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PREFACE

The subject of econometrics involves the application of statistical methods to analyze data collected from economic studies. The
goal may be to understand the factors influencing some economic phenomenon of interest, to validate a hypothesis proposed by
theory, or to predict the future behavior of the economic phenomenon of interest based on underlying mechanisms or factors
influencing it.

Although there are several well-known books that deal with econometric theory, I have found the books by Badi H. Baltagi,
Jeffrey M. Wooldridge, Marno Verbeek, and William H. Greene to be very invaluable. These four texts have been heavily
referenced in this book with respect to both the theory and the examples they have provided. I have also found the book by
Ashenfelter, Levine, and Zimmerman to be invaluable in its ability to simplify some of the complex econometric theory into a
form that can easily be understood by undergraduates who may not be well versed in advanced statistical methods involving
matrix algebra.

When I embarked on this journey, many questioned me on why I wanted to write this book. After all, most economic
departments use either Gauss or STATA to do empirical analysis. I used SAS Proc IML extensively when I took the econometric
sequence at the University of Minnesota and personally found SAS to be on par with other packages that were being used.
Furthermore, SAS is used extensively in industry to process large data sets, and I have found that economics graduate students
entering the workforce go through a steep learning curve because of the lack of exposure to SAS in academia. Finally, after using
SAS, Gauss, and STATA for my own personal work and research, I have found that the SAS software is as powerful or flexible
compared to both Gauss and STATA.

There are several user-written books on how to use SAS to do statistical analysis. For instance, there are books that deal with
regression analysis, logistic regression, survival analysis, mixed models, and so on. However, all these books deal with analyzing
data collected from the applied or social sciences, and none deals with analyzing data collected from economic studies. I saw an
opportunity to expand the SAS-by-user books library by writing this book.

I'have attempted to incorporate some theory to lay the groundwork for the techniques covered in this book. I have found that a
good understanding of the underlying theory makes a good data analyst even better. This book should therefore appeal to both
students and practitioners, because it tries to balance the theory with the applications. However, this book should not be used as a
substitute in place of the well-established texts that are being used in academia. As mentioned above, the theory has been
referenced from four main texts: Baltagi (2005), Greene (2003), Verbeek (2004), and Wooldridge (2002).

This book assumes that the reader is somewhat familiar with the SAS software and programming in general. The SAS help
manuals from the SAS Institute, Inc. offer detailed explanation and syntax for all the SAS routines that were used in this book. Proc
IML is a matrix programming language and is a component of the SAS software system. It is very similar to other matrix
programming languages such as GAUSS and can be easily learned by running simple programs as starters. Appendixes A and B
offer some basic code to help the inexperienced user get started. All the codes for the various examples used in this book were
written in a very simple and direct manner to facilitate easy reading and usage by others. [ have also provided detailed annotation
with every program. The reader may contact me for electronic versions of the codes used in this book. The data sets used in this text
are readily available over the Internet. Professors Greene and Wooldridge both have comprehensive web sites where the data are

xi



xii PREFACE

available for download. However, I have used data sets from other sources as well. The sources are listed with the examples
providedin the text. All the data (except the credit card data from Greene (2003)) are in the public domain. The credit card data was
used with permission from William H. Greene at New York University.

The reliance on Proc IML may be a bit confusing to some readers. After all, SAS has well-defined routines (Proc Reg,
Proc Logistic, Proc Syslin, etc.) that easily perform many of the methods used within the econometric framework. I have
found that using a matrix programming language to first program the methods reinforces our understanding of the
underlying theory. Once the theory is well understood, there is no need for complex programming unless a well-defined
routine does not exist.

Itis assumed that the reader will have a good understanding of basic statistics including regression analysis. Chapter 1 givesa
good overview of regression analysis and of related topics that are found in both introductory and advance econometric courses.
This chapter forms the basis of the analysis progression through the book. That is, the basic OLS assumptions are explained in this
chapter. Subsequent chapters deal with cases when these assumptions are violated. Most of the material in this chapter can be
found in any statistics text that deals with regression analysis. The material in this chapter was adapted from both Greene (2003)
and Meyers (1990).

Chapter 2 introduces regression analysis in SAS. I have provided detailed Proc IML code to analyze data using OLS regression.
I'have also provided detailed coverage of how to interpret the output resulting from the analysis. The chapter ends with a thorough
treatment of multicollinearity. Readers are encouraged to refer to Freund and Littell (2000) for a thorough discussion on
regression analysis using the SAS system.

Chapter 3 introduces hypothesis testing under the general linear hypothesis framework. Linear restrictions and the restricted
least squares estimator are introduced in this chapter. This chapter then concludes with a section on detecting structural breaks in
the data via the Chow and CUSUM tests. Both Greene (2003) and Meyers (1990) offer a thorough treatment of this topic.

Chapter 4 introduces instrumental variables analysis. There is a good amount of discussion on measurement errors, the
assumptions that go into the analysis, specification tests, and proxy variables. Wooldridge (2002) offers excellent coverage of
instrumental variables analysis.

Chapter 5 deals with the problem of heteroscedasticity. We discuss various ways of detecting whether the data suffer from
heteroscedasticity and analyzing the data under heteroscedasticity. Both GLS and FGLS estimations are covered in detail. This
chapter ends with a discussion of GARCH models. The material in this chapter was adapted from Greene (2003), Meyers (1990),
and Verbeek (2004).

Chapter 6 extends the discussion from Chapter 5 to the case where the data suffer from serial correlation. This chapter
offers a good introduction to autocorrelation. Brocklebank and Dickey (2003) is excellent in its treatment of how SAS can be
used to analyze data that suffer from serial correlation. On the other hand, Greene (2003), Meyers (1990), and Verbeek (2004)
offer a thorough treatment of the theory behind the detection and estimation techniques under the assumption of serial
correlation.

Chapter 7 covers basic panel data models. The discussion starts with the inefficient OLS estimation and then moves on to fixed
effects and random effects analysis. Baltagi (2005) is an excellent source for understanding the theory underlying panel data
analysis while Greene (2003) offers an excellent coverage of the analytical methods and practical applications of panel data.

Seemingly unrelated equations (SUR) and simultaneous equations (SE) are covered in Chapters 8 and 9, respectively. The
analysis of data in these chapters uses Proc Syslin and Proc Model, two SAS procedures that are very efficient in analyzing
multiple equation models. The material in this chapter makes extensive use of Greene (2003) and Ashenfelter, Levine and
Zimmerman (2003).

Chapter 10 deals with discrete choice models. The discussion starts with the Probit and Logit models and then moves on to
Poisson regression. Agresti (1990) is the seminal reference for categorical data analysis and was referenced extensively in this
chapter.

Chapter 11 is an introduction to duration analysis models. Meeker and Escobar (1998) is a very good reference for reliability
analysis and offers a firm foundation for duration analysis techniques. Greene (2003) and Verbeek (2004) also offer a good
introduction to this topic while Allison (1995) is an excellent guide on using SAS to analyze survival analysis/duration analysis
studies.

Chapter 12 contains special topics in econometric analysis. I have included discussion on groupwise heterogeneity, Harvey’s
multiplicative heterogeneity, Hausman—Taylor estimators, and heterogeneity and autocorrelation in panel data.

Appendixes A and B discuss basic matrix algebra and how Proc IML can be used to perform matrix calculations. These two
sections offer a good introduction to Proc IML and matrix algebra useful for econometric analysis. Searle (1982) is an outstanding
reference for matrix algebra as it applies to the field of statistics.



PREFACE xiii

Appendix C contains a brief discussion of the large sample properties of the OLS estimators. The discussion is based on a
simple simulation using SAS.

Appendix D offers an overview of bootstrapping methods including their application to regression analysis. Efron and
Tibshirani (1993) offer outstanding discussion on bootstrapping techniques and were heavily referenced in this section of the
book.

Appendix E contains the complete code for some key programs used in this book.

St. Paul, MN VIVEK B. AIMANI
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INTRODUCTION TO REGRESSION ANALYSIS

1.1 INTRODUCTION

The general purpose of regression analysis is to study the relationship between one or more dependent variable(s) and one or more
independent variable(s). The most basic form of a regression model is where there is one independent variable and one dependent
variable. For instance, a model relating the log of wage of married women to their experience in the work force is a simple linear
regression model given by log(wage) = By + Biexper + &, where By and 8, are unknown coefficients and £ is random error. One
objective here is to determine what effect (if any) the variable exper has on wage. In practice, most studies involve cases where
there is more than one independent variable. As an example, we can extend the simple model relating log(wage) to exper by
including the square of the experience (exper?) in the work force, along with years of education (educ). The objective here may be
to determine what effect (if any) the explanatory variables (exper, exper?, educ) have on the response variable log(wage). The
extended model can be written as

log(wage) = B, + Bexper + Byexper’ 4 Bseduc + &,

where B, B1, B>, and B3 are the unknown coefficients that need to be estimated, and ¢ is random error.

An extension of the multiple regression model (with one dependent variable) is the multivariate regression model where there is
more than one dependent variable. For instance, the well-known Grunfeld investment model deals with the relationship between
investment (/;;) with the true market value of a firm (F;,) and the value of capital (C;,) (Greene, 2003). Here, i indexes the firms and ¢
indexes time. The modelis givenby I;, = Bo; + B1:Fi: + B2:Cir + €ir. Asbefore, By;, B1;, and B,; are unknown coefficients that need
to be estimated and ¢;, is random error. The objective here is to determine if the disturbance terms are involved in cross-equation
correlation. Equation by equation ordinary least squares is used to estimate the model parameters if the disturbances are notinvolved
in cross-equation correlations. A feasible generalized least squares method is used if there is evidence of cross-equation correlation.
We will look at this model in more detail in our discussion of seemingly unrelated regression models (SUR) in Chapter 8.

Dependent variables can be continuous or discrete. In the Grunfeld investment model, the variable I;, is continuous. However,
discrete responses are also very common. Consider an example where a credit card company solicits potential customers via mail.
The response of the consumer can be classified as being equal to 1 or 0 depending on whether the consumer chooses to respond to the
mail ornot. Clearly, the outcome of the study (aconsumer responds or not) is adiscrete random variable. In this example, the response
is a binary random variable. We will look at modeling discrete responses when we discuss discrete choice models in Chapter 10.

In general, a multiple regression model can be expressed as

k
y=Bo+Bx1+ - +Bxk+e=06y+ Z,B,»x,-—ka, (1.1)
=1

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.



2 INTRODUCTION TO REGRESSION ANALYSIS

where y is the dependent variable, B3, . . ., B are the kK + 1 unknown coefficients that need to be estimated, xi, .. ., x; are the k
independent or explanatory variables, and & is random error. Notice that the model is linear in parameters Sy, . .., 3 and is
therefore called a linear model. Linearity refers to how the parameters enter the model. For instance, the model
y = Bo+B1x1+ -+ +Buxi + eisalso alinear model. However, the exponential model y = By exp(—xf3,) is a nonlinear model
since the parameter 3, enters the model in a nonlinear fashion through the exponential function.

1.1.1 Interpretation of the Parameters

One of the assumptions (to be discussed later) for the linear model is that the conditional expectation E(g|xy, . . ., xx) equals zero.
Under this assumption, the expectation, E(y|xy,...,x;) can be written as E(y|xi,...,xx) = B+ Zf;l Bixi. That is, the
regression model can be interpreted as the conditional expectation of y for given values of the explanatory variables xi, . . . , x¢. In
the Grunfeld example, we could discuss the expected investment for a given firm for known values of the firm’s true market value
and value of its capital. The intercept term, 3, gives the expected value of y when all the explanatory variables are set at zero. In
practice, this rarely makes sense since it is very uncommon to observe values of all the explanatory variables equal to zero.
Furthermore, the expected value of y under such a case will often yield impossible results. The coefficient By is interpreted as the
expected change in y for a unit change in x; holding all other explanatory variables constant. That is, OE(y|x1, . . . , xx)/0x; = By

The requirement that all other explanatory variables be held constant when interpreting a coefficient of interest is called the
ceteris paribus condition. The effect of x; on the expected value of y is referred to as the marginal effect of x;.

Economists are typically interested in elasticities rather than marginal effects. Elasticity is defined as the relative change in the
dependent variable for a relative change in the independent variable. That is, elasticity measures the responsiveness of one
variable to changes in another variable—the greater the elasticity, the greater the responsiveness.

There is a distinction between marginal effect and elasticity. As stated above, the marginal effect is simply OE(y|x)/0x
whereas elasticity is defined as the ratio of the percentage change in y to the percentage change in x. Thatis, e = (0y/y)/(0xx/xx).

Consider calculating the elasticity of x; in the general regression model given by Eq. (1.1). According to the definition of
elasticity, this is given by e,, = (0y/0x1)(x1/y) = B;(x1/y) # B,. Notice that the marginal effect is constant whereas the
elasticity is not. Next, consider calculating the elasticity in a log—log model given by log(y) = B¢ + B;log(x) + &. In this case,
elasticity of x is given by

1 dyx

1
Olog(y) = B10log(x) = 8y§ = B,0x Bi-

-=
x  Oxy
The marginal effect for the log—log model is also 3. Next, consider the semi-log model givenby y = 8; + B;log(x) + &.In this
case, elasticity of x is given by

1  Oyx 1
0y = B,0log(x) = dy =Box—==—==8,-.
x  Oxy y

On the other hand, the marginal effect in the semi-log model is given by B,(1/x).
For the semi-log model given by log(y) = B, + B,x + &, the elasticity of x is given by

oylogly) = Biox =y~ = Biox = 22— px.
y oxy
On the other hand, the marginal effect in the semi-log model is given by ,y.

Most models that appear in this book have a log transformation on the dependent variable or the independent variable or both. It
may be useful to clarify how the coefficients from these models are interpreted. For the semi-log model where the dependent
variable has been transformed using the log transformation while the explanatory variables are in their original units, the
coefficient 3 is interpreted as follows: For a one unit change in the explanatory variable, the dependent variable changes by
Bx100% holding all other explanatory variables constant.

In the semi-log model where the explanatory variable has been transformed by using the log transformation, the coefficient 8 is
interpreted as follows: For a one unit change in the explanatory variable, the dependent variable increases (decreases) by
B/100 units.

In the log—log model where both the dependent and independent variable have been transformed by using a log transformation,
the coefficient B is interpreted as follows: A 1% change in the explanatory variable is associated with a 8% change in the
dependent variable.



BASIC THEORY OF LEAST SQUARES 3

1.1.2 Objectives and Assumptions in Regression Analysis

There are three main objectives in any regression analysis study. They are

a. To estimate the unknown parameters in the model.

b. To validate whether the functional form of the model is consistent with the hypothesized model that was dictated by theory.

c. To use the model to predict future values of the response variable, y.

Most regression analysis in econometrics involves objectives (a) and (b). Econometric time series analysis involves all
three. There are five key assumptions that need to be checked before the regression model can be used for the purposes outlined
above.

a. Linearity: The relationship between the dependent variable y and the independent variables x, ..., x; is linear.

b. Full Rank: There is no linear relationship among any of the independent variables in the model. This assumption is often

violated when the model suffers from multicollinearity.

Exogeneity of the Explanatory Variables: This implies that the error term is independent of the explanatory variables. That
is, E(&;|xi1, X2, - . ., xix) = 0. This assumption states that the underlying mechanism that generated the data is different from
the mechanism that generated the errors. Chapter 4 deals with alternative methods of estimation when this assumption is
violated.

. Random Errors: The errors are random, uncorrelated with each other, and have constant variance. This assumption is

called the homoscedasticity and nonautocorrelation assumption. Chapters 5 and 6 deal with alternative methods of
estimation when this assumption is violated. That is estimation methods when the model suffers from heteroscedasticity
and serial correlation.

e. Normal Distribution: The distribution of the random errors is normal. This assumption is used in making inference

1.2

(hypothesis tests, confidence intervals) to the regression parameters but is not needed in estimating the parameters.

MATRIX FORM OF THE MULTIPLE REGRESSION MODEL

The multiple regression model in Eq. (1.1) can be expressed in matrix notation as y =Xp + €. Here, y is an n x 1 vector of
observations, Xisan x (k+ 1) matrix containing values of explanatory variables, Bisa (k + 1) x 1 vector of coefficients, and g is
an n x 1 vector of random errors. Note that X consists of a column of 1’s for the intercept term . The regression analysis
assumptions, in matrix notation, can be restated as follows:

. Linearity: y=Bo+ xi81 + - + X B + eory=XB + ¢.
. Full Rank: X is an n x (k4 1) matrix with rank (k+ 1).

c. Exogeneity: E(¢|X) =0 — X is uncorrelated with € and is generated by a process that is independent of the process that

generated the disturbance.

. Spherical Disturbances: Var(e]X) =0 forall i=1,...,n and Cov(g;,&/X) =0 for all i #j. That is, Var(gX) = o1

e. Normality: €| X ~ N(0,571).

1.3

BASIC THEORY OF LEAST SQUARES

Least squares estimation in the simple linear regression model involves finding estimators by and b that minimize the sums of

squares L = X

n
i=1

(yi—Bo— lei)z. Taking derivatives of L with respect to By and 3, gives

oL 1

B —2;(y,-—30—31x,-),
oL 1

6, = —2;@1‘—30—31%‘))@-
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Equating the two equations to zero and solving for B and B; gives

n

Z)’i = B, +[31in’
i=1 i=1

n

Zyixi = Bozxi +.élzxi2~
i—1 i—1

i=1

These two equations are known as normal equations. There are two normal equations and two unknowns. Therefore, we can solve
these to get the ordinary least squares (OLS) estimators of 8y and ;. The first normal equation gives the estimator of the intercept,
Bo, By = y—PB,X. Substituting this in the second normal equation and solving for 8, gives

n n n
Ny YiXi— D Vip X
B _ =l i=1 =1

L=

n n 2
ny x}— <Z x,->
i=

i=1

We can easily extend this to the multiple linear regression model in Eq. (1.1). In this case, least squares estimation involves finding
an estimator b of B to minimize the error sums of squares L = (y — XB)”(y — XpB). Taking the derivative of L with respect to
yields k£ + 1 normal equations with £+ 1 unknowns (including the intercept) given by

oL/oB = —2(XTy —X"XB).

Setting this equal to zero and solving for ﬁ gives the least squares estimator of B, b = (X"X)~'X"y. A computational form for b is

given by
-1
b= (Z x?x,) (Z xiTy,-> .
i—1 i=1

The estimated regression model or predicted value of y is therefore given by y = Xb. The residual vector e is defined as the
difference between the observed and the predicted value of y, that is, e = y—y.
The method of least squares produces unbiased estimates of . To see this, note that
E(b/X) = E(X"X)'Xy|X)
— (X"X)"'XE(y|X)
= (X"X) 'X"E(XB +£|X)
= (X"X) 'X"XBE(g[X)
= B

Here, we made use of the fact that (X'X) ' = (X"X) =1, where I is the identity matrix and the assumption that E(g|X) = 0.

1.3.1 Consistency of the Least Squares Estimator

First, note that a consistent estimator is an estimator that converges in probability to the parameter being estimated as the sample
size increases. To say that a sequence of random variables X, converges in probability to X implies that as n — oo the probability
that |X,, — X| > 8 is zero for all  (Casella and Berger, 1990). That is,

lim Pr(|X, —X| > 8) =0Vé.

Under the exogeneity assumption, the least squares estimator is a consistent estimator of B. That is,

lim Pr(|b,—B| >68) =0V4.

To see this, let x;, i =1, ..., n, be a sequence of independent observations and assume that X”X/n converges in probability to a
positive definite matrix W. That is (using the probability limit notation),
. X'X
p lim =Y.

n—o n
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Note that this assumption allows the existence of the inverse of X”X . The least squares estimator can then be written as
-1
XX X'
n n

T
phmb=[3+1lr1pnm(x‘°’).
n

Assuming that P! exists, we have

In order to show consistency, we must show that the second term in this equation has expectation zero and a variance that converges
to zero as the sample size increases. Under the exogeneity assumption, it is easy to show that E(XT£|X) = 0since E(¢|X) =0.Itcan
also be shown that the variance of X'g/n is
XTe o?
Var < =—".
n n

Therefore, as n — oo the variance converges to zero and thus the least squares estimator is a consistent estimator for B (Greene,
2003, p. 66).
Moving on to the variance—covariance matrix of b, it can be shown that this is given by

Var(bX) = o*(X"X) ™"

To see this, note that
Var(b|X) = Var((X"X) 'X"y|X)

= Var((X"X)"'X"(XB + £)|X)

= (X"X)"'X"Var(e[X)X(X"X) !

= 2(X"X)".
It can be shown that the least squares estimator is the best linear unbiased estimator of 8. This is based on the well-known result,
called the Gauss—Markov Theorem, and implies that the least squares estimator has the smallest variance in the class of all
unbiased estimators of B (Casella and Berger, 1990; Greene, 2003; Meyers, 1990).

An estimator of o can be obtained by considering the sums of squares of the residuals (SSE). Here, SSE = (y — Xb)T(y — Xb).

Dividing SSE by its degrees of freedom, n—k—1 yields &>. That is, the mean square error is given by
62 = MSE = SSE/(n—k—1). Therefore, an estimate of the covariance matrix of b is given by ¢*(XX) ™.

Using a similar argument as the one used to show consistency of the least squares estimator, it can be shown that 6 is consistent
for o and that the asymptotic covariance matrix of b is 6% (X" X) ! (see Greene, 2003, p. 69 for more details). The square root of

the diagonal elements of this yields the standard errors of the individual coefficient estimates.

1.3.2 Asymptotic Normality of the Least Squares Estimator

Using the properties of the least squares estimator given in Section 1.3 and the Central Limit Theorem, it can be easily shown that
the least squares estimator has an asymptotic normal distribution with mean B and variance—covariance matrix o*(X"X) '. That
is, B ~ asym.N(B,ai(XTX)*l).

1.4 ANALYSIS OF VARIANCE

The total variability in the data set (SST) can be partitioned into the sums of squares for error (SSE) and the sums of squares for
regression (SSR). That is, SST=SSE + SSR. Here,

n 2
SST = yTy—~=L 7

n

)

SSE = y"y—b'XTy,

( =)
yi)
SSR =b'XTy— =L 7

n



6 INTRODUCTION TO REGRESSION ANALYSIS

TABLE 1.1. Analysis of Variance Table

Source of Sums of Degrees of

Variation Squares Freedom Mean Square F
Regression SSR k MSR = SSR/k

Error SSE n—k—1 MSE =SSE/(n—k—1)
Total SST n—1 MSR/MSE

The mean square terms are simply the sums of square terms divided by their degrees of freedom. We can therefore write the
analysis of variance (ANOVA) table as given in Table 1.1.
The F statistic is the ratio between the mean square for regression and the mean square for error. It tests the global hypotheses

Ho: Bi=Br=...=B=0,
H;: AtleastoneB; # 0 fori=1,... k.

The null hypothesis states that there is no relationship between the explanatory variables and the response variable. The alternative
hypothesis states that at least one of the k explanatory variables has a significant effect on the response. Under the assumption that
the null hypothesis is true, F( has an F distribution with k numerator and n — k —1 denominator degrees of freedom, that is, under
Hy, Fo~ Fy i —1. The p value is defined as the probability that a random variable from the F distribution with k numerator and
n —k —1 denominator degrees of freedom exceeds the observed value of F, that is, Pr(F} ,,_x 1 > Fp). The null hypothesis is
rejected in favor of the alternative hypothesis if the p value is less than «, where « is the type I error.

1.5 THE FRISCH-WAUGH THEOREM

Often, we may be interested only in a subset of the full set of variables included in the model. Consider partitioning X into X; and
X,. That is, X =[X; X,]. The general linear model can therefore be written as y =Xp + ¢ =X;B; + X,B» + €. The normal
equations can be written as (Greene, 2003, pp. 26-27; Lovell, 2006)

XX, XIX; || by
XX, XIX, || b2

X[y
X7y

It can be shown that

b, = (XIX)) ' X (y—X;b,).

If XITXQ =0,thenb; = (XITXI )71X]Ty. That is, if the matrices X, and X are orthogonal, then b, can be obtained by regressing y
on X;. Similarly, b, can be obtained by regressing y on X. It can easily be shown that

by = (XIMXo) ' (XIMy),

where M; = (I-X;(X] X)) 71X1T) so that M,y is a vector of residuals from a regression of y on X.

Note that M; X is a matrix of residuals obtained by regressing X, on X ;. The computations described here form the basis of the
well-known Frisch—Waugh Theorem, which states that b, can be obtained by regressing the residuals from a regression of y on X
with the residuals obtained by regressing X, on X;. One application of this result is in the derivation of the form of the least squares
estimators in the fixed effects (LSDV) model, which will be discussed in Chapter 7.

1.6  GOODNESS OF FIT

Two commonly used goodness-of-fit statistics used are the coefficient of determination (R?) and the adjusted coefficient of
determination (Ri). R? is defined as

_ SSR_ SSE

RR=""o -2
SST SST"
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It measures the amount of variability in the response, y, that is explained by including the regressors x, x, . . ., X; in the model.
Due to the nature of its construction, we have 0 < R>< 1. Although higher values (values closer to 1) are desired, a large value
of R? does not necessarily imply that the regression model is a good one. Adding a variable to the model will always increase
R? regardless of whether the additional variable is statistically significant or not. In other words, R* can be artificially inflated by
overfitting the model.

To see this, consider the model y =X B; + X, B, + U.Here, yisan x 1 vector of observations, X is the n x k; data matrix B,
is a vector of k; coefficients, X,is the n X k, data matrix with k, added variables, B, is a vector of k, coefficients, and Uisan x 1
random vector. Using the Frisch—Waugh theorem, we can show that

B, = (XIMX,) ' XIMy = (X5:X5) " Xbe yu.

Here, Xp+ = MXy,y+ = My,andM = I-X; (X7X;) "~ XT That s, X5« and y are residual vectors of the regresswn of X, and
y on X;. We can invoke the Frisch-Waugh theorem again to get an expression for B, That is, Bl = (X7X;)" XT (y— 12[32)
Using elementary algebra, we can simplify this expression to get B, =b—(X]X;)" 'XTX, B,, where b= (XTX1) XTy.
Next, note thatu = y—X [31 -X B2 We can substitute the expression of B, in this to get U=u=e— MX2[32 =e— XQ*Bz The
sums of squares of error for the extra variable model is therefore given by

u'u = e’e + Bl (X7 X0+ ) B,—2B,X}e = e”e + B] (X5 X0+ ) B, — 2B XDy

Here, e is the residual y—X;b or My = y=. We can now, manipulate |§2 to get

X2y« = (X3.Xo:)B, and

u'u=ele—B](X].Xo:)B, < ee.

Dividing both sides by the total sums of squares, y’ My, we get

u’u ele R SR
yTM(]y — yTMOy = X1,.Xp = X2

where M® =1 —i(i"i) ' i”. See Greene (2003, p. 30) for a proof for the case when a single variable is added to an existing model.

Thus, it is possible for models to have a high R? yet yield poor predictions of new observations for the mean response. It is for

this reason that many practitioners also use the adjusted coefficient of variation, R, which adjusts R? with respect to the number of
explanatory variables in the model. It is defined as

2 SSE/(n—k—1) n—1 5
RA_I—SST/(n_l)_l—< >(1—R).

In general, it will increase only when significant terms that improve the model are added to the model. On the other hand, it will
decrease with the addition of nonsignificant terms to the model. Therefore, it will always be less than or equal to R%. When the two
R? measures differ dramatically, there is a good chance that nonsignificant terms have been added to the model.

1.7 HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

The global F test checks the hypothesis that at least one of the k regressors has a significant effect on the response. It does not
indicate which explanatory variable has an effect. It is therefore essential to conduct hypothesis tests on the individual coefficients
B;j(j=1,...,k). The hypothesis statements are Hy:3; =0 and H,:8;# 0. The test statistic for testing this is the ratio of the least
squares estimate and the standard error of the estimate. That is,

b
s.e.(bj)’

[0: jzl,...,k7
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where s.e.(b)) is the standard error associated with b; and is defined as s.e.(b;) = 4 /6? Cj;, where Cj; is the jth diagonal element
of (X"X)™! corresponding to b;. Under the assumption that the null hypothesis 1s true, the test statistic #, is distributed as a
tdistribution withn — k — 1 degrees of freedom. Thatis, 7y ~#,,_ _ ;. The p value is defined as before. That is, Pr(|fo| > 1, _ 1). We
reject the null hypothesisif the p value < a, where a is the type I error. Note that this testis a marginal test since b; depends on all the
other regressors x;(i #j) that are in the model (see the earlier discussion on interpreting the coefficients).

Hypothesis tests are typically followed by the calculation of confidence intervals. A 100(1 — «)% confidence interval for the
regression coefficient 8;Gj=1,...,k) is given by

bj—ta/z,n_k_ls.e.(bj) < ,Bj < bj —O—ta/z.n_k_ls.e.(bj).

Note that these confidence intervals can also be used to conduct the hypothesis tests. In particular, if the range of values for the
confidence interval includes zero, then we would fail to reject the null hypothesis.

Two other confidence intervals of interest are the confidence interval for the mean response E(y|xo ) and the prediction interval
for an observation selected from the conditional distribution f(y|X¢), where without loss of generality f(e) is assumed to be
normally distributed. Also note that X is the setting of the explanatory variables at which the distribution of y needs to be
evaluated. Notice that the mean of y at a given value of X =X is given by E(y[xo) = x}B.

An unbiased estimator for the mean response is x2b. That is, E (xgb|X) = ng. It can be shown that the variance of this unbiased
estimator is given by o°x] (XTX)flxo. Using the previously defined estimator for o (see Section 1.3.1 ), we can construct a
100(1 — )% confidence interval on the mean response as

Y(X0) = tu2nik-1y/ frzxg(XTX)’le < Py < I(X0) +lujan i1/ &2XS(XTX)71X0-

Using a similar method, one can easily construct a 100(1 — )% prediction interval for a future observation x, as

Y(X0) =t -1 \/&2(1 +x5(X"X)"'x0) < y(x0) < $(X0) + a1 \/6'2(1 +x1(X7X) o).

In both these cases, the observation vector X is defined as xo = (1, xo1, X02, - - - , Xox), Where the “1” is added to account for the
intercept term.

Notice that the width of the prediction interval at point X, is wider than the width of the confidence interval for the mean
response at Xq. This is easy to see because the standard error used for the prediction interval is larger than the standard error used for
the mean response interval. This should make intuitive sense also since it is easier to predict the mean of a distribution than it is to
predict a future value from the same distribution.

1.8 SOME FURTHER NOTES

A key step in regression analysis is residual analysis to check the least squares assumptions. Violation of one or more assumptions
can render the estimation and any subsequent hypothesis tests meaningless. As stated earlier, the least squares residuals can be
computed as e =y — Xb. Simple residual plots can be used to check a number of assumptions. Chapter 2 shows how these plots are
constructed. Here, we simply outline the different types of residual plots that can be used.

1. A plot of the residuals in time order can be used to check for the presence of autocorrelation. This plot can also be used to
check for outliers.

2. Aplotofthe residuals versus the predicted value can be used to check the assumption of random, independently distributed
errors. This plot (and the residuals versus regressors plots) can be used to check for the presence of heteroscedasticity. This
plot can also be used to check for outliers and influential observations.

3. The normal probability plot of the residuals can be used to check any violations from the assumption of normally
distributed random errors.



2

REGRESSION ANALYSIS USING PROC IML AND PROC REG

2.1 INTRODUCTION

We discussed basic regression concepts and least squares theory in Chapter 1. This chapter deals with conducting regression
analysis calculations in SAS. We will show the computations by using both Proc IML and Proc Reg. Even though the results from
both procedures are identical, using Proc IML allows one to understand the mechanics behind the calculations that were discussed
in the previous chapter. Freund and Littell (2000) offer an in-depth coverage of how SAS can be used to conduct regression
analysis in SAS. This chapter discusses the basic elements of Proc Reg as it relates to conducting regression analysis.

To illustrate the computations in SAS, we will make use of the investment equation data set provided in Greene (2003). The
source of the data is attributed to the Economic Report of the President published by the U.S. Government Printing Office in
Washington, D.C. The author’s description of the problem appears on page 21 of his text and is summarized here. The objective is
to estimate an investment equation by using GNP (gross national product), and a time trend variable 7. Note that T'is not part of the
original data set but is created in the data step statement in SAS. Initially, we ignore the variables Interest Rate and Inflation Rate
since our purpose here is to illustrate how the computations can be carried out using SAS. Additional variables can be incorporated
into the analysis with a few minor modifications of the program. We will first discuss conducting the analysis in Proc IML.

2.2 REGRESSION ANALYSIS USING PROC IML

2.2.1 Reading the Data

The source data can be read in a number of different ways. We decided to create temporary SAS data sets from the raw data stored
in Excel. However, we could easily have entered the data directly within the data step statement since the size of data set is small.
The Proc Import statement reads the raw data set and creates a SAS temporary data set named invst_equation. Using the approach
taken by Greene (2003), the data step statement that follows creates a trend variable 7, and it also converts the variables investment
and GNP to real terms by dividing them by the CPI (consumer price index). These two variables are then scaled so that the
measurements are now scaled in terms of trillions of dollars. In a subsequent example, we will make full use of the investment data
set by regressing real investment against a constant, a trend variable, GNP, interest rate, and inflation rate that is computed as a
percentage change in the CPI.

proc import out=invst_equation
datafile="C:\Temp\Invest_Data"
dbms=Excel

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.
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replace;
getnames=yes;
run;
data invst_equation;
set invst_equation;
T=_n_;
Real_GNP=GNP/CPI*10) ;
Real_Invest=Invest/ (CPI*10) ;
run;

2.2.2 Analyzing the Data Using Proc IML

Proc IML begins with the statement ‘“Proc IML;” and ends with the statement “Run;”. The analysis statements are written
between these two. The first step is to read the temporary SAS data set variables into a matrix. In our example, the data matrix
X contains two columns: 7 and Real_GNP. Of course, we also need a column of 1’s to account for the intercept term. The
response vector y contains the variable Real_Invest. The following statements are needed to create the data matrix and the
response vector.

use invst_equation;
read all var {'T’ "'Real_GNP'} into X;
read all var {'Real_TInvest’} intoY;

Note that the model degrees of freedom are the number of columns of X excluding the column of 1’s. Therefore, it is a
good idea to store the number of columns in X at this stage. The number of rows and columns of the data matrix are
calculated as follows:

n=nrow (X) ;
k=ncol (X) ;

A column of 1’s is now concatenated to the data matrix to get the matrix in analysis ready format.

X=J(n,1,1) I 1X;
The vector of coefficients can now easily be calculated by using the following set of commands:

C=inv (X' *X) ;
B_Hat=C*X'*Y;

Note that we decided to compute (X’ X) ™' separately since this matrix is used frequently in other computations, and it is
convenient to have it calculated just once and ready to use.

With the coefficient vector computed, we can now focus our attention on creating the ANOVA table. The following
commands compute the sums of squares (regression, error, total), the error degrees of freedom, the mean squares, and the F
statistic.

SSE=y‘*y-B_Hat ' *X'*Y;
DFE=n-k-1;

MSE=SSE/DFE;

Mean_Y=Sum(Y) /n;
SSR=B_Hat’'*X’*Y-n*Mean_Y**2;
MSR=SSR/k;

SST=SSR+SSE;

F=MSR/MSE;

Next, we calculate the coefficient of determination (R2) and the adjusted coefficient of determination (adj Rz).
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R_Square=SSR/SST;
Adj_R_Square=1-(n-1)/(n-k-1) * (1-R_Square) ;

We also need to calculate the standard errors of the regression estimates in order to compute the #-statistic values and the
corresponding p values. The function PROBT will calculate the probability that a random variable from the # distribution with df
degrees of freedom will exceed a given ¢ value. Since the function takes in only positive values of 7, we need to use the absolute
value function abs. The value obtained is multiplied by ‘2’ to get the p value for a two-sided test.

SE=SQRT (vecdiag (C) #MSE) ;
T=B_Hat/SE;
PROBT=2* (1-CDF ('T’, ABS(T), DFE)) ;

With the key statistics calculated, we can start focusing our attention on generating the output. We have found the
following set of commands useful in creating a concise output.

ANOVA_Table= (k| |SSR| IMSR|I|F)//(DFE| |SSE| IMSE| | {.});
STATS_Table=B_Hat | |SE| [T| | PROBT;

Print 'Regression Results for the Investment

Equation’;

Print ANOVA_Table (|Colname={DF SS MS F} rowname={Model
Error} format=8.41);

Print 'Parameter Estimates’;

Print STATS_Table (|Colname={BHAT SE T PROBT} rowname={INT
T Real_GNP} format=8.41);

Print 'The value of R-Square is ’ R_Square; (1 format =8.41);
Print 'The value of Adj R-Square is ' Adj_R_Square;

(1 format = 8.41) ;

These statements produce the results given in Output 2.1. The results of the analysis will be discussed later.

|Regression Results for the Investment Equationl

ANOVA TABLE
DF SS MS F
MODEL| 2.0000|0.0156(0.0078(143.6729
ERROR([12.0000|0.0007|0.0001

Parameter Estimates

STATS_ TABLE

BHAT SE T| PROBT
INT -0.5002|0.0603(-8.2909(0.0000
T -0.0172|0.0021|-8.0305|0.0000

REAL_GNP| 0.6536(0.0598|10.9294|0.0000

R_SQUARE
The value of R-Square is 0.9599

ADJ R _SQUARE
The value of Adj R-Square is 0.9532

OUTPUT 2.1. Proc IML analysis of the investment data.
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2.3 ANALYZING THE DATA USING PROC REG

This section deals with analyzing the investment data using Proc Reg. The general form of the statements for this procedure is

Proc Reg Data=dataset;
Model Dependent Variable (s) = Independent Variable (s)/Model
Options;

Run;

See Freund and Littell (2000) for details on other options for Proc Reg and their applications. We will make use of only a limited
set of options that will help us achieve our objectives. The dependent variable in the investment data is Real Investment, and the
independent variables are Real GNP and the time trend 7. The SAS statements required to run the analysis are

Proc Reg Data=invst_equation;
Model Real_Invest=Real GNP T;
Run;

The analysis results are given in Output 2.2. Notice that the output from Proc Reg matches the output from Proc IML.

2.3.1 Interpretation of the Output (Freund and Littell, 2000, pp. 17-24)

The first few lines of the output display the name of the model (Model 1, which can be changed to a more appropriate name), the
dependent variable, and the number of observations read and used. These two values will be equal unless there are missing
observations in the data set for either the dependent or the independent variables or both. The investment equation data set has a
total of 15 observations and there are no missing observations.

The analysis of variance table lists the standard output one would expect to find in an ANOVA table: the sources of variation,
the degrees of freedom, the sums of squares for the different sources of variation, the mean squares associated with these, the

The REG Procedure
Model: MODEL1
Dependent Variable: Real_ Invest

Number of Observations Read|1l5
Number of Observations Used|15

Analysis of Variance
Sum of Mean

Source DF Squares Square |F Value|Pr > F
Model 2 0.01564 0.00782| 143.67<0.0001]
Error 12(0.00065315|0.00005443
Corrected Total|14 0.01629

Root MSE 0.00738 |R-Square|0.9599

Dependent Mean|0.20343|Adj R-Sg|0.9532

Coeff Var 3.62655

Parameter Estimates
Parameter |Standard
Variable [DF| Estimate Error|t Value|Pr > |t|
Intercept| 1| -0.50022| 0.06033 -8.29 <0.0001
Real GNP 1 0.65358| 0.05980 10.93] <0.0001
T 1 -0.01721| 0.00214 -8.03 <0.0001

OUTPUT 2.2. Proc Reg analysis of the investment data.
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F-statistic value, and the p value. As discussed in Chapter 1, the degrees of freedom for the model are k, the number of independent
variables, which in this example is 2. The degrees of freedom for the error sums of squares are n — k — 1, whichis 15 —2 — 1 or 12.
The total degrees of freedom are the sum of the model and error degrees of freedom or n — 1, the number of nonmissing
observations minus one. In this example, the total degrees of freedom are 14.

i. InChapter 1, we saw that the total sums of squares can be partitioned into the model and the error sums of squares. That is,
the Corrected Total Sums of Squares = Model Sums of Squares + Error Sums of Squares. From the ANOVA table, we see
that 0.01564 + 0.00065 equals 0.01629.

ii. The mean squares are calculated by dividing the sums of squares by their corresponding degrees of freedom. If the model is
correctly specified, then the mean square for error is an unbiased estimate of o2, the variance of €, and the error term of the
linear model. From the ANOVA table,

MSR = 0'012564 — 0.00782
and
MSE — % — 0.00005443.

iii. The F-statistic value is the ratio of the mean square for regression and the mean square for error. From the ANOVA table,

0.00782
= 0.00005443 — [ 467

It tests the hypothesis that

Hy: By =B,=0,
Hi: At least one of the B’s # O.

Here, 3, and 3, are the true regression coefficients for Real GNP and Trend. Under the assumption that the null hypothesis
is true,

P MSR
_MSE 2,12

and the

pvalue =Pr(F > Fp1,) = Pr(F > 143.67) = 0.

The p value indicates that there is almost no chance of obtaining an F-statistic value as high or higher than 143.67 under the
null hypothesis. Therefore, the null hypothesis is rejected and we claim that the overall model is significant.

The root MSE is the square root of the mean square error and is an estimate of the standard deviation of
€(+/0.00005443 = 0.00738). The dependent mean is simply the mean of the dependent variable Real Invest. Coeff Var is the
coefficient of variation and is defined as

root — mse % 100.

dependent — mean

As discussed in Meyers (1990, p. 40), this statistic is scale free and can therefore be used in place of the root mean square error

(which is not scale free) to assess the quality of the model fit. To see how this is interpreted, consider the investment data set

example. In this example, the coefficient of variation is 3.63%, which implies that the dispersion around the least squares line as
measured by the root mean square error is 3.63% of the overall mean of Real Invest.
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The coefficient of determination (R%) is 96%. This implies that the regression model explains 96% of the variation in the
dependent variable. As explained in Chapter 1, it is calculated by dividing the model sums of squares by the total sums of squares
and expressing the result as a percentage (0.01564/0.01629 = 0.96). The adjusted R” value is an alternative to the R* value and
takes the number of parameters into account. In our example, the adjusted R* =95.32%. This is calculated as

. SSE/(n—k—1) n—1
Ky 1_<nk1>(1_R2)

14
= 1= 5 % (1-0.96) = 0.9533.

Notice that the values of R* and adjusted R* are very close.

The parameter estimates table lists the intercept and the independent variables along with the estimated values of the
coefficients, their standard errors, the #-statistic values, and the p values.

i. The first column gives the estimated values of the regression coefficients. From these, we can write the estimated model as
Estimated Real_Invest=—0.50 + 0.65 Real_GNP - 0.017 T.

The coefficient for Real_GNP is positive, indicating a positive correlation between it and Real_Invest. The coefficient
value of 0.65 indicates that an increase of one trillion dollars of Real GNP would lead to an average of 0.65 trillion dollars
of Real Investment (Greene, 2003). Here, we have to assume that Time (T) is held constant.

ii. The standard error column gives the standard errors for the coefficient estimates. These values are the square root of the
diagonal elements of (X" X)_l. These are used to conduct hypothesis tests for the regression parameters and to
construct confidence intervals.

iii. The ¢ value column lists the 7 statistics used for testing

HO: 181‘:07
Hi: B #0,i=1,2.

These are calculated by dividing the estimated coefficient values by their corresponding standard error values. For example, the
t value corresponding to the coefficient for Real GNP is 0.65358/0.05980 = 10.93. The last column gives the p values associated
with the t-test statistic values. As an example, the p value for Real_GNP s givenby P(| | >10.93). Using the ¢ table with 12 degrees
of freedom, we see that the p value for Real_GNP is zero, indicating high significance. In the real investment example, the p values
for both independent variables offer strong evidence against the null hypothesis.

2.4 EXTENDING THE INVESTMENT EQUATION MODEL TO THE COMPLETE DATA SET

We will now extend this analysis by running a regression on the complete Investment Equation data set. Note that the CPI in
1967 was recorded as 79.06 (Greene, 2003, p. 947) and that Inflation Rate is defined as the percentage change in CPI. The
following data step gets the data in analysis-ready format.

Data invst_equation;
set invst_equation;
T=_n_;
Real_GNP=GNP/ (CPI*10) ;
Real_TInvest=Invest/ (CPI*10);
CPI0=79.06;
Inflation_Rate=100* ( (CPI-Lag (CPI)) /Lag(CPI));
if inflation_rate=. then inflation_rate=100* ( (CPI-
79.06)/79.06) ;
drop Year GNP Invest CPI CPIO;

run;
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The REG Procedure
Model: MODEL1
Dependent Variable: Real_ Invest

Number of Observations Read|15

Number of Observations Used|15

Analysis of Variance
Sum of Mean

Source DF Squares Square |F Value|Pr > F
Model 4 0.01586 0.00397 91.83(<0.0001
Error 10/0.00043182(0.00004318
Corrected Total|1l4 0.01629

Root MSE 0.00657|R-Square|0.9735

Dependent Mean|0.20343|Adj R-Sg|0.9629

Coeff Var 3.23018

Parameter Estimates
Parameter |Standard
Variable Label DF| Estimate Error|t Value|Pr > |t]
Intercept Intercept| 1 -0.50907| 0.05393 -9.44| <0.0001
Real GNP 1 0.67030| 0.05380 12.46| <0.0001
T 1 -0.01659| 0.00193 -8.60| <0.0001
Interest Interest 1 -0.00243| 0.00119 -2.03 0.0694
Inflation Rate 1]0.00006320| 0.00132 0.05 0.9627

OUTPUT 2.3. Proc Reg analysis of complete investment equation data.

The data can be analyzed using Proc IML or Proc Reg with only minor modifications of the code already presented. The
following Proc Reg statements can be used. The analysis results are given in Output 2.3.

Proc reg data=invst_equation;
model Real_Invest=Real GNP T Interest Inflation_Rate;
Run;

The output indicates that both the Real_GNP and the time trend T are highly significant at the 0.05 type I error level. The
variable Interest is significant at the 0.10 type I error rate, whereas Inflation Rate is not significant. The coefficients for both
Real_GNP and T have the same signs as their signs in the model where they were used by themselves. The coefficient values for
these variables are also very close to the values obtained in the earlier analysis. Notice that the values of the two coefficients of
determination terms have now increased slightly.

2.5 PLOTTING THE DATA

Preliminary investigation into the nature of the correlation between the explanatory and dependent variables can easily be done by
using simple scatter plots. In fact, we suggest that plotting the independent variables versus the dependent variable be the first step
in any regression analysis project. A simple scatter plot offers a quick snapshot of the underlying relationship between the two
variables and helps in determining the model terms that should be used. For instance, it will allow us to determine if a
transformation of the independent variable or dependent variable or both should be used. SAS offers several techniques for
producing bivariate plots. The simplest way of plotting two variables is by using the Proc Plot procedure. The general statements
for this procedure are as follows:

Proc Plot data=dataset;
Plot dependent_variable*independent_variable;
Run;
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Study of Real Investment versus Real GNP
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FIGURE 2.1. Plot of Real_Invest versus Real_GNP.

Proc Gplot is recommended if the intent is to generate high-resolution graphs. Explaining all possible features of Proc Gplot is
beyond the scope of this book. However, we have found the following set of statements adequate for producing the basic high-
resolution plots. The following statements produce a plot of Real_Invest versus Real_GNP (see Figure 2.1). Note that the size of
the plotted points and the font size of the title can be adjusted by changing the “height=""and “h=""options.

proc gplot data=invst_equation;

plot Real_Invest*Real_GNP

/haxis=axisl

vaxis=axis2;

symboll value=dot c=black height=2;

axisl label=('Real_GNP') ;

axis?2 label=(angle=90 ‘Real_Invest’);

title2 h=4 ‘Study of Real Investment versus GNP’ ;
run;

The statements can be modified to produce a similar plot for Real_Invest versus Time (7) (Figure 2.2).

Both plots indicate a positive correlation between the independent and dependent variables and also do not indicate any outliers
or influential points. Later in this chapter, we will discuss constructing plots for the confidence intervals of the mean response and
of predictions. We will also look at some key residual plots to help us validate the assumptions of the linear model.

2.6 CORRELATION BETWEEN VARIABLES

For models with several independent variables, it is often useful to examine relationships between the independent variables and
between the independent and dependent variables. This is accomplished by using Proc Corr procedure. The general form of this
procedure is

Proc Corr data=dataset;
Var variables;
Run;
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FIGURE 2.2. Plot of Real_Invest versus Time.

For example, if we want to study the correlation between all the variables in the investment equation model, we would use the
statements

proc corr data=invst_equation;
var Real_Invest Real_ GNP T;
Run;

The analysis results are given in Output 2.4.

The first part of the output simply gives descriptive statistics of the variables in the model. The correlation coefficients along
with their p values are given in the second part of the output. Notice that the estimated correlation between Real_Invest and
Real_GNPis0.86 with a highly significant p value. The correlation between Time Trend and Real_Investis 0.75 and is also highly
significant. Note that the correlation between the independent variables is 0.98, which points to multicollinearity problems with

The CORR Procedure

3 Variables:|Real_ Invest Real GNP T

Simple Statistics
Variable N Mean|Std Dev Sum|Minimum| Maximum
Real Invest|15|0.20343(0.03411 3.05151]|0.15768| 0.25884
Real GNP 1511.28731|0.16030| 19.30969|1.05815| 1.50258
T 15(8.00000(4.47214]1120.00000(1.00000|15.00000
Pearson Correlation Coefficients, N = 15
Prob > |r| under HO: Rho=0

Real Invest Real GNP T

Real_Invest 1.00000 0.86283 0.74891

<0.0001 0.0013

Real GNP 0.86283 1.00000 0.97862

<0.0001 <0.0001

T 0.74891 0.97862 1.00000

0.0013 <0.0001

OUTPUT 2.4. Correlation analysis of the investment equation data.
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this data set. The problem of multicollinearity in regression analysis will be dealt with in later sections. However, notice that the
scatter plot between Real_Invest and Time Trend indicated a positive relationship between the two (the Proc Corr output confirms
this), but the regression coefficient associated with Time Trend is negative. Such contradictions sometimes occur because of
multicollinearity.

2.7 PREDICTIONS OF THE DEPENDENT VARIABLE

One of the main objectives of regression analysis is to compute predicted values of the dependent variable at given values of
the explanatory variables. It is also of interest to calculate the standard errors of these predicted values, confidence interval
on the mean response, and prediction intervals. The following SAS statements can be used to generate these statistics
(Freund and Littel, 2000, pp. 24-27).

Proc Reg Data=invst_equation;
Model Real_Invest=Real_ GNP T/p clmcli r;
Run;

The option ‘p’ calculates the predicted values and their standard errors, ‘clm’ calculates 95% confidence interval on the mean
response, ‘cli’ generates 95% prediction intervals, and ‘r’ calculates the residuals and conducts basic residuals analysis. The above
statements produce the results given in Output 2.5.

The first set of the output consists of the usual Proc Reg output seen earlier. The next set of output contains the analysis results of
interest for this section. The column labeled Dependent Variable gives the observed values of the dependent variable, which is
Real_Invest. The next column gives the predicted value of the dependent variable y and is the result of the ‘p’ option in Proc Reg.
The next three columns are the result of using the ‘clm’ option. We get the standard error of the conditional mean at each
observation, E(y | Xo), and the 95% confidence interval for this. As explained in Chapter 1, the standard error of this conditional

expectation is given by y/x? (X7 X)_lxg . Therefore, the 95% confidence interval is given by

¥ £ 10,005, nr—16\/ X7 (XTX) ~'x7.

The REG Procedure
Model: MODEL1
Dependent Variable: Real_Invest

Number of Observations Read|1l5

Number of Observations Used|15

Analysis of Variance
Sum of Mean

Source DF Squares Square |F Value|Pr > F
Model 2 0.01564 0.00782| 143.67|<0.000]
Error 12|0.00065315|0.00005443
Corrected Total|l4 0.01629

Root MSE 0.00738|R-Square|0.9599

Dependent Mean|0.20343|Adj R-Sg|0.9532

Coeff Var 3.62655

Parameter Estimates

Parameter|Standard
Variable |DF| Estimate Error|t Value|Pr > |t]
Intercept| 1| -0.50022| 0.06033 -8.29( <0.0001
Real GNP 1 0.65358| 0.05980 10.93| <0.0001
T 1 -0.01721] 0.00214 -8.03( <0.0001

OUTPUT 2.5. Prediction and mean response intervals for the investment equation data.
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Output Statistics
Dependent | Predicted Std Error 95% Std Error| Student
Obs| Variable Value |Mean Predict| 95% CL Mean CL Predict Residual| Residual |[Residual
1 0.1615 0.1742 0.003757|0.1660(0.1823|0.1561|0.1922 -0.0127 0.00635 -1.993
2 0.1720 0.1762 0.003324(0.1690(0.1835|0.1586|0.1939|-0.004215 0.00659 -0.640
3 0.1577 0.1576 0.003314|0.1504(0.1648|0.1400|0.1752(0.0000746 0.00659 0.0113
4 0.1733 0.1645 0.002984|0.1580(0.1710]0.1472|0.1818| 0.008823 0.00675 1.308
5 0.1950 0.1888 0.002330(0.1837(0.1939|0.1719|0.2056| 0.006207 0.00700 0.887
6 0.2173 0.2163 0.003055|0.2096(0.2229]0.1989|0.2337( 0.001035 0.00672 0.154
7 0.1987 0.1938 0.001988|0.1895(0.1981]0.1772|0.2105( 0.004913 0.00710 0.692
8 0.1638 0.1670 0.003839(0.1586(0.1754|0.1489|0.1851|-0.003161 0.00630 -0.502
9 0.1949 0.1933 0.002433|0.1880(0.1986|0.1764|0.2102( 0.001559 0.00696 0.224
10 0.2314 0.2229 0.002223(0.2180(0.2277|0.2061|0.2397| 0.008547 0.00703 1.215
11 0.2570 0.2507 0.003599|0.2428(0.2585]0.2328|0.2685( 0.006360 0.00644 0.988
12 0.2588 0.2602 0.004045|0.2514(0.2690|0.2419|0.2785(-0.001348 0.00617 -0.219
13 0.2252 0.2394 0.002990(0.2328(0.2459|0.2220|0.2567 -0.0142 0.00674 -2.100
14 0.2412 0.2409 0.00327210.2337(0.2480|0.2233|0.2584( 0.000314 0.00661 0.0475
15 0.2036 0.2059 0.004995|0.1950(0.2168|0.1865|0.2253(-0.002290 0.00543 -0.422
Output Statistics
Cook's
Obs -2-1 01 2 D
1| *xk | || 0.464
2 * | || 0.035
3| | || 0.000
4l | ** [| 0.112
5| | * || 0.029
6| | || 0.002
71| | * || 0.012
8| * | || 0.031
9| | | || 0.002
10| | | ** || 0.049
11| | * || 0.102
12| | | || 0.007
13| xx¥x| || 0.289
14| | || 0.000
15] | | || 0.050
Sum of Residuals 0
Sum of Squared Residuals 0.00065315
Predicted Residual SS (PRESS) |0.00099715

OUTPUT 2.5. (Continued)

Here, X is the row vector of X corresponding to a single observation and ¢ is the root mean square error. The residual column is
also produced by the ‘p’ option and is simply

observed _value—predicted _value.

The ‘cli’ option produces the 95% prediction intervals corresponding to each row x, of X. As explained in Chapter 1, this is

calculated by using the formula
¥ £ 10,005, n—k—16\/ 1 + x5 (X7 X)"'x].
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The ‘r’ option in Proc Reg does a residual analysis and produces the last five columns of the output. The actual residuals along
with their corresponding standard errors are reported. This is followed by the standardized residual that is defined as e/o,.. Here, e
is the residual, and o, is the standard deviation of the residuals and is given by the square root of o, (1—11,4,-)6'2 (Meyers, 1990
p- 220), where h;; is the ith diagonal element of X(X”X) X" and 62 is an estimate of o>. Note that the standardized residuals
corresponding to the 1st and 13th observations appear to be high. The graph columns of the output are followed by Cook’s
statistics, which measure how influential a point is. Cook’s statistic or Cook’s D is a measure of one change in the parameter
estimate ﬁ when the ith observation is deleted. If we define d; = ﬁ—ﬁ( i)» Where ﬁ (i) 18 the parameter estimate one without the ith
observation, then Cook’s D for the ith observation is defined as (Meyers, 1990, p. 260)

df (XTX) '

Cook’s D; = k + 1)&2

)

where k is the number of parameters in the model. A large value of the Cook’s D statistic is typically used to declare a point
influential.

Confidence intervals for the mean response and predicted values can be plotted fairly easily using Proc Gplot or by using the
plotting features within Proc Reg. Here, we give an example of plotting the two confidence intervals within the Proc Reg
statements. The following statements produce the plot for the mean interval (Freund and Littell, 2000, pp. 45-46).

Proc Reg Data=invst_equation;

Model Real_Invest=Real_ GNP T;

plot p.*p. uclm.*p. 1lclm.*p./overlay;
run;

These statements produce the results given in Figure 2.3.
The prediction interval can be plotted by simply replacing the plot statements with

plot p.*p. ucl.*p. 1lcl.*p./overlay;

Real Invest = -0.5002 +0.6536 Real GNP -0.0172 T
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FIGURE 2.3. Proc Reg output with graphs of mean intervals.
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FIGURE 2.4. Proc Reg output with graphs of prediction intervals.

Of course, one can have both plot statements in the Proc Reg module to simultaneously create both plots. The prediction
interval produced is given in Figure 2.4.

Notice that the prediction interval is wider than the confidence interval for the mean response since the variability in predicting
a future observation is higher than the variability in predicting the mean response.

2.8 RESIDUAL ANALYSIS

Residual analysis is done to check the various assumptions underlying regression analysis. Failure of one or more assumptions
may render a model useless for the purpose of hypothesis testing and predictions. The residual analysis is typically done by
plotting the residuals. Commonly used residual graphs are

a. Residuals plotted in time order
b. Residuals versus the predicted value
c. Normal probability plot of the residuals.

We will use the investment equation regression analysis to illustrate creating these plots in SAS. To plot the residuals in time
order, we have simply plotted the residuals versus the time trend variable since this captures the time order. The following
statement added to the Proc Reg module will generate this plot (Freund and Littell, 2000, pp. 49-50).
plot r.*T;

[T L]

Replacing “r.” by “student.” will create a trend chart of the standardized residuals (Figure 2.5).
Note that barring points 1 and 13, the residuals appear to be random over time. These two points were also highlighted in the
influential point’s analysis. To generate the residuals versus predicted response plot, use

plot student.*p.;

or

plot r.*p.;
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FIGURE 2.5. Plot of residuals versus time.

Note that two residual points appear to be anomalies and may need to be investigated further (Figure 2.6). It turns out that these
points are data points 1 and 13. An ideal graph here is a random scatter of plotted points. A funnel-shaped graph here indicates
heteroscedastic variance—that is, a model where the variance is dependent upon the conditional expectation E(y | X). Therefore,
as E(y | X) changes, so does the variance.

To generate the normal probability plot of the residuals, we first create an output data set containing the residuals using the
following code:

proc reg data=invst_equation;
model Real_Invest=Real_ GNP T;
output out=resid r=resid;
Run;

The output data set then serves as an input to the Proc Univariate module in the following statements. The “probplot/
normal(mu=0 sigma=1)” requests the calculated percentiles for the plots to be based on the standard normal distribution. It

should be apparent that this option can be used to request probability plots based on other distributions. The plot is produced
in Figure 2.7.

proc univariate data=resid;

var resid;

probplot/normal (mu=0 sigma=1) ;
run;

Note that barring the points around the 5th and 10th percentiles (which again are data points 1 and 13), the data appear to

fall on a straight line and therefore we can be fairly confident that the residuals are distributed as a standard Normal
distribution.
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2.9 MULTICOLLINEARITY

The problem of multicollinearity was discussed earlier. We now provide more details about multicollinearity and discuss ways
of detecting it using Proc Reg. Multicollinearity is a situation where there is a high degree of correlation between the
explanatory variables in a model. This often arises in data mining projects (for example, in models to predict consumer
behavior) where several hundred variables are screened to determine a subset that appears to best predict the response of
interest. It may happen (and it often does) that many variables measure similar phenomena. As an example, consider modeling
the attrition behavior of consumers with respect to Auto & Home insurance products. Three variables that could be studied are
the number of premium changes, the number of positive premium changes, and the number of negative premium changes over
the life of the policy holder’s tenure with the company. We should expect the number of premium changes to be positively
correlated with the number of positive (negative) premium changes. Including all three in the model will result in
multicollinearity. So, what does multicollinearity do to our analysis results? First, note that the existence of multicollinearity
does not lead to violations of any of the fundamental assumptions of regression analysis that were discussed in Chapter 1. That
is, multicollinearity does not impact the estimation of the least squares estimator. However, it does limit the usefulness of the
results. We can illustrate this by means of a simple example involving regression analysis with two explanatory variables. It is
easy to show that the variance of the least squares estimator in this simple case is (Greene, 2003, p. 56)

0_2

Var(by) = , k=1,.2.

n
(1=13) 3 (xie — %)
i=1

Here, r, is the correlation between the two explanatory variables. It is clear that the higher the correlation between the two
variables, the higher the variance of the estimator b;. A consequence of the high variance is that explanatory variables that
inreality are correlated with the response may appear insignificant. That is, the #-statistic value corresponding to the estimator
will be underestimated. Another consequence are incorrect signs on the coefficients and/or really large coefficient values.

It can be shown that in a multiple regression with k explanatory variables, the variance of the least squares estimator b; can be
written as (Greene, 2003, p. 57)

0.2

Var(by) = . , k=1,2,....
(1-R) > (xa—%)?
i=1

Here, R? is the R? value when x; is regressed against the remaining k — 1 explanatory variables. As discussed by the author,

a. The greater the correlation between x; and other variables, the higher the variance of b;.
b. The greater the variance in x, the lower the variance of by.
c. The better the model fit (the lower the 0'2), the lower the variance of by.

We will make use of the gasoline consumption data from Greene (2003) to illustrate how multicollinearity in the data is
detected using SAS. The original source of this data set is the Economic Report of the President as published by the U.S.
Government Printing Office in Washington, D.C. The objective is to conduct a regression of gasoline consumption on the
price of gasoline, income, the price of new cars, and the price of used cars. All the variables were transformed using the log
transformation. The hypothesized model and a general explanation of the problem are given in Greene (2003, p. 12).

There are three sets of statistics that may be used to determine the severity of multicollinearity problem. These statistics are as
follows (Freund and Littell, 2000, p. 97; Meyer, 1990, pp. 369-370):

a. Comparing the significance of the overall model versus the significance of the individual parameter estimates.
b. Variance inflation factors (VIF) associated with each parameter estimate.
c. Analysis of the eigenvalues of the X" X matrix.

The following statements can be used to generate these statistics. The analysis results are given in Output 2.6.

proc reg data=clean_gas;
model Ln_G_Pop=Ln_Pg Ln_Inc Ln_Pnc Ln_Puc/vif collinoint;
run;
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The REG Procedure
Model: MODEL1
Dependent Variable: Ln_G_ Pop

Number of Observations Read|36

Number of Observations Used|36

Analysis of Variance

Sum of Mean
Source DF | Squares Square |F Value|Pr > F
Model 410.78048 0.19512| 243.18(<0.000Y
Error 31/0.02487|0.00080237
Corrected Total|35(0.80535

Root MSE 0.02833|R-Square|0.9691
Dependent Mean -0.00371(Adj R-Sg|0.9651
Coeff Var -763.79427

Parameter Estimates

Parameter | Standard Variance
Variable |[DF| Estimate Error |t Value|Pr > |t]|[Inflation
Intercept| 1| -7.78916| 0.35929| -21.68| <0.0001 0
Ln_Pg 1 -0.09788| 0.02830 -3.46 0.0016| 12.75251
Ln Inc 1 2.11753| 0.09875 21.44| <0.0001 4.20156
Ln_Pnc 1 0.12244| 0.11208 1.09 0.2830( 78.88071
Ln_Puc 1| -0.10220| 0.06928 -1.48 0.1502( 83.11980

Collinearity Diagnostics (intercept adjusted)
Proportion of Variation
Condition
Number |Eigenvalue Index Ln_Pg| Ln_Inc Ln_Pnc Ln_Puc
1 3.71316 1.00000({0.00541|0.01429|0.00088422(0.00084893
2 0.22345 4.07647|0.01482(0.81855 0.00704 0.00351
3 0.05701 8.07008|0.96334(0.01903 0.02941 0.03434
4 0.00638] 24.11934(0.01644|0.14813 0.96266 0.96130

OUTPUT 2.6. Multicollinearity output for the gasoline consumption data.

The first two tables give the standard OLS regression statistics. The second table adds the variance inflation factor values for
the regressors. The third table gives information about X” X. From the first table, we see that the model is highly significant
with an F-statistic value of 176.71 and a p value < 0.0001. However, examining the second table reveals p values of the
regressors ranging from 0.032 to 0.126—much larger than the overall model significance. This is one problem associated with
multicollinearity, that is, high model significance without any corresponding highly significant explanatory variables.
However, notice that both R? values are high, indicating a good model fit— a contradiction. The correlation coefficients among
the four regressors were created using Proc Corr and is given in Output 2.7.

The values below the coefficients are the p values associated with the null hypothesis of zero correlation. The regressors have
strong correlations among them, with the price of used and new cars having the highest correlation—in fact, the price of used and
new cars almost have a perfect correlation. Itis not surprising, therefore, that the variation inflation factors associated with the two
regressors is high (74.44, 84.22).

In general, variance inflation factors are useful in determining which variables contribute to multicollinearity. As given in
Meyers (1990, p. 127) and Freund and Littell (2000, p. 98), the VIF associated with the kth regressor is givenby 1 /(1 —R,%), where
R? is the R? value when x; is regressed against the other k — 1 regressors. It can be shown (see Freund and Wilson, 1998) that the
variance of b, is inflated by a factor equal to the VIF of x; in the presence of multicollinearity than in the absence of
multicollinearity. Although there are no formal rules for determining what a cutoff should be for calling a VIF large, there are a few
recommended approaches. As discussed in Freund and Littell (2000), many practitioners first compute 1/(1 — R?), where R” is the
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The CORR Procedure

4 Variables:|Ln_ Pg Ln_Inc Ln_Pnc Ln_Puc

Simple Statistics
Variable| N Mean|Std Dev Sum| Minimum|Maximum
Ln_Pg 36|0.67409|0.60423| 24.26740|-0.08992(1.41318
Ln_Inc 36(3.71423(0.09938|133.71230| 3.50487(3.82196
Ln_Pnc 36(0.44320|0.37942| 15.95514|-0.00904|1.03496
Ln_Puc 36[0.66361|0.63011| 23.89004|-0.17913|1.65326

Pearson Correlation Coefficients, N = 36
Prob > |r| under HO: Rho=0

Ln_Pg Ln_Inc Ln_Pnc Ln_Puc

Ln_Pg 1.00000| 0.84371| 0.95477| 0.95434

<0.0001| <0.0001| <0.0001

Ln_Inc 0.84371| 1.00000| 0.82502| 0.84875

<0.0001 <0.0001| <0.0001

Ln_Pnc 0.95477| 0.82502| 1.00000| 0.99255

<0.0001| <0.0001 <0.0001

Ln_Puc 0.95434| 0.84875| 0.99255| 1.00000
<0.0001| <0.0001| <0.0001

OUTPUT 2.7. Proc Corr output of the independent variables in the gasoline consumption data.

coefficient of determination of the original model. In the example used, 1/(1 — R?) = 23.81. Regressors with VIF values greater
than this are said to be more closely related to other independent variables than the dependent variable. In the gasoline
consumption example, both Ln_Pnc and Ln_Puc have VIFs greater than 23.81. Furthermore, both have large p values and are
therefore suspected of contributing to multicollinearity.

Let us now take a look at the output produced with the COOLINOINT option. The output produced contains the eigenvalues of
the correlation matrix of the regressors along with the proportion of variation each regressor explains for the eigenvalues. The
eigenvalues are ranked from highest to lowest. The extent or severity of the multicollinearity problem is evident by examining the
size of the eigenvalues. For instance, big differences among the eigenvalues (large variability) indicate a higher degree of
multicollinearity. Furthermore, small eigenvalues indicate near-perfect linear dependencies or high multicollinearity (Freund and
Littell, 2000, pp. 100-101; Meyers, 1990, p. 370). In the example used, the eigenvalues corresponding to car prices are very small.
The square root of the ratio of the largest eigenvalue to the smallest eigenvalue is given by the last element in the condition number
column. In general, alarge condition number indicates a high degree of multicollinearity. The condition number for the gasoline
consumption analysis is 24.13 and indicates a high degree of multicollinearity. See Meyer (1990, p. 370) for a good discussion of
condition numbers and how they are used to detect multicollinearity.

The Proportion of Variation output can be used to identify the variables which are highly correlated. The values measure the
percentage contribution of the variance of the estimates toward the eigenvalues (Freund and Littell, 2000). As stated earlier, small
eigenvalues indicate near-perfect correlations. As discussed in Meyer (2000, p. 372), a subset of explanatory variables with high
contributions to the eigenvalues should be suspected of being highly correlated. As an example, the 4th eigenvalue is very small in
magnitude (0.00638), and roughly 85% of the variation in both Ln_Puc and Ln_Pnc is associated with this eigenvalue. Therefore,
these two are suspected (rightly so) of being highly correlated.

Inreality, most econometric studies will be impacted by some correlation between the explanatory variables. In our experience,
we have not found a clear and common fix to combat multicollinearity problems. An approach that we have found useful is to
isolate the variables that are highly correlated and then prioritize the variables in terms of their importance to business needs.
Variables that have a low priority are then dropped from further analysis. Of course, the prioritization of these variables is done
after discussions with the business partners in marketing, finance, and so on. Arbitrarily dropping a variable from the model is not
recommended (see Chapter 4) as it may lead to omitted variables bias.
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HYPOTHESIS TESTING

3.1 INTRODUCTION

Chapters 1 and 2 introduced the concept of hypothesis testing in regression analysis. We looked at the “Global” F test, which tested
the hypothesis of model significance. We also discussed the 7 tests for the individual coefficients in the model. We will now extend
these to testing the joint hypothesis of the coefficients and also to hypothesis tests involving linear combinations of the
coefficients. This chapter will conclude with a discussion on testing data for structural breaks and for stability over time.

3.1.1 The General Linear Hypothesis

Hypothesis testing on regression parameters, subsets of parameters, or a linear combination of the parameters can be done by
considering a set of linear restrictions on the model y = X + €. These restrictions are of the form Cp = d, where Cisaj x k
matrix of j restrictions on the k parameters (j < k), B is the k x 1 vector of coefficients, and disaj x 1 vector of constants. Note
that here k is used to denote the number of parameters in the regression model. The ith restriction equation can be written as
(Greene, 2003, p. 94; Meyers, 1990, p. 103)

ciPy+coBr+ - +ceufr=d; for i=1,...,j
To see the general form of C, consider the following hypothetical model:
Y = B1+BoX1 + B3Xo 4+ BuXs5 + BsXs + BeXs5 + &.
A linear restriction of the form 8, — 33 =0 can be written as
OXB+1xBr—1xB34+0xPBs+0xBs+0xpLg=0.

The C matrix is therefore givenby C=[0 1 —1 0 0 0] and the vector d is given by d =[0].

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.

27



28 HYPOTHESIS TESTING

3.1.2 Hypothesis Testing for the Linear Restrictions

We can very easily conduct a hypothesis test for a set of j linear restrictions on the linear model. The hypothesis statements
are

Hy CB-—d=0,
Hi: CB—d#£0.

To see how the hypothesis test statements are written, consider the same general linear model as before. To test the hypothesis
Hy:B3=0,weneedC=[0 0 1 0 O O0]andd=[0].Note thatthisisequivalent to the  tests for the individual parameters
that were discussed in Chapters 1 and 2. To test the hypothesis Hy: B4 =85, weneedC=[0 0 0 1 —1 0],andd=[0].
To test several linear restrictions Hy: B> + B3=1, B4 + Bs=1, Bs + Bs =0, we need

01 1 000 1
C=|0 0 0 1 0 1| and d= |1 | (Greene, 2003, p. 96).
00 0 0 11 0

3.1.3 Testing the General Linear Hypothesis

We will now consider testing the general linear hypothesis. First note that the least squares estimator of CB —d is given
by Cb — d, where b is the least squares estimator of B. It can be shown that this estimator is unbiased. That is, E(Cb — d | X) =
CE(b | X)—d =CB —d. Its variance—covariance matrix is given by

Var(Cb—d|X)

Var(Cb|X)
CVar(b|X)CT
= 2C(X"X)"'CT.

The test statistic for the linear restriction hypothesis is based on the F statistic given by (Greene, 2003, p. 97; Meyers, 1990, p. 105)

(Cb—a)" (C(X"X)"'cT) " (Cb—d)

s%j

where s* is the mean square error and is estimated from the regression model. This test statistic can easily be derived by realizing that
the F statistic is a ratio of two independent chi-squared random variables divided by their degrees of freedom. It is trivial to show that
the distribution of )(i (defined below) has a chi-squared distribution with j degrees of freedom (Graybill, 2000). That is,

,  (Cb—a) (CX"X)"'c")'(Cb—d)
Xa = ~

o2 J "

Also note that the statistic y3 = (n—k)s? /o has a chi-squared distribution with n—k degrees of freedom. Taking the ratio of x3 and
X3 and dividing them by their degrees of freedom, we get the F statistic given above.

Itis easy to show that b is independent of 5%, which in turn gives us the independence of the two chi-squared random variables,
XZ\ and X%;- It can also be shown that if the null hypothesis is true, the test statistic Fis distributed as a F distribution with j numerator
and n—k denominator degrees of freedom. For testing the hypothesis of the ith linear restriction of the form

HO:Cilﬁl+Ci2ﬁ2+"'+cikﬁk:ciTB:di (121,,])
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we can use the estimate d; = c,-Tb and the test statistic

where

s.e.(d;) = \/ciT(sz(XTX)_] ) e

Under the assumption that the null hypothesis is true, the test statistic 7 is distributed as a ¢ distribution with n—k degrees of
freedom.

Note that we need not do anything special to test the hypothesis with a single linear restriction. That is, the F test can still be
used for this since under the null hypothesis for the single restriction case j = 1 so that F ~ F; ,,_;. Also note that the relationship
between the ¢t and F statistic is given by #~F Ln—k-

3.2 USING SAS TO CONDUCT THE GENERAL LINEAR HYPOTHESIS
To illustrate the computations in SAS, consider the quarterly data on real investment, real GDP, an interest rate, and inflation
measured by change in the log of CPI given in Greene (2003). The data are credited to the Department of Commerce, BEA.
As discussed by Greene (2003, pp. 93 and 98), the model suggested for these data is a simple model of investment, /,
given by

In(Z;) = By + Bais + B3Ap: + Byln(Y,) + Bst + &,

which hypothesizes that investment depends upon the nominal interest rates, i,; the rate of inflation, Ap,; (the log of) real output,
In(Y,); and the trend component, 7. Next, consider the joint hypothesis

B +B;=0,
B4:17
Bs = 0.

As discussed in Greene (2003), these restrictions test whether investments depend on the real interest rate, whether the
marginal effect of real outputs equals 1, and whether there is a time trend. The C matrix and d vector are given by

01 1 00 0
C=]0 0 01 0 and d= |1
0 0 0 01 0

Proc IML can easily be used to compute the F-statistic value to test this hypothesis. The following statements show how to
compute the F statistic and the associated p value. The data are first read into matrices as was shown in Chapter 2. The first set of
statements is used to define the C matrix and d vector and to store the number of restrictions in the variable j; this is simply the
number of rows in C (Note that the Proc IML statments make use of the notation given in Greene (2003).)

R={01100,00010,000013};
g={0,1,0};
j=nrow(R) ;

The next set of statements is used to calculate the discrepancy vector Cb — d, the F-statistic value, and the corresponding
p value. Note that C= (X™X)"! in the Proc IML code.
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DisVec=R*B_Hat-qg;

F=DisVec’ *inv (R*MSE*C*R’) *DisVec/7J;
P=1-ProbF (F,J,n-k);

Print 'The value of the F Statistic is ' F;
Print 'The P-Value associatedwith this is ’ P;

Notice that the least squares estimator B_Hat and the estimate for o> are computed using the methods described in Chapter 2.
These calculations yield an F value of 109.84 with a p value of 0. We can therefore reject the null hypothesis and claim that at least
one of the three restrictions is false. We can then proceed with testing the individual restrictions by using the z test described earlier.
Slight modification of the above code allows us to calculate the #-statistic values. A bit later, we will use the restrict statement in
Proc Reg to calculate the 7-statistic values. Recall that the ¢ statistic is given by

where d = ¢/b, d; = ¢/B and s.e.(d;) = \/ ¢/ (s2(X"X) ") '¢;. Adding the following code to the code already provided will
allow us to conduct the 7 test. The first step 1s to create the individual restrictions ¢ and constant vectors d (Again, using the same
notation as given in Greene (2003).)

R1=R[1,]; al=qll,];
R2=R[2,]1; 92=ql2,];
R3=R[3,]1; a3=ql3,1;

‘We now calculate the individual estimates for the restrictions of interest and also calculate the standard errors for the estimated
values. The t-statistic value is simply a ratio of these two values.

T_NUM1=R1*B_Hat-qgl;

sel=sgrt (R1*MSE*C*R1") ;

T1=T _NUM1l/sel;

pl=2*(1-CDF ('T’, abs(T1) ,n-k));

Print ‘'The value of the T Statistic for the first
restrictionis ' tl;

Print 'The P-Value associatedwith this is ’ P1;
T_NUM2=R2*B_Hat-g2;

se2=sgrt (R2*MSE*C*R2") ;

T2=T_NUM2/se2;

P2=2*(1-CDF ('T', abs(T2) ,n-k));

Print 'The value of the T Statistic for the second
restrictionis ' t2;

Print 'The P-Value associatedwith this is ' P2;
T_NUM3=R3*B_Hat-g3;

se3=sqgrt (R3*MSE*C*R3 ") ;

T3=T_NUM3/se3;

P3=2* (1-CDF ('T’, abs(T3),n-k));

Print 'The value of the T Statistic for the third
restrictionis ’ t3;

Print 'The P-Value associatedwith this is ’ P3;

The analysis results from the Proc IML statements are given in Output 3.1. Based on the results of the individual test statistic,
we would expect the second and third hypotheses to be rejected.
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T1

The value of the T Statistic for the first restriction is | —1.843672

P1
The P-Value associated with this is {0.0667179

T2

The value of the T Statistic for the second restriction is | 5.0752636

P2
The P-Value associated with this is | 8.855E-7

T3
The value of the T Statistic for the third restriction is |-3.802964

P3
The P-Value associated with this is | 0.0001901

OUTPUT 3.1. Proc IML output of quarterly investment data.

3.3 THE RESTRICTED LEAST SQUARES ESTIMATOR

In this section, we discuss the computations involved in calculating the restricted least squares estimator, b", given by (Greene,
2003, p.100)

b =b—(X"X)"'cT(C(X"X)"'CT) ' (Cb—d).

First note that the restricted least squares estimator is unbiased (under the null hypothesis, assuming that CB =d), with
variance—covariance matrix given by

Var(b“|X) = o*(X"X) ' I-CT(C(X"X)"'c")'e(xX"X) ']
The unbiased property can easily be verified by noticing that E(Cb|X) = CB. Therefore, E(b"|X) = B because the last term in
the expression of E(b*\X) is zero. To derive the expression for the variance, first write
b —B =b—(X"X)"'cT(c(X"X)"'cT) ! (Cb—d)-B.

