternative hypothesis) 0.074 
(0.785) ---

LRT test (Spatial lag model vs. OLS) --- 14.400 
(0.000)

LMT (spatial error model as alternative hypothesis) --- 5.598 
(0.018)

(*) Speed of Convergence 
T

b 1ln ; (**) Half-life = 
b

t lifehalf
)2ln( .

5.3.2 Violation of the Hypotheses on the Probability Model 

The model specifications chosen in the previous section are not satisfactory in that 
we can observe that the spatial dependence in the residuals has not been elimi-
nated. This provides further scope for deriving alternative specifications. In this 
section, we will suggest some alternatives by considering possible violations of 
the probability model. 
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In order to improve our models, we will consider the study area divided into 
two zones each characterised by different regimes. Let us again observe Figure 1.9 
where we reported the distribution of natural logarithm of per-capita GDP in EU 
regions at the NUTS 2 level both in 1980 (the initial period of observation) and in 
1996 (the final period of observation). The graphical analysis suggests the exis-
tence of at least two different clubs with a clear geographical distinction: the 
richer regions located at the core of the continent and the poorer regions located in 
the periphery. 

In order to test the hypothesis of the existence of two regimes characterized 
by two different speeds of convergence, we classify the EU region “poor” if the 
level of per-capita GDP is below the European median and “rich” if it exceeds it. 
The classification can be based on the initial year 1980 (Figure 1.9a) or, alterna-
tively, on the final year 1996 (Figure 1.9b). In this section we attempt both 
specifications. The results of the Chow test of parameters’s invariance (see 
Equation (5.159) in Section 4.4.4.1) are reported in Table 5.7 for the four speci-
fications considered. The Chow tests results are highly significant for three of 
the four models analyzed, the only exception being the spatial lag model that 
adopts the 1980 classification. 

Table 5.7. Convergence of per-capita income in the 129 European NUTS-2 regions (1980-
1996) – Spatial invariance of parameters. 

Spatial error model 
(1980 classification) 

Spatial error model 
(1996 classification)

Spatial lag model 
(1980 classification)

Spatial lag model 
(1996 classification) 

Chow
test

5.990 
(0.050)

65.175 
(0.000)

1.344 
(0.511)

64.475 
(0.000)

Having found sufficient evidence of the existence of two regimes, we can now 
proceed to an estimation of the parameters and the diagnostic checking of the 
various models. Table 5.8 shows the results of the maximum likelihood estimation 
of the spatial lag and spatial error parameters for the two spatial regimes.  

The parameters estimates are always significant and the estimates of  are of 
the expected sign (see Table 5.8). The speed of convergence ranges from 
1.489% to 5.089% when employing the four different models. In agreement with 
the theoretical convergence hypothesis, the structural change model identifies a 
higher speed (5.089%) for “poor” regions and a lower speed (1.489%) for the 
“rich” regions.  

The Breusch-Pagan tests are not significant, so heteroskedasticity is rejected. 
Based on the value of AIC, the spatial error model with the 1996 classification is 
indicated as the one that achieves the best fit.  
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Table 5.8. Convergence of per-capita income in the 119 European NUTS-2 regions (1950-
1999). Spatial Dependence Models with spatial regimes (ML Estimates) (numbers in brack-
ets refer to the p-values).

Spatial error 
model (1980 
classification) 

Spatial error 
model (1996 
classification) 

Spatial lag  
model (1980 
classification) 

Spatial lag  
model (1996 
classification) 

 (Constant) 
Rich

2.815 
(0.000)

4.380 
(0.000)

2.475 
(0.002)

4.313 
(0.000)

Rich
-0.213
(0.004)

-0.378
(0.000)

-0.212
(0.015)

-0.395
(0.000)

Speed of convergence (*) 0.011497 0.02968 0.011489 0.03141 

Half-life (**) 46,30 23,35 46.83 22.06 
 (Constant) 

Poor
5.015 
(0.000)

5.708 
(0.000)

3.046 
(0.000)

4.577 
(0.000)

Poor
-0.468
(0.000)

-0.557
(0.000)

-0.280
(0.000)

-0.446
(0.000)

Speed of convergence (*) 3.944% 5.089% 2.053% 3.691% 

Half-life (**) 17.57 13.62 33.76 18.77 

 (see Equation (4.30))  0.369 
(0.000)

0.205 
(0.023)

 (see Equation (4.78))  0.369 
(0.000)

0.205 
(0.023)

Goodness of fit 

Schwartz Criterion -176.792 -219.507 -163.447 -213.801 
Regression diagnostics

1. Spatial heteroskedasticity 
Breusch-Pagan
heteroskedasticity test 

0.059 
(0.808)

1.551 
(0.213)

0.091 
(0.763)

0.262 
(0.609)

2. Spatial dependence
LRT (Spatial error model 
vs. OLS) 

23.844 
(0.000)

8.294 
(0.003)

LMT (spatial lag model 
as alternative hypothesis) 

0.115 
(0.735)

0.051 
(0.821)

LRT (Spatial lag model 
vs. OLS) 

 12.499 
(0.000)

4.589 
(0.032)

LMT (spatial error model 
as alternative hypothesis) 

 8.276 
(0.004)

0.010 
(0.920)

(*) Speed of Convergence 
T

b 1ln ; (**) Half-life = 
b

t lifehalf
)2ln( .
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Finally, notice that the alternative two-regime specifications considered also re-
move the problem of residual spatial dependence in three of the specifications 
considered if we base our conclusions on the Lagrange multiplier test, although 
some contrasting results are provided by the likelihood ratio test. 



6 Looking Ahead: A Review of More Advanced 
Topics in Spatial Econometrics1

6.1 Introduction 

As remarked in the first chapter, the aim of this monograph is to present a statisti-
cally based introduction to the field of spatial econometrics. Consequently, in the 
present context, we have only considered the basic techniques and we have omit-
ted many important, more advanced, topics. 

However we do not want the reader to remain totally unaware of the many 
other possibilities offered by spatial econometrics. The aim of this chapter there-
fore is to provide a short review of some of the advances proposed in the literature 
that have, over the last decades, substantially improved the basic spatial econo-
metric toolbox presented so far. It is obviously not possible to give a full and de-
tailed account of all the developments registered in this field and, as we said, this 
is not the purpose of the book anyway. The aim of this chapter is simply to pro-
vide the interested reader with the necessary references to enable him to deepen 
his knowledge in this direction if he so wishes. Furthermore, since the rest of the 
book has focussed solely on regional convergence of income as an example of 
possible applications, we also wish to take this opportunity to present a series of 
emerging fields, in which spatial econometric methods are potentially useful. This 
to open the reader’s mind to other possible applications. More thorough reviews of 
problems and methods can be found in Anselin et al. (2004), Anselin and Bera 
(1998), LeSage (1999), Anselin (2001b; 2002) and Florax and van de Vlist (2003). 

