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PREFACE

The subject of econometrics involves the application of statistical methods to analyze data collected from economic studies. The

goal may be to understand the factors influencing some economic phenomenon of interest, to validate a hypothesis proposed by

theory, or to predict the future behavior of the economic phenomenon of interest based on underlying mechanisms or factors

influencing it.

Although there are several well-known books that deal with econometric theory, I have found the books by Badi H. Baltagi,

Jeffrey M. Wooldridge, Marno Verbeek, and William H. Greene to be very invaluable. These four texts have been heavily

referenced in this book with respect to both the theory and the examples they have provided. I have also found the book by

Ashenfelter, Levine, and Zimmerman to be invaluable in its ability to simplify some of the complex econometric theory into a

form that can easily be understood by undergraduates who may not be well versed in advanced statistical methods involving

matrix algebra.

When I embarked on this journey, many questioned me on why I wanted to write this book. After all, most economic

departments use either Gauss or STATA to do empirical analysis. I used SAS Proc IML extensively when I took the econometric

sequence at the University of Minnesota and personally found SAS to be on par with other packages that were being used.

Furthermore, SAS is used extensively in industry to process large data sets, and I have found that economics graduate students

entering theworkforce go through a steep learning curve because of the lack of exposure to SAS in academia. Finally, after using

SAS, Gauss, and STATA for my own personal work and research, I have found that the SAS software is as powerful or flexible

compared to both Gauss and STATA.

There are several user-written books on how to use SAS to do statistical analysis. For instance, there are books that deal with

regression analysis, logistic regression, survival analysis, mixedmodels, and so on. However, all these books deal with analyzing

data collected from the applied or social sciences, and none deals with analyzing data collected from economic studies. I saw an

opportunity to expand the SAS-by-user books library by writing this book.

I have attempted to incorporate some theory to lay the groundwork for the techniques covered in this book. I have found that a

good understanding of the underlying theory makes a good data analyst even better. This book should therefore appeal to both

students and practitioners, because it tries to balance the theorywith the applications.However, this book should not be used as a

substitute in place of the well-established texts that are being used in academia. As mentioned above, the theory has been

referenced from four main texts: Baltagi (2005), Greene (2003), Verbeek (2004), and Wooldridge (2002).

This book assumes that the reader is somewhat familiar with the SAS software and programming in general. The SAS help

manuals from theSAS Institute, Inc. offer detailed explanation and syntax for all theSASroutines thatwere used in this book. Proc

IML is a matrix programming language and is a component of the SAS software system. It is very similar to other matrix

programming languages such as GAUSS and can be easily learned by running simple programs as starters. Appendixes A and B

offer some basic code to help the inexperienced user get started. All the codes for the various examples used in this book were

written in a very simple and direct manner to facilitate easy reading and usage by others. I have also provided detailed annotation

with every program.The readermay contactme for electronic versionsof the codes used in this book.The data sets used in this text

are readily available over the Internet. Professors Greene andWooldridge both have comprehensiveweb sites where the data are

xi



available for download. However, I have used data sets from other sources as well. The sources are listed with the examples

provided in the text.All the data (except the credit card data fromGreene (2003)) are in thepublic domain.The credit card datawas

used with permission from William H. Greene at New York University.

The reliance on Proc IML may be a bit confusing to some readers. After all, SAS has well-defined routines (Proc Reg,

Proc Logistic, Proc Syslin, etc.) that easily perform many of the methods used within the econometric framework. I have

found that using a matrix programming language to first program the methods reinforces our understanding of the

underlying theory. Once the theory is well understood, there is no need for complex programming unless a well-defined

routine does not exist.

It is assumed that the reader will have a good understanding of basic statistics including regression analysis. Chapter 1 gives a

good overview of regression analysis and of related topics that are found in both introductory and advance econometric courses.

This chapter forms the basis of the analysis progression through the book. That is, the basicOLS assumptions are explained in this

chapter. Subsequent chapters deal with cases when these assumptions are violated. Most of the material in this chapter can be

found in any statistics text that deals with regression analysis. The material in this chapter was adapted from both Greene (2003)

and Meyers (1990).

Chapter 2 introduces regression analysis inSAS. I haveprovideddetailedProc IMLcode to analyze data usingOLS regression.

I have also provided detailed coverage of how to interpret the output resulting from the analysis. The chapter endswith a thorough

treatment of multicollinearity. Readers are encouraged to refer to Freund and Littell (2000) for a thorough discussion on

regression analysis using the SAS system.

Chapter 3 introduces hypothesis testing under the general linear hypothesis framework. Linear restrictions and the restricted

least squares estimator are introduced in this chapter. This chapter then concludes with a section on detecting structural breaks in

the data via the Chow and CUSUM tests. Both Greene (2003) and Meyers (1990) offer a thorough treatment of this topic.

Chapter 4 introduces instrumental variables analysis. There is a good amount of discussion on measurement errors, the

assumptions that go into the analysis, specification tests, and proxy variables. Wooldridge (2002) offers excellent coverage of

instrumental variables analysis.

Chapter 5 deals with the problem of heteroscedasticity. We discuss various ways of detecting whether the data suffer from

heteroscedasticity and analyzing the data under heteroscedasticity. Both GLS and FGLS estimations are covered in detail. This

chapter ends with a discussion of GARCHmodels. Thematerial in this chapter was adapted fromGreene (2003),Meyers (1990),

and Verbeek (2004).

Chapter 6 extends the discussion from Chapter 5 to the case where the data suffer from serial correlation. This chapter

offers a good introduction to autocorrelation. Brocklebank and Dickey (2003) is excellent in its treatment of how SAS can be

used to analyze data that suffer from serial correlation. On the other hand, Greene (2003), Meyers (1990), and Verbeek (2004)

offer a thorough treatment of the theory behind the detection and estimation techniques under the assumption of serial

correlation.

Chapter 7 covers basic panel datamodels. The discussion starts with the inefficient OLS estimation and thenmoves on to fixed

effects and random effects analysis. Baltagi (2005) is an excellent source for understanding the theory underlying panel data

analysis while Greene (2003) offers an excellent coverage of the analytical methods and practical applications of panel data.

Seemingly unrelated equations (SUR) and simultaneous equations (SE) are covered in Chapters 8 and 9, respectively. The

analysis of data in these chapters uses Proc Syslin and Proc Model, two SAS procedures that are very efficient in analyzing

multiple equation models. The material in this chapter makes extensive use of Greene (2003) and Ashenfelter, Levine and

Zimmerman (2003).

Chapter 10 deals with discrete choice models. The discussion starts with the Probit and Logit models and then moves on to

Poisson regression. Agresti (1990) is the seminal reference for categorical data analysis and was referenced extensively in this

chapter.

Chapter 11 is an introduction to duration analysis models. Meeker and Escobar (1998) is a very good reference for reliability

analysis and offers a firm foundation for duration analysis techniques. Greene (2003) and Verbeek (2004) also offer a good

introduction to this topic while Allison (1995) is an excellent guide on using SAS to analyze survival analysis/duration analysis

studies.

Chapter 12 contains special topics in econometric analysis. I have included discussion on groupwise heterogeneity, Harvey’s

multiplicative heterogeneity, Hausman–Taylor estimators, and heterogeneity and autocorrelation in panel data.

Appendixes A and B discuss basic matrix algebra and how Proc IML can be used to perform matrix calculations. These two

sections offer a good introduction to Proc IMLandmatrix algebra useful for econometric analysis. Searle (1982) is an outstanding

reference for matrix algebra as it applies to the field of statistics.
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Appendix C contains a brief discussion of the large sample properties of the OLS estimators. The discussion is based on a

simple simulation using SAS.

Appendix D offers an overview of bootstrapping methods including their application to regression analysis. Efron and

Tibshirani (1993) offer outstanding discussion on bootstrapping techniques and were heavily referenced in this section of the

book.

Appendix E contains the complete code for some key programs used in this book.

VIVEK B. AJMANISt. Paul, MN
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1
INTRODUCTION TO REGRESSION ANALYSIS

1.1 INTRODUCTION

Thegeneral purpose of regression analysis is to study the relationship between one ormore dependent variable(s) and one ormore

independent variable(s). Themost basic form of a regressionmodel is where there is one independent variable and one dependent

variable. For instance, a model relating the log of wage of married women to their experience in thework force is a simple linear

regressionmodel given by log(wage)¼b0 þ b1exper þ «, whereb0 andb1 are unknown coefficients and « is randomerror.One

objective here is to determine what effect (if any) the variable exper has on wage. In practice, most studies involve cases where

there is more than one independent variable. As an example, we can extend the simple model relating log(wage) to exper by

including the square of the experience (exper2) in thework force, alongwith years of education (educ). The objective heremay be

to determine what effect (if any) the explanatory variables (exper, exper2, educ) have on the response variable log(wage). The

extended model can be written as

logðwageÞ ¼ b0 þb1experþb2exper
2 þb3educþ «;

where b0, b1, b2, and b3 are the unknown coefficients that need to be estimated, and « is random error.

An extension of themultiple regressionmodel (with one dependent variable) is themultivariate regressionmodelwhere there is

more than one dependent variable. For instance, the well-known Grunfeld investment model deals with the relationship between

investment (Iit) with the truemarket value of a firm (Fit) and thevalue of capital (Cit) (Greene, 2003). Here, i indexes the firms and t

indexes time.Themodel isgivenby Iit¼b0i þ b1iFit þ b2iCit þ «it.Asbefore,b0i,b1i, andb2iareunknowncoefficients thatneed

to be estimated and «it is random error. The objective here is to determine if the disturbance terms are involved in cross-equation

correlation.Equationbyequationordinary least squares isused toestimate themodelparameters if thedisturbancesarenot involved

incross-equation correlations.A feasiblegeneralized least squaresmethod is used if there is evidenceof cross-equation correlation.

We will look at this model in more detail in our discussion of seemingly unrelated regression models (SUR) in Chapter 8.

Dependent variables can be continuous or discrete. In the Grunfeld investment model, the variable Iit is continuous. However,

discrete responses are also very common. Consider an examplewhere a credit card company solicits potential customers via mail.

The responseof theconsumercanbeclassified asbeingequal to1or0dependingonwhether theconsumer chooses to respond to the

mailornot.Clearly, theoutcomeof thestudy(aconsumerrespondsornot) isadiscrete randomvariable. In thisexample, the response

is a binary random variable. We will look at modeling discrete responses when we discuss discrete choice models in Chapter 10.

In general, a multiple regression model can be expressed as

y ¼ b0 þb1x1 þ � � � þbkxk þ « ¼ b0 þ
X

k

i¼1

bixi þ «; ð1:1Þ

1
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where y is the dependent variable, b0; . . . ;bk are the k þ 1 unknown coefficients that need to be estimated, x1; . . . ; xk are the k
independent or explanatory variables, and « is random error. Notice that the model is linear in parameters b0; . . . ;bk and is

therefore called a linear model. Linearity refers to how the parameters enter the model. For instance, the model

y ¼ b0 þb1x
2
1 þ � � � þbkx

2
k þ « is also a linear model. However, the exponential model y¼b0 exp(�xb1) is a nonlinear model

since the parameter b1 enters the model in a nonlinear fashion through the exponential function.

1.1.1 Interpretation of the Parameters

One of the assumptions (to be discussed later) for the linear model is that the conditional expectationE(«jx1; . . . ; xk) equals zero.
Under this assumption, the expectation, Eðyjx1; . . . ; xkÞ can be written as Eðyjx1; . . . ; xkÞ ¼ b0 þ

Pk
i¼1 bixi. That is, the

regressionmodel can be interpreted as the conditional expectation of y for givenvalues of the explanatory variables x1; . . . ; xk. In
theGrunfeld example, we could discuss the expected investment for a given firm for knownvalues of the firm�s truemarket value

and value of its capital. The intercept term, b0, gives the expected value of ywhen all the explanatory variables are set at zero. In

practice, this rarely makes sense since it is very uncommon to observe values of all the explanatory variables equal to zero.

Furthermore, the expected value of y under such a casewill often yield impossible results. The coefficient bk is interpreted as the

expected change in y for a unit change in xk holding all other explanatory variables constant. That is, ¶E(yjx1; . . . ; xk)=¶xk¼bk.

The requirement that all other explanatory variables be held constant when interpreting a coefficient of interest is called the

ceteris paribus condition. The effect of xk on the expected value of y is referred to as the marginal effect of xk.

Economists are typically interested in elasticities rather thanmarginal effects. Elasticity is defined as the relative change in the

dependent variable for a relative change in the independent variable. That is, elasticity measures the responsiveness of one

variable to changes in another variable—the greater the elasticity, the greater the responsiveness.

There is a distinction between marginal effect and elasticity. As stated above, the marginal effect is simply ¶E(yjxÞ=¶xk
whereas elasticity is defined as the ratio of the percentage change in y to the percentage change in x. That is, e ¼ ð¶y=yÞ=ð¶xk=xkÞ.

Consider calculating the elasticity of x1 in the general regression model given by Eq. (1.1). According to the definition of

elasticity, this is given by ex1 ¼ ð¶y=¶x1Þðx1=yÞ ¼ b1ðx1=yÞ 6¼ b1. Notice that the marginal effect is constant whereas the

elasticity is not. Next, consider calculating the elasticity in a log–log model given by log(y)¼b0 þ b1 log(x) þ «. In this case,

elasticity of x is given by

¶ logðyÞ ¼ b1¶ logðxÞ ) ¶y
1

y
¼ b1¶x

1

x
)

¶y

¶x

x

y
¼ b1:

Themarginal effect for the log–logmodel is alsob1. Next, consider the semi-logmodel given by y¼b1 þ b1 log(x) þ «. In this

case, elasticity of x is given by

¶y ¼ b1¶ logðxÞ ) ¶y ¼ b1¶x
1

x
)

¶y

¶x

x

y
¼ b1

1

y
:

On the other hand, the marginal effect in the semi-log model is given by b1(1=x).
For the semi-log model given by logðyÞ ¼ b0 þ b1xþ «, the elasticity of x is given by

¶y logðyÞ ¼ b1¶x ) ¶y
1

y
¼ b1¶x ¼

¶y

¶x

x

y
¼ b1x:

On the other hand, the marginal effect in the semi-log model is given by b1y.

Mostmodels that appear in this bookhavea log transformationon the dependent variable or the independent variable or both. It

may be useful to clarify how the coefficients from these models are interpreted. For the semi-log model where the dependent

variable has been transformed using the log transformation while the explanatory variables are in their original units, the

coefficient b is interpreted as follows: For a one unit change in the explanatory variable, the dependent variable changes by

b�100% holding all other explanatory variables constant.

In the semi-logmodelwhere the explanatory variable has been transformedbyusing the log transformation, the coefficientb is

interpreted as follows: For a one unit change in the explanatory variable, the dependent variable increases (decreases) by

b/100 units.

In the log–logmodelwhere both the dependent and independent variable havebeen transformed byusing a log transformation,

the coefficient b is interpreted as follows: A 1% change in the explanatory variable is associated with a b% change in the

dependent variable.
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1.1.2 Objectives and Assumptions in Regression Analysis

There are three main objectives in any regression analysis study. They are

a. To estimate the unknown parameters in the model.

b. To validate whether the functional form of the model is consistent with the hypothesized model that was dictated by theory.

c. To use the model to predict future values of the response variable, y.

Most regression analysis in econometrics involves objectives (a) and (b). Econometric time series analysis involves all

three. There are five key assumptions that need to be checked before the regressionmodel can be used for the purposes outlined

above.

a. Linearity: The relationship between the dependent variable y and the independent variables x1; . . . ; xk is linear.

b. Full Rank: There is no linear relationship among any of the independent variables in the model. This assumption is often

violated when the model suffers from multicollinearity.

c. Exogeneity of the Explanatory Variables:This implies that the error term is independent of the explanatory variables. That

is,E(«ijxi1; xi2; . . . ; xik)¼ 0. This assumption states that the underlyingmechanism that generated the data is different from

the mechanism that generated the errors. Chapter 4 deals with alternative methods of estimation when this assumption is

violated.

d. Random Errors: The errors are random, uncorrelated with each other, and have constant variance. This assumption is

called the homoscedasticity and nonautocorrelation assumption. Chapters 5 and 6 deal with alternative methods of

estimation when this assumption is violated. That is estimation methods when the model suffers from heteroscedasticity

and serial correlation.

e. Normal Distribution: The distribution of the random errors is normal. This assumption is used in making inference

(hypothesis tests, confidence intervals) to the regression parameters but is not needed in estimating the parameters.

1.2 MATRIX FORM OF THE MULTIPLE REGRESSION MODEL

The multiple regression model in Eq. (1.1) can be expressed in matrix notation as y¼Xb þ e. Here, y is an n� 1 vector of

observations,X is a n� (kþ 1)matrix containing values of explanatory variables,b is a (kþ 1)� 1 vector of coefficients, and e is

an n� 1 vector of random errors. Note that X consists of a column of 1’s for the intercept term b0. The regression analysis

assumptions, in matrix notation, can be restated as follows:

a. Linearity: y¼b0þ x1b1 þ � � � þ xkbk þ e or y¼Xb þ e.

b. Full Rank: X is an n� (kþ 1) matrix with rank (kþ 1).

c. Exogeneity: E(ejX)¼ 0 � X is uncorrelated with e and is generated by a process that is independent of the process that

generated the disturbance.

d. Spherical Disturbances: Var(«ijX)¼s2 for all i¼ 1; . . . ; n and Cov(«i,«jjX)¼ 0 for all i 6¼ j. That is, VarðejXÞ ¼ s2I.

e. Normality: ejX�N(0,s2I).

1.3 BASIC THEORY OF LEAST SQUARES

Least squares estimation in the simple linear regression model involves finding estimators b0 and b1 that minimize the sums of

squares L ¼ S
n
i¼1ðyi �b0 �b1xiÞ

2
. Taking derivatives of L with respect to b0 and b1 gives

¶L

¶b0

¼ �2
X

n

i¼1

ðyi�b0�b1xiÞ;

¶L

¶b1

¼ �2
X

n

i¼1

ðyi�b0�b1xiÞxi:
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Equating the two equations to zero and solving for b0 and b1 gives

X

n

i¼1

yi ¼ nb̂0 þ b̂1

X

n

i¼1

xi;

X

n

i¼1

yixi ¼ b̂0

X

n

i¼1

xi þ b̂1

X

n

i¼1

x2i :

These two equations are known as normal equations. There are twonormal equations and twounknowns. Therefore, we can solve

these to get the ordinary least squares (OLS) estimators ofb0 andb1. The first normal equation gives the estimator of the intercept,

b0, b̂0 ¼ �y�b̂1�x. Substituting this in the second normal equation and solving for b̂1 gives

b̂1 ¼

n
P

n

i¼1

yixi �
P

n

i¼1

yi
P

n

i¼1

xi

n
P

n

i¼1

x2i �
P

n

i¼1

xi

� �2
:

Wecan easily extend this to themultiple linear regressionmodel inEq. (1.1). In this case, least squares estimation involves finding

an estimator b of b to minimize the error sums of squares L¼ (y�Xb)T(y�Xb). Taking the derivative of L with respect to b

yields kþ 1 normal equations with kþ 1 unknowns (including the intercept) given by

¶L=¶b ¼ �2ðXTy�XTXb̂Þ:

Setting this equal to zero and solving for b̂ gives the least squares estimator ofb, b¼ (XTX)�1XTy. A computational form for b is

given by

b ¼
X

n

i¼1

xTi xi

 !�1
X

n

i¼1

xTi yi

 !

:

The estimated regression model or predicted value of y is therefore given by ŷ ¼ Xb. The residual vector e is defined as the

difference between the observed and the predicted value of y, that is, e ¼ y�ŷ.

The method of least squares produces unbiased estimates of b. To see this, note that

EðbjXÞ ¼ EððXTXÞ�1
XTyjXÞ

¼ ðXTXÞ�1
XTEðyjXÞ

¼ ðXTXÞ�1
XTEðXbþ ejXÞ

¼ ðXTXÞ�1
XTXbEðejXÞ

¼b:

Here, we made use of the fact that (XTX)�1¼ (XTX)¼ I, where I is the identity matrix and the assumption that E(ejX)¼ 0.

1.3.1 Consistency of the Least Squares Estimator

First, note that a consistent estimator is an estimator that converges in probability to the parameter being estimated as the sample

size increases. To say that a sequence of random variables Xn converges in probability to X implies that as n ! ¥ the probability

that jXn�Xj � d is zero for all d (Casella and Berger, 1990). That is,

lim
n!¥

PrðjXn �Xj � dÞ ¼ 0 8 d:

Under the exogeneity assumption, the least squares estimator is a consistent estimator of b. That is,

lim
n!¥

Prðjbn�bj � dÞ ¼ 0 8 d:

To see this, let xi, i¼ 1; . . . ; n; be a sequence of independent observations and assume that XTX/n converges in probability to a

positive definite matrix C. That is (using the probability limit notation),

p lim
n!¥

XTX

n
¼ C:
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Note that this assumption allows the existence of the inverse of XTX . The least squares estimator can then be written as

b ¼ bþ
XTX

n

� ��1
XT

e

n

� �

:

Assuming that C�1 exists, we have

p limb ¼ bþC�1
p lim

XT
e

n

� �

:

Inorder to showconsistency,wemust show that the second term in this equationhas expectation zero and avariance that converges

to zero as the sample size increases.Under the exogeneity assumption, it is easy to show thatE(XT
ejX)¼ 0 sinceE(ejX)¼ 0. It can

also be shown that the variance of XT
e=n is

Var
XT

e

n

� �

¼
s2

n
C:

Therefore, as n ! ¥ the variance converges to zero and thus the least squares estimator is a consistent estimator for b (Greene,

2003, p. 66).

Moving on to the variance–covariance matrix of b, it can be shown that this is given by

VarðbjXÞ ¼ s2ðXTXÞ�1:

To see this, note that

VarðbjXÞ¼ VarððXTXÞ�1
XTyjXÞ

¼ VarððXTXÞ�1
XTðXbþ eÞjXÞ

¼ ðXTXÞ�1
XTVarðejXÞXðXTXÞ�1

¼ s2ðXTXÞ�1:

It can be shown that the least squares estimator is the best linear unbiased estimator of b. This is based on the well-known result,

called the Gauss–Markov Theorem, and implies that the least squares estimator has the smallest variance in the class of all

unbiased estimators of b (Casella and Berger, 1990; Greene, 2003; Meyers, 1990).

An estimator ofs2 can be obtained by considering the sums of squares of the residuals (SSE). Here, SSE¼ (y�Xb)T(y�Xb).

Dividing SSE by its degrees of freedom, n� k� 1 yields ŝ2. That is, the mean square error is given by

ŝ2 ¼ MSE ¼ SSE=ðn�k�1Þ. Therefore, an estimate of the covariance matrix of b is given by ŝ2ðXTXÞ�1
.

Using a similar argument as the one used to showconsistencyof the least squares estimator, it can be shown that ŝ2 is consistent

fors2 and that the asymptotic covariance matrix of b is ŝ2ðXTXÞ�1
(see Greene, 2003, p. 69 for more details). The square root of

the diagonal elements of this yields the standard errors of the individual coefficient estimates.

1.3.2 Asymptotic Normality of the Least Squares Estimator

Using the properties of the least squares estimator given in Section 1.3 and the Central Limit Theorem, it can be easily shown that

the least squares estimator has an asymptotic normal distribution with mean b and variance–covariance matrixs2(XTX)�1. That

is, b̂ � asym:N
�

b;s2ðXTXÞ�1
�

.

1.4 ANALYSIS OF VARIANCE

The total variability in the data set (SST) can be partitioned into the sums of squares for error (SSE) and the sums of squares for

regression (SSR). That is, SST¼ SSE þ SSR. Here,

SST ¼ yTy�

X

n

i¼1

yi

 !2

n
;

SSE ¼ yTy�bTXTy;

SSR ¼ bTXTy�

X

n

i¼1

yi

 !2

n
:
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TABLE 1.1. Analysis of Variance Table

Source of

Variation

Sums of

Squares

Degrees of

Freedom Mean Square F0

Regression SSR k MSR¼ SSR/k

Error SSE n� k�1 MSE¼ SSE/(n� k�1)

Total SST n� 1 MSR/MSE

The mean square terms are simply the sums of square terms divided by their degrees of freedom. We can therefore write the

analysis of variance (ANOVA) table as given in Table 1.1.

The F statistic is the ratio between the mean square for regression and the mean square for error. It tests the global hypotheses

H0: b1 ¼ b2 ¼ . . . ¼ bk ¼ 0;

H1: At least one bi 6¼ 0 for i ¼ 1; . . . ; k:

Thenull hypothesis states that there is no relationshipbetween the explanatoryvariables and the responsevariable. The alternative

hypothesis states that at least one of the k explanatory variables has a significant effect on the response. Under the assumption that

the null hypothesis is true,F0 has anF distribution with k numerator and n� k�1 denominator degrees of freedom, that is, under

H0, F0�Fk,n�k�1. The p value is defined as the probability that a random variable from the F distribution with k numerator and

n� k�1 denominator degrees of freedom exceeds the observed value of F, that is, Pr(Fk,n�k�1>F0). The null hypothesis is

rejected in favor of the alternative hypothesis if the p value is less than a, where a is the type I error.

1.5 THE FRISCH–WAUGH THEOREM

Often, wemay be interested only in a subset of the full set of variables included in themodel. Consider partitioningX intoX1 and

X2. That is, X¼ [X1 X2]. The general linear model can therefore be written as y¼Xb þ e¼X1b1 þ X2b2 þ e. The normal

equations can be written as (Greene, 2003, pp. 26–27; Lovell, 2006)

XT
1X1 XT

1X2

XT
2X1 XT

2X2

" #"

b1

b2

#

¼
XT

1y

XT
2y

" #

:

It can be shown that

b1 ¼ ðXT
1X1Þ

�1
XT

1 ðy�X2b2Þ:

IfXT
1X2 ¼ 0, then b1 ¼ ðXT

1X1Þ
�1
XT

1y. That is, if the matricesX1 andX2 are orthogonal, then b1 can be obtained by regressing y

on X1. Similarly, b2 can be obtained by regressing y on X2. It can easily be shown that

b2 ¼ ðXT
2M1X2Þ

�1ðXT
2M1yÞ;

where M1 ¼ ðI�X1ðX
T
1X1Þ

�1
XT

1 Þ so that M1y is a vector of residuals from a regression of y on X1.

Note thatM1X2 is amatrix of residuals obtained by regressingX2 onX1. The computations described here form the basis of the

well-knownFrisch–WaughTheorem,which states thatb2 can be obtained by regressing the residuals from a regression of y onX1

with the residuals obtained by regressingX2onX1.One application of this result is in the derivation of the formof the least squares

estimators in the fixed effects (LSDV) model, which will be discussed in Chapter 7.

1.6 GOODNESS OF FIT

Two commonly used goodness-of-fit statistics used are the coefficient of determination (R2) and the adjusted coefficient of

determination (R2
A). R

2 is defined as

R2 ¼
SSR

SST
¼ 1�

SSE

SST
:
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It measures the amount of variability in the response, y, that is explained by including the regressors x1; x2; . . . ; xk in the model.

Due to the nature of its construction, we have 0�R2� 1. Although higher values (values closer to 1) are desired, a large value

of R2 does not necessarily imply that the regression model is a good one. Adding a variable to the model will always increase

R
2 regardless of whether the additional variable is statistically significant or not. In other words,R2 can be artificially inflated by

overfitting the model.

To see this, consider themodel y¼X1b1þ X2b2þU. Here, y is a n�1 vector of observations,X1 is the n� k1 datamatrixb1

is a vector of k1 coefficients,X2is the n� k2 data matrix with k2 added variables, b2 is a vector of k2 coefficients, andU is a n�1

random vector. Using the Frisch–Waugh theorem, we can show that

b̂2 ¼
�

XT
2MX2

��1
XT

2My ¼
�

X2*
T X2*

��1
X2*
T y*:

Here,X2* ¼ MX2; y* ¼ My, andM ¼ I�X1ðX
T
1X1Þ

�1
XT

1 . That is,X2* and y* are residual vectors of the regression ofX2 and

y on X1. We can invoke the Frisch–Waugh theorem again to get an expression for b̂1. That is, b̂1 ¼
�

XT
1X1

��1
XT

1

�

y�X2 b̂2

�

.

Using elementary algebra, we can simplify this expression to get b̂1 ¼ b�
�

XT
1X1

��1
XT

1X2 b̂2, where b ¼
�

XT
1X1

��1
XT

1y.

Next, note that u ¼ y�X1 b̂1�X2 b̂2. We can substitute the expression of b̂1 in this to get Û ¼ u ¼ e�MX2b̂2 ¼ e�X2*b̂2. The

sums of squares of error for the extra variable model is therefore given by

uTu ¼ eTeþ b̂T
2

�

XT
2*X2*

�

b̂2�2b̂2X
T
2*e ¼ eTe þ b̂T

2

�

XT
2*X2*

�

b̂2�2b̂T
2X

T
2*y*:

Here, e is the residual y�X1b or My¼ y*. We can now, manipulate b̂2 to get

XT
2*y* ¼

�

XT
2*X2*

�

b̂2 and

uTu ¼ eTe�b̂T
2

�

XT
2*X2*

�

b̂2 � eTe:

Dividing both sides by the total sums of squares, yTM0y, we get

uTu

yTM0y
�

eTe

yTM0y
) R2

X1;X2
� R2

X1
;

whereM0¼ I� i(iTi)�1 iT. See Greene (2003, p. 30) for a proof for the casewhen a single variable is added to an existingmodel.

Thus, it is possible for models to have a high R2 yet yield poor predictions of new observations for the mean response. It is for

this reason thatmanypractitioners also use the adjusted coefficient of variation,R2
A,which adjustsR

2with respect to the number of

explanatory variables in the model. It is defined as

R2
A ¼ 1�

SSE=ðn�k�1Þ

SST=ðn�1Þ
¼ 1�

n�1

n�k�1

� �

ð1�R2Þ:

In general, it will increase onlywhen significant terms that improve themodel are added to themodel. On the other hand, it will

decreasewith the addition of nonsignificant terms to themodel. Therefore, it will always be less than or equal toR2.When the two

R2 measures differ dramatically, there is a good chance that nonsignificant terms have been added to the model.

1.7 HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

The global F test checks the hypothesis that at least one of the k regressors has a significant effect on the response. It does not

indicatewhich explanatory variable has an effect. It is therefore essential to conduct hypothesis tests on the individual coefficients

bj(j¼ 1; . . . ; k). The hypothesis statements are H0:bj¼ 0 and H1:bj 6¼ 0. The test statistic for testing this is the ratio of the least

squares estimate and the standard error of the estimate. That is,

t0 ¼
bj

s:e:ðbjÞ
; j ¼ 1; . . . ; k;
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where s.e.(bj) is the standard error associated with bj and is defined as s:e:ðbjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi

ŝ2Cjj

q

, where Cjj is the jth diagonal element

of (XTX)�1 corresponding to bj. Under the assumption that the null hypothesis is true, the test statistic t0 is distributed as a

tdistributionwithn� k� 1degrees of freedom.That is, t0� tn�k� 1. Thepvalue is defined as before. That is, Pr(jt0j>tn�k� 1).We

reject thenull hypothesis if thepvalue<a,wherea is the type I error.Note that this test is amarginal test sincebjdependsonall the

other regressors xi(i 6¼ j) that are in the model (see the earlier discussion on interpreting the coefficients).

Hypothesis tests are typically followed by the calculation of confidence intervals. A 100(1�a)% confidence interval for the

regression coefficient bj(j¼ 1; . . . ; k) is given by

bj�ta=2;n�k�1s:e:ðbjÞ � bj � bj þ ta=2;n�k�1s:e:ðbjÞ:

Note that these confidence intervals can also be used to conduct the hypothesis tests. In particular, if the range of values for the

confidence interval includes zero, then we would fail to reject the null hypothesis.

Two other confidence intervals of interest are the confidence interval for themean responseEðyjx0Þ and the prediction interval
for an observation selected from the conditional distribution f ðyjx0Þ, where without loss of generality f ð*Þ is assumed to be

normally distributed. Also note that x0 is the setting of the explanatory variables at which the distribution of y needs to be

evaluated. Notice that the mean of y at a given value of x¼ x0 is given by Eðyjx0Þ ¼ xT0b.

An unbiased estimator for themean response is x0
Tb. That is,E(x0

TbjX)¼ x0
Tb. It can be shown that the variance of this unbiased

estimator is given by s2xT0 ðX
TXÞ�1

x0. Using the previously defined estimator for s2 (see Section 1.3.1 ), we can construct a

100(1� a)% confidence interval on the mean response as

ŷðx0Þ� t
a=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2xT0 ðX
TXÞ�1

x0

q

� myjx0 � ŷðx0Þþ t
a=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2xT0 ðX
TXÞ�1

x0

q

:

Using a similar method, one can easily construct a 100(1�a)% prediction interval for a future observation x0 as

ŷðx0Þ� t
a=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2ð1þ xT0 ðX
TXÞ�1

x0Þ

q

� yðx0Þ � ŷðx0Þþ t
a=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2ð1þ xT0 ðX
TXÞ�1

x0Þ

q

:

In both these cases, the observation vector x0 is defined as x0¼ (1; x01; x02; . . . ; x0k), where the “1” is added to account for the

intercept term.

Notice that the width of the prediction interval at point x0 is wider than the width of the confidence interval for the mean

response atx0. This is easy to see because the standard error used for the prediction interval is larger than the standard error used for

themean response interval. This shouldmake intuitive sense also since it is easier to predict themean of a distribution than it is to

predict a future value from the same distribution.

1.8 SOME FURTHER NOTES

Akey step in regression analysis is residual analysis to check the least squares assumptions. Violation of one ormore assumptions

can render the estimation and any subsequent hypothesis tests meaningless. As stated earlier, the least squares residuals can be

computed as e¼ y�Xb. Simple residual plots can be used to check a number of assumptions.Chapter 2 shows how these plots are

constructed. Here, we simply outline the different types of residual plots that can be used.

1. A plot of the residuals in time order can be used to check for the presence of autocorrelation. This plot can also be used to

check for outliers.

2. A plot of the residuals versus the predicted value can be used to check the assumption of random, independently distributed

errors. This plot (and the residuals versus regressors plots) can be used to check for the presence of heteroscedasticity. This

plot can also be used to check for outliers and influential observations.

3. The normal probability plot of the residuals can be used to check any violations from the assumption of normally

distributed random errors.
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2
REGRESSIONANALYSIS USING PROC IML AND PROCREG

2.1 INTRODUCTION

We discussed basic regression concepts and least squares theory in Chapter 1. This chapter deals with conducting regression

analysis calculations in SAS.Wewill show the computations by using both Proc IML and Proc Reg. Even though the results from

both procedures are identical, usingProc IMLallows one to understand themechanics behind the calculations thatwere discussed

in the previous chapter. Freund and Littell (2000) offer an in-depth coverage of how SAS can be used to conduct regression

analysis in SAS. This chapter discusses the basic elements of Proc Reg as it relates to conducting regression analysis.

To illustrate the computations in SAS, we will make use of the investment equation data set provided in Greene (2003). The

source of the data is attributed to the Economic Report of the President published by the U.S. Government Printing Office in

Washington, D.C. The author�s description of the problem appears on page 21 of his text and is summarized here. The objective is

to estimate an investment equation by usingGNP (gross national product), and a time trend variableT. Note thatT is not part of the

original data set but is created in the data step statement in SAS. Initially, we ignore the variables Interest Rate and Inflation Rate

since our purpose here is to illustrate how the computations canbe carried out usingSAS.Additional variables canbe incorporated

into the analysis with a few minor modifications of the program. We will first discuss conducting the analysis in Proc IML.

2.2 REGRESSION ANALYSIS USING PROC IML

2.2.1 Reading the Data

The source data can be read in a number of different ways.We decided to create temporary SAS data sets from the raw data stored

in Excel. However, we could easily have entered the data directly within the data step statement since the size of data set is small.

The Proc Import statement reads the raw data set and creates a SAS temporary data set named invst_equation. Using the approach

taken byGreene (2003), the data step statement that follows creates a trend variableT, and it also converts thevariables investment

and GNP to real terms by dividing them by the CPI (consumer price index). These two variables are then scaled so that the

measurements are now scaled in terms of trillions of dollars. In a subsequent example,wewillmake full use of the investment data

set by regressing real investment against a constant, a trend variable, GNP, interest rate, and inflation rate that is computed as a

percentage change in the CPI.

proc import out=invst_equation

datafile="C:\Temp\Invest_Data"

dbms=Excel
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replace;

getnames=yes;

run;

data invst_equation;

set invst_equation;

T=_n_;

Real_GNP=GNP/CPI*10);

Real_Invest=Invest/(CPI*10);

run;

2.2.2 Analyzing the Data Using Proc IML

Proc IML begins with the statement “Proc IML;” and ends with the statement “Run;”. The analysis statements are written

between these two. The first step is to read the temporary SAS data set variables into a matrix. In our example, the data matrix

X contains two columns: T and Real_GNP. Of course, we also need a column of 1�s to account for the intercept term. The

response vector y contains the variable Real_Invest. The following statements are needed to create the data matrix and the

response vector.

use invst_equation;

read all var {’T’ ’Real_GNP’} into X;

read all var {’Real_Invest’} into Y;

Note that the model degrees of freedom are the number of columns of X excluding the column of 1�s. Therefore, it is a

good idea to store the number of columns in X at this stage. The number of rows and columns of the data matrix are

calculated as follows:

n=nrow(X);

k=ncol(X);

A column of 1�s is now concatenated to the data matrix to get the matrix in analysis ready format.

X=J(n,1,1)||X;

The vector of coefficients can now easily be calculated by using the following set of commands:

C=inv(X‘*X);

B_Hat=C*X‘*Y;

Note that we decided to compute (XT X)�1 separately since this matrix is used frequently in other computations, and it is

convenient to have it calculated just once and ready to use.

With the coefficient vector computed, we can now focus our attention on creating the ANOVA table. The following

commands compute the sums of squares (regression, error, total), the error degrees of freedom, the mean squares, and the F

statistic.

SSE=y‘*y-B_Hat‘*X‘*Y;

DFE=n-k-1;

MSE=SSE/DFE;

Mean_Y=Sum(Y)/n;

SSR=B_Hat‘*X‘*Y-n*Mean_Y**2;

MSR=SSR/k;

SST=SSR+SSE;

F=MSR/MSE;

Next, we calculate the coefficient of determination (R2) and the adjusted coefficient of determination (adj R2).
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R_Square=SSR/SST;

Adj_R_Square=1-(n-1)/(n-k-1) * (1-R_Square);

We also need to calculate the standard errors of the regression estimates in order to compute the t-statistic values and the

corresponding p values. The function PROBTwill calculate the probability that a random variable from the t distribution with df

degrees of freedom will exceed a given t value. Since the function takes in only positive values of t, we need to use the absolute

value function abs. The value obtained is multiplied by ‘2’ to get the p value for a two-sided test.

SE=SQRT(vecdiag(C)#MSE);

T=B_Hat/SE;

PROBT=2*(1-CDF(’T’, ABS(T), DFE));

With the key statistics calculated, we can start focusing our attention on generating the output. We have found the

following set of commands useful in creating a concise output.

ANOVA_Table=(k||SSR||MSR||F)//(DFE||SSE||MSE||{.});

STATS_Table=B_Hat||SE||T||PROBT;

Print ’Regression Results for the Investment

Equation’;

Print ANOVA_Table (|Colname={DF SS MS F} rowname={Model

Error} format=8.4|);

Print ’Parameter Estimates’;

Print STATS_Table (|Colname={BHAT SE T PROBT} rowname={INT

T Real_GNP} format=8.4|);

Print ’The value of R-Square is ’ R_Square; (1 format = 8.41);

Print ’The value of Adj R-Square is ’ Adj_R_Square;

(1 format = 8.41);

These statements produce the results given in Output 2.1. The results of the analysis will be discussed later.

Regression Results for the Investment Equation

ANOVA_TABLE

DF SS MS F

MODEL 2.0000 0.0156 0.0078 143.6729

ERROR 12.0000 0.0007 0.0001 .

Parameter Estimates

STATS_TABLE

BHAT SE T PROBT

INT -0.5002 0.0603 -8.2909 0.0000

T -0.0172 0.0021 -8.0305 0.0000

REAL_GNP 0.6536 0.0598 10.9294 0.0000

R_SQUARE

The value of R-Square is 0.9599

ADJ_R_SQUARE

The value of Adj R-Square is 0.9532

OUTPUT 2.1. Proc IML analysis of the investment data.
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2.3 ANALYZING THE DATA USING PROC REG

This section deals with analyzing the investment data using Proc Reg. The general form of the statements for this procedure is

Proc Reg Data=dataset;

Model Dependent Variable(s) = Independent Variable(s)/Model

Options;

Run;

SeeFreund andLittell (2000) for details onother options for ProcRegand their applications.Wewillmakeuse of only a limited

set of options that will help us achieve our objectives. The dependent variable in the investment data is Real Investment, and the

independent variables are Real GNP and the time trend T. The SAS statements required to run the analysis are

Proc Reg Data=invst_equation;

Model Real_Invest=Real_GNP T;

Run;

The analysis results are given in Output 2.2. Notice that the output from Proc Reg matches the output from Proc IML.

2.3.1 Interpretation of the Output (Freund and Littell, 2000, pp. 17–24)

The first few lines of the output display the name of the model (Model 1, which can be changed to a more appropriate name), the

dependent variable, and the number of observations read and used. These two values will be equal unless there are missing

observations in the data set for either the dependent or the independent variables or both. The investment equation data set has a

total of 15 observations and there are no missing observations.

The analysis of variance table lists the standard output one would expect to find in an ANOVA table: the sources of variation,

the degrees of freedom, the sums of squares for the different sources of variation, the mean squares associated with these, the

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

Number of Observations Read 15

Number of Observations Used 15

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 0.01564 0.00782 143.67 <0.0001

Error 12 0.00065315 0.00005443

Corrected Total 14 0.01629

Root MSE 0.00738 R-Square 0.9599

Dependent Mean 0.20343 Adj R-Sq 0.9532

Coeff Var 3.62655

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 -0.50022 0.06033 -8.29 <0.0001

<0.0001

<0.0001Real_GNP 1 0.65358 0.05980 10.93

T 1 -0.01721 0.00214 -8.03

OUTPUT 2.2. Proc Reg analysis of the investment data.
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F-statistic value, and the pvalue.As discussed inChapter 1, the degrees of freedom for themodel are k, the number of independent

variables, which in this example is 2. The degrees of freedom for the error sums of squares are n� k� 1,which is 15� 2� 1or 12.

The total degrees of freedom are the sum of the model and error degrees of freedom or n� 1, the number of nonmissing

observations minus one. In this example, the total degrees of freedom are 14.

i. In Chapter 1, we saw that the total sums of squares can be partitioned into themodel and the error sums of squares. That is,

the Corrected Total Sums of Squares¼Model Sums of Squares þ Error Sums of Squares. From theANOVA table, we see

that 0.01564 þ 0.00065 equals 0.01629.

ii. Themean squares are calculated by dividing the sums of squares by their corresponding degrees of freedom. If themodel is

correctly specified, then themean square for error is an unbiased estimate ofs2, the variance of e, and the error term of the

linear model. From the ANOVA table,

MSR ¼ 0:01564

2
¼ 0:00782

and

MSE ¼ 0:00065315

12
¼ 0:00005443:

iii. The F-statistic value is the ratio of the mean square for regression and the mean square for error. From the ANOVA table,

F ¼ 0:00782

0:00005443
¼ 143:67:

It tests the hypothesis that

H0 : b1 ¼ b2 ¼ 0;

H1 : At least one of the b’s 6¼ 0:

Here,b1 andb2 are the true regression coefficients for Real GNP and Trend. Under the assumption that the null hypothesis

is true,

F ¼ MSR

MSE
� F2;12

and the

p value ¼ PrðF > F2;12Þ ¼ PrðF > 143:67Þ � 0:

The p value indicates that there is almost no chance of obtaining anF-statistic value as high or higher than 143.67 under the

null hypothesis. Therefore, the null hypothesis is rejected and we claim that the overall model is significant.

The root MSE is the square root of the mean square error and is an estimate of the standard deviation of

eð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:00005443
p

¼ 0:00738Þ. The dependent mean is simply the mean of the dependent variable Real Invest. Coeff Var is the

coefficient of variation and is defined as

root�mse

dependent�mean
� 100:

As discussed inMeyers (1990, p. 40), this statistic is scale free and can therefore be used in place of the root mean square error

(which is not scale free) to assess the quality of the model fit. To see how this is interpreted, consider the investment data set

example. In this example, the coefficient of variation is 3.63%, which implies that the dispersion around the least squares line as

measured by the root mean square error is 3.63% of the overall mean of Real Invest.
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The coefficient of determination (R2) is 96%. This implies that the regression model explains 96% of the variation in the

dependent variable. As explained in Chapter 1, it is calculated by dividing themodel sums of squares by the total sums of squares

and expressing the result as a percentage (0.01564/0.01629¼ 0.96). The adjusted R2 value is an alternative to the R2 value and

takes the number of parameters into account. In our example, the adjusted R
2¼ 95.32%. This is calculated as

R2
A ¼ 1� SSE=ðn�k�1Þ

SST=ðn�1Þ ¼ 1�
 

n�1

n�k�1

!

ð1�R2Þ

¼ 1� 14

12
� ð1� 0:96Þ ¼ 0:9533:

Notice that the values of R2 and adjusted R2 are very close.

The parameter estimates table lists the intercept and the independent variables along with the estimated values of the

coefficients, their standard errors, the t-statistic values, and the p values.

i. The first column gives the estimated values of the regression coefficients. From these, we canwrite the estimatedmodel as

Estimated Real_Invest¼�0.50 þ 0.65 Real_GNP – 0.017 T.

The coefficient for Real_GNP is positive, indicating a positive correlation between it and Real_Invest. The coefficient

value of 0.65 indicates that an increase of one trillion dollars of Real GNPwould lead to an average of 0.65 trillion dollars

of Real Investment (Greene, 2003). Here, we have to assume that Time (T) is held constant.

ii. The standard error column gives the standard errors for the coefficient estimates. These values are the square root of the

diagonal elements of ŝ2ðXT XÞ�1
. These are used to conduct hypothesis tests for the regression parameters and to

construct confidence intervals.

iii. The t value column lists the t statistics used for testing

H0 : bi ¼ 0;

H1 : bi 6¼ 0; i ¼ 1; 2:

These are calculatedbydividing the estimatedcoefficient valuesby their corresponding standarderror values. For example, the

t value corresponding to the coefficient forReal_GNP is 0.65358/0.05980¼ 10.93. The last column gives the p values associated

with the t-test statistic values.As anexample, thepvalue forReal_GNP is givenbyP(j t j>10.93).Using the t tablewith12degrees

of freedom,we see that thepvalue forReal_GNP is zero, indicating high significance. In the real investment example, thepvalues

for both independent variables offer strong evidence against the null hypothesis.

2.4 EXTENDING THE INVESTMENT EQUATION MODEL TO THE COMPLETE DATA SET

We will now extend this analysis by running a regression on the complete Investment Equation data set. Note that the CPI in

1967 was recorded as 79.06 (Greene, 2003, p. 947) and that Inflation Rate is defined as the percentage change in CPI. The

following data step gets the data in analysis-ready format.

Data invst_equation;

set invst_equation;

T=_n_;

Real_GNP=GNP/(CPI*10);

Real_Invest=Invest/(CPI*10);

CPI0=79.06;

Inflation_Rate=100*((CPI-Lag(CPI))/Lag(CPI));

if inflation_rate=. then inflation_rate=100*((CPI-

79.06)/79.06);

drop Year GNP Invest CPI CPI0;

run;
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The data can be analyzed using Proc IML or Proc Reg with only minor modifications of the code already presented. The

following Proc Reg statements can be used. The analysis results are given in Output 2.3.

Proc reg data=invst_equation;

model Real_Invest=Real_GNP T Interest Inflation_Rate;

Run;

The output indicates that both the Real_GNP and the time trend T are highly significant at the 0.05 type I error level. The

variable Interest is significant at the 0.10 type I error rate, whereas Inflation Rate is not significant. The coefficients for both

Real_GNP and T have the same signs as their signs in the model where they were used by themselves. The coefficient values for

these variables are also very close to the values obtained in the earlier analysis. Notice that the values of the two coefficients of

determination terms have now increased slightly.

2.5 PLOTTING THE DATA

Preliminary investigation into the nature of the correlation between the explanatory anddependent variables can easily be done by

using simple scatter plots. In fact,we suggest that plotting the independent variables versus the dependent variable be the first step

in any regression analysis project. A simple scatter plot offers a quick snapshot of the underlying relationship between the two

variables and helps in determining the model terms that should be used. For instance, it will allow us to determine if a

transformation of the independent variable or dependent variable or both should be used. SAS offers several techniques for

producing bivariate plots. The simplest way of plotting two variables is by using the Proc Plot procedure. The general statements

for this procedure are as follows:

Proc Plot data=dataset;

Plot dependent_variable*independent_variable;

Run;

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

Number of Observations Read 15

Number of Observations Used 15

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 4 0.01586 0.00397 91.83 <0.0001

Error 10 0.00043182 0.00004318

Corrected Total 14 0.01629

Root MSE 0.00657 R-Square 0.9735

Dependent Mean 0.20343 Adj R-Sq 0.9629

Coeff Var 3.23018

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –0.50907 0.05393 -9.44 <0.0001

Real_GNP 1 0.67030 0.05380 12.46 <0.0001

T 1 -0.01659 0.00193 -8.60 <0.0001

Interest Interest 1 -0.00243 0.00119 -2.03 0.0694

Inflation_Rate 1 0.00006320 0.00132 0.05 0.9627

OUTPUT 2.3. Proc Reg analysis of complete investment equation data.
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ProcGplot is recommended if the intent is to generate high-resolution graphs. Explaining all possible features of ProcGplot is

beyond the scope of this book. However, we have found the following set of statements adequate for producing the basic high-

resolution plots. The following statements produce a plot of Real_Invest versus Real_GNP (see Figure 2.1). Note that the size of

the plotted points and the font size of the title can be adjusted by changing the “height¼” and “h¼” options.

proc gplot data=invst_equation;

plot Real_Invest*Real_GNP

/haxis=axis1

vaxis=axis2;

symbol1 value=dot c=black height=2;

axis1 label=(‘Real_GNP’);

axis2 label=(angle=90 ‘Real_Invest’);

title2 h=4 ‘Study of Real Investment versus GNP’;

run;

The statements can be modified to produce a similar plot for Real_Invest versus Time (T) (Figure 2.2).

Bothplots indicate a positivecorrelation between the independent anddependent variables and alsodonot indicate anyoutliers

or influential points. Later in this chapter, wewill discuss constructing plots for the confidence intervals of themean response and

of predictions. We will also look at some key residual plots to help us validate the assumptions of the linear model.

2.6 CORRELATION BETWEEN VARIABLES

For models with several independent variables, it is often useful to examine relationships between the independent variables and

between the independent and dependent variables. This is accomplished by using Proc Corr procedure. The general form of this

procedure is

Proc Corr data=dataset;

Var variables;

Run;

FIGURE 2.1. Plot of Real_Invest versus Real_GNP.
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For example, if wewant to study the correlation between all the variables in the investment equation model, wewould use the

statements

proc corr data=invst_equation;

var Real_Invest Real_GNP T;

Run;

The analysis results are given in Output 2.4.

The first part of the output simply gives descriptive statistics of the variables in the model. The correlation coefficients along

with their p values are given in the second part of the output. Notice that the estimated correlation between Real_Invest and

Real_GNP is 0.86with a highly significantpvalue. The correlation betweenTimeTrend andReal_Invest is 0.75 and is also highly

significant. Note that the correlation between the independent variables is 0.98, which points to multicollinearity problems with

FIGURE 2.2. Plot of Real_Invest versus Time.

The CORR ProcedureThe CORR Procedure

3  Variables: Real_Invest Real_GNP    T

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Real_Invest 15 0.20343 0.03411 3.05151 0.15768 0.25884

Real_GNP 15 1.28731 0.16030 19.30969 1.05815 1.50258

T 15 8.00000 4.47214 120.00000 1.00000 15.00000

Pearson Correlation Coefficients, N = 15
Prob > |r| under H0: Rho=0

Real_Invest Real_GNP T

Real_Invest 1.00000 0.86283
<0.0001

<0.0001

0.74891
0.0013

Real_GNP 0.86283 1.00000 0.97862

T 0.74891
0.0013

0.97862 1.00000
<0.0001

<0.0001

OUTPUT 2.4. Correlation analysis of the investment equation data.
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this data set. The problem of multicollinearity in regression analysis will be dealt with in later sections. However, notice that the

scatter plot betweenReal_Invest andTimeTrend indicated a positive relationship between the two (the ProcCorr output confirms

this), but the regression coefficient associated with Time Trend is negative. Such contradictions sometimes occur because of

multicollinearity.

2.7 PREDICTIONS OF THE DEPENDENT VARIABLE

One of the main objectives of regression analysis is to compute predicted values of the dependent variable at given values of

the explanatory variables. It is also of interest to calculate the standard errors of these predicted values, confidence interval

on the mean response, and prediction intervals. The following SAS statements can be used to generate these statistics

(Freund and Littel, 2000, pp. 24–27).

Proc Reg Data=invst_equation;

Model Real_Invest=Real_GNP T/p clm cli r;

Run;

The option ‘p’ calculates the predicted values and their standard errors, ‘clm’ calculates 95% confidence interval on themean

response, ‘cli’ generates 95%prediction intervals, and ‘r’ calculates the residuals andconductsbasic residuals analysis.Theabove

statements produce the results given in Output 2.5.

The first set of theoutput consists of the usual ProcRegoutput seen earlier.Thenext set of output contains the analysis results of

interest for this section. The column labeled Dependent Variable gives the observed values of the dependent variable, which is

Real_Invest. The next column gives the predicted value of the dependent variable ŷ and is the result of the ‘p’ option in Proc Reg.

The next three columns are the result of using the ‘clm’ option. We get the standard error of the conditional mean at each

observation, E(y j x0), and the 95% confidence interval for this. As explained in Chapter 1, the standard error of this conditional

expectation is given by ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xT0 ðXT XÞ�1
xT0

q

. Therefore, the 95% confidence interval is given by

ŷ� t0:025; n�k�1ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xTo ðXTXÞ�1
xT0

q

:

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

The REG Procedure
Model: MODEL1

Dependent Variable: Real_Invest

Number of Observations Read 15

Number of Observations Used 15

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 0.01564 0.00782 143.67 <0.0001

Error 12 0.00065315 0.00005443

Corrected Total 14 0.01629

Root MSE 0.00738 R-Square 0.9599

Dependent Mean 0.20343 Adj R-Sq 0.9532

Coeff Var 3.62655

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 -0.50022 0.06033 -8.29 <0.0001

<0.0001Real_GNP 1 0.65358 0.05980 10.93

T 1 -0.01721 0.00214 -8.03 <0.0001

OUTPUT 2.5. Prediction and mean response intervals for the investment equation data.
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Here, x0 is the rowvector ofX corresponding to a single observation and ŝ is the rootmean square error. The residual column is

also produced by the ‘p’ option and is simply

observed----value�predicted----value:

The ‘cli’ option produces the 95% prediction intervals corresponding to each row x0 of X. As explained in Chapter 1, this is

calculated by using the formula

Output Statistics

Obs
Dependent
Variable

Predicted
Value

Std Error
Mean Predict 95% CL Mean

95%
CL Predict Residual

Std Error
Residual

Student
Residual

1 0.1615 0.1742 0.003757 0.1660 0.1823 0.1561 0.1922 -0.0127 0.00635 -1.993

2 0.1720 0.1762 0.003324 0.1690 0.1835 0.1586 0.1939 -0.004215 0.00659 -0.640

3 0.1577 0.1576 0.003314 0.1504 0.1648 0.1400 0.1752 0.0000746 0.00659 0.0113

4 0.1733 0.1645 0.002984 0.1580 0.1710 0.1472 0.1818 0.008823 0.00675 1.308

5 0.1950 0.1888 0.002330 0.1837 0.1939 0.1719 0.2056 0.006207 0.00700 0.887

6 0.2173 0.2163 0.003055 0.2096 0.2229 0.1989 0.2337 0.001035 0.00672 0.154

7 0.1987 0.1938 0.001988 0.1895 0.1981 0.1772 0.2105 0.004913 0.00710 0.692

8 0.1638 0.1670 0.003839 0.1586 0.1754 0.1489 0.1851 -0.003161 0.00630 -0.502

9 0.1949 0.1933 0.002433 0.1880 0.1986 0.1764 0.2102 0.001559 0.00696 0.224

10 0.2314 0.2229 0.002223 0.2180 0.2277 0.2061 0.2397 0.008547 0.00703 1.215

11 0.2570 0.2507 0.003599 0.2428 0.2585 0.2328 0.2685 0.006360 0.00644 0.988

12 0.2588 0.2602 0.004045 0.2514 0.2690 0.2419 0.2785 -0.001348 0.00617 -0.219

13 0.2252 0.2394 0.002990 0.2328 0.2459 0.2220 0.2567 -0.0142 0.00674 -2.100

14 0.2412 0.2409 0.003272 0.2337 0.2480 0.2233 0.2584 0.000314 0.00661 0.0475

15 0.2036 0.2059 0.004995 0.1950 0.2168 0.1865 0.2253 -0.002290 0.00543 -0.422

Output Statistics

Obs -2-1 0 1 2
Cook's

D

1 |   ***|      | 0.464

2 |     *|      | 0.035

3 |      |      | 0.000

4 |      |**    | 0.112

5 |      |*     | 0.029

6 |      |      | 0.002

7 |      |*     | 0.012

8 |     *|      | 0.031

9 |      |      | 0.002

10 |      |**    | 0.049

11 |      |*     | 0.102

12 |      |      | 0.007

13 |  ****|      | 0.289

14 |      |      | 0.000

15 |      |      | 0.050

Sum of Residuals 0

Sum of Squared Residuals 0.00065315

Predicted Residual SS (PRESS) 0.00099715

OUTPUT 2.5. (Continued)

ŷ� t0:025; n�k�1ŝ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ xT0 ðXT XÞ�1
xT0

q

:
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The ‘r’ option in Proc Reg does a residual analysis and produces the last five columns of the output. The actual residuals along

with their corresponding standard errors are reported. This is followed by the standardized residual that is defined as e/se. Here, e

is the residual, and se is the standard deviation of the residuals and is given by the square root of se ¼ ð1�hiiÞŝ2 (Meyers, 1990

p. 220), where hii is the ith diagonal element of X(XTX)�1XT and ŝ2 is an estimate of s2. Note that the standardized residuals

corresponding to the 1st and 13th observations appear to be high. The graph columns of the output are followed by Cook�s

statistics, which measure how influential a point is. Cook�s statistic or Cook�s D is a measure of one change in the parameter

estimate b̂when the ith observation is deleted. If we define di ¼ b̂�b̂ðiÞ, where b̂ðiÞ is the parameter estimate onewithout the ith

observation, then Cook�s D for the ith observation is defined as (Meyers, 1990, p. 260)

Cook’s Di ¼
dTi ðXT XÞ�1

di

ðk þ 1Þŝ2
;

where k is the number of parameters in the model. A large value of the Cook�s D statistic is typically used to declare a point

influential.

Confidence intervals for the mean response and predicted values can be plotted fairly easily using Proc Gplot or by using the

plotting features within Proc Reg. Here, we give an example of plotting the two confidence intervals within the Proc Reg

statements. The following statements produce the plot for the mean interval (Freund and Littell, 2000, pp. 45–46).

Proc Reg Data=invst_equation;

Model Real_Invest=Real_GNP T;

plot p.*p. uclm.*p. lclm.*p./overlay;

run;

These statements produce the results given in Figure 2.3.

The prediction interval can be plotted by simply replacing the plot statements with

plot p.*p. ucl.*p. lcl.*p./overlay;

Real_Invest = -0.5002 +0.6536 Real_GNP -0.0172 T

N
15

Rsq
0.9599

AdjRsq
0.9532

RMSE
0.0074
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Plot PRED*PRED U95M*PRED L95M*PRED

FIGURE 2.3. Proc Reg output with graphs of mean intervals.
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Of course, one can have both plot statements in the Proc Reg module to simultaneously create both plots. The prediction

interval produced is given in Figure 2.4.

Notice that the prediction interval iswider than the confidence interval for themean response since thevariability in predicting

a future observation is higher than the variability in predicting the mean response.

2.8 RESIDUAL ANALYSIS

Residual analysis is done to check the various assumptions underlying regression analysis. Failure of one or more assumptions

may render a model useless for the purpose of hypothesis testing and predictions. The residual analysis is typically done by

plotting the residuals. Commonly used residual graphs are

a. Residuals plotted in time order

b. Residuals versus the predicted value

c. Normal probability plot of the residuals.

We will use the investment equation regression analysis to illustrate creating these plots in SAS. To plot the residuals in time

order, we have simply plotted the residuals versus the time trend variable since this captures the time order. The following

statement added to the Proc Reg module will generate this plot (Freund and Littell, 2000, pp. 49–50).

plot r.*T;

Replacing “r.” by “student.” will create a trend chart of the standardized residuals (Figure 2.5).

Note that barring points 1 and 13, the residuals appear to be random over time. These two points were also highlighted in the

influential point�s analysis. To generate the residuals versus predicted response plot, use

plot student.*p.;

or

plot r.*p.;

Real_Invest = -0.5002 +0.6536 Real_GNP -0.0172 T

N
15
Rsq
0.9599
AdjRsq
0.9532
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FIGURE 2.4. Proc Reg output with graphs of prediction intervals.
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Note that two residual points appear to be anomalies andmay need to be investigated further (Figure 2.6). It turns out that these

points are data points 1 and 13. An ideal graph here is a random scatter of plotted points. A funnel-shaped graph here indicates

heteroscedastic variance—that is, amodelwhere the variance is dependent upon the conditional expectationEðy jXÞ. Therefore,
as Eðy jXÞ changes, so does the variance.

To generate the normal probability plot of the residuals, we first create an output data set containing the residuals using the

following code:

proc reg data=invst_equation;

model Real_Invest=Real_GNP T;

output out=resid r=resid;

Run;

The output data set then serves as an input to the Proc Univariate module in the following statements. The “probplot/

normal(mu¼0 sigma¼1)” requests the calculated percentiles for the plots to be based on the standard normal distribution. It

should be apparent that this option can be used to request probability plots based on other distributions. The plot is produced

in Figure 2.7.

proc univariate data=resid;

var resid;

probplot/normal(mu=0 sigma=1);

run;

Note that barring the points around the 5th and 10th percentiles (which again are data points 1 and 13), the data appear to

fall on a straight line and therefore we can be fairly confident that the residuals are distributed as a standard Normal

distribution.

Real_Invest = -0.5002 +0.6536 Real_GNP -0.0172 T

N
15

Rsq
0.9599
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0.9532
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FIGURE 2.5. Plot of residuals versus time.
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Real_Invest = -0.5002 +0.6536 Real_GNP -0.0172 T

N
15

Rsq
0.9599

AdjRsq
0.9532
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FIGURE 2.6. Plot of residuals versus predicted values.
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FIGURE 2.7. Normal probability plot of the residuals.

RESIDUAL ANALYSIS 23



2.9 MULTICOLLINEARITY

The problem ofmulticollinearity was discussed earlier.We nowprovidemore details aboutmulticollinearity and discuss ways

of detecting it using Proc Reg. Multicollinearity is a situation where there is a high degree of correlation between the

explanatory variables in a model. This often arises in data mining projects (for example, in models to predict consumer

behavior) where several hundred variables are screened to determine a subset that appears to best predict the response of

interest. It may happen (and it often does) that many variables measure similar phenomena. As an example, consider modeling

the attrition behavior of consumers with respect to Auto&Home insurance products. Three variables that could be studied are

the number of premium changes, the number of positive premium changes, and the number of negative premium changes over

the life of the policy holder�s tenure with the company. We should expect the number of premium changes to be positively

correlated with the number of positive (negative) premium changes. Including all three in the model will result in

multicollinearity. So, what does multicollinearity do to our analysis results? First, note that the existence of multicollinearity

does not lead to violations of any of the fundamental assumptions of regression analysis that were discussed in Chapter 1. That

is, multicollinearity does not impact the estimation of the least squares estimator. However, it does limit the usefulness of the

results. We can illustrate this by means of a simple example involving regression analysis with two explanatory variables. It is

easy to show that the variance of the least squares estimator in this simple case is (Greene, 2003, p. 56)

VarðbkÞ ¼ s2

ð1�r212Þ
P

n

i¼1

ðxik � �xkÞ2
; k ¼ 1;2:

Here, r212 is the correlation between the two explanatory variables. It is clear that the higher the correlation between the two

variables, the higher the variance of the estimator bk. A consequence of the high variance is that explanatory variables that

in reality are correlated with the responsemay appear insignificant. That is, the t-statistic value corresponding to the estimator

will be underestimated. Another consequence are incorrect signs on the coefficients and/or really large coefficient values.

It can be shown that in a multiple regression with k explanatory variables, the variance of the least squares estimator bk can be

written as (Greene, 2003, p. 57)

VarðbkÞ ¼ s2

ð1�R2
kÞ
P

n

i¼1

ðxik��xkÞ2
; k ¼ 1; 2; . . . :

Here, R2
k is the R

2 value when xk is regressed against the remaining k� 1 explanatory variables. As discussed by the author,

a. The greater the correlation between xk and other variables, the higher the variance of bk.

b. The greater the variance in xk, the lower the variance of bk.

c. The better the model fit (the lower the s2), the lower the variance of bk.

We will make use of the gasoline consumption data from Greene (2003) to illustrate how multicollinearity in the data is

detected using SAS. The original source of this data set is the Economic Report of the President as published by the U.S.

Government Printing Office in Washington, D.C. The objective is to conduct a regression of gasoline consumption on the

price of gasoline, income, the price of new cars, and the price of used cars. All the variables were transformed using the log

transformation. The hypothesized model and a general explanation of the problem are given in Greene (2003, p. 12).

There are three sets of statistics that may be used to determine the severity ofmulticollinearity problem. These statistics are as

follows (Freund and Littell, 2000, p. 97; Meyer, 1990, pp. 369–370):

a. Comparing the significance of the overall model versus the significance of the individual parameter estimates.

b. Variance inflation factors (VIF) associated with each parameter estimate.

c. Analysis of the eigenvalues of the XT X matrix.

The following statements can be used to generate these statistics. The analysis results are given in Output 2.6.

proc reg data=clean_gas;

model Ln_G_Pop=Ln_Pg Ln_Inc Ln_Pnc Ln_Puc/vif collinoint;

run;
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The first two tables give the standardOLS regression statistics. The second table adds the variance inflation factor values for

the regressors. The third table gives information about XT X. From the first table, we see that the model is highly significant

with an F-statistic value of 176.71 and a p value< 0.0001. However, examining the second table reveals p values of the

regressors ranging from 0.032 to 0.126—much larger than the overall model significance. This is one problem associated with

multicollinearity, that is, high model significance without any corresponding highly significant explanatory variables.

However, notice that bothR2 values are high, indicating a goodmodel fit— a contradiction. The correlation coefficients among

the four regressors were created using Proc Corr and is given in Output 2.7.

The values below the coefficients are the p values associated with the null hypothesis of zero correlation. The regressors have

strong correlations among them, with the price of used and new cars having the highest correlation—in fact, the price of used and

newcars almost have a perfect correlation. It is not surprising, therefore, that thevariation inflation factors associatedwith the two

regressors is high (74.44, 84.22).

In general, variance inflation factors are useful in determining which variables contribute to multicollinearity. As given in

Meyers (1990, p. 127) and Freund andLittell (2000, p. 98), theVIF associatedwith the kth regressor is given by 1=ð1�R2
kÞ, where

R2
k is the R

2 value when xk is regressed against the other k� 1 regressors. It can be shown (see Freund andWilson, 1998) that the

variance of bk is inflated by a factor equal to the VIF of xk in the presence of multicollinearity than in the absence of

multicollinearity.Although there are no formal rules for determiningwhat a cutoff shouldbe for calling aVIF large, there are a few

recommended approaches. As discussed in Freund andLittell (2000),manypractitioners first compute 1/(1�R2),whereR2 is the

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 36

Number of Observations Used 36

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 0.78048 0.19512 243.18 <0.0001

Error 31 0.02487 0.00080237

Corrected Total 35 0.80535

Root MSE 0.02833 R-Square 0.9691

Dependent Mean -0.00371 Adj R-Sq 0.9651

Coeff Var -763.79427

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variance
Inflation

Intercept 1 -7.78916 0.35929 -21.68 <0.0001 0

Ln_Pg 1 -0.09788 0.02830 -3.46 0.0016 12.75251

Ln_Inc 1 2.11753 0.09875 21.44 4.20156

Ln_Pnc 1 0.12244 0.11208 1.09 0.2830 78.88071

Ln_Puc 1 -0.10220 0.06928 -1.48 0.1502 83.11980

<0.0001

Collinearity Diagnostics (intercept adjusted)

Proportion of Variation

Number Eigenvalue
Condition

Index Ln_Pg Ln_Inc Ln_Pnc Ln_Puc

1 3.71316 1.00000 0.00541 0.01429 0.00088422 0.00084893

2 0.22345 4.07647 0.01482 0.81855 0.00704 0.00351

3 0.05701 8.07008 0.96334 0.01903 0.02941 0.03434

4 0.00638 24.11934 0.01644 0.14813 0.96266 0.96130

OUTPUT 2.6. Multicollinearity output for the gasoline consumption data.

MULTICOLLINEARITY 25



coefficient of determination of the original model. In the example used, 1/(1�R2)¼ 23.81. Regressors with VIF values greater

than this are said to be more closely related to other independent variables than the dependent variable. In the gasoline

consumption example, both Ln_Pnc and Ln_Puc have VIFs greater than 23.81. Furthermore, both have large p values and are

therefore suspected of contributing to multicollinearity.

Let us now take a look at the output producedwith the COOLINOINToption. The output produced contains the eigenvalues of

the correlation matrix of the regressors along with the proportion of variation each regressor explains for the eigenvalues. The

eigenvalues are ranked fromhighest to lowest. The extent or severity of themulticollinearity problem is evident by examining the

size of the eigenvalues. For instance, big differences among the eigenvalues (large variability) indicate a higher degree of

multicollinearity. Furthermore, small eigenvalues indicate near-perfect linear dependencies or highmulticollinearity (Freundand

Littell, 2000, pp. 100–101;Meyers, 1990, p. 370). In the example used, the eigenvalues corresponding to car prices arevery small.

The square root of the ratio of the largest eigenvalue to the smallest eigenvalue is given by the last element in the condition number

column. In general, a large condition number indicates a high degree of multicollinearity. The condition number for the gasoline

consumption analysis is 24.13 and indicates a high degree ofmulticollinearity. SeeMeyer (1990, p. 370) for a good discussion of

condition numbers and how they are used to detect multicollinearity.

The Proportion of Variation output can be used to identify the variables which are highly correlated. The values measure the

percentage contribution of the variance of the estimates toward the eigenvalues (Freund andLittell, 2000). As stated earlier, small

eigenvalues indicate near-perfect correlations. As discussed inMeyer (2000, p. 372), a subset of explanatory variables with high

contributions to the eigenvalues should be suspected of being highly correlated.As an example, the 4th eigenvalue is very small in

magnitude (0.00638), and roughly 85%of the variation in bothLn_Puc andLn_Pnc is associatedwith this eigenvalue. Therefore,

these two are suspected (rightly so) of being highly correlated.

In reality,most econometric studieswill be impactedby somecorrelationbetween theexplanatoryvariables. Inour experience,

we have not found a clear and common fix to combat multicollinearity problems. An approach that we have found useful is to

isolate the variables that are highly correlated and then prioritize the variables in terms of their importance to business needs.

Variables that have a low priority are then dropped from further analysis. Of course, the prioritization of these variables is done

after discussionswith the business partners inmarketing, finance, and so on.Arbitrarily dropping a variable from themodel is not

recommended (see Chapter 4) as it may lead to omitted variables bias.

The CORR ProcedureThe CORR Procedure

4  Variables: Ln_Pg    Ln_Inc   Ln_Pnc   Ln_Puc

Simple Statistics

Variable N Mean Std Dev Sum Minimum Maximum

Ln_Pg 36 0.67409 0.60423 24.26740 -0.08992 1.41318

Ln_Inc 36 3.71423 0.09938 133.71230 3.50487 3.82196

Ln_Pnc 36 0.44320 0.37942 15.95514 -0.00904 1.03496

Ln_Puc 36 0.66361 0.63011 23.89004 -0.17913 1.65326

Pearson Correlation Coefficients, N = 36
Prob > |r| under H0: Rho=0

Ln_Pg Ln_Inc Ln_Pnc Ln_Puc

Ln_Pg 1.00000 0.84371
<0.0001

0.95477
<0.0001

0.95434

Ln_Inc 0.84371
<0.0001

1.00000 0.82502
<0.0001

0.84875
<0.0001

Ln_Pnc 0.95477
<0.0001

0.82502
<0.0001

1.00000 0.99255
<0.0001

Ln_Puc 0.95434
<0.0001

0.84875
<0.0001

0.99255
<0.0001

1.00000

<0.0001

OUTPUT 2.7. Proc Corr output of the independent variables in the gasoline consumption data.

26 REGRESSION ANALYSIS USING PROC IML AND PROC REG



3
HYPOTHESIS TESTING

3.1 INTRODUCTION

Chapters 1 and2 introduced the concept of hypothesis testing in regressionanalysis.We lookedat the “Global”F test,which tested

the hypothesis ofmodel significance.We also discussed the t tests for the individual coefficients in themodel.Wewill now extend

these to testing the joint hypothesis of the coefficients and also to hypothesis tests involving linear combinations of the

coefficients. This chapter will conclude with a discussion on testing data for structural breaks and for stability over time.

3.1.1 The General Linear Hypothesis

Hypothesis testing on regression parameters, subsets of parameters, or a linear combination of the parameters can be done by

considering a set of linear restrictions on the model y ¼ Xbþ e. These restrictions are of the form Cb ¼ d, where C is a j� k

matrix of j restrictions on the k parameters ðj � kÞ, b is the k � 1 vector of coefficients, and d is a j� 1 vector of constants. Note

that here k is used to denote the number of parameters in the regression model. The ith restriction equation can be written as

(Greene, 2003, p. 94; Meyers, 1990, p. 103)

ci1b1 þ ci2b2 þ . . .þ cikbk ¼ di for i ¼ 1; . . . ; j

To see the general form of C, consider the following hypothetical model:

y ¼ b1 þb2X1 þb3X2 þb4X3 þb5X4 þb6X5 þ «:

A linear restriction of the form b2�b3¼ 0 can be written as

0� b1 þ 1� b2�1� b3 þ 0� b4 þ 0� b5 þ 0� b6 ¼ 0:

The C matrix is therefore given by C ¼ 0 1 �1 0 0 0 �½ and the vector d is given by d¼ [0].
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3.1.2 Hypothesis Testing for the Linear Restrictions

We can very easily conduct a hypothesis test for a set of j linear restrictions on the linear model. The hypothesis statements

are

H0: Cb � d ¼ 0;

H1: Cb � d 6¼ 0:

To see how the hypothesis test statements arewritten, consider the same general linear model as before. To test the hypothesis

H0:b3¼ 0,we needC ¼ 0 0 1 0 0 0 �½ andd¼ [0]. Note that this is equivalent to the t tests for the individual parameters

that were discussed in Chapters 1 and 2. To test the hypothesis H0: b4¼b5, we needC ¼ 0 0 0 1 �1 0 �;½ and d¼ [0].

To test several linear restrictions H0: b2 þ b3¼ 1, b4 þ b6¼ 1, b5 þ b6¼ 0, we need

C ¼
0 1 1 0 0 0

0 0 0 1 0 1

0 0 0 0 1 1

2

6

4

3

7

5
and d ¼

1

1

0

2

6

4

3

7

5
ðGreene; 2003; p: 96Þ:

3.1.3 Testing the General Linear Hypothesis

We will now consider testing the general linear hypothesis. First note that the least squares estimator of Cb� d is given

byCb� d, where b is the least squares estimator of b. It can be shown that this estimator is unbiased. That is, E(Cb� d jX)¼
CE(b jX)� d¼Cb� d. Its variance–covariance matrix is given by

VarðCb�djXÞ ¼ VarðCbjXÞ
¼ CVarðbjXÞCT

¼ s2CðXTXÞ�1
CT :

The test statistic for the linear restrictionhypothesis is basedon theF statistic givenby (Greene, 2003, p. 97;Meyers, 1990, p. 105)

F ¼ ðCb�dÞTðCðXTXÞ�1
CTÞ�1ðCb�dÞ

s2j
;

where s2 is themean square error and is estimated from the regressionmodel. This test statistic can easily be derived by realizing that

theF statistic is a ratio of two independent chi-squared randomvariables divided by their degrees of freedom. It is trivial to show that

the distribution of x2
A (defined below) has a chi-squared distribution with j degrees of freedom (Graybill, 2000). That is,

x2
A ¼ ðCb�dÞTðCðXTXÞ�1

CTÞ�1ðCb�dÞ
s2

� x2
j :

Also note that the statistic x2
B ¼ ðn�kÞs2=s2 has a chi-squared distributionwith n�k degrees of freedom. Taking the ratio ofx2

A and

x2
B and dividing them by their degrees of freedom, we get the F statistic given above.

