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Preface

The universe of econometrics is constantly expanding. FEconometric methods and practice have advanced
greatly as a result, but the modern menu of econometric methods can seem confusing, even to an experienced
number-cruncher. Luckily, not everything on the menu is equally valuable or important. Some of the more
exotic items are needlessly complex and may even be harmful. On the plus side, the core methods of applied
econometrics remain largely unchanged, while the interpretation of basic tools has become more nuanced and
sophisticated. Our Companion is an empiricist’s guide to the econometric essentials . . . Mostly Harmless

FEconometrics.

The most important items in an applied econometrician’s toolkit are:

1. Regression models designed to control for variables that may mask the causal effects of interest;
2. Instrumental variables methods for the analysis of real and natural experiments;
3. Differences-in-differences-type strategies that use repeated observations to control for unobserved

omitted factors.

The productive use of these basic techniques requires a solid conceptual foundation and a good understanding
of the machinery of statistical inference. Both aspects of applied econometrics are covered here.

Our view of what’s important has been shaped by our experience as empirical researchers, and especially
by our work teaching and advising Economics Ph.D. students. This book was written with these students
in mind. At the same time, we hope the book will find an audience among other groups of researchers who
have an urgent need for practical answers regarding choice of technique and the interpretation of research
findings. The concerns of applied econometrics are not fundamentally different from those in other social
sciences or epidemiology. Anyone interested in using data to shape public policy or to promote public health
must digest and use statistical results. Anyone interested in drawing useful inferences from data on people
can be said to be an applied econometrician.

Many textbooks provide a guide to research methods and there is some overlap between this book and
others in wide use. But our Companion differs from econometrics texts in a number of important ways. First,

we believe that empirical research is most valuable when it uses data to answer specific causal questions, as

xi



xii PREFACE

if in a randomized clinical trial. This view shapes our approach to all research questions. In the absence of
a real experiment, we look for well-controlled comparisons and/or natural “quasi-experiments”. Of course,
some quasi-experimental research designs are more convincing than others, but the econometric methods
used in these studies are almost always fairly simple. Consequently, our book is shorter and more focused
than textbook treatments of econometric methods. We emphasize the conceptual issues and simple statistical
techniques that turn up in the applied research we read and do, and illustrate these ideas and techniques
with many empirical examples. Although our views of what’s important are not universally shared among
applied economists, there is no arguing with the fact that experimental and quasi-experimental research
designs are increasingly at the heart of the most influential empirical studies in applied economics.

A second distinction we claim is a certain lack of seriousness. Most econometrics texts appear to take
econometric models very seriously. Typically these books pay a lot of attention to the putative failures
of classical modelling assumptions such as linearity and homoskedasticity. Warnings are sometimes issued.
We take a more forgiving and less literal-minded approach. A principle that guides our discussion is that the
estimators in common use almost always have a simple interpretation that is not heavily model-dependent.
If the estimates you get are not the estimates you want, the fault lies in the econometrician and not the
econometrics! A leading example is linear regression, which provides useful information about the conditional
mean function regardless of the shape of this function. Likewise, instrumental variables methods estimate
an average causal effect for a well-defined population even if the instrument does not affect everyone. The
conceptual robustness of basic econometric tools is grasped intuitively by many applied researchers, but
the theory behind this robustness does not feature in most texts. Our Companion also differs from most
econometrics texts in that, on the inference side, we are not much concerned with asymptotic efficiency.
Rather, our discussion of inference is devoted mostly to the finite-sample bugaboos that should bother
practitioners.

The main prerequisites for the material here are basic training in probability and statistics. We espe-
cially hope that readers are comfortable with the elementary tools of statistical inference, such as t-statistics
and standard errors. Familiarity with fundamental probability concepts like mathematical expectation is
also helpful, but extraordinary mathematical sophistication is not required. Although important proofs are
presented, the technical arguments are not very long or complicated. Unlike many upper-level econometrics
texts, we go easy on the linear algebra. For this reason and others, our Companion should be an easier read
than competing books. Finally, in the spirit of the Douglas Adams’ lighthearted serial (The Hitchhiker’s
Guide to the Galaxy and Mostly Harmless, among others) from which we draw continued inspiration, our
Companion may have occasional inaccuracies, but it is quite a bit cheaper than the many versions of the En-
cyclopedia Galactica Econometrica that dominate today’s market. Grateful thanks to Princeton University

Press for agreeing to distribute our Companion on these terms.
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Organization of this Book

We begin with two introductory chapters. The first describes the type of research agenda for which the
material in subsequent chapters is most likely to be useful. The second discusses the sense in which ex-
periments, i.e., randomized trials of the sort used in medical research, provide an ideal benchmark for the
questions we find most interesting. After this introduction, the three chapters of Part II present core mate-
rial on regression, instrumental variables, and differences-in-differences. These chapters emphasize both the
universal properties of the relevant estimators (e.g., regression always approximates the conditional mean
function) and the assumptions necessary for a causal interpretation of results (the conditional independence
assumption; instruments as good as randomly assigned; parallel worlds). We then turn to important exten-
sions in Part III. Chapter [6] covers regression discontinuity designs, which can be seen as either a variation
on regression-control strategies or a type of instrumental variables strategy. In Chapter [7] we discuss the
use of quantile regression for estimating effects on distributions. The last chapter covers important infer-
ence problems that are missed by the textbook asymptotic approach. Some chapters include more technical
or specialized sections that can be skimmed or skipped without missing out on the main ideas - these are
indicated with a star. Notation, an acronym glossary, and an index to empirical examples are gathered at

the back of the book.
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Chapter 1

Questions about Questions

‘T checked it very thoroughly,” said the computer, ‘and that quite definitely is the answer. I
think the problem, to be quite honest with you, is that you’ve never actually known what the
question is.’

Douglas Adams, The Hitchhiker’s Guide to the Galaxy (1979)

Many econometrics courses are concerned with the details of empirical research, taking the choice of topic
as given. But a coherent, interesting, and doable research agenda is the solid foundation on which useful
statistical analyses are built. Good econometrics cannot save a shaky research agenda, but the promiscuous
use of fancy econometric techniques sometimes brings down a good one. This chapter briefly discusses the
basis for a successful research project. Like the biblical story of Exodus, a research agenda can be organized
around four questions. We call these Frequently Asked Questions (FAQs), because they should be. The
FAQs ask about the relationship of interest, the ideal experiment, the identification strategy, and the mode
of inference.

In the beginning, we should ask: What is the causal relationship of interest? Although purely descriptive
research has an important role to play, we believe that the most interesting research in social science is
about cause and effect, like the effect of class size on children’s test scores discussed in Chapters [2] and [6]
A causal relationship is useful for making predictions about the consequences of changing circumstances or
policies; it tells us what would happen in alternative (or “counterfactual”) worlds. For example, as part of
a research agenda investigating human productive capacity—what labor economists call human capital—we
have both investigated the causal effect of schooling on wages (Card, 1999, surveys research in this area).
The causal effect of schooling on wages is the increment to wages an individual would receive if he or she got
more schooling. A range of studies suggest the causal effect of a college degree is about 40 percent higher
wages on average, quite a payoff. The causal effect of schooling on wages is useful for predicting the earnings
consequences of, say, changing the costs of attending college, or strengthening compulsory attendance laws.

This relation is also of theoretical interest since it can be derived from an economic model.



4 CHAPTER 1. QUESTIONS ABOUT QUESTIONS

As labor economists, we’re most likely to study causal effects in samples of workers, but the unit of
observation in causal research need not be an individual human being. Causal questions can be asked about
firms, or, for that matter, countries. An example of the latter is Acemoglu, Johnson, and Robinson’s (2001)
research on the effect of colonial institutions on economic growth. This study is concerned with whether
countries that inherited more democratic institutions from their colonial rulers later enjoyed higher economic
growth as a consequence. The answer to this question has implications for our understanding of history and
for the consequences of contemporary development policy. Today, for example, we might wonder whether
newly forming democratic institutions are important for economic development in Iraq and Afghanistan.
The case for democracy is far from clear-cut; at the moment, China is enjoying robust growth without the
benefit of complete political freedom, while much of Latin America has democratized without a big growth
payoft.

The second research FAQ is concerned with the experiment that could ideally be used to capture the causal
effect of interest. In the case of schooling and wages, for example, we can imagine offering potential dropouts
a reward for finishing school, and then studying the consequences. In fact, Angrist and Lavy (2007) have
run just such an experiment. Although this study looks at short-term effects such as college enrollment,
a longer-term follow-up might well look at wages. In the case of political institutions, we might like to go
back in time and randomly assign different government structures to former colonies on their Independence
Days (an experiment that is more likely to be made into a movie than to get funded by the National Science

Foundation).

Ideal experiments are most often hypothetical. Still, hypothetical experiments are worth contemplating
because they help us pick fruitful research topics. We’ll support this claim by asking you to picture yourself
as a researcher with no budget constraint and no Human Subjects Committee policing your inquiry for social
correctness. Something like a well-funded Stanley Milgram, the psychologist who did path-breaking work on
the response to authority in the 1960s using highly controversial experimental designs that would likely cost
him his job today.

Seeking to understand the response to authority, Milgram (1963) showed he could convince experimental
subjects to administer painful electric shocks to pitifully protesting victims (the shocks were fake and the
victims were actors). This turned out to be controversial as well as clever—some psychologists claimed that
the subjects who administered shocks were psychologically harmed by the experiment. Still, Milgram’s study
illustrates the point that there are many experiments we can think about, even if some are better left on the
drawing boardE If you can’t devise an experiment that answers your question in a world where anything
goes, then the odds of generating useful results with a modest budget and non-experimental survey data

seem pretty slim. The description of an ideal experiment also helps you formulate causal questions precisely.

I Milgram was later played by the actor William Shatner in a TV special, an honor that no economist has yet received,

though Angrist is still hopeful.



The mechanics of an ideal experiment highlight the forces you’d like to manipulate and the factors you’d
like to hold constant.

Research questions that cannot be answered by any experiment are FUQ’d: Fundamentally Unidentified
Questions.  What exactly does a FUQ’d question look like? At first blush, questions about the causal
effect of race or gender seems like good candidates because these things are hard to manipulate in isolation
(“imagine your chromosomes were switched at birth”). On the other hand, the issue economists care most
about in the realm of race and sex, labor market discrimination, turns on whether someone treats you
differently because they believe you to be black or white, male or female. The notion of a counterfactual
world where men are perceived as women or vice versa has a long history and does not require Douglas-
Adams-style outlandishness to entertain (Rosalind disguised as Ganymede fools everyone in Shakespeare’s
As You Like It). The idea of changing race is similarly near-fetched: In The Human Stain, Philip Roth
imagines the world of Coleman Silk, a black Literature professor who passes as white in professional life.
Labor economists imagine this sort of thing all the time. Sometimes we even construct such scenarios for
the advancement of science, as in audit studies involving fake job applicants and resumesEI

A little imagination goes a long way when it comes to research design, but imagination cannot solve
every problem. Suppose that we are interested in whether children do better in school by virtue of having
started school a little older. Maybe the 7-year-old brain is better prepared for learning than the 6 year old
brain. This question has a policy angle coming from the fact that, in an effort to boost test scores, some
school districts are now entertaining older start-ages (to the chagrin of many working mothers). To assess
the effects of delayed school entry on learning, we might randomly select some kids to start kindergarten at
age 6, while others start at age 5, as is still typical. We are interested in whether those held back learn more
in school, as evidenced by their elementary school test scores. To be concrete, say we look at test scores in
first grade.

The problem with this question - the effects of start age on first grade test scores - is that the group
that started school at age 7 is . . . older. And older kids tend to do better on tests, a pure maturation
effect. Now, it might seem we can fix this by holding age constant instead of grade. Suppose we test those
who started at age 6 in second grade and those who started at age 7 in first grade so everybody is tested at
age 7. But the first group has spent more time in school; a fact that raises achievement if school is worth
anything. There is no way to disentangle the start-age effect from maturation and time-in-school effects as
long as kids are still in school. The problem here is that start age equals current age minus time in school.
This deterministic link disappears in a sample of adults, so we might hope to investigate whether changes in
entry-age policies affected adult outcomes like earnings or highest grade completed. But the effect of start

age on elementary school test scores is most likely FUQ’d.

2 A recent example is Bertrand and Mullainathan (2004) who compared employers’ reponses to resumes with blacker-sounding
and whiter-sounding first names, like Lakisha and Emily (though Fryer and Levitt, 2004, note that names may carry information

about socioeconomic status as well as race.)



6 CHAPTER 1. QUESTIONS ABOUT QUESTIONS

The third and fourth research FAQs are concerned with the nuts-and-bolts elements that produce a
specific study. Question Number 3 asks: what is your identification strategy? Angrist and Krueger (1999)
used the term identification strategy to describe the manner in which a researcher uses observational data
(i.e., data not generated by a randomized trial) to approximate a real experiment. Again, returning to the
schooling example, Angrist and Krueger (1991) used the interaction between compulsory attendance laws in
American schools and students’ season of birth as a natural experiment to estimate the effects of finishing
high school on wages (season of birth affects the degree to which high school students are constrained by
laws allowing them to drop out on their birthdays). Chapters 3-6 are primarily concerned with conceptual
frameworks for identification strategies.

Although a focus on credible identification strategies is emblematic of modern empirical work, the jux-
taposition of ideal and natural experiments has a long history in econometrics. Here is our econometrics
forefather, Trygve Haavelmo (1944, p. 14)), appealing for more explicit discussion of both kinds of experi-

mental designs:

A design of experiments (a prescription of what the physicists call a “crucial experiment”) is
an essential appendix to any quantitative theory. And we usually have some such experiment in
mind when we construct the theories, although—unfortunately—most economists do not describe
their design of experiments explicitly. If they did, they would see that the experiments they have
in mind may be grouped into two different classes, namely, (1) experiments that we should
like to make to see if certain real economic phenomena—when artificially isolated from “other
influences”—would verify certain hypotheses, and (2) the stream of experiments that Nature is
steadily turning out from her own enormous laboratory, and which we merely watch as passive
observers. In both cases the aim of the theory is the same, to become master of the happenings

of real life.

The fourth research FAQ borrows language from Rubin (1991): what is your mode of statistical infer-
ence? The answer to this question describes the population to be studied, the sample to be used, and the
assumptions made when constructing standard errors. Sometimes inference is straightforward, as when
you use Census micro-data samples to study the American population. Often inference is more complex,
however, especially with data that are clustered or grouped. The last chapter covers practical problems
that arise once you’ve answered question number 4. Although inference issues are rarely very exciting, and
often quite technical, the ultimate success of even a well-conceived and conceptually exciting project turns
on the details of statistical inference. This sometimes-dispiriting fact inspired the following econometrics

haiku, penned by then-econometrics-Ph.D.-student Keisuke Hirano on the occasion of completing his thesis:

T-stat looks too good.

Use robust standard errors—



significance gone.

As should be clear from the above discussion, the four research FAQs are part of a process of project
development. The following chapters are concerned mostly with the econometric questions that come up
after you’ve answered the research FAQs. In other words, issues that arise once your research agenda has
been set. Before turning to the nuts and bolts of empirical work, however, we begin with a more detailed

explanation of why randomized trials give us our benchmark.
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Chapter 2

The Experimental Ideal

It is an important and popular fact that things are not always what they seem. For instance,
on the planet Earth, man had always assumed that he was more intelligent than dolphins because
he had achieved so much—the wheel, New York, wars and so on—while all the dolphins had ever
done was muck about in the water having a good time. But conversely, the dolphins had always
believed that they were far more intelligent than man—for precisely the same reasons. In fact
there was only one species on the planet more intelligent than dolphins, and they spent a lot
of their time in behavioral research laboratories running round inside wheels and conducting
frighteningly elegant and subtle experiments on man. The fact that once again man completely

misinterpreted this relationship was entirely according to these creatures’ plans.

Douglas Adams, The Hitchhiker’s Guide to the Galazy (1979)

The most credible and influential research designs use random assignment. A case in point is the
Perry preschool project, a 1962 randomized experiment designed to asses the effects of an early-intervention
program involving 123 Black preschoolers in Ypsilanti (Michigan). The Perry treatment group was randomly
assigned to an intensive intervention that included preschool education and home visits. It’s hard to
exaggerate the impact of the small but well-designed Perry experiment, which generated follow-up data
through 1993 on the participants at age 27. Dozens of academic studies cite or use the Perry findings (see,
e.g., Barnett, 1992). Most importantly, the Perry project provided the intellectual basis for the massive
Head Start pre-school program, begun in 1964, which ultimately served (and continues to serve) millions of

American children [T

IThe Perry data continue to get attention, particular as policy-interest has returned to early education. A recent re-analysis
by Michael Anderson (2006) confirms many of the findings from the original Perry study, though Anderson also shows that the
overall positive effects of Perry are driven entirely by the impact on girls. The Perry intervention seems to have done nothing

for boys.
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2.1 The Selection Problem

We take a brief time-out for a more formal discussion of the role experiments play in uncovering causal effects.
Suppose you are interested in a causal “if-then” question. To be concrete, consider a simple example: Do
hospitals make people healthier? For our purposes, this question is allegorical, but it is surprisingly close
to the sort of causal question health economists care about. To make this question more realistic, imagine
we're studying a poor elderly population that uses hospital emergency rooms for primary care. Some of
these patients are admitted to the hospital. This sort of care is expensive, crowds hospital facilities, and is,
perhaps, not very effective (see, e.g., Grumbach, Keane, and Bindman, 1993). In fact, exposure to other
sick patients by those who are themselves vulnerable might have a net negative impact on their health.
Since those admitted to the hospital get many valuable services, the answer to the hospital-effectiveness
question still seems likely to be "yes". But will the data back this up? The natural approach for an
empirically-minded person is to compare the health status of those who have been to the hospital to the
health of those who have not. The National Health Interview Survey (NHIS) contains the information
needed to make this comparison. Specifically, it includes a question “During the past 12 months, was the
respondent a patient in a hospital overnight?” which we can use to identify recent hospital visitors. The
NHIS also asks “Would you say your health in general is excellent, very good, good, fair, poor?” The
following table displays the mean health status (assigning a 1 to excellent health and a 5 to poor health)

among those who have been hospitalized and those who have not (tabulated from the 2005 NHIS):

Group Sample Size Mean health status Std. Error
Hospital 7774 2.79 0.014
No Hospital 90049 2.07 0.003

The difference in the means is 0.71, a large and highly significant contrast in favor of the non-hospitalized,
with a t-statistic of 58.9.

Taken at face value, this result suggests that going to the hospital makes people sicker. It’s not impossible
this is the right answer: hospitals are full of other sick people who might infect us, and dangerous machines
and chemicals that might hurt us. Still, it’s easy to see why this comparison should not be taken at
face value: people who go to the hospital are probably less healthy to begin with. Moreover, even after
hospitalization people who have sought medical care are not as healthy, on average, as those who never get
hospitalized in the first place, though they may well be better than they otherwise would have been.

To describe this problem more precisely, think about hospital treatment as described by a binary random
variable, D; = {0,1}. The outcome of interest, a measure of health status, is denoted by Y;. The question
is whether Y; is affected by hospital care. To address this question, we assume we can imagine what might
have happened to someone who went to the hospital if they had not gone and vice versa. Hence, for any

individual there are two potential health variables:
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Y1, if D; = 1
potential outcome =
Yoi if D; =0

In other words, Yg; is the health status of an individual had he not gone to the hospital, irrespective of
whether he actually went, while Y; is the individual’s health status if he goes. We would like to know
the difference between Y1; and Yq;, which can be said to be the causal effect of going to the hospital for
individual 4. This is what we would measure if we could go back in time and change a person’s treatment

statusE

The observed outcome, Y;, can be written in terms of potential outcomes as

Y14 if D, =1
Yoi if D; =0

= Yo;i + (Y1, — Yo0i)Di- (2.1.1)

This notation is useful because Y1; — Yq; is the causal effect of hospitalization for an individual. In general,
there is likely to be a distribution of both Y1; and Yg; in the population, so the treatment effect can be
different for different people. But because we never see both potential outcomes for any one person, we
must learn about the effects of hospitalization by comparing the average health of those who were and were
not hospitalized.

A naive comparison of averages by hospitalization status tells us something about potential outcomes,
though not necessarily what we want to know. The comparison of average health conditional on hospital-

ization status is formally linked to the average causal effect by the equation below:

E[y;lp; =1] = Ely;jp; =0] = E[vy|p;=1] - E[ve|Dp; = 1]

Observed difference in average health average treatment effect on the treated

+F [YOi‘Di = 1] - F [Y0i|Di = 0]

selection bias

The term

E[Y11|Di = 1} — E[Y0i|Di = 1] = E[Yli — Y0i|Di = 1]

is the average causal effect of hospitalization on those who were hospitalized. This term captures the averages
difference between the health of the hospitalized, E[Y1;|D; = 1], and what would have happened to them
had they not been hospitalized, E[y(;|D; = 1]. The observed difference in health status however, adds to

this causal effect a term called selection bias. This term is the difference in average Yo; between those who

2The potential outcomes idea is a fundamental building block in modern research on causal effects. Important references
developing this idea are Rubin (1974, 1977), and Holland (1986), who refers to a causal framework involving potential outcomes

as the Rubin Causal Model.
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were and were not hospitalized. Because the sick are more likely than the healthy to seek treatment, those
who were hospitalized have worse Yq;’s, making selection bias negative in this example. The selection bias
may be so large (in absolute value) that it completely masks a positive treatment effect. The goal of most
empirical economic research is to overcome selection bias, and therefore to say something about the causal

effect of a variable like D;.

2.2 Random Assignment Solves the Selection Problem

Random assignment of D; solves the selection problem because random assignment makes D; independent of

potential outcomes. To see this, note that

E[Y”Di = 1] — E[Y”Di = O] = E[Y1i|Di = 1] — E[Y0i|DZ‘ = O}

= FE[vy|p; = 1] — E[vei|D; = 1],

where the independence of Yo; and D; allows us to swap E[Y;|D; = 1] for E[Yo;|D; = 0] in the second line.

In fact, given random assignment, this simplifies further to

E [Y1i|Di = 1} —F [Y0i|Di = 1] = F [Yli — Y0i|Di = 1]

= E[Y1—Yoi.

The effect of randomly-assigned hospitalization on the hospitalized is the same as the effect of hospitalization
on a randomly chosen patient. The main thing, however, is that random assignment of D; eliminates
selection bias. This does not mean that randomized trials are problem-free, but in principle they solve the
most important problem that arises in empirical research.

How relevant is our hospitalization allegory? Experiments often reveal things that are not what they
seem on the basis of naive comparisons alone. A recent example from medicine is the evaluation of hormone
replacement therapy (HRT). This is a medical intervention that was recommended for middle-aged women
to reduce menopausal symptoms. FEvidence from the Nurses Health Study, a large and influential non-
experimental survey of nurses, showed better health among the HRT users. In contrast, the results of a
recently completed randomized trial shows few benefits of HRT. What’s worse, the randomized trial revealed
serious side effects that were not apparent in the non-experimental data (see, e.g., Women’s Health Initiative
[WHI], Hsia, et al., 2006).

An iconic example from our own field of labor economics is the evaluation of government-subsidized
training programs. These are programs that provide a combination of classroom instruction and on-
the-job training for groups of disadvantaged workers such as the long-term unemployed, drug addicts, and

ex-offenders. The idea is to increase employment and earnings. Paradoxically, studies based on non-
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experimental comparisons of participants and non-participants often show that after training, the trainees
earn less than plausible comparison groups (see, e.g., Ashenfelter, 1978; Ashenfelter and Card, 1985; Lalonde
1995). Here too, selection bias is a natural concern since subsidized training programs are meant to serve
men and women with low earnings potential. Not surprisingly, therefore, simple comparisons of program
participants with non-participants often show lower earnings for the participants. In contrast, evidence from
randomized evaluations of training programs generate mostly positive effects (see, e.g., Lalonde, 1986; Orr,

et al, 1996).

Randomized trials are not yet as common in social science as in medicine but they are becoming more
prevalent. One area where the importance of random assignment is growing rapidly is education research
(Angrist, 2004). The 2002 Education Sciences Reform Act passed by the U.S. Congress mandates the use
of rigorous experimental or quasi-experimental research designs for all federally-funded education studies.
We can therefore expect to see many more randomized trials in education research in the years to come.
A pioneering randomized study from the field of education is the Tennessee STAR experiment designed to

estimate the effects of smaller classes in primary school.

Labor economists and others have a long tradition of trying to establish causal links between features
of the classroom environment and children’s learning, an area of investigation that we call “education pro-
duction.” This terminology reflects the fact that we think of features of the school environment as inputs
that cost money, while the output that schools produce is student learning. A key question in research on
education production is which inputs produce the most learning given their costs. One of the most expensive
inputs is class size - since smaller classes can only be had by hiring more teachers. It is therefore important
to know whether the expense of smaller classes has a payoff in terms of higher student achievement. The

STAR experiment was meant to answer this question.

Many studies of education production using non-experimental data suggest there is little or no link be-
tween class size and student learning. So perhaps school systems can save money by hiring fewer teachers
with no consequent reduction in achievement. The observed relation between class size and student achieve-
ment should not be taken at face value, however, since weaker students are often deliberately grouped into
smaller classes. A randomized trial overcomes this problem by ensuring that we are comparing apples to
apples, i.e., that the students assigned to classes of different sizes are otherwise comparable. Results from the
Tennessee STAR experiment point to a strong and lasting payoff to smaller classes (see Finn and Achilles,

1990, for the original study, and Krueger, 1999, for an econometric analysis of the STAR data).

The STAR experiment was unusually ambitious and influential, and therefore worth describing in some
detail. It cost about $12 million and was implemented for a cohort of kindergartners in 1985/86. The
study ran for four years, i.e. until the original cohort of kindergartners was in third grade, and involved
about 11,600 children. The average class size in regular Tennessee classes in 1985/86 was about 22.3. The

experiment assigned students to one of three treatments: small classes with 13-17 children, regular classes
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with 22-25 children and a part-time teacher’s aide, or regular classes with a full time teacher’s aide. Schools
with at least three classes in each grade could choose to participate in the experiment.

The first question to ask about a randomized experiment is whether the randomization successfully
balanced subject’s characteristics across the different treatment groups. To assess this, it’s common to
compare pre-treatment outcomes or other covariates across groups. Unfortunately, the STAR data fail to
include any pre-treatment test scores, though it is possible to look at characteristics of children such as race

and age. Table[2.2.1} reproduced from Krueger (1999), compares the means of these variables. The student

Table 2.2.1: Comparison of treatment and control characteristics in the Tennessee STAR experiment

Students who entered STAR in kindergarten

Variable Small Regular Regular/Aide Joint P-value
1. Free lunch A7 48 .00 .09
2. White/Asian .68 .67 .66 .26
3. Agein 1985 5.44 5.43 5.42 .32
4. Attrition rate .49 .52 .53 .02
5. Class size in kindergarten 15.10 22.40 22.80 .00
6. Percentile score in kindergarten  54.70 48.90 50.00 .00

Notes: Adapted from Krueger (1999), Table 1. The table shows means of variables by
treatment status. The P-value in the last column is for the F-test of equality of variable
means across all three groups. All variables except attrition are for the first year a student
is observed, The free lunch variable is the fraction receiving a free lunch. The percentile
score is the average percentile score on three Stanford Achievement Tests. The attrition

rate is the proportion lost to follow up before completing third grade.

characteristics in the table are a free lunch variable, student race, and student age. Free lunch status is a
good measure of family income, since only poor children qualify for a free school lunch. Differences in these
characteristics across the three class types are small and none are significantly different from zero. This
suggests the random assignment worked as intended.

Table also presents information on average class size, the attrition rate, and test scores, measured
here on a percentile scale. The attrition rate was lower in small kindergarten classrooms. This is potential
a problem, at least in principleEI Class sizes are significantly lower in the assigned-to-be-small class
rooms, which means that the experiment succeeded in creating the desired variation. If many of the parents
of children assigned to regular classes had effectively lobbied teachers and principals to get their children

assigned to small classes, the gap in class size across groups would be much smaller.

3Krueger (1999) devotes considerable attention to the attrition problem. Differences in attrition rates across groups may
result in a sample of students in higher grades that is not randomly distributed across class types. The kindergarten results,

which were unaffected by attrition, are therefore the most reliable.
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Because randomization eliminates selection bias, the difference in outcomes across treatment groups
captures the average causal effect of class size (relative to regular classes with a part-time aide). In practice,
the difference in means between treatment and control groups can be obtained from a regression of test
scores on dummies for each treatment group, a point we expand on below. The estimated treatment-control
differences for kindergartners, reported in Table (derived from Krueger, 1999, Table 5), show a small-
class effect of about 5 to 6 percentile points. The effect size is about .20, where ¢ is the standard deviation

of the percentile score in kindergarten. The small-class effect is significantly different from zero, while the

Table 2.2.2: Experimental estimates of the effect of class-size assignment on test scores

Explanatory variable (1) (2) (3) (4)
Small class 4.82 5.37 5.36 5.37
(2.19) (1.26) (1.21) (1.19)

Regular/aide class 12 .29 .53 31
(2.23) (1.13) (1.09) (1.07)

White/Asian (1 = yes) - - 8.35 8.44
(1.35) (1.36)

Girl (1 = yes) - - 4.48 4.39
(.63) (.63)
Free lunch (1 = yes) - - -13.15  -13.07
(.77) (.77)

White teacher - - - -.57
(2.10)

Teacher experience - - - .26
(.10)

Master’s degree - - - -0.51
(1.06)

School fixed effects No Yes Yes Yes

R? 01 25 31 31

Note: Adapted from Krueger (1999), Table 5. The
dependent variable is the Stanford Achievement Test
percentile score. Robust standard errors that allow
for correlated residuals within classes are shown in

parentheses. The sample size is 5681.

regular/aide effect is small and insignificant.
The STAR study, an exemplary randomized trial in the annals of social science, also highlights the
logistical difficulty, long duration, and potentially high cost of randomized trials. In many cases, such trials

are impracticalEI In other cases, we would like an answer sooner rather than later. Much of the research

4 Randomized trials are never perfect and STAR is no exception. Pupils who repeated or skipped a grade left the experiment.
Students who entered an experimental school one grade later were added to the experiment and randomly assigned to one of
the classes. One unfortunate aspect of the experiment is that students in the regular and regular/aide classes were reassigned
after the kindergarten year, possibly due to protests of the parents with children in the regular classrooms. There was also

some switching of children after the kindergarten year. Despite these problems, the STAR experiment seems to have been an
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we do, therefore, attempts to exploit cheaper and more readily available sources of variation. We hope to
find natural or quasi-experiments that mimic a randomized trial by changing the variable of interest while
other factors are kept balanced. Can we always find a convincing natural experiment? Of course not.
Nevertheless, we take the position that a notional randomized trial is our benchmark. Not all researchers
share this view, but many do. We heard it first from our teacher and thesis advisor, Orley Ashenfelter,
a pioneering proponent of experiments and quasi-experimental research designs in social science. Here is

Ashenfelter (1991) assessing the credibility of the observational studies linking schooling and income:

How convincing is the evidence linking education and income? Here is my answer: Pretty con-
vincing. If I had to bet on what an ideal experiment would indicate, I bet that it would show

that better educated workers earn more.