This chapter is divided into three sections. The first section is devoted to mod-
els that offer an alternative to the basic simple regression framework considered in 
Chapter 4. The second is a review of diagnostic tools, alternative to those pre-
sented in the previous chapters, for testing the various regression hypotheses. Fi-
nally, the third section focuses on some estimation methods, other than to the GLS 
and maximum likelihood methods, that can be used in a spatial econometric con-
text to improve the estimates accuracy. 

                                                          
1  This chapter is written jointly with Gianfranco Piras. 
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6.2 Alternative Models 

6.2.1 Panel Data Models 

A typology of models that is potentially of great interest in spatial econometrics is 
that based on panel data. As is well known, this kind of data allows the contempo-
raneous study of both the dynamic and the individual variation of economic phe-
nomena. Baltagi (2001) lists some of the benefits and limitations of using such 
data (see also Hsiao, 1986; Klevmarken, 1989; Solon, 1989). First of all they al-
low to control for individuals heterogeneity. Furthermore, they are more informa-
tive than pure time series or cross-sectional data, they present more variability, 
less collinearity among the variables and more degrees of freedom. The other side 
of the coin is that they have a number of drawbacks. To start with, design and 
data-collection problems are more complicated then in the case of pure time series 
or cross-sectional data. Measurement errors may also arise and may produce infer-
ential distortions. In many instances, the time dimension is too short to allow a 
proper dynamic modelling due to the heavy costs associated with data collection. 
Finally, there are major problems associated with selectivity of the sample arising 
in the various forms of self-selectivity, non-response, attrition or new entry. 

Notwithstanding these problems, the diffusion of panel data has been supported 
by the increasing data availability. Until only a few years ago, the diffusion of 
panel data sets was restricted to the United States, the only country in which panel 
data were collected on a regular basis. Nowadays, many of the European countries 
have their own longitudinal surveys (e. g. the Italian Survey on Household Income 
and Wealth run by the Bank of Italy), and the European Community Household 
Panel (ECHP) is a precious source of information for empirical economic studies. 
Spatially-referenced panel data are also common in economics. The already 
quoted REGIO database (see Section 1.3.1) represents an example of a spatial 
panel dataset that is acquiring increasing importance in regional economic studies. 

Recently, there has been a wide diffusion of contributions to the statistical 
methods designed to analyse panel data. However, only a few papers in the litera-
ture deal with spatial panel data. The contribution made by Paul Elhorst (2001, 
2003) has a particular relevance in this respect. The author exhaustively examines 
the specification of a series of models, developed from the classical framework of 
traditional panel data specification and conjugated with the typical techniques for 
modelling spatial dependence discussed in this book. In particular, Elhorst elabo-
rates the specification and estimation strategies for spatial panel data models that 
include spatial error autocorrelation and a spatially lagged dependent variable. The 
author starts from the classical literature on panel data and adapts what can be 
learned from the econometric literature by discussing four models: the spatial 
fixed-effect model, the spatial random-effect model and both the fixed and random 
coefficient spatial error models. He also derives the relative likelihood for each 
model and discusses the asymptotic properties and the estimation procedures. Pos-
sible problems arising from the spatial version of these four models are also dis-
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cussed in detail. Another interesting aspect is the derivation of the likelihood func-
tion of a fixed-effect dynamic panel data model extended to include spatial error 
autocorrelation or spatially lagged dependent variables. We will return to these 
aspects when discussing the estimation techniques in Section 6.4 below. 

Some advances in considering prediction in panel data regression models have 
been made by accounting for spatial autocorrelation among states and regions. 
Baltagi and Li (1999) derive the best linear unbiased predictor for the random er-
ror component model with spatial correlation. They compare the performances of 
several predictors of a simple demand equation for cigarettes based on a panel of 
46 states over the period 1963-1992. The estimators they compare in the forecast-
ing exercise are the OLS with fixed effect (both accounting for and disregarding 
spatial correlation effects) and the GLS estimator for random effect (again, both 
ignoring and considering spatial correlation effects). The main result obtained is 
that it is important to take spatial correlation and heterogeneity across states into 
account because their consideration markedly improve performance in terms of 
RMSE of the forecasts. Baltagi et al. (2003) provide further results and extended 
the previous findings. 

More thorough reviews of spatial panel data may be found in Anselin (2001a) 
and Anselin et al. (2004b).

6.2.2 Regional Convergence Models 

As is clear from the examples in this book, growth theory and economic conver-
gence are certainly the fields in which spatial econometrics has been applied most 
frequently over the last decades. Within this broad field, many different models 
departing substantially from the simple spatial linear regression model of the pre-
vious chapters have been proposed in the literature and necessitate appropriate 
spatial econometric treatment.  

An approach that can be considered an important step forward as regards the 
neoclassical growth convergence modelling framework is the one based on the 
concept of club convergence developed by Durlauf and Johnson (1995) and Quah 
(1993a; 1993b; 1996a; 1996b). See Baumont et al. (2003) for a review. Such a 
concept can help to explain why we observe economic polarization and persis-
tence of poverty in empirical studies. The idea is based on endogenous growth 
models leading to a situation of multiple steady-state equilibria like the one de-
scribed in Azariadis and Drazen (1990). According to this theory, some economies 
may converge, but only if their initial conditions fall within the basin of attraction 
of the same steady-state. Galor (1996) demonstrates that such a concept of con-
vergence is, in fact, consistent with the standard neoclassical growth models, if we 
allow for individual heterogeneity. 

Along the same lines, Quah (1993a) introduced an original approach based on 
Markov chain transition matrices. Quah’s approach rests on the idea that conver-
gence is such a complicated issue that it cannot be studied just by looking at the 
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linear correlation between growth rates and initial GDP levels, as in standard -
convergence analysis. Rather, we have to look at the whole bivariate distribution 
of the two variables involved (estimated with kernel densities) and also at their 
temporal developments to be able to fully understand all the driving forces and the 
dynamics. By developing such an approach, Quah (1993a; 1993b) reveals the ex-
istence of a polarization into two clubs of rich and poor countries in the European 
regional income distribution (see Chapter 5.3). He calls these “twin peaks”. 

Baumont et al. (2003) approach the same problem in the form of a structural in-
stability across spatial convergence clubs in the estimation of the -convergence 
process among 138 European regions over the period 1980-1995. The estimation 
of the appropriate spatial regime error models shows that the convergence process 
is different across the regimes. Furthermore, the authors also estimate a strongly 
significant spatial spillover effect: the average growth rate of per-capita GDP in a 
given region appears to be positively affected by the average growth rate of 
neighbouring regions. Other particular specifications of club convergence are dis-
cussed by Rey (2001, 2003) and deal, in particular, with spatial Markov models 
and models for spatial inequality. 