It is easy to show that b is independent of s2, which in turn gives us the independence of the two chi-squared randomvariables,

x2
A andx

2
B. It can alsobe shown that if the null hypothesis is true, the test statisticF is distributed as aFdistributionwith jnumerator

and n�k denominator degrees of freedom. For testing the hypothesis of the ith linear restriction of the form

H0 : ci1b1 þ ci2b2 þ . . .þ cikbk ¼ cTi b ¼ di ði ¼ 1; . . . ; jÞ
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we can use the estimate d̂i ¼ cTi b and the test statistic

t ¼ d̂i�d

s:e:ðd̂iÞ
;

where

s:e:ðd̂iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTi ðs2ðXTXÞ�1Þ�1
ci

q

:

Under the assumption that the null hypothesis is true, the test statistic t is distributed as a t distribution with n�k degrees of

freedom.

Note that we need not do anything special to test the hypothesis with a single linear restriction. That is, the F test can still be

used for this since under the null hypothesis for the single restriction case j¼ 1 so that F�F1,n�k. Also note that the relationship

between the t and F statistic is given by t
2�F1,n�k.

3.2 USING SAS TO CONDUCT THE GENERAL LINEAR HYPOTHESIS

To illustrate the computations in SAS, consider the quarterly data on real investment, real GDP, an interest rate, and inflation

measured by change in the log of CPI given in Greene (2003). The data are credited to the Department of Commerce, BEA.

As discussed by Greene (2003, pp. 93 and 98), the model suggested for these data is a simple model of investment, It
given by

lnðItÞ ¼ b1 þb2it þb3Dpt þb4lnðYtÞþb5tþ «t;

whichhypothesizes that investment depends upon the nominal interest rates, it; the rate of inflation,Dpt; (the logof) real output,

ln(Yt); and the trend component, t. Next, consider the joint hypothesis

b2 þb3 ¼ 0;

b4 ¼ 1;

b5 ¼ 0:

As discussed in Greene (2003), these restrictions test whether investments depend on the real interest rate, whether the

marginal effect of real outputs equals 1, and whether there is a time trend. The C matrix and d vector are given by

C ¼
0 1 1 0 0

0 0 0 1 0

0 0 0 0 1

2

6

4

3

7

5
and d ¼

0

1

0

2

6

4

3

7

5
:

Proc IML can easily be used to compute the F-statistic value to test this hypothesis. The following statements show how to

compute the F statistic and the associated p value. The data are first read into matrices as was shown in Chapter 2. The first set of

statements is used to define the Cmatrix and d vector and to store the number of restrictions in the variable j; this is simply the

number of rows in C (Note that the Proc IML statments make use of the notation given in Greene (2003).)

R={0 1 1 0 0,0 0 0 1 0,0 0 0 0 1};

q={0,1,0};

j=nrow(R);

The next set of statements is used to calculate the discrepancy vector Cb� d, the F-statistic value, and the corresponding

p value. Note that C¼ (XTX)�1 in the Proc IML code.
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DisVec=R*B_Hat-q;

F=DisVec’*inv(R*MSE*C*R‘)*DisVec/j;

P=1-ProbF(F,J,n-k);

Print ’The value of the F Statistic is ’ F;

Print ’The P-Value associated with this is ’ P;

Notice that the least squares estimator B_Hat and the estimate for s2 are computed using the methods described in Chapter 2.

These calculations yield anF value of 109.84with a p value of 0.We can therefore reject the null hypothesis and claim that at least

oneof the three restrictions is false.Wecan thenproceedwith testing the individual restrictions byusing the t test described earlier.

Slight modification of the above code allows us to calculate the t-statistic values. A bit later, we will use the restrict statement in

Proc Reg to calculate the t-statistic values. Recall that the t statistic is given by

t ¼ d̂i�d

s:e:ðd̂iÞ
;

where d̂ ¼ cTi b, di ¼ cTi b and s:e:ðd̂iÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cTi ðs2ðXTXÞ�1Þ�1
ci

q

. Adding the following code to the code already provided will

allow us to conduct the t test. The first step is to create the individual restrictions c and constant vectors d (Again, using the same

notation as given in Greene (2003).)

R1=R[1,]; q1=q[1,];

R2=R[2,]; q2=q[2,];

R3=R[3,]; q3=q[3,];

Wenow calculate the individual estimates for the restrictions of interest and also calculate the standard errors for the estimated

values. The t-statistic value is simply a ratio of these two values.

T_NUM1=R1*B_Hat-q1;

se1=sqrt(R1*MSE*C*R1‘);

T1=T_NUM1/se1;

p1=2*(1-CDF(’T’, abs(T1),n-k));

Print ’The value of the T Statistic for the first

restriction is ’ t1;

Print ’The P-Value associated with this is ’ P1;

T_NUM2=R2*B_Hat-q2;

se2=sqrt(R2*MSE*C*R2‘);

T2=T_NUM2/se2;

P2=2*(1-CDF(’T’, abs(T2),n-k));

Print ’The value of the T Statistic for the second

restriction is ’ t2;

Print ’The P-Value associated with this is ’ P2;

T_NUM3=R3*B_Hat-q3;

se3=sqrt(R3*MSE*C*R3‘);

T3=T_NUM3/se3;

P3=2*(1-CDF(’T’, abs(T3),n-k));

Print ’The value of the T Statistic for the third

restriction is ’ t3;

Print ’The P-Value associated with this is ’ P3;

The analysis results from the Proc IML statements are given in Output 3.1. Based on the results of the individual test statistic,

we would expect the second and third hypotheses to be rejected.
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T1

The value of the T Statistic for the first restriction is –1.843672

P1

The P-Value associated with this is 0.0667179

T2

The value of the T Statistic for the second restriction is 5.0752636

P2

The P-Value associated with this is 8.855E-7

T3

The value of the T Statistic for the third restriction is –3.802964

P3

The P-Value associated with this is 0.0001901

OUTPUT 3.1. Proc IML output of quarterly investment data.

3.3 THE RESTRICTED LEAST SQUARES ESTIMATOR

In this section, we discuss the computations involved in calculating the restricted least squares estimator, b*, given by (Greene,

2003, p.100)

b* ¼ b�ðXTXÞ�1
CTðCðXTXÞ�1

CTÞ�1ðCb�dÞ:

First note that the restricted least squares estimator is unbiased (under the null hypothesis, assuming that Cb¼ d), with

variance–covariance matrix given by

Varðb*jXÞ ¼ s2ðXTXÞ�1½I�CTðCðXTXÞ�1
CTÞ�1

CðXTXÞ�1�:

The unbiased property can easily be verified by noticing that E(CbjX)¼Cb. Therefore, E(b*jX)¼b because the last term in

the expression of E(b*jX) is zero. To derive the expression for the variance, first write

b*�b ¼ b�ðXTXÞ�1
CTðCðXTXÞ�1

CTÞ�1ðCb�dÞ�b:

Next, recall that the OLS estimator can be written as b¼b þ (XTX)�1XT
e. Substituting this in the above expression gives

(after some algebra) b*�b¼M*(XTX)�1XT
e, where

M* ¼ I�ðXTXÞ�1
CT ½CðXTXÞ�1

CT ��1
C:

The variance of b* is given by

Varðb*jXÞ ¼ Ebðb*�Eðb*jXÞÞðb*�Eðb*jXÞÞT jXc
¼ E½M*ðXTXÞ�1

XT
ee

TXðXTXÞ�1
M*T jX�

¼ M*ðXTXÞ�1
XTEðeeT jXÞXðXTXÞ�1

M*T

¼ s2M*ðXTXÞ�1
M*T :
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Substituting the expression forM* in this equation gives the original expression for Var(b*jX). We can easily calculate these

using Proc IML. For simplicity, we will use the first restriction in the investment equation example (b2 þ b3¼ 0) to illustrate

these computations. The following code will compute the restricted least squares estimates:

B_Star=B_Hat-C*R‘*inv(R*C*R‘)*(R*B_Hat-q);

The restricted least squares estimators are b1¼�7.907, b2¼�0.0044, b3¼ 0.0044, b4¼ 1.764, and b5¼�0.0044.

Use the following code to compute the variance–covariance matrix of the restricted least squares estimator.

temp=I(5)-R‘*inv(R*C*R‘)*R*C;

VarCov_Star=mse*c*Temp;

print VarCov_Star;

SE=J(5,1,0);

do i=1 to 5;

SE[i,1]=sqrt(VarCov_Star[i,i]);

end;

Output 3.2 contains both the variance–covariance matrix and the standard errors of the restricted least squares estimator.

As wementioned before, these computations are also available in the Proc Regmodule. The following statements can be used

(Freund and Littell, 2000, pp. 41–42). The analysis results are given in Output 3.3.

proc reg data=Rest_Invst_Eq;

model Invest=interest delta_p output T;

restrict interest+delta_p=0;

run;

Note that Proc Reg also provides the t test for the restriction of interest. If we use the ‘Test’ statement instead of the

‘Restrict’ statement, we will get the OLS estimates of the parameters followed by the F test on the restriction. The statement

and output (Output 3.4) are given below. Also note that the p value for the test on the single restriction matches up to what was

obtained using Proc IML. At the 5% type 1 error level, we would reject the null hypothesis that the sum of the coefficients

equal 0.

test interest+delta_p=0;

VARCOV_STAR

1.4243433 –0.000427 0.0004268 –0.190468 0.0015721

–0.000427 5.0923E-6 –5.092E-6 0.0000573 –5.556E-7

0.0004268 –5.092E-6 5.0923E-6 –0.000057 5.5561E-7

–0.190468 0.0000573 –0.000057 0.0254728 –0.00021

0.0015721 –5.556E-7 5.5561E-7 –0.00021 1.7499E-6

SE

1.1934585

0.0022566

0.0022566

0.159602

0.0013228

OUTPUT 3.2. Proc IML output of the variance–covariance matrix of the restricted least squares estimator.
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3.4 ALTERNATIVE METHODS OF TESTING THE GENERAL LINEAR HYPOTHESIS

Wenowdiscuss two alternateways of testing the linear restriction hypothesis presented in the previous section. First, note that by

definition and construction of the OLS estimator, the restricted least squares estimator cannot be better than the ordinary least

squares estimator in terms of the error sums of squares. This is because theOLS estimators are the best linear unbiased estimators

of the parameters in the regression model. If we let e*Te* denote the error sums of squares associated with the restricted least

squares estimator and let eTe denote the error sums of squares of the ordinary least squares estimator, then e*Te*� eTe. It can be

shown that (Greene, 2003, p.102; Meyers, 1990, pp. 108–109)

e*Te�eTe ¼ ðCb�dÞT ½CðXTXÞ�1
CT �ðCb�dÞ;

so that the original F test can be restated as

F ¼ ðe*Te*�eTeÞ=j
eTe=ðn�kÞ ;

The REG Procedure
Model: MODEL1

Dependent Variable: Invest

Number of Observations Read 203

Number of Observations Used 203

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 71.13325 23.71108 3154.48 <0.0001

Error 199 1.49581 0.00752

Corrected Total 202 72.62906

Root MSE 0.08670 R-Square 0.9794

Dependent Mean 6.30947 Adj R-Sq 0.9791

Coeff Var 1.37410

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –7.90716 1.20063 –6.59 <0.0001

interest 1 –0.00443 0.00227 –1.95 0.0526

delta_p 1 0.00443 0.00227 1.95 0.0526

output 1 1.76406 0.16056 10.99 <0.0001

T 1 –0.00440 0.00133 –3.31 0.0011

RESTRICT –1 –4.77085 2.60324 –1.83 0.0667*

* Probability computed using beta distribution.

Note: Restrictions have been applied to parameter estimates.

OUTPUT 3.3. Proc Reg output for restricted least squares of the quarterly investment data.
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which under the null hypothesis is distributedwith anFdistributionwith jnumerator andn� kdenominator degrees of freedom. If

we divide the numerator and denominator of this F statistic by the total uncorrected sums of squares, we get

F ¼ ðR2�R*2Þ=j
ð1�R2Þ=ðn�kÞ :

These three statistics give us the same value for testing the linear restriction hypothesis. That is,

F ¼ ðCb�dÞTðCðs2ðXTXÞ�1ÞCTÞ�1ðCb�dÞ
j

¼ ðe*Te*�eTeÞ=j
eTe=ðn�kÞ ¼ ðR2�R*2Þ=j

ð1�R2Þ=ðn�kÞ :

Wewill illustrate these computationsbyanalyzing theproduction functiondata given inGreene (2003).Thedata are credited to

Aigner et al. (1977) andHildebrand and Liu (1957). As discussed by the author on pages 102–103, the objective is to determine if

the Cobb–Douglas model given by

lnðYÞ ¼ b1 þb2lnðLÞþb3lnðKÞþ «

The REG Procedure
Model: MODEL1

Dependent Variable: Invest

Number of Observations Read 203

Number of Observations Used 203

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 71.15850 17.78962 2395.23 <0.0001

Error 198 1.47057 0.00743

Corrected Total 202 72.62906

Root MSE 0.08618 R-Square 0.9798

Dependent Mean 6.30947 Adj R-Sq 0.9793

Coeff Var 1.36589

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –9.13409 1.36646 –6.68 <0.0001

interest 1 –0.00860 0.00320 –2.69 0.0077

delta_p 1 0.00331 0.00234 1.41 0.1587

output 1 1.93016 0.18327 10.53 <0.0001

T 1 –0.00566 0.00149 –3.80 0.0002

Test 1 Results for Dependent Variable Invest

Source DF
Mean

Square F Value Pr > F

Numerator 1 0.02525 3.40 0.0667

Denominator 198 0.00743

OUTPUT 3.4. Proc Reg output using the test statement.
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is more appropriate for the data than the translog model given by

lnðYÞ ¼ b1 þb2lnðLÞþb3lnðKÞþb4ð12 ln
2LÞþb5ð12ln

2KÞþb6lnðLÞlnðKÞþ «:

Here,Y is theoutputproduced,L is the labor andK is the capital involved.TheCobb–Douglasmodel is producedby the restriction

b4¼b5¼b6¼ 0.The followingSAScodewill give results for both the translogand theCobb–Douglasmodels. (The thirdProcReg

module uses the restrict statement that gives us theCobb–Douglasmodel also.) Outputs 3.5 through 3.7 contain the analysis results.

Output 3.7 contains the Cobb–Douglasmodel results from ProcReg using the restrict statement. (Note that the parameter estimates

for the Cobb–Douglas portion of the output matches the output produced for the Cobb–Douglas model in Output 3.5.)

proc import out=Prod_Func

datafile="C:\Temp\TableF61"

dbms=Excel Replace;

getnames=yes;

run;

Data Prod_Func;

set Prod_Func;

LnY=log(ValueAdd);

LnL=Log(Labor);

LnK=Log(Capital);

LPrime=0.5*LnL*LnL;

KPrime=0.5*LnK*LnK;

The REG Procedure
Model: MODEL1

Dependent Variable: LnY

The REG Procedure
Model: MODEL1

Dependent Variable: LnY

Number of Observations Read 27

Number of Observations Used 27

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 14.21156 7.10578 200.25 <0.0001

Error 24 0.85163 0.03548

Corrected Total 26 15.06320

Root MSE 0.18837 R-Square 0.9435

Dependent Mean 7.44363 Adj R-Sq 0.9388

Coeff Var 2.53067

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 1.17064 0.32678 3.58 0.0015

LnL 1 0.60300 0.12595 4.79 <0.0001

LnK 1 0.37571 0.08535 4.40 0.0002

OUTPUT 3.5. Regression analysis of production data Cobb–Douglas model.
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CProd=LnL*LnK;

run;

proc reg data=Prod_Func;

model LnY=LnL LnK;

run;

proc reg data=Prod_Func;

model LnY=LnL LnK LPrime KPrime CProd;

run;

proc reg data=Prod_Func;

model LnY=LnL LnK LPrime KPrime CProd;

restrict LPrime=0;

restrict KPrime=0;

restrict CProd=0;

run;

To test the hypothesis that the translog model is more appropriate, we can use the F test given by

F ¼ ðe*Te*�eTeÞ=j
eTe=ðn�kÞ :

The REG Procedure
Model: MODEL1

Dependent Variable: LnY

Number of Observations Read 27

Number of Observations Used 27

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 14.38327 2.87665 88.85 <0.0001

Error 21 0.67993 0.03238

Corrected Total 26 15.06320

Root MSE 0.17994 R-Square 0.9549

Dependent Mean 7.44363 Adj R-Sq 0.9441

Coeff Var 2.41733

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.94420 2.91075 0.32 0.7489

LnL 1 3.61364 1.54807 2.33 0.0296

LnK 1 –1.89311 1.01626 –1.86 0.0765

LPrime 1 –0.96405 0.70738 –1.36 0.1874

KPrime 1 0.08529 0.29261 0.29 0.7735

CProd 1 0.31239 0.43893 0.71 0.4845

OUTPUT 3.6. Regression analysis of production data-translog model.
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The Cobb–Douglas model is the restricted model, and the error sums of squares for this is 0.85163. The error sums of squares

for the unrestricted model (translog) is 0.67993. The number of restrictions, j, is 3. The error degrees of freedom for the

unrestricted model, n� k, is 21. Substituting these values into the F-statistic formula, we get

F ¼ ð0:85163�0:67993Þ=3
0:67993=21

¼ 1:768:

The critical value from the F table is 3.07, so we do not reject the restricted model. We can therefore use the Cobb–Douglas

model for the production data set. Note that, using the F statistic given by

F ¼ ðR2�R*2Þ=j
ð1�R2Þ=ðn�kÞ ;

The REG Procedure
Model: MODEL1

Dependent Variable: LnY

Number of Observations Read 27

Number of Observations Used 27

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 2 14.21156 7.10578 200.25 <0.0001

Error 24 0.85163 0.03548

Corrected Total 26 15.06320

Root MSE 0.18837 R-Square 0.9435

Dependent Mean 7.44363 Adj R-Sq 0.9388

Coeff Var 2.53067

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 1.17064 0.32678 3.58 0.0015

LnL 1 0.60300 0.12595 4.79 <0.0001

LnK 1 0.37571 0.08535 4.40 0.0002

LPrime 1 8.94539E-17 0 Infty <0.0001

KPrime 1 –1.7828E-18 0 –Infty <0.0001

CProd 1 –1.0976E-16 0 –Infty <0.0001

RESTRICT –1 –0.04266 0.21750 –0.20 0.8493*

RESTRICT –1 0.49041 0.45811 1.07 0.2940*

RESTRICT –1 0.28409 0.57683 0.49 0.6325*

* Probability computed using beta distribution.

Note: Restrictions have been applied to parameter estimates.

OUTPUT 3.7. Regression analysis of production data using the restrict statement Cobb–Douglas model.
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we get

F ¼ ð0:9549�0:9435Þ=3
ð1�0:9549Þ=21 ¼ 1:768;

which is equivalent to the result received when we used the F test with the error sums of squares.

3.5 TESTING FOR STRUCTURAL BREAKS IN DATA

Wecan extend the linear restriction hypothesis test from the previous sections to test for structural breaks in the time periodwithin

which the data setwas collected.We illustrate this by using the gasoline consumption data set given inGreene (2003). The data set

is credited to the Council of Economic Advisors, Washington, D.C. The author gives a description of the model for the gasoline

consumptiondata onpage12of his text. Thedata consists of several variables,which includes the totalU.S. gasoline consumption

(G), computed as total expenditure divided by a price index from 1960 to 1995, the gasoline price index, disposable income, the

price of used and new cars, and so on. A time series plot of G is given in Figure 3.1.

Theplot clearly showsabreak in theU.S. gasoline consumptionbehavior after 1973.Aspointedout inGreene (2003, p.130), up

to 1973, fuel was abundant with stable worldwide gasoline prices. An embargo in 1973 caused a shift marked by shortages and

rising prices.

Consider then a model of the log of per capita gasoline consumption (G/Pop) with respect to the log of the price index of

gasoline (Pg), the logof per capita disposable income (Y), the logof the price indexof newcars (Pnc), and the log of the price index

of used cars (Puc). The regression model is given by (Greene, 2003, p. 136)

lnðG=PopÞ ¼ b1 þb2lnðPgÞþb3lnðyÞþb4lnðPncÞþb5lnðPucÞþ «:

Wewouldexpect that the entire relationship described by this regressionmodelwas shifted starting1974.Let us denote the first

14 years of the data in y and X as y1 and X1 and the remaining years as y2 and X2. An unrestricted regression that allows the

coefficients to be different in the two time periods is given by

y1

y2

� �

¼
X1 0

0 X2

� �

b1

b2

� �

þ
«1

«2

� �

:

1960             1965             1970            1975             1980             1985             1990            1995

Year

Ln_G_Pop

–0.02
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18

–0.04
–0.06
–0.08
–0.10
–0.12
–0.14
–0.16
–0.18
–0.20
–0.22
–0.24
–0.26
–0.28
–0.30
–0.32
–0.34

FIGURE 3.1. Time series plot of total U.S. gasoline consumption from 1960 to 1995.
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The unrestricted least squares estimator is given by (Greene, 2003, pp. 129–130)

b ¼ ðXTXÞ�1
XTy ¼ XT

1X1 0

0 XT
2X2

" #�1
XT

1y1

XT
2y2

" #

¼
b1

b2

� �

;

which can be obtained by running two regressions separately. If we denote the two residual sums of squares as eT1 e1 and e
T
2 e2, then

the unrestricted sums of squares is given by eTe ¼ eT1 e1 þ eT2 e2. The restricted least squares estimator can be computed by simply

stacking the data and running least squares regressionon the stackeddata.Let the restricted residual sumsof squares bedenotedby

e*Te*. Then, the hypothesis test on whether the restricted model is more appropriate for the data can be conducted by using the F

statistic discussed earlier. That is,

F ¼ ðe*Te*�eTeÞ=j
eTe=ðn1 þ n2�2kÞ :

Note that here j is the number of restrictions (or simply the number of columns ofX2),n1 is the number of observations in the first

data set, and n2 is the number of observations in the second data set. This test is also called the Chow test (Chow, 1960). In the

gasoline consumption example, j¼ 5,n1¼ 14,n2¼ 22, and k¼ 5.Abit later,wewill discuss how toconduct theChow test using the

ProcModel. For now, let us run three regression analyses on the data set. The first two analyses are for the two separate data sets and

the last one is for the combined data set. The output of the analysis on the data set before 1974 is given in Output 3.8. The output of

the analysis for the data set after 1973 is given inOutput 3.9. The output of the analysis of the combined data is given inOutput 3.10.

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 14

Number of Observations Used 14

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 0.33047 0.08262 647.56 <0.0001

Error 9 0.00115 0.00012758

Corrected Total 13 0.33162

Root MSE 0.01130 R-Square 0.9965

Dependent Mean –0.13830 Adj R-Sq 0.9950

Coeff Var –8.16742

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –11.32637 1.15233 –9.83 <0.0001

Ln_pg 1 –0.07396 0.16776 –0.44 0.6697

Ln_Income 1 1.25341 0.12914 9.71 <0.0001

Ln_Pnc 1 0.80409 0.12076 6.66 <0.0001

Ln_Puc 1 –0.23754 0.10447 –2.27 0.0491

OUTPUT 3.8. Regression analysis of the gasoline consumption data prior to 1974.
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The sums of squares are as follows: eT1 e1 ¼ 0:00115; eT2 e2 ¼ 0:00792; and e*Te*¼ 0.03384.

Therefore, the Chow test statistic is given by

F ¼ ð0:03384�0:00907Þ=5
0:00907=26

¼ 14:20:

The p value associated with this is 9.71� 10�7 and is highly significant. We can therefore reject the null hypothesis for the

restricted model and conclude that there is significant evidence that the regression model changed after 1973.

The above computations are unnecessary sinceSASProcModel can be used to test the structural breakhypothesis. ProcModel

is typically used to analyze systems of simultaneous equations and seemingly unrelated regression equationswhere the equations

can be linear or nonlinear. However, it can also be used to conduct basic OLS analysis. Since Proc Reg does not have an option to

conduct the Chow test, we make use of Proc Model.

The following statements can be used to conduct the test. Output 3.11 contains the results of this analysis. Note the threemain

components of the Proc Model statements—the list of parameters (there are 5 in the gasoline consumption model), the actual

model equation being estimated, and the response variable of interest highlighted with the Fit statement. The option “chow=15”

requests a test to determine if the data sets before and after the 15th are significantly different.

proc model data=clean_gas;

parm beta1 beta2 beta3 beta4 beta5;

Ln_G_Pop=beta1 + beta2*Ln_Pg + beta3*Ln_Inc + beta4*Ln_Pnc

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 22

Number of Observations Used 22

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 0.05084 0.01271 27.28 <0.0001

Error 17 0.00792 0.00046586

Corrected Total 21 0.05876

Root MSE 0.02158 R-Square 0.8652

Dependent Mean 0.08194 Adj R-Sq 0.8335

Coeff Var 26.34150

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –5.59999 3.00646 –1.86 0.0799

Ln_pg 1 –0.20862 0.04898 –4.26 0.0005

Ln_Income 1 0.63704 0.33190 1.92 0.0719

Ln_Pnc 1 0.06903 0.20662 0.33 0.7424

Ln_Puc 1 –0.02426 0.06311 –0.38 0.7054

OUTPUT 3.9. Regression analysis of the gasoline consumption data after 1973.
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+beta5*Ln_Puc;

Fit Ln_G_Pop/chow=15;

run;

Note that the coefficients in this output are for the restrictedmodel. The p value for the Chow test indicates that themodels are

indeed different between the two time periods.

3.6 THE CUSUM TEST

Model stability can also be tested by using the CUSUM test. See Montgomery (1991), Page (1954), and Woodall and Ncube

(1985) for a discussion of the CUSUM procedure in quality control. See the documentation for Proc Autoreg from the SAS

Institute, Brown et al. (1975), and Greene (2003) for a discussion of the CUSUM procedure to detect structural breaks in the

data. This test is based on the cumulative sum of the least squares residuals. If we let wt ¼ et
ffiffiffi

vt
p (et is the OLS residual at time t)

with

vt ¼ 1þ xTt

X

t�1

i¼1

xix
T
i

" #�1

xt;

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 36

Number of Observations Used 36

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 0.77152 0.19288 176.71 <0.0001

Error 31 0.03384 0.00109

Corrected Total 35 0.80535

Root MSE 0.03304 R-Square 0.9580

Dependent Mean –0.00371 Adj R-Sq 0.9526

Coeff Var –890.84882

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –12.34184 0.67489 –18.29 <0.0001

Ln_pg 1 –0.05910 0.03248 –1.82 0.0786

Ln_Income 1 1.37340 0.07563 18.16 <0.0001

Ln_Pnc 1 –0.12680 0.12699 –1.00 0.3258

Ln_Puc 1 –0.11871 0.08134 –1.46 0.1545

OUTPUT 3.10. Regression analysis of the combined gasoline consumption data.
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The MODEL Procedure

Model Summary

Model Variables 1

Parameters 5

Equations 1

Number of Statements 1

Model Variables Ln_G_Pop

Parameters beta1 beta2 beta3 beta4 beta5

Equations Ln_G_Pop

The Equation to Estimate is

Ln_G_Pop = F(beta1(1), beta2(Ln_pg), beta3(Ln_Income), beta4(Ln_Pnc), beta5(Ln_Puc))

NOTE: At OLS Iteration 1 CONVERGE=0.001 Criteria Met.

The MODEL Procedure
OLS Estimation Summary

Data Set Options

DATA= GASOLINE

Minimization Summary

Parameters Estimated 5

Method Gauss

Iterations 1

Final Convergence
Criteria

R 2.34E-12

PPC 6.24E-12

RPC(beta1) 122197.4

Object 0.957917

Trace(S) 0.001092

Objective Value 0.00094

Observations
Processed

Read 36

Solved 36

OUTPUT 3.11. Chow test of structural break in gasoline data using Proc Model.
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then the CUSUM procedure can be defined as (Baltagi, 2008, p. 191; Greene, 2003, p. 135)

Wt ¼
X

r¼t

r¼Kþ 1

;
wr

ŝ

where

ŝ2 ¼ ðT�k�1Þ�1
X

T

r¼kþ 1

ðwr��wÞ2

and

�w ¼ ðT�kÞ�1
X

T

r¼kþ 1

wr:

Here, T and k are the number of time periods and regressors, respectively. The critical values of the CUSUM at time t are

given by

�a
ffiffiffiffiffiffiffiffiffi

T�k
p

þ 2
ðt�kÞ
ffiffiffiffiffiffiffiffiffi

T�k
p

� �

:

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

Ln_G_Pop 5 31 0.0338 0.00109 0.0330 0.9580 0.9526

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

beta1 –12.3418 0.6749 –18.29 <0.0001

beta2 –0.0591 0.0325 –1.82 0.0786

beta3 1.373399 0.0756 18.16 <0.0001

beta4 –0.1268 0.1270 –1.00 0.3258

beta5 –0.11871 0.0813 –1.46 0.1545

Number of
Observations Statistics for System

Used 36 Objective 0.000940

Missing 0 Objective*N 0.0338

Structural Change Test

Test
Break
Point Num DF Den DF F Value Pr > F

Chow 15 5 26 14.20 <0.0001

OUTPUT 3.11. (Continued)
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The CUSUM values along with the lower- and upper-bound critical values are available in SAS through the Proc Autoreg

procedure by using the “CUSUMLB” and “CUSUMUB” options (Proc Autoreg Documentation, SAS Institute, Inc.). More

discussion onThe ProcAutoreg procedure can be found inChapter 6.However, note that this procedure is typically used tomodel

data in the time series setting. It can handle autocorrelation in regression models and can also be used to fit autoregressive

conditional heteroscedasticmodels (ARCH,GARCH, etc.). The “model” statement lists out the regressionmodel of interest. This

is followedby the “output” statement,which requests the lower andupper bounds alongwith the calculatedvalues of theCUSUM.

The analysis results are provided in Output 3.12.

Obs lb cusum ub

1 . . .

2 . . .

3 . . .

4 . . .

5 . . .

6 –5.6188 –0.4207 5.6188

7 –5.9593 –0.0990 5.9593

8 –6.2998 –0.0107 6.2998

9 –6.6404 0.5628 6.6404

10 –6.9809 1.0289 6.9809

11 –7.3214 0.9724 7.3214

12 –7.6620 0.5926 7.6620

13 –8.0025 0.5352 8.0025

14 –8.3430 –0.5221 8.3430

15 –8.6836 –0.9944 8.6836

16 –9.0241 –0.9812 9.0241

17 –9.3646 –1.2040 9.3646

18 –9.7052 –1.7562 9.7052

19 –10.0457 –3.8517 10.0457

20 –10.3862 –6.4529 10.3862

21 –10.7267 –8.8309 10.7267

22 –11.0673 –9.7427 11.0673

23 –11.4078 –10.5631 11.4078

24 –11.7483 –11.0652 11.7483

25 –12.0889 –13.1237 12.0889

26 –12.4294 –15.7326 12.4294

27 –12.7699 –18.2970 12.7699

28 –13.1105 –19.0906 13.1105

29 –13.4510 –20.7915 13.4510

30 –13.7915 –21.9147 13.7915

31 –14.1321 –23.6449 14.1321

32 –14.4726 –26.4181 14.4726

33 –14.8131 –28.6394 14.8131

34 –15.1537 –29.5284 15.1537

35 –15.4942 –30.5195 15.4942

36 –15.8347 –31.4851 15.8347

OUTPUT 3.12. CUSUM values for the gasoline data using Proc Reg.
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proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc;

output out=cusum cusum=cusum cusumub=ub cusumlb=lb;

run;

proc print data=cusum;

var lb cusum ub;

run;

The CUSUM plot can be created using the overlay option of Proc Gplot. The following statements are used. The results are

provided in Figure 3.2.

proc gplot data=cusum;

title ’The CUSUM Test on Gasoline Consumption Data’;

plot lb*year cusum*year ub*year/overlay;

run;

Note that a structural break is obvious around 1984. This is a bit contradictory to the results obtained fromChow’s test, where

the structural break was evident at 1974. However, there is evidence that the structural break started occurring around 1974.

3.7 MODELS WITH DUMMY VARIABLES

The models discussed so far consisted of quantitative explanatory variables. Often, the models of interest have explanatory

variables that are discrete. A simple example is a variable recording the gender of a subject. Here gender may be set to 1 if the

subject is amale and 0 if the subject is a female.As another example, consider a transportation studywhere one of the explanatory

variables records the mode of public transportation used by the subjects in the study. Here, the values of the variable may be

classified into three categories: Drive own car, Take Bus, and Take Metro. Practitioners familiar with Analysis of Variance

(ANOVA) techniquesmay recall that this is analogous to thedifferent levelsofa treatment of interest.Here, the treatment is simply

themode of transportation. Greene (2003, p.116) discusses an examplewhere the earning�s of women ismodeled as a function of

lb

-40

-30

-20

-10

0

10

20
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FIGURE 3.2. The CUSUM test on gasoline consumption data.
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age, a squared age term, level of education, and the presence or absenceof childrenunder 18.The data are credited toMroz (1987).

The model of interest is

lnðearningsÞ ¼ b1 þb2 � ageþb3 � age2 þb4 � educationþb5 � kidsþ «:
Here,

kids ¼ 1 if there are kids < 18;

0 otherwise

�

No special treatment is required in this case, and estimating the coefficients is straightforward using the techniques discussed

so far. The analysis results are shown in Output 3.13. The estimated model for In(earnings) is given by

lnðearningsÞ ¼ 3:24 þ 0:20� age � 0:0023� age2 þ 0:067� education � 0:35� kids:

The earnings equation for women without children under 18 is given by

lnðearningsÞ ¼ 3:24þ 0:20� age � 0:0023� age2 þ 0:067� education

and the earnings equation for women with children under 18 is given by

lnðearningsÞ ¼ 2:89þ 0:20� age � 0:0023� age2 þ 0:067� education:

The REG Procedure
Model: MODEL1

Dependent Variable: L_WW

Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 25.62546 6.40637 4.52 0.0014

Error 423 599.45817 1.41716

Corrected Total 427 625.08363

Root MSE 1.19044 R-Square 0.0410

Dependent Mean 8.05713 Adj R-Sq 0.0319

Coeff Var 14.77504

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 3.24010 1.76743 1.83 0.0675

WA WA 1 0.20056 0.08386 2.39 0.0172

WA_SQ 1 –0.00231 0.00098688 –2.35 0.0195

WE WE 1 0.06747 0.02525 2.67 0.0078

kids 1 –0.35120 0.14753 –2.38 0.0177

OUTPUT 3.13. Regression analysis of earnings data using Proc Reg.
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Notice that the earningsmodel is a semi-logmodel (log in thedependent variable).Wecan therefore interpret the coefficient for

the dummy variable kids as follows: ceteris paribus, the earnings of womenwith children under 18 are 35% less than the earnings

of women without children under 18.

The general rule for creating dummy variables is to have one less variable than the number of categories present to avoid the

“dummy variable trap”. If a dummy variable category is not removed then the sum of the dummy variable category columns will

equal “1”which will result in perfect multicollinearity in models with a constant term. Recall that the data matrixX for a model

with an intercept term includes a column of 1�s.

The earning�s equation model had one dummy variable since we were dealing with two categories (kids under 18 or not).

Suppose thatwewanted to compare threegroups: onewith children under 10, anotherwith children between the ages of 10 and18,

and a third group of children above 18. In this case we would need to include two dummy variables. Suppose the variables were

labeled Age_Grp1 and Age_Grp2. Here,

Age ---- Grp1¼
1 if age <10

0 otherwise

(

Age ---- Grp2¼
1 if 10 � age <18

0 otherwise:

(

The thirdgroupwith childrenabove theageof18 forms the“base”.Of course, the coding schemecanbeadjusted tomakeanyof

the groups the “base”.

Wewill now look at a detailed example to illustrate the concept of dummy variables. Consider the airline data set in Greene

(2003). Six airlines were followed for 15 years, and the following consumption model was proposed for the data set (Greene,

2003, pp. 118–119)

lnðCi;tÞ ¼ b1 þb2lnðQi;tÞþb3ln
2ðQi;tÞþb3lnðPfuel i;tÞþb5Loadfactori;t þ

X

14

t¼1

�tDi;t þ
X

5

i¼1

diFi;t þ «i;t:

The data set is credited to Christensen Associates of Madison, Wisconsin. The author provides a description of the data and

model which is summarized here. In this model, the subscript i refers to airline, and the subscript t refers to year. The variableCi,t

represents the total cost (in 1000�s) for the ith firm in the tth year,Q is the output in revenue passenger miles, PF is the fuel price,

and LF is the load factor or the average capacity utilization of the fleet. Note that the year 1984 is kept as a base, and we have 14

dummyvariables for year. Similarly, oneof the firms (Firmnumber 6)waskept as a base andwe therefore have5dummyvariables

for firm.Wewill look at how the data are prepared for analysis in Proc IML and Proc Reg and thenmove on to analysis using Proc

GLM. The following data statement will create the dummy variables. The array statement provides a convenient way of creating

indicator variables for the six airlines and 14 time periods.

data airline;

set airline;

LnC=Log(C);

LnQ=Log(Q);

LnQ2=LnQ*LnQ;

LnPF=Log(PF);

array Firm{*} F1-F5;

array time_y{*} D1-D14;

do index1=1 to dim(Firm);

if index1=i then Firm(index1)=1;else Firm(index1)=0;

end;

do index2=1 to dim(time_y);

if index2=t then time_Y(index2)=1;else time_Y(index2)=0;

end;

run;

The data can now be analyzed in Proc IML easily using the code provided in Chapter 2. Of course, an easier approach is to

analyze the data using Proc Reg. The output of the analysis from Proc Reg is given in Output 3.14.
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The REG Procedure
Model: MODEL1

Dependent Variable: LnC

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 23 113.86832 4.95080 1893.45 <0.0001

Error 66 0.17257 0.00261

Corrected Total 89 114.04089

Root MSE 0.05113 R-Square 0.9985

Dependent Mean 13.36561 Adj R-Sq 0.9980

Coeff Var 0.38258

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 13.56249 2.26077 6.00 <0.0001

LnQ 1 0.88665 0.06284 14.11 <0.0001

LnQ2 1 0.01261 0.00986 1.28 0.2053

LnPF 1 0.12808 0.16576 0.77 0.4425

LF LF 1 –0.88548 0.26051 –3.40 0.0012

D1 1 –0.73505 0.33784 –2.18 0.0332

D2 1 –0.67977 0.33209 –2.05 0.0447

D3 1 –0.64148 0.32983 –1.94 0.0561

D4 1 –0.58924 0.31954 –1.84 0.0697

D5 1 –0.49925 0.23176 –2.15 0.0349

D6 1 –0.44304 0.18796 –2.36 0.0214

D7 1 –0.41131 0.17290 –2.38 0.0203

D8 1 –0.35236 0.14972 –2.35 0.0216

D9 1 –0.28706 0.13470 –2.13 0.0368

D10 1 –0.23280 0.07611 –3.06 0.0032

D11 1 –0.09678 0.03385 –2.86 0.0057

D12 1 –0.01227 0.04585 –0.27 0.7899

D13 1 –0.00187 0.03816 –0.05 0.9611

D14 1 –0.01296 0.03069 –0.42 0.6742

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

F1 1 0.05930 0.12421 0.48 0.6346

F2 1 0.02214 0.10438 0.21 0.8327

F3 1 –0.18000 0.05900 –3.05 0.0033

F4 1 0.16856 0.03326 5.07 <0.0001

F5 1 –0.04543 0.02238 –2.03 0.0464

OUTPUT 3.14. Dummy variables regression of the airlines data.
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We will now analyze the data using Proc GLM. Note that in this case, we do not have to create dummy variables as the

procedures automatically creates them for us. ProcGLMcanbeused to fit general linearmodels using themethod of least squares.

It can therefore be used for regression analysis, analysis of variance, and analysis of covariance. An advantage of Proc GLMover

Proc Reg is that one can incorporate interaction terms directly into themodel. Of course, one can also analyze nested and crossed

effects designs very easily within Proc GLM. It also provides the flexibility of analyzing random and fixed effects in the model.

The procedure also provides an overall significance of the classificationvariables that quickly helps the analyst gaugewhether the

variables are significant or not. In the following statements, the “class” statement is used to specify category variables. This is

followedby the “model” statement that lists out the dependent variable and the explanatory variables in themodel. The “solution”

option in the “model” statement generates the parameter estimates for all the terms in the model.

The following statements should be used at the minimum.

proc glm data=airline;

class I T;

model LnC=LnQ LnQ2 LnPF LnLF I T/solution;

run;

The output from the analysis is given inOutput 3.15. The first set of tables gives information on the classificationvariables and

the sample size used in the analysis. In thegasoline example,wehave six airlines and15 timeperiods for a total of 90observations.

The next table gives the analysis of variance table which lists out the sources of variation, the degrees of freedom, the sums of

squares, themean squares, theF statistic, and thecorrespondingpvalues.Note that the total degreesof freedom is90�1¼89.The

The GLM Procedure

Class Level Information

Class Levels Values

I 6 1 2 3 4 5 6

T 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Observations Read 90

Number of Observations Used 90

The GLM Procedure

Dependent Variable: LnC

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 23 113.8683247 4.9507967 1893.45 <0.0001

Error 66 0.1725702 0.0026147

Corrected Total 89 114.0408949

R-Square Coeff Var Root MSE LnC Mean

0.998487 0.382580 0.051134 13.36561

Source DF Type I SS Mean Square F Value Pr > F

LnQ 1 103.6813479 103.6813479 39653.2 <0.0001

LnQ2 1 0.0618892 0.0618892 23.67 <0.0001

LnPF 1 8.7201792 8.7201792 3335.06 <0.0001

LF 1 0.3025573 0.3025573 115.71 <0.0001

I 5 1.0067672 0.2013534 77.01 <0.0001

T 14 0.0955840 0.0068274 2.61 0.0046

OUTPUT 3.15. Dummy variable regression of airlines data using Proc GLM.
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model degrees of freedom is calculated as follows: one degree of freedom is used for each explanatory variable in the model and

a�1 degrees of freedom are used for the classification variables where a is the number of levels of the classification variable. For

the airlines example, we have four explanatory variables that contribute one degree of freedom, the six airlines contribute

5 degrees of freedom, and the 15 time periods contribute 14 degrees of freedom. Therefore, the total model degrees of freedom

equals 24. Note that the p value indicates that the “global” F test for model significance is rejected.

Source DF Type III SS Mean Square F Value Pr > F

LnQ 1 0.52059518 0.52059518 199.10 <0.0001

LnQ2 1 0.00427810 0.00427810 1.64 0.2053

LnPF 1 0.00156096 0.00156096 0.60 0.4425

LF 1 0.03020843 0.03020843 11.55 0.0012

I 5 0.86213348 0.17242670 65.95 <0.0001

T 14 0.09558402 0.00682743 2.61 0.0046

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 13.56249268 B 2.26076834 6.00 <0.0001

LnQ 0.88664650 0.06283642 14.11 <0.0001

LnQ2 0.01261288 0.00986052 1.28 0.2053

LnPF 0.12807832 0.16576427 0.77 0.4425

LF –0.88548260 0.26051152 –3.40 0.0012

I         1 0.05930014 B 0.12420645 0.48 0.6346

I         2 0.02213860 B 0.10437912 0.21 0.8327

I         3 –0.17999872 B 0.05900231 –3.05 0.0033

I         4 0.16855825 B 0.03326401 5.07 <0.0001

Parameter Estimate
Standard

Error t Value Pr > |t|

I         5 –0.04543271 B 0.02238459 –2.03 0.0464

I         6 0.00000000 B . . .

T         1 –0.73505414 B 0.33783895 –2.18 0.0332

T         2 –0.67976508 B 0.33209031 –2.05 0.0447

T         3 –0.64147600 B 0.32983272 –1.94 0.0561

T         4 –0.58924090 B 0.31953812 –1.84 0.0697

T         5 –0.49924839 B 0.23175982 –2.15 0.0349

T         6 –0.44304017 B 0.18795980 –2.36 0.0214

T         7 –0.41130701 B 0.17289580 –2.38 0.0203

T         8 –0.35235703 B 0.14971845 –2.35 0.0216

T         9 –0.28705848 B 0.13470473 –2.13 0.0368

T         10 –0.23279711 B 0.07610725 –3.06 0.0032

T         11 –0.09678442 B 0.03385162 –2.86 0.0057

T         12 –0.01226693 B 0.04585181 –0.27 0.7899

T         13 –0.00186796 B 0.03815702 –0.05 0.9611

T         14 –0.01295665 B 0.03068805 –0.42 0.6742

T         15 0.00000000 B . . .

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal 
equations.  Terms whose estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 3.15. (Continued )
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This is followed by the R2 value, the coefficient of variation (see Chapter 2), the root mean square error, and the mean of the

dependent variable. Notice that the R2 value is very high.

The next two tables gives the Type 1 and Type 3 sums of squares for each term in the model along with their F statistic and

p values. The Type 1 sums of squares gives the amount of variation attributed to each term in the model assuming that the terms

listed in the table before it has already been included in the model. This is also referred to as the sequential sums of squares. The

Type 3 sums of squares gives the amount of variation attributed to each term after adjusting for the other terms. In other words, it

measures the amount bywhich the error sumsof squares is reduced if the term in question is added to amodel already consisting of

the other terms. Note that the p values for the four explanatory variables from the Type 3 sums of squares matches the p values of

the variables fromProc Reg. Proc Reg uses Type 3 sums of squares since our objective is to determine if the variable in question is

meaningful to the generalmodel consisting of the other terms. The p values from theType 3 table indicates that the load factor, the

airlines, and the time periods are significantly different.

The “solution” option is used to list out the parameter estimates. Note that the coefficients are identical to the ones from Proc

Regwhere dummy variables were used. Also notice that the sixth airline and the 15th time period have been taken as a base. The

interpretationof themodels for the other firmswill be relative to the sixth firm.Note that firms3, 4, and5are significantly different

from firm 6. Also note that the first 11 time periods are significantly different from the 15th time period.
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4
INSTRUMENTALVARIABLES

4.1 INTRODUCTION

The analysis methods presented in the previous chapters were based on the assumption that the independent variables are

exogenous (E(e jX)¼ 0). That is, the error terms in the linear regressionmodel are uncorrelated or independent of the explanatory

variables. In Chapter 1, we saw that under the exogeneity assumption, the least squares estimator b is an unbiased and consistent

estimator of b. This chapter explores the properties of b under departures from the exogenous assumption? Explanatory variables

that are not exogenous are called endogenous variables.

Under departures from the exogeneity conditions, b is no longer an unbiased and consistent estimator of b. To see this, in the

simple linear regression case, consider the model yi¼b0 þ b1xiþ «iwhere the disturbances are correlated with the explanatory

variable. The least squares estimator of b1 is given by (Chapter 1)

b1¼

P

n

i¼1

ðxi� x�Þðyi� y�Þ

P

n

i¼1

ðxi� x�Þ2

which upon simplifying can be written as

b1¼ b1þ

P

n

i¼1

ðxi� x�Þð«i� «�Þ

P

n

i¼1

ðxi� x�Þ2
:

The second termgives the expressionof the least squares estimator of a regressionof«on x. It should beobvious that the second

term is not zero unless the disturbances are uncorrelatedwith the explanatory variable. Therefore, the least squares estimator ofb1

is biased. The inconsistency of the least squares estimator can be seen by dividing the numerator and denominator of the second

term by n and then taking the probability limits to get

p lim b1ð Þ ¼ b1þ
Covð«; xÞ

VarðxÞ
:
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The least squares estimator is therefore not consistent. Themagnitude and direction of the bias depend on the second term of

the above expression.

To see this in the general case, consider the linear model y ¼ Xbþ e with EðejXÞ ¼ g. The OLS estimator is given by

b ¼ ðXTXÞ�1
XTy or b ¼ bþ ðXTXÞ�1

XT
e. Taking the conditional expectation EðbjXÞ, we see that (Greene, 2003, p. 76)

EðbjXÞ ¼ bþ ðXTXÞ�1
EðXT

ejXÞ

¼ bþ ðXTXÞ�1
XTEðejXÞ

¼ bþ ðXTXÞ�1
g 6¼ b :

Next, assume that p lim ðXTX=nÞ ¼ C a positive definite matrix with inverse C�1
. Note that this assumption ensures that

ðXTXÞ�1
exists (in the simple linear regression case, this assumption implied thatVarðxÞ existed andwas finite). Taking the limit

in the probability of OLS estimator, we get

p lim b ¼ bþC�1
p lim

XT
e

n

� �

6¼ b

because E (e | X) 6¼ 0. Therefore, the OLS estimator is not a consistent estimator if the exogeneity assumption is violated.

Endogeneity occurs for several reasons. Missing variables andmeasurement errors in the independent variables are often cited

as major causes of endogeneity in regression models (Ashenfelter et al., 2003; Greene, 2003; Wooldridge, 2002). We will now

briefly discuss both the omitted variable bias and the bias emerging from measurement errors.

4.2 OMITTED VARIABLE BIAS

The analysis in Chapters 1 through 3 was also based on the assumption that the linear model y¼Xb þ e was correctly

specified.Wewill now relax this assumption and see the effect this has on the parameter estimates. Suppose that X¼ [X1,X2]

and b¼ [b1, b2]
T so that the true model is y¼X1b1 þ X2b2 þ e. Assume that for some reason we have no information

available forX2 and therefore omit it and fit the model y¼X1b1 þ e. The least squares estimator of b1 in this case is given by

(Greene, 2003, p. 148)

b1 ¼ ðXT
1X1Þ

�1
XT

1y

¼ b1 þ ðXT
1X1Þ

�1
XT

1X2b2 þ ðXT
1X2Þ

�1
XT

1 e:

It is easy to verify that the conditional expectation of b1 given X is

Eðb1jXÞ ¼ b1 þ ðXT
1X1Þ

�1
XT

1X2b2:

The bias is given by the second termand is zero only ifXT
1X2 ¼ 0 (X1 andX2 are orthogonal). That is, if the omitted variables

are not correlated with the included variables. Under the omitted variable model, the termX2b2 is absorbed into the error term.

If the omitted variableX2 is related toX1, then it can easily be shown thatCovðejXÞ6¼ 0 and therefore the exogenous assumption

is violated.

To see this, consider the simple linear model given by y ¼ b0 þ b1x1 þ b2x2 þ « and assume that this is the true population

model. Consider the case where x2 is omitted so that the model used is y ¼ b0 þ b1x1 þ «. Assume that x2 is correlated with x1
with the reduced form for x2 given by x2 ¼ a0 þ a1x1 þ �. As shown earlier, the OLS estimator of b1 is given by

b̂1 ¼

P

n

i¼1

ðx1i�x�1Þðyi� y�Þ

P

n

i¼1

ðx1i�x�1Þ
2

:
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Substituting the true populationmodel in the above expression and after some elementary algebraicmanipulations, it can be

shown that

b̂1 ¼ b1 þ b2

P

n

i¼1

ðx1i�x�1Þðx2i�x�2Þ

P

n

i¼1

ðx1i�x�1Þ
2

þ

P

n

i¼1

ðx1i�x�1Þð«i� «�Þ

P

n

i¼1

ðx1i�x�1Þ
2

:

The last term in the conditional expectation Eðb̂1jx1i; x2iÞ drops out giving

b̂1 ¼ b1 þ b2

P

n

i¼1

ðx1i�x�1Þðx2i�x�2Þ

P

n

i¼1

ðx1i�x�1Þ
2

:

Again, the second term gives the least squares estimator of a regression of x2 on x1. It should be obvious that the OLS

estimator of b1 is biased unless Covðx1; x2Þ ¼ 0 with the magnitude and direction of the bias depending on the second term of

the above expression.

4.3 MEASUREMENT ERRORS

Wewill now look at howmeasurement errors in the explanatory or dependent variables or both affect the least squares estimators.

It turns out that the measurement error in the explanatory variables creates a correlation between the variables and the error term

similar to the omitted variable case. On the other hand, measurement errors in the dependent variable may not be a problem

(Wooldridge, 2002).Wewill illustrate the issue byusing a simple linear regressionmodelwith just one explanatoryvariable—that

is, a model of the form (Ashenfelter et al., 2003, p. 197):

yi ¼ b0 þ b1xi þ «i i ¼ 1; . . . ; n

where xi is assumed to be exogenous. Suppose that we observe xi with error. That is, we observe x
0
i ¼ xi þ ui. Assume that x is

independent of ui and that the disturbances ui and «i are independent of each other. Furthermore, assume that ui � i:i:d:ð0;s2
uÞ and

«i � i:i:d:ð0;s2
«Þ.

By substituting the observed value x0i in the equation for yi, we get yi ¼ b0 þ b1x
0
i þ �i where �i ¼ «i�b1ui. Note that by

constructionCovð�i; x
0
iÞ 6¼ 0 since both x0i and �i are influenced by the random component ui. Therefore, the OLS assumptions

are violated and the least squares estimate forb1 is biased and inconsistent. To see this, note that theOLS estimate forb1 can be

written as

b̂1 ¼

P

n

i¼1

ðx0i�x�
0
Þðyi� y�Þ

P

n

i¼1

ðx0i�x�
0Þ2

:

Simple algebraic manipulation can be used to rewrite the above expression as

b̂1 ¼ b1 þ

P

n

i¼1

ðx0i�x�
0
Þð�i� ��Þ

P

n

i¼1

ðx0i�x�
0Þ2

:

Dividing the numerator and denominator of the second term by n and taking the probability limits gives

b̂1 ¼ b1 þ
Covðx0; �Þ

Varðx0Þ
:
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Using the assumptions stated earlier, it can be easily shown thatCovðx0; �Þ ¼ �b1s
2
u and thatVarðx

0Þ ¼ s2
x þ s2

u. Therefore,

the bias is given by

�
b1s

2
u

s2
x0 þ s2

u

:

Therefore, measurement errors in the explanatory variables result in biased and inconsistent OLS estimates. As before, the

magnitude and the direction of the bias depend on the second term of the expression of b̂1.

Ashenfelter et al. (2003, p. 197) gives an elegant derivation to show the behavior of the least squares estimator under

measurement errors in both the dependent and the independent variables. As discussed by the authors, measurement errors in the

dependent variable, in general, does not lead to violation of the least squares assumptions because the measurement error in

the dependent variable is simply absorbed in the disturbance term of the model. However, errors in the dependent variable may

inflate the standard errors of the least squares estimates. To see this, consider the simple linear regressionmodel given earlier and

assume thatwedonot observeyibut observey
0
i ¼ yi þ vi. Substituting this in theoriginalmodel,wegety0i ¼ b0 þ b1xi þ uiwhere

ui ¼ «i þ vi. It should be obvious that unlessCovðxi; viÞ 6¼ 0, theOLS assumptions are not violated. Furthermore, since (Meyers,

1990, p. 14)

Var b̂1

� �

¼
s2
u

P

n

i¼1

ðxi� x�Þ2
;s2

u ¼ s2
« þ s2

v ; ands
2
x ¼ n�1

X

n

i¼1

ðxi� x�Þ2

then

Var b̂1

� �

¼
s2
« þ s2

u

ns2
x

:

Therefore, the measurement errors in the dependent variable tends to inflate the standard errors of the estimates.

4.4 INSTRUMENTALVARIABLE ESTIMATION

Wewill now discuss an alternative method to get unbiased and consistent estimators of b under departures from the exogenous

assumption. To motivate the discussion of instrumental variables, consider the least squares model given by

y ¼ XTb þ e:

Assume that one ormore variables inXmay be correlatedwith e. That is, assume thatE(ejX)¼h 6¼ 0. Next, assume that there

exists a set ofLvariables inW,withL � k, such thatCovðW;XÞ 6¼ 0butEðWT
eÞ ¼ 0. That is, theLvariables inWare exogenous

but are correlated with the explanatory variables. Check this.

Note that the exogenousvariables from theoriginal set of variablesmaybepart ofW. Thevariables in the setWare referred to as

instrumental variables.Wewill first look at the instrumental variable estimator for the casewhenL ¼ k. Premultiplying the linear

model by WT gives

WTy ¼ WTXbþWT
e:

By rewriting this as

y* ¼ X*bþ e
*

and using the method of least squares, we can write

b̂IV ¼ ðX*TX*Þ�1
X*Ty* ¼ ðXTWWTXÞ�1

XTWWTy;
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which can be simplified to

b̂IV ¼ bþ ðWTXÞ�1
WT

e :

Using the assumption that ðWTXÞ�1
exists andEðWT

eÞ ¼ 0, it is easy to show that b̂IV is unbiased forb. Using the discussion

used to show the consistency of OLS estimators, it is trivial to show that p lim ðb̂IVÞ ¼ b.
Therefore, the instrumental variable estimator for the case L ¼ k is

b̂IV ¼ ðXTWWTXÞ�1
XTWWT ;

which can be simplified to

bIV ¼ ðWTXÞ�1
WTy:

Greene (2003, pp. 76–77) gives a thorough description and the assumptions underlying the instrumental variables estimator.

Also see Wooldridge (2002, pp. 85–86) and Ashenfelter et al. (2003, pp. 199–200).

It is easy to show that the asymptotic variance of bIV is

ŝ 2ðWTXÞ�1ðWTWÞðXTWÞ�1

where,

ŝ2 ¼
ðy�XbIVÞ

Tðy�XbIVÞ

n
ðGreene; 2003; p: 77Þ:

.

As shown in Greene (2003, p. 78 andWooldridge (2002, pp. 90–91), instrumental variables estimation when L > k is done in

two steps. In Step 1, the data matrix X is regressed against the matrix containing the instrumental variablesW to get X̂which is

defined as X̂¼ ðWTWÞ�1
WTX. In Step 2, y is regressed on X̂ to get the instrumental variables estimator, bIV given by

bIV ¼ðX̂T X̂Þ�1X̂
T
y

¼ ½XTWðWTWÞ�1WTX��1XTWðWTWÞ�1WTy:

This estimator is often referred to as the two-stage least squares estimator of b and is abbreviated as 2SLS. The k� kmatrix

ŝ2ðX̂T X̂Þ�1
with

ŝ2 ¼
ðy� X̂bIVÞ

Tðy� X̂bIVÞ

n

is the estimated covariance matrix of the 2SLS estimator.

We will now illustrate the computations involved in estimation with instrumental variables by using the data on working,

marriedwomen in thewell-known labor supply data fromMroz (1987).As discussed inWooldridge (2002, p. 87), the objective is

to estimate the following wage equation:

logðwageÞ ¼ b0 þ b1exper þ b2exper
2 þ b3educ þ «:

The variable educ contains the actual number of years of education of each woman. As stated by the author, information on

ability of the women, the quality of education received and their family background is missing. These variables are suspected of

being correlated with the education variable and are therefore assumed to contribute to omitted variables bias. Suppose that

information on mother’s education, motheduc, is available so that it can be used as an instrument for educ. The instrumental

variables matrix W therefore has three variables: exper, exper2, and motheduc.
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Wewill first analyze the data in Proc IML and then show the analysis in Proc Syslin. The following statements will read in the

data from a text file called “mroz_raw.txt.” Note that the variable inlf indicates whether a person was in the labor force in 1975.

Since we are interested in working women, we need to select only those records where inlf¼ 1.

data mroz;

infile ’C:\Temp\MROZ.txt’ lrecl=234;

input inlf hours kidslt6 kidsge6 age educ wage repwage

hushrs husage huseduc huswage faminc mtr motheduc

fatheduc unem city exper nwifeinc lwage expersq;

if inlf=1;

run;

Next, we read the data into matrices by using Proc IML. Note that the data matrix X has data for the actual labor market

experience (exper), the squared term for this (exper2), and years of schooling (educ). Of course, we need to also add the constant

column of 1’s. The response variable is the log of wage (log(wage)). We use the mother’s years of schooling (motheduc) as the

instrument for educ. Therefore, the instrumental variables matrix W contains the column of 1’s along with exper, exper2, and

motheduc. The following statements invoke Proc IML and read the data into the matrices.

Proc IML;

use mroz;

read all var {’exper’ ’expersq’ ’educ’} into X;

read all var {’lwage’} into Y;

read all var {’exper’ ’expersq’ ’motheduc’} into W;

n=nrow(X);

k=ncol(X);

X=J(n,1,1)||X;

W=J(n,1,1)||W;

As discussed earlier, when the number of columns of W equals the number of columns of X, the least squares instrumental

variables estimator is given by bIV¼ (WTX)�1WTy. The following statement will calculate this.

bhat_IV=inv(W’*X)*W’*y;

We can calculate the asymptotic variance–covariance matrix of this estimator by using the formulas outlined in this section.

The following statements can be used to calculate the standard errors of the instrumental variable estimator. Output 4.1 contains

the analysis results.

variance=((y-X*bhat_IV)’*(y-X*bhat_IV)/n;

variance_matrix=inv(W’*X)*(W’*W)*inv(X’*W);

var_cov_IV=variance*variance_matrix;

SE=SQRT(vecdiag(var_cov_IV));

Themodel used is a semi-logmodel and can be interpreted as follows: Ceteris Paribus, the estimate of the return to education is

about 5% and is not significant. The implication is that each additional year of school is predicted to increase earnings by about

TABLE

BHAT_IV SE T PROBT

INTERCEPT 0.1982 0.4707 0.4211 0.6739

EXPER 0.0449 0.0135 3.3194 0.0010

EXPER_SQ –0.0009 0.0004 –2.2797 0.0231

EDUC 0.0493 0.0373 1.3221 0.1868

OUTPUT 4.1. Instrumental variable estimates for the earning data.
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5%.The estimate of return to schooling fromOLSestimation is about 10.7%and is highly significant. The standard error from the

instrumental variable estimation is 0.0373versus0.014 for theOLSmodel. The t-test value for the instrumental variable estimator

is therefore smaller than that from the OLS estimation, which explains the difference between the lack of significance of the

instrumental variables estimator to the OLS estimator. The OLS model is given in Output 4.3.

The Proc Syslin procedure in SAS can be used to conduct instrumental variable analysis on the earning data. This procedure is

extremely powerful and can be used to estimate parameters in systems of seemingly unrelated regression and systems of

simultaneous equations. It can also be used for single equation estimation using OLS and is very useful when conducting

instrumental variables regression for both the single andmultiple equations systems. The following statements can be used at the

minimumfor instrumental variables analysis of the earningdata.Note that allwedohere is specify the endogenous and exogenous

variables followed by a specification of the linear model. The analysis results are given in Output 4.2.

proc syslin 2SLS data=mroz;

endogenous educ;

instruments exper expersq motheduc;

model lwage=exper expersq educ;

run;

The t-tests indicate that both experience variables are significant. The output from Proc Syslin (using the options for the

example used) is very similar to the outputwe have seenwith ProcReg andProcGLM.That is, weget theANOVA table, followed

by the model statistics and the parameter estimates. The results from OLS analysis are given in Output 4.3 and indicates a

significance of all three variables.

We now turn our attention to the casewhen the number of columns inWexceeds the number of columns inX.Wewill now use

the informationonboth parents’ education (fatheduc and motheduc) and husband’s education (huseduc) as instruments foreduc.

As before, we will analyze this data using Proc IML followed by analysis using Proc Syslin.

Model lwage

Dependent Variable lwage

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 10.18121 3.393735 7.35 <0.0001

Error 424 195.8291 0.461861

Corrected Total 427 223.3275

Root MSE 0.67960 R-Square 0.04942

Dependent Mean 1.19017 Adj R-Sq 0.04270

Coeff Var 57.10123

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 0.198186 0.472877 0.42 0.6754

exper 1 0.044856 0.013577 3.30 0.0010

expersq 1 –0.00092 0.000406 –2.27 0.0238

educ 1 0.049263 0.037436 1.32 0.1889

The SYSLIN Procedure

Two-Stage Least Squares Estimation

OUTPUT 4.2. Instrumental variables analysis of the earning data using Proc Syslin.
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The following statementswill invokeProc IMLand read the data into appropriatematrices.Note that the instrumental variables

matrixW now contains the two exogenous variables exper and exper2 along with the three instrumental variables. The analysis

results are given in Output 4.4.

Proc IML;

use mroz;

read all var {’exper’ ’expersq’ ’educ’} into X;

read all var {’lwage’} into Y;

read all var {’exper’ ’expersq’ ’motheduc’

’fatheduc’’huseduc’} into W;

n=nrow(X);

k=ncol(X);

X=J(n,1,1)||X;

W=J(n,1,1)||W;

Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 35.02230 11.67410 26.29 <0.0001

Error 424 188.30515 0.44412

Corrected Total 427 223.32745

Root MSE 0.66642 R-Square 0.1568

Dependent Mean 1.19017 Adj R-Sq 0.1509

Coeff Var 55.99354

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –0.52204 0.19863 –2.63 0.0089

exper 1 0.04157 0.01318 3.15 0.0017

expersq 1 –0.00081119 0.00039324 –2.06 0.0397

educ 1 0.10749 0.01415 7.60 <0.0001

The REG Procedure

Model: MODEL1

Dependent Variable: lwage

OUTPUT 4.3. Ordinary least squares analysis of the earning data.

TABLE

BHAT_IV SE T PROBT

INTERCEPT –0.1869 0.2971 –0.6288 0.5298

EXPER 0.0431 0.0138 3.1205 0.0019

EXPER_SQ –0.0009 0.0004 –2.0916 0.0371

EDUC 0.0804 0.0227 3.5461 0.0004

OUTPUT 4.4. Instrumental variables estimator for the earning data when L> k.
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The following statementswill calculate and print the least squares instrumental estimator. Note that the first step is to calculate

the predicted data matrix X̂. This is then used to produce the instrumental variables estimator.

Xhat=W*inv(W‘*Z)*W‘*X;

bhat_IV=inv(Xhat‘*Xhat)*Xhat‘*y;

The standard errors of these estimates can also be easily calculated as before. The following statements will do this

for us.

variance=((y-Xhat*bhat_IV)‘*(y-Xhat*bhat_IV))/n;

variance_matrix=inv(Xhat‘*Xhat);

var_cov_IV=variance*variance_matrix;

SE=SQRT(vecdiag(var_cov_IV));

Proc Syslin can easily be used to conduct the analysis. The following statements can be used. The analysis results are given in

Output 4.5. Notice that all three explanatory variables are now significant and the returns to schooling has increased to about 8%

and is highly significant. The interpretation is as before: Ceteris Paribus, each additional year of schooling is expected to increase

earnings by about 8%.

proc syslin 2SLS data=mroz;

endogenous educ;

instruments exper expersq motheduc fatheduc huseduc;

model lwage=exper expersq educ;

run;

Model lwage

Dependent Variable lwage

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 15.48784 5.162612 11.52 <0.0001

Error 424 189.9347 0.447959

Corrected Total 427 223.3275

Root MSE 0.66930 R-Square 0.07540

Dependent Mean 1.19017 Adj R-Sq 0.06885

Coeff Var 56.23530

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 –0.18686 0.285396 –0.65 0.5130

exper 1 0.043097 0.013265 3.25 0.0013

expersq 1 –0.00086 0.000396 –2.18 0.0300

educ 1 0.080392 0.021774 3.69 0.0003

The SYSLIN Procedure

Two-Stage Least Squares Estimation

OUTPUT 4.5. Proc Syslin output of the earning data when L> k.
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4.5 SPECIFICATION TESTS

In the discussion so far, we assumed that the regression models suffer from the presence of endogenous explanatory

variable(s). We also presented techniques to estimate the model parameters under the presence of endogenous variables.

This section introduces methods to determine if endogeneity is indeed a problem. The Hausman test for endogeneity is

perhaps the most widely used test and is based on comparing the OLS and the 2SLS estimators. We will discuss this test a

bit later. For now, we will look at simple regression-based tests that can be used as an alternative to Hausman’s test.

The steps for conducting the test are given below (Wooldridge, 2002, pp. 118–119).

1. First, consider the linear model y ¼ Xbþ axþ ewhere y is n� 1,X is n� k, b is k � 1, a is the coefficient of the n� 1

vector x that is suspected of being endogenous, and e is the n� 1 unobserved error. LetWn�L be the set of L exogenous

variables including the variables in X. Next, consider the hypothesis H0 : x is exogenous versus H1 : x is endogenous.

2. Consider the reduced form equation relating x toW given by x ¼ Wdþ g with the assumption that EðWTgÞ ¼ 0. Here, d

is an L� 1 vector of unknown coefficients and g is the n� 1 disturbance vector.

3. As shown in (Wooldridge, 2002, p. 119), the expectationEðeTgÞ equalsEðeTxÞ. Therefore, we can test endogeneity of x by
simply checking whether EðeTgÞ ¼ 0.

4. Write the equation relating e to g as e ¼ r1g þ e and substitute this in the original equation to get

y ¼ Xbþ axþ r1g þ e.

5. It is trivial to show that e is independent ofX, x, and g. Therefore, a test ofH0 : r1 ¼ 0 can be conducted by looking at the

t-test results in the regression of y onX, x, and g. Endogeneity of x is implied if the null hypothesis is not rejected. Here, g

can be estimated by the residuals of the regression of x on W.

We will revisit the education data set with parents and husband’s education as instruments to illustrate the above approach to

test for endogeneity. The objective here is to determine if the variable educ is endogenous. The first step is to regress educ on a

constant, exper, exper,2 motheduc, fatheduc, and huseduc. The residuals from this (v) regression is saved and used as an

explanatoryvariable in the regressionof log(wage) against a constant,exper,exper2, educ, and v. If the t statistic corresponding tov

is significant, then the null hypothesis is rejected and we conclude that the variable educ is endogenous. The following SAS

statements can be used to do the analysis. Notice that the first Proc Reg statements save the residuals in a temporary SAS data set

calledmroz2. The analysis results are given inOutput 4.6. The results indicate thatwe have evidence of endogeneity of educ at the

10% significance level (p-value¼ 0.0991).

proc reg data=mroz noprint;

model educ=exper expersq motheduc fatheduc huseduc;

output out=mroz2 residual=v;

run;

proc reg data=mroz2;

model lwage=exper expersq educ v;

run;

4.5.1 Testing Overidentifying Restrictions

We now turn our attention to addressing the problem of determining if the regression model has more instruments than is

necessary. The question we address here is, “Are the extra instrument variables truly exogenous?” That is, are the extra

instruments uncorrelated with the error term? Wooldridge (2002, p. 123) gives details on a simple regression-based Sargan’s

hypothesis test (1958) to determine whether the regression model has more instruments than is required. The steps are as

follows:

1. Consider, the linear model given by y ¼ Xbþ Gdþ ewhere y is n� 1,X is n� L1,b is L1 � 1,G is n� G, d isG� 1, and

e is n� 1. Here, G contains variables that are suspected of being endogenous. As before, letW ¼ ðX;W*Þ be the set of all
instrumental variables. Here, W* is n� L2 so that W is n� L with L ¼ L1 þ L2 and L2 > G.

2. Conduct a 2SLS and obtain ê.

3. Conduct an OLS of ê on W and obtain R2.
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4. Sargan’s test statistic is nR2
u. Under the null hypothesis of exogenous extra instruments, the test statistic is distributed as a

chi-squared random variable with L2�G degrees of freedom.

If the null hypothesis is rejected, thenweneed to reexamine the instruments thatwere selected for the analysis.Thegeneral idea

is that if the instruments are truly exogenous, then they should not be correlated with the disturbance term.

Wewill now illustrate the computations by using the earning equationwith parents and husband’s education as instruments.

The first step is to estimate the true model by using 2SLS and to store the residuals . The following SAS statements

can be used. Note that the output has been suppressed becausewe are interested only in storing the residuals from this analysis.

proc syslin 2SLS noprint data=mroz out=step1_resid;

endogenous educ;

instruments exper expersq motheduc fatheduc huseduc;

model lwage=exper expersq educ;

output residual=out1_resid;

run;

The next step is to regress the residuals from the 2SLS analysis on all exogenous variables in the model. The following SAS

statements can be used. The results of the analysis one given in Output 4.7.

proc reg data=step1_resid;

model out1_resid=exper expersq motheduc

fatheduc huseduc;

run;

Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 36.23050 9.05763 20.48 <0.0001

Error 423 187.09695 0.44231

Corrected Total 427 223.32745

Root MSE 0.66506 R-Square 0.1622

Dependent Mean 1.19017 Adj R-Sq 0.1543

Coeff Var 55.87956

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 –0.18686 0.28359 –0.66 0.5103

exper 1 0.04310 0.01318 3.27 0.0012

expersq 1 –0.00086280 0.00039368 –2.19 0.0290

educ 1 0.08039 0.02164 3.72 0.0002

v Residual 1 0.04719 0.02855 1.65 0.0991

The REG Procedure

Model: MODEL1
Dependent Variable: lwage

OUTPUT 4.6. Using Proc Reg to check for endogeneity.
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There are 428 observations in the data set andR2¼ 0.0026. Therefore, the test statistic value isNR2¼ 1.11. The critical value is

x2
2;0:05 ¼ 5:99. The degrees of freedom were calculated using the formula L2�G, where L2¼ 3 because we used motheduc,

fatheduc, andhuseducas instruments beyondexper and expersq. Wesuspect onlyonevariable (educ) as beingendogenous,G¼ 1.

Thus, thedegree of freedom is2.Thenull hypothesis is not rejected because the test statistic value is smaller than the critical value.

That is that we can use the “extra” instruments to identify the model for y.

4.5.2 Weak Instruments

We now turn our attention to the problem of weak instruments—that is, the case when the selected instrumental variables used

in estimation have a poor correlation with the endogenous variable.

We will discuss a general method for determining if weak instruments have been used in the model. Consider the model

y¼Xb þ ax þ e where x is suspected of being endogenous. Assume that we have a set of instrumental variables W, which

includes the explanatory variables inX. The reduced form equation relating x toX andW is written as x¼Wd þ g (Wooldridge,

2002).

If d¼ 0, the instruments inW have no predictive power in explaining x. Avalue of d close to zero implies that the instruments

are weak. A rule of thumb proposed in the literature is that the weak instruments problem is a non-issue if the F statistic of the

regression in the reduced form equation exceeds 10 (Glewwe, 2006).Wewill illustrate the computations by looking at the earning

data set. The variable educwas suspected of being endogenous. The variablesmotheduc, fatheduc, and huseducwere considered

Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 0.49483 0.09897 0.22 0.9537

Error 422 189.43989 0.44891

Corrected Total 427 189.93471

Root MSE 0.67001 R-Square 0.0026

Dependent Mean –5.3125E-16 Adj R-Sq –0.0092

Coeff Var –1.2612E17

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 0.00861 0.17727 0.05 0.9613

exper 1 0.00005603 0.01323 0.00 0.9966

expersq 1 –0.00000888 0.00039562 –0.02 0.9821

motheduc 1 –0.01039 0.01187 –0.87 0.3821

fatheduc 1 0.00067344 0.01138 0.06 0.9528

huseduc 1 0.00678 0.01143 0.59 0.5532

The REG Procedure

Model: MODEL1

Dependent Variable: out1_resid Residual Values

OUTPUT 4.7. Testing overidentifying restrictions in the earning data.
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as instruments and therefore the reduced regression equation for the wage equation is

educ ¼ a0 þ a1exper þ a2exper
2 þ a3motheduc þ a4 fatheduc þ a5huseduc þ g:

The reduced formparameters are estimatedbyOLSregression.The followingSASstatements canbeused.Theanalysis results

are given in Output 4.8. Note that the F statistic value is very large (larger than 10) and therefore we cannot reject the hypothesis

that we have weak instruments.

proc reg data=mroz;

model educ=exper expersq motheduc fatheduc huseduc;

run;

4.5.3 Hausman’s Specification Test

Hausman’s specification test can be used to determine if there are significant differences between the OLS and the IVestimators.