The quasi-experimental study of class size by Angrist and Lavy (1999) illustrates the manner in which
non-experimental data can be analyzed in an experimental spirit. The Angrist and Lavy study relies on the
fact that in Israel, class size is capped at 40. Therefore, a child in a fifth grade cohort of 40 students ends up
in a class of 40 while a child in fifth grade cohort of 41 students ends up in a class only half as large because
the cohort is split. Since students in cohorts of size 40 and 41 are likely to be similar on other dimensions
such as ability and family background, we can think of the difference between 40 and 41 students enrolled

as being “as good as randomly assigned.”

The Angrist-Lavy study compares students in grades with enrollments above and below the class-size
cutoffs to construct well-controlled estimates of the effects of a sharp change in class size without the benefit of
a real experiment. As in Tennessee STAR, the Angrist and Lavy (1999) results point to a strong link between
class size and achievement. This is in marked contrast with naive analyses, also reported by Angrist and
Lavy, based on simple comparisons between those enrolled in larger and smaller classes. These comparisons
show students in smaller classes doing worse on standardized tests. The hospital allegory of selection bias

would therefore seem to apply to the class-size question as well

2.3 Regression Analysis of Experiments

Regression is a useful tool for the study of causal questions, including the analysis of data from experiments.

Suppose (for now) that the treatment effect is the same for everyone, say v1; — Yo; = p, a constant. With

extremely well implemented randomized trial. Krueger’s (1999) analysis suggests that none of these implementation problems

affected the main conclusions of the study.
5The Angrist-Lavy (1999) results turn up again in Chapter @ as an illustration of the quasi-experimental regression-

discontinuity research design.
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constant treatment effects, we can rewrite equation (2.1.1)) in the form

Y = & + P D; + i
I I I (2.3.1)

E(Yo;) (Y1i — Yoi) Yoi — E(Yoi)

where 7, is the random part of v¢;. Evaluating the conditional expectation of this equation with treatment

status switched off and on gives

Elyipi=1] = a+p+ En;|p; =1]
E[Y1|Dl:0} = 05+E[771|D1:0],
so that,
E[Y”Dz‘:l}—E[Yi‘Di:O]: 1%
—~—

treatment effect

+  Eln;vi = 1] — Eln;|p; = 0]

selection bias

Thus, selection bias amounts to correlation between the regression error term, 7;, and the regressor, D;. Since
Enyps = 1] = En;[pi = 0] = E[Yos|Ds = 1] = E[voi|p; = 0],

this correlation reflects the difference in (no-treatment) potential outcomes between those who get treated
and those who don’t. In the hospital allegory, those who were treated had poorer health outcomes in the
no-treatment state, while in the Angrist and Lavy (1999) study, students in smaller classes tend to have
intrinsically lower test scores.

In the STAR experiment, where D; is randomly assigned, the selection term disappears, and a regression
of Y; on D; estimates the causal effect of interest, p. The remainder of Table Shows different regression
specifications, some of which include covariates other than the random assignment indicator, D;. Covariates
play two roles in regression analyses of experimental data. First, the STAR experimental design used
conditional random assignment. In particular, assignment to classes of different sizes was random within
schools, but not across schools. Students attending schools of different types (say, urban versus rural) were
a bit more or less likely to be assigned to a small class. The comparison in column 1 of Table which
makes no adjustment for this, might therefore be contaminated by differences in achievement in schools of
different types. To adjust for this, some of Krueger’s regression models include school fixed effects, i.e., a

separate intercept for each school in the STAR data. In practice, the consequences of adjusting for school
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fixed effects is rather minor, but we wouldn’t know this without taking a look. We will have more to say
about regression models with fixed effects in Chapter

The other controls in Krueger’s table describe student characteristics such as race, age, and free lunch
status.  We saw before that these individual characteristics are balanced across class types, i.e. they are
not systematically related to the class-size assignment of the student. If these controls, call them X;, are
uncorrelated with the treatment D;, then they will not affect the estimate of p. In other words, estimates
of p in the long regression,

Y = a+ pp; + Xy +n; (2.3.2)

will be close to estimates of p in the short regression, (2.3.1). This is a point we expand on in Chapter

Nevertheless, inclusion of the variables X; may generate more precise estimates of the causal effect of
interest. Notice that the standard error of the estimated treatment effects in column 3 is smaller than
the corresponding standard error in column 2. Although the control variables, X;, are uncorrelated with
D;, they have substantial explanatory power for Y;. Including these control variables therefore reduces the
residual variance, which in turn lowers the standard error of the regression estimates. Similarly, the standard
errors of the estimates of p are reduced by the inclusion of school fixed effects because these too explain
an important part of the variance in student performance. The last column adds teacher characteristics.
Because teachers were randomly assigned to classes, and teacher characteristics appear to have little to do
with student achievement in these data, both the estimated effect of small classes and it’s standard error are
unchanged by the addition of teacher variables.

Regression plays an exceptionally important role in empirical economic research. Some regressions are
simply descriptive tools, as in much of the research on earnings inequality. As we’ve seen in this chapter,
regression is well-suited to the analysis of experimental data. In some cases, regression can also be used to
approximate experiments in the absence of random assignment. But before we can get into the important
question of when a regression is likely to have a causal interpretation, it is useful to review a number of
fundamental regression facts and properties. These facts and properties are reliably true for any regression,

regardless of your purpose in running it.
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Chapter 3

Making Regression Make Sense

"Let us think the unthinkable, let us do the undoable.
Let us prepare to grapple with the ineffable itself,
and see if we may not eff it after all.’

Douglas Adams, Dirk Gently’s Holistic Detective Agency (1990)
Angrist recounts:

I ran my first regression in the summer of 1979 between my freshman and sophomore years
as a student at Oberlin College. I was working as a research assistant for Allan Meltzer and
Scott Richard, faculty members at Carnegie-Mellon University, near my house in Pittsburgh. I
was still mostly interested in a career in special education, and had planned to go back to work
as an orderly in a state mental hospital, my previous summer job. But Econ 101 had got me
thinking, and I could also see that at the same wage rate, a research assistant’s hours and working
conditions were better than those of a hospital orderly. My research assistant duties included
data collection and regression analysis, though I did not understand regression or even statistics
at the time.

The paper I was working on that summer (Meltzer and Richard, 1983), is an attempt to
link the size of governments in democracies, measured as government expenditure over GDP, to
income inequality. Most income distributions have a long right tail, which means that average
income tends to be way above the median. When inequality grows, more voters find themselves
with below-average incomes. Annoyed by this, those with incomes between the median and
the average may join those with incomes below the median in voting for fiscal policies which
- following Robin Hood - take from the rich and give to the poor. The size of government
consequently increases.

I absorbed the basic theory behind the Meltzer and Richards project, though I didn’t find it

21
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all that plausible, since voter turnout is low for the poor. I also remember arguing with Alan
Meltzer over whether government expenditure on education should be classified as a public good
(something that benefits everyone in society as well as those directly affected) or a private good
publicly supplied, and therefore a form of redistribution like welfare. You might say this project
marked the beginning of my interest in the social returns to education, a topic I went back to
with more enthusiasm and understanding in Acemoglu and Angrist (2000).

Today, I understand the Meltzer and Richard (1983) study as an attempt to use regression
to uncover and quantify an interesting causal relation. At the time, however, I was purely a
regression mechanic. Sometimes I found the RA work depressing. Days would go by where I
didn’t talk to anybody but my bosses and the occasional Carnegie-Mellon Ph.D. student, most
of whom spoke little English anyway. The best part of the job was lunch with Alan Meltzer, a
distinguished scholar and a patient and good-natured supervisor, who was happy to chat while
we ate the contents of our brown-bags (this did not take long as Allan ate little and I ate fast).
I remember asking Allan whether he found it satisfying to spend his days perusing regression
output, which then came on reams of double-wide green-bar paper. Meltzer laughed and said

there was nothing he would rather be doing.

Now, we too spend our days (at least, the good ones) happily perusing regression output, in the manner

of our teachers and advisors in college and graduate school. This chapter explains why.

3.1 Regression Fundamentals

The end of the previous chapter introduces regression models as a computational device for the estimation
of treatment-control differences in an experiment, with and without covariates. Because the regressor of
interest in the class size study discussed in Section [2.3] was randomly assigned, the resulting estimates have
a causal interpretation. In most cases, however, regression is used with observational data. Without the
benefit of random assignment, regression estimates may or may not have a causal interpretation. We return
to the central question of what makes a regression causal later in this chapter.

Setting aside the relatively abstract causality problem for the moment, we start with the mechanical
properties of regression estimates. These are universal features of the population regression vector and its
sample analog that have nothing to do with a researcher’s interpretation of his output. This chapter begins
by reviewing these properties, which include:

(i) the intimate connection between the population regression function and the conditional expectation
function

(ii) how and why regression coefficients change as covariates are added or removed from the model

(iii) the close link between regression and other "control strategies" such as matching
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(iv) the sampling distribution of regression estimates

3.1.1 Economic Relationships and the Conditional Expectation Function

Empirical economic research in our field of Labor Economics is typically concerned with the statistical
analysis of individual economic circumstances, and especially differences between people that might account
for differences in their economic fortunes. Such differences in economic fortune are notoriously hard to
explain; they are, in a word, random. As applied econometricians, however, we believe we can summarize and
interpret randomness in a useful way. An example of “systematic randomness” mentioned in the introduction
is the connection between education and earnings. On average, people with more schooling earn more
than people with less schooling. The connection between schooling and average earnings has considerable
predictive power, in spite of the enormous variation in individual circumstances that sometimes clouds this
fact. Of course, the fact that more educated people earn more than less educated people does not mean that
schooling causes earnings to increase. The question of whether the earnings-schooling relationship is causal
is of enormous importance, and we will come back to it many times. Even without resolving the difficult
question of causality, however, it’s clear that education predicts earnings in a narrow statistical sense. This
predictive power is compellingly summarized by the conditional expectation function (CEF).

The CEF for a dependent variable, Y; given a Kx1 vector of covariates, X; (with elements xj;) is the
expectation, or population average of Y; with X; held fixed. The population average can be thought of as the
mean in an infinitely large sample, or the average in a completely enumerated finite population. The CEF
is written E[v;|X;] and is a function of X,;. Because X; is random, the CEF is random, though sometimes
we work with a particular value of the CEF, say F[v;|X;=42], assuming 42 is a possible value for X;. In
Chapter [2| we briefly considered the CEF E[v;|D;], where D; is a zero-one variable. This CEF takes on two
values, E[v;|D; = 1] and E[Y;|D; = 0]. Although this special case is important, we are most often interested
in CEF's that are functions of many variables, conveniently subsumed in the vector, X;. For a specific value
of X;, say X; = z, we write E[v;|X; =z]. For continuous Y; with conditional density f, (:|X; = ), the
CEF is

E[viX; = 2] = /tfy (X, = ) dt.

If v; is discrete, E [v;|X; = ] equals the sum >, tf, (t|X; = ).

Expectation is a population concept. In practice, data usually come in the form of samples and rarely
consist of an entire population. We therefore use samples to make inferences about the population. For
example, the sample CEF is used to learn about the population CEF. This is always necessary but we
postpone a discussion of the formal inference step taking us from sample to population until Section [3.1.3

Our “population first” approach to econometrics is motivated by the fact that we must define the objects of
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interest before we can use data to study them[l]

Figure plots the CEF of log weekly wages given schooling for a sample of middle-aged white men
from the 1980 Census. The distribution of earnings is also plotted for a few key values: 4, 8, 12, and 16 years
of schooling. The CEF in the figure captures the fact that—the enormous variation individual circumstances
notwithstanding—people with more schooling generally earn more, on average. The average earnings gain

associated with a year of schooling is typically about 10 percent.

Log weekly earnings, $2003

18 20+

Years of completed education

Figure 3.1.1: Raw data and the CEF of average log weekly wages given schooling. The sample includes
white men aged 40-49 in the 1980 IPUMS 5 percent file.

An important complement to the CEF is the law of iterated expectations. This law says that an

unconditional expectation can be written as the population average of the CEF. In other words

Evi] = E{E[vi|Xi]}, (3.1.1)

where the outer expectation uses the distribution of X;. Here is proof of the law of iterated expectations

for continuously distributed (X;,Y;) with joint density fz, (u,t), where f, (¢|X; =) is the conditional

I Examples of pedagogical writing using the “population-first” approach to econometrics include Chamberlain (1984), Gold-

berger (1991), and Manski (1991).
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distribution of v; given X; = x and g,(t) and g,(u) are the marginal densities:

- /[/tfy (t|Xi=u)dt} 9o (u)du

_ //tfy (1% = ) go (u)dudt

/t [/fy (t|Xi=u)gw(u)du} dt:/t[/fwy (u,t)du] dt
- /tgy(t)dt.

The integrals in this derivation run over the possible values of X; and v; (indexed by w and t). We’ve laid

out these steps because the CEF and its properties are central to the rest of this chapter.
The power of the law of iterated expectations comes from the way it breaks a random variable into two

pieces.

Theorem 3.1.1 The CEF-Decomposition Property
Y; = FE [Y1|XZ] —+ Ei,

where (i) €; is mean-independent of X;, i.e., E[e;|X;] = 0,and, therefore, (ii) €; is uncorrelated with any

function of X;.

Proof. (i) Ele;|X;] = E[y; — E[v4Xi]| Xi] = E[v4|X;] — E[v;|X;] = 0;(ii) This follows from (i): Let
h(X;) be any function of X,;. By the law of iterated expectations, E[h(X;)e;] = E{h(X;)E[e;|X;]} and by
mean-independence, Ele;|X;] =0. =m

This theorem says that any random variable, Y;, can be decomposed into a piece that’s “explained by
X;”, i.e., the CEF, and a piece left over which is orthogonal to (i.e., uncorrelated with) any function of X;.

The CEF is a good summary of the relationship between Y; and X; for a number of reasons. First, we
are used to thinking of averages as providing a representative value for a random variable. More formally,
the CEF is the best predictor of v; given X; in the sense that it solves a Minimum Mean Squared Error

(MMSE) prediction problem. This CEF-prediction property is a consequence of the CEF-decomposition

property:

Theorem 3.1.2 The CEF-Prediction Property.

Let m (X;) be any function of X;. The CEF solves

Ev;|X;] = argminF {(Yl —m (XZ))2] )

m(X;)

so it is the MMSE predictor of Y; given X;.
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Proof. Write

(v —m (X;))? ((vs = E[vi|Xs]) + (B [v[Xi] — m (X3)))?

(vi — B[y Xa))? + 2 (B [vi|Xi] = m(Xy)) (v — E [viXy])

(B [vilX] = m(Xy)”

The first term doesn’t matter because it doesn’t involve m (X;). The second term can be written h(X;)e;,
where h(X;) = 2(E[v;|X;] — m (X;)), and therefore has expectation zero by the CEF-decomposition prop-
erty. The last term is minimized at zero when m (X;) is the CEF. m

A final property of the CEF, closely related to both the CEF decomposition and prediction properties,
is the Analysis-of-Variance (ANOVA) Theorem:

Theorem 3.1.3 The ANOVA Theorem
V(v;) =V (E[v:iX:]) + E[V (v:X;)]

where V (-) denotes variance and V (v;|X;) is the conditional variance of Y; given X,.

Proof. The CEF-decomposition property implies the variance of Y; is the variance of the CEF plus the
variance of the residual, ; = v; — E'[v;|X;] since ¢; and F [v;|X;] are uncorrelated. The variance of ¢; is
E[e] = E[E[X]] = B[V [vi]Xi]

where E [?|X;] = V [v;|X;] because ¢, = Y; — E[v;|X;]. =

The two CEF properties and the ANOVA theorem may have a familiar ring. You might be used to
seeing an ANOVA table in your regression output, for example. ANOVA is also important in research on
inequality where labor economists decompose changes in the income distribution into parts that can be
accounted for by changes in worker characteristics and changes in what’s left over after accounting for these
factors (See, e.g., Autor, Katz, and Kearney, 2005).  What may be unfamiliar is the fact that the CEF
properties and ANOVA variance decomposition work in the population as well as in samples, and do not
turn on the assumption of a linear CEF. In fact, the validity of linear regression as an empirical tool does

not turn on linearity either.

3.1.2 Linear Regression and the CEF
So what’s the regression you want to run?

In our world, this question or one like it is heard almost every day. Regression estimates provide a valuable

baseline for almost all empirical research because regression is tightly linked to the CEF, and the CEF
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provides a natural summary of empirical relationships. The link between regression functions — i.e., the
best-fitting line generated by minimizing expected squared errors — and the CEF can be explained in at
least 3 ways. To lay out these explanations precisely, it helps to be precise about the regression function we
have in mind. This chapter is concerned with the vector of population regression coeflicients, defined as the
solution to a population least squares problem. At this point, we are not worried about causality. Rather,

we let the K x1 regression coefficient vector 8 be defined by solving
B =argmin | (v; - Xi)"] . (3.1.2)
b

Using the first-order condition,

E X (v; — X!b)] = 0.

the solution for b can be written 5 = E [XiX;] B [X;Y;]. Note that by construction, F [Xi (Yl- - X;B)] =
0. In other words, the population residual, which we define as v;—X,3 = e;, is uncorrelated with the
regressors, X;. It bears emphasizing that this error term does not have a life of its own. It owes its

existence and meaning to 3.

In the simple bivariate case where the regression vector includes only the single regressor, x;, and a
constant, the slope coefficient is 8, = %, and the intercept is « = E [v;]—(, FE [X;]. In the multivariate

case, i.e., with more than one non-constant regressor, the slope coefficient for the k-th regressor is given below:

REGRESSION ANATOMY
B Cov (Yi7 i’]ﬂ)

Br = V @x) (3.1.3)

where Ty; is the residual from a regression of xy; on all the other covariates.

In other words, F/ [XiX;]_l E[X;Y,] is the Kx1 vector with k-th element %’f)’”) This important
formula is said to describe the “anatomy of a multivariate regression coefficient” because it reveals much
more than the matrix formula 8 = E [X;X}] 'E [X;Y;]. It shows us that each coefficient in a multivariate

regression is the bivariate slope coefficient for the corresponding regressor, after "partialling out" all the

other variables in the model.

To verify the regression-anatomy formula, substitute
Yi = Bo + 81210 + oo + Bpri + oo + B + €&

in the numerator of (3.1.3). Since Ty, is a linear combination of the regressors, it is uncorrelated with e;.
Also, since Ty; is a residual from a regression on all the other covariates in the model, it must be uncorrelated

these covariates. Finally, for the same reason, the covariance of Zy; with x; is just the variance of Zx;. We
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therefore have that Cov (Y;, i) = 8,V (Zki) E|

The regression-anatomy formula is probably familiar to you from a regression or statistics course, perhaps
with one twist: the regression coefficients defined in this section are not estimators, but rather they are non-
stochastic features of the joint distribution of dependent and independent variables. The joint distribution
is what you would observe if you had a complete enumeration of the population of interest (or knew the
stochastic process generating the data). You probably don’t have such information. Still, it’s kosher—even
desirable—to think about what a set of population parameters might mean, without initially worrying about
how to estimate them.

Below we discuss three reasons why the vector of population regression coefficients might be of interest.
These reasons can be summarized by saying that you are interested in regression parameters if you are

interested in the CEF.

Theorem 3.1.4 The Linear CEF Theorem (Regression-justification I)

Suppose the CEF is linear. Then the population regression function is it.

Proof. Suppose E [v;|X;] =X/5" for a K x1 vector of coefficients, 8. Recall that F [X; (v; — E [v;|X;])] =0
by the CEF-decomposition property. Substitute using E [v;|X;] =X/8" to find that 5* = E [X;X}] 'K [X,Y,]
5. m

The linear CEF theorem raises the question of under what circumstances a CEF is linear. The classic
scenario is joint Normality, i.e., the vector (v;, %) has a multivariate Normal distribution. This is the
scenario considered by Galton (1886), father of regression, who was interested in the intergenerational link
between Normally distributed traits such as height and intelligence. The Normal case is clearly of limited
empirical relevance since regressors and dependent variables are often discrete, while Normal distributions
are continuous. Another linearity scenario arises when regression models are saturated. As reviewed in
Section [3:1.4] the saturated regression model has a separate parameter for every possible combination of
values that the set of regressors can take on. For example a saturated regression model with two dummy
covariates includes both covariates (with coefficients known as the main effects) and their product (known

as an interaction term). Such models are inherently linear, a point we also discuss in Section

2The regression-anatomy formula is usually attributed to Frisch and Waugh (1933). You can also do regression anatomy

this way:
g, = Cov (Vi) ki)
k= T s N
V (&)
where Yy; is the residual from a regression of v; on every covariate except xg;. This works because the fitted values removed
from Yy; are uncorrelated with Zp;. Often it’s useful to plot Y; against Z;; the slope of the least-squares fit in this scatterplot

is your estimate of the multivariate 3, even though the plot is two-dimensional. Note, however, that it’s not enough to partial

the other covariates out of v; only. That is,

Cov (Yii, ki) _ [Cov (\?ki,j;ﬂ-)} {V(f;ﬂ:)

V (ki) V(%) V(Ikz):| 7 Pr

unless xg; is uncorrelated with the other covariates.
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The following two reasons for focusing on regression are relevant when the linear CEF theorem does not
apply.

Theorem 3.1.5 The Best Linear Predictor Theorem (Regression-justification II)

The function X3 is the best linear predictor of Y; given X; in a MMSE sense.

Proof. 3 = E[X,;X/]71E[X,Y;] solves the population least squares problem, (3.1.2). m
In other words, just as the CEF, E[y;|X;], is the best (i.e., MMSE) predictor of v; given X; in the
class of all functions of X;, the population regression function is the best we can do in the class of linear

functions.

Theorem 3.1.6 The Regression-CEF Theorem (Regression-justification III)

The function X8 provides the MMSE linear approximation to E[Y;|X;], that is,
B = arg minE{(E[v;|X;] — Xb)?}. (3.1.4)
b
Proof. Write

(i —Xi)* = {(vi — Bi[Xi) + (B[vilX,] — Xjb)}?

K2

(Y — E[v;|X:])? + (E[vi|X;] — X/b)?

+2(Y; — By Xa])(E[vi[X;] = X7b).

The first term doesn’t involve b and the last term has expectation zero by the CEF-decomposition property
(ii). The CEF-approximation problem, , therefore has the same solution as the population least
squares problem, . [ |

These two theorems show us two more ways to view regression. Regression provides the best linear
predictor for the dependent variable in the same way that the CEF is the best unrestricted predictor of the
dependent variable. On the other hand, if we prefer to think about approximating F[v;|X;], as opposed to
predicting Y;, the Regression-CEF theorem tells us that even if the CEF is nonlinear, regression provides
the best linear approximation to it.

The regression-CEF theorem is our favorite way to motivate regression. The statement that regression
approximates the CEF lines up with our view of empirical work as an effort to describe the essential features
of statistical relationships, without necessarily trying to pin them down exactly. The linear CEF theorem
is for special cases only. The best linear predictor theorem is satisfyingly general, but it encourages an
overly clinical view of empirical research. We're not really interested in predicting individual Y;; it’s the
distribution of Y; that we care about.

Figure illustrates the CEF approximation property for the same schooling CEF plotted in Figure

3.1.1] The regression line fits the somewhat bumpy and nonlinear CEF as if we were estimating a model
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for E[v;|X;] instead of a model for v,;. In fact, that is exactly what’s going on. An implication of the
regression-CEF theorem is that regression coefficients can be obtained by using F[v;|X;] as a dependent
variable instead of v; itself. To see this, suppose that X; is a discrete random variable with probability mass

function, g, (u) when X; = u. Then
E{(Blvi|Xi] = X{0)*} = > (B[YiX; = u] — u'b)*gu(u).

This means that § can be constructed from the weighted least squares regression of E[v;|X; = u] on wu,
where u runs over the values taken on by X;. The weights are given by the distribution of X;, i.e., g.(u)

when X; = u. Another way to see this is to iterate expectations in the formula for §:
B = EX X 'EX,v;] = B[X; X[ E[X;E(v|X))]. (3.1.5)

The CEF or grouped-data version of the regression formula is of practical use when working on a project
that precludes the analysis of micro data. For example, Angrist (1998), studies the effect of voluntary
military service on earnings later in life. One of the estimation strategies used in this project regresses
civilian earnings on a dummy for veteran status, along with personal characteristics and the variables used
by the military to screen soldiers. The earnings data come from the US Social Security system, but Social
Security earnings records cannot be released to the public. Instead of individual earnings, Angrist worked
with average earnings conditional on race, sex, test scores, education, and veteran status.

An illustration of the grouped-data approach to regression appears below. We estimated the schooling
coefficient in a wage equation using 21 conditional means, the sample CEF of earnings given schooling. As
the Stata output reported here shows, a grouped-data regression, weighted by the number of individuals
at each schooling level in the sample, produces coefficients identical to what would be obtained using the
underlying microdata sample with hundreds of thousands of observations. Note, however, that the standard
errors from the grouped regression do not correctly reflect the asymptotic sampling variance of the slope
estimate in repeated micro-data samples; for that you need an estimate of the variance of Yf—Xgﬁ. This
variance depends on the microdata, in particular, the second-moments of W; = [ vy X! ] , a point we

elaborate on in the next section.

3.1.3 Asymptotic OLS Inference

In practice, we don’t usually know what the CEF or the population regression vector is. We therefore draw
statistical inferences about these quantities using samples. Statistical inference is what much of traditional
econometrics is about. Although this material is covered in any Econometrics text, we don’t want to skip the
inference step completely. A review of basic asymptotic theory allows us to highlight the important fact that

the process of statistical inference is entirely distinct from the question of how a particular set of regression
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Log weekly earnings, $2003

0 2 4 6 8 10 12 14 16 18 20+
Years of completed education

Sample is limited to white men, age 40-49. Data is from Census IPUMS 1980, 5% sample.

Figure 3.1.2: Regression threads the CEF of average weekly wages given schooling

estimates should be interpreted. Whatever a regression coefficient may mean, it has a sampling distribution

that is easy to describe and use for statistical inferencel’]

We are interested in the distribution of the sample analog of
B = E[X;X]]'E[X;Y/]

/
in repeated samples. Suppose the vector W; = [ v X } is independently and identically distributed in
a sample of size N. A natural estimator of the first population moment, E[W;], is the sum, % Zfil W;. By
the law of large numbers, this sample moment gets arbitrarily close to the corresponding population moment
as the sample size grows. We might similarly consider higher-order moments of the elements of W;, e.g.,
the matrix of second moments, E[W;W/], with sample analog % Zi\; W;W/. Following this principle, the
method of moments estimator of 5 replaces each expectation by a sum. This logic leads to the Ordinary
Least Squares (OLS) estimator

B =

—1
ZXiYi-
3

> XX
4

Although we derived B as a method of moments estimator, it is called the OLS estimator of 3 because it

solves the sample analog of the least-squares problem described at the beginning of Section [3.1.2]

3The discussion of asymptotic OLS inference in this section is largely a condensation of material in Chamberlain (1984).

Important pitfalls and problems with this asymptotic theory are covered in the last chapter.

4Econometricians like to use matrices because the notation is so compact. Sometimes (not very often) we do too. Suppose
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A - Individual-level data
regress earnings school, robust
Source | SS df MS Number of obs = 409435
————————————— e e F( 1,409433) =49118.25
Model | 22631.4793 1 22631.4793 Prob > F = 0.0000
Residual | 188648.31 409433 .460755019 R-squared = 0.1071
————————————— e Adj R-squared = 0.1071
Total | 211279.789 409434 .51602893 Root MSE = .67879
_____________ +__________________________________________________________
| Robust 0ld Fashioned
earnings | Coef Std. Err. t Std. Err. t
_____________ +__________________________________________________________
school | .0674387 .0003447 195.63 .0003043 221.63
const. | 5.835761 .0045507 1282.39 .0040043 1457.38
B - Means by years of schooling
regress average_earnings school [aweight=count], robust
(sum of wgt is 4.0944e+05)
Source | SS df MS Number of obs = 21
————————————— Fom e F( 1, 19) = 540.31
Model | 1.16077332 1 1.16077332 Prob > F = 0.0000
Residual | .040818796 19 .002148358 R-squared = 0.9660
————————————— e Adj R-squared = 0.9642
Total | 1.20159212 20 .060079606 Root MSE = 04635
_____________ +__________________________________________________________
average | Robust 0ld Fashioned
_earnings | Coef Std. Err. t Std. Err. t
_____________ +__________________________________________________________
school | .0674387 .0040352 16.71 .0029013 23.24
const. | 5.835761 .0399452 146.09 .0381792 152.85

Figure 3.1.3: Micro-data and grouped-data estimates of returns to schooling. Source: 1980 Census - IPUMS,
5 percent sample. Sample is limited to white men, age 40-49. Derived from Stata regression output. Old-
fashioned standard errors are the default reported. Robust standard errors are heteroscedasticity-consistent.

Panel A uses individual-level data. Panel B uses earnings averaged by years of schooling.
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The asymptotic sampling distribution of B depends solely on the definition of the estimand (i.e., the
nature of the thing we’re trying to estimate, 5) and the assumption that the data constitute a random
sample. Before deriving this distribution, it helps to record the general asymptotic distribution theory that
covers our needs. This basic theory can be stated mostly in words. For the purposes of these statements,
we assume the reader is familiar with the core terms and concepts of statistical theory (e.g., moments,
mathematical expectation, probability limits, and asymptotic distributions). For definitions of these terms

and a formal mathematical statement of the theoretical propositions given below, see, e.g., Knight (2000).

THE LAW OF LARGE NUMBERS Sample moments converge in probability to the corresponding
population moments. In other words, the probability that the sample mean is close to the population

mean can be made as high as you like by taking a large enough sample.

THE CENTRAL LIMIT THEOREM Sample moments are asymptotically Normally distributed (after
subtracting the corresponding population moment and multiplying by the square root of the sample
size). The covariance matrix is given by the variance of the underlying random variable. In other
words, in large enough samples, appropriately normalized sample moments are approximately Normally

distributed.

SLUTSKY’S THEOREM

(a) Consider the sum of two random variables, one of which converges in distribution and the other converges
in probability to a constant: the asymptotic distribution of this sum is unaffected by replacing the
one that converges to a constant by this constant. Formally, let ay be a statistic with a limiting
distribution and let by be a statistic with probability limit b. Then an 4+ by and an + b have the same

limiting distribution.

(b) Consider the product of two random variables, one of which converges in distribution and the other
converges in probability to a constant: the asymptotic distribution of this product is unaffected by
replacing the one that converges to a constant by this constant. This allows us to replaces some
sample moments by population moments (i.e., by their probability limits) when deriving distributions.
Formally, let ay be a statistic with a limiting distribution and let by be a statistic with probability

limit b. Then ayby and anb have the same asymptotic distribution.

THE CONTINUOUS MAPPING THEOREM Probability limits pass through continuous functions.
For example, the probability limit of any continuous function of a sample moment is the function
evaluated at the corresponding population moment. Formally, the probability limit of h(by) is h(b)

where plim by = b and h(-) is continuous at b.