As already pointed out, most of the empirical analysis uses traditionally cross-
sectional econometric techniques for testing convergence hypotheses. However, as 
Bernard and Durlauf (1995, 1996) suggested, these procedures pose several prob-
lems. The authors propose a new definition of convergence based on the unit-root 
concept developed in the context of time series analysis. If technological progress 
(which drives long-run economic growth) contains a stochastic trend, then con-
vergence implies that permanent components of GDP are the same across regions. 
In this context, convergence is presented as a “catching up over a certain time pe-
riod” (Bernard and Durlauf, 1996). Stochastic convergence can be tested by per-
forming panel unit-root tests (see Evans and Karras, 1996a,b; Bernard and Jones, 
1996; Fleissig and Strauss, 2001; Arbia and Costantini, 2004). So far however, no 
consideration has been given, in this field, to problems connected with the spatial 
nature of observations that would require explicit spatial econometric modelling. 
It is noticeable, however, that some of the concepts in time series analysis pertain-
ing to unit roots and cointegration have been investigated in the context of spatial 
econometrics (Fingleton, 1999; Mur and Trìvez, 2003). Getis and Griffith (2002), 
notice that this important topic is still missing in the treatment of other spatial 
problems, the only noticeable exception being the works by Griffith and 
Tiefelsdford (2002) and Getis and Aldstadt (2004). 

In the context of stochastic convergence, it is interesting to consider the ap-
proach recently proposed by Pesaran (2004b). This is based on the computation of 
convergence measures derived from a consideration of all possible pairs of (log) 
per-capita output gaps across, say, N economies. 

A further innovative modelling framework recently proposed in the regional 
convergence literature, departing from the standard conceptualisation, is that de-
veloped by Arbia and Paelinck (2003a; 2003b). Starting from the consideration 
that traditional convergence analysis provides indication about the convergence of 
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regions towards common steady-states, but not about the path they follow to reach 
such convergence, the authors consider a continuous-time framework based on the 
classical Lotka-Volterra predator-prey system of two equations (Lotka, 1956 and 
Volterra, reprinted in Chapman, 1931) first proposed in an economic context by 
Samuelson (1971). (On continuous time econometric modelling see Bergstrom, 
1990 and Gandolfo, 1990). They extend such a modelling framework to the case of 
more than two regions and explicitly introduce a modellization of the spatial de-
pendence displayed by neighbouring regions. The model thus obtained can be seen 
as a generalized version of the -convergence model, in which a system of regions, 
under some conditions, moves towards a mathematically stable point of conver-
gence. They also consider statistical inference and introduce a discrete approximate 
solution based on Simultaneous Dynamic Least Squares (Paelinck, 1996) for esti-
mating the model’s parameters. Thus, by generalizing the traditional predator-prey 
model to a multiregional system, they show that each region may follow its own 
trajectory, leading to a series of distinct convergence paths. The authors illustrate 
their approach by comparing the empirical results generated by a traditional conver-
gence equation and by a spatially-conditioned convergence equation with those of 
the Lotka-Volterra model for 119 European regions over the period 1980-1994.  

Like Arbia and Paelinck (2003), Harvey and Carvalho (2002) are also inter-
ested in the dynamics of convergence rather than its occurrence within a certain 
time period. They propose a second-order error correction mechanism embedded 
within a stochastic convergence framework that provides an informative break-
down into trend, cycle and convergence components. They also show that time 
series tests of economic convergence can be formulated within this framework. No 
attention is paid in the quoted paper to spatial effects, however. 

Fingleton (2004) proposes a new economic growth model that goes beyond the 
neoclassical scheme by incorporating (i) increasing (rather than constant) returns 
to scale, (ii) the diffusion of technological innovations, (iii) catch up and (iv) spa-
tial externalities. The model is an extension of Verdoorn’s law (Verdoorn, 1949) 
employed in economic analysis by Kaldor (1957; 1970) and augmented to include 
spatial lag, spatial errors and other spatial effects. 

We have already treated the topic of panel data modelling in Section 6.2.1. Ap-
plications of such methodologies can be found in the study of regional conver-
gence starting from the work of Islam (1995, 1998). For a recent application see, 
e. g. Arbia and Piras (2005) and Arbia et al. (2005).

Finally, Arbia et al. (2003) and Arbia and Basile (2005) propose a non paramet-
ric framework to study growth and convergence in the EU. 

6.2.3 Space-Time Models 

Often, one of the most critical points in spatial econometrics analysis is the need 
to consider simultaneously both spatial and temporal dependence present in the 
observations under examination. In the literature only few articles consider the 
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simultaneity of these occurrences. Here follows a short survey of some of the re-
cent works in this direction. The basis for space-time modelling was founded in 
the seventies by Bennett (1979) and Pfeiffer and Deutsch (1980) who introduced 
the class of space-time autoregressive and moving average processes (STARMA). 
These processes still represent the point of departure for more complicated con-
ceptualisations.

Pace et al. (1998) observed that there is no obvious optimal way of incorporat-
ing both spatial and temporal dependencies into empirically feasible pricing mod-
els. To better capture the effect of both spatial and temporal information on real 
estate prices, by overcoming the problems associated with indicator variable mod-
els, they introduced a spatio-temporal model which uses information from nearby 
recently sold properties when predicting the value of a given property. In other 
words, instead of assuming that each region has its own effects modelled by sepa-
rate parameters, the STARMA formulation assumes that nearby properties have 
the same relation to observations across the entire sample. Using data on housing 
prices, they show the substantial benefits obtained by modelling the data’s spatial 
as well as temporal dependence. In more detail, the spatio-temporal autoregression 
significatively reduced the median absolute error with reference to an indicator-
based model. The improved performance of their specification is confirmed by the 
analysis of one-step-ahead forecast. 

Giacomini and Granger (2003) compare the relative efficiency of different 
methods for forecasting the aggregation of spatially correlated time series. Using 
asymptotic approximations and the results of some simulation studies they show 
that forecasting performance can be improved by imposing a priori constraints on 
the amount of spatial correlation in the system. One way of doing so is to aggre-
gate forecasts from a Space-Time Autoregressive model, as the latter offers a solu-
tion to the curse of dimensionality problem arising when forecasting using the 
VAR methodology. The importance of their paper lies in its proof that ignoring 
spatial correlation, even if weak, leads to highly inaccurate forecasts. It is impor-
tant to stress, however, that the results are based on a very small sample simula-
tion (based on a maximum of 16 observations laid on a 4x4 regular lattice) and are 
thus affected by strong edge effects. Furthermore the authors restrict their simula-
tions to the case of positive spatial autocorrelation and do not say anything about 
the forecast’s performance in the case of negative spatial autocorrelation. 

Some advances have recently been recorded regarding the building of spatial 
and spatio-temporal ARCH models derived directly from the time series analogue. 
Developments in this field require a specification and a full understanding of the 
notion of “spatial risk” (Arbia, 2003) that has important bearing in fields like eco-
nomic inequality and poverty analysis. Some of the ideas and developments in this 
field are reported in Florax et al. (2004). For a recent review of space-time model-
ling see Arbia (2004). On the relationship between the temporal and the spatial 
components of space-time model see Arbia (1992). 
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6.2.4 Discrete Variables 

The basic spatial correlation model developed by Cliff and Ord (1981) and 
Anselin (1988) allows for spatial dependence in the dependent variable or in the 
error component referring to quantitative variables. However, many empirical 
studies have an explicit interest in modelling spatial dependence in cases where 
categorical variables are involved. Fleming (2004) include the concept of spatial 
correlation in models that involve limited dependent variables in a discrete choice 
context. Along similar lines the spatial probit model has been investigated in some 
recent works by Pinkse and Slade (1998), LeSage (2000), Beron et al. (2003),
Murdoch et al. (2003) and Beron and Vijverberg (2004). 