Next, recall that the OLS estimator can be written as b= + (X"X) 'X”e. Substituting this in the above expression gives
(after some algebra) b* — B =M (X"X) 'X”¢, where

M =1-(X"X)"'cTcx"X)"'c’ e,

The variance of b" is given by
Var(b"[X) = E[(b"—E(b"[X))(b"—E(b"|X))" X]
= EM"(X"X) 'XTee"X(X"X) "M T|X]
= M (XTX) 'XTE(ee” | X)X(X"X) " 'MT
= oM (X"X)"'M7.
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Substituting the expression for M in this equation gives the original expression for Var(b*|X). We can easily calculate these
using Proc IML. For simplicity, we will use the first restriction in the investment equation example (8, + 83 =0) to illustrate
these computations. The following code will compute the restricted least squares estimates:

B_Star=B_Hat-C*R‘*inv (R*C*R’)* (R*B_Hat-q);

The restricted least squares estimators are 3; = —7.907, 8, =—0.0044, B3 =0.0044, B, =1.764, and B5 =—0.0044.
Use the following code to compute the variance—covariance matrix of the restricted least squares estimator.

temp=I(5)-R *inv (R*C*R’) *R*C;
VarCov_Star=mse*c*Temp;
print VarCov_Star;
SE=J(5,1,0);
do i=1to5;

SE[i,1]=sqgrt (VarCov_Star[i,i]);
end;

Output 3.2 contains both the variance—covariance matrix and the standard errors of the restricted least squares estimator.
As we mentioned before, these computations are also available in the Proc Reg module. The following statements can be used
(Freund and Littell, 2000, pp. 41-42). The analysis results are given in Output 3.3.

proc reg data=Rest_Invst_Eqg;
model Invest=interest delta_p output T;
restrict interest+delta_p=0;

run;

Note that Proc Reg also provides the 7 test for the restriction of interest. If we use the ‘Test’ statement instead of the
‘Restrict’ statement, we will get the OLS estimates of the parameters followed by the F test on the restriction. The statement
and output (Output 3.4) are given below. Also note that the p value for the test on the single restriction matches up to what was
obtained using Proc IML. At the 5% type 1 error level, we would reject the null hypothesis that the sum of the coefficients
equal 0.

test interest+delta_p=0;

VARCOV_STAR
1.4243433 | —0.000427 | 0.0004268 | —0.190468| 0.0015721
—0.000427| 5.0923E-6 | —-5.092E-6| 0.0000573 | —5.556E-7
0.0004268 | —5.092E-6| 5.0923E-6 | —0.000057| 5.5561E-7
-0.190468 | 0.0000573 | —0.000057 | 0.0254728 | —0.00021
0.0015721 | —5.556E-7| 5.5561E-7 | —0.00021 | 1.7499E-6

SE
1.1934585
0.0022566
0.0022566

0.159602
0.0013228

OUTPUT 3.2. Proc IML output of the variance—covariance matrix of the restricted least squares estimator.



ALTERNATIVE METHODS OF TESTING THE GENERAL LINEAR HYPOTHESIS

The REG Procedure
Model: MODELI

Dependent Variable: Invest

Note: Restrictions have been applied to parameter estimates.

Number of Observations Read | 203
Number of Observations Used | 203
Analysis of Variance
Sum of | Mean
Source DF | Squares | Square | F Value | Pr>F
Model 3 71.13325 [ 23.71108 | 3154.48 | <0.0001
Error 199 | 1.49581| 0.00752
Corrected Total | 202 | 72.62906
Root MSE 0.08670 | R-Square | 0.9794
Dependent Mean | 6.30947 | Adj R-Sq | 0.9791
Coeff Var 1.37410
Parameter Estimates
Parameter | Standard
Variable DF | Estimate Error | t Value | Pr > ||
Intercept 1 -7.90716 1.20063 —6.59| <0.0001
interest 1 —0.00443 0.00227 —1.95| 0.0526
delta_p 1 0.00443 0.00227 1.95| 0.0526
output 1 1.76406 0.16056 10.99 | <0.0001
T 1 —0.00440 0.00133 -3.31| 0.0011
RESTRICT | -1 —4.77085 2.60324 —1.83( 0.0667*

* Probability computed using beta distribution.

OUTPUT 3.3. Proc Reg output for restricted least squares of the quarterly investment data.

3.4 ALTERNATIVE METHODS OF TESTING THE GENERAL LINEAR HYPOTHESIS

33

We now discuss two alternate ways of testing the linear restriction hypothesis presented in the previous section. First, note that by
definition and construction of the OLS estimator, the restricted least squares estimator cannot be better than the ordinary least
squares estimator in terms of the error sums of squares. This is because the OLS estimators are the best linear unbiased estimators

of the parameters in the regression model. If we let e ’e” denote the error sums of squares associated with the restricted least
squares estimator and let e’e denote the error sums of squares of the ordinary least squares estimator, then e ‘e” > e’e. It can be

shown that (Greene, 2003, p.102; Meyers, 1990, pp. 108-109)

eTe—ele = (Cb—d)T[C(XTX)ACT}(Cb_d)’

so that the original F test can be restated as

(€Te'—e"e)j
ele/(n—k) ’
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The REG Procedure
Model: MODELI
Dependent Variable: Invest

Number of Observations Read | 203
Number of Observations Used | 203

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr>F
Model 4| 71.15850 | 17.78962 | 2395.23 | <0.0001
Error 198 | 1.47057| 0.00743

Corrected Total | 202 | 72.62906

Root MSE 0.08618 | R-Square | 0.9798
Dependent Mean | 6.30947 | Adj R-Sq | 0.9793
Coeff Var 1.36589

Parameter Estimates

Parameter | Standard
Variable | DF | Estimate Error | t Value | Pr > |t|
Intercept 1 —9.13409 1.36646 —6.68| <0.0001
interest 1 —0.00860 0.00320 -2.69| 0.0077
delta_p 1 0.00331 0.00234 1.41| 0.1587
output 1 1.93016 0.18327 10.53 | <0.0001
T 1 —0.00566 0.00149 -3.80| 0.0002

Test 1 Results for Dependent Variable Invest

Mean
Source DF | Square | F Value | Pr>F
Numerator 1] 0.02525 3.40 | 0.0667

Denominator | 198 | 0.00743

OUTPUT 3.4. Proc Reg output using the test statement.

which under the null hypothesisis distributed with an F distribution with j numerator and n — k denominator degrees of freedom. If
we divide the numerator and denominator of this F statistic by the total uncorrected sums of squares, we get

(RP—R)/j
(1-R?)/(n—k)

These three statistics give us the same value for testing the linear restriction hypothesis. That is,

F =

(Cb—a)" (C(s>(X"X)"")C)'(Cb—d) (eTe"—eTe)/j  (R*—R™)/j

F =

J ~ele/(nk)  (1-R?)/(n—k)’
We willillustrate these computations by analyzing the production function data given in Greene (2003). The data are credited to

Aigneretal. (1977) and Hildebrand and Liu (1957). As discussed by the author on pages 102—103, the objective is to determine if
the Cobb—-Douglas model given by

In(Y) = By +B,In(L) + B5In(K) + &



ALTERNATIVE METHODS OF TESTING THE GENERAL LINEAR HYPOTHESIS 35
is more appropriate for the data than the translog model given by
In(Y) = By +B,In(L) + B3In(K) + B4 (3 In’L) + Bs (Un°K) + BIn(L)In(K) + &.

Here, Yis the output produced, L is the labor and K is the capital involved. The Cobb—Douglas model is produced by the restriction
B4=Bs=Bes=0.The following SAS code will give results for both the translog and the Cobb—Douglas models. (The third Proc Reg
module uses the restrict statement that gives us the Cobb—Douglas model also.) Outputs 3.5 through 3.7 contain the analysis results.
Output 3.7 contains the Cobb—Douglas model results from Proc Reg using the restrict statement. (Note that the parameter estimates
for the Cobb—-Douglas portion of the output matches the output produced for the Cobb—Douglas model in Output 3.5.)

proc import out=Prod_Func
datafile="C:\Temp\TableF61"
dbms=Excel Replace;
getnames=yes;

run;

Data Prod_Func;
set Prod_Func;
LnY=1og (ValueAdd) ;
LnL=Log (Labor) ;
LnK=Log (Capital) ;
LPrime=0.5*LnL*LnL;
KPrime=0.5*LnK*LnK;

The REG Procedure
Model: MODELI1
Dependent Variable: LnY

Number of Observations Read | 27
Number of Observations Used | 27

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr> F
Model 2| 14.21156 | 7.10578 200.25 | <0.0001
Error 24| 0.85163 | 0.03548

Corrected Total | 26| 15.06320

Root MSE 0.18837 | R-Square | 0.9435
Dependent Mean | 7.44363 | Adj R-Sq | 0.9388
Coeff Var 2.53067

Parameter Estimates

Parameter | Standard
Variable | DF | Estimate Error | t Value | Pr > |t|

Intercept 1 1.17064 0.32678 3.58| 0.0015
LnL 1 0.60300 0.12595 4.79 | <0.0001
LnK 1 0.37571 0.08535 4.40 | 0.0002

OUTPUT 3.5. Regression analysis of production data Cobb—Douglas model.
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CProd=LnL*LnkK;
run;
proc reg data=Prod_Func;
model LnY=LnL LnkK;
run;
proc reg data=Prod_Func;
model LnY=LnL LnK LPrime KPrime CProd;
run;
proc reg data=Prod_Func;
model LnY=LnL LnK LPrime KPrime CProd;
restrict LPrime=0;
restrict KPrime=0;
restrict CProd=0;
run;

To test the hypothesis that the translog model is more appropriate, we can use the F test given by

_ (eTe"—eTe)/j
efe/(n—k)

The REG Procedure
Model: MODELI
Dependent Variable: LnY

Number of Observations Read | 27

Number of Observations Used | 27

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr > F
Model 5| 14.38327 | 2.87665 88.85 | <0.0001
Error 21| 0.67993 | 0.03238

Corrected Total | 26 | 15.06320

Root MSE 0.17994 | R-Square | 0.9549
Dependent Mean | 7.44363 | Adj R-Sq | 0.9441
Coeff Var 2.41733
Parameter Estimates
Parameter | Standard
Variable | DF | Estimate Error | t Value | Pr > |t|
Intercept 1 0.94420 291075 0.32| 0.7489
LnL 1 3.61364 1.54807 2.33| 0.0296
LnK 1 -1.89311 1.01626 -1.86| 0.0765
LPrime 1 -0.96405 0.70738 -1.36| 0.1874
KPrime 1 0.08529 0.29261 0.29| 0.7735
CProd 1 0.31239 0.43893 0.71| 0.4845

OUTPUT 3.6. Regression analysis of production data-translog model.
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The REG Procedure
Model: MODELI
Dependent Variable: LnY

Note: Restrictions have been applied to parameter estimates.

Number of Observations Read | 27

Number of Observations Used | 27

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr > F
Model 2| 1421156 | 7.10578 200.25 | <0.0001
Error 24| 0.85163 | 0.03548

Corrected Total | 26| 15.06320

Root MSE 0.18837 | R-Square | 0.9435
Dependent Mean | 7.44363 | Adj R-Sq | 0.9388
Coeff Var 2.53067

Parameter Estimates

Parameter | Standard
Variable DF | Estimate Error | t Value | Pr > |t|
Intercept 1 1.17064 0.32678 3.58 | 0.0015
LnL 1 0.60300 0.12595 4.79 | <0.0001
LnK 1 0.37571 0.08535 4.40 | 0.0002
LPrime 1| 8.94539E-17 0 Infty | <0.0001
KPrime 1| —1.7828E-18 0 —Infty | <0.0001
CProd 1| -1.0976E-16 0 —Infty | <0.0001
RESTRICT | -1 -0.04266 0.21750 -0.20| 0.8493*
RESTRICT | -1 0.49041 0.45811 1.07 | 0.2940%*
RESTRICT | -1 0.28409 0.57683 0.49 | 0.6325*

* Probability computed using beta distribution.

OUTPUT 3.7. Regression analysis of production data using the restrict statement Cobb—Douglas model.

The Cobb-Douglas model is the restricted model, and the error sums of squares for this is 0.85163. The error sums of squares
for the unrestricted model (translog) is 0.67993. The number of restrictions, j, is 3. The error degrees of freedom for the
unrestricted model, n — k, is 21. Substituting these values into the F-statistic formula, we get

~ (0.85163—0.67993)/3
B 0.67993/21

= 1.768.

The critical value from the F table is 3.07, so we do not reject the restricted model. We can therefore use the Cobb—Douglas
model for the production data set. Note that, using the F statistic given by

(R*=R™)/j
(1-R?)/(n—k)’
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we get

_ (09549-0.9435)/3 | s,
(1-0.9549) /21

which is equivalent to the result received when we used the F test with the error sums of squares.

3.5 TESTING FOR STRUCTURAL BREAKS IN DATA

We can extend the linear restriction hypothesis test from the previous sections to test for structural breaks in the time period within
which the data set was collected. We illustrate this by using the gasoline consumption data set given in Greene (2003). The data set
is credited to the Council of Economic Advisors, Washington, D.C. The author gives a description of the model for the gasoline
consumption data on page 12 of his text. The data consists of several variables, which includes the total U.S. gasoline consumption
(G), computed as total expenditure divided by a price index from 1960 to 1995, the gasoline price index, disposable income, the
price of used and new cars, and so on. A time series plot of G is given in Figure 3.1.

The plot clearly shows abreak in the U.S. gasoline consumption behavior after 1973. As pointed outin Greene (2003, p.130), up
to 1973, fuel was abundant with stable worldwide gasoline prices. An embargo in 1973 caused a shift marked by shortages and
rising prices.

Consider then a model of the log of per capita gasoline consumption (G/Pop) with respect to the log of the price index of
gasoline (Pg), the log of per capita disposable income (Y), the log of the price index of new cars (Pnc), and the log of the price index
of used cars (Puc). The regression model is given by (Greene, 2003, p. 136)

In(G/Pop) = B + B>In(Pg) + Bsln(y) + Byln(Pnc) + Bsln(Puc) + .

We would expect that the entire relationship described by this regression model was shifted starting 1974. Let us denote the first
14 years of the data in y and X as y; and X; and the remaining years as y, and X,. An unrestricted regression that allows the
coefficients to be different in the two time periods is given by

MR

Ln _G_Pop
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FIGURE 3.1. Time series plot of total U.S. gasoline consumption from 1960 to 1995.
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The unrestricted least squares estimator is given by (Greene, 2003, pp. 129-130)

b;
=, |
which can be obtained by running two regressions separately. If we denote the two residual sums of squares as el e; and el e,, then
the unrestricted sums of squares is given by e’ e = e’ e| + el e,. The restricted least squares estimator can be computed by simply
stacking the data and running least squares regression on the stacked data. Let the restricted residual sums of squares be denoted by

¢ ’e”. Then, the hypothesis test on whether the restricted model is more appropriate for the data can be conducted by using the F
statistic discussed earlier. That is,

XX, 0
0 XX,

XlTY1

b=(X"X)"'X"y =
Xg}b

(€T —ee)j
- eTe/(nl +I’l2—2k) '

Note that here j is the number of restrictions (or simply the number of columns of X5), 2 is the number of observations in the first
data set, and n, is the number of observations in the second data set. This test is also called the Chow test (Chow, 1960). In the
gasoline consumption example, j = 5,n; = 14,n, =22, and k = 5. A bit later, we will discuss how to conduct the Chow test using the
Proc Model. For now, let us run three regression analyses on the data set. The first two analyses are for the two separate data sets and
the last one is for the combined data set. The output of the analysis on the data set before 1974 is given in Output 3.8. The output of
the analysis for the data set after 1973 is given in Output 3.9. The output of the analysis of the combined data is given in Output 3.10.

The REG Procedure
Model: MODELI
Dependent Variable: Ln_G_Pop

Number of Observations Read | 14
Number of Observations Used | 14
Analysis of Variance
Sum of Mean
Source DF | Squares Square | F Value | Pr>F
Model 4| 0.33047 0.08262 647.56 | <0.0001
Error 9| 0.00115 |0.00012758
Corrected Total | 13| 0.33162
Root MSE 0.01130 | R-Square | 0.9965
Dependent Mean | -0.13830| Adj R-Sq | 0.9950
Coeff Var -8.16742
Parameter Estimates
Parameter | Standard
Variable |DF | Estimate Error | t Value | Pr > |t|
Intercept 1 —11.32637 1.15233 -9.831<0.0001
Ln_pg 1 —-0.07396 0.16776 -0.44| 0.6697
Ln_Income 1 1.25341 0.12914 9.71 | <0.0001
Ln_Pnc 1 0.80409 0.12076 6.66 | <0.0001
Ln_Puc 1 -0.23754 0.10447 -2.27| 0.0491

OUTPUT 3.8. Regression analysis of the gasoline consumption data prior to 1974.
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The REG Procedure
Model: MODELI
Dependent Variable: Ln_G_Pop

Number of Observations Read | 22

Number of Observations Used | 22

Analysis of Variance
Sum of Mean

Source DF | Squares Square | F Value | Pr > F
Model 41 0.05084 0.01271 27.28 | <0.0001
Error 17| 0.00792 | 0.00046586
Corrected Total | 21| 0.05876

Root MSE 0.02158 | R-Square | 0.8652

Dependent Mean | 0.08194 | Adj R-Sq | 0.8335

Coeff Var 26.34150

Parameter Estimates

Parameter | Standard
Variable |DF | Estimate Error | t Value | Pr > |t|
Intercept 1 -5.59999 3.00646 —-1.86| 0.0799
Ln_pg 1 -0.20862 0.04898 -4.26| 0.0005
Ln_Income 1 0.63704 0.33190 1.92| 0.0719
Ln_Pnc 1 0.06903 0.20662 0.33| 0.7424
Ln_Puc 1 -0.02426 0.06311 -0.38| 0.7054

OUTPUT 3.9. Regression analysis of the gasoline consumption data after 1973.

The sums of squares are as follows: el e; = 0.00115,e}e, = 0.00792, and e"e” = 0.03384.
Therefore, the Chow test statistic is given by

(0.03384—0.00907) /5

F =
0.00907/26

= 14.20.

The p value associated with this is 9.71 x 10~ and is highly significant. We can therefore reject the null hypothesis for the
restricted model and conclude that there is significant evidence that the regression model changed after 1973.

The above computations are unnecessary since SAS Proc Model can be used to test the structural break hypothesis. Proc Model
is typically used to analyze systems of simultaneous equations and seemingly unrelated regression equations where the equations
can be linear or nonlinear. However, it can also be used to conduct basic OLS analysis. Since Proc Reg does not have an option to
conduct the Chow test, we make use of Proc Model.

The following statements can be used to conduct the test. Output 3.11 contains the results of this analysis. Note the three main
components of the Proc Model statements—the list of parameters (there are 5 in the gasoline consumption model), the actual
model equation being estimated, and the response variable of interest highlighted with the Fit statement. The option “chow=15"
requests a test to determine if the data sets before and after the 15th are significantly different.

proc model data=clean_gas;
parm betal beta2 beta3 beta4d betab;
Ln_G_Pop=betal + beta2*Ln_Pg + beta3*Ln_Inc + betad*Ln_Pnc



The REG Procedure
Model: MODELI
Dependent Variable: Ln_G_Pop

Number of Observations Read | 36

Number of Observations Used | 36

Analysis of Variance
Sum of | Mean
Source DF | Squares | Square | F Value | Pr>F
Model 41 0.77152] 0.19288 176.71 | <0.0001
Error 31| 0.03384 | 0.00109
Corrected Total | 35| 0.80535
Root MSE 0.03304 | R-Square | 0.9580
Dependent Mean | -0.00371 | Adj R-Sq | 0.9526
Coeff Var -890.84882
Parameter Estimates
Parameter | Standard
Variable |DF| Estimate Error | t Value | Pr > |t|
Intercept 1 -12.34184 0.67489 | -18.29| <0.0001
Ln_pg 1 -0.05910 0.03248 -1.82| 0.0786
Ln_Income 1 1.37340 0.07563 18.16 | <0.0001
Ln_Pnc 1 —0.12680 0.12699 -1.00| 0.3258
Ln_Puc 1 -0.11871 0.08134 -1.46| 0.1545

OUTPUT 3.10. Regression analysis of the combined gasoline consumption data.

+betab*Ln_Puc;
Fit Ln_G_Pop/chow=15;
run;

THE CUSUM TEST
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Note that the coefficients in this output are for the restricted model. The p value for the Chow test indicates that the models are
indeed different between the two time periods.

3.6 THE CUSUM TEST

Model stability can also be tested by using the CUSUM test. See Montgomery (1991), Page (1954), and Woodall and Ncube
(1985) for a discussion of the CUSUM procedure in quality control. See the documentation for Proc Autoreg from the SAS
Institute, Brown et al. (1975), and Greene (2003) for a discussion of the CUSUM procedure to detect structural breaks in the
data. This test is based on the cumulative sum of the least squares residuals. If we let w, =

with

% (e; is the OLS residual at time 7)
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The MODEL Procedure
Model Summary
Model Variables 1
Parameters 5
Equations 1
Number of Statements 1

Model Variables | Ln_G_Pop

Parameters | betal beta2 beta3 beta4 beta5

Equations | Ln_G_Pop

The Equation to Estimate is

Ln_G_Pop = ‘ F(betal(1), beta2(Ln_pg), beta3(Ln_Income), betad4(Ln_Pnc), beta5(Ln_Puc))

| NOTE: At OLS Iteration 1 CONVERGE=0.001 Criteria Met.

The MODEL Procedure
OLS Estimation Summary

Data Set Options
DATA= | GASOLINE

Minimization Summary

Parameters Estimated 5
Method Gauss
Iterations 1

Final Convergence
Criteria
R 2.34E-12
PPC 6.24E-12
RPC(betal) 122197.4
Object 0.957917
Trace(S) 0.001092
Objective Value | 0.00094

Observations
Processed

Read 36
Solved 36

OUTPUT 3.11. Chow test of structural break in gasoline data using Proc Model.



Nonlinear OLS Summary of Residual Errors

Equation

DF
Model

DF
Error

SSE| MSE | Root MSE

R-Square

Adj
R-Sq

Ln_G_Pop

5

31

0.0338 | 0.00109

0.0330

0.9580

0.9526

Nonlinear OLS Parameter Estimates

Parameter

Approx

Estimate | Std Err | t Value

Approx
Pr> |t

betal

-12.3418| 0.6749 | -1

8.29| <0.0001

beta2

-0.0591| 0.0325 —-1.82

0.0786

beta3

1

373399 | 0.0756 18.16

<0.0001

betad

-0.1268| 0.1270 -1.00

0.3258

betaS

-0.11871| 0.0813 -1.46

0.1545

Number of
Observations Statistics for

System

Used

36 | Objective

0.000940

M

issing

0 | Objective*N

0.0338

Structural Change Test

Test

Break

Point

Num DF | Den DF | F

Value | Pr>F

Chow

15

5 26

14.20 | <0.0001

OUTPUT 3.11. (Continued)

then the CUSUM procedure can be defined as (Baltagi, 2008, p. 191; Greene, 2003, p. 135)

where

and

r=t

»

W, = E )
r=K+1

q>‘€

T

& = (T—k=1)"" > (w—w)’

w

r=k+1

=(T-0)"" ) w

r=k+1

THE CUSUM TEST
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Here, T'and k are the number of time periods and regressors, respectively. The critical values of the CUSUM at time ¢ are

given by

ta| VTR 4220
| |

vVT—k
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The CUSUM values along with the lower- and upper-bound critical values are available in SAS through the Proc Autoreg
procedure by using the “CUSUMLB” and “CUSUMUB” options (Proc Autoreg Documentation, SAS Institute, Inc.). More
discussion on The Proc Autoreg procedure can be found in Chapter 6. However, note that this procedure is typically used to model
data in the time series setting. It can handle autocorrelation in regression models and can also be used to fit autoregressive
conditional heteroscedastic models (ARCH, GARCH, etc.). The “model” statement lists out the regression model of interest. This
isfollowed by the “output” statement, which requests the lower and upper bounds along with the calculated values of the CUSUM.

The analysis results are provided in Output 3.12.

Obs Ib cusum | ub

1

2

3

4

5

6| -5.6188| —0.4207| 5.6188
7| -5.9593| -0.0990| 5.9593
8| —6.2998| -0.0107| 6.2998
9| —6.6404| 0.5628 | 6.6404
10| —6.9809| 1.0289 | 6.9809
11| -7.3214f 09724 | 7.3214
12| -7.6620| 0.5926 | 7.6620
13| -8.0025| 0.5352| 8.0025
14| -8.3430| -0.5221| 8.3430
15| -8.6836| -0.9944| 8.6836
16 | —9.0241| -0.9812| 9.0241
17 | -9.3646| —1.2040| 9.3646
18| -9.7052| -1.7562| 9.7052
19 | -10.0457| -3.8517| 10.0457
20| -10.3862| —6.4529| 10.3862
21| -10.7267| -8.8309| 10.7267
22 [ -11.0673| -9.7427| 11.0673
23 [ -11.4078|—10.5631| 11.4078
24 | -11.7483| -11.0652| 11.7483
25| -12.0889| —13.1237| 12.0889
26 | —12.4294| —15.7326| 12.4294
27 | -12.7699| —-18.2970| 12.7699
28| -13.1105| -19.0906| 13.1105
29 | -13.4510( —20.7915| 13.4510
30 [ -13.7915| -21.9147| 13.7915
31| -14.1321| —23.6449| 14.1321
32| -14.4726| —26.4181| 14.4726
33 | -14.8131| —28.6394| 14.8131
34 | -15.1537| —29.5284| 15.1537
35| -15.4942| -30.5195| 15.4942
36 | —15.8347| —31.4851| 15.8347

OUTPUT 3.12. CUSUM values for the gasoline data using Proc Reg.
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FIGURE 3.2. The CUSUM test on gasoline consumption data.

proc autoreg data=gasoline noprint;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc;

output out=cusum cusum=cusum cusumub=ub cusumlb=1b;

run;
proc print data=cusum;

var 1b cusum ub;
run;

45

The CUSUM plot can be created using the overlay option of Proc Gplot. The following statements are used. The results are

provided in Figure 3.2.

proc gplot data=cusum;
title 'The CUSUM Test on Gasoline Consumption Data’;
plot lb*year cusum*year ub*year/overlay;

run;

Note that a structural break is obvious around 1984. This is a bit contradictory to the results obtained from Chow’s test, where
the structural break was evident at 1974. However, there is evidence that the structural break started occurring around 1974.

3.7 MODELS WITH DUMMY VARIABLES

The models discussed so far consisted of quantitative explanatory variables. Often, the models of interest have explanatory
variables that are discrete. A simple example is a variable recording the gender of a subject. Here gender may be set to 1 if the
subject is a male and O if the subject is a female. As another example, consider a transportation study where one of the explanatory
variables records the mode of public transportation used by the subjects in the study. Here, the values of the variable may be
classified into three categories: Drive own car, Take Bus, and Take Metro. Practitioners familiar with Analysis of Variance
(ANOVA) techniques may recall that this is analogous to the different levels of a treatment of interest. Here, the treatment is simply
the mode of transportation. Greene (2003, p.116) discusses an example where the earning’s of women is modeled as a function of
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age, asquared age term, level of education, and the presence or absence of children under 18. The data are credited to Mroz (1987).
The model of interest is

Here In(earnings) = B, + B, X age + B; x age® + B, X education+ Bs x kids + ¢.

1 if there are kids < 18,
kids = .
0 otherwise

No special treatment is required in this case, and estimating the coefficients is straightforward using the techniques discussed
so far. The analysis results are shown in Output 3.13. The estimated model for In(earnings) is given by

In(earnings) = 3.24 + 0.20 x age — 0.0023 x age® +0.067 x education — 0.35 x kids.
The earnings equation for women without children under 18 is given by
In(earnings) = 3.24 +0.20 x age — 0.0023 x age® + 0.067 x education

and the earnings equation for women with children under 18 is given by

In(earnings) = 2.89 4+ 0.20 x age — 0.0023 x age* +0.067 x education.

The REG Procedure
Model: MODELI
Dependent Variable: L_ WW

Number of Observations Read | 428
Number of Observations Used | 428

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr > F
Model 4| 25.62546 | 6.40637 4.52| 0.0014
Error 4231599.45817 | 1.41716

Corrected Total | 427 | 625.08363

Root MSE 1.19044 | R-Square | 0.0410
Dependent Mean | 8.05713 | Adj R-Sq | 0.0319
Coeff Var 14.77504

Parameter Estimates

Parameter | Standard
Variable | Label |DF | Estimate Error | t Value | Pr > |t]

3.24010 1.76743 1.83 | 0.0675

—_

Intercept | Intercept

WA WA 1 0.20056 0.08386 2391 0.0172
WA_SQ 1 —0.00231| 0.00098688 —2.35| 0.0195
WE WE 1 0.06747 0.02525 2.67| 0.0078
kids 1 —0.35120 0.14753 -2.38| 0.0177

OUTPUT 3.13. Regression analysis of earnings data using Proc Reg.
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Notice that the earnings model is a semi-log model (log in the dependent variable). We can therefore interpret the coefficient for
the dummy variable kids as follows: ceteris paribus, the earnings of women with children under 18 are 35% less than the earnings
of women without children under 18.

The general rule for creating dummy variables is to have one less variable than the number of categories present to avoid the
“dummy variable trap”. If a dummy variable category is not removed then the sum of the dummy variable category columns will
equal “1”” which will result in perfect multicollinearity in models with a constant term. Recall that the data matrix X for a model
with an intercept term includes a column of 1’s.

The earning’s equation model had one dummy variable since we were dealing with two categories (kids under 18 or not).
Suppose that we wanted to compare three groups: one with children under 10, another with children between the ages of 10 and 18,
and a third group of children above 18. In this case we would need to include two dummy variables. Suppose the variables were
labeled Age_Grpl and Age_Grp2. Here,

1 if age <10

Age _ Grpl=
0 otherwise

1 if 10 < age <18

Age _ Grp2=
0 otherwise.
The third group with children above the age of 18 forms the “base”. Of course, the coding scheme can be adjusted to make any of
the groups the “base”.
We will now look at a detailed example to illustrate the concept of dummy variables. Consider the airline data set in Greene

(2003). Six airlines were followed for 15 years, and the following consumption model was proposed for the data set (Greene,
2003, pp. 118-119)

14 5
In(Ciy) = By + BaIn(Qis) + BsIn*(Qi) + B3In(Ppier i) + BsLoadfactor;, + Z 0:D;, + Z 8iFi;+&is
=

t=1 i

The data set is credited to Christensen Associates of Madison, Wisconsin. The author provides a description of the data and
model which is summarized here. In this model, the subscript i refers to airline, and the subscript ¢ refers to year. The variable C;,
represents the total cost (in 1000’s) for the ith firm in the rth year, Q is the output in revenue passenger miles, PF is the fuel price,
and LF is the load factor or the average capacity utilization of the fleet. Note that the year 1984 is kept as a base, and we have 14
dummy variables for year. Similarly, one of the firms (Firm number 6) was kept as abase and we therefore have 5 dummy variables
for firm. We will look at how the data are prepared for analysis in Proc IML and Proc Reg and then move on to analysis using Proc
GLM. The following data statement will create the dummy variables. The array statement provides a convenient way of creating
indicator variables for the six airlines and 14 time periods.

data airline;
set airline;
LnC=Log(C) ;
LnQ=Log(Q) ;
LnQ2=LnQ*LnQ;
LnPF=Log(PF) ;
array Firm{*} F1-F5;
array time_y{*} D1-D14;
do indexl=1 to dim(Firm) ;
if indexl=1 then Firm(indexl)=1;else Firm(index1)=0;
end;
do index2=1 to dim(time_vy) ;
1f index2=t then time_Y (index2)=1;else time_Y (index2)=0;
end;
run;

The data can now be analyzed in Proc IML easily using the code provided in Chapter 2. Of course, an easier approach is to
analyze the data using Proc Reg. The output of the analysis from Proc Reg is given in Output 3.14.
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The REG Procedure
Model: MODELI
Dependent Variable: LnC

Number of Observations Read | 90

Number of Observations Used | 90

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr>F
Model 23| 113.86832 [ 4.95080 | 1893.45 | <0.0001
Error 66 0.17257 | 0.00261

Corrected Total | 89 | 114.04089

Root MSE 0.05113 | R-Square | 0.9985

Dependent Mean | 13.36561 | Adj R-Sq | 0.9980

Coeff Var 0.38258

Parameter Estimates
Parameter | Standard
Variable | Label |DF | Estimate Error | t Value | Pr > ||
Intercept | Intercept 1 13.56249 2.26077 6.00 | <0.0001
LnQ 1 0.88665 0.06284 14.11 | <0.0001
LnQ2 1 0.01261 0.00986 1.28 | 0.2053
LnPF 1 0.12808 0.16576 0.77 | 0.4425
LF LF 1 —0.88548 0.26051 —3.40| 0.0012
D1 1 —0.73505 0.33784 —2.18| 0.0332
D2 1 -0.67977 0.33209 —2.05| 0.0447
D3 1 —0.64148 0.32983 —1.94| 0.0561
D4 1 —0.58924 0.31954 —1.84| 0.0697
D5 1 —0.49925 0.23176 —2.15| 0.0349
D6 1 —0.44304 0.18796 —2.36| 0.0214
D7 1 -0.41131 0.17290 —2.38| 0.0203
D8 1 —0.35236 0.14972 -2.35| 0.0216
D9 1 —0.28706 0.13470 —2.13] 0.0368
D10 1 —0.23280 0.07611 —3.06| 0.0032
D11 1 —0.09678 0.03385 —2.86| 0.0057
D12 1 -0.01227 0.04585 —0.27| 0.7899
D13 1 —0.00187 0.03816 —0.05| 0.9611
D14 1 —0.01296 0.03069 —0.42| 0.6742
Parameter Estimates
Parameter | Standard

Variable |Label |DF | Estimate Error | t Value | Pr > |t]
F1 1 0.05930 0.12421 0.48 | 0.6346
F2 1 0.02214 0.10438 0.21] 0.8327
F3 1 —0.18000 0.05900 —3.05| 0.0033
F4 1 0.16856 0.03326 5.07 | <0.0001
F5 1 —0.04543 0.02238 —2.03| 0.0464

OUTPUT 3.14. Dummy variables regression of the airlines data.
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We will now analyze the data using Proc GLM. Note that in this case, we do not have to create dummy variables as the
procedures automatically creates them for us. Proc GLM can be used to fit general linear models using the method of least squares.
It can therefore be used for regression analysis, analysis of variance, and analysis of covariance. An advantage of Proc GLM over
Proc Reg is that one can incorporate interaction terms directly into the model. Of course, one can also analyze nested and crossed
effects designs very easily within Proc GLM. It also provides the flexibility of analyzing random and fixed effects in the model.
The procedure also provides an overall significance of the classification variables that quickly helps the analyst gauge whether the
variables are significant or not. In the following statements, the “class” statement is used to specify category variables. This is
followed by the “model” statement that lists out the dependent variable and the explanatory variables in the model. The “solution”
option in the “model” statement generates the parameter estimates for all the terms in the model.

The following statements should be used at the minimum.

proc glm data=airline;

class IT;

model LnC=LnQ LnQ2 LnPF LnLF I T/solution;
run;

The output from the analysis is given in Output 3.15. The first set of tables gives information on the classification variables and
the sample size used in the analysis. In the gasoline example, we have six airlines and 15 time periods for a total of 90 observations.
The next table gives the analysis of variance table which lists out the sources of variation, the degrees of freedom, the sums of
squares, the mean squares, the F statistic, and the corresponding p values. Note that the total degrees of freedom is 90 — 1 =89. The

The GLM Procedure

Class Level Information

Class | Levels | Values
I 6123456
T 15112345678910111213 1415

Number of Observations Read | 90
Number of Observations Used | 90

The GLM Procedure
Dependent Variable: LnC

Sum of
Source DF Squares | Mean Square | F Value | Pr>F
Model 23| 113.8683247 4.9507967 | 1893.45 | <0.0001
Error 66 0.1725702 0.0026147
Corrected Total | 89 | 114.0408949

R-Square | Coeff Var | Root MSE | LnC Mean
0.998487 0.382580 0.051134 13.36561

Source | DF | Type I SS | Mean Square | F Value | Pr>F
LnQ 1]103.6813479 103.6813479 | 39653.2 | <0.0001
LnQ2 1 0.0618892 0.0618892 23.67 | <0.0001
LnPF 1 8.7201792 8.7201792 | 3335.06 |<0.0001
LF 1 0.3025573 0.3025573 115.71 | <0.0001
| 5 1.0067672 0.2013534 77.01 | <0.0001
T 14 0.0955840 0.0068274 2.61| 0.0046

OUTPUT 3.15. Dummy variable regression of airlines data using Proc GLM.
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Source | DF | Type III SS | Mean Square | F Value | Pr> F
LnQ 1| 0.52059518 0.52059518 199.10 | <0.0001
LnQ2 1| 0.00427810 0.00427810 1.64 | 0.2053
LnPF 1] 0.00156096 0.00156096 0.60 | 0.4425
LF 1| 0.03020843 0.03020843 11.55| 0.0012
I 5| 0.86213348 0.17242670 65.95 | <0.0001
T 14| 0.09558402 0.00682743 2.61 | 0.0046
Standard
Parameter | Estimate Error | t Value | Pr > |t|

Intercept | 13.56249268 | B | 2.26076834 6.00 | <0.0001

LnQ 0.88664650 0.06283642 14.11 | <0.0001
LnQ2 0.01261288 0.00986052 1.28 | 0.2053
LnPF 0.12807832 0.16576427 0.77 | 0.4425
LF —0.88548260 0.26051152 -3.40| 0.0012
| 1 0.05930014 | B | 0.12420645 0.48 | 0.6346
1 2 0.02213860 | B | 0.10437912 0.21] 0.8327
| 3 —0.17999872| B | 0.05900231 —3.05| 0.0033
I 4 0.16855825 | B | 0.03326401 5.07 | <0.0001
Standard

Parameter | Estimate Error | t Value | Pr > |t|
I 5 —0.04543271 | B | 0.02238459 —2.03| 0.0464
| 6 0.00000000 | B

T 1 —0.73505414 | B | 0.33783895 -2.18| 0.0332
T 2 -0.67976508 | B | 0.33209031 —2.05( 0.0447
T 3 —0.64147600| B | 0.32983272 -1.94| 0.0561
T 4 —0.58924090| B | 0.31953812 —1.84| 0.0697
T 5 —0.49924839 | B | 0.23175982 -2.15| 0.0349
T 6 —0.44304017 | B | 0.18795980 -2.36| 0.0214
T 7 -0.41130701| B | 0.17289580 -2.38( 0.0203
T 8 —0.35235703 | B | 0.14971845 -2.35| 0.0216
T 9 —0.28705848 | B | 0.13470473 -2.13| 0.0368
T 10 | -0.23279711| B | 0.07610725 -3.06| 0.0032
T 11 —0.09678442 | B | 0.03385162 -2.86| 0.0057
T 12 | -0.01226693 | B | 0.04585181 -0.27( 0.7899
T 13 | -0.00186796| B | 0.03815702 -0.05| 0.9611
T 14 | -0.01295665| B | 0.03068805 -0.42| 0.6742
T 15 0.00000000 | B

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal
equations. Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 3.15. (Continued)

model degrees of freedom is calculated as follows: one degree of freedom is used for each explanatory variable in the model and
a—1 degrees of freedom are used for the classification variables where a is the number of levels of the classification variable. For
the airlines example, we have four explanatory variables that contribute one degree of freedom, the six airlines contribute
5 degrees of freedom, and the 15 time periods contribute 14 degrees of freedom. Therefore, the total model degrees of freedom
equals 24. Note that the p value indicates that the “global” F test for model significance is rejected.
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This is followed by the R? value, the coefficient of variation (see Chapter 2), the root mean square error, and the mean of the
dependent variable. Notice that the R” value is very high.

The next two tables gives the Type 1 and Type 3 sums of squares for each term in the model along with their F statistic and
p values. The Type 1 sums of squares gives the amount of variation attributed to each term in the model assuming that the terms
listed in the table before it has already been included in the model. This is also referred to as the sequential sums of squares. The
Type 3 sums of squares gives the amount of variation attributed to each term after adjusting for the other terms. In other words, it
measures the amount by which the error sums of squares is reduced if the term in question is added to a model already consisting of
the other terms. Note that the p values for the four explanatory variables from the Type 3 sums of squares matches the p values of
the variables from Proc Reg. Proc Reg uses Type 3 sums of squares since our objective is to determine if the variable in question is
meaningful to the general model consisting of the other terms. The p values from the Type 3 table indicates that the load factor, the
airlines, and the time periods are significantly different.

The “solution” option is used to list out the parameter estimates. Note that the coefficients are identical to the ones from Proc
Reg where dummy variables were used. Also notice that the sixth airline and the 15th time period have been taken as a base. The
interpretation of the models for the other firms will be relative to the sixth firm. Note that firms 3,4, and 5 are significantly different
from firm 6. Also note that the first 11 time periods are significantly different from the 15th time period.
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4.1 INTRODUCTION

The analysis methods presented in the previous chapters were based on the assumption that the independent variables are
exogenous (E(g | X) =0). That is, the error terms in the linear regression model are uncorrelated or independent of the explanatory
variables. In Chapter 1, we saw that under the exogeneity assumption, the least squares estimator b is an unbiased and consistent
estimator of B. This chapter explores the properties of b under departures from the exogenous assumption? Explanatory variables
that are not exogenous are called endogenous variables.

Under departures from the exogeneity conditions, b is no longer an unbiased and consistent estimator of B. To see this, in the
simple linear regression case, consider the model y; = 8¢ + 1x; + &; where the disturbances are correlated with the explanatory
variable. The least squares estimator of 3, is given by (Chapter 1)

> (6 )i )

i=1
bi=—, ;
> (6i—=x)
i=1
which upon simplifying can be written as
n — —
> (xi—X)(ei— &)
bi= B+ = -
> (xi—x)

The second term gives the expression of the least squares estimator of a regression of € on x. It should be obvious that the second
term is not zero unless the disturbances are uncorrelated with the explanatory variable. Therefore, the least squares estimator of 3,
is biased. The inconsistency of the least squares estimator can be seen by dividing the numerator and denominator of the second
term by n and then taking the probability limits to get

Cov(e
plim(by) = B+ —525(5 !
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The least squares estimator is therefore not consistent. The magnitude and direction of the bias depend on the second term of
the above expression.

To see this in the general case, consider the linear model y = X + & with E(g|X) = y. The OLS estimator is given by
b = (X"X)'X"y or b = B + (X"X)'X"&. Taking the conditional expectation E(b|X), we see that (Greene, 2003, p. 76)

EDX) =B+ (X"X) 'E(X"e]X)
=B+ (X"X)"'X"E(g[X)
=B+ (X"X)"'y#B.

Next, assume that plim (X”X/n) = ¥ a positive definite matrix with inverse ¥ Note that this assumption ensures that
(XTX) ~!exists (in the simple linear regression case, this assumption implied that Var(x) existed and was finite). Taking the limit
in the probability of OLS estimator, we get

. 1 4. XTS
plimb=8+¥ phm(n> # B
because E (¢ | X) # 0. Therefore, the OLS estimator is not a consistent estimator if the exogeneity assumption is violated.
Endogeneity occurs for several reasons. Missing variables and measurement errors in the independent variables are often cited
as major causes of endogeneity in regression models (Ashenfelter et al., 2003; Greene, 2003; Wooldridge, 2002). We will now
briefly discuss both the omitted variable bias and the bias emerging from measurement errors.

4.2 OMITTED VARIABLE BIAS

The analysis in Chapters 1 through 3 was also based on the assumption that the linear model y =Xp + & was correctly
specified. We will now relax this assumption and see the effect this has on the parameter estimates. Suppose that X =[X, X,]
and B =[B, B2]T so that the true model is y =X;B; + X,B, + & Assume that for some reason we have no information
available for X, and therefore omit it and fit the model y = X B; + €. The least squares estimator of B, in this case is given by
(Greene, 2003, p. 148)

b= (XIX;) Xy
=B, + (XIX1) 'XXoB, + (XIX;) 'XTe.

It is easy to verify that the conditional expectation of b; given X is
E(bi[X) =B, + (X{X1) X[ XoB,.

The bias is given by the second term and is zero only if XlTXz = 0 (X and X; are orthogonal). That s, if the omitted variables
are not correlated with the included variables. Under the omitted variable model, the term X, [3, is absorbed into the error term.
If the omitted variable X, is related to X, then it can easily be shown that Cov(g|X)# 0 and therefore the exogenous assumption
is violated.

To see this, consider the simple linear model given by y = 8y + B8,x; + B,x2 + £ and assume that this is the true population
model. Consider the case where x, is omitted so that the model used is y = 3 + ,x; + . Assume that x, is correlated with x;
with the reduced form for x, given by x» = a9 + a;x; + v. As shown earlier, the OLS estimator of B, is given by

n

) ;(xu—fl)(yi—?)

B =

(Xli—fcl)z

-

i=1
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Substituting the true population model in the above expression and after some elementary algebraic manipulations, it can be
shown that

n

:l(xli*xl)(xzi*)b) ;(xli*jcl)(si*é)

él = Bl +BZi + n
(Xli—)_él)z > (xli_)_cl)2

i=1 i=1

M=

The last term in the conditional expectation E (,é] |x1:, x2;) drops out giving

n

R Z(xli_xl)(XZi_XZ)
B =B +le:1 7
> (xi—x)’

i=1

Again, the second term gives the least squares estimator of a regression of x, on x;. It should be obvious that the OLS
estimator of B, is biased unless Cov(x, x,) = 0 with the magnitude and direction of the bias depending on the second term of
the above expression.

4.3 MEASUREMENT ERRORS

We will now look at how measurement errors in the explanatory or dependent variables or both affect the least squares estimators.
It turns out that the measurement error in the explanatory variables creates a correlation between the variables and the error term
similar to the omitted variable case. On the other hand, measurement errors in the dependent variable may not be a problem
(Wooldridge, 2002). We will illustrate the issue by using a simple linear regression model with just one explanatory variable—that
is, a model of the form (Ashenfelter et al., 2003, p. 197):

yi:BO+,lei+3ii:17---7n

where x; is assumed to be exogenous. Suppose that we observe x; with error. That is, we observe x; = x; + u;. Assume that x is
independent of ; and that the disturbances u; and &; are independent of each other. Furthermore, assume that u; ~ i.i.d.(0,02) and
& ~ i.i.d.(0,02).

By substituting the observed value x; in the equation for y;, we get y; = By + B,x} + v; where v; = &;—Bu;. Note that by
construction Cov(v;, x;) # 0since both x; and v; are influenced by the random component u;. Therefore, the OLS assumptions
are violated and the least squares estimate for 3, is biased and inconsistent. To see this, note that the OLS estimate for 8, can be
written as

B ==

> () i 5)

él = ﬁl + l:1n—
> ()2
i=1

Dividing the numerator and denominator of the second term by n and taking the probability limits gives

5 Cov(x',v)
Br=FBi+ Var(x')
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Using the assumptions stated earlier, it can be easily shown that Cov(x’, v) = —B,02 and that Var(x') = o2 + o2 Therefore,
the bias is given by

2
:Bla-u

2 2"
o, +o;

Therefore, measurement errors in the explanatory variables result in biased and inconsistent OLS estimates. As before, the
magnitude and the direction of the bias depend on the second term of the expression of 3.

Ashenfelter et al. (2003, p. 197) gives an elegant derivation to show the behavior of the least squares estimator under
measurement errors in both the dependent and the independent variables. As discussed by the authors, measurement errors in the
dependent variable, in general, does not lead to violation of the least squares assumptions because the measurement error in
the dependent variable is simply absorbed in the disturbance term of the model. However, errors in the dependent variable may
inflate the standard errors of the least squares estimates. To see this, consider the simple linear regression model given earlier and
assume that we donot observey; but observey; = y; + v;. Substituting this in the original model, we gety: = By + Bx; + u; where
u; = &; + v;. It should be obvious that unless Cov(x;, v;) # 0, the OLS assumptions are not violated. Furthermore, since (Meyers,
1990, p. 14)

2 n
N g _ —\2
Var(&) =4 gl=0’+o}ando? =n"! E (x;—X)
i=1

i (x— %)

then

. 2, 2
Var (B 1) = Lan‘;‘fu .
X

Therefore, the measurement errors in the dependent variable tends to inflate the standard errors of the estimates.

4.4 INSTRUMENTAL VARIABLE ESTIMATION

We will now discuss an alternative method to get unbiased and consistent estimators of 8 under departures from the exogenous
assumption. To motivate the discussion of instrumental variables, consider the least squares model given by

y=X'B +¢.

Assume that one or more variables in X may be correlated with &. That is, assume that E(¢|X) = 1 # 0. Next, assume that there
exists asetof L variables in W, with L > k, such that Cov(W, X) # 0but E(W”g) = 0. Thatis, the L variables in Ware exogenous
but are correlated with the explanatory variables. Check this.

Note that the exogenous variables from the original set of variables may be part of W. The variables in the set Ware referred to as

instrumental variables. We will first look at the instrumental variable estimator for the case when L = k. Premultiplying the linear
model by W7 gives

Wiy = WIXB + We.
By rewriting this as
vV =X'Be
and using the method of least squares, we can write

By = (XX Xy = (XTWW'X) 'X"WWTy,
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which can be simplified to
By =B+ (W'X)'WTs.
Using the assumption that (W7 X) " exists and E(W”g) = 0, it is easy to show that B, is unbiased for B. Using the discussion

used to show the consistency of OLS estimators, it is trivial to show that p lim (B,,) = B.
Therefore, the instrumental variable estimator for the case L = k is

By = (XTWW'X) 'XTWWT,
which can be simplified to
by = (W'X) "Wy,
Greene (2003, pp. 76-77) gives a thorough description and the assumptions underlying the instrumental variables estimator.

Also see Wooldridge (2002, pp. 85-86) and Ashenfelter et al. (2003, pp. 199-200).
It is easy to show that the asymptotic variance of b;y is

F2(WIX)H(Wiw)(x"w) !

where,

. (y—Xby)"(y-Xb
62 = (y=Xbyy) (y—Xbyy) (Greene, 2003, p. 77).
n

As shown in Greene (2003, p. 78 and Wooldridge (2002, pp. 90-91), instrumental variables estimation when L > k is done in
two steps. In Step 1, the data matrix X is regressed against the matrix containing the instrumental variables W to get X which is
defined as X= (WTW)_IWTX. In Step 2, y is regressed on X to get the instrumental variables estimator, b;y given by

b]v = (XT X)7 1XTy
= [X"W(W'W) "W X] I XTW(W'W) " TwTy.
This estimator is often referred to as the two-stage least squares estimator of 8 and is abbreviated as 2SLS. The k x k matrix

¢2(X"X) ™" with

&2 (y— XbIV)T(y —Xbyy)

n

is the estimated covariance matrix of the 2SLS estimator.

We will now illustrate the computations involved in estimation with instrumental variables by using the data on working,
married women in the well-known labor supply data from Mroz (1987). As discussed in Wooldridge (2002, p. 87), the objective is
to estimate the following wage equation:

log(wage) = By + Biexper + Byexper’ + Bseduc + &.

The variable educ contains the actual number of years of education of each woman. As stated by the author, information on
ability of the women, the quality of education received and their family background is missing. These variables are suspected of
being correlated with the education variable and are therefore assumed to contribute to omitted variables bias. Suppose that
information on mother’s education, motheduc, is available so that it can be used as an instrument for educ. The instrumental
variables matrix W therefore has three variables: exper, exper?, and motheduc.
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We will first analyze the data in Proc IML and then show the analysis in Proc Syslin. The following statements will read in the
data from a text file called “mroz_raw.txt.” Note that the variable inlfindicates whether a person was in the labor force in 1975.
Since we are interested in working women, we need to select only those records where inlf= 1.

data mroz;
infile 'C:\Temp\MROZ.txt’ lrecl=234;
input inlf hours kidslt6 kidsge6 age educ wage repwage
hushrs husage huseduc huswage faminc mtr motheduc
fatheduc unem city exper nwifeinc lwage expersdq;
if inlf=1;

run;

Next, we read the data into matrices by using Proc IML. Note that the data matrix X has data for the actual labor market
experience (exper), the squared term for this (exper?), and years of schooling (educ). Of course, we need to also add the constant
column of 1’s. The response variable is the log of wage (log(wage)). We use the mother’s years of schooling (motheduc) as the
instrument for educ. Therefore, the instrumental variables matrix W contains the column of 1’s along with exper, experz, and
motheduc. The following statements invoke Proc IML and read the data into the matrices.

Proc IML;
use mroz;
read all var {’exper’ 'expersq’ 'educ’} into X;
read all var {’lwage’} into Y;
read all var {’exper’ 'expersqg’ ‘'motheduc’} into W;
n=nrow (X) ;
k=ncol (X) ;
X=J(n,1,1)
W=J(n,1,1)

’

;¢
[ |W;

As discussed earlier, when the number of columns of W equals the number of columns of X, the least squares instrumental
variables estimator is given by b,y = (W”X) 'Wy. The following statement will calculate this.

bhat_TIV=inv (W’ *X)*W’ *y;

We can calculate the asymptotic variance—covariance matrix of this estimator by using the formulas outlined in this section.
The following statements can be used to calculate the standard errors of the instrumental variable estimator. Output 4.1 contains
the analysis results.

variance=( (y-X*bhat_IV)' * (y-X*bhat_IV)/n;
variance_matrix=inv (W’ *X)* (W’ *W) *inv (X' *W) ;
var_cov_IV=variance*variance_matrix;
SE=SQRT (vecdiag (var_cov_1IV)) ;

The model used is a semi-log model and can be interpreted as follows: Ceteris Paribus, the estimate of the return to education is
about 5% and is not significant. The implication is that each additional year of school is predicted to increase earnings by about

TABLE
BHAT_IV SE T | PROBT
INTERCEPT 0.1982 | 0.4707 | 0.4211 0.6739
EXPER 0.0449 | 0.0135 | 3.3194 0.0010
EXPER_SQ —0.0009| 0.0004 | —2.2797|  0.0231
EDUC 0.0493 | 0.0373 | 1.3221 0.1868

OUTPUT 4.1. Instrumental variable estimates for the earning data.
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5%. The estimate of return to schooling from OLS estimation is about 10.7% and is highly significant. The standard error from the
instrumental variable estimation is 0.0373 versus 0.014 for the OLS model. The 7-test value for the instrumental variable estimator
is therefore smaller than that from the OLS estimation, which explains the difference between the lack of significance of the
instrumental variables estimator to the OLS estimator. The OLS model is given in Output 4.3.

The Proc Syslin procedure in SAS can be used to conduct instrumental variable analysis on the earning data. This procedure is
extremely powerful and can be used to estimate parameters in systems of seemingly unrelated regression and systems of
simultaneous equations. It can also be used for single equation estimation using OLS and is very useful when conducting
instrumental variables regression for both the single and multiple equations systems. The following statements can be used at the
minimum for instrumental variables analysis of the earning data. Note that all we do here is specify the endogenous and exogenous
variables followed by a specification of the linear model. The analysis results are given in Output 4.2.

proc syslin 2SLS data=mroz;
endogenous educ;
instruments exper expersqg motheduc;
model lwage=exper expersq educ;
run;

The t-tests indicate that both experience variables are significant. The output from Proc Syslin (using the options for the
example used) is very similar to the output we have seen with Proc Reg and Proc GLM. That is, we get the ANOVA table, followed
by the model statistics and the parameter estimates. The results from OLS analysis are given in Output 4.3 and indicates a
significance of all three variables.

‘We now turn our attention to the case when the number of columns in W exceeds the number of columns in X. We will now use
the information on both parents’ education (fatheduc and motheduc) and husband’s education (huseduc) as instruments for educ.
As before, we will analyze this data using Proc IML followed by analysis using Proc Syslin.

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model Iwage

Dependent Variable | lwage

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr>F
Model 3110.18121 | 3.393735 7.35 {<0.0001
Error 424 | 195.8291 | 0.461861

Corrected Total | 427 | 223.3275

Root MSE 0.67960 | R-Square | 0.04942
Dependent Mean | 1.19017 | Adj R-Sq | 0.04270
Coeff Var 57.10123

Parameter Estimates

Parameter | Standard
Variable | DF | Estimate Error | t Value | Pr> |t|

Intercept 1 0.198186 | 0.472877 0.42| 0.6754

exper 1 0.044856 | 0.013577 3.30| 0.0010
expersq 1 —0.00092| 0.000406 —2.27( 0.0238
educ 1 0.049263 | 0.037436 1.32] 0.1889

OUTPUT 4.2. Instrumental variables analysis of the earning data using Proc Syslin.



The REG Procedure
Model: MODEL1
Dependent Variable: lwage

INSTRUMENTAL VARIABLE ESTIMATION

Number of Observations Read | 428

Number of Observations Used | 428

Analysis of Variance
Sum of | Mean
Source DF | Squares| Square | F Value | Pr>F
Model 3| 35.02230 [ 11.67410 26.29 1<0.0001
Error 424 | 188.30515 | 0.44412
Corrected Total | 427 | 223.32745
Root MSE 0.66642 | R-Square | 0.1568
Dependent Mean | 1.19017 | Adj R-Sq | 0.1509
Coeff Var 55.99354
Parameter Estimates
Parameter | Standard
Variable | DF [ Estimate Error | t Value | Pr> |t|
Intercept 1 —0.52204 0.19863 —2.63| 0.0089
exper 1 0.04157 0.01318 3.15| 0.0017
expersq 1] -0.00081119 0.00039324 —2.06] 0.0397
educ 1 0.10749 0.01415 7.60 | <0.0001

OUTPUT 4.3. Ordinary least squares analysis of the earning data.
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The following statements will invoke Proc IML and read the data into appropriate matrices. Note that the instrumental variables
matrix W now contains the two exogenous variables exper and exper” along with the three instrumental variables. The analysis

results are given in Output 4.4.

Proc IML;
use mroz;

read all var {’'exper’ 'expersq’ '‘educ’} into X;

read all var {’lwage’} into Y;

read all var {’'exper’ ’'expersq’ ‘'motheduc’

"fatheduc’ "huseduc’} into W;
n=nrow (X) ;
k=ncol (X) ;
X=J(n,1,1)
W=J(n,1,1)

’

| X
|W;

TABLE
BHAT_IV SE T [ PROBT
INTERCEPT —0.1869( 0.2971 [ —0.6288|  0.5298
EXPER 0.04310.0138 [ 3.1205 0.0019
EXPER_SQ —0.0009( 0.0004 [ —2.0916]  0.0371
EDUC 0.0804 | 0.0227 | 3.5461 0.0004

OUTPUT 4.4. Instrumental variables estimator for the earning data when L > k.
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The following statements will calculate and print the least squares instrumental estimator. Note that the first step is to calculate
the predicted data matrix X. This is then used to produce the instrumental variables estimator.

Xhat=W*inv (W’ *Z) *W’ *X;
bhat_TIV=inv (Xhat’'*Xhat) *Xhat ‘' *y;

The standard errors of these estimates can also be easily calculated as before. The following statements will do this
for us.

variance=( (y-Xhat*bhat_IV) ‘* (y-Xhat*bhat_IV)) /n;
variance_matrix=inv (Xhat’'*Xhat) ;
var_cov_IV=variance*variance_matrix;

SE=SQRT (vecdiag (var_cov_1V)) ;

Proc Syslin can easily be used to conduct the analysis. The following statements can be used. The analysis results are given in
Output 4.5. Notice that all three explanatory variables are now significant and the returns to schooling has increased to about 8%
and is highly significant. The interpretation is as before: Ceteris Paribus, each additional year of schooling is expected to increase
earnings by about 8%.

proc syslin 2SLS data=mroz;
endogenous educ;
instruments exper expersqg motheduc fatheduc huseduc;
model lwage=exper expersg educ;

run;

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model lwage

Dependent Variable | lwage

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr>F
Model 3| 15.48784 | 5.162612 11.52 1<0.0001
Error 4241 189.9347 | 0.447959

Corrected Total | 427 | 223.3275

Root MSE 0.66930 | R-Square | 0.07540
Dependent Mean | 1.19017 | Adj R-Sq | 0.06885
Coeff Var 56.23530

Parameter Estimates

Parameter | Standard
Variable | DF | Estimate Error | t Value | Pr> |t|

Intercept 1 —0.18686| 0.285396 —-0.65( 0.5130
exper 1 0.043097 | 0.013265 3.25| 0.0013
expersq 1 —0.00086| 0.000396 —2.18( 0.0300
educ 1 0.080392 | 0.021774 3.69| 0.0003

OUTPUT 4.5. Proc Syslin output of the earning data when L > k.
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4.5 SPECIFICATION TESTS

In the discussion so far, we assumed that the regression models suffer from the presence of endogenous explanatory

variable(s). We also presented techniques to estimate the model parameters under the presence of endogenous variables.

This section introduces methods to determine if endogeneity is indeed a problem. The Hausman test for endogeneity is

perhaps the most widely used test and is based on comparing the OLS and the 2SLS estimators. We will discuss this test a

bit later. For now, we will look at simple regression-based tests that can be used as an alternative to Hausman’s test.
The steps for conducting the test are given below (Wooldridge, 2002, pp. 118-119).

1. First, consider the linear modely = XB + ax + ¢ whereyisn x 1, Xisn x k, Bis k x 1, et is the coefficient of the n x 1
vector x that is suspected of being endogenous, and ¢ is the n x 1 unobserved error. Let W,,,;. be the set of L exogenous
variables including the variables in X. Next, consider the hypothesis Hj : X is exogenous versus H; : X is endogenous.

2. Consider the reduced form equation relating x to W given by x = W8 + y with the assumption that E(W”y) = 0. Here, 8
is an L x 1 vector of unknown coefficients and 7 is the n x 1 disturbance vector.

3. Asshown in (Wooldridge, 2002, p. 119), the expectation E(&” y) equals E(£7x). Therefore, we can test endogeneity of x by
simply checking whether E(g7y) = 0.

4. Write the equation relating € to y as €=p;y+e and substitute this in the original equation to get
y=XB+ax+py+e.

5. Ttis trivial to show that e is independent of X, x, and 7. Therefore, a test of Hy : p; = 0 can be conducted by looking at the
t-test results in the regression of y on X, x, and vy. Endogeneity of x is implied if the null hypothesis is not rejected. Here, y
can be estimated by the residuals of the regression of x on W.

We will revisit the education data set with parents and husband’s education as instruments to illustrate the above approach to
test for endogeneity. The objective here is to determine if the variable educ is endogenous. The first step is to regress educ on a
constant, exper, e)cper,2 motheduc, fatheduc, and huseduc. The residuals from this (v) regression is saved and used as an
explanatory variable in the regression of log(wage) against a constant, exper, exper”, educ, and v. If the ¢ statistic corresponding to v
is significant, then the null hypothesis is rejected and we conclude that the variable educ is endogenous. The following SAS
statements can be used to do the analysis. Notice that the first Proc Reg statements save the residuals in a temporary SAS data set
called mroz2. The analysis results are given in Output 4.6. The results indicate that we have evidence of endogeneity of educ at the
10% significance level (p-value =0.0991).

proc reg data=mroz noprint;
model educ=exper expersqg motheduc fatheduc huseduc;
output out=mroz2 residual=v;
run;
proc reg data=mroz2;
model lwage=exper expersq educ v;
run;

4.5.1 Testing Overidentifying Restrictions

We now turn our attention to addressing the problem of determining if the regression model has more instruments than is
necessary. The question we address here is, “Are the extra instrument variables truly exogenous?” That is, are the extra
instruments uncorrelated with the error term? Wooldridge (2002, p. 123) gives details on a simple regression-based Sargan’s
hypothesis test (1958) to determine whether the regression model has more instruments than is required. The steps are as
follows:

1. Consider, the linear model givenbyy = XB + I'S + e whereyisn x 1,Xisn x L;,BisL; x 1,T'isn x G,8isG x 1,and
gisn x 1. Here, T contains variables that are suspected of being endogenous. As before, let W = (X, W") be the set of all
instrumental variables. Here, W™ is n x L, so that Wisn x L with L =L; + L, and L, > G.

2. Conduct a 2SLS and obtain &.

3. Conduct an OLS of & on W and obtain R2.
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The REG Procedure
Model: MODEL1
Dependent Variable: lwage

Number of Observations Read | 428
Number of Observations Used | 428

Analysis of Variance

Sum of | Mean

Source DF | Squares | Square | F Value | Pr>F
Model 4| 36.23050 | 9.05763 20.48 | <0.0001
Error 423 | 187.09695 | 0.44231

Corrected Total | 427 | 223.32745

Root MSE 0.66506 | R-Square | 0.1622
Dependent Mean | 1.19017 | Adj R-Sq | 0.1543
Coeff Var 55.87956

Parameter Estimates

Parameter | Standard
Variable | Label |DF | Estimate Error | t Value | Pr> [t|

—0.18686 0.28359 —0.66| 0.5103

Intercept | Intercept

exper 1 0.04310 0.01318 3.27 | 0.0012
expersq 1] -0.00086280| 0.00039368 =2.19] 0.0290
educ 1 0.08039 0.02164 3.72 | 0.0002
v Residual 1 0.04719 0.02855 1.65| 0.0991

OUTPUT 4.6. Using Proc Reg to check for endogeneity.

4. Sargan’s test statistic is nR2. Under the null hypothesis of exogenous extra instruments, the test statistic is distributed as a
chi-squared random variable with L, —G degrees of freedom.

If the null hypothesisis rejected, then we need to reexamine the instruments that were selected for the analysis. The general idea
is that if the instruments are truly exogenous, then they should not be correlated with the disturbance term.

We will now illustrate the computations by using the earning equation with parents and husband’s education as instruments.
The first step is to estimate the true model by using 2SLS and to store the residuals . The following SAS statements
can be used. Note that the output has been suppressed because we are interested only in storing the residuals from this analysis.

proc syslin 2SLS noprint data=mroz out=stepl_resid;
endogenous educ;
instruments exper expersqg motheduc fatheduc huseduc;
model lwage=exper expersq educ;
output residual=outl_resid;

run;

The next step is to regress the residuals from the 2SLS analysis on all exogenous variables in the model. The following SAS
statements can be used. The results of the analysis one given in Output 4.7.

proc reg data=stepl_resid;
model outl_resid=exper expersqg motheduc
fatheduc huseduc;

run;
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The REG Procedure
Model: MODELI

Dependent Variable: outl_resid Residual Values

Number of Observations Read | 428
Number of Observations Used | 428

Analysis of Variance

Sum of [ Mean

Source DF | Squares | Square | F Value | Pr>F
Model 5 0.49483 | 0.09897 0.22 | 0.9537
Error 4221189.43989 | 0.44891

Corrected Total | 427 | 189.93471

Root MSE 0.67001 | R-Square | 0.0026
Dependent Mean | —5.3125E-16| Adj R-Sq | —0.0092
Coeff Var —-1.2612E17

Parameter Estimates

Parameter | Standard
Variable |Label |DF| Estimate Error | t Value | Pr> |t|

0.00861 0.17727 0.05| 0.9613

Intercept | Intercept

exper 1| 0.00005603 0.01323 0.00 | 0.9966
expersq 11 -0.00000888( 0.00039562 —0.02| 0.9821
motheduc 1 —0.01039 0.01187 —0.87| 0.3821
fatheduc 1| 0.00067344 0.01138 0.06 | 0.9528
huseduc 1 0.00678 0.01143 0.59| 0.5532

OUTPUT 4.7. Testing overidentifying restrictions in the earning data.

There are 428 observations in the data set and R> = 0.0026. Therefore, the test statistic value is NR? = 1.11. The critical value is
X5005 = 5-99. The degrees of freedom were calculated using the formula L, — G, where L, =3 because we used motheduc,
fatheduc, and huseduc as instruments beyond exper and expersq. We suspect only one variable (educ) as being endogenous, G = 1.
Thus, the degree of freedom is 2. The null hypothesis is not rejected because the test statistic value is smaller than the critical value.
That is that we can use the “extra” instruments to identify the model for y.

4.5.2 Weak Instruments

We now turn our attention to the problem of weak instruments—that is, the case when the selected instrumental variables used
in estimation have a poor correlation with the endogenous variable.

We will discuss a general method for determining if weak instruments have been used in the model. Consider the model
y=XB + ax + & where x is suspected of being endogenous. Assume that we have a set of instrumental variables W, which
includes the explanatory variables in X. The reduced form equation relating x to X and W is written as x = W8 + «y (Wooldridge,
2002).

If 8 = 0, the instruments in W have no predictive power in explaining x. A value of  close to zero implies that the instruments
are weak. A rule of thumb proposed in the literature is that the weak instruments problem is a non-issue if the F statistic of the
regression in the reduced form equation exceeds 10 (Glewwe, 2006). We will illustrate the computations by looking at the earning
data set. The variable educ was suspected of being endogenous. The variables motheduc, fatheduc, and huseduc were considered
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The REG Procedure
Model: MODEL1
Dependent Variable: educ

Number of Observations Read | 428
Number of Observations Used | 428

Analysis of Variance

Sum of Mean
Source DF | Squares| Square|F Value|Pr>F
Model 5| 955.83061 [ 191.16612 63.30 [<0.0001
Error 4221 1274.36565 3.01982
Corrected Total | 427 [ 2230.19626

Root MSE 1.73776 | R-Square | 0.4286
Dependent Mean | 12.65888 | Adj R-Sq | 0.4218
Coeff Var 13.72763
Parameter Estimates
Parameter | Standard
Variable |DF| Estimate Error | t Value | Pr> [t
Intercept 1 5.53831 0.45978 12.05 | <0.0001
exper 1 0.03750 0.03431 1.09| 0.2751
expersq 11 —0.00060020 0.00103 —0.58] 0.5589
motheduc 1 0.11415 0.03078 3.71| 0.0002
fatheduc 1 0.10608 0.02952 3.59| 0.0004
huseduc 1 0.37525 0.02963 12.66 | <0.0001

OUTPUT 4.8. Weak instruments analysis in the earning data.

as instruments and therefore the reduced regression equation for the wage equation is
educ = ag + ajexper + ozzexper2 + asmotheduc + ay fatheduc + ashuseduc + vy.

The reduced form parameters are estimated by OLS regression. The following SAS statements can be used. The analysis results
are given in Output 4.8. Note that the F statistic value is very large (larger than 10) and therefore we cannot reject the hypothesis
that we have weak instruments.

proc reg data=mroz;
model educ=exper expersq motheduc fatheduc huseduc;
run;

4.5.3 Hausman’s Specification Test

Hausman’s specification test can be used to determine if there are significant differences between the OLS and the IV estimators.
As discussed in Greene (2003, pp. 80-83), under the null hypothesis of no endogeneity, both the OLS and the IV estimators are
consistent. Under the alternative hypothesis of endogeneity, only the IV estimator is consistent. Hausman’s test is based on the
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TABLE
OLS v
INTERCEPT | —0.0453| —0.0208
YT 0.1847 | 0.0892
IT —0.0017{ —0.0012
CT1 0.8205 | 0.9140

H
The Hausman Test Statistic Value is | 21.093095

OUTPUT 4.9. Hausman analysis using Proc IML for consumption data.

principle that if there are two estimators (Bl , [32) which converge to 8 under the null hypothesis and converge to different values
under the alternative hypothesis then the null hypothesis can be tested by testing whether the two estimators are different. The
test statistic is given by

H= dT[s?v(XTX)_l_SZOLS(XTX)_I}_I-

Here, d = [byy — bo.sl, and s7,(X"X) ™", 52, (X7X) " are the terms associated with the asymptotic covariance of the two
estimators, respectively. Under the null hypothesis, H is distributed as a y> with k~ degrees of freedom. The degree of freedom, &, is
the number of variables in X that are suspected of being endogenous. We will use the consumption function data in Greene (2003)
to illustrate the computations involved in SAS. The data is credited to the Department of Commerce, BEA. The author proposes
estimating a model given by ¢, =81 + B2y: + Bsi; + Baci—1 + &;, where ¢, is the log of real consumption, y, is the log of real
disposable income, and i, is the interest rate. We suspect a possible correlation between y; and &, and consider y, i, ¢;_1, and i, as
possible instruments (Greene, 2003, Example 5.3). The following Proc IML commands can be used to calculate Hausman’s test
statistic. The analysis results are given in Output 4.9. We assume that the data have been read into a temporary SAS data set called
hausman. The names of the variables are self-explanatory. For instance, y,_; and ¢,_; are labeled as yz/ and ct/. The first step is to
read the data into appropriate matrices.

Proc IML;

use hausman;
read all var {'yt’ "it’ 'ctl’} into X;
read all var {’ct’} into Y;

read all var {"it’ 'ctl’ 'yvtl’} into W;
n=nrow (X) ;

k=ncol (X) ;

X=J(n,1,1)I1X;
W=J(n,1,1)IIw;

Next, we need to compute the OLS and IV estimators.

CX=1inv (X' *X) ;

CW=1inv (W’ *W) ;
OLS_b=CX*X'*y;
Xhat=W*CW*W"’ *X;

b_IV=inv (Xhat‘*X)*Xhat‘*y;
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Next, we need to compute the difference vector and calculate the consistent estimator of o’

d=b_IV-OLS_b;
SSEl=y’*y-OLS_b‘*X'*Y;
SSE2=y ' *y-b_IV'*X'*Y;
DFEl=n-k;

DFE2=n;
MSE1=SSE1/DFE1;
MSE2=SSE/DFE2;

The last step is to calculate the test statistic, H, and print out the results.

diff=ginv (MSE2*inv (Xhat ‘*Xhat)-MSE1*CX) ;
H=d‘'*diff*d;

Since the 95% critical value from the chi-squared table is 3.84, we reject the null hypothesis of no correlation between y, and €,.
Therefore, the [Vestimator is more appropriate to use for the consumption model. Hausman’s test can also be performed in SAS by
using the Proc model procedure. The following SAS statements can be used. Notice that we specify the endogenous variable in the
“endo” statement, the instruments in the “instruments” statement, and then write down the linear model to be estimated. This is
followed by the “fit” statement using the dependent variable with the option that the Hausman test be used to compare the OLS and
the instrumental variable estimator.

proc model data=hausman;
endo yt;
instruments it ctl ytl;
ct=betal+beta2*yt+beta3*it+betad*ctl;
fit ct/ols 2sls hausman;

run;

The procedure checks if the OLS estimates are more efficient than the 2SLS procedure. The degree of freedom used for the test
is k, the number of columns of X. The analysis results are produced in Output 4.10.

The MODEL Procedure

Model Summary

Model Variables 2
Endogenous 1
Parameters 4
Equations 1
Number of Statements 1

Model Variables | yt ct

Parameters | betal beta2 beta3 betad

Equations | ct

The Equation to Estimate is
ct = | F(betal(1), beta2(yt), beta3(it), betad(ctl))

Instruments | 1 it ctl ytl

NOTE: At OLS iteration | CONVERGE=0.001 criterion met.l

OUTPUT 4.10. Hausman test for the consumption data using Proc model.



The MODEL Procedure
OLS Estimation Summary

Data Set Options

DATA=

HAUSMAN

Minimization Summary

Parameters Estimated 4
Method Gauss
Iterations 1

Final Convergence

Criteria

R

6

19E-11

PPC

1

95E-10

RPC(betad) 8

122.857

Object

0.999999

Trace(S)

0.000066

Objective Value

0.

000065

Observations
Processed

Read 20!

2

Solved 20!

2

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation | Model | Error | SSE MSE | Root MSE | R-Square | R-Sq
ct 4 1981 0.0131 | 0.000066 0.00814 0.9997 1 0.9997
Nonlinear OLS Parameter Estimates
Approx Approx
Parameter | Estimate | Std Err | t Value | Pr> |t|
betal —0.04534| 0.0130 —3.491 0.0006
beta2 0.18466 0.0330 5.60 | <0.0001
beta3 —0.00165] 0.000294 —5.62| <0.0001
beta4 0.820509 0.0323 25.38 | <0.0001
Number of
Observations Statistics for System
Used 202 [ Objective 0.0000650
Missing 0 | Objective*N 0.0131

SPECIFICATION TESTS

NOTE: At 2SLS Iteration 1 convergence assumed because OBJECTIVE=7.589157E-27 is almost zero (<1E-12).

OUTPUT 4.10. (Continued)

67
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The MODEL Procedure
2SLS Estimation Summary

Data Set Options

DATA= | HAUSMAN

Minimization Summary

Parameters Estimated 4
Method Gauss
Iterations 1

Final Convergence

Criteria
R 1
PPC 6.41E-11
RPC(betal) 0.541796
Object 0.676767
Trace(S) 0.000069

Objective Value | 7.59E-27

Observations
Processed

Read 202

Solved 202

The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

Hausman's Specification Test Results

Comparing

To | DF | Statistic | Pr > ChiSq

OLS 2

SLS 4 22.74 0.0001

OUTPUT 4.10. (Continued)

DF DF Adj
Equation | Model | Error | SSE MSE | Root MSE | R-Square | R-Sq
ct 4 1981 0.0137 | 0.000069 0.00831 0.99971 0.9997
Nonlinear 2SLS Parameter Estimates
Approx Approx
Parameter | Estimate | Std Err | t Value | Pr>|t|
betal —0.02077(  0.0141 —1.47( 0.1429
beta2 0.089197 0.0386 231 0.0218
beta3 —-0.00116( 0.000315 =3.67[ 0.0003
beta4 0.913973 0.0378 24.18 | <0.0001
Number of
Observations Statistics for System
Used 202 [ Objective 7.589E-27
Missing 0 | Objective*N | 1.533E-24
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The first few tables contain some information about the model including the number of variables, and the number of
endogenous and exogenous variables. This is followed by output from both OLS and instrumental variable estimation. Note that
convergence was achieved very quickly for both models. Also note that the OLS standard errors are smaller than the instrumental
variables standard error. The parameter estimates for the intercept, y; and i,, are larger in magnitude than the ones obtained from
instrumental variable estimation. The OLS estimate for the parameter value of ¢,_; is smaller than the instrumental variable
estimate. The value of the test statistic for Hausman’s test is 22.74 with 4 degrees of freedom and is highly significant indicating
that the instrumental variable estimator is more efficient than the OLS estimator.

Notice that the test statistic value from Proc Model is very close to the one obtained by using Proc IML. On the other hand,
the degree of freedom used for the test in Proc Model is equal to the number of variables in X. The test procedure described in
Greene (2003) uses as degrees of freedom the number of variables that are suspected of being endogenous. Greene (2003, pp.
81-82) provides a brief explanation that justifies the setting of the degrees of freedom to the number of suspected endogenous
variables.



NONSPHERICAL DISTURBANCES
AND HETEROSCEDASTICITY

5.1 INTRODUCTION

The discussion in the previous chapters was based on the assumption that the disturbance vector in the linear modely =X + ¢is
such that the conditional distribution ;| X is independently and identically distributed with zero mean and constant variance 0.
The implication of this assumption is that the variance of € does not change with changes in the conditional expectation, E(y | X). A
plot of € versus E(y | X) should therefore exhibit a random scatter of data points. The random disturbances under this assumption
are referred to as spherical disturbances. This chapter deals with alternative methods of analysis under violations of this
assumption. The implication here is that Var(s1X) = 0*Q =3, where {) is a positive definite, symmetric matrix.The random
disturbances under this assumption are referred to as nonspherical disturbances. Although the general method presented in this
chapter can be extended to instrumental variables regression very easily, we will assume that the explanatory variables that are

used in the model are exogenous. We will deal with two cases of nonspherical disturbances.

1. Heteroscedasticity: Here, the disturbances are assumed to have different variances. The variance of the disturbance may,
for example, be dependent upon the conditional mean E(y|X). For example, this will happen in the case when the
disturbances are assumed to follow the binomial distribution. Recall that if a random variable y has a binomial distribution
with parameters n (the number of trials) and success probability p, then the mean and variance of y are np and np(1 — p),
respectively. Therefore the variance is dependent on the mean np; and as the mean changes, so does the variance. We will
revisit this case in Chapter 10 in our discussion of discrete choice models using logistic regression. In our discussion of
heteroscedasticity we will assume uncorrelated disturbances so that 3, = diag[o?, 073, . .., ]. Chapter 6 deals with the
case of autocorrelation where the disturbances are correlated.