As discussed in Greene (2003, pp. 80–83), under the null hypothesis of no endogeneity, both the OLS and the IVestimators are

consistent. Under the alternative hypothesis of endogeneity, only the IVestimator is consistent. Hausman’s test is based on the

Number of Observations Read 428

Number of Observations Used 428

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 955.83061 191.16612 63.30 <0.0001

Error 422 1274.36565 3.01982

Corrected Total 427 2230.19626

Root MSE 1.73776 R-Square 0.4286

Dependent Mean 12.65888 Adj R-Sq 0.4218

Coeff Var 13.72763

Parameter Estimates

Variable DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept 1 5.53831 0.45978 12.05 <0.0001

exper 1 0.03750 0.03431 1.09 0.2751

expersq 1 –0.00060020 0.00103 –0.58 0.5589

motheduc 1 0.11415 0.03078 3.71 0.0002

fatheduc 1 0.10608 0.02952 3.59 0.0004

huseduc 1 0.37525 0.02963 12.66 <0.0001

The REG Procedure
Model: MODEL1

Dependent Variable: educ

OUTPUT 4.8. Weak instruments analysis in the earning data.
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principle that if there are two estimators ðb1;b2Þwhich converge to b under the null hypothesis and converge to different values

under the alternative hypothesis then the null hypothesis can be tested by testing whether the two estimators are different. The

test statistic is given by

H ¼ dT ½s2IVðX̂TX̂Þ�1�s2OLSðX
TXÞ�1��1:

Here, d¼ [bIV� bOLS], and s2IVðX̂
T X̂Þ�1

, s2OLSðX
TXÞ�1

are the terms associated with the asymptotic covariance of the two

estimators, respectively.Under the null hypothesis,H is distributed as ax2with k* degrees of freedom.Thedegree of freedom, k*, is

the number of variables inX that are suspected of being endogenous.Wewill use the consumption function data in Greene (2003)

to illustrate the computations involved in SAS. The data is credited to the Department of Commerce, BEA. The author proposes

estimating a model given by ct¼b1 þ b2yt þ b3it þ b4ct�1 þ «t, where ct is the log of real consumption, yt is the log of real

disposable income, and it is the interest rate. We suspect a possible correlation between yt and «t and consider yt�1, ct�1, and it as

possible instruments (Greene, 2003, Example 5.3). The following Proc IML commands can be used to calculate Hausman’s test

statistic. The analysis results are given in Output 4.9.We assume that the data have been read into a temporary SAS data set called

hausman. The names of the variables are self-explanatory. For instance, yt�1 and ct�1 are labeled as yt1 and ct1. The first step is to

read the data into appropriate matrices.

Proc IML;

use hausman;

read all var {’yt’ ’it’ ’ct1’} into X;

read all var {’ct’} into Y;

read all var {’it’ ’ct1’ ’yt1’} into W;

n=nrow(X);

k=ncol(X);

X=J(n,1,1)||X;

W=J(n,1,1)||W;

Next, we need to compute the OLS and IV estimators.

CX=inv(X‘*X);

CW=inv(W‘*W);

OLS_b=CX*X‘*y;

Xhat=W*CW*W‘*X;

b_IV=inv(Xhat‘*X)*Xhat‘*y;

TABLE

OLS IV

INTERCEPT –0.0453 –0.0208

YT 0.1847 0.0892

IT –0.0017 –0.0012

CT1 0.8205 0.9140

H

The Hausman Test Statistic Value is 21.093095

OUTPUT 4.9. Hausman analysis using Proc IML for consumption data.
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Next, we need to compute the difference vector and calculate the consistent estimator of s2.

d=b_IV-OLS_b;

SSE1=y‘*y-OLS_b‘*X‘*Y;

SSE2=y‘*y-b_IV‘*X‘*Y;

DFE1=n-k;

DFE2=n;

MSE1=SSE1/DFE1;

MSE2=SSE/DFE2;

The last step is to calculate the test statistic, H, and print out the results.

diff=ginv(MSE2*inv(Xhat‘*Xhat)-MSE1*CX);

H=d‘*diff*d;

Since the 95%critical value from the chi-squared table is 3.84,we reject the null hypothesis of no correlation between yt and «t.

Therefore, the IVestimator ismore appropriate touse for the consumptionmodel.Hausman’s test can alsobeperformed inSASby

using the Procmodel procedure. The followingSAS statements can be used.Notice thatwe specify the endogenous variable in the

“endo” statement, the instruments in the “instruments” statement, and then write down the linear model to be estimated. This is

followedby the “fit” statement using the dependent variablewith the option that theHausman test beused to compare theOLSand

the instrumental variable estimator.

proc model data=hausman;

endo yt;

instruments it ct1 yt1;

ct=beta1+beta2*yt+beta3*it+beta4*ct1;

fit ct/ols 2sls hausman;

run;

The procedure checks if theOLS estimates aremore efficient than the 2SLS procedure. The degree of freedom used for the test

is k, the number of columns of X. The analysis results are produced in Output 4.10.

Model Summary

Model Variables 2

Endogenous 1

Parameters 4

Equations 1

Number of Statements 1

Model Variables yt ct

Parameters beta1 beta2 beta3 beta4

Equations ct

The Equation to Estimate is

ct = F(beta1(1), beta2(yt), beta3(it), beta4(ct1))

Instruments 1 it ct1 yt1

NOTE: At OLS iteration 1 CONVERGE=0.001 criterion met.

The MODEL Procedure

OUTPUT 4.10. Hausman test for the consumption data using Proc model.
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Data Set Options

DATA= HAUSMAN

Minimization Summary

Parameters Estimated 4

Method Gauss

Iterations 1

Final Convergence
Criteria

R 6.19E-11

PPC 1.95E-10

RPC(beta4) 8122.857

Object 0.999999

Trace(S) 0.000066

Objective Value 0.000065

Observations
Processed

Read 202

Solved 202

The MODEL Procedure
OLS Estimation Summary

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

ct 4 198 0.0131 0.000066 0.00814 0.9997 0.9997

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

beta1 –0.04534 0.0130 –3.49 0.0006

beta2 0.18466 0.0330 5.60 <0.0001

beta3 –0.00165 0.000294 –5.62 <0.0001

beta4 0.820509 0.0323 25.38 <0.0001

Number of
Observations Statistics for System

Used 202 Objective 0.0000650

Missing 0 Objective*N 0.0131

NOTE: At 2SLS Iteration 1 convergence assumed because OBJECTIVE=7.589157E-27 is almost zero (<1E-12).

The MODEL Procedure

OUTPUT 4.10. (Continued)
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Data Set Options

DATA= HAUSMAN

Minimization Summary

Parameters Estimated 4

Method Gauss

Iterations 1

Final Convergence
Criteria

R 1

PPC 6.41E-11

RPC(beta1) 0.541796

Object 0.676767

Trace(S) 0.000069

Objective Value 7.59E-27

Observations
Processed

Read 202

Solved 202

The MODEL Procedure
2SLS Estimation Summary

Nonlinear 2SLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

ct 4 198 0.0137 0.000069 0.00831 0.9997 0.9997

Nonlinear 2SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

beta1 –0.02077 0.0141 –1.47 0.1429

beta2 0.089197 0.0386 2.31 0.0218

beta3 –0.00116 0.000315 –3.67 0.0003

beta4 0.913973 0.0378 24.18 <0.0001

Number of
Observations Statistics for System

Used 202 Objective 7.589E-27

Missing 0 Objective*N 1.533E-24

Hausman's Specification Test Results

Comparing To DF Statistic Pr > ChiSq

OLS 2SLS 4 22.74 0.0001

The MODEL Procedure

OUTPUT 4.10. (Continued)
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The first few tables contain some information about the model including the number of variables, and the number of

endogenous and exogenous variables. This is followed by output from both OLS and instrumental variable estimation. Note that

convergencewas achieved very quickly for bothmodels. Also note that theOLS standard errors are smaller than the instrumental

variables standard error. The parameter estimates for the intercept, yi and it, are larger in magnitude than the ones obtained from

instrumental variable estimation. The OLS estimate for the parameter value of ct�1 is smaller than the instrumental variable

estimate. The value of the test statistic for Hausman’s test is 22.74 with 4 degrees of freedom and is highly significant indicating

that the instrumental variable estimator is more efficient than the OLS estimator.

Notice that the test statistic value from Proc Model is very close to the one obtained by using Proc IML. On the other hand,

the degree of freedom used for the test in Proc Model is equal to the number of variables inX. The test procedure described in

Greene (2003) uses as degrees of freedom the number of variables that are suspected of being endogenous. Greene (2003, pp.

81–82) provides a brief explanation that justifies the setting of the degrees of freedom to the number of suspected endogenous

variables.
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5
NONSPHERICAL DISTURBANCES
AND HETEROSCEDASTICITY

5.1 INTRODUCTION

Thediscussion in the previous chapters wasbased on the assumption that the disturbancevector in the linearmodely¼Xb þ e is

such that the conditional distribution «i |X is independently and identically distributed with zero mean and constant variance s2.

The implication of this assumption is that thevariance of edoes not changewith changes in the conditional expectation,E(y |X).A

plot of e versus E(y |X) should therefore exhibit a random scatter of data points. The random disturbances under this assumption

are referred to as spherical disturbances. This chapter deals with alternative methods of analysis under violations of this

assumption. The implication here is that Var(e |X)¼s2V¼S, where V is a positive definite, symmetric matrix.The random

disturbances under this assumption are referred to as nonspherical disturbances. Although the general method presented in this

chapter can be extended to instrumental variables regression very easily, we will assume that the explanatory variables that are

used in the model are exogenous. We will deal with two cases of nonspherical disturbances.

1. Heteroscedasticity: Here, the disturbances are assumed to have different variances. The variance of the disturbance may,

for example, be dependent upon the conditional mean E(y |X). For example, this will happen in the case when the

disturbances are assumed to follow the binomial distribution. Recall that if a random variable g has a binomial distribution

with parameters n (the number of trials) and success probability p, then the mean and variance of g are np and np(1� p),

respectively. Therefore the variance is dependent on the mean np; and as the mean changes, so does the variance. We will

revisit this case in Chapter 10 in our discussion of discrete choice models using logistic regression. In our discussion of

heteroscedasticity we will assume uncorrelated disturbances so that S ¼ diag½s2
1;s

2
2; . . . ;s

2
n�. Chapter 6 deals with the

case of autocorrelation where the disturbances are correlated.

2. Autocorrelation: This often occurs in time series data where error terms between time periods are correlated. Here, we

assume homoscedastic disturbances where the variances of the disturbances are equal but the disturbances are correlated.

Therefore, S is no longer diagonal and is given by (Greene, 2003, p. 192)

S ¼ s2

1 r1 . . . rn�1

r1 1 . . . rn�2

.

.

.
.
.
.

.
.

.
.
.
.

rn�1 rn�2 . . . 1

2

6

6

6

6

4

3

7

7

7

7

5

:
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In this chapter and the next, we will discuss analysis techniques when the disturbances are either heteroscedastic or

autocorrelated.

5.2 NONSPHERICAL DISTURBANCES

We start our discussion with estimation techniques when the disturbances are heteroscedastic. As seen in Chapter 1, under

the assumptions E(e|X)¼ 0 and V(e|X)¼s2I, the least squares estimator of b is given by b ¼ ðXTXÞ�1
XTy:We also saw that

the least squares estimator is the best linear unbiased estimator and that it is consistent and asymptotically normal (if the

disturbance vector is normally distributed). It is easy to show that the unbiased property of the least squares estimator is

unaffected under departures from the spherical disturbances assumption and that the variance–covariance matrix of b under

heteroscedasticity is given by

VarðbjXÞ ¼ s2ðXTXÞ�1
XTVXðXTXÞ�1:

If we assume that the disturbances are normally distributed, then it is easily shown that the conditional distribution of b is also

normal. That is,

bjX � Nðb;s2ðXTXÞ�1
XTVXðXTXÞ�1Þ:

In the previous chapters, all inferences regarding the least squares estimator were done using the estimated covariance matrix

s2(XTX)�1. However, under departures from the spherical disturbance assumption, Var(b|X) 6¼ s2(XTX)�1 and therefore any

inferencewith s2(XTX)�1will be incorrect.That is, thehypothesis tests and confidence intervals using the t,F,x2distributionswill

not be valid (Greene, 2003, p. 194).

5.2.1 Estimation of b

There are two methods for estimating b under the assumption of nonspherical disturbances. The first case assumes that the

structure ofV is known and the otherwhen it is assumed unknown. Estimators obtained under the assumption thatV is known are

called theGeneralized Least Squares (GLS) estimators, while those obtained under the assumption thatV is unknown are called

the Feasible Generalized Least Squares (FGLS) estimators.

To start with, assume thatV is a known positive definite symmetric matrix. Premultiplying the linear model by V�1=2
gives

V�1=2
y ¼ V�1=2

XbþV�1=2
e or y* ¼ X*bþ e

*:

It is easy to show that Eðe*jXÞ ¼ 0 and that Varðe*jXÞ ¼ s2I. See both Greene (2003, p. 207) and Verbeek (2004, p. 81) for

more details.

Therefore, the classical regressionmodel assumptions of spherical disturbances are satisfied and the analysis techniques from

the previous chapters can be used for estimation on the transformed variables. It can be shown that under the transformation used,

the GLS estimator is consistent and unbiased and is given by

bGLS ¼ ðXTV�1
XÞ�1

XTV�1
y:

with variance–covariance matrix

VarðbGLSjXÞ ¼ s2ðXTV�1
XÞ�1:

The GLS estimator is asymptotically normally distributed if the disturbances are normally distributed. That is,

bGLS � Nðb;s2ðXTV�1
XÞ�1Þ.

In reality,V is unknown and has to be estimated. As discussed in Greene (2003, p. 209), ifV is allowed to be unrestricted as in

the case of autocorrelation, then there are n(n þ 1)/2 additional parameters in s2V that need to be estimated. This is impossible,

given thatwehavea total ofnobservations. In such cases, calculatingbGLS is not possible and aFGLSestimator has tobeused.The

FGLS estimation involves putting a restriction on the number of parameters that needs to be estimated. For instance, in

heteroscedasticity, we restrict s2V to one new parameter, u, defined as s2
i ¼ s2zui (Greene, 2003, p. 210).

Details on estimating u will be provided a bit later in this chapter. For now, assume that u can be estimated by û. We can then

estimateVwithVðûÞanduse this in the formula for theGLSestimate toobtain theFGLSestimator. Illustrationof thecomputation

methods involved in computing theGLS and the FGLS estimatorswill be discussed in the following sections. For themoment, we

will shift our attention to the task of detecting whether the regression model suffers from the heteroscedasticity.
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5.3 DETECTING HETEROSCEDASTICITY

As mentioned earlier, heteroscedasticity implies that the variances of the disturbances are not constant across observations.

Therefore, an easy way of detecting heteroscedasticity is to plot the least squares residuals, êi, against the predicted values of the

dependent variable and against all the independent variables in the model. Heteroscedasticity should be suspected if any of the

graphs indicate a funnel-shaped (or someother nonrandom)pattern. That is, thegraphgetsmore scattered as the predicted valueof

the dependent or independent variables change.As an example, consider the credit card data inGreene (2003). The data consist of

monthly credit card expenses for 100 individuals. This data set was used with permission from William H. Greene (New York

University) and is credited to Greene (1992). The author conducted a linear regression of monthly expenses on a constant, age, a

dummy variable indicating ownership of a house, income, and the square of income using 72 observations where the average

expense is nonzero.The following statements canbeused (note that the squareof incomewascalculated in thedata step statement)

to conduct the analysis.Theanalysis results aregiven inOutput 5.1.Wewill not discuss theoutput results asweare interested in the

residual plots.

proc reg data=Expense;

model AvgExp = Age OwnRent Income IncomeSq;

output out=for_graphs student=r_s;

run;

The option �output out¼for_graph student¼r_s� creates a SAS data set with standardized residuals along with the variables

used in themodel.The followingGPLOTstatements cannowbeused to create the residual plots.Note that the statements are set to

create a plot of the standardized residuals versus income.

proc gplot data=for_graphs;

plot r_s*income;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

Number of Observations Read 72

Number of Observations Used 72

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 1749357 437339 5.39 0.0008

Error 67 5432562 81083

Corrected Total 71 7181919

Root MSE 284.75080 R-Square 0.2436

Dependent Mean 262.53208 Adj R-Sq 0.1984

Coeff Var 108.46324

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 –237.14651 199.35166 –1.19 0.2384

Age Age 1 –3.08181 5.51472 –0.56 0.5781

OwnRent OwnRent 1 27.94091 82.92232 0.34 0.7372

Income Income 1 234.34703 80.36595 2.92 0.0048

incomesq 1 –14.99684 7.46934 –2.01 0.0487

OUTPUT 5.1. Ordinary least squares analysis of credit card expenses data.
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Three residual plots were created (Figures 5.1– 5.3): one versus average expense, one versus age, and the last versus income.

The residual plots with age and income showa funnel-shaped patternwith the residuals “ballooning” upwith increases in age and

income.We should therefore suspect that the regressionmodel used for the credit card data suffers from heteroscedasticity.More

specifically, it appears that the variance of the residuals is correlated to some function of the explanatory variable income.

FIGURE 5.1. Plot of residuals versus average expense.

FIGURE 5.2. Plot of residuals versus age.
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5.4 FORMAL HYPOTHESIS TESTS TO DETECT HETEROSCEDASTICITY

Weprefer the simple residual plots analysis to detect heteroscedasticity.However, as discussed inGreene (2003, pp. 222–225) and

Verbeek (2004, pp. 90–92), there are three formal tests for detecting the presence of nonspherical disturbances. They are

1. White�s general test

2. The Goldfeld–Quandt test

3. The Breusch–Pagan test

5.4.1 White�s Test

White�s general test can be conducted via the hypothesis

H0 : s2
i ¼ s2 8i;

H1: NotH0:

It is a general test that looks for evidence of a relationship between the variance of the disturbance and the regressors (and

functions of the regressors) without assuming any form of the relationship. This test can be conducted as follows:

1. Estimate «i via OLS to obtain «̂i and calculate «̂2i .

2. Conduct an OLS regression of «̂2i on all unique variables in X along with all the squares and cross products of the unique

variables in X.

3. The test statistic is given by nR2, which under the null hypothesis is asymptotically distributed as chi-squared with p� 1

degrees of freedom, where p is the number of explanatory variables in the OLS regression in step 2.

See Greene (2003), Verbeek (2004), and the SAS/ETS User�s Guide 9.1 for more details on this test. White�s test can be

programmed into Proc IML as follows:

1. First, read the data including the unique variables formed by using cross products into appropriate matrices. Using the

credit card expense data, note that there are only 13 unique columns in the cross-product matrix since ownrent2¼ ownrent

FIGURE 5.3. Plot of residuals versus income.
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and income� income¼ income2, which is already part of X. The original list of explanatory variables include age,

ownrent, income, and incomesq. The cross products are therefore age*age, age*ownrent, age*income, age*incomesq,

ownrent*income, ownrent*incomesq, incomesq*incomesq, income*incomesq.

proc IML;

use Expense;

read all var {’age’ ’ownrent’ ’income’

’incomesq’} into X;

read all var {’age’ ’ownrent’ ’income’

’incomesq’ ’age_sq’ ’incomefth’ ’age_or’

’age_inc’ ’age_incsq’ ’or_income’ ’or_incomesq’

’incomecube’} into XP;

read all var {’avgexp’} into Y;

n=nrow(X);

np=nrow(XP);

X=J(n,1,1)||X;

XP=J(np,1,1)||XP;

k=ncol(X);

kp=ncol(XP);

Next, calculate the OLS residuals using the techniques from the previous chapters.

C=inv(X‘*X);

beta_hat=C*X‘*y;

resid=y-X*beta_hat;

2. The square of the OLS residuals is then regressed against the unique variables including the cross-product variables.

resid_sq=resid#resid;

C_E=inv(XP‘*XP);

b_hat_e=C_E*XP‘*resid_sq;

3. The R2 value is then calculated from this regression.

Mean_Y=Sum(resid_sq)/np;

SSR=b_hat_e‘*XP‘*resid_sq-np*Mean_Y**2;

SSE=resid_sq‘*resid_sq-b_hat_e‘*XP‘*resid_sq;

SST=SSR+SSE;

R_Square=SSR/SST;

4. Finally, the test statistic value is calculated.

White=np*R_Square;

pvalue= 1 - probchi(White, kp);

run;

The results of the analysis are given in Output 5.2.

The p value indicates that there is insufficient evidence to claim that the disturbances are heteroscedastic.White�s test can also

be done by using the ProcModel procedure.Wewill again use the credit card data to illustrate this. As opposed to the complexity

involved in Proc IMLof determining the number of unique columns in the cross productX�X, the technicalities do notmatter in

FORMAL HYPOTHESIS TESTS TO DETECT HETEROSCEDASTICITY 75



the ProcModel. The following statements can be used. Note that we have also included an option to conduct the Breusch–Pagan

test, which will be discussed later.

The ProcModel procedure used here contains four main parts. First, we define the parameters of the model using the “parms”

option.Here,we chose the namesConst (for the intercept), C_Age forAge,C_OwnRent forOwnRent,C_Income for Income, and

C_IncomeSq for Income*Income. The next part is the actual layout of the model of interest. It should be obvious that we are

regressing Average Expense against Age, Income, Income*Income, and OwnRent. The next part is used to define the squared

Income termwhichwill be used in theBreusch–Pagan test using the “breusch” option.We could have eliminated the definition had

we chosen to simply conductWhite�s test. The final part uses the “fit” option on the dependent variable of interest to fit themodel.

proc model data=Expense;

parms Const C_Age C_OwnRent C_Income C_IncomeSq;

AvgExp = Const + C_Age*Age + C_OwnRent*OwnRent

+ C_Income*Income + C_IncomeSq*Income*Income;

income_sq = income * income;

fit AvgExp/white breusch=(1 Income Income_Sq);

run;

Output 5.3 reveals that the test statistic value forWhite�s test is 14.33with p value equal to 0.28. Therefore, we do not reject the

null hypothesis of homoscedastic disturbances. This is startling since the residual plots did indicate that the disturbances were

nonspherical. This contradiction points to the nature ofWhite�s test. The generality of the test leads to a “poor power” of detecting

heteroscedasticity when it may exist in reality. On the other hand, rejecting the null hypothesis leads to no indication of what

should be done in terms of adjusting for heteroscedasticity since it offers no insight on the problematic variable(s).

R_SQUARE

0.1990132

WHITE

The test statistic value for Whites Test is 14.328953

PVALUE

The p-value associated with this test is 0.3510922

OUTPUT 5.2. White�s test for the credit card expense data.

The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 1

Parameters 5

Equations 1

Number of Statements 2

Model Variables AvgExp

Parameters Const C_Age C_OwnRent C_Income C_IncomeSq

Equations AvgExp

The Equation to Estimate is

AvgExp
=
F(Const(1), C_Age(Age), C_OwnRent(OwnRent), C_Income(Income),
C_IncomeSq)

NOTE: At OLS Iteration 1 CONVERGE=0.001 Criteria Met.

OUTPUT 5.3. White�s test on credit card expense data using the Proc Model.
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The MODEL Procedure
OLS Estimation Summary
The MODEL Procedure

OLS Estimation Summary

Data Set
Options

DATA= EXPENSE

Minimization Summary

Parameters Estimated 5

Method Gauss

Iterations 1

Final Convergence
Criteria

R 0

PPC 0

RPC(Const) 2347986

Object 0.55266

Trace(S) 81083.02

Objective Value 75452.25

Observations
Processed

Read 72

Solved 72

The MODEL ProcedureThe MODEL Procedure

Nonlinear OLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj
R-Sq Label

AvgExp 5 67 5432562 81083.0 284.8 0.2436 0.1984 AvgExp

Nonlinear OLS Parameter Estimates

Parameter Estimate
Approx

Std Err t Value
Approx

Pr > |t|

Const –237.147 199.4 –1.19 0.2384

C_Age –3.08181 5.5147 –0.56 0.5781

C_OwnRent 27.94091 82.9223 0.34 0.7372

C_Income 234.347 80.3660 2.92 0.0048

C_IncomeSq –14.9968 7.4693 –2.01 0.0487

Number of
Observations

Statistics for
System

Used 72 Objective 75452

Missing 0 Objective*N 5432562

Heteroscedasticity Test

Equation Test Statistic DF Pr > ChiSq Variables

AvgExp White's Test 14.33 12 0.2802 Cross of all vars

Breusch-Pagan 6.19 2 0.0453 1, Income, income_sq

OUTPUT 5.3. (Continued)
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5.4.2 The Goldfeld–Quandt and Breusch–Pagan Tests

Most often, heteroscedasticity is caused by a relationship of the variance of the disturbances with one or more explanatory

variables or their functions. The Goldfeld–Quandt and Breusch–Pagan tests are more powerful and therefore preferred over

theWhite�s test because they restrict attention on explanatory variables that appear to cause heteroscedasticity (Greene, 2003,

p. 223; Verbeek, 2004, p. 90). The residual plots clearly indicated that heteroscedasticitymay have been caused by income.We

can therefore focus on this variable to determine whether there is evidence that the disturbances are heteroscedastic with

respect to it.

For theGoldfeld–Quandt test,we assume that thedata set canbe split into twogroups basedon the explanatory variable that appears

to be causing heteroscedasticity. The method involves first ranking the data with respect to the “problematic” explanatory variable.

Thehope is that this separationwill split thedata set into twogroupswithhighand lowvariances.Regression analysis is thenconducted

on the two groups separately. The hypothesis being tested is

H0: s2
1 ¼ s2

2

H1: s2
1 > s2

2

and the test statistic is

F ¼ eT1 e1=ðn1�k�1Þ
eT2 e2=ðn2�k�1Þ :

Here, eT1 e1 and e
T
2 e2 are the error sums of squares from the two independent regressions where eT1 e1 � eT2 e2. Notice that this is

simply the F test for comparing two variances. Under the null hypothesis of no heteroscedasticity, this test statistic has an F

distribution with n1� k� 1 and n2� k� 1 degrees of freedom (Greene, 2003, p. 223).

As an example of implementing the test in SAS, wewill use the credit card data again. The following statements can be used.

proc import out=Expense

datafile="C:\TempTableF91"

dbms=Excel Replace;

getnames=yes;

run;

Data Expense;

set Expense;

incomesq=income*income;

if avgexp > 0;

run;

proc sort data=Expense;

by income;

run;

data Expense;

set Expense;

if _n_ < 37 then id=1;else id=2;

run;

proc reg data=Expense outest=est noprint;

model avgexp=age ownrent income incomesq;

by id;

run;

proc print data=est;

run;

Output 5.4 contains the results of the analysis. Note that we have suppressed all other output resulting from the above

statements sincewe are interested in obtaining themean square for error for the two splits of the data set. This is simply the square

of the root mean square error (_RMSE_).
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The test statistic value is given by

F ¼ 397:3352

102:5872
¼ 15:

Note that the numerator and denominator degrees of freedom are 36� 4� 1¼ 31 so that the critical value from the F table

with type 1 error rate 5% is 1.822. The test statistic value exceeds the critical value, and we therefore reject the null hypothesis of

homoscedasticity and state that there is evidence of heteroscedasticity caused by income.

As discussed inGreene (2003, p. 223), even though theGoldfeld–Quandt test has a higher power thanWhite�s test for detecting

heteroscedasticity, there is a major criticism of the test. The test requires knowledge of the regressor that will be used to separate

the data set and theremay be instanceswheremore than one regressor is involved. In the case of the credit card data, the residuals

showed a heteroscedastic behavior with respect to income. A plot of residuals versus the square of income reveals hetero-

scedasticity also (we chose not to include the plot here). The Goldfeld–Quandt test therefore has limitations.

5.4.3 The Breusch–Pagan Test

The Lagrange Multiplier test designed by Breusch and Pagan takes into account the possibility of several “problematic”

regressors. This test is based on the hypothesis that the variance of the disturbances is a function of one or more explanatory

variables. That is, s2
i ¼ s2Fða0 þaTziÞ, where zi is a vector of independent variables (Greene, 2003, p. 224; Verbeek, 2004,

p. 91). A test for homoscedasticity can therefore be conducted by testing

H0 : a ¼ 0;

H1 : a 6¼ 0:

The test statistic for this test is given by

LM ¼ 1

2
gTZðZTZÞ�1

ZTg
h i

;

where gi ¼ n «̂2i =e
Te�1, «̂2i is the square of the residuals and e

Te is theOLS, residuals sums of squares, respectively (Breusch and

Pagan, 1979; Greene, 2003, p. 224). FromChapter 1, it should be clear that the termwithin brackets of the LM statistic formula is

the regression sums of squareswhen g is regressed onZ. Under the null hypothesis, the LMstatistic has a chi-squared distribution

with kdegrees of freedom,where k is the number of variables inZ. SASdoes not havea procedure that computes this versionof the

Breusch–Pagan test.

The version of the Breusch–Pagan test provided by SAS is the modification suggested by Koenker (1981) and Koenker and

Bassett (1982).Theauthors showed that theLMtest is not robust under departures from thenormality assumption.Theysuggested

amore robust estimate of thevariance of the residuals.Details of their test can be found inGreene (2003, p. 224) and the SAS/ETS

User’s Guide 9.1.

We illustrate the computations involved by again making use of the credit card data. The vector zi contains the constant term,

income, and the square of income.The following statements in Proc IMLwill compute the test statistic.Note thatwe are assuming

that the reader will have no problems reading the data intomatrices and getting the results printed.We therefore just give the code

that computes the test statistic value.

Obs id _MODEL_ _TYPE_ _DEPVAR_ _RMSE_ Intercept Age

1 1 MODEL1 PARMS AvgExp 102.587 153.130 –4.13740

2 2 MODEL1 PARMS AvgExp 397.335 –259.108 –1.94040

Obs OwnRent Income incomesq AvgExp

1 108.872 16.886 3.6934 –1

2 –52.828 250.135 -16.1141 –1

OUTPUT 5.4. Regression summary statistics of the two splits of the credit card expenditure data.
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bhat_OLS=inv(X‘*X)*X‘*y;

SSE=(y-X*bhat_OLS)‘*(y-X*bhat_OLS);

resid=y-X*bhat_OLS;

g=J(n,1,0);

fudge=SSE/n;

do index=1 to n;

temp1=resid[index,1]*resid[index,1];

g[index,1]=temp1/fudge - 1;

end;

LM=0.5*g‘*Z*inv(Z‘*Z)*Z‘*g;

The analysis results are given in Output 5.5. The null hypothesis of homoscedasticity is rejected since the p value is almost

zero.

The SAS output forWhite�s test contained the test statistic and p value associated with the modified Breusch–Pagan test. The

test statistic value is 6.19 with a p value of 0.0453, which leads us to reject the null hypothesis of homoscedasticity.

5.5 ESTIMATION OF b REVISITED

We now turn our attention back to estimation of the least parameters under heteroscedasticity. Our discussion starts with

estimating a robust version of thevariance–covariancematrix of the ordinary least squares estimator. These robust estimatorswill

then be used to calculate the standard errors of the least squares estimators and to perform hypothesis tests. Wewill then move to

weighted least squares estimation and estimation of the parameters using one-step and two-step FGLS.

Earlier in this chapter, we showed that under heteroscedasticity, the variance–covariance matrix of the least squares

estimator is

VarðbjXÞ ¼ ðXTXÞ�1ðXTs2VXÞðXTXÞ�1:

In practice, V is almost always unknown and therefore has to be estimated. White (1980) suggested the following estimator

for Var (b|X) (Greene, 2003, p. 220; Verbeek, 2004, p. 87)

Est:Asy:VarðbÞ ¼ 1

n

XTX

n

0

@

1

A

�1

1

n

X

n

i¼1

«̂2i xix
T
i

0

@

1

A

XTX

n

0

@

1

A

�1

¼ nðXTXÞ�1
S0ðXTXÞ�1;

where êi is the ith least squares residual. As discussed in Greene (2003), it has been argued that in small samples the White�s

estimator tends to underestimate the true variance–covariance matrix, resulting in higher t-statistic ratios. In other words, using

LM

The Breusch Pagan Test Statistic Value is 41.920303

PVAL

The p value associated with this is 7.891E-10

The null hypothesis of homoscedasticity is rejected

OUTPUT 5.5. The Breusch–Pagan test for the credit card expenditure data.
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this estimator leads to liberal hypothesis tests involving the least square estimators. Davidson andMacKinnon (1993) offered two

alternativeversions of this estimator.Their first recommendation involves scalingup theWhite�s estimator by a factor ofn/(n� k).

Their second recommendation involves replacing «̂2i with «̂2i =mii, where

mii ¼ 1�xTi ðXTXÞ�1
xi ðGreene; 2003; p: 220Þ:

We can compute Whites Estimator in SAS by using the Proc Model statements with the HCCME option in the Fit

statement. Here, HCCME is the acronym for Heteroscedastic-Corrected Covariance Matrix. Using the credit card data, the

following statements will be used and modified to generate standard errors using the different robust covariance matrices.

See SAS/ETS User�s Guide 9.1 and the Proc Panel Documentation pages 58–59 from SAS Institute, Inc. for more details on

this.

proc model data=Expense noprint;

parms Const C_Age C_OwnRent C_Income C_IncomeSq;

AvgExp = Const + C_Age*Age + C_OwnRent*OwnRent +

C_Income*Income + C_IncomeSq*Income*Income;

fit AvgExp/HCCME=NO;

run;

The HCCME¼ 0 option calculates the standard errors based on Whites estimator. Here,

V̂0 ¼ diagð«̂21; «̂22; . . . ; «̂2nÞ:

The HCCME¼ 1 option calculates the first alternative suggested by Davidson and MacKinnon. Here, the estimator

is

V̂1 ¼
n

n�k
diagð«̂21; «̂22; . . . ; «̂2nÞ:

The HCCME¼ 2 option calculates the second alternative suggested by Davidson and MacKinnon. Here, the estimator

is

V̂2 ¼ diag «̂21
1

1�m11

; «̂22
1

1�m22

; . . . ; «̂2n
1

1�mnn

� �

where mii was defined earlier.

The HCCME¼ 3 option produces yet another modification of the White�s estimator. Here, the estimator is

V̂3 ¼ diag «̂21
1

ð1�m11Þ2
; «̂22

1

ð1�m22Þ2
; . . . ; «̂2n

1

ð1�mnnÞ2

 !

:

Notice that in this case, the denominator of the second version of Davidson andMacKinnon�s estimator has been adjusted to get a

smaller estimator of the variances.

The following SAS statements can be used to calculate the parameter estimates and the covariance matrices. This code has

been modified from a code set written by the SAS Institute (SAS/ETS Users Guide 9.1). The analysis results are given in

Output 5.6.

proc model data=credit_card noprint;

parms Const C_Age C_OwnRent C_Income C_IncomeSq;

AvgExp = Const + C_Age*Age + C_OwnRent*OwnRent +

C_Income*Income + C_IncomeSq*Income*Income;

fit AvgExp/HCCME=NO outest=ols covout;

fit AvgExp/HCCME=0 outest=H0 covout;

fit AvgExp/HCCME=1 outest=H1 covout;

fit AvgExp/HCCME=2 outest=H2 covout;
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fit AvgExp/HCCME=3 outest=H3 covout;

run;

data all;

set ols H0 H1 H2 H3;

if _name_=’ ’ then _name_=’Parameter Estimates’;

if _n_ in (1,2,3,4,5,6) then _type_=’OLS’;

else if _n_ in (7,8,9,10,11,12) then _type_=’HCCME0’;

else if _n_ in (13,14,15,16,17,18) then _type_=’HCCME1’;

else if _n_ in (19,20,21,22,23,24) then _type_=’HCCME2’;

else _type_=’HCCME3’;

drop _status_ _nused_ const;

if _n_ in (1,2,7,8,13,14,19,20,25,26) then delete;

run;

proc print data=all;

run;

Theparameter estimates are given in the first rowof the output. This is followedby the covariancematrix usingOLSestimation

and the HCCME estimators. Overall, the two Davidson andMacKinnon estimators for the variance of the parameters are almost

identical.As expected, thevariance estimators of the parameters usingWhite’s estimation are smaller than thevariance estimators

calculated using the Davidson and MacKinnon�s estimators. The OLS variance estimators for OwnRent and Income are the

smallest when compared to the robust estimators. On the other hand, the robust variance estimators for Age are all significantly

smaller than then OLS variance estimator. In general the three Davidson andMacKinnon estimators appear to be very similar to

each other.

We now show how the computations are carried out in Proc IML. The following code will calculate the standard errors of the

OLS estimates using the different HCCME options.

proc iml;

use Expense;

read all var {’age’ ’ownrent’ ’income’ ’incomesq’} into X;
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Obs _NAME_ _TYPE_ C_Age C_OwnRent C_Income C_IncomeSq

1 C_Age OLS 30.412 –138.44 –116.39 8.575

2 C_OwnRent OLS –138.440 6876.11 –863.30 15.427

3 C_Income OLS –116.391 –863.30 6458.69 –574.810

4 C_IncomeSq OLS 8.575 15.43 –574.81 55.791

5 C_Age HCCME0 10.901 –104.40 96.54 –7.285

6 C_OwnRent HCCME0 –104.400 8498.59 –4631.67 318.887

7 C_Income HCCME0 96.543 –4631.67 7897.23 –612.393

8 C_IncomeSq HCCME0 –7.285 318.89 –612.39 48.227

9 C_Age HCCME1 11.714 –112.19 103.75 –7.829

10 C_OwnRent HCCME1 –112.191 9132.81 –4977.32 342.684

11 C_Income HCCME1 103.748 –4977.32 8486.57 –658.094

12 C_IncomeSq HCCME1 –7.829 342.68 –658.09 51.826

13 C_Age HCCME3 11.887 –115.10 103.87 –7.805

14 C_OwnRent HCCME3 –115.099 9153.15 –4997.53 343.810

15 C_Income HCCME3 103.871 –4997.53 8479.40 –657.620

16 C_IncomeSq HCCME3 –7.805 343.81 –657.62 51.833

17 C_Age HCCME3 12.993 –126.98 111.49 -8.332

18 C_OwnRent HCCME3 –126.985 9863.32 –5392.00 370.544

19 C_Income HCCME3 111.492 –5392.00 9116.74 –707.670

20 C_IncomeSq HCCME3 –8.332 370.54 –707.67 55.896

OUTPUT 5.6. Comparing the HCCME estimators for the credit card data.



read all var {’avgexp’} into Y;

n=nrow(X);

X=J(n,1,1)||X;

k=ncol(X);

The next step is to calculate the ordinary least squares residuals.

C=inv(X‘*X);

beta_hat=C*X‘*y;

resid=y-X*beta_hat;

Once the ordinary least squares estimator is calculated, we can start calculatingWhite�s estimator. The variable S0 is nothing

more than the middle term of the formula for White�s estimator.

S0=J(k,k,0);

do i=1 to n;

S0=S0 + resid[i,]*resid[i,]*X[i,]‘*X[i,];

end;

S0=S0/n;

White=n*C*S0*C;

Davidson and MacKinnon�s two alternative versions (DM1, DM2) and the third version of the estimator can now be

calculated.

DM1=n/(n-k) * White;

S0=J(k,k,0);

S0T=J(k,k,0);

do i=1 to n;

m_ii=1-X[i,]*C*X[i,]‘;

Temp_Ratio=resid[i,]*resid[i,]/m_ii;

Temp_Ratio2= resid[i,]*resid[i,]/(m_ii*m_ii)

S0=S0+Temp_Ratio*X[i,]‘*X[i,];

S0T=S0T+Temp_Ratio2*X[i,]‘*X[i,];

end;

S0=S0/n;

S0T=S0T/n;

DM2=n*C*S0*C;

JK=n*C*S0T*C;

The calculated estimates can now be printed by using the following statements.

SE_White=SQRT(vecdiag(White));

SE_DM1=SQRT(vecdiag(DM1));

SE_DM2=SQRT(vecdiag(DM2));

SE_JK=SQRT(vecdiag(JK));

STATS=SE_White||SE_DM1||SE_DM2||SE_JK;

STATS=STATS‘;

print ’Whites Estimator, David and MacKinnons alternatives+

Jack Knife (third version)’;

Print STATS (|Colname={Constant Age OwnRent Income

IncomeSq} rowname={White_Est DM1 DM2 JK} format=8.3|);

Output 5.7 contains the analysis results. For completeness, we have included the least squares estimators, their standard errors,

t test statistic and the p values under the assumption of homoscedastic disturbances.
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5.6 WEIGHTED LEAST SQUARES AND FGLS ESTIMATION

In this section, we discuss estimating b using weighted least squares and FGLS. As shown earlier, the GLS estimator is given

by b̂ ¼ ðXTV�1
XÞ�1

XTV�1
y. Now, let Varð«ijxiÞ ¼ s2

i ¼ s2vi, where vi can be viewed as the weight associated with the ith

residual. Therefore, V is given by (Greene, 2003, p. 225; Meyers, 1990, p. 279) V ¼ diagðv1;v2; . . . ;vnÞ and

V�1=2 ¼ diagð1= ffiffiffiffiffiffi

v1
p

; 1=
ffiffiffiffiffiffi

v2
p

; . . . ; 1=
ffiffiffiffiffiffi

vn

p Þ. The easiest approach to conducting weighted least squares regression is to use

this in the equation of the GLS estimator. Another approach (Greene, 2003, p. 225) is to premultiply both y and X by V�1=2

thereby distributing the appropriate weights of the residuals across their corresponding observations.

The GLS estimator is then calculated by regressing the transformed response variable against the transformed explanatory

variables.As given inGreene (2003, p. 226) andVerbeek (2004, p. 85), a commonapproachused to obtain theweights is to specify

that the variance of the disturbances is proportional to one of the regressors.

We will illustrate weighted regression methods by using the credit card data. In the first illustration, we will assume that the

variance of the disturbance is proportional to income, while in the second illustration, wewill assume that it is proportional to the

square of income. Performingweighted least squares regression in SAS is straightforward. Theweights are calculated and stored

in the data step statement and then used with the “Weights” option in Proc Reg. The following SAS statements can be used. The

analysis results are provided in Output 5.8.

proc import out=CCExp

datafile="C:\Temp\TableF91"

dbms=Excel Replace;

getnames=yes;

run;

data CCExp;

set CCExp;

Income_Sq=Income*Income;

if AvgExp>0;

wt1=1/Income;

wt2=1/(Income_Sq);

run;

proc reg data=CCExp;

model AvgExp=Age OwnRent Income Income_Sq;

weight wt1;

run;

proc reg data=CCExp;

model AvgExp=Age OwnRent Income Income_Sq;

weight wt2;

run;
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Least Squares Regression Results

STATS

CONSTANT AGE OWNRENT INCOME INCOMESQ

COEFFICIENT –237.147 –3.082 27.941 234.347 –14.997

SE 199.352 5.515 82.922 80.366 7.469

T_RATIO –1.190 -0.559 0.337 2.916 –2.008

WHITE_EST 212.991 3.302 92.188 88.866 6.945

DM1 220.795 3.423 95.566 92.123 7.199

DM2 221.089 3.448 95.672 92.084 7.200

JK 229.574 3.605 99.314 95.482 7.476

OUTPUT 5.7. Proc IML output of the robust estimators of the variance–covariance matrix of the credit card data.



The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

Number of Observations Read 72

Number of Observations Used 72

Weight: wt1

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 438889 109722 5.73 0.0005

Error 67 1283774 19161

Corrected Total 71 1722663

Root MSE 138.42258 R-Square 0.2548

Dependent Mean 207.94463 Adj R-Sq 0.2103

Coeff Var 66.56704

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –181.87064 165.51908 –1.10 0.2758

Age Age 1 –2.93501 4.60333 –0.64 0.5259

OwnRent OwnRent 1 50.49364 69.87914 0.72 0.4724

Income Income 1 202.16940 76.78152 2.63 0.0105

Income_Sq 1 –12.11364 8.27314 –1.46 0.1478

Number of Observations Read 72

Number of Observations Used 72

Weight: wt2

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 112636 28159 5.73 0.0005

Error 67 329223 4913.78353

Corrected Total 71 441860

Root MSE 70.09838 R-Square 0.2549

Dependent Mean 168.79218 Adj R-Sq 0.2104

Coeff Var 41.52940

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –114.10887 139.68750 –0.82 0.4169

Age Age 1 -2.69419 3.80731 –0.71 0.4816

OwnRent OwnRent 1 60.44877 58.55089 1.03 0.3056

Income Income 1 158.42698 76.39115 2.07 0.0419

Income_Sq 1 –7.24929 9.72434 –0.75 0.4586

OUTPUT 5.8. Weighted least squares regression for the credit card expenditure data.
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Notice that the effect of income is significant in both outputs.As shouldbe expected, the standard errors of theparameters using

the square of income as weights are smaller than the standard errors when the weights were based on income. The signs of the

parameters are the same across both analysis and the variable income is significant in both analyses as well. Comparing the

magnitudes of the parameter estimates, we see that except for rent, the magnitude of the parameter values for the first regression

(using income as weights) is higher than those from the second regression (using the square of income as weights). Note the

dependent variablemeans are different from each other and from the dependent variablemean under classical OLS because here,

the response variable is transformed by using the weights.

We now discuss the case when V is assumed to be unknown. As shown previously, the unrestricted heteroscedastic

regression model has too many parameters that need estimation given the limitations on the sample size. As discussed in

Greene (2003, pp. 227–228), we can work around this issue by expressing s2V as a function of only a few parameters. In the

credit card data, we may focus our attention on income, and the square of income. For instance, if we let zi¼ income, then we

can express s2
i as s2

i ¼ s2zai . Of course, we could have more than one variable making the parameter a a vector. The

modified variance–covariance matrix is now denoted as V(a). Therefore, estimating V is now restricted to estimating a.
How do we calculate a consistent estimator of a? As discussed in both Green (2003) and Verbeek (2004, p. 86), there are two
ways of doing this. The first method involves the two-step GLS technique and the second method involves maximum

likelihood estimation (MLE). We restrict our discussion to the two-step FGLS estimator.

The FGLS estimator is straightforward onceVðâÞ is computed. Simply use this estimator in the formula for theGLS estimator

to get the FGLS estimators. That is,

^̂
b ¼ ðXTV�1ðâÞXÞ�1

XTV�1ðâÞy:

The general procedure for calculating the two-step FGLS estimator is as follows:

1. Obtain estimates of s2
i using OLS residuals. Note that the estimates are simply «̂2i , the squared OLS least square residuals.

Next, consider the model «̂2i ¼ zai þ yi.

2. OLS can be used to estimate a by regressing log ð«̂2i Þ on logðziÞ.

The computations can be easily carried out using Proc Reg. We give two examples using the credit card data. In the first

example,we let zi¼ (1, income, incomesq) and assume thats2
i ¼ s2ezia.Anestimate ofa¼ (a0,a1,a2) is obtainedby running the

following regression:

logð«̂2i Þ ¼ a0 þa1incomeþa2incomesqþ yi:

The steps in SAS are as follows:

1. First, run the OLS regressionmodel to estimate «i. The OLS residuals are stored in the variable labeled residual in the SAS

data set resid1. The Proc Reg output was suppressed by using the noprint option as we are only interested in generating the

OLS residuals at this stage.

proc reg noprint data=CCExp;

model AvgExp=Age OwnRent Income Income_Sq;

output out=resid1 r=residual;

run;

2. We can now compute logð«̂2i Þ and regress it against income and the square of income. Note that in this stage, we are

interested in the predicted values zâi and therefore suppress the regression output again. The following statements can be

used to conduct this step.

data test;

set resid1;

log_e=log(residual*residual);

run;

proc reg noprint data=test;

model log_e=income income_sq;

output out=resid2 p=pred;

run;
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3. With the first stage complete, we can get the FGLS estimates by using weighted least squares regression described earlier.

Here, the weights are just the exponential of the predicted values from stage 2. That is, wi ¼ expðẑiaÞ. The following

statements can be used.

data test;

set resid2;

wt3=1/exp(pred);

run;

proc reg data=test;

model AvgExp=Age OwnRent Income Income_Sq;

weight wt3;

run;

The analysis results are given in Output 5.9. The standard errors of the estimates are now significantly lower than the standard

errors of the estimates when income and square of incomewere used as weights. Also note that the root mean square has reduced

substantially over what was previously observed. The signs of the coefficients are the same, however, now both income and the

square of income are significant.

The reader is asked to verify that using s2
i ¼ s2zai with zi¼log(income), gives the FGLS estimators as shown in Output 5.10.

The parameter estimates and their standard errors are similar to the ones obtained when incomewas used as a weight. Also note

that the root mean square errors are similar and that only income is significant.

5.7 AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY

We now turn our attention to heteroscedasticity in the time series setting. As discussed by Enders (2004), in a typical

econometric model, the variance of the disturbances is assumed to be stable (constant) over time. However, there are

instances when economic time series data exhibit periods of high “volatility” followed by periods of low “volatility” or

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

Number of Observations Read 72

Number of Observations Used 72

Weight: wt3

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 1123.73425 280.93356 69.69 <0.0001

Error 67 270.08589 4.03113

Corrected Total 71 1393.82015

Root MSE 2.00777 R-Square 0.8062

Dependent Mean 401.66162 Adj R-Sq 0.7947

Coeff Var 0.49987

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –117.86745 101.38621 –1.16 0.2491

Age Age 1 –1.23368 2.55120 –0.48 0.6303

OwnRent OwnRent 1 50.94976 52.81429 0.96 0.3382

Income Income 1 145.30445 46.36270 3.13 0.0026

Income_Sq 1 –7.93828 3.73672 –2.12 0.0373

OUTPUT 5.9. FGLS estimation using the credit card data.
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“calmness.” Greene (2003, p. 238) analyzes the well-known Bollerslev and Ghysel�s data on the daily percentage nominal

return for the Deuschmark/Pound exchange rate. We analyzed the data using SAS—Figure 5.4 shows that there are periodic

spikes in the data on both the high and low sides. It is obvious that the variability appears to be unstable or shifting over

time. In particular, large shocks appear to follow each other and vice versa, small shocks appear to follow each other. The

variance of the disturbance at a given time period is therefore assumed to depend on the variance of the disturbance in the

previous time periods. Therefore, the homoscedastic variance assumption in this case is violated. The disturbance terms in

the linear models must therefore take into account the dependence of its variance on past disturbances. This is the basic

principle behind Engle�s (1982) autoregressive, conditionally heteroscedastic models (ARCH). He proposed a methodology

where the variance of the disturbances ð«tÞ are allowed to depend on its history. That is, the variance of the series itself is an
autoregressive time series.

Bollerslev (1986) extended the ARCH process by allowing an autoregressive moving average process for the error variance.

Their resulting formulation is referred to as the generalized autoregressive conditional heteroscedastic model or GARCH. Both

the ARCH and the GARCH models forecast the variance of the disturbance at time t. The ARCH models uses the weighted

averages of the past values of the squared disturbances, while the GARCHmodel uses theweighted average of the past values of

both the squared disturbances and the variances.

5.7.1 The Arch Model

The simplest formofEngle�sARCHmodel is theARCH(1)model.Themain ideabehind themodel is that the conditional variance

of the disturbance at time t depends on the squared disturbance term at time t� 1. To see this, first, consider the basicmodel given

by yt ¼ stzt, where zt � i:i:d:Nð0; 1Þ. In an ARCH(1) model, s2
t ¼ a0 þ a1y

2
t�1 where a0 > 0 and a1 � 0. It can be shown

that

Eðytjyt�1Þ ¼ 0 and Varðytjyt�1Þ ¼ a0 þ a1y
2
t�1:

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

Number of Observations Read 72

Number of Observations Used 72

Weight: wt4

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 562700 140675 5.69 0.0005

Error 67 1655217 24705

Corrected Total 71 2217918

Root MSE 157.17741 R-Square 0.2537

Dependent Mean 216.57420 Adj R-Sq 0.2092

Coeff Var 72.57439

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –193.27961 171.06009 –1.13 0.2626

Age Age 1 –2.95778 4.76203 –0.62 0.5366

OwnRent OwnRent 1 47.37065 72.12961 0.66 0.5136

Income Income 1 208.84940 77.19611 2.71 0.0086

Income_Sq 1 –12.76626 8.08456 –1.58 0.1190

OUTPUT 5.10. FGLS estimation using zi¼log(income) for the credit card data.
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Therefore, the conditional variance of the disturbance at time t depends on the past values of the squared disturbances. The

unconditional variance on the other hand is constant. To see this note thatVarðytÞ ¼ Eðy2t Þ ¼ a0 þ a1Eðy2t�1Þ. Simplifying this

gives VarðytÞ ¼ a0=ð1� a1Þ, a0 > 0, 0 � a1 < 1.

The ARCH(1) process can easily be extended to linear models with explanatory variables. First, consider the linear model

yt ¼ xTt bþ «t with «t ¼ stzt, where zt � i:i:d:Nð0; 1Þ ands2
t ¼ a0 þ a1«

2
t�1. It can be easily shown that the conditional variance

VarðytjxtÞ ¼ a0 þ a1«
2
t�1 while the unconditional variance VarðytÞ ¼ Varð«tÞ ¼ a0=ð1�a1Þwith 0 � a1 < 1 (Greene, 2003,

pp. 238–239)

5.7.2 ARCH(q) and the Generalized ARCH Models

Extending the simple ARCH(1) model to the more general case we get the ARCH(q) process given by yt ¼ stzt, where

zt � i:i:d:Nð0; 1Þ and

s2
t ¼ a0 þ

X

q

i¼1

aiy
2
t�i:

Note that the unconditional variance is now given by

Var «tð Þ ¼ a0= 1�
X

q

i¼1

ai

 !

with 0 �
X

q

i¼1

ai < 1:

The ARCH(q) process can easily be extended to the linear regression setting in a similar fashion.

5.7.3 The GARCH Model

Bollerslev (1986) extended theARCHmodelswhere the variance of the disturbance at time t depends on its own lag aswell as the

lag of the squared disturbances. In the GARCH(1,1) model,

s2
t ¼ a0 þ a1«

2
t�1 þ b1s

2
t�1:

y
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FIGURE 5.4. Time series plot for the nominal returns.
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The basic principle is to make the forecast of the variance at time t more accurate. In a GARCH(p,q) model

s2
t ¼ a0 þ

X

p

i¼1

dis
2
t�i þ

X

q

j¼1

aj«
2
t�j:

It can be shown that the unconditional variance of the disturbance at time t is

s2
« ¼

a0

1�
P

q

i¼1

ai�
P

p

j¼1

bj

where a0 � 0, ai � 0, bi � 0, and 0 � 1�
P

q

i¼1

ai�
P

p

j¼1

bj < 1.

The GARCH(p,q) models can easily be extended to the linear regression setting as well.

5.7.4 Testing for ARCH Effects

The Lagrange Multiplier test (LM) can be used to test for ARCH(q) effects. The hypothesis tested is

H0 : a1 ¼ a2 ¼ . . . ¼ aq ¼ 0

H1 : at least one ai 6¼ 0;i ¼ 1; . . . q:

The steps are as follows:

1. Estimate yt ¼ xTt bþ «t using OLS and calculate «̂2t�i for i ¼ 1; . . . ; q.

2. Conduct a regression of «̂2t on a constant and «̂2t�1; . . . ; «
2
t�q and calculate the coefficient of determination, R2.

3. Calculate the test statistic TR2, where T is the number of observations. Under the null hypothesis, TR2 � x2
q. We reject the

null hypothesis of noARCHeffects if the calculated value of the test statistic exceeds the tabled value from the chi-squared

distribution.

The LM test can also be used for testing GARCH effects. In a test for a GARCH(p,q) model, however, the hypothesis tested is

thenull ofaARCH(q) process versus aARCH(p+q) process (Baltagi, 2008, p. 370).Here, theLMtest is basedon the regressionof

«̂2t on p + q lagged values «̂2t�1; . . . ; «
2
t�p�q. The test statistic is the same as before.

Maximum likelihood estimation can be used to estimate the parameters of both theARCHandGARCHmodels.Details can be

found in Greene (2003) page 239 (ARCH) and pages 242–243 (GARCH).

Wewill now illustrate the estimation of these models in SAS by using the Bollerslev and Ghysels nominal exchange rate data.

For illustration purposes, we will use a GARCH(1,1) model.

The ProcAutoregmodule in SAS can be used to fit this model. Recall that this procedure should be used to perform regression

analysis when the underlying assumption of heteroscedasticity and autocorrelation are violated. It can also be used to perform

ARCH andGARCH calculations. First, wewill use the procedure to test for heteroscedasticity in the data by using the “archtest”

option. The following commands can be used. Note that a temporary SAS data set named “garch”was created prior to invoking

this procedure. The analysis results are given in Output 5.11.

proc autoreg data=garch;

model y=/archtest;

run;

The first table of the output gives the OLS estimates. The values for SSE andMSE are for the error and mean sums of squares.

The MSE is really the unconditional variance of the series. The Durbin–Watson statistic is used to test for serial correlation and
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will be discussed in detail in Chapter 6. DFE is simply the degrees of freedom and is the total number of observations �1. The

values ofAICandBICare information criteriavalues that are used to assessmodel fit. Smaller values of the statistics are desirable.

The Durbin–Watson statistics will be discussed in Chapter 6.

The output also contains the Q and LM tests. Both statistics test for heteroscedasticity in the time series. The

Q statistic proposed by McLeod and Li (1983) (see the Proc Autoreg reference guide from SAS Institute) checks for

changing variability over time. The test is highly significant across the 12 lag windows. The LM statistic was discussed earlier.

It is also highly significant across all 12 lag windows indicating that a higher order ARCH process needs to be used to model

the data.

As discussed earlier, the GARCH process introduces the lagged values of the variances also and thus introduces a “longer

memory” (Proc Autoreg reference guide, SAS Institute, Inc.). Therefore, we start our initial model at the GARCH(1,1)

process. The following statements can be used. Note that the option “garch” can be changed to allow for anARCHprocess. For

example, using the option “garch=(q=1)” will request an ARCH(1) process for the dataset. The analysis results are given in

Output 5.12.

proc autoreg data=garch;

model y=/Garch=(p=1,q=1);

run;

The output indicates that there is strong evidence of GARCH effects (p value < 0.0001). The unconditional

variance for the GARCH model is 0.2587 compared to 0.2211 for the OLS model. The normality test is highly significant

The AUTOREG Procedure

Dependent Variable y

y

Ordinary Least Squares Estimates

SSE 436.289188 DFE 1973

MSE 0.22113 Root MSE 0.47024

SBC 2629.78062 AIC 2624.1928

Regress R-Square 0.0000 Total R-Square 0.0000

Durbin-Watson 1.9805

Q and LM Tests for ARCH Disturbances

Order Q Pr > Q LM Pr > LM

1 96.4249 <0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

<0.0001

96.3422

2 157.1627 129.5878

3 196.7515 142.6618

4 227.4684 150.3655

5 297.7401 183.3808

6 314.1284 183.3929

7 328.6768 183.8867

8 347.5464 186.8223

9 364.7738 188.8952

10 392.9791 194.1606

11 397.5269 194.9219

12 404.9266 195.1401

Variable DF Estimate
Standard

Error t Value
Approx

Pr > |t|

Intercept 1 –0.0164 0.0106 –1.55 0.1208

OUTPUT 5.11. Testing for the heteroscedasticity in the nominal exchange data.
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(p value < 0.0001), which indicates that the residuals from the GARCH model are not normally distributed—a clear

contradiction to the normality assumption. ARCH0 gives the estimate of a0, ARCH1 gives the estimate of a1, and GARCH1

gives the estimate of b1.

The AUTOREG Procedure

Dependent Variable y

y

Ordinary Least Squares Estimates

SSE 436.289188 DFE 1973

MSE 0.22113 Root MSE 0.47024

SBC 2629.78062 AIC 2624.1928

Regress R-Square 0.0000 Total R-Square 0.0000

Durbin-Watson 1.9805

Variable DF Estimate
Standard

Error t Value
Approx

Pr > |t|

Intercept 1 –0.0164 0.0106 –1.55 0.1208

Algorithm converged.

GARCH Estimates

SSE 436.495992 Observations 1974

MSE 0.22112 Uncond Var 0.25876804

Log Likelihood –1106.6908 Total R-Square .

SBC 2243.73289 AIC 2221.38163

Normality Test 1081.7663 Pr > ChiSq <0.0001

Variable DF Estimate
Standard

Error t Value
Approx

Pr > |t|

Intercept 1 –0.006191 0.008426 –0.73 0.4625

ARCH0 1 0.0108 0.001327 8.15 <0.0001

ARCH1 1 0.1524 0.0139 10.97 <0.0001

GARCH1 1 0.8058 0.0166 48.61 <0.0001

OUTPUT 5.12. GARCH (1, 1) model for the nominal exchange rate data.
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6
AUTOCORRELATION

6.1 INTRODUCTION

In Chapters 4 and 5 we discussed estimation methods for b under departures from the exogeneity and homoscedasticity

assumptions. This chapter extends the discussion to the casewhen the assumption of independent disturbances is violated. That is,

we will relax the assumption that the disturbance related to an observation is independent of the disturbance related to another

observation. We call this situation serial correlation or autocorrelation. Simply put, in autocorrelation Cov(«t, «s) „ 0 for t „ s

where t and s are two time periods. Autocorrelationmost often occurs in time series data where the observation at a given point in

time is dependent on the observations from the previous time periods

The texts by Greene (2003, Chapter 12), Meyers (1990, Chapter 7), and Verbeek (2004, Chapter 4) offer a good discussion on

autocorrelationmodels. Brocklebank andDickey (2003) offer a thorough treatment of howSAS can be used to fit autocorrelation

models.

Autocorrelation in regression models often occurs when models are misspecified or when variables are mistakenly omitted

from themodel. In the omitted variable case, unobserved or omitted variables that are correlated over time are nowabsorbed in the

error term, causing autocorrelation. As an example, consider the gasoline consumption data in Greene (2003). Gasoline

consumption along with measurements on other variables was observed from 1960 to 1995. Note that this data was analyzed in

Chapter 2. The full equation for this model is (Greene, 2003, p. 136)

lnðGt=PoptÞ ¼ b1 þb2lnðPgtÞþb3lnðIt=PoptÞþb4lnðPnctÞþb5lnðPuctÞ

þb6lnðPpTtÞþb7lnðPNtÞþb8lnðPDtÞþb9lnðPStÞþb10tþ «t:

Assume that we fit the model

lnðGt=PoptÞ ¼ b1 þb2lnðPgtÞþb3lnðIt=PoptÞþb4lnðPnctÞþb5lnðPuctÞþ «t:

The residuals from the fittedmodel and the fullmodel are shown inFigures6.1 and6.2.Note that the residuals frombothmodels

show that autocorrelation should be investigated. However, the fitted model shows a higher degree of autocorrelation.
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Although, time series plots of the residuals (as the ones above) can be used to detect autocorrelation issues quickly, we will

discuss more formal procedures to detect the presence of autocorrelation in the data.

6.2 PROBLEMS ASSOCIATED WITH OLS ESTIMATION UNDER AUTOCORRELATION

We start our discussion of estimation under autocorrelation by considering the simple autoregressive first-order autocorrelation

model (AR1)with exogenous explanatory variables. That is, amodel of the form yi ¼ xTi bþ «ii ¼ 1; 2; . . . , with «i ¼ r«i�1 þ ui

LS Residuals versus Year
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FIGURE 6.1. Time series plot of the residuals from the full model in the gasoline consumption data.
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FIGURE 6.2. Time series plot of the residuals from the reduced model in the gasoline consumption data.
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where jrj<1 is required to ensure Varð«tÞ < 1 . Assume that EðuiÞ ¼ 0 , VarðuiÞ ¼ s2 , and Covðut; usÞ ¼ 0 for t 6¼ s . That is,

the error term ui hasmean zero, has constant variance, and exhibits no serial correlation. It can be easily shown thatEð«iÞ ¼ 0 and

that thevarianceVarð«iÞ ¼ s2
u=ð1� r2Þwhere jrj<1.Also note that the covariance between «i and «i�1 denoted byCovð«i; «i�1Þ

is given by

Covð«i; «i�1Þ ¼ r
s2
u

1� r2

and that the covariance between two disturbances, which are two periods apart, Covð«i; «i�2Þ is given by

Covð«i; «i�2Þ ¼ r2
s2
u

1� r2
:

Extending this to two disturbances, which are j time periods apart, we get Covð«i; «i�jÞ given by

Covð«i; «i�jÞ ¼
s2
u

1� r2
rj:

Autocorrelation therefore implies that the errors are heteroscedastic (Greene, 2003, p. 258; Meyers, 1990, p. 289). As shown in

Chapter 5, OLS estimators, although unbiased will be inefficient and will have incorrect standard errors.

yi ¼ xTi bþ «i; i ¼ 1; 2; . . . ;

«i ¼ r«i�1 þ ui;

6.3 ESTIMATION UNDER THE ASSUMPTION OF SERIAL CORRELATION

Estimation techniques under the assumption of serial correlation parallel the estimation methods for heteroscedasticity that was

discussed inChapter 5. That is, we need to first estimate thevariance–covariancematrix. Using thevariance and covariance of the

disturbances given in the previous section, we can easily construct the covariance matrix s
2V as (Greene, 2003, p. 259)

s2V ¼
s2
u

1�r2

1 r r2 r3 . . . rT�1

r 1 r r2 . . . rT�2

r2 r 1 r . . . rT�3

.

.

.
.
.
.

.

.

.
.
.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.
.

.
r

rT�1 rT�2 rT�3
. . . r 1

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

:

If r is known, then using the discussion from Chapter 5, one can get a GLS estimator of b as

bGLS ¼ ðXTV�1
XÞ�1

XTV�1
y:

It can be shown that the GLS estimator is an unbiased, consistent estimator for b with variance-covariance matrix given by

Est:Var½bGLS� ¼ s2
«½X

TV�1
X��1;
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where

s2
« ¼

ðy�XbGLSÞ
TV�1ðy�XbGLSÞ

T
ðGreene; 2003; p: 271Þ:

These computations can be carried out easily by simply transforming y andX and runningOLSon the transformed values. The

transformations for the first-order autocorrelation process are

y�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

y1 and x�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

x1 for t ¼ 1;

y�t ¼ yt � ryt�1 and x�t ¼ xt � rxt�1 for t ¼ 2; . . . ; T ðGreene; 2003; p: 272Þ:

These transformations are called the Prais–Winsten transformations. The traditional approach (Cochrane and Orcutt, 1949)

used the same transformation but dropped the first observation for computational ease. As discussed in Verbeek (2004, p. 100),

deleting the observation leads to an approximateGLS estimator that is not as efficient as theGLS estimator obtained by including

all the observations.

The GLS estimator can then be calculated as follows:

bGLS ¼ ðXT
� X�Þ

�1
XT
� y�:

Greene (2003) extends the process to the second-order autocorrelation process. As can be seen from the transformation formulas

the author provides, the process becomes very complex as the order of the autoregressive process increases.

The estimation techniques discussed so far are based on the assumption that r is known. However, in reality, r is unknown and

has to be estimated. Estimation of the least squares parameters is straightforward under the assumption that r is unknown. In the

case of the first-order autocorrelation model, the steps are as follows:

1. Estimate the model yi ¼ xTi bþ «i; i ¼ 1; 2; . . . using OLS and save the residuals.

2. Using the residuals, fit the model «̂i ¼ r«̂i�1 þ ui and get an estimate of r.

3. Use the residuals from Step 2 to estimate s2
u. We can use the estimated values of r and s2

u to constructV
^

. This can then

be used to calculate a FGLS estimator of b. Another alternative is to simply use the estimated value of r to transform

both y and X using the Prais–Winsten transformation and then conduct OLS with the transformed values (Greene,

2003, p. 273).

TheProcAutoregprocedure inSASwill allowus to estimate the least squares parameters byFGLS,MLE, or the iterated FGLS

method.Wewill discuss ways of conducting the analysis in SAS a bit later. For now, let us discussmethods of finding outwhether

the regression model suffers from autocorrelation.

6.4 DETECTING AUTOCORRELATION

TheDurbin–Watson test is perhaps themost commonly used test for detecting autocorrelation. It is based on the statistic (Meyers,

1990, p. 289)

DW ¼

P

T

i¼2

ð«̂i�«̂i�1Þ
2

P

T

i¼1

«̂2i

and tests the hypothesis

H0 : r ¼ 0;

H1 : r 6= 0:

ProcAutoregcanbeused to conduct theDurbin–Watson test.On theother hand, even thoughProcRegdoes give thevalue of the

test statistic and the estimated first-order correlation, it does not output the p value associated with the test.
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The Lagrange multiplier test suggested by Breusch and Godfrey (1978) is an alternative to the Durbin–Watson test. The test

statistic is LM ¼ TR2, where R2 is the R-squared value obtained by regressing the OLS residuals against p-lagged residuals

«̂t�1; . . . ; «̂t�p along with the original variables in X where the residuals can be obtained by OLS. The test statistic has a chi-

squared distribution with p degrees of freedom.

Twoother alternatives to theDurbin–Watson test are theBox and Pierce�s test (B&P) andLjung�smodification of the B&P test

(Greene 2003, p. 269). The B&Q test is based on the test statistic

Q ¼ T
X

p

j¼1

r2j ;

where

rj ¼

P

T

t¼jþ 1

etet�j

P

T

t¼1

e2t

:

That is, rj measures the autocorrelation between et and et�j. This test statistic has a limiting chi-squared distribution with p

degrees of freedom. Here, p refers to the number of lags used.

As stated in Greene (2003, p. 269) the Ljung�s refinement of the B&P test is given by

Q0 ¼ TðT þ 2Þ
X

p

j¼1

r2j

T�j
;

where rj is defined as before. This test statistic has a chi-squared distribution with p degrees of freedom also.

We will now illustrate the computations involved by analyzing the gas consumption data in Greene (2003). We restrict our

attention to the reduced model

lnðGt=PoptÞ ¼ b1 þb2lnðPgtÞþb3lnðIt=PoptÞþb4lnðPnctÞþb5lnðPuctÞþ «t

to force some autocorrelation behavior. The following SAS statements can be used to fit the OLS model to the data and

also compute the Durbin–Watson and Breusch–Godfrey statistic along with their p values. The “dwprob” and “godfrey” options

are used to generate the statistics. The analysis results are given in Output 6.1.

proc autoreg data=gasoline;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/dwprob

godfrey;

run;

Both tests indicate a presence of autocorrelation in the data. The p value for theDurbin–Watson test indicates the presence of a

positive autocorrelation. The LM test indicates that the significance extends to the higher order AR(4). Adding the option

“dw¼ 5” to the model statement yields the Durbin–Watson statistics for the first five autocorrelations. The analysis results are

given in Output 6.2. Note that there is strong evidence of a positive first-order correlation.

We can use the correlations calculated by Proc Autoreg to conduct the B&P test and the Ljung test. First, we calculate the first

five autocorrelations by using the following statements (see Output 6.3):

proc autoreg data=gasoline;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=5;

run;
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The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 0.8909 <0.0001 1.0000

2 2.0276 0.4049 0.5951

3 2.3773 0.8792 0.1208

4 2.1961 0.8211 0.1789

5 1.9231 0.6318 0.3682

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

OUTPUT 6.2. Durbin–Watson statistics for the first five autocorrelations in the gasoline data.

The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson 0.8909 Pr < DW <0.0001

Pr > DW 1.0000

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Godfrey's Serial Correlation
Test

Alternative LM Pr > LM

AR(1) 11.2170 0.0008

AR(2) 17.1932 0.0002

AR(3) 17.2414 0.0006

AR(4) 17.6825 0.0014

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

OUTPUT 6.1. Using Proc Autoreg to detect autocorrelation in the gasoline data.
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The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson 0.8909

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

2 −0.00001 –0.021286 |                    |                    |

3 −0.00015 –0.211897 |                ****|                    |

4 −0.00010 –0.147596 |                 ***|                    |

5 −0.00002 –0.025090 |                   *|                    |

Preliminary MSE 0.000365

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.883472 0.195936 –4.51

2 0.623294 0.260538 2.39

3 –0.217351 0.284615 –0.76

4 0.117484 0.260538 0.45

5 –0.042809 0.195936 –0.22

Yule–Walker Estimates

SSE 0.01258864 DFE 26

MSE 0.0004842 Root MSE 0.02200

SBC –147.56116 AIC –163.39635

Regress R-Square 0.9568 Total R-Square 0.9844

Durbin–Watson 1.8728

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.5542 0.4583 –16.48 <0.0001

Ln_pg 1 –0.0706 0.0337 –2.09 0.0461

Ln_Income 1 2.0520 0.1259 16.30 <0.0001

Ln_Pnc 1 0.1344 0.1336 1.01 0.3239

Ln_Puc 1 –0.1257 0.0833 –1.51 0.1434

OUTPUT 6.3. Proc Autoreg output showing the first five autocorrelations from the gasoline data.
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The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson 0.8909 Pr < DW <0.0001

Pr > DW 1.0000

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 −7.7892 0.3593 −21.68 <0.0001

Ln_pg 1 −0.0979 0.0283 −3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 −0.1022 0.0693 −1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation -1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

Preliminary MSE 0.000480

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.552840 0.152137 –3.63

Yule–Walker Estimates

SSE 0.01604701 DFE 30

MSE 0.0005349 Root MSE 0.02313

SBC –153.73763 AIC –163.23874

Regress R-Square 0.9271 Total R-Square 0.9801

Durbin–Watson 1.3707 Pr < DW 0.0077

Pr > DW 0.9923

Note: Pr < DW is the p value for testing positive autocorrelation, and Pr > DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 −7.1940 0.5152 −13.96 <0.0001

Ln_pg 1 −0.1239 0.0366 −3.39 0.0020

Ln_Income 1 1.9534 0.1418 13.77 <0.0001

Ln_Pnc 1 0.1221 0.1317 0.93 0.3611

Ln_Puc 1 −0.0548 0.0784 −0.70 0.4900

OUTPUT 6.4. AR(1) model for the gasoline consumption data.
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The B&P test statistic value is

Q ¼ 36� b0:55282 þ 0:02132 þ 0:2122 þ 0:14762 þ 0:02512c ¼ 13:44;

while the Ljung test statistic value is

Q0 ¼ 36� 38�
0:55282

35
þ

0:02132

34
þ

0:2122

33
þ

0:14762

32
þ

0:02512

31

� �

¼ 14:78:

Both test statistic values exceed the chi-squared critical value ofx2
0:05;5 ¼ 11:07 leading to the rejectionof the null hypothesis of

no autocorrelation. Therefore, the OLS estimates are not efficient and we need to get estimates that are adjusted for the

autocorrelations.

6.5 USING SAS TO FIT THE AR MODELS

Having detected the presence of autocorrelation, we must now estimate the parameters by using either GLS or FGLS. As

mentioned in the earlier sections, in reality r is assumed to be unknown and therefore has to be estimated leading to the FGLS

estimator.Wewill use Proc Autoreg to fit the ARmodels. In this instance, we use it to conduct OLS regression where we suspect

that the disturbances are correlated. Proc Reg can also be used to conduct the analysis. However, the data will have to be first

transformed by using the Prais–Winsten (or the Cochrane and Orcutt) methods. The following statements can be used to fit the

AR (1) model to the gasoline consumption data set. The “nlag¼1” option requests the AR(1) model while the options “dw” and

“dwprob” are used for the Durbin–Watson test statistic and p values. The analysis results are given in Output 6.4.

The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 0.8909 <0.0001 1.0000

2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

2 –0.00001 –0.021286 |                    |                    |

Preliminary MSE 0.000373

OUTPUT 6.5. AR(2) model for the gasoline consumption data.
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proc autoreg data=gasoline;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=1 dw=1

dwprob;

run;

The first part of the output gives the least squares estimator values alongwith theDurbin–Watson statistic.Notice again that the

null hypothesis of no autocorrelation is rejected. The next part of the output gives the value of r. The value reported is reversed in

sign and is 0.553. The FGLS estimates are then reported, assuming the AR(1) model. Notice that the Durbin–Watson statistic is

still significant, indicating that the AR(1) may be inadequate for the data and that a higher order autocorrelation model may be

more appropriate. The parameter estimates table indicates that both the price of gasoline and the income are significant in

explaining the variation in gasoline consumption. These variables also show up as significant in the OLS model. Furthermore,

the signs of the coefficients between these two models are the same. The option “nlag¼ 2” is used to fit an AR(2) model (see

Output 6.5).

Notice that the Durbin–Watson statistic is now insignificant. We can therefore conclude that the AR(2) model is more

appropriate than the AR(1) model and that the data set used did suffer from second-order autocorrelation. The values of

the two autoregressive parameters u1 and u2 are (using the opposite signs) 0.813 and �0.471, respectively. However, the

variable ln_Pvc, which is the log of the price of used cars, is significant at the 10% level in the AR(2) model, whereas it

was not significant in the AR(1) model. The magnitudes of the coefficients for fuel price in the AR(2) model is

significantly lower than in the AR(1) model. The magnitude of the price of used cars in the AR(2) model is significantly

larger than in the AR(1) model.

ProcAutoregcanbeused to generate estimates based onmaximum likelihoodestimationbyusing the “method¼ml”option in

the model statement. Results of this analysis are provided in Outputs 6.6 and 6.7. Notice that the parameter estimates are quite

different from both OLS and FGLS estimators.

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.813124 0.163827 –4.96

2 0.470813 0.163827 2.87

Yule–Walker Estimates

SSE 0.01289972 DFE 29

MSE 0.0004448 Root MSE 0.02109

SBC –157.51232 AIC –168.59695

Regress R-Square 0.9610 Total R-Square 0.9840

Durbin-Watson Statistics

Order DW Pr < DW Pr > DW

1 1.8505 0.2150 0.7850

2 2.2454 0.6761 0.3239

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7456 0.4280 –18.10 <0.0001

Ln_pg 1 –0.0743 0.0318 –2.34 0.0265

Ln_Income 1 2.1044 0.1175 17.91 <0.0001

Ln_Pnc 1 0.1870 0.1302 1.44 0.1616

Ln_Puc 1 –0.1616 0.0816 –1.98 0.0572

OUTPUT 6.5. (Continued).
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The model statement option “method¼ ityw” will result in the iterated FGLS analysis. The results of the analysis are

provided in Outputs 6.8 and 6.9. Notice that the results are very similar to the results produced using maximum likelihood

estimation, thus confirming that in general the iterated estimation technique converges to the maximum likelihood estimates

(Greene, 2003).