Garrett et al. (2003) adopt a framework similar to the standard spatial econo-
metric techniques, but their specification is modified to account for the discrete 
nature of the dependent variable and the data’s panel structure. They use a spatial 
probit to model a state’s choice of branch banking and interstate banking regimes 
as a function of the regime choices made by other states. They extend the basic 
model by allowing spatial correlation to vary in different geographical regions. 

6.2.5 Spatial Externalities  

The modelling of spatial externalities is one of the most frequently addressed 
questions in the recent literature (Anselin, 2002; Lee, 2002; Dubin, 2003; Wall, 
2004). Spatial externalities play a central role in many social sciences. For in-
stance, increasing attention is being devoted in economics to the modelling of so-
cial interaction that introduces dependence among agents in a system. Further-
more, the theoretical focus on imperfect competition and increasing returns to 
scale led to a growing interest in the identification and measurement of spatial 
externalities (Anselin, 2003a). The empirical testing of such effects requires the 
formal specification of adequate spatial models. Anselin (2001a) outline a taxon-
omy of spatial econometric models that incorporate spatial externalities in various 
ways. The point of departure is a reduced form in which local or global spillovers 
are expressed as spatial multipliers. From this starting point, a range of familiar 
and less familiar specifications are derived for the structural form of a spatial re-
gression. This work allowed some of more familiar models’ limitations (in terms 
of their interpretation as models for spatial externalities) to become apparent. In a 
similar fashion, the work by Anselin et al. (1997) proposes a new approach to 
formalizing spatial externalities by combining spatial dependence and spatial het-
erogeneity in the form of spatial regimes. 

6.2.6 Bayesian Models 

Another aspect that merits consideration is the use of Bayesian models in spatial 
econometrics. LeSage (1997; 2000) has contributed the most to the diffusion of 
Bayesian techniques in spatial econometrics. See, also, LeSage (2004) for an up-
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dated review. This author formulates a Bayesian probit model with individual ef-
fects that exhibits spatial dependencies. Since probit models are often used to ex-
plain variation in individuals’ choices, these models may well explain spatial in-
teraction effects due to the varying spatial location of the decision makers. The 
model proposed by LeSage allows for a parameter vector of spatial interaction 
effects that takes the form of a spatial autoregression. This model is an extension 
of spatial probit/logit models presented in LeSage (2000), and was applied to the 
1996 presidential election results for US counties. In LeSage (2001), the author 
argued that the use of Bayesian methods in the estimation of geographical re-
gressions can help solve the problems that may arise with the classical estima-
tion, producing remarkable advantages over Ordinary Least Squares estimation 
in geographically-weighted regression methods. Finally, in LeSage (2004), the 
author proposes a family of locally evaluated regression models (termed Geo-
graphically Weighted Regression, GWR) that are based on kernel smoothing 
obtained through spatial distance decay functions. He also extends this frame-
work to the so-called Bayesian Geographically Weighted Regression (BGWR) 
using robust estimators and parameter smoothing to deal with spatial outliers 
and spatial heterogeneity, respectively. Finally, he makes use of MCMC meth-
ods for estimation purposes. 

Model comparison and selection is a central point in econometrics. Bayesian 
theory provides a comprehensive framework for such model choice. Hepple (2003) 
develops this Bayesian framework for the family of spatial econometric models. He 
derives the Bayes factor and the marginal likelihood for each of the main spatial 
specifications, and builds up the relative computational form. These framework is 
then applied to two different data-sets to illustrate the methods’ advantages. An 
application of Bayesian methods is also provided by Baumont et al. (2003) who 
use Bayesian spatial econometric techniques to control for spatial autocorrelation, 
spatial heterogeneity and outliers in the empirical analysis of employment and 
population density in the area of Dijon.  

Spatial priors for space-time modelling are also used by Dowde and LeSage 
(1997) and LeSage and Krivelyova (1999) amongst the others, as well as by Hol-
loway et al. (2002) and LeSage (1997, 2000) in the spatial probit analysis. 

6.2.7 Non-parametric Techniques  

Developments of non-parametric and semi-parametric estimation methods as ap-
plied to spatial problems constitute a major departure from the classical spatial 
linear regression models considered in this book. One of the first contributions to 
this field was made by Conley (1999) who started observing that the traditional 
spatial ARMA modelling captures the dependence among regions by assuming 
that economic distances between them are measured with no measurement error. 
In order to avoid such an assumption (and to avoid, also, the complications of in-
troducing this further source of uncertainty into the likelihood) the author suggests 
concentrating on moment-based estimation and assuming a non-parametric ap-
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proach to modelling spatial dependence. In the paper cited, the author proposes the 
use of a Generalized Method of Moment estimator (GMM; see Hansen, 1982) that 
he proves to be consistent, as in the case of time series data. However, since the 
distribution theory of the estimators is different, he further proposes estimating the 
covariance matrix non-parametrically, allowing for spatial dependence by using 
methods that are analogous to those employed by, e. g. Newey and West (1987), 
Andrews (1991) White (1984) and White and Domowitz (1984) within the time 
series context. He suggests a covariance estimator that is based on a sequence of 
weighted averages of sample auto-covariances computed for subsets of observa-
tion pairs that fall within a given distance threshold in a fashion similar to that in 
other fields of spatial statistics such as geostatistics (see Cressie, 1991; p. 69). Fi-
nally, the author proves that the covariance matrices thus obtained are consistent 
estimators of the true one even when it is assumed that the true distances are dis-
torted by measurement errors. 

In a similar fashion, Driscoll and Kraay (1998) propose a consistent covariance 
estimation method for spatially dependent panel data, and Keleijan and Prucha 
(1999) discuss the use of GMM in a spatial model. Examples of semi-parametric 
estimation of spatial dependence may be found in Chen and Conley (2001) and 
Pace and LeSage (2002) . 

Another important contribution in this area has been made by Gress (2003) who 
starts from the simple consideration that spatial models are not a straightforward 
extension of time series models, even if they show many shared characteristics. 
The paper cited combines non-parametric estimators of the mean with the usual 
parametric estimators of the spatial-lag parameters. This is done for the three 
models of primary interest in the literature: the Spatial Autoregressive Error 
model, the Spatial Autoregressive with exogenous variables model, and the Spatial 
Autoregressive with exogenous variables and spatially Autoregressive Errors 
model. Small sample properties with Monte Carlo simulations are then analysed 
and some empirical analyses are carried out in order to compare the result ob-
tained using the usual econometric methods. 

Parsimonious regression models using spatial data often yield non-normal, het-
eroskedastic and spatially dependent residuals. Pace et al. (2004) develop a model 
which simultaneously performs spatial and functional form transformations to 
mitigate the effects of this problem. They show that a better specification of the 
functional form could reduce spatial autocorrelation of errors given spatial cluster-
ing of similar observations and may also simultaneously reduce heteroskedasticity 
and residuals’ non-normality. The authors apply this framework to housing prices’ 
market data and obtain a good fit of the model with a pattern of residuals that is 
significantly improved with respect to the standard modelling framework. 