X is the matrix whose rows are given by X/ and y is the vector with elements y;, for ¢ = 1,...,N. The sample moment
% > X;X!is X’X/N and the sample moment % S Xiyi is X'y/N. Then we can write 8 = (X'X) ! X'y, a familiar matrix

formula.
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THE DELTA METHOD Consider a vector-valued random variable that is asymptotically Normally dis-
tributed. Most scalar functions of this random variable are also asymptotically Normally distributed,
with covariance matrix given by a quadratic form with the covariance matrix of the random variable
on the inside and the gradient of the function evaluated at the probability limit of the random vari-
able on the outside. Formally, the asymptotic distribution of h(by) is Normal with covariance matrix
Vh(b)QVh(b) where plim by = b, h(-) is continuously differentiable at b with gradient Vh(b), and by

has asymptotic covariance matrix Q

We can use these results to derive the asymptotic distribution of B in two ways. A conceptually straight-
forward but somewhat inelegant approach is to use the delta method: B is a function of sample moments,
and is therefore asymptotically Normally distributed. It remains only to find the covariance matrix of the
asymptotic distribution from the gradient of this function. (Note that consistency of B comes immediately
from the continuous mapping theorem). An easier and more instructive derivation uses the Slutsky and

central limit theorems. Note first that we can write
Y; :X;ﬁ—f— [Yi —X;ﬁ] EX;ﬁ—i—ei, (316)

where the residual e; is defined as the difference between the dependent variable and the population regression
function, as before. This is as good a place as any to point out that these residuals are uncorrelated with the
regressors by definition of 3. In other words, E[X;e;] = 0 is a consequence of = E[X;X!]71E[X,;Y;] and
e; = Y;—X}3, and not an assumption about an underlying economic relation. We return to this important
point in the discussion of causal regression models in Section ]

Substituting the identity for v; in the formula for B, we have

B=p+ [Z X1X;:| B inei-

The asymptotic distribution of s the asymptotic distribution of \/N(B—B) =N [Z XlX;] - \/% > Xe;.
By the Slutsky theorem, this has the same asymptotic distribution as E[X;X/] 7! \/iﬁ >X;e;. Since E[X;e;] =
0, \/iﬁ >"X;e; is a root-N-normalized and centered sample moment. By the central limit theorem, this is
asymptotically Normally distributed with mean zero and covariance matrix E[X;X}e?], since this fourth mo-
ment is the covariance matrix of X;e;. Therefore, B has an asymptotic Normal distribution, with probability
limit 3, and covariance matrix

EX X EX Xl E[X, Xt (3.1.7)

The standard errors used to construct t-statistics are the square roots of the diagonal elements of this

5For a derivation of the the delta method formula using the Slutsky and continuous mapping theorems, see, e.g., Knight,

2000, pp. 120-121.

6Residuals defined in this way are not necessarily mean-independent of X;; for mean-independence, we need a linear CEF.
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matrix. In practice these standard errors are estimated by substituting sums for expectations, and using the
estimated residuals, &; =v;—X/3 to form the empirical fourth moment, S [X;X;é2]/N.

Asymptotic standard errors computed in this way are known as heteroskedasticity-consistent standard
errors, White (1980a) standard errors, or Eicker-White standard errors in recognition of Eicker’s (1967)
derivation. They are also known as “robust” standard errors (e.g., in Stata). These standard errors are
said to be robust because, in large enough samples, they provide accurate hypothesis tests and confidence
intervals given minimal assumptions about the data and model. In particular, our derivation of the limiting
distribution makes no assumptions other than those needed to ensure that basic statistical results like the
central limit theorem go through. These are not, however, the standard errors that you get by default from
packaged software. Default standard errors are derived under a homoskedasticity assumption, specifically,

that E[e?|X;] = 02, a constant. Given this assumption, we have
E[XiXjef] = E(X;X[E[e}|X;]) = 0 E[X,X]],
by iterating expectations. The asymptotic covariance matrix of 3 then simplifies to

EX X 'EX X EX XY = EX X 'e?EX X EX:X,] !

= E[XX) lo% (3.1.8)

The diagonal elements of are what SAS or Stata report unless you request otherwise.

Our view of regression as an approximation to the CEF makes heteroskedasticity seem natural. If the
CEF is nonlinear and you use a linear model to approximate it, then the quality of fit between the regression
line and the CEF will vary with X;. Hence, the residuals will be larger, on average, at values of X; where the
fit is poorer. Even if you are prepared to assumed that the conditional variance of v; given X, is constant,
the fact that the CEF is nonlinear means that E[(v;—X/3)?|X;] will vary with X;. To see this, note that,

as a rule,

El(y; = XiB)*Xi] = (3.1.9)
E{[(vi — E[v:|Xi]) + (BE[v;X;] — X}B)]*|X;}

= V[VilXi] + (B[vi[Xi] - X[8)%.

Therefore, even if V[y;|X;] is constant, the residual variance increases with the square of the gap between
the regression line and the CEF, a fact noted in White (1980b)[|

In the same spirit, it’s also worth noting that while a linear CEF makes homoskedasticity possible, this is

"The cross-product term resulting from an expansion of the quadratic in the middle of is zero because Y; — E[Y;|X;]

is mean-independent of X;.
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not a sufficient condition for homoskedasticity. Our favorite example in this context is the linear probability
model (LPM). A linear probability model is any regression where the dependent variable is zero-one, i.e.,
a dummy variable such as an indicator for labor force participation. Suppose the regression model is
saturated, so the CEF is linear. Because the CEF is linear, the residual variance is also the conditional
variance, V[v;|X;]. But the dependent variable is a Bernoulli trial and the variance of a Bernoulli trial is
Ply;|X;](1 — P[y4|X;]). We conclude that LPM residuals are necessarily heteroskedastic unless the only
regressor is a constant.

These points of principle notwithstanding, as an empirical matter, heteroskedasticity may matter little.
In the micro-data schooling regression depicted in Figure the robust standard error is .0003447, while
the old-fashioned standard error is .0003043, only slightly smaller. The standard errors from the grouped-
data regression, which are necessarily heteroskedastic if group sizes differ, change somewhat more; compare
the .004 robust standard to the .0029 conventional standard error. Based on our experience, these differences
are typical. If heteroskedasticity matters too much, say, more than a 30% increase or any marked decrease
in standard errors, you should worry about possible programming errors or other problems (for example,
robust standard errors below conventional may be a sign of finite-sample bias in the robust calculation; see

Chapter [8] below.)

3.1.4 Saturated Models, Main Effects, and Other Regression Talk

We often discuss regression models using terms like saturated and main effects. These terms originate in
an experimentalist tradition that uses regression to model discrete treatment-type variables. This language
is now used more widely in many fields, however, including applied econometrics. For readers unfamiliar
with these terms, this section provides a brief review.

Saturated regression models are regression models with discrete explanatory variables, where the model
includes a separate parameter for all possible values taken on by the explanatory variables. For example,
when working with a single explanatory variable indicating whether a worker is a college graduate, the model
is saturated by including a single dummy for college graduates and a constant. We can also saturate when
the regressor takes on many values. Suppose, for example, that s; = 0,1,2,...,7. A saturated regression
model for s; is

Y; = By + B1dii + Bodo; + ... + Bdri + &4,

where dj; = 1[8; = j] is a dummy variable indicating schooling level-j, and f3; is said to be the jth-level
schooling effect. Note that
Bj = E[Yi‘si = j] — E[Yilsi = O],

while 8, = E[v;|s; = 0]. In practice, you can pick any value of s; for the reference group; a regression model

is saturated as long as it has one parameter for every possible j in E[y;|s; = j]|. Saturated models fit the
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CEF perfectly because the CEF is linear in the dummy regressors used to saturate. This is an important
special case of the regression-CEF theorem.

If there are two explanatory variables, say one dummy indicating college graduates and one dummy
indicating sex, the model is saturated by including these two dummies, their product, and a constant. The
coefficients on the dummies are known as main effects, while the product is called an interaction term. This
is not the only saturated parameterization; any set of indicators (dummies) that can be used to identify each
value taken on by the covariates produces a saturated model. For example, an alternative saturated model
includes dummies for male college graduates, male dropouts, female college graduates, and female dropouts,
but no intercept.

Here’s some notation to make this more concrete. Let x1; indicate college graduates and zo; indicate

women. The CEF given x1; and xo; takes on four values:

Evi|zy; = 0,22 = 0],
E Y|z = 1,29, = 0],
EY;lz1; = 0,29 = 1],

E [Yi\xli =1,29; = 1] .

We can label these using the following scheme:

Elv;|lz1; =0,29, =0] = «

Elvz1i =122, =0] = a+p
Ely|z1; =029, =1 = a+vy
ElYizi=1z9=1 = a+p+~v+0.

Since there are four Greek letters and the CEF takes on four values, this parameterization does not restrict

the CEF. It can be written in terms of Greek letters as

ElYilr1i, ®2i] = oo+ 1 + w2 + 6(z1502;),

a parameterization with two main effects and one interaction termﬂ The saturated regression equation
becomes

Y = a+ fry; + T + 6(xze) + &5

Finally, we can combine the multi-valued schooling variable with sex to produce a saturated model that

8With a third dummy variable in the model, say x3;, a saturated model includes 3 main effects, 3 second-order interaction

terms {21,224, T2;%3i, 1,72, } and one third-order term, z1;z2;x3;.
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has 7 main effects for schooling, one main effect for sex, and 7 sex-schooling interactions:

™ T
Y :50+Zﬁjdﬁ+’yx2i +Z5j(dji$2i) + & (3.1.10)
j=1 j=1
The interaction terms, ¢;, tell us how each of the schooling effects differ by sex. The CEF in this case takes
on 2(7 4 1) values while the regression has this many parameters.

Note that there is a natural hierarchy of modeling strategies with saturated models at the top. It’s
natural to start with a saturated model because this fits the CEF. On the other hand, saturated models
generate a lot of interaction terms, many of which may be uninteresting or imprecise. You might therefore
sensibly choose to omit some or all of these. Equation without interaction terms approximates the
CEF with a purely additive model for schooling and sex. This is a good approximation if the returns to
college are similar for men and women. And, in any case, schooling coefficients in the additive specification
give a (weighted) average return across both sexes, as discussed in Section [3.3.1] below. On the other hand,
it would be strange to estimate a model which included interaction terms but omitted the corresponding

main effects. In the case of schooling, this would be something like

-
Y, :ﬂo-i-’yl'gi +Z5j(djix2i)+5i. (3111)
j=1
This model allows schooling to shift wages only for women, something very far from the truth. Consequently,
the results of estimating (3.1.11f) are likely to be hard to interpret.
Finally, it’s important to recognize that a saturated model fits the CEF perfectly regardless of the
distribution of Y;. For example, this is true for linear probability models and other limited dependent

variable models (e.g., non-negative Y;), a point we return to at the end of this chapter.

3.2 Regression and Causality

Section shows how regression gives the best (MMSE) linear approximation to the CEF. This under-
standing, however, does not help us with the deeper question of when regression has a causal interpretation.
When can we think of a regression coefficient as approximating the causal effect that might be revealed in

an experiment?

3.2.1 The Conditional Independence Assumption

A regression is causal when the CEF it approximates is causal. This doesn’t answer the question, of course.
It just passes the buck up one level, since, as we’ve seen, a regression inherits it’s legitimacy from a CEF.
Causality means different things to different people, but researchers working in many disciplines have found

it useful to think of causal relationships in terms of the potential outcomes notation used in Chapter [2] to
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describe what would happen to a given individual in a hypothetical comparison of alternative hospitalization
scenarios. Differences in these potential outcomes were said to be the causal effect of hospitalization. The

CEF is causal when it describes differences in average potential outcomes for a fixed reference population.

It’s easiest to expand on the somewhat murky notion of a causal CEF in the context of a particular
question, so let’s stick with the schooling example. The causal connection between schooling and earnings
can be defined as the functional relationship that describes what a given individual would earn if he or she
obtained different levels of education. In particular, we might think of schooling decisions as being made
in a series of episodes where the decision-maker might realistically go one way or another, even if certain
choices are more likely than others. For example, in the middle of junior year, restless and unhappy, Angrist
glumly considered his options: dropping out of high school and hopefully getting a job, staying in school but
taking easy classes that lead to a quick and dirty high school diploma, or plowing on in an academic track
that leads to college. Although the consequences of such choices are usually unknown in advance, the idea of
alternative paths leading to alternative outcomes for a given individual seems uncontroversial. Philosophers
have argued over whether this personal notion of potential outcomes is precise enough to be scientifically
useful, but individual decision-makers seem to have no trouble thinking about their lives and choices in this
manner (as in Robert Frost’s celebrated The Road Not Taken: the traveller-narrator sees himself looking
back on a moment of choice. He believes that the decision to follow the road less traveled "has made all the

difference," though he also recognizes that counterfactual outcomes are unknowable).

In empirical work, the causal relationship between schooling and earnings tells us what people would
earn—on average—if we could either change their schooling in a perfectly-controlled environment, or change
their schooling randomly so that those with different levels of schooling would be otherwise comparable. As
we discussed in Chapter [2] experiments ensure that the causal variable of interest is independent of potential
outcomes so that the groups being compared are truly comparable. Here, we would like to generalize this
notion to causal variables that take on more than two values, and to more complicated situations where we
must hold a variety of "control variables" fixed for causal inferences to be valid. This leads to the conditional
independence assumption (CIA), a core assumption that provides the (sometimes implicit) justification for
the causal interpretation of regression. This assumption is sometimes called selection-on-observables because
the covariates to be held fixed are assumed to be known and observed (e.g., in Goldberger, 1972; Barnow,
Cain, and Goldberger, 1981). The big question, therefore, is what these control variables are, or should be.
We’ll say more about that shortly. For now, we just do the econometric thing and call the covariates "X;".
As far as the schooling problem goes, it seems natural to imagine that X; is a vector that includes measures

of ability and family background.

For starters, think of schooling as a binary decision, like whether Angrist goes to college. Denote this
by a dummy variable, ¢;. The causal relationship between college attendance and a future outcome like

earnings can be described using the same potential-outcomes notation we used to describe experiments in
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Chapter To address this question, we imagine two potential earnings variables:

Yy ifco; =1
potential outcome =
Yo; ifc; =0

In this case, Yg; is ¢’s earnings without college, while Yq; is i’s earnings if he goes. We would like to know
the difference between v1; and Yq;, which is the causal effect of college attendance on individual 7. This
is what we would measure if we could go back in time and nudge i onto the road not taken. The observed

outcome, Y;, can be written in terms of potential outcomes as

Yi = Yoi + (Y1i — Yo0:)Cs.

We get to see one of Yq; or Yg;, but never both. We therefore hope to measure the average of v1;—Yy;, or

the average for some group, such as those who went to college. This is E[Y1,—Y;|C; = 1].

In general, comparisons of those who do and don’t go to college are likely to be a poor measure of the

causal effect of college attendance. Following the logic in Chapter [2| we have

E [Yi|Ci = 1] — E[Yi|CZ‘ = 0] = E[Yli — Y0i|CZ‘ = 1] (321)

Observed difference in earnings average treatment effect on the treated

+FE [voilc; = 1] — E[voilc; = 0].

selection bias

It seems likely that those who go to college would have earned more anyway. If so, selection bias is positive,

and the naive comparison, F [v;|c; = 1] — E[v;|c; = 0], exaggerates the benefits of college attendance.

The CIA asserts that conditional on observed characteristics, X;, selection bias disappears. In this
example, the CIA says,
{Yoi, vy} L ai|Xs. (3.2.2)

Given the CIA, conditional-on-X; comparisons of average earnings across schooling levels have a causal

interpretation. In other words,

E[Yi|Xi,Ci = 1] — E[Yi|Xi,CZ‘ = 0] = E[Yli _YOi|Xi]-

Now, we’d like to expand the conditional independence assumption to causal relations that involve vari-
ables that can take on more than two values, like years of schooling, s;. The causal relationship between
schooling and earnings is likely to be different for each person. We therefore use the individual-specific

notation,

Y = fi(s)
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to denote the potential earnings that person ¢ would receive after obtaining s years of education. If s takes

on only two values, 12 and 16, then we are back to the college/no college example:

More generally, the function f;(s) tells us what ¢ would earn for any value of schooling, s. In other words,
fi(s) answers causal “what if” questions. In the context of theoretical models of the relationship between
human capital and earnings, the form of f;(s) may be determined by aspects of individual behavior and/or
market forces.

The CIA in this more general setup becomes

In many randomized experiments, the CIA crops up because s; is randomly assigned conditional on X; (In
the Tennessee STAR experiment, for example, small classes were randomly assigned within schools). In an
observational study, the CIA means that S; can be said to be "as good as randomly assigned," conditional
on X;.

Conditional on X;, the average causal effect of a one year increase in schooling is E[f;(s) — fi(s — 1)|X;],
while the average causal effect of a 4-year increase in schooling is E[f;(s) — E'[fi(s —4)]|X;]. The data
reveal only v; = f;(S;), however, that is f;(s) for s =s;. But given the CIA, conditional-on-X; comparisons

of average earnings across schooling levels have a causal interpretation. In other words,

E [Y”Xi,si = S] —F [Yi|Xivsi =S5 — 1]

= Elfi(s) — fi(s — 1)|Xy]

for any value of s. For example, we can compare the earnings of those with 12 and 11 years of schooling to

learn about the average causal effect of high school graduation:

E [Yi|Xivsi = 12] - F [Yi|Xiasi = 11} =F [fL(12)|X“Sz = 12] —F [fl(11)|XZ7SZ = 11] .

This comparison has a causal interpretation because, given the CIA,

E [f¢(12)|Xi,Si = 12} - F [fl(].].)|XZ,SZ = 11} =F [f,(l?) — fi(ll)\Xi,Si = 12]

Here, the selection bias term is the average difference in the potential dropout-earnings of high school
graduates and dropouts. Given the CIA, however, high school graduation is independent of potential

earnings conditional on X;, so the selection-bias vanishes. Note also that in this case, the causal effect of
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graduating high school on high school graduates is the population average high school graduation effect:

E1fi(12) = fi(11)|X4, 8 = 12] = E[fi(12) — fi(11)[X,] .

This is important . . . but less important than the elimination of selection bias in (3.2.1)).

So far, we have constructed separate causal effects for each value taken on by the conditioning variable,
X;. This leads to as many causal effects as there are values of X;, an embarrassment of riches. Empiricists
almost always find it useful to boil a set of estimates down to a single summary measure, like the population
average causal effect. By the law of iterated expectations, the population average causal effect of high school

graduation is

FE {E [Yi|Xi,Si = ].2] - F [Yi|Xi,Si = ].].]} (323)
= E{E[fi(12) - fi(11)[X;]}
= E[fi(12) - fi(11)] (3.2.4)

In the same spirit, we might be interested in the average causal effect of high school graduation on high

school graduates:

E{E[Yi|XZ‘,Si = 12} — E[Y”Xi,si = 11]|SIL = 12} (325)

E{E[f:(12) — f;(11)|X;]|s; = 12}

E[f:(12) — fi(11)]s: = 12]. (3.2.6)

This parameter tells us how much high school graduates gained by virtue of having graduated. Likewise, for
the effects of college graduation there is a distinction between E[f;(16) — f;(12)|s; = 16], the average causal

effect on college graduates and E[f;(16) — f;(12)], the population average effect.

The population average effect, 7 can be computed by averaging all of the X-specific effects using
the marginal distribution of X;, while the average effect on high school or college graduates averages the
X-specific effects using the distribution of X; in these groups. In both cases, the empirical counterpart is a
matching estimator: we make comparisons across schooling groups graduates for individuals with the same

covariate values, compute the difference in their earnings, and then average these differences in some way.

In practice, there are many details to worry about when implementing a matching strategy. We fill in
some of the technical details on the mechanics of matching in Section [3.3.1] below. Here we note that a
global drawback of the matching approach is that it is not "automatic," rather it requires two steps, matching

and averaging. Estimating the standard errors of the resulting estimates may not be straightforward, either.
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A third consideration is that the two-way contrast at the heart of this subsection (high school or college
completers versus dropouts) does not do full justice to the problem at hand. Since s; takes on many values,
there are separate average causal effects for each possible increment in S;, which also must be summarized

in some WayEI These considerations lead us back to regression.

Regression provides an easy-to-use empirical strategy that automatically turns the CIA into causal effects.
Two routes can be traced from the CIA to regression. One assumes that f;(s) is both linear in s and the same
for everyone except for an additive error term, in which case linear regression is a natural tool to estimate
the features of f;(s). A more general but somewhat longer route recognizes that f;(s) almost certainly
differs for different people, and, moreover, need not be linear in s. Even so, allowing for random variation in
fi(s) across people, and for non-linearity for a given person, regression can be thought of as strategy for the
estimation of a weighted average of the individual-specific difference, f;(s) — fi(s —1). In fact, regression
can be seen as a particular sort of matching estimator, capturing an average causal effect much like [3.2.3] or

9.2.0)

At this point, we want to focus on the conditions required for regression to have a causal interpretation
and not on the details of the regression-matching analog. We therefore start with the first route, a linear

constant-effects causal model. Suppose that

fils) =a+ps+mn;. (3.2.7)

In addition to being linear, this equation says that the functional relationship of interest is the same for
everyone. Again, s is written without an ¢ subscript to index individuals, because equation tells us
what person ¢ would earn for any value of s and not just the realized value, s;. In this case, however, the only
individual-specific and random part of f;(s) is a mean-zero error component, 7,, which captures unobserved

factors that determine potential earnings.

Substituting the observed value s; for s in equation (3.2.7), we have

Y; = a+ pS; +1;. (3.2.8)

Equation (3.2.8)) looks like a bivariate regression model, except that equation (3.2.7]) explicitly associates the
coefficients in (3.2.8)) with a causal relationship. Importantly, because equation ([3.2.7)) is a causal model, s;

may be correlated with potential outcomes, f;(s), or, in this case, the residual term in (3.2.8)), ;.

9For example, we might construct the average effect over s using the distribution of S;. In other words, estimate E[fi(s) —

fi(s = 1)] for each s by matching, and then compute the average difference

> Elfi(s) — fi(s — D]P(s).

where P(s) is the probability mass function for s;. This is a discrete approximation to the average derivative, E[f(s;)].
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Suppose now that the CIA holds given a vector of observed covariates, X;. In addition to the functional
form assumption for potential outcomes embodied in (3.2.8), we decompose the random part of potential

earnings, 7;, into a linear function of observable characteristics, X;, and an error term, v;:

n; = Xiy + i,

where 7 is a vector of population regression coefficients that is assumed to satisfy E[n;|X;] =X/v. Because v
is defined by the regression of 7; on X;,the residual v; and X; are uncorrelated by construction. Moreover,

by virtue of the CIA, we have

E[fi(s)[Xi,8i] = E[fi(s)|Xi] = a4 ps + Eln;|X] = a + ps + Xiy

Because mean-independence implies orthogonality, the residual in the linear causal model

Y =a+ps; + Xy +v; (3.2.9)

is uncorrelated with the regressors, s; and X;, and the regression coefficient p is the causal effect of interest.
It bears emphasizing once again that the key assumption here is that the observable characteristics, X;, are
the only reason why 7, and S; (equivalently, f;(s) and S; ) are correlated. This is the selection-on-observables
assumption for regression models discussed over a quarter century ago by Barnow, Cain, and Goldberger

(1981). It remains the basis of most empirical work in Economics.

3.2.2 The Omitted Variables Bias Formula

The omitted variables bias (OVB) formula describes the relationship between regression estimates in models
with different sets of control variables. This important formula is often motivated by the notion that a
longer regression, i.e., one with more controls such as equation , has a causal interpretation, while a
shorter regression does not. The coefficients on the variables included in the shorter regression are therefore
said to be "biased". In fact, the OVB formula is a mechanical link between coefficient vectors that applies to
short and long regressions whether or not the longer regression is causal. Nevertheless, we follow convention
and refer to the difference between the included coefficients in a long regression and a short regression as

being determined by the OVB formula.

To make this discussion concrete, suppose the set of relevant control variables in the schooling regression
can be boiled down to a combination of family background, intelligence and motivation. Let these specific

factors be denoted by a vector, A;, which we’ll refer to by the shorthand term “ability.” The regression of
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wages on schooling, S;, controlling for ability can written as

Y, = a+ ps; + Ay + &, (3.2.10)

where «, p, and v are population regression coefficients, and ¢; is a regression residual that is uncorrelated
with all regressors by definition. If the CIA applies given A;, then p can be equated with the coefficient in
the linear causal model, [3.2.7] while the residual ¢; is the random part of potential earnings that is left over
after controlling for A;.

In practice, ability is hard to measure. For example, the American Current Population Survey (CPS), a
large data set widely used in applied microeconomics (and the source of U.S. government data on unemploy-
ment rates), tells us nothing about adult respondents’ family background, intelligence, or motivation. What
are the consequences of leaving ability out of regression ? The resulting “short regression” coefficient
is related to the “long regression” coefficient in equation as follows:

CO’U(Yi Si) ’

— = O Ass 3.2.11
V) p+7'6a ( )

where § 45 is the vector of coefficients from regressions of the elements of A; on s;. To paraphrase, the OVB

formula says

Short equals long plus the effect of omitted times the regression of omitted on included.

Cov(Y;,5:) Not

This formula is easy to derive: plug the long regression into the short regression formula, )

surprisingly, the OVB formula is closely related to the regression anatomy formula, from Section [3.1.2
Both the OVB and regression anatomy formulas tell us that short and long regression coefficients are the
same whenever the omitted and included variables are uncorrelated[[]

We can use the OVB formula to get a sense of the likely consequences of omitting ability for schooling
coeflicients. Ability variables have positive effects on wages, and these variables are also likely to be positively
correlated with schooling. The short regression coefficient may therefore be “too big” relative to what we
want. On the other hand, as a matter of economic theory, the direction of the correlation between schooling
and ability is not entirely clear. Some omitted variables may be negatively correlated with schooling, in

which case the short regression coefficient will be too smallE

10Here is the multivariate generalization of OVB: Let 8] denote the coefficient vector on a K1 X 1 vector of variables, X1; in
a (short) regression that has no other variables and let 8% denote the coefficient vector on these variables in a (long) regression

that includes a Ko x 1 vector of control variables, Xa;, with coefficient vector 84. Then 85 = B! + E[X1,X},| ' E[X1;X},]16%.

11 As highly educated people, we like to assume that ability and schooling are positively correlated. This is not a foregone
conclusion, however: Mick Jagger dropped out of the London School of Economics and Bill Gates dropped out of Harvard,
perhaps because the opportunity cost of schooling for these high-ability guys was high (of course, they may also be a couple of

very lucky college dropouts).
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Table illustrates these points using data from the NLSY. The first three entries in the table show
that the schooling coefficient decreases from .132 to .114 when family background variables—in this case,
parents’ education—as well as a few basic demographic characteristics (age, race, census region of residence)
are included as controls. Further control for individual ability, as proxied by the Armed Forces Qualification
Test (AFQT) test score, reduces the schooling coefficient to .087 (AFQT is used by the military to select
soldiers). The omitted variables bias formula tells us that these reductions are a result of the fact that the

additional controls are positively correlated with both wages and schoolingE

Table 3.2.1: Estimates of the returns to education for men in the NLSY

(1) (2) (3) (4) ()
Controls:  None Age Col. (2) and Col. (3) and Col. (4), with

dummies  additional =~ AFQT score occupation
controls* dummies
0.132 0.131 0.114 0.087 0.066
(0.007)  (0.007) (0.007) (0.009) (0.010)

Notes: Data are from the National Longitudinal Survey of Youth (1979 cohort,
2002 survey). The table reports the coefficient on years of schooling in a regres-
sion of log wages on years of schooling and the indicated controls. Standard
errors are shown in parentheses. The sample is restricted to men and weighted

by NLSY sampling weights. The sample size is 2434.

* Additional controls are mother’s and father’s years of schooling and dummy

variables for race and Census region.

Although simple, the OVB formula is one of the most important things to know about regression. The
importance of the OVB formula stems from the fact that if you claim an absence of omitted variables bias,
then typically you're also saying that the regression you’ve got is the one you want. And the regression you
want usually has a causal interpretation. In other words, you're prepared to lean on the CIA for a causal
interpretation of the long-regression estimates.

At this point, it’s worth considering when the CIA is most likely to give a plausible basis for empirical
work. The best-case scenario is random assignment of s; , conditional on X;, in some sort of (possibly
natural) experiment. An example is the study of a mandatory re-training program for unemployed workers
by Black, et al. (2003). The authors of this study were interested in whether the re-training program
succeeded in raising earnings later on. They exploit the fact that eligibility for the training program they
study was determined on the basis of personal characteristics and past unemployment and job histories.
Workers were divided up into groups on the basis of these characteristics. While some of these groups of

workers were ineligible for training, those in other groups were required to take training if they did not take

12 A large empirical literature investigates the consequences of omitting ability variables from schooling equations. Key early

references include Griliches and Mason (1972), Taubman (1976), Griliches (1977), and Chamberlain (1978).
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a job. When some of the mandatory training groups contained more workers than training slots, training
opportunities were distributed by lottery. Hence, training requirements were randomly assigned conditional
on the covariates used to assign workers to groups. A regression on a dummy for training plus the personal
characteristics, past unemployment variables, and job history variables used to classify workers seems very
likely to provide reliable estimates of the causal effect of training@

In the schooling context, there is usually no lottery that directly determines whether someone will go
to college or finish high schoolE Still, we might imagine subjecting individuals of similar ability and
from similar family backgrounds to an experiment that encourages school attendance. The Education
Maintenance Allowance, which pays British high school students in certain areas to attend school, is one
such policy experiment (Dearden, et al, 2004).

A second type of study that favors the CIA exploits detailed institutional knowledge regarding the
process that determines S; . An example is the Angrist (1998) study of the effect of voluntary military
service on the later earnings of soldiers. This research asks whether men who volunteered for service in
the US Armed Forces were economically better off in the long run. Since voluntary military service is not
randomly assigned, we can never know for sure. Angrist therefore used matching and regression techniques
to control for observed differences between veterans and nonveterans who applied to get into the all-volunteer
forces between 1979 and 1982. The motivation for a control strategy in this case is the fact that the military
screens soldier-applicants primarily on the basis of observable covariates like age, schooling, and test scores.

The CIA in Angrist (1998) amounts to the claim that after conditioning on all these observed characteris-
tics veterans and nonveterans are comparable. This assumption seems worth entertaining since, conditional
on X;, variation in veteran status in the Angrist (1998) study comes solely from the fact that some qualified
applicants fail to enlist at the last minute. Of course, the considerations that lead a qualified applicant
to “drop out” of the enlistment process could be related to earnings potential, so the CIA is clearly not

guaranteed even in this case.

3.2.3 Bad Control

We’ve made the point that control for covariates can make the CIA more plausible. But more control is not
always better. Some variables are bad controls and should not be included in a regression model even when
their inclusion might be expected to change the short regression coefficients. Bad controls are variables that
are themselves outcome variables in the notional experiment at hand. That is, bad controls might just as
well be dependent variables too. Good controls are variables that we can think of as having been fixed at
the time the regressor of interest was determined.