It may be of interest to compare the predicted values from Proc Reg (OLS estimation) and Proc Autoreg.Wewill compare the

OLSpredicted valueswith the predicted values from theAR(2)model. The following statements can be used. The analysis results

are given in Figure 6.3.

proc reg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc;

output out=a r=r_g;

run;

proc autoreg data=gasoline noprint;

The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson 0.8909 Pr < DW <0.0001

Pr > DW 1.0000

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

Preliminary MSE 0.000480

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.552840 0.152137 –3.63

Algorithm converged.

OUTPUT 6.6. MLE estimates of the AR(1) model for the gasoline consumption data.
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model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=2;

output out=b r=ra_g;

run;

data c;

merge a b;

run;

proc gplot data=c;

plot r_g*year=1 ra_g*year=2/overlay href=0 haxis=1960 to

1995 by 5;

run;

It does appear that magnitudes of the residuals from OLS (solid line) have been reduced by using the AR(2)

model (dotted line) confirming that the AR(2) model is more appropriate for the gasoline consumption data set than the

OLS model.

In the discussion so far, we used an AR(2) model because the data set suffered from second-order autocorrelation. As it

turns out, there is not much gain (if any) in using a higher autocorrelation model. The following statements in SAS can be used

to compare the residuals from variousmodels. The “nlag¼” option with values 1 through 5 is used to fit models ranging from the

AR(1) to the AR(5) models. The residuals from each model are stored and compared against each other by using the “overlay”

option of Proc Gplot (Freund and Littell, 2000, p. 93). The analysis results are given in Figure 6.4.

proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=1;

output out=a r=r1;

Maximum Likelihood Estimates

SSE 0.01262941 DFE 30

MSE 0.0004210 Root MSE 0.02052

SBC –160.53233 AIC –170.03344

Regress R-Square 0.7830 Total R-Square 0.9843

Durbin–Watson 1.4455 Pr < DW 0.0193

Pr > DW 0.9807

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –5.1710 0.7617 –6.79 <0.0001

Ln_pg 1 –0.1939 0.0409 –4.74 <0.0001

Ln_Income 1 1.3896 0.2041 6.81 <0.0001

Ln_Pnc 1 0.2509 0.1480 1.70 0.1003

Ln_Puc 1 –0.004280 0.0698 –0.06 0.9515

AR1 1 –0.9425 0.0915 –10.30 <0.0001

Autoregressive parameters assumed given

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –5.1710 0.6808 –7.60 <0.0001

Ln_pg 1 –0.1939 0.0380 –5.11 <0.0001

Ln_Income 1 1.3896 0.1868 7.44 <0.0001

Ln_Pnc 1 0.2509 0.1353 1.86 0.0734

Ln_Puc 1 –0.004280 0.0697 –0.06 0.9515

OUTPUT 6.6. (Continued).
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run;

proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=2;

output out=b r=r2;

run;

proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=3;

output out=c r=r3;

run;

proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=4;

output out=d r=r4;

run;

proc autoreg data=gasoline noprint;

model Ln_G_Pop=Ln_Pg Ln_Income Ln_Pnc Ln_Puc/nlag=5;

output out=e r=r5;

The AUTOREG ProcedureThe AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 0.8909 <0.0001 1.0000

2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

2 –0.00001 –0.021286 |                    |                    |

Preliminary MSE 0.000373

OUTPUT 6.7. MLE estimates of the AR(2) model for the gasoline consumption data.
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run;

data f;

merge a b c d e;

run;

proc gplot data=f;

title ’Comparing the residuals from the AR(1)- -AR(5) models’;

plot r1*year=1 r2*year=2 r3*year=3 r4*year=4

r5*year=5/overlay href=0

haxis=1960 to 1995 by 5;

run;

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.813124 0.163827 –4.96

2 0.470813 0.163827 2.87

Algorithm converged.

Maximum Likelihood Estimates

SSE 0.0126731 DFE 29

MSE 0.0004370 Root MSE 0.02090

SBC –157.92648 AIC –169.01111

Regress R-Square 0.9683 Total R-Square 0.9843

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 1.9062 0.2627 0.7373

2 2.1296 0.5341 0.4659

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.8531 0.3973 –19.77 <0.0001

Ln_pg 1 –0.0673 0.0301 –2.24 0.0332

Ln_Income 1 2.1337 0.1091 19.56 <0.0001

Ln_Pnc 1 0.2078 0.1253 1.66 0.1081

Ln_Puc 1 –0.1850 0.0797 –2.32 0.0276

AR1 1 –0.8220 0.1554 –5.29 <0.0001

AR2 1 0.5643 0.1567 3.60 0.0012

Autoregressive parameters assumed given.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.8531 0.3905 –20.11 <0.0001

Ln_pg 1 –0.0673 0.0295 –2.28 0.0299

Ln_Income 1 2.1337 0.1072 19.91 <0.0001

Ln_Pnc 1 0.2078 0.1247 1.67 0.1065

Ln_Puc 1 –0.1850 0.0786 –2.35 0.0256

OUTPUT 6.7. (Continued).

106 AUTOCORRELATION



The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson 0.8909 Pr < DW <0.0001

Pr > DW 1.0000

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation –1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

Preliminary MSE 0.000480

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.552840 0.152137 –3.63

Algorithm converged.

Yule–Walker Estimates

SSE 0.01271242 DFE 30

MSE 0.0004237 Root MSE 0.02059

SBC –160.48746 AIC –169.98857

Regress R-Square 0.7887 Total R-Square 0.9842

Durbin–Watson 1.4458 Pr < DW 0.0191

Pr > DW 0.9809

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –5.2466 0.6761 –7.76 <0.0001

Ln_pg 1 –0.1915 0.0381 –5.02 <0.0001

Ln_Income 1 1.4108 0.1858 7.59 <0.0001

Ln_Pnc 1 0.2482 0.1349 1.84 0.0757

Ln_Puc 1 –0.004509 0.0703 –0.06 0.9493

OUTPUT 6.8. Iterated FGLS estimates of AR(1) model for the gasoline data.
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The AUTOREG Procedure

Dependent Variable Ln_G_Pop

Ordinary Least Squares Estimates

SSE 0.02487344 DFE 31

MSE 0.0008024 Root MSE 0.02833

SBC –141.90789 AIC –149.82548

Regress R-Square 0.9691 Total R-Square 0.9691

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 0.8909 <0.0001 1.0000

2 2.0276 0.4049 0.5951

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.7892 0.3593 –21.68 <0.0001

Ln_pg 1 –0.0979 0.0283 –3.46 0.0016

Ln_Income 1 2.1175 0.0988 21.44 <0.0001

Ln_Pnc 1 0.1224 0.1121 1.09 0.2830

Ln_Puc 1 –0.1022 0.0693 –1.48 0.1502

Estimates of Autocorrelations

Lag Covariance Correlation −1 9 8 7 6 5 4 3 2 1 0 1 2 3 4 5 6 7 8 9 1

0 0.000691 1.000000 |                    |********************|

1 0.000382 0.552840 |                    |***********         |

2 –0.00001 –0.021286 |                    |                    |

Preliminary MSE 0.000373

Estimates of Autoregressive
Parameters

Lag Coefficient
Standard

Error t Value

1 –0.813124 0.163827 –4.96

2 0.470813 0.163827 2.87

Algorithm converged.

Yule–Walker Estimates

SSE 0.01265611 DFE 29

MSE 0.0004364 Root MSE 0.02089

SBC –157.9093 AIC –168.99393

Regress R-Square 0.9690 Total R-Square 0.9843

Durbin–Watson Statistics

Order DW Pr < DW Pr > DW

1 1.9257 0.2822 0.7178

2 2.1120 0.5122 0.4878

Note: Pr<DW is the p value for testing positive autocorrelation, and Pr>DW is the p value for testing negative autocorrelation.

Variable DF Estimate
Standard

Error t Value
Approx
Pr > |t|

Intercept 1 –7.8665 0.3862 –20.37 <0.0001

Ln_pg 1 –0.0661 0.0292 –2.27 0.0311

Ln_Income 1 2.1374 0.1060 20.17 <0.0001

Ln_Pnc 1 0.2118 0.1241 1.71 0.0987

Ln_Puc 1 –0.1891 0.0783 –2.42 0.0223

OUTPUT 6.9. Iterated FGLS estimates of AR(2) model for the gasoline data.
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The residuals from the AR(1) process are indicated by the line that goes beyond all other lines across the range of year.

The residuals from the AR(2) through the AR(5) models are highly coincidental and cannot be distinguished. Notice that the

residuals appear tobemore stable for theAR(2) throughAR(5)models.Therefore, there is no significant improvement beyond the

AR(2) model.
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FIGURE 6.3. Comparing the residuals of the OLS versus AR(2) models for the gasoline data.
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FIGURE 6.4. Comparing residuals of several AR models for the gasoline consumption data.
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7
PANEL DATA ANALYSIS

7.1 WHAT IS PANEL DATA?

The discussion in the previous chapters focused on analyticalmethods for cross-section data and (to some extent) time series data.

This chapter deals with the analysis of data from panel studies. Data from such studies consist of repeatedmeasurements on cross

sections over a period of time. In other words, in panel data there are repeated observations on the same subject over a time period

as in longitudinal studies where, for instance, subjects are surveyed or followed over time. Here the term subjects will be used to

refer to people, countries, companies, and so on.

As an example of panel data, consider the Cost for USAirlines example fromGreene (2003). The data set has 90 observations

for six firms from1970 to 1984.This data set has been analyzed inChapter 3, and itwill be used to illustrate the different analytical

techniques in this chapter. We have a cross section if we take data from a single year. The selected cross section simply gives a

snapshot of the six airlines for the selected year. We have panel data if we use data for the six airlines from every year in the time

period 1970–1984.

As another example of panel data, consider the case where a financial planning company collects data on profits generated by

its financial advisors. For instance, the profit of the financial advisors may bemonitored for several years. Various factors such as

the regional location of the advisor, their age, and thewealth profile of the advisor’s clientsmay be used to explain the differences

(if any) between the advisor’s profit over time. The collected data can be viewed as panel data since we have a cross section of

advisors who are followed for several years.

Notice that both examples may include explanatory variables that are either observed (controllable) or unobserved

(uncontrollable). For instance, in the second example above, the data on the “salesmanship ability” of the financial advisor

may not be available.We can therefore, in principle, partition the set of explanatory variables into two sets—one, consisting of

observed variables and the other consisting of uncontrollable or unobserved variables. The set of explanatory variables can

also be comprised of variables that are time dependent as well as variables that are time independent. For example, gender and

marital status can be treated as time independent whereas experience in the workforce and the age of the subject are time

dependent.

7.1.1 Advantages of Panel Data

There are two main reasons for using panel data methods.

1. Increased Sample Sizes.Anatural consequence of using panel data is that the available sample size is increased. In the Cost

of US Airlines data, we had six airlines for which data were collected over a 15-year time period. A single cross section
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would have resulted in six data points, whereas in the panel data format we have 90 data points. In general, if there are n

subjects and T time periods, then there will potentially be a total of nT observations for analysis.

2. The Ability to Control for Unobserved Heterogeneity. The increased sample size is a natural and trivial consequence of

using panel data methods. The main reason the preferring a panel approach to estimation is that one can control the

unobserved heterogeneity among the individual subjects or unit effects. As will be discussed in the next section, a

complete formulation of the panel data model includes both observed and unobserved explanatory variables. As

mentioned earlier, the unobserved explanatory variables may include variables that we cannot control or that are just not

observable. Omitting these variables from the model will lead to omitted variable bias (Chapter 4). The panel data

approach allows us to include the unobserved heterogeneity effects in the model. If the unobserved subject-specific

effects are treated as constants, then we have a fixed effects model and if they are treated as random, then we have a

random effects model.

7.2 PANEL DATA MODELS

Using the notation given in Greene (2003) page 285, we can write the basic panel data model as yit ¼ xTitbþ zTi aþ «it;
where i ¼ 1; . . . ; n and t ¼ 1; . . . ; T . Here, n is the number of subjects and T is the number of time periods. The number of time

periodsmaybedifferent for the different subjects in the study, leading to unbalanced panel data and thismay arise if some subjects

drop out of the study prior to completion of the study. Although there are well-established analysis methods available for

unbalanced panel data, we will focus our attention on analysis of balanced panel data only. The term yit is the observation

collectedon the ith subject at timeperiod t. The termxit is avector of kobserved explanatory variables. The time-independent term

zTi a captures the unobserved heterogeneity of the subjects and is assumed to contain a constant term. Some authors make a

distinction between the constant term and the unobserved heterogeneity term by expressing the panel data model as

yit ¼ xTitbþ ða0 þ zTi aÞ þ «it; where i ¼ 1; . . . ; n and t ¼ 1; . . . ; T . Both formulations lead to the same exact results and we

use the first notation for simplicity and convenience.

It is trivial to see that if the variables in zj is observed for all subjects, then the panel data model can be estimated by using

ordinary least squares. In this case, the variables in x and z can be combined for the analysis. Here, we may assume that the set of

controllable variables x is exhaustive implying that z just has a constant term.

Since zTi a is assumed to be unobserved, it is convenient to write ai ¼ zTi a and re-express the model as

yit ¼ xTitbþ ai þ «it; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T :

The treatment of the heterogeneity effects determines the type ofmodel that is used to analyze panel data. The variousmodels

that are considered when analyzing panel data are as follows:

a. Pooled Regression: It is trivial to show that if zi contains only a constant term, that is, if a1 ¼ a2 ¼ . . . ¼ an ¼ a, then the

general model can be written as yit ¼ aþ xTitbþ «it;where i ¼ 1; . . . ; n and t ¼ 1; . . . ; T , and the parameters can be

estimated via OLS.

b. Fixed Effects: In the fixed effects model, we relax the assumption that a1 ¼ a2 ¼ . . . ¼ an ¼ a and write the model as

yit ¼ ai þ xTitbþ «it. Here, ai can be viewed as the subject-specific intercept terms. This representation results in a

common coefficients vector but different intercept terms—the intercept terms being the subject-specific constant termsai.

In the simple linear regression case, this will result in different regression lines for the different subjects where the lines are

parallel to each other (same slope) but have different intercepts.

c. Random Effects: In the fixed effects analysis, it is assumed that the selected subjects represent the entire population of

subjects who are available for the study. On the other hand, if the subjects were selected from a much larger population,

then it may be reasonable to assume that the differences among the subjects are randomly distributed across the

population. The random effects model can be easily formed by assuming that zTi a ¼ ai ¼ aþ ui, where E(ui)¼ 0 and

Var(ui)¼s 2
u: That is, the unobserved effect is partitioned into a component that is fixed or common to all subjects and a

disturbance that is subject specific. The general linear model can now be expressed as yit ¼ xTitbþ aþ ui þ «it: A key

assumption in the random effects model is that the unobserved subject-specific heterogeneity, zi, is distributed

independently of xit. It is easy to see why violations of this assumption will lead to endogeneity of the observed

explanatory variables leading to biased and inconsistent random effects estimates.
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To illustrate the computations for thevarious panel datamodels, wewillmake use of the cost function ofUSAirlines data from

Greene (2003),whichwas analyzed in the earlier chapters. The data in this example consists of repeatedmeasurements from1970

to 1984 on six airlines. Therefore, this can be viewed as a panel data with six subjects and 15 time periods. The following model

will be estimated from the data (Greene, 2003, p. 286):

lnðcos titÞ ¼ b1 þ b2lnðoutputitÞþ b3lnðFuel�PriceitÞþ b4Load�Factorit þ «it

where i¼ 1, . . ., 6 and t¼ 1, . . ., 15.As described by the author, the variable output gives the “revenue passenger miles,”which

is the number of revenue paying passengers times the number of miles flown by the airline in the given time period. The

variable load factor measures the percentage of available seating capacity that is filled with passengers.

7.3 THE POOLED REGRESSION MODEL

In the pooled regressionmodel,we assume that the individuals effects are fixed andmore importantly common across all subjects,

such that zTi ai ¼ ai ¼ a; 8i ¼ 1; . . . ; n. The model parameters can therefore be estimated using OLS. The following SAS

statements can be used to fit a pooled regressionmodel to the data.Note thatwe are assuming that a temporarySASdata set named

airline was created in a data step module. The analysis results are given in Output 7.1.

proc reg data=airline;

model LnC=LnQ LnPF LF;

run;

The REG Procedure
Model: MODEL1

Dependent Variable: LnC

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 3 112.70545 37.56848 2419.34 <0.0001

Error 86 1.33544 0.01553

Corrected Total 89 114.04089

Root MSE 0.12461 R-Square 0.9883

Dependent Mean 13.36561 Adj R-Sq 0.9879

Coeff Var 0.93234

Parameter Estimates

Variable Label DF
Parameter

Estimate
Standard

Error t Value Pr > |t|

Intercept Intercept 1 9.51692 0.22924 41.51 <0.0001

LnQ 1 0.88274 0.01325 66.60 <0.0001

LnPF 1 0.45398 0.02030 22.36 <0.0001

LF LF 1 –1.62751 0.34530 -4.71 <0.0001

OUTPUT 7.1. The pooled regression model for the airlines data using OLS.

112 PANEL DATA ANALYSIS



The pooled regression model is given by

lnðcos titÞ ¼ 9:52þ 0:88lnðoutputitÞþ 0:45lnðFuel�PriceitÞ� 1:63Load�Factorit:

The coefficient of determination isR2¼ 0.988, and an estimate of the rootmean square error is, ŝ2 ¼ 0:1246. The coefficients
for the explanatory variables are all highly significant. The signs of the coefficients in the model make intuitive sense.We should

expect the cost of the airline to increase with increases in output and fuel prices and decreases in load factor.

7.4 THE FIXED EFFECTS MODEL

As seen earlier, in the fixed effects model, we assume that the individual effects are constant but are not common across the

subjects. That is, zTi ai ¼ ai 6¼ a; 8i ¼ 1; . . . ; n. Therefore, each aiwill have to be estimated alongwithb. There are three main

methods used for estimating fixed effectsmodels: the least squares dummyvariable approach, thewithin-group effects approach,

and the between-group effects approach.

The least squares dummyvariablesmodel (LSDV) incorporates the individual subject unobservedeffects via dummyvariables

into themodel, whereas thewithin-group effectsmethod does not, since by construction, the unobserved effects are “swept” from

the model. Both these strategies produce identical slopes for the nondummy independent variables. The between-group effects

model also does not bring the dummyvariables into themodel and produces different parameter estimates from the LSDVand the

within-group since themodel relates the subjectmeans of the dependent variable to the subjectmeans of the explanatory variables

plus an overall subject fixed effect that is a constant. Amajor issuewith the between-groups estimation is that the analysis is based

on a total of n (the number of subjects) observations only, which becomes restrictive if themodel of interest has a large number of

explanatory variables. This is because we need the number of observations in the data set to be at least as large as the number of

model parameters to be estimated.

A disadvantage of the LSDVapproach is that it becomes restrictive in the presence of a large number of subjects in the panel

data.Asmentioned earlier, this approach involves calculating estimates of thedummyvariable parameters alongwith the estimates

of the coefficient vector of the explanatory variables. The number of parameters to be estimated therefore increases as the number

of subjects in the panel data increases. As discussed in Baltagi (2005, p. 13), if the number of time periods (T) is fixed and if the

number of subjects increases (n!1), then only the fixed effect parameters of the explanatory variables is consistent.

Baltagi (2005) lists three disadvantages of thewithin-groupmodel. First, the dummy variables have to be estimated separately

if the researcher is interested in the dummy variable parameters. This is because, by construction, the within-group model

“sweeps” the dummy variables from the model. An advantage here is that the parameter estimates will be consistent even if the

unobserved subject-specific heterogeneity is correlated to the observed explanatory variables. The dummy variable estimators

can be computed by using the formula ai ¼ y�i:�bTx�i: (Greene, 2003, p. 288). Notice that this formula is just the least squares

formula to compute the subject-specific intercepts (Chapter 1). Here, b is the LSDV (or within-group) estimator.

Second, since thewithin-groupmodel does not incorporate the dummy variables, the degree of freedom for the error term gets

large. This, in turn, results in a smaller root mean square error of the regression model. As discussed in Baltagi (2005, p. 14), the

variance–covariance obtained from thismodelwill have to be adjusted by a factor equal to the ratio of the error degrees of freedom

of thewithin-group and the LSDVmodels to get the correct variance–covariance matrix. That is, the variance–covariancematrix

is multiplied by ðnT � kÞ=ðnT � n� kÞ.
Finally, since thewithin-group model does not contain an intercept, the coefficient of determination (R2) is incorrect. Meyers

(1990, p. 39) gives the coefficient of determination for the nonintercept in the simple linear regression model as

R2
ð0Þ ¼

P

n

i¼1

ŷ2i

P

n

i¼1

y2i

:

Notice that this is different from the formulation ofR2 in the case of the simple linear modelwith an intercept term. The argument

can easily be extended to the multiple regression case.

We now begin our discussion of estimation of the fixed effects model parameters by using the LSDVapproach. Consider the

model

yi ¼ Xibþ iai þ ei
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where yi and Xi are the T observations on the response and the explanatory variables, i is a T � 1 column of ones, and «i is the

T � 1 disturbance vector. If we stack the data for all subjects, we can write this model in matrix form as

y ¼ ½X d1 d2 . . . dn �
b

a

" #

þ e:
Notice that by construction,

½d1; . . . ; dn� ¼

i 0 . . . 0

0 i . . . 0

..

. ..
. . .

. ..
.

0 0 . . . i

2

6

6

6

6

4

3

7

7

7

7

5

:

Here di is a dummyvariable vector for the ith subject, that is,di is a nT � 1 columnvectorwhere the elements are equal to 1 for the

ith subject and 0 otherwise. At first glance this method of estimation appears to be analogous to dummy variables regression.

However, we do not run into the “dummy-variable trap” here because we did not assume the presence of a constant in xit.

Therefore, this estimation technique allows us to get clean estimates of all the model parameters (Greene, 2003, p. 287).

If we let the nT� n matrix be D ¼ d1 d2 . . . dn �½ , we can rewrite the fixed effects model as the least squares dummy

variable (LSDV)model y¼Xb þ Da þ e. Using the Frisch–Waugh theorem (Chapter 1), it can be shown that the least squares

estimator of b is given by b¼ [XTMDX]
�1XTMDy, where MD¼ I � D(DTD)�1DT and is idempotent. If we let the vector a

denote an estimator ofa, then it can be shown (using Frisch–Waugh theoremagain) that a¼ [DTD]�1DT(y � Xb),which implies

that for the ith subject, ai ¼ �yi�bT�xi. Again, notice that this is the formula for calculating the intercept in a multiple linear

regression model. It can also be shown that the asymptotic covariance matrix of b is Est.Asy.Var(b)¼ s2(XTMDX)
�1 with

s2 ¼
ðy�MDXbÞ

Tðy�MDXbÞ

nT � n� k
:

The asymptotic variance of ai is given by

Asy:VarðaiÞ ¼
s2

T
þ �xTi:ðAsy:VarðbÞÞ�xi:

See Greene ð2003; p: 288Þ for more details:

The differences across subjects can be tested by using a F test which tests the hypothesis that the constant terms are all equal.

That is, H0 : ai¼a, 8i¼ 1, . . ., n. The F statistic used for this test is given by

Fðn� 1; nT � n� kÞ ¼
ðR2

LSDV �R2
pooledÞ=ðn� 1Þ

ð1�R2
LSDVÞ=ðnT � n� kÞ

;

where LSDVindicates the dummy variablemodel and pooled indicates the pooledmodel. Notice that this test is identical to theF

test that was discussed in Chapter 3 to compare a restricted model with an unrestricted model. Here, the pooled model is the

restricted model as it restricts the fixed heterogeneity terms to be constant across all the subjects (Greene, 2003, p. 289).

We will use the airline cost data to illustrate the computations involved in the LSDV model. For simplicity, we will estimate

only the parameters and their standard errors. First, wewill analyze the data by using Proc IML and then by using the Proc Panel

procedure.The followingProc IMLstatements canbe used.We assume that a temporarySASdataset names airlinewas created in

the data step module. The analysis results are given in Output 7.2.

proc iml;

* Read the data into matrices and create some constants.;

use airline;

read all var{’lq’,’lpf’,’lf’} into X;

read all var{’lc’} into y;

T=15;N=6;k=ncol(X);

* Create the MD matrix.;

i=J(T,1,1);
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NT=nrow(X);

D=block(i,i,i,i,i,i);

I=I(NT);

MD=I-D*inv(D`*D)*D`;

* Calculate the LSDV estimates and their standard errors.;

b_LSDV=inv(X`*MD*X)*X`*MD*y;

a=inv(D`*D)*D`*(y-X*b_LSDV);

sigma2=(MD*y-MD*X*b_LSDV)`*(MD*y-MD*X*b_LSDV)/(NT-N-K);

Var_B=sqrt(vecdiag(sigma2*inv(X`*MD*X)));

summary var {lq lpf lf} class {i} stat{mean}

opt{save};

X_Mean=LQ||LPF||LF;

I Nobs Variable MEAN

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

1 15 LNQ 0. 31927

LNPF 12. 73180

LF 0. 59719

2 15 LNQ –0. 03303

LNPF 12. 75171

LF 0. 54709

3 15 LNQ –0. 91226

LNPF 12. 78972

LF 0. 58454

4 15 LNQ –1. 63517

LNPF 12. 77803

LF 0. 54768

5 15 LNQ –2. 28568

LNPF 12. 79210

LF 0. 56649

6 15 LNQ –2. 49898

LNPF 12. 77880

LF 0. 51978

All 90 LNQ –1. 17431

LNPF 12. 77036

LF 0. 56046

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

The LSDV estimates are

TABLE1

BETA_LSDV SE

0.9193 0.0299LNQ

0.4175 0.0152LNPF

LF –1.0704 0.2017

TABLE2

ALPHA SE

ALPHA1 9.7059 0.1931

ALPHA2 9.6647 0.1990

ALPHA3 9.4970 0.2250

ALPHA4 9.8905 0.2418

ALPHA5 9.7300 0.2609

ALPHA6 9.7930 0.2637

OUTPUT 7.2. LSDV estimates for the airlines data using Proc IML.
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Var_A=Vecdiag(SQRT(sigma2/T +

X_mean*sigma2*inv(X`*MD*X)*X_Mean`));

* Print the results.;

print ’The LSDV estimates are’;

Table1=b_LSDV||Var_B;

Table2=a||Var_A;

Print Table1 (|Colname={Beta_LSDV SE} rowname={LNQ LNPF LF}

format=8.4|);

Print Table2 (|Colname={ALPHA SE} rowname={Alpha1 Alpha2 Alpha3

Alpha4 Alpha5 Alpha6} format=8.4|); run;

It is trivial to show that an alternative way of estimating the parameters of the LSDV model is by using OLS to estimate the

parameter vector d in the model y¼Xd d þ e, whereXd ¼ X d1 d2 . . . dn �½ and d ¼ b a �T
�

. In the cost of airlines example,

Xd is a 90� 9matrix, and d is a 9� 1 vector of unknown coefficients. TheOLS estimator of d is given by d̂ ¼ ðXT
dXdÞ

� 1
XT

dy. The

asymptotic variance of d is given by s2ðXT
dXdÞ

� 1
, where

s2 ¼
ðy�Xd d̂Þ

Tðy�Xd d̂Þ

nT � n� k
:

The following Proc IML statements can be used to estimate the parameters using this alternative formulation.

proc iml;

* Read the data into matrices and create some constants.;

use airline;

read all var{’lq’,’lpf’,’lf’} into X;

read all var{’lc’} into y;

T=15;N=6;k=ncol(X);

* Create the Xd matrix.;

i=J(T,1,1);

NT=nrow(X);

D=block(i,i,i,i,i,i);

I=I(NT);

X=X||D;

* Calculate the LSDV estimator and its standard error.;

Delta_LSDV=inv(X`*X)*X`*y;

sigma2=(y-X*Delta_LSDV)`*(y-X*Delta_LSDV)/(NT-N-K);

Var_Delta=sqrt(vecdiag(sigma2*inv(X`*X)));

* Print out the results.;

Print Table1 (|Colname={LSDV_Estimates SE} rowname={Intercept

LNQ LNPF LF Alpha1 Alpha2 Alpha3 Alpha4 Alpha5 Alpha6}

format=8.4|); run;

The analysis results are given inOutput 7.3. Notice that the results for the coefficients and their standard errors are identical to the

results given in Output 7.2.

We can analyze the data using the Proc Panel or the Proc TSCSREG procedure. Proc Panel is an enhancement over Proc

TSCSREG procedure and it can be used to analyze simple panel data models (fixed effects, random effects, one-way and two-

way models) as well as more complex models in the panel data setting (heteroscedasticity violations, autocorrelation

violations, dynamic panel data models). Readers are encouraged to refer to the Proc Panel Procedure reference guide from

SAS Institute, Inc. for more details on this procedure. Although the procedure offers a wide range of options for analyzing

panel data models, we will use the minimal required to illustrate the methods discussed in this chapter.

The following statements can be used for the LSDV model. The option “fixone” specifies that the first variable in the id

statement will be treated as fixed. The analysis results are given in Output 7.4.
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TABLE1

LSDV_ESTIMATES SE

0.9193 0.0299LNQ

0.4175 0.0152LNPF

–1.0704 0.2017LF

9.7059 0.1931ALPHA1

9.6647 0.1990ALPHA2

9.4970 0.2250ALPHA3

9.8905 0.2418ALPHA4

9.7300 0.2609ALPHA5

ALPHA6 9.7930 0.2637

OUTPUT 7.3. The LSDV model of the airlines data using OLS calculations.

The PANEL Procedure
Fixed One Way Estimates

Dependent Variable: LnC

Model Description

Estimation Method FixOne

Number of Cross Sections 6

Time Series Length 15

Fit Statistics

SSE 0.2926 DFE 81

MSE 0.0036 Root MSE 0.0601

R-Square 0.9974

F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

5 81 57.73 <0.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

CS1 1 –0.08706 0.0842 –1.03 0.3042 Cross Sectional Effect    1

CS2 1 –0.1283 0.0757 –1.69 0.0941 Cross Sectional Effect    2

CS3 1 –0.29598 0.0500 –5.92 <0.0001 Cross Sectional Effect    3

CS4 1 0.097494 0.0330 2.95 0.0041 Cross Sectional Effect    4

CS5 1 –0.06301 0.0239 –2.64 0.0100 Cross Sectional Effect    5

Intercept 1 9.793004 0.2637 37.14 <0.0001 Intercept

LnQ 1 0.919285 0.0299 30.76 <0.0001

LnPF 1 0.417492 0.0152 27.47 <0.0001

LF 1 –1.0704 0.2017 –5.31 <0.0001 LF

OUTPUT 7.4. LSDV estimates for the airlines data using Proc panel.
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proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/fixone;

run;

The estimates for the group effects are easy to calculate by adding the variables CSi to the intercept. The group effects are

a1¼ 9.706, a2¼ 9.665, a3¼ 9.497, a4¼ 9.890, and a5¼ 9.73. The value for the intercept is the group effects value for the sixth

firm.That is,a6¼ 9.79.UsingProc IML to fit theLSDVmodel allowsus toget the actual group effects estimates and their standard

errors. The fitted LSDV models for the six firms are given by

Airline 1 : ln C ¼ 9:706 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF;

Airline 2 : lnC ¼ 9:665 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF;

Airline 3 : lnC ¼ 9:497 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF;

Airline 4 : lnC ¼ 9:890 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF

Airline 5 : lnC ¼ 9:729 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF

Airline 6 : lnC ¼ 9:793 þ 0:9192 lnQ þ 0:4174 ln PF� 1:070LF

Note that the equations only differ in the constant term and therefore represents a parametric shift in the regression lines.

Comparing the LSDVoutput to the pooled output, we find that the rootmean square for the LSDVis significantly smaller than the

root mean square for the pooled model. This should not be surprising since the LSDV model essentially blocks out the subject

effects and therefore gives amore precise estimate of the rootmean square error.Also note that the error degrees of freedom for the

LSDV model take into account the inclusion of the subject terms in the model. The coefficient of determination for the LSDV

model is slightly higher than the coefficient of determination for the pooled model. The signs of the parameter estimates are the

same between the twomodels. Themagnitude of the coefficient forLF from theLSDVmodel is significantly lower than that from

the pooled model.

Proc GLM can also be used to fit a fixed effects model to the airlines cost data set. The following statements can be used.

proc glm data=airline;

class i;

model LC=i LQ LPF LF/solution;

run;

The class statement with input “i” instructs the program to treat the airlines id as a classification variable and to treat the

explanatory variables as covariates. The solution option for the model statement requests the parameter estimates for the terms in

the model. Output 7.5 contains the analysis results. A description of Proc GLMwas given in Chapter 3. Notice that the calculated

estimates are identical to the ones calculated by using Proc Panel. The XTXmatrix was found to be singular simply because the

procedure creates a column of ones in theXmatrix. Proc GLMgives the F test for differences between the individual fixed effects

for the airlines. The p values from both Type 1 and Type 3 sums of squares indicate high significance, implying that the null

hypothesis of equality of the individual effects is to be rejected. The Type 1 sums of squares also referred to as the sequential sums

of squares measures howmuch the residual sums of squares is reduced by adding a particular variable to the model containing all

the variables before it. As an example, the Type 1 sums of squares for the airline effect tell us by how much the residual sums of

squares for a model with just a constant term is reduced by adding the airlines effects to the model. On the other hand, the Type 3

sums of squares tell us by howmuch the residual sumsof squares is reduced if the particular variable is added to amodel containing

all other variables. Both sums of squares measure the importance of the variable in question.We nowmove on to estimation using

the within-group and the between-group methods. The functional form of the within-group model is

yit � y�i: ¼ ðxit � x�i:Þ
Tbþ «it � «�i:

whereas that of the between-group model is

y�i: ¼ aþ x�Ti bþ «�i:
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The GLM Procedure

Class Level Information

Class Levels Values

I 6 1 2 3 4 5 6

Number of Observations Read 90

Number of Observations Used 90

The GLM Procedure

Dependent Variable: LnC

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 8 113.7482727 14.2185341 3935.80 <0.0001

Error 81 0.2926222 0.0036126

Corrected Total 89 114.0408949

R-Square Coeff Var Root MSE LnC Mean

0.997434 0.449699 0.060105 13.36561

Source DF Type I SS Mean Square F Value Pr > F

I 5 74.67988205 14.93597641 4134.39 <0.0001

LnQ 1 36.33305337 36.33305337 10057.3 <0.0001

LnPF 1 2.63358517 2.63358517 729.00 <0.0001

LF 1 0.10175213 0.10175213 28.17 <0.0001

Source DF Type III SS Mean Square F Value Pr > F

I 5 1.04281997 0.20856399 57.73 <0.0001

LnQ 1 3.41718518 3.41718518 945.90 <0.0001

LnPF 1 2.72571947 2.72571947 754.50 <0.0001

LF 1 0.10175213 0.10175213 28.17 <0.0001

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 9.793003883 B 0.26366188 37.14 <0.0001

I         1 –0.087061966 B 0.08419945 –1.03 0.3042

I         2 –0.128297833 B 0.07572803 –1.69 0.0941

I         3 –0.295983079 B 0.05002302 –5.92 <.0001

I         4 0.097494011 B 0.03300923 2.95 0.0041

I         5 –0.063006988 B 0.02389185 –2.64 0.0100

I         6 0.000000000 B . . .

LnQ 0.919284650 0.02989007 30.76 <0.0001

LnPF 0.417491776 0.01519912 27.47 <0.0001

LF –1.070395844 0.20168974 –5.31 <0.0001

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 7.5. LSDV estimates for the airlines data using Proc GLM.
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The number of observations and the error degrees of freedom for these two representations are ðnT ; nT � kÞ and ðn; n� kÞ,
respectively.

The followingSAScode canbeused to estimate thewithin-groupeffectsmodel.The reader is asked toverify that the parameter

estimates is the same as the estimates from the LSDVanalysis. Note that the root mean square of thewithin-groupmodel is larger

than that of the LSDV model and that the coefficient of determination is slightly different. As discussed earlier, this value is

incorrect, given that we do not have an intercept term in themodel. The correct standard errors of the coefficients can be obtained

by using the adjustment factor given in Baltagi (2005). The temporary data set “airline”was created prior to sorting and includes

all the required transformed variables.

/*Sort the data by airline to facilitate correct calculations of group means*/

proc sort data=airline;

by i;

run;

/*Calculate the group means*/

proc univariate data=airline noprint;

var LnC LnQ LnPF LF;

by i;

output out=junk mean=meanc meanq meanpf meanlf;

run;

/*Merge the summary statistics to the original dataset and calculate the group deviations*/

data test;

merge airline(in=a) junk(in=b);

by i;

if a and b;

lnc=lnc-meanc;

lnq=lnq-meanq;

lnpf=lnpf-meanpf;

lf=lf-meanlf;

run;

/*Conduct the OLS regression*/

proc reg data=test;

model lnc=lnq lnpf lf/noint;

run;

The between-group analysis can be conducted usingProcPanelwith the “btwng” option in themodel statement. The following

statements can be used:

proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/btwng;

run;

The reader is asked to verify that the parameter estimates and their standard errors are given by Intercept/Constant 85.809

(56.483), LnQ 0.784 (0.109), LnPF � 5.524 (4.479), and LF � 1.751 (2.743). Note that only the coefficient for output LnQ is

significant. The sign on the coefficient for fuel price LnPF is now reversed.

7.4.1 Fixed Time and Group Effects

Thegeneral panel datamodel can easily be adjusted to incorporate a term for the time effect if it is of interest to determinewhether

the time periods are significantly different from each other. As shown in Greene (2003, p. 291, the LSDV model with a time-

specific effect is given by

yit ¼ xTitbþ ai þ gt þ «it; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T;

where gt is the tth fixed time effect.
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Wewill analyze the airlines data by incorporating the time effect into the fixed effects model. Note that we are still working

with a one-way fixed effects model. The analysis is conducted by using Proc Panel with the “fixonetime” option. The following

SAS statements in Proc Panel can be used to fit this model.

proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/fixonetime;

run;

The analysis results are given in Output 7.6. Notice that the p values associated with the F test for fixed time effects are not

significant.

The fixed time effects analysis can also be done in Proc GLM by using the following statements. Output 7.7 contains the

analysis results.

The PANEL Procedure
Fixed One Way Estimates Time-Wise

Model Description

Estimation Method FixOneTm

Number of Cross Sections 6

Time Series Length 15

Fit Statistics

SSE 1.0882 DFE 72

MSE 0.0151 Root MSE 0.1229

R-Square 0.9905

F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

14 72 1.17 0.3178

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

TS1 1 –2.04096 0.7347 –2.78 0.0070 Time Series Effect    1

TS2 1 –1.95873 0.7228 –2.71 0.0084 Time Series Effect    2

TS3 1 –1.88104 0.7204 –2.61 0.0110 Time Series Effect    3

TS4 1 –1.79601 0.6988 –2.57 0.0122 Time Series Effect    4

TS5 1 –1.33694 0.5060 –2.64 0.0101 Time Series Effect    5

TS6 1 –1.12515 0.4086 –2.75 0.0075 Time Series Effect    6

TS7 1 –1.03342 0.3764 –2.75 0.0076 Time Series Effect    7

TS8 1 –0.88274 0.3260 –2.71 0.0085 Time Series Effect    8

TS9 1 –0.7072 0.2947 –2.40 0.0190 Time Series Effect    9

TS10 1 –0.42296 0.1668 –2.54 0.0134 Time Series Effect   10

TS11 1 –0.07144 0.0718 –1.00 0.3228 Time Series Effect   11

TS12 1 0.114572 0.0984 1.16 0.2482 Time Series Effect   12

TS13 1 0.07979 0.0844 0.95 0.3477 Time Series Effect   13

TS14 1 0.015463 0.0726 0.21 0.8320 Time Series Effect   14

Intercept 1 22.53678 4.9405 4.56 <0.0001 Intercept

LnQ 1 0.867727 0.0154 56.32 <0.0001

LnPF 1 –0.48448 0.3641 –1.33 0.1875

LF 1 –1.9544 0.4424 –4.42 <0.0001 LF

Dependent Variable: LnC

OUTPUT 7.6. Fixed time effects analysis for the airlines data.
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The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

T 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Observations Read 90

Number of Observations Used 90

The GLM Procedure

Dependent Variable: LnC

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 17 112.9527040 6.6442767 439.62 <0.0001

Error 72 1.0881909 0.0151138

Corrected Total 89 114.0408949

R-Square Coeff Var Root MSE LnC Mean

0.990458 0.919809 0.122938 13.36561

Source DF Type I SS Mean Square F Value Pr > F

T 14 37.30676742 2.66476910 176.31 <0.0001

LnQ 1 75.30317703 75.30317703 4982.42 <0.0001

LnPF 1 0.04776504 0.04776504 3.16 0.0797

LF 1 0.29499451 0.29499451 19.52 <0.0001

Source DF Type III SS Mean Square F Value Pr > F

T 14 0.24725125 0.01766080 1.17 0.3178

LnQ 1 47.93302463 47.93302463 3171.48 <0.0001

LnPF 1 0.02675904 0.02675904 1.77 0.1875

LF 1 0.29499451 0.29499451 19.52 <0.0001

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 22.53678445 B 4.94053826 4.56 <.0001

T         1 –2.04096367 B 0.73469041 –2.78 0.0070

T         2 –1.95872954 B 0.72275187 –2.71 0.0084

T         3 –1.88103769 B 0.72036547 –2.61 0.0110

T         4 –1.79600992 B 0.69882566 –2.57 0.0122

T         5 –1.33693575 B 0.50604558 –2.64 0.0101

T         6 –1.12514656 B 0.40862234 –2.75 0.0075

T         7 –1.03341601 B 0.37641681 –2.75 0.0076

T         8 –0.88273866 B 0.32601349 –2.71 0.0085

T         9 –0.70719587 B 0.29470154 –2.40 0.0190

T         10 –0.42296351 B 0.16678941 –2.54 0.0134

T         11 –0.07143815 B 0.07176388 –1.00 0.3228

T         12 0.11457178 B 0.09841217 1.16 0.2482

OUTPUT 7.7. Fixed time effects analysis for the airlines data using Proc GLM.
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proc glm data=airline;

class t;

model LC=t LQ LPF LF/solution;

run;

Notice that the output fromProcPanelmatches the ProcGLMoutput from theType 3 sums of squares table. Also note that as

before, the individual time estimates can be calculated by adding the variables TS (T for Proc GLM) to the intercept. The

following Proc Panel statements can be usedwhen treating both time and firm effects as fixed. Output 7.8 contains the analysis

results.

proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/fixtwo;

run;

The two-way fixed effectsmodel can be easily estimated using ProcGLM.The following statements can be used. The analysis

results are given in Output 7.9.

proc glm data=airline;

class i t;

model LC=i t LQ LPF LF/solution;

run;

The LSDV model in both the one-way and the two-way effects cases can be easily written down and the equations for the

specific airline–time combination can be easily extracted by using the dummy variables.We avoid specific details on the analysis

results as the output can be interpreted in a similar fashion to the analysis outputs given earlier in this chapter.

7.5 RANDOM EFFECTS MODELS

As mentioned in the previous sections, the fixed effects model is appropriate when differences between the subjects may be

viewed as parametric shifts in the regressionmodel. Furthermore, the interpretations resulting from the fixed effects analysis is

only applicable to the subjects whowere selected for the study. On the other hand, in a random effectsmodel, the subjects in the

study are assumed to be selected from a much large population of available subjects. Therefore, the interpretations from the

random are effects analysis applicable to the larger population. We also assumed that the unobserved subject-specific

heterogeneity is uncorrelated to the observed explanatory variables. In the fixed effects model, violations of this assumption is

not really an issue since the analysis “sweeps” the unobserved heterogeneity component from the model.

To motivate our discussion on analysis techniques for a random effects model, consider the general random effects model

given in Section 7.2.

yit ¼ xTitbþ aþ ui þ «it

Parameter Estimate
Standard

Error t Value Pr > |t|

T         13 0.07978953 B 0.08441708 0.95 0.3477

T         14 0.01546270 B 0.07263977 0.21 0.8320

T         15 0.00000000 B

LnQ 0.86772671 0.01540820 56.32 <0.0001

LnPF –0.48448499 0.36410896 –1.33 0.1875

LF –1.95440278 0.44237789 –4.42 <0.0001

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 7.7. (Continued)
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with k regressors andEðzTi aÞ ¼ aþ ui,wherem is a constant andcanbeviewedas a common fixedeffect andui, thedisturbance, is

the random subject-specific effect. We make the following assumptions: ui � i:i:dð0;s2
uÞ, «it � i:i:d:ð0;s2

«, EðuijxitÞ ¼ 0,

Eð«itjxitÞ ¼ 0, and Covðui; «itÞ ¼ 0. Notice that the exogeneity assumption of the regressors with respect to ui arises from the

original assumption that zi is independent of xi. An additional assumption is that Eð«it«jsjXÞ ¼ 0 if t 6¼ s or i 6¼ j, and

EðuiujjXÞ ¼ 0 if i 6¼ j. That is, we assume that the disturbances are uncorrelated among themselves across time and across

subjects (Greene, 2003, p. 294; Verbeek, 2004, p. 348).

The PANEL Procedure

Fixed Two Way Estimates

Model Description

Estimation Method FixTwo

Number of Cross Sections 6

Time Series Length 15

Fit Statistics

SSE 0.1768 DFE 67

MSE 0.0026 Root MSE 0.0514

R-Square 0.9984

F Test for No Fixed Effects

Num DF Den DF F Value Pr > F

19 67 23.10 <0.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

CS1 1 0.174282 0.0861 2.02 0.0470 Cross Sectional Effect    1

CS2 1 0.111451 0.0780 1.43 0.1575 Cross Sectional Effect    2

CS3 1 –0.14351 0.0519 –2.77 0.0073 Cross Sectional Effect    3

CS4 1 0.180209 0.0321 5.61 <0.0001 Cross Sectional Effect    4

CS5 1 –0.04669 0.0225 –2.08 0.0415 Cross Sectional Effect    5

TS1 1 –0.69314 0.3378 –2.05 0.0441 Time Series Effect    1

TS2 1 –0.63843 0.3321 –1.92 0.0588 Time Series Effect    2

TS3 1 –0.5958 0.3294 –1.81 0.0750 Time Series Effect    3

TS4 1 –0.54215 0.3189 –1.70 0.0938 Time Series Effect    4

TS5 1 –0.47304 0.2319 –2.04 0.0454 Time Series Effect    5

TS6 1 –0.4272 0.1884 –2.27 0.0266 Time Series Effect    6

TS7 1 –0.39598 0.1733 –2.28 0.0255 Time Series Effect    7

TS8 1 –0.33985 0.1501 –2.26 0.0268 Time Series Effect    8

TS9 1 –0.27189 0.1348 –2.02 0.0477 Time Series Effect    9

TS10 1 –0.22739 0.0763 –2.98 0.0040 Time Series Effect   10

TS11 1 –0.1118 0.0319 –3.50 0.0008 Time Series Effect   11

TS12 1 –0.03364 0.0429 –0.78 0.4357 Time Series Effect   12

TS13 1 –0.01773 0.0363 –0.49 0.6263 Time Series Effect   13

Dependent Variable: LnC

OUTPUT 7.8. Fixed time and firm effects for the airlines data.
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If we denote the covariance structure for the ith subject as S, then it is easy to prove that S ¼ s2
uiT i

T
T þ s2

«IT where iT is a

vector of 1’s. That is, the diagonal elements of the covariance matrix are all equal to s2
u þ s2

« while the off-diagonal elements

are equal to s2
u. Combining the covariance matrices across the n subjects and taking into consideration the assumptions for a

random effects model stated earlier, the disturbance covariance matrix for the entire set of nT observations can be written as

V ¼ In � S.

7.5.1 Generalized Least Squares Estimation

As shown inChapter 5, the generalized least squares estimator can easily be calculated by first premultiplying yi andXi byS
� 1=2

.

If we let y* andX* represent the stacked transformed data across all n subjects, then the GLS estimator is obtained regressing y*

against X*.

In reality, the variance components are unknown and FGLS estimation has to be used. As discussed in Greene (2003, pp. 296–

297), a commonly used approach to estimating thevariance components is to use standardOLSandLSDV to estimates2 (pooled)

and s2
« (LSDV), respectively. As discussed by the author, the OLS estimator can be assumed to provide an estimate for s2

u þ s2
«

while the LSDVestimator provides an estimator for s2
«. Therefore, the difference between these two can be used to estimate s2

u.

That is, ŝ2
u ¼ s2pooled � s2LSDV . An alternate method is to use the expression for the expected mean square of the random effect and

then solve for ŝ2
u using themean squares. These expressions are available in ProcGLM.However, all complexities are avoided by

simply using Proc Panel.

We will discuss estimation under the assumption of a random effects models subsequently. For now, we discuss ways of

determining whether a fixed or random effects model should be used for the panel data.

7.5.2 Testing for Random Effects

The Breusch and Pagan (1980) Lagrange Multiplier (LM) test and the Hausman Specification tests are the two most commonly

used tests for determining whether a random effect or a fixed effect should be used for the data. The LM test tests the hypothesis

thats2
u ¼ 0 versuss2

u > 0. If the null hypothesis is not rejected, thenS is diagonal, whichmay imply that a random effectsmodel

should not be used for the panel data. TheLM test statistic is givenby (Greene, 2003, p. 299, TheProc Panel Procedure, p. 60, SAS

Institute, Inc.)

LM ¼
nT

2ðT � 1Þ

P

n

i¼1

ðT «̂�i:Þ
2

P

n

i¼1

P

T

t¼1

«̂2it

� 1

2

6

6

6

4

3

7

7

7

5

2

and is distributed as a chi-squared distribution under the null hypothesis.

We will use the airlines cost equation example to illustrate the computations of the LM test. The residuals from the pooled

model are first saved.WemakeuseofProcGLMtoconduct this portionof the analysis.The followingSASstatements canbeused.

Notice that we are suppressing the output since we simply want to save the residuals at this stage.

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

TS14 1 –0.01865 0.0305 –0.61 0.5432 Time Series Effect   14

Intercept 1 12.94003 2.2182 5.83 <0.0001 Intercept

LnQ 1 0.817249 0.0319 25.66 <0.0001

LnPF 1 0.168611 0.1635 1.03 0.3061

LF 1 –0.88281 0.2617 –3.37 0.0012 LF

OUTPUT 7.8. (Continued)
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The GLM ProcedureThe GLM Procedure

Class Level Information

Class Levels Values

I 6 1 2 3 4 5 6

T 15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of Observations Read 90

Number of Observations Used 90

The GLM Procedure

Dependent Variable: LnC

Source DF
Sum of

Squares Mean Square F Value Pr > F

Model 22 113.8640466 5.1756385 1960.82 <0.0001

Error 67 0.1768483 0.0026395

Corrected Total 89 114.0408949

R-Square Coeff Var Root MSE LnC Mean

0.998449 0.384392 0.051376 13.36561

Source DF Type I SS Mean Square F Value Pr > F

I 5 74.67988205 14.93597641 5658.58 <0.0001

T 14 37.30676742 2.66476910 1009.56 <0.0001

LnQ 1 1.84507227 1.84507227 699.02 <0.0001

LnPF 1 0.00229645 0.00229645 0.87 0.3543

LF 1 0.03002842 0.03002842 11.38 0.0012

Source DF Type III SS Mean Square F Value Pr > F

I 5 0.91134261 0.18226852 69.05 <0.0001

T 14 0.11577389 0.00826956 3.13 0.0009

LnQ 1 1.73776357 1.73776357 658.36 <0.0001

LnPF 1 0.00280788 0.00280788 1.06 0.3061

LF 1 0.03002842 0.03002842 11.38 0.0012

Parameter Estimate
Standard

Error t Value Pr > |t|

Intercept 12.94003049 B 2.21823061 5.83 <0.0001

I         1 0.17428210 B 0.08611999 2.02 0.0470

I         2 0.11145059 B 0.07795501 1.43 0.1575

I         3 –0.14351138 B 0.05189334 –2.77 0.0073

I         4 0.18020869 B 0.03214429 5.61 <0.0001

I         5 –0.04669433 B 0.02246877 –2.08 0.0415

I         6 0.00000000 B . . .

T         1 –0.69313650 B 0.33783841 –2.05 0.0441

T         2 –0.63843490 B 0.33208013 –1.92 0.0588

T         3 –0.59580170 B 0.32944723 –1.81 0.0750

T         4 –0.54215223 B 0.31891384 –1.70 0.0938

OUTPUT 7.9. Fixed time and firm effects for the airlines data using Proc GLM.
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proc glm data=airline noprint;

model LnC=LnQ LnPF LF/solution;

output out=resid residual=res;

run;

Proc Univariate is now used to calculate the means of the OLS residuals for each firm. The analysis results are given in

Output 7.10.

proc univariate data=resid noprint;

var res;

by i;

output out=junk mean=mean;

run;

The sums of squares of the OLS residuals is 1.3354. Substituting all the values into the LM formula, we get

LM ¼
6� 15

2ð15� 1Þ

152 � ð0:068872 þ 0:013882 þ 0:194222 þ 0:152732 þ 0:021582 þ 0:008092

1:3354
� 1

� �2

¼ 334:85:

Parameter Estimate
Standard

Error t Value Pr > |t|

T         5 –0.47304191 B 0.23194587 –2.04 0.0454

T         6 –0.42720347 B 0.18843991 –2.27 0.0266

T         7 –0.39597739 B 0.17329687 –2.28 0.0255

T         8 –0.33984567 B 0.15010620 –2.26 0.0268

T         9 –0.27189295 B 0.13481748 –2.02 0.0477

T         10 –0.22738537 B 0.07634948 –2.98 0.0040

T         11 –0.11180326 B 0.03190050 –3.50 0.0008

T         12 –0.03364114 B 0.04290077 –0.78 0.4357

T         13 –0.01773478 B 0.03625539 –0.49 0.6263

T         14 –0.01864518 B 0.03050793 –0.61 0.5432

T         15 0.00000000 B . . .

LnQ 0.81724884 0.03185093 25.66 <0.0001

LnPF 0.16861074 0.16347803 1.03 0.3061

LF –0.88281211 0.26173699 –3.37 0.0012

Note: The X'X matrix has been found to be singular, and a generalized inverse was used to solve the normal equations.  Terms whose
estimates are followed by the letter 'B' are not uniquely estimable.

OUTPUT 7.9. (Continued)

Obs I mean

1 1 0.06887

2 2 –0.01388

3 3 –0.19422

4 4 0.15273

5 5 –0.02158

6 6 0.00809

OUTPUT 7.10. Mean of residuals for each of the airlines.
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The tabled value from the chi-squared table is x2
1;0:05 ¼ 3:84, and so we reject the null hypothesis that s2

u ¼ 0 and claim that

there is evidence that the random effects model is more appropriate for the airlines data. As discussed in Greene (2003, p. 299)

“a fixed effectsmodelmayproduce the same results,” that is, lead to the same conclusion.He suggests erring on the side of caution

and concludes that the pooled model is inappropriate for the airlines data set rather than stating that the random effects model is

more appropriate. In the next section,wewill discuss theHausman’s specification test (the preferred approach) to determine if the

fixed effects or the random effects model is more appropriate for the panel data.

7.5.3 Hausman’s Test

Hausman’s (1978) test can be used to determine whether the fixed effects or the random effects model is more appropriate for

the panel data. The procedure tests the null hypothesis of no correlation between the unobserved subject-specific effects and

the observed explanatory variables versus the alternative hypothesis that the unobserved subject-specific effects are correlated

to the observed explanatory variables. The test is based on the covariance matrix of the difference vector bFE �bRE, where bFE
is the fixed effects estimator and bRE is the random effects estimator. Under the null hypothesis of no correlation, both

estimators are consistent estimators forb. However, under the alternative hypothesis, only bFE is consistent forb. A significant

difference between the two estimators will lead to the rejection of the null hypothesis (Greene, 2003, pp. 301–302).

The Hausman’s test statistic is given by the following:

W ¼ ðbFE �bREÞ
T
F

� 1ðbFE �bREÞ

whereF ¼ VarðbFE �bREÞ. Under the null hypothesis of no correlation, the test statistic is distributed as a chi-squared random
variable with k degrees of freedom, where k is the number of observed explanatory variables.

To illustrate Hausmans’s test, wewill againmake use of the airlines data fromGreene (2003). To compute the test statistic, we

need to first generate the covariance matrices for both the fixed and random effects models. The following statements using Proc

Panel can be used to store the covariance matrices for both models. Note that wewill use the “ranone” option again subsequently

when estimating a random effects model. The two covariance matrices are given in Output 7.11.

proc panel data=airline outest=out1 covout noprint;

title ’This is the Fixed Effects Analysis’;

id i t;

model LnC=LnQ LnPF LF/fixone;

run;

proc panel data=airline outest=out2 covout noprint;

title ’This is the Random Effects Model’;

id i t;

model LnC=LnQ LnPF LF/ranone;

run;

This is the Fixed Effects Results

Obs LnQ LnPF LF

1 0.000893416 –0.000317817 –0.001884

2 –0.000317817 0.000231013 –0.000769

3 –0.001884262 –0.000768569 0.040679

This is the Random Effects Results

Obs LnQ LnPF LF

1 0.000676608 –0.000235445 –0.001554

2 –0.000235445 0.000198785 –0.000879

3 –0.001554439 –0.000878566 0.039785

OUTPUT 7.11. Covariance matrices of the estimates for the fixed and random effects model of the airline data.
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Using the covariance matrices and the fixed and random effects coefficients that were calculated using Proc Panel, we can

substituteall thevalues in theformula forHausman’s test inProcIMLtogeta test statisticvalueof4.16.Thechi-squared tabledvalue

with a type 1 error rate of 0.05 and 3 degrees of freedom is 7.814. The coding in Proc IML is straightforward and is therefore not

included here. The results of the analysis indicate that we cannot reject the null hypothesis that the unobserved heterogeneity

subject-specific effects areuncorrelatedwith theobservedexplanatoryvariables.Therefore, both the fixedeffects estimator and the

randomeffectsestimator are consistentestimatorsofb.On theotherhand, theLM test rejected thenull hypothesisH0 : s
2
u ¼ 0, thus

indicating that a random effects model was more appropriate than the pooled regressionmodel. As discussed by Greene (2003) in

Example13.5onpage302, basedon the results ofboth theLM test and theHausman test,wewould conclude that the randomeffects

model ismore appropriate for the airlines data.TheHausman’s test is given bydefault in the output ofProc Panelwhenwe specify a

random effects model. The “LM” option can be used in the model statement to get the Breusch–Pagan Lagrange Multiplier test.

Output 7.12 contains the Hausman and Breusch–Pagan Tests from the Proc Panel procedure. Notice that the test statistic value

The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: LnC

Model Description

Estimation Method RanOne

Number of Cross Sections 6

Time Series Length 15

Fit Statistics

SSE 0.3090 DFE 86

MSE 0.0036 Root MSE 0.0599

R-Square 0.9923

Variance Component Estimates

Variance Component for Cross Sections 0.018198

Variance Component for Error 0.003613

Hausman Test for
Random Effects

DF m Value Pr > m

3 0.92 0.8209

Breusch Pagan Test
for Random Effects

(One Way)

DF m Value Pr > m

1 334.85 <0.0001

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 9.637 0.2132 45.21 <0.0001 Intercept

LnQ 1 0.908024 0.0260 34.91 <0.0001

LnPF 1 0.422199 0.0141 29.95 <0.0001

LF 1 –1.06469 0.1995 –5.34 <0.0001 LF

OUTPUT 7.12. Using proc panel to generate Hausman and Breusch–Pagan tests for the random effects model.
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for Hausman’s test is different from the one given above. The value reported uses the covariance matrix of the parameters

including the parameter for firm.We used Proc IMLwith the modified covariance matrices and found a value very close to the

one in the SAS output.

proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/ranone bp;

run;

7.5.4 Random Effects Model Estimation

In Section 7.5.2, we used Proc Panel to estimate the fixed and random effects model. The outputs provided us with estimates of

the two variance components. For instance, fromOutput 7.12, we see that an estimate fors2
« is 0.003613 while the estimate for

s2
u is 0.018198. Therefore, we can use these estimators to construct S to perform FGLS using Proc IML. In the previous

section, we used Proc Panel to perform the calculations. The analysis results are given in Output 7.12. We will now briefly

discuss the output results.

The PANEL Procedure
Fuller and Battese Variance Components (RanTwo)

Dependent Variable: LnC

Model Description

Estimation Method RanTwo

Number of Cross Sections 6

Time Series Length 15

Fit Statistics

SSE 0.2322 DFE 86

MSE 0.0027 Root MSE 0.0520

R-Square 0.9829

Variance Component Estimates

Variance Component for Cross Sections 0.017439

Variance Component for Time Series 0.001081

Variance Component for Error 0.00264

Hausman Test for
Random Effects

DF m Value Pr > m

3 6.93 0.0741

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 9.362676 0.2440 38.38 <0.0001 Intercept

LnQ 1 0.866448 0.0255 33.98 <0.0001

LnPF 1 0.436163 0.0172 25.41 <0.0001

LF 1 –0.98053 0.2235 –4.39 <0.0001 LF

OUTPUT 7.13. Random effects model assuming both firms and time are random.
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The first table gives the estimation method and the number of cross sections and time periods. The second table gives some

basic statistics including the coefficient of determination and the rootmean square error.Notice that the error degree of freedom is

90� 4¼ 86 as there are four estimated parameters. The next table gives thevariance components for both the cross section and the

LSDV model. The last table gives the parameter estimates and the associated p values. Notice that the signs for the coefficients

match the signs of the coefficients from the fixed effectsmodel.Also note that themagnitudes of the coefficient values are similar.

All explanatory variables are highly significant in the model.

The following Proc Panel code analyzes the data assuming that both the firm and the time effects are random. The analysis

results aregiven inOutput 7.13.Note that now theoutput contains threevariance components: one for theLSDVmodel, one for the

cross sections, and one for the time effect. The rest of the output can be interpreted as before.

proc panel data=airline;

id i t;

model LnC=LnQ LnPF LF/rantwo;

run;
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8
SYSTEMS OF REGRESSION EQUATIONS

8.1 INTRODUCTION

The previous chapters discussed estimation of single linear equationmodels. In practice, it is not uncommon to encountermodels

that are characterized by several linear or nonlinear equations where the disturbance vectors from the equations are involved in

cross-equation correlations. As an example, consider the well-known Grunfeld’s (1958) investment model given by

Iit ¼ b0 þb1Fit þb2Cit þ «it; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T ;

where Iit is the investment for firm i in time period t; Fit is the market value of the firm, and Cit is the value of capital stock. The

original data set was comprised of 10 large US manufacturing firms, which were followed from 1935 to 1954. As discussed by

Greene (2003, p. 339), the disturbance vectors in each equation are characterized by shocks that may be common to all the firms.

For instance, the general health of the economy may have an impact on the investment behavior of each firm. On the other hand,

certain industries exhibit a cyclical nature where they are heavily dependent upon the economy whereas other industries are not

cyclical and are not impacted by the economy. Therefore, another component of the disturbance term may be shocks that are

specific to the industry the company belongs to.

A naı̈ve approach to analysismay treat the system of equations as unrelated or independent. However, analysis of the residuals

from the system of equations may reveal a covariance structure that consists of cross-correlations between the equations.

Estimationof the parametersmust take the inter-equation cross-correlation into account. Zellner (1962) introduced the seemingly

unrelated regression (SUR) models that takes into account the cross-equation correlation when analyzing systems of regression

equations. This chapter deals with using SAS to analyze SUR models.

The seemingly unrelated regressions (SUR) model is characterized by a system of n equations and is given by (Greene,

2003, p. 340)

y1 ¼ X1b1 þ e1;

y2 ¼ X2b2 þ e2;

..

.

yn ¼ Xnbn þ en:

In this formulation, yi is the T � 1 dependent variable,Xi is the T � Ki matrix of regressors, bi is the Ki � 1 parameter vector,

and ei is the T � 1 vector of disturbances. This setup results in a total of nT observations. Note that in order to estimate the

parameters of the system, we require each equation in the system to satisfy the constraint that T > Ki .
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An implied assumption in the above setup is that the conditional mean is not fixed across the groups as the regressors are not

restricted to be the same across all the equations. Therefore, we may also view this system within a panel data framework with n

cross-sections and T time periods.

Each equation in the SUR is assumed to satisfy all the assumptions of the classical OLSmodel.However, the disturbance terms

of the equations are assumed to be correlated, that is

EðeieTj jX1;X2; . . . ;XnÞ ¼ sijIT :

This implies that the covariance of the disturbance of the ith and jth equations are correlated and is constant across all

the observations. Writing the full disturbance vector as e ¼ ½ eT1 e
T
2 . . . e

T
n �

T
, these assumptions imply that

EðejX1;X2; . . . ;XnÞ ¼ 0 and EðeeT jX1;X2; . . . ;XnÞ ¼ V. If we let R ¼ bsijc, then we can write EðeeT jX1;X2; . . . ;XnÞ ¼
R� IT (Greene, 2003, p. 341).

8.2 ESTIMATION USING GENERALIZED LEAST SQUARES

The potential presence of inter-equation cross-correlations renders the OLS equation by equation estimation inefficient. Amore

efficient approach is to use the generalized least squares (GLS) approach as described below (Greene, 2003, pp. 342–343).

If we stack the n equations, we get

y1

y2

..

.

yM

2

6

6

6

6

4

3

7

7

7

7

5

¼

X1 0 . . . 0

0 X2 . . . 0

..

. ..
. ..

. ..
.

0 0 . . . XM

2

6

6

6

6

4

3

7

7

7

7

5

b1

b2

..

.

bM

2

6

6

6

6

4

3

7

7

7

7

5

þ

e1

e2

..

.

eM

2

6

6

6

6

4

3

7

7

7

7

5

¼ Xbþ e;

where E(e|X)¼ 0 and EðeeT jXÞ ¼ V ¼ R� IT . The GLS estimator of b is therefore given by

b̂GLS ¼ ½XTðR�1 � IÞX��1
XTðR�1 � IÞy

with asymptotic covariancematrix ½XTðR�1 � IÞX��1
.As is always the case,V is assumed to be unknownand therefore the FGLS

method has to be used to estimate b.

8.3 SPECIAL CASES OF THE SEEMINGLY UNRELATED REGRESSION MODEL

1. GLS is the same as equation-by-equation OLS if the system equations are uncorrelated. This is easy to show by realizing

that if sij ¼ 0 for i 6¼ j, then R is diagonal and that the variance terms of each equation simply drop out of the GLS

estimator giving

b̂GLS ¼

ðXT
1X1Þ�1

XT
1y1

ðXT
2X2Þ�1

XT
2y2

..

.

ðXT
MXMÞ�1

XT
MyM

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

which is the equation-by-equation OLS (Greene, 2003, p. 343–344).

2. If the equations have identical explanatory variables, then GLS is equation-by-equation OLS.
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This is easy to show by first assuming thatX1 ¼ X2 ¼ . . . ¼ Xn ¼ Xc and realizing thatX ¼ Xc � IT . Using this in the GLS

estimator and making use of basic properties of Kronecker products we can show that

b̂GLS ¼ ½XTðR�1 � IÞX��1
XTðR�1 � IÞy

¼ ðXT
cXcÞ�1

XT
c y;

which is the equation-by-equation OLS estimator.

8.4 FEASIBLE GENERALIZED LEAST SQUARES

The discussion so far assumed that R is known. In practice, R is almost always unknown and therefore has to be estimated.

FGLS estimators (see Chapter 5) can be used to estimate b in this case. The analysis proceeds in two steps.

First, theOLS residuals for each equation are calculated using êi ¼ yi�Xib̂i, where êi is the residual vector for the ith equation.

The elements of R can then be constructed using

ŝij ¼
1

T
eTi ej:

giving the FGLS estimator

b̂FGLS ¼ XTðR̂�1 � IÞX
h i�1

XTðR̂�1 � IÞy

with asymptotic covariance matrix ½XTðR̂�1 � IÞX��1
(Greene, 2003, p. 344).

To illustrate the techniques involved in the estimation of b, we will make use of the Grunfeld’s Investment data from Greene

(2003). Greene’s version of the Grunfeld data set consists of a subset of five firms Grunfeld’s model observed over 20 years.

In the analysis that follows, the coefficients are unrestricted and are allowed tovary across firms. Thedownloaded data set has a

pooled data structure with common names for the model variables across all the firms. The input data set for analysis must

therefore be adjusted to get firm specific names for the explanatory variables. The following statements can be used to create

distinct variable names.

data GM CH GE WE US;

set SUR;

if firm=1 then output GM;

else if firm=2 then output CH;

else if firm=3 then output GE;

else if firm=4 then output WE;

else output US;

run;

data GM;

set GM;

rename i=i_gm f=f_gm c=c_gm;

run;

data CH;

set CH;

rename i=i_ch f=f_ch c=c_ch;

run;

data GE;

set GE;

rename i=i_ge f=f_ge c=c_ge;

run;

data WE;

set WE;

rename i=i_we f=f_we c=c_we;

run;
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data US;

set US;

rename i=i_us f=f_us c=c_us;

run;

data grunfeld;

merge gm ch ge we us;

by year;

run;

We start the analysis of the Grunfeld data set by estimating the parameters of the model using pooled OLS. No change to the

original data set is required, and the following statements can be used. The analysis results are given in Output 8.1.

proc reg data=SUR;

model I=F C;

run;

The results indicate that both the firm’smarket value and the value of the firm’s capital are highly significant in explaining the

variability in investment. The positive coefficients indicate that the firm’s investment will be higher if it’s market value and the

value of its capital is high.

The Grunfeld SAS data set consisting of separate variable names for each firm can be analyzed by using Proc Syslin. The

following statements can be used. Output 8.2 contains the analysis results. This procedure will give the OLS estimates for each

equation followed by the cross-equation covariance and correlation matrices. These are then followed by the FGLS estimates for

each equation.

proc syslin data=grunfeld SUR;

gm:model i_gm = f_gm c_gm;

ch:model i_ch = f_ch c_ch;

The REG Procedure
Model: MODEL1

Dependent Variable: I I

The REG Procedure
Model: MODEL1

Dependent Variable: I I

Number of Observations Read 100

Number of Observations Used 100

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 5532554 2766277 170.81 <0.0001

Error 97 1570884 16195

Corrected Total 99 7103438

Root MSE 127.25831 R-Square 0.7789

Dependent Mean 248.95700 Adj R-Sq 0.7743

Coeff Var 51.11658

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –48.02974 21.48017 –2.24 0.0276

F F 1 0.10509 0.01138 9.24 <0.0001

C C 1 0.30537 0.04351 7.02 <0.0001

OUTPUT 8.1. Pooled OLS regression for the Grunfeld data.
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The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model GM

Dependent Variable i_gm

Label I

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 1677687 838843.3 99.58 <0.0001

Error 17 143205.9 8423.875

Corrected Total 19 1820893

Root MSE 91.78167 R-Square 0.92135

Dependent Mean 608.02000 Adj R-Sq 0.91210

Coeff Var 15.09517

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –149.782 105.8421 –1.42 0.1751 Intercept

f_gm 1 0.119281 0.025834 4.62 0.0002 F

c_gm 1 0.371445 0.037073 10.02 <0.0001 C

Model CH

Dependent Variable i_ch

Label I

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 31686.54 15843.27 89.86 <0.0001

Error 17 2997.444 176.3203

Corrected Total 19 34683.99

Root MSE 13.27856 R-Square 0.91358

Dependent Mean 86.12350 Adj R-Sq 0.90341

Coeff Var 15.41805

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –6.18996 13.50648 –0.46 0.6525 Intercept

f_ch 1 0.077948 0.019973 3.90 0.0011 F

c_ch 1 0.315718 0.028813 10.96 <0.0001 C

OUTPUT 8.2. Grunfeld data analysis results using Proc Syslin SUR.
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The SYSLIN Procedure
Ordinary Least Squares Estimation

The SYSLIN Procedure
Ordinary Least Squares Estimation

Model GE

Dependent Variable i_ge

Label I

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 31632.03 15816.02 20.34 <0.0001

Error 17 13216.59 777.4463

Corrected Total 19 44848.62

Root MSE 27.88272 R-Square 0.70531

Dependent Mean 102.29000 Adj R-Sq 0.67064

Coeff Var 27.25850

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –9.95631 31.37425 –0.32 0.7548 Intercept

f_ge 1 0.026551 0.015566 1.71 0.1063 F

c_ge 1 0.151694 0.025704 5.90 <0.0001 C

Model WE

Dependent Variable i_we

Label I

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 5165.553 2582.776 24.76 <0.0001

Error 17 1773.234 104.3079

Corrected Total 19 6938.787

Root MSE 10.21312 R-Square 0.74445

Dependent Mean 42.89150 Adj R-Sq 0.71438

Coeff Var 23.81153

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –0.50939 8.015289 –0.06 0.9501 Intercept

f_we 1 0.052894 0.015707 3.37 0.0037 F

c_we 1 0.092406 0.056099 1.65 0.1179 C

OUTPUT 8.2. (Continued)

.
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Model US

Dependent Variable i_us

Label I

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 2 139978.1 69989.04 6.69 0.0072

Error 17 177928.3 10466.37

Corrected Total 19 317906.4

Root MSE 102.30529 R-Square 0.44031

Dependent Mean 405.46000 Adj R-Sq 0.37447

Coeff Var 25.23191

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –30.3685 157.0477 –0.19 0.8490 Intercept

f_us 1 0.156571 0.078886 1.98 0.0635 F

c_us 1 0.423866 0.155216 2.73 0.0142 C

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Covariance

GM CH GE WE US

GM 8423.88 –332.655 714.74 148.443 –2614.2

CH –332.65 176.320 –25.15 15.655 491.9

GE 714.74 –25.148 777.45 207.587 1064.6

WE 148.44 15.655 207.59 104.308 642.6

US –2614.19 491.857 1064.65 642.571 10466.4

Cross Model Correlation

GM CH GE WE US

GM 1.00000 –0.27295 0.27929 0.15836 –0.27841

CH –0.27295 1.00000 –0.06792 0.11544 0.36207

GE 0.27929 –0.06792 1.00000 0.72896 0.37323

WE 0.15836 0.11544 0.72896 1.00000 0.61499

US –0.27841 0.36207 0.37323 0.61499 1.00000

Cross Model Inverse Correlation

GM CH GE WE US

GM 1.41160 0.14649 –0.32667 –0.46056 0.74512

CH 0.14649 1.23373 0.27615 –0.08670 –0.45566

GE –0.32667 0.27615 2.33055 –1.65117 –0.04531

WE –0.46056 –0.08670 –1.65117 3.16367 –1.42618

US 0.74512 –0.45566 –0.04531 –1.42618 2.26642

OUTPUT 8.2. (Continued).
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The SYSLIN Procedure
Seemingly Unrelated Regression Estimation

Cross Model Inverse Covariance

GM CH GE WE US

GM 0.000168 0.000120 –0.000128–0.000491 0.000079

CH 0.000120 0.006997 0.000746 –0.000639–0.000335

GE –0.000128 0.000746 0.002998 –0.005798–0.000016

WE –0.000491–0.000639–0.005798 0.030330 –0.001365

US 0.000079 –0.000335–0.000016–0.001365 0.000217

System Weighted MSE 0.9401

Degrees of freedom 85

System Weighted R-Square 0.8707

Model GM

Dependent Variable i_gm

Label I

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –162.364 97.03216 –1.67 0.1126 Intercept

f_gm 1 0.120493 0.023460 5.14 <0.0001 F

c_gm 1 0.382746 0.035542 10.77 <0.0001 C

Model CH

Dependent Variable i_ch

Label I

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 0.504304 12.48742 0.04 0.9683 Intercept

f_ch 1 0.069546 0.018328 3.79 0.0014 F

c_ch 1 0.308545 0.028053 11.00 <0.0001 C

Model GE

Dependent Variable i_ge

Label I

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 –22.4389 27.67879 –0.81 0.4287 Intercept

f_ge 1 0.037291 0.013301 2.80 0.0122 F

c_ge 1 0.130783 0.023916 5.47 <0.0001 C

Model WE

Dependent Variable i_we

Label I

OUTPUT 8.2. (Continued).
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ge:model i_ge = f_ge c_ge;

we:model i_we = f_we c_we;

us:model i_us = f_us c_us;

run;

The first part of the output gives theOLS equation-by-equation estimates of the parameters for each of the five firms. Notice

that the F test for the global hypothesisH0: b1¼b2¼b3¼ 0 versusH1: At least one b 6¼ 0 is highly significant for each of the

five firms. The root MSE value is the highest for US and lowest for WE. The R2 values for GM and CH indicates a good fit,

while theR2 values GE andWE indicate amoderate fit. TheR2 value for US indicates a poor fit. Both explanatory variables are

highly significant for firms GM and CH. Market value is not significant in the model for GE, WE, and US at the 5%

significance level.