2. Autocorrelation: This often occurs in time series data where error terms between time periods are correlated. Here, we
assume homoscedastic disturbances where the variances of the disturbances are equal but the disturbances are correlated.
Therefore, 3, is no longer diagonal and is given by (Greene, 2003, p. 192)

L pr o pu
2 2 P1 1 ceo Pp_2
=0
Pr—1 Pn—2 e 1

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
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In this chapter and the next, we will discuss analysis techniques when the disturbances are either heteroscedastic or
autocorrelated.

5.2 NONSPHERICAL DISTURBANCES

We start our discussion with estimation techniques when the disturbances are heteroscedastic. As seen in Chapter 1, under
the assumptions E(€IX) =0 and V(elX) = o1, the least squares estimator of B is given by b = (XTX)_lXTy. We also saw that
the least squares estimator is the best linear unbiased estimator and that it is consistent and asymptotically normal (if the
disturbance vector is normally distributed). It is easy to show that the unbiased property of the least squares estimator is
unaffected under departures from the spherical disturbances assumption and that the variance—covariance matrix of b under
heteroscedasticity is given by

Var(bX) = o2(X"X) ' X"QX(X"X) .

If we assume that the disturbances are normally distributed, then it is easily shown that the conditional distribution of b is also
normal. That is,

b|X ~ N(B,o*(XTX) ' XTQX(X"X) ).

In the previous chapters, all inferences regarding the least squares estimator were done using the estimated covariance matrix
s*(X™X)~'. However, under departures from the spherical disturbance assumption, Var(blX) # o*(X”X) ™" and therefore any
inference with sz(XTX)’ !'will be incorrect. That s, the hypothesis tests and confidence intervals using the ¢, F, ,\/2 distributions will
not be valid (Greene, 2003, p. 194).

5.2.1 Estimation of

There are two methods for estimating B under the assumption of nonspherical disturbances. The first case assumes that the
structure of £} is known and the other when it is assumed unknown. Estimators obtained under the assumption that £} is known are
called the Generalized Least Squares (GLS) estimators, while those obtained under the assumption that {) is unknown are called
the Feasible Generalized Least Squares (FGLS) estimators.

To start with, assume that ) is a known positive definite symmetric matrix. Premultiplying the linear model by Q2

gives
Q_I/QY = Q_l/ZXB + 0 % or y =XB+¢".

It is easy to show that E(g"|X) = 0 and that Var(g"|X) = oI See both Greene (2003, p. 207) and Verbeek (2004, p. 81) for
more details.
Therefore, the classical regression model assumptions of spherical disturbances are satisfied and the analysis techniques from
the previous chapters can be used for estimation on the transformed variables. It can be shown that under the transformation used,
the GLS estimator is consistent and unbiased and is given by

bGLS = (XT071X)_1XT071y.
with variance—covariance matrix

Var(bgs|X) = o?(X7Q'X) .

The GLS estimator is asymptotically normally distributed if the disturbances are normally distributed. That is,
bors ~ N(B,2(X"Q'X) ™).

In reality, {2 is unknown and has to be estimated. As discussed in Greene (2003, p. 209), if ) is allowed to be unrestricted as in
the case of autocorrelation, then there are n(n + 1)/2 additional parameters in Q) that need to be estimated. This is impossible,
given that we have a total of n observations. In such cases, calculating bs; g is not possible and a FGLS estimator has to be used. The
FGLS estimation involves putting a restriction on the number of parameters that needs to be estimated. For instance, in
heteroscedasticity, we restrict Q) to one new parameter, 6, defined as 01-2 = azzf (Greene, 2003, p. 210).

Details on estimating 6 will be provided a bit later in this chapter. For now, assume that 6 can be estimated by 6. We can then
estimate Q with (6) and use this in the formula for the GLS estimate to obtain the FGLS estimator. Illustration of the computation
methods involved in computing the GLS and the FGLS estimators will be discussed in the following sections. For the moment, we
will shift our attention to the task of detecting whether the regression model suffers from the heteroscedasticity.
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5.3 DETECTING HETEROSCEDASTICITY

As mentioned earlier, heteroscedasticity implies that the variances of the disturbances are not constant across observations.
Therefore, an easy way of detecting heteroscedasticity is to plot the least squares residuals, §;, against the predicted values of the
dependent variable and against all the independent variables in the model. Heteroscedasticity should be suspected if any of the
graphs indicate a funnel-shaped (or some other nonrandom) pattern. That is, the graph gets more scattered as the predicted value of
the dependent or independent variables change. As an example, consider the credit card data in Greene (2003). The data consist of
monthly credit card expenses for 100 individuals. This data set was used with permission from William H. Greene (New York
University) and is credited to Greene (1992). The author conducted a linear regression of monthly expenses on a constant, age, a
dummy variable indicating ownership of a house, income, and the square of income using 72 observations where the average
expense is nonzero. The following statements can be used (note that the square of income was calculated in the data step statement)
to conduct the analysis. The analysis results are given in Output 5.1. We will not discuss the output results as we are interested in the

residual plots.

proc reg data=Expense;

model AvgExp = Age OwnRent Income IncomeSq;

output out=for_graphs student=r_s;

run;

The option ‘output out=for_graph student=r_s’ creates a SAS data set with standardized residuals along with the variables
used in the model. The following GPLOT statements can now be used to create the residual plots. Note that the statements are set to
create a plot of the standardized residuals versus income.

proc gplot data=for_graphs;
plot r_s*income;
run;

The REG Procedure
Model: MODELI1
Dependent Variable: AvgExp AvgExp

Number of Observations Read

Number of Observations Used

Analysis of Variance
Sum of | Mean
Source DF | Squares | Square | F Value | Pr>F
Model 4| 1749357 | 437339 5.39 | 0.0008
Error 67 | 5432562 | 81083
Corrected Total | 71 | 7181919
Root MSE 284.75080 | R-Square | 0.2436
Dependent Mean | 262.53208 | Adj R-Sq | 0.1984
Coeff Var 108.46324
Parameter Estimates
Parameter | Standard
Variable |Label |DF | Estimate Error | t Value | Pr > |t|
Intercept | Intercept 1| —237.14651| 199.35166 —1.19| 0.2384
Age Age 1 —3.08181 5.51472 —0.56| 0.5781
OwnRent | OwnRent 1 27.94091 | 82.92232 0.34] 0.7372
Income Income 1| 23434703 | 80.36595 2.92| 0.0048
incomesq 1 —14.99684 7.46934 —2.01| 0.0487

OUTPUT 5.1. Ordinary least squares analysis of credit card expenses data.
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FIGURE 5.1. Plot of residuals versus average expense.
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Three residual plots were created (Figures 5.1—5.3): one versus average expense, one versus age, and the last versus income.
The residual plots with age and income show a funnel-shaped pattern with the residuals “ballooning” up with increases in age and
income. We should therefore suspect that the regression model used for the credit card data suffers from heteroscedasticity. More

specifically, it appears that the variance of the residuals is correlated to some function of the explanatory variable income.
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FIGURE 5.2. Plot of residuals versus age.
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FIGURE 5.3. Plot of residuals versus income.

5.4 FORMAL HYPOTHESIS TESTS TO DETECT HETEROSCEDASTICITY

‘We prefer the simple residual plots analysis to detect heteroscedasticity. However, as discussed in Greene (2003, pp. 222-225) and
Verbeek (2004, pp. 90-92), there are three formal tests for detecting the presence of nonspherical disturbances. They are

1. White’s general test
2. The Goldfeld—Quandt test
3. The Breusch—Pagan test

5.4.1 White’s Test

White’s general test can be conducted via the hypothesis
Hy: 0'1'2 = g? Vi,
H;: NotHj.

It is a general test that looks for evidence of a relationship between the variance of the disturbance and the regressors (and
functions of the regressors) without assuming any form of the relationship. This test can be conducted as follows:

1. Estimate &; via OLS to obtain &; and calculate élz

2. Conduct an OLS regression of élz on all unique variables in X along with all the squares and cross products of the unique
variables in X.

3. The test statistic is given by nR?, which under the null hypothesis is asymptotically distributed as chi-squared with p — 1
degrees of freedom, where p is the number of explanatory variables in the OLS regression in step 2.

See Greene (2003), Verbeek (2004), and the SAS/ETS User’s Guide 9.1 for more details on this test. White’s test can be
programmed into Proc IML as follows:

1. First, read the data including the unique variables formed by using cross products into appropriate matrices. Using the
credit card expense data, note that there are only 13 unique columns in the cross-product matrix since ownrent® = ownrent
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and income x income = income®, which is already part of X. The original list of explanatory variables include age,
ownrent, income, and incomesq. The cross products are therefore age*age, age*ownrent, age*income, age*incomesgq,
ownrent*income, ownrent*incomesq, incomesq*incomesq, income*incomesgq.

proc IML;
use Expense;
read all var {’age’ 'ownrent’ ‘income’
"incomesqg’} into X;
read all var {’age’ 'ownrent’ ’‘income’
‘incomesq’ ’'age_sqg’ ‘incomefth’ 'age_or’
"age_inc’ 'age_incsqg’ ‘or_income’ ‘or_incomesq’
"incomecube’} into XP;
read all var {’avgexp’} into Y;
n=nrow (X) ;
np=nrow (XP) ;
X=J(n,1,1)11X;
XP=J (np,1,1) | IXP;
k=ncol (X) ;
kp=ncol (XP) ;

Next, calculate the OLS residuals using the techniques from the previous chapters.

C=inv (X' *X) ;
beta_hat=C*X’*y;
resid=y-X*beta_hat;

2. The square of the OLS residuals is then regressed against the unique variables including the cross-product variables.

resid_sg=resid#resid;
C_E=inv (XP’'*XP) ;
b_hat_e=C_E*XP’'*resid_sq;

3. The R? value is then calculated from this regression.

Mean_Y=Sum(resid_sqg) /np;
SSR=b_hat_e’*XP’*resid_sg-np*Mean_Y**2;
SSE=resid_sqg’*resid_sqg-b_hat_e’*XP’*resid_sq;
SST=SSR+SSE;

R_Square=SSR/SST;

4. Finally, the test statistic value is calculated.

White=np*R_Square;
pvalue= 1 - probchi (White, kp) ;
run;

The results of the analysis are given in Output 5.2.

The p value indicates that there is insufficient evidence to claim that the disturbances are heteroscedastic. White’s test can also
be done by using the Proc Model procedure. We will again use the credit card data to illustrate this. As opposed to the complexity
involved in Proc IML of determining the number of unique columns in the cross product X ® X, the technicalities do not matter in



76 NONSPHERICAL DISTURBANCES AND HETEROSCEDASTICITY

R_SQUARE
0.1990132

WHITE
The test statistic value for Whites Test is|14.328953

PVALUE
The p-value associated with this test is|0.3510922

OUTPUT 5.2. White’s test for the credit card expense data.

the Proc Model. The following statements can be used. Note that we have also included an option to conduct the Breusch—Pagan
test, which will be discussed later.

The Proc Model procedure used here contains four main parts. First, we define the parameters of the model using the “parms”
option. Here, we chose the names Const (for the intercept), C_Age for Age, C_OwnRent for OwnRent, C_Income for Income, and
C_IncomeSq for Income*Income. The next part is the actual layout of the model of interest. It should be obvious that we are
regressing Average Expense against Age, Income, Income*Income, and OwnRent. The next part is used to define the squared
Income term which will be used in the Breusch—Pagan test using the “breusch” option. We could have eliminated the definition had
we chosen to simply conduct White’s test. The final part uses the “fit” option on the dependent variable of interest to fit the model.

proc model data=Expense;
parms Const C_Age C_OwnRent C_Income C_IncomeSJ;
AvgExp = Const + C_Age*Age + C_OwnRent *OwnRent
+ C_Income*Income + C_IncomeSg*Income*Income;
income_sqg = income * income;
fit AvgExp/white breusch= (1 Income Income_Sq) ;
run;

Output 5.3 reveals that the test statistic value for White’s test is 14.33 with p value equal to 0.28. Therefore, we do not reject the
null hypothesis of homoscedastic disturbances. This is startling since the residual plots did indicate that the disturbances were
nonspherical. This contradiction points to the nature of White’s test. The generality of the test leads to a “poor power” of detecting
heteroscedasticity when it may exist in reality. On the other hand, rejecting the null hypothesis leads to no indication of what
should be done in terms of adjusting for heteroscedasticity since it offers no insight on the problematic variable(s).

The MODEL Procedure

Model Summary
Model Variables
Parameters

Equations

N[O

Number of Statements

Model Variables|AvgExp

Parameters|Const C_Age C_OwnRent C Income C_ IncomeSg

Equations |AvgExp

The Equation to Estimate is

AvgExp |F (Const (1), C_Age (Age), C_OwnRent (OwnRent), C Income (Income),
=|C_IncomeSq)

NOTE: At OLS Iteration 1 CONVERGE=0.001 Criteria Met.

OUTPUT 5.3. White’s test on credit card expense data using the Proc Model.
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The MODEL Procedure
OLS Estimation Summary

Data Set
Options

DATA= | EXPENSE

Minimization Summary

Parameters Estimated 5
Method Gauss
Iterations 1

Final Convergence
Criteria

R 0
PPC 0
RPC (Const) 2347986
Object 0.55266
Trace (S) 81083.02
Objective Value|75452.25

Observations
Processed

Read 72
Solved 72

The MODEL Procedure

Nonlinear OLS Summary of Residual Errors

DF DF Adj
Equation |Model |Error SSE MSE|Root MSE |R-Square R-Sqg|Label

AVgEXp 5 67(5432562|81083.0 284.8 0.2436|0.1984 |AVgExXp

Nonlinear OLS Parameter Estimates

Approx Approx
Parameter |Estimate|Std Err|t Value|Pr > |t|

Const -237.147 199.4 -1.19 .2384
C_Age -3.08181| 5.5147 -0.56 .5781
C_OwnRent [27.94091(82.9223 0.34 L7372
C_Income 234.347(80.3660 2.92 .0048
C_IncomeSqg|-14.9968 | 7.4693 -2.01 .0487

o|Oo|o|O| O

Number of Statistics for
Observations System

Used 72 |Objective 75452
Missing 0|[Objective*N|5432562

Heteroscedasticity Test
Equation|Test Statistic| DF|Pr > ChiSg|Variables
AvgExp White's Test 14.33| 12 0.2802|Cross of all vars
Breusch-Pagan 6.19 2 0.0453|1, Income, income_sq

OUTPUT 5.3. (Continued)
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5.4.2 The Goldfeld-Quandt and Breusch-Pagan Tests

Most often, heteroscedasticity is caused by a relationship of the variance of the disturbances with one or more explanatory
variables or their functions. The Goldfeld—Quandt and Breusch—Pagan tests are more powerful and therefore preferred over
the White’s test because they restrict attention on explanatory variables that appear to cause heteroscedasticity (Greene, 2003,
p- 223; Verbeek, 2004, p. 90). The residual plots clearly indicated that heteroscedasticity may have been caused by income. We
can therefore focus on this variable to determine whether there is evidence that the disturbances are heteroscedastic with
respect to it.

For the Goldfeld—Quandt test, we assume that the data set can be split into two groups based on the explanatory variable that appears
to be causing heteroscedasticity. The method involves first ranking the data with respect to the “problematic” explanatory variable.
The hope is that this separation will split the data set into two groups with high and low variances. Regression analysis is then conducted
on the two groups separately. The hypothesis being tested is

and the test statistic is

_ e{el/(nlfkfl)
egez/(nz—k—l) '

Here, elTel and e2T e; are the error sums of squares from the two independent regressions where elTel > e2T e,. Notice that this is
simply the F test for comparing two variances. Under the null hypothesis of no heteroscedasticity, this test statistic has an F'
distribution with ny —k — 1 and n, — k — 1 degrees of freedom (Greene, 2003, p. 223).

As an example of implementing the test in SAS, we will use the credit card data again. The following statements can be used.

proc import out=Expense
datafile="C:\TempTableF91"
dbms=Excel Replace;
getnames=yes;

run;

Data Expense;
set Expense;
incomesg=income*income;
if avgexp > 0;

run;

proc sort data=Expense;
by income;

run;

data Expense;
set Expense;
if _n_ < 37 then id=1;else 1d=2;

run;

proc reg data=Expense outest=est noprint;
model avgexp=age ownrent income incomesq;
by id;

run;

proc print data=est;

run;

Output 5.4 contains the results of the analysis. Note that we have suppressed all other output resulting from the above
statements since we are interested in obtaining the mean square for error for the two splits of the data set. This is simply the square
of the root mean square error ( RMSE_).
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Obs|id| MODEL | TYPE | DEPVAR | RMSE |Intercept| Age
MODEL1 |PARMS |AvgExp [102.587| 153.130[-4.13740
MODEL1 |PARMS |AvgExp |[397.335] —259.108 [-1.94040

=
[

N
\S]

Obs |OwnRent | Income |incomesq|AvgExp
1/108.872| 16.886 3.6934 -1
21-52.828 1250.135(-16.1141 -1

OUTPUT 5.4. Regression summary statistics of the two splits of the credit card expenditure data.

The test statistic value is given by

397.335%
102.587%

Note that the numerator and denominator degrees of freedom are 36 — 4 — 1 =31 so that the critical value from the F table
with type 1 error rate 5% is 1.822. The test statistic value exceeds the critical value, and we therefore reject the null hypothesis of
homoscedasticity and state that there is evidence of heteroscedasticity caused by income.

Asdiscussed in Greene (2003, p. 223), even though the Goldfeld—Quandt test has a higher power than White’s test for detecting
heteroscedasticity, there is a major criticism of the test. The test requires knowledge of the regressor that will be used to separate
the data set and there may be instances where more than one regressor is involved. In the case of the credit card data, the residuals
showed a heteroscedastic behavior with respect to income. A plot of residuals versus the square of income reveals hetero-
scedasticity also (we chose not to include the plot here). The Goldfeld—Quandt test therefore has limitations.

5.4.3 The Breusch-Pagan Test

The Lagrange Multiplier test designed by Breusch and Pagan takes into account the possibility of several “problematic”
regressors. This test is based on the hypothesis that the variance of the disturbances is a function of one or more explanatory
variables. That is, 0',2 = o’F (a0 + aTz,-), where z; is a vector of independent variables (Greene, 2003, p. 224; Verbeek, 2004,
p. 91). A test for homoscedasticity can therefore be conducted by testing

Hy: a= y
H]Z (!750

The test statistic for this test is given by
1
LM = e'2(2'2)'1"g|,

where g, =n a? /eTe—1, a? is the square of the residuals and e” e is the OLS, residuals sums of squares, respectively (Breusch and
Pagan, 1979; Greene, 2003, p. 224). From Chapter 1, it should be clear that the term within brackets of the LM statistic formula is
the regression sums of squares when g is regressed on Z. Under the null hypothesis, the LM statistic has a chi-squared distribution
with k degrees of freedom, where k is the number of variables in Z. SAS does not have a procedure that computes this version of the
Breusch—Pagan test.

The version of the Breusch—Pagan test provided by SAS is the modification suggested by Koenker (1981) and Koenker and
Bassett (1982). The authors showed that the LM test is not robust under departures from the normality assumption. They suggested
amore robust estimate of the variance of the residuals. Details of their test can be found in Greene (2003, p. 224) and the SAS/ETS
User’s Guide 9.1.

We illustrate the computations involved by again making use of the credit card data. The vector z; contains the constant term,
income, and the square of income. The following statements in Proc IML will compute the test statistic. Note that we are assuming
that the reader will have no problems reading the data into matrices and getting the results printed. We therefore just give the code
that computes the test statistic value.
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LM
The Breusch Pagan Test Statistic Value is|41.920303

PVAL
The p value associated with this is|7.891E-10

IThe null hypothesis of homoscedasticity is rejectedl

OUTPUT 5.5. The Breusch—Pagan test for the credit card expenditure data.

bhat_OLS=inv (X' *X)*X'*y;

SSE=(y-X*bhat_OLS) ' * (y-X*bhat_OLS) ;

resid=y-X*bhat_OLS;

g=J(n,1,0);

fudge=SSE/n;

do index=1 to n;
templ=resid[index, 1] *resid[index,1];
glindex,l]=templ/fudge - 1;

end;

LM=0.5%g ' *Z2*inv (2’ *Z) *Z ' *qg;

The analysis results are given in Output 5.5. The null hypothesis of homoscedasticity is rejected since the p value is almost
Zero.

The SAS output for White’s test contained the test statistic and p value associated with the modified Breusch—Pagan test. The
test statistic value is 6.19 with a p value of 0.0453, which leads us to reject the null hypothesis of homoscedasticity.

5.5 ESTIMATION OF B8 REVISITED

We now turn our attention back to estimation of the least parameters under heteroscedasticity. Our discussion starts with
estimating arobust version of the variance—covariance matrix of the ordinary least squares estimator. These robust estimators will
then be used to calculate the standard errors of the least squares estimators and to perform hypothesis tests. We will then move to
weighted least squares estimation and estimation of the parameters using one-step and two-step FGLS.

Earlier in this chapter, we showed that under heteroscedasticity, the variance—covariance matrix of the least squares
estimator is

Var(b|X) = (X'X) 1 (XTo?2QX)(X"X) .

In practice, ) is almost always unknown and therefore has to be estimated. White (1980) suggested the following estimator
for Var (bIX) (Greene, 2003, p. 220; Verbeek, 2004, p. 87)

—1 -1

1 [{X™X 1< XX

EstAsy.Var(b) = - | —— f§ #2xx! | | ==
st.Asy.Var(b) " X;X "

X!
n né&e— "t
i=1

= n(X"X)"'Sp(X"X) ",

where §&; is the ith least squares residual. As discussed in Greene (2003), it has been argued that in small samples the White’s
estimator tends to underestimate the true variance—covariance matrix, resulting in higher #-statistic ratios. In other words, using
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this estimator leads to liberal hypothesis tests involving the least square estimators. Davidson and MacKinnon (1993) offered two
alternative versions of this estimator. Their first recommendation involves scaling up the White’s estimator by a factor of n/(n — k).
Their second recommendation involves replacing 2;12 with é‘lz /m;;, where

mii = 1—x/(X"X)'x;  (Greene, 2003, p. 220).

We can compute Whites Estimator in SAS by using the Proc Model statements with the HCCME option in the Fit
statement. Here, HCCME is the acronym for Heteroscedastic-Corrected Covariance Matrix. Using the credit card data, the
following statements will be used and modified to generate standard errors using the different robust covariance matrices.
See SAS/ETS User’s Guide 9.1 and the Proc Panel Documentation pages 58—59 from SAS Institute, Inc. for more details on
this.

proc model data=Expense noprint;
parms Const C_Age C_OwnRent C_Income C_IncomeSq;
AvgExp = Const + C_Age*Age + C_OwnRent *OwnRent +
C_Income*Income + C_IncomeSg*Income*Income;
fit AvgExp/HCCME=NO;

run;

The HCCME = 0 option calculates the standard errors based on Whites estimator. Here,
Q) = diag(8*,82,...,8).
The HCCME =1 option calculates the first alternative suggested by Davidson and MacKinnon. Here, the estimator
is
' Cn

A n . JOIIN A
O :ﬂdlag(e%,sg,... ).

The HCCME =2 option calculates the second alternative suggested by Davidson and MacKinnon. Here, the estimator
is

. 1 1 1
O, = diag| & 62 8
? s (81 1—my, 2 1—my,’ >n 1—my,

where m;; was defined earlier.
The HCCME = 3 option produces yet another modification of the White’s estimator. Here, the estimator is

R 1 1 1
Q3 = diag| & &2 . ——
"1=mi)? " (1=man)? " (1=mm)*

Notice that in this case, the denominator of the second version of Davidson and MacKinnon’s estimator has been adjusted to geta
smaller estimator of the variances.

The following SAS statements can be used to calculate the parameter estimates and the covariance matrices. This code has
been modified from a code set written by the SAS Institute (SAS/ETS Users Guide 9.1). The analysis results are given in
Output 5.6.

proc model data=credit_card noprint;
parms Const C_Age C_OwnRent C_Income C_IncomeSq;
AvgExp = Const + C_Age*Age + C_OwnRent *OwnRent +
C_Income*Income + C_IncomeSg*Income*Income;
fit AvgExp/HCCME=NO outest=0ls covout;
fit AvgExp/HCCME=0 outest=H0O covout;
fit AvgExp/HCCME=1 outest=H1 covout;
fit AvgExp/HCCME=2 outest=H2 covout;



82

run;
data all;
set ols HO H1 H2 H3;
if _name_=’ ' then _name_=’'Parameter Estimates’;
if _n_in (1,2,3,4,5,6) then_type_='0LS’;
elseif n_in (7,8,9,10,11,12) then _type_='HCCMEO’;
elseif _n_in (13,14,15,16,17,18) then _type_='HCCME1’;
elseif _n_in (19,20,21,22,23,24) then _type_='HCCME2';
else _type_='HCCME3’;
drop _status_ _nused_ const;
if _n_in (1,2,7,8,13,14,19,20,25,26) then delete;
run;

NONSPHERICAL DISTURBANCES AND HETEROSCEDASTICITY

Obs|_NAME__ _TYPE C_Age|C_OwnRent |C_Income|C_IncomeSq
1|{C_Age OLS 30.412 -138.44| -116.39 8.575
2|C_OwnRent |OLS -138.440 6876.11| -863.30 15.427
3|C_Income OLS -116.391 -863.30| 6458.69 -574.810
4|C_IncomeSq|OLS 8.575 15.43| -574.81 55.791
5|C_Age HCCMEO 10.901 -104.40 96.54 -7.285
6 [C_OwnRent |HCCMEO([-104.400 8498.59(-4631.67 318.887
7(C_Income HCCMEO 96.543| -4631.67| 7897.23 -612.393
8 (C_IncomeSq|HCCMEO -7.285 318.89| -612.39 48.227
9(C_Age HCCME1 11.714 -112.19 103.75 -7.829

10|C_OwnRent |HCCME1l|-112.191 9132.81(-4977.32 342.684
11|C_Income HCCME1l| 103.748| -4977.32| 8486.57 -658.094
12|C_IncomeSq|HCCMEL -7.829 342.68| -658.09 51.826
13|C_Age HCCME3 11.887 -115.10 103.87 -7.805
14|C_OwnRent [HCCME3|[-115.099 9153.15(-4997.53 343.810
15|C_Income HCCME3| 103.871| -4997.53| 8479.40 -657.620
16 |C_IncomeSqg|HCCME3 -7.805 343.81| -657.62 51.833
17|C_Age HCCME3 12.993 -126.98 111.49 -8.332
18|C_OwnRent |HCCME3|-126.985 9863.32(-5392.00 370.544
19|C_Income HCCME3| 111.492| -5392.00| 9116.74 -707.670
20|C_IncomeSq|HCCME3 -8.332 370.54| -707.67 55.896

OUTPUT 5.6. Comparing the HCCME estimators for the credit card data.

fit AvgExp/HCCME=3 outest=H3 covout;

proc print data=all;

run;

The parameter estimates are given in the first row of the output. This is followed by the covariance matrix using OLS estimation
and the HCCME estimators. Overall, the two Davidson and MacKinnon estimators for the variance of the parameters are almost
identical. As expected, the variance estimators of the parameters using White’s estimation are smaller than the variance estimators
calculated using the Davidson and MacKinnon’s estimators. The OLS variance estimators for OwnRent and Income are the
smallest when compared to the robust estimators. On the other hand, the robust variance estimators for Age are all significantly
smaller than then OLS variance estimator. In general the three Davidson and MacKinnon estimators appear to be very similar to

each other.

We now show how the computations are carried out in Proc IML. The following code will calculate the standard errors of the

OLS estimates using the different HCCME options.

proc iml;

use Expense;

read all var {’age’ 'ownrent’ ‘income’ ’'incomesq’} into X;




read all var {’avgexp'’} into Y;
n=nrow (X) ;

X=J(n,1,1)11X;

k=ncol (X) ;

The next step is to calculate the ordinary least squares residuals.
C=inv (X' *X) ;

beta_hat=C*X’*y;
resid=y-X*beta_hat;
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Once the ordinary least squares estimator is calculated, we can start calculating White’s estimator. The variable SO is nothing

more than the middle term of the formula for White’s estimator.

S0=J(k,k,0);
do i=1 ton;
S0=S0 + resid[i, ]*resid[i,]*X[1,]*X[1,];
end;
S0=S0/n;
White=n*C*S0*C;

Davidson and MacKinnon’s two alternative versions (DM1, DM2) and the third version of the estimator can now be

calculated.

DMl=n/ (n-k)
S0=J(k,k,0);
S0T=J (k,k,0);
do i=1 ton;
m_ii=1-X[1i,]1*C*X[1,]";
Temp_Ratio=resid[i, ]*residl[i,]/m_1ii;
Temp_Ratio2=resid[i,]*resid([i, ]/ (m_ii*m_41ii)
S0=S0+Temp_Ratio*X[1,] *X[1,];
S0T=S0T+Temp_Ratio2*X[1i,] *X[1,];

* White;

end;

S0=S0/n;
S0T=S0T/n;
DM2=n*C*S0*C;
JK=n*C*S0T*C;

The calculated estimates can now be printed by using the following statements.

SE_White=SQRT (vecdiag (White)) ;

SE_DM1=SQRT (vecdiag (DM1) ) ;

SE_DM2=SQRT (vecdiag (DM2) ) ;

SE_JK=SQRT (vecdiag (JK)) ;

STATS=SE_White| |SE_DM1 | |SE_DM2| | SE_JK;

STATS=STATS' ;

print 'Whites Estimator, David and MacKinnons alternatives+
Jack Knife (third version) ’;

Print STATS (|Colname={Constant Age OwnRent Income
IncomeSq} rowname={White_Est DM1 DM2 JK} format=8.31) ;

Output 5.7 contains the analysis results. For completeness, we have included the least squares estimators, their standard errors,

t test statistic and the p values under the assumption of homoscedastic disturbances.
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Least Squares Regression Results

STATS

CONSTANT AGE [OWNRENT | INCOME | INCOMESQ
COEFFICIENT|-237.147 |-3.082| 27.941|234.347| -14.997
SE 199.352| 5.515| 82.922| 80.366 7.469
T _RATIO -1.190|-0.559 0.337 2.916 -2.008
WHITE_EST 212.991( 3.302| 92.188| 88.866 6.945
DM1 220.795| 3.423| 95.566( 92.123 7.199
DM2 221.089| 3.448| 95.672| 92.084 7.200
JK 229.574| 3.605| 99.314| 95.482 7.476

OUTPUT 5.7. Proc IML output of the robust estimators of the variance—covariance matrix of the credit card data.

5.6 WEIGHTED LEAST SQUARES AND FGLS ESTIMATION

In this section, we discuss estimating 8 using weighted least squares and FGLS. As shown earlier, the GLS estimator is given
by B = (X"Q'X) 'X"Q'y. Now, let Var(s;|x;) = 02 = 0w;, where w; can be viewed as the weight associated with the ith
residual. Therefore, ) is given by (Greene, 2003, p. 225; Meyers, 1990, p. 279) Q = diag(w,,ws,...,w,) and
Q2= diag(1/\/w1,1/\/w3,...,1/,/w,). The easiest approach to conducting weighted least squares regression is to use
this in the equation of the GLS estimator. Another approach (Greene, 2003, p. 225) is to premultiply both y and X by Q'
thereby distributing the appropriate weights of the residuals across their corresponding observations.

The GLS estimator is then calculated by regressing the transformed response variable against the transformed explanatory
variables. As givenin Greene (2003, p. 226) and Verbeek (2004, p. 85), acommon approach used to obtain the weights is to specify
that the variance of the disturbances is proportional to one of the regressors.

We will illustrate weighted regression methods by using the credit card data. In the first illustration, we will assume that the
variance of the disturbance is proportional to income, while in the second illustration, we will assume that it is proportional to the
square of income. Performing weighted least squares regression in SAS is straightforward. The weights are calculated and stored
in the data step statement and then used with the “Weights” option in Proc Reg. The following SAS statements can be used. The
analysis results are provided in Output 5.8.

proc import out=CCExp
datafile="C:\Temp\TableF91l"
dbms=Excel Replace;
getnames=yes;

run;

data CCExp;
set CCExp;
Income_Sg=Income*Income;
if AvgExp>0;
wtl=1/Income;
wt2=1/ (Income_Sqg) ;

run;

proc reg data=CCExp;
model AvgExp=Age OwnRent Income Income_SJ;
weight wtl;

run;

proc reg data=CCExp;
model AvgExp=Age OwnRent Income Income_Sq;
welght wt2;

run;
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The REG Procedure
Model: MODEL1
Dependent Variable: AvgExp AvVgEXp

Number of Observations Read|72

Number of Observations Used|72
Weight: wtl

Analysis of Variance

Sum of Mean

Source DF|Squares|Square|F Value|Pr > F
Model 4| 438889109722 5.73(0.0005
Error 67(1283774| 19161

Corrected Total|71|1722663

Root MSE 138.42258 |R-Square|0.2548
Dependent Mean|207.94463|Adj R-Sg|0.2103
Coeff Var 66.56704

Parameter Estimates
Parameter| Standard
Variable |Label DF| Estimate Error |t Value|Pr > [t]
Intercept |Intercept| 1|-181.87064 [165.51908 -1.10 0.2758
Age Age 1 -2.93501 4.60333 -0.64 0.5259
OwnRent OwnRent 1 50.49364| 69.87914 0.72 0.4724
Income Income 1| 202.16940| 76.78152 2.63 0.0105
Income_Sqgq 1] -12.11364 8.27314 -1.46 0.1478
Number of Observations Read|72
Number of Observations Used|72
Weight: wt2
Analysis of Variance
Sum of Mean
Source DF |Squares Square |F Value|Pr > F
Model 4| 112636 28159 5.7310.0005
Error 67| 329223(4913.78353
Corrected Total|71| 441860
Root MSE 70.09838|R-Square|0.2549
Dependent Mean|168.79218|Adj R-Sq|0.2104
Coeff Var 41.52940
Parameter Estimates
Parameter| Standard
Variable |Label DF| Estimate Error|t Value|Pr > |t]
Intercept |Intercept| 1(-114.10887 |139.68750 -0.82 0.4169
Age Age 1 -2.69419 3.80731 -0.71 0.4816
OwnRent OwnRent 1 60.44877| 58.55089 1.03 0.3056
Income Income 1] 158.42698| 76.39115 2.07 0.0419
Income_Sq 1 -7.24929 9.72434 -0.75 0.4586

OUTPUT 5.8. Weighted least squares regression for the credit card expenditure data.
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Notice that the effect of income is significant in both outputs. As should be expected, the standard errors of the parameters using
the square of income as weights are smaller than the standard errors when the weights were based on income. The signs of the
parameters are the same across both analysis and the variable income is significant in both analyses as well. Comparing the
magnitudes of the parameter estimates, we see that except for rent, the magnitude of the parameter values for the first regression
(using income as weights) is higher than those from the second regression (using the square of income as weights). Note the
dependent variable means are different from each other and from the dependent variable mean under classical OLS because here,
the response variable is transformed by using the weights.

We now discuss the case when ) is assumed to be unknown. As shown previously, the unrestricted heteroscedastic
regression model has too many parameters that need estimation given the limitations on the sample size. As discussed in
Greene (2003, pp. 227-228), we can work around this issue by expressing o°€) as a function of only a few parameters. In the
credit card data, we may focus our attention on income, and the square of income. For instance, if we let z; = income, then we
can express o7 as o7 = 02z%. Of course, we could have more than one variable making the parameter a a vector. The
modified variance—covariance matrix is now denoted as Q(a). Therefore, estimating ) is now restricted to estimating a.
How do we calculate a consistent estimator of a? As discussed in both Green (2003) and Verbeek (2004, p. 86), there are two
ways of doing this. The first method involves the two-step GLS technique and the second method involves maximum
likelihood estimation (MLE). We restrict our discussion to the two-step FGLS estimator.

The FGLS estimator is straightforward once {) (&) is computed. Simply use this estimator in the formula for the GLS estimator
to get the FGLS estimators. That is,

B= (X" (@)x) X" (a)y.
The general procedure for calculating the two-step FGLS estimator is as follows:

1. Obtain estimates of a’f using OLS residuals. Note that the estimates are simply é,z the squared OLS least square residuals.
Next, consider the model &7 = z% + v;.
2. OLS can be used to estimate a by regressing log (7) on log(z;).

The computations can be easily carried out using Proc Reg. We give two examples using the credit card data. In the first
example, we letz; = (1, income, incomesq) and assume that 0'1.2 = g%e%®. Anestimate of a = (ag, @, @) is obtained by running the
following regression:

log(éiz) = ag + ayincome + azincomesq + v;.

The steps in SAS are as follows:

1. First, run the OLS regression model to estimate &;. The OLS residuals are stored in the variable labeled residual in the SAS
data set residl. The Proc Reg output was suppressed by using the noprint option as we are only interested in generating the
OLS residuals at this stage.

proc reg noprint data=CCExXp;
model AvgExp=Age OwnRent Income Income_Sq;
output out=residl r=residual;

run;

2. We can now compute log(2?) and regress it against income and the square of income. Note that in this stage, we are
interested in the predicted values z{ and therefore suppress the regression output again. The following statements can be
used to conduct this step.

data test;
set residl;
log_e=log(residual*residual) ;
run;
proc reg noprint data=test;
model log_e=income income_sqg;
output out=resid2 p=pred;
run;
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The REG Procedure
Model: MODEL1
Dependent Variable: AvgExp AvVgEXp

Number of Observations Read|72

Number of Observations Used|72
Weight: wt3

Analysis of Variance

Sum of Mean
Source DF Squares Square|F Value|Pr > F
Model 411123.73425|280.93356 69.69]<0.000]
Error 67| 270.08589 4.03113
Corrected Total|71|1393.82015

Root MSE 2.00777|R-Square|0.8062
Dependent Mean|401.66162|Adj R-Sg|0.7947
Coeff Var 0.49987

Parameter Estimates

Parameter| Standard
Variable |Label DF| Estimate Error |t Value|Pr > [t]
Intercept |Intercept| 1(-117.86745|101.38621 -1.16 0.2491
Age Age 1 -1.23368 2.55120 -0.48 0.6303
OwnRent OwnRent 1 50.94976 | 52.81429 0.96 0.3382
Income Income 1| 145.30445| 46.36270 3.13 0.0026
Income_Sqgq 1 -7.93828 3.73672 -2.12 0.0373

OUTPUT 5.9. FGLS estimation using the credit card data.

3. With the first stage complete, we can get the FGLS estimates by using weighted least squares regression described earlier.
Here, the weights are just the exponential of the predicted values from stage 2. That is, w; = exp(z;*). The following
statements can be used.

data test;
set resid2;
wt3=1/exp (pred) ;
run;
proc reg data=test;
model AvgExp=Age OwnRent Income Income_Sq;
weight wt3;
run;

The analysis results are given in Output 5.9. The standard errors of the estimates are now significantly lower than the standard
errors of the estimates when income and square of income were used as weights. Also note that the root mean square has reduced
substantially over what was previously observed. The signs of the coefficients are the same, however, now both income and the
square of income are significant.

The reader is asked to verify that using 07 = 0%z¢ with z;=log(income), gives the FGLS estimators as shown in Output 5.10.
The parameter estimates and their standard errors are similar to the ones obtained when income was used as a weight. Also note
that the root mean square errors are similar and that only income is significant.

5.7 AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

We now turn our attention to heteroscedasticity in the time series setting. As discussed by Enders (2004), in a typical
econometric model, the variance of the disturbances is assumed to be stable (constant) over time. However, there are
instances when economic time series data exhibit periods of high “volatility” followed by periods of low “volatility” or
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The REG Procedure
Model: MODEL1
Dependent Variable: AvgExp AVgExXp

Number of Observations Read|72
Number of Observations Used|72
Weight: wt4

Analysis of Variance

Sum of Mean

Source DF |Squares |Square |F Value|Pr > F
Model 4| 562700140675 5.69(0.0005
Error 67|1655217| 24705

Corrected Total|71|2217918

Root MSE 157.17741 |R-Square|0.2537
Dependent Mean|216.57420|Adj R-Sg|0.2092
Coeff Var 72.57439

Parameter Estimates
Parameter| Standard
Variable |Label DF| Estimate Error|t Value|Pr > |t]
Intercept |Intercept| 1|-193.27961|171.06009 -1.13 0.2626
Age Age 1 -2.95778 4.76203 -0.62 0.5366
OwnRent OwnRent 1 47.37065| 72.12961 0.66 0.5136
Income Income 1| 208.84940( 77.19611 2.71 0.0086
Income_Sgq 1| -12.76626 8.08456 -1.58 0.1190

OUTPUT 5.10. FGLS estimation using z; =log(income) for the credit card data.

“calmness.” Greene (2003, p. 238) analyzes the well-known Bollerslev and Ghysel’s data on the daily percentage nominal
return for the Deuschmark/Pound exchange rate. We analyzed the data using SAS—Figure 5.4 shows that there are periodic
spikes in the data on both the high and low sides. It is obvious that the variability appears to be unstable or shifting over
time. In particular, large shocks appear to follow each other and vice versa, small shocks appear to follow each other. The
variance of the disturbance at a given time period is therefore assumed to depend on the variance of the disturbance in the
previous time periods. Therefore, the homoscedastic variance assumption in this case is violated. The disturbance terms in
the linear models must therefore take into account the dependence of its variance on past disturbances. This is the basic
principle behind Engle’s (1982) autoregressive, conditionally heteroscedastic models (ARCH). He proposed a methodology
where the variance of the disturbances (&;) are allowed to depend on its history. That is, the variance of the series itself is an
autoregressive time series.

Bollerslev (1986) extended the ARCH process by allowing an autoregressive moving average process for the error variance.
Their resulting formulation is referred to as the generalized autoregressive conditional heteroscedastic model or GARCH. Both
the ARCH and the GARCH models forecast the variance of the disturbance at time t. The ARCH models uses the weighted
averages of the past values of the squared disturbances, while the GARCH model uses the weighted average of the past values of
both the squared disturbances and the variances.

5.7.1 The Arch Model

The simplest form of Engle’s ARCH model is the ARCH(1) model. The main idea behind the model is that the conditional variance
of the disturbance at time 7 depends on the squared disturbance term at time ¢ — 1. To see this, first, consider the basic model given
by y; = 0.z, where z; ~ i.i.d.N(0, 1). In an ARCH(1) model, 02 = @+ a;y*> ; where @y > 0and «; > 0. It can be shown
that

E(y:|yr—1) =0 and Var(yi|yi—1) = @0 + alyt{].
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FIGURE 5.4. Time series plot for the nominal returns.

Therefore, the conditional variance of the disturbance at time ¢ depends on the past values of the squared disturbances. The
unconditional variance on the other hand is constant. To see this note that Var(y,) = E(y?) = ao+ «iE(y* ;). Simplifying this
gives Var(y;) = ao/(1— 1), a9 >0,0< a; < 1.

The ARCH(1) process can easily be extended to linear models with explanatory variables. First, consider the linear model
yi = X!'B + & withe, = 0,z,, where z; ~ i.i.d.N(0, 1) ando? = oy + a;&7 . It can be easily shown that the conditional variance
Var(y,|x,) = ao + a1&7_, while the unconditional variance Var(y,) = Var(e,) = ap/(1—a;) with0 < a; < 1 (Greene, 2003,
pp. 238-239)

5.7.2 ARCH(q) and the Generalized ARCH Models

Extending the simple ARCH(1) model to the more general case we get the ARCH(g) process given by y, = 0,z;, where
7 ~ i.i.d.N(0,1) and

q
2 _ 2
o, =oao+ E gy, ;.

i=1

Note that the unconditional variance is now given by

q q
Var(e;) = ao/ (1— Za,) with 0 < Zai < 1.
i=1 i=1

The ARCH(g) process can easily be extended to the linear regression setting in a similar fashion.

5.7.3 The GARCH Model

Bollerslev (1986) extended the ARCH models where the variance of the disturbance at time ¢ depends on its own lag as well as the
lag of the squared disturbances. In the GARCH(1,1) model,

2 _ 2 2
o, =agtag_ +B10t—l'
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The basic principle is to make the forecast of the variance at time ¢ more accurate. In a GARCH(p,g) model

P q
2 2 o2
o, =y + E 0i0,_; + E e,
i=1 =1

It can be shown that the unconditional variance of the disturbance at time 7 is

o
o2

e = q P
1=> ai— Zﬁj
i=1 =1

q P
where &g > 0, @; >0,8; >0,and 0 < 1= a;— > B; < 1.
i=1 =1

The GARCH(p,q) models can easily be extended to the linear regression setting as well.

5.7.4 Testing for ARCH Effects
The Lagrange Multiplier test (LM) can be used to test for ARCH(qg) effects. The hypothesis tested is

Hy:ai=ay=...=a,=0

Hy :atleastone o; # 0,i=1,...q.

The steps are as follows:

1. Estimate y, = x/ B + & using OLS and calculate &7, fori = 1,...,q.
2. Conduct a regression of £ on a constant and & |, ..., &> , and calculate the coefficient of determination, R

3. Calculate the test statistic TR?, where Tis the number of observations. Under the null hypothesis, TR? ~ ,\/5. We reject the
null hypothesis of no ARCH effects if the calculated value of the test statistic exceeds the tabled value from the chi-squared
distribution.

The LM test can also be used for testing GARCH effects. In a test for a GARCH(p,q) model, however, the hypothesis tested is
the null of a ARCH(g) process versus a ARCH(p + g) process (Baltagi, 2008, p. 370). Here, the LM test is based on the regression of
£ on p + q lagged values &7 |, ... ’8t27p7q' The test statistic is the same as before.

Maximum likelihood estimation can be used to estimate the parameters of both the ARCH and GARCH models. Details can be
found in Greene (2003) page 239 (ARCH) and pages 242-243 (GARCH).

We will now illustrate the estimation of these models in SAS by using the Bollerslev and Ghysels nominal exchange rate data.
For illustration purposes, we will use a GARCH(1,1) model.

The Proc Autoreg module in SAS can be used to fit this model. Recall that this procedure should be used to perform regression
analysis when the underlying assumption of heteroscedasticity and autocorrelation are violated. It can also be used to perform
ARCH and GARCH calculations. First, we will use the procedure to test for heteroscedasticity in the data by using the “archtest”
option. The following commands can be used. Note that a temporary SAS data set named “garch” was created prior to invoking
this procedure. The analysis results are given in Output 5.11.

proc autoreg data=garch;
model y=/archtest;
run;

The first table of the output gives the OLS estimates. The values for SSE and MSE are for the error and mean sums of squares.
The MSE is really the unconditional variance of the series. The Durbin—Watson statistic is used to test for serial correlation and
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The AUTOREG Procedure

Dependent Variablel|y

Y
Ordinary Least Squares Estimates
SSE 436.289188 |DFE 1973
MSE 0.22113 [Root MSE 0.47024
SBC 2629.78062 |AIC 2624.1928
Regress R-Square 0.0000|Total R-Square 0.0000
Durbin-Watson 1.9805

Q and LM Tests for ARCH Disturbances

Order Q|Pr > Q LM|Pr > LM

1 96.4249|<0.000Y 96.3422|<0.0001

2 157.1627]<0.0001/129.5878 |<0.0001

3 196.7515|<0.0001 142.6618(<0.0001

4 227.46841|<0.0001/150.3655|<0.0001

5 297.7401|<0.0001183.3808(<0.0001

6 314.1284|<0.0001/183.3929|<0.0001

7 328.6768|<0.0001/183.8867(<0.0001

8 347.54641<0.0001186.8223(<0.0001

9 364.7738|<0.0001/188.8952|<0.0001

10 392.97911|<0.0001{194.1606|<0.0001

11 |397.5269(<0.0001194.9219|<0.0001

12 404.9266(<0.0001/195.1401(<0.0001
Standard Approx
Variable |DF|Estimate Error|t Value|Pr > [t]
Intercept| 1| -0.0164 0.0106 -1.55 0.1208

OUTPUT 5.11. Testing for the heteroscedasticity in the nominal exchange data.

will be discussed in detail in Chapter 6. DFE is simply the degrees of freedom and is the total number of observations —1. The
values of AIC and BIC are information criteria values that are used to assess model fit. Smaller values of the statistics are desirable.
The Durbin—Watson statistics will be discussed in Chapter 6.

The output also contains the Q and LM tests. Both statistics test for heteroscedasticity in the time series. The
Q statistic proposed by McLeod and Li (1983) (see the Proc Autoreg reference guide from SAS Institute) checks for
changing variability over time. The test is highly significant across the 12 lag windows. The LM statistic was discussed earlier.
It is also highly significant across all 12 lag windows indicating that a higher order ARCH process needs to be used to model
the data.

As discussed earlier, the GARCH process introduces the lagged values of the variances also and thus introduces a “longer
memory” (Proc Autoreg reference guide, SAS Institute, Inc.). Therefore, we start our initial model at the GARCH(1,1)
process. The following statements can be used. Note that the option “garch” can be changed to allow for an ARCH process. For
example, using the option “garch=(q=1)" will request an ARCH(1) process for the dataset. The analysis results are given in
Output 5.12.

proc autoreg data=garch;
model y=/Garch=(p=1,g=1) ;
run;

The output indicates that there is strong evidence of GARCH effects (p value < 0.0001). The unconditional
variance for the GARCH model is 0.2587 compared to 0.2211 for the OLS model. The normality test is highly significant
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The AUTOREG Procedure

Dependent Variable|y

Y
Ordinary Least Squares Estimates
SSE 436.289188 |DFE 1973
MSE 0.22113 |Root MSE 0.47024
SBC 2629.78062|AIC 2624.1928
Regress R-Square 0.0000|Total R-Square 0.0000
Durbin-Watson 1.9805
Standard Approx
Variable |DF|Estimate Error|t Value|Pr > |t]
Intercept| 1| -0.0164 0.0106 -1.55 0.1208
Algorithm converged.
GARCH Estimates
SSE 436.495992 |Observations 1974
MSE 0.22112|Uncond Var 0.25876804
Log Likelihood|-1106.6908|Total R-Square .
SBC 2243.73289 |AIC 2221.38163
Normality Test| 1081.7663|Pr > ChiSg <0.0001
Standard Approx
Variable |[DF| Estimate Error|t Value|Pr > |t]
Intercept| 1({-0.006191|0.008426 -0.73 0.4625
ARCHO 1 0.0108|0.001327 8.15| <0.0001
ARCH1 1 0.1524 0.0139 10.97| <0.0001
GARCH1 1 0.8058 0.0166 48.61| <0.0001

OUTPUT 5.12. GARCH (1, 1) model for the nominal exchange rate data.

(p value < 0.0001), which indicates that the residuals from the GARCH model are not normally distributed—a clear
contradiction to the normality assumption. ARCHO gives the estimate of oy, ARCH1 gives the estimate of ;, and GARCH]1
gives the estimate of ;.



AUTOCORRELATION

6.1 INTRODUCTION

In Chapters 4 and 5 we discussed estimation methods for @ under departures from the exogeneity and homoscedasticity
assumptions. This chapter extends the discussion to the case when the assumption of independent disturbances is violated. That s,
we will relax the assumption that the disturbance related to an observation is independent of the disturbance related to another
observation. We call this situation serial correlation or autocorrelation. Simply put, in autocorrelation Cov(g,, ;) #0 for t #s
where 7 and s are two time periods. Autocorrelation most often occurs in time series data where the observation at a given point in
time is dependent on the observations from the previous time periods

The texts by Greene (2003, Chapter 12), Meyers (1990, Chapter 7), and Verbeek (2004, Chapter 4) offer a good discussion on
autocorrelation models. Brocklebank and Dickey (2003) offer a thorough treatment of how SAS can be used to fit autocorrelation
models.

Autocorrelation in regression models often occurs when models are misspecified or when variables are mistakenly omitted
from the model. In the omitted variable case, unobserved or omitted variables that are correlated over time are now absorbed in the
error term, causing autocorrelation. As an example, consider the gasoline consumption data in Greene (2003). Gasoline
consumption along with measurements on other variables was observed from 1960 to 1995. Note that this data was analyzed in
Chapter 2. The full equation for this model is (Greene, 2003, p. 136)

In(G,/Pop;) = B, + B2In(Pg;) + B3In(I;/ Pop,) + B4In(Pnc,) + BsIn(Puc,)
+ Beln(PpT;) + BIn(PN;) + BgIn(PD;) + Boln(PS;) + B1ot + &

Assume that we fit the model
In(G,/Pop,) = B, + B,In(Pg;) + BsIn(I;/Pop;) + B4In(Pnc,) + Bsln(Puc;) + &;.

The residuals from the fitted model and the full model are shown in Figures 6.1 and 6.2. Note that the residuals from both models
show that autocorrelation should be investigated. However, the fitted model shows a higher degree of autocorrelation.

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.
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FIGURE 6.1. Time series plot of the residuals from the full model in the gasoline consumption data.
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FIGURE 6.2. Time series plot of the residuals from the reduced model in the gasoline consumption data.

Although, time series plots of the residuals (as the ones above) can be used to detect autocorrelation issues quickly, we will
discuss more formal procedures to detect the presence of autocorrelation in the data.

6.2 PROBLEMS ASSOCIATED WITH OLS ESTIMATION UNDER AUTOCORRELATION

We start our discussion of estimation under autocorrelation by considering the simple autoregressive first-order autocorrelation
model (AR1) with exogenous explanatory variables. Thatis, amodel of the formy; = x/B + &;i = 1,2,..., withe; = pe;_1 + u;
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where |p|<1 is required to ensure Var(e;) < oo . Assume that E(i;) = 0, Var(u;) = o , and Cov(u;, us) = 0 fort # 5. That is,
the error term «; has mean zero, has constant variance, and exhibits no serial correlation. It can be easily shown that E(g;) = 0 and
that the variance Var(e;) = 2 /(1 — p?) where |p|<1. Also note that the covariance between &; and &;_; denoted by Cov(e;, ;1)
is given by

Cov(ei,ei-1) =p

and that the covariance between two disturbances, which are two periods apart, Cov(e;, &;_>) is given by

Cov(si, &) = p* sk

Extending this to two disturbances, which are j time periods apart, we get Cov(e;, £;—;) given by

2
g .
— .

Cov(si, &i_j) = —p

Autocorrelation therefore implies that the errors are heteroscedastic (Greene, 2003, p. 258; Meyers, 1990, p. 289). As shown in
Chapter 5, OLS estimators, although unbiased will be inefficient and will have incorrect standard errors.

Vi=xB+e, i=12,...,

& = p&i-1 + Ui,
6.3 ESTIMATION UNDER THE ASSUMPTION OF SERIAL CORRELATION
Estimation techniques under the assumption of serial correlation parallel the estimation methods for heteroscedasticity that was

discussed in Chapter 5. That is, we need to first estimate the variance—covariance matrix. Using the variance and covariance of the
disturbances given in the previous section, we can easily construct the covariance matrix o°Q as (Greene, 2003, p. 259)

'1 p p2 p3 prl'
p 1 pp .. P
, 2 P 1 p p’?
o) =—>"4
1—p?
: p
L™ p™ 2 " p 1]

If p is known, then using the discussion from Chapter 5, one can get a GLS estimator of B as
bGLS = (XT\Q:71X)_1XT071Y.

It can be shown that the GLS estimator is an unbiased, consistent estimator for B with variance-covariance matrix given by

Est.Var[bgrs] = o2 XTQ'X] 7",
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where

—Xbgs) Q7 (y—Xb
og:(y oLs) - (y=Xbars) (Greene, 2003, p. 271).

These computations can be carried out easily by simply transforming y and X and running OLS on the transformed values. The
transformations for the first-order autocorrelation process are

yi=+v1—p* and xj=+/1-p>x; fort=1,
yi=y—py—1 and X =x,—px, fort=2,...,T (Greene, 2003, p.272).

These transformations are called the Prais—Winsten transformations. The traditional approach (Cochrane and Orcutt, 1949)
used the same transformation but dropped the first observation for computational ease. As discussed in Verbeek (2004, p. 100),
deleting the observation leads to an approximate GLS estimator that is not as efficient as the GLS estimator obtained by including
all the observations.

The GLS estimator can then be calculated as follows:

bors = (XTX.) ™' XTy..

Greene (2003) extends the process to the second-order autocorrelation process. As can be seen from the transformation formulas
the author provides, the process becomes very complex as the order of the autoregressive process increases.

The estimation techniques discussed so far are based on the assumption that p is known. However, in reality, p is unknown and
has to be estimated. Estimation of the least squares parameters is straightforward under the assumption that p is unknown. In the
case of the first-order autocorrelation model, the steps are as follows:

1. Estimate the model y; = XiTB +e&;, i =1,2,... using OLS and save the residuals.

2. Using the residuals, fit the model &; = p&;_; +u; and get an estimate of p.

3. Use the residuals from Step 2 to estimate o2. We can use the estimated values of p and o2 to construct €) This can then
be used to calculate a FGLS estimator of . Another alternative is to simply use the estimated value of p to transform

both y and X using the Prais—Winsten transformation and then conduct OLS with the transformed values (Greene,
2003, p. 273).

The Proc Autoreg procedure in SAS will allow us to estimate the least squares parameters by FGLS, MLE, or the iterated FGLS

method. We will discuss ways of conducting the analysis in SAS a bit later. For now, let us discuss methods of finding out whether
the regression model suffers from autocorrelation.

6.4 DETECTING AUTOCORRELATION

The Durbin—Watson test is perhaps the most commonly used test for detecting autocorrelation. Itis based on the statistic (Meyers,
1990, p. 289)

T A
> (8i—&i1)
_i=2
DW = T
and tests the hypothesis
H()Z p = 0,
Hi: p#0.

Proc Autoreg can be used to conduct the Durbin—Watson test. On the other hand, even though Proc Reg does give the value of the
test statistic and the estimated first-order correlation, it does not output the p value associated with the test.



DETECTING AUTOCORRELATION 97

The Lagrange multiplier test suggested by Breusch and Godfrey (1978) is an alternative to the Durbin—Watson test. The test
statistic is LM = TR?, where R? is the R-squared value obtained by regressing the OLS residuals against p-lagged residuals
&1,...,&_p along with the original variables in X where the residuals can be obtained by OLS. The test statistic has a chi-
squared distribution with p degrees of freedom.

Two other alternatives to the Durbin—Watson test are the Box and Pierce’s test (B&P) and Ljung’s modification of the B&P test
(Greene 2003, p. 269). The B&Q test is based on the test statistic

2
Q=T) ri,
=1

where

T
Z €rCr_j

~

M~ L

;=

2
et
1

-
Il

That is, r; measures the autocorrelation between e, and e,_;. This test statistic has a limiting chi-squared distribution with p
degrees of freedom. Here, p refers to the number of lags used.
As stated in Greene (2003, p. 269) the Ljung’s refinement of the B&P test is given by

p

2

I
'=T(T+2) ) =,
0 =12y 7

where r; is defined as before. This test statistic has a chi-squared distribution with p degrees of freedom also.
We will now illustrate the computations involved by analyzing the gas consumption data in Greene (2003). We restrict our
attention to the reduced model

In(G,/Pop;) = B, + B,In(Pg,) + B3In(I;/ Pop;) + ByIn(Pnc;) + BsIn(Puc,) + &

to force some autocorrelation behavior. The following SAS statements can be used to fit the OLS model to the data and
also compute the Durbin—Watson and Breusch—Godfrey statistic along with their p values. The “dwprob” and “godfrey” options
are used to generate the statistics. The analysis results are given in Output 6.1.

proc autoreg data=gasoline;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/dwprob
godfrey;

run;

Both tests indicate a presence of autocorrelation in the data. The p value for the Durbin—Watson test indicates the presence of a
positive autocorrelation. The LM test indicates that the significance extends to the higher order AR(4). Adding the option
“dw = 15" to the model statement yields the Durbin—Watson statistics for the first five autocorrelations. The analysis results are
given in Output 6.2. Note that there is strong evidence of a positive first-order correlation.

We can use the correlations calculated by Proc Autoreg to conduct the B&P test and the Ljung test. First, we calculate the first
five autocorrelations by using the following statements (see Output 6.3):

proc autoreg data=gasoline;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=5;
run;
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The AUTOREG Procedure

Dependent Variable | Ln_G_Pop

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC —141.90789| AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691
Durbin-Watson 0.8909 | Pr < DW <0.0001
Pr>DW 1.0000

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Godfrey's Serial Correlation
Test

Alternative LM | Pr>LM

AR(1) 11.2170 0.0008

AR(2) 17.1932 0.0002

ARQ3) 17.2414|  0.0006

AR®4) 17.6825|  0.0014
Standard Approx
Variable DF | Estimate Error | t Value [ Pr>Itl
Intercept 1 —7.7892 0.3593 | -21.68| <0.0001
Ln_pg 1 -0.0979 0.0283 -3.46| 0.0016
Ln_Income 1 2.1175 0.0988 21.44| <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09 0.2830
Ln_Puc 1| -0.1022 0.0693 —1.48] 0.1502

OUTPUT 6.1. Using Proc Autoreg to detect autocorrelation in the gasoline data.

The AUTOREG Procedure

Dependent Variable | Ln_G_Pop

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC —141.90789| AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691

Durbin-Watson Statistics
Order| DW |Pr<DW |Pr>DW
1 0.8909 <0.0001 1.0000
2 2.0276 0.4049 0.5951
3 23773 0.8792 0.1208
4 2.1961 0.8211 0.1789
5 1.9231 0.6318 0.3682

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr>|t|
Intercept 1 —7.7892 03593 | -21.68| <0.0001
Ln_pg 1 —0.0979 0.0283 -3.46] 0.0016
Ln_Income 1 2.1175 0.0988 21.44 | <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09( 0.2830
Ln_Puc 1 —-0.1022 0.0693 —1.48| 0.1502

OUTPUT 6.2. Durbin—Watson statistics for the first five autocorrelations in the gasoline data.



The AUTOREG Procedure

Dependent Variable | Ln_G_Pop |

DETECTING AUTOCORRELATION

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC —141.90789( AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691
Durbin—-Watson 0.8909
Standard Approx
Variable DF | Estimate Error | t Value [ Pr>|t|
Intercept 1 —7.7892 0.3593 | -21.68 <0.0001
Ln_pg 1 —0.0979 0.0283 -3.46| 0.0016
Ln_Income 1 2.1175 0.0988 21.44( <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09 0.2830
Ln_Puc 1] -0.1022 0.0693 —1.48| 0.1502

OUTPUT 6.3. Proc Autoreg output showing the first five autocorrelations from the gasoline data.

Estimates of Autocorrelations
Lag [ Covariance | Correlation |-1 9 8 76 543 2101234567891
0 0.000691 1.000000 | | [ 0 kR |
1 0.000382 0.552840 | | [ okt \
2 -0.00001 | —0.021286] | | \
3 ~0.00015|  —0.211897] | x| \
4 -0.00010 —0.147596| | *xk | |
5 -0.00002 |  —0.025090| | x| \
Preliminary MSE | 0.000365 |
Estimates of Autoregressive
Parameters
Standard
Lag | Coefficient Error | t Value
1 —0.883472] 0.195936 —4.51
2 0.623294 | 0.260538 2.39
3 —0.217351| 0.284615 -0.76
4 0.117484 | 0.260538 0.45
5 —0.042809( 0.195936 -0.22
Yule-Walker Estimates
SSE 0.01258864 | DFE 26
MSE 0.0004842 | Root MSE 0.02200
SBC —-147.56116| AIC —163.39635
Regress R-Square 0.9568 | Total R-Square 0.9844
Durbin-Watson 1.8728
Standard Approx
Variable DF | Estimate Error |t Value [ Pr>|t|
Intercept 1 —7.5542 0.4583 | —16.48| <0.0001
Ln_pg 1 —-0.0706 0.0337 —2.09| 0.0461
Ln_Income 1 2.0520 0.1259 16.30 | <0.0001
Ln_Pnc 1 0.1344 0.1336 1.01 0.3239
Ln_Puc 1 —0.1257 0.0833 —1.51] 0.1434
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The AUTOREG Procedure

Dependent Variable | Ln_G_Pop |

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC -141.90789| AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691
Durbin-Watson 0.8909 | Pr <DW <0.0001
Pr>DW 1.0000

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr>|t|
Intercept 1 —7.7892 0.3593 | -21.68| <0.0001
Ln_pg 1 —0.0979 0.0283 -3.46| 0.0016
Ln_Income 1 2.1175 0.0988 21.44| <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09] 0.2830
Ln_Puc 1 -0.1022 0.0693 -1.48( 0.1502
Estimates of Autocorrelations
Lag | Covariance | Correlation| -1 9 8 76 5432101234567891
0 0.000691 1.000000 ‘ ‘********************‘
1 0.000382 0.552840 | | [k bk k ok [
Preliminary MSE | 0.000430 |
Estimates of Autoregressive
Parameters
Standard
Lag | Coefficient Error | t Value
1| -0.552840 [ 0.152137 -3.63
Yule-Walker Estimates
SSE 0.01604701 | DFE 30
MSE 0.0005349 [ Root MSE 0.02313
SBC -153.73763 [ AIC -163.23874
Regress R-Square 0.9271 | Total R-Square 0.9801
Durbin-Watson 1.3707 | Pr < DW 0.0077
Pr>DW 0.9923

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error |t Value | Pr> |t
Intercept 1 -7.1940 0.5152 | -13.96 <0.0001
Ln_pg 1 -0.1239 0.0366 -3.39] 0.0020
Ln_Income 1 1.9534 0.1418 13.77| <0.0001
Ln_Pnc 1 0.1221 0.1317 093] 03611
Ln_Puc 1 -0.0548 0.0784 -0.70{ 0.4900

OUTPUT 6.4. AR(1) model for the gasoline consumption data.
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The B&P test statistic value is
0 =36 x [0.5528% +0.0213% +0.212% +0.1476> 4-0.0251%| = 13.44,

while the Ljung test statistic value is

0.5528%  0.02132 N 0.2122 N 0.1476>  0.0251>

/= 36 x 38
@ =36x38x |+ 33 Y

= 14.78.

Both test statistic values exceed the chi-squared critical value of X(2).05.5 = 11.07 leading to the rejection of the null hypothesis of
no autocorrelation. Therefore, the OLS estimates are not efficient and we need to get estimates that are adjusted for the
autocorrelations.

6.5 USING SAS TO FIT THE AR MODELS

Having detected the presence of autocorrelation, we must now estimate the parameters by using either GLS or FGLS. As
mentioned in the earlier sections, in reality p is assumed to be unknown and therefore has to be estimated leading to the FGLS
estimator. We will use Proc Autoreg to fit the AR models. In this instance, we use it to conduct OLS regression where we suspect
that the disturbances are correlated. Proc Reg can also be used to conduct the analysis. However, the data will have to be first
transformed by using the Prais—Winsten (or the Cochrane and Orcutt) methods. The following statements can be used to fit the
AR (1) model to the gasoline consumption data set. The “nlag=1" option requests the AR(1) model while the options “dw”” and
“dwprob” are used for the Durbin—Watson test statistic and p values. The analysis results are given in Output 6.4.

The AUTOREG Procedure

| Dependent Variable | Ln_G_Pop |

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC -141.90789 | AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691

Durbin-Watson Statistics
Order | DW |Pr<DW |Pr>DW
1 0.8909 <0.0001 1.0000
2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error |t Value | Pr> It
Intercept 1 —7.7892 0.3593 [ -21.68| <0.0001
Ln_pg 1 -0.0979 0.0283 -3.46( 0.0016
Ln_Income 1 2.1175 0.0988 21.44 | <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09 0.2830
Ln_Puc 1 -0.1022 0.0693 -1.48| 0.1502

Estimates of Autocorrelations

Lag | Covariance | Correlation |-1 9 8 76 543 2101234567891

0 0.000691 1.000000 | | [ ko kR |
1 0.000382 0.552840 | | [EEERREE T |
2 -0.00001 -0.021286| | | |

| Preliminary MSE \ 0.000373 |

OUTPUT 6.5. AR(2) model for the gasoline consumption data.
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Estimates of Autoregressive
Parameters

Standard
Lag | Coefficient Error | t Value

1 —0.813124] 0.163827 —4.96

2 0.470813 | 0.163827 2.87
Yule-Walker Estimates
SSE 0.01289972 | DFE 29
MSE 0.0004448 | Root MSE 0.02109
SBC -157.51232 AIC —168.59695
Regress R-Square 0.9610 | Total R-Square 0.9840

Durbin-Watson Statistics
Order| DW |Pr<DW (|Pr>DW
1 1.8505 0.2150 0.7850
2 2.2454 0.6761 0.3239

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr> ||
Intercept 1 ~17.7456 0.4280| -18.10| <0.0001
Ln_pg 1| -0.0743 0.0318| 234 0.0265
Ln_Income 1 2.1044 0.1175 17.91| <0.0001
Ln_Pnc 1 0.1870 0.1302 1.44 0.1616
Ln_Puc 1 —-0.1616 0.0816 -1.98] 0.0572

OUTPUT 6.5. (Continued).

proc autoreg data=gasoline;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=1 dw=1
dwprob;

run;

The first part of the output gives the least squares estimator values along with the Durbin—Watson statistic. Notice again that the
null hypothesis of no autocorrelation is rejected. The next part of the output gives the value of p. The value reported is reversed in
sign and is 0.553. The FGLS estimates are then reported, assuming the AR(1) model. Notice that the Durbin—Watson statistic is
still significant, indicating that the AR(1) may be inadequate for the data and that a higher order autocorrelation model may be
more appropriate. The parameter estimates table indicates that both the price of gasoline and the income are significant in
explaining the variation in gasoline consumption. These variables also show up as significant in the OLS model. Furthermore,
the signs of the coefficients between these two models are the same. The option “nlag = 2" is used to fit an AR(2) model (see
Output 6.5).

Notice that the Durbin—Watson statistic is now insignificant. We can therefore conclude that the AR(2) model is more
appropriate than the AR(1) model and that the data set used did suffer from second-order autocorrelation. The values of
the two autoregressive parameters 6, and 6, are (using the opposite signs) 0.813 and —0.471, respectively. However, the
variable In_Pvc, which is the log of the price of used cars, is significant at the 10% level in the AR(2) model, whereas it
was not significant in the AR(1) model. The magnitudes of the coefficients for fuel price in the AR(2) model is
significantly lower than in the AR(1) model. The magnitude of the price of used cars in the AR(2) model is significantly
larger than in the AR(1) model.

Proc Autoreg can be used to generate estimates based on maximum likelihood estimation by using the “method = ml” option in
the model statement. Results of this analysis are provided in Outputs 6.6 and 6.7. Notice that the parameter estimates are quite
different from both OLS and FGLS estimators.
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The model statement option “method =ityw” will result in the iterated FGLS analysis. The results of the analysis are
provided in Outputs 6.8 and 6.9. Notice that the results are very similar to the results produced using maximum likelihood
estimation, thus confirming that in general the iterated estimation technique converges to the maximum likelihood estimates
(Greene, 2003).

It may be of interest to compare the predicted values from Proc Reg (OLS estimation) and Proc Autoreg. We will compare the
OLS predicted values with the predicted values from the AR(2) model. The following statements can be used. The analysis results
are given in Figure 6.3.

proc reg data=gasoline noprint;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc;
output out=a r=r_g;

run;

proc autoreg data=gasoline noprint;

The AUTOREG Procedure

Dependent Variable | Ln_G_Pop

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC —141.90789| AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691
Durbin-Watson 0.8909 [ Pr < DW <0.0001
Pr>DW 1.0000
Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.
Standard Approx
Variable DF | Estimate Error |t Value | Pr>|t|
Intercept 1| -7.7892 0.3593 [ -21.68| <0.0001
Ln_pg 1 -0.0979 0.0283 -3.46] 0.0016
Ln_Income | 1 2.1175 0.0988 21.44 | <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09] 0.2830
Ln_Puc [ -0.1022 0.0693 —-1.48[ 0.1502

Estimates of Autocorrelations

Lag | Covariance | Correlation|-1 9 8 76 5432 101234567891
0 0.000691 1.000000

‘********************‘

—

0.000382 0.552840

‘*k******k*k ‘

Preliminary MSE | 0.000430 |

Estimates of Autoregressive
Parameters

Standard
Lag | Coefficient Error | t Value

—

—0.552840( 0.152137 -3.63

Algorithm converged.

OUTPUT 6.6. MLE estimates of the AR(1) model for the gasoline consumption data.
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Maximum Likelihood Estimates
SSE 0.01262941 | DFE 30
MSE 0.0004210 [ Root MSE 0.02052
SBC -160.53233 [ AIC —-170.03344
Regress R-Square 0.7830 | Total R-Square 0.9843
Durbin-Watson 1.4455 | Pr < DW 0.0193
Pr>DW 0.9807

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr>|t|

Intercept 1 -5.1710 0.7617 -6.79] <0.0001
Ln_pg 1 —0.1939 0.0409 —4.74] <0.0001
Ln_Income 1 1.3896 0.2041 6.81 | <0.0001
Ln_Pnc 1 0.2509 0.1480 1.70 0.1003
Ln_Puc 1] -0.004280 0.0698 —0.06] 0.9515
AR1 1 —0.9425 0.0915 | -10.30f <0.0001

Autoregressive parameters assumed given

Standard Approx
Variable DF | Estimate Error | t Value [ Pr>|t|

Intercept 1 -5.1710 0.6808 -7.60| <0.0001
Ln_pg 1 -0.1939 0.0380 =5.11] <0.0001
Ln_Income 1 1.3896 0.1868 7.44 [ <0.0001
Ln_Pnc 1 0.2509 0.1353 1.86| 0.0734
Ln_Puc 1 [ -0.004280 0.0697 —0.06] 0.9515

OUTPUT 6.6. (Continued).

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=2;
output out=b r=ra_g;

run;

data c;
merge a b;

run;
proc gplot data=c;
plot r_g*year=1 ra_g*year=2/overlay href=0 haxis=1960 to
1995 by 5;

run;

It does appear that magnitudes of the residuals from OLS (solid line) have been reduced by using the AR(2)
model (dotted line) confirming that the AR(2) model is more appropriate for the gasoline consumption data set than the
OLS model.

In the discussion so far, we used an AR(2) model because the data set suffered from second-order autocorrelation. As it
turns out, there is not much gain (if any) in using a higher autocorrelation model. The following statements in SAS can be used
to compare the residuals from various models. The “nlag="option with values 1 through 5 is used to fit models ranging from the
AR(1) to the AR(5) models. The residuals from each model are stored and compared against each other by using the “overlay”
option of Proc Gplot (Freund and Littell, 2000, p. 93). The analysis results are given in Figure 6.4.

proc autoreg data=gasoline noprint;
model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=1;
output out=a r=rl;



run;
proc

run;
proc

run;
proc

run;
proc

autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=2;

output out=b r=r2;

autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=3;

output out=c r=r3;

autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=4;

output out=d r=r4;

autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=>5;

output out=e r=r5;

The AUTOREG Procedure

Dependent Variable | Ln_G_Pop |

USING SAS TO FIT THE AR MODELS

Ordinary Least Squares Estimates

SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC -141.90789 [ AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691

Durbin—Watson Statistics

Order | DW |Pr<DW | Pr>DW

1 0.8909 |  <0.0001 1.0000

2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value | Pr>|t|
Intercept 1 —7.7892 0.3593 | -21.68| <0.0001
Ln_pg 1 -0.0979 0.0283 -3.46| 0.0016
Ln_Income 1 2.1175 0.0988 21.44| <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09 0.2830
Ln_Puc 1 —0.1022 0.0693 —1.48| 0.1502

Estimates of Autocorrelations

Lag | Covariance | Correlation |-1 9 8 76 5432101234567891
0 0.000691 1.000000 | | [ ok ke k k|
1 0.000382 0.552840 | | [ ok ko ko |
2 -0.00001 —-0.021286] | | |

OUTPUT 6.7. MLE estimates of the AR(2) model for the gasoline consumption data.

| Preliminary MSE | 0.000373 |
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Estimates of Autoregressive
Parameters

Standard
Lag | Coefficient Error | t Value

1 —0.813124( 0.163827 —4.96
0.470813 | 0.163827 2.87

Algorithm converged.

Maximum Likelihood Estimates

~

SSE 0.0126731 | DFE 29
MSE 0.0004370 | Root MSE 0.02090
SBC -157.92648 | AIC -169.01111
Regress R-Square 0.9683 | Total R-Square 0.9843

Durbin-Watson Statistics
Order| DW |Pr<DW |Pr>DW
1 1.9062 0.2627 0.7373
2 2.1296 0.5341 0.4659

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value | Pr>|t|
Intercept 1 —7.8531 0.3973 | —-19.77| <0.0001
Ln_pg 1 —0.0673 0.0301 —2.24| 0.0332
Ln_Income | 1 2.1337 0.1091 19.56 | <0.0001
Ln_Pnc 1 0.2078 0.1253 1.66| 0.1081
Ln_Puc 1 -0.1850 0.0797 -2.32| 0.0276
AR1 1 —0.8220 0.1554 —-5.29] <0.0001
AR2 1 0.5643 0.1567 3.60 0.0012

Autoregressive parameters assumed given.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr> |t|

Intercept 1 —7.8531 0.3905| —20.11| <0.0001
Ln_pg 1 —0.0673 0.0295 —2.28] 0.0299
Ln_Income | 1| 2.1337 0.1072 19.91| <0.0001
Ln_Pnc 1 0.2078 0.1247 1.67] 0.1065
Ln_Puc 1| -0.1850 0.0786 -2.35| 0.0256

OUTPUT 6.7. (Continued).

run;
data f;
mergeabcde;
run;
proc gplot data=f;
title 'Comparing the residuals from the AR(1) - -AR(5) models’;
plot rl*year=1 r2*year=2 r3*year=3 rd*year=4
r5*year=5/overlay href=0
haxis=1960 to 1995 by 5;
run;
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The AUTOREG Procedure

Dependent Variable | Ln_G_Pop |

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC -141.90789 [ AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691
Durbin-Watson 0.8909 | Pr <DW <0.0001]
Pr>DW 1.0000

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value | Pr> |t
Intercept 1 —7.7892 0.3593 | -21.68| <0.0001
Ln_pg 1 —0.0979 0.0283 -3.46| 0.0016
Ln_Income | 1 2.1175 0.0988 21.44 | <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09( 0.2830
Ln_Puc 1 —-0.1022 0.0693 —1.48] 0.1502

Estimates of Autocorrelations

Lag | Covariance | Correlation|-1 9 8 76 5432 101234567891
0 0.000691 1.000000

[k ko kx|

—

0.000382 0.552840

‘*********** ‘

Preliminary MSE | 0.000430 |

Estimates of Autoregressive
Parameters

Standard
Lag | Coefficient Error | t Value

1 —-0.552840( 0.152137 -3.63
Algorithm converged.
Yule-Walker Estimates
SSE 0.01271242 | DFE 30
MSE 0.0004237 | Root MSE 0.02059
SBC —-160.48746| AIC —169.98857
Regress R-Square 0.7887 | Total R-Square 0.9842
Durbin-Watson 1.4458 [ Pr < DW 0.0191
Pr>DW 0.9809

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value | Pr> |t
Intercept 1 —5.2466 0.6761 =7.76] <0.0001
Ln_pg 1 -0.1915 0.0381 -5.02] <0.0001
Ln_Income 1 1.4108 0.1858 7.59| <0.0001
Ln_Pnc 1 0.2482 0.1349 1.84| 0.0757
Ln_Puc 1| -0.004509 0.0703 —0.06] 0.9493

OUTPUT 6.8. Iterated FGLS estimates of AR(1) model for the gasoline data.
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The AUTOREG Procedure

Dependent Variable | Ln_G_Pop |

Ordinary Least Squares Estimates
SSE 0.02487344 | DFE 31
MSE 0.0008024 | Root MSE 0.02833
SBC —141.90789| AIC —149.82548
Regress R-Square 0.9691 | Total R-Square 0.9691

Durbin-Watson Statistics

Order | DW |Pr<DW |Pr>DW

1 0.8909 <0.000 1.0000

2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Order | DW |Pr<DW (Pr>DW

1 1.9257 0.2822 0.7178

2 2.1120 0.5122 0.4878

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Standard Approx
Variable DF | Estimate Error | t Value [ Pr>[t|
Intercept 1 —7.8665 0.3862| —20.37| <0.0001
Ln_pg 1 —0.0661 0.0292 -2.27( 0.0311
Ln_Income | 1 2.1374 0.1060 20.17 [ <0.0001
Ln_Pnc 1 0.2118 0.1241 1.71] 0.0987
Ln_Puc 1 -0.1891 0.0783 -2.42( 0.0223

Standard Approx
Variable DF | Estimate Error | t Value | Pr>|t|
Intercept 1 —7.7892 0.3593 | -21.68| <0.0001
Ln_pg 1 -0.0979 0.0283 -3.46| 0.0016
Ln_Income 1 2.1175 0.0988 21.44 [ <0.0001
Ln_Pnc 1 0.1224 0.1121 1.09 0.2830
Ln_Puc 1 —0.1022 0.0693 -1.48| 0.1502
Estimates of Autocorrelations
Lag | Covariance | Correlation|-1 9 8 76 543 2101234567891
0 0.000691 1.000000 | | [ ok ko x kkk x|
1 0.000382 0.552840 | | R [
2 ~0.00001|  -0.021286] | \ [
Preliminary MSE | 0.000373 |
Estimates of Autoregressive
Parameters
Standard
Lag [ Coefficient Error | t Value
1 —0.813124| 0.163827 —4.96
2 0.470813 | 0.163827 2.87
Yule-Walker Estimates
SSE 0.01265611 | DFE 29
MSE 0.0004364 | Root MSE 0.02089
SBC —-157.9093 [ AIC —168.99393
Regress R-Square 0.9690 | Total R-Square 0.9843

OUTPUT 6.9. Iterated FGLS estimates of AR(2) model for the gasoline data.