McMillen and McDonald (2004) propose a non-parametric method for dealing 
with spatial heterogeneity within a probit model framework. Performance is 
evaluated through Monte Carlo experiments.  
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6.3 Alternative Tests 

After the properties and characteristics of the dataset in use have been exploited, 
the focus of empirical works in a spatial regression context is mainly concentrated 
on misspecification testing. Since the work of Anselin (1988), the development of 
misspecification tests within a maximum likelihood framework and the derivation 
of these test’s asymptotic properties and associated small sample properties have 
been of interest. The range of tests available in such a context has significantly 
improved in recent decades, particularly in relation to the simpler cases considered 
in the main body of this book.  

In the context of testing the null hypothesis of spatial independence, many au-
thors have devoted their attention to studying the properties of Moran’s spatial 
correlation test under varying conditions and to extending its possible applica-
tions. Many tests for spatial dependence are, in fact, based on the Moran statistic 
or can be written in a like form (e. g. the Lagrange multiplier test (LMT); see Bur-
ridge, 1980). Some authors have explored the use of LMT in the context of spatial 
regression models (see Anselin and Rey, 1991; Anselin and Florax, 1995; Anselin, 
et al., 1996). However, Anselin and Rey (1991) and Anselin and Florax (1995) 
used simulations to prove that Moran’s I has a slightly better power than the LMT 
in small samples, even if the differences disappear when dealing with medium and 
large sized samples. 

Among the new tests available, we recall the variant of Moran’s I conceived by 
Kelejian and Prucha (2001) and a large sample test derived by Kelejian and Rob-
inson (1992, 1997). A great number of unidirectional, multidirectional and robust 
Lagrange multiplier (LMT) tests have also been developed in the literature 
(Anselin and Griffith, 1988; Anselin and Florax, 1995; Anselin et al., 1996; de 
Graaff et al., 2001; Anselin and Moreno, 2003, Florax and de Graaf, 2004 and 
Saavedra, 2003). The vast literature on testing for spatial dependence includes 
work by Anselin and Kelejian (1997), and Kelejian and Robinson (1992). These 
tests focus on detecting spatially correlated residuals. Thus, they may be used to 
test well-defined misspecifications, such as a spatial autoregressive error process 
or an omitted spatially lagged dependent variable.

Tiefelsdorf and Boots (1995) have shown that, rather than assuming normality 
to derive approximate distribution of the Moran test, it is possible to construct an 
exact test based on numerical integration (see also Tiefelsdorf, 2002). Anselin and 
Keleijan (1997) have extended the application of Moran’s I to test the hypothesis 
of dependence among the residuals of the Spatial Two Stages Least Squares 
(S2STLS) procedure (see Anselin, 1980; 1988), whilst Pinkse (1998) extends it to 
generalized residuals in a probit model. Of particular relevance in this context are 
two works by Pinkse (1999, 2004). In his first paper (Pinkse, 1999), the author 
establishes weak conditions under which the Moran test for spatial correlation (or 
a cross-correlation variant of it) has a limiting normal distribution under the null 
hypothesis of independence. For both tests, a result based on nuisance parameter is 
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provided which allows the test to be applied to proxies for the variables whose 
independence is to be tested. Pinkse uses the test statistic to determine whether 
three Lagrange multiplier tests for spatial correlation are valid in a probit model 
context. In his second paper (Pinkse, 2004), the author illustrates the general con-
ditions under which Moran-flavoured tests for spatial correlation and spatial cross-
correlation have a limiting normal distribution in the presence of a nuisance pa-
rameter in six frequently-encountered spatial models. The conditions which have to 
be imposed are weaker than those considered in a related work by the author 
(Pinkse, 1999) and the class of nuisance parameter problems allowed is far broader.  

Generally speaking, the diagnostics for spatial error dependence can be classi-
fied as tests against an unspecified alternative to spatial correlation and tests 
against specific spatial processes. In the second case, the typical alternative to spa-
tial autocorrelation is expressed in the form of a spatial autoregressive process. 
Many specification tests and estimation methods have been proposed for this 
model in the literature. Kelejian and Robinson (1993) suggested a different type of 
spatial process that combines a location-specific or local error component with a 
regional or spillover component in what they refer to as a spatial error component 
process. Anselin and Moreno (2003) proposed an interesting alternative based on 
the following formulation of the model. They considered a number of specifica-
tion tests against this alternative, based on both a maximum likelihood framework 
and on a generalized methods of moments estimation approach. Furthermore, they 
compared the performance of these tests in a series of Monte Carlo simulation 
experiments for a range of different spatial layouts and under a number of differ-
ent error distributions, and found that the new statistics perform better in terms of 
power, particularly with reference to those cases that are not covered by the nor-
mality assumption. Similarly, the variant of the Kelejian-Robinson statistics, 
which was suggested in this paper to account for second order neighbours, also 
performs well. Thus, the degree of generality of the paper’s results is limited by 
the design taken into account in the simulation experiments. 

In a recent work, Baltagi and Li (1999) observed that none of the LM tests for 
spatial dependence available in the literature have been computed by running an 
artificial regression. The main purpose of their paper is to show that simple LMT 
for both spatial lag dependence and spatial error dependence can be obtained by us-
ing the Double Length Regression (DLR) proposed by Davidson and MacKinnon 
(1993). Double length regressions are useful econometric tools for deriving LM and 
equivalent test statistics. Moreover, they can be applied to models that are more 
general than some of the other artificial regression counterparts and have better 
finite sample properties than their outer product gradient regression counterparts. 
Baltagi and Li (1999) derive the DLR tests for both spatial lag dependence and 
spatial error dependence by only using Least Squares residuals of the restricted 
model. They use two simple examples to illustrate these tests: one is based on the 
simple crime relationship considered by Anselin (1988) and the other uses the 
Irish data considered by Ord (1975). In addition, Monte Carlo experiments are 
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performed to study the small sample performance of these tests and, as expected, 
they have a performance similar to that of their corresponding LMT counterparts.  

Pesaran (2004a) is interested in testing cross-sectional dependence in dynamic 
panels. He starts from the consideration that the traditional way of testing depend-
ence amongst spatial cross-sectional units in panel data is too dependent on the 
subjective choice of a connectivity matrix. Furthermore, a purely geographical 
connectivity is not appropriate in many economic applications where economic 
and sociopolitical factors could better explain the pattern of dependence. As an 
alternative, he proposes a test based on a simple average of all pair-wise correla-
tion coefficients of the OLS residuals from the single regressions contained in 
the panel. For the cross-section dependence test thus obtained, asymptotic and 
small sample properties are proved and compared with the standard LMT test by 
using Monte Carlo experiments. A proper spatial correlation test is derived as a 
generalization to cases where we have an a-priori spatial order for the cross-
sectional units. 

More recent contributions on hypothesis testing in the spatial context may be 
found in Kelejian and Robinson (2004) where the authors expand their previous 
work to deal with test statistics for multiple sources of misspecification in linear 
regression models. 