The OLS equation-by-equation output is followed by the cross-equation covariance and correlation matrices along with their

inverses. The diagonal elements of the cross-model covariance matrix are the variances of the residuals for the five firms. For

example, the variance of the residuals for GM is 8423.88. Taking the square root of this will yield 91.78, which is the rootMSE of

the OLS model for this firm. The off-diagonal elements of this matrix display the values of the covariances between the OLS

residuals of each of the five firms. The cross-equation covariance is calculated by first calculating the residuals

ðei; i ¼ 1; . . . ;M ¼ 5Þ from the FGLS procedure for each firm and each time period. Let

E ¼ e1 e2 e3 e4 e5½ �:

The covariance matrix is given by

1

T
ETE ðGreen; 2003; p: 322Þ;

where T in Grunfeld’s model example is 20.

The cross-equation correlation is calculated by using the formula

rðx; yÞ ¼ Covðx; yÞ=ðsxsyÞ:

This results in all diagonal elements being equal to 1. To see how the off-diagonal elements are calculated, consider calculating

the correlation between the residuals of firms GM and CH. Using this formula, one gets

rðGM;CHÞ ¼ �332:655
.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8423:88
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

176:32
p� �

¼ �0:273:

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 1.088877 6.788627 0.16 0.8745 Intercept

f_we 1 0.057009 0.012324 4.63 0.0002 F

c_we 1 0.041506 0.044689 0.93 0.3660 C

Model US

Dependent Variable i_us

Label I

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Variable
Label

Intercept 1 85.42325 121.3481 0.70 0.4910 Intercept

f_us 1 0.101478 0.059421 1.71 0.1059 F

c_us 1 0.399991 0.138613 2.89 0.0103 C

OUTPUT 8.2. (Continued).
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The cross-equation correlation matrix indicates high correlation between the residuals of GE and WE, and WE and US. The

inverse of both the cross-equation covariance and correlation matrices wraps up this portion of the output.

The last part of the output consists of the FGLS estimates of the parameters of the two explanatory variables for each of the five

firms.Theoutputdisplaysboth the systemweightedMSEand the systemweightedR2.Note that thedegreesof freedomassociated

with the systemweightedMSE is 17� 5 ¼ 85. The analysis results indicate that bothmarket value and the value of stock of plant

and equipment are highly significant for firms GM, CH, and GE. The value of stock of plant and equipments is not significant for

firm WE. The market value is not significant for firm US.
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9
SIMULTANEOUS EQUATIONS

9.1 INTRODUCTION

Theprevious chapters focusedon single equations andon systemsof single equationmodels thatwere characterizedbydependent

variables (endogenous) on the left-hand side and the explanatory variables (exogenous or endogenous) on the right-hand side of

the equations. For example, Chapter 4 dealt with instrumental variables, where the endogenous variables were on the right-hand

side. This chapter extends the concept of systems of linear equations where endogenous variables were determined one at a time

(sequentially) to the case when they are determined simultaneously.

We begin our discussion of simultaneous equation models by considering the following wage–price equations

pt ¼ b1wt þ b2mt þ «1t

wt ¼ a1pt þ a2ut þ «2t;

wherept is the price inflation at time t,wt iswage inflation at time t,mt is themoney supply at time t,u1 is unemployment rate time t,

«1t and «2t are the error termswithmeans 0 and constant variancess2
1 ands

2
2, respectively, and g ¼ ðb1;b2;a1;a2Þ are themodel

parameters that need to be estimated.We also assume that the disturbance terms are uncorrelated. These equations are referred to

as structural equations. In the wage–price inflation equation, we have two structural equations and four unknown parameters.

The first equationdescribes the relationof price inflation towage inflation andmoney supply.Aswages increase so doprices as

demand forgoodand services tend to increase aswell and this puts pressure on them.Furthermore, the increase inwage is typically

passed on to the consumer resulting in price inflation. There is also a positive relationship between money supply and price

inflation. The second equation describes the behavior of wage inflation vis-a-vis price inflation and the unemployment rate. As

prices increase, workers tend to demand higher wages but the demand is offset by the unemployment rate since a higher

unemployment rate tends to decrease the rate ofwage increases as the demand of goods and services decreases and thus there is no

pressure on price.

Notice that both equations are required to determine the price and wage inflations. The variables p and w are therefore

endogenous variables. Theunemployment rate andmoney supply are determined outside of the systemof equations and therefore

exogenous.

9.2 PROBLEMS WITH OLS ESTIMATION

In this section, we will show why ordinary least squares estimation for simultaneous equations is inappropriate. Recall that a

critical assumption of OLS is that the explanatory variables are exogenous. This assumption is violated when an endogenous
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variable becomes an explanatory variable in another equation of the system. OLS estimates in this case will lead to biased and

inconsistent estimatiors. We will illustrate this by considering the first equation of the wage–price inflation system of

equations given above.

Consider the second equation in the wage–price inflation system. The expectation Eðwt«1tÞ is given by

Eðwt«1tÞ ¼ a1Eðpt«1tÞ þ a2Eðut«1tÞ þ Eð«2t«1tÞ:

Using the assumptions stated earlier, it can be shown that this simplifies to

Eðwt«1tÞ ¼ a1Eðpt«1tÞ

E pt«1tð Þ ¼
1

a1

E wt«1tð Þ:

Taking the expectation Eðpt«1tÞ and substituting the above in it, we get

1

a1

E wt«1tð Þ ¼ b1E wt«1tð Þ þ a2E mt«1tð Þ þ E «21t
� �

:

Using the earlier assumptions, we can show that

E wt«1tð Þ ¼
a1

1�a1b1

s2 6¼ 0:

Therefore, wt is endogenous with respect to «1t and the OLS assumptions are violated. Using OLS, therefore, will lead to biased

and inconsistent estimators of the parameters in the first equation.

The nature of the bias can be shown by writing down the OLS estimate expression for b1

b̂1 ¼

P

T

t¼1

ðwt�w�Þðpt� p�Þ

P

T

t¼1

ðwt�w�Þ2
:

Simplifying this, we get

b̂1 ¼ b1 þ b2

P

T

t¼1

ðwt�w�Þðmt�m�Þ

P

T

t¼1

ðwt�w�Þ2
þ

P

T

t¼1

ðwt�w�Þð«t� «�Þ

P

T

t¼1

ðwt�w�Þ2
:

Asymptotically, the second term is simply the covariance between wage and money flow and is assumed to be zero based

on the wage–price inflation structural equations. Asymptotically, the last expression gives the covariance between wage

and the disturbance of the first equation and is nonzero as shown earlier. The denominator term is the asymptotic

variance of wage. The OLS estimate is therefore biased and inconsistent with the direction of the bias depending on

Covðwt; «tÞ.
Ashenfelter et al. (2003, pp. 222–223) use the simple Keynesian model

ct ¼ b0 þ b1yt þ «t

yt ¼ ct þ it

to show the nature of the bias of the OLS estimator for b1. Here, ct is the consumption at time t, yt is the income at time t, it is

investment at time t, «t is the disturbance with zero mean and variance s2
«, and b ¼ ðb0;b1Þ are parameters to be estimated. The
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authors show that the OLS estimator of b1 is biased upwards and is given by

bias b̂1

� �

¼
s2
«

ð1�b1Þs
2
y

;

where

s2
y ¼ VarðytÞ:

9.3 STRUCTURAL AND REDUCED FORM EQUATIONS

The wage–inflation system of equations given in Section 9.1 contains two structural equations in four unknown

parameters. The basic goal of simultaneous equation modeling is to provide estimates of the parameters in the structural

equations. A natural path to estimating these parameters can be seen by first expressing the endogenous variables in the

system of equations as functions of the exogenous variables in the system. The resulting equations are called reduced form

equations.

For thewage–price inflation structural equations, the reduced form equations can be obtained by substituting the equation for

wage in the equation for price and vice-versa, the equation of price in the equation forwage. To see how the reduced formequation

for price is constructed, consider

pt ¼ b1ða1pt þ a2ut þ «2tÞ þ b2mt þ «1t

pt ¼ a1b1pt þ a2b1ut þ b1«2t þ b2mt þ «1t

pt�a1b1pt ¼ a2b1ut þ b2mt þ b1«2t þ «1t

pt ¼
a2b1

1�a1b1

ut þ
b2

1�a1b1

mt þ
b1«2t þ «1t

1�a1b1

:

Proceeding in a similar fashion, we can get the reduced form equation for wt. The reduced forms are given by

pt ¼
b2

1�a1b1

mt þ
a2b1

1�a1b1

ut þ
«1t þ b1«2t

1�a1b1

;

wt ¼
a1b2

1�a1b1

mt þ
a2

1�a1b1

ut þ
a1«1t þ «2t

1�a1b1

:

The above approach for creating the reduced form equations from the structural equations should suggest an approach to

estimating the structural equation parameters. We could, in principle, conduct an OLS on the reduced form equations and

then attempt to extract the structural equation parameters from the reduced form parameters. Another option is to first run

OLS on the reduced form equations to get the predicted values of the endogenous variables. The predicted values of the

endogenous variables can then be used in an OLS in the structural equations to estimate the parameters of interest. We

will discuss estimation techniques in the next section. For now, we will move on to the system of equations in the more

general case.

As shown inGreene (2003, p. 382), thegeneral structure of the structural equations at time twithn endogenous and kexogenous

variables can be written as

a11yt1 þ . . . þ an1ytn þ b11xt1 þ . . .þ bk1xtk ¼ «t1

a12yt1 þ . . .þ an2ytn þ b12xt1 þ . . .þ bk2xtk ¼ «t2

.

.

.

a1nyt1 þ . . .þ annytn þ b1nxt1 þ . . .þ bknxtk ¼ «tn:
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In matrix notation, the system of structural equations at time t can be written as yTt Gþ xTt B ¼ «Tt , where

yTt ¼ ½yt1; . . . ; ytn�;

G ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.
.
.
.

.
.

.
.
.
.

an1 an2 . . . ann

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;

xTt ¼ ½xt1; . . . ; xtk�;

B ¼

b11 b12 . . . b1n

b21 b22 . . . b2n

.

.

.
.
.
.

.
.

.
.
.
.

bk1 bk2 . . . bkn

2

6

6

6

6

6

6

4

3

7

7

7

7

7

7

5

;and

«Tt ¼ ½«1; . . . ; «n�:

Here, G is a n� nmatrix of coefficients for the endogenous variables, yt is a n� 1 vector of endogenous variables, B is a k � n

matrix of coefficients of the exogenous variables, xt is a k � 1vector consisting of exogenous variables, and «t is a n� 1vector of

disturbances.

Assuming that G is nonsingular, we can express the endogenous variables in reduced form as a function of the exogenous

variables and the random disturbances. The reduced form system of equations at time period t is given by (Greene, 2003, p. 384)

yTt ¼ �xTt BG
�1 þ «Tt G

�1

¼ xTt Pþ vTt ;

whereP is a k � nmatrix containing the parameters of the reduced form equations and vt contains the disturbances of the reduced

form equations

If we apply this to the wage–inflation model, we get

G ¼
1 �a1

�b1 1

" #

; yt ¼
pt

wt

" #

;

B ¼
�b2 0

0 �a2

� �

; xt ¼
mt

ut

� �

; and «t ¼
«1t

«2t

� �

.

It is easily verified that the reduced form equation of the wage–inflation model at the tth observation is given by

½ pt wt � ¼ �½mt ut �
�b2 0

0 �a2

" #

1

1�a1b1

a1

1�a1b1

b1

1�a1b1

1

1�a1b1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

þ ½ «1t «2t �

1

1�a1b1

a1

1�a1b1

b1

1�a1b1

1

1�a1b1

2

6

6

6

6

6

4

3

7

7

7

7

7

5

;

which simplifies to the reduced form equations given earlier.

9.4 THE PROBLEM OF IDENTIFICATION

In the ideal case, wewould estimate the parameters of the reduced-form equation and then use these to estimate the parameters of

the structural-form equations. In most cases, however, the reduced form estimates do not provide direct estimates of the

parameters for the structural equation. It turns out that they only provide estimates of functions of the structural equation
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parameters. The problem of identification deals with whether we can solve the reduced form equations for unique values of the

parameters of the structural equations.

To lay the groundwork for whether the structural equation parameters can be estimated, consider the wage–price inflation

system of equations. The reduced form parameters are

P11 ¼
b2

1�a1b1

;

P12 ¼
b1a2

1�a1b1

;

P21 ¼
a1b2

1�a1b1

;

P22 ¼
a2

1�a1b1

:

It should be obvious that the knowledge of the four reduced form parameters will allow us to estimate the four structural form

parameters. That is, the ratioP12=P22 givesusa2while the ratioP21=P11 givesusa1. Thevalues ofb1 andb2 canbe extracted in a

similarmanner.Here, we say that the structural equations are identified. In thewage–price inflation system,we have four reduced

form parameters and four structural parameters, and we could solve the reduced form parameter equations easily to extract the

structural equation parameters.

9.4.1 Determining if the Structural Equations are Identified

Consider the following simple two-equation model with two endogenous and two exogenous variables

y1 ¼ b0y2 þ b1x1 þ b2x2 þ «1;

y2 ¼ a0y1 þ a1x1 þ a2x2 þ «2:

It can be shown that the reduced form parameters are given by

P11 ¼
b0a1 þ b1

1�b0a0

;

P12 ¼
b0a2 þ b2

1�b0a0

;

P21 ¼
b1a0 þ a1

1�b0a0

;

P22 ¼
b2a0 þ a2

1�b0a0

:

It should be obvious that the knowledge of the four reduced form parameters will not allow us to estimate the six structural

equation parameters. However, assume that b2 is 0. In this case, we can easily show that

b0 ¼ P12=P22;

b1 ¼ P11�
P12

P22

P21:

Similarly, if we assume that a2 ¼ 0, then it can be shown that

a0 ¼ P22=P12;

a1 ¼ P21�
P22

P12

P11:
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In the first case, we say that the structural equation for y1 is identified and in the second that the structural equation for y2 is

identified.

It should therefore be clear that one approach to estimating the structural equation parameters is to put restrictions on the

structural equations. In the example used, both structural equationswere identified by eliminating the exogenous variable x2. This

methodology can be formalized.

When no restrictionswere placed on the structural parameters of the above equations, the equationswere not identified. In this

case, no exogenous variables were removed and both structural equations had one endogenous variable on the right-hand side.

When one exogenous variable was removed from the structural equations, we were able to estimate the structural equations.

In general, if we let k be the number of excluded exogenous variables in the structural equation and let m be the number of

included endogenous variables in the structural equation, then the structural equation is identified if k ¼ m. On the other hand, the

structural equation is not identified if k < m. See Ashenfelter et al. (2003, pp. 223–226) for a good discussion of this. Greene

(2003, pp. 390–392) extends this to the general case.

9.5 ESTIMATION OF SIMULTANEOUS EQUATION MODELS

The two-stage least squares method is the most commonly used method for estimating parameters in a simultaneous equation

system. The approach involves first using OLS to estimate the reduced form equations. The predicted values of the endogenous

variables are then used in an OLS regression of the identified structural form equation of interest to estimate the parameters.

Abrief description of themethod is summarized here. First, recall that each structural equation iswritten so that an endogenous

variable on the left-hand sideof the equation is expressedas a functionof endogenousvariables and the exogenousvariables on the

right-hand side of the equation. Thus, for a system with n equations, there are n endogenous variables. If we let yj represent the

endogenous variable for the j th equation, then we can write the structural equation as

yj ¼ Y*
j aj þ Xjbj þ «j j ¼ 1; . . . ; n:

Here,Y*
j is aT � njmatrix of nj included endogenous variables on the right hand,aj is a nj � 1vector of coefficients forY*

j ,Xj is a

T � k*j matrix of included exogenous variables,bj is the kj � 1vector of coefficients forXj; and «j is the T � 1 disturbance vector.

Let, Wj ¼ ½Y*
j Xj � and uj ¼ ½aj bj �, then the jth equation can be written as

yj ¼ Wjuj þ «j j ¼ 1; . . . ; n:

A naı̈ve approach to analysis is to conduct an OLS of yj on Wj to get

ûj ¼ ðWT
j WjÞ

�1
WT

j yj:

As shown earlier, OLS estimates are biased and inconsistent. Greene (2003, p. 396) gives an expression of theOLS estimates and

discusses the bias in the general setting.

The 2SLSmethod involves first conducting anOLS of the included endogenous variablesY*
j on all the exogenous variables in

the system of equations. If we denote the predicted values of Y*
j as Ŷ

*
j , then the 2SLS estimator is given by

û;IV ; j ¼ ðŴT
j ŴjÞ

�1
ŴT

j yj;

where Ŵj ¼ bY^ *j Xj c . The asymptotic variance–covariance matrix for the 2SLS estimator is given by

Varðu^IV ; jÞ ¼ ŝjbŴ
T
j Ŵjc;

where

ŝj ¼
ðyj�WjûIV ; jÞ

Tðyj�WjûIV ; jÞ

T
:

See Greene (2003, pp. 398–399) for details.
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We will illustrate computing the 2SLS estimators for a labor–wage equation. Ashenfelter et al. (2003, p. 233) gives a

simultaneous system consisting of two equations, one for labor and one for wages, for the US agricultural labor market. The

authors provide the equations and a description of the variables list that is summarized below.

lnðLiÞ ¼ b0 þ b1lnðWiÞ þ b2lnðLandiÞ þ b3lnðREiÞ þ b4lnðOthexpiÞ þ b5lnðSchiÞ þ «1

lnðWiÞ ¼ a0 þ a1lnðLiÞ þ a2lnðSchiÞ þ a3lnðOthwagiÞ þ «2:

Here, L ¼ farm labor by state as measured by total number of worked days,W=wages per hour of farm workers, RE = research

anddevelopment expenses,Land= value of farmlandcapital,Othexp= operating expenses besides labor,Sch=median number of

years of formal schoolingofmales, andOthwag=weightedaverageofwages for nonfarmworkers.Note that thevariablesLandW

are endogenous while the other variables are exogenous. It is easy to show that the labor equation is exactly identified while the

wage equation is overidentified.

The following statements can be used to conduct an OLS regression on the labor equation.

data SE;

set SE;

L=log(labor);

W=log(wage);

L_re=Log(RE);

L_Land=log(land);

L_Othexp=log(othexp);

L_Sch=log(sch);

L_Othwag=Log(othwag);

run;

proc reg data=SE;

model L=W L_Land L_re L_Othexp L_Sch;

run;

Output 9.1 contains the analysis of the data using standardOLS. Recall that OLS gives biased and inconsistent estimators of the

structural model parameters. Notice that the parameters for wages, value of land, R&D expenditure, and other nonlabor expense

are highly significant. The coefficient for schooling is not significant. The sign for thewages coefficient makes intuitive sense. As

wages increase, employers cut back on labor and therefore the number of labor days should decrease.

The following statements can be used to estimate the labor equation by the 2SLS method. The analysis results are given in

Output 9.2. There are fourmain statements in the Proc Syslin procedure as it relates to the labor equation. First, the option 2SLS is

used to request the two-stage instrumental variable estimator. Second, the endogenous statement lists out the two endogenous

variables in the system. Next, we list out the instruments that will be used in the estimation. This is followed by the model

statement.

proc syslin data=SE 2SLS;

endogenous L W;

instruments L_land L_RE L_Othexp L_Sch L_Othwag;

Labor: model L = W L_Land L_RE L_Othexp L_Sch;

run;

The analysis indicates that the global F test for the model is significant (p value < 0:001). The value of the statistic is very
close to the one obtained byOLS. Aswe saw in theOLS output, schooling is not significant whereas all the othermodel variables

are significant. However, the sign associated with schooling is positive compared to negative in the OLSmodel. The sign for the

intercept is also different while the other variables have the same sign as in the OLS model. The values of the coefficient of

determination and the root MSE are very close to what was obtained from OLS.

Since the model used is a log–log model, we can interpret the coefficients as follows (taking research and development as an

example): If the research and development expense increases by 10%, then farm labor increases by 0:10� 0:47 ¼ 0:047 ¼ 4:7%
days.

The2SLSestimator isbasedon theassumptionofhomoscedasticdisturbances.White�s estimator for thevariancecovariancecan

beused if this assumption isviolated.The resultingestimator is called thegeneralizedmethodofmoments (GMM)estimator.To see
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The REG Procedure
Model: MODEL1

Dependent Variable: L

Number of Observations Read 39

Number of Observations Used 39

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 5 11.01673 2.20335 45.12 <0.0001

Error 33 1.61160 0.04884

Corrected Total 38 12.62833

Root MSE 0.22099 R-Square 0.8724

Dependent Mean 10.29862 Adj R-Sq 0.8530

Coeff Var 2.14582

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 0.87573 1.94350 0.45 0.6552

W 1 -1.10577 0.28931 -3.82 0.0006

L_Land 1 0.31180 0.08373 3.72 0.0007

L_re 1 0.44460 0.11402 3.90 0.0004

L_Othexp 1 0.26454 0.11278 2.35 0.0252

L_Sch 1 -0.26232 0.60820 -0.43 0.6691

OUTPUT 9.1. OLS analysis of the labor equation.

The SYSLIN Procedure
Two-Stage Least Squares Estimation

Model LABOR

Dependent Variable L

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 5 10.59918 2.119837 41.63 <0.0001

Error 33 1.680444 0.050923

Corrected Total 38 12.62833

Root MSE 0.22566 R-Square 0.86315

Dependent Mean 10.29862 Adj R-Sq 0.84242

Coeff Var 2.19117

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 -0.85913 3.306459 -0.26 0.7966

W 1 -1.44928 0.601228 -2.41 0.0217

L_Land 1 0.328677 0.089282 3.68 0.0008

L_re 1 0.468702 0.122089 3.84 0.0005

L_Othexp 1 0.249787 0.117341 2.13 0.0408

L_Sch 1 0.342098 1.111155 0.31 0.7601

OUTPUT 9.2. 2SLS analysis of the labor equation.
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the construction of this estimator, first note that the 2SLS estimator can be written as (Greene, 2003, p. 399)

û IV; j ¼ ½ðWT
j XÞðX

TXÞ�1ðXTWjÞ�
�1ðWT

j XÞðX
TXÞ�1

XTyj;

where ðXTXÞ is called the weight matrix. Replacing this with White�s estimator

S0; j ¼
X

T

t¼1

xtx
T
t ðyjt�wT

jt û IV; jÞ
2

The MODEL Procedure

Model Summary

Model Variables 6

Endogenous 1

Exogenous 4

Parameters 6

Equations 1

Number of Statements 1

Model Variables L W L_Land L_re L_Othexp L_Sch

Parameters b0 b1 b2 b3 b4 b5

Equations L

The Equation to Estimate is

L = F(b0(1), b1(W), b2(L_Land), b3(L_re), b4(L_Othexp), b5(L_Sch))

Instruments 1 L_Land L_re L_Othexp L_Sch L_Othwag

NOTE: At GMM Iteration 0 convergence assumed because OBJECTIVE=1.095301E-24 is almost zero (<1E-12).

The MODEL Procedure
GMM Estimation Summary

Data Set
Options

DATA= SE

Minimization Summary

Parameters Estimated 6

Kernel Used PARZEN

l(n) 2.080717

Method Gauss

Iterations 0

Final Convergence
Criteria

R 1

PPC 5.23E-12

RPC .

Object .

Trace(S) 0.050923

Objective Value 1.1E-24

Observations
Processed

Read 39

Solved 39

OUTPUT 9.3. GMM estimators for the labor equation.
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gives the GMM estimator (Greene, 2003, p. 401). Notice the similarity in the construction ofWhite�s estimator to the one used in

Chapter5.Also,notice theGMMestimator is constructed in three steps.First, a 2SLSisused toget û IV; j. In the second step,White�s

estimator is calculated. In the third step, this is used as a weight matrix to calculate the robust 2SLS estimator.

Wewill illustrate this method on the labor equation.Wewill use ProcModel to estimate the GMM estimator since Proc Syslin

does not have the option to perform aGMManalysis. The followingSAScode can be used. The analysis results are given inOutput

9.3. The procedure statements start off with specifying the model. Note the coefficient names are not unique and can be changed.

However, the variable names have to be identical to the ones used in the data set. Next, we specify the endogenous and exogenous

variables. These are then followed by specifying the instrument variables and requesting a model using GMM estimation. Proc

Model can fit the OLS and the 2SLS models. We used Proc Reg and Proc Syslin to minimize the output that is produced by using

Proc Model. Notice that the parameter estimates and the model diagnostic statistics are very similar to the ones from 2SLS

estimation.

Proc Model

L=b0+b1*W+b2*L_Land+b3*L_RE+b4*L_Othexp+b5*L_Sch;

Endogenous W;

Exogenous L_Land L_RE L_Othexp L_Sch;

Instruments L_Land L_RE L_Othexp L_Sch L_OTHWAG;

Fit L/GMM;

Run;

9.6 HAUSMAN’S SPECIFICATION TEST

Hausman�s specification test can be used to test whether an included exogenous variable in a simultaneous equation is

endogenous. As with all specification tests by Hausman we used in Chapters 4 and 7, this test compares two estimators, both of

which are consistent under the null hypothesis of exogeneity but only one is consistent under alternative hypothesis of

endogeneity.

Details of the Hausman�s specification test as it applies to simultaneous equation models can be found in Greene (2003,

pp. 413–415). The analysis can easily be done in SAS by using the ProcModel procedure. The following statements (labor–wage

The MODEL Procedure

Nonlinear GMM Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj
R-Sq

L 6 33 1.6804 0.0509 0.2257 0.8669 0.8468

Nonlinear GMM Parameter Estimates

Parameter Estimate

Approx
Std
Err t Value

Approx
Pr > |t|

b0 -0.85913 3.1700 -0.27 0.7881

b1 -1.44928 0.5905 -2.45 0.0196

b2 0.328677 0.0904 3.64 0.0009

b3 0.468702 0.1092 4.29 0.0001

b4 0.249787 0.1332 1.88 0.0696

b5 0.342098 1.2268 0.28 0.7821

Number of
Observations Statistics for System

Used 39 Objective 1.095E-24

Missing 0 Objective*N 4.272E-23

OUTPUT 9.3. (Continued)
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data being used) can be used to conduct the Hausman�s specification test comparing the OLS estimates with the 2SLS estimates.

Wedidnot include theoutput for the test as theOLSand2SLSoutputswere alreadyprovided.Thepvalue for the test is around0.90

and indicates that there is no gain in using the 2SLS model over the OLS model.

proc model data=SE;

L = b0+b1*W+b2*L_Land+b3*L_RE+b4*L_Othexp+b5*L_Sch;

W = a0+a1*L+a2*L_Sch+a3*L_Othwag;

ENDOGENOUS L W;

EXOGENOUS L_land L_RE L_Othexp L_Sch L_Othwag;

fit L/ols 2sls hausman;;

instruments L_land L_RE L_Othexp L_Sch L_Othwag;

run;
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10
DISCRETE CHOICE MODELS

10.1 INTRODUCTION

The preceding chapters were focused on discussion of modeling techniques where the responses were continuous. In practice,

we often encounter responses that are discrete. For example, direct marketing companies often model the response behavior of

consumers receiving an offer to buy their products. Here, y, the response variable, equals 1 if the consumer responds to the mail

offer, and it equals 0 otherwise. Direct marketing companies also build conversion models where again the response variable

equals 1 if the consumer’s inquiry about a mail offer results in a sale; the response variable equals 0 otherwise. Another example

involves attritionmodels built by insurance companies that predict the likelihood that an existing consumer will cancel his or her

policy to take up anewpolicywith a competitor.Here, the responsevariable equals 1 if the consumer cancels a policy, and it equals

0 otherwise. Attrition models can also be built by using duration models but the common approach in industry is to treat the

attrition response as 0 or 1.Acommon theme in each example is the binary nature of the responsevariable.Of course, the response

variable canassumemore than twodiscretevalues.This chapter dealswith estimatingparameters ofmodelswhere thedistribution

of the response variable is not continuous but discrete. We will focus our attention on logistic regression with dichotomous

responses, and Poisson regression.

By definition, the set of plausible values of a discrete random variable can be placed in a 1:1 correspondence with a finite or a

countable infinite set. Some examples of discrete random variables are as follows:

1. The number of customers walking into a bank between 12 noon and 1 P. M. Here, the response variable can assume values

0, 1, 2, . . ..

2. The response of a consumer to amailed offer for a newcredit card or auto insurance.Here, the responsevariable can assume

one of two possible values: 1, response; 0, no response.

3. Theviews on abortion of an individual can bemeasured as 1, strongly agree; 2, agree; 3, neutral; 4, disagree; and 5, strongly

disagree. Here, the response variable is ordinal as the values have a natural rank.

4. Themode of transportation chosen by a commuter. The choices can be classified as 1, drive; 2, ride-share; 3, bus; and so on.

Here, the values cannot be ordered, and therefore the random variable is called a discrete nominal variable.

5. A consumer’s choice of a fast-food restaurant among several available brand names. This is similar to the example

presented in (4).
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10.2 BINARY RESPONSE MODELS

In this section, wewill discuss techniques formodeling a response variablewhere there are two possible outcomes (0 and 1) and a

set of explanatory variables x, which is assumed to influence the response. To illustrate this, consider a response model where a

person either responds to an offer in the mail (y¼ 1) or does not (y¼ 0). Furthermore, assume that a set of factors such as age,

occupation,marital status, number of kids in the household, and so on, explains his or her decision and that are captured in avector

of explanatory variables x. First note that the response variable is a Bernoulli random variable with mean

EðyjxÞ ¼ 1� Pðy ¼ 1jxÞ þ 0� Pðy ¼ 0jxÞ ¼ Pðy ¼ 1jxÞ ¼ PðxÞ;

where the probability function PðxÞ denotes the dependence of the response variable on x. Also note that

VarðyjxÞ ¼ Eðy2jxÞ�½EðyjxÞ�2 ¼ PðxÞð1�PðxÞÞ:

Wewill denote the probability function as Pðx;bÞ, where bmeasure the impact of x on the probability of response Pðy ¼ :jxÞ.
Using the change in notation, we can write

Pðy ¼ 1jxÞ ¼ Pðx;bÞ;

Pðy ¼ 0jxÞ ¼ 1�Pðx;bÞ:

Our objective is to estimate b and given that EðyjxÞ ¼ Pðx;b ), a naı̈ve approach to estimation of the parameters may start off by

utilizing the traditional OLS method on the linear probability model

yi ¼ xTb þ «i; i ¼ 1; . . . ; n:

However, as the next section illustrates, there are fundamental problems with OLS estimation when the response variable is

dichotomous.

10.2.1 Shortcomings of the OLS Model

There are threemain reasons why the OLSmodel should not be used tomodel discrete choice data (Agresti, 1990; Greene 2003).

They are

1. Nonnormal Disturbances:Notice that the response variable yi is binary and is either 0 or 1. Therefore, the disturbance «i is

also binary and has only two possible outcomes: «i ¼ 1�xTi b with probability Pðxi;bÞ and «i ¼ �xTi b with probability

1�Pðxi;bÞ. Therefore, the error terms are not normally distributed. This poses problems in any inference on the model

parameters (hypothesis tests, confidence intervals, etc.).

2. Heteroscedastic error: The linear probability model violates the assumption of homoscedastic disturbances. It is easy to

see this by realizing that

Varð«ijxiÞ ¼ VarðyijxiÞ ¼ Pðxi;bÞð1�Pðxi;bÞÞ:

Therefore, the variance of the disturbance depends onEðyijxiÞ ¼ Pðxi;bÞ and as themean changes so does the variance.

Therefore, the homoscedasticity assumption is violated.

3. The conditional expectation, EðyijxiÞ ¼ Pðxi;bÞ, is a probability and it must be bounded by 0 and 1. In the linear

probability model EðyijxiÞ ¼ xTi b, which is defined over the range ð�1;1Þ and therefore does not guarantee that the

conditional expectation will be bounded.

An alternative to the OLS model is to use weighted least squares (WLS) to account for the heteroscedasticity, with weights

defined aswi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxTi b̂Þ � ð1�xTi b̂Þ
q

with b̂ calculated fromOLS. This is a two-step process where in step 1, OLSwould be used

to get an estimate ofb. The predicted value for yi given by the first term under the square root inwiwould then be used to calculate
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theweights for each observation. Theweights would then be used in step 2 to estimateb. TheWLSmodel thus becomes (Chapter

5, Myers, 1990, p. 316)

yi

wi

¼
xTi
wi

� �

b þ
«i

wi

or y*i ¼ x*Ti b þ «*i :

The WLS would ensure homoscedasticity but would not ensure that the conditional mean xTi b is bounded by [0,1].

Estimation of b involving more efficient techniques exist and will now be discussed. Specifically, we will transform the

conditional mean by assuming either the probit or the logit distribution of the probability function Pðx;bÞ.

10.2.2 The Probit and Logit Models

As shown inAgresti (1990), by assuming a continuous distribution forPðx;bÞ, the conditional expectation xTi b can be bounded in
the interval ½0; 1�. There are two distributions that are commonly used: the normal and the logistic distribution.

If Pðx;bÞ is taken to be the cumulative standard normal distribution, then the resulting model is a probit model. That is,

Pðx;bÞ ¼ FðxTbÞ;

where FðtÞ ¼
Ð

t

�1

f ðsÞdswith f ðsÞ being the probability density function of the standard normal distribution.

If

Pðx;bÞ ¼
ex

Tb

1 þ ex
Tb

¼ GðxTbÞ

then we have the logit model where GðxÞ is the logistic cumulative function given by

GðxÞ ¼
expðxÞ

1 þ expðxÞ
¼

1

1 þ expð�xÞ
:

It is trivial to see that in both cases,Pðx;bÞ is bounded in the interval [0,1]. Agresti (1990, p. 105) discusses the complementary

log–logmodel as another alternative tomodeling binary responsevariables.However, the probit and logit distributions are the two

most commonly used to model binary response variables and we therefore focus on estimation techniques involving these two

distributions.

Notice that estimation usingmaximum likelihoodmethods will have to be used since the parameterb is now no longer a linear

function of Pðx;bÞ. The standard approach is to use the OLS estimates as the initial values for the MLE and then to iterate until

convergence.

10.2.3 Interpretation of Parameters

Asdiscussed inWooldridge (2002, p. 458), proper interpretationof themodel parameters for theProbit andLogitmodels is crucial

for successful implementation of the model. To see this, consider the formulation of the probit model where Pðx;bÞ ¼ FðxTbÞ
where FðxTbÞ is the cumulative normal distribution. Taking derivatives of this with respect to x we get (Greene, 2003, p. 667)

qPðx;bÞ

qx
¼

qFðxTbÞ

qðxTbÞ
b ¼ f ðxTbÞb

where f ð*Þ is the normal probability density function. Therefore, themarginal effects depend on x via the density function. It can

be shown that the derivative of the conditional expectation for the logit model is given by

qPðx;bÞ

qx
¼ GðxTbÞ½1�GðxTbÞ�b:
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Thus, the interpretation ofbmust be based on calculations done at a prespecified value of the explanatory variables x. A common

approach is to interpret themodel parameters at themean, �x. If a variable in x contains a dummy variable, then themarginal effect

of the variable can be computed as (Greene, 2003, p. 668; Wooldridge, 2002, p. 459)

Pðy ¼ 1j�xð�dÞ; xd ¼ 1Þ�Pðy ¼ 0j�xð�dÞ; xd ¼ 0Þ

where xd denotes that the explanatory variables contains a dummy variable and �xðdÞ is themeanvector of the other variables in the

model.

10.2.4 Estimation and Inference

Themethod ofmaximum likelihood is used to estimate the parameters because both the Probit and the Logitmodels are nonlinear

inb. To start our discussion ofmodel estimation, assume that we have an independent random sample ðyi; xiÞ;where i ¼ 1; . . . ; n

from the Bernoulli distribution with probability Pðxi;bÞ. Recall that the probability density function of a Bernoulli random

variable, x, is given by f ðxÞ ¼ pxð1�pÞ1�x
, where x ¼ 0; 1, and p is the probability of success. Collecting all n observations and

assuming independence gives the likelihood function

Lðbjy;XÞ ¼
Y

n

i¼1

Prðyijxi;bÞ;

¼
Y

n

i¼1

Prðyi ¼ 0jxi;bÞ
1�yiPrðyi ¼ 1jxi;bÞ

yi
;

¼
Y

n

i¼1

½1�Pðxi;bÞ�
1�yi ½Pðxi;bÞ�

yi
:

Taking the log of L ¼ Lðbjy;XÞ yields

lnðLÞ ¼
X

n

i¼1

fyi ln Pðxi;bÞ þ ð1�yiÞ ln ½1�Pðxi;bÞ�g:

It can easily be shown that the log-likelihoods for the probit and logit models are as follows:

lnðLÞ ¼
X

n

i¼1

fyi lnFðx
T
i bÞ þ ð1�yiÞ ln ½1�FðxTi bÞ�g for the Probit model; and

lnðLÞ ¼
X

n

i¼1

fyi lnGðx
T
i bÞ þ ð1�yiÞ ln ½1�GðxTi bÞ�g for the Logit model:

The maximum likelihood parameters are found by taking the derivative of the log-likelihood equations, setting them to

zero and then solving for the unknown parameters. The first-order conditions are given by

LðbÞ ¼
X

n

i¼1

yipi

Pi

þ ð1�yiÞ
�pi

1�Pi

� �

xi:

where pi is the derivative of Pi with respect to xi.

Extending this to the Probit model, we get

LðbÞ ¼
X

n

i¼1

yi �FðxTi bÞ

FðxTi bÞ � 1�FðxTi bÞ½ �
fðxTi bÞxi;
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whereas for the Logit model we have

LðbÞ ¼
X

n

i¼1

yi �
exp xTi b

� �

1 þ exp xTi bð Þ

2

4

3

5xi

As shown in Greene (2003, p. 671), it can be shown that the first-order condition for the Logit model can be written as

LðbÞ ¼
X

n

i¼1

ðyi�GiÞxi ¼ 0:

The Hessian (second-order condition) for the Logit model is given by

H ¼
q ln L

qbqbT
¼ �

X

n

i¼1

Gið1�GiÞxi x
T
i :

The Newton–Raphson method is used to obtain a solution for these likelihood equations. The Hessian calculated in the final

iteration is the estimated covariance matrix of the coefficient vector.

10.2.5 The Newton–Raphson Method for the Logit Model

TheNewton–Raphson algorithm to obtain a solution for the likelihood equation of the Logitmodel can be summarized as follows

(Agresti, 1990):

1. Start with an initial set of estimates, b̂t¼0. Most often, the starting values are simply the OLS estimates. Here, t ¼ 0 simply

denotes the starting point.

2. Calculate the estimated value of the coefficient vector at time t þ 1 as given by b̂t þ 1 ¼ b̂t�Ĥ�1
t ĝt, where ĝt is the gradient

vector defined as ĝt ¼ yi�Ĝt and Ht is the Hessian matrix. Here, Ĝt is the predicted probability of time t.

3. Iterate until the convergence criteria is reached. That is, until the difference of consecutive b̂ values are insignificant.

We will now illustrate the Newton–Raphson algorithm to calculate the parameters (assuming a Logit model) for an

unemployment data set arising from a sample of 4877 blue collar workers who lost their jobs in the United States between

1982 and 1991 (McCall, 1995). All individuals in this study is assumed to have applied for unemployment benefits. Note that this

datawas also analyzed byVerbeek (2004, pp. 197–199). A description of the variableswas given by the author and is summarized

here. The variables in the data are as follows:

Y is the response variable and takes a value of 1 if the unemployed worker received unemployment benefits.

Age is the age of the subject.

Age2 is the square of the Age variable.

Tenure is the years of tenure at the last job.

Slack is an indicator variable that equals 1 if the subject was fired because of poor performance.

Abol is an indicator variable that equals 1 if the subject’s position was eliminated.

Seasonal is an indicator variable that equals 1 if the subject was a temporary worker.

NWHITE is an indicator variable that equals 1 if the subject’s race is nonwhite.

School12 is an indicator variable that equals 1 if the subject has more than 12 years of education.

Male is an indicator variable that equals 1 if the subject is a male.

SMSA is an indicator variable that equals 1 if the subject lives in a SMSA.

Married is an indicator variable that equals 1 if the subject is married.

DKIDS is an indicator variable that equals 1 if the subject has kids.

DYKIDS is an indicator variable that equals 1 if the subject has young kids.

YRDISP records the year when the job was lost. Here, 1982¼ 1 and 1991¼ 10.

BINARY RESPONSE MODELS 157



RR is the replacement rate that is the ratio of the benefits received versus the last recorded weekly earnings.

RR2 is the square of RR.

Head is an indicator variable that equals 1 if the subject is the head of a household.

StateUR is the state unemployment rate.

StateMB is the maximum benefits available for a given state.

The following Proc IML code can be used.

* Read the data file and scale age squared. ;

libname in "C:\Temp";

data test;

set in.unemp;

age2=age2/10;

run;

proc iml;

* Read the data into matrices and calculate some constants. ;

use test;

read all var {’rr’ ’rr2’ ’age’ ’age2’ ’tenure’

’slack’ ’abol’ ’seasonal’ ’head’ ’married’ ’dkids’

’dykids’ ’smsa’ ’nwhite’ ’yrdispl’ ’school12’ ’male’

’stateur’ ’statemb’} into X;

read all var {’y’} into Y;

n=nrow(X);

X=J(n,1,1)||X;

c=ncol(X);

* Calculate an initial estimate of the parameter vector. ;

Beta=inv(X‘*X)*X‘*y;

* Start the Newton-Raphson procedure. ;

Col_One=J(4877,1,1);

do index=1 to 5;

PI=exp(X*Beta)/(1+exp(X*Beta));

Temp_PI=Col_One-PI;

Diag_PI=Diag(PI#Temp_PI);

COV=inv(X‘*Diag_PI*X);

Beta_New=Beta+COV*X‘*(Y-PI);

DIFF=sum(abs(BETA_NEW-BETA));

print DIFF;

if DIFF<0.00001 then

do;

print ’The estimates of the coefficients are:’;

print Beta_New;

SE=sqrt(vecdiag(COV));

print ’The estimated standard errors are:’;

print SE;

stop;

end;

beta=beta_new;

end;

run;

The analysis results are given inOutput 10.1. Notice that the test statistic value and the p values were not computed here. They

can be easily computed by incorporating additional statements in the code provided. Wewill discuss the methodology when we

interpret the output from Proc Logistic.
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The following statements can be used to fit an OLS model. The analysis results are given in Output 10.2. Note that this is the

incorrectmethod of analyzing data andwe include it here simply for comparing the results to the results obtained by using logistic

regression.

proc reg data=test;

model y=rr rr2 age age2 tenure slack abol

seasonal head married dkids dykids smsa nwhite

yrdispl school12 male stateur statemb;

run;

The following statements canbe used to fit aLogitmodel to theunemployment data.Note that themodel statement contains the

option “event¼1” that forces the procedure tomodel the probability of a response. The option “descending” in the first line can be

used to achieve the same results. The analysis results are given in Output 10.3.

proc logistic data=test;

model y(event=’1’)=rr rr2 age age2 tenure slack abol

seasonal head married dkids dykids smsa nwhite

yrdispl school12 male stateur statemb;

run;

We will now provide details about the output produced by Proc Logistic.

The first table gives basic model information that includes the names of the data set and the response variable, the number of

levels of the response variable (here two since the response is binary), and type of model (logit), and the optimization technique

used by the program (Fisher’s scoring).

The next three tables give information on the number of observations in the data set and the number of observations that were

used to estimate the model. These numbers will be different if there are missing observations in the data set. The next table gives

the response profile. There are 1542 nonresponders and 3335 responders. Therefore, out of the total number of individuals in the

study, 3335 unemployed workers applied for and received unemployment insurance while the remaining 1542 applied for

unemployment insurance but did not receive insurance.

The parameter estimates and their standard errors are:

OUTPUT_TABLE

BETA SE

INTERCEPT –2.8005 0.6042

RR 3.0681 1.8682

RR2 –4.8906 2.3335

AGE 0.0677 0.0239

AGE2 –0.0597 0.0304

TENURE 0.0312 0.0066

SLACK 0.6248 0.0706

ABOL –0.0362 0.1178

SEASONAL 0.2709 0.1712

HEAD –0.2107 0.0812

MARRIED 0.2423 0.0794

DKIDS –0.1579 0.0862

DYKIDS 0.2059 0.0975

SMSA –0.1704 0.0698

NWHITE 0.0741 0.0930

YRDISPL –0.0637 0.0150

SCHOOL12 –0.0653 0.0824

MALE –0.1798 0.0875

STATEUR 0.0956 0.0159

STATEMB 0.0060 0.0010

OUTPUT 10.1. Proc IML output for the logistic model of unemployment data.
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The Model Fit Statistics table gives three statistics that can be used to assess the fit of the model. The first column gives the

model fit statistics for themodelwith only the intercept termwhile the secondcolumnadjusts thevalues to account for the addition

of explanatory variables to the model. Smaller values of all three statistics are desirable.

The next table contains the chi-square test statistic value and the corresponding p value for the Global Null Hypothesis that

none of the coefficients in themodel are significant versus the alternative that at least one of the coefficients is significant. The chi-

squarevalue for the likelihood ratio is simply the difference between the log-likelihoodvalues from theprevious table. That is, it is

computed by taking the difference 6086.056� 5746.393¼ 339.663. The p value indicates that the overall model is highly

significant.

The REG Procedure
Model: MODEL1

Dependent Variable: y

Number of Observations Read 4877

Number of Observations Used 4877

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 19 70.55319 3.71333 18.33 <0.0001

Error 4857 983.90037 0.20257

Corrected Total 4876 1054.45356

Root MSE 0.45008 R-Square 0.0669

Dependent Mean 0.68382 Adj R-Sq 0.0633

Coeff Var 65.81857

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 –0.07687 0.12206 –0.63 0.5289

rr 1 0.62886 0.38421 1.64 0.1017

rr2 1 –1.01906 0.48095 –2.12 0.0342

age 1 0.01575 0.00478 3.29 0.0010

age2 1 –0.01459 0.00602 –2.43 0.0153

tenure 1 0.00565 0.00122 4.65 <0.0001

slack 1 0.12813 0.01422 9.01 <0.0001

abol 1 –0.00652 0.02483 –0.26 0.7928

seasonal 1 0.05787 0.03580 1.62 0.1060

head 1 –0.04375 0.01664 –2.63 0.0086

married 1 0.04860 0.01613 3.01 0.0026

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

dkids 1 –0.03051 0.01743 –1.75 0.0802

dykids 1 0.04291 0.01976 2.17 0.0299

smsa 1 –0.03520 0.01401 –2.51 0.0121

nwhite 1 0.01659 0.01871 0.89 0.3753

yrdispl 1 –0.01331 0.00307 –4.34 <0.0001

school12 1 –0.01404 0.01684 –0.83 0.4047

male 1 –0.03632 0.01781 –2.04 0.0415

stateur 1 0.01815 0.00308 5.88 <0.0001

statemb 1 0.00124 0.00020393 6.08 <0.0001

OUTPUT 10.2. Proc Reg output for the linear model of the unemployment data.
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The next table gives the parameter estimates, their standard errors along with the individual chi-square values and the

associatedpvalue.TheWald’s chi-squared test statistic canbecomputedby taking the squareof the ratio of theparameter estimate

to its standard error. For example, the Wald’s chi-squared value for the age variable is given by

0:0677

0:0239

� �2

¼ 8:02:

This can easily be programmed into Proc IML and then the PROBCHI function can be used to calculate the p values.

There are several variables that are significant in the model. As an example of how to interpret the variables consider the two

statevariables and the slackvariable.All three are highly significant. The significance of the statevariables indicate that thehigher

the state’s unemployment rate and the higher the benefits allowed the more likely it is that an employed person will receive

unemployment benefits. The variable slack indicates that a person whose job was terminated because of poor performance will

have a higher likelihood of receiving employment benefits.

The next table gives the odds ratio estimates alongwith the corresponding 95% confidence intervals. The odds ratios are calcu-

latedbysimply exponentiating theparameter estimates.For instance, theodds ratio for thevariable slack is exp ð0:6248Þ ¼ 1:868.

This implies that a personwhowas fired for poor performance is 1.868 timesmore likely to receive unemployment benefits than a

personwho lost his or her job for some other reason (all other variables being held constant). The odds ratio formales indicates that

theyare0.893timesaslikelytogetunemploymentinsurancebenefits thanfemales.That is, their likelihoodofgettingunemployment

insurance benefits is lower than that of females.

The last table gives association of predicted probabilities and the observed responses. See the SAS 9.2 User’s guide for a

description of these statistics.

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.TEST

Response Variable y

Number of Response Levels 2

Model binary logit

Optimization Technique Fisher's scoring

Number of Observations Read 4877

Number of Observations Used 4877

Response Profile

Ordered
Value y

Total
Frequency

1 0 1542

2 1 3335

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 6088.056 5786.393

SC 6094.548 5916.239

-2 Log L 6086.056 5746.393

OUTPUT 10.3. Logit model output for the unemployment data.
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The following statements can be used to fit a binary Probit model. The analysis results are given in Output 10.4.

proc logistic data=test;

model y(event=’1’)=rr rr2 age age2 tenure slack abol

seasonal head married dkids dykids smsa nwhite

yrdispl school12 male stateur statemb/l=Probit;

run;

Notice that the model statistics from the first few tables are very similar between the logit and probit models. The model

parameters also have consistent signs. However, the magnitude of the parameter estimates are different.

The parameter estimates from the Probit model can be used to calculate the predicted probability that a person will receive

unemployment insurance. For a given individual, the predicted probability of receiving unemployment insurance can be

calculated by using

FðxTi b̂Þ ¼ Fð�1:6999 þ 1:8633rr�2:9801rr2 þ � � � þ 0:00364 statembÞ;

whereFðÞ is the cumulativenormaldistribution.Thecoefficients cannot be interpreted as the impact onpredictedprobability—all

we can say is whether the predicted probabilities will increase or decrease based on the signs of the coefficients.

SAS can be used to generate a table of predicted probabilities by using the statement

output out ¼ file-name predicted ¼ y_hat;

Here file-name is the temporary SAS dataset while y_hat is the variable name which will hold the predicted probabilities.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 339.6629 19 <0.0001

Score 326.3187 19 <0.0001

Wald 305.0800 19 <0.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 –2.8005 0.6042 21.4860 <0.0001

rr 1 3.0681 1.8682 2.6969 0.1005

rr2 1 –4.8906 2.3335 4.3924 0.0361

age 1 0.0677 0.0239 8.0169 0.0046

age2 1 –0.0597 0.0304 3.8585 0.0495

tenure 1 0.0312 0.00664 22.1189 <0.0001

slack 1 0.6248 0.0706 78.2397 <0.0001

abol 1 –0.0362 0.1178 0.0943 0.7588

seasonal 1 0.2709 0.1712 2.5042 0.1135

head 1 –0.2107 0.0812 6.7276 0.0095

married 1 0.2423 0.0794 9.3075 0.0023

dkids 1 –0.1579 0.0862 3.3552 0.0670

dykids 1 0.2059 0.0975 4.4601 0.0347

smsa 1 –0.1704 0.0698 5.9598 0.0146

nwhite 1 0.0741 0.0930 0.6349 0.4255

yrdispl 1 –0.0637 0.0150 18.0409 <0.0001

school12 1 –0.0653 0.0824 0.6270 0.4285

male 1 –0.1798 0.0875 4.2204 0.0399

stateur 1 0.0956 0.0159 36.1127 <0.0001

statemb 1 0.00603 0.00101 35.6782 <0.0001

OUTPUT 10.3. (Continued)
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10.2.6 Comparison of Binary Response Models for the Unemployment Data

Themarginal effects for theOLS, Probit, andLogitmodelsweregiven inSection 10.2.3.Consider comparing themarginal effects

from the three models on the unemployment data. We will calculate the marginal effect of getting unemployment benefits for a

male, with more than 12 years of education. Both the variables Male and the one recording more than 12 years of education are

binary variables with 1 for both implying that the person is a male with over 12 years of education. Table 10.1 summarizes the

calculations. Notice that the conditional probability for the OLS is negative, which points to one of the issues with the linear

probability model that was discussed earlier.

10.3 POISSON REGRESSION

Often, we are interested in modeling responses that count some phenomenon of interest. For example, we may be interested in

modeling the number of patents filed by a firm with respect to its R&D investment (Verbeek, 2004, p. 215). As discussed by the

Odds Ratio Estimates

Effect
Point

Estimate
95% Wald

Confidence Limits

rr 21.500 0.552 836.911

rr2 0.008 <0.001 0.728

age 1.070 1.021 1.121

age2 0.942 0.888 1.000

tenure 1.032 1.018 1.045

slack 1.868 1.626 2.145

abol 0.964 0.766 1.215

seasonal 1.311 0.937 1.834

head 0.810 0.691 0.950

married 1.274 1.090 1.489

dkids 0.854 0.721 1.011

dykids 1.229 1.015 1.487

smsa 0.843 0.736 0.967

nwhite 1.077 0.898 1.292

yrdispl 0.938 0.911 0.966

school12 0.937 0.797 1.101

male 0.835 0.704 0.992

stateur 1.100 1.067 1.135

statemb 1.006 1.004 1.008

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 65.7 Somers' D 0.318

Percent Discordant 33.9 Gamma 0.320

Percent Tied 0.4 Tau-a 0.138

Pairs 5142570 c 0.659

OUTPUT 10.3. (Continued)

TABLE 10.1. Comparing Marginal Effect of the Three Models

Model Constant 412 years of Education Male xTi b Marginal Effect

LMP �0.077 �0.014 �0.036 �0.127 �0.127

Probit �1.7 �0.042 �0.107 �1.849 0.032

Logit �2.8 �0.065 �0.18 �3.045 0.045
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author, the number of patents can assume values starting at 0 (for no patents filed) to some large number. Typically, there is no

upper bound for the count variables. These random variables are modeled by using the Poisson distribution.

A Poisson random variable, y, with mean l has a probability density function given by

f ðyÞ ¼
expð�lÞly

y!
; y ¼ 0; 1; 2; . . . :

In Poisson regression, the dependent variable for observation i (i¼ 1, . . ., n) is assumed to follow a Poisson distribution with

mean li, which is a function of explanatory variables and unknown coefficients. That is,

f ðyiÞ ¼
expð�liÞl

yi
i

yi!
; yi ¼ 0; 1; 2; . . . ;

where li ¼ expðxTi bÞ. Therefore, the density function of yi can be written as

f ðyiÞ ¼
expð�xTi bÞðx

T
i bÞ

yi

yi!
; yi ¼ 0; 1; 2; . . . :

It is trivial to show that the mean and variance of a Poisson random variable are equal. That is, E(yi)¼Var(yi)¼ li. For the

Poisson regression model, we can write the conditional expectation and conditional variance of yi given xi as

EðyijxiÞ ¼ VarðyijxiÞ ¼ expðxTi bÞ:

The Poisson regression model is therefore a nonlinear model, and estimation of the unknown parameters is done using

maximum likelihood methods.

The LOGISTIC ProcedureThe LOGISTIC Procedure

Model Information

Data Set WORK.TEST

Response Variable y

Number of Response Levels 2

Model binary probit

Optimization Technique Fisher's scoring

Number of Observations Read 4877

Number of Observations Used 4877

Response Profile

Ordered
Value y

Total
Frequency

1 0 1542

2 1 3335

Probability modeled is y=1.

Model Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Intercept

Only

Intercept
and

Covariates

AIC 6088.056 5788.142

SC 6094.548 5917.987

-2 Log L 6086.056 5748.142

OUTPUT 10.4. Probit model output for the unemployment data.
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10.3.1 Interpretation of the Parameters

As was the case with the parameters in the Logit and Probit models, the parameters in the Poisson model are interpreted by

calculating the marginal effects with respect to the explanatory variables. That is,

qEðyi j xiÞ

qx
¼ lib

¼ expðxTi bÞb;

which implies that the interpretation of the model depends on both b and the explanatory variables.

10.3.2 Maximum Likelihood Estimation

Maximum likelihood estimation can be used to estimate the parameters in a Poisson regression model. A brief description of the

steps is provided below.

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 337.9143 19 <0.0001

Score 326.3187 19 <0.0001

Wald 316.7543 19 <0.0001

Analysis of Maximum Likelihood Estimates

Parameter DF Estimate
Standard

Error
Wald

Chi-Square Pr > ChiSq

Intercept 1 –1.6999 0.3630 21.9367 <0.0001

rr 1 1.8633 1.1293 2.7221 0.0990

rr2 1 –2.9801 1.4119 4.4549 0.0348

age 1 0.0422 0.0143 8.6975 0.0032

age2 1 –0.0377 0.0181 4.3397 0.0372

tenure 1 0.0177 0.00385 21.1488 <0.0001

slack 1 0.3755 0.0424 78.4751 <0.0001

abol 1 –0.0223 0.0719 0.0964 0.7562

seasonal 1 0.1612 0.1041 2.3987 0.1214

head 1 –0.1248 0.0491 6.4656 0.0110

married 1 0.1455 0.0478 9.2568 0.0023

dkids 1 –0.0966 0.0518 3.4700 0.0625

dykids 1 0.1236 0.0586 4.4437 0.0350

smsa 1 –0.1002 0.0418 5.7290 0.0167

nwhite 1 0.0518 0.0558 0.8599 0.3538

yrdispl 1 –0.0385 0.00905 18.0755 <0.0001

school12 1 –0.0416 0.0497 0.6985 0.4033

male 1 –0.1067 0.0527 4.0947 0.0430

stateur 1 0.0568 0.00943 36.2915 <0.0001

statemb 1 0.00364 0.000606 36.0192 <0.0001

Association of Predicted Probabilities and
Observed Responses

Percent Concordant 65.7 Somers' D 0.318

Percent Discordant 33.9 Gamma 0.319

Percent Tied 0.4 Tau-a 0.137

Pairs 5142570 c 0.659

OUTPUT 10.4. (Continued)
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Assume that we have a random sample (yi, xi), i¼ 1, . . ., n, from a Poisson distribution with mean li. The joint likelihood

function for the n observations is given by

L ¼
Y

n

i¼1

expð�liÞl
yi
i

yi!
:

Taking the log of the likelihood function and simplifying gives

lnðLÞ ¼
X

n

i¼1

½�li þ yix
T
i b�logðyi!Þ�:

The first-order condition involves taking the derivative of the log-likelihood with respect to b and setting it equal to 0.

That is,

SðbÞ¼
q logðLÞ

qb
¼

X

n

i¼1

½yi�li�xi ¼ 0

¼
X

n

i¼1

½yi�expð�xTi bÞ�xi ¼ 0:

The Hessian is given by

q
2 logðLÞ

qbqbT
¼ �

X

n

i¼1

expð�xTi bÞxix
T
i :

The Newton–Raphson method can be used to estimate b. The asymptotic variance–covariance matrix of the parameters is

given by

X

n

i¼1

l̂ixix
T
i

" #�1

:

Wewill nowshowhow toconductPoisson regression inSAS.Wewillmakeuse ofCincera’s (1997) patent data,which wasalso

analyzed byVerbeek (2004, pp. 215–217). The data consist of 181 internationalmanufacturing firms. As described by the author,

for each firm, their annual expenditures on research and development (R&D), the industrial sector it operates in, the country of its

registered office, and the total number of patent applications for a number of consecutive years is recorded. Thevariable names in

the model and their descriptions are summarized below:

P91¼The number of patents filed in the year 1991,

LR91¼The research and development expenses in 1991,

AEROSP¼An indicator variable that is 1 if the company is in the aerospace industry and 0 otherwise,

CHEMIST¼An indicator variable that is 1 if the company is in the chemical industry and 0 otherwise,

COMPUTER¼An indicator variable that is 1 if the company is in the computer industry and 0 otherwise,

MACHINES¼An indicator variable that is 1 if the company is in the heavymachinemanufacturing industry and 0 otherwise,

VEHICLES¼An indicator variable that is 1 if the company is in the auto industry and 0 otherwise,

US¼An indicator that is 1 if the company is in US and 0 otherwise,

JAPAN¼An indicator variable if the company is in Japan and 0 otherwise.

We will use Proc Genmod to conduct the analysis. The following statements can be used to fit the Poisson regression model.

Proc Genmod is very useful for fittingmodels that belong to the class of Generalized LinearModels where the distributions

can be any member of the exponential family of distributions. The procedure can therefore be used for OLS, Logit, and

Probit models. The advantage of this procedure over Proc Logistic is that interaction terms can be incorporated directly

into the model statement whereas in Proc Logistic the interaction terms have to be added in the data step module of the

code.
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The main statement here is the one that specifies the distribution and the log link function. The analysis output is given in

Output 10.5.

proc genmod data=patent;

model p91=lr91 aerosp chemist computer machines vehicles

japan us/dist=poisson link=log;

run;

We will now provide details about the output produced by Proc Genmod.

The first table of the output gives the model information including the distribution specified, the link function, and the

dependent variable. The log link function is used by default when the Poisson distribution is specified. The “link” function

The GENMOD ProcedureThe GENMOD Procedure

Model Information

Data Set WORK.PATENT

Distribution Poisson

Link Function Log

Dependent Variable P91 P91

Number of Observations Read 181

Number of Observations Used 181

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 172 9081.9013 52.8018

Scaled Deviance 172 9081.9013 52.8018

Pearson Chi-Square 172 10391.9101 60.4181

Scaled Pearson X2 172 10391.9101 60.4181

Log Likelihood 54225.8240

Algorithm converged.

Analysis Of Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence
Limits Chi-Square Pr > ChiSq

Intercept 1 –0.8737 0.0659 –1.0028 –0.7446 175.94 <0.0001

LR91 1 0.8545 0.0084 0.8381 0.8710 10381.6 <0.0001

AEROSP 1 –1.4219 0.0956 –1.6093 –1.2344 221.00 <0.0001

CHEMIST 1 0.6363 0.0255 0.5862 0.6863 621.25 <0.0001

COMPUTER 1 0.5953 0.0233 0.5496 0.6411 650.70 <0.0001

MACHINES 1 0.6890 0.0383 0.6138 0.7641 322.76 <0.0001

Analysis Of Parameter Estimates

Parameter DF Estimate
Standard

Error

Wald 95%
Confidence
Limits Chi-Square Pr > ChiSq

VEHICLES 1 –1.5297 0.0419 –1.6117 –1.4476 1335.01 <0.0001

JAPAN 1 0.2222 0.0275 0.1683 0.2761 65.29 <0.0001

US 1 –0.2995 0.0253 –0.3491 –0.2499 140.14 <0.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

The scale parameter was held fixed.

OUTPUT 10.5. Poisson regression of the patent data.
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references the function that is used to relate the conditional expectation and the explanatory variables. For the Poisson model,

recall that the conditional mean was given by

EðyijxiÞ ¼ expðxTi bÞ;

lnðEðyijxiÞÞ ¼ xTi b

so that the link function that is used is the LOG function.

Thenext tablegivesvarious statistics for assessing themodel fit. Small values for thegoodness of fit statistics are desired.Large

ratios may indicate that the model is misspecified or that the model suffers from overdispersion.

The final table gives the parameter estimates, along with their standard errors, confidence intervals, and chi-squared test

statistic value. Recall that in Poisson regression wemodelEðyijxiÞ versus expðx
T
i bÞ. Therefore, the regression coefficient can be

interpreted by first exponentiating the parameter estimates. For example, the parameter estimate for the variable aerospace is

�1.4219 giving expð�1:4219Þ ¼ 0:241. The coefficient of this variable compares the number of patent applications received for

the aerospace and nonaerospace industries. The value 0.241 is the predicted ratio of the number of patents filed for the aerospace

companies to the numbers filed by the nonaerospace companies. Therefore, based on the estimatedmodel, the number of patents

filed by the aerospace companies is predicted to be lower than the number filed by the nonaerospace companies assuming all other

explanatory variables are held constant.

168 DISCRETE CHOICE MODELS



11
DURATION ANALYSIS

11.1 INTRODUCTION

Often, we are interested in modeling the duration or time between two events. For example, we may be interested in the time

between the start and the end of a strike, the time it takes an unemployed person to find a job, the time to failure of a machine

component, or the recidivism duration of an ex-convict. In each of these examples, the data set consists of a response variable that

records the time or duration between the events of interest. Due to the nature of the study, the data set usually consists of amixture

of complete and censored observations. For example, in the recidivism study conducted by Chung, Schmidt, andWitte (1991), a

random sample of 1,445 former inmates released fromprison between July 1, 1977 and June 30, 1978was collected usingApril 1,

1984 as the end point of the study. The study found that 552 former inmates were arrested again for different violations. Their

duration or time response was therefore recorded. Duration measurements for the remaining 893 individuals were not recorded

and were censored. That is, at the time the study concluded, these individuals had not been arrested for any violation since their

release. Note that the censored times for these individuals will vary due to the staggered entry of the subjects into the study.

Asanother example, consider anauto andhome insurancecompany thatmaybe interested in the timebetweenapolicyholder’s

start and termination date. The company’s objectivemaybe to understand the attrition behavior of policy holderswho cancel their

policies and move to a competitor company. As with the recidivism study, the time window for the study is usually predefined.

Therefore, there may be several policy holders for whom the event of interest (attrition) is not observed. That is, a few policy

holders may attrite after the conclusion of the study; their time to attrite response is therefore censored.

The use of duration models, although fairly recent in economics, is well established in engineering and biomedical fields. For

example, reliability engineers are often interested in the time it takes for a machine component to fail. They may use

this information to optimize preventive maintenance strategies on the machine. Pharmaceutical companies conduct clinical

trials where patients are administered a new drug and then are followed for a predefined length of time in order to evaluate the

drug’s effectiveness. In both these fields, the event of interest is the “time to failure,” and the data are comprised of censored

observations as well as observations for which the actual duration of the event of interest is observed.

11.2 FAILURE TIMES AND CENSORING

There are three conditions required to determine failure times accurately in any duration analysis study. First, the timewindowof

the studymust be clearly defined. That is, the origin and the termination pointsmust be defined. Inmost duration analysis studies,

the subjects will have a staggered entry. Therefore, the starting point may not be the same for all subjects. However, there are
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instanceswhere the starting point is the same for all subjects. Kennan (1984) gives an example of amajor strike affecting a certain

type of industry where most of the subjects have a common starting point. In the recidivism study, the timewindow for the study

was the releaseperiod fromJuly 1, 1977 to June30, 1978with a study terminationdate ofApril 1, 1984.Notice that theobservation

period ranged from70 to 81months. Therefore, the censored times are also in the range of 70–81months. In an attritionmodeling

study Iwas involvedwith, the timewindowof the studywas set fromJanuary1, 2006 to July 31, 2006.The studywas terminatedon

June 1, 2007. The time lag between the time window and the observation point or termination point is to allow various factors

(known or unknown) to influence the subject into either taking an action (recidivism or attrition) or not taking an action.

Second, themeasurement scale must be clearly understood. In the recidivism and attrition studies, the response variable is the

number of days to the event of interest. In an example to study automobile reliability, the response variable may be the number of

miles recorded before the car breaks down. In a reliability study on light bulbs, we are interested in the number of hours until the

light bulb fails.

Third, the meaning of “failure” or “success” must be clearly understood. In the recidivism example, “failure” or “success”

occurswhen a former inmate is arrested again. In the attrition study, a “failure”or “success”occurswhen the policyholder attrites.

In an employment study a “failure” or “success” is observed when the unemployed person is employed again.

To define censoring more formally, assume that we have n subjects in the duration analysis study. In the absence of censoring,

the ith subject has a duration time denoted by ti. That is, the event of interest was observed for this subject in the study’s time

window. Assume that the duration analysis studywindow for the ith subject has length ci. Here, without loss of generality, we are

assuming that the subjects enter the study in a staggered fashion. If the event of interest was not observed for the ith subject when

the studywas terminated, then the duration time recorded for this subject will be ci. The duration time can therefore be denoted by

yi¼min(ti, ci). In the recidivism and attrition examples, the data are referred to as right censored data since for the censored

observations the duration times are assumed to occur after the study termination date.

11.3 THE SURVIVAL AND HAZARD FUNCTIONS

We now turn our attention to understanding the survival and hazard rate functions for the data collected from duration analysis

studies. First, assume that the randomvariable T (the duration time) has a continuous probability distribution f(t). The cumulative

distribution function (CDF) F(t) is therefore given by

FðtÞ ¼ PðT � tÞ ¼
ð

t

0

f ðtÞdt:

The CDFmeasures the probability that a subject will have a duration of time less than or equal to t. In the recidivism study, we

could interpret this as the probability that a former inmate will be arrested again by time t. In the attrition study, this could be

interpreted as the probability that a policy holder will attrite by time t.

We are usually interested in the probability that the duration for a subjectwill exceed t. That is,we are typically interested in the

survival function. The survival function is defined as the probability that a subject will survive past time t. That is,

SðtÞ ¼ PðT � tÞ ¼ 1�PðT 4 tÞ ¼ 1�FðtÞ ¼¼
ð

¥

t

f ðtÞdt:

Weare also interested in the instantaneous failure rate or the hazard rate. To see the form of the hazard function, first define the

probability that a subject will survive a small time interval ½t; t þ Dt� given that he or she has survived past t as

Pðt � T < t þ DtjT � tÞ:
The hazard function is given by

l tð Þ ¼ limDt! 0

Pðt � T < t þ DtjT � tÞ
Dt

:

It can be shown that the hazard function is a ratio of the probability density function to the survival function. That is,

l tð Þ ¼ f ðtÞ
SðtÞ :
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To see this, first notice that by using the fact PðAjBÞ ¼ PðA \ BÞ=PðBÞ, we can write the numerator of the hazard

function as

P t � T < t þ DtjT � tð Þ ¼ Pðt � T < t þ DtÞ
PðT � tÞ ¼ Fðt þ DtÞ�FðtÞ

1�FðtÞ ¼ Fðt þ DtÞ�FðtÞ
SðtÞ :

Next, realize that by definition

l tð Þ ¼ limDt! 0

Fðt þ DtÞ�FðtÞ
Dt

¼ ¶

¶t
F tð Þ:

Again, by definition

¶

¶t
F tð Þ ¼ f tð Þ

and we have our result.

A few more results relating the hazard, survival, and probability density functions are of interest follow. First note that by

definition, the survival function can be written as

f tð Þ ¼ � ¶

¶t
S tð Þ

so that

l tð Þ ¼ � 1

SðtÞ
¶

¶t
S tð Þ ¼ � ¶

¶t
log½SðtÞ�:

The cumulative hazard rate function LðtÞ can be written as

L tð Þ ¼
ð

t

0

lðtÞdt ¼
ð

t

0

� ¶

¶t
log½SðtÞ�dt ¼

ð

t

0

� ¶

¶t
log½1�FðtÞ�dt:

It is trivial to show that the above expression simplifies to

LðtÞ ¼ �log½1�FðtÞ�:

Upon further simplification, we get

FðtÞ ¼ 1�e�LðtÞ:

Differentiating both sides of the above expression gives

f tð Þ ¼ ¶

¶t
L tð Þ ¼ e�LðtÞ ¼ l tð Þe�LðtÞ:

Therefore, the probability distribution function can be completely characterized by the knowledge of the hazard function. It is

for this reason that the analysis of duration data is based on understanding the hazard function.

Defining the hazard rate as ¶lðtÞ=¶t we see that

1. If ¶l=¶t ¼ 0, then the hazard rate is constant and independent of time. Using the attrition example, this implies that the

probability of a policy holder’s attrition is constant over the life of the policy holder’s tenure with the company.
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2. If ¶l=¶t4 0, then the hazard rate is increasingwith time.As an example, Greene (2003) discusses an unemployment study

where the time between a subject’s unemployment and employment ismodeled. The longer the subject is unemployed, the

more likely the subject is to be employed. As discussed by the author, the longer the unemployment lasts, the more is the

likelihood that the subject will take up any job.

3. If ¶l=¶t < 0, then the hazard rate is decreasing with time. Using the attrition example, the longer a policy holder is with

the company, the less likely he or she is to attrite. Similarly, it can be hypothesized that the longer a former convict is free,

the less likely he or she is to be arrested.

Readers familiar with the “bathtub” curve in reliability analysis will recall that the first part of the curve represents

(“infant mortality”) a decreasing hazard rate, the second part of the curve represents constant hazard rate, and the last part

of the curve represents (“wear-out” failures) increasing hazard rate.

We will use the RECID data from Chung, Schmidt, and Witte (1991) to show how SAS can be used to plot the survival and

hazard functions. The data set consists of the duration time for each ex-convict alongwith information on race, alcohol problems,

number of prior convictions, age, and soon. The complete list of variable description can be downloaded from Jeffrey

Wooldridge’s web site at Michigan State University.

The Proc Lifetest can be used to conduct preliminary analysis of the duration data. It is useful for plotting the survival and

hazard functions and also for comparing survival and hazard functions across groups. Two methods of estimating the survival

function are included: the KaplanMeier method by default and the Life Table method (use optionmethod=life). See Allison

(1995) for more details on these procedures. At the minimum, the following statements should be used:

proc lifetest data=duration;

time l_durat2*censored(1);

run;

Here, duration is the temporary SAS data set, and the command time is used to generate the survival function table.

The response variable is l_durat and the censoring variable is censored. A value of 1 for censored denotes a

censored observation. The analysis creates a survival table using the Kaplan Meier method. A partial output is given in

Output 11.1.

The first part of the output contains the survival tablewhile the second part of the output contains basic summary statistics. The

first table lists the duration times at which failures occurred, the survival estimates, the failure estimates (1-survival estimates),

and the survival standard error that is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SðtiÞð1�SðtiÞ
n

r

;

whereSðtiÞ and1�SðtiÞ are the survival and failure estimates, respectively. The total number of subjects is givendenoted byn. The

final two columns give the number of subjects who failed and the number left.

Notice that there were eight failures in the first month. The survival estimate is therefore given by

nleft=ntotal ) 1437=1445 ¼ 0:9945:

The failure estimate is therefore 1–0.9945 or 0.0055. The standard error is calculated as follows

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:9945� 0:0055

1445

r

¼ 0:00195:

The last three tables give the summary statistics. Note that the 25th percentile is estimated to be at 27 months. This implies

that the survival rate estimate is 75% at 27 months, and 25% of the ex-convicts are expected to be arrested again by the 27th

month.

The Kaplan Meier method is recommended for small data sets and for highly accurate measurements. When the data set is

large and the accuracy of the duration times are in question then the life table method is recommended. Adding the
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method=life option to the first line of the Proc Life procedure statements invokes the analysis using the life table technique.

The output is given in Output 11.2.

The analysis takes the range of duration data and divides them into intervals. The number of intervals can be easily adjusted

by using the “width” option. The first table gives information on the number of ex-convicts arrested in the given time intervals,

the effective (or entering) sample sizes for each interval along with the estimate of the conditional probability of failure, its

standard error, and the survival estimate. The conditional probabilities are calculated by simply dividing the number of arrests

by the effective sample size for each interval. The survival estimate is simply 1—the conditional probability of failure. The

standard errors are calculated using the formula provided earlier; however, the sample size used is the effective sample size of

the interval.

The second table gives the failure rate and the survival estimate standard error. See Lee (1992) for the formulas used in the

calculations.

The LIFETEST Procedure

Product-Limit Survival Estimates

l_durat2 Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left

0.0000 1.0000 0 0 0 1445

1.0000 . . . 1 1444

1.0000 . . . 2 1443

1.0000 . . . 3 1442

1.0000 . . . 4 1441

1.0000 . . . 5 1440

1.0000 . . . 6 1439

1.0000 . . . 7 1438

1.0000 0.9945 0.00554 0.00195 8 1437

2.0000 . . . 9 1436

2.0000 . . . 10 1435

2.0000 . . . 11 1434

2.0000 . . . 12 1433

2.0000 . . . 13 1432

2.0000 . . . 14 1431

2.0000 . . . 15 1430

2.0000 . . . 16 1429

2.0000 . . . 17 1428

2.0000 . . . 18 1427

2.0000 . . . 19 1426

2.0000 . . . 20 1425

2.0000 . . . 21 1424

2.0000 . . . 22 1423

2.0000 0.9841 0.0159 0.00329 23 1422

3.0000 . . . 24 1421

3.0000 . . . 25 1420

3.0000 . . . 26 1419

3.0000 . . . 27 1418

3.0000 . . . 28 1417

3.0000 . . . 29 1416

3.0000 . . . 30 1415

3.0000 . . . 31 1414

3.0000 . . . 32 1413

3.0000 . . . 33 1412

3.0000 . . . 34 1411

3.0000 . . . 35 1410

3.0000 . . . 36 1409

3.0000 0.9744 0.0256 0.00416 37 1408

OUTPUT 11.1. Proc Lifetest analysis of the RECID data using the Kaplan Meier method.
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The last table gives the probability of failure (PDF), the hazard estimate, and their standard errors for each interval. The PDF is

calculated by dividing the number of subjects arrested in each interval by the intervalwidth and the total number of subjects in the

study. For example, the PDF for the interval [40, 50] is calculated as follows:

43

10� 1445
¼ 0:00298:

The hazard estimate is calculated as follows (Lee, 1992):

na

w� ðnin�na=2Þ
:

Here, na represents the number arrested in the time interval, w is the width of the interval, and nm is the number of subjects

coming into the interval. Using the same interval as above, we get

43

10� ð1004�43=2Þ ¼ 0:004377:

The number entering into the interval is calculated by subtracting the cumulative arrests up to the interval of interest from the

total number of subjects in the study. See Lee (1992) for the formulas of the standard errors of both the PDF and the hazard

estimate.