Durbin—Wats

on Statistics
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FIGURE 6.3. Comparing the residuals of the OLS versus AR(2) models for the gasoline data.

The residuals from the AR(1) process are indicated by the line that goes beyond all other lines across the range of year.
The residuals from the AR(2) through the AR(5) models are highly coincidental and cannot be distinguished. Notice that the
residuals appear to be more stable for the AR(2) through AR(5) models. Therefore, there is no significant improvement beyond the
AR(2) model.

Comparing the residuals from the AR(1) — — AR(5) models

Residuals

FIGURE 6.4. Comparing residuals of several AR models for the gasoline consumption data.



PANEL DATA ANALYSIS

7.1 WHAT IS PANEL DATA?

The discussion in the previous chapters focused on analytical methods for cross-section data and (to some extent) time series data.
This chapter deals with the analysis of data from panel studies. Data from such studies consist of repeated measurements on cross
sections over a period of time. In other words, in panel data there are repeated observations on the same subject over a time period
as in longitudinal studies where, for instance, subjects are surveyed or followed over time. Here the term subjects will be used to
refer to people, countries, companies, and so on.

As an example of panel data, consider the Cost for US Airlines example from Greene (2003). The data set has 90 observations
for six firms from 1970 to 1984. This data set has been analyzed in Chapter 3, and it will be used to illustrate the different analytical
techniques in this chapter. We have a cross section if we take data from a single year. The selected cross section simply gives a
snapshot of the six airlines for the selected year. We have panel data if we use data for the six airlines from every year in the time
period 1970-1984.

As another example of panel data, consider the case where a financial planning company collects data on profits generated by
its financial advisors. For instance, the profit of the financial advisors may be monitored for several years. Various factors such as
the regional location of the advisor, their age, and the wealth profile of the advisor’s clients may be used to explain the differences
(if any) between the advisor’s profit over time. The collected data can be viewed as panel data since we have a cross section of
advisors who are followed for several years.

Notice that both examples may include explanatory variables that are either observed (controllable) or unobserved
(uncontrollable). For instance, in the second example above, the data on the “salesmanship ability” of the financial advisor
may not be available. We can therefore, in principle, partition the set of explanatory variables into two sets—one, consisting of
observed variables and the other consisting of uncontrollable or unobserved variables. The set of explanatory variables can
also be comprised of variables that are time dependent as well as variables that are time independent. For example, gender and
marital status can be treated as time independent whereas experience in the workforce and the age of the subject are time
dependent.

7.1.1 Advantages of Panel Data

There are two main reasons for using panel data methods.

1. Increased Sample Sizes. A natural consequence of using panel data is that the available sample size is increased. In the Cost
of US Airlines data, we had six airlines for which data were collected over a 15-year time period. A single cross section

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.

110



PANEL DATA MODELS 111

would have resulted in six data points, whereas in the panel data format we have 90 data points. In general, if there are n
subjects and T time periods, then there will potentially be a total of nT observations for analysis.

2. The Ability to Control for Unobserved Heterogeneity. The increased sample size is a natural and trivial consequence of
using panel data methods. The main reason the preferring a panel approach to estimation is that one can control the
unobserved heterogeneity among the individual subjects or unit effects. As will be discussed in the next section, a
complete formulation of the panel data model includes both observed and unobserved explanatory variables. As
mentioned earlier, the unobserved explanatory variables may include variables that we cannot control or that are just not
observable. Omitting these variables from the model will lead to omitted variable bias (Chapter 4). The panel data
approach allows us to include the unobserved heterogeneity effects in the model. If the unobserved subject-specific
effects are treated as constants, then we have a fixed effects model and if they are treated as random, then we have a
random effects model.

7.2 PANEL DATA MODELS

Using the notation given in Greene (2003) page 285, we can write the basic panel data model as y; = X,TtB + z,-Ta + &ir,
wherei =1,...,nand t = 1,...,T. Here, n is the number of subjects and T'is the number of time periods. The number of time
periods may be different for the different subjects in the study, leading to unbalanced panel data and this may arise if some subjects
drop out of the study prior to completion of the study. Although there are well-established analysis methods available for
unbalanced panel data, we will focus our attention on analysis of balanced panel data only. The term y;, is the observation
collected on the ith subject at time period ¢. The term X, is a vector of k observed explanatory variables. The time-independent term
z! o captures the unobserved heterogeneity of the subjects and is assumed to contain a constant term. Some authors make a
distinction between the constant term and the unobserved heterogeneity term by expressing the panel data model as
Vit = X;B + (a0 + zl.T(x) + &i;, wherei=1,...,nand t = 1,...,T. Both formulations lead to the same exact results and we
use the first notation for simplicity and convenience.

It is trivial to see that if the variables in z; is observed for all subjects, then the panel data model can be estimated by using
ordinary least squares. In this case, the variables in x and z can be combined for the analysis. Here, we may assume that the set of
controllable variables x is exhaustive implying that z just has a constant term.

Since z”a is assumed to be unobserved, it is convenient to write ; = ZI-T(! and re-express the model as

i

yi,:XgB—}—a,-—O—e,-t, i=1,....,n; t=1,...,T.

The treatment of the heterogeneity effects determines the type of model that is used to analyze panel data. The various models
that are considered when analyzing panel data are as follows:

a. Pooled Regression: It is trivial to show that if z; contains only a constant term, that is, if ¢} = @y = ... = @, = «, then the
general model can be written as y; = a + xiB + &;, where i = 1,...,nandt = 1,..., T, and the parameters can be
estimated via OLS.

b. Fixed Effects: In the fixed effects model, we relax the assumption that &1 = ap = ... = a,, = a and write the model as

Vi = a; + xl.T,B + €. Here, a; can be viewed as the subject-specific intercept terms. This representation results in a
common coefficients vector but different intercept terms—the intercept terms being the subject-specific constant terms «;.
In the simple linear regression case, this will result in different regression lines for the different subjects where the lines are
parallel to each other (same slope) but have different intercepts.

c. Random Effects: In the fixed effects analysis, it is assumed that the selected subjects represent the entire population of
subjects who are available for the study. On the other hand, if the subjects were selected from a much larger population,
then it may be reasonable to assume that the differences among the subjects are randomly distributed across the
population. The random effects model can be easily formed by assuming that z/ @ = &; = a + u;, where E(u;) =0 and
Var(u;) = o%. That is, the unobserved effect is partitioned into a component that is fixed or common to all subjects and a
disturbance that is subject specific. The general linear model can now be expressed as y;, = X};B + « + u; + &;r. A key
assumption in the random effects model is that the unobserved subject-specific heterogeneity, z;, is distributed
independently of x;,. It is easy to see why violations of this assumption will lead to endogeneity of the observed
explanatory variables leading to biased and inconsistent random effects estimates.
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To illustrate the computations for the various panel data models, we will make use of the cost function of US Airlines data from
Greene (2003), which was analyzed in the earlier chapters. The data in this example consists of repeated measurements from 1970
to 1984 on six airlines. Therefore, this can be viewed as a panel data with six subjects and 15 time periods. The following model
will be estimated from the data (Greene, 2003, p. 286):

In(cos t;;) = B, + BIn(output;,) + Bsln(Fuel _Price;) + B4Load _Factori; + &;

wherei=1,...,6andr=1,...,15. As described by the author, the variable output gives the “revenue passenger miles,” which
is the number of revenue paying passengers times the number of miles flown by the airline in the given time period. The
variable load factor measures the percentage of available seating capacity that is filled with passengers.

7.3 THE POOLED REGRESSION MODEL

In the pooled regression model, we assume that the individuals effects are fixed and more importantly common across all subjects,
such that z/a; = @; = @, Vi = 1,...,n. The model parameters can therefore be estimated using OLS. The following SAS
statements can be used to fit a pooled regression model to the data. Note that we are assuming that atemporary SAS data set named
airline was created in a data step module. The analysis results are given in Output 7.1.

proc reg data=airline;
model LnC=LnQ LnPF LF;
run;

The REG Procedure
Model: MODEL1
Dependent Variable: LnC

Number of Observations Read | 90

Number of Observations Used | 90

Analysis of Variance

Sum of | Mean

Source DF | Squares| Square | F Value | Pr>F
Model 3| 112.70545 | 37.56848 | 2419.34 | <0.0001
Error 86 1.33544 | 0.01553
Corrected Total | 89 | 114.04089
Root MSE 0.12461 | R-Square | 0.9883
Dependent Mean | 13.36561 | Adj R-Sq | 0.9879
Coeff Var 0.93234

Parameter Estimates

Parameter | Standard
Variable | Label |DF | Estimate Error | t Value | Pr > [t|

9.51692 0.22924 41.51 | <0.0001

Intercept | Intercept

LnQ 1 0.88274 0.01325 66.60 | <0.0001
LnPF 1 0.45398 0.02030 22.36 | <0.0001
LF LF 1 -1.62751 0.34530 -4.71 | <0.0001

OUTPUT 7.1. The pooled regression model for the airlines data using OLS.
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The pooled regression model is given by

In(cost;) = 9.52 + 0.88In(output;;) + 0.45In(Fuel _Price;;) — 1.63Load _Factor;,.

The coefficient of determination is R* = 0.988, and an estimate of the oot mean square error is, 62 = 0.1246. The coefficients
for the explanatory variables are all highly significant. The signs of the coefficients in the model make intuitive sense. We should
expect the cost of the airline to increase with increases in output and fuel prices and decreases in load factor.

7.4 THE FIXED EFFECTS MODEL

As seen earlier, in the fixed effects model, we assume that the individual effects are constant but are not common across the
subjects. Thatis, z/ o; = @; # «, Vi = 1,...,n. Therefore, each «; will have to be estimated along with B. There are three main
methods used for estimating fixed effects models: the least squares dummy variable approach, the within-group effects approach,
and the between-group effects approach.

The least squares dummy variables model (LSDV) incorporates the individual subject unobserved effects viadummy variables
into the model, whereas the within-group effects method does not, since by construction, the unobserved effects are “swept” from
the model. Both these strategies produce identical slopes for the nondummy independent variables. The between-group effects
model also does not bring the dummy variables into the model and produces different parameter estimates from the LSDVand the
within-group since the model relates the subject means of the dependent variable to the subject means of the explanatory variables
plus an overall subject fixed effect that is a constant. A major issue with the between-groups estimation is that the analysis is based
on a total of n (the number of subjects) observations only, which becomes restrictive if the model of interest has a large number of
explanatory variables. This is because we need the number of observations in the data set to be at least as large as the number of
model parameters to be estimated.

A disadvantage of the LSDV approach is that it becomes restrictive in the presence of a large number of subjects in the panel
data. As mentioned earlier, this approach involves calculating estimates of the dummy variable parameters along with the estimates
of the coefficient vector of the explanatory variables. The number of parameters to be estimated therefore increases as the number
of subjects in the panel data increases. As discussed in Baltagi (2005, p. 13), if the number of time periods (7) is fixed and if the
number of subjects increases (n — o0), then only the fixed effect parameters of the explanatory variables is consistent.

Baltagi (2005) lists three disadvantages of the within-group model. First, the dummy variables have to be estimated separately
if the researcher is interested in the dummy variable parameters. This is because, by construction, the within-group model
“sweeps” the dummy variables from the model. An advantage here is that the parameter estimates will be consistent even if the
unobserved subject-specific heterogeneity is correlated to the observed explanatory variables. The dummy variable estimators
can be computed by using the formula a; = y; —b’x; (Greene, 2003, p. 288). Notice that this formula is just the least squares
formula to compute the subject-specific intercepts (Chapter 1). Here, b is the LSDV (or within-group) estimator.

Second, since the within-group model does not incorporate the dummy variables, the degree of freedom for the error term gets
large. This, in turn, results in a smaller root mean square error of the regression model. As discussed in Baltagi (2005, p. 14), the
variance—covariance obtained from this model will have to be adjusted by a factor equal to the ratio of the error degrees of freedom
of the within-group and the LSDV models to get the correct variance—covariance matrix. That is, the variance—covariance matrix
is multiplied by (nT —k)/(nT —n—k).

Finally, since the within-group model does not contain an intercept, the coefficient of determination (R?) is incorrect. Meyers
(1990, p. 39) gives the coefficient of determination for the nonintercept in the simple linear regression model as

n
PR
|
R(()) = R .
Zyl'
i=1

Notice that this is different from the formulation of R? in the case of the simple linear model with an intercept term. The argument
can easily be extended to the multiple regression case.

We now begin our discussion of estimation of the fixed effects model parameters by using the LSDV approach. Consider the
model

Y. = X,B —|—i0éi +€i
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where y; and X; are the T observations on the response and the explanatory variables, iisa 7 X 1 column of ones, and &; is the
T x 1 disturbance vector. If we stack the data for all subjects, we can write this model in matrix form as

y:[X d d4d ... dn] + €.
Notice that by construction, «
i 0 0
0 i 0
[dlv i) dn] - :
00 i

Here d; is adummy variable vector for the ith subject, thatis, d;isanT x 1 column vector where the elements are equal to 1 for the
ith subject and 0 otherwise. At first glance this method of estimation appears to be analogous to dummy variables regression.
However, we do not run into the “dummy-variable trap” here because we did not assume the presence of a constant in X;,.
Therefore, this estimation technique allows us to get clean estimates of all the model parameters (Greene, 2003, p. 287).

If we let the n'T x nmatrix be D =[d; d, ... d,], we can rewrite the fixed effects model as the least squares dummy
variable (LSDV) model y =XB + Da + €. Using the Frisch—Waugh theorem (Chapter 1), it can be shown that the least squares
estimator of B is given by b= X'MpX]™ 1XTMDy, where Mp =1 — D(D'D) ™ 'D” and is idempotent. If we let the vector a
denote an estimator of a, then it can be shown (using Frisch—Waugh theorem again) thata = [D'D] - 1DT(y — Xb), whichimplies
that for the ith subject, a; = y; — b’X;. Again, notice that this is the formula for calculating the intercept in a multiple linear
regression model. It can also be shown that the asymptotic covariance matrix of b is Est.Asy. Var(b) = s2(XTMDX)7 ! with

2= (y_MDXh)T(y_MDXh)
nT —n—k

The asymptotic variance of a; is given by

S

Asy.Var(a;) = 0-7 + X! (Asy.Var(b))x;

See Greene (2003, p. 288) for more details.

The differences across subjects can be tested by using a F test which tests the hypothesis that the constant terms are all equal.
Thatis, Hy : a;=a, Vi=1, ..., n. The F statistic used for this test is given by

Ry —R2 n—1
F(l’l— 1,nT—n—k) _ ( LSDV pooled)/( )

a (1 _RI%SDV)/(nT_n_k) 7

where LSDV indicates the dummy variable model and pooled indicates the pooled model. Notice that this test is identical to the F
test that was discussed in Chapter 3 to compare a restricted model with an unrestricted model. Here, the pooled model is the
restricted model as it restricts the fixed heterogeneity terms to be constant across all the subjects (Greene, 2003, p. 289).

We will use the airline cost data to illustrate the computations involved in the LSDV model. For simplicity, we will estimate
only the parameters and their standard errors. First, we will analyze the data by using Proc IML and then by using the Proc Panel
procedure. The following Proc IML statements can be used. We assume that a temporary SAS dataset names airline was created in
the data step module. The analysis results are given in Output 7.2.

proc iml;

* Read the data intomatrices and create some constants. ;
use airline;
read all var{’1q’, "1pf’,"1f’} into X;
read all var{’1lc’} intoy;
T=15;N=6;k=ncol (X) ;

* Create the MD matrix. ;
i=J(T,1,1);



All

90

—0. 03303
12. 75171
0. 54709

-0. 91226
12. 78972
0. 58454

—1. 63517
12. 77803
0. 54768

—2. 28568
12. 79210
0. 56649

—2. 49898
12. 77880
0. 51978

—1. 17431
12. 77036
0. 56046

The LSDV estimates are

TABLE1
BETA_LSDV SE
LNQ 0.9193 | 0.0299
LNPF 0.4175 | 0.0152
LF -1.0704 | 0.2017
TABLE2
ALPHA SE
ALPHA1 9.7059 | 0.1931
ALPHA?2 9.6647 | 0.1990
ALPHA3 9.4970 | 0.2250
ALPHA4 9.8905 | 0.2418
ALPHAS 9.7300 | 0.2609
ALPHAG6 9.7930 | 0.2637

THE FIXED EFFECTS MODEL

OUTPUT 7.2. LSDV estimates for the airlines data using Proc IML.

NT=nrow (X) ;
D=block(i,1,1i,1,1i,1);
I=I(NT);
MD=I-D*inv (D" *D)*D";

* Calculate the LSDV estimates and their standard errors. ;

b _LSDV=inv (X *MD*X) *X" *MD*vy ;
a=inv (D *D) *D" * (y-X*b_LSDV) ;

sigma2= (MD*y-MD*X*b_LSDV) " * (MD*y-MD*X*b_LSDV) / (NT-N-K) ;
Var_B=sqgrt (vecdiag (sigma2*inv (X' *MD*X))) ;

summary var {lqg lpf 1f} class {i} stat{mean}

opt{save};
X_Mean=LQ| |LPF| |LF;

115
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Var_A=Vecdiag (SQRT (sigmal2/T +

X_mean*sigmal2*inv (X *MD*X) *X_Mean ) ) ;
* Print the results.;

print ‘'The LSDV estimates are’;

Tablel=b_LSDV]| |Var_B;

Table2=al |Var_A;

Print Tablel (|Colname={Beta_LSDV SE} rowname={LNQ LNPF LF}

format=8.41);

Print Table2 (|Colname={ALPHA SE} rowname={Alphal Alpha2 Alpha3

Alphad4 Alphab Alpha6} format=8.41); run;

It is trivial to show that an alternative way of estimating the parameters of the LSDV model is by using OLS to estimate the
parameter vector 8 in the model y =X;8 + &, where X, = [X d; d; ... d,]and & = [ B « }T. In the cost of airlines example,
X;isa90 x 9 matrix, and disa9 x 1 vector of unknown coefficients. The OLS estimator of 8 is given by & = (Xng) - 1ng. The
asymptotic variance of & is given by s*(X/X,) ~ ! where

2 (v —Xa8)" (y — X4 d)
nT —n—k '

The following Proc IML statements can be used to estimate the parameters using this alternative formulation.

proc iml;

* Read the data intomatrices and create some constants. ;
use airline;
read all var{’1q’,"1pf’,"1f’} into X;
read all var{’1lc’} intovy;
T=15;N=6;k=ncol (X) ;

* Create the Xd matrix.;
i=J(T,1,1);
NT=nrow (X) ;
D=block(i,1i,1i,1i,1i,1i);
I=I(NT);
X=X1|1D;

* Calculate the LSDV estimator and its standard error. ;
Delta_LSDV=1inv (X" *X) *X  *y;
sigma2=(y-X*Delta_LSDV) " * (y-X*Delta_LSDV) / (NT-N-K) ;
Var_Delta=sqgrt (vecdiag (sigma2*inv (X *X)));

* Print out the results.;
Print Tablel (|Colname={LSDV_Estimates SE} rowname={Intercept
LNQ LNPF LF Alphal Alpha2 Alpha3 Alpha4 Alphab Alpha6}
format=8.41); run;

The analysis results are given in Output 7.3. Notice that the results for the coefficients and their standard errors are identical to the
results given in Output 7.2.

We can analyze the data using the Proc Panel or the Proc TSCSREG procedure. Proc Panel is an enhancement over Proc
TSCSREG procedure and it can be used to analyze simple panel data models (fixed effects, random effects, one-way and two-
way models) as well as more complex models in the panel data setting (heteroscedasticity violations, autocorrelation
violations, dynamic panel data models). Readers are encouraged to refer to the Proc Panel Procedure reference guide from
SAS Institute, Inc. for more details on this procedure. Although the procedure offers a wide range of options for analyzing
panel data models, we will use the minimal required to illustrate the methods discussed in this chapter.

The following statements can be used for the LSDV model. The option “fixone” specifies that the first variable in the id
statement will be treated as fixed. The analysis results are given in Output 7.4.



OUTPUT 7.3.

TABLE1

LSDV_ESTIMATES SE

LNQ 0.9193 | 0.0299
LNPF 0.4175 | 0.0152
LF -1.0704 | 0.2017
ALPHA1 9.7059 | 0.1931
ALPHA?2 9.6647 | 0.1990
ALPHA3 9.4970 | 0.2250
ALPHA4 9.8905 | 0.2418
ALPHAS 9.7300 | 0.2609
ALPHAG6 9.7930 | 0.2637

THE FIXED EFFECTS MODEL

The LSDV model of the airlines data using OLS calculations.

The PANEL Procedure
Fixed One Way Estimates

Dependent Variable: LnC

Model Description

Estimation Method

FixOne

Number of Cross Sections 6

Time Series Length

15

Fit Statistics

SSE

0.2926 | DFE

81

MSE

0.0036

Root MSE | 0.0601

R-Sq

uare

0.9974

F Test for No Fixed Effects

Num DF

Den DF

F Value | Pr>F

5

81 57.73 | <0.0001

Parameter Estimates

Standard
Variable | DF | Estimate Error | t Value | Pr > |t| | Label
CS1 1| -0.08706 0.0842 -1.03| 0.3042 | Cross Sectional Effect 1
CS2 1 -0.1283 0.0757 -1.69| 0.0941 | Cross Sectional Effect 2
CS3 1] -0.29598 0.0500 -5.92| <0.000] Cross Sectional Effect 3
CS4 1| 0.097494 0.0330 2.95| 0.0041 | Cross Sectional Effect 4
CS5 1| -0.06301 0.0239 -2.64| 0.0100 | Cross Sectional Effect 5
Intercept 1| 9.793004 0.2637 37.14 | <0.0001 | Intercept
LnQ 1| 0.919285 0.0299 30.76 | <0.0001
LnPF 1| 0417492 0.0152 27.47 | <0.0001
LF 1 -1.0704 0.2017 -5.31|<0.0001| LF

OUTPUT 74.

LSDV estimates for the airlines data using Proc panel.

117



118 PANEL DATA ANALYSIS

proc panel data=airline;

id 1 t;

model LnC=LnQ LnPF LF/fixone;
run;

The estimates for the group effects are easy to calculate by adding the variables CS; to the intercept. The group effects are
a; =9.706, a, =9.665, a3 =9.497, a, = 9.890, and a5 =9.73. The value for the intercept is the group effects value for the sixth
firm. Thatis, ag = 9.79. Using Proc IML to fit the LSDV model allows us to get the actual group effects estimates and their standard
errors. The fitted LSDV models for the six firms are given by

Airlinel: InC =9.706 + 09192 InQ + 0.4174 In PF—1.070LF,
Airline2: InC=9.665+ 09192 InQ + 0.4174 1In PF—1.070LF,
Airline3: InC=9497 4+ 09192 InQ + 0.4174 1In PF—1.070LF,

Airline4: InC=9.890 4+ 09192 InQ + 0.4174 In PF—1.070LF
Airline5: InC=9.729 + 09192 InQ + 04174 In PF—1.070LF
Airline6: InC =9.793 + 09192 InQ + 04174 In PF—1.070LF

Note that the equations only differ in the constant term and therefore represents a parametric shift in the regression lines.
Comparing the LSDV output to the pooled output, we find that the root mean square for the LSDV is significantly smaller than the
root mean square for the pooled model. This should not be surprising since the LSDV model essentially blocks out the subject
effects and therefore gives a more precise estimate of the root mean square error. Also note that the error degrees of freedom for the
LSDV model take into account the inclusion of the subject terms in the model. The coefficient of determination for the LSDV
model is slightly higher than the coefficient of determination for the pooled model. The signs of the parameter estimates are the
same between the two models. The magnitude of the coefficient for LF from the LSDV model is significantly lower than that from
the pooled model.

Proc GLM can also be used to fit a fixed effects model to the airlines cost data set. The following statements can be used.

proc glm data=airline;

class i;

model LC=1 LQ LPF LF/solution;
run;

The class statement with input “i” instructs the program to treat the airlines id as a classification variable and to treat the
explanatory variables as covariates. The solution option for the model statement requests the parameter estimates for the terms in
the model. Output 7.5 contains the analysis results. A description of Proc GLM was given in Chapter 3. Notice that the calculated
estimates are identical to the ones calculated by using Proc Panel. The X”X matrix was found to be singular simply because the
procedure creates a column of ones in the X matrix. Proc GLM gives the F test for differences between the individual fixed effects
for the airlines. The p values from both Type 1 and Type 3 sums of squares indicate high significance, implying that the null
hypothesis of equality of the individual effects is to be rejected. The Type 1 sums of squares also referred to as the sequential sums
of squares measures how much the residual sums of squares is reduced by adding a particular variable to the model containing all
the variables before it. As an example, the Type 1 sums of squares for the airline effect tell us by how much the residual sums of
squares for a model with just a constant term is reduced by adding the airlines effects to the model. On the other hand, the Type 3
sums of squares tell us by how much the residual sums of squares is reduced if the particular variable is added to a model containing
all other variables. Both sums of squares measure the importance of the variable in question. We now move on to estimation using
the within-group and the between-group methods. The functional form of the within-group model is

Yie =i, = (Xir — ii.)TB + &i; — &;.
whereas that of the between-group model is

Vi =a+Xx Btz



The GLM Procedure

Class Level Information

Class | Levels | Values

I

6|1

23456

Number of Observations Read

Number of Observations Used

The GLM Procedure

Dependent Variable: LnC

THE FIXED EFFECTS MODEL

Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 8| 113.7482727 14.2185341 | 3935.80 | <0.0001
Error 81 0.2926222 0.0036126
Corrected Total | 89 | 114.0408949

R-Square | Coeff Var | Root MSE | LnC Mean
0.997434 0.449699 0.060105 13.36561
Source | DF | Type I SS | Mean Square | F Value | Pr>F
| 5| 74.67988205 14.93597641 | 4134.39 | <0.0001
LnQ 1| 36.33305337 36.33305337 | 10057.3 | <0.0001
LnPF 1] 2.63358517 2.63358517 729.00 | <0.0001
LF 1] 0.10175213 0.10175213 28.17 | <0.0001
Source | DF | Type III SS | Mean Square | F Value | Pr>F
I 5| 1.04281997 0.20856399 57.73 | <0.0001
LnQ 1| 3.41718518 3.41718518 945.90 | <0.0001
LnPF 1| 2.72571947 2.72571947 754.50 | <0.0001
LF 1| 0.10175213 0.10175213 28.17 | <0.0001

Standard

Parameter Estimate Error | t Value | Pr > |t|
Intercept 9.793003883 | B | 0.26366188 37.14 | <0.0001
I 1 -0.087061966 | B | 0.08419945 -1.03| 0.3042
I 2 -0.128297833 | B | 0.07572803 -1.69| 0.0941
I 3 -0.295983079 | B | 0.05002302 -5.92| <.0001
I 4 0.097494011 | B | 0.03300923 2.95| 0.0041
I 5 -0.063006988 [ B | 0.02389185 -2.64| 0.0100
I 6 0.000000000 | B

LnQ 0.919284650 0.02989007 30.76 | <0.0001
LnPF 0.417491776 0.01519912 27.47 | <0.0001
LF -1.070395844 0.20168974 -5.31| <0.0001

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 7.5. LSDV estimates for the airlines data using Proc GLM.
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The number of observations and the error degrees of freedom for these two representations are (nT,nT —k) and (n,n— k),
respectively.

The following SAS code can be used to estimate the within-group effects model. The reader is asked to verify that the parameter
estimates is the same as the estimates from the LSDV analysis. Note that the root mean square of the within-group model is larger
than that of the LSDV model and that the coefficient of determination is slightly different. As discussed earlier, this value is
incorrect, given that we do not have an intercept term in the model. The correct standard errors of the coefficients can be obtained
by using the adjustment factor given in Baltagi (2005). The temporary data set “airline” was created prior to sorting and includes
all the required transformed variables.

/*Sort the data by airline to facilitate correct calculations of group means*/
proc sort data=airline;
by i;
run;
/*Calculate the group means*/
proc univariate data=airline noprint;
var LnC LnQ LnPF LF;
by 1i;
output out=junk mean=meanc meang meanpf meanlf;
run;
/*Merge the summary statistics totheoriginal dataset andcalculate the groupdeviations*/
data test;
merge airline(in=a) junk (in=b) ;
by 1;
if aandb;
Inc=1nc-meanc;
Ing=1ng-meand;
Inpf=1npf-meanpf;
lf=1f-meanlf;
run;
/*Conduct the OLS regression*/
proc reg data=test;
model 1lnc=1lng lnpf 1f/noint;
run;

The between-group analysis can be conducted using Proc Panel with the “btwng” option in the model statement. The following
statements can be used:

proc panel data=airline;

idit;

model LnC=LnQ LnPF LF/btwng;
run;

The reader is asked to verify that the parameter estimates and their standard errors are given by Intercept/Constant 85.809
(56.483), LnQ 0.784 (0.109), LnPF — 5.524 (4.479), and LF — 1.751 (2.743). Note that only the coefficient for output LnQ is
significant. The sign on the coefficient for fuel price LnPF is now reversed.

7.4.1 Fixed Time and Group Effects

The general panel data model can easily be adjusted to incorporate a term for the time effect if it is of interest to determine whether
the time periods are significantly different from each other. As shown in Greene (2003, p. 291, the LSDV model with a time-
specific effect is given by

Vi=X,B+aei+ vy, +en, i=1,...n t=1,...T,

where 7, is the rth fixed time effect.
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We will analyze the airlines data by incorporating the time effect into the fixed effects model. Note that we are still working
with a one-way fixed effects model. The analysis is conducted by using Proc Panel with the “fixonetime” option. The following
SAS statements in Proc Panel can be used to fit this model.

proc panel data=airline;

idit;

model LnC=LnQ LnPF LF/fixonetime;
run;

The analysis results are given in Output 7.6. Notice that the p values associated with the F test for fixed time effects are not
significant.

The fixed time effects analysis can also be done in Proc GLM by using the following statements. Output 7.7 contains the
analysis results.

The PANEL Procedure
Fixed One Way Estimates Time-Wise

Dependent Variable: LnC

Model Description
Estimation Method FixOneTm
Number of Cross Sections 6
Time Series Length 15

Fit Statistics
SSE 1.0882 | DFE 72
MSE 0.0151 [ Root MSE | 0.1229
R-Square | 0.9905

F Test for No Fixed Effects
Num DF | Den DF | F Value | Pr > F

14 72 1.17] 0.3178

Parameter Estimates

Standard
Variable | DF | Estimate Error | t Value | Pr > |t| | Label
TS1 1| -2.04096 0.7347 -2.78| 0.0070 | Time Series Effect 1
TS2 1| -1.95873 0.7228 -2.71| 0.0084 | Time Series Effect 2
TS3 1| -1.88104 0.7204 -2.61| 0.0110 | Time Series Effect 3
TS4 1] -1.79601 0.6988 -2.57| 0.0122 | Time Series Effect 4
TS5 1| -1.33694 0.5060 -2.64| 0.0101 | Time Series Effect 5
TS6 1] -1.12515 0.4086 -2.75| 0.0075 | Time Series Effect 6
TS7 1] -1.03342 0.3764 -2.75| 0.0076 | Time Series Effect 7
TS8 1] -0.88274 0.3260 -2.71| 0.0085 | Time Series Effect 8
TS9 1 -0.7072 0.2947 -2.40| 0.0190 | Time Series Effect 9
TS10 1| -0.42296 0.1668 -2.54| 0.0134 | Time Series Effect 10
TS11 1| -0.07144 0.0718 -1.00| 0.3228 | Time Series Effect 11
TS12 1] 0.114572 0.0984 1.16| 0.2482 | Time Series Effect 12
TS13 1 0.07979 0.0844 0.95| 0.3477 | Time Series Effect 13
TS14 1| 0.015463 0.0726 0.21 | 0.8320 | Time Series Effect 14
Intercept 1| 2253678 4.9405 4.56 | <0.0001 | Intercept
LnQ 1| 0.867727 0.0154 56.32 | <0.0001
LnPF 1| -0.48448 0.3641 -1.33| 0.1875
LF 1 -1.9544 0.4424 —4.421 <0.0001 | LF

OUTPUT 7.6. Fixed time effects analysis for the airlines data.



122 PANEL DATA ANALYSIS

The GLM Procedure

Class Level Information

Class | Levels | Values
T 15(123456789101112131415

Number of Observations Read | 90

Number of Observations Used | 90

The GLM Procedure

Dependent Variable: LnC

Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 17 | 112.9527040 6.6442767 439.62 [ <0.0001
Error 72 1.0881909 0.0151138
Corrected Total | 89 | 114.0408949

R-Square | Coeff Var | Root MSE | LnC Mean
0.990458 0.919809 0.122938 13.36561

Source | DF | Type I SS | Mean Square | F Value | Pr>F

T 14 | 37.30676742 2.66476910 176.31 | <0.0001
LnQ 1]75.30317703 7530317703 | 4982.42 | <0.0001
LnPF 1| 0.04776504 0.04776504 3.16 | 0.0797
LF 1] 0.29499451 0.29499451 19.52 | <0.0001

Source | DF | Type III SS | Mean Square | F Value | Pr>F

T 14| 0.24725125 0.01766080 1.17] 0.3178
LnQ 1| 47.93302463 47.93302463 | 3171.48 | <0.0001
LnPF 1 0.02675904 0.02675904 1.77 | 0.1875
LF 1] 0.29499451 0.29499451 19.52 | <0.0001
Standard
Parameter | Estimate Error | t Value | Pr > |t|
Intercept |22.53678445 | B | 4.94053826 4.56 | <.0001
T 1 -2.04096367 [ B | 0.73469041 -2.78 | 0.0070
T 2 -1.95872954 | B | 0.72275187 -2.71| 0.0084
T 3 -1.88103769 | B | 0.72036547 -2.61| 0.0110
T 4 -1.79600992 | B | 0.69882566 -2.57| 0.0122
T 5 -1.33693575 | B | 0.50604558 -2.64| 0.0101
T 6 -1.12514656 | B | 0.40862234 -2.75| 0.0075
T 7 -1.03341601 | B | 0.37641681 -2.75| 0.0076
T 8 -0.88273866 | B | 0.32601349 -2.71| 0.0085
T 9 -0.70719587 | B | 0.29470154 -2.40| 0.0190
T 10 -0.42296351 [ B | 0.16678941 -2.54| 0.0134
T 11 -0.07143815 | B | 0.07176388 -1.00| 0.3228
T 12 0.11457178 | B | 0.09841217 1.16 | 0.2482

OUTPUT 7.7. Fixed time effects analysis for the airlines data using Proc GLM.
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Standard
Parameter | Estimate Error | t Value | Pr > ||

T 13 0.07978953 | B | 0.08441708 0.95| 0.3477
T 14 0.01546270 | B | 0.07263977 0.21| 0.8320
T 15 0.00000000 | B

LnQ 0.86772671 0.01540820 56.32 | <0.0001
LnPF -0.48448499 0.36410896 -1.33] 0.1875
LF -1.95440278 0.44237789 -4.42 <0.0001

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 7.7. (Continued)

proc glm data=airline;

class t;

model LC=t LQ LPF LF/solution;
run;

Notice that the output from Proc Panel matches the Proc GLM output from the Type 3 sums of squares table. Also note that as
before, the individual time estimates can be calculated by adding the variables 7S (T for Proc GLM) to the intercept. The
following Proc Panel statements can be used when treating both time and firm effects as fixed. Output 7.8 contains the analysis
results.

proc panel data=airline;

idit;

model LnC=LnQ LnPF LF/fixtwo;
run;

The two-way fixed effects model can be easily estimated using Proc GLM. The following statements can be used. The analysis
results are given in Output 7.9.

proc glmdata=airline;

class i t;

model LC=1 t LQ LPF LF/solution;
run;

The LSDV model in both the one-way and the two-way effects cases can be easily written down and the equations for the
specific airline—time combination can be easily extracted by using the dummy variables. We avoid specific details on the analysis
results as the output can be interpreted in a similar fashion to the analysis outputs given earlier in this chapter.

7.5 RANDOM EFFECTS MODELS

As mentioned in the previous sections, the fixed effects model is appropriate when differences between the subjects may be
viewed as parametric shifts in the regression model. Furthermore, the interpretations resulting from the fixed effects analysis is
only applicable to the subjects who were selected for the study. On the other hand, in arandom effects model, the subjects in the
study are assumed to be selected from a much large population of available subjects. Therefore, the interpretations from the
random are effects analysis applicable to the larger population. We also assumed that the unobserved subject-specific
heterogeneity is uncorrelated to the observed explanatory variables. In the fixed effects model, violations of this assumption is
not really an issue since the analysis “sweeps” the unobserved heterogeneity component from the model.

To motivate our discussion on analysis techniques for a random effects model, consider the general random effects model
given in Section 7.2.

Vi = X5B+ a4 u; + &
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The PANEL Procedure
Fixed Two Way Estimates

Dependent Variable: LnC

Model Description
Estimation Method FixTwo
Number of Cross Sections 6
Time Series Length 15
Fit Statistics
SSE 0.1768 | DFE 67
MSE 0.0026 | Root MSE | 0.0514
R-Square | 0.9984
F Test for No Fixed Effects
Num DF | Den DF | F Value | Pr>F
19 67 23.10 | <0.0001
Parameter Estimates
Standard
Variable | DF | Estimate Error | t Value | Pr > |t| | Label
CS1 1| 0.174282 0.0861 2.02 | 0.0470 | Cross Sectional Effect 1
CS2 1] 0.111451 0.0780 1.43| 0.1575 | Cross Sectional Effect 2
CS3 1| -0.14351 0.0519 -2.77| 0.0073 | Cross Sectional Effect 3
CS4 1| 0.180209 0.0321 5.61 | <0.0001| Cross Sectional Effect 4
CS5 1| -0.04669 0.0225 -2.08 | 0.0415 | Cross Sectional Effect 5
TS1 1| -0.69314 0.3378 -2.05| 0.0441 | Time Series Effect 1
TS2 1] -0.63843 0.3321 -1.92| 0.0588 | Time Series Effect 2
TS3 1 -0.5958 0.3294 -1.81| 0.0750 | Time Series Effect 3
TS4 1] -0.54215 0.3189 -1.70 | 0.0938 | Time Series Effect 4
TS5 1| -0.47304 0.2319 -2.04| 0.0454 | Time Series Effect 5
TS6 1 -0.4272 0.1884 -2.27| 0.0266 | Time Series Effect 6
TS7 1] -0.39598 0.1733 -2.28 | 0.0255 | Time Series Effect 7
TS8 1| -0.33985 0.1501 -2.26| 0.0268 | Time Series Effect 8
TS9 1| -0.27189 0.1348 -2.02| 0.0477 | Time Series Effect 9
TS10 1] -0.22739 0.0763 -2.98 | 0.0040 | Time Series Effect 10
TS11 1 -0.1118 0.0319 -3.50| 0.0008 | Time Series Effect 11
TS12 1] -0.03364 0.0429 -0.78 | 0.4357 | Time Series Effect 12
TS13 1| -0.01773 0.0363 -0.49 | 0.6263 | Time Series Effect 13

OUTPUT 7.8. Fixed time and firm effects for the airlines data.

with kregressors and E (ziTa) = a + u;, where wis aconstant and can be viewed as acommon fixed effect and u;, the disturbance, is
the random subject-specific effect. We make the following assumptions: u; ~ i.i.d(0,02), &; ~ i.i.d.(0,02%, E(u;|x;) =0,
E(gi|xi;) = 0, and Cov(u;, &;,) = 0. Notice that the exogeneity assumption of the regressors with respect to u; arises from the
original assumption that z; is independent of x;. An additional assumption is that E(g;ej|X) = 0if r # sori # j, and
E(uiu;|X) = 0if i # j. That is, we assume that the disturbances are uncorrelated among themselves across time and across

subjects (Greene, 2003, p. 294; Verbeek, 2004, p. 348).
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Parameter Estimates
Standard
Variable | DF | Estimate Error | t Value | Pr > |t| | Label
TS14 1| -0.01865 0.0305 —-0.61| 0.5432 | Time Series Effect 14
Intercept 1| 12.94003 2.2182 5.83 | <0.0001| Intercept
LnQ 1| 0.817249 0.0319 25.66 | <0.0001
LnPF 1| 0.168611 0.1635 1.03 | 0.3061
LF 1| -0.88281 0.2617 -3.37| 0.0012 | LF

OUTPUT 7.8. (Continued)

If we denote the covariance structure for the ith subject as 3, then it is easy to prove that 3, = o2iziy. 4+ 021y where iy is a
vector of 1’s. That is, the diagonal elements of the covariance matrix are all equal to o + o2 while the off-diagonal elements
are equal to 2. Combining the covariance matrices across the n subjects and taking into consideration the assumptions for a
random effects model stated earlier, the disturbance covariance matrix for the entire set of nT observations can be written as

7.5.1 Generalized Least Squares Estimation

As shown in Chapter 5, the generalized least squares estimator can easily be calculated by first premultiplying y;and X; by 3, ~ 12
If we lety” and X represent the stacked transformed data across all n subjects, then the GLS estimator is obtained regressing y
against X

In reality, the variance components are unknown and FGLS estimation has to be used. As discussed in Greene (2003, pp. 296—
297),acommonly used approach to estimating the variance components is to use standard OLS and LSDV to estimate o> (pooled)
and o2 (LSDV), respectively. As discussed by the author, the OLS estimator can be assumed to provide an estimate for 0% + o2
while the LSDV estimator provides an estimator for o2. Therefore, the difference between these two can be used to estimate o2.

That s, éi = szmle 4 — S2py- An alternate method is to use the expression for the expected mean square of the random effect and
then solve for 6§ using the mean squares. These expressions are available in Proc GLM. However, all complexities are avoided by
simply using Proc Panel.

We will discuss estimation under the assumption of a random effects models subsequently. For now, we discuss ways of

determining whether a fixed or random effects model should be used for the panel data.

7.5.2 Testing for Random Effects

The Breusch and Pagan (1980) Lagrange Multiplier (LM) test and the Hausman Specification tests are the two most commonly
used tests for determining whether a random effect or a fixed effect should be used for the data. The LM test tests the hypothesis
that o = 0 versus o2 > 0. If the null hypothesis is not rejected, then 3, is diagonal, which may imply that a random effects model
should not be used for the panel data. The LM test statistic is given by (Greene, 2003, p. 299, The Proc Panel Procedure, p. 60, SAS
Institute, Inc.)

n

T§)’
|50
M = —1
2T—1) | o &

PIPIE

i=1r=1

and is distributed as a chi-squared distribution under the null hypothesis.

We will use the airlines cost equation example to illustrate the computations of the LM test. The residuals from the pooled
model are first saved. We make use of Proc GLM to conduct this portion of the analysis. The following SAS statements can be used.
Notice that we are suppressing the output since we simply want to save the residuals at this stage.
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The GLM Procedure

Class Level Information

Class | Levels | Values

I 6123456
T 15(12345678910111213 1415
Number of Observations Read | 90
Number of Observations Used | 90
The GLM Procedure
Dependent Variable: LnC
Sum of
Source DF Squares | Mean Square | F Value | Pr > F
Model 22 | 113.8640466 5.1756385 | 1960.82 | <0.0001
Error 67| 0.1768483 0.0026395
Corrected Total | 89 | 114.0408949
R-Square | Coeff Var | Root MSE | LnC Mean
0.998449 | 0.384392 0.051376 13.36561
Source | DF | Type I SS | Mean Square | F Value | Pr > F
I 5| 74.67988205 14.93597641 | 5658.58 | <0.0001
T 14 | 37.30676742 2.66476910 | 1009.56 | <0.0001
LnQ 1] 1.84507227 1.84507227 699.02 | <0.0001
LnPF 1| 0.00229645 0.00229645 0.87 | 0.3543
LF 1| 0.03002842 0.03002842 11.38 | 0.0012
Source | DF | Type III SS | Mean Square | F Value | Pr>F
| 5| 0.91134261 0.18226852 69.05 | <0.0001
T 14| 0.11577389 0.00826956 3.13 | 0.0009
LnQ 1 1.73776357 1.73776357 658.36 | <0.0001
LnPF 1| 0.00280788 0.00280788 1.06 | 0.3061
LF 1| 0.03002842 0.03002842 11.38 | 0.0012
Standard
Parameter | Estimate Error | t Value | Pr > |t|
Intercept | 12.94003049 | B | 2.21823061 5.83 | <0.0001
| 1 0.17428210 | B | 0.08611999 2.02 | 0.0470
I 2 0.11145059 | B | 0.07795501 1.43| 0.1575
) | 3 —0.14351138| B | 0.05189334 —2.77| 0.0073
) | 4 0.18020869 | B | 0.03214429 5.61 | <0.0001
| 5 —0.04669433| B | 0.02246877 —2.08] 0.0415
| 6 0.00000000 | B
T 1 —0.69313650| B | 0.33783841 —2.05| 0.0441
T 2 —0.63843490| B | 0.33208013 —1.92| 0.0588
T 3 —0.59580170| B | 0.32944723 —1.81| 0.0750
T 4 —0.54215223| B | 0.31891384 —1.70| 0.0938

OUTPUT 7.9. Fixed time and firm effects for the

airlines data using Proc GLM.



Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations. Terms whose

Standard

Parameter | Estimate Error | t Value | Pr > |t|
T 5 —0.47304191| B | 0.23194587 —2.04| 0.0454
T 6 —0.42720347| B | 0.18843991 —2.27| 0.0266
T 7 —0.39597739| B | 0.17329687 —2.28| 0.0255
T 8 —0.33984567| B | 0.15010620 —2.26| 0.0268
T 9 —0.27189295| B | 0.13481748 —2.02| 0.0477
T 10 | —0.22738537| B | 0.07634948 —2.98| 0.0040
T 11 —0.11180326| B | 0.03190050 —3.50] 0.0008
T 12 —0.03364114| B | 0.04290077 —0.78] 0.4357
T 13 | —0.01773478| B | 0.03625539 —0.49| 0.6263
T 14 | —0.01864518| B | 0.03050793 —0.61| 0.5432
T 15 0.00000000 | B

LnQ 0.81724884 0.03185093 25.66 | <0.0001
LnPF 0.16861074 0.16347803 1.03 | 0.3061
LF —0.88281211 0.26173699 —3.37| 0.0012

estimates are followed by the letter 'B' are not uniquely estimable.

proc glmdata=airline noprint;
model LnC=LnQ LnPF LF/solution;
output out=resid residual=res;

run;

OUTPUT 7.9. (Continued)

RANDOM EFFECTS MODELS

127

Proc Univariate is now used to calculate the means of the OLS residuals for each firm. The analysis results are given in

Output 7.10.

proc univariate data=resid noprint;

var res;
by 1;

output out=junk mean=mean;

run;

The sums of squares of the OLS residuals is 1.3354. Substituting all the values into the LM formula, we get

152 x (0.06887% + 0.01388 + 0.19422% + 0.15273 4 0.02158% + 0.00809°

6 x 15
LM’2(15—1)

OUTPUT 7.10. Mean of residuals for each of the airlines.

1.3354
Obs | I| mean
1|1 0.06887
2(2(-0.01388
3(3]-0.19422
44| 0.15273
5|5(-0.02158
66| 0.00809

-1

2

= 334.85.
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The tabled value from the chi-squared table is )(%'0.05 = 3.84, and so we reject the null hypothesis that 0> = 0 and claim that
there is evidence that the random effects model is more appropriate for the airlines data. As discussed in Greene (2003, p. 299)
“a fixed effects model may produce the same results,” that is, lead to the same conclusion. He suggests erring on the side of caution
and concludes that the pooled model is inappropriate for the airlines data set rather than stating that the random effects model is
more appropriate. In the next section, we will discuss the Hausman’s specification test (the preferred approach) to determine if the
fixed effects or the random effects model is more appropriate for the panel data.

7.5.3 Hausman’s Test

Hausman’s (1978) test can be used to determine whether the fixed effects or the random effects model is more appropriate for
the panel data. The procedure tests the null hypothesis of no correlation between the unobserved subject-specific effects and
the observed explanatory variables versus the alternative hypothesis that the unobserved subject-specific effects are correlated
to the observed explanatory variables. The test is based on the covariance matrix of the difference vector brg — bgg, where brg
is the fixed effects estimator and bgg is the random effects estimator. Under the null hypothesis of no correlation, both
estimators are consistent estimators for 8. However, under the alternative hypothesis, only bgg is consistent for B. A significant
difference between the two estimators will lead to the rejection of the null hypothesis (Greene, 2003, pp. 301-302).
The Hausman’s test statistic is given by the following:

W = (pr — bRE)Tq)_ ! (bFE - bRE)

where ® = Var(bgr — bgg). Under the null hypothesis of no correlation, the test statistic is distributed as a chi-squared random
variable with k degrees of freedom, where k is the number of observed explanatory variables.

To illustrate Hausmans’s test, we will again make use of the airlines data from Greene (2003). To compute the test statistic, we
need to first generate the covariance matrices for both the fixed and random effects models. The following statements using Proc
Panel can be used to store the covariance matrices for both models. Note that we will use the “ranone” option again subsequently
when estimating a random effects model. The two covariance matrices are given in Output 7.11.

proc panel data=airline outest=outl covout noprint;
title 'This is the Fixed Effects Analysis’;

idit;

model LnC=LnQ LnPF LF/fixone;
run;
proc panel data=airline outest=out2 covout noprint;
title 'This is the Random Effects Model’;

id 1 t;

model LnC=LnQ LnPF LF/ranone;
run;

This is the Fixed Effects Results

Obs LnQ LnPF LF
0.000893416 (-0.000317817| —0.001884

—0.000317817( 0.000231013 | =0.000769

—0.001884262|-0.000768569| 0.040679

[

[

w

This is the Random Effects Results

Obs LnQ LnPF LF

0.000676608 [-0.000235445| —0.001554
—0.000235445| 0.000198785 | —0.000879
—0.001554439(-0.000878566| 0.039785

—

(5]

w

OUTPUT 7.11. Covariance matrices of the estimates for the fixed and random effects model of the airline data.



The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: LnC

Model Description

Estimation Method

RanOne

Number of Cross Sections

6

Time Series Length

15

Fit Statistics
SSE 0.3090 | DFE 86
MSE 0.0036 | Root MSE | 0.0599
R-Square | 0.9923

Variance Component Estimates

Variance Component for Cross Sections

0.018198

Variance Component for Error

0.003613

Hausman Test for
Random Effects

DF

m Value | Pr > m

3

0.92| 0.8209

Breusch Pagan Test
for Random Effects

(One Way)

DF

m Value | Pr > m

334.85| <0.0001

Parameter Estimates

Variable

DF | Estimate

Standard
Error | t Value

Pr > |f|

Label

Intercept

9.637

0.2132 4521

<0.0001

Intercept

LnQ

0.908024

0.0260 34.91

<0.0001

LnPF

—

0.422199

0.0141 29.95

<0.0001

LF

—1.06469

0.1995 —5.34

<0.0001

LF

RANDOM EFFECTS MODELS

OUTPUT 7.12. Using proc panel to generate Hausman and Breusch—Pagan tests for the random effects model.
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Using the covariance matrices and the fixed and random effects coefficients that were calculated using Proc Panel, we can
substitute all the values in the formula for Hausman’s testin Proc IML to get a test statistic value of4.16. The chi-squared tabled value
with a type 1 error rate of 0.05 and 3 degrees of freedom is 7.814. The coding in Proc IML is straightforward and is therefore not
included here. The results of the analysis indicate that we cannot reject the null hypothesis that the unobserved heterogeneity
subject-specific effects are uncorrelated with the observed explanatory variables. Therefore, both the fixed effects estimator and the
random effects estimator are consistent estimators of . On the other hand, the LM testrejected the null hypothesis Hy : 02 = 0, thus
indicating that a random effects model was more appropriate than the pooled regression model. As discussed by Greene (2003) in
Example 13.5 on page 302, based on the results of both the LM test and the Hausman test, we would conclude that the random effects
model is more appropriate for the airlines data. The Hausman’s test is given by default in the output of Proc Panel when we specify a
random effects model. The “LM” option can be used in the model statement to get the Breusch—Pagan Lagrange Multiplier test.
Output 7.12 contains the Hausman and Breusch—Pagan Tests from the Proc Panel procedure. Notice that the test statistic value
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for Hausman’s test is different from the one given above. The value reported uses the covariance matrix of the parameters
including the parameter for firm. We used Proc IML with the modified covariance matrices and found a value very close to the
one in the SAS output.

proc panel data=airline;

id 1 t;

model LnC=LnQ LnPF LF/ranone bp;
run;

7.5.4 Random Effects Model Estimation

In Section 7.5.2, we used Proc Panel to estimate the fixed and random effects model. The outputs provided us with estimates of
the two variance components. For instance, from Output 7.12, we see that an estimate for o-i 15 0.003613 while the estimate for
o2 is 0.018198. Therefore, we can use these estimators to construct 3 to perform FGLS using Proc IML. In the previous
section, we used Proc Panel to perform the calculations. The analysis results are given in Output 7.12. We will now briefly
discuss the output results.

The PANEL Procedure
Fuller and Battese Variance Components (RanTwo)

Dependent Variable: LnC

Model Description
Estimation Method RanTwo
Number of Cross Sections 6
Time Series Length 15

Fit Statistics
SSE 0.2322 | DFE 86
MSE 0.0027 | Root MSE | 0.0520
R-Square | 0.9829

Variance Component Estimates

Variance Component for Cross Sections | 0.017439

Variance Component for Time Series 0.001081

Variance Component for Error 0.00264

Hausman Test for
Random Effects

DF | m Value | Pr>m
3 6.93| 0.0741

Parameter Estimates
Standard
Variable | DF | Estimate Error | t Value | Pr > |t| | Label
Intercept 1| 9.362676 0.2440 38.38 | <0.0001 | Intercept
LnQ 1] 0.866448 0.0255 33.98 | <0.0001
LnPF 1| 0.436163 0.0172 25.41 | <0.0001
LF 1| —0.98053 0.2235 —4.39| <0.0001| LF

OUTPUT 7.13. Random effects model assuming both firms and time are random.
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The first table gives the estimation method and the number of cross sections and time periods. The second table gives some
basic statistics including the coefficient of determination and the root mean square error. Notice that the error degree of freedom is
90 — 4 = 86 as there are four estimated parameters. The next table gives the variance components for both the cross section and the
LSDV model. The last table gives the parameter estimates and the associated p values. Notice that the signs for the coefficients
match the signs of the coefficients from the fixed effects model. Also note that the magnitudes of the coefficient values are similar.
All explanatory variables are highly significant in the model.

The following Proc Panel code analyzes the data assuming that both the firm and the time effects are random. The analysis
results are givenin Output 7.13. Note that now the output contains three variance components: one for the LSDV model, one for the
cross sections, and one for the time effect. The rest of the output can be interpreted as before.

proc panel data=airline;

idit;

model LnC=LnQ LnPF LF/rantwo;
run;



SYSTEMS OF REGRESSION EQUATIONS

8.1 INTRODUCTION

The previous chapters discussed estimation of single linear equation models. In practice, it is not uncommon to encounter models
that are characterized by several linear or nonlinear equations where the disturbance vectors from the equations are involved in
cross-equation correlations. As an example, consider the well-known Grunfeld’s (1958) investment model given by

Iit :BO+B1F”+BZC[I+8[M i= 17...771; t= 17...7T,

where [;; is the investment for firm i in time period ¢, Fj; is the market value of the firm, and C;, is the value of capital stock. The
original data set was comprised of 10 large US manufacturing firms, which were followed from 1935 to 1954. As discussed by
Greene (2003, p. 339), the disturbance vectors in each equation are characterized by shocks that may be common to all the firms.
For instance, the general health of the economy may have an impact on the investment behavior of each firm. On the other hand,
certain industries exhibit a cyclical nature where they are heavily dependent upon the economy whereas other industries are not
cyclical and are not impacted by the economy. Therefore, another component of the disturbance term may be shocks that are
specific to the industry the company belongs to.

A naive approach to analysis may treat the system of equations as unrelated or independent. However, analysis of the residuals
from the system of equations may reveal a covariance structure that consists of cross-correlations between the equations.
Estimation of the parameters must take the inter-equation cross-correlation into account. Zellner (1962) introduced the seemingly
unrelated regression (SUR) models that takes into account the cross-equation correlation when analyzing systems of regression
equations. This chapter deals with using SAS to analyze SUR models.

The seemingly unrelated regressions (SUR) model is characterized by a system of n equations and is given by (Greene,
2003, p. 340)

yi =XiB; + &1,
Y. = XZBZ + &,
yn = Xan +£”'

In this formulation, y; is the T x 1 dependent variable, X; is the T x K; matrix of regressors, B, is the K; x 1 parameter vector,
and g; is the 7 x 1 vector of disturbances. This setup results in a total of n7T observations. Note that in order to estimate the
parameters of the system, we require each equation in the system to satisfy the constraint that 7 > K; .

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.
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An implied assumption in the above setup is that the conditional mean is not fixed across the groups as the regressors are not
restricted to be the same across all the equations. Therefore, we may also view this system within a panel data framework with n
cross-sections and 7 time periods.

Each equation in the SUR is assumed to satisfy all the assumptions of the classical OLS model. However, the disturbance terms
of the equations are assumed to be correlated, that is

E(s,-sz|X1,X2, s Xp) = oyly.

This implies that the covariance of the disturbance of the ith and jth equations are correlated and is constant across all
the observations. Writing the full disturbance vector as &=[gl & ... s,ﬂr, these assumptions imply that

E(e]X1,Xs,...,X,) =0 and E(ee” X, Xs,....X,) = Q. If we let £ = |o7;], then we can write E(eg” |X;,Xs,....X,) =
X ® Ir (Greene, 2003, p. 341).

8.2 ESTIMATION USING GENERALIZED LEAST SQUARES

The potential presence of inter-equation cross-correlations renders the OLS equation by equation estimation inefficient. A more
efficient approach is to use the generalized least squares (GLS) approach as described below (Greene, 2003, pp. 342-343).
If we stack the n equations, we get

Y. X1 0 . 0 Bl €]
\D) 0 X, ... 0 B, &

=1 . . . . || =XBe
Yu 0 0 e XM BM ey

where E(¢/X) =0 and E(¢”|X) = Q = £ ® I. The GLS estimator of B is therefore given by
Bos = X' (E' @ DX 'X"(Z ' @)y

with asymptotic covariance matrix [X” (27" @ I)X]~". Asis always the case, £ is assumed to be unknown and therefore the FGLS
method has to be used to estimate .

8.3 SPECIAL CASES OF THE SEEMINGLY UNRELATED REGRESSION MODEL

1. GLS is the same as equation-by-equation OLS if the system equations are uncorrelated. This is easy to show by realizing
that if o; = O for i # j, then X is diagonal and that the variance terms of each equation simply drop out of the GLS
estimator giving

(X1TX1 ) 71X1TYI

. (X7X2)"'X]y,
BoLs = . )

(X3 Xu) ' XLy

which is the equation-by-equation OLS (Greene, 2003, p. 343-344).
2. If the equations have identical explanatory variables, then GLS is equation-by-equation OLS.
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This is easy to show by first assuming that X; = X, = ... = X, = X, and realizing that X = X, ® Ir. Using this in the GLS
estimator and making use of basic properties of Kronecker products we can show that

Bos = X' DX 'X'(Z' @ 1)y
= (X'X.) 'XTy,

which is the equation-by-equation OLS estimator.

8.4 FEASIBLE GENERALIZED LEAST SQUARES

The discussion so far assumed that X is known. In practice, X is almost always unknown and therefore has to be estimated.
FGLS estimators (see Chapter 5) can be used to estimate B in this case. The analysis proceeds in two steps.

First, the OLS residuals for each equation are calculated using &; =y, —Xiﬁi, where &; is the residual vector for the ith equation.
The elements of X can then be constructed using

. 1
gjj = ?eiTej.
giving the FGLS estimator
- o1 -1 o—1
Brors = [XT(Z ® I)X} X'z oy

with asymptotic covariance matrix [XT()A:._1 @ 1)X] ™" (Greene, 2003, p. 344).
To illustrate the techniques involved in the estimation of B, we will make use of the Grunfeld’s Investment data from Greene
(2003). Greene’s version of the Grunfeld data set consists of a subset of five firms Grunfeld’s model observed over 20 years.
In the analysis that follows, the coefficients are unrestricted and are allowed to vary across firms. The downloaded data set has a
pooled data structure with common names for the model variables across all the firms. The input data set for analysis must
therefore be adjusted to get firm specific names for the explanatory variables. The following statements can be used to create
distinct variable names.

data GM CH GE WE US;
set SUR;
if firm=1 then output GM;
else if irm=2 then output CH;
else if firm=3 then output GE;
else if firm=4 then output WE;
else output US;
run;
data GM;
set GM;
rename i=i_gm f=f_gm c=c_gm;
run;
data CH;
set CH;
rename i=1i_ch f=f_ch c=c_ch;
run;
data GE;
set GE;
rename i=i_ge f=f_ge c=c_ge;
run;
data WE;
set WE;
rename i=i_we f=f_we c=c_we;
run;
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data US;
set US;
rename i=i_us f=f_us c=c_us;
run;
data grunfeld;
merge gm ch ge we us;
by year;
run;

We start the analysis of the Grunfeld data set by estimating the parameters of the model using pooled OLS. No change to the
original data set is required, and the following statements can be used. The analysis results are given in Output 8.1.

proc reg data=SUR;
model I=F C;
run;

The results indicate that both the firm’s market value and the value of the firm’s capital are highly significant in explaining the
variability in investment. The positive coefficients indicate that the firm’s investment will be higher if it’s market value and the
value of its capital is high.

The Grunfeld SAS data set consisting of separate variable names for each firm can be analyzed by using Proc Syslin. The
following statements can be used. Output 8.2 contains the analysis results. This procedure will give the OLS estimates for each
equation followed by the cross-equation covariance and correlation matrices. These are then followed by the FGLS estimates for

each equation.

proc syslin data=grunfeld SUR;
gm:model i_gm = f_gm c_gm;
ch:model i_ch =f _ch c_ch;

The REG Procedure
Model: MODEL1
Dependent Variable: I I

Number of Observations Read|100

Number of Observations Used|100

Analysis of Variance

Sum of Mean
Source DF |Squares| Square|F Value|Pr > F
Model 2|5532554 (2766277 170.81|<0.000]
Error 971570884 16195
Corrected Total|99|7103438

Root MSE 127.25831|R-Square|0.7789
Dependent Mean|248.95700(Adj R-Sqg|0.7743
Coeff Var 51.11658

Parameter Estimates
Parameter |Standard

Variable |Label DF| Estimate Error|t Value|Pr > [t]
Intercept |Intercept| 1|-48.02974(21.48017 —-2.24 0.0276
F F 1 0.10509| 0.01138 9.24| <0.0001
C C 1 0.30537( 0.04351 7.02| <0.0001

OUTPUT 8.1. Pooled OLS regression for the Grunfeld data.
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The SYSLIN Procedure
Ordinary Least Squares Estimation

Model

GM

Dependent Variable|i_gm

Label

I

Analysis of Variance

Source

DF

Sum of
Squares

Mean
Square |F Value

Pr > F

Model

2

1677687

838843.3 99.58

0.0001

Error

17

143205.9

8423.875

Corrected Total|l9

1820893

Root MSE 91.78167|R-Square|0.92135
Dependent Mean|608.02000|Adj R-Sg|0.91210
Coeff Var 15.09517
Parameter Estimates
Parameter|Standard Variable
Variable [DF| Estimate Error|t Value|Pr > |t]|[Label
Intercept| 1| -149.782|105.8421 -1.42 0.1751|Intercept
f gm 1] 0.119281(0.025834 4.62 0.0002|F
c_gm 1| 0.371445|0.037073 10.02| <0.0001|C
Model CH
Dependent Variable(i ch
Label I
Analysis of Variance
Sum of Mean
Source DF| Squares Square|F Value|Pr > F
Model 2131686.54(15843.27 89.86|<0.000Y
Error 17(2997.4441176.3203
Corrected Total|19([34683.99
Root MSE 13.27856 [R-Square|0.91358
Dependent Mean|86.12350(Adj R-Sg|0.90341
Coeff Var 15.41805
Parameter Estimates
Parameter|Standard Variable
Variable |[DF| Estimate Error|t Value|Pr > |t]|Label
Intercept| 1| -6.18996|13.50648 -0.46 0.6525|Intercept
f ch 1| 0.077948(0.019973 3.90 0.0011|F
c_ch 1| 0.315718(0.028813 10.96| <0.0001|C

OUTPUT 8.2. Grunfeld data analysis results using Proc Syslin SUR.




The SYSLIN Procedure
Ordinary Least Squares Estimation

Model GE
Dependent Variable|i_ ge
Label I

FEASIBLE GENERALIZED LEAST SQUARES

Analysis of Variance
Sum of Mean
Source DF| Squares Square|F Value|Pr > F
Model 2(31632.03]15816.02 20.34|<0.000Y
Error 17(13216.59|777.4463
Corrected Total|19|44848.62
Root MSE 27.88272|R-Square|0.70531
Dependent Mean|102.29000|Adj R-Sg|0.67064
Coeff Var 27.25850
Parameter Estimates
Parameter|Standard Variable
Variable [DF| Estimate Error|t Value|Pr > |t]||Label
Intercept| 1| —-9.95631|31.37425 -0.32 0.7548 | Intercept
f ge 1] 0.026551(0.015566 1.71 0.1063|F
c_ge 1| 0.151694|0.025704 5.90| <0.0001(C
Model WE
Dependent Variable|i_we
Label I
Analysis of Variance
Sum of Mean
Source DF| Squares Square|F Value|Pr > F
Model 2|5165.55312582.776 24.76<0.000Y
Error 1711773.234(104.3079
Corrected Total|19|6938.787
Root MSE 10.21312|R-Square|0.74445
Dependent Mean|42.89150|Adj R-Sg|0.71438
Coeff Var 23.81153
Parameter Estimates
Parameter|Standard Variable
Variable [DF| Estimate Error|t Value|Pr > |t]||Label
Intercept| 1| -0.50939(8.015289 -0.06 0.9501|Intercept
f we 1] 0.052894(0.015707 3.37 0.0037|F
c_we 1| 0.092406|0.056099 1.65 0.1179|C

OUTPUT 8.2. (Continued)
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Model us
Dependent Variable|i_us
Label I

Analysis of Variance
Sum of Mean
Source DF| Squares Square|F Value|Pr > F
Model 2[139978.1169989.04 6.6910.0072
Error 171177928.3(10466.37
Corrected Total|19|317906.4
Root MSE 102.30529|R-Square|0.44031
Dependent Mean|405.46000|Adj R-Sqg|0.37447
Coeff Var 25.23191
Parameter Estimates
Parameter|Standard Variable

Variable [DF| Estimate Error|t Value|Pr > |t]||Label
Intercept| 1| -30.3685|157.0477 -0.19 0.8490|Intercept
f us 1| 0.156571|0.078886 1.98 0.0635(F

c_us 1| 0.423866|0.155216 2.73 0.0142(cC

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Covariance
GM CH GE WE us
GM| 8423.88(-332.655| 714.74(148.443|-2614.2
CH| -332.65 176.320| —-25.15 15.655 491.9
GE 714.74| —-25.148 777.45(207.587 1064.6
WE 148.44 15.655| 207.59|104.308 642.6
US|-2614.19| 491.857|1064.65(642.571|10466.4
Cross Model Correlation
GM CH GE WE Uus
GM| 1.00000|-0.27295 0.27929|0.15836|-0.27841
CH|-0.27295 1.00000(-0.06792|0.11544| 0.36207
GE| 0.27929|-0.06792 1.00000({0.72896| 0.37323
WE| 0.15836| 0.11544| 0.72896|1.00000| 0.61499
UsS|-0.27841 0.36207| 0.37323|0.61499| 1.00000
Cross Model Inverse Correlation
GM CH GE WE Us
GM| 1.41160| 0.14649(-0.32667|-0.46056 0.74512
CH| 0.14649| 1.23373| 0.27615(-0.08670|-0.45566
GE|-0.32667 0.27615| 2.33055|-1.65117 (-0.04531
WE|-0.46056 |-0.08670 (-1.65117 3.16367|-1.42618
US| 0.74512|-0.45566 |-0.04531|-1.42618 2.26642

OUTPUT 8.2. (Continued).
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The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Inverse Covariance

GM

CH GE

WE Us

GM|0.000168

0.000120(-0.000128-0.00049140.000079

CH|0.000120

0.006997(0.000746|-0.000639-0.000335

GE[-0.000128

0.000746]0.002998|-0.005798}-0.00001¢

WE|[-0.000491-0.000639-0.005798

0.030330-0.001365

US|0.000079

~0.000335-0.000016~0.001365/0.000217

System Weighted MSE

0.9401

Degrees of freedom

85

System Weighted R-Square

0.8707

Model

GM

Dependent Variable

i

_gm

Label

Parameter Estimates

Parameter|Standard Variable
Variable |DF| Estimate Error|t Value|Pr > |t]|[Label
Intercept| 1| -162.364|97.03216 -1.67 0.1126 |Intercept
f gm 1| 0.120493]0.023460 5.14| <0.0001|F
c_gm 1| 0.382746|0.035542 10.77 <0.0001|C
Model CH
Dependent Variable(i_ch
Label I
Parameter Estimates
Parameter|Standard Variable
Variable [DF| Estimate Error|t Value|Pr > |[t]||Label
Intercept| 1| 0.504304|12.48742 0.04 0.9683|Intercept
f ch 1] 0.069546(0.018328 3.79 0.0014|F
c_ch 1| 0.308545]|0.028053 11.00] <0.0001(C
Model GE
Dependent Variable|i ge
Label I
Parameter Estimates
Parameter|Standard Variable
Variable |DF| Estimate Error |t Value|Pr > |t]|[Label
Intercept| 1| -22.4389|27.67879 -0.81 0.4287|Intercept
f ge 1] 0.037291(0.013301 2.80 0.0122|F
c_ge 1] 0.130783|0.023916 5.47| <0.0001|C
Model WE

Dependent Variable

i_

we

Label

OUTPUT 8.2. (Continued).
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Parameter Estimates
Parameter|Standard Variable
Variable |[DF| Estimate Error|t Value|Pr > |t]|Label
Intercept| 1| 1.088877|6.788627 0.16 0.8745|Intercept
f we 1| 0.057009|0.012324 4.63 0.0002(F
c_we 1| 0.041506(0.044689 0.93 0.3660]|C
Model uUs
Dependent Variable|i_us
Label I
Parameter Estimates
Parameter|Standard Variable
Variable |[DF| Estimate Error|t Value|Pr > |t]|Label
Intercept| 1| 85.42325|121.3481 0.70 0.4910(Intercept
f us 1| 0.101478(0.059421 1.71 0.1059|F
c_us 1| 0.399991|0.138613 2.89 0.0103(cC

OUTPUT 8.2. (Continued).

ge:model i_ge = f_ge c_ge;
we:model i_we = f_we c_we;
us:model 1_us = £_us c_us;

run;

The first part of the output gives the OLS equation-by-equation estimates of the parameters for each of the five firms. Notice
that the F test for the global hypothesis Hy: B; = B> = B3 =0 versus H;: Atleast one B # 0 is highly significant for each of the
five firms. The root MSE value is the highest for US and lowest for WE. The R* values for GM and CH indicates a good fit,
while the R* values GE and WE indicate a moderate fit. The R* value for US indicates a poor fit. Both explanatory variables are
highly significant for firms GM and CH. Market value is not significant in the model for GE, WE, and US at the 5%
significance level.

The OLS equation-by-equation output is followed by the cross-equation covariance and correlation matrices along with their
inverses. The diagonal elements of the cross-model covariance matrix are the variances of the residuals for the five firms. For
example, the variance of the residuals for GM is 8423.88. Taking the square root of this will yield 91.78, which is the root MSE of
the OLS model for this firm. The off-diagonal elements of this matrix display the values of the covariances between the OLS
residuals of each of the five firms. The cross-equation covariance is calculated by first calculating the residuals
(e;,i=1,...,M = 5) from the FGLS procedure for each firm and each time period. Let

E = [el e €3 €4 65}.
The covariance matrix is given by
1

TETE (Green, 2003, p. 322),

where T in Grunfeld’s model example is 20.
The cross-equation correlation is calculated by using the formula

p(x,y) = Cov(x,y)/(0:0y).

This results in all diagonal elements being equal to 1. To see how the off-diagonal elements are calculated, consider calculating
the correlation between the residuals of firms GM and CH. Using this formula, one gets

p(GM, CH) = —332.655 / (\/8423.88\/176.32) — —0.273.
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The cross-equation correlation matrix indicates high correlation between the residuals of GE and WE, and WE and US. The
inverse of both the cross-equation covariance and correlation matrices wraps up this portion of the output.

The last part of the output consists of the FGLS estimates of the parameters of the two explanatory variables for each of the five
firms. The output displays both the system weighted MSE and the system weighted R?. Note that the degrees of freedom associated
with the system weighted MSE is 17 x 5 = 85. The analysis results indicate that both market value and the value of stock of plant
and equipment are highly significant for firms GM, CH, and GE. The value of stock of plant and equipments is not significant for
firm WE. The market value is not significant for firm US.



SIMULTANEOUS EQUATIONS

9.1 INTRODUCTION

The previous chapters focused on single equations and on systems of single equation models that were characterized by dependent
variables (endogenous) on the left-hand side and the explanatory variables (exogenous or endogenous) on the right-hand side of
the equations. For example, Chapter 4 dealt with instrumental variables, where the endogenous variables were on the right-hand
side. This chapter extends the concept of systems of linear equations where endogenous variables were determined one at a time
(sequentially) to the case when they are determined simultaneously.

We begin our discussion of simultaneous equation models by considering the following wage—price equations

pr = Bywi + Bom; + &1,

Wy = a1p; + asly + &y,

where p, is the price inflation at time ¢, w, is wage inflation at time #, m, is the money supply at time 7, 1, is unemploymentrate time ¢,
&1, and &y, are the error terms with means 0 and constant variances a’% and a’%, respectively, and Y = (B4, B,, a1, @) are the model
parameters that need to be estimated. We also assume that the disturbance terms are uncorrelated. These equations are referred to
as structural equations. In the wage—price inflation equation, we have two structural equations and four unknown parameters.

The first equation describes the relation of price inflation to wage inflation and money supply. As wages increase so do prices as
demand for good and services tend to increase as well and this puts pressure on them. Furthermore, the increase in wage is typically
passed on to the consumer resulting in price inflation. There is also a positive relationship between money supply and price
inflation. The second equation describes the behavior of wage inflation vis-a-vis price inflation and the unemployment rate. As
prices increase, workers tend to demand higher wages but the demand is offset by the unemployment rate since a higher
unemployment rate tends to decrease the rate of wage increases as the demand of goods and services decreases and thus there is no
pressure on price.

Notice that both equations are required to determine the price and wage inflations. The variables p and w are therefore
endogenous variables. The unemployment rate and money supply are determined outside of the system of equations and therefore
exogenous.

9.2 PROBLEMS WITH OLS ESTIMATION

In this section, we will show why ordinary least squares estimation for simultaneous equations is inappropriate. Recall that a
critical assumption of OLS is that the explanatory variables are exogenous. This assumption is violated when an endogenous

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
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variable becomes an explanatory variable in another equation of the system. OLS estimates in this case will lead to biased and
inconsistent estimatiors. We will illustrate this by considering the first equation of the wage—price inflation system of
equations given above.

Consider the second equation in the wage—price inflation system. The expectation E(w;e|,) is given by

E(Wralt) = 0!1E(Pz6‘n) + aZE(Mzglt) + E(¢92t¢91z)-

Using the assumptions stated earlier, it can be shown that this simplifies to

E(wiey;) = a1E(pieny)
1
E(pien) = a—]E(w,e‘l,).

Taking the expectation E(p;&;) and substituting the above in it, we get
1
a—E(w,gl,) = BE(w,e1;) + anE(mey,) + E(ai).
1

Using the earlier assumptions, we can show that

o
— 0
I1—a1B,

E(wer) = 2 # 0.

Therefore, w, is endogenous with respect to £, and the OLS assumptions are violated. Using OLS, therefore, will lead to biased
and inconsistent estimators of the parameters in the first equation.
The nature of the bias can be shown by writing down the OLS estimate expression for 34

M~

1

(we—wW)(p:—D)

S
Il
I

S (w0

t=1

Simplifying this, we get

S (wi— ) S (w— )’

=1 =1

Asymptotically, the second term is simply the covariance between wage and money flow and is assumed to be zero based
on the wage—price inflation structural equations. Asymptotically, the last expression gives the covariance between wage
and the disturbance of the first equation and is nonzero as shown earlier. The denominator term is the asymptotic
variance of wage. The OLS estimate is therefore biased and inconsistent with the direction of the bias depending on
Cov(wy, ).

Ashenfelter et al. (2003, pp. 222-223) use the simple Keynesian model

=B+ By+ e
yi=c¢+i

to show the nature of the bias of the OLS estimator for 3,. Here, ¢, is the consumption at time ¢, y, is the income at time ¢, i, is
investment at time 7, &, is the disturbance with zero mean and variance o2, and B = (B, B, ) are parameters to be estimated. The
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authors show that the OLS estimator of 3, is biased upwards and is given by

2

. o
bias(B) = —F—,
B) = =gz
where
2 _
0. = Var(y,).

y

9.3 STRUCTURAL AND REDUCED FORM EQUATIONS

The wage—inflation system of equations given in Section 9.1 contains two structural equations in four unknown
parameters. The basic goal of simultaneous equation modeling is to provide estimates of the parameters in the structural
equations. A natural path to estimating these parameters can be seen by first expressing the endogenous variables in the
system of equations as functions of the exogenous variables in the system. The resulting equations are called reduced form
equations.

For the wage—price inflation structural equations, the reduced form equations can be obtained by substituting the equation for
wage in the equation for price and vice-versa, the equation of price in the equation for wage. To see how the reduced form equation
for price is constructed, consider

P = By (aip, + aau; + £2) + Bymy + &1

i = a1 p; + aafu; + Brey + By + &1
pi—a1B\pr = axB u; + Bom; + Brey + &y
@ B, Bigx + €u

= ur + m; +
l_alﬁ1t 1—a1B, ' 1—a18,

Pr

Proceeding in a similar fashion, we can get the reduced form equation for w,. The reduced forms are given by

B a3 e+ Bren
= ny Uy +

l—aB l—a1 84 1—a1 4
_aif, a; aey + &y
R Ty B T R )

Pr

The above approach for creating the reduced form equations from the structural equations should suggest an approach to
estimating the structural equation parameters. We could, in principle, conduct an OLS on the reduced form equations and
then attempt to extract the structural equation parameters from the reduced form parameters. Another option is to first run
OLS on the reduced form equations to get the predicted values of the endogenous variables. The predicted values of the
endogenous variables can then be used in an OLS in the structural equations to estimate the parameters of interest. We
will discuss estimation techniques in the next section. For now, we will move on to the system of equations in the more
general case.