The essence of the bad control problem is a version of selection bias, albeit somewhat more subtle than

13This program appears to raise earnings, primarily because workers in the training group went back to work more quickly.
4L otteries have been used to distribute private school tuition subsidies; see, e.g., Angrist, et al. (2002).
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the selection bias discussed in Chapter and Section . To illustrate, suppose we are interested in the
effects of a college degree on earnings and that people can work in one of two occupations, white collar and
blue collar. A college degree clearly opens the door to higher-paying white collar jobs. Should occupation
therefore be seen as an omitted variable in a regression of wages on schooling? After all, occupation is highly
correlated with both education and pay. Perhaps it’s best to look at the effect of college on wages for those
within an occupation, say white collar only. The problem with this argument is that once we acknowledge
the fact that college affects occupation, comparisons of wages by college degree status within an occupation

are no longer apples-to-apples, even if college degree completion is randomly assigned.

Here is a formal illustration of the bad control problem in the college/occupation exampleﬁ Let w; be
a dummy variable that denotes white collar workers and let Y; denote earnings. The realization of these
variables is determined by college graduation status and potential outcomes that are indexed against C;.

We have

Y = CiY1;+(1—0Ci)Yo

W, = C;Wy; + (1 — Ci)VVQi

where ¢; = 1 for college graduates and is zero otherwise, {v1;,Yo;} denotes potential earnings, and {w1;,Wo;}
denotes potential white-collar status. We assume that ¢; is randomly assigned, so it is independent of
all potential outcomes. We have no trouble estimating the causal effect of C; on either Y; or w; since

independence gives us

E[YZ-\CZ- = 1} —E[Yi|ci :0] = E[Yli_YOi]7

Ew;ilc; =1 -E[wi|c; =0] = E[Wiy —Wq.

In practice, we might estimate these average treatment effects by regressing v; and w; and on C;.

Bad control means that a comparison of earnings conditional on W; does not have a causal interpretation.
Consider the difference in mean earnings between college graduates and others conditional on working at a
white collar job. We can compute this in a regression model that includes W; or by regressing Y; on C; in
the sample where W; = 1. The estimand in the latter case is the difference in means with ¢; switched off and

on, conditional on w; = 1:

E [YZ"WZ‘ =1,¢, = 1] - F [Y2|W,L =1,¢;, = 0] =F [Y1i|V\’1i =1,¢;, = 1] - F [YOi|WOi =1,¢, = 0] (3212)

5 The same problem arises in "conditional-on-positive" comparisons, discussed in detail in section 1’ below.
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By the joint independence of {v1;,W1;,Y0;,Wo;} and C;, we have

E [Y1i|VV1i = 1,C1' = 1] —F [Y0i|VVO7; = ].,Ci = 0] =F [Y1i|VV17; = 1} - F [Y0i|VVOi = 1] .

This expression illustrates the apples-to-oranges nature of the bad-control problem:

E [Y1i|W1i = 1] - F [YOi|WOi = 1]

=F [Yli — YOZ"VVM‘ = 1] +{E [Y0i|VVli = 1] —F [YOZ"VVOZ' = 1]} .

causal effect on college grads selection bias

In other words, the difference in wages between those with and without a college degree conditional on
working in a white collar job equals the causal effect of college on those with wi; = 1 (people who work at
a white collar job when they have a college degree) and a selection-bias term which reflects the fact that

college changes the composition of the pool of white collar workers.

The selection-bias in this context can be positive or negative, depending on the relation between occupa-
tional choice, college attendance, and potential earnings. The main point is that even if Yy; =Y;, so that
there is no causal effect of college on wages, the conditional comparison in will not tell us this (the
regression of Y; on W; and C; has exactly the same problem). It is also incorrect to say that the conditional
comparison captures the part of the effect of college that is "not explained by occupation." In fact, the
conditional comparison does not tell us much that is useful without a more elaborate model of the links

between college, occupation, and earningsm

As an empirical illustration, we see that the addition of two-digit occupation dummies indeed reduces the
schooling coefficient in the NLSY models reported in Table in this case from .087 to .066. However,
it’s hard to say what we should make of this decline. The change in schooling coefficients when we add
occupation dummies may simply be an artifact of selection bias. So we would do better to control only for

variables that are not themselves caused by education.
A second version of the bad control scenario involves prozy control, that is, the inclusion of variables that
might partially control for omitted factors, but are themselves affected by the variable of interest. A simple

version of the proxy-control scenario goes like this: Suppose you are interested in a long regression, similar

to equation (3.2.10]),
Y; = o+ pS; +ya; + &4, (3.2.13)

where for the purposes of this discussion we’ve replaced the vector of controls A;, with a scalar ability

measure a;. Think of this as an 1Q score that measures innate ability in eighth grade, before any relevant

16Tn this example, selection bias is probably negative, that is F [Yo;|W1; = 1] < E [Y0;|Wo; = 1] . It seems reasonable to think
that any college graduate can get a white collar job, so E [Yo;|W1; = 1] is not too far from E[yp;]. But someone who gets a

white collar without benefit of a college degree (i.e., Wo; = 1) is probably special, i.e., has a better than average Yo;.
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schooling choices are made (assuming everyone completes eighth grade). The error term in this equation
satisfies F[S;e;] = Fla;e;] = 0 by definition. Since a; is measured before s; is determined, it is a good
control.

Equation is the regression of interest, but unfortunately, data on a; are unavailable. However,
you have a second ability measure collected later, after schooling is completed (say, the score on a test used
to screen job applicants). Call this variable "late ability," a;;. In general, schooling increases late ability

relative to innate ability. To be specific, suppose
ay; = T + 1S + moa,. (3.2.14)

By this, we mean to say that both schooling and innate ability increase late or measured ability. There is
almost certainly some randomness in measured ability as well, but we can make our point more simply via
the deterministic link, .

You’re worried about OVB in the regression of Y; on S; alone, so you propose to regress Y; on S; and
late ability, a;; since the desired control, a;, is unavailable. Using to substitute for a; in (3.2.13),
the regression on S; and ay; is

s ™
Yi = (a—v;z) + (p—vé)si + %au + & (3.2.15)

T
T

In this scenario, 7, 71, and 79 are all positive, so p — yZL is too small unless 7; turns out to be zero. In
other words, use of a proxy control that is increased by the variable of interest generates a coefficient below
the desired effect. Importantly, 71 can be investigated to some extent: if the regression of a;; on §; is zero,
you might feel better about assuming that 7 is zero in .

There is an interesting ambiguity in the proxy-control story that is not present in the first bad-control
story. Control for outcome variables is simply misguided; you do not want to control for occupation in
a schooling regression if the regression is to have a causal interpretation. In the proxy-control scenario,
however, your intentions are good. And while proxy control does not generate the regression coefficient of
interest, it may be an improvement on no control at all. Recall that the motivation for proxy control is
equation (3.2.13]). In terms of the parameters in this model, the OVB formula tells us that a regression on
S; with no controls generates a coefficient of p + vd,s, where .5 is slope coefficient from a regression of a;
on S;. The schooling coefficient in might be closer to p than the coefficient you estimate with no
control at all. Moreover, assuming d,, is positive, you can safely say that the causal effect of interest lies
between these two.

One moral of both the bad-control and the proxy-control stories is that when thinking about controls,

timing matters. Variables measured before the variable of interest was determined are generally good controls.

In particular, because these variables were determined before the variable of interest, they cannot themselves
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be outcomes in the causal nexus. In many cases, however, the timing is uncertain or unknown. In such
cases, clear reasoning about causal channels requires explicit assumptions about what happened first, or the

assertion that none of the control variables are themselves caused by the regressor of interestE

3.3 Heterogeneity and Nonlinearity

As we saw in the previous section, a linear causal model in combination with the CIA leads to a linear
CEF with a causal interpretation. Assuming the CEF is linear, the population regression is it. In practice,
however, the assumption of a linear CEF is not really necessary for a causal interpretation of regression. For
one thing, as discussed in Section we can think of the regression of v; on X; and S; as providing the
best linear approximation to the underlying CEF, regardless of its shape. Therefore, if the CEF is causal,
the fact that regression approximates it gives regression coefficients a causal flavor. This claim is a little
vague, however, and the nature of the link between regression and the CEF is worth exploring further. This

exploration leads us to an understanding of regression as a computationally attractive matching estimator.

3.3.1 Regression Meets Matching

The past decade or two has seen increasing interest in matching as an empirical tool. Matching as a strategy
to control for covariates is typically motivated by the CIA, as for causal regression in the previous section.
For example, Angrist (1998) used matching to estimate the effects of volunteering for the military service
on the later earnings of soldiers. These matching estimates have a causal interpretation assuming that,
conditional on the individual characteristics the military uses to select soldiers (age, schooling, test scores),
veteran status is independent of potential earnings.

An attractive feature of matching strategies is that they are typically accompanied by an explicit state-
ment of the conditional independence assumption required to give matching estimates a causal interpretation.
At the same time, we have just seen that the causal interpretation of a regression coefficient is based on
exactly the same assumption. In other words, matching and regression are both control strategies. Since
the core assumption underlying causal inference is the same for the two strategies, it’s worth asking whether
or to what extent matching really differs from regression. Our view is that regression can be motivated as
a computational device for a particular sort of weighted matching estimator, and therefore the differences
between regression and matching are unlikely to be of major empirical importance.

To flesh out this idea, it helps to look more deeply into the mathematical structure of the matching and
regressions estimands, i.e., the population quantities that these methods attempt to estimate. For regression,

of course, the estimand is a vector of population regression coefficients. The matching estimand is typically

17Griliches and Mason (1972) is a seminal exploration of the use of early and late ability controls in schooling equations.
See also Chamberlain (1977, 1978) for closely related studies. Rosenbaum (1984) offers an alternative discussion of the proxy

control idea using very different notation, outside of a regression framework.
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a particular weighted average of contrasts or comparisons across cells defined by covariates. This is easiest
to see in the case of discrete covariates, as in the military service example, and for a discrete regressor such
as veteran status, which we denote here by the dummy, D;. Since treatment takes on only two values, we can
use the notation Y1;,=f;(1) and Yo;=f;(0) to denote potential outcomes. A parameter of primary interest in
this context is the average effect of treatment on the treated, F[Y1;—Y;|D; = 1]. This tells us the difference
between the average earnings of soldiers, F[Y1;|D; = 1], an observable quantity, and the counterfactual
average earnings they would have obtained if they had not served, E[y¢;|D; = 1]. Simply comparing the
observed earnings differential by veteran status is a biased measure of the effect of treatment on the treated

unless D; is independent of Yq;. Specifically,

FE [Yz’|Di = 1] —F [Yi|Di = 0} = F [Yli — Y0i|Di = 1]

+ {E [Y0i|Di = 1] —F [Y0i|D7; = 0}} .

In other words, the observed earnings difference by veteran status equals the average effect of treatment on

the treated plus selection bias. This parallels the discussion of selection bias in Chapter

Given the CIA, selection bias disappears after conditioning on X;, so the effect of treatment on the

treated can be constructed by iterating expectations over X;:

dror = E[Y1i —YoiDi =1]

E{E[Y1i|Xi,Di = 1] — E[Y0i|X7;,DZ‘ = 1]|Dz = 1}

Of course, E[v;|X;,D; = 1] is counterfactual. By virtue of the CIA, however,

E[YOZ‘|X¢,DZ‘ = 0] = E[Y0i|Xi,Di = 1]

Therefore,

dror = E{E[v1|X;,D;=1] - E[yelX;,0; =0]|p; =1} (3.3.1)

= Elx|p; =1],

where

ox = E[vi|X;,p; = 1] = E[v;|X;,0; = 0],

is the random X-specific difference in mean earnings by veteran status at each value of X;.

The matching estimator in Angrist (1998) uses the fact that X; is discrete to construct the sample analog
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of the right-hand-side of (3.3.1)). In the discrete case, the matching estimand can be written
E[Yy —voilp; = 1] = Y 6, P(X; = z|p; = 1), (3.3.2)

where P(X; = z|p; = 1) is the probability mass function for X; given D; = 1@ In this case, X;, takes on
values determined by all possible combinations of year of birth, test-score group, year of application to the
military, and educational attainment at the time of application. The test score in this case is from the AFQT,
used by the military to categorize the mental abilities of applicants (we included this as a control in the
schooling regression discussed in Section . The Angrist (1998) matching estimator simply replaces 0 x
by the sample veteran-nonveteran earnings difference for each combination of covariates, and then combines

these in a weighted average using the empirical distribution of covariates among veteransE

Note also that we can just as easily construct the unconditional average treatment effect,

5ATE = E{E[Y1i|Xi,DZ‘ = ].] — E[Y0i|Xi,Di = 0}} (333)
= Z(swp(xi =)
= E[Y1 —Yoil,

which is the expectation of §x using the marginal distribution of X; instead of the distribution among the
treated. dror tells us how much the typical soldier gained or lost as a consequence of military service,
while 0 a7p tells us how much the typical applicant to the military gained or lost (since the Angrist, 1998,

population consists of applicants.)

The US military tends to be fairly picky about it’s soldiers, especially after downsizing at the end of
the Cold War. For the most part, the military now takes only high school graduates with test scores in
the upper half of the test score distribution. The resulting positive screening generates positive selection
bias in naive comparisons of veteran and non-veteran earnings. This can be seen in Table [3.3.1] which
reports differences-in-means, matching, and regression estimates of the effect voluntary military service on
the 1988-91 Social Security-taxable earnings of men who applied to join the military between 1979 and 1982.
The matching estimates were constructed from the sample analog of . Although white veterans earn
$1,233 more than nonveterans, this difference becomes negative once differences in covariates are matched
away. Similarly, while non-white veterans earn $2,449 more than nonveterans, controlling for covariates

reduces this to $840.

18 This matching estimator is discussed by Rubin (1977) and used by Card and Sullivan (1988) to estimate the effect of

subsidized training on employment.

19With continuous covariates, exact matching is impossible and some sort of approximation is required, a fact that leads to
bias. See Abadie and Imbens (2006), who derive the implications of approximate matching for the limiting distirbution of

matching estimators.
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Table 3.3.1: Uncontrolled, matching, and regression estimates of the effects of voluntary military service on
earnings

Race Average Differences Matching Regression Regression
earnings in means estimates estimates minus
in 1988- by veteran matching
1991 status
(1) (2) 3) (4) (5)
Whites 14537 1233.4 -197.2 -88.8 108.4
(60.3) (70.5) (62.5) (28.5)
Non- 11664 2449.1 839.7 1074.4 234.7
whites (47.4) (62.7) (50.7) (32.5)

Notes: Adapted from Angrist (1998, Tables II and V). Standard errors are
reported in parentheses. The table shows estimates of the effect of voluntary
military service on the 1988-1991 Social Security- taxable earnings of men who
applied to enter the armed forces between 1979 and 1982. The matching and
regression estimates control for applicants’ year of birth, education at the time
of application, and AFQT score. There are 128,968 whites and 175,262 non-

whites in the sample.

Table (3.3.1]) also shows regression estimates of the effect of voluntary military service, controlling for
the same set of covariates that were used to construct the matching estimates. These are estimates of d g in

the equation

Y, = Z dzzﬂx + 5RDi + &4, (334)

where d;, is a dummy that indicates X; = =, 5, is a regression-effect for X; = z, and dp is the regression
estimand. Note that this regression model allows a separate parameter for every value taken on by the
covariates. This model can therefore be said to be saturated-in-X;, since it includes a parameter for every
value of X; (it is not "fully saturated," however, because there is a single additive effect for D; with no D;-
X; interactions).

Despite the fact that the matching and regression estimates control for the same variables, the regression
estimates in Table|3.3.1]are somewhat larger than the matching estimates for both whites and nonwhites. In
fact, the differences between the matching and regression results are statistically significant. At the same
time, the two estimation strategies present a broadly similar picture of the effects of military service. The
reason the regression and matching estimates are similar is that regression, too, can be seen as a sort of
matching estimator: the regression estimand differs from the matching estimands only in the weights used
to sum the covariate-specific effects, § x into a single effect. In particular, matching uses the distribution of
covariates among the treated to weight covariate-specific estimates into an estimate of the effect of treatment

on the treated, while regression produces a variance-weighted average of these effects.
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To see this, start by using the regression anatomy formula to write the coefficient on D; in the regression

of Y; on X; and D; as

on = C‘”"/((Ym])) (3.3.5)
E[(p; — E[D;|X;])v;]
E[(0; — E[Di|X;])?]
E{(D; — E[D|X;])E[v;|D;, X4]}
E[(p; — EDi|X;])?]

(3.3.6)

The second equality in this set of expressions uses the fact that saturating the model in X; means E[D;|X;]
is linear. Hence, D;, which is defined as the residual from a regression of D; on X;, is the difference between
D; and E[D;|X;]. The third equality uses the fact that the regression of v; on D; and X, is the same as the

regression of Y; on E[v;|D;,X,].
To simplify further, we expand the CEF, E[v;|p;,X,], to get
E[Yi|Di,Xi] = E[Yi|DZ‘ = O,Xl] + (5xD7;.

If covariates are unnecessary - in other words, the CIA holds unconditionally, as if in a randomized trial -
this CEF becomes

E[v|ps, X;] = Elyi[p; = 0] + E[Y1; — Yo:]Ds,

from which we conclude that the regression of Y; on D; estimates the population average treatment effect
in this case (e.g., as in the experiment discussed in Section [2.3). But here we are interested in the more

general scenario where conditioning X; is necessary to eliminate selection bias.

To evaluate the more general regression estimand, , we begin by substituting for E[y;|D;,X;] in

the numerator. This gives

E{(D; — E[Di|Xi])E[viDs, X;]} = E{(Di — E[D;|X;]) E[Y4|D; = 0, X;]} + E{(D; — E[D;|X;])Didx }.

The first term on the right-hand side is zero because E[v;|p; = 0,X,] is a function of X; and is therefore

uncorrelated with (D; — E[D;|X;]). For the same reason, the second term simplifies to

E{(p; — E[Ds|X,])pidx} = B{(p; — E[D4[X,])%0x}.

At this point, we’ve shown

E[(0; — Ep:|Xi])?0x] _ E{E[(D: — E[Di|X:])*[Xilox} _ Elo}h(Xi)dx]
E[(p; — E[D;]X;])?] E{E[(p; — E[D;]X;])?X;]} Eloh(Xy)] 7

5p = (3.3.7)
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where

op(X;) = E[(Di — EDi|X,])?X]

is the conditional variance of D; given X;. This establishes that the regression model, (3.3.4), produces a

treatment-variance weighted average of dx.

Because the regressor of interest, D; is a dummy variable, one last step can be taken. In this case,

O'QD(XZ) = P(DZ‘ = 1|X2)(1 — P(Di = 1|Xl)), SO

> 6. [P(0i = 1[X; = 2)(1 = P(0; = 1]X; = 2))] P (X; = x)

5
ST PO = 10X = 2)(1 - Py = 1[X; = 2))] P (X, = 2)

x

This shows that the regression estimand weights each covariate-specific treatment effect by [P(X; = z|p; =
1)(1 — P(X; = z|p; = 1))]P (X; = z). In contrast, the matching estimand for the effect of treatment on the

treated can be written

> 6. P(0; =1|X; = 2)P(X; = z)

Ely; — Yo;|D; = 1] = 61P(Xz:xDz:1 —

because

P(Xl :.’)3|DZ' = 1) =

So the weights used to construct E[yq;—Y;|D; = 1] are proportional to the probability of treatment at each

value of the covariates.

The point of this derivation is that the treatment-on-the-treated estimand puts the most weight on
covariate cells containing those who are most likely to be treated. In contrast, regression puts the most
weight on covariate cells where the conditional variance of treatment status is largest. As a rule, this
variance is maximized when P(D; = 1|X; = z) = %, in other words, for cells where there are equal numbers
of treated and control observations. Of course, the difference in weighting schemes is of little importance
if 6, does not vary across cells (though weighting still affects the statistical efficiency of estimators). In
this example, however, men who were most likely to serve in the military appear to benefit least from their
service. This is probably because those most likely to serve were most qualified, but therefore also had the
highest civilian earnings potential and so benefited least from military service. This fact leads matching
estimates of the effect of military service to be smaller than regression estimates based on the same vector

of control variables27]

20Tt’s no surprise that regression gives the most weight to cells where P(D; = 1|X; = x) = 1/2 since regression is efficient for
a homoskedastic constant-effects linear model. We should expect an efficient estimator to give the most weight to cells where

the common treatment effect is estimated most precisely. With homoskedastic residuals, the most precise treatment effects
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Importantly, neither the regression nor the covariate-matching estimands give any weight to covariate
cells that do not contain both treated and control observations. Consider a value of X;, say x*, where
either no one is treated or everyone is treated. Then, d,- is undefined, while the regression weights,
[P(D; =11X; =2*)(1 — P(D; = 1|X; = 2*))], are zero. In the language of the econometric literature on
matching, both the regression and matching estimands impose common support, that is, they are limited to
covariate values where both treated and control observations are found 21

The step from estimand to estimator is a little more complicated. In practice, both regression and
matching estimators are implemented using modelling assumptions that implicitly involve a certain amount
of extrapolation across cells. For example, matching estimators often combine covariates cells with few
observations. This violates common support if the cells being combined do not each have both treated and
non-treated observations. Regression models that are not saturated in X; may also violate common support,
since covariate cells without both treated and control observations can end up contributing to the estimates
by extrapolation. Here too, however, we see a symmetry between the matching and regression strategies:

they are in the same class, in principle, and require the same sort of compromises in practice@

Even More on Regression and Matching: Ordered and Continuous Treatments*

Does the pseudo-matching interpretation of regression outlined above for a binary treatment apply to models
with ordered and continuous treatments? The long answer is fairly technical and may be more than you
want to know. The short answer is, to one degree or another, "yes."

As we've already discussed, one interpretation of regression is that the population OLS slope vector
provides the MMSE linear approximation to the CEF. This, of course, works for ordered and continuous
regressors as well as for binary. A related property is the fact that regression coefficients have an “average
derivative” interpretation. In multivariate regression models, this interpretation is unfortunately complicated
by the fact that the OLS slope vector is a matrix-weighted average of the gradient of the CEF. Matrix-
weighted averages are difficult to interpret except in special cases (see Chamberlain and Leamer, 1976). An
important special case when the average derivative property is relatively straightforward is in regression
models for an ordered or continuous treatment with a saturated model for covariates. To avoid lengthy
derivations, we simply explain the formulas. A derivation is sketched in the appendix to this chapter. For

additional details, see the appendix to Angrist and Krueger (1999).

come from cells where the probability of treatment equals 1/2.

21The support of a random variable is the set of realizations that occur with positive probability. See Heckman, Ichimura,

Smith, and Todd (1998) and Smith and Todd (2001) for a discussion of common support in matching.
22 Matching problems involving finely distributed X-variables are often solved by aggregating values to make coarser groupings

or by pairing observations that have similar, though not necessarily identical values. See Cochran (1965), Rubin (1973), or
Rosenbaum (1995, Chapter 3) for discussions of this approach. With continuously-distributed covariates, matching estimators
are biased because matches are imperfect. Abadie and Imbens (2008) have recently shown that a regression-based bias correction

can eliminate the (asymptotic) bias from imperfect matches.
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For the purposes of this discussion, the treatment intensity, S;, is assumed to be a continuously distributed
random variable, not necessarily non-negative. Suppose that the CEF of interest can be written h(t) =

E[v;|s; = t] with derivative A’ (t). Then

Blyi(si = Blsi)] _ [ W' (t) pdt

E[si(s; — E[si])] [ pdt (3.3.8)

where

py = {E[8i]Si > t] — E[s|s; < t]H{P(si > t)[1 — P(s; > t)}, (3.3.9)

and the integrals in (3.3.8]) run over the possible values of s;. This formula weights each possible value of s;
in proportion to the difference in the conditional mean of s; above and below that value. More weight is also

given to points close to the median of s; since P(s; > t) - [1 — P(s; > t)] is maximized at P(s; > t) = 1/2.

With covariates, X;, the weights in (3.3.8)) become X-specific. A covariate-averaged version of the same
formula applies to the multivariate regression coefficient of Y; on s;, after partialling out X;. In particular,

Elvi(s; — E[si|Xi])] _ E [ 'y (t)pxat]

E[i(si - ESIXD] B[ paxdt] (3.3.10)

where Py (£) = ZENXSE and e = {E[8i|X0, 85 > 8] — E[8:[Xa,85 < ]H{P(s; > ¢[X,)[1 — P(s; > t]X,)}.
It bears emphasizing that equation reflects two types of averaging: an integral that averages along
the length of a nonlinear CEF at fixed covariate values, and an expectation that averages across covariate
cells. An important point in this context is that population regression coefficients contain no information
about the effect of s; on the CEF for values of X; where P(s; > t|X;) equals 0 or 1. This includes values

of X; where s; is fixed. In the same spirit, it’s worth noting that if S; is a dummy variable, we can extract

equation ([3.3.7) from the more general formula, (3.3.10).

Angrist and Krueger (1999) construct the average weighting function for a schooling regression with state

of birth and year of birth covariates. Although equations (3.3.8]) and (3.3.10) may seem arcane or at least

non-obvious, in this example the average weights, F[u,x], turn out to be a reasonably smooth symmetric

function of ¢, centered at the mode of s;.

The implications of (3.3.8) or (3.3.10) can be explored further given a model for the distribution of

regressors. Suppose, for example, that S; is Normally distributed. Let z; = Si*f(si), where o is the
standard deviation of s;, so that z; is standard Normal. Then
t— E(S;
Elsils: > 1] = B(s5) + 00 | zilzs > L0 Bs,) 4+ 0B [s]2: > 7],

Os
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From truncated Normal formulas (see, e.g., Johnson and Kotz, 1970), we know that

o(t")
[1— ()]

—o(t")

and Elz|z < t¥] =

where ¢(-) and ®(-) are the standard Normal density and distribution function. Substituting in the formula

for py, (3.3.9), we have

) o)
M‘S{[

T~ e L 2R () = o.0(e)

We have therefore shown that
Cov(Y;,S;
oS — i (s
In other words, the regression of v; on s; is the (unweighted!) population average derivative, E[h/(S;)],
when S; is Normally distributed. Of course, this result is a special case of a special case@ Still, it seems
reasonable to imagine that Normality might not matter very much. And in our empirical experience, the
average derivatives (also called “marginal effects”) constructed from parametric nonlinear models for limited

dependent variables (e.g., Probit or Tobit) are usually indistinguishable from the corresponding regression

coefficients, regardless of the distribution of regressors. We expand on this point in Section below.

3.3.2 Control for Covariates Using the Propensity Score

The most important result in regression theory is the omitted variables bias formula: coefficients on included
variables are unaffected by the omission of variables when the variables omitted are uncorrelated with the
variables included. The propensity score theorem, due to Rosenbaum and Rubin (1983), extends this idea
to estimation strategies that rely on matching instead of regression, where the causal variable of interest is

a treatment dummy@

The propensity score theorem states that if potential outcomes are independent of treatment status
conditional on a multivariate covariate vector, X;, then potential outcomes are independent of treatment
status conditional on a scalar function of covariates, the propensity score, defined as p(X;) = E[p;|X;].

Formally, we have

Theorem 3.3.1 The Propensity-Score Theorem.

Suppose the CIA holds for Y;;; j =0,1. Then Y ;IID;|p(X;).

23 More specialized results in this spirit appear in Ruud (1986), who considers distribution-free estimation of limited-dependent-

variable models with Normally distributed regressors.
24Propensity-score methods can be adapted to multi-valued treatments, though this has yet to catch on. See Imbens (2000)

for an effort in this direction.
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Proof. The claim is true if P[D; = 1|Y;, p(X;)] does not depend on Y j;.

Pp; = 1]y ji, p(X3)] E[D;]Y ji, p(X;)]

= E{E[DilY]’i,p(Xi),Xi“inyp(Xi)}
= E{E[D;|Y;i, Xi]|vji, p(Xi)}

= E{E[DZ|X1HY]Z,p(XZ)},by the CIA.

But E{E[D;|X;]|Y;i,p(Xi)} = E{p(X;)|Y;i,p(X;)}, which is clearly just p(X;). m

Like the OVB formula for regression, the propensity score theorem says you need only control for covari-
ates that affect the probability of treatment. But it also says something more: the only covariate you really
need to control for is the probability of treatment itself. In practice, the propensity score theorem is usually
used for estimation in two steps: first, p(X;) is estimated using some kind of parametric model, say, Logit
or Probit. Then estimates of the effect of treatment are computed either by matching on the fitted values

from this first step, or by a weighting scheme described below (see, Imbens, 2004, for an overview).

In practice there are many ways to use the propensity score theorem for estimation. Direct propensity-
score matching works like covariate matching, except that we match on the score instead of the covariates

directly. By the propensity score theorem and the CIA,

E[Yli — YOi|Di = 1} = E{E[Yi|p(Xi)7Di = 1] — E[Yi|p(Xi),Di = 0]|Di = 1} .

Estimates of the effect of treatment on the treated can therefore be obtained by stratifying on an estimate of
p(X;) and substituting conditional sample averages for expectations or by matching each treated observation
to controls with the same or similar values of the propensity score (both of these approaches were used by
Dehejia and Wahba, 1999). Alternately, a model-based or non-parametric estimate of E[y;|p(X;),D;] can
be substituted for these conditional mean functions and the outer expectation replaced with a sum (as in

Heckman, Ichimura, and Todd, 1998).

The somewhat niftier weighting approach to propensity-score estimation skips the cumbersome matching

step by exploiting the fact that the CIA implies £ {p‘f(i)} = FE[vq;] and E[(‘;_(;i(}?t)))] = E[Y¢;]. Therefore,
given a scheme for estimating p(X;), we can construct estimates of the average treatment effect from the

sample analog of

ElY1;, —Yo] = E[ —

(3.3.11)

This last expression is an estimand of the form suggested by Newey (1990) and Robins, Mark, and Newey
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(1992). We can similarly calculate the effect of treatment on the treated from the sample analog of:

(D; — p(X5))Y;

Blvu =volps =1 = B 5 5Py

(3.3.12)

The idea that you can correct for non-random sampling by weighting by the reciprocal of the probability of
selection dates back to Horvitz and Thompson (1952). Of course, to make this approach feasible, and for

the resulting estimates to be consistent, we need a consistent estimator for p(X;)

The Horvitz-Thompson version of the propensity-score approach is appealing since the estimator is essen-
tially automated, with no cumbersome matching required. The Horvitz-Thompson approach also highlights
the close link between propensity-score matching and regression, much as discussed for covariate matching
in section Consider again the regression estimand, g, for the population regression of v; on D,

controlling for a saturated model for covariates. This estimand can be written

. (3.3.13)

S — E[(D; — p(X;))Y]
R = 1—p(X;

Ep(X;)(1 = p(Xi))]

The two Horvitz-Thompson matching estimands and the regression estimand are all members of the class of

weighted average estimands considered by Hirano, Imbens, and Ridder (2003):

E {g (Xs) [pY()?) B (Zi(_lp_(;i)))} } (3.3.14)

where g(X;) is a known weighting function (To go from estimand to estimator, replace p(X;) with a consistent

estimator, and expectations with sums). For the average treatment effect, set g(X;) = 1; for the effect on

the treated, set g(X;) = fD(()éf)); and for regression set

p(X;)(1 - p(X;))

9% = B = o]

This similarity highlights once again the fact that regression and matching—including propensity score

matching—are not really different animals, at least not until we specify a model for the propensity score.