Finally, some tools have been introduced to test spatial dependence non-
parametrically. A non-parametric test for spatial independence can be found in 
Brett and Pinkse (1997) based on a similar test for serial independence introduced 
by Pinkse (1998) 

In the context of testing for heteroskedasticity in a spatial model, Baltagi et al.
(2003) extended the Breusch and Pagan LM test to the case of a spatial error com-
ponent model and derived several Lagrange multiplier tests (LMT) for the panel 
data regression model with spatial error correlation. The starting point is to allow 
for both spatial error correlation and regional effects in panel data regression mod-
els and to test their joint significance. The authors use some Monte Carlo experi-
ments to show clearly that the spatial econometric literature should not ignore het-
erogeneity across cross-sectional units when testing for the presence of spatial 
error correlation. Similarly, the panel data econometric literature should not ignore 
the spatial error correlation when testing for the presence of random regional ef-
fects. Baltagi et al. (2003) derive joint and conditional LM tests that are easy to 
implement and more powerful than the one-dimensional LM test. The sample size 
used in the Monte Carlo analysis is small, as is typical in micro panels.  

Generally speaking, the specification search in spatial econometrics has fo-
cused on the detection of spatial autocorrelation and spatial heteroskedasticity. 
The joint occurrence of autocorrelation and heteroskedasticity has not been ad-
dressed, even if it is a central concept in spatial econometrics, as already remarked 
in Chapter 4.4.3. Anselin and Griffith (1988) suggest that the traditional spatial 
autocorrelation tests may have some power against heteroskedasticity, but Kelei-
jan and Robinson (1992) reach the opposite conclusions. No theoretical result yet 
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exists to show how heterogeneity affects spatial correlation tests. For a recent re-
view and new results in this field, see Keleijan and Robinson (2004). 

The specification testing procedures available in the literature, consist in ex-
panding a spatial linear regression model with spatially lagged dependent vari-
ables, conditional upon the results of a misspecification test. Florax et al. (1998) 
bring together a number of new specification search strategies. In particular, they 
investigate a Hendry-like specification strategy, starting from the spatial common-
factor model and subsequently reducing the number of spatially lagged variables 
on the basis of significance tests. Their experimental simulation pertains to differ-
ent samples of varying sample sizes and the spatial field is modelled on regular 
lattice surfaces. They conclude that the classical forward stepwise approach out-
performs the Hendry strategy in terms of finding the true data generating process 
as well as in the observed accuracy of the estimators for spatial and non-spatial 
parameters. It also dominates the concurrent stepwise approach suggested in the 
literature. Florax and Rey (1995) investigated the small sample performances of a 
sequence of unidirectional and multidirectional tests and tests for local misspecifi-
cation, both in terms of the probability of finding the real data-generating process, 
and in terms of the mean squared error of the estimated parameters. They estab-
lished the existence of a dominant strategy that is highly relevant for practitioners 
of spatial regression modelling.  

Finally de Graaff et al. (2001) suggested a very particular test. Their paper is 
concerned with a methodological and empirical analysis of chaos in spatial sys-
tems. Their aim is to create a link between the classical diagnostic tools developed 
in spatial econometrics and the non-linearity tests for empirical data series, with 
particular regard to the so-called BDS test (Brock et al., 1987). They developed a 
spatial variant of this test and subsequently applied it to the case of a shift-share 
model for Dutch regional labour markets over the period 1987-1992. 

6.4 Alternative Estimation Methods 

Until a few years ago, the prevalent estimation methods were basically founded on 
GLS and ML estimators for the spatial lag and spatial error model, as discussed in 
earlier chapters. Recently, significant advances have been made in developing 
alternatives.

A major step forward in the direction of providing a viable alternative to the 
traditional GLS and ML estimators, has been made by Kelejian and Robinson 
(1997), Kelejian and Prucha (1998; 1999) and the already-cited contribution of 
Conley (1999) who introduced the use of GMM estimators in a spatial economet-
ric context. In particular, Kelejian and Prucha (1999) develop a set of moment 
conditions that yield estimation equations for the parameter of a SAR error model 
and suggest the use of non-linear least squares to derive a consistent generalized 
method of moments estimator. Conley (1999) studies the properties of GMM es-
timators in detail and provides the formal conditions for their consistency and as-
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ymptotic normality. These results enable estimation, inference and hypothesis test-
ing with dependent cross-sectional data. 

Pinkse and Slade (1998) use moment conditions in their probit model with SAR 
errors already quoted in Section 6.2.4, however not explicitly dealing with the 
structure of the spatial covariance matrix to be estimated. 

Pinkse et al. (2003) provide a very interesting example of such moment-based 
procedures. They make use of a one-step GMM estimator that allows for generic 
spatial and time series dependence. This estimator is, moreover, consistent and 
asymptotically normal under weak conditions. They use this new estimation pro-
cedure to estimate a dynamic spatial probit model with fixed effects which, in 
turn, enables operational decisions in a real-options context. The main result of the 
empirical application is that the data are more supportive of a mean/variance-
utility model than of a real-option model. Kelejian and Prucha (2004) offer an-
other example of the use of GMM estimators for the autoregressive parameter of a 
spatial model. 

A further alternative estimator is the spatial two-stage least squares method 
(S2SLS) originally proposed by Anselin (1980; 1988) and developed by Land and 
Leane (1992), Kelejian and Robinson (1993) and Kelejian and Prucha (1998). It 
deals with the endogeneity of spatially lagged dependent variables by making use 
of instrumental variables. Under a set of conditions that are often satisfied when 
dealing with connectivity matrices based on pure contiguity, the method is proved 
to be consistent and produces asymptotically normal estimators. Extension to a 
three stages least squares is discussed in Anselin (1988). 

Computationally intensive techniques have recently been introduced to estimate 
the parameters of spatial models. A recent example is the recursive importance 
sampling estimator (RIS) proposed by Vijverberg (1997) and applied by Beron 
and Vijverberg (2004) to solve spatial problems. 

Pinkse et al. (2002) studied spatial price competition among firms producing 
differentiated products and competing in U.S. wholesale gasoline markets. They 
found that, in this market, competition is highly localized. In this interesting and 
innovative work, the authors make use of an instrumental variables estimator for 
the matrix of cross-price response coefficients. They also demonstrate that the 
estimator is consistent and derive its asymptotic distribution. They make use of a 
semi-parametric approach that allows discriminating between models of global 
competition (in which all product compete with all others) and local competition 
(in which products compete only with their neighbours).  