As shownin Greene (2003, p. 382), the general structure of the structural equations at time ¢ with n endogenous and k exogenous
variables can be written as

anyn + -+ anym +Byxia + -+ Brxa = en
apyn + -+ anym + BipXn + -+ BoXn = &n

A 1pYr1 +--+ XY +ﬁlnxtl +---+ ,Bknxtk =&m-
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In matrix notation, the system of structural equations at time 7 can be written as y' T’ + x’B = &/, where

sz = [ytla"wytn]v
ayj;] @12 ...
a1 Ao Lo Oy
r: )
| Xnl Qp2 ... Opy |
X;T - [xf]>"'7-xl‘k]7
Bll Bl2 Bln
BZI 322 BZn
B = ,and
_Bkl BkZ e Bkn_
el =ler,..., e

Here, I is a n x n matrix of coefficients for the endogenous variables, y, is a n x 1 vector of endogenous variables, Bisa k x n

matrix of coefficients of the exogenous variables, x; is ak x 1 vector consisting of exogenous variables, and g,isan x 1 vector of
disturbances.

Assuming that I" is nonsingular, we can express the endogenous variables in reduced form as a function of the exogenous
variables and the random disturbances. The reduced form system of equations at time period ¢ is given by (Greene, 2003, p. 384)

yl = fx,TBI'_1 + stTl"_1

— T T
=x/II+v/,

where ITis ak x nmatrix containing the parameters of the reduced form equations and v, contains the disturbances of the reduced

form equations
If we apply this to the wage—inflation model, we get
Pr
Wy ’
m e
{ t], andslz[ h].
Uy €2t

1 —Q
F = 9 yt
=B 1
It is easily verified that the reduced form equation of the wage—inflation model at the 7th observation is given by

B:{—Bz 0 ] X,

0 —Q7

1 [e7] 1 o
—Bz 0 1-&131 1-(11[31 l_allg[ 1—(1161
[Pt Wt]**[mt Mt] +[81t 82t] s
0 —a) ,81 1 ﬁl 1
l—aiB; 1-aiB, -8, 1-aiB,

which simplifies to the reduced form equations given earlier.

9.4 THE PROBLEM OF IDENTIFICATION

In the ideal case, we would estimate the parameters of the reduced-form equation and then use these to estimate the parameters of
the structural-form equations. In most cases, however, the reduced form estimates do not provide direct estimates of the
parameters for the structural equation. It turns out that they only provide estimates of functions of the structural equation
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parameters. The problem of identification deals with whether we can solve the reduced form equations for unique values of the
parameters of the structural equations.

To lay the groundwork for whether the structural equation parameters can be estimated, consider the wage—price inflation
system of equations. The reduced form parameters are

B2
M, =—F2
! 1—a;B,
Biaa
I, = ;
2 1—a1B,
1_121=7OHB2 ;
1—a1B,
a
I1 .
2 S

It should be obvious that the knowledge of the four reduced form parameters will allow us to estimate the four structural form
parameters. That s, the ratio I, /Ty, gives us a; while the ratio I, /T1; givesus a. The values of 8, and 3, can be extracted in a
similar manner. Here, we say that the structural equations are identified. In the wage—price inflation system, we have four reduced
form parameters and four structural parameters, and we could solve the reduced form parameter equations easily to extract the
structural equation parameters.

9.4.1 Determining if the Structural Equations are Identified

Consider the following simple two-equation model with two endogenous and two exogenous variables

y1 = Boy2 + Bix1 + Box2 + &1,
Y2 = oY1 + ax; +axxy + &2.

It can be shown that the reduced form parameters are given by

m, _ Bo1 + B, 7
1—Byao
My, = Boaz + B, 7
1_.80010
o) + «
HZ[ - Bl 0 1 )
1—Bya
Baao +
Iy =
1—Byao

It should be obvious that the knowledge of the four reduced form parameters will not allow us to estimate the six structural
equation parameters. However, assume that 3, is 0. In this case, we can easily show that

Bo = 2 /Ty,
1,
B = HII_EHZI-

Similarly, if we assume that o = 0, then it can be shown that
ag = Iy /T,

1T
a) = Hzl—fnnll-
12
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In the first case, we say that the structural equation for y; is identified and in the second that the structural equation for y, is
identified.

It should therefore be clear that one approach to estimating the structural equation parameters is to put restrictions on the
structural equations. In the example used, both structural equations were identified by eliminating the exogenous variable x,. This
methodology can be formalized.

When no restrictions were placed on the structural parameters of the above equations, the equations were not identified. In this
case, no exogenous variables were removed and both structural equations had one endogenous variable on the right-hand side.
When one exogenous variable was removed from the structural equations, we were able to estimate the structural equations.

In general, if we let k be the number of excluded exogenous variables in the structural equation and let m be the number of
included endogenous variables in the structural equation, then the structural equation is identified if k = m. On the other hand, the
structural equation is not identified if k < m. See Ashenfelter et al. (2003, pp. 223-226) for a good discussion of this. Greene
(2003, pp. 390-392) extends this to the general case.

9.5 ESTIMATION OF SIMULTANEOUS EQUATION MODELS

The two-stage least squares method is the most commonly used method for estimating parameters in a simultaneous equation

system. The approach involves first using OLS to estimate the reduced form equations. The predicted values of the endogenous

variables are then used in an OLS regression of the identified structural form equation of interest to estimate the parameters.
A brief description of the method is summarized here. First, recall that each structural equation is written so that an endogenous

variable on the left-hand side of the equation is expressed as a function of endogenous variables and the exogenous variables on the

right-hand side of the equation. Thus, for a system with n equations, there are n endogenous variables. If we let y; represent the
endogenous variable for the j th equation, then we can write the structural equation as

Here, Y; isaT x n; matrix of n;included endogenous variables on the righthand, @;isan; x 1 vector of coefficients for Y;, Xjisa
T x k; matrix of included exogenous variables, B, isthe k; x 1 vector of coefficients for X; and g; is the 7' x 1 disturbance vector.
Let, W; = [YJ* X;] and 8; = [@; B;], then the jth equation can be written as
yj:Wj0j+aj j=1,...,n.

A naive approach to analysis is to conduct an OLS of y; on W; to get

A Tw w7

0 = (W/ Wj) W; Yj-
As shown earlier, OLS estimates are biased and inconsistent. Greene (2003, p. 396) gives an expression of the OLS estimates and
discusses the bias in the general setting.

The 2SLS method involves first conducting an OLS of the included endogenous variables Y/* on all the exogenous variables in
the system of equations. If we denote the predicted values of Y; as Y; then the 2SLS estimator is given by

O, = (W W) ' Wy,

where VVJ = LYJ*XJJ . The asymptotic variance—covariance matrix for the 2SLS estimator is given by
Va”(élv,j) =0; LVYT VAVJL

where

(yjiwfélvaj)T(ijwjé[V,j)

O'j: .

T
See Greene (2003, pp. 398-399) for details.
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We will illustrate computing the 2SLS estimators for a labor-wage equation. Ashenfelter et al. (2003, p. 233) gives a
simultaneous system consisting of two equations, one for labor and one for wages, for the US agricultural labor market. The
authors provide the equations and a description of the variables list that is summarized below.

In(Li) = By + B1In(W;) + Byin(Land;) + B3In(RE;) + Byln(Othexp;) + Bsin(Sch;) + &
In(W;) = ap + anln(L;) + aaln(Sch;) + azln(Othwag;) + ;.

Here, L = farm labor by state as measured by total number of worked days, W= wages per hour of farm workers, RE =research
and development expenses, Land = value of farmland capital, Othexp = operating expenses besides labor, Sch = median number of
years of formal schooling of males, and Othwag = weighted average of wages for nonfarm workers. Note that the variables Land W
are endogenous while the other variables are exogenous. It is easy to show that the labor equation is exactly identified while the
wage equation is overidentified.

The following statements can be used to conduct an OLS regression on the labor equation.

data SE;
set SE;
L=1log (labor) ;
W=1log (wage) ;
L_re=Log (RE) ;
L_Land=log(land) ;
L_Othexp=1og (othexp) ;
L_Sch=1log(sch) ;
L_Othwag=Log (othwag) ;
run;
proc reg data=SE;
model L=W L_Land L_re L_Othexp L_Sch;
run;

Output 9.1 contains the analysis of the data using standard OLS. Recall that OLS gives biased and inconsistent estimators of the
structural model parameters. Notice that the parameters for wages, value of land, R&D expenditure, and other nonlabor expense
are highly significant. The coefficient for schooling is not significant. The sign for the wages coefficient makes intuitive sense. As
wages increase, employers cut back on labor and therefore the number of labor days should decrease.

The following statements can be used to estimate the labor equation by the 2SLS method. The analysis results are given in
Output 9.2. There are four main statements in the Proc Syslin procedure as it relates to the labor equation. First, the option 2SLS is
used to request the two-stage instrumental variable estimator. Second, the endogenous statement lists out the two endogenous
variables in the system. Next, we list out the instruments that will be used in the estimation. This is followed by the model
statement.

proc syslin data=SE 2SLS;
endogenous L W;
instruments L_land L_RE L_Othexp L_Sch L_Othwag;
Labor: model L =W L_Land L_RE L_Othexp L_Sch;
run;

The analysis indicates that the global F test for the model is significant (p value < 0.001). The value of the statistic is very
close to the one obtained by OLS. As we saw in the OLS output, schooling is not significant whereas all the other model variables
are significant. However, the sign associated with schooling is positive compared to negative in the OLS model. The sign for the
intercept is also different while the other variables have the same sign as in the OLS model. The values of the coefficient of
determination and the root MSE are very close to what was obtained from OLS.

Since the model used is a log—log model, we can interpret the coefficients as follows (taking research and development as an
example): If the research and development expense increases by 10%, then farm labor increases by 0.10 x 0.47 = 0.047 = 4.7%
days.

The 2SLS estimator is based on the assumption of homoscedastic disturbances. White’s estimator for the variance covariance can
be used if this assumption s violated. The resulting estimator is called the generalized method of moments (GMM) estimator. To see
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The REG Procedure
Model: MODEL1

Dependent Variable: L

Numbe

r of Observations Read|39

Numbe

r of Observations Used|39

Analysis of Variance

Sum of Mean
Source DF| Squares| Square|F Value|Pr > F
Model 5(11.01673|2.20335 45.12<0.0001]
Error 33| 1.61160(0.04884

Corrected Total

38(12.62833

Root MSE 0.22099|R-Square|0.8724

Dependent Mean|10.29862|Adj R-Sg|0.8530

Coeff Var 2.14582

Parameter Estimates
Parameter |Standard

Variable [DF| Estimate Error |t Value|Pr > |t]
Intercept| 1 0.87573] 1.94350 0.45 0.6552
W 1| -1.10577] 0.28931 -3.82 0.0006
L_Land 1 0.31180| 0.08373 3.72 0.0007
L re 1 0.44460( 0.11402 3.90 0.0004
L_Othexp 1 0.26454| 0.11278 2.35 0.0252
L_Sch 1| -0.26232| 0.60820 -0.43 0.6691

OUTPUT 9.1. OLS analysis of the labor equation.

The SYSLIN Procedure

Two-Stage Least Squares Estimation

Model LABOR

Dependent Variable L

Analysis of Variance

Sum of Mean
Source DF| Squares Square|F Value|Pr > F
Model 5(10.59918(2.119837 41.63([<0.0001
Error 33/1.680444]0.050923

Corrected Total

38|12.62833

Root MSE 0.22566|R-Square|0.86315
Dependent Mean|10.29862|Adj R-Sqg|0.84242
Coeff Var 2.19117

Parameter Estimates
Parameter|Standard
Variable [DF| Estimate Error|t Value|Pr > |t]
Intercept| 1| -0.85913]|3.306459 -0.26 0.7966
W 1| -1.44928|0.601228 -2.41 0.0217
L_Land 1] 0.328677]0.089282 3.68 0.0008
L_re 1] 0.468702]|0.122089 3.84 0.0005
L _Othexp 1| 0.249787|0.117341 2.13 0.0408
L_Sch 1] 0.342098]1.111155 0.31 0.7601

OUTPUT 9.2. 2SLS analysis of the labor equation.

149
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the construction of this estimator, first note that the 2SLS estimator can be written as (Greene, 2003, p. 399)
By, ; = (W] X)(X"X) ™' (X"W))] (W] X) (X"X)"'XTy;,

where (X”X) is called the weight matrix. Replacing this with White’s estimator

T
T Ta 2
Soj= > XX (Vi—wi0.))

t=1

The MODEL Procedure

Model Summary
Model Variables
Endogenous

Exogenous

Parameters

Equations
Number of Statements

Plrla|le|r|o

Model Variables|L W L _Land L _re L _Othexp L Sch
Parameters b0 bl b2 b3 b4 b5
Equations|L

The Equation to Estimate is
L =|F(b0(1), bl(W), b2(L_Land), b3(L_re), b4 (L Othexp), b5(L_Sch))
Instruments|1l L Land L re L_Othexp L Sch L _Othwag

NOTE: At GMM Iteration 0 convergence assumed because OBJECTIVE=1.095301E-24 is almost zero (<1lE-12).

The MODEL Procedure
GMM Estimation Summary

Data Set
Options
DATA=|SE

Minimization Summary

Parameters Estimated 6
Kernel Used PARZEN
1(n) 2.080717
Method Gauss

Iterations 0

Final Convergence
Criteria

R 1
PPC 5.23E-12
RPC

Object .
Trace(S) 0.050923
Objective Value| 1.1E-24

Observations
Processed

Read 39
Solved 39

OUTPUT 9.3. GMM estimators for the labor equation.
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The MODEL Procedure

Nonlinear GMM Summary of Residual Errors

DF DF Adj
Equation|Model |Error SSE MSE [Root MSE|R-Square R-Sqg
L 6 33|1.6804|0.0509 0.2257 0.8669|0.8468

Nonlinear GMM Parameter Estimates
Approx

std Approx
Parameter |Estimate Err[t Value|Pr > |t]
bo -0.85913(3.1700 -0.27 0.7881
bl -1.44928|0.5905 -2.45 0.0196
b2 0.328677(0.0904 3.64 0.0009
b3 0.468702(0.1092 4.29 0.0001
b4 0.249787(0.1332 1.88 0.0696
b5 0.342098|1.2268 0.28 0.7821

Number of
Observations |Statistics for System

Used 39|Objective 1.095E-24
Missing 0|Objective*N|4.272E-23

OUTPUT 9.3. (Continued)

gives the GMM estimator (Greene, 2003, p. 401). Notice the similarity in the construction of White’s estimator to the one used in
Chapter 5. Also, notice the GMM estimator is constructed in three steps. First,a2SLS is used to get @ 1v, j- Inthe second step, White’s
estimator is calculated. In the third step, this is used as a weight matrix to calculate the robust 2SLS estimator.

We will illustrate this method on the labor equation. We will use Proc Model to estimate the GMM estimator since Proc Syslin
does not have the option to perform a GMM analysis. The following SAS code can be used. The analysis results are given in Output
9.3. The procedure statements start off with specifying the model. Note the coefficient names are not unique and can be changed.
However, the variable names have to be identical to the ones used in the data set. Next, we specify the endogenous and exogenous
variables. These are then followed by specifying the instrument variables and requesting a model using GMM estimation. Proc
Model can fit the OLS and the 2SLS models. We used Proc Reg and Proc Syslin to minimize the output that is produced by using
Proc Model. Notice that the parameter estimates and the model diagnostic statistics are very similar to the ones from 2SLS
estimation.

Proc Model
L=b0+b1*W+b2*L_Land+b3*L_RE+b4*L_Othexp+b5*L_Sch;
Endogenous W;
Exogenous L_Land L_RE L_Othexp L_Sch;
Instruments L_Land L_RE L_Othexp L_Sch L_OTHWAG;
Fit L/GMM;

Run;

9.6 HAUSMAN'’S SPECIFICATION TEST

Hausman’s specification test can be used to test whether an included exogenous variable in a simultaneous equation is
endogenous. As with all specification tests by Hausman we used in Chapters 4 and 7, this test compares two estimators, both of
which are consistent under the null hypothesis of exogeneity but only one is consistent under alternative hypothesis of
endogeneity.

Details of the Hausman’s specification test as it applies to simultaneous equation models can be found in Greene (2003,
pp-413-415). The analysis can easily be done in SAS by using the Proc Model procedure. The following statements (labor—wage
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data being used) can be used to conduct the Hausman’s specification test comparing the OLS estimates with the 2SLS estimates.
We did not include the output for the test as the OLS and 2SLS outputs were already provided. The p value for the testis around 0.90
and indicates that there is no gain in using the 2SLS model over the OLS model.

proc model data=SE;
L = b0+bl1*W+b2*L_Land+b3*L_RE+b4*L_Othexp+b5*L_Sch;
W=al+al*L+a2*L_Sch+a3*L_Othwag;
ENDOGENOUS L W;
EXOGENOUS L_land L_RE L_Othexp L_Sch L_Othwag;
fit L/ols 2sls hausman; ;
instruments L_land L_RE L_Othexp L_Sch L_Othwag;
run;
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DISCRETE CHOICE MODELS

10.1 INTRODUCTION

The preceding chapters were focused on discussion of modeling techniques where the responses were continuous. In practice,
we often encounter responses that are discrete. For example, direct marketing companies often model the response behavior of
consumers receiving an offer to buy their products. Here, y, the response variable, equals 1 if the consumer responds to the mail
offer, and it equals O otherwise. Direct marketing companies also build conversion models where again the response variable
equals 1 if the consumer’s inquiry about a mail offer results in a sale; the response variable equals 0 otherwise. Another example
involves attrition models built by insurance companies that predict the likelihood that an existing consumer will cancel his or her
policy to take up anew policy with a competitor. Here, the response variable equals 1 if the consumer cancels a policy, and it equals
0 otherwise. Attrition models can also be built by using duration models but the common approach in industry is to treat the
attrition response as O or 1. A common theme in each example is the binary nature of the response variable. Of course, the response
variable can assume more than two discrete values. This chapter deals with estimating parameters of models where the distribution
of the response variable is not continuous but discrete. We will focus our attention on logistic regression with dichotomous
responses, and Poisson regression.

By definition, the set of plausible values of a discrete random variable can be placed in a 1:1 correspondence with a finite or a
countable infinite set. Some examples of discrete random variables are as follows:

1. The number of customers walking into a bank between 12 noon and 1 p. M. Here, the response variable can assume values
0,1,2,....

2. Theresponse of a consumer to a mailed offer for a new credit card or auto insurance. Here, the response variable can assume
one of two possible values: 1, response; 0, no response.

3. The views on abortion of an individual can be measured as 1, strongly agree; 2, agree; 3, neutral; 4, disagree; and 5, strongly
disagree. Here, the response variable is ordinal as the values have a natural rank.

4. The mode of transportation chosen by a commuter. The choices can be classified as 1, drive; 2, ride-share; 3, bus; and so on.
Here, the values cannot be ordered, and therefore the random variable is called a discrete nominal variable.

5. A consumer’s choice of a fast-food restaurant among several available brand names. This is similar to the example
presented in (4).

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.

153



154  DISCRETE CHOICE MODELS
10.2 BINARY RESPONSE MODELS

In this section, we will discuss techniques for modeling a response variable where there are two possible outcomes (0 and 1) and a
set of explanatory variables x, which is assumed to influence the response. To illustrate this, consider a response model where a
person either responds to an offer in the mail (y = 1) or does not (y = 0). Furthermore, assume that a set of factors such as age,
occupation, marital status, number of kids in the household, and so on, explains his or her decision and that are captured in a vector
of explanatory variables x. First note that the response variable is a Bernoulli random variable with mean

E(y[x) =1 x P(y = 1[x) + 0 x P(y = 0[x) = P(y = 1|x) = P(x),
where the probability function P(x) denotes the dependence of the response variable on x. Also note that

Var(y[x) = E([X)~[E(v[x))* = P(x)(1-P(x)).

We will denote the probability function as P(x, ), where f measure the impact of x on the probability of response P(y = .|x).
Using the change in notation, we can write

P(y = 1|X) :P(X7B)7
P(y = 0x) = 1-P(x,B).

Our objective is to estimate B and given that E(y|x) = P(x, B ), a naive approach to estimation of the parameters may start off by
utilizing the traditional OLS method on the linear probability model

yvi=xB+sg, i=1,....n

However, as the next section illustrates, there are fundamental problems with OLS estimation when the response variable is
dichotomous.

10.2.1 Shortcomings of the OLS Model

There are three main reasons why the OLS model should not be used to model discrete choice data (Agresti, 1990; Greene 2003).
They are

1. Nonnormal Disturbances: Notice that the response variable y; is binary and is either O or 1. Therefore, the disturbance &; is
also binary and has only two possible outcomes: &; = 1—x! B with probability P(x;, B) and &; = —x! B with probability
1—P(x;, B). Therefore, the error terms are not normally distributed. This poses problems in any inference on the model
parameters (hypothesis tests, confidence intervals, etc.).

2. Heteroscedastic error: The linear probability model violates the assumption of homoscedastic disturbances. It is easy to
see this by realizing that

Var(g;|x;) = Var(y;|x;) = P(x;,8)(1—P(x;, B))-

Therefore, the variance of the disturbance depends on E(y;|x;) = P(x;, B) and as the mean changes so does the variance.
Therefore, the homoscedasticity assumption is violated.

3. The conditional expectation, E(y;|x;) = P(x;,B), is a probability and it must be bounded by 0 and 1. In the linear
probability model E(y;|x;) = x!B, which is defined over the range (—oo, 00) and therefore does not guarantee that the
conditional expectation will be bounded.

An alternative to the OLS model is to use weighted least squares (WLS) to account for the heteroscedasticity, with weights

defined asw; = (XITQ) X (lfxlT[g) with B calculated from OLS. This is a two-step process where in step 1, OLS would be used
to get an estimate of B. The predicted value for y; given by the first term under the square root in w; would then be used to calculate
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the weights for each observation. The weights would then be used in step 2 to estimate 8. The WLS model thus becomes (Chapter
5, Myers, 1990, p. 316)

T
Vi X; &i * * *
Wi (w.)‘” o OT = xTB e

The WLS would ensure homoscedasticity but would not ensure that the conditional mean x! B is bounded by [0,1].
Estimation of B involving more efficient techniques exist and will now be discussed. Specifically, we will transform the
conditional mean by assuming either the probit or the logit distribution of the probability function P(x, B).

10.2.2 The Probit and Logit Models

As shown in Agresti (1990), by assuming a continuous distribution for P(x, B), the conditional expectation x! B can be bounded in
the interval [0, 1]. There are two distributions that are commonly used: the normal and the logistic distribution.
If P(x,B) is taken to be the cumulative standard normal distribution, then the resulting model is a probit model. That is,

P(x,B) = F(x'B),

t
where F(t) = [ f(s)ds with f(s) being the probability density function of the standard normal distribution.
—0Q
If
B

_ T
1 + eXTB - G(X B)

P(x,B)

then we have the logit model where G(x) is the logistic cumulative function given by

_oexpx) 1
Glx) = 1 +exp(x) 1+ exp(—x)’

Itis trivial to see that in both cases, P(x, B) is bounded in the interval [0,1]. Agresti (1990, p. 105) discusses the complementary
log-log model as another alternative to modeling binary response variables. However, the probit and logit distributions are the two
most commonly used to model binary response variables and we therefore focus on estimation techniques involving these two
distributions.

Notice that estimation using maximum likelihood methods will have to be used since the parameter 8 is now no longer a linear
function of P(x, B). The standard approach is to use the OLS estimates as the initial values for the MLE and then to iterate until
convergence.

10.2.3 Interpretation of Parameters

Asdiscussed in Wooldridge (2002, p. 458), proper interpretation of the model parameters for the Probit and Logit models is crucial
for successful implementation of the model. To see this, consider the formulation of the probit model where P(x, B) = F(x'B)
where F(xTB) is the cumulative normal distribution. Taking derivatives of this with respect to x we get (Greene, 2003, p. 667)

OP(x,B) B AF(x"B)

where f (#) is the normal probability density function. Therefore, the marginal effects depend on x via the density function. It can
be shown that the derivative of the conditional expectation for the logit model is given by

w — G(x'B)[1-G(xB)|B.
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Thus, the interpretation of B must be based on calculations done at a prespecified value of the explanatory variables x. A common
approach is to interpret the model parameters at the mean, X. If a variable in x contains a dummy variable, then the marginal effect
of the variable can be computed as (Greene, 2003, p. 668; Wooldridge, 2002, p. 459)

Py = 1|i(_d>,xd =1)-P(y = O|X(_d),xd = O)

where x, denotes that the explanatory variables contains a dummy variable and X 4) is the mean vector of the other variables in the
model.

10.2.4 Estimation and Inference

The method of maximum likelihood is used to estimate the parameters because both the Probit and the Logit models are nonlinear
in B. To start our discussion of model estimation, assume that we have an independent random sample (y;, x;), where i = 1,... ,n
from the Bernoulli distribution with probability P(x;, B). Recall that the probability density function of a Bernoulli random

variable, x, is given by f(x) = p*(1—p)' ™, where x = 0, 1, and p is the probability of success. Collecting all n observations and
assuming independence gives the likelihood function

B|Y) HPr yl|xl7

= HPI'(y, = O|Xi7 B)l_ylpr(yi = 1|Xi7 B)yi:
i=1
- 1

= [[01-P(x: B [P(x:, BT
i=1

Taking the log of L = L(Bly, X) yields
Z{yl In P(x;,B) + (1—y;) In[1-P(x;, B)]}.
It can easily be shown that the log-likelihoods for the probit and logit models are as follows:

Z{y, InF(x'B) + (1—y;)In[1—F(x/B)]} for the Probit model, and

= i{yi InG(x'B) + (1—y;) In[1-G(x!B)]} for the Logit model.

The maximum likelihood parameters are found by taking the derivative of the log-likelihood equations, setting them to
zero and then solving for the unknown parameters. The first-order conditions are given by

LB = Y2+ 1) .
i=1 !

where p; is the derivative of P; with respect to x;.
Extending this to the Probit model, we get

RN yi — @(x]B) T
LB = 2 oy« 1 - oarpy VN B
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whereas for the Logit model we have

B 1 exp(xiTB)
L(B) = Z Yi— HTP(X,-TB)

As shown in Greene (2003, p. 671), it can be shown that the first-order condition for the Logit model can be written as
n
= Z(yi—Gi)X,- =0.
i=1
The Hessian (second-order condition) for the Logit model is given by

dlnL .
== — G,‘(l—Gi)XiXIT
TS

The Newton—Raphson method is used to obtain a solution for these likelihood equations. The Hessian calculated in the final
iteration is the estimated covariance matrix of the coefficient vector.

10.2.5 The Newton—-Raphson Method for the Logit Model

The Newton—Raphson algorithm to obtain a solution for the likelihood equation of the Logit model can be summarized as follows
(Agresti, 1990):

1. Start with an initial set of estimates, [:},:O. Most often, the starting values are simply the OLS estimates. Here, t = 0 simply
denotes the starting point.

2. Calculate the estimated value of the coefficient vector attime 7 + 1 as givenby Bt 1= Bt H g, where g, is the gradient
vector defined as g, = y,—G, and H, is the Hessian matrix. Here, G, is the predicted probablllty of time .

3. Iterate until the convergence criteria is reached. That is, until the difference of consecutive B values are insignificant.

We will now illustrate the Newton—Raphson algorithm to calculate the parameters (assuming a Logit model) for an
unemployment data set arising from a sample of 4877 blue collar workers who lost their jobs in the United States between
1982 and 1991 (McCall, 1995). All individuals in this study is assumed to have applied for unemployment benefits. Note that this
data was also analyzed by Verbeek (2004, pp. 197-199). A description of the variables was given by the author and is summarized
here. The variables in the data are as follows:

Y is the response variable and takes a value of 1 if the unemployed worker received unemployment benefits.
Age is the age of the subject.

Age? is the square of the Age variable.

Tenure is the years of tenure at the last job.

Slack is an indicator variable that equals 1 if the subject was fired because of poor performance.
Abol is an indicator variable that equals 1 if the subject’s position was eliminated.

Seasonal is an indicator variable that equals 1 if the subject was a temporary worker.

NWHITE is an indicator variable that equals 1 if the subject’s race is nonwhite.

School12 is an indicator variable that equals 1 if the subject has more than 12 years of education.
Male is an indicator variable that equals 1 if the subject is a male.

SMSA is an indicator variable that equals 1 if the subject lives in a SMSA.

Married is an indicator variable that equals 1 if the subject is married.

DKIDS is an indicator variable that equals 1 if the subject has kids.

DYKIDS is an indicator variable that equals 1 if the subject has young kids.

YRDISP records the year when the job was lost. Here, 1982 =1 and 1991 = 10.
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RR is the replacement rate that is the ratio of the benefits received versus the last recorded weekly earnings.

RR?2 is the square of RR.

Head is an indicator variable that equals 1 if the subject is the head of a household.
StateUR is the state unemployment rate.

StateMB is the maximum benefits available for a given state.

The following Proc IML code can be used.

* Read the data file and scale age squared. ;
libname in "C:\Temp";
data test;
set in.unemp;
age2=age2/10;
run;
proc iml;
* Read the data intomatrices and calculate some constants. ;
use test;
read all var {'rr’ 'rr2’' "age’ 'agel2'’ 'tenure’
"slack’ "abol’ 'seasonal’ 'head’ 'married’ 'dkids’
‘dykids’ ‘smsa’ ‘nwhite’ 'yrdispl’ ‘schooll2’ 'male’
"stateur’ 'statemb’} into X;
read all var {'y’} into Y;
n=nrow (X) ;
X=J(n,1,1)I1X;
c=ncol (X) ;
* Calculate an initial estimate of the parameter vector. ;
Beta=inv (X' *X) *X' *y;
* Start the Newton-Raphson procedure. ;
Col_One=J(4877,1,1);
do index=1 to 5;
PI=exp (X*Beta) / (l+exp (X*Beta)) ;
Temp_PI=Col_One-PI;
Diag_PI=Diag(PI#Temp_PI) ;
COV=inv (X’ *Diag_PI*X) ;
Beta_New=Beta+COV*X'’'* (Y-PI) ;
DIFF=sum(abs (BETA_NEW-BETA) ) ;
print DIFF;
if DIFF<0.00001 then
do;
print 'The estimates of the coefficients are:
print Beta_New;
SE=sqgrt (vecdiag (COV) ) ;
print ‘The estimated standard errors are:’;
print SE;
stop;
end;
beta=beta_new;
end;
run;

The analysis results are given in Output 10.1. Notice that the test statistic value and the p values were not computed here. They
can be easily computed by incorporating additional statements in the code provided. We will discuss the methodology when we

interpret the output from Proc Logistic.
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IThe parameter estimates and their standard errors are:l

OUTPUT_TABLE

BETA SE
INTERCEPT|—2.8005]|0.6042
RR 3.0681|1.8682
RR2 —4.8906(2.3335
AGE 0.0677]0.0239
AGE2 —0.0597(0.0304
TENURE 0.0312(0.0066
SLACK 0.6248(0.0706
ABOL —0.0362]0.1178
SEASONAL 0.2709(0.1712
HEAD —0.2107(0.0812
MARRIED 0.2423(0.0794
DKIDS —0.1579(0.0862
DYKIDS 0.2059(0.0975
SMSA —0.1704|0.0698
NWHITE 0.0741(0.0930
YRDISPL —0.0637(0.0150
SCHOOL12 |—-0.0653|0.0824
MALE —0.1798]0.0875
STATEUR 0.0956(0.0159
STATEMB 0.0060(0.0010

OUTPUT 10.1. Proc IML output for the logistic model of unemployment data.

The following statements can be used to fit an OLS model. The analysis results are given in Output 10.2. Note that this is the
incorrect method of analyzing data and we include it here simply for comparing the results to the results obtained by using logistic
regression.

proc reg data=test;
model y=rr rr2 age age2 tenure slack abol
seasonal head married dkids dykids smsa nwhite
yrdispl schooll2 male stateur statemb;

run;

The following statements can be used to fit a Logit model to the unemployment data. Note that the model statement contains the
option “event=1" that forces the procedure to model the probability of a response. The option “descending” in the first line can be
used to achieve the same results. The analysis results are given in Output 10.3.

proc logistic data=test;
model v (event='1")=rr rr2 age age2 tenure slack abol
seasonal head married dkids dykids smsa nwhite
yrdispl schooll2 male stateur statemb;

run;

We will now provide details about the output produced by Proc Logistic.

The first table gives basic model information that includes the names of the data set and the response variable, the number of
levels of the response variable (here two since the response is binary), and type of model (logit), and the optimization technique
used by the program (Fisher’s scoring).

The next three tables give information on the number of observations in the data set and the number of observations that were
used to estimate the model. These numbers will be different if there are missing observations in the data set. The next table gives
the response profile. There are 1542 nonresponders and 3335 responders. Therefore, out of the total number of individuals in the
study, 3335 unemployed workers applied for and received unemployment insurance while the remaining 1542 applied for
unemployment insurance but did not receive insurance.
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The REG Procedure
Model: MODEL1
Dependent Variable: y

Number of Observations Read|4877

Number of Observations Used|4877

Analysis of Variance

Sum of Mean
Source DF Squares| Square|F Value|Pr > F
Model 19 70.55319|3.71333 18.330.0001
Error 4857| 983.90037(0.20257
Corrected Total|4876]|1054.45356

Root MSE 0.45008|R-Square|0.0669
Dependent Mean| 0.68382|Adj R-Sg|0.0633
Coeff Var 65.81857

Parameter Estimates
Parameter Standard
Variable |DF| Estimate Error|t Value|Pr > |t]
Intercept| 1| -0.07687 0.12206 -0.63 0.5289
rr 1 0.62886 0.38421 1.64 0.1017
rr2 1] -1.01906 0.48095 -2.12 0.0342
age 1 0.01575 0.00478 3.29 0.0010
age2 1| -0.01459 0.00602 —2.43 0.0153
tenure 1 0.00565 0.00122 4.65| <0.0001
slack 1 0.12813 0.01422 9.01] <0.0001
abol 1] -0.00652 0.02483 -0.26 0.7928
seasonal 1 0.05787 0.03580 1.62 0.1060
head 1| -0.04375 0.01l664 —-2.63 0.0086
married 1 0.04860 0.01613 3.01 0.0026
Parameter Estimates
Parameter Standard

Variable |DF| Estimate Error|t Value|Pr > |t]

dkids 1] -0.03051 0.01743 -1.75 0.0802

dykids 1 0.04291 0.01976 2.17 0.0299

smsa 1] -0.03520 0.01401 —2.51 0.0121

nwhite 1 0.01659 0.01871 0.89 0.3753

yrdispl 1] -0.01331 0.00307 —4 .34 <0.0001

schooll2 1] —0.01404 0.01684 -0.83 0.4047

male 1] -0.03632 0.01781 —-2.04 0.0415

stateur 1 0.01815 0.00308 5.88 <0.0001

statemb 1 0.00124|0.00020393 6.08 <0.0001

OUTPUT 10.2. Proc Reg output for the linear model of the unemployment data.

The Model Fit Statistics table gives three statistics that can be used to assess the fit of the model. The first column gives the
model fit statistics for the model with only the intercept term while the second column adjusts the values to account for the addition
of explanatory variables to the model. Smaller values of all three statistics are desirable.

The next table contains the chi-square test statistic value and the corresponding p value for the Global Null Hypothesis that
none of the coefficients in the model are significant versus the alternative that at least one of the coefficients is significant. The chi-
square value for the likelihood ratio is simply the difference between the log-likelihood values from the previous table. That is, it is
computed by taking the difference 6086.056 — 5746.393 =339.663. The p value indicates that the overall model is highly
significant.
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The next table gives the parameter estimates, their standard errors along with the individual chi-square values and the
associated p value. The Wald’s chi-squared test statistic can be computed by taking the square of the ratio of the parameter estimate
to its standard error. For example, the Wald’s chi-squared value for the age variable is given by

0.0677\ >
(0.0239) = 8.02.

This can easily be programmed into Proc IML and then the PROBCHI function can be used to calculate the p values.

There are several variables that are significant in the model. As an example of how to interpret the variables consider the two
state variables and the slack variable. All three are highly significant. The significance of the state variables indicate that the higher
the state’s unemployment rate and the higher the benefits allowed the more likely it is that an employed person will receive
unemployment benefits. The variable slack indicates that a person whose job was terminated because of poor performance will
have a higher likelihood of receiving employment benefits.

The next table gives the odds ratio estimates along with the corresponding 95% confidence intervals. The odds ratios are calcu-
lated by simply exponentiating the parameter estimates. For instance, the odds ratio for the variable slack is exp (0.6248) = 1.868.
This implies that a person who was fired for poor performance is 1.868 times more likely to receive unemployment benefits than a
person who lost his or her job for some other reason (all other variables being held constant). The odds ratio for males indicates that
they are 0.893 times as likely to getunemployment insurance benefits than females. That s, their likelihood of getting unemployment
insurance benefits is lower than that of females.

The last table gives association of predicted probabilities and the observed responses. See the SAS 9.2 User’s guide for a
description of these statistics.

The LOGISTIC Procedure

Model Information

Data Set WORK.TEST
Response Variable y

Number of Response Levels|2

Model binary logit
Optimization Technique Fisher's scoring

Number of Observations Read|4877

Number of Observations Used|4877

Response Profile
Ordered Total
Value|y |Frequency
1{o0 1542
2|1 3335

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and

Criterion Only|Covariates
AIC 6088.056 5786.393
sc 6094.548 5916.239
-2 Log L 6086.056 5746.393

OUTPUT 10.3. Logit model output for the unemployment data.
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Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF|Pr > ChiSg

Likelihood Ratio 339.6629| 19 <0.0001

Score 326.3187| 19 <0.0001

Wald 305.0800( 19 <0.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter |DF |Estimate Error|Chi-Square|Pr > ChiSqg
Intercept| 1| —-2.8005 0.6042 21.4860 <0.0001
rr 1 3.0681 1.8682 2.6969 0.1005
rr2 1| —4.8906 2.3335 4.3924 0.0361
age 1 0.0677 0.0239 8.0169 0.0046
age2 1| -0.0597 0.0304 3.8585 0.0495
tenure 1 0.0312| 0.00664 22.1189 <0.0001
slack 1 0.6248 0.0706 78.2397 <0.0001
abol 1| -0.0362 0.1178 0.0943 0.7588
seasonal 1 0.2709 0.1712 2.5042 0.1135
head 1| -0.2107 0.0812 6.7276 0.0095
married 1 0.2423 0.0794 9.3075 0.0023
dkids 1| -0.1579 0.0862 3.3552 0.0670
dykids 1 0.2059 0.0975 4.4601 0.0347
smsa 1| -0.1704 0.0698 5.9598 0.0146
nwhite 1 0.0741 0.0930 0.6349 0.4255
yrdispl 1| -0.0637 0.0150 18.0409 <0.0001
schooll2 1| -0.0653 0.0824 0.6270 0.4285
male 1| -0.1798 0.0875 4.2204 0.0399
stateur 1 0.0956 0.0159 36.1127 <0.0001
statemb 1 0.00603| 0.00101 35.6782 <0.0001

OUTPUT 10.3. (Continued)

The following statements can be used to fit a binary Probit model. The analysis results are given in Output 10.4.

proc logistic data=test;
model y (event='1")=rr rr2 age age2 tenure slack abol
seasonal head married dkids dykids smsa nwhite
yrdispl schooll2 male stateur statemb/l=Probit;
run;

Notice that the model statistics from the first few tables are very similar between the logit and probit models. The model
parameters also have consistent signs. However, the magnitude of the parameter estimates are different.

The parameter estimates from the Probit model can be used to calculate the predicted probability that a person will receive
unemployment insurance. For a given individual, the predicted probability of receiving unemployment insurance can be
calculated by using

F(xlTQ) = F(—1.6999 + 1.8633rr—2.9801r72 + --- + 0.00364 statemb),
where F() is the cumulative normal distribution. The coefficients cannot be interpreted as the impact on predicted probability—all
we can say is whether the predicted probabilities will increase or decrease based on the signs of the coefficients.
SAS can be used to generate a table of predicted probabilities by using the statement

output out = file-name predicted = y_hat;

Here file-name is the temporary SAS dataset while y_hat is the variable name which will hold the predicted probabilities.
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Odds Ratio Estimates
Point 95% Wald
Effect Estimate| Confidence Limits
rr 21.500 0.552 836.911
rr2 0.008 <0.001 0.728
age 1.070 1.021 1.121
age2 0.942 0.888 1.000
tenure 1.032 1.018 1.045
slack 1.868 1.626 2.145
abol 0.964 0.766 1.215
seasonal 1.311 0.937 1.834
head 0.810 0.691 0.950
married 1.274 1.090 1.489
dkids 0.854 0.721 1.011
dykids 1.229 1.015 1.487
smsa 0.843 0.736 0.967
nwhite 1.077 0.898 1.292
yrdispl 0.938 0.911 0.966
schooll2 0.937 0.797 1.101
male 0.835 0.704 0.992
stateur 1.100 1.067 1.135
statemb 1.006 1.004 1.008

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 65.7|Somers' D|0.318
Percent Discordant 33.9|Gamma 0.320
Percent Tied 0.4 |Tau-a 0.138
Pairs 5142570|c 0.659

OUTPUT 10.3. (Continued)

10.2.6 Comparison of Binary Response Models for the Unemployment Data

The marginal effects for the OLS, Probit, and Logit models were given in Section 10.2.3. Consider comparing the marginal effects
from the three models on the unemployment data. We will calculate the marginal effect of getting unemployment benefits for a
male, with more than 12 years of education. Both the variables Male and the one recording more than 12 years of education are
binary variables with 1 for both implying that the person is a male with over 12 years of education. Table 10.1 summarizes the
calculations. Notice that the conditional probability for the OLS is negative, which points to one of the issues with the linear
probability model that was discussed earlier.

10.3 POISSON REGRESSION

Often, we are interested in modeling responses that count some phenomenon of interest. For example, we may be interested in
modeling the number of patents filed by a firm with respect to its R&D investment (Verbeek, 2004, p. 215). As discussed by the

TABLE 10.1. Comparing Marginal Effect of the Three Models

Model Constant > 12 years of Education Male x'B Marginal Effect
LMP —0.077 —0.014 —0.036 —0.127 —0.127
Probit -1.7 —0.042 —0.107 —1.849 0.032

Logit -2.8 —0.065 —0.18 —3.045 0.045
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author, the number of patents can assume values starting at O (for no patents filed) to some large number. Typically, there is no
upper bound for the count variables. These random variables are modeled by using the Poisson distribution.
A Poisson random variable, y, with mean 4 has a probability density function given by

_exp(—A)A

1) )

. y=0,1,2,....

In Poisson regression, the dependent variable for observationi (i =1, . . ., n) is assumed to follow a Poisson distribution with
mean 4;, which is a function of explanatory variables and unknown coefficients. That is,

exp(—A) A"
f(yt):%a )’i:0,1727~~-,

where Z; = exp(x!B). Therefore, the density function of y; can be written as

_exp(=x{B)(x/ B)"
B ¥i!

fi) . vi=0,1,2,....

It is trivial to show that the mean and variance of a Poisson random variable are equal. That is, E(y;) = Var(y;) = /,. For the
Poisson regression model, we can write the conditional expectation and conditional variance of y; given x; as

E(yilx;) = Var(yilx;) = exP(XiTB)-

The Poisson regression model is therefore a nonlinear model, and estimation of the unknown parameters is done using
maximum likelihood methods.

The LOGISTIC Procedure

Model Information

Data Set WORK.TEST
Response Variable y

Number of Response Levels|2

Model binary probit
Optimization Technique Fisher's scoring

Number of Observations Read|4877

Number of Observations Used|4877

Response Profile
Ordered Total
Value|y |Frequency
1{o 1542
2|1 3335

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Intercept

Intercept and

Criterion Only|Covariates
AIC 6088.056 5788.142
sC 6094 .548 5917.987
-2 Log L 6086.056 5748.142

OUTPUT 10.4. Probit model output for the unemployment data.
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Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF|Pr > ChiSg

Likelihood Ratio 337.9143| 19 <0.0001

Score 326.3187| 19 <0.0001

Wald 316.7543| 19 <0.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter |DF|Estimate Error|Chi-Square|Pr > ChiSqg
Intercept| 1| -1.6999 0.3630 21.9367 <0.0001
rr 1 1.8633 1.1293 2.7221 0.0990
rr2 1] —2.9801 1.4119 4.4549 0.0348
age 1 0.0422 0.0143 8.6975 0.0032
age2 1| -0.0377 0.0181 4.3397 0.0372
tenure 1 0.0177| 0.00385 21.1488 <0.0001
slack 1 0.3755 0.0424 78.4751 <0.0001
abol 1| -0.0223 0.0719 0.0964 0.7562
seasonal 1 0.1612 0.1041 2.3987 0.1214
head 1| —-0.1248 0.0491 6.4656 0.0110
married 1 0.1455 0.0478 9.2568 0.0023
dkids 1| -0.0966 0.0518 3.4700 0.0625
dykids 1 0.1236 0.0586 4.4437 0.0350
smsa 1| -0.1002 0.0418 5.7290 0.0167
nwhite 1 0.0518 0.0558 0.8599 0.3538
yrdispl 1| -0.0385| 0.00905 18.0755 <0.0001
schooll2 1| -0.0416 0.0497 0.6985 0.4033
male 1| -0.1067 0.0527 4.0947 0.0430
stateur 1 0.0568| 0.00943 36.2915 <0.0001
statemb 1] 0.00364|0.000606 36.0192 <0.0001

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 65.7|Somers' D|0.318
Percent Discordant 33.9|Gamma 0.319
Percent Tied 0.4|Tau-a 0.137
Pairs 5142570|c 0.659

OUTPUT 10.4. (Continued)

10.3.1 Interpretation of the Parameters

As was the case with the parameters in the Logit and Probit models, the parameters in the Poisson model are interpreted by
calculating the marginal effects with respect to the explanatory variables. That is,

OE (y; | x;)

ox = 4B

= exp(x/ B)B,
which implies that the interpretation of the model depends on both B and the explanatory variables.
10.3.2 Maximum Likelihood Estimation

Maximum likelihood estimation can be used to estimate the parameters in a Poisson regression model. A brief description of the
steps is provided below.
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Assume that we have a random sample (y;, X;), i=1, .. ., n, from a Poisson distribution with mean A;. The joint likelihood
function for the n observations is given by

~rrexp(—A)A
L_Hi)ﬁ! .

Taking the log of the likelihood function and simplifying gives

n

In(L) = [~4 + yix{ B—log(y!)].

i=1

The first-order condition involves taking the derivative of the log-likelihood with respect to B and setting it equal to 0.
That is,

SB)= ° lch;;(L) = i[yt—/lt]xi =0

= Z[yi—exp(—XiTB)]Xi =0.

The Hessian is given by

opap’ =

exp(—xiTB)x,-xiT.

0% log(L) -
=1

The Newton—Raphson method can be used to estimate 8. The asymptotic variance—covariance matrix of the parameters is
given by

n -1
E )LiXinT .
i=1

We will now show how to conduct Poisson regressionin SAS. We will make use of Cincera’s (1997) patent data, which was also
analyzed by Verbeek (2004, pp. 215-217). The data consist of 181 international manufacturing firms. As described by the author,
for each firm, their annual expenditures on research and development (R&D), the industrial sector it operates in, the country of its
registered office, and the total number of patent applications for a number of consecutive years is recorded. The variable names in
the model and their descriptions are summarized below:

P91=The number of patents filed in the year 1991,

LR91=The research and development expenses in 1991,

AEROSP=An indicator variable that is 1 if the company is in the aerospace industry and 0 otherwise,

CHEMIST=An indicator variable that is 1 if the company is in the chemical industry and O otherwise,
COMPUTER=An indicator variable that is 1 if the company is in the computer industry and 0 otherwise,
MACHINES=An indicator variable that is 1 if the company is in the heavy machine manufacturing industry and O otherwise,
VEHICLES=An indicator variable that is 1 if the company is in the auto industry and O otherwise,

US=An indicator that is 1 if the company is in US and 0 otherwise,

JAPAN=An indicator variable if the company is in Japan and O otherwise.

‘We will use Proc Genmod to conduct the analysis. The following statements can be used to fit the Poisson regression model.

Proc Genmod is very useful for fitting models that belong to the class of Generalized Linear Models where the distributions
can be any member of the exponential family of distributions. The procedure can therefore be used for OLS, Logit, and
Probit models. The advantage of this procedure over Proc Logistic is that interaction terms can be incorporated directly
into the model statement whereas in Proc Logistic the interaction terms have to be added in the data step module of the
code.
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The GENMOD Procedure
Model Information
Data Set WORK . PATENT
Distribution Poisson
Link Function Log
Dependent Variable P91|P91
Number of Observations Read|181
Number of Observations Used|181
Criteria For Assessing Goodness Of Fit
Criterion DF Value|Value/DF
Deviance 172 9081.9013| 52.8018
Scaled Deviance 172| 9081.9013| 52.8018
Pearson Chi-Square|172|10391.9101| 60.4181
Scaled Pearson X2 [17210391.9101| 60.4181
Log Likelihood 54225.8240
IAlgorithm converged.l
Analysis Of Parameter Estimates
Wald 95%
Standard Confidence
Parameter |DF |Estimate Error Limits Chi-Square|Pr > ChiSqg
Intercept| 1| -0.8737 0.0659(-1.0028 |-0.7446 175.94 <0.0001
LRO1 1 0.8545 0.0084| 0.8381| 0.8710 10381.6 <0.0001
AEROSP 1] -1.4219 0.0956(|-1.6093 |-1.2344 221.00 <0.0001
CHEMIST 1 0.6363 0.0255| 0.5862| 0.6863 621.25 <0.0001
COMPUTER 1 0.5953 0.0233| 0.5496| 0.6411 650.70 <0.0001
MACHINES 1 0.6890 0.0383| 0.6138| 0.7641 322.76 <0.0001
Analysis Of Parameter Estimates
Wald 95%
Standard Confidence
Parameter |DF |Estimate Error Limits Chi-Square|Pr > ChiSqg
VEHICLES 1| -1.5297 0.0419|-1.6117|-1.4476 1335.01 <0.0001
JAPAN 1 0.2222 0.0275| 0.1683| 0.2761 65.29 <0.0001
Uus 1] -0.2995 0.0253|-0.3491|-0.2499 140.14 <0.0001
Scale 0 1.0000 0.0000| 1.0000| 1.0000

The scale parameter was held fixed.

OUTPUT 10.5. Poisson regression of the patent data.
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The main statement here is the one that specifies the distribution and the log link function. The analysis output is given in

Output 10.5.

proc genmod data=patent;

model p91=1r91 aerosp chemist computer machines vehicles
japan us/dist=poisson link=1og;

run;

We will now provide details about the output produced by Proc Genmod.
The first table of the output gives the model information including the distribution specified, the link function, and the
dependent variable. The log link function is used by default when the Poisson distribution is specified. The “link” function
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references the function that is used to relate the conditional expectation and the explanatory variables. For the Poisson model,
recall that the conditional mean was given by

E(yilx;) = exp(x/B),
In(E(yilx;)) = x/B

so that the link function that is used is the LOG function.

The nexttable gives various statistics for assessing the model fit. Small values for the goodness of fit statistics are desired. Large
ratios may indicate that the model is misspecified or that the model suffers from overdispersion.

The final table gives the parameter estimates, along with their standard errors, confidence intervals, and chi-squared test
statistic value. Recall that in Poisson regression we model E(y;|x;) versus exp(x,-TB). Therefore, the regression coefficient can be
interpreted by first exponentiating the parameter estimates. For example, the parameter estimate for the variable aerospace is
—1.4219 giving exp(—1.4219) = 0.241. The coefficient of this variable compares the number of patent applications received for
the aerospace and nonaerospace industries. The value 0.241 is the predicted ratio of the number of patents filed for the aerospace
companies to the numbers filed by the nonaerospace companies. Therefore, based on the estimated model, the number of patents
filed by the aerospace companies is predicted to be lower than the number filed by the nonaerospace companies assuming all other
explanatory variables are held constant.
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DURATION ANALYSIS

11.1 INTRODUCTION

Often, we are interested in modeling the duration or time between two events. For example, we may be interested in the time
between the start and the end of a strike, the time it takes an unemployed person to find a job, the time to failure of a machine
component, or the recidivism duration of an ex-convict. In each of these examples, the data set consists of a response variable that
records the time or duration between the events of interest. Due to the nature of the study, the data set usually consists of a mixture
of complete and censored observations. For example, in the recidivism study conducted by Chung, Schmidt, and Witte (1991), a
random sample of 1,445 former inmates released from prison between July 1, 1977 and June 30, 1978 was collected using April 1,
1984 as the end point of the study. The study found that 552 former inmates were arrested again for different violations. Their
duration or time response was therefore recorded. Duration measurements for the remaining 893 individuals were not recorded
and were censored. That is, at the time the study concluded, these individuals had not been arrested for any violation since their
release. Note that the censored times for these individuals will vary due to the staggered entry of the subjects into the study.

Asanother example, consider an auto and home insurance company that may be interested in the time between a policy holder’s
start and termination date. The company’s objective may be to understand the attrition behavior of policy holders who cancel their
policies and move to a competitor company. As with the recidivism study, the time window for the study is usually predefined.
Therefore, there may be several policy holders for whom the event of interest (attrition) is not observed. That is, a few policy
holders may attrite after the conclusion of the study; their time to attrite response is therefore censored.

The use of duration models, although fairly recent in economics, is well established in engineering and biomedical fields. For
example, reliability engineers are often interested in the time it takes for a machine component to fail. They may use
this information to optimize preventive maintenance strategies on the machine. Pharmaceutical companies conduct clinical
trials where patients are administered a new drug and then are followed for a predefined length of time in order to evaluate the
drug’s effectiveness. In both these fields, the event of interest is the “time to failure,” and the data are comprised of censored
observations as well as observations for which the actual duration of the event of interest is observed.

11.2 FAILURE TIMES AND CENSORING

There are three conditions required to determine failure times accurately in any duration analysis study. First, the time window of
the study must be clearly defined. That is, the origin and the termination points must be defined. In most duration analysis studies,
the subjects will have a staggered entry. Therefore, the starting point may not be the same for all subjects. However, there are
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instances where the starting point is the same for all subjects. Kennan (1984) gives an example of a major strike affecting a certain
type of industry where most of the subjects have a common starting point. In the recidivism study, the time window for the study
was therelease period from July 1, 1977 to June 30, 1978 with a study termination date of April 1, 1984. Notice that the observation
period ranged from 70 to 81 months. Therefore, the censored times are also in the range of 70—81 months. In an attrition modeling
study [ was involved with, the time window of the study was set from January 1, 2006 to July 31,2006. The study was terminated on
June 1, 2007. The time lag between the time window and the observation point or termination point is to allow various factors
(known or unknown) to influence the subject into either taking an action (recidivism or attrition) or not taking an action.

Second, the measurement scale must be clearly understood. In the recidivism and attrition studies, the response variable is the
number of days to the event of interest. In an example to study automobile reliability, the response variable may be the number of
miles recorded before the car breaks down. In a reliability study on light bulbs, we are interested in the number of hours until the
light bulb fails.

Third, the meaning of “failure” or “success” must be clearly understood. In the recidivism example, “failure” or “success”
occurs when a former inmate is arrested again. In the attrition study, a “failure” or “success” occurs when the policy holder attrites.
In an employment study a “failure” or “success” is observed when the unemployed person is employed again.

To define censoring more formally, assume that we have n subjects in the duration analysis study. In the absence of censoring,
the ith subject has a duration time denoted by 7;. That is, the event of interest was observed for this subject in the study’s time
window. Assume that the duration analysis study window for the ith subject has length c¢;. Here, without loss of generality, we are
assuming that the subjects enter the study in a staggered fashion. If the event of interest was not observed for the ith subject when
the study was terminated, then the duration time recorded for this subject will be ¢;. The duration time can therefore be denoted by
y;=min(¢;, ¢;). In the recidivism and attrition examples, the data are referred to as right censored data since for the censored
observations the duration times are assumed to occur after the study termination date.

11.3 THE SURVIVAL AND HAZARD FUNCTIONS

We now turn our attention to understanding the survival and hazard rate functions for the data collected from duration analysis
studies. First, assume that the random variable T (the duration time) has a continuous probability distribution f{(#). The cumulative
distribution function (CDF) F(¢) is therefore given by

t

F(t) = P(T < 1) = J f(r)dr.

0

The CDF measures the probability that a subject will have a duration of time less than or equal to ¢. In the recidivism study, we
could interpret this as the probability that a former inmate will be arrested again by time ¢. In the attrition study, this could be
interpreted as the probability that a policy holder will attrite by time ¢.

We are usually interested in the probability that the duration for a subject will exceed 7. That is, we are typically interested in the
survival function. The survival function is defined as the probability that a subject will survive past time ¢. That is,

oo

S() = P(T > 1) = 1-P(T > 1) = 1—F(1) == J Flr)dr.

t

We are also interested in the instantaneous failure rate or the hazard rate. To see the form of the hazard function, first define the
probability that a subject will survive a small time interval [z,f+ Af] given that he or she has survived past ¢ as
Pt<T < t+ AT >1).

The hazard function is given by

Pt<T <t+AMT>1)

7\,(1‘) = limA,HO AL .

It can be shown that the hazard function is a ratio of the probability density function to the survival function. That is,

A1) :%.
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To see this, first notice that by using the fact P(A|B) = P(AN B)/P(B), we can write the numerator of the hazard
function as

Pt<T < t+Ar) _ F(t+At)—F(t) F(t+ An—F(1)

P<T <t+AMT>1t)=

P(T > 1) 1—F(r) S(1)
Next, realize that by definition
A(t) = limA,_mW _ %F(r).
Again, by definition
TF0=10)

and we have our result.

A few more results relating the hazard, survival, and probability density functions are of interest follow. First note that by
definition, the survival function can be written as

so that

The cumulative hazard rate function A(z) can be written as
t t t
0 0
A(r) = [ Mr)dr = | — —log[S(7)]dr = | — —log[1—F(7)]ds.

ot orT
0 0

It is trivial to show that the above expression simplifies to
A(t) = —log[1—F(1)].
Upon further simplification, we get
F(t) = 1—e 20,

Differentiating both sides of the above expression gives
(1) = =A(t) = e 20 = A(1)e™ ).

Therefore, the probability distribution function can be completely characterized by the knowledge of the hazard function. It is
for this reason that the analysis of duration data is based on understanding the hazard function.
Defining the hazard rate as OA(r) /0t we see that

1. If oA/0t = 0, then the hazard rate is constant and independent of time. Using the attrition example, this implies that the
probability of a policy holder’s attrition is constant over the life of the policy holder’s tenure with the company.
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2. IfoA/0r > 0, then the hazard rate is increasing with time. As an example, Greene (2003) discusses an unemployment study
where the time between a subject’s unemployment and employment is modeled. The longer the subject is unemployed, the
more likely the subject is to be employed. As discussed by the author, the longer the unemployment lasts, the more is the
likelihood that the subject will take up any job.

3. IfOL/0t < 0, then the hazard rate is decreasing with time. Using the attrition example, the longer a policy holder is with
the company, the less likely he or she is to attrite. Similarly, it can be hypothesized that the longer a former convict is free,
the less likely he or she is to be arrested.

Readers familiar with the “bathtub” curve in reliability analysis will recall that the first part of the curve represents
(“infant mortality”) a decreasing hazard rate, the second part of the curve represents constant hazard rate, and the last part
of the curve represents (“wear-out” failures) increasing hazard rate.

We will use the RECID data from Chung, Schmidt, and Witte (1991) to show how SAS can be used to plot the survival and
hazard functions. The data set consists of the duration time for each ex-convict along with information on race, alcohol problems,
number of prior convictions, age, and soon. The complete list of variable description can be downloaded from Jeffrey
Wooldridge’s web site at Michigan State University.

The Proc Lifetest can be used to conduct preliminary analysis of the duration data. It is useful for plotting the survival and
hazard functions and also for comparing survival and hazard functions across groups. Two methods of estimating the survival
function are included: the Kaplan Meier method by default and the Life Table method (use optionmet hod=11 fe). See Allison
(1995) for more details on these procedures. At the minimum, the following statements should be used:

proc lifetest data=duration;
time 1_durat2*censored(l) ;
run;

Here, duration is the temporary SAS data set, and the command time is used to generate the survival function table.
The response variable is I _durat and the censoring variable is censored. A value of 1 for censored denotes a
censored observation. The analysis creates a survival table using the Kaplan Meier method. A partial output is given in
Output 11.1.

The first part of the output contains the survival table while the second part of the output contains basic summary statistics. The
first table lists the duration times at which failures occurred, the survival estimates, the failure estimates (1-survival estimates),
and the survival standard error that is given by

S(ti)(l—S(ti)

where S(#;) and 1—S(7;) are the survival and failure estimates, respectively. The total number of subjects is given denoted by n. The
final two columns give the number of subjects who failed and the number left.
Notice that there were eight failures in the first month. The survival estimate is therefore given by

et/ Total = 1437/1445 = 0.9945.

The failure estimate is therefore 1-0.9945 or 0.0055. The standard error is calculated as follows

10.9945 x 0.0055
a5 0.00195.

The last three tables give the summary statistics. Note that the 25th percentile is estimated to be at 27 months. This implies
that the survival rate estimate is 75% at 27 months, and 25% of the ex-convicts are expected to be arrested again by the 27th
month.

The Kaplan Meier method is recommended for small data sets and for highly accurate measurements. When the data set is
large and the accuracy of the duration times are in question then the life table method is recommended. Adding the
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THE SURVIVAL AND HAZARD FUNCTIONS

Product-Limit Survival Estimates

Survival

Standard |Number | Number

1 _durat2 Survival |[Failure Error |Failed| Left
0.0000 1.0000 0 0 0 1445
1.0000 1 1444
1.0000 2 1443
1.0000 3 1442
1.0000 4 1441
1.0000 5 1440
1.0000 6 1439
1.0000 . . . 7 1438
1.0000 0.9945(0.00554| 0.00195 8 1437
2.0000 9 1436
2.0000 10 1435
2.0000 11 1434
2.0000 12 1433
2.0000 13 1432
2.0000 14 1431
2.0000 15 1430
2.0000 16 1429
2.0000 17 1428
2.0000 18 1427
2.0000 19 1426
2.0000 20 1425
2.0000 21 1424
2.0000 . . . 22 1423
2.0000 0.9841( 0.0159( 0.00329 23 1422
3.0000 24 1421
3.0000 25 1420
3.0000 26 1419
3.0000 27 1418
3.0000 28 1417
3.0000 29 1416
3.0000 30 1415
3.0000 31 1414
3.0000 32 1413
3.0000 33 1412
3.0000 34 1411
3.0000 35 1410
3.0000 . . . 36 1409
3.0000 0.9744( 0.0256| 0.00416 37 1408

OUTPUT 11.1.

Proc Lifetest analysis of the RECID data using the Kaplan Meier method.
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method=1 1 fe option to the first line of the Proc Life procedure statements invokes the analysis using the life table technique.

The output is given in Output 11.2.

The analysis takes the range of duration data and divides them into intervals. The number of intervals can be easily adjusted
by using the “width” option. The first table gives information on the number of ex-convicts arrested in the given time intervals,
the effective (or entering) sample sizes for each interval along with the estimate of the conditional probability of failure, its
standard error, and the survival estimate. The conditional probabilities are calculated by simply dividing the number of arrests
by the effective sample size for each interval. The survival estimate is simply 1—the conditional probability of failure. The
standard errors are calculated using the formula provided earlier; however, the sample size used is the effective sample size of

the interval.

The second table gives the failure rate and the survival estimate standard error. See Lee (1992) for the formulas used in the

calculations.
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The LIFETEST Procedure

Product-Limit Survival Estimates
Survival
Standard |Number | Number
1 durat2 Survival [Failure Error|Failed Left
81.0000| * . . . 552 1
81.0000( * . . . 552 0

The marked survival times are censored observations.

Summary Statistics for Time Variable 1_durat2

Quartile Estimates
95%

Confidence
Interval
Point
Percent |Estimate| [Lower| Upper)
75
50

25| 27.0000|24.0000(31.0000

Mean|Standard Error
56.7032 0.7402

The mean survival time and its standard error were underestimated because the
largest observation was censored and the estimation was restricted to the
largest event time.

Summary of the Number of
Censored and Uncensored Values

Percent
Total |[Failed|Censored|Censored
1445 552 893 61.80

OUTPUT 11.1. (Continued)

The last table gives the probability of failure (PDF), the hazard estimate, and their standard errors for each interval. The PDF is
calculated by dividing the number of subjects arrested in each interval by the interval width and the total number of subjects in the
study. For example, the PDF for the interval [40, 50] is calculated as follows:

43

The hazard estimate is calculated as follows (Lee, 1992):

Ny
w X (ny—n,/2)"

Here, n, represents the number arrested in the time interval, w is the width of the interval, and n,), is the number of subjects
coming into the interval. Using the same interval as above, we get

43

= 0.004 .
10 % (1004—43/2) ~ 004377

The number entering into the interval is calculated by subtracting the cumulative arrests up to the interval of interest from the
total number of subjects in the study. See Lee (1992) for the formulas of the standard errors of both the PDF and the hazard

estimate.
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THE SURVIVAL AND HAZARD FUNCTIONS

Life Table Survival Estimates

Interval
Conditional
Effective|Conditional|Probability
Number Number Sample|Probability Standard
[Lower, |Upper) |Failed|Censored Size| of Failure Error|Survival
0 10 136 0 1445.0 0.0941 0.00768 1.0000
10 20 146 0 1309.0 0.1115 0.00870 0.9059
20 30 105 0 1163.0 0.0903 0.00840 0.8048
30 40 54 0 1058.0 0.0510 0.00677 0.7322
40 50 43 0 1004.0 0.0428 0.00639 0.6948
50 60 37 0 961.0 0.0385 0.00621 0.6651
60 70 23 0 924.0 0.0249 0.00513 0.6394
70 80 8 776 513.0 0.0156 0.00547 0.6235
80 90 0 117 58.5 0 0 0.6138
The LIFETEST Procedure
Interval
Survival Median Median
Standard|Residual | Standard
[Lower, |Upper) |Failure Error|Lifetime Error
0 10 0 0
10 20| 0.0941] 0.00768
20 30| 0.1952 0.0104
30 40| 0.2678 0.0116
40 50| 0.3052 0.0121
50 60| 0.3349 0.0124
60 70| 0.3606 0.0126
70 80| 0.3765 0.0127
80 90| 0.3862 0.0130
The LIFETEST Procedure
Evaluated at the Midpoint of the
Interval Interval
PDF Hazard
Standard Standard
[Lower, |Upper) PDF Error Hazard Error
0 10| 0.00941|0.000768|0.009877|0.000846
10 20 0.0101|0.000793(0.011812|0.000976
20 30| 0.00727|0.000683|0.009455|0.000922
30 40| 0.00374|0.000499(0.005238|0.000713
40 50| 0.00298(0.000447|0.004377|0.000667
50 60| 0.00256(0.000416|0.003926(0.000645
60 70| 0.00159(0.000329|0.002521(0.000526
70 80(0.000972{0.000342(0.001572|0.000556
80 90 0 0
Summary of the Number of
Censored and Uncensored Values
Percent
Total [Failed|Censored|Censored
1445 552 893 61.80

OUTPUT 11.2. Proc Lifetest analysis of the RECID data using the Life Table method.
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Proc Lifetest can be used to plot the survival and hazard functions by using the “p1ot =" function as shown in the following
statements.

proc lifetest data=duration method=1ife plot=(sh);
time 1_durat2*censored(l) ;
run;

In the above s denotes the survival function plot and h denotes the hazard function plot. Note that only the survival function is
available when using the Kaplan Meier method. Figure 11.1 contains the Kaplan Meier survival function plot while Figures 11.2
and 11.3 contain the lifetime survival and hazard plots.

As an example of how to interpret the output, notice that from the lifetime survival function plot, we see that the survival
probability at 20 months is a little over 75%. In terms of the example used, this indicates that the probability an ex-convict will be
arrested within 20 months of release is under 25%. The hazard function plot indicates that the hazard rate is the highest in the 10-20
month window after release and that the risk rapidly decreases with time.

.50+

Survival Distribution Function
o

T T
0 10 20 30 40 50 60 70 80 90

1 _durat2

Product-Limit Estimate Curve
O O O Censored Observations

Legend:

FIGURE 11.1. Kaplan Meier survival function plot of the RECID data.
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FIGURE 11.2. Lifetime survival function plot of the RECID data.

Using the option plot= (1s) produces a plot of the cumulative hazard function versus time. This plot can be used to check
the rate at which the hazard is changing. The reader is asked to verify that the cumulative hazard plot for the RECID data is
increasing at a gradual rate.

Proc Lifetime can also be used to compare two or more groups with respect to their survival and hazard functions. Consider
testing the survival functions of married ex-convicts to unmarried ex-convicts. The hypothesis tested is as follows:

Hj : Sm(l) = Sum(t)y
H,: Sm(f) > Sum(t)'

Here, S,,(¢) and S,,,(t) are the survival functions of the married and unmarried ex-convicts. The following statements can be
used to conduct the test in SAS. The analysis results are given in Output 11.3.

proc lifetest data=duration method=1ife plots=(s);
time 1_durat2*censored(1) ;
strata 1_marry;

run;



178 DURATION ANALYSIS

0.0125

0.0100 A

0.0075 4

Hazard Function

0.0050 A

0.0025 A

0.0000 4

T T T T T T
0 20 40 60 80 100

1 durat2

FIGURE 11.2. (Continued).

The first part of the output consists of the life tables for the unmarried ex-convicts. This is followed by the life tables for the
married ex-convicts. The survival function plot indicates that the survivorship probability is higher for married subjects compared
to unmarried subjects. The last part of the output contains test statistics from the Log-Rank, Wilcoxon, and the Likelihood-Ratio
tests. See Lee (1992, pp. 104—122) for details on these tests. All three test statistics are highly significant indicating that the two
survival functions are different. This analysis can easily be extended to more than two groups.

Proc Lifetest is usually used in the preliminary stages to understand the data and to isolate factors that appear to have an impact
on the response of interest. In the later sections, we will introduce Proc Lifereg and Proc Phreg that are used to conduct regression
analysis on data with censored observations. We now move on to discuss the different distributions that may be used to model
duration data.

114 COMMONLY USED DISTRIBUTION FUNCTIONS IN DURATION ANALYSIS

There are three distribution functions commonly used in duration analysis studies.
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FIGURE 11.3. Lifetime hazard function plot of the RECID data.

11.4.1 The Exponential Distribution

The general formula for the probability density function of the exponential distribution is £(f) = 6" exp(—/6) 6 > 0, where 6 is
the scale parameter. The cumulative density, survival, and hazard functions are givenby f (t) = 1—exp(—t/6),S(¢) = exp(—t/6),
and A(r) = 1/0, respectively.

The hazard and survival function plots for the exponential distribution are given in Figures 11.4 and 11.5 (Source: NIST).
Notice that the hazard function is constant and independent of time. The survival function graph indicates the classic exponential
decay behavior.

11.4.2 The Weibull Distribution

The general formula for the probability density function of the two-parameter Weibull distribution is £ (1) = ya "Y' exp(—(a1))” ,
v > 0, where 7 is the shape parameter and « is the scale parameter (Casella and Berger, 1990). The cumulative density, survival,
and hazard functions are given by F(t) = 1—exp(—(at)?), S(t) = exp(—(at)”), and A(t) = ya?*"' A(t) = ya?t" ',y > 0.
The hazard and survival plots for different values of the shape parameters are given in Figures 11.6 and 11.7 (Source: NIST). Notice
that the Weibull distribution offers more flexibility in modeling the hazard function. The dependency of the hazard function on time
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The LIFETEST Procedure

Stratum 1: 1 _marry = 0
Life Table Survival Estimates
Interval
Conditional
Effective|Conditional |Probability
Number Number Sample|Probability Standard
[Lower, |Upper) |Failed|Censored Size| of Failure Error|Survival
0 10 118 0 1076.0 0.1097 0.00953 1.0000
10 20 115 0 958.0 0.1200 0.0105 0.8903
20 30 76 0 843.0 0.0902 0.00986 0.7835
30 40 47 0 767.0 0.0613 0.00866 0.7128
40 50 30 0 720.0 0.0417 0.00745 0.6691
50 60 30 0 690.0 0.0435 0.00776 0.6413
60 70 13 0 660.0 0.0197 0.00541 0.6134
70 80 7 552 371.0 0.0189 0.00706 0.6013
80 90 0 88 44.0 0 0 0.5900
Interval
Survival Median Median
Standard|Residual |Standard
[Lower, |Upper) |Failure Error|Lifetime Error
0 10 0 0
10 20| 0.1097| 0.00953
20 30| 0.2165 0.0126
30 40| 0.2872 0.0138
40 50| 0.3309 0.0143
50 60| 0.3587 0.0146
60 70| 0.3866 0.0148
70 80| 0.3987 0.0149
80 90| 0.4100 0.0152
Evaluated at the Midpoint of the
Interval Interval
PDF Hazard
Standard Standard
[Lower, |Upper) PDF Error Hazard Error
0 10| 0.0110({0.000953|0.011603(0.001066
10 20| 0.0107|0.000942|0.012771|0.001188
20 30/0.00706(0.000781{0.009441(0.001082
30 40(0.00437|0.000623|0.006321|0.000922
40 50(0.00279(0.000502|0.004255(0.000777
50 6010.00279(0.000502|0.004444(0.000811
60 7010.00121{0.000333|0.001989(0.000552
70 8010.00113({0.000426|0.001905| 0.00072
80 90 0 . 0

OUTPUT 11.3. Testing survival functions of married ex-convicts to unmarried ex-convicts in the RECID data set.



COMMONLY USED DISTRIBUTION FUNCTIONS IN DURATION ANALYSIS 181

The LIFETEST Procedure

Stratum 2: 1 _marry = 1
Life Table Survival Estimates
Interval
Conditional
Effective|Conditional |Probability
Number Number Sample |Probability Standard
[Lower, |Upper) |Failed|Censored Size| of Failure Error |Survival
0 10 18 0 369.0 0.0488 0.0112 1.0000
10 20 31 0 351.0 0.0883 0.0151 0.9512
20 30 29 0 320.0 0.0906 0.0160 0.8672
30 40 7 0 291.0 0.0241 0.00898 0.7886
40 50 13 0 284.0 0.0458 0.0124 0.7696
50 60 7 0 271.0 0.0258 0.00964 0.7344
60 70 10 0 264.0 0.0379 0.0117 0.7154
70 80 1 224 142.0 0.00704 0.00702 0.6883
80 90 0 29 14.5 0 0 0.6835
Interval
Survival Median Median
Standard|Residual |Standard
[Lower, |Upper) |Failure Error|Lifetime Error
0 10 0 0
10 20| 0.048s8 0.0112
20 30 0.1328 0.0177
30 40| 0.2114 0.0213
40 50| 0.2304 0.0219
50 60| 0.2656 0.0230
60 70| 0.2846 0.0235
70 80| 0.3117 0.0241
80 90| 0.3165 0.0244

Evaluated at the Midpoint of the
Interval Interval
PDF Hazard
Standard Standard
[Lower, |Upper) PDF Error Hazard Error
0 10| 0.00488( 0.00112 0.005|0.001178
10 20| 0.00840| 0.00144| 0.00924|0.001658
20 30| 0.00786| 0.00140|0.009493|0.001761
30 40| 0.00190|0.000710|0.002435| 0.00092
40 50| 0.00352|0.000960(0.004685(0.001299
50 60| 0.00190(0.000710|0.002617(0.000989
60 70| 0.00271(0.000845|0.003861(0.001221
70 80/0.000485(0.000483|0.000707(0.000707
80 90 0 . 0
Summary of the Number of Censored and
Uncensored Values

Percent

Stratum|l_marry|Total|Failed|Censored|Censored

1 0 1076 436 640 59.48

2 1 369 116 253 68.56

Total 1445 552 893 61.80

OUTPUT 11.3. (Continued)
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The LIFETEST Procedure

Testing Homogeneity of Survival Curves for 1 _durat2 over Strata

Rank Statistics
1 _marry|Log-Rank |Wilcoxon
0 34.111 42523
1 -34.111 -42523

Covariance Matrix for the
Log-Rank Statistics

1 marry 0 1
0 108.307(-108.307
1 -108.307| 108.307

Covariance Matrix for the
Wilcoxon Statistics

1 _marry 0 1
0 1.5103E8| -1.51E8
1 -1.51E8|1.5103E8

Test of Equality over Strata
Pr >
Test Chi-Square |DF|Chi-Square
Log-Rank 10.7432| 1 0.0010
Wilcoxon 11.9728| 1 0.0005
-2Log (LR) 12.2349| 1 0.0005

OUTPUT 11.3. (Continued).
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FIGURE 11.4. Hazard function of the exponential distribution.
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FIGURE 11.7. Survival functions for the Weibull distribution.

is negative for y < 1 and positive for y > 1. The exponential distribution is a special case of the Weibull distribution when y = 1.
The Weibull hazard rate is therefore constant when y=1.

11.4.3 The Lognormal Distribution
A variable T is lognormally distributed if In(7") is normally distributed where In refers to the natural logarithm function. The

general formula for the probability density function of the lognormal distribution is (Casella and Berger, 1990)

[—In(t/m)* /207
exp
) =———F—m, g >0,
ug oV 2mt

where o is the shape parameter and m is the scale parameter. The cumulative density function is given by

F(t):d)[hf)], o >0,

and the survival and hazard functions are given by

S(t) =1-@ [h;(t)} o > 0,
and
R
o)
respectively.

The hazard and survival functions for different values of the shape parameters are given in Figures 11.8 and 11.9
(Source: NIST).
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Maximum likelihood estimation, which takes censoring into account, is used to estimate the parameters of these distributions.

Details on the technique can be found in Meeker and Escobar (1998, pp. 153-159).

Proc Lifereg can be used to assess the goodness of fit of the distributions on the collected data. The resulting output also includes
the maximum likelihood estimates of the parameters of the distributions. We will revisit this procedure in our discussion of
regression analysis on duration data. For now, we will assess the goodness of fit of the distributions on the RECID data set. The
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FIGURE 11.9. Survival functions for the lognormal distribution.
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following statements can be used to fit a normal distribution to the duration response variable. Proc Lifereg invokes the procedure
on the temporary SAS dataset “durat ion.” The model statement lists out the response and the censoring variable. A value of 1
indicates that the record is censored. The option “d” is used to specify the distribution. Changing the value of the option to
exponential, Weibull, Inormal will give analysis results for the other distributions that were discussed in this section. The option
“probplot” creates a probability plot while the option “inset” writes the parameter estimates on the probability plot. Note
that there are several other options that can be used to enhance the graphs. See the SAS Users Guide 9.2 from SAS Institute, Inc.
for more information. Outputs 11.4—11.7 contain goodness of fit information as well as the probability plots for the various
distributions. Output 11.4 indicates that the normal distribution does not fit the data well while Output 11.6 indicates that the log-
normal distribution fit is the best.

Proc Lifereg data=duration;
Model 1_durat*censored(l) /d=normal;
Probplot;
Inset;

Run;

11.5 REGRESSION ANALYSIS WITH DURATION DATA

The discussion so far was limited to the estimation of parameters in the absence of exogenous variables. Going back to the
recidivism study, there may be various factors a effecting a person’s relapse into criminal behavior. For instance, a person’s age,
education, marital status, race, and number of prior convictions may all play a role in influencing the behavior of the ex-convict.
This section deals with the introduction of regressors’ analysis on duration data. There are two types of regression models that are

The LIFEREG Procedure

Model Information
Data Set WORK.DURATION
Dependent Variable 1 _durat2
Censoring Variable censored
Censoring Value (s) 1
Number of Observations 1445
Noncensored Values 552
Right Censored Values 893
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Normal
Log Likelihood -3584.355095

Number of Observations Read|1445

Number of Observations Used|1445

Algorithm converged.