A big question here is how best to model and estimate p(X;), or how much smoothing or stratification to
use when estimating E[y;|p(X;),D;], especially if the covariates are continuous The regression analog of this
question is how to parametrize the control variables (e.g., polynomials or main effects and interaction terms
if the covariates are coded as discrete). The answer to this is inherently application-specific. A growing
empirical literature suggests that a Logit model for the propensity score with a few polynomial terms in
continuous covariates works well in practice, though this cannot be a theorem (see, e.g., Dehejia and Wahba,

1999).

A developing theoretical literature has produced some thought-provoking theorems on efficient use of the
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propensity score. First, from the point of view of asymptotic efficiency, there is usually a cost to matching
on the propensity score instead of full covariate matching. We can get lower asymptotic standard errors by
matching on any covariate that explains outcomes, whether or not it turns up in the propensity score. This
we know from Hahn’s (1998) investigation of the maximal precision that it is possible to obtain for estimates
of treatment effects under the CIA, with and without knowledge of the propensity score. For example, in
Angrist (1998), there is an efficiency gain from matching on year of birth, even if the probability of serving in
the military is unrelated to birth year, because earnings are related to birth year. A regression analog for this
point is the result that even in a scenario with no omitted variables bias, the long regression generates more
precise estimates of the coefficients on the variables included in a short regression whenever these variables

have some predictive power for outcomes because these covariates lead to a smaller residual variance (see
Section [3.1.3)).

Hahn’s (1998) results raise the question of why we should ever bother with estimators that use the
propensity score. A philosophical argument is that the propensity score rightly focuses researcher attention on
models for treatment assignment, something about which we may have reasonably good information, instead
of the typically more complex and mysterious process determining outcomes. This view seems especially
compelling when treatment assignment is the outcome of human institutions or government regulations
while the process determining outcomes is more anonymous (e.g., a market). For example, in a time series
evaluation of the causal effects of monetary policy, Angrist and Kuersteiner (2004) argue that we know
more about how the Federal Reserve sets interests rates than about the process determining GDP. In the
same spirit, it may also be easier to validate a model for treatment assignment than to validate a model for

outcomes (see, e.g., Rosenbaum and Rubin, 1985, for a version of this argument).

A more precise though purely statistical argument for using the propensity score is laid out in Angrist
and Hahn (2004). This paper shows that even though there is no asymptotic efficiency gain from the use
of estimators based on the propensity score, there will often be a gain in precision in finite samples. Since
all real data sets are finite, this result is empirically relevant. Intuitively, if the covariates omitted from the
propensity score explain little of the variation in outcomes (in a purely statistical sense), it may then be
better to ignore them than to bear the statistical burden imposed by the need to estimate their effects. This
is easy to see in studies using data sets such as the NLSY where there are hundreds of covariates that might
predict outcomes. In practice, we focus on a small subset of all possible covariates. This subset is chosen

with an eye to what predicts treatment as well as outcomes.

Finally, Hirano, Imbens, and Ridder (2003) provide an alternative asymptotic resolution of the “propen-
sity score paradox” generated by Hahn’s (1998) theorems. They show that even though estimates of treat-
ment effects based on a known propensity score are inefficient, for models with continuous covariates, a
Horvitz-Thompson-type weighting estimator is efficient when weighting uses a non-parametric estimate of

the score. The fact that the propensity score is estimated and the fact that it is estimated non-parametrically
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are both key for the Hirano, Imbens, and Ridder conclusions.

Do the Hirano, Imbens, and Ridder (2003) results resolve the propensity-score paradox? For the moment,
we prefer the finite-sample resolution given by Angrist and Hahn (2004). Their results highlight the fact that
it is the researchers’ willingness to impose some restrictions on the score which gives propensity-score-based
inference its conceptual and statistical power. In Angrist (1998), for example, an application with high-
dimensional though discrete covariates, the unrestricted non-parametric estimator of the score is just the

empirical probability of treatment in each covariate cell. With this nonparametric estimator plugged in for

p(X;), it’s straightforward to show that the sample analogs of (3.3.11]) and (3.3.12)) are algebraically equivalent

to the corresponding full-covariate matching estimators. Hence, it’s no surprise that score-based estimation
comes out efficient, since full-covariate matching is the asymptotically efficient benchmark. An essential
element of propensity score methods is the use of prior knowledge for dimension reduction. The statistical
payoff is an improvement in finite-sample behavior. If you’re not prepared to smooth, restrict, or otherwise
reduce the dimensionality of the matching problem in a manner that has real empirical consequences, then

you might as well go for full covariate matching or saturated regression control.

3.3.3 Propensity-Score Methods vs. Regression

Propensity-score methods shift attention from the estimation of E[y;|X;,D;] to the estimation of the propen-
sity score, p(X;) = E[D;|X;]. This is attractive in applications where the latter is easier to model or
motivate. For example, Ashenfelter (1978) showed that participants in government-funded training pro-
grams often have suffered a marked pre-program dip in earnings, a pattern found in many later studies. If
this dip is the only thing that makes trainees special, then we can estimate the causal effect of training on
earnings by controlling for past earnings dynamics. In practice, however, it’s hard to match on earnings
dynamics since earnings histories are both continuous and multi-dimensional. Dehejia and Wahba (1999)
argue in this context that the causal effects of training programs are better estimated by conditioning on
the propensity score than by conditioning on the earnings histories themselves.

The propensity-score estimates reported by Dehejia and Wahba are remarkably close to the estimates
from a randomized trial that constitute their benchmark. Nevertheless, we believe regression should be the
starting point for most empirical projects. This is not a theorem; undoubtedly, there are circumstances
where propensity score matching provides more reliable estimates of average causal effects. The first reason
we don’t find ourselves on the propensity-score bandwagon is practical: there are many details to be filled in
when implementing propensity-score matching - such as how to model the score and how to do inference -
these details are not yet standardized. Different researchers might therefore reach very different conclusions,
even when using the same data and covariates. Moreover, as we’ve seen with the Horvitz-Thompson
estimands, there isn’t very much theoretical daylight between regression and propensity-score weighting. If

the regression model for covariates is fairly flexible, say, close to saturated, regression can be seen as a type
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of propensity-score weighting, so the difference is mostly in the implementation. In practice you may be far
from saturation, but with the right covariates this shouldn’t matter.

The face-off between regression and propensity-score matching is illustrated here using the same National
Supported Work (NSW) sample featured in Dehejia and Wahba (1999)@ The NSW is a mid-1970s program
that provided work experience to a sample with weak labor-force attachment. Somewhat unusually for it’s
time, the NSW was evaluated in a randomized trial. Lalonde’s (1986) path-breaking analysis compared
the results from the NSW randomized study to econometric results using non-experimental control groups
drawn from the PSID and the CPS. He came away pessimistic because plausible non-experimental methods
generated a wide range of results, many of which were far from the experimental estimates. Moreover,
Lalonde argued, an objective investigator, not knowing the results of the randomized trial, would be unlikely
to pick the best econometric specifications and observational control groups.

In a striking second take on the Lalonde (1986) findings, Dehejia and Wahba (1999) found that they
could come close to the NSW experimental results by matching the NSW treatment group to observational
control groups selected using the propensity score. They demonstrated this using various comparison groups.
Following Dehejia and Wahba (1999), we look again at two of the CPS comparison groups, first, a largely
unselected sample (CPS-1) and then a narrower comparison group selected from the recently unemployed
(CPS-3).

Table m (a replication of Table 1 in Dehejia and Wahba, 1999) reports descriptive statistics for the
NSW treatment group, the randomly selected NSW control group, and our two observational control groups.
The NSW treatment group and the randomly selected NSW control groups are younger, less educated, more
likely to be nonwhite, and have much lower earnings than the general population represented by the CPS-1
sample. The CPS-3 sample matches the NSW treatment group more closely but still shows some differences,
particularly in terms of race and pre-program earnings.

Table [3.3.3| reports estimates of the NSW treatment effect. The dependent variable is annual earnings in
1978, a year or two after treatment. Rows of the table show results with alternative sets of controls: none;
all the demographic variables in Table lagged (1975) earnings; demographics plus lagged earnings;
demographics and two lags of earnings. All estimates are from regressions of 1978 earnings on a treatment
dummy plus controls (the raw treatment-control difference appears in the first row).

Estimates using the experimental control group, reported in column 1, are in the order of $1,600-1,800.
Not surprisingly, these estimates vary little across specifications. In contrast, the raw earnings gap between
NSW participants and the CPS-1 sample, reported in column 2, is roughly $-8,500, suggesting this comparison
is heavily contaminated by selection bias. The addition of demographic controls and lagged earnings narrows

the gap considerably; the estimated treatment effect reaches (positive) $800 in the last row. The results

25 An similar but more extended propensity-score face-off appears in the exchange beween Smith and Todd (2005) and Dehejia

(2005).
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are even better in column 3, which uses the narrower CPS-3 comparison group. The characteristics of this
group are much closer to the those of NSW participants; consistent with this, the raw earnings difference
is only $-635. The fully-controlled estimate, reported in the last row, is close to $1,400, not far from the

experimental treatment effect.

A drawback of the process taking us from CPS-1 to CPS-3 is the ad hoc nature of the rules used to
construct the smaller and more carefully-selected CPS-3 comparison group. The CPS-3 selection criteria
can be motivated by the NSW program rules, which favor individuals with low earnings and weak labor-force
attachment, but in practice, there are many ways to implement this. We’d therefore like a more systematic
approach to pre-screening. In a recent paper, Crump, Hotz, Imbens and Mitnik (2006) suggest that the
propensity score be used for systematic sample-selection as a precursor to regression estimation. This

contrasts with our earlier discussion of the propensity score as the basis for an estimator.

We implemented the Crump, et al. (2006) suggestion by first estimating the propensity score on a
pooled NSW-treatment and observational-comparison sample, and then picking only those observations
with 0.1 < p(X;) < 0.9. In other words, the estimation sample is limited to observations with a predicted
probability of treatment equal to at least 10 percent, but no more than 90 percent. This ensures that
regressions are estimated with a sample including only covariate cells with there are at least a few treated
and control observations. Estimation using screened samples therefore requires no extrapolation to cells
without "common support", i.e. to cells where there is no overlap in the covariate distribution between
treatment and controls. Descriptive statistics for samples screened on the score (estimated using the full
set of covariates listed in the table) appear in the last two columns of Table m The covariate means in
screened CPS-1 and CPS-3 are much closer to the NSW means in column 1 than are the covariate means

from unscreened samples.

We explored the common-support screener further using alternative sets of covariates, but with the same
covariates used for both screening and the estimation of treatment effects at each iteration. The resulting
estimates are displayed in the final two columns of Table Controlling for demographic variables or
lagged earnings alone, these results differ little from those in columns 2-3. With both demographic variables
and a single lag of earnings as controls, however, the screened CPS-1 estimates are quite a bit closer to the
experimental estimates than are the unscreened results. Screened CPS-1 estimates with two lags of earnings
remain close to the experimental benchmark. On the other hand, the common-support screener improves

the CPS-3 results only slightly with a single lag of earnings and seems to be a step backward with two.

This investigation boosts our (already strong) faith in regression. Regression control for covariates does
a good job of eliminating selection bias in the CPS-1 sample in spite of a huge baseline gap. Restricting
the sample using our knowledge of program admissions criteria yields even better regression estimates with
CPS-3, about as good as Dehejia and Wahba’s (1999) propensity score matching results with two lags of

earnings. Systematic pre-screening to enforce common support seems like a useful adjunct to regression



66 CHAPTER 3. MAKING REGRESSION MAKE SENSE

estimation with CPS-1, a large and coarsely-selected initial sample. The estimates in screened CPS-1 are
as good as unscreened CPS-3. We note, however, that the standard errors for estimates using propensity-
score-screened samples have not been adjusted to reflect sampling variance in our estimates of the score.
An advantage of pre-screening using prior information, as in the step from CPS-1 to CPS-3, is that no such

adjustment is necessary.

3.4 Regression Details

3.4.1 Weighting Regression

Few things are as confusing to applied researchers as the role of sample weights. Even now, 20 years post-
Ph.D., we read the section of the Stata manual on weighting with some dismay. Weights can be used in a
number of ways, and how they are used may well matter for your results. Regrettably, however, the case for
or against weighting is often less than clear-cut, as are the specifics of how the weights should be programmed.
A detailed discussion of weighting pros and cons is beyond the scope of this book. See Pfefferman (1993)
and Deaton (1997) for two perspectives. In this brief subsection, we provide a few guidelines and a rationale
for our approach to weighting.

A simple rule of thumb for weighting regression is use weights when they make it more likely that the
regression you are estimating is close to the population target you are trying to estimate. If, for example, the
target (or estimand) is the population regression function, and the sample to be used for estimation is non-
random with sampling weights, w;, equal to the inverse probability of sampling observation 4, then it makes
sense to use weighted least squares, weighting by w; (for this you can use Stata pweights or a SAS WEIGHT
statement). Weighting by the inverse sampling probability generates estimates that are consistent for the
population regression function even if the sample you have to work with is not a simple random sample.

A related weighting scenario is grouped data. Suppose that you would like to regress Y; on X; in
a random sample, presumably because you want to learn about the population regression vector § =
E[X;X!]7'E[X;Y;]. Instead of a random sample, however, you have data grouped at the level of X;.
That is, you have estimates of E[v;|X; = z] for each z, estimated using data from a random sample. Let
this average be denoted §,, and suppose you also know n,, where n, /N is the relative frequency of z in the
underlying random sample. As we saw in Section the regression of g, on z, weighted by n, is the
same as the random-sample regression. Therefore, if your goal is to get back to the microdata regression,
it makes sense to weight by group size. We note, however, that macroeconomists, accustomed to working
with published averages and ignoring the underlying microdata, might disagree, or perhaps take the point
in principle but remain disinclined to buck tradition in their discipline, which favors the unweighted analysis
of aggregates.

If, on the other hand, the rationale for weighting has something to do with heteroskedasticity, as in many
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Table 3.3.3: Regression estimates of NSW training effects using alternate controls

CHAPTER 3. MAKING REGRESSION MAKE SENSE

Full Samples P-Score Screened Samples
Specification NSW CPS-1 CPS-3 CPS-1 CPS-3
(1) (2) 3) (4) ()
1,794 -8,498  -635
Raw Difference (633) (712)  (657)
1,670 -3,437 771 -3,361 890
Demographic controls (639) (710)  (837) (811) (884)
[139/497) [154/154]
1,750 -78 91 1o 166
1975 Earnings (632) (537)  (641) obs. (644)
[0/0] [183/427]
1,636 623 1,010 1,201 1,050
Demographics, 1975 Earnings (638)  (558)  (822) (722) (861)
[149/357] [157/162]
1,676 794 1,369 1,362 649
Demographics, 1974 and 1975 Earnings  (639)  (548)  (809) (708) (853)
[151/352] [147/157]

68

Notes: The table reports regression estimates of training effects using the Dehejia-Wahba (1999)
data with alternative sets of controls. The demographic controls are age, years of schooling, and

dummies for Black, Hispanic, high school dropout, and married.

Standard Errors are reported in parentheses, Observation counts are reported in brackets [treated/control]
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textbook discussions of weighting, we are even less sympathetic to weighting than the macroeconomists.
The argument for weighting under heteroskedasticity goes roughly like this: suppose you are interested in a
linear CEF, E[v;|X;] =X!8. The error term, defined as e; =v; -X}3, may be heteroskedastic. That is, the
conditional variance function, E[e?|X;] need not be constant. In this case, while the population regression
function is still equal to E[X;X}] 1 E[X;Y,], the sample analog is inefficient. A more precise estimator of the
linear CEF is weighted least squares, i.e., minimize the sum of squared errors weighted by an estimate of
Ele?|X;]7 L.

As noted in Section [3.1.3] an inherently heteroskedastic scenario is the LPM, where Y; is a dummy
variable. Assuming the CEF is in fact linear, as it will be if the model is saturated, then P [v; = 1|X;] =X/
and therefore F [612|XJ =X!p (1 — Xgﬁ), which is obviously a function of X;. This is an example of model-
based heteroskedasticity where in principle, the conditional variance function is easily constructed from
estimates of the underlying regression function. The efficient weighted least squares estimator—a special
case of generalized least squares (GLS)—is to weight by [X;3(1 —X}8)] In practice, because the CEF
has been assumed to be linear, these weights can be estimated in a first pass by OLS.

There are two reason why we prefer not to weight in this case (though we would use a heteroskedasticity-
consistent covariance matrix). First, in practice, the estimate of E[e?|X;] may not be very good. If the
conditional variance model is a poor approximation and/or the estimates of it are very noisy (in the LPM,
this might mean the CEF is not really linear), weighted least squares estimates may have worse finite-sample
properties than unweighted estimates. The inferences you draw based on asymptotic theory may therefore
be misleading, and the hoped for efficiency gain may not materializ@ Second, if the CEF is not linear, the
weighted least squares estimator is no more likely to estimate the CEF than is the unweighted estimator.
Moreover, the unweighted estimator still estimates something easy to interpret: it estimates the MMSE
linear approximation to the population CEF.

Of course, the GLS estimator also provides some sort of approximation, but the nature of this approxi-
mation depends on the weights. At a minimum, this makes it harder to compare your results to estimates
by other researchers, and opens up additional avenues for specification searches when results depend on
weighting. Finally, an old caution comes to mind: “if it ain’t broke, don’t fix it.” The interpretation of the
population regression vector is unaffected by heteroskedasticity, so why worry about it? Any efficiency gain
from weighting is likely to be modest, and incorrect or poorly estimated weights can do more harm than

good.

3.4.2 Limited Dependent Variables and Marginal Effects

Many empirical studies involve variables that take on only a limited number of values. An example is the

Angrist and Evans (1998) investigation of the effect of childbearing on female labor supply, discussed in

26 Altonji and Segal (1996) discuss this point in a generalized method-of-moments context.
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Section [3.4.2] in this chapter and in the chapter on instrumental variables, below. This study is concerned
with the causal effects of childbearing on parents’ work and earnings. Because childbearing is likely to
be correlated with potential earnings, the study reports instrumental variables estimates based on sibling-
sex composition and multiple births, as well as OLS estimates. Almost every outcome in this study is
either binary (like employment status) or non-negative (like hours worked, weeks worked, and earnings).
Should the fact that a dependent variable is limited affect empirical practice? Many econometrics textbooks
argue that, while OLS is fine for continuous dependent variables, when the outcome of interest is a limited
dependent variable (LDV), linear regression models are inappropriate and nonlinear models such as Probit
and Tobit are preferred. In contrast, our view of regression as inheriting its legitimacy from the CEF makes

LDVness seem less central.

As always, a useful benchmark is a randomized experiment, where regression is simply a treatment-control
difference. Consider regressions of various outcome variables on a randomly assigned regressor that indicates
one of the treatment groups in the Rand Health Insurance Experiment (HIE; Manning, et al, 1987). In this
ambitious experiment, probably the most expensive in American social science, the Rand Corporation set
up a small health insurance company that charged no premium. Nearly 6,000 participants in the study were

randomly assigned to health insurance plans with different features.

One of the most important features of any insurance plan is the portion of health care costs the insured
individual is expected to pay. The HIE randomly assigned individuals to many different plans. One plan
provided entirely free care, while the others included various combinations of co-payments, expenditure caps,
and deductibles so that patients covered some of their health care costs out-of-pocket. The main purpose
of the experiment was to learn whether the use of medical care is sensitive to cost and, if so, whether this
affects health. The HIE results showed that those offered free or low-cost medical care used more of it,
but they were not, for the most part, any healthier as a result. These findings helped pave the way for

cost-sensitive health insurance plans and managed care.

Most of the outcomes in the HIE are LDVs. These include dummies indicating whether an experimental
subject incurred any medical expenditures or was hospitalized in a given year and non-negative outcomes
such as the number of face-to-face doctor visits and gross annual medical expenses (whether paid by patient
or insurer). The expenditure variable is zero for about 20 percent of the sample. Results for two of the HIE
treatment groups are reproduced in Table [3.4.1] derived from the estimates reported in Table 2 of Manning,
et al. (1987). Table shows average outcomes in the free care and individual deductible groups. The
latter group faced a deductible of $150 per person or $450 per family per year for outpatient care, after
which all costs were covered (There was no charge for inpatient care). The overall sample size in these two

groups was a little over 3,000.

To simplify the LDV discussion, suppose that the comparison between free care and deductible plans is
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Table 3.4.1: Average outcomes in two of the HIE treatment groups

Outpatient Prob. Any Prob. Any Total

Face-to- Expenses  Admis- Medical Inpatient  Expenses

Plan face visits (198489) sions (%) (%) (19848)
Free 4.55 340 128 86.8 10.3 749
(.168) (10.9) (.0070) (.817) (.45) (39)
Individual 3.02 235 115 72.3 9.6 608
Deductible (.171) (11.9) (.0076) (1.54) (.55) (46)
Deductible -1.53 -105 -0.013 -14.5 -0.7 -141
minus free (.240) (16.1) (.0103) (1.74) (.71) (60)

Notes: Adapted from Manning (1987), Table 2. All standard errors (shown
in parentheses) are corrected for intertemporal and intrafamily correlations.
Amounts are in June 1984 dollars. Visits are face-to-face contacts with MD,
DO, or other health providers; excludes visits only for radiology, anesthesiology
or pathology services. Visits and expenses exclude dental care and outpatient

psychotherapy.

the only comparison of interest and that treatment was determined by simple random assignmentm Let
D; = 1 denote assignment to the deductible group. By virtue of random assignment, the difference in means
between those with D; = 1 and D; = 0 identifies the effect of treatment on the treated. As in our earlier

discussion of experiments (Chapter [2)):

E [Y1i|Di = 1] —F [YOi‘Di = 1]

= ElYu—Yo)

because D; is independent of potential outcomes. Also, as before, E[v;|D; = 1] — E [v;|D; = 0] is the slope

coefficient in a regression of Y; on D;.

Equation ([3.4.1]) suggests that the estimation of causal effects in experiments presents no special challenges
whether Y; is binary, non-negative, or continuously distributed. The interpretation of the right-hand side
changes for different sorts of dependent variables, but you do not need to do anything special to get the

average causal effect. For example, one of the HIE outcomes is a dummy denoting any medical expenditure.

27The HIE was considerably more complicated than described here. There were 14 different treatments, including assignment
to a prepaid HMO-like service. The experimental design did not use simple random assignment, but rather a more complicated

assignment scheme meant to ensure covariate balance acrosss groups.
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Since the outcome here is a Bernoulli trial, we have

E[Yli — YOi} = E[YM} — E[YOi] = P[YM = 1] — P[YOi = 1} (342)

This relation might affect the language we use to describe the results but not the underlying calculation. In
the HIE, for example, comparisons across experimental groups, as on the left hand side of , show that
87 percent of those assigned to the free-care group used at least some care in a given year, while only 72
percent of those assigned to the deductible plan used care. The relatively modest $150 deductible therefore
had a marked effect on use of care. The difference between these two rates, —.15(s.e. = .017) is an estimate
of E[Y1;,—Yoi], where Y; is a dummy indicating any medical expenditure. Because the outcome here is a

dummy variable, the average causal effect is also a causal effect on usage rates or probabilities.

Recognizing that the outcome variable here is a probability, suppose instead that you use Probit to fit
the CEF in this case. No harm in trying! The Probit model is usually motivated by the assumption that

participation is determined by a latent variable, Y}, that satisfies

Y; = B+ B1bi — v, (3.4.3)

where v; is distributed N(0,02). Note that this variable cannot be actual medical expenditure since
expenditure is non-negative and therefore non-Normal, while Normally distributed variables are continuously

distributed on the Real line and can therefore be negative. Given the latent index model,

v; =1[y; > 0],

the CEF can be written

Bo + BiD;
Elvip;] = o[———],
o
where ®[-] is the Normal CDF. Therefore
0, = a0 Bot By By,
E[vi|p;] = @] > | +1{9®] . ] — 9| > |}D;.

This is a linear function of the regressor, D;, so the slope coefficient in the regression of Y; on D; is exactly
the difference in Probit fitted values, @[%Ui] - @[%‘)] Note, however, that the Probit Coefficients, %3 and
%I do not give us the size of effect of D; on participation until we feed them back into the Normal CDF

(though they do have the right sign).

One of the most important outcomes in the HIE is gross medical expenditure, in other words, health care
costs. Did subjects who faced a deductible use less care, as measured by the cost? In the HIE, the average

difference in expenditures between the deductible and free-care groups was —141 dollars (s.e. = 60), about
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19% of the expenditure level in the free-care group. This calculation suggests that making patients pay a
portion of costs reduces expenditures quite a bit, though the estimate is not very precise.

Because expenditure outcomes are non-negative random variables, and sometimes equal to zero, their
expectation can be written

E[Yi|Di] = E[Y”Yi > O,Di]P[Yi > O|DZ}
The difference in expenditure outcomes across treatment groups is
Elyip; =1] = E[vi|p; = 0] (3.4.4)

= E[Y¢|Yi >0,D; = 1]P[YZ‘ > OlDi = 1] _E[YilYi >0,D; = O]I:)[Yz > O‘Di = 0]

= {P [Yi > 0|D1 = 1] — P[Yz > 0|D1 = 0}}E [Yi|Yi > O,Di = 1]

participation effect
+{E [Yi|Yi > 07Di - ]-] - F [Yi|Yi > O;Di = 0]}P [Yi > O‘Dl — 0] .

COP effect

So the overall difference in average expenditure can be broken up into two parts: the difference in the
probability that expenditures are positive (often called a participation effect), and the difference in means
conditional on participation, a conditional-on-positive (COP) effect. Again, however, this has no special
implications for the estimation of causal effects; equation remains true: the regression of Y; on D;

gives the population average treatment effect for expenditures.

Good COP, Bad COP: Conditional-on-positive effects

Because the effect on a non-negative random variable like expenditure has two parts, some applied researchers
feel they should look at these parts separately. In fact, many use a "two-part model," where the first part
is an evaluation of effect on participation and the second part looks at the COP effects (see, e.g., Duan, et
al., 1983 and 1984 for such models applied to the HIE). The first part of raises no special issues,
because, as noted above, the fact that Y; is a dummy means only that average treatment effects are also
differences in probabilities. The problem with the two-part model is that the COP effects do not have a
causal interpretation, even in a randomized trial. This is exactly the same selection problem raised in
Section on bad control.

To analyze the COP effect further, write

Elyily; > 0,0; =1] — E[Y,]y; > 0,D; = 0] (3.4.5)

E [Y1i|Y1i > 0} - F [Y01|Y0i > 0]

E [Yli — YOi‘Yli > 0] + {E [Y0i|Y11‘ > 0] - F [YOilYOi > O]}

causal effect selection bias

This decomposition shows that the COP effect is composed of two terms: a causal effect for the subpopulation
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that uses medical care when it is free and the difference in Yo; between those who use medical care when it
is free and those who use medical care when they have to pay something. This second term is a form of

selection bias, though it is more subtle than the selection bias in Chapter

Here selection bias arises because the experiment changes the composition of the group with positive
expenditures. The Yy; > 0 population probably includes some low-cost users who would opt out of care
if they had to pay a deductible. In other words, it is larger and probably has lower costs on average than
the Y1; > 0 group. The selection bias term is therefore positive, with the result that COP effects are closer
to zero than the negative causal effect, E[Y1;—Yo;|Y1; > 0]. This is a version of the bad control problem
from Section [3.2.3} in a causal-effects setting, Y; > 0 is an outcome variable and therefore unkosher for

conditioning unless the treatment has no effect on the likelihood that Y; is positive.

One resolution of the non-causality of COP effects relies on censored regression models like Tobit. These
models postulate a latent expenditure outcome for nonparticipants (e.g., Hay and Olsen, 1984). A traditional

Tobit formulation for the expenditure problem stipulates that the observed Y; is generated by
v; = 1[y] > 0]y}

where Y7 is a Normally distributed latent expenditure variable that can take on negative values. Because
Y’ is not an LDV, Tobit proponents feel comfortable linking this to D; with a traditional linear model, say,
equation . In this case, 87 is the causal effect of D; on latent expenditure, Y;. This equation is defined
for everyone, whether v; is positive or not.  There is no COP-style selection problem if we are happy to
study effects on Y.

But we are not happy with effects on v;. The first problem is that "latent health care expenditure" is a
puzzling construct@ Health care expenditure really is zero for some people; this is not a statistical artifact
or due to some kind of censoring. So the notion of latent and potentially negative Y} is hard to grasp. There
is no data on Y} and there never will be. A second problem is that the link between the parameter 87 in
the latent model and causal effects on the observed outcome, Y;, turns on distributional assumptions about

the latent variable. To establish this link we evaluate the expectation of v; given D; to find

@ (3.4.6)

Blvind =2 |3+ vl 400 |

Bo + Bibi
o
where o is the standard deviation of v; (see, e.g. McDonald and Moffitt, 1980). This expression involves the

assumed Normality and homoskedasticity of v; and the assumption that v; can be represented as 1[y} > 0]y},

as well as the latent coefficients.

28 A generalization of Tobit is the sample selection model, where the latent variable determining participation is not the same
as the latent expenditure variable. See, e.g., Maddala (1983). The same conceptual problems related to the interpretation of

effects on latent variables arise in the sample selection model as with Tobit.
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The Tobit CEF provides us with an expression for a treatment effect on observed expenditure. Specifi-

cally,

Ely;p; =1] — E[y;|p; = 0] (3.4.7)
= (o[ B 5+ 14 00 [BEEL o [B0) 574 05 [ 2

g

| IS
—

a rather daunting expression. But since the only conditioning variable is a dummy variable, D;, none of this
is necessary for the estimation of E[y;|p; = 1] — E[v;|D; = 0]. The slope coefficient from an OLS regression
of Y; on D; recovers the CEF difference on the left hand side of (3.4.7) whether or not you adopt a Tobit

model to explain the underlying structure.

COP effects are sometimes motivated by a researcher’s sense that when the outcome distribution has a
mass point - that is, it piles up on particular values like zero - or a heavily skewed distribution, or both, then
an analysis of effects on averages misses something. Analyses of effects on averages indeed miss some things,
like changes in the probability of specific values, or a shift in quantiles away from the median. But why not
look at these distribution effects directly? A sensible alternative to COP effects looks directly at effects on
distributions or quantiles. Distribution outcomes include the likelihood that annual medical expenditures
exceed zero, 100 dollars, 200 dollars, and so on. This puts 1[y; > ¢| for different choices of ¢ on the left-hand
side of the regression of interest. Econometrically, these outcomes are all in the category of equation .
The idea of looking directly at distribution effects with linear probability models is illustrated by Angrist
(2001), in an analysis of the effects of childbearing on hours worked. Alternately, if quantiles provide a focal

point, we can use quantile regression to model them. Chapter [7] discusses this idea in detail.

Do Tobit-type latent-variable models ever make sense? Yes, if the data you are working with are truly
censored. True censoring means the latent variable has an empirical counterpart that is the outcome of
primary interest. A leading example from labor economics is CPS earnings data, which topcodes (censors)
very high values of earnings to protect respondent confidentiality. Typically, we’re interested in the causal
effect of schooling on earnings as it appears on respondents’ tax returns, not their CPS-topcoded earnings.
Chamberlain (1994) shows that in some years, CPS topcoding reduces the measured returns to schooling con-
siderably, and proposes an adjustment for censoring based on a Tobit-style adaptation of quantile regression.