The already cited work by Elhorst (2001) highlights an interesting aspect of the 
progress made with regards to estimation methods. The author discusses the esti-
mation methods of a fixed-effects dynamic panel data model extended either to 
include spatial error autocorrelation or a spatially lagged dependent variable. It is 
well known that the traditional Least Squares dummy variable estimator leads to 
inconsistent estimates of the parameters of interest. In fact, no straightforward es-
timation procedure is yet available. The reason for this has to be sought in the fact 
that existing methods developed for dynamic (but non-spatial) methods and for 
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spatial (but non-dynamic) panel data models might produce biased estimates when 
these methods are considered jointly. In order to overcome this problem, the mod-
els are first-differenced to eliminate the fixed effects and then the unconditional 
likelihood function is derived by taking account of the density function of the 
first-differenced observations on each spatial unit. This procedure yields a consis-
tent estimator both of the response parameters and of the spatial autocorrelation 
coefficient when the cross-sectional dimension tends to infinity and this is regard-
less of the time dimension size. The rows and the columns of the spatial weight 
matrix do not diverge to infinity at a rate equal to (or faster than) the rate of the 
sample size in the cross-section domain. The only problem still to be solved lies in 
the estimation of the fixed-effect. The latter cannot be estimated consistently, 
since the number of these coefficients increases as the number of observations 
increases (the curse of dimensionality problem). Furthermore, there is evidence of 
the fact that, when exogenous variables are omitted, the exact likelihood function 
can be specified, but, when, in contrast, exogenous variables are included, the pre-
sample values of this variable (and thus the likelihood function) can only be ap-
proximated. The work cited considers two cases for modeling the pre-sample val-
ues of the exogenous variables for the first-differenced observations on each spa-
tial unit: the Bhargava and Sargan (1983) approximation and the Balestra and 
Nerlove one (Balestra and Nerlove, 1966). The decision to exclude exogenous 
explanatory variables is based on the fact that the presence of such variables fur-
ther complicates the analysis although different approaches have been suggested 
in the econometric literature to deal with the pre-sample values of these variables 
in a dynamic context.  

An important problem arising in spatial dependence estimation procedures re-
lates to computational aspects. This problem, already discussed in Chapter 3.2.4, 
was predominant in the past when computer capabilities were more limited. Chap-
ter 3.2.4 examined the algorithm proposed by Ord (1975) involving an eigenval-
ues evaluation which made spatial estimation practical for small to moderate-sized 
datasets. Along the same line of research, Anselin (1988), Haining (1990), Anselin 
and Hudak (1992), Griffith (2004) and others have worked on the implementation 
of spatial estimation procedures by writing codes that reduce the computational 
burden and make the estimation feasible in practical situations.  

Despite the dramatic improvements in computer capabilities, some operations 
such as determinants, eigenvalues, and inverse evaluation remain unsolved prob-
lems when dealing with very large spatial databases. Pace and Barry (1997a) pro-
vide a way of quickly computing parameters’ estimations when the dependent 
variable follows a spatial autoregressive scheme. They start from the evidence 
that, in some instances, only a few observations are influential on the neighbour-
ing sites, whereas others have a negligible effect and so the spatial weight matrix 
may become sparse. In this way, by rearranging the weights’ matrix, the estimates 
of the parameters of interest may be computed at a very low cost, even in the pres-
ence of large datasets. In demonstration of the technique’s accuracy, the work 
cited provides Monte Carlo evidences of the short time a computer needs to pro-
duce estimates in the presence of very big datasets.  
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Further methods for reducing the computational burden of increasingly time-
demanding spatial models have been proposed by Smirnov and Anselin (2001) 
(using a characteristic polynomial approach) by Griffith (2000, 2004) (using poly-
nomial functions approximations) and by Pace and LeSage (2004) and Pace and 
Zou (2000) (using Chebyshev approximations). Exact methods based mainly on 
decomposition techniques for sparse matrices, (e. g. Choleski or Lu decomposi-
tion. See Gentle, 1998; Press et al., 1992), have also been exploited by Pace 
(1997) and Pace and Berry (1997b, 1997c) using an idea originally contained in 
Arbia (1986) 

6.5 Exploratory Tools 

For the sake of completeness, it is necessary to refer to one final emerging field in 
spatial econometrics. This regards the set of techniques developed as a preliminary 
way of looking at data prior to a more rigorous formalization within an explana-
tory spatial econometric model. Such tools are known in the literature as Explora-
tory Spatial Data Analysis (ESDA) and can be seen as a natural extension of the 
statistical methods known as Exploratory Data Analysis (EDA; see Tuckey, 1977). 
A general introduction to ESDA within a spatial statistical application can be 
found in Haining (1990; 2003). ESDA methods are devised to visualize data, de-
scribe spatial variability and identify spatial outliers. They usually take the form of 
plots, graphs and global or local spatial association measures. We can classify in-
struments such as Moran’s scatterplot (proposed by Anselin, 1996), the Getis-Ord 
local statistics (Getis and Ord, 1992; Ord and Getis, 1995) and the class of Local 
Indicators of Spatial Association (or LISA, Anselin, 1995b) within this category. 
See Haining (1990), Bailey and Gatrell (1995) and Anselin (1996) for reviews. 
See, also, Ertur and Le Gallo (2003) for a review and applications to European 
regional disparities. 



Appendix: A Review of the Available Software for 
Spatial Econometric Analysis1

A.1 Introduction 

The diffusion of statistical software certainly plays a fundamental role in empirical 
studies. As we have seen in Chapter 4, spatial econometric analysis often requires ad 
hoc routines in order to implement estimation and hypothesis-testing techniques. 
Thus the difficulties associated with programming such routines in the absence of a 
dedicated software has certainly been one of the factors contributing in the past to 
the slow diffusion of empirical studies in spatial econometric analysis. 

In recent years, the landscape has changed dramatically and a number of op-
tions for applying spatial econometric methodologies in real cases are currently on 
offer to the interested researcher.  

The purpose of this appendix is twofold. It seeks both briefly to review the 
software currently available for implementing a spatial econometric approach to 
data and to describe the main functions supported by the various programmes. In 
writing this section, we are conscious that this Appendix is doomed to become 
rapidly obsolete, given the speed with which the situation is developing in this 
field. The reader is referred to the websites quoted here for a continuous update on 
the situation, in the authors’ hope that the website addresses will not also change 
as rapidly as their content. 

Until a few years ago (when there was already a widespread diffusion of soft-
ware for dynamic econometric analysis), the SpaceStat package (Anselin, 1992a; 
1992b) represented the only opportunity available for researchers engaged in spa-
tial data analysis. Indeed, until 1995, this was the only freestanding software and, 
even now, it is the most complete in terms of the wealth of facilities it provides. 
As a consequence, we will start our review in Section A.2 with this programme. In 
Sections A.3 and A.4 we will consider two alternatives that are currently avail-
able: the GeoDa package and a series of toolboxes written in various programming 
languages. Our aim is to give the reader some indications and help him choose 
from the various alternatives by describing the main functions and utilities they 
support.

                                                          
1  This Appendix has been written jointly with Gianfranco Piras. 
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A.2 The SpaceStat Programme 

Historically, SpaceStat was the first programme written for spatial econometric 
analysis and it is still the one most widely used by researchers today. Before 
SpaceStat, no other software was available to run specific spatial econometric or 
spatial statistic analysis. The first release dates back to 1991 and it has been up-
graded several times since then. Obviously, it is not the aim of this section to give 
a detailed description of all the functions the programme supports. We will simply 
summarize some of the main features, whilst referring the interested reader to 
Anselin (1992a, 1992b, 1995a) and the website2 for further information. 