The LIFETEST Procedure

Product-Limit Survival Estimates

l_durat2 Survival Failure

Survival
Standard

Error
Number
Failed

Number
Left

81.0000 * . . . 552 1

81.0000 * . . . 552 0

The marked survival times are censored observations.

Summary Statistics for Time Variable l_durat2

Quartile Estimates

95%
Confidence
Interval

Percent
Point

Estimate [Lower Upper)

75 . . .

50 . . .

25 27.0000 24.0000 31.0000

Mean Standard Error

56.7032 0.7402

The mean survival time and its standard error were underestimated because the
largest observation was censored and the estimation was restricted to the
largest event time.

Summary of the Number of
Censored and Uncensored Values

Total Failed Censored
Percent

Censored

1445 552 893 61.80

OUTPUT 11.1. (Continued)
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The LIFETEST Procedure

Life Table Survival Estimates

Interval

[Lower, Upper)
Number
Failed

Number
Censored

Effective
Sample
Size

Conditional
Probability
of Failure

Conditional
Probability

Standard
Error Survival

0 10 136 0 1445.0 0.0941 0.00768 1.0000

10 20 146 0 1309.0 0.1115 0.00870 0.9059

20 30 105 0 1163.0 0.0903 0.00840 0.8048

30 40 54 0 1058.0 0.0510 0.00677 0.7322

40 50 43 0 1004.0 0.0428 0.00639 0.6948

50 60 37 0 961.0 0.0385 0.00621 0.6651

60 70 23 0 924.0 0.0249 0.00513 0.6394

70 80 8 776 513.0 0.0156 0.00547 0.6235

80 90 0 117 58.5 0 0 0.6138

The LIFETEST Procedure

Interval

[Lower, Upper) Failure

Survival
Standard

Error

Median
Residual
Lifetime

Median
Standard

Error

0 10 0 0 . .

10 20 0.0941 0.00768 . .

20 30 0.1952 0.0104 . .

30 40 0.2678 0.0116 . .

40 50 0.3052 0.0121 . .

50 60 0.3349 0.0124 . .

60 70 0.3606 0.0126 . .

70 80 0.3765 0.0127 . .

80 90 0.3862 0.0130 . .

The LIFETEST Procedure

Interval
Evaluated at the Midpoint of the

Interval

[Lower, Upper) PDF

PDF
Standard

Error Hazard

Hazard
Standard

Error

0 10 0.00941 0.000768 0.009877 0.000846

10 20 0.0101 0.000793 0.011812 0.000976

20 30 0.00727 0.000683 0.009455 0.000922

30 40 0.00374 0.000499 0.005238 0.000713

40 50 0.00298 0.000447 0.004377 0.000667

50 60 0.00256 0.000416 0.003926 0.000645

60 70 0.00159 0.000329 0.002521 0.000526

70 80 0.000972 0.000342 0.001572 0.000556

80 90 0 . 0 .

Summary of the Number of
Censored and Uncensored Values

Total Failed Censored
Percent

Censored

1445 552 893 61.80

OUTPUT 11.2. Proc Lifetest analysis of the RECID data using the Life Table method.
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Proc Lifetest can be used to plot the survival and hazard functions by using the “plot=” function as shown in the following

statements.

proc lifetest data=duration method=life plot=(s h);

time l_durat2*censored(1);

run;

In the aboves denotes the survival function plot and h denotes the hazard function plot. Note that only the survival function is

availablewhen using the KaplanMeier method. Figure 11.1 contains the KaplanMeier survival function plot while Figures 11.2

and 11.3 contain the lifetime survival and hazard plots.

As an example of how to interpret the output, notice that from the lifetime survival function plot, we see that the survival

probability at 20months is a little over 75%. In terms of the example used, this indicates that the probability an ex-convict will be

arrestedwithin 20monthsof release is under25%.Thehazard functionplot indicates that thehazard rate is thehighest in the10–20

month window after release and that the risk rapidly decreases with time.
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FIGURE 11.1. Kaplan Meier survival function plot of the RECID data.
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Using the option plot=(ls) produces a plot of the cumulative hazard function versus time. This plot can be used to check

the rate at which the hazard is changing. The reader is asked to verify that the cumulative hazard plot for the RECID data is

increasing at a gradual rate.

Proc Lifetime can also be used to compare two or more groups with respect to their survival and hazard functions. Consider

testing the survival functions of married ex-convicts to unmarried ex-convicts. The hypothesis tested is as follows:

H0 : SmðtÞ ¼ SumðtÞ;
H1 : SmðtÞ4 SumðtÞ:

Here, SmðtÞ and SumðtÞ are the survival functions of the married and unmarried ex-convicts. The following statements can be

used to conduct the test in SAS. The analysis results are given in Output 11.3.

proc lifetest data=duration method=life plots=(s);

time l_durat2*censored(1);

strata l_marry;

run;
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FIGURE 11.2. Lifetime survival function plot of the RECID data.
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The first part of the output consists of the life tables for the unmarried ex-convicts. This is followed by the life tables for the

married ex-convicts. The survival function plot indicates that the survivorship probability is higher formarried subjects compared

to unmarried subjects. The last part of the output contains test statistics from the Log-Rank,Wilcoxon, and the Likelihood-Ratio

tests. See Lee (1992, pp. 104–122) for details on these tests. All three test statistics are highly significant indicating that the two

survival functions are different. This analysis can easily be extended to more than two groups.

Proc Lifetest is usually used in the preliminary stages to understand the data and to isolate factors that appear to have an impact

on the response of interest. In the later sections, wewill introduce Proc Lifereg and Proc Phreg that are used to conduct regression

analysis on data with censored observations. We now move on to discuss the different distributions that may be used to model

duration data.

11.4 COMMONLY USED DISTRIBUTION FUNCTIONS IN DURATION ANALYSIS

There are three distribution functions commonly used in duration analysis studies.

H
a
z
a
r
d
 
F
u
n
c
t
i
o
n

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

l_durat2

0 20 40 60 80 100

FIGURE 11.2. (Continued).
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11.4.1 The Exponential Distribution

The general formula for the probability density function of the exponential distribution is f (t)¼ u�1 exp(�t/u) u4 0, where u is

the scale parameter. The cumulative density, survival, and hazard functions are givenby f ðtÞ ¼ 1�expð�t=�Þ,SðtÞ ¼ expð�t=�Þ,
and lðtÞ ¼ 1=�, respectively.

The hazard and survival function plots for the exponential distribution are given in Figures 11.4 and 11.5 (Source: NIST).

Notice that the hazard function is constant and independent of time. The survival function graph indicates the classic exponential

decay behavior.

11.4.2 The Weibull Distribution

Thegeneral formula for the probabilitydensity functionof the two-parameterWeibull distribution is f (t)¼ gagtg�1 exp(�(at))ga,

g4 0, where g is the shape parameter and a is the scale parameter (Casella and Berger, 1990). The cumulative density, survival,

and hazard functions are given by FðtÞ ¼ 1�expð�ðatÞgÞ, SðtÞ ¼ expð�ðatÞgÞ, and lðtÞ ¼ gagtg�1 lðtÞ ¼ gagtg�1a; g4 0.

Thehazard and survival plots for different values of the shapeparameters are given inFigures 11.6 and11.7 (Source:NIST).Notice

that theWeibull distributionoffersmore flexibility inmodeling thehazard function.Thedependency of thehazard functionon time
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FIGURE 11.3. Lifetime hazard function plot of the RECID data.
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The LIFETEST Procedure

Stratum 1: l_marry = 0

Life Table Survival Estimates

Interval

[Lower, Upper)
Number
Failed

Number
Censored

Effective
Sample
Size

Conditional
Probability
of Failure

Conditional
Probability

Standard
Error Survival

0 10 118 0 1076.0 0.1097 0.00953 1.0000

10 20 115 0 958.0 0.1200 0.0105 0.8903

20 30 76 0 843.0 0.0902 0.00986 0.7835

30 40 47 0 767.0 0.0613 0.00866 0.7128

40 50 30 0 720.0 0.0417 0.00745 0.6691

50 60 30 0 690.0 0.0435 0.00776 0.6413

60 70 13 0 660.0 0.0197 0.00541 0.6134

70 80 7 552 371.0 0.0189 0.00706 0.6013

80 90 0 88 44.0 0 0 0.5900

Interval

[Lower, Upper) Failure

Survival
Standard

Error

Median
Residual
Lifetime

Median
Standard

Error

0 10 0 0 . .

10 20 0.1097 0.00953 . .

20 30 0.2165 0.0126 . .

30 40 0.2872 0.0138 . .

40 50 0.3309 0.0143 . .

50 60 0.3587 0.0146 . .

60 70 0.3866 0.0148 . .

70 80 0.3987 0.0149 . .

80 90 0.4100 0.0152 . .

Interval
Evaluated at the Midpoint of the

Interval

[Lower, Upper) PDF

PDF
Standard

Error Hazard

Hazard
Standard

Error

0 10 0.0110 0.000953 0.011603 0.001066

10 20 0.0107 0.000942 0.012771 0.001188

20 30 0.00706 0.000781 0.009441 0.001082

30 40 0.00437 0.000623 0.006321 0.000922

40 50 0.00279 0.000502 0.004255 0.000777

50 60 0.00279 0.000502 0.004444 0.000811

60 70 0.00121 0.000333 0.001989 0.000552

70 80 0.00113 0.000426 0.001905 0.00072

80 90 0 . 0 .

OUTPUT 11.3. Testing survival functions of married ex-convicts to unmarried ex-convicts in the RECID data set.
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The LIFETEST Procedure

Stratum 2: l_marry = 1

Life Table Survival Estimates

Interval

[Lower, Upper)
Number
Failed

Number
Censored

Effective
Sample
Size

Conditional
Probability
of Failure

Conditional
Probability

Standard
Error Survival

0 10 18 0 369.0 0.0488 0.0112 1.0000

10 20 31 0 351.0 0.0883 0.0151 0.9512

20 30 29 0 320.0 0.0906 0.0160 0.8672

30 40 7 0 291.0 0.0241 0.00898 0.7886

40 50 13 0 284.0 0.0458 0.0124 0.7696

50 60 7 0 271.0 0.0258 0.00964 0.7344

60 70 10 0 264.0 0.0379 0.0117 0.7154

70 80 1 224 142.0 0.00704 0.00702 0.6883

80 90 0 29 14.5 0 0 0.6835

Interval

[Lower, Upper) Failure

Survival
Standard

Error

Median
Residual
Lifetime

Median
Standard

Error

0 10 0 0 . .

10 20 0.0488 0.0112 . .

20 30 0.1328 0.0177 . .

30 40 0.2114 0.0213 . .

40 50 0.2304 0.0219 . .

50 60 0.2656 0.0230 . .

60 70 0.2846 0.0235 . .

70 80 0.3117 0.0241 . .

80 90 0.3165 0.0244 . .

Interval
Evaluated at the Midpoint of the

Interval

[Lower, Upper) PDF

PDF
Standard

Error Hazard

Hazard
Standard

Error

0 10 0.00488 0.00112 0.005 0.001178

10 20 0.00840 0.00144 0.00924 0.001658

20 30 0.00786 0.00140 0.009493 0.001761

30 40 0.00190 0.000710 0.002435 0.00092

40 50 0.00352 0.000960 0.004685 0.001299

50 60 0.00190 0.000710 0.002617 0.000989

60 70 0.00271 0.000845 0.003861 0.001221

70 80 0.000485 0.000483 0.000707 0.000707

80 90 0 . 0 .

Summary of the Number of Censored and
Uncensored Values

Stratum l_marry Total Failed Censored
Percent

Censored

1 0 1076 436 640 59.48

2 1 369 116 253 68.56

Total 1445 552 893 61.80

OUTPUT 11.3. (Continued)
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STRATA: l_marry=0 l_marry=1

The LIFETEST Procedure

Testing Homogeneity of Survival Curves for l_durat2 over Strata

Rank Statistics

l_marry Log-Rank Wilcoxon

0 34.111 42523

1 –34.111 –42523

Covariance Matrix for the
Log-Rank Statistics

l_marry 0 1

0 108.307 –108.307

1 –108.307 108.307

Covariance Matrix for the
Wilcoxon Statistics

l_marry 0 1

0 1.5103E8 -1.51E8

1 –1.51E8 1.5103E8

Test of Equality over Strata

Test Chi-Square DF
Pr >

Chi-Square

Log-Rank 10.7432 1 0.0010

Wilcoxon 11.9728 1 0.0005

–2Log(LR) 12.2349 1 0.0005

OUTPUT 11.3. (Continued).



FIGURE 11.4. Hazard function of the exponential distribution.

FIGURE 11.5. Survival function of the exponential distribution.

FIGURE 11.6. Hazard functions for the Weibull distribution.
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is negative for g< 1 and positive for g4 1. The exponential distribution is a special case of the Weibull distribution when g¼ 1.

The Weibull hazard rate is therefore constant when g¼ 1.

11.4.3 The Lognormal Distribution

A variable T is lognormally distributed if ln(T ) is normally distributed where ln refers to the natural logarithm function. The

general formula for the probability density function of the lognormal distribution is (Casella and Berger, 1990)

f ðtÞ ¼ exp½�lnðt=mÞ2=2s2�

s
ffiffiffiffiffiffi

2p
p

t
m; s 4 0;

where s is the shape parameter and m is the scale parameter. The cumulative density function is given by

FðtÞ ¼ F
lnðtÞ
s

� �

; s 4 0;

and the survival and hazard functions are given by

SðtÞ ¼ 1�F
lnðtÞ
s

� �

; s 4 0;

and

lðtÞ ¼ ð1=tsÞfðlnðtÞ=sÞ

F
�lnðtÞ
s

� � ; s 4 0 ;

respectively.

The hazard and survival functions for different values of the shape parameters are given in Figures 11.8 and 11.9

(Source: NIST).

FIGURE 11.7. Survival functions for the Weibull distribution.
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Maximum likelihood estimation, which takes censoring into account, is used to estimate the parameters of these distributions.

Details on the technique can be found in Meeker and Escobar (1998, pp. 153–159).

ProcLiferegcanbeused to assess thegoodnessof fit of thedistributionson thecollecteddata.The resultingoutput also includes

the maximum likelihood estimates of the parameters of the distributions. We will revisit this procedure in our discussion of

regression analysis on duration data. For now, we will assess the goodness of fit of the distributions on the RECID data set. The

FIGURE 11.8. Hazard functions for the lognormal distribution.

FIGURE 11.9. Survival functions for the lognormal distribution.
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following statements can be used to fit a normal distribution to the duration response variable. Proc Lifereg invokes the procedure

on the temporarySASdata set “duration.”Themodel statement lists out the response and the censoring variable. Avalue of 1

indicates that the record is censored. The option “d” is used to specify the distribution. Changing the value of the option to

exponential, Weibull, lnormal will give analysis results for the other distributions that were discussed in this section. The option

“probplot” creates a probability plot while the option “inset”writes the parameter estimates on the probability plot. Note

that there are several other options that can be used to enhance the graphs. See the SAS Users Guide 9.2 from SAS Institute, Inc.

for more information. Outputs 11.4–11.7 contain goodness of fit information as well as the probability plots for the various

distributions. Output 11.4 indicates that the normal distribution does not fit the datawell while Output 11.6 indicates that the log-

normal distribution fit is the best.

Proc Lifereg data=duration;

Model l_durat*censored(1)/d=normal;

Probplot;

Inset;

Run;

11.5 REGRESSION ANALYSIS WITH DURATION DATA

The discussion so far was limited to the estimation of parameters in the absence of exogenous variables. Going back to the

recidivism study, there may be various factors a effecting a person’s relapse into criminal behavior. For instance, a person’s age,

education, marital status, race, and number of prior convictions may all play a role in influencing the behavior of the ex-convict.

This section dealswith the introduction of regressors’ analysis on duration data. There are two types of regressionmodels that are

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable l_durat2

Censoring Variable censored

Censoring Value(s) 1

Number of Observations 1445

Noncensored Values 552

Right Censored Values 893

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Normal

Log Likelihood –3584.355095

Number of Observations Read 1445

Number of Observations Used 1445

Algorithm converged.

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence
Limits Chi-Square Pr > ChiSq

Intercept 1 88.2733 2.3096 83.7466 92.7999 1460.81 <0.0001

Scale 1 60.1504 2.1312 56.1151 64.4758

OUTPUT 11.4. Normal distribution fit for the RECID data.
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used tomodel durationdata—theparametric regressionmodel andCoxproportional hazard regressionmodel. ProcLiferegcanbe

used to fit the first set of models while Proc Phreg can be used to fit the second type of models.

To see the general form of thesemodels, let ti denote the duration time for the ith subject and let xi denote the set of explanatory

variables assumed to influence the duration time, ti. The models fit by using Proc Lifereg are of the form

lnðtiÞ ¼ xTi bþ s«i

ti ¼ expðxTi bþ s«iÞ;

where «i is the disturbance with mean 0 and unit variance. The variance of disturbance is estimated via the parameter s. These

models are referred to asAccelerated Failure Timemodelswith the covariates assumed to influence the failure rate. The choice of

the distribution for «i leads to the different types ofmodels. For example, if we choose «i to be normally distributed (or lnðtiÞ to be
normally distributed), then we have a log-normal model.

The covariates vector,xi, includes a constant term and a set of time-invariant regressors.Note that the regressor setmay contain

time-dependent regressors. However, Proc Lifereg cannot be used to accommodate these. Proc Phreg, on the other hand, can

handle both time-invariant and time-dependent explanatory variables. Maximum likelihood methods are used to estimate the

model parameters with the Newton–Raphson method used for optimization. Details on this can be found in Allison (1995), Lee

(1992), and Meeker and Escobar (1998).

Normal Plot For l_durat2
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OUTPUT 11.4. (Continued)
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We will illustrate how Proc Lifereg can be used to estimate Accelerated Failure Time models. The following minimal set of

statements should be used. The results of the analysis are given in Output 11.8.

Proc Lifereg data=duration;

Model l_durat*censored(1)=l_black l_drugs l_workprg l_priors l_tserved

l_felon l_alcohol l_marry l_educ l_age/d=lnormal;

Run;

Proc Lifereg invokes the procedure on the temporary SAS data set duration. The second statement lists out the model

relating the explanatory variables on the right-hand side to the duration time l_durat.Note that the response variable has not

been transformed and is in the original units of measurements (months). The log transformation is done by Proc Lifereg. The d

option can be used to select the distribution. We decided on the log-normal distribution from the distributional analysis done in

Section 11.4. More details on the different options that can be used with this procedure can be found in Allison (1995) and SAS

Users Guide 9.2 from SAS Institute, Inc.

The first table gives basic model information: the model name, the response variable, the censoring ID, the total number

of observations, the number of censored and uncensored observations, the assumed distribution, and the log-likelihood

value.

The next table gives theWald’s chi-square values and associated p values for themodel parameters. Notice that thevariables

recording work programs and education are not significant. The Wald’s chi-square values can be calculated by taking the

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable Log(l_durat2)

Censoring Variable censored

Censoring Value(s) 1

Number of Observations 1445

Noncensored Values 552

Right Censored Values 893

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Exponential

Log Likelihood –1739.894437

Number of Observations Read 1445

Number of Observations Used 1445

Algorithm converged.

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error
95%

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 4.9764 0.0426 4.8930 5.0598 13670.0 <0.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

Weibull Scale 1 144.9511 6.1695 133.3497 157.5618

Weibull Shape 0 1.0000 0.0000 1.0000 1.0000

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 35.9078 <0.0001

OUTPUT 11.5. Exponential distribution fit for the RECID data.
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square of the ratio of the parameter estimates to their standard errors. The next table gives the actual parameter estimates, their

standard errors, 95% confidence intervals, the chi-square values and the associated p values. The 95% confidence intervals are

calculated as

b̂za=2 � s:eðb̂Þ

where za=2 is the 100� ð1�aÞ percentile from the standard normal distribution.

Notice that the estimate scale parameter is 1.81 indicating a decreasing hazard rate (see Figure 11.8).

The signsof themodel parameters indicate that ingeneral race, alcohol, anddrugproblemsall appear to shorten theduration (or

arrest) times.Marriage andwhether a personwas convicted of a felony both appear to lengthen the duration (or arrest) time.Using

the fact that we have a semi-log model, we may interpret the coefficients as follows: Holding all other variables constant, for the

l_tserved variable that records the time served inmonths, each additionalmonth of time served, reduces the duration until the

next arrest by about 2%. As another example, wemay interpret the coefficient for the l_drugs variable as follows: Holding all

other variables constant, the duration time until the next arrest for ex-convicts with drug problems is about 30% shorter than for

those without drug problems.

As discussed in Allison (1995), we can also use the exponential transformation to interpret the coefficients. For dummy

variables, the transformation is simply expðb̂Þ. For example, for the dummy variable l_drugs expð�0:2982Þ ¼ 0:74. This
implies that holding all other variables constant, the duration time until the next arrest for ex-convictswith drug problems is about

26% shorter than the duration time of ex-convicts without drug problems. For continuous variables, the transformation used is

100� expðb̂�1Þ. For example, for the variable l_tserved, we have 100� expð�0:0193�1Þ ¼ 2%.

Exponential Plot For l_durat2
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OUTPUT 11.5. (Continued).
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Not surprisingly, both sets of interpretations lead to exactly the same conclusion.

Proc Phreg can be used to fit the Cox’s (1972) Proportional Hazard Models to duration data. These models make no

distributional assumptions on the data and can be used to incorporate time variant regressors. The general form of the model is

given by

hiðtÞ ¼ l0ðtÞ expðxTi bÞ;

where hiðtÞ denotes the hazard for the ith subject at time t,l0ðtÞ is the baseline hazard, and xi is the vector of explanatory variables
thatmay include both time-dependent and time-invariant variables. The nameproportional hazard is derived from the fact that for

two subjects in the study, the ratio hiðtÞ=hjðtÞ is time invariant. That is,

hiðtÞ
hjðtÞ

¼ exp xTi b�xTj b
� �

:

Themethod of partial likelihood is used to estimate the parameters of these models. More details can be found in Allison (1995),

Lee (1992), andMeeker andEscobar (1998).Wewill illustrate howProcPhreg can be used to estimateCox’s ProportionalHazard

models. The following minimal set of statements should be used. The results of the analysis are given in Output 11.9.

Proc Phreg data=duration;

Model l_durat*censored(1)=l_black l_drugs l_workprg l_priors l_tserved l_felon

l_alcohol l_marry l_educ l_age;

Run;

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable Log(l_durat2)

Censoring Variable censored

Censoring Value(s) 1

Number of Observations 1445

Noncensored Values 552

Right Censored Values 893

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Lognormal

Log Likelihood –1680.426985

Number of Observations Read 1445

Number of Observations Used 1445

Algorithm converged.

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence
Limits Chi-Square Pr > ChiSq

Intercept 1 4.8454 0.0755 4.6975 4.9933 4121.78 <0.0001

Scale 1 1.9688 0.0684 1.8392 2.1077

OUTPUT 11.6. Weibull distribution fit for the RECID data.
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Proc Phreg invokes the procedure on the temporary SAS data set “duration.” The “model” statement is identical to the

statement used in Proc Liferegwith the exception of themissing “d” option.More details on the different options that can be used

with this procedure can be found in Allison (1995) and SAS Users Guide 9.2 from SAS Institute, Inc.

The first few tables list out basic information about the model. As discussed in Allison (1995), the partial likelihood method

uses the ranks of the duration times. Theremaybe instancewhere there are ties in the ranks. For instance, in the example used here,

there were eight ex-convicts who were arrested again in the first month. Their ranks in the calculations are therefore equal. SAS

offers three options for handling ties in the data. The default is the Breslow method. See both Allison (1995) and the SAS Users

Guide 9.2 from SAS Institute for more details.

The model fit statistics indicates a highly significant model. The last table gives information on the parameter estimates. The

variables recording education,marriage, andworkprogramparticipation are not significant.Note that the signs of the coefficients

here are different from those obtained using Proc Lifereg. This is because, Proc Phreg models the log of the hazard while Proc

Lifereg models the log of the survival. The chi-square test statistic values are calculated in the usual way and the hazard ratio is

simply expðb̂Þ. The interpretations can be done by using the fact that a semi-logmodelwas used for the data. For instance, holding

all other variables constant, the hazard of arrest for ex-convictswith drug problems is about 28%higher than the hazard of arrest of

ex-convicts without drug problems. As another example, holding all other variables constant, for each additional month of time

served increases the hazard of arrest by about 1.3%.

Lognormal Plot For l_durat2
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OUTPUT 11.6. (Continued)
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It may be of interest to see howoptimization techniques such as the Newton–Raphson and the BHHHmethods work. Program

18 inAppendixEcontainsProc IMLcode to conduct analysis of the strikedurationdata fromKennan (1985, pp. 14–16) usingboth

the optimization techniques. As stated in Greene (2003, p. 800), the strike data contains the number of days for 62 strikes that

started in June of years 1968–1976. The data set also contains an explanatory variable measures deviation of production due to

various seasonal trends (Greene, 2003).

The Proc IML code analyzes the data using the Newton–Raphson and the BHHH methods and was written by Thomas B.

Fomby from the Department of Economics at the Southern Methodist University in 2005. The code has been reprinted with

permission fromThomasFomby.As is always the case, theoptimization techniques require a startingvalue.UsingProcRegon the

log of the response variable against the explanatory variable gives values of 3.2 and�9.2 for the intercept and slope coefficient.

The starting values havebeen set at 4 for the intercept and�9 for the slope coefficient. The scalevalue is set at 1, the scalevalue for

the exponential distribution.

The analysis results are given in Output 11.10. Notice that the convergence of the Newton–Raphson algorithm occurs at the

sixth iteration with values of 0.9922 for the scale parameter, 3.78 for the intercept, and�9.33 for the slope coefficient. Also, note

that theWald’s test for constant hazard cannot be rejected, indicating that the exponential model may be used to model the strike

duration data. The BHHH algorithm converges much later but with parameter values similar to the ones from the Newton–

Raphson method. Output 11.11 contains the analysis results of the strike data using Proc Lifereg using the exponential

distribution. Notice that the p value from LM test for the scale parameter indicates that we cannot reject the hypothesis that the

scale parameter is 1, indicating that the exponential distribution was a good choice for the data.

Since themodel is a semi-logmodel, we can interpret the coefficient for “eco” as follows: A one-unit change in production is

expected to decrease the average length of the strikes by 9.33%.

The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable Log(l_durat2)

Censoring Variable censored

Censoring Value(s) 1

Number of Observations 1445

Noncensored Values 552

Right Censored Values 893

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Weibull

Log Likelihood –1715.771096

Number of Observations Read 1445

Number of Observations Used 1445

Algorithm converged.

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error
95%

Confidence Limits Chi-Square Pr > ChiSq

Intercept 1 5.2245 0.0705 5.0863 5.3627 5490.88 <0.0001

Scale 1 1.3004 0.0516 1.2030 1.4057

Weibull Scale 1 185.7613 13.0971 161.7861 213.2895

Weibull Shape 1 0.7690 0.0305 0.7114 0.8312

OUTPUT 11.7. Long Normal distribution fit for the RECID data.
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Weibull Plot For l_durat2
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OUTPUT 11.7. (Continued).
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The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable Log(l_durat2)

Censoring Variable censored

Censoring Value(s) 1

Number of Observations 1445

Noncensored Values 552

Right Censored Values 893

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Lognormal

Log Likelihood –1597.058956

Number of Observations Read 1445

Number of Observations Used 1445

Algorithm converged.

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

l_black 1 21.3548 <0.0001

l_drugs 1 5.0457 0.0247

l_workprg 1 0.2717 0.6022

l_priors 1 40.9108 <0.0001

l_tserved 1 42.1368 <0.0001

l_felon 1 9.3649 0.0022

l_alcohol 1 19.3817 <0.0001

l_marry 1 5.9350 0.0148

l_educ 1 0.8144 0.3668

l_age 1 41.6081 <0.0001

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence
Limits Chi-Square Pr > ChiSq

Intercept 1 4.0994 0.3475 3.4182 4.7805 139.14 <0.0001

l_black 1 –0.5427 0.1174 –0.7729 –0.3125 21.35 <0.0001

l_drugs 1 –0.2982 0.1327 –0.5583 –0.0380 5.05 0.0247

l_workprg 1 –0.0626 0.1200 –0.2978 0.1727 0.27 0.6022

l_priors 1 –0.1373 0.0215 –0.1793 –0.0952 40.91 <0.0001

l_tserved 1 –0.0193 0.0030 –0.0252 –0.0135 42.14 <0.0001

l_felon 1 0.4440 0.1451 0.1596 0.7284 9.36 0.0022

l_alcohol 1 –0.6349 0.1442 –0.9176 –0.3522 19.38 <0.0001

l_marry 1 0.3407 0.1398 0.0666 0.6148 5.94 0.0148

l_educ 1 0.0229 0.0254 –0.0269 0.0727 0.81 0.3668

l_age 1 0.0039 0.0006 0.0027 0.0051 41.61 <0.0001

Scale 1 1.8105 0.0623 1.6924 1.9368

OUTPUT 11.8.
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The PHREG ProcedureThe PHREG Procedure

Model Information

Data Set WORK.DURATION

Dependent Variable l_durat2

Censoring Variable censored

Censoring Value(s) 1

Ties Handling BRESLOW

Number of Observations Read
Number of Observations Used

1445
1445

Summary of the Number of
Event and Censored Values

Total Event Censored
Percent
Censored

1445 552 893 61.80

Convergence Status

Convergence criterion (GCONV=1E-8) satisfied.

Model Fit Statistics

Criterion
Without

Covariates
With

Covariates

-2 LOG L 7788.360 7632.760

AIC 7788.360 7652.760

SBC 7788.360 7695.895

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 155.6005 10 <0.0001

Score 168.7868 10 <0.0001

Wald 166.1585 10 <0.0001

The PHREG Procedure

Analysis of Maximum Likelihood Estimates

Variable DF
Parameter
Estimate

Standard
Error Chi-Square Pr > ChiSq

Hazard
Ratio

l_black 1 0.43257 0.08838 23.9547 <0.0001 1.541

l_drugs 1 0.27558 0.09786 7.9297 0.0049 1.317

l_workprg 1 0.08403 0.09081 0.8562 0.3548 1.088

l_priors 1 0.08759 0.01348 42.2354 <0.0001 1.092

l_tserved 1 0.01296 0.00168 59.1317 <0.0001 1.013

l_felon 1 –0.28284 0.10616 7.0989 0.0077 0.754

l_alcohol 1 0.43063 0.10572 16.5922 <0.0001 1.538

l_marry 1 –0.15490 0.10921 2.0117 0.1561 0.857

l_educ 1 –0.02133 0.01945 1.2028 0.2728 0.979

l_age 1 –0.00358 0.0005223 47.0211 <0.0001 0.996

OUTPUT 11.9.
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Calculation of Unrestricted MLE estimates using Hessian-Based Newton-Raphson
Method

Iteration steps

RESULT

ITER SIGMA BETA1 BETA2 G1 G2

1 0.9537711 3.7467595 –9.443068 –3.175459 –12.59413

2 0.9869113 3.7769746 –9.345545 6.0076113 3.5681181

3 0.9921146 3.7797375 –9.332412 0.6819702 0.3315151

4 0.9922036 3.7797742 –9.332198 0.0110044 0.0048339

5 0.9922037 3.7797742 –9.332198 2.9191E-6 1.207E-6

6 0.9922037 3.7797742 –9.332198 1.984E-13 8.085E-14

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

RESULT

G3 CRIT LNLU

–0.169208 0.5124223 –98.77871

0.0551014 0.1073396 –97.45512

0.0053577 0.0143944 –97.28771

0.0000803 0.0002348 –97.28542

2.0407E-8 6.1706E-8 –97.28542

1.465E-15 5.601E-15 –97.28542

0 0 0

0 0 0

0 0 0

0 0 0

Unrestricted Log-likelihood =

LNLU

–97.28542

The Maximum Likelihood Estimates: Hessian-Based Newton-Raphson Iteration

THETA

SIGMA 0.9922037

BETA1 3.7797742

BETA2 –9.332198

Asymptotic Covariance Matrix-From Hessian

OUTPUT 11.10. Duration analysis of the strike data using Thomas Fomby’s Proc IML code.
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COV

SIGMA BETA1 BETA2

SIGMA 0.0099437 –0.004184 –0.00209

BETA1 –0.004184 0.0186872 –0.094236

BETA2 –0.00209 –0.094236 8.6292303

Standard errors:

SE_SIGMA_H

0.0997181

SE_BETA1_H

0.1367012

SE_BETA2_H

2.9375552

Asymptotic Covariance Matrix-From bhhh

COVBH3

SIGMA BETA1 BETA2

SIGMA 0.0145537 –0.002197 –0.038556

BETA1 –0.002197 0.0191359 –0.109777

BETA2 –0.038556 –0.109777 8.7277958

Standard errors:

SE_SIGMA_B

0.1206388

SE_BETA1_B

0.1383325

SE_BETA2_B

2.9542843

Wald test of hypothesis of constant hazard (sigma=1)

WALD CRITVAL PVAL

Results of Wald test Using Hessian 0.0032527 3.8414588 0.9545197

WALD CRITVAL PVAL

Results of Wald test Using BHHH 0.0031764 3.8414588 0.9550554

OUTPUT 11.10. (Continued)
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Maximum Likelihood Estimation of Restricted Model

*************************************************

Iteration steps

RESULT

ITER BETA1 BETA2 G1 G2 CRIT LNLR

1 4 –9 –12.59413 –0.169208 0.4878992 –98.77871

2 3.7494458 –9.418651 1.7610376 0.0293685 0.0867187 –97.3134

3 3.7761427 –9.336144 0.0244856 0.0005357 0.0023563 –97.28845

4 3.7765119 –9.333816 5.1415E-6 1.6029E-7 9.1067E-7 –97.28844

5 3.7765119 –9.333815 2.572E-13 1.125E-14 7.292E-14 –97.28844

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

The Maximum Likelihood Estimates-Restricted Model

BETA1 BETA2

3.7765119 –9.333815

Asymptotic Covariance Matrix-From Hessian of Restricted Model

COV

BETA1 BETA2

BETA1 0.0171936 –0.096573

BETA2 –0.096573 8.761006

LM CRITVAL PVAL

Results of LM test Using Hessian 0.0061132 3.8414588 0.9376792

LM CRITVAL PVAL

Results of LM test Using BHHH 0.0089884 3.8414588 0.9244679

LR CRITVAL PVAL

Results of LR test 0.0060429 3.8414588 0.9380379

Calculation of Unrestricted MLE estimates using BHHH-Based Newton-Raphson
Method

Iteration steps

OUTPUT 11.10. (Continued)
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RESULT

ITER SIGMA BETA1 BETA2 G1 G2

1 0.9898141 3.778817 –9.315595 –0.593324 0.4162062

2 0.9937401 3.7803749 –9.344186 0.2894756 0.1131911

3 0.99118 3.7793555 –9.324198 –0.183216 –0.070137

4 0.9928738 3.7800404 –9.337409 0.123469 0.0482311

5 0.9917598 3.7795943 –9.328734 –0.080232 –0.030943

6 0.9924954 3.7798909 –9.334469 0.0534042 0.0207745

7 0.9920109 3.7796964 –9.330694 –0.034992 –0.013536

8 0.9923306 3.7798251 –9.333186 0.023168 0.0089956

9 0.9921199 3.7797404 –9.331545 –0.015235 –0.005901

10 0.9922589 3.7797964 –9.332628 0.0100633 0.0039042

11 0.9921672 3.7797595 –9.331914 –0.006628 –0.002569

12 0.9922277 3.7797838 –9.332385 0.0043735 0.0016961

13 0.9921878 3.7797678 –9.332074 –0.002882 –0.001117

14 0.9922141 3.7797784 –9.332279 0.0019011 0.0007372

15 0.9921968 3.7797714 –9.332144 –0.001253 –0.000486

16 0.9922082 3.779776 –9.332233 0.0008265 0.0003205

17 0.9922007 3.779773 –9.332174 –0.000545 –0.000211

18 0.9922056 3.779775 –9.332213 0.0003593 0.0001393

19 0.9922023 3.7797737 –9.332187 –0.000237 –0.000092

20 0.9922045 3.7797745 –9.332204 0.0001562 0.0000606

21 0.9922031 3.779774 –9.332193 –0.000103 –0.00004

22 0.992204 3.7797743 –9.3322 0.0000679 0.0000263

23 0.9922034 3.7797741 –9.332196 –0.000045 –0.000017

24 0.9922038 3.7797742 –9.332199 0.0000295 0.0000114

25 0.9922035 3.7797741 –9.332197 –0.000019 –7.549E-6

26 0.9922037 3.7797742 –9.332198 0.0000128 4.9776E-6

27 0.9922036 3.7797742 –9.332197 –8.465E-6 –3.282E-6

28 0.9922037 3.7797742 –9.332198 5.5817E-6 2.1641E-6

29 0.9922036 3.7797742 –9.332197 –3.68E-6 –1.427E-6

30 0.9922037 3.7797742 –9.332198 2.4268E-6 9.4089E-7

31 0.9922036 3.7797742 –9.332198 –1.6E-6 –6.204E-7

32 0.9922037 3.7797742 –9.332198 1.0551E-6 4.0907E-7

33 0.9922036 3.7797742 –9.332198 –6.957E-7 –2.697E-7

34 0.9922037 3.7797742 –9.332198 4.5872E-7 1.7785E-7

35 0.9922036 3.7797742 –9.332198 –3.025E-7 –1.173E-7

36 0.9922037 3.7797742 –9.332198 1.9944E-7 7.7325E-8

37 0.9922036 3.7797742 –9.332198 –1.315E-7 –5.099E-8

38 0.9922037 3.7797742 –9.332198 8.671E-8 3.3619E-8

39 0.9922036 3.7797742 –9.332198 –5.717E-8 –2.217E-8

40 0.9922037 3.7797742 –9.332198 3.7699E-8 1.4616E-8

41 0.9922037 3.7797742 –9.332198 –2.486E-8 –9.638E-9

RESULT

G3 CRIT LNL

0.0064475 0.0369484 –97.28985

–0.00063 0.0289013 –97.28582

0.0005733 0.0201776 –97.28559

–0.000373 0.013337 –97.28549

0.0002455 0.0087576 –97.28545

–0.000162 0.00579 –97.28543

0.0001068 0.0038108 –97.28543

–0.00007 0.0025157 –97.28542

0.0000464 0.0016575 –97.28542

–0.000031 0.0010935 –97.28542

0.0000202 0.0007208 –97.28542

–0.000013 0.0004753 –97.28542

8.7761E-6 0.0003134 –97.28542

–5.787E-6 0.0002067 –97.28542

3.8156E-6 0.0001363 –97.28542

–2.516E-6 0.0000898 –97.28542

1.6589E-6 0.0000592 –97.28542

–1.094E-6 0.0000391 –97.28542

7.2126E-7 0.0000258 –97.28542

–4.756E-7 0.000017 –97.28542

3.1358E-7 0.0000112 -97.28542

–2.068E-7 7.3837E-6 –97.28542

1.3634E-7 4.8686E-6 –97.28542

–8.99E-8 3.2102E-6 –97.28542

5.9275E-8 2.1167E-6 –97.28542

–3.908E-8 1.3957E-6 –97.28542

2.5771E-8 9.2029E-7 –97.28542

–1.699E-8 6.0681E-7 –97.28542

1.1205E-8 4.0011E-7 –97.28542

–7.388E-9 2.6382E-7 –97.28542

4.8714E-9 1.7396E-7 –97.28542

–3.212E-9 1.147E-7 –97.28542

2.1179E-9 7.5632E-8 –97.28542

-1.397E-9 4.9869E-8 –97.28542

9.208E-10 3.2882E-8 –97.28542

–6.07E-10 2.1682E-8 –97.28542

4.003E-10 1.4296E-8 –97.28542

–2.64E-10 9.4266E-9 –97.28542

1.741E-10 6.2156E-9 –97.28542

–1.15E-10 4.0984E-9 –97.28542

7.568E-11 2.7024E-9 –97.28542

OUTPUT 11.10. (Continued)
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RESULT

ITER SIGMA BETA1 BETA2 G1

42 0.9922037 3.7797742 –9.332198 1.639E-8 6.3548E-9

43 0.9922037 3.7797742 –9.332198 –1.081E-8 –4.19E-9

44 0.9922037 3.7797742 –9.332198 7.1261E-9 2.7629E-9

45 0.9922037 3.7797742 –9.332198 –4.699E-9 –1.822E-9

46 0.9922037 3.7797742 –9.332198 3.0982E-9 1.2012E-9

47 0.9922037 3.7797742 –9.332198 –2.043E-9 –7.92E-10

48 0.9922037 3.7797742 –9.332198 1.347E-9 5.222E-10

49 0.9922037 3.7797742 –9.332198 –8.88E-10 –3.44E-10

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

RESULT

G3 CRIT LNL

–4.99E-11 1.7819E-9 –97.28542

3.29E-11 1.1749E-9 –97.28542

–2.17E-11 7.747E-10 –97.28542

1.43E-11 5.108E-10 –97.28542

–9.43E-12 3.368E-10 –97.28542

6.219E-12 2.221E-10 –97.28542

-4.1E-12 1.464E-10 –97.28542

2.704E-12 9.656E-11 –97.28542

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

OUTPUT 11.10. (Continued)

200 DURATION ANALYSIS



The LIFEREG ProcedureThe LIFEREG Procedure

Model Information

Data Set WORK.STRIKE

Dependent Variable Log(dur)

Number of Observations 62

Noncensored Values 62

Right Censored Values 0

Left Censored Values 0

Interval Censored Values 0

Name of Distribution Exponential

Log Likelihood –97.28844102

Number of Observations Read 62

Number of Observations Used 62

Algorithm converged.

Type III Analysis of Effects

Effect DF
Wald

Chi-Square Pr > ChiSq

eco 1 9.9441 0.0016

Analysis of Parameter Estimates

Parameter DF Estimate
Standard

Error

95%
Confidence
Limits Chi-Square Pr > ChiSq

Intercept 1 3.7765 0.1311 3.5195 4.0335 829.50 <0.0001

eco 1 –9.3338 2.9599 –15.1351 -3.5325 9.94 0.0016

Scale 0 1.0000 0.0000 1.0000 1.0000

Weibull Shape 0 1.0000 0.0000 1.0000 1.0000

Lagrange Multiplier Statistics

Parameter Chi-Square Pr > ChiSq

Scale 0.0061 0.9377

OUTPUT 11.11. Analysis of the strike data using Proc Lifereg.
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12
SPECIAL TOPICS

Chapters 1 through 11 discussed basic econometric analysis using SAS. This chapter introduces additional analytical methods

within the context of what was covered in the previous chapters.

12.1 ITERATIVE FGLS ESTIMATION UNDER HETEROSCEDASTICITY

InSection 5.6,we introducedFGLSestimationwherewe assumed that thevariance of the disturbances is a function of oneormore

explanatory variables. For example, we assumed that s2
i ¼ s2zai , where zi¼ income. The estimation was done over two steps,

where in step 1, the OLS residuals were used in a regression with log(zi) to get an estimate of a. The weights using a were

calculated resulting in the two-step FGLS estimator.

We can very easily iterate the two-step estimation process to convergence. The method involves recomputing the residuals

using the first set of FGLS estimators and then using these residuals to recompute the FGLS estimates. The iteration continues

until the difference between the most recent FGLS estimates does not differ from the estimates computed in the previous stage.

Program 9 inAppendix E gives IML code to carry out these computations on the credit card data set, whichwas used in Chapter 5

with zi¼ income. The analysis results are given in Output 12.1. As discussed in Greene (2003), the asymptotic properties of the

iterated FGLS are similar to those of the FGLS.

12.2 MAXIMUM LIKELIHOOD ESTIMATION UNDER HETEROSCEDASTICITY

To motivate our discussion of maximum likelihood estimation, first consider the joint distribution of yi ¼ xTi bþ ei, where i¼
1, . . .,n, assuming that ei � iid Nð0;s2

i Þ,wheres
2
i ¼ s2fiðaÞ.Note that theobservations yiare independentlydistributed since the

disturbances ei are assumed to be independently distributed.The joint distribution is therefore givenby (Casella andBerger, 1990;

Greene, 2003, p. 228–229)

Y

n

i¼1

f ðyijb; xi;s
2
i Þ ¼ ð2pÞ�n=2

Y

n

i¼1

s2
i exp �

1

2

X

n

i¼1

ðyi�xTi bÞ
2

s2
i

 !

:
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Taking the log of the likelihood after substitutings2fi(a) fors
2
i and«i for yi�xTi b and rearranging the terms involvinga, weget

Long-likelihood ¼ �
n

2
logð2pÞþ logs2
� �

�
1

2

X

n

i¼1

logfiðaÞþ
1

s2

1

fiðaÞ
«2i

� �

:

Ourobjective is to find values ofa,b, ands2 thatmaximize this log-likelihood function.Takingderivativeof this functionwith

respect to a, b, and s2, we get (Greene, 2003, p. 229)

SðbÞ ¼
X

n

i¼1

xi
«i

s2fiðaÞ
;

Sðs2Þ ¼
X

n

i¼1

1

2s2

� �

«2i
s2fiðaÞ

�1

� �

;

SðaÞ ¼
X

n

i¼1

1

2

� �

«2i
s2fiðaÞ

�1

� �

1

fiðaÞ

¶fiðaÞ

¶a
:

Thevalues of these derivatives equate to zero at themaximum likelihood estimators ofa,b, ands2.Wewill consider two cases

fora. In the first case,we assume thatahas a single parameter. In the secondcase,wewill discuss estimationwhenahasmore than

one parameter. The estimation process in the first case is straightforward and is outlined in the following steps:

1. Take a range of values for a.

2. For each value of a from Step 1, compute the GLS estimator of b using weights defined by fi (a).

3. Compute theGeneralized Sums of Squares (GSS) ŝ2 for each ða; b̂Þ pair. The expression for ŝ2 can be derived by equating

S(s2) to zero and solving for s2. The GSS is given by

ŝ2 ¼
1

n

X

n

i¼1

ðyi�xTi b̂Þ
2

fiðaÞ
:

4. Finally, calculate the value of the log-likelihood equation at ða; b̂;s2Þ. A plot of the log-likelihood values versus a can be

used to locate the optimal value of a. Weighted least squares can then be performed by using weights defined by fi(a).

ALPHA_S

The value of alpha is 1.7622762

ITER

Convergence was obtained in 18 iterations.

The estimates of the coefficients are

STAT_TABLE

BHAT SE

INT –130.384 143.9658

AGE –2.7754 3.9523

OWNRENT 59.1258 60.5929

INCOME 169.7363 75.6177

INCOME2 –8.5995 9.2446

OUTPUT 12.1. Iterative FGLS estimators for the credit card expenditure data.
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Wewill illustrate the computations involvedusing the credit card data set thatwas used inChapter 5.Wedefine fi(a)¼ income
a

and then take a range of values of a and follow steps 1 through 4 to calculate the maximum likelihood estimator of b under

heteroscedasticity.

The plot of the log-likelihood versusa appears in Figure 12.1. Program 10 inAppendix E contains the complete code to create

theplot.Note that the log-likelihood ismaximized around3.6.The exact valueofa thatmaximizes the log-likelihood function can

easily be found by various techniques using SAS.

The exact value of a that maximizes the log-likelihood is 3.651 and the value of the log-likelihood at this value of a is

�482.324. To get the MLE estimates of b, use Proc Reg with weights¼ 1/income3.651. The output from this analysis is given in

Output 12.2.Note that the standard errors that appear in this output are not based on theGSS.Toget the correct standard errors, use

Proc IML to first compute theGSSusing the optimal values ofa andb. Thenuse the fact that thevariance–covariancematrix for b̂
is given byVarðb̂jXÞ ¼ ŝ2ðXTV̂

�1
ðaÞXÞ�1

. The correct standard errors are (113.06, 2.76, 43.51, 81.04, and 13.43). Program 11

in Appendix E contains the complete IML code to conduct this analysis.

12.3 HARVEY’S MULTIPLICATIVE HETEROSCEDASTICITY

The previous section dealt withMLE estimates assuming thata has a single parameter. As shown inGreene (2003, pp. 232–235),

the case where a has more than one parameter is a straightforward extension of the maximum likelihood estimation used for the

previous case.Harvey’smodel ofmultiplicativeheteroscedasticity can beused to calculate the estimates of themodel parameters.

In the procedure, zTi ¼ ½1; qTi �, where qi consists of the variables suspected of causing heteroscedasticity. In the credit card

example, qTi ¼ ½income; incomesq�. An iterated scoring method is used to estimate the parameters in the model

logðs2
i Þ ¼ logðs2ÞþaTzi. The intercept at convergence can be used to estimate s2. Details of the scoring method and the

formulas are provided in Greene (2003) and are summarized here.

Alpha

0                 1                 2                 3                 4                 5
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FIGURE 12.1. Plot of log-likelihood at various values of a for the credit card data set.
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The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

The REG Procedure
Model: MODEL1

Dependent Variable: AvgExp AvgExp

Number of Observations Read 72

Number of Observations Used 72

Weight: wt

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 4 13826 3456.42517 5.35 0.0008

Error 67 43278 645.94103

Corrected Total 71 57104

Root MSE 25.41537 R-Square 0.2421

Dependent Mean 128.76438 Adj R-Sq 0.1969

Coeff Var 19.73789

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 –19.26287 117.20218 –0.16 0.8699

Age Age 1 –1.70608 2.85938 –0.60 0.5527

OwnRent OwnRent 1 58.10399 45.10486 1.29 0.2021

Income Income 1 75.98559 84.00591 0.90 0.3690

Income_Sq 1 4.38904 13.92426 0.32 0.7536

OUTPUT 12.2. Regression analysis of the credit card expenditure data using optimal value of a.

1. Estimate b using OLS and calculate logðe2i Þ.

2. Regress logðe2i Þ versus zi to get estimates of the intercept and a.

3. Estimate s2
i with exp(log(s2) þ aT

zi).

4. Use FGLS to estimate b.

5. Update both log(s2) and b. The formulas are given in Greene (2003, p. 234).

6. Stop the iteration process if the differences between the estimated values across the two periods are negligible.

Program12 inAppendixEgives the complete code for conducting this analysis. The codewaswritten to analyze the credit card

data set from Greene (2003). The following weight function was used:

s2
i ¼ expðlogðs2Þþa1incomeþa2incomesqÞ:

The analysis results are given in Output 12.3.

An estimate of s2 is given by ŝ2 ¼ expð�0:042997Þ ¼ 0:957914. Again, we can use this along with the expression of the

variance–covariance matrix of b̂ to generate the standard errors of the regression coefficients.

12.4 GROUPWISE HETEROSCEDASTICITY

In this section, wewill discuss groupwise heteroscedasticity. That is, the casewhere the homoscedasticity assumption is violated

because of the unequal variance of the disturbances between the groups. To motivate the discussion, consider analyzing the

airlines data from Greene (2003) using the model

lnðCÞ ¼ b1 þb2lnðQÞþb3LFþb4lnðPFÞþ «:
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This data set was used extensively to illustrate basic panel datamodels inChapter 7. The least squares residualswas plotted for

each airline and appear in Figures 12.2 and 12.3.

Airlines 3, 4, and 6 exhibit more variability in the disturbances than the other airlines. We therefore suspect that the model

suffers from groupwise heteroscedasticity. A formal test to check this can be conducted by using the likelihood ratio test given by

(Greene, 2003, p. 236).

x2
0 ¼ nlnðs2Þ�

X

K

i¼1

nis
2
i :

ALPHA

The value of alpha is –0.042997

5.3553578

–0.563225

I

Convergence was obtained in 67 iterations.

The estimates of the coefficients are

STAT_TABLE

BHAT SE

INT –58.4173 60.7722

AGE –0.3763 0.5383

OWNRENT 33.3545 36.3445

INCOME 96.8136 31.1198

INCOME2 –3.7999 2.5688

OUTPUT 12.3. Maximum likelihood estimates using a multivariate value of a.
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FIGURE 12.2. Time series plot of least squares residuals of individual airlines.
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FIGURE 12.3. Side-by-side comparison of the least squares residuals of airlines.

This test statistic is a slightmodification of theBartlett test statistic to comparevariances (Snedecor andCochran, 1983).Here,

s2 is themean square error (MSE)when the data set is pooled across theK groups and s2i are the group-specificmean square errors.

Under the null hypothesis of homoscedasticity, the test statistic x2
0 has a chi-squared distribution with K� 1 degrees of freedom.

For the model given above, the value of x2
0 equals 107.4 and the null hypothesis of homoscedasticity is therefore rejected.

Another test that can be used to check for groupwise heteroscedasticity is the test by Bartlett (Snedecor and Cochran, 1983),

which is given by

x2
0 ¼

ðn�KÞlnðs2Þ�
P

K

i¼1

ðni�1Þlnðs2i Þ

1þ 1
3ðK�1Þ

P

K

i¼1

1
ni�1

� �

� 1
n�K

� � :

The term in the numerator is theBartlett test statistic for comparingvariances and is very similar to the test statistic givenabove.

In general, a groupwise heteroscedasticitymodel is characterized by a common coefficients vector (or slopevector) across the

K groups but different within-group disturbance variances. That is, a model with the form (Greene, 2003, p. 235)

yi ¼ xTi bþ «i; i ¼ 1; . . . ; n;

Varð«ikjxiKÞ ¼ s2
K ; i ¼ 1; . . . ; nK :

If thewithin-groupvarianceswithin eachgroupareknown, thenonecanuseGLSestimation to calculate anestimateof the least

squares parameter.However, inmost cases thiswill be unknown and estimationwill need to be done usingFGLS.That is, the least

squares estimates can be computed using

b̂ ¼
X

K

i¼1

1

ŝ2
i

XT
i Xi

" #�1
X

K

i¼1

1

ŝ2
i

XT
i yi

" #

:

The within-group residuals vector, ei can be used to calculate ŝ2
i (i¼ 1, . . ., K). That is,

ŝ2
i ¼

eTi ei

ni
; i ¼ 1; . . . ; K:
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The following statements can be used to analyze the airlines data set under thegroupwise heteroscedasticity assumption for the

model

lnðcostitÞ ¼ b1 þb2lnðoutputitÞþb3LoadFactorit þb4lnðFuelPriceitÞ
þa2Firm2 þa3Firm3 þa4Firm4 þa5Firm5 þa6Firm6 þ «it:

Weare assuming that a temporarySASdata set“airline”with the appropriate transformations anddummyvariables has already

been created.

Step 1: Conduct an OLS to calculate the residuals. The following statements can be used.

proc reg data=airline;

model LnC=LnQ LnPF LF delta2 delta3 delta4 delta5 delta6;

output out=resid r=resid;

run;

Step 2: Calculate the within-group estimate of the disturbance variance. The following statements can be used.

data get_resid;

set resid;

temp=resid*resid;

run;

proc univariate data=get_resid noprint;

var temp;

by i;

output out=out sum=sum n=n;

run;

data get_var;

set out;

var=sum/n;

run;

Step 3: Merge the original data set with the data set that contains the within-group variances, calculate the weights, and

estimate the parameters.

data final_analysis;

merge airline(in=a) get_var(in=b);

by i;

if a and b;

weight=1/var;

run;

proc reg data=final_analysis;

model LnC=LnQ LnPF LF delta2 delta3 delta4 delta5 delta6;

weight weight;

run;

The results of the analysis are given in Output 12.4. The first part of the output includes the traditional OLS model without

adjusting for the different within-group disturbance variances.

Another estimationmethod involves treating this model as a form of Harvey’s multiplicative heteroscedasticity model with zi
equal to the set ofK� 1 dummy variables. Program 13 inAppendix E contains the IML code for analyzing the airlines data using

the Harvey’s multiplicative heteroscedasticity approach (Output 12.5). Here, zi contains K� 1 dummy variables.
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The REG Procedure
Model: MODEL1

Dependent Variable: LnC

The REG Procedure
Model: MODEL1

Dependent Variable: LnC

Number of Observations Read 90

Number of Observations Used 90

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 8 113.74827 14.21853 3935.80 <0.0001

Error 81 0.29262 0.00361

Corrected Total 89 114.04089

Root MSE 0.06011 R-Square 0.9974

Dependent Mean 13.36561 Adj R-Sq 0.9972

Coeff Var 0.44970

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 9.70594 0.19312 50.26 <0.0001

LnQ 1 0.91928 0.02989 30.76 <0.0001

LnPF 1 0.41749 0.01520 27.47 <0.0001

LF LF 1 –1.07040 0.20169 –5.31 <0.0001

delta2 1 –0.04124 0.02518 –1.64 0.1054

delta3 1 –0.20892 0.04280 –4.88 <0.0001

delta4 1 0.18456 0.06075 3.04 0.0032

delta5 1 0.02405 0.07990 0.30 0.7641

delta6 1 0.08706 0.08420 1.03 0.3042

Number of Observations Read 90

Number of Observations Used 90

Weight: weight

Analysis of Variance

Source DF
Sum of

Squares
Mean

Square F Value Pr > F

Model 8 46047 5755.82865 5526.84 <0.0001

Error 81 84.35595 1.04143

Corrected Total 89 46131

Root MSE 1.02051 R-Square 0.9982

Dependent Mean 13.47897 Adj R-Sq 0.9980

Coeff Var 7.57109

Parameter Estimates

Variable Label DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept Intercept 1 9.94232 0.16229 61.26 <0.0001

LnQ 1 0.92577 0.02678 34.57 <0.0001

LnPF 1 0.40561 0.01255 32.32 <0.0001

LF LF 1 –1.21631 0.18559 –6.55 <0.0001

delta2 1 –0.04603 0.02376 –1.94 0.0562

delta3 1 –0.20210 0.03615 –5.59 <0.0001

delta4 1 0.19055 0.05516 3.45 0.0009

delta5 1 0.03717 0.07044 0.53 0.5992

delta6 1 0.09459 0.07436 1.27 0.2070

OUTPUT 12.4. Groupwise heteroscedasticity estimators for the airlines data.



12.5 HAUSMAN–TAYLOR ESTIMATOR FOR THE RANDOM EFFECTS MODEL

Basic panel data models including both fixed and random effects models have been discussed in Chapter 7. A fundamental

assumption in random effects models is that the unobserved subject-specific heterogeneity is independent of the observed

explanatory variables. In reality, it is rare that this assumption holds. For example, both Baltagi (2005, p. 128) and Greene

(2003, p. 305) give an example of a study where the interest is to gauge the impact of years of schooling on earnings. It is well

known that a subject’s motivation and desire (both assumed unobserved) are highly correlated to academic success and,

therefore, to the subject’s number of years of formal schooling. The random effects model cannot be used here since the

independence assumption between the unobserved heterogeneity (motivation, desire) and observed explanatory variable

(number of years of schooling) is correlated. As discussed in Greene (2003), most often these models have explanatory

variables that are time invariant. That is, we may be interested in drivers such as gender, race, marital status, and so on with

respect to their impact on earning’s potential. However, fixed effects models cannot incorporate time-invariant explanatory

variables as they are “swept” from the model. Suppose that the researcher wants to include the time-invariant explanatory

variables in the model. In this case, the fixed effects model will not allow the estimation of the parameters of these time-

invariant explanatory variables.

Hausman and Taylor (1981) introduced estimation techniques for the random effects model where the unobserved subject-

specific heterogeneity is correlated with the observed explanatory variables and where there are time-invariant explanatory

variables in the model.

Hausman andTaylor’s general approach is to first partition the observed and unobserved explanatory variables into two sets. In

each set, one set of variables are exogenouswhile the other set of variables are endogenous.Using the notation fromGreene (2003,

p. 303), we can write the general form of the model as

yit ¼ xT1itb1 þ xT2itb2 þ zT1ia1 þ zT2ia2 þ eit þ ui; i ¼ 1; . . . ; n; t ¼ 1; . . . ; T :

I

Convergence was obtained in 12 iterations

The estimates of the coefficients are

ESTIMATES_GLS

BETA SE

INTERCEPT 10.0570 0.1343

LNQ 0.9283 0.0227

LF –1.2892 0.1638

LNPF 0.4000 0.0108

D2 –0.0487 0.0237

D3 –0.1996 0.0308

D4 0.1921 0.0499

D5 0.0419 0.0594

D6 0.0963 0.0631

The values of alpha are

ESTIMATES_ALPHA

ALPHA SE_ALPHA

ALPHA1 –7.0882 0.3651

ALPHA2 2.0073 0.5164

ALPHA3 0.7581 0.5164

ALPHA4 2.3855 0.5164

ALPHA5 0.5300 0.5164

ALPHA6 1.0530 0.5164

OUTPUT 12.5. Groupwise heteroscedasticity estimators for the airlines data using Harvey’s Multiplicative heteroscedasticity approach.
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Here,

1. xT1it has k1 observed explanatory variables that are time dependent and exogenous with respect to ui.

2. z1 has l1 observed individual-specific variables that are time independent and exogenous with respect to ui.

3. xT2it has k2 observed explanatory variables that are time dependent and endogenous with respect to ui.

4. z2 has l2 observed individual-specific variables that are time independent and endogenous with respect to ui.

The assumptions about the random disturbances of this model are given in Greene (2003, p. 303). Hausman and Taylor

proposed an instrumental variables approach to estimate the parameters of the general model in the presence of the endogenous

variables. The Hausman and Taylor’s approach can be outlined as follows (Baltagi, 2005, p. 126; Greene, 2003, p. 304).

We can estimateb1 andb2 by using thewithin-group estimator. However, the time-invariant explanatory variables are “swept”

from the model and so we cannot estimate a1 and a2.

Note that in thewithin-groupmodel, the time-invariant disturbance term, ui, is swept from themodel as well and, therefore,

both sets of deviations ðx1it��x1i:Þ and ðx2it��x2i:Þ are independent of ui. Hausman and Taylor recommended that these k1 þ k2
deviations be used as instruments to estimatea1 anda2. Next, since z1 is also exogenous, additional l1 instruments are available

for estimation. At this stage, the number of instruments is less than the number of parameters that need to be estimated. That is,

we have k1 þ k2 þ l1 instruments and k1 þ k2 þ l1 þ l2 parameters. As stated in Greene (2003), Hausman and Taylor show

that as long as k1� l2, the k1 group means �x1 can also be used as instruments. The complete set of instruments is, therefore,

given by

ðx1it��x1i:Þ; ðx2it��x2i:Þ; z1; �x1:

The following steps can then be taken to estimate a and b:

1. Estimateb1 andb2using x1 and x2 via thewithin-groupmodel. Estimates2
«, the variance of «it, using the residuals from this

analysis.

2. Use the estimates of b1 and b2 from step 1 to get the within-group residuals. That is, calculate �ei: ¼ �yi:��xi:b where

b ¼ ðbT1 ; b
T
2 Þ. Instrumental variable regression is then used to regress the residual group means against z1 and z2 using as

instruments z1 and x1 to provide an estimate for a1 and a2.

3. Use the mean square errors from steps 1 and 2 to estimate s2
u, the variance of ui, by using the formula s2

u ¼ s*2�s2
«=T .

Next, define the weights that will be used in FGLS estimation as

u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
«

s2
« þ Ts2

u

s

:

4. Calculate the weighted instrumental variable estimator using the weights from step 3. To proceed, first consider the row

vector wT
it ¼ ðxT1it; x

T
2it; z

T
1i; z

T
2iÞ. The transformed variables using the weights are given by the row vectors (Greene, 2003,

p. 305)

w*T
it ¼ wT

it�ð1�ûÞ�wT
i: ;

y*it ¼ yit�ð1�ûÞ�yi::

The instrumental variables are given by the row vector

vTit ¼ b ðx1it��x1iÞ
T ðx2it��x2iÞ

T
zT1i �xT1i Þc:

HAUSMAN–TAYLOR ESTIMATOR FOR THE RANDOM EFFECTS MODEL 211



Wecan then stack the rowvectors defined above to formnt� (2k1 þ k2 þ l1)matricesW*andV. LetY*be thenT� 1vector of

transformed responses. The instrumental variables estimator is, therefore, given by

ðb̂
T
; âTÞTIV ¼

�

ðW*TVÞðVTVÞ�1ðVTW*Þ

��1�

ðW*TVÞðVTVÞ�1ðW*TY*Þ

�

ðBaltagi; 2005; p: 126; Greene; 2003; p: 305Þ:

The standard errors of the coefficients can be calculated using the approaches discussed in the previous chapters.

Wewill now illustrate theHausman andTaylormethod on thePSID return to schooling data based on apanel of 595 individuals

observedover the period 1976–1982.The datawere analyzed byCornwell andRupert (1988) and then again byBaltagi (2005).As

described in Baltagi (2005, p. 128), the analysis involves regressing the log of wage on years of education (ED), weeks worked

(WKS), years of full-time work experience (EXP), occupation (OCC¼ 1, an indicator that the person is in a full-collar

occupation), location indicators SOUTH (1 if the person resides in the South), SMSA (1 if the person resides in a standard

metropolitan resident area), industry (IND¼ 1 if the person works in a manufacturing industry), marital status (MS¼ 1 if the

person is married), sex and race (FEM¼ 1 indicates that the person is a female, BLK¼ 1 indicates that the person is a black

individual), and union coverage (UNION¼ 1 if the person belongs to a union). We will compare the random effects and LSDV

model resultswith theHausman andTaylormodel.Taking an identical approach to analyzing the data as the author, the following

four groups of variables are first defined.

X1 ¼OCC, SOUTH, SMSA, IND.

X2 ¼EXP, EXP2, WKS, MS, UNION.

Z1 ¼FEM, BLK.

Z2 ¼ED.

The following statements can be used to fit a randomeffectsmodel to the data set. The analysis results are given inOutput 12.6.

proc panel data=wages;

id people year;

model lwage=EXP EXPSQ WKS OCC IND SOUTH SMSA MS FEM UNION

ED BLK/ranone;

run;

The variables EXP, EXPSQ, OCC, MS, FEM, UNION, ED, and BLK are all significant while the variables WKS, IND,

SOUTH, and SMSA are not significant. Since this is a semi-log model, we can interpret the coefficient for return to

schooling as follows: an additional year of schooling results in an 10.7% wage gain. Note that the test statistic for

Hausman’s test cannot be computed here because the fixed effects model eliminates the model FEM, BLK, and ED. If we

eliminate these variables from the model and rerun the random effects model using Proc Panel, we get a Hausman’s test

statistic value of 541.87 with 7 degrees of freedom that is highly significant. The correct degrees of freedom should be 9

since three explanatory variables were eliminated. Baltagi (2005, p. 128) gives the Hausman’s test statistic value that is

much larger than the one obtained by the Proc Panel procedure and has the correct degrees of freedom. We conducted the

Hausman’s test using Proc IML with the within-groups and random effects estimator and calculated the test statistics to be

higher than the one reported by the author. Nevertheless, the Hausman test statistic is rejected that justifies the use of an

instrumental variables approach.

As stated earlier, the random effects model does not take into account any possible correlation between the explanatory

variables and the unobserved individual subject-specific effects. Thewithin-group estimators can be calculated bymaking use of

the code provided inChapter 7—the code is also provided in the computations of theHausman–Taylor estimator. The results from

the analysis are given in Output 12.7.

As stated earlier, thewithin-groupmodel sweeps the individual effects from themodel resulting in a consistent estimator of the

parameters associated with the time-dependent explanatory variables. However, the approach does not allow us to estimate the

parameters of the time-invariant effects.

The following steps can be taken to obtain the coefficients estimates under theHausman–Taylor approach.Note that Proc IML

is used in conjunction with other SAS procedures. Also note that the results are slightly off from the results presented in Baltagi

(2005, Table 7.4, p. 129). The differences are, however, very small.
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1. The groupmeans for the response variable and all explanatory variables are calculated using ProcUnivariate. The output is

stored in a temporary SAS data set called summary.

proc univariate data=wages noprint;

var occ south smsa ind exp expsq wks ms union fem blk

ed lwage;

by people;

output out=summary mean=m_occ m_south m_smsa m_ind

m_exp m_expsq m_wks m_ms m_union m_fem m_blk m_ed

m_lwage;

run;

The PANEL Procedure
Fuller and Battese Variance Components (RanOne)

Dependent Variable: LWAGE LWAGE

Model Description

Estimation Method RanOne

Number of Cross Sections 595

Time Series Length 7

Fit Statistics

SSE 149.3005 DFE 4152

MSE 0.0360 Root MSE 0.1896

R-Square 0.4284

Variance Component Estimates

Variance Component for Cross Sections 0.100553

Variance Component for Error 0.023102

Hausman Test for
Random Effects

DF m Value Pr > m

0 . .

Parameter Estimates

Variable DF Estimate
Standard

Error t Value Pr > |t| Label

Intercept 1 4.030811 0.1044 38.59 <0.0001 Intercept

EXP 1 0.087726 0.00281 31.27 <0.0001 EXP

expsq 1 –0.00076 0.000062 –12.31 <0.0001

WKS 1 0.000954 0.000740 1.29 0.1971 WKS

OCC 1 –0.04293 0.0162 –2.65 0.0081 OCC

IND 1 0.00381 0.0172 0.22 0.8242 IND

SOUTH 1 –0.00788 0.0281 –0.28 0.7795 SOUTH

SMSA 1 –0.02898 0.0202 –1.43 0.1517 SMSA

MS 1 –0.07067 0.0224 –3.16 0.0016 MS

FEM 1 –0.30791 0.0572 –5.38 <0.0001 FEM

UNION 1 0.058121 0.0169 3.45 0.0006 UNION

ED 1 0.10742 0.00642 16.73 <0.0001 ED

BLK 1 –0.21995 0.0660 –3.33 0.0009 BLK

OUTPUT 12.6. Random effects model for the wages data.
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The summary statistics are thenmergedwith the original data set to create a data setwhere the observations on each variable

are deviations from the group means. This is accomplished with the following statements.

data LSDV_Step;

merge wages(in=a) summary(in=b);

by people;

if a and b;

t_occ=occ-m_occ;

t_south=south-m_south;

t_smsa=smsa-m_smsa;

t_ind=ind-m_ind;

The REG Procedure
Model: MODEL1

Dependent Variable: t_lwage

The REG Procedure
Model: MODEL1

Dependent Variable: t_lwage

Number of Observations Read 4165

Number of Observations Used 4165

No intercept in model. R-Square is redefined.

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 9 158.38388 17.59821 889.03 <0.0001

Error 4156 82.26732 0.01979

Uncorrected Total 4165 240.65119

Root MSE 0.14069 R-Square 0.6581

Dependent Mean 8.52992E-18 Adj R-Sq 0.6574

Coeff Var 1.649418E18

Model is not full rank. Least-squares solutions for the parameters are not
unique. Some statistics will be misleading. A reported DF of 0 or B means that
the estimate is biased.

The following parameters have been set to 0, since the variables are a linear
combination of other variables as shown.

t_fem = 0

t_blk = 0

t_ed = 0

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

t_occ 1 –0.02148 0.01276 –1.68 0.0924

t_south 1 –0.00186 0.03175 –0.06 0.9533

t_smsa 1 –0.04247 0.01798 –2.36 0.0182

t_ind 1 0.01921 0.01430 1.34 0.1792

t_exp 1 0.11321 0.00229 49.49 <0.0001

t_expsq 1 –0.00041835 0.00005054 –8.28 <0.0001

t_wks 1 0.00083595 0.00055509 1.51 0.1321

t_ms 1 –0.02973 0.01757 –1.69 0.0908

t_union 1 0.03278 0.01381 2.37 0.0177

t_fem 0 0 . . .

t_blk 0 0 . . .

t_ed 0 0 . . .

OUTPUT 12.7. Within-group effects model for the wages data.
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t_exp=exp-m_exp;

t_expsq=expsq-m_expsq;

t_wks=wks-m_wks;

t_ms=ms-m_ms;

t_union=union-m_union;

t_fem=fem-m_fem;

t_blk=blk-m_blk;

t_ed=ed-m_ed;

t_lwage=lwage-m_lwage;

run;<?}j?>

2. Proc IML is now used to calculate the within-group estimates and the within-group mean residuals. The group mean

residuals from this step are used as a dependent variable in an instrumental variable regression against z1 and z2 with

instruments x1 and z1.

proc iml;

use wages;

use LSDV_Step;

read all var{’t_occ’, ’t_south’, ’t_smsa’, ’t_ind’,

’t_exp’, ’t_expsq’, ’t_wks’, ’t_ms’, ’t_union’} into

X;

read all var{’t_lwage’} into Y;

beta=inv(X‘*X)*X‘*Y;

summary var{occ south smsa ind exp expsq wks ms union

lwage} class{people} stat{mean} opt{save};

Y_M=lwage;

X_M=occ||south||smsa||ind||

exp||expsq||wks||ms||union;

e=Y_M-X_M*beta;

create e_data from e;

append from e;

run;

3. A new data set is created with the within-group mean residuals and the explanatory variables for the purpose of doing the

instrumental variables regression. The following statements can be used.

data e_data;

set e_data;

people=_n_;

run;

data step2;

merge wages(in=a) e_data(in=b);

by people;

if a and b;

rename col1=e_mean;

run;

The instrumental variable regression is done by using Proc Model. The following statements can be used. The analysis

results are given in Output 12.8.

proc model data=step2;

endo ed;

instruments fem blk occ south smsa ind;

e_mean=beta2*fem+beta3*blk+beta4*ed;
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The MODEL ProcedureThe MODEL Procedure

Model Summary

Model Variables 4

Endogenous 3

Parameters 3

Equations 1

Number of Statements 1

Model Variables FEM BLK ED e_mean

Parameters beta2 beta3 beta4

Equations e_mean

The Equation to Estimate is

e_mean = F(beta2(FEM), beta3(BLK), beta4(ED))

Instruments 1 FEM BLK OCC SOUTH SMSA IND

NOTE: At 2SLS Iteration 1 CONVERGE=0.001 Criteria Met.