The use of quantile regression to model censored data is also discussed in Chapter |ﬂ|§|

29We should note that our favorite regression example - a regression of log wages on schooling - may have a COP problem
since the sample of log wages naturally omits those with zero earnings. This leads to COP-style selection bias if education
affects the probability of working. In practice, therefore, we focus on samples of prime-age males where participation rates are

high and reasonably stable across schooling groups (e.g., white men aged 40-49 in Figure 3.1.1).
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Covariates lead to nonlinearity

True censoring as with the CPS topcode is rare, a fact that leaves limited scope for constructive applications
of Tobit-type models in applied work. At this point, however, we have to hedge a bit. Part of the neatness
in the discussion of experiments comes from the fact that E[Y;|D;] is necessarily a linear function of D; so
that regression and the CEF are one and the same. In fact, this CEF is linear for any function of Y;,
including the distribution indicators, 1[Y; > ¢|]. In practice, of course, the explanatory variable of interest
isn’t always a dummy, and there are usually additional covariates in the CEF, in which case, E[v;|X;,D;]
is almost certainly nonlinear for LDVs. Intuitively, as predicted means get close to the dependent variable
boundaries, say because some covariate cells are close to the boundaries, the derivatives of the CEF for LDVs
get smaller (think, for example, of the how the Normal CDF flattens at extreme values).

The upshot is that in LDV models with covariates, regression need not fit the CEF perfectly. It remains
true, however, that the underlying CEF has a causal interpretation if the CIA holds. And if the CEF has a
causal interpretation, it seems fair to say that regression has a causal interpretation as well, because it still

provides the MMSE approximation to the CEF. Moreover, if the model for covariates is saturated, then

regression also estimates a weighted average treatment effect similar to (3.3.1) and (3.3.3]). Likewise, if the

regressor of interest is multi-valued or continuous, we get a weighted average derivative, as described by the
formulas in subsection B.3.11

And yet, we don’t often have enough data for the saturated-covariate regression specification to be very
attractive. Regression will therefore miss some features of the CEF. For one thing, it may generate fitted
values outside the LDV boundaries. This fact bothers some researchers and has certainly generated a lot of
bad press for the linear probability model. One attractive feature of nonlinear models like Probit and Tobit
is that they produce CEFs that respect LDV boundaries. In particular, Probit fitted values are always
between zero and one, while Tobit fitted values are positive (this is not obvious from equation . We
might therefore prefer nonlinear models on simple curve-fitting grounds.

Point conceded. It’s important to emphasize, however, that the output from nonlinear models must be
converted into marginal effects to be useful. Marginal effects are the (average) changes in CEF implied by
a nonlinear model. Without marginal effects, it’s hard to talk about the impact on observed dependent
variables. Continuing to assume the regressor of interest is D;, population average marginal effects can be

constructed either by differencing
E{E[Yi|Xi,Di = 1] — E[Yi‘Xi,Di = O]},

or by differentiation: F {W} . Most people use derivatives when dealing with continuous or multi-

valued regressors as well.

How close do OLS regression estimates come to the marginal effects induced by a nonlinear model like
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Probit or Tobit? We first derive the marginal effects, and then show an empirical example. The Probit

CEF for a model with covariates is

! % N
Elvi|X;,p;] = ® [M} )

g

The average finite difference is therefore

£{o [w] 3 [“} b (3.4.8)

g g

In practice, this can also be approximated by the average derivative,
X8 + BiDi
E {q) {M} } (87 /o)
o

(Stata computes marginal effects both ways but defaults to (3.4.8) for dummy regressors).
Similarly, generalizing equation (3.4.6) to a model with covariates, we have

ag

X\ + fivs] + o0 | FLE AR

E[Yi|Xi,Di] = |:
for a non-negative LDV. Tobit marginal effects are almost always cast in terms of the average derivative,
which can be shown to be the surprisingly simple expression

E {¢, [W} } B, (3.4.9)

g

See, e.g., Wooldridge (2006). One immediate implication of is that the Tobit coefficient, 57 is always
too big relative to the effect of D; on v,. Intuitively, this is because - given the linear model for latent v
- the latent outcome always changes when D; switches on or off. But real v; need not change: for many
people, it’s zero either way.

Table compares regression and nonlinear marginal effects for a regression of female employment and
hours of work, both LDVs, on measures of fertility. The estimates were constructed using one of the 1980
Census samples used by Angrist and Evans (1998) This sample includes married women aged 21-35 with at
least two children. The childbearing variables consist of either a dummy indicating additional childbearing
beyond two, or the total number of births. The covariates include linear terms in mothers’ age, age at first
birth, race dummies (black and Hispanic), and mother’s education (dummies for high school graduates, some
college, and college graduates). The covariate model is not saturated, rather there are linear effects and no
interactions, so the underlying CEF in this example is surely nonlinear.

Probit marginal effects for the effect of a dummy variable indicating more than two children are indistin-

guishable from OLS estimates of the same relation. This can be seen in columns 2, 3, and 4 of Table |3.4.2
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the first row of which compares the estimates from different methods for the full 1980 sample. The OLS
estimate of the effect of a third child is -.162, while the corresponding Probit marginal effects are -.163 and
-.162. These were estimated using in the first case and
5] [E)n -
o o
in the second (hence, a marginal effect on the treated).

Tobit marginal effects for the relation between fertility and hours worked are also quite close to the
corresponding OLS estimates, though not indistinguishable. This can be seen in columns 5 and 6. Compare,
for example, the Tobit estimates of -6.56 and -5.87 with the OLS estimate of -5.92 in column 2. Although
one Tobit estimate is 10 percent larger in absolute value, this seems unlikely to be of substantive importance.
The remaining columns of the table compare OLS to marginal effects for an ordinal childbearing variable
instead of a dummy. These calculations all use derivatives to compute marginal effects (labeled MFX).
Here too, the OLS and nonlinear marginal effects estimates are similar for both Probit and Tobit.

It is sometimes said that Probit models can be expected to generated marginal effects close to OLS
when the fitted values are close to .5 because the nonlinear CEF is roughly linear in the middle. We
therefore replicated the comparison of OLS and marginal effects in a subsample with relatively high average
employment rates, non-white women over 30 who attended college and whose first birth was before age 20.
Although the average employment rate is 83 percent in this group, the OLS estimates and marginal effects

are again similar.
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The upshot of this discussion is that while a nonlinear model may fit the CEF for LDVs more closely than
a linear model, when it comes to marginal effects this probably matters little. This optimistic conclusion is
not a theorem, but as in the empirical example here, it seems to be fairly robustly true.

Why then, should we bother with nonlinear models and marginal effects? One answer is that the
marginal effects are easy enough to compute now that they are automated in packages like Stata. But
there are a number of decisions to make along the way (e.g., the weighting scheme, derivatives versus finite
differences) while OLS is standardized. Nonlinear life also promises to get considerably more complicated
when we start to think about IV and panel data. Finally, extra complexity comes into the inference step
as well, since we need standard errors for marginal effects. The principle of Occam’s razor advises, "Entities
should not be multiplied unnecessarily." In this spirit, we quote our former teacher, Angus Deaton (1997),

pondering the nonlinear regression function generated by Tobit-type models:

Absent knowledge of F [the distribution of the errors], this regression function does not even
identify the §’s [Tobit coefficients] - see Powell (1989) - but more fundamentally, we should ask
how it has come about that we have to deal with such an awkward, difficult, and non-robust

object.

3.4.3 Why is Regression Called Regression and What Does Regression-to-the-

mean Mean?

The term regression originates with Francis Galton’s (1886) study of height. Galton, who worked with
samples of roughly-normally-distributed data on parents and children, noted that the CEF of a child’s height
given his parents’ height is linear, with parameters given by the bivariate regression slope and intercept. Since
height is stationary (its distribution is not changing [much] over time), the bivariate regression slope is also
the correlation coefficient, i.e., between zero and one.

The single regressor in Galton’s set-up, x;, is average parent height and the dependent variable, Y;, is the
height the of adult children. The regression slope coefficient, as always, is 8; = %7 and the intercept

is a = E[y;] — 8, E[X;]. But because height is not changing across generations, the mean and variance of

Y; and z; are the same. Therefore,

5, = Cov(vs,x;)  Cov(Ygxy) p
! V() VV @)V ()
a = ENi|=5EX]=pl-05)=pl-p)
where p,, is the intergenerational correlation coefficient in height and p = E[v;] = E[X,] is population

average height. From this we get the linear CEF
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so the height of a child given his parents’ height is therefore a weighted average of his parents’ height and
the population average height. The child of tall parents will therefore not be as tall as they are, on average.
Likewise, for the short. To be specific, Pischke, who is 6’ 3", can expect his children to be tall, though not as
tall as he is. Thankfully, however, Angrist, who is 5’6", can expect his children to be taller than he is. Galton
called this property, "regression toward mediocrity in hereditary stature." Today, we call this "regression to

the mean."

Galton, who was Charles Darwin’s cousin, is also remembered for having founded the Eugenics Society,
dedicated to breeding better people. Indeed, his interest in regression came largely from this quest. We

conclude from this that the value of scientific ideas should not be judged by their author’s politics.

Galton does not seem to have shown much interest in multiple regression, our chief concern in this
chapter. Indeed, the regressions in Galton’s work are mechanical properties of distributions of stationary
random variables, almost identities, and certainly not causal. Galton, would have said so himself because he

objected to the Lamarckian idea (later promoted in Stalin’s Russia) that acquired traits could be inherited.

The idea that regression can be used for statistical control satisfyingly originates in an inquiry into the
determinants of poverty rates by George Udny Yule (1899). Yule, a statistician and student of Karl Pearson’s
(Pearson was Galton’s protégé) realized that Galton’s regression coefficient could be extended to multiple
variables by solving the least squares normal equations that had been derived long before by Legendre and
Gauss. Yule’s (1899) paper appears to be the first publication containing multivariate regression estimates.
His model links changes in poverty rates in an area to changes in the administration of the English Poor
Laws, while controlling for population growth and the age distribution in the area. He was particularly
interested in whether out-relief, the practice of providing income support for poor people without requiring
them to move to the poorhouse, did not itself contribute to higher poverty rates. This is a well-defined

causal question of a sort that still occupies us todaym

Finally, we note that the history of regression is beautifully detailed in the book by Steven Stigler (1986).
Stigler is a famous statistician at the University of Chicago, but not quite as famous as his father, the

economist and Nobel laureate, George Stigler.

3.5 Appendix: Derivation of the average derivative formula

Begin with the regression of Y; on s; :

Cou(Y;,S;) _ E[h(s:)(s: — E[si])]
V(s:) E[si(si — E[si])]

30Yule’s first applied paper on the poor laws was published in 1895 in the Economic Journal, where Pischke is proud to serve

as co-editor. The theory of multiple regression that goes along with this appears in Yule (1897).
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Let oo = . lim A (t). By the fundamental theorem of calculus, we have:

Si

h(Si) = k-0 +/ ' (t) dt.

—0oQ

Substituting for h(s;), the numerator becomes

+oo s
Elh(s:)(s: — Elsi])] = / / W (£) (s — Elsi])g(s)dtds

where g(s) is the density of s; at s. Reversing the order of integration, we have

—+oo

+oo
Elh(s:)(s: — B[s:])] = / W (1) / (s — Els))g(s)dsdt.

— 00

The inner integral is easily seen to be equal to p, = {E[s;|S; > t] — E[si|s; < t]}H{P(S; > t)[1 — P(s; > t)},
which is clearly non-negative. Setting S; =Y;, the denominator can similarly be shown to be the integral
of these weights. We therefore have a weighted average derivative representation of the bivariate regression
coefficient, %, equation in the text. A similar formula for a regression with covariates, X;, is

derived in the appendix to Angrist and Krueger (1999).



Chapter 4

Instrumental Variables in Action:

Sometimes You Get What You Need

Anything that happens, happens.
Anything that, in happening, causes something else to happen,
causes something else to happen.
Anything that, in happening,
causes itself to happen again, happens again.
It doesn’t necessarily do it in chronological order, though.

Douglas Adams, Mostly Harmless (1995)

Two things distinguish the discipline of Econometrics from our older sister field of Statistics. One is a lack
of shyness about causality. Causal inference has always been the name of the game in applied econometrics.
Statistician Paul Holland (1986) cautions that there can be “no causation without manipulation,” a maxim
that would seem to rule out causal inference from non-experimental data. Less thoughtful observers fall
back on the truism that “correlation is not causality.” Like most people who work with data for a living,
we believe that correlation can sometimes provide pretty good evidence of a causal relation, even when the
variable of interest has not been manipulated by a researcher or experimenter. F_]

The second thing that distinguishes us from most statisticians—and indeed most other social scientists—
is an arsenal of statistical tools that grew out of early econometric research on the problem of how to estimate
the parameters in a system of linear simultaneous equations. The most powerful weapon in this arsenal is
the method of Instrumental Variables (IV), the subject of this chapter. As it turns out, IV does more than

allow us to consistently estimate the parameters in a system of simultaneous equations, though it allows us

IRecent years have seen an increased willingness by statisticians to discuss statistical models for observational data in an

explicitly causal framework; see, for example, Freedman’s (2005) review.
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to do that as well.

Studying agricultural markets in the 1920s, the father and son research team of Phillip and Sewall
Wright were interested in a challenging problem of causal inference: how to estimate the slope of supply
and demand curves when observed data on prices and quantities are determined by the intersection of these
two curves. In other words, equilibrium prices and quantities—the only ones we get to observe—solve these
two stochastic equations at the same time. Upon which curve, therefore, does the observed scatterplot of
prices and quantities lie? The fact that population regression coefficients do not capture the slope of any
one equation in a set of simultaneous equations had been understood by Phillip Wright for some time. The
IV method, first laid out in Wright (1928), solves the statistical simultaneous equations problem by using
variables that appear in one equation to shift this equation and trace out the other. The variables that do
the shifting came to be known as instrumental variables (Reiersol, 1941).

In a separate line of inquiry, IV methods were pioneered to solve the problem of bias from measurement
error in regression model&ﬂ One of the most important results in the statistical theory of linear models is
that a regression coefficient is biased towards zero when the regressor of interest is measured with random
errors (to see why, imagine the regressor contains only random error; then it will be uncorrelated with the
dependent variable, and hence the regression of v; on this variable will be zero). Instrumental variables
methods can be used to eliminate this sort of bias.

Simultaneous equations models (SEMs) have been enormously important in the history of econometric
thought. At the same time, few of today’s most influential applied papers rely on an orthodox SEM frame-
work, though the technical language used to discuss IV still comes from this framework. Today, we are
more likely to find IV used to address measurement error problems than to estimate the parameters of an
SEM. Undoubtedly, however, the most important contemporary use of IV is to solve the problem of omitted
variables bias. IV solves the problem of missing or unknown control variables, much as a randomized trial

obviates the need for extensive controls in a regression

4.1 1TV and causality

We like to tell the IV story in two iterations, first in a restricted model with constant effects, then in
a framework with unrestricted heterogeneous potential outcomes, in which case causal effects must also be
heterogeneous. The introduction of heterogeneous effects enriches the interpretation of IV estimands, without
changing the mechanics of the core statistical methods we are most likely to use in practice (typically, two-

stage least squares). An initial focus on constant effects allows us to explain the mechanics of IV with a

2Key historical references here are Wald (1940) and Durbin (1954), both discussed below.
3See Angrist and Krueger (2001) for a brief exposition of the history and uses of IV; Stock and Trebbi (2003) for a detailed

account of the birth of IV; and Morgan (1990) for an extended history of econometric ideas, including the simultaneous equations

model.
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minimum of fuss.

To motivate the constant-effects setup as a framework for the causal link between schooling and wages,

suppose, as before, that potential outcomes can be written

Yo = fi(s),

and that

fi(s) =mo +m1s+mn,, (4.1.1)

as in the introduction to regression in Chapter [B] Also, as in the earlier discussion, imagine that there is a

vector of control variables, A;, called “ability”, that gives a selection-on-observables story:

n; = Ay + vi,

where ~ is again a vector of population regression coefficients, so that v; and A; are uncorrelated by con-
struction. For now, the variables A;, are assumed to be the only reason why 7, and s; are correlated, so
that

E[Si’(}i] =0.

In other words if A; were observed, we would be happy to include it in the regression of wages on schooling;

thereby producing a long regression that can be written

Y = a+ ps; + Ay + v;. (4.1.2)

Equation (4.1.2)) is a version of the linear causal model, (3.2.9). The error term in this equation is the
random part of potential outcomes, v;, left over after controlling for A;. This error term is uncorrelated with

schooling by assumption. If this assumption turns out to be correct, the population regression of v; on §;

and A; produces the coefficients in (4.1.2)).

The problem we initially want to tackle is how to estimate the long-regression coefficient, p, when A; is
unobserved. Instrumental variables methods can be used to accomplish this when the researcher has access
to a variable (the instrument, which we’ll call z;), that is correlated with the causal variable of interest, s;,
but uncorrelated with any other determinants of the dependent variable. Here, the phrase "uncorrelated
with any other determinants of the dependent variables" is like saying Cov(n,;,z;) = 0, or, equivalently, z;
is uncorrelated with both A; and v;. This statement is called an exclusion restriction since z; can be said
to be excluded from the causal model of interest. The exclusion restriction is a version of the conditional
independence assumption of the previous chapter, except that now it is the instrument which is independent

of potential outcomes, instead of schooling itself (the "conditional" in conditional independence enters into
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the discussion when we consider IV models with covariates).

Given the exclusion restriction, it follows from equation (4.1.2)) that

_ Cou(Yi,z;)  Cov(Yi,24) [V (2Z4)
- Cov(s;,7;) o Cov(s4,2i)/V(Zi)

P (4.1.3)

The second equality in is useful because it’s usually easier to think in terms of regression coefficients
than in terms of covariances. The coefficient of interest, p, is the ratio of the population regression of v; on z;
(the reduced form) to the population regression of s; on z; (the first stage). The IV estimator is the sample
analog of expression . Note that the IV estimand is predicated on the notion that the first stage is
not zero, but this is something you can check in the data. As a rule, if the first stage is only marginally
significantly different from zero, the resulting IV estimates are unlikely to be informative, a point we return

to later.

It’s worth recapping the assumptions needed for the ratio of covariances in to equal the casual
effect, p. First, the instrument must have a clear effect on s;. This is the first stage. Second, the only
reason for the relationship between Y; and z; is the first-stage. For the moment, we’re calling this second
assumption the exclusion restriction, though as we’ll see in the discussion of models with heterogeneous
effects, this assumption really has two parts: the first is the statement that the instrument is as good as
randomly assigned (i.e., independent of potential outcomes, conditional on covariates), while the second is

that the instrument has no effect on outcomes other than through the first-stage channel.

So where can you find an instrumental variable? Good instruments come from institutional knowledge
and your ideas about the processes determining the variable of interest. For example, the economic model
of education suggests that educational attainment is determined by comparing the costs and benefits of
alternative choices. Thus, one possible source of instruments for schooling is differences in costs due, say,
to loan policies or other subsidies that vary independently of ability or earnings potential. A second source
of variation in schooling is institutional constraints. A set of institutional constraints relevant for schooling
are compulsory schooling laws. Angrist and Krueger (1991) exploit the variation induced by compulsory

schooling in a paper that typifies the use of “natural experiments” to try to eliminate omitted variables bias

The starting point for the Angrist and Krueger (1991) quarter-of-birth strategy is the observation that
most states required students to enter school in the calendar year in which they turn 6. School start age is
therefore a function of date of birth. Specifically, those born late in the year are young for their grade. In
states with a December 31st birthday cutoff, children born in the fourth quarter enter school shortly before
they turn 6, while those born in the first quarter enter school at around age 6%. Furthermore, because
compulsory schooling laws typically require students to remain in school only until their 16th birthday, these
groups of students will be in different grades or through a given grade to different degree, when they reach

the legal dropout age. In essence, the combination of school start age policies and compulsory schooling laws
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creates a natural experiment in which children are compelled to attend school for different lengths of time
depending on their birthdays.

Angrist and Krueger looked at the relationship between educational attainment and quarter of birth
using US census data. Panel A of Figure (adapted from Angrist and Krueger, 2001) displays the
education-quarter-of-birth pattern for men in the 1980 Census who were born in the 1930s. The figure
clearly shows that men born earlier in the calendar year tend to have lower average schooling levels. Panel
A of Figure is a graphical representation of the first-stage. The first-stage in a general IV framework
is the regression of the causal variable of interest on covariates and the instrument(s). The plot summarizes
this regression because average schooling by year and quarter of birth is what you get for fitted values from
a regression of schooling on a full set of year-of-birth and quarter-of-birth dummies.

Panel B of Figure displays average earnings by quarter of birth for the same sample used to
construct panel A. This panel illustrates what econometricians call the “reduced form” relationship between
the instruments and the dependent variable. The reduced form is the regression of the dependent variable
on any covariates in the model and the instrument(s). Panel B shows that older cohorts tend to have higher
earnings, because earnings rise with work experience. The figure also shows that men born in early quarters
almost always earned less, on average, than those born later in the year, even after adjusting for year of
birth, which plays the role of an exogenous covariate in the Angrist and Krueger (1991) setup. Importantly,
this reduced-form relation parallels the quarter-of-birth pattern in schooling, suggesting the two patterns
are closely related. Because an individual’s date of birth is probably unrelated to his or her innate ability,
motivation, or family connections, it seems credible to assert that the only reason for the up-and-down
quarter-of-birth pattern in earnings is indeed the up-and-down quarter-of-birth pattern in schooling. This
is the critical assumption that drives the quarter-of-birth IV storyﬂ

A mathematical representation of the story told by Figure comes from the first-stage and reduced-

form regression equations, spelled out below:

Si

Ximio 4+ m112i + &y, (4.1.4a)

Y; = X,/L-ﬂ'go + 72175 +£2z (414b)

The parameter 717 in equation (4.1.4a) captures the first-stage effect of z; on s;, adjusting for covariates,

4Other explanations are possible, the most likely being some sort of family background effect associated with season of birth
(see, e.g., Bound, Jaeger, and Baker, 1995).  Weighing against the possibility of omitted family background effects is the
fact that the quarter of birth pattern in average schooling is much more pronounced at the schooling levels most affected by
compulsory attendance laws. Another possible concern is a pure age-at-entry effect which operates through channels other
than highest grade completed (e.g., achievement). The causal effect of age-at-entry on learning is difficult, if not impossible, to
separate from pure age effects, as noted in Chapter. A recent study by Elder and Lubotsky (2008) argues that the evolution
of putative age-at-entry effects over time is more consistent with effects due to age differences per se than to a within-school

learning advantage for older students.
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A. Average Education by Quarter of Birth (first stage)
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B. Average Weekly Wage by Quarter of Birth (reduced form)
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Figure 4.1.1: Graphical depiction of first stage and reduced form for IV estimates of the economic return to

schooling using quarter of birth (from Angrist and Krueger 1991).
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X;. The parameter 721 in equation captures the reduced-form effect of z; on Y;, adjusting for these
same covariates. In the language of the SEM, the dependent variables in these two equations are said to be
the endogenous variables (where they are determined jointly within the system) while the variables on the
right-hand side are said to be the exogenous variables (determined outside the system). The instruments, Z;,
are a subset of the exogenous variables. The exogenous variables that are not instruments are said to be
exogenous covariates. Although we're not estimating a traditional supply and demand system in this case,

these SEM variable labels are still widely used in empirical practice.

The covariate-adjusted IV estimator is the sample analog of the ratio ’;—’ﬂ To see this, note that the

denominators of the reduced-form and first-stage effects are the same. Hence, their ratio is

E _ COU(YZ‘, 21)
T11 COU(Si, 21)

; (4.1.5)

where Z; is the residual from a regression of z; on the exogenous covariates, X;. The right-hand side of
therefore swaps Z; for z; in the general IV formula, . Econometricians call the sample analog
of the left-hand side of equation an Indirect Least Squares (ILS) estimator of p in the causal model
with covariates,

Yi = a'X; + psi + 1, (4.1.6)

where 7, is the compound error term, A}y + viﬂ It’s easy to use equation (4.1.6) to confirm directly that
Cov(Y;, 2;) = pCou(s;, Z;) since Z; is uncorrelated with X; by construction and with n, by assumption. In
Angrist and Krueger (1991), the instrument, z;, is quarter of birth (or dummies indicating quarters of birth)

and the covariates are dummies for year of birth, state of birth, and race.

4.1.1 Two-Stage Least Squares

The reduced-form equation, (4.1.4b)), can be derived by substituting the first stage equation, (4.1.4a)), into
the causal relation of interest, (4.1.6)), which is also called a “structural equation” in simultaneous equations

language. We then have:

Y, = O[/Xi —+ P[X/ﬂflo + m11Z; + 511] + i (417)
= Xila+ pmio] + pruizi + [p€1; + 1]

I
= X;mao + m21%Z; + &y,

5For a direct proof that 1' equals p in l , use 1) to substitute for v; in %
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where mog = a + pmig, o1 = pm11, and &y; = p€y; + ; in equation (4.1.4b). Equation (4.1.7) again shows
why p = 72, Note also that a slight re-arrangement of 1' gives

11

Y; = O/Xl' —+ p[X;’iTlO + 7T11Zi] + 521-, (418)

where [Xim19 + 7112;] is the population fitted value from the first-stage regression of s; on X; and z,.
Because z; and X; are uncorrelated with the reduced-form error, &,,, the coefficient on [X}m19 + m112;] in
the population regression of v; on X; and [X}m19 + m117;] equals p.

In practice, of course, we almost always work with data from samples. Given a random sample, the

first-stage fitted values in the population are consistently estimated by
8; = X§Tt10 + T11Z4,

where 719 and 717 are OLS estimates from equation (4.1.4a]). The coefficient on §; in the regression of v;
on X; and §; is called the Two-Stage Least Squares (2SLS) estimator of p. In other words, 2SLS estimates

can be constructed by OLS estimation of the “second-stage equation,”
Y =a'X; 4 p3; + [n; + p(Si — 8i)), (4.1.9)

This is called 2SLS because it can be done in two steps, the first estimating §; using equation , and
the second estimating equation . The resulting estimator is consistent for p because (a) first-stage
estimates are consistent; and, (b) the covariates, X;, and instruments, z;, are uncorrelated with both 7, and
(S — §i).

The 2SLS name notwithstanding, we don’t usually construct 2SLS estimates in two-steps. For one thing,
the resulting standard errors are wrong, as we discuss later. Typically, we let specialized software routines
(such as are available in SAS or Stata) do the calculation for us. This gets the standard errors right and
helps to avoid other mistakes (see Section below).  Still, the fact that the 2SLS estimator can be
computed by a sequence of OLS regressions is one way to remember why it works. Intuitively, conditional
on covariates, 2SLS retains only the variation in S; that is generated by quasi-experimental variation, i.e.,

generated by the instrument, z;.

2SLS is a many-splendored thing. For one, it is an instrumental variables estimator: the 2SLS estimate

Cov(vi,3* . . . . .
f Cov0e8) rhere §* is the residual from a regression of & on X;. This
Cov(s;,57) %

i

of pin (4.1.9) is the sample analog o

follows from the multivariate regression anatomy formula and the fact that Cov(s;, §7) = V(§F). It is also

easy to show that, in a model with a single endogenous variable and a single instrument, the 2SLS estimator

is the same as the corresponding ILS estimatorﬂ

6Note that 8} = %Z;11, where Z; is the residual from a regression of z; on X;, so that the 25LS estimator is therefore the
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The link between 2SLS and IV warrants a bit more elaboration in the multi-instrument case. Assuming
each instrument captures the same causal effect (a strong assumption that is relaxed below), we might want
to combine these alternative IV estimates into a single more precise estimate. In models with multiple
instruments, 2SLS provides just such a linear combination by combining multiple instruments into a single
instrument. Suppose, for example, we have three instrumental variables, Z1;, Zo;, and Z3;. In the Angrist and
Krueger (1991) application, these are dummies for first, second, and third-quarter births. The first-stage
equation then becomes

S; = Xm0 + T1121i + 1222 + T13Z3i + &4, (4.1.10a)

while the 2SLS second stage is the same as , except that the fitted values are from instead of
(4.1.4a)). The IV interpretation of this 2SLS estimator is the same as before: the instrument is the residual
from a regression of first-stage fitted values on covariates. The exclusion restriction in this case is the claim
that all of the quarter of birth dummies in are uncorrelated with 7, in equation equation .
The results of 2SLS estimation of a schooling equation using three quarter-of-birth dummies, as well as
other interactions, are shown in Table which reports OLS and 2SLS estimates of models similar to
those estimated by Angrist and Krueger (1991). Each column in the table contains OLS and 2SLS estimates
of p from an equation like 7 estimated with different combinations of instruments and control variables.
The OLS estimate in column 1 is from a regression of log wages with no control variables, while the OLS
estimates in column 2 are from a model adding dummies for year of birth and state of birth as control

variables. In both cases, the estimated return to schooling is around .075.

[Cov(\;i,éi)}
Vﬁ(lzi) , is the OLS estimate of w21 in the reduced

sample analog of . But the sample analog of the numerator,

Cov(Y;,%;)
V(zi)
form, (4.1.4b)), while 711 is the OLS estimate of the first-stage effect, w11, in (4.1.4a). Hence, 2SLS with a single instrument is
ILS, i.e., the ratio of the reduced form-effect of the instrument to the corresponding first-stage effect where both the first-stage

and reduced-form include covariates.
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The first pair of IV estimates, reported in columns 3 and 4, are from models without controls. The
instrument used to construct the estimates in column 1 is a single dummy for first quarter births, while the
instruments used to construct the estimates in column 2 are a pair of dummies indicating first and second
quarter births. The standard error estimates range from .10 — .11. The results from models including year
of birth and state of birth dummies as control variables are similar, not surprisingly, since quarter of birth
is not closely related to either of these controls. Overall, the 2SLS estimates are mostly a bit larger than the
corresponding OLS estimates. This suggests that the observed associated between schooling and earnings is

not driven by omitted variables like ability and family background.

Column 7 in Table[£.1.1]shows the results of adding interaction terms to the instrument list. In particular,
each specification adds interaction with 9 dummies for year of birth (the sample includes cohorts born 1930-

39), for a total of 30 excluded instruments. The first stage equation becomes

S, = X;’/Tlo + M117Z1; + T12Z9; + T13Z3; (411013)

+ Y Bz + Y (BijZai)koy + Y (BijZsi) ks + &
i i i

where B;; is a dummy equal to one if individual ¢ was born in year j for j equal to 1931 — 39. The coeflicients
K1j, K2j, k3; are the corresponding year-of-birth interactions. These interaction terms capture differences in
the relation between quarter-of-birth and schooling across cohorts. The rationale for adding these interaction
terms is an increase in precision that comes from increasing the first-stage R?, which goes up because the
quarter of birth pattern in schooling differs across cohorts. In this example, the addition of interaction
terms to the instrument list leads to a modest gain in precision; the standard error declines from .0194 to

016101

The last 2SLS model reported in Table includes controls for linear and quadratic terms in age-in-
quarters in the list of covariates, X;. In other words, someone who was born in the first quarter of 1930 is
recorded as being 50 years old on census day (April 1), 1980, while someone born in the fourth quarter is
recorded as being 49.25 years old. This finely coded age variable, entered into the model with a linear and
quadratic term, provides a partial control for the fact that small differences age may be an omitted variable
that confounds the quarter-of-birth identification strategy. As long as the effects of age are similarly smooth,

the quadratic age-in-quarters model will pick them up.