One important utility offered by SpaceStat regards the possibility of imputing 
and manipulating spatial weights matrices. The programme also presents some 
features relating to explanatory spatial data analysis (see Chapter 6.5), including 
techniques for describing and visualizing spatial distributions, identifying patterns 
of spatial association (spatial clusters) and suggesting different spatial regimes. 
The software’s most powerful tools, however, are those relating to the estimation 
and hypothesis-testing of spatial regressions: they allow spatial dependence and 
spatial heterogeneity to be incorporated within the modelling framework. In par-
ticular, the programme allows the ML estimation of the parameters in the spatial 
lag and the spatial error models as well as the testing of the various misspecifica-
tion hypotheses, including normality (the Jarque-Bera test), heteroscedasticity (the 
Breusch-Pagan test) and spatial dependence (the Lagrange multiplier and Likeli-
hood ratio test).  

SpaceStat’s main drawback is its interface. The programme is written in the 
“Gauss” language and presents an unpleasant, old-fashioned, black-and-white 
Dos-like interface, characterized by command lines, no mouse and no windows-
assisted commands. An extension to the programme allows data interchange with 
ArcView (the Geographical Information System produced by ESRI) and provides 
facilities that are particularly useful when building connectivity matrices, running 
exploratory data analysis and visualizing output maps.  

A.3 GeoDa 

GeoDa is a very recent programme designed to implement techniques for explora-
tory data analysis on spatial data in the form of points or polygons in a geographi-
cal space. It represents a dramatic evolution with respect to SpaceStat and, like its 
ancestor, was developed by Luc Anselin and his co-workers (Anselin, 2003b, 
2004; Anselin et al., 2004c). One of its main advantages over SpaceStat is the fact 
that it provides a user-friendly graphical interface based on a windows environ-
ment.

                                                          
2  http://www.terraseer.com/products/spacestat.html. 
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The programme is undergoing a very rapid phase of evolution. The first version 
was released in February 2003 and was followed by a second in June 2003. The 
most recent edition became available in January 2004. At the moment of writing, 
the package may be downloaded from its website3 free of charge. 

So far, the programme has mainly focused on graphical tools and simple de-
scriptive spatial analysis such as spatial autocorrelation statistics, the analysis of 
spatial outliers and a wide range of functions relating to explanatory spatial data. 
In this respect, it allows the evaluation of global and local spatial autocorrelation 
by means of the Moran’s I spatial autocorrelation statistic and the graphical tool 
known as the Moran Scatter Plot (Anselin, 1996; see also Chapter 6.5).  

The spatial econometric regression routines, on the other hand, are still very 
limited in their range and currently only allow estimation of the classical a-spatial 
linear regression via OLS and Maximum-Likelihood estimators of the parameters 
associated with the spatial error and the spatial lag models. The basic diagnostic 
for spatial dependence, spatial heteroskedasticity and normality are available for 
the standard OLS regression residuals. Asymptotic inference is based on the Like-
lihood Ratio Test and on an estimate of the asymptotic covariance matrix using 
the algorithm developed by Smirnov (2003).  

As regards spatial weights matrices, the programme offers the interesting pos-
sibility of building matrices based on different criteria simply by reading a digital-
ized map (through a shape file). However, the estimation procedures only admit 
symmetric structures for the spatial weight (e. g. contiguity or distance-based 
weights) and they cannot be performed on more sophisticated structures such as a 
k-nearest neighbours weighting scheme, for example. 

GeoDa only contains a few functions dedicated to mapping and geo-visualizing 
data that are not comparable with those available in the more sophisticated Geo-
graphical Information Systems. The functions implemented, however, are by and 
large sufficient for the needs of econometricians whose main interest is in data 
description and preliminary explanatory analysis. On the other side of the coin, the 
programme is definitely much easier to use by non experts than the commercially 
available GIS. 

A.4 Toolboxes 

SpaceStat and GeoDa are the only dedicated products available for spatial data 
analysis. Recently, however, an increasing number of initiatives set up by individ-
ual researchers or groups have made specific routines available. These have been 
written in various programming languages and can be invaluable to those working 
in the field of applied spatial econometrics. 

                                                          
3  Its installation routine is available at the internet address: http://sal.geoda.uiuc.edu/default. 

Php and contains all the required files and libraries. 
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Perhaps the best known of the toolboxes for spatial econometric analysis are 
those developed by Pace4 (see Pace and Barry, 1998) and by LeSage5. Both of 
them make use of Matlab routines. Kelly Pace’s toolbox is more oriented toward 
estimating spatial models for large data samples (e. g. those found in environ-
mental and physical applications). James LeSage’s toolbox, on the other hand, is 
more oriented toward economic modelling, with a particular attention to the 
Bayesian spatial methods (including Gibbs sampler routines) discussed in Chapter 
6.2.7. In addition, it provides routines for the classical hypothesis-testing and es-
timation procedures relating to the spatial lag model, the spatial error model and 
Anselin’s general spatial model (see Chapter 4.3.7.1) as well as the spatial probit,
logit and tobit models (see Chapter 6.2.4) and their robust versions. Furthermore, 
some routines are also available for quickly estimating spatial models using the 
GMM technique (see Section 6.2.8) and testing accuracy via Monte Carlo simula-
tions. The library also features specialized sparse matrix procedures for handling 
large data sets. All in all, LeSage’s Econometric toolbox contains around 50 Matlab 
functions and the spatial econometric functions constitute just one part.  

The Stata toolbox displays similar features. This library contains regression diag-
nostics, maximum-likelihood estimation and routines for implementing the Conley 
GMM estimator (Conley, 1999). See Pisati (2001)6, for a detailed description.  

There exist many web communities that make programmes and routines for 
spatial econometrics available. One that deserves particular attention is that based 
on the R programming language7 and linked to the R-Geo initiative. This library 
has a lot of new functions for analysing spatial data, including descriptive spatial 
autocorrelation statistics and a complete set of spatial econometric functions. 
Bivand’s SPDEP (Spatial Analysis Tools)8 is also written in the R language and 
provides programmes for spatial autocorrelation and regression analysis (see 
Bivand and Gebhardt, 2000; Bivand, 2002, and Bivand and Portnov, 2004). 

Last, but not least, the S+SpatialStats extension to the S-PLUS statistical pack-
age (Kaluzny et al., 1997) includes some spatial regression routines9 and the 
Geobugs extension to the Winbugs10 programme contains routines specifically 
devoted to Gibbs sampler and Monte Carlo Markov Chain (MCMC) spatial model 
estimation. 

                                                          
4  Available at the website http://www.spatial-statistics.com/. 
5  LeSage’s econometrics toolbox is downloadable without charge from the web site: 

http://www.spatial-econometrics.com/.
6  For Stata toolbox see http://www.faculty.econ.nwu.edu/faculty/conley/statacode.html web 

site.
7  See the website http://sal.uiuc.edu/csiss/Rgeo/. 
8  See the website http://cran.r-project.org/src/contrib/packages.html. 
9  See the website http://www.insightful.com/products/splus/default.asp. 
10  See http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml. 
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