Analysis of Parameter Estimates

95%
Standard Confidence
Parameter |DF|Estimate Error Limits Chi-Square|Pr > ChiSg
Intercept| 1| 88.2733 2.3096(83.7466|92.7999 1460.81 <0.0001
Scale 1] 60.1504 2.1312(56.1151|64.4758

OUTPUT 11.4. Normal distribution fit for the RECID data.
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OUTPUT 11.4. (Continued)

used to model duration data—the parametric regression model and Cox proportional hazard regression model. Proc Lifereg can be
used to fit the first set of models while Proc Phreg can be used to fit the second type of models.

To see the general form of these models, let #; denote the duration time for the ith subject and let x; denote the set of explanatory
variables assumed to influence the duration time, #;. The models fit by using Proc Lifereg are of the form

In(z;) = x/ B + o
ti =exp(x{B + oei),

where ¢; is the disturbance with mean 0 and unit variance. The variance of disturbance is estimated via the parameter o. These
models are referred to as Accelerated Failure Time models with the covariates assumed to influence the failure rate. The choice of
the distribution for &; leads to the different types of models. For example, if we choose &; to be normally distributed (or In(z;) to be
normally distributed), then we have a log-normal model.

The covariates vector, X;, includes a constant term and a set of time-invariant regressors. Note that the regressor set may contain
time-dependent regressors. However, Proc Lifereg cannot be used to accommodate these. Proc Phreg, on the other hand, can
handle both time-invariant and time-dependent explanatory variables. Maximum likelihood methods are used to estimate the
model parameters with the Newton—Raphson method used for optimization. Details on this can be found in Allison (1995), Lee
(1992), and Meeker and Escobar (1998).
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The LIFEREG Procedure

Model Information
Data Set WORK.DURATION
Dependent Variable Log (1l _durat2)
Censoring Variable censored
Censoring Value (s) 1
Number of Observations 1445
Noncensored Values 552
Right Censored Values 893
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Exponential
Log Likelihood -1739.894437

Number of Observations Read|1445
Number of Observations Used|1445

Algorithm converged.

Analysis of Parameter Estimates
Standard 95%
Parameter DF |[Estimate Error |Confidence Limits|Chi-Square|Pr > ChiSqg
Intercept 1 4.9764 0.0426 4.8930 5.0598 13670.0 <0.0001
Scale 0 1.0000 0.0000 1.0000 1.0000
Weibull Scale| 1|144.9511 6.1695|133.3497(157.5618
Weibull Shape| 0 1.0000 0.0000 1.0000 1.0000

Lagrange Multiplier Statistics

Parameter|Chi-Square|Pr > ChiSg
Scale 35.9078 <0.0001

OUTPUT 11.5. Exponential distribution fit for the RECID data.

We will illustrate how Proc Lifereg can be used to estimate Accelerated Failure Time models. The following minimal set of
statements should be used. The results of the analysis are given in Output 11.8.

Proc Lifereg data=duration;
Model 1_durat*censored(1l)=1_black 1_drugs 1_workprg 1_priors 1_tserved
1_felon 1l_alcohol 1_marry 1_educ 1_age/d=1normal;

Run;

Proc Lifereg invokes the procedure on the temporary SAS data set duration. The second statement lists out the model
relating the explanatory variables on the right-hand side to the duration time 1 _durat . Note that the response variable has not
been transformed and is in the original units of measurements (months). The log transformation is done by Proc Lifereg. The d
option can be used to select the distribution. We decided on the log-normal distribution from the distributional analysis done in
Section 11.4. More details on the different options that can be used with this procedure can be found in Allison (1995) and SAS
Users Guide 9.2 from SAS Institute, Inc.

The first table gives basic model information: the model name, the response variable, the censoring ID, the total number
of observations, the number of censored and uncensored observations, the assumed distribution, and the log-likelihood
value.

The next table gives the Wald’s chi-square values and associated p values for the model parameters. Notice that the variables
recording work programs and education are not significant. The Wald’s chi-square values can be calculated by taking the
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OUTPUT 11.5. (Continued).

square of the ratio of the parameter estimates to their standard errors. The next table gives the actual parameter estimates, their
standard errors, 95% confidence intervals, the chi-square values and the associated p values. The 95% confidence intervals are
calculated as

Ba2 % s.(B)

where z,; is the 100 x (1—a) percentile from the standard normal distribution.

Notice that the estimate scale parameter is 1.81 indicating a decreasing hazard rate (see Figure 11.8).

The signs of the model parameters indicate that in general race, alcohol, and drug problems all appear to shorten the duration (or
arrest) times. Marriage and whether a person was convicted of a felony both appear to lengthen the duration (or arrest) time. Using
the fact that we have a semi-log model, we may interpret the coefficients as follows: Holding all other variables constant, for the
1 tservedvariable thatrecords the time served in months, each additional month of time served, reduces the duration until the
next arrest by about 2%. As another example, we may interpret the coefficient for the 1 drugs variable as follows: Holding all
other variables constant, the duration time until the next arrest for ex-convicts with drug problems is about 30% shorter than for
those without drug problems.

As discussed in Allison (1995), we can also use the exponential transformation to interpret the coefficients. For dummy
variables, the transformation is simply exp(B). For example, for the dummy variable 1 _drugs exp(—0.2982) = 0.74. This
implies that holding all other variables constant, the duration time until the next arrest for ex-convicts with drug problems is about
26% shorter than the duration time of ex-convicts without drug problems. For continuous variables, the transformation used is
100 x exp(B—1). For example, for the variable 1_tserved, we have 100 x exp(—0.0193—1) = 2%.
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The LIFEREG Procedure

Model Information

Data Set

WORK.DURATION

Dependent Variable

Log (1 _durat2)

Censoring Variable censored
Censoring Value (s) 1
Number of Observations 1445
Noncensored Values 552
Right Censored Values 893
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Lognormal

Log Likelihood

-1680.426985

Number of Observations

Read| 1445

Number of Observations Used

1445

Algorithm converged.

Analysis of Parameter Estimates

95%
Standard| Confidence
Parameter |DF |Estimate Error Limits Chi-Square|Pr > ChiSqg
Intercept| 1 4.8454 0.0755|4.6975(4.9933 4121.78 <0.0001
Scale 1 1.9688 0.0684|1.8392(2.1077

OUTPUT 11.6. Weibull distribution fit for the RECID data.

Not surprisingly, both sets of interpretations lead to exactly the same conclusion.

Proc Phreg can be used to fit the Cox’s (1972) Proportional Hazard Models to duration data. These models make no
distributional assumptions on the data and can be used to incorporate time variant regressors. The general form of the model is

given by

where £;(¢) denotes the hazard for the ith subject at time #, Ao (¢) is the baseline hazard, and x; is the vector of explanatory variables
that may include both time-dependent and time-invariant variables. The name proportional hazard is derived from the fact that for

hi(f) = ho(t) exp(x{B),

two subjects in the study, the ratio h;(¢)/h;(t) is time invariant. That is,

The method of partial likelihood is used to estimate the parameters of these models. More details can be found in Allison (1995),
Lee (1992), and Meeker and Escobar (1998). We will illustrate how Proc Phreg can be used to estimate Cox’s Proportional Hazard
models. The following minimal set of statements should be used. The results of the analysis are given in Output 11.9.

Proc Phreg data=duration;

Model 1_durat*censored(l)=1_black 1_drugs 1_workprg l_priors 1_tserved 1_felon

1_alcohol 1_marry 1_educ 1_age;

Run;

= exp (XITB—X/TB>
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OUTPUT 11.6. (Continued)

Proc Phreg invokes the procedure on the temporary SAS data set “duration.” The “model” statement is identical to the
statement used in Proc Lifereg with the exception of the missing “d” option. More details on the different options that can be used
with this procedure can be found in Allison (1995) and SAS Users Guide 9.2 from SAS Institute, Inc.

The first few tables list out basic information about the model. As discussed in Allison (1995), the partial likelihood method
uses the ranks of the duration times. There may be instance where there are ties in the ranks. For instance, in the example used here,
there were eight ex-convicts who were arrested again in the first month. Their ranks in the calculations are therefore equal. SAS
offers three options for handling ties in the data. The default is the Breslow method. See both Allison (1995) and the SAS Users
Guide 9.2 from SAS Institute for more details.

The model fit statistics indicates a highly significant model. The last table gives information on the parameter estimates. The
variables recording education, marriage, and work program participation are not significant. Note that the signs of the coefficients
here are different from those obtained using Proc Lifereg. This is because, Proc Phreg models the log of the hazard while Proc
Lifereg models the log of the survival. The chi-square test statistic values are calculated in the usual way and the hazard ratio is
simply exp(ﬁ). The interpretations can be done by using the fact that a semi-log model was used for the data. For instance, holding
all other variables constant, the hazard of arrest for ex-convicts with drug problems is about 28 % higher than the hazard of arrest of
ex-convicts without drug problems. As another example, holding all other variables constant, for each additional month of time
served increases the hazard of arrest by about 1.3%.
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The LIFEREG Procedure

Model Information
Data Set WORK.DURATION
Dependent Variable Log (1l _durat2)
Censoring Variable censored
Censoring Value (s) 1
Number of Observations 1445
Noncensored Values 552
Right Censored Values 893
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Weibull
Log Likelihood -1715.771096

Number of Observations Read|1445

Number of Observations Used|1445

Algorithm converged.

Analysis of Parameter Estimates

Standard 95%
Parameter DF |[Estimate Error |Confidence Limits|Chi-Square|Pr > ChiSqg

Intercept 1 5.2245 0.0705 5.0863 5.3627 5490.88 <0.0001
Scale 1 1.3004 0.0516 1.2030 1.4057
Weibull Scale| 1|185.7613| 13.0971|161.7861(213.2895
Weibull Shape| 1 0.7690 0.0305 0.7114 0.8312

OUTPUT 11.7. Long Normal distribution fit for the RECID data.

It may be of interest to see how optimization techniques such as the Newton—Raphson and the BHHH methods work. Program
18in Appendix E contains Proc IML code to conduct analysis of the strike duration data from Kennan (1985, pp. 14-16) using both
the optimization techniques. As stated in Greene (2003, p. 800), the strike data contains the number of days for 62 strikes that
started in June of years 1968—1976. The data set also contains an explanatory variable measures deviation of production due to
various seasonal trends (Greene, 2003).

The Proc IML code analyzes the data using the Newton—Raphson and the BHHH methods and was written by Thomas B.
Fomby from the Department of Economics at the Southern Methodist University in 2005. The code has been reprinted with
permission from Thomas Fomby. As is always the case, the optimization techniques require a starting value. Using Proc Reg on the
log of the response variable against the explanatory variable gives values of 3.2 and —9.2 for the intercept and slope coefficient.
The starting values have been set at 4 for the intercept and —9 for the slope coefficient. The scale value is set at 1, the scale value for
the exponential distribution.

The analysis results are given in Output 11.10. Notice that the convergence of the Newton—Raphson algorithm occurs at the
sixth iteration with values of 0.9922 for the scale parameter, 3.78 for the intercept, and —9.33 for the slope coefficient. Also, note
that the Wald’s test for constant hazard cannot be rejected, indicating that the exponential model may be used to model the strike
duration data. The BHHH algorithm converges much later but with parameter values similar to the ones from the Newton—
Raphson method. Output 11.11 contains the analysis results of the strike data using Proc Lifereg using the exponential
distribution. Notice that the p value from LM test for the scale parameter indicates that we cannot reject the hypothesis that the
scale parameter is 1, indicating that the exponential distribution was a good choice for the data.

Since the model is a semi-log model, we can interpret the coefficient for “eco” as follows: A one-unit change in production is
expected to decrease the average length of the strikes by 9.33%.



Percent

REGRESSION ANALYSIS WITH DURATION DATA

991

951
901
801
701
601.
5071
401

301

201

101

Weibull Plot For 1 durat2
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DURATION ANALYSIS
The LIFEREG Procedure
Model Information
Data Set WORK.DURATION
Dependent Variable Log (1l _durat2)
Censoring Variable censored
Censoring Value (s) 1
Number of Observations 1445
Noncensored Values 552
Right Censored Values 893
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Lognormal
Log Likelihood -1597.058956
Number of Observations Read|1445
Number of Observations Used|1445
Algorithm converged.
Type III Analysis of Effects
Wald
Effect DF|Chi-Square|Pr > ChiSqg
1 black 1 21.3548 <0.0001
1 drugs 1 5.0457 0.0247
1_workprg| 1 0.2717 0.6022
1 _priors 1 40.9108 <0.0001
1 tserved| 1 42.1368 <0.0001
1 _felon 1 9.3649 0.0022
1 alcohol| 1 19.3817 <0.0001
1 marry 1 5.9350 0.0148
1_educ 1 0.8144 0.3668
1 _age 1 41.6081 <0.0001
Analysis of Parameter Estimates
95%
Standard Confidence
Parameter |DF|Estimate Error Limits Chi-Square|Pr > ChiSqg
Intercept| 1 4.0994 0.3475| 3.4182| 4.7805 139.14 <0.0001
1 _black 1] -0.5427 0.1174|-0.7729(-0.3125 21.35 <0.0001
1 _drugs 1] -0.2982 0.1327|-0.5583(-0.0380 5.05 0.0247
1_workprg| 1| -0.0626 0.1200(-0.2978| 0.1727 0.27 0.6022
1 priors 1] -0.1373 0.0215(-0.1793|-0.0952 40.91 <0.0001
1l tserved| 1| -0.0193 0.0030|-0.0252(-0.0135 42.14 <0.0001
1 felon 1 0.4440 0.1451| 0.1596| 0.7284 9.36 0.0022
1 _alcohol| 1| -0.6349 0.1442|-0.9176|-0.3522 19.38 <0.0001
1 _marry 1 0.3407 0.1398| 0.0666| 0.6148 5.94 0.0148
1_educ 1 0.0229 0.0254(-0.0269| 0.0727 0.81 0.3668
1 _age 1 0.0039 0.0006| 0.0027| 0.0051 41.61 <0.0001
Scale 1 1.8105 0.0623| 1.6924| 1.9368

OUTPUT 11.8.
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The PHREG Procedure

Model Information

Data Set

WORK.DURATION

Dependent Variable|l d

urat2

Censoring Variable|cen

sored

Censoring Value(s) |1

Ties Handling BRE

SLOW

Number of Observations Read|1445
Number of Observations Used|1445

Summary of the Number of
Event and Censored Values

Percent
Total [Event [Censored|Censored
1445 552 893 61.80

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.
Model Fit Statistics

Without With

Criterion|Covariates|Covariates

-2 LOG L 7788.360 7632.760

AIC 7788.360 7652.760

SBC 7788.360 7695.895

Testing Global Null Hypothesis: BETA=0

Test Chi-Square| DF|Pr > ChiSqg
Likelihood Ratio 155.6005| 10 <0.0001
Score 168.7868| 10 <0.0001
Wald 166.1585| 10 <0.0001

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Parameter| Standard Hazard
Variable |[DF| Estimate Error|Chi-Square|Pr > ChiSqg| Ratio
1 _black 1 0.43257 0.08838 23.9547 <0.0001| 1.541
1 drugs 1 0.27558 0.09786 7.9297 0.0049| 1.317
1_workprg| 1 0.08403 0.09081 0.8562 0.3548| 1.088
1 _priors 1 0.08759 0.01348 42.2354 <0.0001| 1.092
1 tserved| 1 0.01296 0.00168 59.1317 <0.0001| 1.013
1 felon 1] -0.28284 0.10616 7.0989 0.0077| 0.754
1 _alcohol| 1 0.43063 0.10572 16.5922 <0.0001| 1.538
1 marry 1] -0.15490 0.10921 2.0117 0.1561| 0.857
1_educ 1] -0.02133 0.01945 1.2028 0.2728| 0.979
1 age 1| -0.00358 |0.0005223 47.0211 <0.0001| 0.996

OUTPUT 11.9.
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DURATION ANALYSIS

Calculation of Unrestricted MLE estimates using Hessian-Based Newton-Raphson
Method

Iteration steps

RESULT
ITER SIGMA BETA1l BETA2 Gl G2
1|/0.9537711|3.7467595|-9.443068|-3.175459]|-12.59413
2(0.9869113[3.7769746|-9.345545]6.0076113(3.5681181
3(0.9921146(3.7797375|-9.332412]0.6819702(0.3315151
4(10.9922036(3.7797742|-9.332198|0.0110044(0.0048339
5/0.9922037(3.7797742(-9.332198(2.9191E-6| 1.207E-6
610.9922037(3.7797742|-9.332198|1.984E-13|8.085E-14
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
RESULT
G3 CRIT LNLU
-0.169208(0.5124223(-98.77871
0.0551014(0.1073396|-97.45512
0.0053577(0.0143944|-97.28771
0.0000803|0.0002348|-97.28542
2.0407E-8|6.1706E-8|-97.28542
1.465E-15|5.601E-15|-97.28542
0 0 0
0 0 0
0 0 0
0 0 0
Unrestricted Log-likelihood =
LNLU
-97.28542

The Maximum Likelihood Estimates: Hessian-Based Newton-Raphson Iteration

THETA
SIGMA|0.9922037
BETA1([3.7797742
BETA2(-9.332198

Asymptotic Covariance Matrix-From Hessian

OUTPUT 11.10. Duration analysis of the strike data using Thomas Fomby’s Proc IML code.
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cov
SIGMA BETAl BETA2
SIGMA|0.0099437|-0.004184| -0.00209
BETA1(-0.004184|0.0186872(-0.094236
BETA2| -0.00209|-0.094236(8.6292303

Standard errors:

SE_SIGMA H

0.0997181

SE_BETAl H

0.1367012

SE BETA2 H

2.9375552

Asymptotic Covariance Matrix-From bhhh

COVBH3
SIGMA BETAl BETA2
SIGMA|0.0145537(-0.002197|-0.038556
BETA1(-0.002197]|0.0191359(-0.109777
BETA2(-0.038556|-0.109777(8.7277958

Standard errors:

SE SIGMA B

0.1206388

SE_BETAL B

0.1383325

SE_BETA2_B

2.9542843

Wald test of hypothesis of constant hazard

(sigma=1)

WALD

CRITVAL

PVAL

Results of Wald test Using Hessian

0.0032527

3.8414588

0.9545197

WALD

CRITVAL

PVAL

Results of Wald test Using BHHH

0.0031764

3.8414588

0.9550554

OUTPUT 11.10. (Continued)
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DURATION ANALYSIS
|Maximum Likelihood Estimation of Restricted Modell
I*************************************************I
Iteration steps
RESULT

ITER BETAl BETA2 Gl G2 CRIT LNLR
1 4 -9]-12.59413|-0.169208|0.4878992|-98.77871
2(3.7494458|-9.418651(1.7610376|0.0293685(0.0867187| -97.3134
313.7761427(-9.336144|0.0244856(0.0005357|0.0023563|-97.28845
4(3.7765119|-9.333816(5.1415E-6|1.6029E-7(9.1067E-7|-97.28844
513.7765119(-9.333815|2.572E-13|1.125E-14|7.292E-14|-97.28844
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

|The Maximum Likelihood Estimates-Restricted Modell

BETAl BETA2
3.7765119(-9.333815

|Asymptotic Covariance Matrix-From Hessian of Restricted Modell

cov
BETAl BETA2
BETA1|0.0171936|-0.096573
BETA2(-0.096573| 8.761006

LM CRITVAL PVAL
Results of LM test Using Hessian|0.0061132|3.8414588(0.9376792

LM CRITVAL PVAL
Results of LM test Using BHHH|0.0089884(3.8414588(0.9244679

LR CRITVAL PVAL
Results of LR test|0.0060429|3.8414588]0.9380379

Calculation of Unrestricted MLE estimates using BHHH-Based Newton-Raphson
Method

|Iteration stepsl

OUTPUT 11.10. (Continued)
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RESULT RESULT
ITER SIGMA BETAl BETA2 Gl G2 G3 CRIT LNL
0.9898141| 3.778817|-9.315595(-0.593324]0.4162062|0.0064475(0.0369484|-97.28985
210.9937401(3.7803749]|-9.344186(0.2894756]0.1131911 -0.00063|0.0289013|-97.28582
3 0.99118)3.7793555(-9.324198|-0.183216(-0.070137(0.0005733|0.0201776|-97.28559
410.9928738(3.7800404|-9.337409| 0.123469|0.0482311|-0.000373| 0.013337|-97.28549
5(0.9917598]3.7795943(-9.328734]1-0.080232(-0.030943|0.0002455|0.0087576(-97.28545
610.9924954|3.7798909|-9.334469|0.0534042|0.0207745|-0.000162 0.00579(-97.28543
7({0.9920109]3.7796964(-9.330694]|-0.034992(-0.013536|0.0001068|0.0038108(-97.28543
8(0.9923306]3.7798251(-9.333186| 0.023168(0.0089956| -0.00007|0.0025157(-97.28542
910.9921199|3.7797404|-9.331545|-0.015235|-0.005901|0.0000464|0.0016575|-97.28542
10(0.992258913.7797964(-9.332628|0.0100633(0.0039042|-0.000031|0.0010935(-97.28542
1110.9921672(3.7797595|-9.331914(-0.006628|-0.002569|0.0000202{0.0007208|-97.28542
12(0.992227713.7797838(-9.332385]|0.0043735(0.0016961|-0.000013|0.0004753(-97.28542
13(0.9921878(3.7797678(-9.332074|-0.002882(-0.001117|8.7761E-6|0.0003134(-97.28542
1410.9922141(3.7797784|-9.332279(0.0019011|0.0007372|-5.787E-6{0.0002067|-97.28542
15(0.9921968|3.7797714(-9.332144|-0.001253(-0.000486|3.8156E-6|0.0001363(-97.28542
16/0.9922082( 3.779776|-9.332233(0.0008265[0.0003205|-2.516E-6{0.0000898|-97.28542
17(0.9922007| 3.779773(-9.332174]|-0.000545(-0.000211|1.6589E-6|0.0000592(-97.28542
18(0.9922056| 3.779775(-9.332213|0.0003593(0.0001393|-1.094E-6|0.0000391(-97.28542
1910.9922023(3.7797737|-9.332187(-0.000237|-0.000092|7.2126E-7{0.0000258|-97.28542
20]10.9922045(3.7797745]-9.332204(0.0001562]0.0000606|-4.756E-7| 0.000017|-97.28542
21(0.9922031| 3.779774(-9.332193|-0.000103( -0.00004(3.1358E-7|0.0000112(-97.28542
22| 0.992204(3.7797743 -9.3322]0.0000679|0.0000263|-2.068E-7|7.3837E-6|-97.28542
2310.9922034(3.7797741]|-9.332196|-0.000045|-0.000017|1.3634E-7|4.8686E-6|-97.28542
24(0.9922038(3.7797742(-9.332199]0.0000295(0.0000114| -8.99E-8|3.2102E-6|-97.28542
25]10.9922035(3.7797741|-9.332197|-0.000019|-7.549E-6(5.9275E-8|2.1167E-6|-97.28542
26[0.9922037|3.7797742(-9.332198]0.0000128(4.9776E-6(-3.908E-8|1.3957E-6(-97.28542
2710.9922036(3.7797742]|-9.332197|-8.465E-6|-3.282E-6(2.5771E-8|9.2029E-7|-97.28542
2810.9922037(3.7797742]|-9.332198|5.5817E-6|2.1641E-6|-1.699E-8|6.0681E-7|-97.28542
29(0.9922036|3.7797742(-9.332197| -3.68E-6(-1.427E-6(1.1205E-8|4.0011E-7|-97.28542
30(0.9922037|3.7797742(-9.332198|2.4268E-6(9.4089E-7|-7.388E-9|2.6382E-7(-97.28542
31(0.9922036|3.7797742(-9.332198 -1.6E-6|-6.204E-7(4.8714E-9|1.7396E-7|-97.28542
3210.9922037(3.7797742|-9.332198(1.0551E-6|4.0907E-7|-3.212E-9| 1.147E-7|-97.28542
33(0.9922036(3.7797742(-9.332198|-6.957E-7(-2.697E-7|2.1179E-9|7.5632E-8(-97.28542
3410.9922037(3.7797742|-9.332198(4.5872E-7|1.7785E-7|-1.397E-9|4.9869E-8|-97.28542
35(0.9922036(3.7797742(-9.332198|-3.025E-7(-1.173E-7|9.208E-10|3.2882E-8(-97.28542
36(0.9922037|3.7797742(-9.332198|1.9944E-7(7.7325E-8|-6.07E-10|2.1682E-8(-97.28542
3710.9922036(3.7797742|-9.332198(-1.315E-7|-5.099E-8|4.003E-10|{1.4296E-8|-97.28542
38(0.9922037|3.7797742(-9.332198| 8.671E-8(3.3619E-8|-2.64E-10|9.4266E-9(-97.28542
39/0.9922036(3.7797742|-9.332198(-5.717E-8|-2.217E-8|1.741E-10|6.2156E-9|-97.28542
40]10.9922037(3.7797742]|-9.332198(|3.7699E-8|1.4616E-8|-1.15E-10(4.0984E-9|-97.28542
4110.9922037(3.7797742]|-9.332198|-2.486E-8|-9.638E-9(7.568E-11(2.7024E-9|-97.28542

OUTPUT 11.10.

(Continued)
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DURATION ANALYSIS
RESULT RESULT

ITER SIGMA BETAl BETA2 Gl G3 CRIT LNL
4210.9922037(3.7797742|-9.332198| 1.639E-8|6.3548E-9|-4.99E-11(1.7819E-9|-97.28542
4310.9922037(3.7797742|-9.332198(-1.081E-8| -4.19E-9| 3.29E-11(1.1749E-9|-97.28542
4410.9922037(3.7797742|-9.332198(7.1261E-9|2.7629E-9|-2.17E-11(7.747E-10|-97.28542
4510.9922037(3.7797742|-9.332198(-4.699E-9|-1.822E-9| 1.43E-11(5.108E-10|-97.28542
46(0.9922037|3.7797742(-9.332198|3.0982E-9|1.2012E-9|-9.43E-12|3.368E-10|-97.28542
4710.9922037(3.7797742|-9.332198(-2.043E-9|-7.92E-10|6.219E-12(2.221E-10|-97.28542
4810.9922037(3.7797742|-9.332198| 1.347E-9|5.222E-10| -4.1E-12(1.464E-10|-97.28542
49(0.9922037(3.7797742|-9.332198|-8.88E-10|-3.44E-10|2.704E-12|9.656E-11|-97.28542
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

OUTPUT 11.10.

(Continued)




REGRESSION ANALYSIS WITH DURATION DATA

The LIFEREG Procedure

Model Information
Data Set WORK.STRIKE
Dependent Variable Log (dur)
Number of Observations 62
Noncensored Values 62
Right Censored Values 0
Left Censored Values 0
Interval Censored Values 0
Name of Distribution Exponential
Log Likelihood -97.28844102

Number of Observations Read|62

Number of Observations Used|62

Algorithm converged.

Type III Analysis of Effects

Wald
Effect |DF|Chi-Square|Pr > ChiSqg
eco 1 9.9441 0.0016

Analysis of Parameter Estimates

Standard Conéﬁggnce
Parameter DF |Estimate Error Limits Chi-Square|Pr > ChiSqg
Intercept 1 3.7765 0.1311 3.5195| 4.0335 829.50 <0.0001
eco 1| -9.3338 2.9599(-15.1351|-3.5325 9.94 0.0016
Scale 0 1.0000 0.0000 1.0000| 1.0000
Weibull Shape| 0 1.0000 0.0000 1.0000| 1.0000

Lagrange Multiplier Statistics

Parameter [Chi-Square

Pr > ChiSqg

Scale

0.0061

0.9377

OUTPUT 11.11. Analysis of the strike data using Proc Lifereg.
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SPECIAL TOPICS

Chapters 1 through 11 discussed basic econometric analysis using SAS. This chapter introduces additional analytical methods
within the context of what was covered in the previous chapters.

12.1 ITERATIVE FGLS ESTIMATION UNDER HETEROSCEDASTICITY

In Section 5.6, we introduced FGLS estimation where we assumed that the variance of the disturbances is a function of one or more
explanatory variables. For example, we assumed that o = 0°z%, where z; = income. The estimation was done over two steps,
where in step 1, the OLS residuals were used in a regression with log(z;) to get an estimate of a. The weights using o were
calculated resulting in the two-step FGLS estimator.

We can very easily iterate the two-step estimation process to convergence. The method involves recomputing the residuals
using the first set of FGLS estimators and then using these residuals to recompute the FGLS estimates. The iteration continues
until the difference between the most recent FGLS estimates does not differ from the estimates computed in the previous stage.
Program 9 in Appendix E gives IML code to carry out these computations on the credit card data set, which was used in Chapter 5
with z; = income. The analysis results are given in Output 12.1. As discussed in Greene (2003), the asymptotic properties of the
iterated FGLS are similar to those of the FGLS.

12.2 MAXIMUM LIKELIHOOD ESTIMATION UNDER HETEROSCEDASTICITY

To motivate our discussion of maximum likelihood estimation, first consider the joint distribution of y; = xl.TB +¢;, where i =
1,...,n,assuming thatg; ~ iid N(0,0?), where 07 = of;(et). Note that the observations y; are independently distributed since the
disturbances ¢; are assumed to be independently distributed. The joint distribution is therefore given by (Casella and Berger, 1990;
Greene, 2003, p. 228-229)

n

2 T 1< (yi—xTB)?
[1r0ilB.xi,07) = (2m) /2ggfexp <_2ZW>.

i=1

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.

202



MAXIMUM LIKELIHOOD ESTIMATION UNDER HETEROSCEDASTICITY 203

ALPHA_ S
The value of alpha is|1.7622762

ITER
Convergence was obtained in 18|iterations.

The estimates of the coefficients are

STAT TABLE
BHAT SE
INT —130.384(143.9658
AGE —2.7754 3.9523

OWNRENT | 59.1258( 60.5929
INCOME |169.7363| 75.6177
INCOME2| —8.5995 9.2446

OUTPUT 12.1. Iterative FGLS estimators for the credit card expenditure data.

Taking the log of the likelihood after substituting of; (et) for o? and g; for y;—x! B and rearranging the terms involving at, we get

oo n n I
Long-likelihood = — > [log(27) + logo?] — 5; {logf,-(ot) +

11 5
o file) ']’

Our objective is to find values of &, B, and o> that maximize this log-likelihood function. Taking derivative of this function with
respect to a, B, and o, we get (Greene, 2003, p. 229)

S(B) = Z gz}f’@ :

-3 (o) (i 1)

i=

Sl = Z G) («rz;ja) _1> ﬁ(la) afé(f) :

i=1

The values of these derivatives equate to zero at the maximum likelihood estimators of a, B, and 2. We will consider two cases
for a. In the first case, we assume that a has a single parameter. In the second case, we will discuss estimation when o has more than
one parameter. The estimation process in the first case is straightforward and is outlined in the following steps:

1. Take a range of values for .
2. For each value of « from Step 1, compute the GLS estimator of B using weights defined by f; («).

3. Compute the Generalized Sums of Squares (GSS) 67 for each (a, B) pair. The expression for 3> can be derived by equating
S(o?) to zero and solving for o*. The GSS is given by

, 1 - ()’i—xiTé)z

Gr=-\N"_4b

B n i=1 ﬁ(a)

4. Finally, calculate the value of the log-likelihood equation at («, Q, o?). A plot of the log-likelihood values versus o can be
used to locate the optimal value of «. Weighted least squares can then be performed by using weights defined by fi(o).
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FIGURE 12.1. Plot of log-likelihood at various values of « for the credit card data set.

We will illustrate the computations involved using the credit card data set that was used in Chapter 5. We define f(o) = income®
and then take a range of values of « and follow steps 1 through 4 to calculate the maximum likelihood estimator of 8 under
heteroscedasticity.

The plot of the log-likelihood versus a appears in Figure 12.1. Program 10 in Appendix E contains the complete code to create
the plot. Note that the log-likelihood is maximized around 3.6. The exact value of « that maximizes the log-likelihood function can
easily be found by various techniques using SAS.

The exact value of o that maximizes the log-likelihood is 3.651 and the value of the log-likelihood at this value of « is
—482.324. To get the MLE estimates of B, use Proc Reg with weights = 1/income™>'. The output from this analysis is given in
Output 12.2. Note that the standard errors that appear in this output are not based on the GSS. To get the correct standard errors, use
Proc IML to first compute the GSS using the optimal values of & and B. Then use the fact that the variance—covariance matrix for B
is given by Var(B|X) = 6*(X"Q  (a)X) . The correct standard errors are (113.06, 2.76,43.51, 81.04, and 13.43). Program 11
in Appendix E contains the complete IML code to conduct this analysis.

12.3 HARVEY’S MULTIPLICATIVE HETEROSCEDASTICITY

The previous section dealt with MLE estimates assuming that a has a single parameter. As shown in Greene (2003, pp. 232-235),
the case where a has more than one parameter is a straightforward extension of the maximum likelihood estimation used for the
previous case. Harvey’s model of multiplicative heteroscedasticity can be used to calculate the estimates of the model parameters.
In the procedure, z! = [1,q’], where q; consists of the variables suspected of causing heteroscedasticity. In the credit card
example, q! = [income,incomesq]. An iterated scoring method is used to estimate the parameters in the model
log(0?) = log(0?) + al'z;. The intercept at convergence can be used to estimate 0. Details of the scoring method and the
formulas are provided in Greene (2003) and are summarized here.
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The REG Procedure
Model: MODEL1
Dependent Variable: AvgExp AvgExp

Number of Observations Read|72
Number of Observations Used|72
Weight: wt

Analysis of Variance

Sum of Mean
Source DF | Squares Square |F Value|Pr > F
Model 4 13826(3456.42517 5.35/0.0008
Error 67 43278| 645.94103
Corrected Total|71 57104

Root MSE 25.41537 |[R-Square|0.2421
Dependent Mean|128.76438|Adj R-Sq|0.1969
Coeff Var 19.73789

Parameter Estimates

Parameter| Standard
Variable |Label DF| Estimate Error |t Value|Pr > |t
Intercept|Intercept| 1|-—19.26287(117.20218 —0.16 0.8699
Age Age 1| —1.70608 2.85938 —0.60 0.5527
OwnRent OwnRent 1| 58.10399| 45.10486 1.29 0.2021
Income Income 1| 75.98559| 84.00591 0.90 0.3690
Income_Sq 1 4.38904| 13.92426 0.32 0.7536

OUTPUT 12.2. Regression analysis of the credit card expenditure data using optimal value of «.

Estimate B using OLS and calculate log(e?).

Regress log(e?) versus z; to get estimates of the intercept and a.

Estimate o7 with exp(log(c?) + 'z).

Use FGLS to estimate .

Update both log(c?) and B. The formulas are given in Greene (2003, p. 234).

Stop the iteration process if the differences between the estimated values across the two periods are negligible.

A e

Program 12 in Appendix E gives the complete code for conducting this analysis. The code was written to analyze the credit card
data set from Greene (2003). The following weight function was used:

o? = exp(log(0?) + ajincome + azincomesq).
The analysis results are given in Output 12.3.
An estimate of o is given by 5 = exp(—0.042997) = 0.957914. Again, we can use this along with the expression of the
variance—covariance matrix of B to generate the standard errors of the regression coefficients.
124 GROUPWISE HETEROSCEDASTICITY
In this section, we will discuss groupwise heteroscedasticity. That is, the case where the homoscedasticity assumption is violated
because of the unequal variance of the disturbances between the groups. To motivate the discussion, consider analyzing the

airlines data from Greene (2003) using the model

In(C) = By + BIn(Q) + BsLF + ByIn(PF) +&.
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ALPHA
The value of alpha is|-0.042997
5.3553578
—0.563225

Convergence was obtained in|67|iterations.

The estimates of the coefficients are

STAT_ TABLE
BHAT SE
INT —58.4173|60.7722
AGE —0.3763| 0.5383

OWNRENT | 33.3545|36.3445
INCOME 96.8136(31.1198
INCOME2| —3.7999| 2.5688

OUTPUT 12.3. Maximum likelihood estimates using a multivariate value of a.

This data set was used extensively to illustrate basic panel data models in Chapter 7. The least squares residuals was plotted for
each airline and appear in Figures 12.2 and 12.3.

Airlines 3, 4, and 6 exhibit more variability in the disturbances than the other airlines. We therefore suspect that the model
suffers from groupwise heteroscedasticity. A formal test to check this can be conducted by using the likelihood ratio test given by
(Greene, 2003, p. 236).

K
Xo = nin(s*)— Z ns?.
i=1

0.4

0.34

0.2 4

0.1

0.0

Residuals

0 10 20 30 40 50 60 70 80 90

FIGURE 12.2. Time series plot of least squares residuals of individual airlines.
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FIGURE 12.3. Side-by-side comparison of the least squares residuals of airlines.

This test statistic is a slight modification of the Bartlett test statistic to compare variances (Snedecor and Cochran, 1983). Here,
s” is the mean square error (MSE) when the data set is pooled across the K groups and s? are the group-specific mean square errors.
Under the null hypothesis of homoscedasticity, the test statistic 3 has a chi-squared distribution with K — 1 degrees of freedom.
For the model given above, the value of X% equals 107.4 and the null hypothesis of homoscedasticity is therefore rejected.

Another test that can be used to check for groupwise heteroscedasticity is the test by Bartlett (Snedecor and Cochran, 1983),
which is given by

=

i (n—K)ln(sz)—‘ (n;—1)In(s?)

Xo = :
1+ e [ |-

i=

Il
—_

The term in the numerator is the Bartlett test statistic for comparing variances and is very similar to the test statistic given above.
In general, a group wise heteroscedasticity model is characterized by a common coefficients vector (or slope vector) across the
K groups but different within-group disturbance variances. That is, a model with the form (Greene, 2003, p. 235)

yi:X[TB—’—gi: l:1: ey
Val"(é‘ik‘x,']() :0'%(7 i= 1, ...y g,

If the within-group variances within each group are known, then one can use GLS estimation to calculate an estimate of the least
squares parameter. However, in most cases this will be unknown and estimation will need to be done using FGLS. That is, the least

squares estimates can be computed using

—1

R — iiXTX iixT
S L=l B P i |

The within-group residuals vector, e; can be used to calculate [Tl-z (i=1,...,K). Thatis,
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The following statements can be used to analyze the airlines data set under the groupwise heteroscedasticity assumption for the
model

In(cost;,) = B, + B,In(output;,) + BsLoadFactor;, + B4ln(FuelPrice;,)
+ ar Firmy, + asFirms + a4 Firmy + asFirms + agFirmg + ;.

We are assuming that a temporary SAS data set “airline” with the appropriate transformations and dummy variables has already
been created.

Step 1: Conduct an OLS to calculate the residuals. The following statements can be used.

proc reg data=airline;
model LnC=LnQ LnPF LF delta2 delta3 deltad deltab deltab;
output out=resid r=resid;

run;

Step 2: Calculate the within-group estimate of the disturbance variance. The following statements can be used.

data get_resid;
set resid;
temp=resid*resid;
run;
proc univariate data=get_resid noprint;
var temp;
by i;
output out=out sum=sum n=n;
run;
data get_var;
set out;
var=sum/n;
run;

Step 3: Merge the original data set with the data set that contains the within-group variances, calculate the weights, and
estimate the parameters.

data final_analysis;
merge airline(in=a) get_var (in=b) ;
by i;
if a and b;
weight=1/var;
run;
proc reg data=final_analysis;
model LnC=LnQ LnPF LF delta2 delta3 deltad deltab deltab;
welght weight;
run;

The results of the analysis are given in Output 12.4. The first part of the output includes the traditional OLS model without
adjusting for the different within-group disturbance variances.

Another estimation method involves treating this model as a form of Harvey’s multiplicative heteroscedasticity model with z;
equal to the set of K — 1 dummy variables. Program 13 in Appendix E contains the IML code for analyzing the airlines data using
the Harvey’s multiplicative heteroscedasticity approach (Output 12.5). Here, z; contains K — 1 dummy variables.



The REG Procedure
Model: MODEL1
Dependent Variable: LnC

Number of Observations Read|90

Number of Observations Used|90

Analysis of Variance

Sum of Mean
Source DF Squares Square|F Value|Pr > F
Model 8|113.74827|14.21853|3935.80(<0.0001
Error 81 0.29262| 0.00361
Corrected Total|89|114.04089

Root MSE 0.06011 |R-Square|0.9974
Dependent Mean|13.36561(Adj R-Sq|0.9972
Coeff Var 0.44970

Parameter Estimates

Parameter | Standard
Variable |Label DF| Estimate Error |t Value|Pr > |t]
Intercept|Intercept| 1 9.70594| 0.19312 50.26| <0.0001
LnQ 1 0.91928| 0.02989 30.76| <0.0001
LnPF 1 0.41749| 0.01520 27.47| <0.0001
LF LF 1| —1.07040( 0.20169 —5.31| <0.0001
delta2 1| —0.04124| 0.02518 —1.64 0.1054
delta3 1| —0.20892| 0.04280 —4.88| <0.0001
delta4 1 0.18456| 0.06075 3.04 0.0032
delta5 1 0.02405| 0.07990 0.30 0.7641
deltaé6 1 0.08706| 0.08420 1.03 0.3042
Number of Observations Read|90
Number of Observations Used|90
Weight: weight
Analysis of Variance
Sum of Mean
Source DF| Squares Square |F Value|Pr > F
Model 8 46047|5755.82865|5526.84(<0.0001
Error 81(84.35595 1.04143
Corrected Total|89 46131
Root MSE 1.02051|R-Square|0.9982
Dependent Mean|13.47897|Adj R-Sg[0.9980
Coeff Var 7.57109

Parameter Estimates

Parameter|Standard
Variable [Label DF| Estimate Error|t Value|Pr > |t]
Intercept |Intercept| 1 9.94232| 0.16229 61.26| <0.0001
LnQ 1 0.92577( 0.02678 34.57| <0.0001
LnPF 1 0.40561| 0.01255 32.32| <0.0001
LF LF 1| -1.21631| 0.18559 -6.55| <0.0001
delta2 1| -0.04603| 0.02376 -1.94 0.0562
delta3 1| -0.20210| 0.03615 -5.59| <0.0001
delta4 1 0.19055| 0.05516 3.45 0.0009
deltas 1 0.03717| 0.07044 0.53 0.5992
deltaé6 1 0.09459| 0.07436 1.27 0.2070

OUTPUT 12.4. Groupwise heteroscedasticity estimators for the airlines data.
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Convergence was obtained in|12|iterations

The estimates of the coefficients are

ESTIMATES_GLS

BETA SE
INTERCEPT|10.0570(0.1343
LNQ 0.9283(0.0227
LF -1.2892[0.1638
LNPF 0.4000(0.0108
D2 -0.0487[0.0237
D3 -0.1996|0.0308
D4 0.1921(0.0499
D5 0.0419(0.0594
D6 0.0963[0.0631

The values of alpha are

ESTIMATES_ALPHA

ALPHA|SE_ALPHA
ALPHA1|-7.0882 0.3651
ALPHA2| 2.0073 0.5164
ALPHA3| 0.7581 0.5164
ALPHA4| 2.3855 0.5164
ALPHA5| 0.5300 0.5164
ALPHA6| 1.0530 0.5164

OUTPUT 12.5. Groupwise heteroscedasticity estimators for the airlines data using Harvey’s Multiplicative heteroscedasticity approach.

12.5 HAUSMAN-TAYLOR ESTIMATOR FOR THE RANDOM EFFECTS MODEL

Basic panel data models including both fixed and random effects models have been discussed in Chapter 7. A fundamental
assumption in random effects models is that the unobserved subject-specific heterogeneity is independent of the observed
explanatory variables. In reality, it is rare that this assumption holds. For example, both Baltagi (2005, p. 128) and Greene
(2003, p. 305) give an example of a study where the interest is to gauge the impact of years of schooling on earnings. It is well
known that a subject’s motivation and desire (both assumed unobserved) are highly correlated to academic success and,
therefore, to the subject’s number of years of formal schooling. The random effects model cannot be used here since the
independence assumption between the unobserved heterogeneity (motivation, desire) and observed explanatory variable
(number of years of schooling) is correlated. As discussed in Greene (2003), most often these models have explanatory
variables that are time invariant. That is, we may be interested in drivers such as gender, race, marital status, and so on with
respect to their impact on earning’s potential. However, fixed effects models cannot incorporate time-invariant explanatory
variables as they are “swept” from the model. Suppose that the researcher wants to include the time-invariant explanatory
variables in the model. In this case, the fixed effects model will not allow the estimation of the parameters of these time-
invariant explanatory variables.

Hausman and Taylor (1981) introduced estimation techniques for the random effects model where the unobserved subject-
specific heterogeneity is correlated with the observed explanatory variables and where there are time-invariant explanatory
variables in the model.

Hausman and Taylor’s general approach is to first partition the observed and unobserved explanatory variables into two sets. In
each set, one set of variables are exogenous while the other set of variables are endogenous. Using the notation from Greene (2003,
p- 303), we can write the general form of the model as

T T T T .
Vi =X;,B1 +x,B +Zj,00 F 00 8w, i=1, .. .,nt=1, ..., T.
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Here,

x!,, has k; observed explanatory variables that are time dependent and exogenous with respect to u;.
z, has [; observed individual-specific variables that are time independent and exogenous with respect to u;.
x},, has k, observed explanatory variables that are time dependent and endogenous with respect to ;.

o

7, has [, observed individual-specific variables that are time independent and endogenous with respect to u;.

The assumptions about the random disturbances of this model are given in Greene (2003, p. 303). Hausman and Taylor
proposed an instrumental variables approach to estimate the parameters of the general model in the presence of the endogenous
variables. The Hausman and Taylor’s approach can be outlined as follows (Baltagi, 2005, p. 126; Greene, 2003, p. 304).

We can estimate B, and B, by using the within-group estimator. However, the time-invariant explanatory variables are “swept”
from the model and so we cannot estimate o¢; and a,.

Note that in the within-group model, the time-invariant disturbance term, u;, is swept from the model as well and, therefore,
both sets of deviations (x1;—X1; ) and (xp;—Xy;.) are independent of u;. Hausman and Taylor recommended that these k; + k;
deviations be used as instruments to estimate a; and a,. Next, since z is also exogenous, additional /; instruments are available
for estimation. At this stage, the number of instruments is less than the number of parameters that need to be estimated. That s,
we have ky + k, + [, instruments and k; + k, + [, + [, parameters. As stated in Greene (2003), Hausman and Taylor show
that as long as k; > [,, the k; group means X; can also be used as instruments. The complete set of instruments is, therefore,
given by

(X1ir—X1i.), (X2i—%0i.), 21, Xi.

The following steps can then be taken to estimate a and B:

1. Estimate B, and B, using x; and X, via the within-group model. Estimate a'g, the variance of g, using the residuals from this
analysis.

2. Use the estimates of B; and B, from step 1 to get the within-group residuals. That is, calculate e; = y; —X; b where
b = (b?,b]). Instrumental variable regression is then used to regress the residual group means against z; and z, using as
instruments z; and X, to provide an estimate for a; and a,.

3. Use the mean square errors from steps 1 and 2 to estimate o, the variance of u,, by using the formula 0> = "> —g? /T.
Next, define the weights that will be used in FGLS estimation as

2
T

0=/—5—.
02+ To?

4. Calculate the weighted instrumental variable estimator using the weights from step 3. To proceed, first consider the row
vector wh = (xI.,xT. 2zl z1.). The transformed variables using the weights are given by the row vectors (Greene, 2003,
p. 305)

wl =wl—(1-)w!,

y; = yiz_(l_é)yi.'

The instrumental variables are given by the row vector

th:L(Xm—ili)T (Xai—%ai)" z, X1;)].
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‘We can then stack the row vectors defined above to form nt x (2k; + k» + /) matrices W and V. Let Y be the nT x 1 vector of
transformed responses. The instrumental variables estimator is, therefore, given by

-1
B .,a"), = (W*TV)(VTV)_I(VTW*)} [(W*TV)(VTV)_I(W*TY*) (Baltagi, 2005, p. 126; Greene, 2003, p. 305).

The standard errors of the coefficients can be calculated using the approaches discussed in the previous chapters.

We will now illustrate the Hausman and Taylor method on the PSID return to schooling data based on a panel of 595 individuals
observed over the period 1976—1982. The data were analyzed by Cornwell and Rupert (1988) and then again by Baltagi (2005). As
described in Baltagi (2005, p. 128), the analysis involves regressing the log of wage on years of education (ED), weeks worked
(WKS), years of full-time work experience (EXP), occupation (OCC =1, an indicator that the person is in a full-collar
occupation), location indicators SOUTH (1 if the person resides in the South), SMSA (1 if the person resides in a standard
metropolitan resident area), industry (IND = 1 if the person works in a manufacturing industry), marital status (MS = 1 if the
person is married), sex and race (FEM = 1 indicates that the person is a female, BLK =1 indicates that the person is a black
individual), and union coverage (UNION = 1 if the person belongs to a union). We will compare the random effects and LSDV
model results with the Hausman and Taylor model. Taking an identical approach to analyzing the data as the author, the following
four groups of variables are first defined.

X, =OCC, SOUTH, SMSA, IND.

X, =EXP, EXP?, WKS, MS, UNION.
7, =FEM, BLK.

Z, =ED.

The following statements can be used to fit a random effects model to the data set. The analysis results are given in Output 12.6.

proc panel data=wages;
id people year;
model lwage=EXP EXPSQ WKS OCC IND SOUTH SMSA MS FEM UNION
ED BLK/ranone;

run;

The variables EXP, EXPSQ, OCC, MS, FEM, UNION, ED, and BLK are all significant while the variables WKS, IND,
SOUTH, and SMSA are not significant. Since this is a semi-log model, we can interpret the coefficient for return to
schooling as follows: an additional year of schooling results in an 10.7% wage gain. Note that the test statistic for
Hausman'’s test cannot be computed here because the fixed effects model eliminates the model FEM, BLK, and ED. If we
eliminate these variables from the model and rerun the random effects model using Proc Panel, we get a Hausman’s test
statistic value of 541.87 with 7 degrees of freedom that is highly significant. The correct degrees of freedom should be 9
since three explanatory variables were eliminated. Baltagi (2005, p. 128) gives the Hausman’s test statistic value that is
much larger than the one obtained by the Proc Panel procedure and has the correct degrees of freedom. We conducted the
Hausman’s test using Proc IML with the within-groups and random effects estimator and calculated the test statistics to be
higher than the one reported by the author. Nevertheless, the Hausman test statistic is rejected that justifies the use of an
instrumental variables approach.

As stated earlier, the random effects model does not take into account any possible correlation between the explanatory
variables and the unobserved individual subject-specific effects. The within-group estimators can be calculated by making use of
the code provided in Chapter 7—the code is also provided in the computations of the Hausman—Taylor estimator. The results from
the analysis are given in Output 12.7.

As stated earlier, the within-group model sweeps the individual effects from the model resulting in a consistent estimator of the
parameters associated with the time-dependent explanatory variables. However, the approach does not allow us to estimate the
parameters of the time-invariant effects.

The following steps can be taken to obtain the coefficients estimates under the Hausman—Taylor approach. Note that Proc IML
is used in conjunction with other SAS procedures. Also note that the results are slightly off from the results presented in Baltagi
(2005, Table 7.4, p. 129). The differences are, however, very small.
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The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: LWAGE LWAGE

Model Description
Estimation Method RanOne
Number of Cross Sections 595
Time Series Length 7

Fit Statistics
SSE 149.3005|DFE 4152
MSE 0.0360|Root MSE|0.1896
R-Square 0.4284

Variance Component Estimates

Variance Component for Cross Sections|0.100553

Variance Component for Error 0.023102

Hausman Test for
Random Effects

DF|m Value|Pr > m
0

Parameter Estimates
Standard

Variable |DF|Estimate Error|t Value|Pr > |t]|Label
Intercept| 1(4.030811 0.1044 38.59| <0.0001|Intercept
EXP 1]0.087726| 0.00281 31.27| <0.0001|EXP
expsq 1]-0.00076|0.000062| -12.31| <0.0001
WKS 1]0.000954(0.000740 1.29 0.1971|WKS
occ 1(-0.04293 0.0162 -2.65 0.0081|0CC
IND 1] 0.00381 0.0172 0.22 0.8242|IND
SOUTH 1]-0.00788 0.0281 -0.28 0.7795|SOUTH
SMSA 1(-0.02898 0.0202 -1.43 0.1517|SMSA
MS 1]-0.07067 0.0224 -3.16 0.0016|MS
FEM 1(-0.30791 0.0572 -5.38] <0.0001|FEM
UNION 1]0.058121 0.0169 3.45 0.0006 |UNION
ED 1] 0.10742| 0.00642 16.73| <0.0001|ED
BLK 1(-0.21995 0.0660 -3.33 0.0009|BLK

OUTPUT 12.6. Random effects model for the wages data.

1. The group means for the response variable and all explanatory variables are calculated using Proc Univariate. The outputis
stored in a temporary SAS data set called summary.

proc univariate data=wages noprint;
var occ south smsa ind exp expsg wks ms union fem blk
ed lwage;
by people;
output out=summary mean=m_occ m_south m_smsam_ind
m_exp m_expsgm_wksm_ms m_unionm_femm_blkm_ed
m_lwage;

run;
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The REG Procedure
Model: MODEL1
Dependent Variable: t_lwage

Number of Observations Read|4165
Number of Observations Used|4165

No intercept in model. R-Square is redefined.

Analysis of Variance

Sum of Mean
Source DF Squares Square|F Value|Pr > F
Model 9/158.38388|17.59821| 889.03]|<0.0001
Error 4156 82.26732| 0.01979
Uncorrected Total|4165|240.65119

Root MSE 0.14069|R-Square|0.6581
Dependent Mean|8.52992E-18|Adj R-Sqg|0.6574
Coeff Var 1.649418E18

Model is not full rank. Least-squares solutions for the parameters are not
unique. Some statistics will be misleading. A reported DF of 0 or B means that
the estimate is biased.

The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

t_fem =|0
t_blk =0
t_ed =|0

Parameter Estimates
Parameter Standard
Variable |DF Estimate Error |t Value|Pr > |t]
t_occ 1 -0.02148 0.01276 -1.68 0.0924
t_south 1 -0.00186 0.03175 -0.06 0.9533
t_smsa 1 -0.04247 0.01798 -2.36 0.0182
t_ind 1 0.01921 0.01430 1.34 0.1792
t_exp 1 0.11321 0.00229 49.49( <0.0001
t_expsq 1(-0.00041835(0.00005054 -8.28| <0.0001
t_wks 1| 0.00083595(0.00055509 1.51 0.1321
t_ms 1 -0.02973 0.01757 -1.69 0.0908
t_union 1 0.03278 0.01381 2.37 0.0177
t_fem 0 0
t_blk 0 0
t_ed 0 0

OUTPUT 12.7. Within-group effects model for the wages data.

The summary statistics are then merged with the original data set to create a data set where the observations on each variable
are deviations from the group means. This is accomplished with the following statements.

data LSDV_Step;
merge wages (in=a) summary (in=Db) ;
by people;
if a and b;
t_occ=occ-m_occ;
t_south=south-m_south;
t_smsa=smsa-m_smsa;
t_ind=ind-m_ind;
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t_exp=exp-m_exp;
t_expsg=expsg-m_expsJ;
t_wks=wks-m_wks;
t_ms=ms-m_ms;
t_union=union-m_union;
t_fem=fem-m_fem;
t_blk=blk-m_blk;
t_ed=ed-m_ed;
t_lwage=1lwage-m_lwage;
run;<?}j?>

2. Proc IML is now used to calculate the within-group estimates and the within-group mean residuals. The group mean
residuals from this step are used as a dependent variable in an instrumental variable regression against z; and z, with
instruments x; and z;.

proc iml;
use wages;
use LSDV_Step;
read all var{’'t_occ’, "t_south’, 't_smsa’, 't_ind’,
"t_exp’, 't_expsqg’, ‘t_wks’, ‘'t_ms’, ‘t_union’} into
X;
read all var{’'t_lwage’} into Y;
beta=inv (X' *X) *X‘'*Y;
summary var {occ south smsa ind exp expsg wks ms union
lwage} class{people} stat{mean} opt{save};
Y_M=1lwage;
X_M=occ| |south| |smsal |ind] |
expl |lexpsqgl |wks| |Ims| lunion;
e=Y M-X_M*beta;
create e_data from e;
append from e;
run;

3. A new data set is created with the within-group mean residuals and the explanatory variables for the purpose of doing the
instrumental variables regression. The following statements can be used.

data e_data;
set e_data;
people=_n_;

run;
data step2;
merge wages (in=a) e_data (in=Db) ;
by people;
if aandb;
rename coll=e_mean;
run;

The instrumental variable regression is done by using Proc Model. The following statements can be used. The analysis
results are given in Output 12.8.

proc model data=step2;
endo ed;
instruments fem blk occ south smsa ind;
e_mean=beta2*fem+beta3*blk+betad*ed;
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The MODEL Procedure

Model Summary
Model Variables

Endogenous

W | W

Parameters

Equations 1

Number of Statements 1

Model Variables | FEM BLK ED e_mean

Parameters | beta2 beta3 betad

Equations | e_mean

The Equation to Estimate is

e_mean = | F(beta2(FEM), beta3(BLK), beta4(ED))
Instruments | | FEM BLK OCC SOUTH SMSA IND

NOTE: At 2SLS Iteration 1 CONVERGE=0.001 Criteria Met.

The MODEL Procedure
2SLS Estimation Summary

Data Set
Options

DATA= | STEP2

Minimization Summary

Parameters Estimated 3
Method Gauss
Iterations 1

Final Convergence
Criteria

R 0
PPC 0
RPC(betad) 3549.228
Object 0.992621
Trace(S) 1.24545
Objective Value | 0.160006

Observations
Processed

Read 4165
Solved 4165

OUTPUT 12.8. Proc model output (preliminary step) to the Hausman and Taylor estimates for the wages data.
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The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

DF DF Adj
Equation | Model | Error | SSE | MSE | Root MSE | R-Square | R-Sq

e_mean 3| 4162 (5183.6 | 1.2454 1.1160 —0.1664 |-0.1670

Nonlinear 2SLS Parameter Estimates

Approx Approx
Parameter | Estimate | Std Err | t Value | Pr > [t|

beta2 —0.12485|  0.0560 —2.23| 0.0258
beta3 0.056205 | 0.0679 0.83| 0.4080
betad 0.358572 | 0.00143 | 250.24 | <0.0001

Number of
Observations Statistics for System

Used 4165 | Objective 0.1600
Missing 0 | Objective®*N | 666.4242

OUTPUT 12.8. (Continued)

fit e_mean/2sls;
run;

4. The final step s to calculate the weighted instrumental variables estimator. From the within-groups analysis, an estimate of
o2 is 0.0231 and from the instrumental regression analysis, an estimate of 0% is 1.2454. These values can be used to
calculate an estimate of Uﬁ. That is,

*

67 =6"-02)T
=1.2454-0.0231/7
=1.2421.

An estimate of the weight, é, can now be derived as follows:

~2
T

) 2
o, +To,

0.0231
0.0231 47 x 1.2421

= 0.051476.

The calculation is carried out in the following data step statements in SAS. The variables are also transformed using this
weight in the following statements.

data Final_Step;
merge wages (in=a) summary (in=Db) ;
by people;
if a and b;
sigmae=0.0231;
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sigmau=1.2421;
Theta=sqgrt (sigmae/ (sigmae+7*sigmau) ) ;
t_occ=occ-(l-theta) *m_occ;
t_south=south- (1-theta) *m_south;
t_smsa=smsa- (l-theta) *m_smsa;
t_ind=ind- (l1-theta) *m_ind;
t_exp=exp-(l-theta) *m_exp;
t_expsg=expsg- (l-theta) *m_expsqg;
t_wks=wks- (l-theta) *m_wks;
t_ms=ms- (l-theta) *m_ms;
t_union=union- (l-theta) *m_union;
t_fem=fem- (1l-theta) *m_fem;
t_blk=blk-(l-theta) *m_blk;
t_ed=ed-(1l-theta) *m_ed;
t_lwage=lwage- (l-theta) *m_lwage;
S_0OCC=0CC-IM_O0CC;
s_south=south-m_south;
S_smsa=smsa-mm_smsa;
s_ind=ind-m_ind;
S_exp=exp-m_exp;
S_expsg=expsg-m_expsdJg;
s_wks=wks-m_wks;
S_ms=ms-m_ms;
S_union=union-m_union;
s_fem=fem-m_fem;
s_blk=blk-m_blk;
s_ed=ed-m_ed;

run;

Proc IML is then used to calculate the Hausman—Taylor’s estimates for the earnings equation. The analysis results are given in
Output 12.9. The model indicates that an additional year of schooling results in a 13.73% wage gain. This is significantly
different from the estimate obtained from the random effects model.

proc iml;

* Read the data intomatrices.;
use final_step;read all
var{’'t_occ’,’'t_south’,’t_smsa’,’'t_ind’,'t_exp’,
"t_exsqg’,’'t_wks’,’t_ms’,’'t_union’,
"t_fem’,’'t_blk’,’t_ed’} into W;
read all var{t_lwage} into Y;
W=J(4165,1,0.051408) | |W;

readall
var{’s_occ’,'s_south’,’s_smsa’, ‘'s_ind’, 's_exp’,
's_expsqg’,’s_wks’,’s_ms’,’s_union’,
"fem’,'blk’, 'm_occ’, 'm_south’, 'm_smsa’, ‘'m_ind’} into
Vi
* Calculate the Hausman and Taylor estimates and standard
errors. ;
HT=1inv ( (W' *V) *inv (V/*V) * (V' *W) ) * (W' *V) *inv (V' *V) * (V'
*y) )

MSE= (y-W*HT) ‘' * (y-W*HT) / (4165) ;
SE=SQRT (vecdiag (MSE*inv ( (W’ *V) *inv (V/*V) * (V' *W))) ) ;
run;
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The Hausman & Taylor Estimates are

TABLE1

BHAT SE
INTERCEPT| 2.2098|0.2712
occ -0.0209]0.0135
SOUTH 0.0052(0.0319
SMSA -0.0419(0.0189
IND 0.0152]0.0150
EXP 0.1132(0.0024
EXP_SQ -0.0004]0.0001
WKS 0.0008|0.0006
MS -0.0298(0.0186
UNION 0.0328|0.0146
FEM -0.1291|0.1481
BLK -0.2852]0.1798
ED 0.1373]0.0282

OUTPUT 12.9. Hausman and Taylor estimates of the wages equation.

12.6 ROBUST ESTIMATION OF COVARIANCE MATRICES IN PANEL DATA

The panel data models discussed in Chapter 7 were based on the assumption of homoscedastic disturbances. This section extends
the discussion to heteroscedasticity in panel data models. We will focus our attention on the robust estimation of the covariance
matrix for fixed effects models and will use the Proc Panel procedure to calculate various robust estimates of the covariance
matrix. We illustrate the various techniques by revisiting the cost of US airlines data set from Greene (2003).

The HCCME option in Proc Model can be adjusted to generate robust estimates of the variance—covariance matrix. The
various options are given below (The Panel Procedure, p. 58, SAS Institute, Inc.). Also see the discussion on heteroscedasticity
in Chapter 5.

If we do not specify the HCCME option, then the analysis will default the OLS estimate of the covariance matrix. The OLS
output for the airlines data has been given in Chapter 7.

HCCME = 0: This yields the White’s estimator

1 nT

— é‘?x,-x
nT 4=

T

i

HCCME = 1: This yields the first version of the Davidson and MacKinnon (1993) estimator where the end result of the
White’s estimator is scaled up by a factor of nT/(nT — K):

1 L nT
nT pry nT—K

HCCME = 2: Thisyields the second version of the Davidson and MacKinnon (1993) estimator where the White’s estimator is
adjusted by the diagonals of the hat matrix:

hi = X;(XTX)'XT.
The estimator is given by

T 4
1< 8? T
~ XX .

nT —1—h
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Obs| TYPE_| NAME_ LnQ LnPF LF
1|oLs LnQ 0.000893416]-0.000317817/-0.00188
2|ows ILnPF [-0.000317817/0.000231013[-0.00077
3|ous LF -0.001884262[-0.000768569 0.04068
4 [HCCMEO [1nQ 0.000365016|-0.000125245/-0.00031
5|HCCMEO |LnPF  [-0.000125245(0.000183132[-0.00169
6 [HCCMEO [LF ~0.000306158[-0.001690757] 0.04692
7|HCCMEL [1nQ 0.000405574|-0.000139161/-0.00034
g|HCCMEL [LnPF  [-0.000139161[0.000203480[-0.00188
9|HCCMEL [LF ~0.000340176/-0.001878619 0.05214
10 [HCCME2 | LnQ 0.000397411[-0.000134190[-0.00034
11|HCCME2 [LnPF  [-0.000134190[0.000192432[-0.00178
12 |HCCME2 | LF ~0.000337505/-0.001783683| 0.04989
13 |ECCME3 | LnQ 0.000435062(-0.000144422[-0.00038
14 [HCCME3 |LnPF  [-0.000144422[0.000202471(-0.00188
15 |HCCME3 | LF ~0.000378817/-0.001881047 0.05310
16 |[HCCME4 [ LnQ 0.000870151]0.000062860 [-0.00794
17|HCCME4 |ILnPF  [0.000062860(0.000301454 [-0.00164
18 |HCCME4 |LF -0.007938291[-0.001642741] 0.14797

OUTPUT 12.10. HCCME estimators for the airlines data set.

HCCME = 3: This yields an estimator that is similar to the second version of the Davidson and MacKinnon’s estimator. The

adjustment is now based on (1—#;)* instead of (1—h;).

HCCME =4: This yields the Arellano (1987) version of the White’s estimator for panel data. The general idea involves
calculating the White’s estimator for each cross section in the panel (i = 1, . . ., n) and then taking the average of the n estimates of
the covariance matrices. See the Proc Panel Procedure (p. 58) for more details on this estimator.

Section 5.5 included a SAS program to print the various robust covariance matrices under heteroscedasticity. The code can
easily be adjusted to generate the robust covariance matrices in the panel setting.

The results of the analysis are given in Output 12.10. The diagonal elements in each covariance matrix give the variance
estimates for the parameters. Notice the similarity between White’s estimator and the Davidson and McKinnon’s estimators. The
OLS estimators and the Arellano’s version of the White’s estimator are different from these.

12.7 DYNAMIC PANEL DATA MODELS

We now turn our attention to dynamic panel data models. That is, models that are characterized by lagged variables on the
right-hand side of the model. The general form of these models is given by Baltagi (2005, pp. 134-142) and Verbeek (2004,
pp- 360-366)

Vie =pYiu1 +X Bro+e, i=1,...,nt=1 ..., T
where y; ;is a 1 x 1 scalar dependent variable, X;, is a k X 1 vector of explanatory variables, and p and B are 1 X 1 and k x 1
parameters that need to be estimated. The term «; is the unobserved subject-specific heterogeneity and &; , is the disturbance.
The subscripts i and ¢ index the subjects and the time period, respectively. As shown by Verbeek (2004, p. 361), the use of
lagged dependent variables on the right-hand side of the model introduces estimation problems, more specifically, with the
fixed effect model estimator becoming biased regardless of whether ¢; is treated as fixed or random. This section focuses on
methods based on generalized methods of moments estimation (GMM) that can be used to estimate the parameters in dynamic

panel data models.
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12.7.1 Dynamic Panel Data Estimation

The estimation technique is based on the class of GMM estimators introduced by Arnello and Bond (1991). They proposed an
estimation method based on instrumental variables estimation. As will be seen, the authors took advantage of the independence
between the lagged values of the dependent variable and the disturbances. Their general method and formulas can be found in most
intermediate—advanced texts on econometrics. I have found Baltagi (2005), Greene (2003), and Verbeek (2004) very useful in
understanding the mechanics of the Arellano and Bond estimator. The Proc Panel documentation from SAS Institute, Inc. is also a
good reference as it summarizes the key steps and formulas in the estimation process.

A discussion of GMM estimators is beyond the scope of this book (see the above mentioned texts for details). In general,
assuming the classical linear model y =Xp + € where X is suspected of being endogenous and where there is a matrix of
instruments Z, the GMM estimator takes the form

B = (X"ZWZ'W) 'X"ZWZ"y

where W is called the weights matrix and is chosen to minimize the asymptotic covariance of ﬁ GMM estimation is usually done
in two steps using an initial weight matrix (not optimal) in step 1. The optimal weight matrix is then formed using the residuals
from step 1 to calculate the second step GMM estimator.

The estimation steps are best understood by considering a basic dynamic panel data model without exogenous variables.
Consider the following simple autoregressive random effects panel model (Baltagi, 2005, p. 136; Verbeek, 2004, p. 361):

yi,t:pyi¢171+ai+8i,ta l:]7 ...I’l;[:17...,T,
where a; and &;, are independently and identically distributed disturbances with variances o2 and a'g, respectively. Furthermore,
assume that «; and &;, are independent of each other.

An initial approach is to take the first differences since this “sweeps” the unobserved individual effects «; from the model
resulting in

Viu—Yii—1 = P Yie—1 —Yiu—2] + |€is—€ir-1].
However, the OLS estimator of p will still be biased and inconsistent since Cov(y; ,_1,£;,_1) 7 0. To see how instrumental variable

estimation can be used to estimate p, consider the difference model at# =1, 2, .. .. Obviously, this model is valid for the first time
when ¢ = 3. The difference model is given by

Yiz—Yii—2 = plYi2—yi1] + |€iz—€i]-

Here, y; ; isavalid instrument since it is highly correlated toy, ; — y; ;butis uncorrelated to g; 3 — &; . Further, we can see that at
t =4, the differenced model is

Via—yiz = plyiz—yiz2] + leis—ei3]

and now both y; ; and y;, are valid instruments as both are uncorrelated with &; 4 — &; 3. In this fashion, we see that the set of
instrumental variables for a given time period tis y; 1, ..., yi,—2, i =1, ..., n (Baltagi, 2005, p. 137).
If Z; denotes the p x (T — 2) matrix of instruments for the i th subject, then it is easy to see that

[vii O 0 0 7
0 vy O 0
0 y2 O 0
0 0 0
T __ |- . . .
Zi - . . . . 0 Vil
0 iz
0
_0 0 R U
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The number of rows in Z; equals p = Z[T:_lz t. If we combine the instrument variables matrix for all cross sections, we have
T _ [gT oT T
z'=1[z" 7} ... 77]
The weight matrix for the first-step estimator is given by Z"HZ with H; = diag[H,, . . ., H,] where

2 -1 0 ... 0]
-1 2 -1
Hi= 0 0
-1 2 -1
K 0 -1 2 |

The (T —2) x (T — 2) matrix H; can be constructed as follows:

1. For the ith cross section, denote the vector of differenced residuals, Ag; as
Ag; = (8i3—&i2, ..., EiT7—EiT-1)-

2. The diagonal elements of the matrix are given by E (Asﬁ,) =202 while the off-diagonal elements are given by
E(AeiAsi, 1) = —0?, and E(Ag; Ae;, ) =0 for S>2.
Notice that o2 cancels out in the subsequent steps and is therefore not included in H;. If we denote the T — 2 difference

terms for all n cross sections as Ay, Ay_, and Ag, we can write the difference model as Ay = pAy_; + Ag, then Arellano
and Bond’s first-step estimator is given by

-1
e = [AyZ,Z(ZTHZ)*IZTAy,I} X [AinZ(ZTHZ)*‘ZTAy .
The residuals from this step are given by
A&} = AY—poypnAyi—1 fori=1,....n
and are used to construct the weight matrix for the second-step estimator. That is, if we let Q = A&A& then the weight
matrix for the second-step estimator is given by Z” QZ. Arellano and Bond’s second-step estimator is given by

N -1 N
Do = Ay{lz(ZTQZ)“ZTAy,l} x [AyZlZ(ZTQZ)‘IZTAy .

The following computational formulas for the various terms in the GMM calculations are useful when programming the
estimation method in Proc IML.

n
Z'HZ =) 7Z]HZ,
i=1

AL Z =D Ay Z,
i=1

and

AY'Z =Y AyZ:.
i=1

We will illustrate the GMM method for this simple model on the cigar.txt panel data used by Baltagi and Levin (1992).
Consider the model (see Baltagi, 2005, pp. 156-158)

lnC,-,, =plnC,3,_1 +Ol,'+8i‘t = 1, ey 4-67 = 17 ceey 30.

As discussed by the author, the data set consists of real per capita sales of cigarettes (C; ;) in 46 states (n = 46) between
1963 and 1992 (T = 30). The model contains the lag of this endogenous variable and therefore an OLS estimate of p will be
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inconsistent. The authors fit a more complex dynamic panel model, which will be discussed subsequently. For the moment,
we are interested in estimating the basic model given above.

Program 14 in Appendix E contains the complete Proc IML code for estimating both a one- and a two-step GMM estimate
for p. We leave it as an exercise to verify that the coefficients from the two GMM procedures give values of 1.031457 and
1.031563, respectively. It is very easy to extract the standard errors of the first- and second-step estimators and we leave the
details as an exercise for the reader.

12.7.2 Dynamic Panel Data Models with Explanatory Variables

We now turn our attention to dynamic panel data models with explanatory variables. The general form of the model was given in
the earlier section. The Arellano and Bond (1991) GMM estimator used in the simple model with no explanatory variables can
easily be modified to the case involving explanatory variables.

As before, note that the presence of lagged variables on the right-hand side leads to biased and inconsistent estimators
of the parameters. We proceed by taking the first difference of the model and observing the following relationship:

Yig—Yig—1 = p[yi,tfl_yi,FZ} + |:Xz:z_xl?:tfl:| B+ {&J—Si,rfl}‘

OLS cannot be used here to estimate the parameters because Cov(y;,_1,&;,—1) 7 0. Also note that the difference relationship is
observed for the first time when #=3 and is given by

Yiz—Yi2 = pyia—yi1] + [X,T3 —X,'T,z]B + [gi3—€ia]-

Earlier, we saw that y; ; can be used as an instrument for y; , — y; ; because it is highly correlated with it and is uncorrelated to
€3 — & . Assuming that the explanatory variables are strictly exogenous, we can use all of them as additional instruments for
estimating the parameters. That is, the instrumental variables matrix Z; is given by

- - T -
yiﬁl,xi‘l,...,xi‘T} 0 0
T T
0 [y,ﬂ,l,yiﬁz,xi’l,...,xi,T] 0
7, =
T T
L 0 |:yi,17'"7yi,T727Xl‘,17"~7X[,T:|_

Under the assumption that the explanatory variables are predetermined, we know that E(x; ;&; ;) = 0 for s < t and 0 otherwise.
Therefore, we can use X; , as instruments up to the same time period as the error term. That is, at time s, only X! |, ..., x/,_, are
valid instruments in the first differenced equation. The matrix of instruments Z; in the predetermined case is given by Arellano and

Bond (1991) and Baltagi (2005, p. 140):

- roor .
{yz‘,hx,;pxi,z} 0 0
T T T
0 |:yi,l:yi¢27xi,17X[‘27X[y3i| s 0
7, =
T T
0 |:yi717--'7yiAT—23Xi117"'7Xi’T—1

The following formulation of the GMM estimator assumes that the explanatory variables are predetermined. The
Arellano—Bond estimation method in the more general case involves first constructing Z; as defined above along with H;
(see Section 12.7.1). The weight matrix for the first-step GMM estimator is given by Z'HZ where Z and H are as defined in
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Section 12.7.1. Next, for the i th deviation, stack all the deviations and construct X; and Y; as follows:

Ay Ax], Ay;s

Ayis AX,-TA Ayig4
Xl' = . . and Y,‘ =

Ayir1 Ax[; Ayir

Stacking X;, Y; for all cross sections, we have

Z, X Y,

7, X, Y,
7 = , X=1]  |,andY =

Z, X, Y,

Therefore, the Arellano—Bond first-step estimator is given by
Sy = [XTZ2(2"HZ) '2"X] ' [X"2(2"HZ) ' Z7Y).
The residuals from the first-step GMM analysis is given by
A&} = Y~ Xibumn

and is used to create the optimal weight matrix Z7QZ where Q = A8Ag” and is used in place of Z"HZ to generate the two-step
Arellano—-Bond GMM estimator

Soumnr = (XTZ(27QZ) ' 27X X Z(Z"QZ) ' 27Y).

We illustrate the Arellano and Bond GMM estimation method in the general case on the cigar.txt panel data used by Baltagi and
Levin (1992). Consider the full model (Baltagi, 2005, p. 156) given by

lnCiv, = pll’lCl‘,t,I + BllnP,»,, +lenYi,t + B3lnPn,~,, +a; + Eit

withi=1,...,46and r=1,...,30. Here, i and tindex the states and the time periods, respectively. As described by the author, C; ,
is the average number of packs of cigarette sales per person over the age of 14, P; ,is the average retail price of a pack of cigarettes,
Y; , is the disposable income, and Pn;, is the minimum price of cigarettes in the adjoining states.

Program 15 in Appendix E contains the complete Proc IML code for estimating the cigarette panel data model using the
Arellano-Bond method. The reader is asked to verify that the first-step estimates are p =0.799 8, =—0.259, B, =0.138,
and B3 =0.065 and that the second-step estimates are p =0.79, 8, =—0.26, 8, =0.139, and 85 =0.033. It is very easy to
extract the standard errors of the first- and second-step GMM estimators. We leave the details as an exercise for the reader.

12.8 HETEROGENEITY AND AUTOCORRELATION IN PANEL DATA MODELS
This section deals with analytical methods where the subjects may be correlated with each other and where heterogeneity is due to
significant differences between the within subject (cross section) variances. We will also look at the case of autocorrelation where

the correlation is across the time periods. As discussed in Greene (2003, p. 320), a formulation of the model, where the conditional
mean is assumed to be the same across the cross sections, can be written as

J’ir:X,'T;B‘i‘Siz or yi:XiB+8ia
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where i indexes the subjects and ¢ indexes time and we assume that each X; is exogenous. Stacking the equations across the n
subjects yields Y =XB + € where Yis nT x 1, Xis nT xk, Bis k x 1, and g is nT x 1.

If we assume that the subjects are correlated with each other and that there is correlation across the time periods as well, then
for the (i,j)th subjects, E(aisj»T|X) = ();;. The cross-sectional variance across groups can therefore be written as

011 012 e an

Q) Qo ... Dy,
E(e’|X) =Q =

‘Q'nl Qn2 o ‘Q'nn

As shown in Greene (2003), each €; is a T x T matrix that incorporates both the cross-sectional and the cross-period
correlations. For the case where there is no correlation across the time periods, the above can be rewritten as

0'111 0'12[ O'lnI

0'211 0'221 0'2,1[
E(e’|X) =Q =

ol opl ... ol

where the g;’s capture the cross-sectional correlations.

12.8.1 GLS Estimation

As stated in Greene (2003, p. 321), the full generalized linear regression model using £ consists of nT(nT + 1)/2 unknown
parameters. Estimation is not possible with nTobservations unless restrictions are placed on these parameters. A simple restriction
isto assume that there is no correlation across time periods that gives us the simplified version of Q) given above. If welet 3 = | o],
then we can rewrite the variance—covariance matrix as {d =3, ® L. Using the methods from Chapter 5, we can write the GLS
estimator of B as

Bes = (X'Q7'X)'X"Q7y.
As shown by Greene (2003), if we let Q' =3 '®@I=|0?| ® 1, then the GLS estimator is

—1

P’GLS = [Z Z UUXiTX./‘
i=1 j=1

n n

ixTy,.
E E /X yj
=1 j=1

with asymptotic variance given by

Asy.Var(Bgrs) = (XTQ'X) 7.