This variation in the 2SLS set-up illustrates the inter-play between identification and estimation. For
the 2SLS procedure to work, there must be some variation in the first-stage fitted values conditional on
whatever control variables (covariates) are included in the model. If the first-stage fitted values are a linear

combination of the included covariates, then the 2SLS estimate simply does not exist. In equation (4.1.9) this

"This gain may not be without cost, as the use of many additional instruments opens up the possibility of increased bias,

an issue discussed in Chapter [8] below.
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is manifest by perfect multicollinearity. 2SLS estimates with quadratic age exist. But the variability “left
over” in the first-stage fitted values is reduced when the covariates include variables like age in quarters, that
are closely related to the instruments (quarter of birth dummies). Because this variability is the primary
determinant of 2SLS standard errors, the estimate in column 8 is markedly less precise than that in column

7, though it is still close to the corresponding OLS estimate.

Recap of IV and 2SLS Lingo

As we've seen, the endogenous variables are the dependent variable and the independent variable(s) to be
instrumented; in a simultaneous equations model, endogenous variables are determined by solving a system
of stochastic linear equations. To treat an independent variable as endogenous is to instrument it, i.e., to re-
place it with fitted values in the second stage of a 2SLS procedure. The independent endogenous variable in
the Angrist and Krueger (1991) study is schooling. The exogenous variables include the exogenous covariates
that are not instrumented and the instruments themselves. In a simultaneous equations model, exogenous
variables are determined outside the system. The exogenous covariates in the Angrist and Krueger (1991)
study are dummies for year of birth and state of birth. We think of exogenous covariates as controls. 2SLS
aficionados live in a world of mutually exclusive labels: in any empirical study involving instrumental vari-
ables, the random variables to be studied are either dependent variables, independent endogenous variables,
instrumental variables, or exogenous covariates. Sometimes we shorten this to: dependent and endogenous
variables, instruments and covariates (fudging the fact that the dependent variable is also endogenous in a

traditional SEM).

4.1.2 The Wald Estimator

The simplest IV estimator uses a single binary (0-1) instrument to estimate a model with one endogenous

regressor and no covariates. Without covariates, the causal regression model is

Y; =a+ ps; +n;, (4.1.11)

where 7, and S; may be correlated. Given the further simplification that z; is a dummy variable that equals

1 with probability p, we can easily show that

CO’U(YZ',ZZ') = {E[Yilzi = 1] — E[Yi|Zi = 0]}])(1 —p),

with an analogous formula for Couv(S;,z;). It therefore follows that

. E[Yi|Z7; = 1} — E[Yi‘Zi = 0]
a E[S”Zi = 1] — E[S”Zi = 0] '

(4.1.12)
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A direct route to this result uses (4.1.11)) and the fact that E[n,|z;] = 0, so we have
E[Yi|z;] = a + pElsi|z]. (4.1.13)

Solving this equation for p produces (4.1.12]).

Equation is the population analog of the landmark Wald (1940) estimator for a bivariate regres-
sion with mismeasured regressorsﬂ The Wald estimator is the sample analog of this expression. In our
context, the Wald formula provides an appealingly transparent implementation of the IV strategy for the
elimination of omitted variables bias. The principal claim that motivates IV estimation of causal effects is
that the only reason for any relation between the dependent variable and the instrument is the effect of the
instrument on the causal variable of interest. In the context of a binary instrument, it therefore seems nat-
ural to divide—or rescale—the reduced-form difference in means by the corresponding first-stage difference

in means.

The Angrist and Krueger (1991) study using quarter of birth to estimate the economic returns to schooling
shows the Wald estimator in action. Table displays the ingredients behind a Wald estimate constructed
using the 1980 census. The difference in earnings between men born in the first and second halves of the
year is -.01349 (s.e.=.00337), while the corresponding difference in schooling is -.1514. The ratio of these two
differences is a Wald estimate of the economic value of schooling in per-year terms. This comes out to be
.0891 (s.e.=.021). Not surprisingly, this estimate is not too different from the 2SLS estimates in Table
The reason we should expect the Wald and 2SLS estimates to be similar is that they are both constructed

from the same information: differences in earnings by season of birth.

The Angrist (1990) study of the effects of Vietnam-era military service on the earnings of veterans also
shows the Wald estimator in action. In the 1960s and early 1970s, young men were at risk of being drafted for
military service. Concerns about the fairness of US conscription policy led to the institution of a draft lottery
in 1970 that was used to determine priority for conscription. A promising instrumental variable for Vietnam
veteran status is therefore draft-eligibility, since this was determined by a lottery over birthdays. Specifically,
in each year from 1970 to 1972, random sequence numbers (RSNs) were randomly assigned to each birth date
in cohorts of 19-year-olds. Men with lottery numbers below an eligibility ceiling were eligible for the draft,
while men with numbers above the ceiling could not be drafted. In practice, many draft-eligible men were
still exempted from service for health or other reasons, while many men who were draft-exempt nevertheless

volunteered for service. So veteran status was not completely determined by randomized draft-eligibility,

8 As noted in the introduction to this chapter, measurement error in regressors tends to shrink regression coefficients towards
zero. To eliminate this bias, Wald (1940) suggested that the data be divided in a manner independent of the measurement
error, and the coefficient of interest estimated as a ratio of differences in means as in . Durbin (1954) showed that
Wald’s method of fitting straight lines is an IV estimator where the instrument is a dummy marking Wald’s division of the

data. Hausman (2001) provides an overview of econometric strategies for dealing with measurement error.
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Table 4.1.2: Wald estimates of the returns to schooling using quarter of birth instruments

(1) (2) (3)

Born in the 1st Born in the 3rd Difference

or 2nd quarter of or 4th quarter of (std. error)
year year (1)-(2)
In (weekly wage) 5.8916 5.9051 -0.01349
(0.00337)
Years of education 12.6881 12.8394 -0.1514
(0.0162)
Wald estimate of 0.0891
return to education (0.0210)
OLS estimate of 0.0703
return to education (0.0005)

Notes: Adapted from a re-analysis of Angrist and Krueger (1991) by Angrist and
Imbens (1995). The sample includes native-born men with positive earnings from
the 1930-39 birth cohorts in the 1980 Census 5 percent file. The sample size is

329,509.

but draft-eligibility provides a binary instrument highly correlated with Vietnam-era veteran status.

For white men who were at risk of being drafted in the 1970 draft lottery, draft-eligibility is clearly
associated with lower earnings in years after the lottery. This is documented in Table[4.1.3] which reports the
effect of randomized draft-eligibility status on average Social Security-taxable earnings in column 2. column
1 shows average annual earnings for purposes of comparison. For men born in 1950, there are significant
negative effects of eligibility status on earnings in 1971, when these men were mostly just beginning their
military service, and, perhaps more surprisingly, in 1981, ten years later. In contrast, there is no evidence
of an association between draft-eligibility status and earnings in 1969, the year the lottery drawing for men
born in 1950 was held but before anyone born in 1950 was actually drafted.

Because eligibility status was randomly assigned, the claim that the estimates in column 2 represent
the effect of draft-eligibility on earnings seems uncontroversial. The information required to go from draft-
eligibility effects to veteran-status effects is the denominator of the Wald estimator, which is the effect of
draft-eligibility on the probability of serving in the military. This information is reported in column 3 of
Table which shows that draft-eligible men were almost 16 percentage points more likely to have served
in the Vietnam era. The Wald estimate of the effect of military service on 1981 earnings, reported in column
4, amounts to about 15 percent of the mean. Effects were even larger in 1971 (in percentage terms), when
affected soldiers were still in the army.

An important feature of the Wald/IV estimator is that the identifying assumptions are easy to assess and
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Table 4.1.3: Wald estimates of the effects of military service on the earnings of white men born in 1950

Earnings Veteran Status Wald
Estimate of
Earnings year Mean  Eligibility Mean Eligibility Veteran
Effect Effect Effect

(1) (2) 3) (4) (5)

1981 16,461 -435.8 0.267 0.159 -2,741
(210.5) (0.040) (1,324)
1971 3,338 -325.9 -2050
(46.6) (293)
1969 2,299 2.0
(34.5)

Notes: Adapted from Angrist (1990), Tables 2 and 3. Standard errors are shown
in parentheses. Earnings data are from Social Security administrative records. Fig-
ures are in nominal dollars. Veteran status data are from the Survey of Program

Participation. There are about 13,500 individuals in the sample.

interpret. Suppose D; denotes Vietnam-era veteran status and z; indicates draft-eligibility. The fundamental
claim justifying our interpretation of the Wald estimator as capturing the causal effect of D; is that the only
reason why FE[v;|Z;] changes as 7; changes is the variation in F[D;|Z;]. A simple check on this is to look for
an association between z; and personal characteristics that should not be affected by D;, for example, age,
race, sex, or any other characteristic that was determined before D; was determined. Another useful check
is to look for an association between the instrument and outcomes in samples where there is no relationship
between D; and z;. If the only reason for draft-eligibility affects on earnings is veteran status, then draft-
eligibility effects on earnings should be zero in samples where draft-eligibility status is unrelated to veteran

status.

This idea is illustrated in the Angrist (1990) study of the draft lottery by looking at 1969 earnings,
an estimate repeated in the last row of Table It’s comforting that the draft-eligibility treatment
effect on 1969 earnings is zero since 1969 earnings predate the 1970 draft lottery. A second variation on
this idea looks at the cohort of men born in 1953. Although there was a lottery drawing which assigned
RSNs to the 1953 birth cohort in February of 1972, no one born in 1953 was actually drafted (the draft
officially ended in July of 1973). The first-stage relationship between draft-eligibility and veteran status for
men born in 1953 (defined using the 1952 lottery cutoff of 95) therefore shows only a small difference in
the probability of serving by eligibility status. Importantly, there is also no significant relationship between
earnings and draft-eligibility status for men born in 1953, a result that supports the claim that the only

reason for draft-eligibility effects is military service.
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We conclude the discussion of Wald estimators with a set of IV estimates of the effect of family size on
mothers’ employment and work. Like the schooling and military service studies, these estimates are used
for illustration elsewhere in the book. The relationship between fertility and labor supply has long been of
interest to labor economists, while the case for omitted variables bias in this context is clear: mothers with
weak labor force attachment or low earnings potential may be more likely to have children than mothers
with strong labor force attachment or high earnings potential. This makes the observed association between
family size and employment hard to interpret since mothers who have big families may have worked less
anyway. Angrist and Evans (1998) solve this omitted-variables problem using two instrumental variables,
both of which lend themselves to Wald-type estimation strategies.

The first Wald estimator uses multiple births, an identification strategy for the effects of family size
pioneered by Rosenzweig and Wolpin (1980). The twins instrument in Angrist and Evans (1998) is a
dummy for a multiple third birth in a sample of mothers with at least two children. The twins first-stage
is .625, an estimate reported in column 3 of Table [£.1.4] This means that 37.5 percent of mothers with
two or more children would have had a third birth anyway; a multiple third birth increases this proportion
to 1. The twins instrument rests on the idea that the occurrence of a multiple birth is essentially random,
unrelated to potential outcomes or demographic characteristics.

The second Wald estimator in Table [£.1.4] uses sibling sex composition, an instrument motivated by the
fact that American parents with two children are much more likely to have a third child if the first two
are same-sex than if the sex-composition is mixed. This is illustrated in column 5 of Table [f.1.4] which
shows that parents of same-sex sibling birth are 6.7 percentage points more likely to have a third birth (the
probability of a third birth among parents with a mixed-sex sibship is .38). The same-sex instrument is
based on the claim that sibling sex composition is essentially random and affects family labor supply solely
by increasing fertility.

Twins and sex-composition instruments both suggest that the birth of a third child has a large effect
on employment rates and on weeks and hours worked. Wald estimates using twins instruments show a
precisely-estimate employment reduction of about .08, while weeks worked fall by 3.8 and hours per week
fall by 3.4. These results, which appear in column 4 of Table are smaller in absolute value than the
corresponding OLS estimates reported in column 2. This suggests the latter are exaggerated by selection
bias. Interestingly, the Wald estimates constructed using a same-sex dummy, reported in column 6, are
larger than the twins estimates. The juxtaposition of twins and sex-composition instruments in Table
suggests that different instruments need not generate similar estimates of causal effects even if both are
valid. We expand on this important point in Section 4.4l For now, however, we stick with a constant-effects

framework.
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4.1.3 Grouped Data and 2SLS

The Wald estimator is the mother of all instrumental variables estimators because more complicated 2SLS
estimators can typically be constructed from an underlying set of Wald estimators. The link between Wald
and 2SLS is grouped-data: 2SLS using dummy instruments is the same thing as GLS on a set of group
means. GLS in turn can be understood as a linear combination of all the Wald estimators that can be
constructed from pairs of means. The generality of this link might appear to be limited by the presumption
that the instruments at hand are dummies. Not all instrumental variables are dummies, or even discrete,
but this is not really important. For one thing, many credible instruments can be thought of as defining
categories, such as quarter of birth. Moreover, instrumental variables that appear more continuous (such as
draft lottery numbers, which range from 1-365) can usually be grouped without much loss of information
(for example, a single dummy for draft-eligibility status, or dummies for groups of 25 lottery numbers)ﬂ
To explain the Wald/grouping/2SLS nexus more fully, we stick with the draft-lottery study. Earlier we
noted that draft-eligibility is a promising instrument for Vietnam-era veteran status. The draft-eligibility
ceilings were RSN 195 for men born in 1950, RSN 125 for men born in 1951, and RSN 95 for men born in
1952. In practice, however, there is a richer link between draft lottery numbers (which we’ll call r;, short
for RSN) and veteran status (D;) than draft-eligibility status alone. Although men with numbers above the
eligibility ceiling were not drafted, the ceiling was unknown in advance. Some men therefore volunteered
in the hope of serving under better terms and gaining some control over the timing of their service. The
pressure to become a draft-induced volunteer was high for men with low lottery numbers, but low for men
with high numbers. As a result, there is variation in P[D; = 1|R;] even for values strictly above or below the
draft-eligibility cutoff. For example, men born in 1950 with lottery numbers 200 — 225 were more likely to
serve than those with lottery numbers 226 — 250, though ultimately no one in either group was drafted.
The Wald estimator using draft-eligibility as an instrument for men born in 1950 compares the earnings
of men with R; < 195 to the earnings of men with R; > 195. But the previous discussion suggests the
possibility of many more comparisons, for example men with R; < 25 vs. men with R; € [26 — 50]; men
with R; € [51 — 75] vs. men with R; € [76 — 100], and so on, until these 25-number intervals are exhausted.
We might also make the intervals finer, comparing, say, men in 5-number or single-number intervals instead
of 25-number intervals. The result of this expansion in the set of comparisons is a set of Wald estimators.
These sets are complete in that the intervals partition the support of the underlying instrument, while the
individual estimators are linearly independent in the sense that their numerators are linearly independent.
Finally, each of these Wald estimators consistently estimates the same causal effect, assumed here to be
constant, as long as R; is independent of potential outcomes and correlated with veteran status (i.e., the

Wald denominators are not zero).

9 An exception is the classical measurement error model, where both the variable to be instrument and the instrument are

assumed to be continuous. Here, we have in mind IV scenarios involving omitted variables bias.
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The possibility of constructing multiple Wald estimators for the same causal effect naturally raises the
question of what to do with all of them. We would like to come up with a single estimate that somehow
combines the information in the individual Wald estimates efficiently. As it turns out, the most efficient
linear combination of a full set of linearly independent Wald estimates is produced by fitting a line through

the group means used to construct these estimates.

The grouped data estimator can be motivated directly as follows. Asin (4.1.11f), we work with a bivariate

constant-effects model, which in this case can be written
Y; =a+ pd; +1;, (4.1.14)

where p =Y1;—Yq; is the causal effect of interest and vo; = o + 1;. Because R; was randomly assigned and
lottery numbers are assumed to have no effect on earnings other than through veteran status, E[n;|Rr;] = 0.
It therefore follows that

E[vilR;] = o+ pP[D; = 1|Rr¢], (4.1.15)

since P[D; = 1|R;] = E[D;|R;]. In other words, the slope of the line connecting average earnings given lottery
number with the average probability of service by lottery number is equal to the effect of military service,
p. This is in spite of the fact that the regression Y; on D;,—in this case, the difference in means by veteran

status—almost certainly differs from p since Yo, and D; are likely to be correlated.

Equation suggests an estimation strategy based on fitting a line to the sample analog of E[v;|R;]
and P[D; = 1|Rr;]. Suppose that R; takes on values j = 1,...,J. In principle, j might run from 1 to 365, but
in Angrist (1990), lottery-number information was aggregated to 69 five-number intervals, plus a 70th for
numbers 346-365. We can therefore think of R; as running from 1 to 70. Let 7; and p; denote estimates of
E[v;[r; = j] and P[D; = 1|r; = j], while 7); denotes the average error in . Because sample moments

converge to population moments it follows that OLS estimates of p in the grouped equation
y; = a+ ppj + ; (4.1.16)

are consistent. In practice, however, GLS may be preferable since a grouped equation is heteroskedastic with
a known variance structure. The efficient GLS estimator for grouped data in a constant-effects linear model
is weighted least squares, weighted by the variance of 7); (see, e.g., Prais and Aitchison, 1954 or Wooldridge,

2

. . . . . . . . . . o .
2006). Assuming the microdata residual is homoskedastic with variance 0727, this variance is -, where n; is
J

the group size.

The GLS (or weighted least squares) estimator of p in equation (4.1.16|) is especially important in this
context for two reasons. First, the GLS slope estimate constructed from J grouped observations is an

asymptotically efficient linear combination of any full set of J—1 linearly independent Wald estimators
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(Angrist, 1991). This can be seen without any mathematics: GLS and any linear combination of pairwise
Wald estimators are both linear combinations of the grouped dependent variable. Moreover, GLS is the
asymptotically efficient linear estimator for grouped data. Therefore we can conclude that there is no better
(i.e., asymptotically more efficient) linear combination of Wald estimators than GLS (again, a maintained
assumption here is that p is constant). The formula for constructing the GLS estimator from a full set of
linearly independent Wald estimators appears in Angrist (1988).

Second, just as each Wald estimator is also an IV estimator, the GLS (weighted least squares) estimator
of equation is also 2SLS. The instruments in this case are a full set of dummies to indicate each
lottery-number cell. To see why, define the set of dummy instruments Z; = {r;; = 1[r; = j|;j =1,...J — 1}.
Now, consider the first stage regression of D; on Z; plus a constant. Since this first stage is saturated, the
fitted values will be the sample conditional means, p;, repeated n; times for each j. The second stage slope
estimate is therefore exactly the same as weighted least squares estimation of the grouped equation, 7
weighted by the cell size, n;.

The connection between grouped-data and 2SLS is of both conceptual and practical importance. On
the conceptual side, any 2SLS estimator using a set of dummy instruments can be understood as a linear
combination of all the Wald estimators generated by these instruments one at a time. The Wald estimator
in turn provides a simple framework used later in this chapter to interpret IV estimates in the much more
realistic world of heterogeneous potential outcomes.

Although not all instruments are inherently discrete and therefore immediately amenable to a Wald or
grouped-data interpretation, many are. Examples include the draft lottery number, quarter of birth, twins,
and sibling-sex composition instruments we’ve already discussed. See also the recent studies by Bennedsen,
et al., 2007, and Ananat and Michaels, 2008, both of which use dummies for male first births as instruments.
Moreover, instruments that have a continuous flavor can often be fruitfully turned into discrete variables. For
example, Angrist, Graddy and Imbens (2000) group continuous weather-based instruments into 3 dummy
variables, stormy, mized, and clear, which they then use to estimate the demand fish. This dummy-variable
parameterization seems to capture the main features of the relationship between weather conditions and the
price of ﬁshm

On the practical side, the grouped-data equivalent of 2SLS gives us a simple tool that can be used to
explain and evaluate any IV strategy. In the case of the draft lottery, for example, the grouped model
embodies the assumption that the only reason average earnings vary with lottery numbers is the variation in
probability of service across lottery-number groups. If the underlying causal relation is linear with constant
effects, then equation should fit the group means well, something we can assess by inspection and,

as discussed in the next section, with the machinery of formal statistical inference.

10 Continuous instruments recoded as dummies can be seen as providing a parsimonious non-parametric model for the under-
lying first-stage relation, E[D;|Z;]. In homoskedastic models with constant coefficients, the asymptotically efficient instrument

is E[D;|z;] (Newey, 1990).
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Sometimes labor economists refer to grouped-data plots for discrete instruments as Visual Instrumental
Variables (VIV)E An example appears in Angrist (1990), reproduced here as Figure This figure shows
the relationship between average earnings in 5-number RSN cells and the probability of service in these cells,
for the 1981-84 earnings of white men born 1950-53. The slope of the line through these points is an IV
estimate of the earnings loss due to military service, in this case about $2,400, not very different from the

Wald estimates discussed earlier but with a lower standard error (in this case, about $800).
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Figure 4.1.2: The relationship between average earnings and the probability of military service (from Angrist
1990). This is a VIV plot of average 1981-84 earnings by cohort and groups of five consecutive draft lottery
numbers against conditional probabilities of veteran status in the same cells. The sample includes white
men born 1950-53. Plotted points consist of average residuals (over four years of earnings) from regressions
on period and cohort effects. The slope of the least-squares regression line drawn through the points is

-2,384, with a standard error of 778.

4.2 Asymptotic 2SLS Inference

4.2.1 The Limiting Distribution of the 2SLS Coefficient Vector

We can derive the limiting distribution of the 2SLS coefficient vector using an argument similar to that used

/!
in Section [3.1.3|for OLS. In this case, let V; = [ X: 3 } denote the vector of regressors in the 2SLS second

11See, e.g., the preface to Borjas (2005).
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stage, equation (4.1.9)). The 2SLS estimator can then be written

Iasrs =

—1
Z‘/iYia
i

S

/
where I' = { o p ] is the corresponding coefficient vector. Note that

Tosrs = I+

Z Viln, + p(si — 8)]

v
S

'+

-1
S vin, (4.2.1)

where the second equality comes from the fact that the first-stage residuals, (s; — §;), are orthogonal to V;
in the sample. The limiting distribution of the 2SLS coefficient vector is therefore the limiting distribution
of [}, ViV ! >; Vin;. This quantity is a little harder to work with than the corresponding OLS quantity,
because the regressors in this case involve estimated fitted values, §;. A Slutsky-type argument shows,
however, that we get the same limiting distribution replacing estimated fitted values with the corresponding
population fitted values (i.e., replacing §; with [X}m10 + m11Z;]). It therefore follows that Issrs has an
asymptotically normal distribution, with probability limit I", and a covariance matrix estimated consistently
by >, A% RAHIN V;V/]"'. This is a sandwich formula like the one for OLS standard errors
(White, 1982). As with OLS, if n, is conditionally homoskedastic given covariates and instruments, the

: : : : N -1
consistent covariance matrix estimator simplifies to [y, V;V/]™ 2.

There is little new here, but there is one tricky point. It seems natural to construct 2SLS estimates
manually by first estimating the first stage and then plugging the fitted values into equation
and estimating this by OLS. That’s fine as far as the coeflicient estimates go, but the resulting standard errors
will be incorrect. Conventional regression software does not know that you are trying to construct a 2SLS
estimate. The residual variance estimator that goes into the standard formulas will therefore be incorrect.
When constructing standard errors, the software will estimate the residual variance of the equation you

estimate by OLS in the second stage:
Vi — [o'X + psi] = [n; + p(si — 8i)],

replacing the coefficients with the corresponding estimates. The correct residual variance estimator, however,

uses the original endogenous regressor to construct residuals and not the first-stage fitted values, §;. In

2

e and not

other words, the residual you want is Y; — [@'X; + pS;] = 7,, so as to consistently estimate o
n; + p(S; — §;). Although this problem is easy to fix (you can construct the appropriate residual variance

estimator in a separate calculation), software designed for 2SLS gets this right automatically, and may help
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you avoid other common 2SLS mistakes.

4.2.2 Over-identification and the 2SLS Minimand*

Constant-effects models with more instruments than endogenous regressors are said to be over-identified.
Because there are more instruments than needed to identify the parameters of interest, these models impose
a set of restrictions that can be evaluated as part of a process of specification testing. This process amounts
to asking whether the line plotted in a VIV-type picture fits the relevant conditional means tightly enough
given the precision with which the means are estimated. The details behind this useful idea are easiest to
spell out using matrix notation and a traditional linear model.

/
Let Z; = X; Z1i e Zoi ] denote the vector formed by concatenating the exogenous covariates and

/
Q instrumental variables and let W; = { X; S; ] denote the vector formed by concatenating the covariates
and the single endogenous variable of interest. In the quarter-of-birth paper, for example, the covariates are
year-of-birth and state-of-birth dummies, the instruments are quarter-of-birth dummies, and the endogenous
variable is schooling. The coefficient vector is still ' = [o, p]’, as in the previous subsection. The residuals

for the causal model can be defined as a function of I" using
nl(F) =Y; — F/Wi =Y; — [(X’Xi + pSi] .

This residual is assumed to be uncorrelated with the instrument vector, z,. In other words, n, satisfies the

orthogonality condition,

Elzin;(I')] = 0. (4.2.2)

In any sample, however, this equation will not hold exactly because there are more moment conditions than

there are elements of I'[?] The sample analog of (4.2.2) is the sum over i,

3 Zin, (1) = (D). (4.2:3)

2SLS can be understood as a generalized method of moments (GMM) estimator that chooses a value for I'
by making the sample analog of as close to zero as possible.

By the central limit theorem, the sample moment vector v Nm ~(T') has an asymptotic covariance matrix
equal to E[Z;Z!n,(T)?], a matrix we’ll call A. Although somewhat intimidating at first blush, this is just a
matrix of 4th moments, as in the sandwich formula used to construct robust standard errors, . As
shown by Hansen (1982), the optimal GMM estimator based on minimizes a quadratic form in the

sample moment vector, my (§), where § is a candidate estimator of I‘E The optimal weighting matrix in

I2With a single endogenous variable and more than one instrument, I' is [K+1] x 1, while Z; is [K+q] x 1 for > 1. Hence the

resulting linear system cannot be solved unless there is a linear dependency that makes some of the instruments redundant.
131Quadratic form" is matrix language for a weighted sum of squares. Suppose v is an N x 1 vector and M is an N x N
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the middle of the GMM quadratic form is A~'. In practice, of course, A, is unknown and must be estimated.
A feasible version of the GMM procedure uses a consistent estimator of A in the weighting matrix. Since
the estimator using known and estimated A have the same limiting distribution, we’ll ignore this distinction

for now. The quadratic form to be minimized can therefore be written,
In(g) = Nmn(9)'A™'mn(9), (4.2.4)

where the N-term out front comes from /N normalization of the sample moments. As shown immediately
below, when the residuals are conditionally homoskedastic, the minimizer of Jy(§) is the 2SLS estimator.
Without homoskedasticity, the GMM estimator that minimizes (4.2.4) is White’s (1982) Two-Stage IV (a

generalization of 2SLS) so that it makes sense to call Jx(§) the “2SLS minimand”.

Here are some of the details behind the GMM interpretation of 2SLSE Conditional homoskedasticity
means that

E(Z;Zin;,(V)?] = E[Z; Z{]o}.

Substituting for A~! and using Z,y and W to denote sample data vectors and matrices, the quadratic form

to be minimized becomes

In(9) = (Nop) ™' x (v = W) ZE[Z,Z])' Z' (v = W§). (4.2.5)

Finally, substituting the sample cross-product matrix [Z]/VZ } for E[Z;Z]], we have

In(9) = (1/03) x (v = W§)' Pz(y = W§),
where Py = Z(Z'Z)~'Z. From here, we get the solution
§=Tosps = [W'P,W]| W' Pyy.

Since the projection operator, Pz, produces fitted values, and Py is an idempotent matrix, this can be seen to
be the OLS estimator of the second-stage equation, , written in matrix notation. More generally, even
without homoskedasticity we can obtain a feasible efficient 2SLS-type estimator by minimizing and
using a consistent estimator of E[Z; Z/n;(§)?] to form Jy(g). Typically, we’d use the empirical fourth mo-
ments, » ZiZ{f]a where 7), is the regular 2SLS residual computed without worrying about heteroskedasticity

(see, White, 1982, for distribution theory and other details).

matrix. A quadratic form in v is v’ Mv. If M is a N x N diagonal matrix with diagonal elements m;, then v/ Mv = Zmlvf
i
14 Much more detailed explanations can be found in Newey (1985), Newey and West (1987), and the original Hansen (1982)

GMM paper.
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The over-identification test statistic is given by the minimized 2SLS minimand. Intuitively, this statistic
tells us whether the sample moment vector, my (), is close enough to zero for the assumption that F[Z;n,] =
0 to be plausible. In particular, under the null hypothesis that the residuals and instruments are indeed
orthogonal, the minimized Jy(§) has a x?(Q — 1) distribution. We can therefore compare the empirical
value of the 2SLS minimand with chi-square tables in a formal testing procedure for Hy : E[Z;n,] = 0.

For reasons that will soon become apparent, we’re not often interested in over-identification per se.
Our main interest is in the 2SLS minimand when the instruments are a full set of mutually exclusive
dummy variables, as for the Wald estimators and grouped-data estimation strategies discussed above. In
this important special case, the 2SLS becomes weighted least squares of a grouped equation like ,
while the 2SLS minimand is the relevant weighted sum of squares being minimized. To see this, note that
projection on a full set of mutually exclusive dummy variables for an instrument that takes on J values
produces an N x 1 vector of fitted values equal to the J conditional means at each value of the instrument
(included covariates are counted as instruments), each one of these n; times, where n; is the group size
and > n; = N. The cross product matrix [Z’Z] in this case is a JxJ diagonal matrix with elements n;.

Simplifying, we then have

In(§) = (1/o7) x an(zij —dW;)?, (4.2.6)

where W; is the sample mean of the rows of matrix W in group j. Thus, JIn (9) is the GLS weighted least
squares minimand for estimation of the grouped regression: 7; on W;. With a little bit more work (here we
skip the details), we can similarly show that the efficient Two-Step IV procedure without homoskedasticity
minimizes

In@) =) <n§> (7 — d'W;)*, (4.2.7)

g

where a? is the variance of n,; in group j. Estimation using is feasible because we can estimate 0? in
a first-step, say, using inefficient-but-still-consistent 2SLS that ignores heteroskedasticity. Efficient two-step
IV estimators are constructed in Angrist (1990, 1991).