The MODEL Procedure
2SLS Estimation Summary

Data Set
Options

DATA= STEP2

Minimization Summary

Parameters Estimated 3

Method Gauss

Iterations 1

Final Convergence
Criteria

R 0

PPC 0

RPC(beta4) 3549.228

Object 0.992621

Trace(S) 1.24545

Objective Value 0.160006

Observations
Processed

Read 4165

Solved 4165

OUTPUT 12.8. Proc model output (preliminary step) to the Hausman and Taylor estimates for the wages data.
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fit e_mean/2sls;

run;

4. The final step is to calculate theweighted instrumental variables estimator. From thewithin-groups analysis, an estimate of

s2
e
is 0.0231 and from the instrumental regression analysis, an estimate of s*2 is 1.2454. These values can be used to

calculate an estimate of s2
u. That is,

ŝ2
u ¼ ŝ*2�s2

«=T

¼1:2454�0:0231=7

¼1:2421:

An estimate of the weight, û, can now be derived as follows:

û ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ŝ2
«

ŝ2
« þ Tŝ2

u

v

u

u

t

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:0231

0:0231þ 7� 1:2421

s

¼ 0:051476:

The calculation is carried out in the following data step statements in SAS. The variables are also transformed using this

weight in the following statements.

data Final_Step;

merge wages(in=a) summary(in=b);

by people;

if a and b;

sigmae=0.0231;

The MODEL Procedure

Nonlinear 2SLS Summary of Residual Errors

Equation
DF

Model
DF

Error SSE MSE Root MSE R-Square
Adj

R-Sq

e_mean 3 4162 5183.6 1.2454 1.1160 –0.1664 –0.1670

Nonlinear 2SLS Parameter Estimates

Parameter Estimate
Approx
Std Err t Value

Approx
Pr > |t|

beta2 –0.12485 0.0560 –2.23 0.0258

beta3 0.056205 0.0679 0.83 0.4080

beta4 0.358572 0.00143 250.24 <0.0001

Number of
Observations Statistics for System

Used 4165 Objective 0.1600

Missing 0 Objective*N 666.4242

OUTPUT 12.8. (Continued )
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sigmau=1.2421;

Theta=sqrt(sigmae/(sigmae+7*sigmau));

t_occ=occ-(1-theta)*m_occ;

t_south=south-(1-theta)*m_south;

t_smsa=smsa-(1-theta)*m_smsa;

t_ind=ind-(1-theta)*m_ind;

t_exp=exp-(1-theta)*m_exp;

t_expsq=expsq-(1-theta)*m_expsq;

t_wks=wks-(1-theta)*m_wks;

t_ms=ms-(1-theta)*m_ms;

t_union=union-(1-theta)*m_union;

t_fem=fem-(1-theta)*m_fem;

t_blk=blk-(1-theta)*m_blk;

t_ed=ed-(1-theta)*m_ed;

t_lwage=lwage-(1-theta)*m_lwage;

s_occ=occ-m_occ;

s_south=south-m_south;

s_smsa=smsa-m_smsa;

s_ind=ind-m_ind;

s_exp=exp-m_exp;

s_expsq=expsq-m_expsq;

s_wks=wks-m_wks;

s_ms=ms-m_ms;

s_union=union-m_union;

s_fem=fem-m_fem;

s_blk=blk-m_blk;

s_ed=ed-m_ed;

run;

Proc IML is then used to calculate the Hausman–Taylor’s estimates for the earnings equation. The analysis results are given in

Output 12.9. The model indicates that an additional year of schooling results in a 13.73% wage gain. This is significantly

different from the estimate obtained from the random effects model.

proc iml;

* Read the data into matrices.;

use final_step;read all

var{’t_occ’,’t_south’,’t_smsa’,’t_ind’,’t_exp’,

’t_exsq’,’t_wks’,’t_ms’,’t_union’,

’t_fem’,’t_blk’,’t_ed’} into W;

read all var{t_lwage} into Y;

W=J(4165,1,0.051408)||W;

read all

var{’s_occ’,’s_south’,’s_smsa’,’s_ind’,’s_exp’,

’s_expsq’,’s_wks’,’s_ms’,’s_union’,

’fem’,’blk’,’m_occ’,’m_south’,’m_smsa’,’m_ind’} into

V;

* Calculate the Hausman and Taylor estimates and standard

errors.;

HT=inv((W‘*V)*inv(V‘*V)*(V‘*W))*((W‘*V)*inv(V‘*V)*(V‘

*y));

MSE=(y-W*HT)‘*(y-W*HT)/(4165);

SE=SQRT(vecdiag(MSE*inv((W‘*V)*inv(V‘*V)*(V‘*W))));

run;
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The Hausman & Taylor Estimates are

TABLE1

BHAT SE

INTERCEPT 2.2098 0.2712

OCC –0.0209 0.0135

SOUTH 0.0052 0.0319

SMSA –0.0419 0.0189

IND 0.0152 0.0150

EXP 0.1132 0.0024

EXP_SQ –0.0004 0.0001

WKS 0.0008 0.0006

MS –0.0298 0.0186

UNION 0.0328 0.0146

FEM –0.1291 0.1481

BLK –0.2852 0.1798

ED 0.1373 0.0282

OUTPUT 12.9. Hausman and Taylor estimates of the wages equation.

12.6 ROBUST ESTIMATION OF COVARIANCE MATRICES IN PANEL DATA

The panel datamodels discussed in Chapter 7were based on the assumption of homoscedastic disturbances. This section extends

the discussion to heteroscedasticity in panel data models. We will focus our attention on the robust estimation of the covariance

matrix for fixed effects models and will use the Proc Panel procedure to calculate various robust estimates of the covariance

matrix. We illustrate the various techniques by revisiting the cost of US airlines data set from Greene (2003).

The HCCME option in Proc Model can be adjusted to generate robust estimates of the variance–covariance matrix. The

various options are given below (The Panel Procedure, p. 58, SAS Institute, Inc.). Also see the discussion on heteroscedasticity

in Chapter 5.

If we do not specify the HCCME option, then the analysis will default the OLS estimate of the covariance matrix. The OLS

output for the airlines data has been given in Chapter 7.

HCCME¼ 0: This yields the White’s estimator

1

nT

X

nT

i¼1

«̂2i xix
T
i :

HCCME¼ 1: This yields the first version of the Davidson and MacKinnon (1993) estimator where the end result of the

White’s estimator is scaled up by a factor of nT/(nT�K):

1

nT

X

nT

i¼0

nT

nT�K
«̂2i xix

T
i

� �

:

HCCME¼ 2: This yields the secondversion of theDavidson andMacKinnon (1993) estimatorwhere theWhite’s estimator is

adjusted by the diagonals of the hat matrix:

ĥi ¼ XiðX
TXÞ�1

XT
i :

The estimator is given by

1

nT

X

nT

i¼0

«̂2i

1�ĥi
xix

T
i :
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HCCME¼ 3: This yields an estimator that is similar to the second version of the Davidson andMacKinnon’s estimator. The

adjustment is now based on ð1�ĥiÞ
2
instead of ð1�ĥiÞ.

1

nT

X

nT

i¼0

«̂2i

ð1�ĥiÞ
2
xix

T
i :

HCCME¼ 4: This yields the Arellano (1987) version of the White’s estimator for panel data. The general idea involves

calculating theWhite’s estimator for each cross section in the panel (i¼ 1, . . ., n) and then taking the average of the n estimates of

the covariance matrices. See the Proc Panel Procedure (p. 58) for more details on this estimator.

Section 5.5 included a SAS program to print the various robust covariance matrices under heteroscedasticity. The code can

easily be adjusted to generate the robust covariance matrices in the panel setting.

The results of the analysis are given in Output 12.10. The diagonal elements in each covariance matrix give the variance

estimates for the parameters. Notice the similarity betweenWhite’s estimator and theDavidson andMcKinnon’s estimators. The

OLS estimators and the Arellano’s version of the White’s estimator are different from these.

12.7 DYNAMIC PANEL DATA MODELS

We now turn our attention to dynamic panel data models. That is, models that are characterized by lagged variables on the

right-hand side of the model. The general form of these models is given by Baltagi (2005, pp. 134–142) and Verbeek (2004,

pp. 360–366)

yi;t ¼ ryi;t�1 þ xTi;tbþai þ ei;t i ¼ 1; . . . ; n; t ¼ 1; . . . ; T

where yi,t is a 1� 1 scalar dependent variable, xi,t is a k� 1 vector of explanatory variables, and r and b are 1� 1 and k� 1

parameters that need to be estimated. The term ai is the unobserved subject-specific heterogeneity and «i,t is the disturbance.

The subscripts i and t index the subjects and the time period, respectively. As shown by Verbeek (2004, p. 361), the use of

lagged dependent variables on the right-hand side of the model introduces estimation problems, more specifically, with the

fixed effect model estimator becoming biased regardless of whether ai is treated as fixed or random. This section focuses on

methods based on generalizedmethods of moments estimation (GMM) that can be used to estimate the parameters in dynamic

panel data models.

Obs _TYPE_ _NAME_ LnQ LnPF LF

1 OLS LnQ 0.000893416 –0.000317817 –0.00188

2 OLS LnPF –0.000317817 0.000231013 –0.00077

3 OLS LF –0.001884262 –0.000768569 0.04068

4 HCCME0 LnQ 0.000365016 –0.000125245 –0.00031

5 HCCME0 LnPF –0.000125245 0.000183132 –0.00169

6 HCCME0 LF –0.000306158 –0.001690757 0.04692

7 HCCME1 LnQ 0.000405574 –0.000139161 –0.00034

8 HCCME1 LnPF –0.000139161 0.000203480 –0.00188

9 HCCME1 LF –0.000340176 –0.001878619 0.05214

10 HCCME2 LnQ 0.000397411 –0.000134190 –0.00034

11 HCCME2 LnPF –0.000134190 0.000192432 –0.00178

12 HCCME2 LF –0.000337505–0.001783683 0.04989

13 HCCME3 LnQ 0.000435062 –0.000144422 –0.00038

14 HCCME3 LnPF –0.000144422 0.000202471 –0.00188

15 HCCME3 LF –0.000378817 –0.001881047 0.05310

16 HCCME4 LnQ 0.000870151 0.000062860 –0.00794

17 HCCME4 LnPF 0.000062860 0.000301454 –0.00164

18 HCCME4 LF –0.007938291 –0.001642741 0.14797

OUTPUT 12.10. HCCME estimators for the airlines data set.
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12.7.1 Dynamic Panel Data Estimation

The estimation technique is based on the class of GMM estimators introduced by Arnello and Bond (1991). They proposed an

estimation method based on instrumental variables estimation. As will be seen, the authors took advantage of the independence

between the laggedvaluesof thedependent variable and thedisturbances.Theirgeneralmethodand formulas canbe found inmost

intermediate–advanced texts on econometrics. I have found Baltagi (2005), Greene (2003), and Verbeek (2004) very useful in

understanding themechanics of theArellano andBond estimator. TheProc Panel documentation fromSAS Institute, Inc. is also a

good reference as it summarizes the key steps and formulas in the estimation process.

A discussion of GMM estimators is beyond the scope of this book (see the above mentioned texts for details). In general,

assuming the classical linear model y¼Xb þ e where X is suspected of being endogenous and where there is a matrix of

instruments Z, the GMM estimator takes the form

b̂ ¼ ðXTZWZTWÞ�1
XTZWZTy

whereW is called theweights matrix and is chosen tominimize the asymptotic covariance of b̂. GMMestimation is usually done

in two steps using an initial weight matrix (not optimal) in step 1. The optimal weight matrix is then formed using the residuals

from step 1 to calculate the second step GMM estimator.

The estimation steps are best understood by considering a basic dynamic panel data model without exogenous variables.

Consider the following simple autoregressive random effects panel model (Baltagi, 2005, p. 136; Verbeek, 2004, p. 361):

yi;t ¼ ryi;t�1 þai þ «i;t; i ¼ 1; . . . n; t ¼ 1; . . . ; T ;

where ai and «i,t are independently and identically distributed disturbances with variances s
2
a and s

2
«, respectively. Furthermore,

assume that ai and «i,t are independent of each other.

An initial approach is to take the first differences since this “sweeps” the unobserved individual effects ai from the model

resulting in

yi;t�yi;t�1 ¼ rb yi;t�1�yi;t�2cþ b«i;t�«i;t�1c:

However, theOLS estimator of rwill still be biased and inconsistent sinceCov(yi,t�1,«i,t�1) 6¼ 0. To see how instrumental variable

estimation can be used to estimate r, consider the differencemodel at t¼ 1, 2, . . .. Obviously, this model is valid for the first time

when t¼ 3. The difference model is given by

yi;3�yi;t�2 ¼ rb yi;2�yi;1cþ b«i;3�«i;2c:

Here, yi,1 is avalid instrument since it is highly correlated to y2,i� y1,ibut is uncorrelated to«i,3� «i,2. Further,we can see that at

t¼ 4, the differenced model is

yi;4�yi;3 ¼ rb yi;3�yi;2cþ b«i;4�«i;3c

and now both yi,1 and yi,2 are valid instruments as both are uncorrelated with «i,4� «i,3. In this fashion, we see that the set of

instrumental variables for a given time period t is yi,1, . . ., yi,t�2, i¼ 1, . . ., n (Baltagi, 2005, p. 137).

If Zi denotes the p� (T� 2) matrix of instruments for the i th subject, then it is easy to see that

ZT
i ¼

yi;1 0 0 . . . . . . 0

0 yi;1 0 . . . . . . 0

0 yi;2 0 . . . . . . 0

0 0 . . . . . . . . . 0

..

. ..
. . .

. . .
.

0 yi;1

..

. ..
. . .

. . .
.

0 yi;2

..

. ..
. . .

. . .
.

0 ..
.

0 0 . . . . . . . . . yi;T�2

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

:
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The number of rows in Zi equals p ¼
PT�2

t¼1 t. If we combine the instrument variables matrix for all cross sections, we have

ZT ¼ ZT
1 ZT

2 . . . ZT
n
�

�

.

The weight matrix for the first-step estimator is given by ZTHZ with Hi¼ diag[H1, . . ., Hn] where

Hi ¼

2 �1 0 . . . 0

�1 2 �1 . .
. ..

.

0 . .
. . .

. . .
.

0

..

. . .
.

�1 2 �1

0 . . . 0 �1 2

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

:

The (T� 2)� (T� 2) matrix Hi can be constructed as follows:

1. For the ith cross section, denote the vector of differenced residuals, Dei as

Dei ¼ ð«i;3�«i;2; . . . ; «i;T�«i;T�1Þ:

2. The diagonal elements of the matrix are given by EðD«2i;tÞ ¼ 2s2
« while the off-diagonal elements are given by

EðD«i;tD«i;t�1Þ ¼ �s2
«, and E(D«i,tD«i,t�s)¼ 0 for S� 2.

Notice that s2
« cancels out in the subsequent steps and is therefore not included in Hi. If we denote the T� 2 difference

terms for all n cross sections as Dy, Dy�1, and De, we can write the difference model as Dy¼ rDy�1 þ De, then Arellano

and Bond’s first-step estimator is given by

r̂GMM1 ¼ DyT�1ZðZ
THZÞ�1

ZT
Dy�1

h i�1

� DyT�1ZðZ
THZÞ�1

ZT
Dy

h i

:

The residuals from this step are given by

Dê
1
i ¼ Dyi�r̂GMM1Dyi;�1 for i ¼ 1; . . . ; n

and are used to construct the weight matrix for the second-step estimator. That is, if we let V̂ ¼ DêDê
T , then the weight

matrix for the second-step estimator is given by ZTV̂Z. Arellano and Bond’s second-step estimator is given by

r̂GMM 2 ¼ DyT�1ZðZ
TV̂ZÞ�1

ZT
Dy�1

h i�1

� DyT�1ZðZ
TV̂ZÞ�1

ZT
Dy

h i

:

The following computational formulas for the various terms in theGMMcalculations are usefulwhen programming the

estimation method in Proc IML.

ZTHZ ¼
X

n

i¼1

ZT
i HiZi;

DyT�1Z ¼
X

n

i¼1

DyTi;�1Zi;

and

DyTZ ¼
X

n

i¼1

DyTi Zi:

Wewill illustrate the GMMmethod for this simple model on the cigar.txt panel data used by Baltagi and Levin (1992).

Consider the model (see Baltagi, 2005, pp. 156–158)

lnCi;t ¼ rlnCi;t�1 þai þ «i;t i ¼ 1; . . . ; 46; t ¼ 1; . . . ; 30:

As discussed by the author, the data set consists of real per capita sales of cigarettes (Ci,t) in 46 states (n¼ 46) between

1963 and 1992 (T¼ 30). Themodel contains the lag of this endogenous variable and therefore an OLS estimate of rwill be
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inconsistent. The authors fit a more complex dynamic panel model, whichwill be discussed subsequently. For themoment,

we are interested in estimating the basic model given above.

Program 14 in Appendix E contains the complete Proc IML code for estimating both a one- and a two-step GMM estimate

for r. We leave it as an exercise to verify that the coefficients from the two GMM procedures give values of 1.031457 and

1.031563, respectively. It is very easy to extract the standard errors of the first- and second-step estimators andwe leave the

details as an exercise for the reader.

12.7.2 Dynamic Panel Data Models with Explanatory Variables

We now turn our attention to dynamic panel data models with explanatory variables. The general form of the model was given in

the earlier section. The Arellano and Bond (1991) GMM estimator used in the simple model with no explanatory variables can

easily be modified to the case involving explanatory variables.

As before, note that the presence of lagged variables on the right-hand side leads to biased and inconsistent estimators

of the parameters. We proceed by taking the first difference of the model and observing the following relationship:

yi;t�yi;t�1 ¼ r yi;t�1�yi;t�2 þ xTi;t�xTi;t�1

h i

bþ
i h

«i;t�«i;t�1

h i

:

OLS cannot be used here to estimate the parameters becauseCov(yi,t�1,«i,t�1) 6¼ 0. Also note that the difference relationship is

observed for the first time when t¼ 3 and is given by

yi;3�yi;2 ¼ r½yi;2�yi;1� þ ½xTi;3�xTi;2�bþ ½«i;3�«i;2�:

Earlier, we saw that yi,1 can be used as an instrument for yi,2� yi,1 because it is highly correlated with it and is uncorrelated to

«i,3� «i,2. Assuming that the explanatory variables are strictly exogenous, we can use all of them as additional instruments for

estimating the parameters. That is, the instrumental variables matrix Zi is given by

Zi ¼

yi;1; x
T
i;1; . . . ; x

T
i;T

h i

0 . . . 0

0 yi;1; yi;2; x
T
i;1; . . . ; x

T
i;T

h i

. . . 0

..

. ..
. . .

. ..
.

0 . . . yi;1; . . . ; yi;T�2; x
T
i;1; . . . ; x

T
i;T

h i

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

Under the assumption that the explanatory variables are predetermined, we know that E(xi,s«i,t)¼ 0 for s< t and 0 otherwise.

Therefore, we can use xi,t as instruments up to the same time period as the error term. That is, at time s, only xTi;1; . . . ; xTi;s�1 are

valid instruments in the first differenced equation.Thematrix of instrumentsZi in the predetermined case is givenbyArellano and

Bond (1991) and Baltagi (2005, p. 140):

Zi ¼

yi;1; x
T
i;1; x

T
i;2

h i

0 . . . 0

0 yi;1; yi;2; x
T
i;1; x

T
i;2; x

T
i;3

h i

. . . 0

..

. ..
. . .

. ..
.

0 . . . yi;1; . . . ; yi;T�2; x
T
i;1; . . . ; x

T
i;T�1

h i

2

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

5

:

The following formulation of the GMM estimator assumes that the explanatory variables are predetermined. The

Arellano–Bond estimation method in the more general case involves first constructing Zi as defined above along with Hi

(see Section 12.7.1). The weight matrix for the first-step GMM estimator is given by ZTHZ where Z andH are as defined in
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Section 12.7.1. Next, for the i th deviation, stack all the deviations and construct Xi and Yi as follows:

Xi ¼

Dyi;2 DxTi;3

Dyi;3 DxTi;4

..

. ..
.

Dyi;T�1 DxTi;T

2

6

6

6

6

6

4

3

7

7

7

7

7

5

andYi ¼

Dyi;3

Dyi;4

..

.

Dyi;T

2

6

6

6

6

4

3

7

7

7

7

5

:

Stacking Xi, Yi for all cross sections, we have

Z ¼

Z1

Z2

..

.

Zn

2

6

6

6

6

4

3

7

7

7

7

5

; X ¼

X1

X2

..

.

Xn

2

6

6

6

6

4

3

7

7

7

7

5

; andY ¼

Y1

Y2

..

.

Yn

2

6

6

6

6

4

3

7

7

7

7

5

:

Therefore, the Arellano–Bond first-step estimator is given by

d̂GMM1 ¼ ½XTZðZTHZÞ�1
ZTX��1½XTZðZTHZÞ�1

ZTY�:

The residuals from the first-step GMM analysis is given by

Dê
1
i ¼ Yi�Xid̂GMM1

and is used to create the optimal weight matrix ZTV̂Z where V̂ ¼ DêDê
T and is used in place of ZTHZ to generate the two-step

Arellano–Bond GMM estimator

d̂GMM 2 ¼ ½XTZðZTV̂ZÞ�1
ZTX��1½XTZðZTV̂ZÞ�1

ZTY�:

Weillustrate theArellano andBondGMMestimationmethod in thegeneral case on the cigar.txt panel data used byBaltagi and

Levin (1992). Consider the full model (Baltagi, 2005, p. 156) given by

lnCi;t ¼ rlnCi;t�1 þb1lnPi;t þb2lnYi;t þb3lnPni;t þai þ «i;t

with i¼ 1, . . ., 46 and t¼ 1, . . ., 30.Here, i and t index the states and the time periods, respectively.As described by the author,Ci,t

is the average number of packs of cigarette sales per person over the age of 14,Pi,t is the average retail price of a pack of cigarettes,

Yi,t is the disposable income, and Pni,t is the minimum price of cigarettes in the adjoining states.

Program 15 in Appendix E contains the complete Proc IML code for estimating the cigarette panel data model using the

Arellano–Bond method. The reader is asked to verify that the first-step estimates are r¼ 0.799 b1¼�0.259, b2¼ 0.138,

and b3¼ 0.065 and that the second-step estimates are r¼ 0.79, b1¼�0.26, b2¼ 0.139, and b3¼ 0.033. It is very easy to

extract the standard errors of the first- and second-step GMM estimators. We leave the details as an exercise for the reader.

12.8 HETEROGENEITYAND AUTOCORRELATION IN PANEL DATA MODELS

This section dealswith analyticalmethodswhere the subjectsmaybe correlatedwith each other andwhere heterogeneity is due to

significant differences between thewithin subject (cross section) variances.Wewill also look at the case of autocorrelationwhere

the correlation is across the time periods.As discussed inGreene (2003, p. 320), a formulation of themodel,where the conditional

mean is assumed to be the same across the cross sections, can be written as

yit ¼ xTitbþ «it or yi ¼ Xibþ «i;
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where i indexes the subjects and t indexes time and we assume that each Xi is exogenous. Stacking the equations across the n

subjects yields Y¼Xb þ e where Y is nT� 1, X is nT� k, b is k� 1, and e is nT� 1.

If we assume that the subjects are correlatedwith each other and that there is correlation across the time periods aswell, then

for the (i, j)th subjects, Eðeie
T
j jXÞ ¼ Vij. The cross-sectional variance across groups can therefore be written as

EðeeT jXÞ ¼ V ¼

V11 V12 . . . V1n

V21 V22 . . . V2n

..

. ..
. . .

. ..
.

Vn1 Vn2 . . . Vnn

2

6

6

6

6

4

3

7

7

7

7

5

:

As shown in Greene (2003), each Vij is a T� T matrix that incorporates both the cross-sectional and the cross-period

correlations. For the case where there is no correlation across the time periods, the above can be rewritten as

EðeeT jXÞ ¼ V ¼

s11I s12I . . . s1nI

s21I s22I . . . s2nI

..

. ..
. . .

. ..
.

sn1I sn2I . . . snnI

2

6

6

6

6

4

3

7

7

7

7

5

where the sij’s capture the cross-sectional correlations.

12.8.1 GLS Estimation

As stated in Greene (2003, p. 321), the full generalized linear regression model using V consists of nT(nT þ 1)/2 unknown

parameters. Estimation is not possiblewithnTobservations unless restrictions are placedon theseparameters.A simple restriction

is to assume that there is no correlation across timeperiods that givesus the simplifiedversionofVgivenabove. Ifwe letS¼bsijc,
then we can rewrite the variance–covariance matrix as V¼S� I. Using the methods from Chapter 5, we can write the GLS

estimator of b as

b̂GLS ¼ ðXTV�1
XÞ�1

XTV�1
y:

As shown by Greene (2003), if we let V�1¼S�1� I¼bsijc� I, then the GLS estimator is

b̂GLS ¼
X

n

i¼1

X

n

j¼1

sijXT
i Xj

" #�1
X

n

i¼1

X

n

j¼1

sijXT
i yj

" #

with asymptotic variance given by

Asy:Varðb̂GLSÞ ¼ ðXTV�1
XÞ�1:

12.8.2 Feasible GLS Estimation

Inpractice,V is unknownandhas tobeestimatedusingFGLSmethods estimators.Theanalysis is done in twosteps. In step1,OLS

is used on the stackedmodel to obtain the residuals. Estimates ofsij are given by ŝij ¼ eTi ej=T (Greene, 2003, p. 322).With ŝij in

hand, the FGLS estimators can easily be calculated.

The groupwise heteroscedasticity estimator that was discussed in Chapter 5 is a special case of the FGLS estimator here

with the off-diagonal elements of S equal to 0. Here, we are assuming that there is no cross-sectional correlation and no

correlation across the time periods. However, the cross-sectional variances are significantly different from each other.
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Using the methods from Chapter 5, the groupwise heteroscedasticity estimator is given by Greene (2003, p. 323):

b̂GLS ¼
X

n

i¼1

1

s2
i

XT
i Xi

" #�1
X

n

i¼1

1

s2
i

XT
i yi

" #

:

Estimatingsi as before and using it in the above equation gives the FGLS estimator.Wewill now illustrate the steps involved in

the Grunfeld data set. The Proc IML code is given below.

Proc IML;

*Read the data into appropriate matrices;

Use SUR;

Read all var{’F’ ’C’} into X;

Read all var{’I’} into Y;

*Store the dimensions of X;

r=nrow(X);c=ncol(X);

*Append a column of 1’s to X;

X=J(r,1,1)||X;

*Conduct OLS to get pooled OLS model and calculate the residuals;

*This is step 1 of the procedure;

BHAT1=inv(X‘*X)*X‘*Y;

E1=Y-X*BHAT1;

*Conduct the groupwise heteroscedastic analysis.;

*This is step 2 of the procedure;

compt=1;

M=5;

T=20;

Temp0=0;Temp1=shape(0,3,3);Temp2=shape(0,3,1);

do i=1 to M;

Temp0=E1[compt:compt+t-1,1]‘*E1[compt:compt+t-1,1]/T;

Temp1=Temp1+1/Temp0*X[compt:compt+t-

1,1:3]‘*X[compt:compt+t-1,1:3];

compt=compt+t;

end;

compt=1;

do i=1 to M;

Temp0=E1[compt:compt+t-1,1]‘*E1[compt:compt+t-1,1]/T;

Temp2=Temp2+1/Temp0*X[compt:compt+t-

1,1:3]‘*Y[compt:compt+t-1,1];

compt=compt+t;

end;

BHAT_GRP=inv(Temp1)*Temp2;

Print ’The Groupwise Heteroscedastic Parameter Estimates

Are’;

Print BHAT_GRP;

*Now, calculate the asymptotic covariance matrix;

Grp_Sig=Shape(0,5,1);

compt=1;

do i=1 to M;

Grp_Sig[i,1]=E1[compt:compt+t-1,1]‘*E1[compt:compt+t-

1,1]/T;

compt=compt+T;

end;

Cap_Sigma=diag(Grp_Sig);
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ID=I(T);

Omega=Cap_Sigma@ID;

Asy_Var=inv(X‘*inv(Omega)*X);

Print ’The Asymptotic Covariance Matrix Is’;

Print Asy_Var;

SE=sqrt(vecdiag(Asy_Var));

Print ’The Asymptotic Standard Errors Are’;

Print SE;

*Now, we get the residuals from the Groupwise Heterogeneity Regression;

E2=Y-X*BHAT_GRP;

*The final step is to calculate the SUR Pooled estimator.;

*The standard errors are also calculated.;

temp1=e2[1:20,1]||e2[21:40,1]||e2[41:60,1]||e2[61:80,1]||e2

[81:100,1];

countt=1;

temp1=E2[countt:t,1];

do i=2 to M;

countt=countt+t;

c=E2[countt:countt+t-1,1];

temp1=temp1||c;

end;

temp2=1/t*temp1‘*temp1;

I=I(20);

Temp3=temp2@I;

BETA_FGLS=inv(X‘*inv(Temp3)*X)*X‘*inv(Temp3)*Y;

Print ’The FGLS Parameter Estimates Are’;

Print BETA_FGLS;

Asy_Var=inv(X‘*inv(Temp3)*X);

Print ’The Asymptotic Covariance Matrix Is’;

Print Asy_Var;

SE=sqrt(vecdiag(Asy_Var));

Print ’The Asymptotic Standard Errors Are’;

Print SE;

*Now, calculate the cross-equation covariance for the SUR pooled model;

E3=Y-X*BETA_FGLS;

countt=1;

temp1=E3[countt:t,1];

do i=2 to M;

countt=countt+t;

c=E3[countt:countt+t-1,1];

temp1=temp1||c;

end;

temp2=1/t*temp1‘*temp1;

Print ’The Cross-Equation Covariance Matrix is’;

Print temp2;

run;

The analysis results are given in Output 12.11. Notice that the parameters have the same signs and similar magnitudes as the

ones obtained by OLS.

12.9 AUTOCORRELATION IN PANEL DATA

Wewill nowdealwith estimationmethodswhen thedisturbances are correlatedwithin cross sections andacross cross sections. The

simplest case is toassumethat there is nocorrelationbetween thedisturbances across cross sections.That is,Corr(«it,«js)¼ 0 if i 6¼ j.
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Next, define the AR(1) process «it¼ ri«i,t�1 þ uit for the general linear model where (see Chapter 6 and Greene, 2003,

p. 325)

Varð«itÞ ¼ s2
i ¼

s2
ui

1�r2i
:

We can use the methods of Chapter 6 to estimate b. That is,

The Groupwise Heteroscedastic Estimators are

TABLE1

BHAT SE

INTERCEPT –36.2537 6.1244

F 0.0950 0.0074

C 0.3378 0.0302

The Asymptotic Covariance Matrix is

ASY_VAR

37.507827 –0.026926 0.0095716

-0.026926 0.0000549 –0.000149

0.0095716 –0.000149 0.0009136

The FGLS Parameter Estimates for Estimator are

TABLE2

BHAT SE

INTERCEPT –28.2467 4.8882

F 0.0891 0.0051

C 0.3340 0.0167

The Asymptotic Covariance Matrix is

ASY_VAR

23.894871 –0.017291 0.0011391

-0.017291 0.0000257 –0.000047

0.0011391 –0.000047 0.0002793

The Cross-Equation Covariance Matrix is

COV

10050.525 –4.805227 –7160.667 –1400.747 4439.9887

–4.805227 305.61001 –1966.648 –123.9205 2158.5952

–7160.667 –1966.648 34556.603 4274.0002 –28722.01

–1400.747 –123.9205 4274.0002 833.35743 –2893.733

4439.9887 2158.5952 –28722.01 –2893.733 34468.976

OUTPUT 12.11. FGLS pooled estimators of the Grunfeld data.
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1. Use OLS to regress Yversus X and save the residuals e¼Y�Xb. Notice that we will have nT residuals here.

2. Estimate the within cross-section correlation ri by using

r̂i ¼

P

T

t¼2

eitei;t�1

P

T

t¼1

e2it

:

3. Transform the original data by using the Prais–Winsten approach (see Chapter 6).

4. Conduct an OLS regression of the transformed data to get

ŝ2
ui ¼

eT*ie*i

T
¼

ðy*i�x*ibÞ
Tðy*i�x*ibÞ

T
:

5. Use ŝ2
ui to get

ŝ2
i ¼

s2
ui

1�r̂2i
:

6. The FGLS estimator in the presence of within cross-section correlation is given by

b̂FGLS ¼
X

n

i¼1

1

ŝ2
i

XT
i Xi

" #�1
X

n

i¼1

1

ŝ2
i

XT
i yi

" #

:

7. The covariance matrix can be calculated in the usual way.

We analyze Grunfeld’s data using the steps just discussed. The complete IML code and output (Output 12.12) are given below.

The estimates of the coefficients along with their standard errors are given below:

Iit ¼ �26:94
ð6:89Þ

þ 0:095Fit

ð0:008Þ
þ 0:30Cit

ð0:31Þ

Proc IML;

* Read the data into matrices and calculate some constants.;

Use SUR;

Read all var{’F’ ’C’} into X;

Read all var{’I’} into Y;

r=nrow(X);c=ncol(X);

X=J(r,1,1)||X;

* This is step 1 where the OLS estimates and residuals are

calculated.;

BHAT1=inv(X‘*X)*X‘*Y;

E1=Y-X*BHAT1;

* This is the start of step 2 where the cross correlation vector

is calculated.;

compt=1;

M=5;

T=20;

rho=shape(0,M,1);

do i=1 to M;

Temp0=0;Temp1=0;

do j= compt+1 to compt+T-1;
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The least squares estimator from the first stage regression is

BETA_FIRST

–21.93625

0.1083051

0.3987988

The asymptotic variance covariance matrix is

ASY_VAR

17.9554 –0.018843 –0.023393

–0.018843 0.0000775 –0.000158

–0.023393 –0.000158 0.0012404

The standard errors from the first stage regression is

SE

4.2373813

0.0088058

0.0352189

The FGLS Parameter Estimates are

BETA_FGLS

–26.93677

0.0946555

0.2999458

The Asymptotic Covariance Matrix is

ASY_VAR

47.525774 –0.032327 0.0021717

–0.032327 0.000062 –0.000156

0.0021717 -0.000156 0.0009455

The Standard Errors are given by

SE

6.893894

0.0078736

0.0307492

OUTPUT 12.12. FGLS estimation of the Grunfeld data under the assumption of cross-correlation.
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Temp0=Temp0+E1[j,1]*E1[j-1,1];

end;

do j2= compt to compt+T-1;

Temp1=Temp1+E1[j2,1]*E1[j2,1];

end;

rho[i,1]=Temp0/Temp1;

compt=compt+t;

end;

Print ’The autocorrelation vector is’;

Print rho;

* This is step 3 where the data is transformed using the Prais

Winsten Method.;

compt=1;

new_y=shape(0,100,1);

do i=1 to M;

new_y[compt,1]=y[compt,1]*sqrt(1-rho[i,1]**2);

do j= compt+1 to compt+T-1;

new_y[j,1]=y[j,1]-rho[i,1] * y[j-1,1];

end;

compt=compt+T;

end;

compt=1;

new_x=shape(0,100,2);

do i=1 to M;

new_x[compt,1]=x[compt,2]*sqrt(1-rho[i,1]**2);

new_x[compt,2]=x[compt,3]*sqrt(1-rho[i,1]**2);

do j= compt+1 to compt+T-1;

new_x[j,1]=x[j,2]-rho[i,1] * x[j-1,2];

new_x[j,2]=x[j,3]-rho[i,1] * x[j-1,3];

end;

compt=compt+T;

end;

new_x=J(r,1,1)||new_x;

* OLS is now conducted on the transformed data.;

* The standard errors are also calculated.;

beta_first=inv(new_x‘*new_x)*new_x‘*new_y;

Print ’The least squares estimator from the first stage

regression is’;

Print beta_first;

sigma1=shape(0,M,1);

E2=new_y-new_x*beta_first;

compt=1;

do i=1 to M;

sigma1[i,1]=E2[compt:compt+t-1,1]‘*E2[compt:compt+t-

1,1]/T;

compt=compt+t;

end;

var_cov=diag(sigma1);

ID=I(T);

Omega=var_cov@ID;

Asy_Var=inv(new_X‘*inv(Omega)*new_X);

Print ’The asymptotic variance covariance matrix is’;

Print Asy_Var;

SE=sqrt(vecdiag(Asy_Var));
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Print ’The standard errors from the first stage regression

is’;

Print SE;

* The second stage FGLS estimates are now calculated.;

compt=1;

temp1=E2[compt:t,1];

do i=2 to M;

compt=compt+t;

c=E2[compt:compt+t-1,1];

temp1=temp1||c;

end;

sigma2=shape(0,M,M);

do i=1 to M;

do j=1 to M;

sigma2[i,j]=temp1[,i]‘*temp1[,i]/T;

sigma2[i,1]=sigma2[i,1]/(1-rho[i,1]**2);

end;

end;

I=I(T);

Temp3=sigma2@I;

BETA_FGLS=inv (new_X’*inv(Temp3)*new_X)*

new_X’*inv (Temp3) *new_Y;

Print ‘The FGLS Parameter Estimates Are’;

Print BETA_FGLS;

Asy_Var=inv (new_X’*inv (Temp3)*new_X);

Print ‘The Asymptotic Covariance Matrix Is’;

Print Asy_Var;

SE=sqrt (vecdiag (Asy_Var));

Print ‘The Standard Errors are given by’;

Print SE;

run;

We will now extend this analysis to the case where we cannot assume that Corr(«it,«js)¼ 0 if i 6¼ j, thus allowing

cross-sectional correlation between subjects. The steps are outlined below. See Greene (2003, pp. 324–326) for more

details.

1. Follow steps 1 through 5 from the previous case.

2. Construct S ¼ ŝ2
ij

h i

where i, j¼ 1, . . ., n.

3. The FGLS estimator in the presence of cross-sectional correlation is given by

b̂GLS ¼ ðXTV̂
�1
XÞ�1

XTV̂
�1
y

where V¼S� I.

4. The covariance matrix is given by

Varðb̂GLSÞ ¼ ðXTV̂
�1
XÞ�1:

Wewill analyze Grunfeld’s data using the above-mentioned steps. The IML code and output (Output 12.13) are given below.

Note that the code is almost identical to thecodepreviouslygiven.Theestimates of the coefficients alongwith their standarderrors

are given below.Note that the parameter estimates are comparable to the ones obtainedwhen the cross sections are assumed to be
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uncorrelated.

Iit ¼ � 16:37
ð4:77Þ

þ 0:09Fit

ð0:009Þ
þ 0:37Cit

ð0:036Þ

Proc IML;

* Read the data into matrices and calculate some constants.;

Use SUR;

Read all var{’F’ ’C’} into X;

Read all var{’I’} into Y;

The autocorrelation vector is

RHO

0.4735903

0.704354

0.8977688

0.5249498

0.8558518

The least squares estimator from the first stage regression is

BETA_FIRST

–16.84981

0.0944753

0.3780965

The asymptotic variance covariance matrix is

ASY_VAR

13.188884 –0.010868 –0.02407

–0.010868 0.0000552 –0.000131

–0.02407 –0.000131 0.001104

The standard errors from the first stage regression is

SE

3.6316504

0.0074294

0.0332267

The FGLS Parameter Estimates are

BETA_FGLS

-16.36591

0.0895486

0.3694549

OUTPUT 12.13. FGLS estimation for the case when the correlation among the errors is not zero.

AUTOCORRELATION IN PANEL DATA 233



r=nrow(X);c=ncol(X);

X=J(r,1,1)||X;

* This is step 1 where the OLS estimates and residuals are

calculated.;

BHAT1=inv(X‘*X)*X‘*Y;

E1=Y-X*BHAT1;

* This is the start of step 2 where the cross correlation vector

is calculated.;

compt=1;

M=5;

T=20;

rho=shape(0,M,1);

do i=1 to M;

Temp0=0;Temp1=0;

do j= compt+1 to compt+T-1;

Temp0=Temp0+E1[j,1]*E1[j-1,1];

end;

do j2= compt to compt+T-1;

Temp1=Temp1+E1[j2,1]*E1[j2,1];

end;

rho[i,1]=Temp0/Temp1;

compt=compt+t;

end;

Print ’The autocorrelation vector is’;

Print rho;

* This is step 3 where the data is transformed using the Prais

Winsten Method.;

compt=1;

new_y=shape(0,100,1);

do i=1 to M;

new_y[compt,1]=y[compt,1]*sqrt(1-rho[i,1]**2);

do j= compt+1 to compt+T-1;

new_y[j,1]=y[j,1]-rho[i,1] * y[j-1,1];

end;

compt=compt+T;

The Asymptotic Covariance Matrix is

ASY_VAR

22.780423 –0.023583 –0.015614

–0.023583 0.0000783 –0.000177

–0.015614 –0.000177 0.0013193

The Standard Errors are given by

SE

4.7728841

0.0088489

0.0363224

OUTPUT 12.13. (Continued )
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end;

compt=1;

new_x=shape(0,100,2);

do i=1 to M;

new_x[compt,1]=x[compt,2]*sqrt(1-rho[i,1]**2);

new_x[compt,2]=x[compt,3]*sqrt(1-rho[i,1]**2);

do j= compt+1 to compt+T-1;

new_x[j,1]=x[j,2]-rho[i,1] * x[j-1,2];

new_x[j,2]=x[j,3]-rho[i,1] * x[j-1,3];

end;

compt=compt+T;

end;

new_x=J(r,1,1)||new_x;

* OLS is now conducted on the transformed data.;

* The standard errors are also calculated.;

beta_first=inv(new_x‘*new_x)*new_x‘*new_y;

Print ’The least squares estimator from the first stage

regression is’;

Print beta_first;

sigma1=shape(0,M,1);

E2=new_y-new_x*beta_first;

compt=1;

do i=1 to M;

sigma1[i,1]=E2[compt:compt+t-1,1]‘*E2[compt:compt+t-

1,1]/T;

compt=compt+t;

end;

var_cov=diag(sigma1);

ID=I(T);

Omega=var_cov@ID;

Asy_Var=inv(new_X‘*inv(Omega)*new_X);

Print ’The asymptotic variance covariance matrix is’;

Print Asy_Var;

SE=sqrt(vecdiag(Asy_Var));

Print ’The standard errors from the first stage regression

is’;

Print SE;

* The second stage FGLS estimates are now calculated.;

compt=1;

temp1=E2[compt:t,1];

do i=2 to M;

compt=compt+t;

c=E2[compt:compt+t-1,1];

temp1=temp1||c;

end;

sigma2=shape(0,M,M);

do i=1 to M;

do j=1 to M;

sigma2[i,j]=temp1[,i]‘*temp1[,i]/T;

sigma2[i,1]=sigma2[i,1]/(1-rho[i,1]**2);

end;

end;

I=I(T);
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Temp3=sigma2@I;

BETA_FGLS=inv (new_X’*inv(Temp3)*new_X)*

new_X’*inv (Temp3) *new_Y;

Print ‘The FGLS Parameter Estimates Are’;

Print BETA_FGLS;

Asy_Var=inv (new_X’*inv (Temp3)*new_X);

Print ‘The Asymptotic Covariance Matrix Is’;

Print Asy_Var;

SE=sqrt (vecdiag (Asy_Var));

Print ‘The Standard Errors are given by’;

Print SE;

run;
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Appendix A
BASIC MATRIX ALGEBRA FOR ECONOMETRICS

A.1 MATRIX DEFINITIONS

A.1.a Definitions

An m� nmatrix is a rectangular array of elements arranged in m rows and n columns. A general layout of a matrix is given by

a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.
.
.
.

.
.

.
.
.
.

am1 am2 . . . amn

2

6
6
6
6
4

3

7
7
7
7
5

:

In this general form, we can easily index any element of the matrix. For instance, the element in the ith row and jth column is

givenbyaij. It is straightforward to creatematrices inProc IML.Forexample, theProc IMLcommandA¼ {24, 31}will create the

2� 2 matrix

A ¼
2 4

3 1

� �

:

A row vector of order n is a matrix with one row and n columns. The general form of a row vector is y ¼ y1 y2 . . . yn½ �. A
column vector of order m is a matrix with m rows and one column. The general form of a column vector is

c ¼

c1

c2

.

.

.

cm

2

6
6
6
6
4

3

7
7
7
7
5

:

It is straightforward to create row and column vectors in Proc IML. For example, the Proc IML command y ¼ 2 4 gf will

create the row vector y ¼ 2 4½ �, while the Proc IML command c¼{�3, 4} will create the column vector

c ¼
�3

4

� �

:
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Of course, these definitions can easily be extended tomatrices of any desired dimension and consequently the Proc IML code can

be adjusted to accommodate these changes.

A.1.b Other Types of Matrices

i. A square matrix is a matrix with equal number of rows and columns. That is, if Am�n is a square matrix, then m¼ n.

ii. A symmetric matrix is a square matrix where the (ij)th element is the same as the (ji)th element for all i and j. That is,

aij¼ aji, 8i, j.

iii. A diagonal matrix is a square matrix where all off-diagonal elements are zero. That is, aij¼ 0, 8i „ j.

iv. An identity matrix (denoted by I ) is a diagonal matrix where aii¼ 1, 8i. The Proc IML command Id¼I(5) will create a

5� 5 identity matrix stored under the name Id.

v. The Jmatrix is one where every element equals 1. This matrix frequently occurs in econometric analysis. The Proc IML

command J¼J(1,5,5) will create a 5� 5 matrix of 1�s. The size of the matrix can be adjusted by changing the number of

rows and/or the number of columns. We can replace the third element in the Proc IML command if we require all the

elements to have a different value. For instance, using J(5,5,0) will yield a 5� 5 matrix of zeros.

A.2 MATRIX OPERATIONS

A.2.a Addition and Subtraction

These two operations are defined only on matrices of the same dimension. The operations are themselves very elementary and

involve element-by-element addition or subtraction. As an example, consider the following matrices:

A ¼
2 3

1 1

� �

; B ¼
1 0

2 1

� �

:

Addition is denoted by A þ B and is given by

AþB ¼
3 3

3 2

� �

:

Similarly, subtraction is denoted by A�B and is given by

A�B ¼
1 3

�1 0

� �

:

The Proc IML commands C¼A þ B and D¼A�B can be used to carry out these operations.

A.2.b Scalar Multiplication

For any scalar r 2 R and any matrix A 2 MðRÞ, we can define scalar multiplication as rA. Here, each element of the matrix A is

multiplied by r. For example, if

A ¼
2 3

1 1

� �

;

then

rA ¼
2r 3r

r r

� �

:

Let r¼ 2. Then, the Proc IML command C¼2*Awill yield the result

C ¼
4 6

2 2

� �

:
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A.2.c Matrix Multiplication

Assume thatmatrixA is of order (k�m) andB is of order (m� n). That is, the number of rowsofB equals thenumber of columns of

A. We say that A and B are conformable for matrix multiplication. Given two conformable matrices, A and B, we define their

product C as Ck�n¼Ak�mBm�n, where C is of order (k� n). In general, the (i, j)th element of C is written as

cij ¼ ai1 . . . . . . aimð Þ

b1j

.

.

.

.

.

.

bmj

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

¼ ai1b1j þ ai2b2j þ . . .þ aimbmj

¼
Xm

h¼1

aihbhj:

The Proc IML command C¼A*B can be used to carry out matrix multiplications. For instance, if

A ¼
1 2

3 4

� �

and

B ¼
�1 6

4 5

� �

;

then

C ¼
7 16

13 38

� �

:

A.3 BASIC LAWS OF MATRIX ALGEBRA

A.3.a Associative Laws

ðAþBÞþC ¼ AþðBþCÞ;

ðABÞC ¼ AðBCÞ:

A.3.b Commutative Laws of Addition

AþB ¼ BþA:

A.3.c Distributive Laws

AðBþCÞ ¼ ABþAC;

ðAþBÞC ¼ ACþBC:

The commutative law of addition does not apply to multiplication in general. That is, for two conformable matrices A and B,

AB is not necessarily equal to BA.
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A.4 IDENTITY MATRIX

A.4.a Definition

The identity matrix is an n� n matrix with entries satisfying

aij ¼
1 if i ¼ j;

0 otherwise:

�

That is,

I ¼

1 0 . . . 0

0 1 . . . 0

.

.

.
.
.
.

.
.

.
.
.
.

0 0 . . . 1

2

6
6
6
6
4

3

7
7
7
7
5

:

As discussed earlier, it is very easy to create identity matrices in Proc IML. For instance, the command I¼ I(5) will create an

identity matrix of order 5 and store it in the variable I.

A.4.b Properties of Identity Matrices

For an n� n identity matrix I, the following holds:

i. For any k� n matrix A, AI¼A.

ii. For any n� k matrix B, IB¼B.

iii. For any n� n matrix C, CI¼ IC¼C.

A.5 TRANSPOSE OF A MATRIX

A.5.a Definition

A transpose matrix of the original matrix, A, is obtained by replacing all elements aijwith aji. The transpose matrix AT (or A0) is a

matrix such that aTji ¼ aij; where aij is the (i, j)th element of A and aTji is the (j, i)th element of AT. For example,

1 2

3 4

5 6

2

6
4

3

7
5

T

¼
1 3 5

2 4 6

� �

:

It is straightforward to create transpose ofmatrices using Proc IML. The commandB¼A0will store the transpose of thematrix

A in B.

A.5.b Properties of Transpose Matrices

i. (A þ B)T¼ AT þ BT.

ii. (A�B)T¼ AT�BT.

iii. (AT)T¼ A.

iv. (rA)T¼ rAT for any scalar r.

v. (AB)T¼ BTAT.
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A.6 DETERMINANTS

A.6.a Definition

Associated with any square matrix A, there is a scalar quantity called the determinant of A, denoted det(A) or |A|. The simplest

example involves A 2 M2�2ðRÞ, where

det
a b

c d

� �

¼ ad�bc:

To define the determinant of a matrix in general form (that is, for any n� n matrix), we can use the notions of minors and

cofactors. LetAbe ann� nmatrix and let Âij be the (n� 1)� (n� 1) submatrix obtainedbydeleting the ith rowand the jth column

of A. Then the scalar Mij ¼ detðÂijÞ is called the (i, j)th minor of A. The sign-adjusted scalar

Cij ¼ ð�1Þiþ j
Mij ¼ ð�1Þiþ j

detðÂijÞ

is called the (i, j)th cofactor ofA.Given this definition, |A| can be expressed in termsof the elements of the ith row (or jth column) of

their cofactors as (Greene, 2003, p. 817; Searle, 1982, pp. 84–92)

jAj ¼
Xn

i¼1

aijCij ¼
Xn

i¼1

aijð�1Þiþ jjÂijj:

A.6.b Properties of Determinants

For any A;B 2 Mn�nðRÞ, we have the following:

i. |AT|¼ |A|.

ii. |AB|¼ |A||B|.

iii. If every element of a row (or column) of A is multiplied by a scalar r to yield a new matrix B, then |B|¼ r|A|.

iv. If every element of an nth order matrix A is multiplied by a scalar r, then |rA|¼ rn|A|.

v. The determinant of a matrix is nonzero if and only if it has full rank.

Determinants of matrices can easily be computed in Proc IML by using the command det(A) (Searle, 1982, pp. 82–112).

A.7 TRACE OF A MATRIX

A.7.a Definition

The trace of a n� n matrix A is the sum of its diagonal elements. That is,

trðAÞ ¼
Xn

i¼1

aii:

Note that for any m� n matrix A,

trðATAÞ ¼ trðAATÞ ¼
Xm

i¼1

Xn

j¼1

a2ij (Searle,1982, pp. 45--46).
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A.7.b Properties of Traces

i. tr (rA)¼ r� tr (A) for any real number r.

ii. tr (A þ B)¼ tr (A) þ tr(B).

iii. tr (AB)¼ tr (BA)

iv. tr (ABCD)¼ tr (BCDA)¼ tr (CDAB)¼ tr (DABC).

v. tr (A)¼ rank(A) if A is symmetric and idempotent (Baltagi, 2008, p. 172). As an example, consider

A ¼

1 2 3

4 1 5

6 7 1

2

6
4

3

7
5:

Here, tr(A)¼ 3. The Proc IML command trace(A) will easily calculate the trace of a matrix.

A.8 MATRIX INVERSES

A.8.a Definition

If, for an n� n matrix A, there exists a matrix A�1 such that A�1A¼AA�1¼ In, then A�1 is defined to be the inverse of A.

A.8.b Construction of an Inverse Matrix

Let A 2 Mn�nðRÞ be a nonsingular matrix.

i. Recall that for any n� n matrix A, the (i, j)th cofactor of A is Cij ¼ ð�1Þiþ j
detðÂijÞ:

ii. From thematrixA, construct a cofactormatrix in which each element ofA, aij, is replaced by its cofactor, cij. The transpose

of this matrix is called the adjoint matrix and is denoted by

A* ¼ adjðAÞ ¼ cofactorðAÞT ¼ ½cji�:

That is,

adjðAÞ ¼

c11 c21 . . . cn1

c12 c22 . . . cn2

.

.

.
.
.
.

.
.

.
.
.
.

c1n c2n . . . cnn

2

6
6
6
6
4

3

7
7
7
7
5

:

A
�1 can then be defined as

A�1 ¼
1

jAj
adjðAÞðSearle; 1982; p: 129Þ:

This implies that A�1 does not exist if |A|¼ 0. That is, A is nonsingular if and only if its inverse exists.

A.8.c Properties of Inverse of Matrices

Let A, B, and C be invertible square matrices. Then (Searle, 1982, p. 130),

i. (A�1)�1¼A.

ii. (AT)�1¼ (A�1)T.
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iii. AB is invertible and (AB)�1¼B�1A�1.

iv. ABC is invertible and (ABC)�1¼C�1B�1A�1.

A.8.d Some More Properties of Inverse of Matrices

If a square matrix A is invertible, then (Searle, 1982, p. 130)

i. Am ¼ A� A� . . .� A
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

m times

is invertible for any integer m and

ðAmÞ�1 ¼ ðA�1Þm ¼ A�1 � A�1 � . . .� A�1

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

m times

:

ii. For any integer r and s, ArAs¼Arþ s.

iii. For any scalar r „ 0, rA is invertible and ðrAÞ�1 ¼ 1
r
A�1.

iv. jA�1j ¼ 1
jAj.

v. If A is symmetric, then A�1 is symmetric.

A.8.e Uniqueness of an Inverse Matrix

Any squarematrixA can have atmost one inverse.Matrix inverses can easily be computed using Proc IMLby using the command

inv(A).

A.9 IDEMPOTENT MATRICES

A.9.a Definition

A square matrix A is called idempotent if A2¼A.

A.9.b The M
0 Matrix in Econometrics

This matrix is useful in transforming data by calculating a variable�s deviation from its mean. This matrix is defined as

M0 ¼ I�
1

n
iiT

� �

¼

1�
1

n
�
1

n
. . . �

1

n

�
1

n
1�

1

n
. . . �

1

n

.

.

.
.
.
.

.
.

.
.
.
.

�
1

n
�
1

n
. . . 1�

1

n

2

6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
5

:

For an example of how thismatrix is used, consider the casewhenwewant to transforma singlevariable x. In the single variable

case, the sum of squared deviations about the mean is given by (Greene, 2003, p. 808; Searle, 1982, p. 68)

Xn

i¼1

ðxi��xÞ2 ¼ ðx��xÞTðx��xÞ ¼ ðM0xÞTðM0xÞ ¼ xTM0TM0x:

It can easily be shown that M0 is symmetric so that M0T¼M0. Therefore,

Xn

i¼1

ðxi��xÞ2 ¼ xTM0x:
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For twovariables x and y, the sumsof squares andcrossproducts indeviations from theirmeans is givenby (Greene, 2003, p. 809)

Xn

i¼1

ðxi��xÞðyi��yÞ ¼ ðM0xÞTðM0yÞ ¼ xTM0y:

Twoother important idempotentmatrices in econometrics are theP andMmatrices. To understand these, letX be a n� kmatrix.

Then XTX is a k� k square matrix. Define P¼ (XTX)�1XT. Then, PTP¼P. It can be shown that P is symmetric. This matrix is

called the projection matrix.

The secondmatrix is theMmatrix and is defined asM¼ I�P. Then,MT¼M andM2¼M. It can also be shown thatM andP are

orthogonal so that PM¼MP¼ 0 (Greene, 2003, pp. 24–25).

A.10 KRONECKER PRODUCTS

Kronecker products are used extensively in econometric data analysis. For instance, computations involving seemingly unrelated

regressions make heavy use of these during FGLS estimation of the parameters. Consider the following two matrices:

A ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.
.
.
.

.
.

.
.
.
.

am1 am2 . . . amn

2

6
6
6
6
4

3

7
7
7
7
5

and Bp�q:

The Kronecker product of A and B defined as A�B is given by the mp� nq matrix:

A� B ¼

a11B a12B . . . a1nB

a21B a22B . . . a2nB

.

.

.
.
.
.

.
.

.
.
.
.

am1B . . . . . . amnB

2

6
6
6
6
4

3

7
7
7
7
5

:

The following are some properties of Kronecker products (Greene, 2003, pp. 824–825; Searle, 1982, pp. 265–267):

1. (A�B)(C�D)¼AC�BD,

2. tr(A�B)¼ tr(A)tr(B) is A and B are square,

3. (A�B)�1¼A�1�B�1,

4. (A�B)T¼AT�BT,

5. det(A�B)¼ (detA)m(detB)n, A is m�m and B is n� n.

The Proc IML code A@B calculates Kronecker products.

A.11 SOME COMMON MATRIX NOTATIONS

a. A system of m simultaneous equations in n variables is given by

a11x1 þ a12x2 þ . . .þ a1nxn ¼ b1

.

.

.

am1x1 þ am2x2 þ . . .þ amnxn ¼ bm

and can be expressed in matrix form as Ax¼ b, where A is an m� n matrix of coefficients baijc, x is a column vector of

variables x1, . . ., xn, and b is the column vector of constants b1, . . ., bm.
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b. Sum of Values: We can express the sum
Pn

i¼1

xi as i
Tx, where i is a column vector of 1�s.

c. Sum of Squares: We can express the sums of squares
Pn

i¼1

x2i as x
Tx, where x is a column vector of variables.

d. Sum of Products: For two variables x and y, the sum of their product
Pn

i¼1

xiyi can be written as xTy.

e. Weighted Sum of Squares:Given a diagonal n� nmatrixA of weights a11, . . ., ann the sum
Pn

i¼1

aiix
2
i can bewritten as x

TAx.

f. Quadratic Forms: Given an n� n matrix A with elements a11, a12, . . ., a22, . . ., ann, the sum a11x
2
1 þ a12x1x2 þ . . .þ

a22x
2
2 þ

. . .þ annx
2
n can be expressed as xTAx.

See Greene, (2003, p. 807) for more details.

A.12 LINEAR DEPENDENCE AND RANK

A.12.a Linear Dependence/Independence

Asetof vectorsv1, . . .,vk is linearlydependent if the equationa1v1þ . . .þ akvk¼ 0hasa solutionwherenot all the scalarsa1, . . .,ak
are zero. If the only solution to the above equation is where all the scalars equal zero, then the set of vectors is called a linearly

independent set.

A.12.b Rank

The rank of anm� nmatrixA, denoted as r(A), is defined as themaximumnumber of linearly independent rows or columns ofA.

Note that the row rank of a matrix always equals the column rank, and the common value is simply called the “rank” of a matrix.

Therefore, r(A)�max(m, n) and r(A)¼ r(AT).

Proc IMLdoes not calculate ranks ofmatrices directly.Away around this is to use the concept of generalized inverses as shown

in the following statement round(trace(ginv(A)*A)). Here, A is the matrix of interest, ginv is the generalized inverse of A, and

trace is the trace of the matrix resulting from performing the operation ginv(A)*A. The function round simply rounds the trace

value. As an example, consider the following 4� 4 matrix given by

A ¼

1 2 0 3

1 �2 3 0

0 0 4 8

2 4 0 6

2

6
6
6
4

3

7
7
7
5
:

The rank of A is 3 since the last row equals the first row multiplied by 2. Proc IML also yields a rank of 3 for this matrix.

A.12.c Full Rank

If the column(row) rank of amatrix equals the number of columns(rows) of the samematrix, then thematrix is said to be of full

rank.

A.12.d Properties of Ranks of Matrices

i. For two matrices A and B, r(AB)�min(r(A), r(B)).

ii. If A is m� n and B is a square matrix of rank n, then r(AB)¼ r(A).

iii. r(A)¼ r(ATA)¼ r(AAT).

See Greene, (2003, pp. 828–829) for more details.
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A.12.e Equivalence

For any square matrix A, the following statements are equivalent (Searle, 1982, p. 172):

i. A is invertible.

ii. Every system of linear equations Ax¼ b has a unique solution for 8b 2 R
n.

iii. A is nonsingular.

iv. A has full rank.

v. The determinant of A is nonzero.

vi. All the row(column) vectors of A are linearly independent.

A.13 DIFFERENTIAL CALCULUS IN MATRIX ALGEBRA

A.13.a Jacobian and Hessian Matrices

Consider the vector function y¼ f(x), where y is a m� 1 vector with each element of y being a function of the n� 1 vector x.

That is,

y1 ¼ f1ðx1; x2; . . . ; xnÞ

.

.

.

ym ¼ f ðx1; x2; . . . ; xnÞ:

Taking the first derivative of y with respect to x yields the Jacobian matrix (Greene, 2003, p. 838; Searle, 1982, p. 338)

J ¼
qy

qxT
¼

qf ðxÞ

qxT
¼

qf1

qx1

qf1

qx2
. . .

qf1

qxn
qf2

qx1

qf2

qx2
. . .

qf2

qxn
.
.
.

.

.

.
.
.

.
.
.
.

qfm

qx1

qfm

qx2
. . .

qfm

qxn

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

:

Taking the second derivative of f(x) with respect to x yields the Hessian matrix (Greene, 2003, p. 838; Searle, 1982, p. 341)

H ¼
q
2y

qxTqx
¼

q
2f ðxÞ

qxTqx
¼

qf1

qx21

qf1

qx1qx2
. . .

qf1

qx1qxn

qf2

qx1qx2

qf2

qx22
. . .

qf2

qx2qxn

.

.

.
.
.
.

.
.

.
.
.
.

qfm

qx1qxn

qfm

qx2qxn
. . .

qfm

qx2n

2

6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
5

:

A.13.b Derivative of a Simple Linear Function

Consider the function f ðxÞ ¼ aTx ¼
Pn

i¼1

aixi. The derivative of f(x) with respect to x is given by

qf ðxÞ

qx
¼

qaTx

qx
¼ aT :
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A.13.c Derivative of a Set of m Linear Functions Ax

Consider the derivative of a set of m linear functions Ax, where A is a m� n matrix and

Ax ¼

a11 a12 . . . a1n

a21 a22 . . . a2n

.

.

.
.
.
.

.
.

.
.
.
.

am1 am2 . . . amn

2

6
6
6
6
4

3

7
7
7
7
5

x1

x2

.

.

.

xn

2

6
6
6
6
4

3

7
7
7
7
5

¼

a1x

a2x

.

.

.

amx

2

6
6
6
6
4

3

7
7
7
7
5

:

Therefore,

qðAxÞ

qxT
¼

a1

a2

.

.

.

am

2

6
6
6
6
4

3

7
7
7
7
5

¼ A:

A.13.d Derivative of a Set of m Linear Functions xTA

Consider the derivative of a set of m linear functions xTA, where A is an n�m matrix and x is an n� 1 column vector so that

xTA ¼ x1 x2 . . . xn½ �

a11 a12 . . . a1m

a21 a22 . . . a2m

.

.

.
.
.
.

.
.

.
.
.
.

an1 an2 . . . anm

2

6
6
6
6
4

3

7
7
7
7
5

¼ xTa1 xTa2 . . . xTam
� �

:

Therefore,

qðxTAÞ

qx
¼ a1 a2 . . . am½ � ¼ A:

A.13.e Derivative of a Quadratic Form xTAx

Consider the derivative of a quadratic form x
T
Ax, where A is a symmetric n� n matrix and x is an n� 1 column vector so that

xTAx ¼ x1 x2 . . . xn½ �

a11 a12 . . . a1m

a21 a22 . . . a2m

.

.

.
.
.
.

.
.

.
.
.
.

an1 an2 . . . anm

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

x1

x2

.

.

.

xn

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

¼ a11x
2
1 þ 2a12x1x2 þ . . .þ 2a1nx1xn þ a22x

2
2 þ 2a23x2x3 þ . . .þ annx

2
n:

Taking the partial derivatives of xTAx with respect to x, we get

qðxTAxÞ

qx1
¼ 2ða11x1 þ a12x2 þ . . .þ a1nxnÞ ¼ 2a1x

.

.

.

qðxTAxÞ

qxn
¼ 2ðan1x1 þ an2x2 þ . . .þ anmxnÞ ¼ 2anx;

which is 2Ax.

See Greene (2003, pp. 838–840) and Searle (1982, pp. 327–329) for more details.
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A.14 SOLVING A SYSTEM OF LINEAR EQUATIONS IN PROC IML

Consider the following linear system of equations in three unknowns:

xþ yþ z ¼ 0;

x�2yþ 2z ¼ 4;

xþ 2y�z ¼ 2:

Wewill use Proc IML to calculate thevalue of x, y, and z that satisfies these equations. LetX be the “data”matrix,b thevector of

unknown coefficients, and let c be the vector of constants. Then,

X ¼

1 1 1

1 �2 2

1 2 �1

2

6
6
4

3

7
7
5
;

b ¼ x y z½ �T ;

and

c ¼ 0 4 2½ �T :

It is easy to show that X is invertible so that b¼ (XTX)�1XTc. We can use the following Proc IML statements to solve for b.

proc iml;

X={1 1 1,1 -2 2,1 2 -1};

c={0,4,2};

b=inv(X‘*X)*X‘*c;

print b;

run;

The program yields a solution set of x¼ 4, y¼�2, and z¼�2, which satisfy the original linear system.
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Appendix B
BASIC MATRIX OPERATIONS IN PROC IML

B.1 ASSIGNING SCALARS

Scalars can be viewed as 1� 1 matrices and can be created using Proc IML by using the statement x¼scalar_value or

x¼{scalar_value}. As an example, the statements x¼14.5 and x¼{14.5} are the same and both store the value 14.5 in x.We can

also store character values as the commands name¼�James� and hello¼�Hello World� illustrate.

The stored values in the variables can easily be determined by using the print command in Proc IML. For example to view the

values in the variables x, name, and hello use the command Print x name hello.

B.2 CREATING MATRICES AND VECTORS

As mentioned in Appendix A, it is easy to create matrices and vectors in Proc IML. The command A¼{2 4, 3 1} will create the

matrix

A ¼
2 4

3 1

� �

:

Each row of thematrix is separated by a comma. That is, each row of the above command yields a row vector. For instance, the

command A¼{1 2 3 4} creates the row vector A ¼ 1 2 3 4½ �.
Ifwe separate each entry in the rowvector bya comma,wewill get a columnvector.As an example, the commandA¼{1,2,3,4}

creates the column vector

A ¼

1

2

3

4

2

6

6

6

4

3

7

7

7

5

:
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These commands can easily be extended to create matrices consisting of character elements. For example, the command

A¼{�a� �b�, �c� �d�} will create the matrix

A ¼
a b

c d

� �

:

B.3 ELEMENTARY MATRIX OPERATIONS

B.3.a Addition/Subtraction of Matrices

For twoconformablematrices,A andB, their sumcanbe computedbyusing the commandC¼AþB,where the sum is stored inC.

Changing the addition to a subtraction yields the difference between the two matrices.

B.3.b Product of Matrices

For twoconformablematrices,AandB, the element byelement product of the two is givenby the commandC¼A#B.Forexample,

consider the two matrices

A ¼
1 2

3 4

� �

and B ¼
5 6

7 8

� �

:

The element by element product of these two is given by

C ¼
5 12

21 32

� �

:

The product of the two matrices is given by using the command C¼A*B. In the above example, the product is

C ¼
19 22

43 50

� �

:

The square of a matrix is given by either of the following commands C¼A##2 or C¼A*A. Of course, we can use these

commands to raise a matrix to any power (assuming that the product is defined).

B.3.c Kronecker Products

The Kronecker product of two matrices A and B can be obtained by using the command A@B. For example, let

A ¼
�1 2

4 1

� �

and B ¼
1 0

0 1

� �

:

Then, the command C¼A@B will produce

C ¼

�1 0 2 0

0 �1 0 2

4 0 1 0

0 4 0 1

2

6

6

6

4

3

7

7

7

5

:

B.3.d Inverses, Eigenvalues, and Eigenvectors

As shown in Appendix A, the inverse of a square matrix A can be computed by using the command C¼inv(A). Eigenvalues and

eigenvectors can be computed easily by using the commands C¼eigval(A) or C¼eigvec(A).
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B.4 COMPARISON OPERATORS

The max(min) commands will search for the maximum(minimum) element of any matrix or vector. To use these commands,

simply type C¼max(A) or C¼min(A). For two conformable matrices (of the same dimension), we can define the elementwise

maximums and minimums. Consider matrices A and B, which were given in (Section B.3.b). The command C¼A<>Bwill find

the elementwise maximum between the two matrices. In our example, this will yield

C ¼
5 6

7 8

� �

:

The command C¼A><B will yield the elementwise minimum between the two matrices. In our example, this is simply A.

B.5 MATRIX-GENERATING FUNCTIONS

B.5.a Identity Matrix

The command Iden¼I(3) will create a 3� 3 identity matrix.

B.5.b The J Matrix

This is amatrix of 1’s. The command J¼J(3,3)will create a 3� 3matrix of 1’s. This commandcan bemodified to create amatrix of

constants. For example, suppose that we want a 3� 3 matrix of 2’s. We can modify the above command as follows J¼J(3,3,2).

B.5.c Block Diagonal Matrices

Often,wewill have toworkwith blockdiagonalmatrices.Ablockdiagonalmatrix can be created byusing the commandC¼block

(A1, A2, . . .) where A1, A2 . . . are matrices. For example, for the A and Bmatrices defined earlier, the block diagonal matrix C is

given by

C ¼

1 2 0 0

3 4 0 0

0 0 5 6

0 0 7 8

2

6

6

6

4

3

7

7

7

5

:

B.5.d Diagonal Matrices

The identity matrix is a matrix with 1’s on the diagonal. It is easy to create any diagonal matrix in Proc IML. For instance, the

command C¼diag({1 2 4}) will create the following diagonal matrix:

C ¼

1 0 0

0 2 0

0 0 4

2

6

4

3

7

5
:

Given a square matrix, the diag command can be used to extract the diagonal elements. For example, the command

C¼diag({1 2,3 4}) will create the following matrix

C ¼
1 0

0 4

� �

:

B.6 SUBSET OF MATRICES

Econometric analysis using Proc IML often involves extracting specific columns (or rows) of matrices. The command C¼A[,1]

will extract the first column of the matrix A, and the command R¼A[1,] will extract the first row of the matrix A.

B.7 SUBSCRIPT REDUCTION OPERATORS

Proc IMLcanbeused to easily calculatevarious row- and column-specific statistics ofmatrices.As an example, consider the3� 3

matrix defined by the command A¼{0 1 2, 5 4 3, 7 6 8}. Column sums of this matrix can be computed by using the command
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Col_Sum¼A[þ ,]. Using this command yields a row vector Col_Sumwith elements 12, 11, and 13. The row sums of this matrix

can be computed by using the command Row_Sum¼A[,þ ].

We can also determine themaximumelement in each columnbyusing the commandCol_Max¼A[<>,]. Using this command

yields a row vectorCol_Maxwith elements 7, 6, and 8. The commandRow_Min¼A[,><] will yield theminimumof each rowof

the matrix. The column means can be calculated by using the command Col_Mean¼A[:,]. Using this command, yields the row

vectorCol_Meanwith elements 4, 3.67, and 4.33. The commandCol_Prod¼A[#,] results in a row vectorCol_Prod that contains

the product of the elements in each column. In our example, the result is a row vector with elements 0, 24, and 48. We can easily

extend this command to calculate the sumsof squares of each column.This is calculatedbyusing the commandCol_SSQ¼A[##,].

The result is a row vector Col_SSQ with elements 74, 53, and 77.

B.8 THE DIAG AND VECDIAG COMMANDS

The Proc IML Diag command create a diagonal matrix. For example, if

A ¼
1 3

2 4

� �

;

then the command B¼Diag(A) results in a diagonal matrix B whose diagonal elements are the diagonal elements of A. That is,

B ¼
1 0

0 4

� �

:

This command is useful when extracting the standard errors of regression coefficients from the diagonal elements of the

variance–covariance matrices. If a column vector consisting of the diagonal elements of A is desirable, then one can use the

VecDiag function. As an example, the command B¼VecDiag(A) results in

B ¼
1

4

� �

:

B.9 CONCATENATION OF MATRICES

There are several instanceswherewehaveaneed toconcatenatematrices.A trivial case iswhereweneed to appendacolumnof1�s

to a data matrix. Horizontal concatenation can be done by using �jj�, while vertical concatenation can be done by using �==�. For
example, consider the following matrices:

A ¼
�1 2

2 1

� �

and B ¼
6 7

8 9

� �

:

The command AjjB gives the matrix

�1 2 6 7

2 1 8 9

� �

;

whereas the command A==B gives the matrix

�1 2

2 1

6 7

8 9

2

6

6

6

4

3

7

7

7

5

:

B.10 CONTROL STATEMENTS

Several Proc IML routines given in this book make use of control statements. For example, we made use of control statements

when computingMLEestimates for the parameters. These statementswere also usedwhen computing estimates through iterative

procedures.
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DO-END Statement: The statements following the DO statement are executed until a matching END statement is

encountered.

DO Iterative Statement: The DO iterative statements take the form

DO Index=start TO end;

IML statements follow

END;

For example, the statements

DO Index=1 to 5;

Print Index;

END;

will print thevalue of INDEX for each iteration of theDO statement. The outputwill consist of thevalues of INDEX starting from

1 through 5.

IF-THEN/ELSE Statement: These statements can be used to impose restrictions or conditions on other statements. The IF

part imposes the restriction and the THEN part executes the action to be taken if the restrictions are met. The ELSE portion

of the statement execute the action for the alternative. For example, the statements

IF MAX(A)<30 then print ’Good Data’;

ELSE print ’Bad Data’;

evaluate the matrix A. If the maximum element of the matrix is less than 30, then the statement �Good Data� is printed, else the

statement �Bad Data� is printed.

B.11 CALCULATING SUMMARY STATISTICS IN PROC IML

Summary statistics on the numeric variables stored in matrices can be obtained in Proc IML by using the SUMMARY

command. The summary statistics can be based on subgroups (e.g., Panel Data) and can be saved in matrices for later use. As

an example, consider the cost ofUS airlines panel data set fromGreene (2003). The data consist of 90 observations for six firms

for 1970–1984. The following SAS statements can be used to summarize the data by airline. The option opt(save) saves the

summary statistics by airline. The statements will retrieve and save the summary statistics in matrices. The names of the

matrices are identical to the names of the variables. The statement �print LnC� produces the means and standard deviations for

the six airlines for the variable LnC. The first column contains the means, whereas the second column contains the standard

deviations. We have found this command useful when programming the Hausman–Taylor estimation method for panel data

models. The resulting output is given in output B.1.

proc import out=airline

datafile="C:\Temp\airline"

dbms=Excel Replace;

getnames=yes;

run;

Data airline;

set airline;

LnC=log(C);

LnQ=Log(Q);

LnPF=Log(PF);

run;

proc iml;

use airline;

summary var {LnC LnQ LnPF} class {i} stat{mean std}

opt{save};

print LnC;

run;
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I  Nobs  Variable        MEAN         STD

----------------------------------------------------

1    15  LNC         14.67563     0.49462

         LNQ          0.31927     0.23037

         LNPF        12.73180     0.85990

2    15  LNC         14.37247     0.68054

         LNQ         –0.03303     0.33842

         LNPF        12.75171     0.84978

3    15  LNC         13.37231     0.52207

         LNQ         –0.91226     0.24353

         LNPF        12.78972     0.81772

4    15  LNC         13.13580     0.72739

         LNQ         –1.63517     0.43525

         LNPF        12.77803     0.82784

5    15  LNC         12.36304     0.71195

         LNQ         –2.28568     0.49739

         LNPF        12.79210     0.82652

6    15  LNC         12.27441     0.89175

LNQ         -2.49898     0.67981

LNPF        12.77880     0.83292

All    90  LNC         13.36561     1.13197

LNQ         -1.17431     1.15061

LNPF        12.77036     0.81237

----------------------------------------------------

LNC

14.675633 0.494617

14.37247 0.6805358

13.372309 0.5220658

13.135799

0.7119453

0.7273866

12.363038

12.274407 0.8917487

OUTPUT B.1. Summary statistics of three variables for each airline.
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Appendix C
SIMULATING THE LARGE SAMPLE PROPERTIES
OF THE OLS ESTIMATORS

In Chapter 1 we saw that under the least squares assumptions, the estimator b¼ (XTX)�1XTy for the coefficients vector b in the

model y¼XTb þ «was unbiased with variance–covariance matrix given by Var(bjX)¼s
2(XTX)�1. Here, s2¼Var(«jX). We

also saw that if «jX�N(0,s2), then the asymptotic distribution of bjX is normal with mean b and variance–covariance

s
2(XT

X)�1. That is,bjX�N(b,s2(XT
X)�1).This appendixpresents a simple technique for simulating the large sample properties

of the least squares estimator.

Consider the simple linear regression model yi¼ 4 þ 10xi þ «i with one dependent and one explanatory variable. For

simulation purposes, wewill assume that xi�N(10,25) and «i�N(0,2.25). Note that the random nature of the regressor is simply

being used to generate values for the explanatory variable. A single simulation run for this model comprises generating n¼ 50

values of xi and «i, plugging these values into the regression equation to get the corresponding value of the dependent variable, yi.

The simulation ends by running a regression of yi versus xi using the 50 simulated values. Proc Reg is used to estimate the values of

b1,b2, ands
2. This simulation is then repeated 10,000 times. Therefore, we end up having 10,000 estimates of the coefficients and

ofs2. ProcMeans is then used to generate basic summary statistics for these 10,000 estimates. The output generated can be used to

determine howclose themeans of the 10,000 sample estimates are to the truevaluesof the parameters (b0¼ 10,b1¼ 4,s2¼ 2.25).

We conducted the simulationwith sample sizes of 50, 100, 500, and 1000. Themeans for the simulation runwith 50 observations is

given in Output C.1. Notice that the sample estimates from the simulation runs are almost identical to the true values.

Hypothesis test on the coefficient b1 was also conducted. We calculated the percentage of times the null hypothesis,

H0: b1¼ 10, was rejected. This gives us an estimate of the true Type I error rate. We used the confidence interval approach for

conducting this test. The tableoutoption ofProcRegwasused to construct the 95%confidence interval forb1. Thenull hypothesis

was rejected if the confidence interval did not include the value under the null hypothesis (10). The output of the simulation run

with 50 observations is given inOutput C.2. It indicates that the null hypothesis is rejected 4.89%of the time, which is close to the

Type I error rate of 5%.