12.8.2 Feasible GLS Estimation

In practice, {) is unknown and has to be estimated using FGLS methods estimators. The analysis is done in two steps. In step 1, OLS
is used on the stacked model to obtain the residuals. Estimates of o are given by 6 = ele;/T (Greene, 2003, p. 322). With 6 in
hand, the FGLS estimators can easily be calculated.

The groupwise heteroscedasticity estimator that was discussed in Chapter 5 is a special case of the FGLS estimator here
with the off-diagonal elements of 3, equal to 0. Here, we are assuming that there is no cross-sectional correlation and no
correlation across the time periods. However, the cross-sectional variances are significantly different from each other.
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Using the methods from Chapter 5, the groupwise heteroscedasticity estimator is given by Greene (2003, p. 323):

-1

n

- 1

BoLs = [E gXiTXi
i—1 9i

> !
—XTy- .
3

o

Estimating o; as before and using it in the above equation gives the FGLS estimator. We will now illustrate the steps involved in
the Grunfeld data set. The Proc IML code is given below.

Proc IML;
*Read the data into appropriate matrices;
Use SUR;
Read all var{’'F’ 'C’'} into X;
Read all var{’'I’} intoY;
*Store the dimensions of X;
r=nrow (X) ;c=ncol (X) ;
*Append a column of 1’'s to X;
X=J(r,1,1)11X;
*Conduct OLS to get pooled OLS model and calculate the residuals;
*This is step 1 of the procedure;
BHAT1=1inv (X’ *X)*X'*Y;
El1=Y-X*BHATI1;
*Conduct the groupwise heteroscedastic analysis.;
*This is step 2 of the procedure;

compt=1;

M=5;

T=20;

Temp0=0; Templ=shape (0,3,3); Temp2=shape(0,3,1) ;

do i=1 to M;
TempO=E1l [compt :compt+t-1,1]‘*El[compt:compt+t-1,1]/T;
Templ=Templ+l/TempO*X[compt :compt+t—
1,1:3]"*X[compt:compt+t-1,1:37;
compt=compt+t;

end;

compt=1;

do i=1 to M;

TempO=E1l [compt:compt+t-1,1]‘*El[compt:compt+t-1,1]/T;
Temp2=Temp2+1/Temp0*X [compt :compt+t—
1,1:3]1'*Y[compt:compt+t-1,17;
compt=compt+t;

end;

BHAT_GRP=inv (Templ) *Temp?2 ;

Print 'The Groupwise Heteroscedastic Parameter Estimates

Are’;

Print BHAT_ GRP;

*Now, calculate the asymptotic covariance matrix;

Grp_Sig=Shape(0,5,1);

compt=1;

do i=1 to M;
Grp_Sigl[i,1]=El[compt:compt+t-1,1]"*El [compt:compt+t-
1,11/T;
compt=compt+T;

end;

Cap_Sigma=diag (Grp_Sig) ;
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ID=I(T);
Omega=Cap_Sigma@ID;
Asy_Var=inv (X‘*inv (Omega) *X) ;
Print 'The Asymptotic Covariance Matrix Is’;
Print Asy_Var;
SE=sqgrt (vecdiag (Asy_Var)) ;
Print 'The Asymptotic Standard Errors Are’;
Print SE;
*Now, we get the residuals from the Groupwise Heterogeneity Regression;
E2=Y-X*BHAT_GRP;
*The final step is to calculate the SUR Pooled estimator. ;
*The standard errors are also calculated.;
templ=e2[1:20,1]11e2[21:40,1]11e2[41:60,1]11e2[61:80,1]11e2
[81:100,17;
countt=1;
templ=E2[countt:t,1];
do 1=2 to M;
countt=countt+t;
c=E2 [countt:countt+t-1,11;
templ=templ]| |c;
end;
temp2=1/t*templ’*templ;
I=I(20);
Temp3=temp2@T;
BETA_FGLS=1inv (X’ *inv (Temp3) *X) *X ‘' *inv (Temp3) *Y;
Print 'The FGLS Parameter Estimates Are’;
Print BETA_FGLS;
Asy_Var=inv (X’ *inv (Temp3) *X) ;
Print 'The Asymptotic Covariance Matrix Is’;
Print Asy_Var;
SE=sqgrt (vecdiag (Asy_Var) ) ;
Print 'The Asymptotic Standard Errors Are’;
Print SE;
*Now, calculate the cross-equation covariance for the SUR pooled model;
E3=Y-X*BETA_FGLS;
countt=1;
templ=E3 [countt:t,1];
do i=2 to M;
countt=countt+t;
c=E3 [countt:countt+t-1,11;
templ=templ]| |c;
end;
temp2=1/t*templ’*templ;
Print 'The Cross-Equation Covariance Matrix is’;
Print temp2;
run;

The analysis results are given in Output 12.11. Notice that the parameters have the same signs and similar magnitudes as the
ones obtained by OLS.

12.9 AUTOCORRELATION IN PANEL DATA

We will now deal with estimation methods when the disturbances are correlated within cross sections and across cross sections. The
simplest case is to assume that there is no correlation between the disturbances across cross sections. That is, Corr(g;,&;,) = 0ifi # .
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The Groupwise Heteroscedastic Estimators are

TABLE1
BHAT SE
INTERCEPT|-36.2537|6.1244
F 0.0950|0.0074
Cc 0.3378|0.0302

The Asymptotic Covariance Matrix is

ASY VAR

37.507827|-0.026926[0.0095716
-0.026926[0.0000549]-0.000149
0.0095716[-0.000149[0.0009136

The FGLS Parameter Estimates for Estimator are

TABLE2
BHAT SE
INTERCEPT|-28.2467|4.8882
F 0.0891|0.0051
C 0.3340|0.0167

The Asymptotic Covariance Matrix is

ASY_VAR
23.894871(-0.017291{0.0011391
-0.017291|0.0000257(-0.000047
0.0011391(-0.000047[0.0002793

The Cross-Equation Covariance Matrix is

cov
10050.525(-4.805227|-7160.667(-1400.747|4439.9887
-4.805227(305.61001|-1966.648(-123.9205|2158.5952
-7160.667|-1966.648|34556.603(4274.0002|-28722.01
-1400.747(-123.9205|4274.0002(833.35743|-2893.733
4439.9887]2158.5952|-28722.01|-2893.733|34468.976

OUTPUT 12.11. FGLS pooled estimators of the Grunfeld data.

Next, define the AR(1) process €;,=p;&;,—1 + u; for the general linear model where (see Chapter 6 and Greene, 2003,
p- 325)

Var(s;) = 07 =

We can use the methods of Chapter 6 to estimate 8. That is,
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1. Use OLS to regress Yversus X and save the residuals e =Y — Xp. Notice that we will have nT residuals here.
2. Estimate the within cross-section correlation p; by using

T
Z €it€ir—1
_ =2

i

M~

2
it

1

-~
Il

3. Transform the original data by using the Prais—Winsten approach (see Chapter 6).
4. Conduct an OLS regression of the transformed data to get

52 = efie*i _ (Y*i_x*iB)T(y*i_X*iB)

ui T T

5. Use 7 to get

2
6’2 _ ui

i 1_[),2

o

6. The FGLS estimator in the presence of within cross-section correlation is given by

n

-1
1
Z?X?Yi .

i=1 i

A "1
Brors = |:ZOA_2XZTXI

i=1 i

7. The covariance matrix can be calculated in the usual way.

We analyze Grunfeld’s data using the steps just discussed. The complete IML code and output (Output 12.12) are given below.
The estimates of the coefficients along with their standard errors are given below:

I, = —26.94 + 0.095F; + 0.30C;
(6.89)  (0.008)  (0.31)

Proc IML;
* Read the data intomatrices and calculate some constants. ;

Use SUR;

Read all var{'F’ 'C’} into X;

Read all var{’'I’} intoY;

r=nrow (X) ; c=ncol (X) ;

X=J(r,1,1) I 1X;
* This is step 1 where the OLS estimates and residuals are
calculated.;

BHAT1=1inv (X' *X)*X’'*Y;

E1=Y-X*BHATI1;
* This is the start of step 2 where the cross correlation vector
is calculated.;

compt=1;

M=5;

T=20;

rho=shape (0,M, 1) ;

do i=1 to M;

Temp0=0; Templ=0;
do j= compt+1 to compt+T-1;
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The least squares estimator from the first stage regression is

BETA_ FIRST
-21.93625
0.1083051
0.3987988

The asymptotic variance covariance matrix is

ASY VAR
17.9554[-0.018843]-0.023393
-0.018843[0.0000775[-0.000158
-0.023393[-0.000158[0.0012404

The standard errors from the first stage regression is

SE
4.2373813
0.0088058
0.0352189

The FGLS Parameter Estimates are

BETA_FGLS
-26.93677
0.0946555
0.2999458

The Asymptotic Covariance Matrix is

ASY_VAR
47.525774[-0.032327[0.0021717
-0.032327( 0.000062[-0.000156
0.0021717(-0.000156[0.0009455

The Standard Errors are given by

SE
6.893894
0.0078736
0.0307492

OUTPUT 12.12. FGLS estimation of the Grunfeld data under the assumption of cross-correlation.
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TempO=TempO+E1[j,1]1*E1[j-1,1];
end;
do j2= compt to compt+T-1;
Templ=Templ+El1[j2,1]*E1[j2,1];
end;
rho[i,1]=Temp0/Templ;
compt=compt+t;
end;
Print 'The autocorrelation vector is’;
Print rho;
* This is step 3 where the data is transformed using the Prais
Winsten Method. ;
compt=1;
new_y=shape(0,100,1) ;
do i=1 to M;
new_y [compt,l]=y[compt,1l]*sqgrt (l-rho[i,1]1**2);
do j= compt+1 to compt+T-1;
new_y[j,1]l=y[J,1]l-rholi,1] *y([3-1,1];

end;
compt=compt+T;
end;
compt=1;
new_x=shape(0,100,2);
do i=1 to M;
new_x[compt,l]l=x[compt, 2] *sqgrt (1-rho[i,1]1**2);
new_x[compt,2]=x[compt, 3] *sqgrt (l-rho[i,1]1**2);
do j= compt+1 to compt+T-1;
new_x[j,11=x[j,2]-rholi,1] *x[j-1,21;
new_x[j,2]1=x[j,3]-rholi,1] *x[j-1,31;
end;
compt=compt+T;
end;
new_x=J(r,1,1) | Inew_x;

* OLS is now conducted on the transformed data. ;

* The standard errors are also calculated. ;
beta_first=inv (new_x‘*new_x) *new_x"‘*new_y;

Print 'The least squares estimator from the first stage
regression is’;

Print beta_first;

sigmal=shape(0,M,1);

E2=new_y-new_x*beta_first;

compt=1;

do i=1 to M;
sigmal[i,1]1=E2 [compt:compt+t-1,1] '*E2 [compt:compt+t-
1,11/T;
compt=compt+t;

end;

var_cov=diag(sigmal) ;

ID=I(T);

Omega=var_cov@ID;

Asy_Var=inv (new_X'*inv (Omega) *new_X) ;

Print 'The asymptotic variance covariance matrix is’;
Print Asy_Var;

SE=sqgrt (vecdiag (Asy_Var)) ;

231
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Print 'The standard errors from the first stage regression
is’;
Print SE;
* The second stage FGLS estimates are now calculated.;
compt=1;
templ=E2 [compt:t,1];
do 1=2 to M;
compt=compt+t;
c=E2 [compt:compt+t-1,1];
templ=templ| |c;
end;
sigma2=shape (0,M, M) ;
do 1=1 to M;
do j=1 to M;
sigma2([i,jl=templ[,i] *templ([,1]/T;
sigma2([i,1]=sigma2[i, 1]/ (1l-rhol[i,1]1**2);
end;
end;
I=I(T);
Temp3=sigma2@T;
BETA_FGLS=1inv (new_X’'*inv (Temp3) *new_X) *
new_X'’'*inv (Temp3) *new_Y;
Print ‘The FGLS Parameter Estimates Are’;
Print BETA_FGLS;
Asy_Var=inv (new_X’*inv (Temp3) *new_X) ;
Print ‘The Asymptotic Covariance Matrix Is’;
Print Asy_Var;
SE=sqgrt (vecdiag (Asy_Var)) ;
Print ‘The Standard Errors are given by’ ;
Print SE;
run;

We will now extend this analysis to the case where we cannot assume that Corr(g;.g;) =0 if i#j, thus allowing
cross-sectional correlation between subjects. The steps are outlined below. See Greene (2003, pp. 324-326) for more
details.

1. Follow steps 1 through 5 from the previous case.
2. Construct X = [&iﬂ where i, j=1, ..., n.
3. The FGLS estimator in the presence of cross-sectional correlation is given by

. P A -]
BcLs:(XT\Q' X) 'X'Q y

where Q=3 ® L
4. The covariance matrix is given by

Var(Bes) = (X'QX) "

We will analyze Grunfeld’s data using the above-mentioned steps. The IML code and output (Output 12.13) are given below.
Note that the code is almost identical to the code previously given. The estimates of the coefficients along with their standard errors
are given below. Note that the parameter estimates are comparable to the ones obtained when the cross sections are assumed to be
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The autocorrelation vector is

RHO
0.4735903
0.704354
0.8977688
0.5249498
0.8558518

The least squares estimator from the first stage regression is

BETA FIRST
-16.84981
0.0944753
0.3780965

The asymptotic variance covariance matrix is

ASY VAR
13.188884[-0.010868] -0.02407
~0.010868[0.0000552[-0.000131
-0.02407[-0.000131| 0.001104

The standard errors from the first stage regression is

SE
3.6316504
0.0074294
0.0332267

The FGLS Parameter Estimates are

BETA_FGLS
-16.36591
0.0895486
0.3694549

OUTPUT 12.13. FGLS estimation for the case when the correlation among the errors is not zero.

uncorrelated.
Ii; = — 1637 + 0.09F;; + 0.37C;
(4.77)  0.009)  (0.036)
Proc IML;
* Read the data intomatrices and calculate some constants. ;
Use SUR;

Read all var{'F’ 'C’} into X;
Read all var{’'I’} intoY;

233
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The Asymptotic Covariance Matrix is

ASY_VAR
22.780423(-0.023583(-0.015614
-0.023583(0.0000783[-0.000177
-0.015614(-0.000177|0.0013193

The Standard Errors are given by

SE
4.7728841
0.0088489
0.0363224

OUTPUT 12.13. (Continued)

r=nrow (X) ;c=ncol (X) ;
X=J(r,1,1)11X;
* This is step 1 where the OLS estimates and residuals are
calculated.;
BHAT1=1inv (X’ *X) *X*'*Y;
E1=Y-X*BHATI;
* This is the start of step 2 where the cross correlation vector
is calculated.;
compt=1;
M=5;
T=20;
rho=shape(0,M, 1) ;
do i=1 to M;
Temp0=0; Templ=0;
do j= compt+1 to compt+T-1;
TempO=TempO+E1[]j,1]1*E1[]j-1,1];
end;
do j2= compt to compt+T-1;
Templ=Templ+E1[]j2,1]1*E1[]j2,1];
end;
rho[i,1]=Temp0/Templ;
compt=compt+t;
end;
Print 'The autocorrelation vector is’;
Print rho;
* This is step 3 where the data is transformed using the Prais
Winsten Method. ;
compt=1;
new_y=shape (0,100,1) ;
do 1=1 to M;
new_y [compt,1l]=y[compt,l]*sqgrt (l-rho[i,1]**2);
do j= compt+1 to compt+T-1;
new_vy[j,1l1=y[j,1]-rholi,1] *v[j-1,1];
end;
compt=compt+T;
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end;
compt=1;
new_x=shape(0,100,2);
do i=1 to M;
new_x[compt,l]=x[compt, 2] *sgrt (l-rho[i,1]**2);
new_x [compt,2]=x[compt, 3] *sqgrt (1-rho[i,1]1**2);
do j= compt+1 to compt+T-1;
new_x[j,11=x[3j,2]-rho[i,1] *x[j-1,2];
new_x[j,2]1=x[j,3]-rholi,1] *x[j-1,31;
end;
compt=compt+T;
end;
new_x=J(r,1,1) | Inew_x;

* OLS is now conducted on the transformed data. ;

* The standard errors are also calculated. ;
beta_first=inv (new_x’*new_x) *new_x"’*new_vy;

Print 'The least squares estimator from the first stage
regression is’;

Print beta_first;

sigmal=shape(0,M,1);

E2=new_y-new_x*beta_first;

compt=1;

do i=1 to M;
sigmal([i,1]=E2 [compt:compt+t-1,1] " *E2[compt:compt+t-
1,11/7T;
compt=compt+t;

end;

var_cov=diag(sigmal) ;

ID=I(T);

Omega=var_cov@ID;

Asy_Var=inv (new_X'*inv (Omega) *new_X) ;

Print 'The asymptotic variance covariance matrix is’;
Print Asy_Var;

SE=sqgrt (vecdiag (Asy_Var)) ;

Print 'The standard errors from the first stage regression

is’;
Print SE;
* The second stage FGLS estimates are now calculated.;
compt=1;
templ=E2 [compt:t,1];
do i=2 to M;
compt=compt+t;
c=E2 [compt:compt+t-1,1];
templ=templ]| |c;
end;
sigma2=shape(0,M, M) ;
do i=1 to M;
do j=1 to M;
sigma2[i,jl=templ[,i]‘*templ([,1i]/T;
sigma2([i,1l]l=sigma2[i,1]/(1l-rho[i,1]1**2);
end;
end;

I=I(T);
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Temp3=sigma2@T;
BETA_FGLS=inv (new_X'’*inv (Temp3) *new_X) *
new_X'’'*inv (Temp3) *new_Y;
Print ‘The FGLS Parameter Estimates Are’;
Print BETA_FGLS;
Asy_Var=inv (new_X’*inv (Temp3) *new_X) ;
Print ‘The Asymptotic Covariance Matrix Is’;
Print Asy_Var;
SE=sqgrt (vecdiag (Asy_Var)) ;
Print ‘The Standard Errors are given by’ ;
Print SE;

run;



Appendix A

BASIC MATRIX ALGEBRA FOR ECONOMETRICS

A.1 MATRIX DEFINITIONS

A.l.a Definitions

An m X n matrix is a rectangular array of elements arranged in m rows and n columns. A general layout of a matrix is given by

aip diz ... din
as| ann ... Ay
aml Am2 ... Qmn

In this general form, we can easily index any element of the matrix. For instance, the element in the ith row and jth column is
givenby a;;. Itis straightforward to create matrices in Proc IML. For example, the Proc IML command A = {24,3 1} will create the

2 X 2 matrix
2 4
A= .
3 1

A row vector of order n is a matrix with one row and n columns. The general form of arow vectorisy = [y1 y2 ... y.|.A
column vector of order m is a matrix with m rows and one column. The general form of a column vector is

Cl

C2

C}ﬂ

It is straightforward to create row and column vectors in Proc IML. For example, the Proc IML commandy = {2 4} will
create the row vector y = [2 4], while the Proc IML command c={—3, 4} will create the column vector

-[2)

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.
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Of course, these definitions can easily be extended to matrices of any desired dimension and consequently the Proc IML code can
be adjusted to accommodate these changes.

A.1.b Other Types of Matrices

i. A square matrix is a matrix with equal number of rows and columns. That is, if A,,,, is a square matrix, then m = n.

ii. A symmetric matrix is a square matrix where the (ij)th element is the same as the (ji)th element for all i and j. That is,
a,-j = ajia Vl, J

=

iii. A diagonal matrix is a square matrix where all off-diagonal elements are zero. That is, a; =0, Vi#j].

iv. An identity matrix (denoted by /) is a diagonal matrix where a;; = 1, Vi. The Proc IML command Id=I(5) will create a
5 x5 identity matrix stored under the name Id.

v. The J matrix is one where every element equals 1. This matrix frequently occurs in econometric analysis. The Proc IML
command J=J(1,5,5) will create a 5 x 5 matrix of 1’s. The size of the matrix can be adjusted by changing the number of
rows and/or the number of columns. We can replace the third element in the Proc IML command if we require all the
elements to have a different value. For instance, using J(5,5,0) will yield a 5 x 5 matrix of zeros.

A.2 MATRIX OPERATIONS

A.2.a Addition and Subtraction

These two operations are defined only on matrices of the same dimension. The operations are themselves very elementary and
involve element-by-element addition or subtraction. As an example, consider the following matrices:

A

Addition is denoted by A + B and is given by

A+B{3 3}
13 2]

Similarly, subtraction is denoted by A — B and is given by
1 3
A-B = .
-1 0

The Proc IML commands C=A + B and D=A — B can be used to carry out these operations.

A.2.b Scalar Multiplication

For any scalar r € R and any matrix A € M(R), we can define scalar multiplication as rA. Here, each element of the matrix A is
multiplied by r. For example, if
2 3
A= ,
1 1

[2}’ 3r]
rA = .

r r

then

Let r="2. Then, the Proc IML command C=2*A will yield the result

e[t ]
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A.2.c Matrix Multiplication

Assume that matrix A is of order (k x m) and Bis of order (m x n). That is, the number of rows of B equals the number of columns of
A. We say that A and B are conformable for matrix multiplication. Given two conformable matrices, A and B, we define their
product C as Cyx, = AxsmBmxn, Where C is of order (k x n). In general, the (i, j)th element of C is written as

by;

Cij:(ail aim)

by
= anbij+apby+ -+ @by,

m

= E ainbyj.
=1

The Proc IML command C=A*B can be used to carry out matrix multiplications. For instance, if

1 2
A=
E
and
L)
B= :
4 5
then
B 7 16
13 38)

A.3 BASIC LAWS OF MATRIX ALGEBRA
A.3.a Associative Laws

(A+B)+C = A+ (B+C),
(AB)C = A(BC).

A.3.b Commutative Laws of Addition

A+B=B+A.

A.3.c Distributive Laws

A(B+C) = AB+AC,
(A+B)C = AC +BC.

The commutative law of addition does not apply to multiplication in general. That is, for two conformable matrices A and B,
AB is not necessarily equal to BA.
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A4 IDENTITY MATRIX

A.4.a Definition

The identity matrix is an n X n matrix with entries satisfying

1 ifi=j,
aij = .
0 otherwise.

That is,
1 0 0
0 1 0
1= .
0 0 1

As discussed earlier, it is very easy to create identity matrices in Proc IML. For instance, the command I = I(5) will create an
identity matrix of order 5 and store it in the variable L.

A.4.b Properties of Identity Matrices
For an n x n identity matrix /, the following holds:

i. For any k X n matrix A, AI=A.
ii. For any n x k matrix B, IB=B.
iii. For any n X n matrix C, CI=IC=C.

A.5 TRANSPOSE OF A MATRIX

A.5.a Definition

A transpose matrix of the original matrix, A, is obtained by replacing all elements a;; with a;;. The transpose matrix AT (orA))isa
matrix such that ajTl. = a;;, where a;; is the (i, j)th element of A and aﬁ is the (j, i)th element of A", For example,

T
135
12 4 6]

It is straightforward to create transpose of matrices using Proc IML. The command B = A’ will store the transpose of the matrix
Ain B.

12
3 4
56

A.5.b Properties of Transpose Matrices

i. A+ B"= A"+ B".
ii. A—B)"=A"—-B".
iii. AHT= A.
iv. (rA)" = rAT for any scalar r.
v. (AB)" = B"A".
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A.6 DETERMINANTS

A.6.a Definition

Associated with any square matrix A, there is a scalar quantity called the determinant of A, denoted det(A) or | Al. The simplest
example involves A € Mp,,(R), where

a b
det[ ] = ad—bc.
c d

To define the determinant of a matrix iAn general form (that is, for any n X n matrix), we can use the notions of minors and
cofactors. LetAbe ann x nmatrix andletA; be the (n — 1) x (n — 1) submatrix obtained by deleting the ith row and the jth column
of A. Then the scalar Mj;; = det(A;) is called the (i, j)th minor of A. The sign-adjusted scalar

Cyj = (=1)"""My = (=1)"Vdet(Ay)

is called the (i, j)th cofactor of A. Given this definition, Al can be expressed in terms of the elements of the ith row (or jth column) of
their cofactors as (Greene, 2003, p. 817; Searle, 1982, pp. 84-92)

n n
Al =) aCy =Y ay(—1)""|Ayl.
i=1 i=1

A.6.b Properties of Determinants
For any A, B € M,,«,(R), we have the following:
i 1ATI=1AL
ii. |ABI=IAlIBI.
iii. If every element of a row (or column) of A is multiplied by a scalar r to yield a new matrix B, then |Bl =rlAl.

iv. If every element of an nth order matrix A is multiplied by a scalar r, then IrAl ="l Al.
v. The determinant of a matrix is nonzero if and only if it has full rank.

Determinants of matrices can easily be computed in Proc IML by using the command det(A) (Searle, 1982, pp. 82-112).

A.7 TRACE OF A MATRIX

A.7.a Definition

The trace of a n x n matrix A is the sum of its diagonal elements. That is,

tr(A) = i aii.
i=1

Note that for any m X n matrix A,

tr(ATA) = tr(AAT) =Y °) " a7 (Searle, 1982, pp. 45-46).
i=1 j=1
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A.7.b Properties of Traces

i. tr(rA) =r x tr (A) for any real number 7.
ii. tr(A + B)=tr(A) + tr(B).
iii. tr(AB)=tr(BA)
iv. tr(ABCD) =tr(BCDA) =tr (CDAB) =tr (DABC).
v. tr(A) =rank(A) if A is symmetric and idempotent (Baltagi, 2008, p. 172). As an example, consider

e L \]
—_— W

Here, tr(A) = 3. The Proc IML command trace(A) will easily calculate the trace of a matrix.

A.8 MATRIX INVERSES

A.8.a Definition

If, for an n x n matrix A, there exists a matrix A~ such that A”'A=AA""' = I,,, then A~!is defined to be the inverse of A.
A.8.b Construction of an Inverse Matrix

Let A € M, (*R) be a nonsingular matrix.

i. Recall that for any n x n matrix A, the (i, j)th cofactor of A is C; = (—1)'"/det(A;).
ii. From the matrix A, construct a cofactor matrix in which each element of A, a;;, is replaced by its cofactor, ¢;;. The transpose
of this matrix is called the adjoint matrix and is denoted by

A = adj(A) = Cofactor(A)T = [cji].

That is,

C11 C21 ... Cpl

C12 C2 e Cn2

adj(A) =

Cln Con Cnn

A~ can then be defined as
1
R madj(A)(Seaurle, 1982, p. 129).

This implies that A~' does not exist if IAl=0. That is, A is nonsingular if and only if its inverse exists.
A.8.c Properties of Inverse of Matrices
Let A, B, and C be invertible square matrices. Then (Searle, 1982, p. 130),

i A Hl=A.
ii. AH =@ Hn
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iii. AB is invertible and (AB) '=B'A"".
iv. ABC is invertible and (ABC) '=C'B~ 1AL

A.8.d Some More Properties of Inverse of Matrices

If a square matrix A is invertible, then (Searle, 1982, p. 130)

i. A" =A X A x...x A is invertible for any integer m and

—_—
m times

A=A )" =AT"xA . xATL.

mtimes

ii. For any integer r and s, A’A*=A""".
iii. For any scalar r#0, A is invertible and (rA) ™' = 1A',

. —1] _ 1
iv. [ATY =g

v. If A is symmetric, then A~" is symmetric.

A.8.e Uniqueness of an Inverse Matrix

Any square matrix A can have at most one inverse. Matrix inverses can easily be computed using Proc IML by using the command
inv(A).

A.9 IDEMPOTENT MATRICES
A.9.a Definition

A square matrix A is called idempotent if A =A.

A9.b The M Matrix in Econometrics

This matrix is useful in transforming data by calculating a variable’s deviation from its mean. This matrix is defined as

r 1 1 1 7

- —= ==

n n n

1 1 1 1

1 n n n

M = |[——ii’

1 1 1
- _Z 1—=

n n n

For an example of how this matrix is used, consider the case when we want to transform a single variable x. In the single variable
case, the sum of squared deviations about the mean is given by (Greene, 2003, p. 808; Searle, 1982, p. 68)

Xn:(xi—)f)z = (x—x)" (x—x) = (M°x)" (M x) = x" M M x.

i=1
It can easily be shown that M° is symmetric so that M°" = M°. Therefore,
n

Z (x—x)* = x"MCx.

i=1
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For two variables x and y, the sums of squares and cross products in deviations from their means is given by (Greene, 2003, p. 809)

n

D (%) (yi—y) = (M%) (M%y) = x" M y.

i=1

Two other important idempotent matrices in econometrics are the P and M matrices. To understand these, let Xbe an x k matrix.
Then X”X is a k x k square matrix. Define P = (X"X)"'X”. Then, P"P = P. It can be shown that P is symmetric. This matrix is
called the projection matrix.

The second matrix is the M matrix and is defined as M = I — P. Then, M = M and M? = M. Tt can also be shown that M and P are
orthogonal so that PM = MP =0 (Greene, 2003, pp. 24-25).

A.10 KRONECKER PRODUCTS

Kronecker products are used extensively in econometric data analysis. For instance, computations involving seemingly unrelated
regressions make heavy use of these during FGLS estimation of the parameters. Consider the following two matrices:

app di Aln
any ano ... Aop

A= o ) and B,.,.
aml Am2 ... Amp

The Kronecker product of A and B defined as A ® B is given by the mp x nq matrix:

anB alzB e CllnB

a21B azzB e Clan
ARB =

amlB - - amnB

The following are some properties of Kronecker products (Greene, 2003, pp. 824-825; Searle, 1982, pp. 265-267):

(A®B)(C®D)=AC®BD,

tr(A ® B) =tr(A)tr(B) is A and B are square,

AB) '=A"'@B,

A®B)=A"®B,

det(A ® B) = (det A)"(det B)", A is m x m and B is n X n.

M

The Proc IML code A@B calculates Kronecker products.

A.11 SOME COMMON MATRIX NOTATIONS
a. A system of m simultaneous equations in n variables is given by

anxy+apxy+--+apx, = b

Am1 X1 + QX2+ + QX = bm

and can be expressed in matrix form as Ax =b, where A is an m x n matrix of coefficients La,»jj , X is a column vector of
variables xi, ..., x,,, and b is the column vector of constants by, ..., b,,,.
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n
b. Sum of Values: We can express the sum Zx, as i’x, where i is a column vector of 1’s.
c. Sum of Squares: We can express the sums of squares Zx as xX'x, where X is a column vector of variables.
d. Sum of Products: For two variables x and y, the sum of their product Z X;y; can be wrltten as x7y.

=1 .
e. Weighted Sum of Squares: Given a diagonal n x n matrix A of weights a1 1s « « « Gy, the sum Z a;;x? can be written as x’Ax.
i=1
f. Quadratic Forms: Given an n X n matrix A with elements ay, a;s, ..., dao, ..., d,,, the sum a“x% +apxixy+--+
anx3 + -+ a,,x* can be expressed as x’Ax.

See Greene, (2003, p. 807) for more details.

A.12 LINEAR DEPENDENCE AND RANK

A.12.a Linear Dependence/Independence

Asetofvectorsvy,.. ., viislinearly dependent if the equation a, vy + - - - + a,v, = O has a solution where not all the scalars ay, . . ., a;
are zero. If the only solution to the above equation is where all the scalars equal zero, then the set of vectors is called a linearly
independent set.

A.12.b Rank

The rank of an m x n matrix A, denoted as r(A), is defined as the maximum number of linearly independent rows or columns of A.
Note that the row rank of a matrix always equals the column rank, and the common value is simply called the “rank” of a matrix.
Therefore, r(A) < max(m, n) and r(A) = H(AT).

Proc IML does not calculate ranks of matrices directly. Away around this is to use the concept of generalized inverses as shown
in the following statement round(trace(ginv(A)*A)). Here, A is the matrix of interest, ginv is the generalized inverse of A, and
trace is the trace of the matrix resulting from performing the operation ginv(A)*A. The function round simply rounds the trace
value. As an example, consider the following 4 x 4 matrix given by

1 2 0 3

1 -2 3 0
A=

0 0 4 8

2 4 0 6

The rank of A is 3 since the last row equals the first row multiplied by 2. Proc IML also yields a rank of 3 for this matrix.

A.12.c Full Rank

If the column(row) rank of a matrix equals the number of columns(rows) of the same matrix, then the matrix is said to be of full
rank.

A.12.d Properties of Ranks of Matrices

i. For two matrices A and B, r(AB) < min(r(A), r(B)).
ii. If A is m x n and B is a square matrix of rank n, then r(AB) =r(A).
iii. n(A)=nrATA) = HAAT).

See Greene, (2003, pp. 828-829) for more details.
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A.12.e Equivalence

For any square matrix A, the following statements are equivalent (Searle, 1982, p. 172):

i. A is invertible.
ii. Every system of linear equations Ax =b has a unique solution for Vb € R".

—

iii. A is nonsingular.
iv. A has full rank.
v. The determinant of A is nonzero.
vi. All the row(column) vectors of A are linearly independent.

A.13 DIFFERENTIAL CALCULUS IN MATRIX ALGEBRA

A.13.a Jacobian and Hessian Matrices

Consider the vector function y =f{(x), where y is a m x 1 vector with each element of y being a function of the n x 1 vector x.
That is,

Y1 :f‘l(xlvxl-"a-xn)

Ym :f(-xl>x2a'--7-xﬂ)-

Taking the first derivative of y with respect to x yields the Jacobian matrix (Greene, 2003, p. 838; Searle, 1982, p. 338)

¥ o)
ox; Ox, 0 0w,
o o o
_ ai _ o (x) _|ox; oxp, 0 ox,
oxI'  oxT : o :
B B U
ox; Ox,  Ox,

Taking the second derivative of f{(x) with respect to x yields the Hessian matrix (Greene, 2003, p. 838; Searle, 1982, p. 341)

o oh oh ]
ox? Ox10xy  Qx(Ox,
of2 of of
_ azy o azf(x) o 6x18x2 67% o 6)626)(?”
T oxTox  oxTox . .
af;ﬂ afm %
O0x;0x, Oxp0x, Ox?

A.13.b Derivative of a Simple Linear Function

Consider the function f(x) = a’x = 3_ a;x;. The derivative of f(x) with respect to x is given by
i=1

of(x) oalx ol

ox  Ox
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A.13.c Derivative of a Set of m Linear Functions Ax

Consider the derivative of a set of m linear functions Ax, where A is a m X n matrix and

apy apn ... Ay X1 a X
any ann N 4 o) X2 arX
Ax=1| . : | =
aml Apo --.  Qmn X, a,x
Therefore, u
1
0(Ax) a2
T = . = A_
ox
am

A.13.d Derivative of a Set of m Linear Functions x’A

Consider the derivative of a set of m linear functions x’A, where A is an n x m matrix and X is an 7 X 1 column vector so that

ayp app ... dipy
T az dazxp ... Qyp
XA=[x x ... x]| . o | =[x"a; xTa, ... xTa,].
(2] an2 cee Apm
Therefore,
3(xTA)
——=[a a ... an]=A.
ox

A.13.e Derivative of a Quadratic Form x’Ax

Consider the derivative of a quadratic form x"Ax, where A is a symmetric n X n matrix and X is an n x 1 column vector so that

a dapg ... Qm X1

any ann e Aom X2
xXTAx =[x, x ... x,]

anl ann e Aum Xn

= a“x% 4+ 2apx1x2 + - -+ 2a1,x1 %, + azzxg + 2ap3xx3 + - - + a,mxﬁ.

Taking the partial derivatives of x’Ax with respect to x, we get

o(xTAx
g = 2(a11x1 +apx,+--- +alnxn) =2ax
6x1
o(xTAx
% = 2(@ni X1 + anX + -+ QunXn) = 22,X,
Xn

which is 2Ax.
See Greene (2003, pp. 838—-840) and Searle (1982, pp. 327-329) for more details.



248 APPENDIX A: BASIC MATRIX ALGEBRA FOR ECONOMETRICS

A.14 SOLVING A SYSTEM OF LINEAR EQUATIONS IN PROC IML

Consider the following linear system of equations in three unknowns:

x+y+z =0,
x—2y+2z =4,
x+2y—z =2.

We will use Proc IML to calculate the value of x, y, and z that satisfies these equations. Let X be the “data” matrix, b the vector of
unknown coefficients, and let ¢ be the vector of constants. Then,

1 1 1
X=|1 -2 2],
1 2 -1
b =[xy z,
and

c=[0 4 2]

It is easy to show that X is invertible so that b= (X"X)'X”c. We can use the following Proc IML statements to solve for b.
proc iml;

X={111,1-22,12-1};

c={0,4,2};
b=inv (X' *X)*X'*c;
print b;

run;

The program yields a solution set of x =4, y=—2, and z= —2, which satisfy the original linear system.



Appendix B

BASIC MATRIX OPERATIONS IN PROC IML

B.1 ASSIGNING SCALARS

Scalars can be viewed as 1 x 1 matrices and can be created using Proc IML by using the statement x=scalar_value or
x={scalar_value}. As an example, the statements x=14.5 and x={14.5} are the same and both store the value 14.5 in x. We can
also store character values as the commands name="‘James’ and hello=‘Hello World’ illustrate.

The stored values in the variables can easily be determined by using the print command in Proc IML. For example to view the
values in the variables x, name, and hello use the command Print x name hello.

B.2 CREATING MATRICES AND VECTORS

As mentioned in Appendix A, it is easy to create matrices and vectors in Proc IML. The command A={24, 3 1} will create the

matrix
2 4
A= .
31

Each row of the matrix is separated by a comma. That is, each row of the above command yields a row vector. For instance, the
command A={1234} creates the row vectorA =[1 2 3 4]

If we separate each entry in the row vector by acomma, we will get a column vector. As an example, the command A={1,2,3,4}
creates the column vector

B WO =

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
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These commands can easily be extended to create matrices consisting of character elements. For example, the command
A={‘a’ ‘b’, ‘¢’ ‘d’} will create the matrix
a b
A= .
c d

B.3 ELEMENTARY MATRIX OPERATIONS

B.3.a Addition/Subtraction of Matrices

For two conformable matrices, A and B, their sum can be computed by using the command C=A + B, where the sum is stored in C.
Changing the addition to a subtraction yields the difference between the two matrices.

B.3.b Product of Matrices

For two conformable matrices, A and B, the element by element product of the two is given by the command C=A#B. Forexample,
consider the two matrices
1 2 56
= and B = .
3 4 7 8

The element by element product of these two is given by
5 12
C= .
21 32
The product of the two matrices is given by using the command C=A*B. In the above example, the product is
19 22
C= .
43 50

The square of a matrix is given by either of the following commands C=A##2 or C=A*A. Of course, we can use these
commands to raise a matrix to any power (assuming that the product is defined).

B.3.c Kronecker Products

The Kronecker product of two matrices A and B can be obtained by using the command A@B. For example, let

[1 2} [1 O]
A= and B = .
4 1 0 1

Then, the command C=A @B will produce

o
\
—_

S = O N

= S =)

B.3.d Inverses, Eigenvalues, and Eigenvectors

As shown in Appendix A, the inverse of a square matrix A can be computed by using the command C=inv(A). Eigenvalues and
eigenvectors can be computed easily by using the commands C=eigval(A) or C=eigvec(A).
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B.4 COMPARISON OPERATORS

The max(min) commands will search for the maximum(minimum) element of any matrix or vector. To use these commands,
simply type C=max(A) or C=min(A). For two conformable matrices (of the same dimension), we can define the elementwise
maximums and minimums. Consider matrices A and B, which were given in (Section B.3.b). The command C=A<>B will find
the elementwise maximum between the two matrices. In our example, this will yield

56
C= .
7 8
The command C=A><B will yield the elementwise minimum between the two matrices. In our example, this is simply A.

B.5 MATRIX-GENERATING FUNCTIONS

B.5.a Identity Matrix

The command Iden=I(3) will create a 3 x 3 identity matrix.

B.5.b The J Matrix

Thisis amatrix of 1’s. The command J=J(3,3) will create a 3 x 3 matrix of 1’s. This command can be modified to create a matrix of
constants. For example, suppose that we want a 3 x 3 matrix of 2’s. We can modify the above command as follows J=J(3,3,2).

B.5.c Block Diagonal Matrices

Often, we will have to work with block diagonal matrices. A block diagonal matrix can be created by using the command C=block
(A1, Ay, ...)where Aj, A, ... are matrices. For example, for the A and B matrices defined earlier, the block diagonal matrix C is
given by

S O W =
S O B~
N L o O
0w N © O

B.5.d Diagonal Matrices

The identity matrix is a matrix with 1’s on the diagonal. It is easy to create any diagonal matrix in Proc IML. For instance, the
command C=diag({124}) will create the following diagonal matrix:

1 00
cC=1(0 2 0
0 0 4

Given a square matrix, the diag command can be used to extract the diagonal elements. For example, the command
C=diag({12,34}) will create the following matrix

B.6 SUBSET OF MATRICES

Econometric analysis using Proc IML often involves extracting specific columns (or rows) of matrices. The command C=A[,1]
will extract the first column of the matrix A, and the command R=A[1,] will extract the first row of the matrix A.

B.7 SUBSCRIPT REDUCTION OPERATORS

Proc IML can be used to easily calculate various row- and column-specific statistics of matrices. As an example, consider the 3 x 3
matrix defined by the command A={012, 543, 768}. Column sums of this matrix can be computed by using the command
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Col_Sum=A[ +,]. Using this command yields a row vector Col_Sum with elements 12, 11, and 13. The row sums of this matrix
can be computed by using the command Row_Sum=A[, + ].

We can also determine the maximum element in each column by using the command Col_Max=A[<>,]. Using this command
yields a row vector Col_Max with elements 7, 6, and 8. The command Row_Min=A[,> <] will yield the minimum of each row of
the matrix. The column means can be calculated by using the command Col_Mean=A[:,]. Using this command, yields the row
vector Col_Mean with elements 4, 3.67, and 4.33. The command Col_Prod=A[#,] results in a row vector Col_Prod that contains
the product of the elements in each column. In our example, the result is a row vector with elements 0, 24, and 48. We can easily
extend this command to calculate the sums of squares of each column. This is calculated by using the command Col_SSQ=A[##,].
The result is a row vector Col_SSQ with elements 74, 53, and 77.

B.8 THE Diac AND VEcDiag COMMANDS

The Proc IML Diag command create a diagonal matrix. For example, if

1 3
A= ,
2 4
then the command B=Diag(A) results in a diagonal matrix B whose diagonal elements are the diagonal elements of A. That is,
1 0
B = .
0 4

This command is useful when extracting the standard errors of regression coefficients from the diagonal elements of the
variance—covariance matrices. If a column vector consisting of the diagonal elements of A is desirable, then one can use the
VecDiag function. As an example, the command B=VecDiag(A) results in

i

B = .

4

B.9 CONCATENATION OF MATRICES

There are several instances where we have a need to concatenate matrices. A trivial case is where we need to append a column of 1’s

to a data matrix. Horizontal concatenation can be done by using ‘||, while vertical concatenation can be done by using ‘//’. For
example, consider the following matrices:

The command A||B gives the matrix

-1 2 6 7
{ 2 8 9} ’
whereas the command A//B gives the matrix
-1 2
2 1
6 7
9

B.10 CONTROL STATEMENTS

Several Proc IML routines given in this book make use of control statements. For example, we made use of control statements
when computing MLE estimates for the parameters. These statements were also used when computing estimates through iterative
procedures.
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DO-END Statement: The statements following the DO statement are executed until a matching END statement is
encountered.

DO Iterative Statement: The DO iterative statements take the form

DO Index=start TO end;
IML statements follow
END;

For example, the statements

DO Index=1 to 5;
Print Index;
END;

will print the value of INDEX for each iteration of the DO statement. The output will consist of the values of INDEX starting from
1 through 5.

IF-THEN/ELSE Statement: These statements can be used to impose restrictions or conditions on other statements. The IF
part imposes the restriction and the THEN part executes the action to be taken if the restrictions are met. The ELSE portion
of the statement execute the action for the alternative. For example, the statements

IF MAX (A) <30 then print 'Good Data’;
ELSE print ’'Bad Data’;

evaluate the matrix A. If the maximum element of the matrix is less than 30, then the statement ‘Good Data’ is printed, else the
statement ‘Bad Data’ is printed.

B.11 CALCULATING SUMMARY STATISTICS IN PROC IML

Summary statistics on the numeric variables stored in matrices can be obtained in Proc IML by using the SUMMARY
command. The summary statistics can be based on subgroups (e.g., Panel Data) and can be saved in matrices for later use. As
an example, consider the cost of US airlines panel data set from Greene (2003). The data consist of 90 observations for six firms
for 1970-1984. The following SAS statements can be used to summarize the data by airline. The option opt(save) saves the
summary statistics by airline. The statements will retrieve and save the summary statistics in matrices. The names of the
matrices are identical to the names of the variables. The statement ‘print LnC’ produces the means and standard deviations for
the six airlines for the variable LnC. The first column contains the means, whereas the second column contains the standard
deviations. We have found this command useful when programming the Hausman—Taylor estimation method for panel data
models. The resulting output is given in output B.1.

proc import out=airline
datafile="C:\Temp\airline"
dbms=Excel Replace;
getnames=yes;

run;

Data airline;
set airline;

LnC=1log(C) ;
LnQ=Log (Q) ;
LnPF=Log (PF) ;
run;
proc iml;

use airline;
summary var {LnC LnQ LnPF} class {i} stat{mean std}
opt{save};
print LnC;
run;
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I Nobs Variable MEAN STD
1 15 LNC 14.67563 0.49462
LNQ 0.31927 0.23037
LNPF 12.73180 0.85990
2 15 LNC 14.37247 0.68054
LNQ -0.03303 0.33842
LNPF 12.75171 0.84978
3 15 LNC 13.37231 0.52207
LNQ -0.91226 0.24353
LNPF 12.78972 0.81772
4 15 LNC 13.13580 0.72739
LNQ -1.63517 0.43525
LNPF 12.77803 0.82784
5 15 LNC 12.36304 0.71195
LNQ -2.28568 0.49739
LNPF 12.79210 0.82652
6 15 LNC 12.27441 0.89175
LNQ -2.49898 0.67981
LNPF 12.77880 0.83292
All 90 LNC 13.36561 1.13197
LNQ -1.17431 1.15061
LNPF 12.77036 0.81237
LNC
14.675633| 0.494617
14.37247)10.6805358
13.372309(0.5220658
13.135799(0.7273866
12.363038|0.7119453
12.274407(0.8917487

OUTPUT B.1. Summary statistics of three variables for each airline.



Appendix C

SIMULATING THE LARGE SAMPLE PROPERTIES
OF THE OLS ESTIMATORS

In Chapter 1 we saw that under the least squares assumptions, the estimator b = (X”X) "X’y for the coefficients vector B in the
model y = XTB + &was unbiased with variance—covariance matrix given by Var(b|X) = o> (X"X)"!. Here, 0> = Var(e|X). We
also saw that if &X ~N(0,0°), then the asymptotic distribution of b|X is normal with mean B and variance—covariance
o*(X"X)"!. Thatis, b|X ~ N(B,o*(X"X)"). This appendix presents a simple technique for simulating the large sample properties
of the least squares estimator.

Consider the simple linear regression model y;=4 + 10x; + &; with one dependent and one explanatory variable. For
simulation purposes, we will assume that x; ~ N(10,25) and &; ~ N(0,2.25). Note that the random nature of the regressor is simply
being used to generate values for the explanatory variable. A single simulation run for this model comprises generating n = 50
values of x; and &;, plugging these values into the regression equation to get the corresponding value of the dependent variable, y;.
The simulation ends by running a regression of y; versus x; using the 50 simulated values. Proc Reg is used to estimate the values of
B1, B2, and 0. This simulation is then repeated 10,000 times. Therefore, we end up having 10,000 estimates of the coefficients and
of 0. Proc Means is then used to generate basic summary statistics for these 10,000 estimates. The output generated can be used to
determine how close the means of the 10,000 sample estimates are to the true values of the parameters ( 8y = 10, 8, = 4, 0> = 2.25).
We conducted the simulation with sample sizes of 50, 100, 500, and 1000. The means for the simulation run with 50 observations is
given in Output C.1. Notice that the sample estimates from the simulation runs are almost identical to the true values.

Hypothesis test on the coefficient 8; was also conducted. We calculated the percentage of times the null hypothesis,
Hy: B, =10, was rejected. This gives us an estimate of the true Type I error rate. We used the confidence interval approach for
conducting this test. The tableout option of Proc Reg was used to construct the 95% confidence interval for 8. The null hypothesis
was rejected if the confidence interval did not include the value under the null hypothesis (10). The output of the simulation run
with 50 observations is given in Output C.2. It indicates that the null hypothesis is rejected 4.89% of the time, which is close to the
Type I error rate of 5%.

Finally, we use Proc Univariate with the histogram option to generate histograms for different simulation runs to demonstrate
the large sample distribution of Bl . The simulation results are given in Figures C.1 — C.4. Notice that the distribution of [31 is bell-
shaped and symmetric even when the sample size is 50. The normality of the distribution becomes more pronounced as the sample
size increases. Also notice that the spread of the distribution for the estimate reduces as the sample size increases. This indicates
that the standard error of the estimate becomes smaller with increasing sample sizes.
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Obs n intercept_e|slope_e| MSE_e
1110000 4.00117[9.99947|1.49198

OUTPUT C.1. Mean and standard deviation of simulated values of the estimate (n = 50).

The following SAS statements can be used to conduct the simulation just described.

data simulation;
sigma=1.5;

betal=4;

betaz2=10;

do index1=1 to 10000;
seed=12345;

do index2=1 to 50;
call rannor (seed,x1) ;
x=10+5*x%x1;
e=sigma*normal (0) ;
yv=betal+beta2*x+e;
output;
end;
end;
run;
proc reg data=simulation noprint outest=estimates tableout;
model y=X;
by indexl1;
run;
data estimatesl;
set estimates;

ify=-1;
rename x=slope;
drop _label_;

run;
proc univariate noprint data=estimatesl;
var intercept slope _rmse_;
output out=estimatesl n=n mean=intercept_e slope_e MSE_e¢e;
run;
proc print data=estimatesl;
run;
data estimates?2;
set estimates;
if _type_ in ('L95B’, ‘U95B’);
keep indexl _type_ X;
run;

The MEANS Procedure

Analysis Variable : reject

N Mean Std Dev|Minimum Maximum
10000/0.0497000(0.2173353 0[1.0000000

OUTPUT C.2. Simulated Type 1 error rate (n =50).
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Fitted Normal Distribution of Beta2

I
ITrue Value Sample Size 50

9.93 9.96 9.99 10.02

slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter|Symbol |Estimate
Mean Mu 10
Std Dev Sigma |[0.039948

Goodness-of-Fit Tests for Normal Distribution

Test

Statistic p Value

Cramer-von Mises|W-Sqg |0.20979495|Pr > W-Sqg|0.223

Anderson-Darling|A-Sq |1.21657290|Pr > A-Sq|0.210

Quantiles for Normal
Distribution

Quantile

Percent [Observed|Estimated
1.0| 9.89767 9.90707
5.0] 9.93906 9.93429
10.0| 9.94859 9.94881
25.0| 9.96272 9.97306
50.0| 9.99712| 10.00000

0

0

0

0

75.0(10.02268| 10.02694
90.0110.05022( 10.05119
95.0110.05629( 10.06571
99.0(10.05983| 10.09293

FIGURE C.1. Histogram of the simulated estimates (n = 50).
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Fitted Normal Distribution of Beta2

30 ;

True Value Sample Size 100|

25

20+

15+

Percent

10

T T T T T T T T
9.915 9.945 9.975 10.005 10.035 10.065 10.095 10.125

slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter|Symbol |Estimate
Mean Mu 10
Std Dev Sigma |0.040671

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value
Cramer-von Mises|W-Sqg [0.12817105|Pr > W-Sg|>0.250
Anderson-Darling|A-Sqg |0.69744815|Pr > A-Sg[>0.250

Quantiles for Normal
Distribution

Quantile

Percent |Observed|Estimated
1.0] 9.91077 9.90539
5.0 9.93591 9.93310
10.0| 9.94713 9.94788
25.0| 9.97455 9.97257
50.0/10.00157| 10.00000

0

0

0

0

75.0(10.03171| 10.02743
90.0]10.05431( 10.05212
95.0110.06417| 10.06690
99.0]10.10230( 10.09461

FIGURE C.2. Histogram of the simulated estimates (n = 100).
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Fitted Normal Distribution of Beta2

30 4

25 A

20 4

15 4

10 S

| True Value

Sample Size 500

s

9.84 9.87 9.9 9.93 9.96

slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal

Distribution

Parameter

Symbol

Estimate

Mean

Mu

10

Std Dev

Sigma

0.044755

9.99 10.02 10.0510.08 10.11 10.14

Goodness-of-Fit Tests for Normal Distribution
Test Statistic p Value
Cramer-von Mises|W-Sqg |0.04634466|Pr > W-Sg|>0.250
Anderson-Darling|A-Sqg |0.29383767|Pr > A-Sg|>0.250

Quantiles for Normal

Distribution
Quantile

Percent |Observed|Estimated
1.0 9.89798 9.89588
5.0| 9.92721 9.92638
10.0| 9.94281 9.94264
25.0| 9.96843 9.96981
50.0| 9.99864| 10.00000
75.0]110.02923| 10.03019
90.0(10.05702| 10.05736
95.0110.07428| 10.07362
99.0110.10539| 10.10412

FIGURE C.3. Histogram of the simulated estimates (n = 500).
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Fitted Normal Distribution of Beta2

22.5
| True Value Sample Size 1000

20.0

TN

15.0

12.5 4

10.0

Percent

N = =

T T T T T T T T T T T T T T
9.89 9.91 9.93 9.95 9.97 9.99 10.01 10.03 10.05 10.07 10.09 10.11 10.13 10.15

slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter |Symbol |Estimate
Mean Mu 10
Std Dev Sigma 0.04417

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value
Cramer-von Mises|W-Sg [0.14559887|Pr > W-Sg|>0.250
Anderson-Darling|A-Sqg |0.82700450|Pr > A-Sg|>0.250

Quantiles for Normal
Distribution

Quantile

Percent |Observed|Estimated
1.0| 9.90069 9.89725
5.0| 9.92595 9.92735
10.0| 9.94106 9.94339
25.0| 9.97233 9.97021
50.0(10.00115| 10.00000

0

0

0

0

75.0110.02828| 10.02979
90.0]10.05665| 10.05661
95.0]110.07772| 10.07265
99.0]10.10588| 10.10275

FIGURE C4. Histogram of the simulated estimates (n = 1000).
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proc transpose data=estimates? out=estimates? (keep=L95B U95B) ;
var x;
id _type_;
by indexl1;
run;
data estimates?2;
set estimates?2;
beta2=10;
if L95B<beta2 <U95B then reject=0;else reject=1;
run;
proc means data=estimates?2;
var reject;
run;
title 'Fitted Normal Distribution of Beta2’;
proc univariate noprint data=estimatesO;
histogram slope /
normal (mu=10 color=blue fill)

cfill = ywh

cframe = 1igr

href =10

hreflabel = 'True Value’
lhref =2

vaxis = axisl

name = 'MyHist’;

axisl label=(a=90 r=0) ;

inset n = 'Sample Size’

beta / pos=ne cfill=ywh;
run;



Appendix D

INTRODUCTION TO BOOTSTRAP ESTIMATION

D.1 INTRODUCTION

Bootstrappingis a general, distribution-free method thatis used to estimate parameters of interest from data collected from studies or

experiments. Itis often referred to as a resampling method because it is carried out by repeatedly drawing samples from the original

data that were gathered. This section introduces the basics of bootstrapping and extends it to bootstrapping in regression analysis.

For a discussion on calculating bias or calculating confidence intervals using bootstrapping, see Efron and Tibshirani (1993).
Bootstrapping is a useful estimation technique when:

1. The formulas that are to be used for calculating estimates are based on assumptions that may not hold or may not be
understood well, or cannot be verified, or are simply dubious.

2. The computational formulas hold only for large samples and are unreliable for small samples or simply not valid for small
samples.

3. The computational formulas do not exist.

To begin the discussion of bootstrapping techniques, assume that a study or experiment was conducted resulting in a data set
X1, ..., X, of size n. This is a trivial case where the data are univariate in nature. Most studies involve collection of data on several
variables as in the case of regression analysis studies. However, we use the simple example to lay the groundwork for the elements
of bootstrapping methods.

Assume that the data set was generated by some underlying distribution f{6). Here, f(6) is the probability density function and
may be either continuous or discrete. It may be the case that the true density function is unknown and the functional form of f(6) is,
therefore, unknown also. We are interested in estimating the parameter 6, which describes some feature of the population from
which the data were collected. For instance, 6 could be the true mean, median, the proportion, the variance, or the standard deviation
of the population. Assume for the moment that we have a well-defined formula to calculate an estimate, é, of 6. However, no
formulas exist for calculating the confidence interval for 6. Under the ideal setting where we have unlimited resources, we could
draw a large number of samples from the population. We could then estimate 0 by calculating 6 for each sample. The calculated
values of 6 can then be used to construct an empirical distribution of 6 that could then be used to construct a confidence interval for 6.
However, in reality we just have a single sample that is a justification for the use of bootstrapping method.

The general idea behind bootstrapping is as follows (assuming that a study/experiment resulted in a data set of size n):

1. A sample of size n is drawn with replacement from the data set in hand.
2. An estimate, @), of 6 is calculated.

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
Copyright © 2009 John Wiley & Sons, Inc.
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APPENDIX D: INTRODUCTION TO BOOTSTRAP ESTIMATION 263

3. Steps 1 and 2 are repeated several times (sometimes thousands of repetitions are used) to generate a (simulated)
distribution of 6. This simulated distribution is then used for making inferences about 6.

As an example, suppose that we want to construct a 95% confidence interval for §. However, we do not have formulas that can
be used for calculating the interval. We can therefore use bootstrapping to construct the confidence interval. The steps are as
follows (Efron and Tibshirani, 1993):

1. Draw 1000 (as an example) bootstrap samples from the original data and calculate 91 RN 6 1000, the estimates from each of
the 1000 samples.

2. Next, sort these estimates in increasing order.

3. Calculate the 2.5th and 97.5th percentile from the 1000 simulated values of 6. The 2.5th percentile will be the average of the
25th and 26th observation while the 97.5th percentile will be the average of the 975th and 976th observation. That is,

0r5+ 6
Lower confidence limit = %7

O975 + 0
Upper confidence limit = w.

Notice that we took the lower 2.5% and the upper 2.5% of the simulated distribution of 6 out to achieve the desired 95%
confidence. Also note that we did not make any assumptions about the underlying distribution that generated the original data set.
We will now formalize the general bootstrapping method presented so far. Consider a random variable x with cumulative
distribution F(x; 0). Here, 0 is a vector of unknown parameters. For example, if the distribution of x is normal, then 0 = (u, 0'2).
Assume that we are interested in estimating 6 or some element of 0 that describes some aspect of f(x; 8), the distribution of x. That
is, we may be interested in estimating the mean, or the standard deviation, or the standard error of the mean. As we did before, we
will assume that a study/experiment resulted in a random sample xy, . . ., x,, of size n. We can use this sample to approximate the
cumulative distribution, F(x; 0), with the empirical distribution function, F (x;0). The estimate, F (x; @), can be written as

N 1 <&
F(x;0) = ZZI<_°O‘X)()C[)’
i=1

where [ is an indicator function that counts the number of x’s in the original sample that fall in the interval (—oo, x). This is better
illustrated in Figure D.1.

In Figure D.1, the true distribution, F(x; 0), is given by the smooth line while the estimated function, F (x;0), is given by the
stepwise representation. The parameter vector 0 or elements of it could be calculated exactly if the form of F(x; 8) were known.

1.0
0.94
0.8
0.7
0.6
05 F)

044 F(x)
0.3
0.24
0.14

[ [ I I [ I I I [
—-4.0 -3.0 20 -10 00 1.0 2.0 3.0 4.0 x

FIGURE D.1. Plot comparing actual cumulative versus simulated cumulative distributions. (Graph reproduced with permission from Paul
Glewwe, University of Minnesota.)
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That is, if we knew the exact form of F(x; 0), then we could derive the probability density function, f(x; 8), or a function #(F) to
calculate . However, assume that the functional form of F(x; 6) is unknown and that it was approximated with F(x; 0).
Therefore, one option we have is to replace F(x; 8) with F(x;8) to get the estimated function #(F). We can then use #(F)
to calculate an estimate, 6, of 6. The estimator 6 in this instance is called the plug-in estimator of # (Efron and Tibshirani, 1993,
p- 35). As an example, the plug-in estimator of the population mean p,,

is the sample mean

.fp‘{

Notice that calculating the mean of x was trivial and did not require bootstrapping methods. In general, bootstrapping
techniques are used to calculate standard errors and for constructing confidence intervals without making any assumption
about the underlying distribution from which the samples are drawn.

D.2 CALCULATING STANDARD ERRORS

We will now discuss how bootstrapping methods can be used to calculate an estimate of the standard error of the parameter of
interest. Assume then that we have an estimate of 6. That is, 6 was calculated from the original data set without the use of
bootstrapping. Bootstrapping, however, will be used to calculate an estimate of the standard error of 6. The general method for
doing this is as follows (again assume that we have a data set of size n) (Efron and Tibshirani, 2004, p. 45):

1. Draw B samples of size n with replacement from the original data set.
2. Calculate  for each of the samples from step 1. That is, we now have 91, ey 93.
3. We calculate the standard error from the B estimates of 6 by using the standard formulas for standard errors. That is,

sep(6) =

where 6 = B~ Z 6; is simply the mean of the 6,...,05.In practice, B is set to a very large number. Most practitioners

use 200-500 bootstrapped samples.
D.3 BOOTSTRAPPING IN SAS

Bootstrapping can easily be programmed in SAS by using simple routines. SAS macros to calculate bootstrapped estimates are
available for download from the SAS Institute. The macros can be used to calculate bootstrapped and jackknife estimates for the
standard deviation and standard error, and they are also used to calculate the bootstrapped confidence intervals. The macros can
also be used to calculate bootstrapped estimates of coefficients in regression analysis. These macros need to be invoked from
within SAS. We willillustrate the use of these macros a bit later. For now, we show how a simple program can be written to compute
bootstrap estimates.

Consider a data set that consists of 10 values: 196, —12,280, 212, 52, 100, —206, 188, —100, 202. We will calculate bootstrap
estimates of the standard error for the mean. The following SAS statements can be used:

data age_data;
input age;
cards;
45



APPENDIX D: INTRODUCTION TO BOOTSTRAP ESTIMATION 265

40

17
16
15
11
10

54
76
87

data bootstrap;
do index=1 to 500;
do i=1 to nobs;
x=round (ranuni (0) *nobs) ;
set age_data
nobs=nobs
point=x;
output;
end;
end;
stop;
run;

The following Proc Univariate statements will calculate the mean of the bootstrapped samples.

proc univariate data=bootstrap noprint;
var age;
by index;
output out=outl mean=mean n=n;
run;

Finally, the following Proc Univariate statements will calculate the standard deviation of the 500 bootstrapped means.

proc univariate data=outl noprint;
var mean;
output out=out2 n=n mean=mean std=se;
run;
proc print data=out2;
run;

The analysis results in a mean and standard error of 27.6 and 6.8, respectively.

D.4 BOOTSTRAPPING IN REGRESSION ANALYSIS

Consider the standard linear regressionmodely; = X! B + &;, where x;and B are k x 1 column vectors and g, is random error. Assume
that we have a data set comprising n pairs of observations (v, X1), ..., (Vu X,). Assume that the conditional expectation
E(g,|x;) = 0. Furthermore, assume that we do not know F(¢|x), the cumulative distribution of €. In general, F is assumed to be normal.
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We will make use the standard least squares estimator for 8, namely, B = (XTX)_IXTy, to calculate bootstrapped estimates.
That is, as was the case, with the mean being calculated without the use of bootstrapping, we will assume that the least squares
estimate can be calculated without any need of bootstrapping. However, we are interested in calculating the standard errors of ﬁ
That is, we assume that the formulas for calculating the standard errors are either unknown, unreliable, or simply do not work for
small samples.

As shown in Chapter 1, the estimate of the variance of B is Var(B|X) = ¢*(X"X) ™', where 6°

is estimated as

R 1 n .
== (yi_XiTB)Z
n i=1
or
1 " 5
2 o .TA
o _I’l—k—l / (yl xz B) .

i=1

Notice that the first version is not an unbiased estimator for o whereas the second version is. These versions are often referred
to as the “not bias-corrected” and the “bias-corrected” versions, respectively. There are two bootstrapped methods (pairs method,
residuals method) that are employed to estimate the standard error of [3 (Glewwe, 2006; Efron and Tibshirani, 1993, p. 113).

The bootstrapped pairs method randomly selects pairs of y; and x; to calculate an estimate of &;, while the bootstrapped
residuals method takes each x; just once but then links it with a random draw of an estimate of €. The next section outlines both
methods.

D.4.1 Bootstrapped Residuals Method

As before, we assume that a study or experiment resulted in n observations (yy, X1), - .., (,, X,). The general method for the
bootstrapped residuals method is

1. For each i, calculate an estimate, ¢; of ;. That is, ¢; = y; — xle% where f-} is the usual OLS estimator calculated from the
original data.

2. Randomly draw n values of e; (from step 1) with replacement. Denote the residuals in the sample as e}, 3, . . ., e;. Notice
that the subscripts of the residuals in the selected sample are not the same as the subscripts for the residuals, e;, which were
calculated from the original sample. That is, in general €] # ¢; fori=1, ..., n.

3. With the values of e} (from step 2), compute y; = x,TG + e;. Notice that the subscripts for x; here match the subscripts of x;
in the original data set. That is, we are using each x; only once. Notice also that by construction of e}, y; # yr.

4. Using the calculated values of y; (from step 3), construct the vector y". Finally, use X = [Xl .
=0 .. 1" to calculate B}, the first bootstrapped estimate of B. That is, B} = (XTX)'XTy*.

5. Steps 2 through 4 are repeated B (typically B=200-500) times to get B estimates of B.

6. Use the B estimates (from step 5) to calculate the sample standard deviation of ﬁ using the formula

where

is the mean of the B residuals method bootstrapped estimates of .
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D.4.2 Bootstrapped Pairs Method

As before, we assume that a study or experiment resulted in n observations (yy, X1), .. ., (V,, X,,). The general method for the
bootstrapped pairs method is

1. Randomly draw n pairs of values, y; and X;, with replacement. Denote these as yj,y3,...,y; and X},X3,...,X,. As
discussed earlier, the subscripts here do not necessarily match the subscripts in the original data set.

2. Using these values of y; and x7, calculate the first bootstrapped estimate of 8 by using standard OLS techniques. That is,
bT _ (X*Tx*)flx*Ty*.

3. Steps 1 and 2 are repeated B times (typically B=200-500) to get B estimates of .

4. Use the B estimates b/, i = 1,..., B, to calculate the sample standard deviation of ﬁ using the formula

where
1
B lej

is the mean of the B pairs method bootstrapped estimates of 8. Computationally, the bootstrapped pairs method is more
straightforward. As discussed in Efron and Tibshirani (1993, p. 113), the bootstrapped residuals method imposes
homoscedasticity because it “delinks” x; with e;. Therefore, if the homoscedasticity assumption is violated, then we should
use the bootstrapped pairs method, which does not impose this. On the other hand, if we are very confident of
homoscedasticity, then we can use the bootstrapped residuals method to get more precise estimates of the standard error
of B In fact, it can be shown that as B — oo the standard errors of the least squares estimates calculated using the
bootstrapped residuals method converge to the diagonal elements of the variance—covariance matrix &Z(XTX)fl.

D.4.3 Bootstrapped Regression Analysis in SAS

We will now illustrate the residuals and the pairs methods by using the %BOOT macro that can be downloaded from the SAS
Institute website at www.sas.com. We will make use of the gasoline consumption data given in Table F2.1 of Greene (2003).
We need the bootstrapped macros (labeled JACKBOOT.SAS here) to be called from within the program. The %include
statement can be used for this purpose. The following statements can be used:

%include "C:\Temp\jackboot.sas";

The data set is then read into SAS and stored into a temporary SAS data set called gasoline. Notice that the raw data are stored
in Excel format.

proc import out=gasoline
datafile="C:\Temp\gasoline"
dbms=Excel Replace;
getnames=yes;

run;

The following SAS data step statements simply transform the variables in the raw data by using the log transformations:

data gasoline;
set gasoline;
Ln_G_Pop=1log (G/Pop) ;
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Ln_pg=Log (Pg) ;
Ln_Income=Log (Y/Pop) ;
Ln_Pnc=Log (Pnc) ;
Ln_Puc=Log (Puc) ;

run;

The following Proc Reg statements are used to run OLS regression on the original data set. The residuals from this are stored ina
temporary SAS data set called gasoline. The residuals are labeled as resid.

proc reg data=gasoline;
model Ln_G_Pop=Ln_pg Ln_Income Ln_Pnc Ln_Puc;
output out=gasoline r=resid p=pred;

run;

The following macro is required before invoking the bootstrapped macros in the program jackboot.sas. The only inputs that
require changes are the variable names in the model statement. The remaining statements can be used as is. See Sample 24982-
JackKnife and Bootstrap Analyses from the SAS Institute for more details. The following code has been adapted from this
publication and has been used with permission from the SAS Institute.

%macro analyze (data=,out=) ;
options nonotes;
proc reg data=&data noprint
outest=&out (drop=Y _IN_ _P_ _EDF_);
model Ln_G_Pop=Ln_pg Ln_Income Ln_Pnc Ln_Puc;
%bystmt ;
run;
options notes;
gmend;

This portion of the code invokes the %boot macro within jackboot.sas and conducts a bootstrapped analysis by using the pairs
method. Note that the root mean square error (_RMSE_) is not a plug-in estimator for ¢, and therefore the bias correction is wrong.
In other words, even though the mean square error is unbiased for o7, theroot mean square error is not unbiased for o. However, we
choose to ignore this because the bias is minimal.

title2 'Resampling Observations-Pairs Method’;
titlel3 ' (Bias correction for _RMSE_ is wrong) ‘;
%boot (data=gasoline, random=123) ;

This portion of the code invokes the %boot macro and conducts the bootstrapped analysis by using the residuals method.

title2 'Resampling Residuals-Residual Method’;

titlel3 ' (bias correction for _RMSE_ is wrong) ’;

%boot (data=gasoline, residual=resid, equation=y=pred+resid,
random=123) ;

The analysis results are givenin Outputs D.1 and D.2. The first part of the output is from the analysis of the original data. We will
skip any discussion of this portion of the output as we have already discussed OLS regression output from SAS in detail in Chapter
2. The OLS output is followed by the output where bootstrapping is done by resampling pairs (Output D.1) and where the analysis
was done using the residuals method (Output D.2).
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Resampling Observations
(bias correction for _RMSE_ is wrong)

The REG Procedure
Model: MODEL1
Dependent Variable: Ln_G_Pop

Number of Observations Read|36

Number of Observations Used|36

Analysis of Variance

Sum of Mean
Source DF | Squares Square |F Value|Pr > F
Model 4(0.78048 0.19512| 243.18k0.0001
Error 31|0.02487|0.00080237
Corrected Total|35(0.80535

Root MSE 0.02833 |R-Square|0.9691
Dependent Mean -0.00371|Adj R-Sqg|0.9651
Coeff Var -763.79427

Parameter Estimates
Parameter |Standard
Variable |DF| Estimate Error|t Value|Pr > |t]
Intercept| 1| -7.78916| 0.35929| -21.68| <0.0001
Ln_pg 1] -0.09788| 0.02830 -3.46 0.0016
Ln_Income| 1 2.11753] 0.09875 21.44| <0.0001
Ln_Pnc 1 0.12244] 0.11208 1.09 0.2830
Ln_Puc 1] -0.10220| 0.06928 -1.48 0.1502

Resampling Observations
(bias correction for _RMSE_ is wrong)

Approximate
Approximate Lower

Observed |Bootstrap |Approximate| Standard Confidence |Bias-Corrected
Name Statistic Mean Bias Error Limit Statistic
Intercept| -7.78916| -7.83880 -0.049634 0.35056 -8.42662 -7.73953
Ln_G_Pop -1.00000| -1.00000 0.000000 0.00000 -1.00000 -1.00000
Ln_Income 2.11753 2.13101 0.013484 0.09596 1.91597 2.10405
Ln Pnc 0.12244 0.13541 0.012969 0.13611 -0.15729 0.10947
Ln_Puc -0.10220| -0.11723 -0.015028 0.08629 -0.25631 -0.08718
Ln_pg -0.09788(| -0.09167 0.006209 0.02904 -0.16101 -0.10409
_RMSE__ 0.02833 0.02623 -0.002093 0.00256 0.02540 0.03042

Approximate

Upper Method for Minimum Maximum

Confidence |Confidence Confidence Resampled|Resampled |Number of |LABEL OF FORMER
Name Limit Level (%) Interval Estimate | Estimate |Resamples |VARIABLE
Intercept -7.05244 95 |Bootstrap Normal| -8.98495| -7.03140 200 [Intercept
Ln_G_Pop -1.00000 95|Bootstrap Normal| -1.00000| -1.00000 200
Ln_Income 2.29212 95 |Bootstrap Normal 1.90256 2.44562 200
Ln_Pnc 0.37624 95|Bootstrap Normal| -0.23416 0.42458 200
Ln_ Puc 0.08196 95 |Bootstrap Normal| -0.32506 0.10206 200
Ln _pg -0.04717 95 |Bootstrap Normal| -0.16467 0.00233 200
_RMSE__ 0.03544 95 |Bootstrap Normal 0.01844 0.03362 200 |Root mean squared error

OUTPUT D.1. Bootstrapped regression analysis (pairs method) of the gasoline consumption data.
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The REG Procedure
Model: MODEL1
Dependent Variable: Ln G_Pop

Number of Observations Read|36
Number of Observations Used|36

Analysis of Variance

Sum of Mean
Source DF | Squares Square|F Value|Pr > F
Model 410.78048 0.19512| 243.18|<0.000]]
Error 31/0.02487(0.00080237
Corrected Total|35|0.80535

Root MSE 0.02833|R-Square|0.9691
Dependent Mean -0.00371|Adj R-Sg|0.9651
Coeff Var -763.79427

Parameter Estimates
Parameter|Standard
Variable |DF| Estimate Error|t Value|Pr > |t]
Intercept| 1| -7.78916| 0.35929| -21.68| <0.0001
Ln_pg 1| -0.09788] 0.02830 -3.46 0.0016
Ln_Income| 1 2.11753| 0.09875 21.44 <0.0001
Ln_Pnc 1 0.12244] 0.11208 1.09 0.2830
Ln_Puc 1| -0.10220] 0.06928 -1.48 0.1502

Resampling Residuals
(bias correction for _RMSE_ is wrong)

Approximate
Approximate Lower

Observed |Bootstrap|Approximate| Standard Confidence |Bias-Corrected
Name Statistic Mean Bias Error Limit Statistic
Intercept| -7.78916| -7.78916|2.30926E-14 0 -7.78916 -7.78916
Ln_G_Pop -1.00000| -1.00000 0 0 -1.00000 -1.00000
Ln_Income 2.11753 2.1175314.44089E-15 0 2.11753 2.11753
Ln_Pnc 0.12244 0.12244(2.22045E-16 0 0.12244 0.12244
Ln Puc -0.10220| -0.10220(1.38778E-16 0 -0.10220 -0.10220
Ln_pg -0.09788| -0.09788|-1.6653E-16 0 -0.09788 -0.09788
_RMSE 0.02833 0.02833(4.85723E-17 0 0.02833 0.02833

Approximate

Upper Method for Minimum Maximum

Confidence |Confidence Confidence Resampled|Resampled |Number of |[LABEL OF FORMER
Name Limit Level (%) Interval Estimate | Estimate |Resamples|VARIABLE
Intercept -7.78916 95 |Bootstrap Normal| -7.78916| -7.78916 200 | Intercept
Ln_G_Pop -1.00000 95 |Bootstrap Normal| -1.00000| -1.00000 200
Ln_Income 2.11753 95 |Bootstrap Normal 2.11753 2.11753 200
Ln_Pnc 0.12244 95 |Bootstrap Normal 0.12244 0.12244 200
Ln_Puc -0.10220 95|Bootstrap Normal| -0.10220| -0.10220 200
Ln_pg -0.09788 95 |Bootstrap Normal| -0.09788| -0.09788 200
_RMSE__ 0.02833 95 |Bootstrap Normal 0.02833 0.02833 200 [Root mean squared error

OUTPUT D.2. Bootstrapped regression analysis (residuals method) of the gasoline consumption data.
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The output consists of the OLS estimates in the first column, followed by the mean of the coefficients estimated from the 200
bootstrap samples. The third column gives the bias, which is simply the bootstrap mean minus the observed statistic. The standard
errors calculated from the bootstrapped samples are given next. This is followed by the 95% confidence intervals, the bias-
corrected statistics, and the minimum and maximum of the estimated coefficient values from the bootstrap samples. Notice that
the bootstrap estimates of the coefficients and the standard errors are very similar to the OLS estimates.

There is a remarkable similarity between the bootstrap estimates of the coefficients and the standard errors obtained from the
residual method and the OLS estimates. This is not surprising since under the homoscedastic assumption, it can be shown that as
the number of bootstrapped samples increases, the estimated values of the standard errors converge to the diagonal elements of
(X"X) ™!, where 62 is the estimate that is not corrected for bias.