The GLS structure of the 2SLS minimand allows us to see the over-identification test statistic for dummy
instruments as a simple measure of the goodness of fit of the line connecting 7; and W;. In other words, this
is the chi-square goodness of fit statistic for the line in a VIV plot like figure [£.1.2] The chi-square degrees
of freedom parameter is given by the difference between the number of values taken on by the instrument
and the number of parameters being estimated™}

Like the various paths leading to the 2SLS estimator, there are many roads to the test-statistic, 7
as well. Here are two further paths that are worth knowing. First, the test-statistic based on the general

GMM minimand for IV, whether the instruments are group dummies or not, is the same as the over-

151f, for example, the instrument takes on three values, one of which is assigned to the constant, and the model includes a

constant and a single the endogenous variable only, the test statistic has 1 degree of freedom.
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identification test statistic discussed in many widely-used econometric references on simultaneous equations
models. For example, this statistic features in Hausman’s (1983) chapter on simultaneous equations in
the Handbook of Econometrics, which also proposes a simple computational procedure: for homoskedastic

models, the minimized 2SLS minimand is the sample size times the R? from a regression of the 2SLS

7' Pz
']’

residuals on the instruments (and the included exogenous covariates). The formula for this is N [
where 7 =Yy —WTsrg is the vector of 2SLS residuals.

Second, it’s worth emphasizing that the essence of over-identification can be said to be “more than one
way to skin the same econometric cat.” In other words, given more than one instrument for the same causal
relation, we might consider constructing simple IV estimators one at a time and comparing them. This
comparison checks over-identification directly: If each just-identified estimator is consistent, the distance
between them should be small relative to sampling variance, and should shrink as the sample size and hence
the precision of these estimates increases. In fact, we might consider formally testing whether all possible
just-identified estimators are the same. The resulting test statistic is said to generate a Walcm test of this
null, while the test-statistic based on the 2SLS minimand is said to be a Lagrange Multiplier (LM) test
because it can be related to the score vector in a maximum likelihood version of the IV setup.

In the grouped-data version of IV, the Wald test amounts to a test of equality for the set of all possible
linearly independent Wald estimators. If, for example, lottery numbers are divided into 4 groups based on
various cohorts eligibility cutoffs (RSN 1-95, 96-125, 126-195, and the rest), then 3 linearly independent
Wald estimators can be constructed. Alternatively, the efficient grouped-data estimator can be constructed
by running GLS on these four conditional means. Four groups means there are 3 possible Wald estimators
and 2 non-redundant equality restrictions on these three; hence, the relevant Wald statistic has 2 degrees of
freedom. On the other hand, 4 groups means three instruments and a constant available to estimate a model
with 2 parameters (the constant and the causal effect of military service). So the 2SLS minimand generates
an over-identification test statistic with 4 — 2 = 2 degrees of freedom. And, in fact, provided you use the
same method of estimating the weighting matrix in the relevant quadratic forms, these two test statistics
not only test the same thing, they are numerically equivalent. This makes sense since we have already seen
that 2SLS is the efficient linear combination of Wald estimators[[]

Finally, a caveat regarding over-identification tests in practice: In our experience, the “over-ID statistic”
is often of little value in applied work. Because Jy(§) measures variance-normalized goodness of-fit, the
over-ID test-statistic tends to be low when the underlying estimates are imprecise. Since IV estimates are
very often imprecise, we cannot take much satisfaction from the fact that one estimate is within sampling

variance of another even if the individual estimates appear precise enough to be informative. On the other

16The Wald estimator and Wald test are named after the same statistician, Abraham Wald, but the latter reference is Wald

(1943).
17The fact that Wald and LM testing procedures for the same null are equivalent in linear models was established by Newey

and West (1987). Angrist (1991) gives a formal statement of the argument in this paragraph.
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hand, in cases where the underlying IV estimates are quite precise, the fact that the over-ID statistic rejects
need not point to an identification failure. Rather, this may be evidence of treatment effect heterogeneity, a
possibility we discuss further below. On the conceptual side, however, an understanding of the anatomy of
the 2SLS minimand is invaluable, for it once again highlights the important link between grouped data and
IV. This link takes the mystery out of estimation and testing with instrumental variables and forces us to

confront the raw moments that are the foundation for causal inference.

4.3 Two-Sample IV and Split-Sample IV*

The GMM interpretation of 2SLS highlights the fact that the IV estimator can be constructed from sample

moments alone, with no micro data. Returning to the sample moment condition, (4.2.3)), and re-arranging

slightly produces a regression-like equation involving second moments:
Z'y  Z'W Z'n

= —7Ur
N N +N

(4.3.1)

GLS estimates of I" in (4.3.1)) are consistent because E [ZT/Y} =F [Z]IVW] T.

The 2SLS minimand can be thought of as GLS applied to equation , after multiplying by VN to
keep the residual from disappearing as the sample size gets large. In other words, 2SLS minimizes a quadratic
form in the residuals from with a (possibly non-diagonal) weighting matrixm An important insight
that comes from writing the 2SLS problem in this way is that we do not need the individual observations
in our sample to estimate . Just as with the OLS coefficient vector, which can be constructed from
the sample conditional mean function, IV estimators can also be constructed from sample moments. The

Z'y

moments needed for IV are N

and ZTW The dependent variable, ZTlY, is a vector of dimension [K4Q] x 1.

The regressor matrix, ZTW, is of dimension [K+Q] x [K+1]. The second-moment equation cannot be solved
exactly unless Q= 1 so it makes sense to make the fit as good as possible by minimizing a quadratic form in
the residuals. The most efficient weighting matrix for this purpose is the asymptotic covariance matrix of
\Z/—,N". This again produces the 2SLS minimand, JIn (9).

A related insight is the fact that the moment matrices on the left and right hand side of the equals sign
in equation need not come from the same data sets provided these data sets are drawn from the
same population. This observation leads to the two-sample instrumental variables (T'SIV) estimator used

by Angrist (1990) and developed formally in Angrist and Krueger (1992)|ﬂ Briefly, let Z; and Y; denote

18 A quadratic form is the matrix-weighted product, #’ Az, where z is a random vector of, say, dimension K and A is a KxK

matrix of constants.
19 Applications of TSIV include Bjorklund and Jantti (1997), Jappelli, Pischke, and Souleles (1998), Currie and Yelowitz

(2000), and Dee and Evans (2003). In a recent paper, Inoue and Solon (2005) compare the asymptotic distributions of
alternative TSIV estimators, and introduce a maximum likelihood (LIML-type) version of TSIV. They also correct a mistake

in the distribution theory in Angrist and Krueger (1995), discussed further, below.
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the instrument/covariate matrix and dependent variable vector in data set 1 of size Ny and let Zs and Wo

denote the instrument /covariate matrix and endogenous variable/covariate matrix in data set 2 of size Ns.

Assuming plim (%) = plim (Zjivvlvl ), GLS estimates of the two-sample moment equation

Ny Ny

Ziva _ ZWor  [[ZiW _ ZsWe] [ Zim
Ny Ny

are also consistent for I'. The limiting distribution of this estimator is obtained by normalizing by /N; and

assuming plim (%) is a constant.

The utility of TSIV comes from the fact that it widens the scope for IV estimation to situations where
observations on dependent variables, instruments, and the endogenous variable of interest are hard to find
in a single sample. It may be easier to find one data set that has information on outcomes and instruments,
with which the reduced form can be estimated, and another data set which has information on endogenous
variables and instruments, with which the first stage can be estimated. For example, in Angrist (1990),
administrative records from the Social Security Administration (SSA) provide information on the dependent
variable (annual earnings) and the instruments (draft lottery numbers coded from dates of birth, as well as
covariates for race and year of birth). The SSA, however, does not track participants’ veteran status. This
information was taken from military records, which also contain dates of birth that can used to code lottery

Z5 W,

numbers. Angrist (1990) used these military records to construct o

, the first-stage correlation between

lottery numbers and veteran status conditional on race and year of birth, while the SSA data were used to

Z{Yl

construct N,

Two further simplifications make TSIV especially easy to use. First, as noted previously, when the
instruments consist of a full set of mutually exclusive dummy variables, as in Angrist (1990) and Angrist
and Krueger (1992), the second moment equation, (4.3.1)), simplifies to a model for conditional means. In

particular, the 2SLS minimand for the two-sample problem becomes

In(§) = ij () — ﬁ/W%)Q, (4.3.2)
J

where 7;; is the mean of the dependent variable at instrument/covariate value j in one sample, ng is the
mean of endogenous variables and covariates at instrument/covariate value j in a second sample, and w; is
an appropriate weight. This amounts to weighted least squares estimation of the VIV equation, except that
the dependent and independent variables do not come from the same sample. Again, Angrist (1990) and
Angrist and Krueger (1992) provide illustrations. The optimal weights for asymptotically efficient TSIV are
given by variance of §1; — §'Wa;. This variance is affected by the fact that moments come from different
samples, as are the TSIV standard errors, which are easy to compute in the dummy-instrument case since

the estimator is equivalent to weighted least squares.
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Second, Angrist and Krueger (1995) introduced a computationally attractive TSIV-type estimator that
requires no matrix manipulation and can be implemented with ordinary regression software. This estimator,
called Split-Sample IV (SSIV), works as followsm The first-stage estimates in data set two are given by
(Z575)~*Z5Ws. These fitted values can be carried over to data set 1 by constructing the cross-sample
fitted value, Wiy = Z1(Z5Z5) =1 Z5Ws. The SSIV second stage is a regression of Y; on Wia. The correct
limiting distribution for this estimator is derived in Inoue and Solon (2005), who show that the limiting
distribution presented in Angrist and Krueger (1992) requires the assumption that 2121 = Z,Z5 (as would
be true if the marginal distribution of the instruments and covariates is fixed in repeated samples). It’s
worth noting, however, that the limiting distributions of SSIV and 2SLS are the same when the coefficient
on the endogenous variable is zero. The standard errors for this special case are simple to construct and

probably provide a reasonably good approximation to the general case@

4.4 1TV with Heterogeneous Potential Outcomes

The discussion of IV up to this point postulates a constant causal effect. In the case of a dummy variable
like veteran status, this means Yq1;—Yo; = p for all 4, while with a multi-valued treatment like schooling,
this means Y;; — Y;_1,; = p for all s and all ;. Both are highly stylized views of the world, especially the
multi-valued case which imposes linearity as well as homogeneity. To focus on one thing at a time in a
heterogeneous-effects model, we start with a zero-one causal variable. In this context, we’d like to allow for
treatment-effect heterogeneity, in other words, a distribution of causal effects across individuals.

Why is treatment-effect heterogeneity important? The answer lies in the distinction between the two
types of validity that characterize a research design. Internal validity is the question of whether a given design
successfully uncovers causal effects for the population being studied. A randomized clinical trial or, for that
matter, a good IV study, has a strong claim to internal validity. FExternal validity is the predictive value
of the study’s findings in a different context. For example, if the study population in a randomized trial is

especially likely to benefit from treatment, the resulting estimates may have little external validity. Likewise,

20 Angrist and Krueger called this estimator SSIV because they were concerned with a scenario where a single data set is
deliberately split in two. As discussed in Section (4.6.4), the resulting estimator may have less bias than conventional 2SLS.

Inoue and Solon (2005) refer to the estimator Angrist and Krueger (1995) called SSIV as Two-sample 2SLS or TS2SLS.
21 This shortcut formula uses the standard errors from the manual SSIV second stage. The correct asymptotic covariance

matrix formula, from Inoue and Solon (2005), is

{B[(o11 + kT'E221) A "1 B} 1

/ 4 ’
where B=plim <Z§V‘;%> = plim (Z}\,‘ih) , A = plim (le\,?) = plim <Z12\/f2>= plim <INV7T> = K, 011 is the variance of the
reduced-form residual in data set 1, and Y92 is the variance of the first-stage residual in data set 2. In principle, these pieces
are easy enough to calculate. Other approaches to SSIV inference include those of Dee and Evans (2003), who calculate

standard errors for just-identified models using the delta-method, and Bjorklund and Jantti (1997), who use a bootstrap.
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draft-lottery estimates of the effects of conscription for service in the Vietnam era need not be a good measure
of the consequences of voluntary military service. An econometric framework with heterogeneous treatment

effects helps us to assess both the internal and external validity of IV estimates@

4.4.1 Local Average Treatment Effects

In an IV framework, the engine that drives causal inference is the instrument, z;, but the variable of interest
is still D;. This feature of the IV setup leads us to adopt a generalized potential-outcomes concept, indexed
against both instruments and treatment status. Let v;(d, z) denote the potential outcome of individual i
were this person to have treatment status D; = d and instrument value z; = z. This tells us, for example,
what the earnings of ¢ would be given alternative combinations of veteran status and draft-eligibility status.
The causal effect of veteran status given ¢’s realized draft-eligibility status is v;(1,2;)—v;(0,z;), while the

causal effect of draft-eligibility status given i’s veteran status is v;(D;, 1)—Y;(Ds,0).

We can think of instrumental variables as initiating a causal chain where the instrument, z;, affects the
variable of interest, D;, which in turn affects outcomes, v;. To make this precise, we need notation to express
the idea that the instrument has a causal effect on D;. Let Dy; be i’s treatment status when z; = 1, while

Dg; 1s 7’s treatment status when z; = 0. Observed treatment status is therefore

D; = Do; + (D1; — Doi)Zi = Mo + T1iZi + &;. (4.4.1)

In random-coefficients notation, 79 = E[Do;] and 71; = (D1;—Do;), S0 71; is the heterogeneous causal effect
of the instrument on D;. As with potential outcomes, only one of the potential treatment assignments, Dy;
and Doy, is ever observed for any one person. In the draft lottery example, Dy; tells us whether ¢ would serve
in the military if he draws a high (draft-ineligible) lottery number, while Dy; tells us whether ¢ would serve if
he draws a low (draft-eligible) lottery number. We get to see one or the other of these potential assignments

depending on z;. The average causal effect of z; on D; is E[my;].

The first assumption in the heterogeneous framework is that the instrument is as good as randomly as-
signed: it is independent of the vector of potential outcomes and potential treatment assignments. Formally,
this can be written

[{vi(d, 2);V d, 2}, D15, Doi] L 25, (4.4.2)

Independence is sufficient for a causal interpretation of the reduced form, i.e., the regression of v; on z;.

22The distinction between internal and external validity is relatively new to applied econometrics but has a long history in
social science. See, for example, the chapter-length discussion in Shadish, Cook, and Campbell (2002), the successor to a

classic text on research methods by Campbell and Stanley (1963).
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Specifically,

E[Y2|ZZ:1] —E[Yi|Zi:0] = E[Yi(Dli,l)‘Zi = 1]—E[Y1‘(D0i70)‘zi :O]

= FEvi(D1i,1) = Yi(Dos, 0)],
the causal effect of the instrument on v;. Independence also means that

E[Di‘Zi = 1] — E[Di|Zi = 0} = E[D1i|Z7; = 1} — E[DOi‘Zi = 0]

= FE[D1; — Do,

in other words, the first-stage from our earlier discussion of 2SLS captures the causal effect of Z; on D;.

The second key assumption in the heterogeneous-outcomes framework is the presumption that v,(d, z)
is only a function of d@ To be specific, while draft-eligibility clearly affects veteran status, an individual’s
potential earnings as a wveteran are assumed to be unchanged by draft-eligibility status; while potential
earnings as a nonveteran are similarly unaffected. In general, the claim that an instrument operates through
a single known causal channel is called an exclusion restriction. In a linear model with constant effects, the
exclusion restriction is expressed by the omission of the instrument from the causal equation of interest, or,
equivalently, F[z;n;] = 0 in equation . It’s worth noting that the traditional error-term notation
used for simultaneous equations models doesn’t lend itself to a clear distinction between independence and
exclusion. We need z; and 7, to be uncorrelated in this equation, but the reasoning that lies behind this

assumption is unclear until we consider both the independence and exclusion restrictions.

The exclusion restriction fails for draft-lottery instruments if men with low draft lottery numbers were
affected in some way other than through an increased likelihood of service. For example, Angrist and
Krueger (1992) looked for an association between draft lottery numbers and schooling. Their idea was that
educational draft deferments would have led men with low lottery numbers to stay in college longer than
they would have otherwise desired. If so, draft lottery numbers are correlated with earnings for at least two
reasons: an increased likelihood of military service and an increased likelihood of college attendance. The
fact that the lottery number is randomly assigned (and therefore satisfies the independence assumption) does
not make this possibility less likely. The exclusion restriction is distinct from the claim that the instrument
is (as good as) randomly assigned. Rather, it is a claim about a unique channel for causal effects of the

instrumentPEl

Using the exclusion restriction, we can define potential outcomes indexed solely against treatment status

23Hirano, Imbens, Rubin and Zhou (2000) note that the exclusion restriction that Y;(d, z) equals Y;(d,2’) can be weakened

to require only that the distributions of Y;(d, z) and v;(d, 2’) be the same.
24 As it turns out, there is not much of a relationship between schooling and lottery numbers in the Angrist and Krueger

(1992) data, probably because educational deferments were phased out during the lottery period.
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using the single-index (Y1,,Y¢;) notation we have been using all along. In particular,

Yii = Yi(1,1) =v(1,0);

Yoi

v:(0,1) = v,(0,0). (4.4.3)

The observed outcome, Y;, can therefore be written in terms of potential outcomes as:

Y; Yi(O, Zi) + [Yi(]., Zi) — Yi(O, Zi)]Di (444)

Yoi + (Y1i — Y0i)Dj.

A random-coefficients notation for this is

Yi = a0+ p;Di+1n;,

a compact version of with ag = E[v¢;] and p; =Y1,—Yoi.

A final assumption needed for heterogeneous IV models is that either 7w1; > 0 for all ¢ or w1; < 0 for all 4.
This monotonicity assumption, introduced by Imbens and Angrist (1994), means that while the instrument
may have no effect on some people, all of those who are affected are affected in the same way. In other words,
either D1; >Dg; or Dy; <Dg; for all 4. In what follows, we assume monotonicity holds with Dy; >Dg;. In the
draft-lottery example, this means that although draft-eligibility may have had no effect on the probability
of military service for some men, there is no one who was actually kept out of the military by being draft-
eligible. Without monotonicity, instrumental variables estimators are not guaranteed to estimate a weighted
average of the underlying individual causal effects, Y1;,—Yq;.

Given the exclusion restriction, the independence of instruments and potential outcomes, the existence
of a first stage, and monotonicity, the Wald estimand can be interpreted as the effect of veteran status on
those whose treatment status can be changed by the instrument. This parameter is called the local average

treatment effect ((LATE); Imbens and Angrist, 1994). Here is a formal statement:

Theorem 4.4.1 THE LATE THEOREM. Suppose
(A1, Independence) {Y;(D14,1),Y0i(Dos, 0),D1i,D0; }117;;
(A2, Exclusion) Y;(d,0) =v;(d,1) =vg; for d=0,1;
(A3, First-stage), E[D1;—Do;] # 0
(A4, Monotonicity) D1;,—Do; > OVi, or vice versa;

Then
E[Y”Zi = 1} — E[Y”Zi = 0]

E[pi|z; = 1] — E[D;|z; = 0] [Y1; — Yo;|D1s > Doj] [p; 715 > 0]

Proof. Use the exclusion restriction to write E[Y;|z; = 1] = E[Yo; + (Y1;—Y0:)D4|Z; = 1], which equals
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E[Yo; + (Y1:—Y0;)D1;] by independence. Likewise E[v;|Z; = 0] = E[Yo; + (Y1;—Y0i)Do:], so the numerator of

the Wald estimator is F[(Y1;—Y0;)(D1;—Do;)]. Monotonicity means Dy;—Dg; equals one or zero, so

E[(Y1i — Y0i)(D1i — Doi)] = E[Y1; — Y0i|D1; > Doi] P[D1; > Doyl

A similar argument shows

E[D”Zi = 1] — E[Di|Zi = O] = E[Dli — DOi] = P[Dli > DOi]-

This theorem says that an instrument which is as good as randomly assigned, affects the outcome through
a single known channel, has a first-stage, and affects the causal channel of interest only in one direction, can
be used to estimate the average causal effect on the affected group. Thus, IV estimates of effects of military
service using the draft lottery estimate the effect of military service on men who served because they were
draft-eligible, but would not otherwise have served. This obviously excludes volunteers and men who were

exempted from military service for medical reasons, but it includes men for whom draft policy was binding.

How useful is LATE? No theorem answers this question, but it’s always worth discussing. Part of the
interest in the effects of Vietnam-era service revolves around the question of whether veterans (especially,
conscripts) were adequately compensated for their service. Internally valid draft lottery estimates answer
this question. Draft lottery estimates of the effects of Vietnam-era conscription may also be relevant for
discussions of any future conscription policy. On the other hand, while draft lottery instruments produce
internally valid estimates of the causal effect of Vietnam-era conscription, the external validity - i.e., the
predictive value of these estimates for military service in other times and places - is not directly addressed
by the IV framework. There is nothing in IV formulas to explain why Vietnam-era service affects earnings;

for that, you need a theory@

You might wonder why we need monotonicity for the LATE theorem, an assumption that plays no role
in the traditional simultaneous-equations framework with constant effects. A failure of monotonicity means
the instrument pushes some people into treatment while pushing others out. Angrist, Imbens, and Rubin
(1996) call the latter group defiers. Defiers complicate the link between LATE and the reduced form. To

see why, go back to the step in the proof of the LATE theorem which shows the reduced form is

Ely;|z; = 1] — E[Y;|z; = 0] = E[(Y1; — Y0i)(D1; — Doi)].

25 Angrist (1990) interprets draft lottery estimates as the penalty for lost labor market experience. This suggests draft lottery
estimates should have external validity for the effects of conscription in other periods, a conjecture born out by the results for

WWII draftees in Angrist and Krueger (1994).
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Without monotonicity, this is equal to

E[Y1; — Y0i|D1; > Do;]P[D1; > Doi] — E[Y1; — Y0i|D1; < Doi] P[D1; < Dos].

We might therefore have a scenario where treatment effects are positive for everyone yet the reduced form
is zero because effects on compliers are canceled out by effects on defiers.  This doesn’t come up in a
constant-effects model because the reduced form is always the constant effect times the first stage regardless

of whether the first stage includes defiant behavior Y]

A deeper understanding of LATE can be had by linking it to a workhorse of contemporary econometrics,
the latent-index model for "dummy endogenous variables" like assignment to treatment. These models
describe individual choices as determined by a comparison of partly observed and partly unknown (“latent”)
utilities and costs (see, e.g., Heckman, 1978). Typically, these unobservables are thought of as being related
to outcomes, in which case the treatment variable is said to be endogenous (though it is not really endogenous

in a simultanenous-equations sense). For example (ignoring covariates), we might model veteran status as

1 ifyo+712i > v
D; = )

0 otherwise

where v; is a random factor involving unobserved costs and benefits of military service assumed to be

independent of z;. This latent-index model characterizes potential treatment assignments as:

Doi = 1]y > v;] and Dy; = 1[yg + 71 > vi].

Note that in this model, monotonicity is automatically satisfied since <, is a constant. Assuming v; > 0,

LATE can be written

E[Y1; = Yoi[D1; > Doi] = E[Y1; — Yoilvo + 71 > vi > 70l

which is a function of the latent first-stage parameters, v, and ,, as well as the joint distribution of Y1;,—Yq;

and v;. This is not, in general, the same as the population average treatment effect, E[vy1;—Yq;], or the

26With a constant effect, p,

Ely1; — Yoi|lD1; > Dos]P[D1; > Dos)

—E[Y1; — Yoilp1; <  Doi]P[D1; < Do

p{P[D1; > Do;] — P[D1; < Do;l}

p{E[>1; — Doi]}-

So a zero reduced form effect means either the first stage is zero or p = 0.
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effect on the treated, E[v1;—Yo;|D; = 1]. We explore the distinction between different average causal effects

in Section [4.4.2]

4.4.2 The Compliant Subpopulation

The LATE framework partitions any population with an instrument into a set of three instrument-dependent

subgroups, defined by the manner in which members of the population react to the instrument:

Definition 4.4.1 Compliers. The subpopulation with D1; = 1 and Dg; = 0.
Always-takers. The subpopulation with D1; =Dg; = 1.

Never-takers. The subpopulation with D1; =Dg; = 0.

LATE is the effect of treatment on the population of compliers. The term "compliers" comes from
an analogy with randomized trials where some experimental subjects comply with the randomly assigned
treatment protocol (e.g., take their medicine) but some do not, while some control subjects obtain access to
the experimental treatment even though they were not supposed to. Those who don’t take their medicine
when randomly assigned to do so are never-takers while those who take the medicine even when put into the
control group are always-takers. Without adding further assumptions (e.g., constant causal effects), LATE
is not informative about effects on never-takers and always-takers because, by definition, treatment status
for these two groups is unchanged by the instrument (random assignment). The analogy between IV and a
randomized trial with partial compliance is more than allegorical - IV solves the problem of causal inference
in a randomized trial with partial compliance. This important point merits a separate subsection, below.

Before turning to this important special case, we make a few general points. First, the average causal
effect on compliers is not usually the same as the average treatment effect on the treated. From the simple
fact that D; =Dg; + (D1;—Do;)Z;, we learn that the treated population consists of two non-overlapping groups.
By monotonicity, we cannot have both Dy; = 1 and Dy;—Dg; = 1 since Dy; = 1 implies Dy; = 1. The treated
therefore have either Do; = 1 or D1;—Dg; = 1 and Z; = 1, and hence D; can be written as the sum of two
mutually-exclusive dummies, D;p and (D1;—Dg;)Z;. The treated consist of either always-takers or compliers
with the instrument switched on. Since the instrument is as good as randomly assigned, compliers with the

instrument switched on are representative of all compliers. From here we get

EY1; —Yoilp; = 1] (4.4.5)

effect on the treated
= E[YM — Y()Z‘|D0i = l]P[DOZ‘ = 1|Di = ].]

+E [Y1; — Yoi|D1; > Doj, Z; = 1] P [D1; > Do, 2; = 1|D; = 1]

= E[YM — Y()Z‘|D0i = l]P[DUi = 1|Di = ].]

effect on always-takers

+E [Y1; — Yoi|D1; > Do;| P [D1; > Doy, 2; = 1|D; = 1]

effect on compliers
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Since P[Dg; = 1|p; = 1] and P[Dy; >Dy;,Z; = 1|D; = 1] add up to one, this means that the effect of treatment

on the treated is a weighted average of effects on always-takers and compliers.

Likewise, LATE is not the average causal effect of treatment on the non-treated, E[Y1;—Yo;|D; = 0]. In
the draft-lottery example, the average effect on the non-treated is the average causal effect of military service
on the population of non-veterans from the Vietnam-era cohorts. The average effect of treatment on the

non-treated is a weighted average of effects on never-takers and compliers. In particular,

E[Y1; = Yoi|p; = 0] (4.4.6)

effect on the non-treated

= F [YM — YOi|D1i = O]P [DM = O‘DZ = 0]

effect on never-takers

+E[Y1; — Yoi|D1; > Do) P [D1; > Do;, 2; = 0|D; = 0],

effect on compliers

where we use the fact that, by monotonicity, those with D;; = 0 must be never-takers.

Finally, averaging (4.4.5) and (4.4.6) using
ElY1i = Yoi| = E[Y1i — Yoi|[p; = 1]P[D; = 1] + E[Y1; — Y0iD; = 0] P[D; = 0]

shows the overall population average treatment effect to be a weighted average of effects on compliers, always-
takers, and never-takers. Of course, this is a conclusion we could have reached directly given monotonicity

and the definition at the beginning of this subsection.

Because an instrumental variable is not directly informative about effects on always-takers and never-
takers, instruments do not usually capture the average causal effect on all of the treated or on all of the
non-treated. There are important exceptions to this rule, however: instrumental variables that allow no
always-takers or no never-takers. Although this scenario is not typical, it is an important special case. One
example is the twins instrument for fertility, used by Rosenzweig and Wolpin (1980), Bronars and Grogger
(1994), Angrist and Evans (1998), and Angrist, Lavy, and Schlosser (2006). Another is Oreopoulos’ (2006)

recent study using changes in compulsory attendance laws as instruments for schooling in Britain.

To see how this special case works with twins instruments, let T; be a dummy variable indicating multiple
second births. Angrist and Evans (1998) used this instrument to estimate the causal effect of having three
children on earnings in the population of women with at least two children. The third child is especially
interesting because reduced fertility for American wives in the 1960s and 1970s meant a switch from three
children to two. Multiple second births provide quasi-experimental variation on this margin. Let Yo; denote
potential earnings if a woman has only two children while Y1; denotes her potential earnings if she has three,
an event indicated by D;. Assuming that T; is randomly assigned, i.e., that fertility increases by at most one

child in response to a multiple birth, and that multiple births affect outcomes only by increasing fertility,
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LATE using the twins instrument, T;, is also E[y1;—Y¢;|D; = 0], the average causal effect on women who
are not treated (i.e., have two children only). This is because all women who have a multiple second birth
end up with three children, i.e., there are no never-takers in response to the twins instrument.

Oreopoulos (2006) also uses IV to estimate an average causal effect of treatment on the non-treated. His
study estimates the economic returns to schooling using an increase in the British compulsory attendance
age from 14 to 15. Compliance with the Britain’s new compulsory attendance law was near perfect, though
many teens would previously have dropped out of school at age 14. The causal effect of interest in this case
is the earnings premium for an additional year of high-school. Finishing this year can be thought of as the
treatment. Since everybody in Oreopoulos’ British sample finishes the additional year when compulsory
schooling laws are made stricter, Oreopoulos’ IV strategy captures the average causal effect of obtaining one
more year of high school on all those who leave school at 14. This turns on the fact that British teens are
remarkably law-abiding people - Oreopoulos’ IV strategy wouldn’t estimate the effect of treatment on the
non-treated in, say, Israel, where teenagers get more leeway when it comes to compulsory school attendance.
Israeli econometricians using changes in compulsory attendance laws as instruments must therefore make do

with LATE.

4.4.3 IV in Randomized Trials

The language of the LATE framework is based on an analogy between IV and randomized trials. But some
instruments really come from randomized trials. If the instrument is a randomly assigned offer of treatment,
then LATE is the effect of treatment on those who comply with the offer but are not treated otherwise. An
especially important case is when the instrument is generated by a randomized trial with one-sided non-
compliance. In many randomized trials, participation is voluntary among those randomly assigned to receive
treatment. On the other hand, no one in the control group has access to the experimental intervention.
Since the group that receives (i.e., complies with) the assigned treatment is a self-selected subset of those
offered treatment, a comparison between those actually treated and the control group is misleading. The
selection bias in this case is almost always positive: those who take their medicine in a randomized trial
tend to be healthier; those who take advantage of randomly assigned economic interventions like training
programs tend to earn more anyway.

IV using the randomly assigned treatment intended as an instrumental variable for treatment received
solves this sort of compliance problem. Moreover, LATE is the effect of treatment on the treated in this case.
Suppose the instrument, 7;, is a dummy variable indicating random assignment to a treatment group, while
D; is a dummy indicating whether treatment was actually received. In practice, because of non-compliance,
D; is not equal to Z;. An example is the randomized evaluation of the JTPA training program, where only
60 percent of those assigned to be trained received training, while roughly 2 percent of those assigned to the

control group received training anyway (Bloom, et al., 1997). Non-compliance in the JTPA arose from lack
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of interest among participants and the failure of program operators to encourage participation. Since the
compliance problem in this case is largely confined to the treatment group, LATE using random assignment,
Z;, as an instrument for treatment received, D;, is the effect of treatment on the treated.

This use of IV to solve the compliance problems is illustrated in Table which presents results
from the JTPA experiment. The outcome variable of primary interest in the JTPA experiment is total
earnings in the 30-month period after random assignment. Columns 1-2 of the table show the difference
in earnings between those who were trained and those who were not