Appendix E

COMPLETE PROGRAMS AND PROC IML ROUTINES

E.1 PROGRAM 1

This program was used in Chapter 2. Itis used to analyze Table F3.1 of Greene (2003). In the following data step, we read in the raw
data, create a trend variable, 7, divide GNP and Invest by CPI, and then scale the transformed GNP and Invest time series so that
they are measured in trillions of dollars.

proc import out=invst_equation
datafile="C:\Temp\Invest_Data"
dbms=Excel Replace;
getnames=yes;
run;
data invst_equation;
set invst_equation;
T=_n_;
Real_GNP=GNP/ (CPI*10) ;
Real_TInvest=Invest/ (CPI*10) ;
run;
/* The start of Proc IML routines.
*/proc iml;
/* Invoke Proc IML and create the X and Y matrices using the variables T, Real_GNP, and
Real_Invest from the SAS data set invst_equation. */
use invst_equation;
read all var {'T’ "Real_GNP’} into X;
read all var {'Real_TInvest’} intoY;
/* Define the number of observations and the number of independent variables. */
n=nrow (X) ;
k=ncol (X) ;
/* Create a column of ones to the Xmatrix to account for the intercept term. */
X=J(n,1,1) I1X;

Applied Econometrics Using the SAS® System, by Vivek B. Ajmani
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/* Calculate the inverse of X'X and use this to compute B_Hat */
C=inv (X' *X) ;
B_Hat=C*X"*Y;
/* Compute SSE, the residual sum of squares, and MSE, the residual mean square. */
SSE=y " *y-B_Hat' *X" *Y;
DFE=n-k-1;
MSE=sse/DFE;
/* Compute SSR, the sums of squares due to the model; MSR, the sums of squares due to random
error; and the F ratio. */
Mean_Y=Sum(Y) /n;
SSR=B_Hat  *X ' *Y-n*Mean_Y**2;
MSR=SSR/k;
F=MSR/MSE;
/* Compute R-Square and Adj-RSquare. */
SST=SSR+SSE;
R_Square=SSR/SST;
Adj_R_Square=1-(n-1)/(n-k) * (1-R_Square) ;
/* Compute the standard error of the parameter estimates, their Tstatistic and P-values. */
SE=SQRT (vecdiag (C) #MSE) ;
T=B_Hat/SE;
PROBT=2* (1-CDF('T’, ABS(T), DFE)) ;
/* Concatenate the results into onematrix to facilitate printing. */
Source= (k|| SSRIIMSRIIF) // (DFEI|ISSEIIMSEIl {.}) ;
STATS=B_Hat || SE||T|| PROBT;
Print 'Regression Results for the Investment Equation’;
Print Source (|Colname={DF SS MS F} rowname={Model Error} format=8.41) ;
Print 'Parameter Estimates’;
Print STATS (|Colname={BHAT SE T PROBT} rowname={INT TG _R_ P}format=8.41);
Print '’;
Print ‘The value of R-Square is ' R_Square;
Print 'The value of Adj R-Square is ' Adj_R_Square;
run;

E.2 PROGRAM 2

This program was used in Chapter 3. It analyzes the quarterly data on investment as found in Table 5.1 of Greene (2003). This
program is used to conduct the general linear hypothesis—the global F test. We have omitted the data step statements with the
hope that users will be able to recreate it with ease. The Proc IML code follows.

proc iml;
/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,
delta_p, output, and T from the SAS data set real_invst_eq (Notice we have omitted the data
step) */
use real_invst_eq;
read all var {’interest’ ‘delta_p’ 'output’ 'T’} into X;
read all var {'Invest’} into Y;
/* Define the number of observations and the number of independent variables. */
n=nrow (X) ;
k=ncol (X) ;
/* Create a column of ones to the Xmatrix to account for the intercept term. */
X=J(n,1,1)lIX;
/* Calculate the inverse of XX and use this to compute B_Hat. */
C=inv (X *X) ;
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B_Hat=C*X" *Y;
/* Construct the RMatrix and gmatrix. */
R={01100,00010,00001%};
g={0,1,0};
j=nrow (R) ;
/* Compute SSE, the residual sum of squares, and MSE, the residual mean square. */
SSE=y  *y-B_Hat  *X  *Y;
DFE=n-k-1;
MSE=sse/DFE;
/* Calculate the F Statistic. */
DisVec=R*B_Hat-q;
F=DisVec *inv (R*MSE*C*R") *DisVec/J;
P=1-ProbF (F,J,n-k) ;
Print 'The value of the F Statistic is ' F;
Print 'The P-Value associatedwith this is ' P;
run

E.3 PROGRAM 3

This program was used in Chapter 3. It was used to analyze the investment equation data given in Table F5.1 of Greene (2003). This
program calculates the restricted least squares estimator and the standard errors of the estimator. We have omitted the data step
again.

proc iml;
/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,
delta_p, output, and T from the SAS data set real_invst_eqg. */
use real_invst_eq;
read all var {’interest’ 'delta_p’ ‘output’ ‘'T’} into X;
read all var {'Invest’} intoY;
/* Define the number of observations and the number of independent variables. */
n=nrow (X) ;
k=ncol (X) ;
/* Create a column of ones to the Xmatrix to account for the intercept term. */
X=J(n,1,1) IlX;
/* Calculate the inverse of X’X and use this to compute B_Hat. */
C=inv (X *X) ;
B_Hat=C*X"*Y;
/* Construct the Rmatrix and gmatrix. */
R={01100};
g={01};
/* Calculate the Restricted Least Squares Estimator. */
M=R‘*inv (R*C*R’) * (R*B_Hat-q) ;
B_Star=B_Hat - C*M;
print B_Star;
/* Compute SSE, and MSE. */
SSE=y *y-B_Hat *X *Y;
DFE=n-k-1;
MSE=sse/DFE;
/* Compute SSR, MSR, and the F statistic. */
Mean_Y=Sum(Y) /n;
SSR=B_Hat *X  *Y-n*Mean_Y**2;
MSR=SSR/k;
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F=MSR/MSE;
/* Compute R-Square and Adj-RSquare. */
SST=SSR+SSE;
R_Square=SSR/SST;
Adj_R_Square=1-(n-1)/(n-k) * (1-R_Square) ;
/* Compute the standard error of the parameter estimates, their T statistic and P-values. */
SE=SQRT (vecdiag (C) #MSE) ;
T=B_Hat/SE;
PROBT=2* (1-CDF (’'T’, ABS(T), DFE)) ;
/* Concatenate the results into onematrix. */
Source= (k|[|SSRIIMSRI|F) // (DFEIISSEIIMSEIl {.}) ;
STATS=B_Hat || SE||T || PROBT;
Print ‘Regression Results for the Restricted Investment Equation’;
Print Source (|Colname={DF SS MS F} rowname={Model Error} format=8.41);
Print 'Parameter Estimates’;
Print STATS (|Colname={BHAT SE T PROBT} rowname={INT Interest
Delta_P Output T} format=8.41) ;
Print '’ ;
Print 'The value of R-Square is ' R_Square;
Print 'The value of Adj R-Square is ' Adj_R_Square;
run;

E4 PROGRAM 4

This program was used in Chapter 3 to conduct general linear hypothesis for the investment equation data given in Table F5.1 of
Greene (2003). Note that Program 2 simply conducts the global F test, whereas this program does the individual t tests for each of
the linear restrictions.

proc iml;
/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,
delta_p, output, and T from the SAS data set real_invst_eq. */
use real_invst_eq;
read all var {’interest’ ‘delta_p’ ‘output’ 'T’} into X;
read all var {'Invest’} intoY;
/* Define the number of observations and the number of independent variables. */
n=nrow (X) ;
k=ncol (X) ;
/* Create a column of ones to the Xmatrix to account for the intercept term. */
X=J(n,1,1)lIX;
/* Calculate the inverse of X’X and use this to compute B_Hat. */
C=inv (X' *X) ;
B_Hat=C*X"*Y;
/* Construct the RMatrix and gmatrix. */
R={01100,00010,00001%};
a={0,1,0};
j=nrow (R) ;
R1=R[1,];ql=ql[1,];
R2=R[2,];q2=ql2,];
R3=R[3,];a3=ql3,];
/* Compute SSE, and MSE. */
SSE=y *y-B_Hat *X *Y;
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DFE=n-k-1;
MSE=sse/DFE;
/* Calculate the t Statistic. */
T_NUM1=R1*B_Hat-gl;
sel=sgrt (R1*MSE*C*R1"’) ;
T1=T_NUM1l/sel;
pl=1-ProbT (T1l,n-k);
Print 'The value of the T Statistic for the first restriction is ' tl;
Print 'The P-Value associatedwith this is ’ P1;
T_NUM2=R2*B_Hat-g2;
se2=sqgrt (R2*MSE*C*R2 ') ;
T2=T_NUM2/se2;
P2=1-ProbT (T2,n-k) ;
Print 'The value of the T Statistic for the second restriction is ' t2;
Print 'The P-Value associatedwith this is ' P2;
T_NUM3=R3*B_Hat-g3;
sel3=sqgrt (R3*MSE*C*R3 ") ;
T3=T_NUM3/se3;
P3=1-ProbT (T3,n-k);
Print 'The value of the T Statistic for the third restriction is ' t3;
Print 'The P-Value associatedwith this is ’ P3;
run;

E.5 PROGRAM 5

This program was used in Chapter 4 to conduct Hausman’s specification test on the consumption data that can be found in
Table 5.1 of Greene (2003). We have chosen to omit the data step statements.

proc iml;
/* Read the data into appropriate matrices. */
use hausman;
read all var {'yt’ "it’ 'ctl’} into X;
read all var {’ct’} into Y;
/* Create the instruments matrix 7z and some constants. */
read all var {"it’ 'ctl’ 'ytl’} into Z;
n=nrow (X) ;
k=ncol (X) ;
X=J(n,1,1) lIX;
z=J(n,1,1)lZ;
/* Calculate the OLS and IV estimators. */
CX=1inv (X" *X) ;
CZ=1inv (Z *Z) ;
OLS_b=CX*X" *y;
Xhat=2*CZ*7"'*X;
b_IV=inv (Xhat' *X) *Xhat" *y;
/* Calculate the difference between the OLS and IV estimators. Also, calculate MSE */
d=b_IV-0OLS_Db;
SSE=y  *y-OLS_b ™ *X " *Y;
DFE=n-k;
MSE=sse/DFE;
/* Calculate the GINVERSE of the difference inv (X *X) - inv (Xhat  *Xhat) . */
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/* Calculate the Hausman'’s test statistic. */
diff=ginv (inv (Xhat ' *Xhat)-CX) ;
H=d'*diff*d/mse;
J=round (trace(ginv (diff)*diff));
Table=OLS_bllb_IV;
Print Table (|Colname={0OLS IV} rowname={Intercept yt it ctl} format=8.41);
Print 'The Hausman Test Statistic Value is ' H;
run;

E.6 PROGRAM 6

This program was used in Chapter 5 to calculate the estimates of the robust variance—covariance matrices under
heteroscedasticity. The analysis is done on the credit card data found in Table 9.1 of Greene (2003). The code calculates
White’s estimator and the two alternatives proposed by David and MacKinnon.

proc iml;
/* Read the data into matrices and create constants. */
use Expense;
read all var {’age’ 'ownrent’ ‘income’ ’'incomesq’} into X;
read all var {’avgexp’} into Y;
n=nrow (X) ;
X=J(n,1,1) IIX;
k=ncol (X) ;
/* Calculate the inverse of X'X.*/
C=1inv (X" *X) ;
/* Calculate the least squares estimator, beta_hat. */
beta_hat=C*X" *y;
/* Calculate the residuals and MSE. */
resid=y-X*beta_hat;
SSE=y *y-beta_hat *X *Y;
MSE=sse/ (n-k) ;
/* Calculate the SO term of White’s Estimator. */
/* First, initializean by nmatrixwith zero’s. */
S0=J(k,k,0);
do i=1 ton;
S0=80 + resid[i,]*resid[i, ]*X[1,] *X[1,];
end;
S0=S0/n;
/* Now, calculate White’s Estimator. */
White=n*C*S0*C;
/* Now, calculate the first recommendation of David & MacKinnon for White’s estimator. */
DM1=n/(n-k) * White;
/* Now, calculate the second recommendation of David & MacKinnon for White’s estimator. */
S0=J(k,k,0);
do i=1 ton;
m_1i=1-X[1i,]1*C*X[1,]1";
Temp_Ratio=resid[i,]*resid[i,]/m_1i1i;
S0=S0+Temp_Ratio*X[1,] *X[1,];

N

end;
S0=S0/n;

/* Now, calculate the modified White’s Estimator. */
DM2=n*C*S0*C;
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/* Get the standard errors which are nothing but the square root of the diagonal matrix.
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SE=SQRT (vecdiag (C) #MSE) ;
SE_White=SQRT (vecdiag (White)) ;
SE_DM1=SQRT (vecdiag (DM1)) ;
SE_DM2=SQRT (vecdiag (DM2) ) ;

/* Calculate the t Ratio based on Homoscedastic assumptions. */

T=Beta_Hat/SE;

/* Print the results. */

run;

STATS=beta_hat |ISE||TIISE_Whitel|lSE_DML1 || SE_DM2;
STATS=STATS" ;
print 'Least Squares Regression Results’;

print STATS (|Colname={Constant Age OwnRent Income IncomeSq}
rowname={Coefficient SE t_ratio White_Est DM1 DM2} format=8.31);

E.7 PROGRAM 7

This program was used in Chapter 5 to conduct White’s test to detect heteroscedasticity in the credit card data, which can be found
in Table 9.1 of Greene (2003). The data step statements read the data and create the various cross-product terms that are used in the

analysis.

proc import out=Expense

run;

datafile="C:\Temp\TableF91"
dbms=Excel Replace;
getnames=yes;

data expense;

run;

set expense;

age_sg=age*age;
incomesg=income*income;
incomefth=incomesg*incomesq;
age_or=age*ownrent;
age_inc=age*income;
age_incsg=age*incomesq;
or_income=ownrent*income;
or_incomesg=ownrent*incomesq;
incomecube=income*incomesq;
If AVvgExp>0;

proc iml;
/* Read the data intomatrices and create constants. */

use expense;
read all var {’age’ 'ownrent’ ‘income’ ’'incomesq’} into X;
read all var {’age’ ‘ownrent’ ‘income’ ‘incomesq’ ‘age_sq’
‘age_or’ 'age_inc’ 'age_incsqg’ ‘or_income’ ‘or_incomesqg’
read all var {’avgexp'’} into Y;

n=nrow (X) ;

np=nrow (XP) ;

X=J(n,1,1) lIX;

XP=J(np,1,1) || XP;

k=ncol (X) ;

kp=ncol (XP) ;

‘incomefth’

’incomecube’} into XP;
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/* First get the residuals from OLS. */
C=inv (X" *X) ;
beta_hat=C*X" *y;
resid=y-X*beta_hat;

/* Square the residuals for a regression with cross product terms in White’s test. */

resid_sqg=resid#resid;

/* Regress the square of the residuals versus the 13 variables in X. */

C_E=inv (XP" *XP) ;
b_hat_e=C_E*XP" *resid_sq;

/* Calculate R-Square from this regression. */
Mean_Y=Sum(resid_sq) /np;
SSR=b_hat_e *XP  *resid_sg-np*Mean_Y**2;
SSE=resid_sq *resid_sg-b_hat_e *XP *resid_sqg;
SST=SSR+SSE;
R_Square=SSR/SST;
print R_Square;

/* Calculate and print the test statistic value and corresponding p-value.

White=np*R_Square;
pvalue= 1 - probchi (White, kp) ;

print ‘The test statistic value for Whites Test is 'White;
print 'The p-value associatedwith this test is ‘pvalue;

run;

E.8 PROGRAM 8

*/

279

This program was used in Chapter 5 to conduct the Breusch-Pagan Lagrange Multiplier test on the credit card data, which can be

found in Table 9.1 of Greene (2003). Note that we have omitted the data step statements.

proc iml;

/* Read the data into matrices and prep matrices for analysis. */

use expense;

read all var {’age’, 'ownrent’, ’income’, 'incomesqg’ } into X;

read all var {’income’, 'incomesq’ } into Z;
read all var {’avgexp’ } intovy;
/* Create a few constants. */
n=nrow (X) ;
X=J(n,1,1)IIX;
z=J(n,1,1)11Z;
/* Calculate the residuals from OLS. */
bhat_OLS=inv (X’ *X) *X" *y;
SSE= (y-X*bhat_OLS) ’* (y-X*bhat_OLS) ;
resid=y-X*bhat_OLS;
/* Calculate the LM statistic and associated p value. */
g=Jd(n,1,0);
fudge=SSE/n;
do index=1 ton;
templ=resid[index,l]*resid[index,1];
glindex,1l]=templ/fudge - 1;
end;
LM=0.5*g *Z2*inv (Z *Z)*Z  *g;

/* Calculate the degrees of freedom and print the results.

kz=ncol (Z) ;

*/
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kz=kz-1;
pval=1-probchi (LM, kz) ;
if (pval<0.05) then

do;
print 'The Breusch Pagan Test Statistic Value is 'LM;
print 'The p value associatedwith this is 'pval;
print 'The null hypothesis of homoscedasticity is rejected’;
end;
else
do;
print 'The Breusch Pagan Test Statistic Value is 'LM;
print 'The p value associatedwith this is ‘pval;
print 'The null hypothesis of homoscedasticity is not
rejected’;
end;

run;

E.9 PROGRAM 9

This program was used in Chapter 5 to calculate the iterative FGLS estimators for the credit card expenditure data found in
Table F9.1 of Greene (2003).

proc iml;
/* Read the data intomatrices and calculate some constants. */
Use CCExp;
read all var{’Age’ 'OwnRent’ ’'Income’ 'Income_Sqg’} into X;
read all var{'AvgExp’} intovy;
n=nrow (X) ;
k=ncol (X) ;
X=J(n,1,1)IIX;
/* Calculate the OLS estimates, the residuals and the square of the residuals. */
bhat_0OLS=inv (X' *X) *X" *y;
e=y-X*bhat_OLS;
r_e=log (et#e) ;
/* As we have done with this data, we assume that the issue lies with Income_Sqg. */
zi=log(X[,41);
Z=J(n,1,1)llz1i;
/* Regression of Z (defined above) with the square of the residuals. */
alpha_m=1inv(Z *Z)*Z *r_e;
alpha_s=alpha_m[2,];
/* Now initialize the weight matrix Omega. */
omega=J(n,n,0) ;
do i=1 ton;
do j=1 ton;
if i=j then omegali,jl=X[1i,4]**alpha_s;
end;
end;
/* Calculate the first pass estimates of the parameter vector. */
bhat_2S=inv (X" *inv (omega) *X) *X" *inv (omega) *y;
/* Start the iterative process (re-do the steps from above) . */
do iter=1to 100;
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sl=bhat_2S[1,1]; s2=bhat_2S[2,1]; s3=bhat_2S[3,1];
sd=bhat_2S[4,1]; sb=bhat_2S[5,11;
e=y-X*bhat_2S;
r_e=1log(ete) ;
alpha_m=inv (Z *7) *Z *r_e;
alpha_s=alpha_m[2,];
omega=J(n,n,0) ;
do i=1 ton;
do j=1 ton;
if i=j then omegali,jl=X[1i,4]**alpha_s;
end;
end;

/* Calculate the parameter estimates for each iteration. */

/* Calculate the difference between subsequent values of these estimates.

bhat_2S=inv (X" *inv (omega) *X) *X  *inv (omega) *v;
nl=bhat_2S[1,1]; n2=bhat_2S[2,1]; n3=bhat_2S[3,1];
n4=bhat_2S[4,1]; n5=bhat_2S[5,1];
diff=abs(nl-sl)+abs(n2-s2)+abs(n3-s3)+abs (nd4-s4)+abs(n5-sb) ;
if diff<0.00001 then

/* Exit strategy! */

end;

*/

do;
print "The value of alpha is " alpha_s;
print "Convergence was obtained in " iter "iterations.";
stop;

end;

final_MSE= (e*inv (omega) *e) / (n-k) ;
final_cov=final_mse*inv (X*inv (omega) *X) ;
SE=sqgrt (vecdiag (final_conv) ) ;
STAT_Table=bhat_2s||SE;

Print
Print

"The estimates of the coefficients are";
STAT_Table (|Colname={BHAT SE} rowname={INT Age OwnRent

Income Income2} format=8.41);

run;

E.10 PROGRAM 10
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This program was used in Chapter 5 to plot ALPHA versus the Likelihood Value for the credit card data, whichis found in Table 9.1

of Greene (2003).

proc import out=CCExp
datafile="C:\Temp\TableF9o1l"
dbms=Excel Replace;
getnames=yes;

run;

/* Create temp SAS dataset and transform variables. */

data CCExp;

set CCExp;
IncomeSg=Income*Income;
if AvgExp>0;

run;

/* Invoke Proc IML */

proc iml;
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/* Bring in the SAS data set and create matrices. */
use ccexp;
read all var{’age’, 'ownrent’, 'income’, 'incomesq’} into x;
read all var{’income’} into z;
read all var{’avgexp’} intovy;
/* Prep matrices for analysis. */
n=nrow (x) ;
x=j(n,1,1) IIx;
Storage=J(5000,2,0);
/* Generate a range of alpha values. */
do alpha_ind=1 to 5000;
alpha=alpha_ind/1000;
/* Compute the GLS estimator of beta for each alpha. */
omega=J(n,n,0);
do i=1 ton;
do j=1 to n;
if (i=7j) then omegali,jl=z[i,]**alpha;
end;
end;
beta_GLS=inv(x  *inv (omega) *x) *x " *inv (omega) *v;
/* For these alpha and beta values, calculate the generalized sums of squares
GSQ=0.0;
do i=1 ton;
templ=(y[i,1]-x[1,]*beta_GLS) ;
temp2=z[1i,1]**alpha;
temp3=(templ**2) /temp?2;
GSQ=GSQ+temp3;
end;
MSE=1/n * GSQ;
/* Calculate the Log Likelihood Stat. */
Fudgel=-n/2 * (log(2*constant ('pi’))+1log(MSE)) ;
temp_sum=0.0;
do i=1 ton;
templ=log(z[i,1]**alpha);
temp2=1/mse * z[1,1]1** (-alpha) ;
temp3=(y[i,1]-x[i,]*beta_GLS)**2;
tempd=templ+temp2*temp3;
temp_sum=temp_sum+tempid;

end;
temp_sum=-0.5*temp_sum;
Ln_L=Fudgel+temp_sum;
storagelalpha_ind, 1l]=alpha;
storagelalpha_ind, 2]=Ln_L;
end;

/* Store the plot data. */
create plot_data from storage;
append from storage;
run;
/* Invoke the plotting code and plot the data. */
data plot_data;
set plot_data;
rename coll=alpha;
rename col2=Ln_L;

X/



APPENDIX E: COMPLETE PROGRAMS AND PROC IML ROUTINES 283

run;
proc sort data=plot_data;

by descending Ln_L;
run;
goptions reset=global gunit=pct border cback=white
colors=(black blue green red)
ftitle=swissb ftext=swiss htitle=3 htext=2;

symboll value=dot

height=0.5

cv=red

ci=blue

co=green

width=0.5;

proc gplot data=plot_data;
plot Ln_L*alpha/haxis=axisl
vaxis=axis2;
axisl label=(’'Alpha’);
axis2 label=(angle=90 'Ln_L’);

run;

E.11 PROGRAM 11

This program is used in Chapter 5 to calculate the correct standard errors of the GLS estimator for the credit card data, which is
found in Table 9.1 of Greene (2003). The optimal value of alpha was found to be 3.651.

proc import out=CCExp
datafile="C:\Temp\TableF9o1™"
dbms=Excel Replace;
getnames=yes;
run;
/* Create temp SAS dataset and transform variables. */
data CCExp;
set CCExp;
IncomeSg=Income*Income;
if AvgExp>0;
run;
/* Invoke Proc IML. */
proc iml;
/* Bring in the SAS data set and create matrices. */
use ccexp;
read all var{’age’, 'ownrent’, 'income’, 'incomesqg’} into x;
read all var{’income’} into z;
read all var{’avgexp’} intovy;
/* Prepmatrices for analysis. */
n=nrow (x) ;
x=j(n,1,1)Illx;
/* Generate a range of alpha values. */
alpha=3.651;
/* Compute the GLS estimator of beta alpha. */
omega=J (n,n,0);
do i=1 ton;
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do j=1 ton;
if (i=7j) thenomegali,jl=z[i,]**alpha;
end;
end;
beta_GLS=inv (x  *inv (omega) *x) *x " *inv (omega) *v;
/* For this alpha and beta values, calculate the generalized sums of squares. */
GSQ=0.0;
do i=1 ton;
templ=(y[i,1]-x[1i,]*beta_GLS) ;
temp2=z[i,1]**alpha;
temp3=(templ**2) /temp?2;
GSQ=GSQ+temp3;
end;
MSE=1/n * GSQ;
/* Calculate the covariance matrix now. */
COV=MSE*inv (X' *inv (Omega) *X) ;
print COV;
run;

E.12 PROGRAM 12

This program uses the credit card data from Table 9.1 of Greene (2003) to get MLEs of the parameters when ALPHA is
multivariate.

proc import out=CCExp
datafile="C:\Temp\TableF91l"
dbms=Excel Replace;
getnames=yes;
run;
/* Create temp SAS dataset and transform variables. */
data CCExp;
set CCExp;
IncomeSg=Income*Income;
1f AvgExp>0;
run;
/* Invoke Proc IML. ;
proc iml;
/* Bring in the SAS data set and create matrices.;
use ccexp;
read all var{’age’, 'ownrent’, 'income’, 'incomesq’} into x;
read all var{’income’, 'incomesq’} into z;
read all var{’avgexp’} intovy;
s_alpha=J(3,1,0);
s_beta=J(5,1,0);
/* Prep matrices for analysis.;
n=nrow (x) ;
x=3(n,1,1) llx;
z=j(n,1,1)llz;
CZ=1inv (Z *Z);
/* Compute OLS estimates of beta and mse. ;
bhat=inv (X' *X) *X" *y;
e=-y-X*bhat;
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/* Log residual square to be used to get alpha values.;
/* Compute alpha values-First iteration.;
r_e=log(e#e);
alpha=inv(z *z)*z *r_e;
/* Compute GLS beta values-First iteration.;/
omega=J (n,n,0) ;
do i=1 ton;
do j=1 ton;
if (i=7j) then omegali, jl=exp(z[i,]*alpha);
end;
end;
beta_GLS=inv(x  *inv (omega) *x) *x" *inv (omega) *v;
/* Update alpha and beta. ;
do i=1 to 100;
s_alphall,l]l=alphall,1]; s_alphal[2,1]l=alpha(2,1]; s_alpha[3,1]=alphal3,1];
s_betal[l,1l]=beta_GLS[1l,1]; s_betal2,1l]=beta_GLS[2,1]; s_betal[3,1]=beta
GLS[3,1];
s_betald4,1]=beta_GLS[4,1]; s_betal[5,1]=beta_GLS[5,1];
resp=J(n,1,0);
e-y-xX*beta_gls;
do j=1 ton;
resplj,ll=elj,11*e[j,1]1/exp(z[]j,]*alpha) - 1;
end;
alpha=alpha+inv(z *z)*z *resp;
/* Get a new value of Beta.;
omega=J (n,n,0);
do il=1 ton;
do i2=1 ton;
if (1i1=12) thenomegal[il,i2]=exp(z[il,]*alpha) ;
end;
end;
beta_GLS=inv (x  *inv (omega) *x) *x " *inv (omega) *v;
/* Compute differences.;
diff_beta=sum(abs (s_beta-beta_gls));
diff_alpha=sum(abs (s_alpha-alpha)) ;
diff=diff_beta+diff_alpha;
/* EXit strategy.;
if diff<0.00001 then
do;
print "The estimates of the coefficients are.";
print beta_gls;
print "The value of alpha is " alpha;
print "Convergence was obtained in " i "iterations.";
stop;
end;
end;
var=exp (alphall,1]1);
var_cov=var*inv (X' *inv (omega) *X) ;
se=sqgrt (vecdiag (var_conv) ) ;
STAT_Table=beta_glsll|SE;
Print "The estimates of the coefficients are";
Print STAT Table (|Colname={BHAT SE} rowname={INT Age OwnRent Income
Income2} format=8.41);
run;
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E.13 PROGRAM 13

This program was used in Chapter 5 to analyze the airlines data found in Table F7.1 of Greene (2003). The code computes the
parameter estimates assuming groupwise heterogeneity.

proc iml;
/* Bring in the SAS data set and create matrices.;
use airline;
read all var{’'LnQ’, 'LF’,'LnPf’,'D2’,'D3’,'D4’,'D5’,'D6"'} into x;
read all var{'D2’,'D3’,'D4’,'D5’,'D6"’} into z;
read all var{’'LnC’} intovy;
s_alpha=J(6,1,0);
s_beta=J(9,1,0);
/* Prep matrices for analysis.;
n=nrow(x) ;
x=j(n,1,1) IlIx;
z=j(n,1,1)llz;
CZ=1inv (Z *7) ;
/* Compute OLS estimates of beta and mse;
bhat=1inv (X *X) *X" *y;
e=-y-X*bhat;
/* Log residual square to be used to get alpha values.;
/* Compute alpha values-First iteration.;
r_e=log(ete) ;
alpha=inv(z *z)*z *r_e;
/* Compute GLS beta values-First iteration.;
omega=J(n,n,0) ;

do i=1 ton;
do j=1 ton;
if (i=7j) then omegali, jl=exp(z[i,]*alpha);
end;
end;

beta_GLS=inv (x' *inv (omega) *xX) *x " *inv (omega) *v;
/* Update alpha and beta. ;
do i=1to 100;
s_alpha=alpha;
s_beta=beta_GLS;
resp=J(n,1,0);
e-y-X*beta_gls;
sum=J(6,1,0.0) ;
do j=1 ton;
tem=z[73,1";
resp(j,1ll=elj,1]1*e[j,1]/exp(z[],]*alpha) - 1;
sum=sum+tem*respl(j,1];
end;
alpha=alpha+inv(z  *z) *sum;
/* Get a new value of Beta.;
omega=J(n,n,0) ;
do i1l=1 ton;
do i2=1 ton;
if (1i1=12) then omegalil,i2]=exp(z[il,]*alpha);
end;
end;
beta_GLS=inv(x  *inv (omega) *x) *x" *inv (omega) *v;
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/* Compute differences.;
diff_beta=sum(abs (s_beta-beta_gls));
diff_alpha=sum(abs(s_alpha-alpha));
diff=diff_beta+diff_alpha;
/* Exit strategy.;
1f diff<0.00001 then
do;
print "The estimates of the coefficients are.";
print beta_gls;
print "The value of alpha is " alpha;
print "Convergence was obtained in " i "iterations.";
stop;
end;
end;
/* Calculate the covariance matrix at the optimal values.;
omega=J (n,n,0);

do i=1 ton;
do j=1 ton;
if (i=7J) then omegali, jl=exp(z[i,]*alpha);
end;
end;

var_cov=inv (X" *inv (omega) *x) ;
var_cov_alpha=2*CZ%Z;
se=J(9,1,0);
se_a=J(6,1,0);
do index=1 to 9;
sel[index,1l]l=sqgrt (var_cov[index, index]) ;
end;
do index=1 to 6;
se_alindex,1l]=sqgrt (var_cov_alphal[index, index]) ;
end;
print se;
print se_a;
run;

E.14 PROGRAM 14

This program was used in Chapter 7 to estimate the parameters of a dynamic panel data for the cigarettes data set with no
explanatory variables.

* Read the data into SAS;

proc import out=cigar
datafile="C:\Temp\cigar"
dbms=Excel Replace;
getnames=yes;

run;

* Take the Log Transformation;

data cigar;
set cigar;
if state=. or year=. then delete;
Log_C=Log(C) ;
keep state year Log_C;
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run;
proc iml;
* Define constants;
N=46;T=30;P=406;
* Read the variable into a matrix;
use cigar;
read all var{‘Log_C’} into Y;
* H is fixed. So, define H here;
H=shape (0,T-2,T-2) ;
do j=1 to T-2;
do1l=1toT-2;
if j=1 thenHI[1,j]1=2;
if (j=1+1) then H[1l,jl=-1;if (j=1-1) thenHI[1l,j]l=-1;
end;
end;
* Initialize four summatrices and the counter;
ZHZ=shape (0, P, P) ; YMZ=shape (0,1,P) ;YZ=shape(0,1,P) ;ZPZ=shape(0,P,P);
compt=1;
do i=1 to N;
* Calculate the diff matrix;
Y_DIFF=shape(0,T-2,1);
Y_DIFFS=shape(0,T-2,1);
do Index=1 to T-2;
Y_DIFF[Index]=Y[Index+compt+l,1]-Y[Index+Compt,1];
Y_DIFFS[Index]=Y[Index+compt,l]-Y[Index+compt-1,1];
end;
* Calculate the BZI matrix;
j=1;cpt=7j;cpt2=compt;
BZI=shape(0,1,cpt);Bz2I[1,1]=Y[cpt2,1];
do j=2 to T-2;

cpt=3;

cpt2=compt;

C=shape (0,1, cpt) ;

do k=1 to j;

C[1l,k]=Y[cpt2+k-1,17;

end;
BZI=block (BZI,C);
end;

* Calculate the matrix sums;
ZHZ=7HZ+BZI  *H*BZI;
YMZ=YMZ+Y_DIFF *BZI;
YZ=YZ+Y_DIFFS  *BZI;
compt=compt+T;
end;

* Calculate the first step coefficient estimate;
Delta_Estl=inv(YZ*inv (ZHZ)*YZ ) *YZ*inv (ZHZ) *YMZ" ;
print Delta_Estl;

* Calculate the Residual Vector;
compt=1;
do i=1 to N;

* Calculate the diff matrix;
Y_DIFF=shape(0,T-2,1);
Y_DIFFS=shape(0,T-2,1);
E=shape(0,T-2,1);
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do Index=1 to T-2;
Y_DIFF[Index,l]=Y[Index+compt+l,1]-Y[Index+Compt,1];
Y_DIFFS[Index,l]=Y[Index+compt,l]-Y[Index+compt-1,1];

end;

E=Y_DIFF-Delta_Estl*Y_DIFFS;

* Calculate the BZI matrix;
j=1;cpt=7j;cpt2=compt;
BZI=shape(0,1,cpt);Bz2I[1,1]=Y[cpt2,1];
do j=2 to T-2;

cpt=j;cpt2=compt;
C=shape (0,1,cpt) ;
do k=1 to j;

Cl[1l,k]=Y[cpt2+k-1,17;

end;

BZI=block(BZI,C) ;

end;

* Calculate the weight matrix for the second step;
ZPZ=7PZ+BZI *E*E  *BZI;
compt=compt+T;
end;

* Calculate the second step Arellano and Bond Estimator;
Delta_Est2=inv(YZ*ginv (ZPZ) *YZ ) *YZ*ginv (ZPZ) *YMZ " ;
print Delta_Est2;

run;

E.15 PROGRAM 15

This program was used in Chapter 7 to estimate the cigarettes data set dynamic panel model with explanatory variables. This code
calculates the Anderson—Hso estimator.

* Read the data from Excel;
proc import out=cigar
datafile="C:\Temp\cigar™"
dbms=Excel Replace;
getnames=yes;
run;
* Create the log transformations;
data cigar;
set cigar;
if state=. or year=. then delete;
Log_C=Log (C) ;
Log_MIN=Log (MIN) ;
Log_NDI=Log (NDI) ;
Log_Price=Log (Price) ;
RUN;
proc iml;
* This programwill calculate the Anderson-Hso Estimator for the Cigar.TXT dataset;
* Define constants;
N=46;T=30;P=4;
* Read the variables into amatrix;
use cigar;
read all var {'Log_C’, 'Log_Min’, "Log_NDI’, 'Log_Price’} into Y;
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* Initialize three summatrices;
ZHZ=shape (0, P,P) ; YMZ=shape (0,1,P) ;YZ=shape(0,4,P) ;
* Initialize the counter;
compt=1;
* Begin the loop for calculating the first step Arellano-Bond Estimator;
do i=1 to N;
* Calculate the diff matrix relating to theY’s;
Y_DIFF=shape(0,T-2,1);
Y_DIFFS=shape(0,T-2,1);
do Index=1 to T-2;
Y_DIFF[Index,l]=Y[Index+compt+1,1]-Y[Index+Compt,1];
Y_DIFFS[Index,l]=Y[Index+compt,l]-Y[Index+compt-1,1];
end;
* Calculate the diff matrix relating to the X’'s;
X_DIFFl=shape(0,T-2,1);
X_DIFF2=shape(0,T-2,1);
X_DIFF3=shape(0,T-2,1);
do index=1 to T-2;
X_DIFFl[Index,l]=Y[Index+compt+1,2]-Y[Index+Compt,2];
X_DIFF2[Index,1l]=Y[Index+compt+l,3]-Y[Index+Compt,3];
X_DIFF3[Index,l]=Y[Index+compt+l,4]-Y[Index+Compt,4];
end;
* Create the XI matrix;
XI=shape(0,T-2,4);
XI=Y_DIFFS||X_DIFF1l||X_DIFF2I|IX_DIFF3;
* Calculate the BZI matrix;
BZI=shape(0,t-2,p);
do index=1 to t-2;

BZI[Index,1l]=Y[Index+Compt-1,17];

BZI[Index,2]=Y[Index+compt+1,2]-Y[Index+Compt,2];
BZI[Index,3]=Y[Index+compt+1,3]-Y[Index+Compt, 3];
BZI[Index,4]=Y[Index+compt+1,4]-Y[Index+Compt,4];

end;

ZHZ=7HZ+BZI *BZI;
YMZ=YMZ+Y_DIFF *BZI;
YZ=YZ+XI *BZI;
compt=compt+T;

end;

* Calculate the coefficient estimate;
Delta_Estl=inv(YZ*inv (ZHZ) *YZ) *YZ"  *inv (ZHZ) *YMZ" ;
print Delta_Estl;

run;

E.16 PROGRAM 16

This program was used in Chapter 7 to estimate the cigarettes data set dynamic panel model with explanatory variables. This code
calculates the Arnello-Bond estimator.

proc import out=cigar
datafile="C:\Documents and Settings\E81836\Desktop\Economics Book\cigar"
dbms=Excel Replace;
getnames=yes;
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run;
data cigar;
set cigar;
Log_C=Log (C) ;
Log_MIN=Log (MIN) ;
Log_NDI=Log (NDI) ;
Log_Price=Log (Price) ;
run;
proc iml;
* This programwill calculate the Arellano—Bond estimator for the Cigar.TXT dataset;
*We will assume that all X’'s are predetermined;
* Define constants;
N=1;T=30;P=1708;
* Read the variables into amatrix;
use cigar;
read all var {'Log_C', 'Log_Min’, 'Log_NDI’, 'Log_Price’} into Y;
* His fixed. So, define H here;
H=shape (0,T-2,T-2) ;
do j=1 to T-2;
do 1l=1to T-2;
if j=1 then HI[1,3j]1=2;
if (j=1+1) thenH[1l,jl=-1;
if (j=1-1) then H[1,jl=-1;
end;
end;
* ITnitialize Four summatrices;
ZHZ=shape (0,P,P); YMZ=shape(0,1,P); YZ=shape(0,4,P); ZPZ=shape(0,P,P) ;
* Initialize the counter;
compt=1;
* Begin the loop for calculating the first step Arellano—Bond estimator;
do i=1 to N;
* Calculate the diff matrix relating to the Y’s;
Y_DIFF=shape(0,T-2,1);
Y_DIFFS=shape(0,T-2,1);
do Index=1 to T-2;
Y_DIFF[Index,l]=Y[Index+compt+l,1]-Y[Index+Compt,1];
Y_DIFFS[Index,1l]=Y[Index+compt,l]-Y[Index+compt-1,1];
end;
* Calculate the diff matrix relating to the X’s;
X_DIFFl=shape(0,T-2,1);
X_DIFF2=shape(0,T-2,1);
X_DIFF3=shape(0,T-2,1);
do index=1 to T-2;
X_DIFF1l[Index,1l]=Y[Index+compt+1l,2]-Y[Index+Compt,2];
X_DIFF2[Index,1l]=Y[Index+compt+1l,3]-Y[Index+Compt,3];
X_DIFF3[Index,l]=Y[Index+compt+l,4]-Y[Index+Compt,4];
end;
* Create the XI matrix;
XI=shape(0,T-2,4);
XI=Y_DIFFSI|IX_DIFF1||X_DIFF2I|IX_DIFF3;
* Calculate the BZI matrix;
j=1;
cpt=J+3* (j+1);
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cpt2=compt;
BZI=shape(0,1,cpt);BzI[1,1]=Y[cpt2,1]1;BzI[1,2]1=Y[cpt2,2];
BzI[1,3]1=Y[cpt2+1,2];BzI[1,4]=Y[cpt2,3]1;BZzI[1,5]=Y[cpt2+1,3];
BzI[1,6]1=Y[cpt2,4];BZI[1,7]=Y[cpt2+1,4];
do j=2 to T-2;
cpt=j+3*(j+1);
cpt2=compt;
C=shape (0,1, cpt) ;
do k=1 to j;
Cl1l,k]=Y[cpt2+k-1,1];
end;
do k=1 to j+1;
cl[l,j+k]=Y[cpt2+k-1,217;
cl[l,j+j+1+k]=Y[cpt2+k-1,31;
cl[l,j+2* (j+1)+k]l=Y[cpt2+k-1,4];
end;
BZI=block (BZI,C);
end;
ZHZ=7HZ+BZI *H*BZI;
YMZ=YMZ+Y_DIFF  *BZI;
YZ=YZ+XI  *BZI;
compt=compt+T;
end;
* Calculate the coefficient estimate;
Delta_Estl=inv(YZ*ginv (ZHZ)*YZ ) *YZ*ginv (ZHZ) *YMZ " ;
print Delta_Estl;
* Calculate the Residual Vector;
compt=1;
do i=1 to N;
* Calculate the diff matrix;
Y_DIFF=shape(0,T-2,1);
Y_DIFFS=shape(0,T-2,1);
E=shape(0,T-2,1);
do Index=1 to T-2;
Y_DIFF[Index,l]=Y[Index+compt+1l,1]-Y[Index+Compt,1];
Y_DIFFS[Index,l]=Y[Index+compt,l]-Y[Index+compt-1,1];
end;
* Calculate the diff matrix relating to the X’s;
X_DIFFl=shape(0,T-2,1) ;X DIFF2=shape(0,T-2,1) ;X _DIFF3=shape(0,T-2,1);
do index=1 to T-2;
X_DIFF1[Index,l]=Y[Index+compt+1l,2]-Y[Index+Compt,2];
X_DIFF2[Index,l]=Y[Index+compt+1,3]-Y[Index+Compt,3];
X_DIFF3[Index,l]=Y[Index+compt+l,4]-Y[Index+Compt,4];
end;
* Create the XI matrix;
XI=shape(0,T-2,4);
XI=Y_DIFFSI|IX_DIFF1||X_DIFF2I|IX_DIFF3;
E=Y_ DIFF-XI*Delta_Estl;
* Calculate the BZI matrix;
j=1;cpt=Jj+3*(j+1);cpt2=compt;
BZI=shape(0,1,cpt);BzI[1,1]=Y[cpt2,1]1;BzI[1,2]=Y[cpt2,2];
BzI[1,3]1=Y[cpt2+1,2];BZzI[1,4]=Y[cpt2,3]1;BZzI[1,5]=Y[cpt2+1,3];
BzI[1,6]1=Y[cpt2,4]; BZzI[1,7]1=Y[cpt2+1,4];
do j=2 to T-2;
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cpt=j+3*(j+1) ;
cpt2=compt;
C=shape (0,1,cpt) ;
do k=1 to j;
Cl[1l,k]=Y[cpt2+k-1,11;
end;
do k=1 to j+1;
cll,j+k]l=Y[cpt2+k-1,2];
cl[l,j+j+1+k]l=Y[cpt2+k-1,31;
cl[l,j+2* (j+1)+k]=Y[cpt2+k-1,4];
end;
BZI=block (BZI,C) ;
end;
7ZP7Z=7P7+BZI  *E*E  *BZI;
compt=compt+T;
end;
Delta_Est2=inv (YZ*ginv (ZPZ) *YZ ) *YZ*ginv (ZPZ) *YMZ" ;
print Delta_Est2;
run;

E.17 PROGRAM 17

This code (including the following comments) was written by Thomas Fomby (Department of Economics, Southern Methodist
University) in 2005. This SAS IML program conducts a duration analysis of the lengths of strikes as a function of the deviation of
output from its trend level, an indicator of the business cycle position of the economy. The data was downloaded from the CD
provided in the Greene textbook, Econometric Analysis, 4th edn., Table A20.1. The data was originally analyzed by J. Kennan
(1985) in his paper “The Duration of Contract Strikes in U.S. Manufacturing,” Journal of Econometrics, 28, 55-28.

data strike;
input dur eco;
datalines;
7.00000 .0113800
9.00000 .0113800
13.0000 .0113800
14.0000 .0113800
26.0000 .0113800
29.0000 .0113800
52.0000 .0113800
130.000 .0113800
9.00000 .0229900
37.0000 .0229900
41.0000 .0229900
49.0000 .0229900
52.0000 .0229900
119.000 .0229900
3.00000 -.0395700
17.0000 -.0395700
19.0000 -.0395700
28.0000 -.0395700
72.0000 -.0395700
99.0000 -.0395700
104.000 -.0395700
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114.000 -.0395700
152.000 -.0395700
153.000 -.0395700
216.000 -.0395700
15.0000 -.0546700
61.0000 -.0546700
98.0000 -.0546700
2.00000 .00535000
25.0000 .00535000
85.0000 .00535000
3.00000 .0742700
10.0000 .0742700
1.00000 .0645000
2.00000 .0645000
3.00000 .0645000
3.00000 .0645000
3.00000 .0645000
4.00000 .0645000
8.00000 .0645000
11.0000 .0645000
22.0000 .0645000
23.0000 .0645000
27.0000 .0645000
32.0000 .0645000
33.0000 .0645000
35.0000 .0645000
43.0000 .0645000
43.0000 .0645000
44.0000 .0645000
100.000 .0645000
5.00000 -.104430
49.0000 -.104430
2.00000 -.00700000
12.0000 -.00700000
12.0000 -.00700000
21.0000 -.00700000
21.0000 -.00700000
27.0000 -.00700000
38.0000 -.00700000
42.0000 -.00700000
117.000 -.00700000

7

data strike;

set strike;

dum = 1;

proc iml;

start mle;

use strike;

read all into t var{dur};

read all into x var{eco};

read all into d var{dum};

/* Calculation of Unrestricted MLE estimates using Newton-Raphson Method */
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theta= {1,4,-9};

crit =1;

n=nrow(t) ;

ones = j(n,1,1);

result=3j(10,9,0);

do iter=1to 10 while (crit>1.0e-10);
sigma=thetall,11];

betal=thetal2,1];

betaZ2=thetal3,1];

w = (ones/sigma) # (log(t) - ones#betal - x#beta2) ;
InL = d#(w - log(sigma)) - exp (w) ;

InL = sum(1nL) ;

gl = (ones/sigma) # (whexp (w) - d# (w + ones) ) ;
g2=(ones/sigma) # (exp (w) - d) ;

g3 = (ones/sigma) #x# ( (exp(w) - d));
gl=sum(gl);

g2=sum(g2) ;

g3=sum(g3) ;

g=gl//g2//93;

hll= - (ones/sigma**2)# ( (w#2) #exp (w) + 2#wiexp (w) - 2#w#d - d) ;
hll=sum(hll);

hl2= - (ones/sigma**2)# (exp(w) - d + wiexp (w) ) ;
h12 = sum(hl2) ;

hl13= - (ones/sigma**2) #x# (exp(w) - d + wiexp (w) ) ;
hl3 = sum(hl3);

h21 =hl2;

h31 =hl13;

h22 = - (ones/sigma**2) #exp (w) ;

h22 = sum(h22) ;

h23 = - (ones/sigma**2) #x#texp (w) ;

h23 = sum (h23) ;

h32 =h23;

h33 = - (ones/sigma**2) # (x##2) #fexp (w) ;

h33 = sum(h33) ;

h=(h11/lh12[h13)// (h21]h22[Ih23)// (h31[lh32|/h33);

db=-inv (h) *g;

thetanew = theta + db;

crit = sgrt (ssg(thetanew-theta)) ;

theta=thetanew;

result[iter,] =iterll (theta’) llglllg2llg3llcritlllnL;

end;

InLu = 1nL;

cnames = {iter,sigma,betal,beta2,gl,g2,g3,crit,1lnLu};

print "Calculation of Unrestricted MLE estimates using Hessian-Based Newton-Raphson
Method";

print "Iteration steps ", result [colname=cnames] ;

print , "Unrestricted Log-likelihood =", 1nLu;

/*Covariance matrix from Hessian*/

cov = -inv (h) ;

se_sigma_h = sqgrt (cov[1l,1]);
se_betal_h = sqgrt(cov[2,2]);
se_beta2_h = sqgrt (cov[3,3]);
z_sigma_h = sigma/se_sigma_h;
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z_betal_h = betal/se_betal_h;
z_beta2_h =beta2/se_beta2_h;
/*Covariance matrix from BHHH*/

gl = (ones/sigma) # (w#exp (w) - d# (w + ones) ) ;
g2=(ones/sigma) # (exp(w) - d) ;
g3 = (ones/sigma) #x# ( (exp(w) - d));

gmat = glllg2llg3;

bhhh = gmat ‘' *gmat;

covbh3 = inv (bhhh) ;
se_sigma_b=sqgrt (covbh3([1,11]1);
se_betal_b=sgrt (covbh3[2,2]);
se_beta2_b=sqgrt (covbh3[3,3]);
z_sigma_b = sigma/se_sigma_b;
z_betal_b =betal/se_betal_b;
z_beta2_b =beta2/se_beta2_b;
pnames = {sigma,betal, beta2};

’

print , "The Maximum Likelihood Estimates: Hessian-Based Newton-Raphson Tteration",
theta [rowname=pnames] ;

print , "Asymptotic Covariance Matrix-From Hessian", cov

[rowname=pnames colname=pnames] ;

print "Standard errors: ",se_sigma_h, se_betal_h,se_beta2_h;

print , "Asymptotic Covariance Matrix-From bhhh", covbh3
[rowname=pnames colname=pnames] ;

print "Standard errors: ",se_sigma_b,se_betal_b, se_beta2_b;

print "Wald test of hypothesis of constant hazard (sigma=1)";

Wald = (sigma-1) *inv(cov[2,2]) *(sigma-1); * Wald test;

critval =cinv(.95,1); * calculates the 95th percentile of chi-square 1;

pval =1 - probchi (wald,1l); * calculates the probability value of Wald;
print "Results of Wald test Using Hessian" Wald critval pval;

Wald = (sigma-1) *inv(covbh3[2,2])* (sigma-1); * Wald test;

critval =cinv(.95,1); * calculates the 95th percentile of chi-square 1;
pval =1 - probchi (wald,1); * calculates the probability value of Wald;
print "Results of Wald test Using BHHH" Wald critval pval;

/* ML Estimation of Restricted Model*/

print , "Maximum Likelihood Estimation of Restricted Model";

prlnt "***‘k**‘k**‘k*‘k**‘k************************‘k****‘k**‘k*",.

theta = {4,-9};

crit =1;

n=nrow(t);

result = j(10,7,0);

doiter =1 to1l0while (crit >1.0e-10);

betal=thetall,1];

beta2=thetal2,1];

w= (log(t) - ones#betal - x#beta2) ;

InLr = d#w - exp (w) ;

InLr = sum(1nLr) ;

gl=-(d-exp(w));
gl = sum(gl);

g2 = -x#(d - exp(w));
g2 = sum(g2) ;
g=9gl//92;

hll = —-exp(w) ;
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hl2 = -x#exp (w) ;

h22 = - (x##2) #fexp (W) ;

h1ll = sum(hl1l) ;

hl12 = sum(hl2) ;

h21 =hl2;

h22 = sum(h22) ;

h=(hllllhl2)//(h2111h22);

db = -inv (h) *g;

thetanew = theta + db;

crit = sgrt (ssg(thetanew - theta)) ;

result[iter,] = iterll (theta’) llglllg2llcrit|l1lnLr;
theta = thetanew;

end;

cov = —-inv (h) ;

cnames = {iter,betal,beta2,gl,g2,crit,lnLr};
print "Iteration steps",result [colname=cnames];
pnames = {betal,betal};

print , "The Maximum Likelihood Estimates-Restricted Model",

[colname=pnames] ;

print , "Asymptotic Covariance Matrix-From Hessian of Restricted Model", cov

[rowname=pnames colname=pnames] ;
/* Gradient evaluated at restricted MLE estimates */
sigma =1;

w = (ones/sigma)# (log(t) - ones#betal - x#beta2) ;
gl = (ones/sigma) # (w#exp (w) - d# (w + ones) ) ;
g2=(ones/sigma) # (exp (w) - d) ;

g3 = (ones/sigma) #x# ( (exp(w) - d)) ;

gmat =glllg2llg3;

gl=sum(gl) ;

g2=sum(g2) ;

g3=sum(g3) ;

g=gl//g2//93;

/* Hessian evaluated at restricted MLE estimates */

hll= - (ones/sigma**2)# ( (wH##2) #exp (w) + 2#whexp (w) - 2#wHd - d) ;

hll=sum(hll);

hl2= - (ones/sigma**2)# (exp(w) - d + wi#exp (w) ) ;
hl2 = sum(hl2) ;

hl3= - (ones/sigma**2) #x# (exp(w) - d + wiexp (w) ) ;
h13 = sum(hl13);

h21 =hl2;

h31 =hil3;

h22 = - (ones/sigma**2) #exp (w) ;

h22 = sum (h22) ;

h23 = - (ones/sigma**2) #x#exp (w) ;

h23 = sum (h23) ;

h32 = h23;

h33 = - (ones/sigma**2) # (x##2) #exp (w) ;

h33 = sum (h33) ;

h=(h11(h12[h13)// (h21[Ih22[/h23)// (h3111h3211h33) ;
LM =g'*(-inv(h)) *g; * LM test;

critval = cinv(.95,1);
pval = 1 - probchi (LM, 1) ;
print "Results of LM test Using Hessian" LM critval pval;
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/* BHHH evaluated at Restricted MLE*/

bhhh = gmat ‘' *gmat;

covbh3r = inv (bhhh) ;

LM = g’*covbh3r*g; * LM test;

critval =cinv(.95,1);

pval =1 - probchi (LM, 1) ;

print "Results of LM test Using BHHH" LM critval pval;
LR = -2* (InLr-1nLu) ; * Likelihood Ratio test;
pval =1 - probchi (LR, 1) ;

print "Results of LR test" LR critval pval;

/* Let’s see if we get essentially the same maximum likelihood estimates if we use
a BHHH-based Newton-Raphson iteration. */

theta= {1,3.77,-9.35};

crit =1;

n=nrow(t) ;

ones =73j(n,1,1);

result=73(60,9,0);

do iter=1to 60 while (crit>1.0e-10) ;
sigma=thetall,1];

betal=thetal2,1];

beta2=thetal3,1];

w = (ones/sigma)# (log(t) - ones#betal - x#betal) ;
InL = d# (w - log(sigma) ) - exp(w) ;

InL = sum(1nL) ;

gl = (ones/sigma) # (w#exp (w) - d# (w + ones) ) ;
g2=(ones/sigma) # (exp (w) - d) ;

g3 = (ones/sigma) #x# ( (exp(w) - d)) ;

gmat =glllg2llg3;

gl = sum(gl) ;

g2 = sum(g2) ;

g3 =sum(g3);

g=gl//92//93;

bhhh = gmat ‘' *gmat;

db= inv (bhhh) *g;

thetanew = theta + db;

crit = sgrt (ssg(thetanew-theta)) ;

theta = thetanew;

result[iter,] =iterll (theta’) llglllg2llg3llcritll lnL;
end;

cnames = {iter, sigma, betal,beta2,gl,g2,g3,crit,1nL};
print "Calculation of UnrestrictedMLE estimates using BHHH-Based Newton-Raphson Method";
print "Iteration steps ", result [colname=cnames] ;
finish;

runmle;
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Accelerated failure time models, 188
Adjusted coefficient of determination, 10
calculation, 10
Adjusted coefficient of variation, 7
definition, 7
Airlines data, 112, 115, 117, 119, 121, 122, 124, 126,
127, 128, 206
fixed/random effects model, covariance matrices, 128
fixed time effects analysis, 121
using Proc GLM, 122
firm effects analysis, 124
using Proc GLM, 126
groupwise heteroscedasticity estimators, 209
HCCME estimators, 220
least squares residuals, 206
comparison, 207
likelihood ratio test, 206
LSDV estimation
using Proc GLM, 119
using Proc IML, 115
using Proc panel, 117
using OLS calculations, 117
mean of residuals, 127
pooled regression model, 112
summary statistics, 254
temporary SAS data set, 208
time series plot, 206
regression, dummy variables, 48
Analysis of variance (ANOVA) techniques, 2, 5, 6, 12, 13, 45, 58
table, 12, 13, 58
ARCH(1) model, 88
process, 89, 91
ARCH(g) process, 89
unconditional variance, 89
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Arellano-Bond GMM estimator, 224
first-step estimator, 222
second-step estimator, 222
Asymptotic covariance matrix, 65, 114, 234
Asymptotic variance, 116
Asymptotic variance-covariance matrix, 57
Attrition models, 153
Autocorrelation process, 93-96
detection, 96-101
Durbin—Watson test, 96
Lagrange multiplier test, 97
first-order, 96
occurrence, 93
ordinary least square (OLS) estimation problems,
94-95
parameters, 101, 102
FGLS estimation method, 101
GLS estimation method, 101
second-order, 96, 102, 104
Autoregressive conditional heteroscedastic models (ARCH)
44, 87-92
generalized ARCH models, 44, 89
process, 88, 91
testing effects, 90-92
Autoregressive autocorrelation model (AR) 101-109
AR(2) model, residuals, 102-105, 108, 109
first-order autocorrelation model (AR1) 94
fitness procedure, 101
Proc autoreg, 101
SAS usage, 101
Autoregressive moving average process, 88

Bartlett test statistic, 207
variance comparison, 207
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BHHH methods, algorithm, 192
Binary response models, 154
Bootstrap estimation method, 262, 267
calculating standard errors, 264
cumulative distributions, plot diagram, 263
estimation technique, 262
in regression analysis, 265
in SAS, 264
lower/upper confidence limit, 263
OLS estimates, 271
Proc Univariate statements, 265
Bootstrapped regression analysis, 267-269
gasoline consumption data, 269
residuals method, 266, 268
SAS, 267
Breusch—Pagan Lagrange multiplier test, 76, 78-80, 129
credit card expenditure data, 80

Central limit theorem, 5
Ceteris paribus condition, 2
Chi-square test, 191
distribution, 97, 207
table, 66
values, 189
Chow test static, 40, 41, 42
by Proc model, 42
structural break in gasoline data, 42-43
p value, 40, 41
Classical regression model, spherical disturbances assumption, 71
Cobb-Douglas model, 34, 35, 37
production data, 35
regression analysis, 35, 37
SAS code, 35
Coefficient of determination, 10, 14
calculation, 10
Coefficient of variation, 13, 51
definition, 13
Combined gasoline consumption data,
regression analysis, 41
Complex panel data models, 116
autocorrelation violations, 116
dynamic panel data models, 116
heteroscedasticity violations, 116
Conditional probabilities, 173
calculation, 173
Confidence interval, 7-8, 18, 189
Consumer price index (CPI), 9, 14
inflation rate, 14
Cook’s D statistic, definition, 20
Cook’s statistic, See Cook’s D statistic
Correlation, 15, 16
b/w variables, 16
coefficients, 25
matrix, 26
nature of, 15
scatter plots, 15
Covariance matrix, 95, 125, 128
construction, 95
diagonal elements, 125

Cox’s proportional hazard models, 190
CPI, See Consumer price index
Credit card expenditure data, 203
ALPHA vs. likelihood value plot, 281
Breusch—Pagan Lagrange multiplier test, 279
FGLS estimators, 280
GLS estimator, 283
heteroscedasticity, 278
iterative FGLS estimators, 203
maximum likelihood estimations (MLESs) parameters, 284
regression analysis, 205
‘White’s test, 278
Cross-equation correlation, 1, 140
Cross-model covariance matrix, 140
diagonal elements of, 140
Cumulative distribution function (CDF), 170
Cumulative hazard rate function, 171
CUSUM test, 41-45
critical values, 43
definition, 43
gasoline consumption data, 44, 45
plot, 45
procedure, 41

Data matrix, 7, 10
Data plotting, 15-16
Data set, 47
Data testing, 38
for structural breaks, 38
linear restriction hypothesis test, 38
Davidson/MacKinnon’s estimator, 81
DM versions, 83
DM?2 versions, 83
Definite matrix, 53
Degrees of freedom, 6, 13, 29, 65, 91
model, 10, 50
n—k, 29
Dependent variable, 6, 18
predictions of, 18-21
Determinants, 241
definition, 241
properties of, 241
Direct marketing companies, 153
Discrete choice models, 153
binary response models, 154
parameters interpretation, 155
shortcomings, 154
Discrete random variable, 153
Disturbance vector, 114
Dummy variables, 45
estimators, 72, 113
in models, 45-51
model, 114
vector, 114
Duration analysis, 169, 178
distribution functions, 178-186
exponential distribution, 179
lognormal distribution, 184
Weibull distribution, 179



Durbin—Watson statistic test, 91, 96, 97, 101, 102
Box and Pierce’s test (B&P), 97
error sums of squares, 90
Ljung’s modification, 97
mean sums of squares, 90
serial correlation, 90

Dynamic panel data models, 220
dynamic panel data estimation, 221
generalized methods of moments

estimation (GMM), 220
estimation technique, 221
with explanatory variables, 223

Earning’s equation model, 47

data matrix, 47

dummy variable, 47
Elasticity, 2

definition, 2

vs. marginal effect, 2
Endogeneity, alternative hypothesis, 64
Engle’s ARCH model, See ARCH(1) model
Error sums of squares (SSE), 4, 78

Explanatory variables, 2, 3, 24, 45, 54, 55, 70, 71, 75, 110, 111,

114, 118, 129
categories, 45
estimation, 71
feasible generalized least squares (FGLS)
estimators, 71
generalized least squares (GLS)
estimators, 71
measurement errors, 54, 55
revisited estimation, 80
types, 110
observed/controllable, 110
unobserved/uncontrollable, 110
Exponential distribution, 179, 183
hazard function, 179, 183
probability density function, 179
survival function, 179, 183
Extra variable model, 7
sums of squares of error, 7

F-statistic value, 13, 25, 30, 64, 121
formula, 29, 34, 37, 39
critical value, 37
Proc IML use, 29
hypothesis tests, 13
Failure times/censoring, 169-170
Feasible generalized least squares (FGLS),
134
asymptotic covariance matrix, 134
cross-equation covariance, 140
estimation, 84, 87, 88
by credit card data, 87, 88
estimator, 86, 102, 232
cross-sectional correlation, 232
general procedure, 86
Proc Reg output, 86
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SAS step, 86
standard errors, 233
Grunfeld’s investment data set, 134, 135
OLS residuals, 134
Fitted/full model, 93
degree of autocorrelation, 93
residuals, 93
Fixed effects model, 113-123
estimation methods, 113
between-group effects approach, 113
least squares dummy variable approach, 113
within-group effects approach, 113
Proc GLM, 118
Frisch-Waugh theorem, 6, 114

GARCH model, 89-91
effects, 91
principle, 90
unconditional variance, 90
Gasoline consumption data, 38, 94, 98, 99, 100, 101,
103, 104, 105, 107, 108, 109
AR(1) model, 100
iterated FGLS estimates, 107
output, 100, 101
AR(2) model, 101, 104, 105
iterated FGLS estimates, 108
MLE estimates, 103, 105
output, 101
AR models, residuals comparison, 109
autocorrelation, 98, 99
Durbin—Watson statistics, 98
Proc Autoreg detecting method, 98, 99
full model residuals, 94
time series plot, 94
independent variables, 26
Proc Corr output, 26
model, 93
multicollinearity output, 25
OLS vs. AR(2) models, 109
residuals comparison, 109
reduced model residuals, 94
time series plot, 94
regression analysis, 39, 40
Gauss—Markov theorem, 5
Generalized least squares (GLS) estimation technique,
86, 133
estimator, 96

Generalized methods of moments estimation (GMM), 148, 220

Arellano—Bond, 224
cigar.txt panel data, 222
dynamic panel data models, 220, 221
estimators, 150

2SLS, 151

labor equation, 150

weight matrix, 151

White’s estimator, 151
explanatory variables, 223
optimal weight matrix, 221
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General linear hypothesis, 27, 28, 29 PSID, 212
hypothetical model, 27 random effects and LSDV model, 212
least squares estimator, 28 standard errors, 218
restriction equation, 27 steps, 211
SAS use, 29 wages equation, 219
testing, 33 Hazard function, 170-178
Proc Reg output, 34 definition, 170
variance-covariance matrix, 28 HCCME estimators, 82
General panel data model, 111, 120 credit card data, 82
GNP, See Gross national product OLS estimate of covariance matrix, 219
Goldfeld—Quandt tests, 78 Heteroscedasticity, 70, 71, 72, 74, 76, 78, 91
explanatory variable, 78 detection, 72, 74
Good fit model, 25 formal hypothesis tests, 74-80
Goodness-of-fit statistics, 6-7, 185 least squares residuals, 72
adjusted coefficient of determination, 6 residual plots, 78
assessment method, 185 testing, 91
Proc Lifereg, 185 nominal exchange data, 91
coefficient of determination, 6 variance-covariance matrix, 71
definition, 6 Heteroscedastic variance, 22
Gross national product, 9 funnel-shaped graph, 22
Group-specific mean square errors, 207 Homoscedasticity, 80, 207
Groupwise heteroscedasticity estimator, 205, 209 null hypothesis, 80, 207
airlines data analysis, 205 Human'’s specification test, 151
airlines data set, 208, 209 exogenous/endogenous variable, 151
assumption for model, 208 OLS/2SLS estimates, 152
Chi-squared distribution, 207 Proc model procedure, 151
homoscedasticity assumption, 205 Hypothesis testing, 7-8, 27, 28, 39
likelihood ratio test, 206 confidence intervals, 8
mean square error (MSE), 207 linear restrictions, 28
using Harvey’s multiplicative heteroscedasticity approach, 210 regression coefficient, 8
Grunfeld data analysis, 136
using Proc Syslin SUR, 136-140 Idempotent matrices, 243
Grunfeld data set, 134, 135, 228 definition, 243
FGLS estimator, 229 econometrics, 243
FGLS pooled estimators, 228 Identity matrix, 240
pooled OLS regression, 135 definition, 240
Proc Syslin SUR, 136 properties, 240
Grunfeld investment model, 1 Independent disturbances, 93
assumption, 93
Harvey’s multiplicative heteroscedasticity, 204, 208 Independent regressions, 78
MLE estimates, 204 Independent variables, See Explanatory variables
single parameter, 204 Inflation rate, 14, 15
model parameters estimation, 204 definition, 14
variance-covariance matrix, 205 Instrumental variables, 52, 55, 56
Hausman analysis, 65 estimation of, 55-60
by Proc IML, 65 covariance matrix, 56
consumption data, 65 data matrix, 60
Hausman'’s specification test, 61, 64—-69, 128—-130 standard error, 58, 60
by Proc model, 66-69 data matrix, 56
consumption data, 66 least squares model, 55
generation, 129 matrix, 56
Hausman-Taylor estimator, 210 exper, 56
coefficients estimates, 212 experz, 56
endogenous/exogenous variables, 210 motheduc, 56
for random effects model, 210 regression, 58
instrumental variables, 212 Instrumental variables analysis, 58
Proc IML, 218 Proc Syslin, 58

Proc model output, 216-217 earning data, 58



Insurance companies, 153
Inverse matrix, 242
construction of, 242
definition, 242
Proc IML, 243
properties of, 242
Investment equation model, 14, 17
complete data set, 14
correlation analysis, 17
Investment equation regression analysis, 21
Iterative FGLS estimation, 202
credit card expenditure data, 203
estimation process, steps, 203
estimators, 202
heteroscedasticity, 202
Joint distribution, 202
log-likelihood function, 203
maximum likelihood estimation, 202
OLS residuals, 202
two-step estimation process, 202

Kaplan Meier method, 172
survival function, 176
bar graph, 176
Kronecker products, 244
econometric data analysis, 244
FGLS estimation, 244
properties of, 244

Lagrange multiplier test (LM), 79, 90, 97, 129, 192
ARCH(g) effects, 90
steps, 90
Least squares dummy variable (LSDV) model, 113, 114,
116, 118
coefficient of determination, 118
disadvantage, 113
error degrees of freedom, 118
parameter estimation, 116
OLS, 116
root mean square, 118
Least squares estimation method, 1, 4, 55, 96, 125
parameters, 96
FGLS, 96
iterated FGLS, 96
MLE, 96
Least squares estimator, 4, 5, 24, 30, 39, 52, 53, 71, 80, 102
asymptotic normality, 5
consistency, 4
correlation, 24
instrumental variables estimator, 57
probability limits, 52
unrestricted, 39
variance, 24
Least squares theory, 3—-5
Linear functions, derivatives, 247
Linear model(s), 2, 6, 53, 70, 71, 89
assumptions, 2
conditional expectation, 53
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disturbance vector, 70
symmetric matrix, 71
variance, 70
Linear regression, 72
Linear restriction hypothesis, 28
F statistic, 28
Log-likelihood function, 203
credit card data set plot, 89, 204
values, 89
Log-log model, 2
marginal effect, 2
Lognormal distribution, 184, 185
cumulative density function, 184
hazard functions, 184, 185
bar graph, 185
probability density function, 184
survival functions, 184, 185
bar graph, 185

Marginal effects, 2
Matrix, 237
addition and subtraction operations, 238
definitions, 237
diagonal matrix, 238
identity matrix, 238
multiplication operations, 239
properties of, 245
rank, 245
definition, 245
full rank, 245
properties of, 245
scalar multiplication operations, 238
square matrix, 238
trace,
definition, 241
properties of, 242
transpose of, 240
Matrix algebra, 239, 246
associative laws, 239
commutative laws of addition, 239
differential calculus, 246
Hessian matrix, 246
Jacobian matrix, 246
simple linear function derivatives, 246
distributive laws, 239
Maximum likelihood estimation (MLE), 86, 206
multivariate value, 206
Mean intervals, 20
for investment equation data, 18-19
prediction graphs, 18
Proc Reg output, 20
Mean square error, 13, 28, 207, 211, 268
Model of interest, 46
Mroz2, See Temporary SAS data set
Multicollinearity, 24-26
degree of correlation, 24
p values, 25
sets of statistics, 24
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Multiple linear regression model, 1, 3, 4
matrix form, 3

Newton—Raphson method, 157-163, 192
algorithm, 157
for Logit model, 157-163
Nonspherical disturbances, 70, 71
autocorrelation, 70
heteroscedasticity, 70
Null hypothesis, 6, 8, 13, 29, 30, 32, 61, 62, 65, 80, 101, 128, 129

Off-diagonal elements, 140
Omitted variable model, 53
bias, 53
Ordinary least squares (OLS) analysis, 58, 59, 72, 86, 149
earning data, 59
estimator, 4, 31, 33, 53, 56, 83, 102, 255, 256
consistency, 56
histogram of, 257-260
labor equation, 149
mean and standard deviation, 256
probability, 53
simulated type, 1 error rate, 256
estimation, 58, 82, 234
covariance matrix, 82
critical assumption, 142
equation-by-equation, 140
estimation techniques, 144
keynesian model, 143
problems, 142-144
standard errors, 82
structural equation, 144
model, 58, 97, 104, 154
of credit card expenses data, 72
regression statistics, 25
residuals, 75, 86
Overidentifying restrictions testing, 63
in earning data, 63

Panel data method, 110, 111
advantages, 110-111
definition, 110
overview, 110
Panel data models, 111-112, 219, 224
autocorrelation, 224, 227
covariance matrices, robust estimation of, 219
FGLS methods estimators, 225
fixed effects, 111
GLS estimation, 225
heterogeneity, 224
homoscedastic disturbances, 219
ordinary least squares estimation method, 111
pooled regression, 111
PROC IML code, 226
random effects, 111
Poisson regression, 163-165
estimation, 165-168
parameters interpretation, 165

Pooled regression model, 112-113, 118

coefficient of determination, 113

expression equation, 113

parameters estimation, 112
OLS, 112

root mean square error, 113, 118

Prais—Winsten Method, 234

transformations, 96
usage, 96

Prediction intervals graphs, 21

Proc Reg output, 21

Price index of gasoline (Pg), 38
Probability distribution function, 171
Probability of failure (PDF), 174

calculation, 174

Probability plots, 22
Probit and Logit models, 155

estimation/inference, 156

Proc autoreg, 96, 102

CUSUMLB procedure, 44
CUSUMUB procedure, 44
usage, 102

reference guide, 91

Proc Corr procedure, 16

general form, 16

Proc GLM, 49, 121

airlines data regression, 49-50
data analysis, 49
dummy variables, 49

Proc Gplot, 16, 20

confidence intervals, 20

Proc IML analysis, 11, 47, 57, 114, 204, 248, 272

1x1 matrices, 249

Anderson—estimator, 289

Arellano-Bond method, 224, 290

code computes, 286

concatenate matrices, 252

control statements, 252

CPI, 272

create row and column vectors, 237

creating matrices/vectors operations, 249

data analysis, 47, 57

data matrix, 57

determinants of matrices, 241

diag command, 252

diagonal matrix, 251

DO-END statement, 253

DO iterative statement, 253

dynamic panel data, 287

econometric analysis, 251

elementary matrix operations, 250
addition/subtraction, 250
inverses, eigenvalues, and eigenvectors, 250
Kronecker products, 250

GMM calculations, 222

GNP and Invest time series, 272

groupwise heterogeneity, 286

Grunfeld’s data analysis, 229



Hausman’s specification test, 212, 276
Hausman-Taylor’s estimates, 218
heteroscedasticity, 277
identity matrix, 240
IF-THEN/ELSE statement, 253
Kronecker products calculation, 244
linear equations, 248
linear hypothesis, 275
matrix-generating functions, 251
block diagonal matrices, 251
diagonal matrix, 251
identity matrix, 251
J matrix, 251
matrix inverses, 243
matrix multiplications, 239
max(min) commands, 251
of investment data, 11
Proc IML code, 273
restricted least squares estimator, 274
robust variance-covariance matrices, 277
SAS procedures, 212
standard errors of estimator, 274
statements, 30
SUMMARY command, 253
trace of a matrix, 242
transpose matrix, 240
VecDiag function, 252
White’s test, 277-278
within-group mean residuals
estimates, 215
Proc IML code, 226
FGLS estimator, 226
general linear hypothesis, 273
Kronecker product, 244
Proc IML command, 65, 237
create row and column vectors, 237
identity matrix, 238
matrix multiplications, 239
trace of a matrix, 241
Proc IML diag command, 252
diagonal matrix, 252
Proc Import statement, 9
Proc Life procedure, 173
Proc Lifereg models, 178, 191
Proc Lifetest analysis, 173, 175, 178
tabular presentation, 175
Proc Lifetime, 177
Proc model, 151, 215
HCCME option, 219
instrumental variable regression, 215
OLS/2SLS models, 151
procedure, 76
Proc Panel, 81, 114, 116-118, 120, 121, 123, 125, 128-131,
212, 219-221
documentation, 81
procedure, 114
Proc Plot procedure, 15
statements for, 15
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Proc Reg analysis, 12, 15, 32, 47, 62, 101, 151, 255
data analysis, 47
endogeneity, 62
investment equation data, 15
of investment data, 12
OLS estimates, 32
tableout option of, 255
t test, 32
Proc Reg module, 21
Proc Reg statements, 268
OLS regression, 268
Proc Syslin, 60, 151
earning data output, 60
procedure, 148
Proc Univariate, 255
data, 213
histogram option, 255
module, 22
Production data-translog model, 36
regression analysis, 36

Quadratic form, derivative of, 247
Quarterly investment data, 31, 33
Proc IML output, 31
Proc Reg output, 33

Random effects model, 123-131, 210
estimation, 130-131
Hausman-Taylor estimator, 210
random disturbances, assumptions, 211
tabular presentation, 130
tests, 125-128

Hausman specification, 125
Lagrange multiplier (LM), 125
Wages data, 213

Rank, 245
definition, 245
equivalence, 246
Proc IML, 245
properties of, 245

Real _Invest
scatter plot, 18
vs. time plot, 17
vs. time trend, 18
vs. Real GNP plot, 16

Real_GNP coefficient, 14
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RECID data, 172, 173, 175-177, 179, 180, 185, 186, 188, 190, 192

exponential distribution, 188

Kaplan Meier survival function plot, 176
lifetime hazard function plot, 179
lifetime survival function plot, 176, 177
normal distribution fit, 186, 192

Proc Lifetest analysis, 173

survival functions testing, 180-182
Weibull distribution fit, 190

REG procedure model, 12, 15, 18, 25, 33-37, 39-41, 46, 48, 59,
62-64,72, 85, 87, 88, 112, 135, 149, 160, 186, 188, 190, 192,

194, 195, 201, 205, 209, 214, 269, 270
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Regression analysis, 1, 3, 8, 9, 18, 24, 46, 78, 178, 205 Root mean square error (RMSE), 19, 78,
assumptions, 3 87, 268
objectives, 3, 18
by Proc IML, 9 Sargan’s hypothesis test, 61
data analysis, 10 regression-based, 61
data reading, 9 steps, 61-62
By Proc Reg, 12, 46 SAS system, 79, 90, 267
data analysis, 12 bootstrapped regression analysis, 267-271
data interpretation, 12 Breusch—Pagan test, 79
earnings data, 46 code usage, 120
credit card expenditure data, 205 data set, 9, 10, 65
parameters interpretation, 2 data step statements, 217
Proc Lifereg, 178 IML program, 293
Proc Phreg, 178 Log transformations, 267
residual analysis, 8 Proc autoreg module, 90
Regression coefficient(s), 13, 18 Proc model statements, 40
Regression model(s), 1, 14, 53, 61, 93, 187 program, 220
adjusted R? value, 14 data simulation, 256
autocorrelation, 93 statements, 18, 66, 81, 256
coefficient of determination (RZ), 14 test, 78
Cox proportional hazard, 187 Seemingly unrelated regression (SUR) models, 132, 133,
dependent variable, 1 138, 139, 244
endogeneity, 53 equations, 40
endogenous explanatory variable, 61 GLS estimator, 133
independent variable, 1 OLS model, 133
parametric, 187 system, 58
testing overidentifying restrictions, 61 Semi-log model, 2, 47, 57
Regression summary statistics, 79 earnings model, 47
credit card expenditure data, 79 elasticity, 2
Residual analysis, 20-23 marginal effect, 2
column, 19 Serial correlation, 95
Proc Reg, 20 assumptions estimation, 95
residual graphs, 21 Simple linear regression model, 3, 54, 55
types of plots, 8 explanatory variable, 54
Residual vector, definition, 4, 7 least squares estimation, 3
Residuals, 21-23, 73, 92 testing steps, 61
GARCH model, 92 Simple panel data models, 116
normal probability plot, 22, 23 analyzing method, 116
standardized, definition, 20 Proc Panel, 116
vs. age plot, 73 Proc TSCSREG procedure, 116
vs. average expense plot, 73 Simultaneous equation models, 142
vs. income plot, 74 Hausman'’s specification test, 151
vs. predicted response plot, 21 identification problem, 145
vs. predicted values plot, 23 endogenous variables, 147
vs. time plot, 22 exogenous variables, 147
Response variable, 170 structural equation parameters, 144—146
Response vector, 10 OLS estimation problems, 142—-144
Restricted least squares estimator, 31-33 OLS regression, 148
least squares estimator, 31 Proc Syslin procedure, 148
Proc IML output, 32 reduced form equations, 144—145
of variance-covariance matrix, 32 two-stage least squares (2SLS) method, 147
standard errors, 32 Wage-price inflation equation, 142
variance expression, 31 specification tests, 61
variance-covariance matrix, 31, 32 explanatory variables, 63
Restricted model, See Cobb-Douglas model instrumental variables, 63
Robust estimators, 84 testing overidentifying restrictions, 61
Proc IML output, 84 weak instruments, 63

variance-covariance matrix, 84 Spherical disturbances, 70



Standard error(s), 18, 86, 87

column, 14

definition, 8
Strike data duration analysis, 196-200
Subject-specific heterogeneity, 111, 113, 123

effects, 128, 129
Sums of squares for error (SSE), 5, 7
Sums of squares for regression (SSR), 5
Survival function, 170-178

definition, 170

Kaplan Meier method, 172

life table method, 172

plot, 176

standard error, 172

Temporary SAS data set, 9, 10, 61, 65, 90, 172, 186, 208
Test statistic, 11, 28-30, 65, 66, 78, 79
Proc IML statements, 79
value, 14, 79
Time series data, 93
Translog model, 35, 36
Transpose matrix, 240
definition, 240
properties, 240
True population model, 54
OLS estimate, 54
probability limits, 54

Two-stage least squares estimator (2SLS) analysis, 56, 62, 148

assumption of homoscedastic disturbances, 148
labor equation, 149
weight matrix, 151
Two-way fixed effects model, 123
Proc GLM estimation method, 123

Unbiased estimator, 5, 8, 33, 71, 266

Unknown coefficients, 1, 2

U.S. gasoline consumption (G), 38
time series plot, 38

Variance, 5, 95
Variance-covariance matrix, 95, 113
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Variance inflation factors (VIF), 24
values, 25

Wage equation, 56, 64
regression equation, 64
Wages data, 213
random effects model, 213
within-group effects model, 214
Wald’s chi-square test, 161, 192
values, 161, 188
Weak instruments analysis, 64
in earning data, 64
Weibull distribution, 179, 183, 184, 190
cumulative density function, 179
hazard functions, 183
probability density function, 179
survival function, 184
bar graph, 184
Weighted least squares regression
methods, 84, 85
credit card expenditure data, 85
Proc Reg option, 84
SAS statements, 84
White’s estimator, 80, 81, 83, 148, 219, 220
Proc model statements, 81
HCCME option, 81
variance-covariance matrix, 80
White’s general test, 74-78
credit card expense data, 76-78
Proc IML programme, 74
test statistic value, 76
Within-group model, 113, 120, 211, 212
disadvantages, 113
disturbance variances, 207, 208
GLS estimation, 207
merge data, 208
OLS model, 208
time-invariant disturbance, 211
residuals vector, 207, 215
root mean square, 120
Wages data, 214
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