Finally, we use Proc Univariate with the histogram option to generate histograms for different simulation runs to demonstrate

the large sample distribution of b̂1. The simulation results are given in Figures C.1 – C.4. Notice that the distribution of b̂1 is bell-

shaped and symmetric evenwhen the sample size is 50. The normality of the distribution becomesmore pronounced as the sample

size increases. Also notice that the spread of the distribution for the estimate reduces as the sample size increases. This indicates

that the standard error of the estimate becomes smaller with increasing sample sizes.
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The following SAS statements can be used to conduct the simulation just described.

data simulation;

sigma=1.5;

beta1=4;

beta2=10;

do index1=1 to 10000;

seed=12345;

do index2=1 to 50;

call rannor(seed,x1);

x=10+5*x1;

e=sigma*normal(0);

y=beta1+beta2*x+e;

output;

end;

end;

run;

proc reg data=simulation noprint outest=estimates tableout;

model y=x;

by index1;

run;

data estimates1;

set estimates;

if y=-1;

rename x=slope;

drop _label_;

run;

proc univariate noprint data=estimates1;

var intercept slope _rmse_;

output out=estimates1 n=n mean=intercept_e slope_e MSE_e;

run;

proc print data=estimates1;

run;

data estimates2;

set estimates;

if _type_ in (’L95B’,’U95B’);

keep index1 _type_ x;

run;

The MEANS ProcedureThe MEANS Procedure

Analysis Variable : reject

N Mean Std Dev Minimum Maximum

10000 0.0497000 0.2173353 0 1.0000000

OUTPUT C.2. Simulated Type 1 error rate (n¼ 50).

Obs n intercept_e slope_e MSE_e

1 10000 4.00117 9.99947 1.49198

OUTPUT C.1. Mean and standard deviation of simulated values of the estimate (n¼ 50).
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True Value

9.9 9.93 9.96 9.99 10.02 10.05
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Fitted Normal Distribution of Beta2

P
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r
c
e
n
t

slope

Sample Size 50

The UNIVARIATE Procedure
Fitted Distribution for slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter Symbol Estimate

Mean Mu 10

Std Dev Sigma 0.039948

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Cramer-von Mises W-Sq 0.20979495 Pr > W-Sq 0.223

Anderson-Darling A-Sq 1.21657290 Pr > A-Sq 0.210

Quantiles for Normal
Distribution

Quantile

Percent Observed Estimated

1.0 9.89767 9.90707

5.0 9.93906 9.93429

10.0 9.94859 9.94881

25.0 9.96272 9.97306

50.0 9.99712 10.00000

75.0 10.02268 10.02694

90.0 10.05022 10.05119

95.0 10.05629 10.06571

99.0 10.05983 10.09293

FIGURE C.1. Histogram of the simulated estimates (n¼ 50).
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True Value
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Fitted Normal Distribution of Beta2

The UNIVARIATE Procedure
Fitted Distribution for slope

The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter Symbol Estimate

Mean Mu 10

Std Dev Sigma 0.040671

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Cramer-von Mises W-Sq 0.12817105 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.69744815 Pr > A-Sq >0.250

Quantiles for Normal
Distribution

Quantile

Percent Observed Estimated

1.0 9.91077 9.90539

5.0 9.93591 9.93310

10.0 9.94713 9.94788

25.0 9.97455 9.97257

50.0 10.00157 10.00000

75.0 10.03171 10.02743

90.0 10.05431 10.05212

95.0 10.06417 10.06690

99.0 10.10230 10.09461

FIGURE C.2. Histogram of the simulated estimates (n¼ 100).
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Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter Symbol Estimate

Mean Mu 10

Std Dev Sigma 0.044755

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Cramer-von Mises W-Sq 0.04634466 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.29383767 Pr > A-Sq >0.250

Quantiles for Normal
Distribution

Quantile

Percent Observed Estimated

1.0 9.89798 9.89588

5.0 9.92721 9.92638

10.0 9.94281 9.94264

25.0 9.96843 9.96981

50.0 9.99864 10.00000

75.0 10.02923 10.03019

90.0 10.05702 10.05736

95.0 10.07428 10.07362

99.0 10.10539 10.10412

FIGURE C.3. Histogram of the simulated estimates (n¼ 500).
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True Value

Fitted Normal Distribution of Beta2
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The UNIVARIATE Procedure
Fitted Distribution for slope

Parameters for Normal
Distribution

Parameter Symbol Estimate

Mean Mu 10

Std Dev Sigma 0.04417

Goodness-of-Fit Tests for Normal Distribution

Test Statistic p Value

Cramer-von Mises W-Sq 0.14559887 Pr > W-Sq >0.250

Anderson-Darling A-Sq 0.82700450 Pr > A-Sq >0.250

Quantiles for Normal
Distribution

Quantile

Percent Observed Estimated

1.0 9.90069 9.89725

5.0 9.92595 9.92735

10.0 9.94106 9.94339

25.0 9.97233 9.97021

50.0 10.00115 10.00000

75.0 10.02828 10.02979

90.0 10.05665 10.05661

95.0 10.07772 10.07265

99.0 10.10588 10.10275

FIGURE C.4. Histogram of the simulated estimates (n¼ 1000).
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proc transpose data=estimates2 out=estimates2(keep=L95B U95B);

var x;

id _type_;

by index1;

run;

data estimates2;

set estimates2;

beta2=10;

if L95B<beta2 <U95B then reject=0;else reject=1;

run;

proc means data=estimates2;

var reject;

run;

title ’Fitted Normal Distribution of Beta2’;

proc univariate noprint data=estimates0;

histogram slope /

normal(mu=10 color=blue fill)

cfill = ywh

cframe = ligr

href = 10

hreflabel = ’True Value’

lhref = 2

vaxis = axis1

name = ’MyHist’;

axis1 label=(a=90 r=0);

inset n = ’Sample Size’

beta / pos=ne cfill=ywh;

run;
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Appendix D
INTRODUCTION TO BOOTSTRAP ESTIMATION

D.1 INTRODUCTION

Bootstrappingisageneral,distribution-freemethodthat isused toestimateparametersofinterest fromdatacollectedfromstudiesor

experiments. It is often referred to as a resamplingmethod because it is carried out by repeatedly drawing samples from the original

data that were gathered. This section introduces the basics of bootstrapping and extends it to bootstrapping in regression analysis.

For a discussion on calculating bias or calculating confidence intervals using bootstrapping, see Efron and Tibshirani (1993).

Bootstrapping is a useful estimation technique when:

1. The formulas that are to be used for calculating estimates are based on assumptions that may not hold or may not be

understood well, or cannot be verified, or are simply dubious.

2. The computational formulas hold only for large samples and are unreliable for small samples or simply not valid for small

samples.

3. The computational formulas do not exist.

To begin the discussion of bootstrapping techniques, assume that a study or experiment was conducted resulting in a data set

x1, . . ., xn of size n. This is a trivial case where the data are univariate in nature. Most studies involve collection of data on several

variables as in the case of regression analysis studies. However,we use the simple example to lay the groundwork for the elements

of bootstrapping methods.

Assume that the data set was generated by some underlying distribution f(u). Here, f(u) is the probability density function and

may be either continuous or discrete. It may be the case that the true density function is unknown and the functional form of f(u) is,

therefore, unknown also. We are interested in estimating the parameter u, which describes some feature of the population from

which the datawere collected. For instance, u could be the truemean,median, the proportion, thevariance, or the standard deviation

of the population. Assume for the moment that we have a well-defined formula to calculate an estimate, û, of u. However, no

formulas exist for calculating the confidence interval for u. Under the ideal setting where we have unlimited resources, we could

draw a large number of samples from the population. We could then estimate u by calculating û for each sample. The calculated

values of û can thenbe used to construct an empirical distribution of û that could then be used to construct a confidence interval for u.

However, in reality we just have a single sample that is a justification for the use of bootstrapping method.

The general idea behind bootstrapping is as follows (assuming that a study/experiment resulted in a data set of size n):

1. A sample of size n is drawn with replacement from the data set in hand.

2. An estimate, û, of u is calculated.
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3. Steps 1 and 2 are repeated several times (sometimes thousands of repetitions are used) to generate a (simulated)

distribution of û. This simulated distribution is then used for making inferences about u.

As an example, suppose that wewant to construct a 95% confidence interval for u. However, we do not have formulas that can

be used for calculating the interval. We can therefore use bootstrapping to construct the confidence interval. The steps are as

follows (Efron and Tibshirani, 1993):

1. Draw1000 (as an example) bootstrap samples from the original data and calculate û1; . . . ; û1000, the estimates from each of

the 1000 samples.

2. Next, sort these estimates in increasing order.

3. Calculate the 2.5th and 97.5th percentile from the 1000 simulated values of û. The 2.5th percentilewill be the average of the

25th and 26th observation while the 97.5th percentile will be the average of the 975th and 976th observation. That is,

Lower confidence limit ¼
û25 þ û26

2
;

Upper confidence limit ¼
û975 þ û976

2
:

Notice that we took the lower 2.5% and the upper 2.5% of the simulated distribution of û out to achieve the desired 95%

confidence. Also note that we did notmake any assumptions about the underlying distribution that generated the original data set.

We will now formalize the general bootstrapping method presented so far. Consider a random variable x with cumulative

distribution F(x; u). Here, u is a vector of unknown parameters. For example, if the distribution of x is normal, then u¼ (m, s2).

Assume that we are interested in estimating u or some element of u that describes some aspect of f(x; u), the distribution of x. That

is, wemay be interested in estimating themean, or the standard deviation, or the standard error of themean. Aswe did before, we

will assume that a study/experiment resulted in a random sample x1, . . ., xn of size n. We can use this sample to approximate the

cumulative distribution, F(x; u), with the empirical distribution function, F̂ðx; uÞ. The estimate, F̂ðx; uÞ, can be written as

F̂ðx; uÞ ¼
1

n

X

n

i¼1

Ið�1;xÞðxiÞ;

where I is an indicator function that counts the number of x’s in the original sample that fall in the interval (�1, x). This is better

illustrated in Figure D.1.

In Figure D.1, the true distribution, F(x; u), is given by the smooth line while the estimated function, F̂ðx; uÞ, is given by the
stepwise representation. The parameter vector u or elements of it could be calculated exactly if the form ofF(x; u) were known.

FIGURE D.1. Plot comparing actual cumulative versus simulated cumulative distributions. (Graph reproduced with permission from Paul

Glewwe, University of Minnesota.)
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That is, if we knew the exact form of F(x; u), then we could derive the probability density function, f(x; u), or a function t(F) to

calculate u. However, assume that the functional form of F(x; u) is unknown and that it was approximated with F̂ðx; uÞ.
Therefore, one option we have is to replace F(x; u) with F̂ðx; uÞ to get the estimated function tðF̂Þ. We can then use tðF̂Þ
to calculate an estimate, û, of u. The estimator û in this instance is called the plug-in estimator of u (Efron and Tibshirani, 1993,

p. 35). As an example, the plug-in estimator of the population mean mx,

mx ¼

ð

1

�1

xf ðxÞ dx;

is the sample mean

�x ¼
1

n

X

n

i¼1

xi:

Notice that calculating the mean of x was trivial and did not require bootstrapping methods. In general, bootstrapping

techniques are used to calculate standard errors and for constructing confidence intervals without making any assumption

about the underlying distribution from which the samples are drawn.

D.2 CALCULATING STANDARD ERRORS

We will now discuss how bootstrapping methods can be used to calculate an estimate of the standard error of the parameter of

interest. Assume then that we have an estimate of u. That is, û was calculated from the original data set without the use of

bootstrapping. Bootstrapping, however, will be used to calculate an estimate of the standard error of û. The general method for

doing this is as follows (again assume that we have a data set of size n) (Efron and Tibshirani, 2004, p. 45):

1. Draw B samples of size n with replacement from the original data set.

2. Calculate û for each of the samples from step 1. That is, we now have û1; . . . ; ûB.

3. We calculate the standard error from the B estimates of u by using the standard formulas for standard errors. That is,

seBðûÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

B�1

X

B

i¼1

ðûi�
�̂
uÞ2

v

u

u

t

;

where
�̂
u ¼ B�1

P

B

i¼1

ûi is simply the mean of the û1; . . . ; ûB. In practice, B is set to a very large number. Most practitioners

use 200–500 bootstrapped samples.

D.3 BOOTSTRAPPING IN SAS

Bootstrapping can easily be programmed in SAS by using simple routines. SAS macros to calculate bootstrapped estimates are

available for download from the SAS Institute. The macros can be used to calculate bootstrapped and jackknife estimates for the

standard deviation and standard error, and they are also used to calculate the bootstrapped confidence intervals. The macros can

also be used to calculate bootstrapped estimates of coefficients in regression analysis. These macros need to be invoked from

withinSAS.Wewill illustrate theuseof thesemacros abit later. Fornow,weshowhowasimpleprogramcanbewritten to compute

bootstrap estimates.

Consider a data set that consists of 10 values: 196,�12, 280, 212, 52, 100,�206, 188,�100, 202.Wewill calculate bootstrap

estimates of the standard error for the mean. The following SAS statements can be used:

data age_data;

input age;

cards;

45
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40

9

7

17

16

15

11

10

8

54

76

87

;

data bootstrap;

do index=1 to 500;

do i=1 to nobs;

x=round(ranuni(0)*nobs);

set age_data

nobs=nobs

point=x;

output;

end;

end;

stop;

run;

The following Proc Univariate statements will calculate the mean of the bootstrapped samples.

proc univariate data=bootstrap noprint;

var age;

by index;

output out=out1 mean=mean n=n;

run;

Finally, the following Proc Univariate statements will calculate the standard deviation of the 500 bootstrapped means.

proc univariate data=out1 noprint;

var mean;

output out=out2 n=n mean=mean std=se;

run;

proc print data=out2;

run;

The analysis results in a mean and standard error of 27.6 and 6.8, respectively.

D.4 BOOTSTRAPPING IN REGRESSION ANALYSIS

Consider the standard linear regressionmodelyi ¼ xTi bþ «i,wherexiandb arek� 1columnvectors and ei is randomerror.Assume

that we have a data set comprising n pairs of observations (y1, x1), . . ., (yn, xn). Assume that the conditional expectation

E(«ijxi)¼ 0.Furthermore, assume thatwedonot knowF(«jx), the cumulativedistributionofe. Ingeneral,F is assumed tobenormal.
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Wewill make use the standard least squares estimator for b, namely, b̂ ¼ ðXTXÞ�1
XTy, to calculate bootstrapped estimates.

That is, as was the case, with the mean being calculated without the use of bootstrapping, we will assume that the least squares

estimate can be calculated without any need of bootstrapping. However, we are interested in calculating the standard errors of b̂.

That is, we assume that the formulas for calculating the standard errors are either unknown, unreliable, or simply do not work for

small samples.

As shown in Chapter 1, the estimate of the variance of b̂ is Varðb̂jXÞ ¼ ŝ2ðXTXÞ�1
, where ŝ2 is estimated as

ŝ2 ¼
1

n

X

n

i¼1

ðyi�xTi b̂Þ
2

or

ŝ2 ¼
1

n�k�1

X

n

i¼1

ðyi�xTi b̂Þ
2
:

Notice that the first version is not an unbiased estimator fors2whereas the second version is. These versions are often referred

to as the “not bias-corrected” and the “bias-corrected” versions, respectively. There are two bootstrappedmethods (pairsmethod,

residuals method) that are employed to estimate the standard error of b̂ (Glewwe, 2006; Efron and Tibshirani, 1993, p. 113).

The bootstrapped pairs method randomly selects pairs of yi and xi to calculate an estimate of «i, while the bootstrapped

residuals method takes each xi just once but then links it with a random draw of an estimate of e. The next section outlines both

methods.

D.4.1 Bootstrapped Residuals Method

As before, we assume that a study or experiment resulted in n observations (y1, x1), . . ., (yn, xn). The general method for the

bootstrapped residuals method is

1. For each i, calculate an estimate, ei of «i. That is, ei ¼ yi � xTi b̂ where b̂ is the usual OLS estimator calculated from the

original data.

2. Randomly draw n values of ei (from step 1) with replacement. Denote the residuals in the sample as e�1; e
�
2; . . . ; e

�
n. Notice

that the subscripts of the residuals in the selected sample are not the same as the subscripts for the residuals, ei, which were

calculated from the original sample. That is, in general e�i 6¼ ei for i¼ 1, . . ., n.

3. With the values of e�i (from step 2), compute y�i ¼ xTi b̂þ e�i . Notice that the subscripts for xi herematch the subscripts of xi
in the original data set. That is, we are using each xi only once. Notice also that by construction of e�i , yi 6¼ y�i .

4. Using the calculated values of y�i (from step 3), construct the vector y*. Finally, use X ¼ x1 . . . xn �
T

�

and

y� ¼ y�1 . . . y�n �
T

�

to calculate b�
1, the first bootstrapped estimate of b. That is, b�

1 ¼ ðXTXÞ�1
XTy�.

5. Steps 2 through 4 are repeated B (typically B¼ 200–500) times to get B estimates of b.

6. Use the B estimates (from step 5) to calculate the sample standard deviation of b̂ using the formula

s:e:� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

B

i¼1

ðb̂
�

i�b̂
�
Þ2

B�1

v

u

u

u

t

;

where

b̂
�
¼

1

B

X

B

i¼1

b̂
�

i

is the mean of the B residuals method bootstrapped estimates of b.

266 APPENDIX D: INTRODUCTION TO BOOTSTRAP ESTIMATION



D.4.2 Bootstrapped Pairs Method

As before, we assume that a study or experiment resulted in n observations (y1, x1), . . ., (yn, xn). The general method for the

bootstrapped pairs method is

1. Randomly draw n pairs of values, yi and xi, with replacement. Denote these as y�1; y
�
2; . . . ; y

�
n and x�1; x

�
2; . . . ; x

�
n. As

discussed earlier, the subscripts here do not necessarily match the subscripts in the original data set.

2. Using these values of y�i and x
�
i , calculate the first bootstrapped estimate of b by using standard OLS techniques. That is,

b�1 ¼ ðX�TX�Þ�1
X�Ty�.

3. Steps 1 and 2 are repeated B times (typically B¼ 200–500) to get B estimates of b.

4. Use the B estimates b�i ; i ¼ 1; . . . ;B, to calculate the sample standard deviation of b̂ using the formula

s:e:� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

B

i¼1

ðb�i�b̂
�
Þ2

B�1

v

u

u

u

t

;

where

b̂
�
¼

1

B

X

B

i¼1

b�i

is the mean of the B pairs method bootstrapped estimates of b. Computationally, the bootstrapped pairs method is more

straightforward. As discussed in Efron and Tibshirani (1993, p. 113), the bootstrapped residuals method imposes

homoscedasticity because it “delinks” xiwith ei. Therefore, if the homoscedasticity assumption is violated, thenwe should

use the bootstrapped pairs method, which does not impose this. On the other hand, if we are very confident of

homoscedasticity, then we can use the bootstrapped residuals method to get more precise estimates of the standard error

of b̂. In fact, it can be shown that as B ! 1 the standard errors of the least squares estimates calculated using the

bootstrapped residuals method converge to the diagonal elements of the variance–covariance matrix ŝ2ðXTXÞ�1
.

D.4.3 Bootstrapped Regression Analysis in SAS

Wewill now illustrate the residuals and the pairs methods by using the %BOOT macro that can be downloaded from the SAS

Institute website at www.sas.com. We will make use of the gasoline consumption data given in Table F2.1 of Greene (2003).

We need the bootstrapped macros (labeled JACKBOOT.SAS here) to be called from within the program. The %include

statement can be used for this purpose. The following statements can be used:

%include "C:\Temp\jackboot.sas";

The data set is then read into SAS and stored into a temporary SAS data set called gasoline. Notice that the raw data are stored

in Excel format.

proc import out=gasoline

datafile="C:\Temp\gasoline"

dbms=Excel Replace;

getnames=yes;

run;

The following SAS data step statements simply transform the variables in the raw data by using the log transformations:

data gasoline;

set gasoline;

Ln_G_Pop=log(G/Pop);
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Ln_pg=Log(Pg);

Ln_Income=Log(Y/Pop);

Ln_Pnc=Log(Pnc);

Ln_Puc=Log(Puc);

run;

The followingProcRegstatements are used to runOLSregressionon theoriginal data set.The residuals from this are stored in a

temporary SAS data set called gasoline. The residuals are labeled as resid.

proc reg data=gasoline;

model Ln_G_Pop=Ln_pg Ln_Income Ln_Pnc Ln_Puc;

output out=gasoline r=resid p=pred;

run;

The following macro is required before invoking the bootstrapped macros in the program jackboot.sas. The only inputs that

require changes are the variable names in the model statement. The remaining statements can be used as is. See Sample 24982-

JackKnife and Bootstrap Analyses from the SAS Institute for more details. The following code has been adapted from this

publication and has been used with permission from the SAS Institute.

%macro analyze(data=,out=);

options nonotes;

proc reg data=&data noprint

outest=&out(drop=Y _IN_ _P_ _EDF_);

model Ln_G_Pop=Ln_pg Ln_Income Ln_Pnc Ln_Puc;

%bystmt;

run;

options notes;

%mend;

This portion of the code invokes the%boot macrowithin jackboot.sas and conducts a bootstrapped analysis by using the pairs

method.Note that the rootmean square error (_RMSE_) is not a plug-in estimator fors, and therefore the bias correction iswrong.

In otherwords, even though themean square error is unbiased fors2, the rootmean square error is not unbiased fors.However,we

choose to ignore this because the bias is minimal.

title2 ’Resampling Observations-Pairs Method’;

title3 ’(Bias correction for _RMSE_ is wrong)’;

%boot(data=gasoline, random=123);

This portion of the code invokes the %boot macro and conducts the bootstrapped analysis by using the residuals method.

title2 ’Resampling Residuals-Residual Method’;

title3 ’(bias correction for _RMSE_ is wrong)’;

%boot(data=gasoline, residual=resid, equation=y=pred+resid,

random=123);

Theanalysis results aregiven inOutputsD.1 andD.2.The first part of theoutput is from theanalysis of theoriginal data.Wewill

skip anydiscussion of this portion of the output aswe have already discussedOLS regression output fromSAS in detail inChapter

2. TheOLS output is followed by the outputwhere bootstrapping is done by resampling pairs (OutputD.1) andwhere the analysis

was done using the residuals method (Output D.2).
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The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 36

Number of Observations Used 36

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 4 0.78048 0.19512 243.18 <0.0001

Error 31 0.02487 0.00080237

Corrected Total 35 0.80535

Root MSE 0.02833 R-Square 0.9691

Dependent Mean –0.00371 Adj R-Sq 0.9651

Coeff Var –763.79427

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 –7.78916 0.35929 –21.68 <0.0001

Ln_pg 1 –0.09788 0.02830 -3.46 0.0016

Ln_Income 1 2.11753 0.09875 21.44 <0.0001

Ln_Pnc 1 0.12244 0.11208 1.09 0.2830

Ln_Puc 1 –0.10220 0.06928 –1.48 0.1502

Resampling Observations
(bias correction for _RMSE_ is wrong)

Resampling Observations
(bias correction for _RMSE_ is wrong)

Resampling Observations
(bias correction for _RMSE_ is wrong)

Resampling Observations
(bias correction for _RMSE_ is wrong)

Name
Observed
Statistic

Bootstrap
Mean

Approximate
Bias

Approximate
Standard
Error

Approximate
Lower

Confidence
Limit

Bias-Corrected
Statistic

Intercept –7.78916 –7.83880 –0.049634 0.35056 –8.42662 –7.73953

Ln_G_Pop –1.00000 –1.00000 0.000000 0.00000 –1.00000 –1.00000

Ln_Income 2.11753 2.13101 0.013484 0.09596 1.91597 2.10405

Ln_Pnc 0.12244 0.13541 0.012969 0.13611 –0.15729 0.10947

Ln_Puc –0.10220 –0.11723 –0.015028 0.08629 –0.25631 –0.08718

Ln_pg –0.09788 –0.09167 0.006209 0.02904 –0.16101 –0.10409

_RMSE_ 0.02833 0.02623 –0.002093 0.00256 0.02540 0.03042

Name

Approximate
Upper

Confidence
Limit

Confidence
Level (%)

Method for
Confidence
Interval

Minimum
Resampled
Estimate

Maximum
Resampled
Estimate

Number of
Resamples

LABEL OF FORMER
VARIABLE

Intercept –7.05244 95 Bootstrap Normal –8.98495 –7.03140 200 Intercept

Ln_G_Pop –1.00000 95 Bootstrap Normal –1.00000 –1.00000 200

Ln_Income 2.29212 95 Bootstrap Normal 1.90256 2.44562 200

Ln_Pnc 0.37624 95 Bootstrap Normal –0.23416 0.42458 200

Ln_Puc 0.08196 95 Bootstrap Normal –0.32506 0.10206 200

Ln_pg –0.04717 95 Bootstrap Normal –0.16467 0.00233 200

_RMSE_ 0.03544 95 Bootstrap Normal 0.01844 0.03362 200 Root mean squared error

OUTPUT D.1. Bootstrapped regression analysis (pairs method) of the gasoline consumption data.

APPENDIX D: INTRODUCTION TO BOOTSTRAP ESTIMATION 269



The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

The REG Procedure
Model: MODEL1

Dependent Variable: Ln_G_Pop

Number of Observations Read 36

Number of Observations Used 36

Analysis of Variance

Source DF
Sum of
Squares

Mean
Square F Value Pr > F

Model 4 0.78048 0.19512 243.18 <0.0001

Error 31 0.02487 0.00080237

Corrected Total 35 0.80535

Root MSE 0.02833 R-Square 0.9691

Dependent Mean –0.00371 Adj R-Sq 0.9651

Coeff Var –763.79427

Parameter Estimates

Variable DF
Parameter
Estimate

Standard
Error t Value Pr > |t|

Intercept 1 –7.78916 0.35929 –21.68 <0.0001

Ln_pg 1 –0.09788 0.02830 –3.46 0.0016

Ln_Income 1 2.11753 0.09875 21.44 <0.0001

Ln_Pnc 1 0.12244 0.11208 1.09 0.2830

Ln_Puc 1 –0.10220 0.06928 –1.48 0.1502

Name
Observed
Statistic

Bootstrap
Mean

Approximate
Bias

Approximate
Standard
Error

Approximate
Lower

Confidence
Limit

Bias-Corrected
Statistic

Intercept –7.78916 –7.78916 2.30926E-14 0 –7.78916 –7.78916

Ln_G_Pop –1.00000 –1.00000 0 0 –1.00000 –1.00000

Ln_Income 2.11753 2.11753 4.44089E-15 0 2.11753 2.11753

Ln_Pnc 0.12244 0.12244 2.22045E-16 0 0.12244 0.12244

Ln_Puc –0.10220 –0.10220 1.38778E-16 0 –0.10220 –0.10220

Ln_pg –0.09788 –0.09788 –1.6653E-16 0 –0.09788 –0.09788

_RMSE_ 0.02833 0.02833 4.85723E-17 0 0.02833 0.02833

Name

Approximate
Upper

Confidence
Limit

Confidence
Level (%)

Method for
Confidence
Interval

Minimum
Resampled
Estimate

Maximum
Resampled
Estimate

Number of
Resamples

LABEL OF FORMER
VARIABLE

Intercept –7.78916 95 Bootstrap Normal –7.78916 –7.78916 200 Intercept

Ln_G_Pop –1.00000 95 Bootstrap Normal –1.00000 –1.00000 200

Ln_Income 2.11753 95 Bootstrap Normal 2.11753 2.11753 200

Ln_Pnc 0.12244 95 Bootstrap Normal 0.12244 0.12244 200

Ln_Puc –0.10220 95 Bootstrap Normal –0.10220 –0.10220 200

Ln_pg –0.09788 95 Bootstrap Normal –0.09788 –0.09788 200

_RMSE_ 0.02833 95 Bootstrap Normal 0.02833 0.02833 200 Root mean squared error

Resampling Residuals
(bias correction for _RMSE_ is wrong)(bias correction for _RMSE_ is wrong)

OUTPUT D.2. Bootstrapped regression analysis (residuals method) of the gasoline consumption data.
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The output consists of the OLS estimates in the first column, followed by the mean of the coefficients estimated from the 200

bootstrap samples. The third columngives the bias,which is simply the bootstrapmeanminus the observed statistic. The standard

errors calculated from the bootstrapped samples are given next. This is followed by the 95% confidence intervals, the bias-

corrected statistics, and the minimum and maximum of the estimated coefficient values from the bootstrap samples. Notice that

the bootstrap estimates of the coefficients and the standard errors are very similar to the OLS estimates.

There is a remarkable similarity between the bootstrap estimates of the coefficients and the standard errors obtained from the

residual method and the OLS estimates. This is not surprising since under the homoscedastic assumption, it can be shown that as

the number of bootstrapped samples increases, the estimated values of the standard errors converge to the diagonal elements of

ŝðXTXÞ�1
, where ŝ2 is the estimate that is not corrected for bias.
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Appendix E
COMPLETE PROGRAMS AND PROC IML ROUTINES

E.1 PROGRAM 1

This programwasused inChapter 2. It is used to analyzeTableF3.1ofGreene (2003). In the followingdata step,we read in the raw

data, create a trend variable, T, divide GNP and Invest by CPI, and then scale the transformed GNP and Invest time series so that

they are measured in trillions of dollars.

proc import out=invst_equation

datafile="C:\Temp\Invest_Data"

dbms=Excel Replace;

getnames=yes;

run;

data invst_equation;

set invst_equation;

T=_n_;

Real_GNP=GNP/(CPI*10);

Real_Invest=Invest/(CPI*10);

run;

/* The start of Proc IML routines.

*/proc iml;

/* Invoke Proc IML and create the X and Y matrices using the variables T, Real_GNP, and

Real_Invest from the SAS data set invst_equation. */

use invst_equation;

read all var {’T’ ’Real_GNP’} into X;

read all var {’Real_Invest’} into Y;

/* Define the number of observations and the number of independent variables. */

n=nrow(X);

k=ncol(X);

/* Create a column of ones to the X matrix to account for the intercept term. */

X=J(n,1,1)||X;
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/* Calculate the inverse of X’X and use this to compute B_Hat */

C=inv(X`*X);

B_Hat=C*X`*Y;

/* Compute SSE, the residual sum of squares, and MSE, the residual mean square. */

SSE=y`*y-B_Hat̀ *X`*Y;

DFE=n-k-1;

MSE=sse/DFE;

/* Compute SSR, the sums of squares due to the model; MSR, the sums of squares due to random

error; and the F ratio. */

Mean_Y=Sum(Y)/n;

SSR=B_Hat̀ *X`*Y-n*Mean_Y**2;

MSR=SSR/k;

F=MSR/MSE;

/* Compute R-Square and Adj-RSquare. */

SST=SSR+SSE;

R_Square=SSR/SST;

Adj_R_Square=1-(n-1)/(n-k) * (1-R_Square);

/* Compute the standard error of the parameter estimates, their T statistic and P-values. */

SE=SQRT(vecdiag(C)#MSE);

T=B_Hat/SE;

PROBT=2*(1-CDF(’T’, ABS(T), DFE));

/* Concatenate the results into one matrix to facilitate printing. */

Source=(k||SSR||MSR||F)//(DFE||SSE||MSE||{.});

STATS=B_Hat||SE||T||PROBT;

Print ’Regression Results for the Investment Equation’;

Print Source (|Colname={DF SS MS F} rowname={Model Error} format=8.4|);

Print ’Parameter Estimates’;

Print STATS (|Colname={BHAT SE T PROBT} rowname={INT T G _R_ P}format=8.4|);

Print ’’;

Print ’The value of R-Square is ’ R_Square;

Print ’The value of Adj R-Square is ’ Adj_R_Square;

run;

E.2 PROGRAM 2

This program was used in Chapter 3. It analyzes the quarterly data on investment as found in Table 5.1 of Greene (2003). This

program is used to conduct the general linear hypothesis—the global F test. We have omitted the data step statements with the

hope that users will be able to recreate it with ease. The Proc IML code follows.

proc iml;

/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,

delta_p, output, and T from the SAS data set real_invst_eq (Notice we have omitted the data

step) */

use real_invst_eq;

read all var {’interest’ ’delta_p’ ’output’ ’T’} into X;

read all var {’Invest’} into Y;

/* Define the number of observations and the number of independent variables. */

n=nrow(X);

k=ncol(X);

/* Create a column of ones to the X matrix to account for the intercept term. */

X=J(n,1,1)||X;

/* Calculate the inverse of X’X and use this to compute B_Hat. */

C=inv(X`*X);
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B_Hat=C*X`*Y;

/* Construct the R Matrix and q matrix. */

R={0 1 1 0 0,0 0 0 1 0,0 0 0 0 1};

q={0,1,0};

j=nrow(R);

/* Compute SSE, the residual sum of squares, and MSE, the residual mean square. */

SSE=y`*y-B_Hat̀ *X`*Y;

DFE=n-k-1;

MSE=sse/DFE;

/* Calculate the F Statistic. */

DisVec=R*B_Hat-q;

F=DisVec`*inv(R*MSE*C*R`)*DisVec/j;

P=1-ProbF(F,J,n-k);

Print ’The value of the F Statistic is ’ F;

Print ’The P-Value associated with this is ’ P;

run

E.3 PROGRAM 3

This programwasused inChapter 3. Itwasused to analyze the investment equationdata given inTableF5.1ofGreene (2003).This

program calculates the restricted least squares estimator and the standard errors of the estimator. We have omitted the data step

again.

proc iml;

/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,

delta_p, output, and T from the SAS data set real_invst_eq. */

use real_invst_eq;

read all var {’interest’ ’delta_p’ ’output’ ’T’} into X;

read all var {’Invest’} into Y;

/* Define the number of observations and the number of independent variables. */

n=nrow(X);

k=ncol(X);

/* Create a column of ones to the X matrix to account for the intercept term. */

X=J(n,1,1)||X;

/* Calculate the inverse of X’X and use this to compute B_Hat. */

C=inv(X`*X);

B_Hat=C*X`*Y;

/* Construct the R matrix and q matrix. */

R={0 1 1 0 0};

q={0};

/* Calculate the Restricted Least Squares Estimator. */

M=R‘*inv(R*C*R‘)*(R*B_Hat-q);

B_Star=B_Hat - C*M;

print B_Star;

/* Compute SSE, and MSE. */

SSE=y`*y-B_Hat̀ *X`*Y;

DFE=n-k-1;

MSE=sse/DFE;

/* Compute SSR, MSR, and the F statistic. */

Mean_Y=Sum(Y)/n;

SSR=B_Hat̀ *X`*Y-n*Mean_Y**2;

MSR=SSR/k;
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F=MSR/MSE;

/* Compute R-Square and Adj-RSquare. */

SST=SSR+SSE;

R_Square=SSR/SST;

Adj_R_Square=1-(n-1)/(n-k) * (1-R_Square);

/* Compute the standard error of the parameter estimates, their T statistic and P-values. */

SE=SQRT(vecdiag(C)#MSE);

T=B_Hat/SE;

PROBT=2*(1-CDF(’T’, ABS(T), DFE));

/* Concatenate the results into one matrix. */

Source=(k||SSR||MSR||F)//(DFE||SSE||MSE||{.});

STATS=B_Hat||SE||T||PROBT;

Print ’Regression Results for the Restricted Investment Equation’;

Print Source (|Colname={DF SS MS F} rowname={Model Error} format=8.4|);

Print ’Parameter Estimates’;

Print STATS (|Colname={BHAT SE T PROBT} rowname={INT Interest

Delta_P Output T} format=8.4|);

Print ’’;

Print ’The value of R-Square is ’ R_Square;

Print ’The value of Adj R-Square is ’ Adj_R_Square;

run;

E.4 PROGRAM 4

This program was used in Chapter 3 to conduct general linear hypothesis for the investment equation data given in Table F5.1 of

Greene (2003). Note that Program 2 simply conducts the globalF test, whereas this program does the individual t tests for each of

the linear restrictions.

proc iml;

/* Invoke Proc IML and create the X and Y matrices using the variables Invest, Interest,

delta_p, output, and T from the SAS data set real_invst_eq. */

use real_invst_eq;

read all var {’interest’ ’delta_p’ ’output’ ’T’} into X;

read all var {’Invest’} into Y;

/* Define the number of observations and the number of independent variables. */

n=nrow(X);

k=ncol(X);

/* Create a column of ones to the X matrix to account for the intercept term. */

X=J(n,1,1)||X;

/* Calculate the inverse of X’X and use this to compute B_Hat. */

C=inv(X`*X);

B_Hat=C*X`*Y;

/* Construct the R Matrix and q matrix. */

R={0 1 1 0 0,0 0 0 1 0,0 0 0 0 1};

q={0,1,0};

j=nrow(R);

R1=R[1,];q1=q[1,];

R2=R[2,];q2=q[2,];

R3=R[3,];q3=q[3,];

/* Compute SSE, and MSE. */

SSE=y`*y-B_Hat̀ *X`*Y;
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DFE=n-k-1;

MSE=sse/DFE;

/* Calculate the t Statistic. */

T_NUM1=R1*B_Hat-q1;

se1=sqrt(R1*MSE*C*R1‘);

T1=T_NUM1/se1;

p1=1-ProbT(T1,n-k);

Print ’The value of the T Statistic for the first restriction is ’ t1;

Print ’The P-Value associated with this is ’ P1;

T_NUM2=R2*B_Hat-q2;

se2=sqrt(R2*MSE*C*R2‘);

T2=T_NUM2/se2;

P2=1-ProbT(T2,n-k);

Print ’The value of the T Statistic for the second restriction is ’ t2;

Print ’The P-Value associated with this is ’ P2;

T_NUM3=R3*B_Hat-q3;

se3=sqrt(R3*MSE*C*R3`);

T3=T_NUM3/se3;

P3=1-ProbT(T3,n-k);

Print ’The value of the T Statistic for the third restriction is ’ t3;

Print ’The P-Value associated with this is ’ P3;

run;

E.5 PROGRAM 5

This program was used in Chapter 4 to conduct Hausman�s specification test on the consumption data that can be found in

Table 5.1 of Greene (2003). We have chosen to omit the data step statements.

proc iml;

/* Read the data into appropriate matrices. */

use hausman;

read all var {’yt’ ’it’ ’ct1’} into X;

read all var {’ct’} into Y;

/* Create the instruments matrix Z and some constants. */

read all var {’it’ ’ct1’ ’yt1’} into Z;

n=nrow(X);

k=ncol(X);

X=J(n,1,1)||X;

Z=J(n,1,1)||Z;

/* Calculate the OLS and IV estimators. */

CX=inv(X`*X);

CZ=inv(Z`*Z);

OLS_b=CX*X`*y;

Xhat=Z*CZ*Z‘*X;

b_IV=inv(Xhat`*X)*Xhat̀ *y;

/* Calculate the difference between the OLS and IV estimators. Also, calculate MSE */

d=b_IV-OLS_b;

SSE=y`*y-OLS_b`*X`*Y;

DFE=n-k;

MSE=sse/DFE;

/* Calculate the GINVERSE of the difference inv(X`*X) - inv(Xhat`*Xhat). */
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/* Calculate the Hausman’s test statistic. */

diff=ginv(inv(Xhat`*Xhat)-CX);

H=d`*diff*d/mse;

J=round(trace(ginv(diff)*diff));

Table=OLS_b||b_IV;

Print Table (|Colname={OLS IV} rowname={Intercept yt it ct1} format=8.4|);

Print ’The Hausman Test Statistic Value is ’ H;

run;

E.6 PROGRAM 6

This program was used in Chapter 5 to calculate the estimates of the robust variance–covariance matrices under

heteroscedasticity. The analysis is done on the credit card data found in Table 9.1 of Greene (2003). The code calculates

White�s estimator and the two alternatives proposed by David and MacKinnon.

proc iml;

/* Read the data into matrices and create constants. */

use Expense;

read all var {’age’ ’ownrent’ ’income’ ’incomesq’} into X;

read all var {’avgexp’} into Y;

n=nrow(X);

X=J(n,1,1)||X;

k=ncol(X);

/* Calculate the inverse of X’X.*/

C=inv(X`*X);

/* Calculate the least squares estimator, beta_hat. */

beta_hat=C*X`*y;

/* Calculate the residuals and MSE. */

resid=y-X*beta_hat;

SSE=y`*y-beta_hat`*X`*Y;

MSE=sse/(n-k);

/* Calculate the S0 term of White’s Estimator. */

/* First, initialize a n by n matrix with zero’s. */

S0=J(k,k,0);

do i=1 to n;

S0=S0 + resid[i,]*resid[i,]*X[i,]`*X[i,];

end;

S0=S0/n;

/* Now, calculate White’s Estimator. */

White=n*C*S0*C;

/* Now, calculate the first recommendation of David & MacKinnon for White’s estimator. */

DM1=n/(n-k) * White;

/* Now, calculate the second recommendation of David & MacKinnon for White’s estimator. */

S0=J(k,k,0);

do i=1 to n;

m_ii=1-X[i,]*C*X[i,]`;

Temp_Ratio=resid[i,]*resid[i,]/m_ii;

S0=S0+Temp_Ratio*X[i,]‘*X[i,];

end;

S0=S0/n;

/* Now, calculate the modified White’s Estimator. */

DM2=n*C*S0*C;
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/* Get the standard errors which are nothing but the square root of the diagonal matrix. */

SE=SQRT(vecdiag(C)#MSE);

SE_White=SQRT(vecdiag(White));

SE_DM1=SQRT(vecdiag(DM1));

SE_DM2=SQRT(vecdiag(DM2));

/* Calculate the t Ratio based on Homoscedastic assumptions. */

T=Beta_Hat/SE;

/* Print the results. */

STATS=beta_hat||SE||T||SE_White||SE_DM1||SE_DM2;

STATS=STATS`;

print ’Least Squares Regression Results’;

print STATS (|Colname={Constant Age OwnRent Income IncomeSq}

rowname={Coefficient SE t_ratio White_Est DM1 DM2} format=8.3|);

run;

E.7 PROGRAM 7

This programwas used inChapter 5 to conductWhite�s test to detect heteroscedasticity in the credit card data, which can be found

inTable 9.1 ofGreene (2003). The data step statements read the data and create thevarious cross-product terms that are used in the

analysis.

proc import out=Expense

datafile="C:\Temp\TableF91"

dbms=Excel Replace;

getnames=yes;

run;

data expense;

set expense;

age_sq=age*age;

incomesq=income*income;

incomefth=incomesq*incomesq;

age_or=age*ownrent;

age_inc=age*income;

age_incsq=age*incomesq;

or_income=ownrent*income;

or_incomesq=ownrent*incomesq;

incomecube=income*incomesq;

If AvgExp>0;

run;

proc iml;

/* Read the data into matrices and create constants. */

use expense;

read all var {’age’ ’ownrent’ ’income’ ’incomesq’} into X;

read all var {’age’ ’ownrent’ ’income’ ’incomesq’ ’age_sq’ ’incomefth’

’age_or’ ’age_inc’ ’age_incsq’ ’or_income’ ’or_incomesq’ ’incomecube’} into XP;

read all var {’avgexp’} into Y;

n=nrow(X);

np=nrow(XP);

X=J(n,1,1)||X;

XP=J(np,1,1)||XP;

k=ncol(X);

kp=ncol(XP);
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/* First get the residuals from OLS. */

C=inv(X`*X);

beta_hat=C*X`*y;

resid=y-X*beta_hat;

/* Square the residuals for a regression with cross product terms in White’s test. */

resid_sq=resid#resid;

/* Regress the square of the residuals versus the 13 variables in X. */

C_E=inv(XP`*XP);

b_hat_e=C_E*XP`*resid_sq;

/* Calculate R-Square from this regression. */

Mean_Y=Sum(resid_sq)/np;

SSR=b_hat_e`*XP`*resid_sq-np*Mean_Y**2;

SSE=resid_sq`*resid_sq-b_hat_e`*XP`*resid_sq;

SST=SSR+SSE;

R_Square=SSR/SST;

print R_Square;

/* Calculate and print the test statistic value and corresponding p-value. */

White=np*R_Square;

pvalue= 1 - probchi(White, kp);

print ’The test statistic value for Whites Test is ’White;

print ’The p-value associated with this test is ’pvalue;

run;

E.8 PROGRAM 8

This programwas used in Chapter 5 to conduct the Breusch-Pagan LagrangeMultiplier test on the credit card data, which can be

found in Table 9.1 of Greene (2003). Note that we have omitted the data step statements.

proc iml;

/* Read the data into matrices and prep matrices for analysis. */

use expense;

read all var {’age’, ’ownrent’,’income’,’incomesq’ } into X;

read all var {’income’, ’incomesq’ } into Z;

read all var {’avgexp’ } into y;

/* Create a few constants. */

n=nrow(X);

X=J(n,1,1)||X;

Z=J(n,1,1)||Z;

/* Calculate the residuals from OLS. */

bhat_OLS=inv(X‘*X)*X`*y;

SSE=(y-X*bhat_OLS)‘*(y-X*bhat_OLS);

resid=y-X*bhat_OLS;

/* Calculate the LM statistic and associated p value. */

g=J(n,1,0);

fudge=SSE/n;

do index=1 to n;

temp1=resid[index,1]*resid[index,1];

g[index,1]=temp1/fudge - 1;

end;

LM=0.5*g`*Z*inv(Z`*Z)*Z`*g;

/* Calculate the degrees of freedom and print the results. */

kz=ncol(Z);
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kz=kz-1;

pval=1-probchi(LM,kz);

if (pval<0.05) then

do;

print ’The Breusch Pagan Test Statistic Value is ’LM;

print ’The p value associated with this is ’pval;

print ’The null hypothesis of homoscedasticity is rejected’;

end;

else

do;

print ’The Breusch Pagan Test Statistic Value is ’LM;

print ’The p value associated with this is ’pval;

print ’The null hypothesis of homoscedasticity is not

rejected’;

end;

run;

E.9 PROGRAM 9

This program was used in Chapter 5 to calculate the iterative FGLS estimators for the credit card expenditure data found in

Table F9.1 of Greene (2003).

proc iml;

/* Read the data into matrices and calculate some constants. */

Use CCExp;

read all var{’Age’ ’OwnRent’ ’Income’ ’Income_Sq’} into X;

read all var{’AvgExp’} into y;

n=nrow(X);

k=ncol(X);

X=J(n,1,1)||X;

/* Calculate the OLS estimates, the residuals and the square of the residuals. */

bhat_OLS=inv(X`*X)*X`*y;

e=y-X*bhat_OLS;

r_e=log(e#e);

/* As we have done with this data, we assume that the issue lies with Income_Sq. */

zi=log(X[,4]);

Z=J(n,1,1)||zi;

/* Regression of Z (defined above) with the square of the residuals. */

alpha_m=inv(Z`*Z)*Z`*r_e;

alpha_s=alpha_m[2,];

/* Now initialize the weight matrix Omega. */

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if i=j then omega[i,j]=X[i,4]**alpha_s;

end;

end;

/* Calculate the first pass estimates of the parameter vector. */

bhat_2S=inv(X`*inv(omega)*X)*X`*inv(omega)*y;

/* Start the iterative process (re-do the steps from above). */

do iter=1 to 100;
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s1=bhat_2S[1,1]; s2=bhat_2S[2,1]; s3=bhat_2S[3,1];

s4=bhat_2S[4,1]; s5=bhat_2S[5,1];

e=y-X*bhat_2S;

r_e=log(e#e);

alpha_m=inv(Z`*Z)*Z`*r_e;

alpha_s=alpha_m[2,];

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if i=j then omega[i,j]=X[i,4]**alpha_s;

end;

end;

/* Calculate the parameter estimates for each iteration. */

/* Calculate the difference between subsequent values of these estimates. */

bhat_2S=inv(X`*inv(omega)*X)*X`*inv(omega)*y;

n1=bhat_2S[1,1]; n2=bhat_2S[2,1]; n3=bhat_2S[3,1];

n4=bhat_2S[4,1]; n5=bhat_2S[5,1];

diff=abs(n1-s1)+abs(n2-s2)+abs(n3-s3)+abs(n4-s4)+abs(n5-s5);

if diff<0.00001 then

/* Exit strategy! */

do;

print "The value of alpha is " alpha_s;

print "Convergence was obtained in " iter "iterations.";

stop;

end;

end;

final_MSE=(e�*inv(omega)*e)/(n-k);

final_cov=final_mse*inv(X�*inv(omega)*X);

SE=sqrt(vecdiag(final_conv));

STAT_Table=bhat_2s||SE;

Print "The estimates of the coefficients are";

Print STAT_Table (|Colname={BHAT SE} rowname={INT Age OwnRent

Income Income2} format=8.4|);

run;

E.10 PROGRAM 10

This programwasused inChapter 5 toplotALPHAversus theLikelihoodValue for the credit carddata,which is found inTable 9.1

of Greene (2003).

proc import out=CCExp

datafile="C:\Temp\TableF91"

dbms=Excel Replace;

getnames=yes;

run;

/* Create temp SAS dataset and transform variables. */

data CCExp;

set CCExp;

IncomeSq=Income*Income;

if AvgExp>0;

run;

/* Invoke Proc IML */

proc iml;
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/* Bring in the SAS data set and create matrices. */

use ccexp;

read all var{’age’,’ownrent’,’income’,’incomesq’} into x;

read all var{’income’} into z;

read all var{’avgexp’} into y;

/* Prep matrices for analysis. */

n=nrow(x);

x=j(n,1,1)||x;

Storage=J(5000,2,0);

/* Generate a range of alpha values. */

do alpha_ind=1 to 5000;

alpha=alpha_ind/1000;

/* Compute the GLS estimator of beta for each alpha. */

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if (i=j) then omega[i,j]=z[i,]**alpha;

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;

/* For these alpha and beta values, calculate the generalized sums of squares. */

GSQ=0.0;

do i=1 to n;

temp1=(y[i,1]-x[i,]*beta_GLS);

temp2=z[i,1]**alpha;

temp3=(temp1**2)/temp2;

GSQ=GSQ+temp3;

end;

MSE=1/n * GSQ;

/* Calculate the Log Likelihood Stat. */

Fudge1=-n/2 * (log(2*constant(’pi’))+log(MSE));

temp_sum=0.0;

do i=1 to n;

temp1=log(z[i,1]**alpha);

temp2=1/mse * z[i,1]**(-alpha);

temp3=(y[i,1]-x[i,]*beta_GLS)**2;

temp4=temp1+temp2*temp3;

temp_sum=temp_sum+temp4;

end;

temp_sum=-0.5*temp_sum;

Ln_L=Fudge1+temp_sum;

storage[alpha_ind,1]=alpha;

storage[alpha_ind,2]=Ln_L;

end;

/* Store the plot data. */

create plot_data from storage;

append from storage;

run;

/* Invoke the plotting code and plot the data. */

data plot_data;

set plot_data;

rename col1=alpha;

rename col2=Ln_L;
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run;

proc sort data=plot_data;

by descending Ln_L;

run;

goptions reset=global gunit=pct border cback=white

colors=(black blue green red)

ftitle=swissb ftext=swiss htitle=3 htext=2;

symbol1 value=dot

height=0.5

cv=red

ci=blue

co=green

width=0.5;

proc gplot data=plot_data;

plot Ln_L*alpha/haxis=axis1

vaxis=axis2;

axis1 label=(’Alpha’);

axis2 label=(angle=90 ’Ln_L’);

run;

E.11 PROGRAM 11

This program is used in Chapter 5 to calculate the correct standard errors of the GLS estimator for the credit card data, which is

found in Table 9.1 of Greene (2003). The optimal value of alpha was found to be 3.651.

proc import out=CCExp

datafile="C:\Temp\TableF91"

dbms=Excel Replace;

getnames=yes;

run;

/* Create temp SAS dataset and transform variables. */

data CCExp;

set CCExp;

IncomeSq=Income*Income;

if AvgExp>0;

run;

/* Invoke Proc IML. */

proc iml;

/* Bring in the SAS data set and create matrices. */

use ccexp;

read all var{’age’,’ownrent’,’income’,’incomesq’} into x;

read all var{’income’} into z;

read all var{’avgexp’} into y;

/* Prep matrices for analysis. */

n=nrow(x);

x=j(n,1,1)||x;

/* Generate a range of alpha values. */

alpha=3.651;

/* Compute the GLS estimator of beta alpha. */

omega=J(n,n,0);

do i=1 to n;
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do j=1 to n;

if (i=j) then omega[i,j]=z[i,]**alpha;

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;

/* For this alpha and beta values, calculate the generalized sums of squares. */

GSQ=0.0;

do i=1 to n;

temp1=(y[i,1]-x[i,]*beta_GLS);

temp2=z[i,1]**alpha;

temp3=(temp1**2)/temp2;

GSQ=GSQ+temp3;

end;

MSE=1/n * GSQ;

/* Calculate the covariance matrix now. */

COV=MSE*inv(X`*inv(Omega)*X);

print COV;

run;

E.12 PROGRAM 12

This program uses the credit card data from Table 9.1 of Greene (2003) to get MLEs of the parameters when ALPHA is

multivariate.

proc import out=CCExp

datafile="C:\Temp\TableF91"

dbms=Excel Replace;

getnames=yes;

run;

/* Create temp SAS dataset and transform variables. */

data CCExp;

set CCExp;

IncomeSq=Income*Income;

if AvgExp>0;

run;

/* Invoke Proc IML.;

proc iml;

/* Bring in the SAS data set and create matrices.;

use ccexp;

read all var{’age’,’ownrent’,’income’,’incomesq’} into x;

read all var{’income’,’incomesq’} into z;

read all var{’avgexp’} into y;

s_alpha=J(3,1,0);

s_beta=J(5,1,0);

/* Prep matrices for analysis.;

n=nrow(x);

x=j(n,1,1)||x;

z=j(n,1,1)||z;

CZ=inv(Z`*Z);

/* Compute OLS estimates of beta and mse.;

bhat=inv(X`*X)*X`*y;

e=y-X*bhat;
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/* Log residual square to be used to get alpha values.;

/* Compute alpha values-First iteration.;

r_e=log(e#e);

alpha=inv(z`*z)*z`*r_e;

/* Compute GLS beta values-First iteration.;/

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if (i=j) then omega[i,j]=exp(z[i,]*alpha);

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;

/* Update alpha and beta.;

do i=1 to 100;

s_alpha[1,1]=alpha[1,1]; s_alpha[2,1]=alpha[2,1]; s_alpha[3,1]=alpha[3,1];

s_beta[1,1]=beta_GLS[1,1]; s_beta[2,1]=beta_GLS[2,1]; s_beta[3,1]=beta

GLS[3,1];

s_beta[4,1]=beta_GLS[4,1]; s_beta[5,1]=beta_GLS[5,1];

resp=J(n,1,0);

e=y-x*beta_gls;

do j=1 to n;

resp[j,1]=e[j,1]*e[j,1]/exp(z[j,]*alpha) - 1;

end;

alpha=alpha+inv(z`*z)*z`*resp;

/* Get a new value of Beta.;

omega=J(n,n,0);

do i1=1 to n;

do i2=1 to n;

if (i1=i2) then omega[i1,i2]=exp(z[i1,]*alpha);

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;

/* Compute differences.;

diff_beta=sum(abs(s_beta-beta_gls));

diff_alpha=sum(abs(s_alpha-alpha));

diff=diff_beta+diff_alpha;

/* Exit strategy.;

if diff<0.00001 then

do;

print "The estimates of the coefficients are.";

print beta_gls;

print "The value of alpha is " alpha;

print "Convergence was obtained in " i "iterations.";

stop;

end;

end;

var=exp(alpha[1,1]);

var_cov=var*inv(X`*inv(omega)*X);

se=sqrt(vecdiag(var_conv));

STAT_Table=beta_gls||SE;

Print "The estimates of the coefficients are";

Print STAT_Table (|Colname={BHAT SE} rowname={INT Age OwnRent Income

Income2} format=8.4|);

run;
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E.13 PROGRAM 13

This program was used in Chapter 5 to analyze the airlines data found in Table F7.1 of Greene (2003). The code computes the

parameter estimates assuming groupwise heterogeneity.

proc iml;

/* Bring in the SAS data set and create matrices.;

use airline;

read all var{’LnQ’,’LF’,’LnPf’,’D2’,’D3’,’D4’,’D5’,’D6’} into x;

read all var{’D2’,’D3’,’D4’,’D5’,’D6’} into z;

read all var{’LnC’} into y;

s_alpha=J(6,1,0);

s_beta=J(9,1,0);

/* Prep matrices for analysis.;

n=nrow(x);

x=j(n,1,1)||x;

z=j(n,1,1)||z;

CZ=inv(Z`*Z);

/* Compute OLS estimates of beta and mse;

bhat=inv(X`*X)*X`*y;

e=y-X*bhat;

/* Log residual square to be used to get alpha values.;

/* Compute alpha values-First iteration.;

r_e=log(e#e);

alpha=inv(z`*z)*z`*r_e;

/* Compute GLS beta values-First iteration.;

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if (i=j) then omega[i,j]=exp(z[i,]*alpha);

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;

/* Update alpha and beta.;

do i=1 to 100;

s_alpha=alpha;

s_beta=beta_GLS;

resp=J(n,1,0);

e=y-x*beta_gls;

sum=J(6,1,0.0);

do j=1 to n;

tem=z[j,]`;

resp[j,1]=e[j,1]*e[j,1]/exp(z[j,]*alpha) - 1;

sum=sum+tem*resp[j,1];

end;

alpha=alpha+inv(z`*z)*sum;

/* Get a new value of Beta.;

omega=J(n,n,0);

do i1=1 to n;

do i2=1 to n;

if (i1=i2) then omega[i1,i2]=exp(z[i1,]*alpha);

end;

end;

beta_GLS=inv(x`*inv(omega)*x)*x`*inv(omega)*y;
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/* Compute differences.;

diff_beta=sum(abs(s_beta-beta_gls));

diff_alpha=sum(abs(s_alpha-alpha));

diff=diff_beta+diff_alpha;

/* Exit strategy.;

if diff<0.00001 then

do;

print "The estimates of the coefficients are.";

print beta_gls;

print "The value of alpha is " alpha;

print "Convergence was obtained in " i "iterations.";

stop;

end;

end;

/* Calculate the covariance matrix at the optimal values.;

omega=J(n,n,0);

do i=1 to n;

do j=1 to n;

if (i=j) then omega[i,j]=exp(z[i,]*alpha);

end;

end;

var_cov=inv(X`*inv(omega)*x);

var_cov_alpha=2*CZ;

se=J(9,1,0);

se_a=J(6,1,0);

do index=1 to 9;

se[index,1]=sqrt(var_cov[index,index]);

end;

do index=1 to 6;

se_a[index,1]=sqrt(var_cov_alpha[index,index]);

end;

print se;

print se_a;

run;

E.14 PROGRAM 14

This program was used in Chapter 7 to estimate the parameters of a dynamic panel data for the cigarettes data set with no

explanatory variables.

* Read the data into SAS;

proc import out=cigar

datafile="C:\Temp\cigar"

dbms=Excel Replace;

getnames=yes;

run;

* Take the Log Transformation;

data cigar;

set cigar;

if state=. or year=. then delete;

Log_C=Log(C);

keep state year Log_C;
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run;

proc iml;

* Define constants;

N=46;T=30;P=406;

* Read the variable into a matrix;

use cigar;

read all var{’Log_C’} into Y;

* H is fixed. So, define H here;

H=shape(0,T-2,T-2);

do j=1 to T-2;

do l=1 to T-2;

if j=l then H[l,j]=2;

if (j=l+1) then H[l,j]=-1;if (j=l-1) then H[l,j]=-1;

end;

end;

* Initialize four sum matrices and the counter;

ZHZ=shape(0,P,P);YMZ=shape(0,1,P);YZ=shape(0,1,P);ZPZ=shape(0,P,P);

compt=1;

do i=1 to N;

* Calculate the diff matrix;

Y_DIFF=shape(0,T-2,1);

Y_DIFFS=shape(0,T-2,1);

do Index=1 to T-2;

Y_DIFF[Index]=Y[Index+compt+1,1]-Y[Index+Compt,1];

Y_DIFFS[Index]=Y[Index+compt,1]-Y[Index+compt-1,1];

end;

* Calculate the BZI matrix;

j=1;cpt=j;cpt2=compt;

BZI=shape(0,1,cpt);BZI[1,1]=Y[cpt2,1];

do j=2 to T-2;

cpt=j;

cpt2=compt;

C=shape(0,1,cpt);

do k=1 to j;

C[1,k]=Y[cpt2+k-1,1];

end;

BZI=block(BZI,C);

end;

* Calculate the matrix sums;

ZHZ=ZHZ+BZI`*H*BZI;

YMZ=YMZ+Y_DIFF`*BZI;

YZ=YZ+Y_DIFFS`*BZI;

compt=compt+T;

end;

* Calculate the first step coefficient estimate;

Delta_Est1=inv(YZ*inv(ZHZ)*YZ`)*YZ*inv(ZHZ)*YMZ`;

print Delta_Est1;

* Calculate the Residual Vector;

compt=1;

do i=1 to N;

* Calculate the diff matrix;

Y_DIFF=shape(0,T-2,1);

Y_DIFFS=shape(0,T-2,1);

E=shape(0,T-2,1);
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do Index=1 to T-2;

Y_DIFF[Index,1]=Y[Index+compt+1,1]-Y[Index+Compt,1];

Y_DIFFS[Index,1]=Y[Index+compt,1]-Y[Index+compt-1,1];

end;

E=Y_DIFF-Delta_Est1*Y_DIFFS;

* Calculate the BZI matrix;

j=1;cpt=j;cpt2=compt;

BZI=shape(0,1,cpt);BZI[1,1]=Y[cpt2,1];

do j=2 to T-2;

cpt=j;cpt2=compt;

C=shape(0,1,cpt);

do k=1 to j;

C[1,k]=Y[cpt2+k-1,1];

end;

BZI=block(BZI,C);

end;

* Calculate the weight matrix for the second step;

ZPZ=ZPZ+BZI`*E*E`*BZI;

compt=compt+T;

end;

* Calculate the second step Arellano and Bond Estimator;

Delta_Est2=inv(YZ*ginv(ZPZ)*YZ`)*YZ*ginv(ZPZ)*YMZ‘;

print Delta_Est2;

run;

E.15 PROGRAM 15

This programwas used inChapter 7 to estimate the cigarettes data set dynamic panelmodelwith explanatory variables. This code

calculates the Anderson–Hso estimator.

* Read the data from Excel;

proc import out=cigar

datafile="C:\Temp\cigar"

dbms=Excel Replace;

getnames=yes;

run;

* Create the log transformations;

data cigar;

set cigar;

if state=. or year=. then delete;

Log_C=Log(C);

Log_MIN=Log(MIN);

Log_NDI=Log(NDI);

Log_Price=Log(Price);

RUN;

proc iml;

* This program will calculate the Anderson-Hso Estimator for the Cigar.TXT dataset;

* Define constants;

N=46;T=30;P=4;

* Read the variables into a matrix;

use cigar;

read all var {’Log_C’,’Log_Min’,’Log_NDI’,’Log_Price’} into Y;
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* Initialize three sum matrices;

ZHZ=shape(0,P,P);YMZ=shape(0,1,P);YZ=shape(0,4,P);

* Initialize the counter;

compt=1;

* Begin the loop for calculating the first step Arellano-Bond Estimator;

do i=1 to N;

* Calculate the diff matrix relating to the Y’s;

Y_DIFF=shape(0,T-2,1);

Y_DIFFS=shape(0,T-2,1);

do Index=1 to T-2;

Y_DIFF[Index,1]=Y[Index+compt+1,1]-Y[Index+Compt,1];

Y_DIFFS[Index,1]=Y[Index+compt,1]-Y[Index+compt-1,1];

end;

* Calculate the diff matrix relating to the X’s;

X_DIFF1=shape(0,T-2,1);

X_DIFF2=shape(0,T-2,1);

X_DIFF3=shape(0,T-2,1);

do index=1 to T-2;

X_DIFF1[Index,1]=Y[Index+compt+1,2]-Y[Index+Compt,2];

X_DIFF2[Index,1]=Y[Index+compt+1,3]-Y[Index+Compt,3];

X_DIFF3[Index,1]=Y[Index+compt+1,4]-Y[Index+Compt,4];

end;

* Create the XI matrix;

XI=shape(0,T-2,4);

XI=Y_DIFFS||X_DIFF1||X_DIFF2||X_DIFF3;

* Calculate the BZI matrix;

BZI=shape(0,t-2,p);

do index=1 to t-2;

BZI[Index,1]=Y[Index+Compt-1,1];

BZI[Index,2]=Y[Index+compt+1,2]-Y[Index+Compt,2];

BZI[Index,3]=Y[Index+compt+1,3]-Y[Index+Compt,3];

BZI[Index,4]=Y[Index+compt+1,4]-Y[Index+Compt,4];

end;

ZHZ=ZHZ+BZI`*BZI;

YMZ=YMZ+Y_DIFF`*BZI;

YZ=YZ+XI`*BZI;

compt=compt+T;

end;

* Calculate the coefficient estimate;

Delta_Est1=inv(YZ*inv(ZHZ)*YZ)*YZ`*inv(ZHZ)*YMZ`;

print Delta_Est1;

run;

E.16 PROGRAM 16

This programwas used inChapter 7 to estimate the cigarettes data set dynamic panelmodelwith explanatory variables. This code

calculates the Arnello–Bond estimator.

proc import out=cigar

datafile="C:\Documents and Settings\E81836\Desktop\Economics Book\cigar"

dbms=Excel Replace;

getnames=yes;
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run;

data cigar;

set cigar;

Log_C=Log(C);

Log_MIN=Log(MIN);

Log_NDI=Log(NDI);

Log_Price=Log(Price);

run;

proc iml;

* This program will calculate the Arellano—Bond estimator for the Cigar.TXT dataset;

* We will assume that all X’s are predetermined;

* Define constants;

N=1;T=30;P=1708;

* Read the variables into a matrix;

use cigar;

read all var {’Log_C’,’Log_Min’,’Log_NDI’,’Log_Price’} into Y;

* H is fixed. So, define H here;

H=shape(0,T-2,T-2);

do j=1 to T-2;

do l=1 to T-2;

if j=l then H[l,j]=2;

if (j=l+1) then H[l,j]=-1;

if (j=l-1) then H[l,j]=-1;

end;

end;

* Initialize Four sum matrices;

ZHZ=shape(0,P,P); YMZ=shape(0,1,P); YZ=shape(0,4,P); ZPZ=shape(0,P,P);

* Initialize the counter;

compt=1;

* Begin the loop for calculating the first step Arellano—Bond estimator;

do i=1 to N;

* Calculate the diff matrix relating to the Y’s;

Y_DIFF=shape(0,T-2,1);

Y_DIFFS=shape(0,T-2,1);

do Index=1 to T-2;

Y_DIFF[Index,1]=Y[Index+compt+1,1]-Y[Index+Compt,1];

Y_DIFFS[Index,1]=Y[Index+compt,1]-Y[Index+compt-1,1];

end;

* Calculate the diff matrix relating to the X’s;

X_DIFF1=shape(0,T-2,1);

X_DIFF2=shape(0,T-2,1);

X_DIFF3=shape(0,T-2,1);

do index=1 to T-2;

X_DIFF1[Index,1]=Y[Index+compt+1,2]-Y[Index+Compt,2];

X_DIFF2[Index,1]=Y[Index+compt+1,3]-Y[Index+Compt,3];

X_DIFF3[Index,1]=Y[Index+compt+1,4]-Y[Index+Compt,4];

end;

* Create the XI matrix;

XI=shape(0,T-2,4);

XI=Y_DIFFS||X_DIFF1||X_DIFF2||X_DIFF3;

* Calculate the BZI matrix;

j=1;

cpt=j+3*(j+1);
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cpt2=compt;

BZI=shape(0,1,cpt);BZI[1,1]=Y[cpt2,1];BZI[1,2]=Y[cpt2,2];

BZI[1,3]=Y[cpt2+1,2];BZI[1,4]=Y[cpt2,3];BZI[1,5]=Y[cpt2+1,3];

BZI[1,6]=Y[cpt2,4];BZI[1,7]=Y[cpt2+1,4];

do j=2 to T-2;

cpt=j+3*(j+1);

cpt2=compt;

C=shape(0,1,cpt);

do k=1 to j;

C[1,k]=Y[cpt2+k-1,1];

end;

do k=1 to j+1;

c[1,j+k]=Y[cpt2+k-1,2];

c[1,j+j+1+k]=Y[cpt2+k-1,3];

c[1,j+2*(j+1)+k]=Y[cpt2+k-1,4];

end;

BZI=block(BZI,C);

end;

ZHZ=ZHZ+BZI`*H*BZI;

YMZ=YMZ+Y_DIFF`*BZI;

YZ=YZ+XI`*BZI;

compt=compt+T;

end;

* Calculate the coefficient estimate;

Delta_Est1=inv(YZ*ginv(ZHZ)*YZ`)*YZ*ginv(ZHZ)*YMZ`;

print Delta_Est1;

* Calculate the Residual Vector;

compt=1;

do i=1 to N;

* Calculate the diff matrix;

Y_DIFF=shape(0,T-2,1);

Y_DIFFS=shape(0,T-2,1);

E=shape(0,T-2,1);

do Index=1 to T-2;

Y_DIFF[Index,1]=Y[Index+compt+1,1]-Y[Index+Compt,1];

Y_DIFFS[Index,1]=Y[Index+compt,1]-Y[Index+compt-1,1];

end;

* Calculate the diff matrix relating to the X’s;

X_DIFF1=shape(0,T-2,1);X_DIFF2=shape(0,T-2,1);X_DIFF3=shape(0,T-2,1);

do index=1 to T-2;

X_DIFF1[Index,1]=Y[Index+compt+1,2]-Y[Index+Compt,2];

X_DIFF2[Index,1]=Y[Index+compt+1,3]-Y[Index+Compt,3];

X_DIFF3[Index,1]=Y[Index+compt+1,4]-Y[Index+Compt,4];

end;

* Create the XI matrix;

XI=shape(0,T-2,4);

XI=Y_DIFFS||X_DIFF1||X_DIFF2||X_DIFF3;

E=Y_DIFF-XI*Delta_Est1;

* Calculate the BZI matrix;

j=1;cpt=j+3*(j+1);cpt2=compt;

BZI=shape(0,1,cpt);BZI[1,1]=Y[cpt2,1];BZI[1,2]=Y[cpt2,2];

BZI[1,3]=Y[cpt2+1,2];BZI[1,4]=Y[cpt2,3];BZI[1,5]=Y[cpt2+1,3];

BZI[1,6]=Y[cpt2,4]; BZI[1,7]=Y[cpt2+1,4];

do j=2 to T-2;
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cpt=j+3*(j+1);

cpt2=compt;

C=shape(0,1,cpt);

do k=1 to j;

C[1,k]=Y[cpt2+k-1,1];

end;

do k=1 to j+1;

c[1,j+k]=Y[cpt2+k-1,2];

c[1,j+j+1+k]=Y[cpt2+k-1,3];

c[1,j+2*(j+1)+k]=Y[cpt2+k-1,4];

end;

BZI=block(BZI,C);

end;

ZPZ=ZPZ+BZI`*E*E`*BZI;

compt=compt+T;

end;

Delta_Est2=inv(YZ*ginv(ZPZ)*YZ`)*YZ*ginv(ZPZ)*YMZ`;

print Delta_Est2;

run;

E.17 PROGRAM 17

This code (including the following comments) was written by Thomas Fomby (Department of Economics, Southern Methodist

University) in 2005. This SAS IMLprogram conducts a duration analysis of the lengths of strikes as a function of the deviation of

output from its trend level, an indicator of the business cycle position of the economy. The data was downloaded from the CD

provided in the Greene textbook, Econometric Analysis, 4th edn., Table A20.1. The data was originally analyzed by J. Kennan

(1985) in his paper “The Duration of Contract Strikes in U.S. Manufacturing,’’ Journal of Econometrics, 28, 55–28.

data strike;

input dur eco;

datalines;

7.00000 .0113800

9.00000 .0113800

13.0000 .0113800

14.0000 .0113800

26.0000 .0113800

29.0000 .0113800

52.0000 .0113800

130.000 .0113800

9.00000 .0229900

37.0000 .0229900

41.0000 .0229900

49.0000 .0229900

52.0000 .0229900

119.000 .0229900

3.00000 -.0395700

17.0000 -.0395700

19.0000 -.0395700

28.0000 -.0395700

72.0000 -.0395700

99.0000 -.0395700

104.000 -.0395700
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114.000 -.0395700

152.000 -.0395700

153.000 -.0395700

216.000 -.0395700

15.0000 -.0546700

61.0000 -.0546700

98.0000 -.0546700

2.00000 .00535000

25.0000 .00535000

85.0000 .00535000

3.00000 .0742700

10.0000 .0742700

1.00000 .0645000

2.00000 .0645000

3.00000 .0645000

3.00000 .0645000

3.00000 .0645000

4.00000 .0645000

8.00000 .0645000

11.0000 .0645000

22.0000 .0645000

23.0000 .0645000

27.0000 .0645000

32.0000 .0645000

33.0000 .0645000

35.0000 .0645000

43.0000 .0645000

43.0000 .0645000

44.0000 .0645000

100.000 .0645000

5.00000 -.104430

49.0000 -.104430

2.00000 -.00700000

12.0000 -.00700000

12.0000 -.00700000

21.0000 -.00700000

21.0000 -.00700000

27.0000 -.00700000

38.0000 -.00700000

42.0000 -.00700000

117.000 -.00700000

;

data strike;

set strike;

dum = 1;

proc iml;

start mle;

use strike;

read all into t var{dur};

read all into x var{eco};

read all into d var{dum};

/* Calculation of Unrestricted MLE estimates using Newton-Raphson Method */
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theta= {1,4,-9};

crit =1;

n=nrow(t);

ones = j(n,1,1);

result=j(10,9,0);

do iter=1 to 10 while (crit>1.0e-10);

sigma=theta[1,1];

beta1=theta[2,1];

beta2=theta[3,1];

w = (ones/sigma)#(log(t) - ones#beta1 - x#beta2);

lnL = d#(w - log(sigma))- exp(w);

lnL = sum(lnL);

g1 = (ones/sigma)#(w#exp(w) - d#(w + ones));

g2=(ones/sigma)#(exp(w) - d);

g3 = (ones/sigma)#x#((exp(w) - d));

g1=sum(g1);

g2=sum(g2);

g3=sum(g3);

g=g1//g2//g3;

h11= -(ones/sigma**2)#((w##2)#exp(w) + 2#w#exp(w) - 2#w#d - d);

h11= sum(h11);

h12= -(ones/sigma**2)#(exp(w) - d + w#exp(w));

h12 = sum(h12);

h13= -(ones/sigma**2)#x#(exp(w) - d + w#exp(w));

h13 = sum(h13);

h21 = h12;

h31 = h13;

h22 = -(ones/sigma**2)#exp(w);

h22 = sum(h22);

h23 = -(ones/sigma**2)#x#exp(w);

h23 = sum(h23);

h32 = h23;

h33 = -(ones/sigma**2)#(x##2)#exp(w);

h33 = sum(h33);

h=(h11||h12||h13)//(h21||h22||h23)//(h31||h32||h33);

db=-inv(h)*g;

thetanew = theta + db;

crit = sqrt(ssq(thetanew-theta));

theta=thetanew;

result[iter,] = iter||(theta‘)||g1||g2||g3||crit||lnL;

end;

lnLu = lnL;

cnames = {iter,sigma,beta1,beta2,g1,g2,g3,crit,lnLu};

print "Calculation of Unrestricted MLE estimates using Hessian-Based Newton-Raphson

Method";

print "Iteration steps ", result[colname=cnames];

print , "Unrestricted Log-likelihood = ", lnLu;

/*Covariance matrix from Hessian*/

cov = -inv(h);

se_sigma_h = sqrt(cov[1,1]);

se_beta1_h = sqrt(cov[2,2]);

se_beta2_h = sqrt(cov[3,3]);

z_sigma_h = sigma/se_sigma_h;
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z_beta1_h = beta1/se_beta1_h;

z_beta2_h = beta2/se_beta2_h;

/*Covariance matrix from BHHH*/

g1 = (ones/sigma)#(w#exp(w) - d#(w + ones));

g2=(ones/sigma)#(exp(w) - d);

g3 = (ones/sigma)#x#((exp(w) - d));

gmat = g1||g2||g3;

bhhh = gmat‘*gmat;

covbh3 = inv(bhhh);

se_sigma_b=sqrt(covbh3[1,1]);

se_beta1_b=sqrt(covbh3[2,2]);

se_beta2_b=sqrt(covbh3[3,3]);

z_sigma_b = sigma/se_sigma_b;

z_beta1_b = beta1/se_beta1_b;

z_beta2_b = beta2/se_beta2_b;

pnames = {sigma,beta1, beta2};

print , "The Maximum Likelihood Estimates: Hessian-Based Newton-Raphson Iteration",

theta [rowname=pnames];

print , "Asymptotic Covariance Matrix-From Hessian", cov

[rowname=pnames colname=pnames];

print "Standard errors: ",se_sigma_h,se_beta1_h,se_beta2_h;

print ,"Asymptotic Covariance Matrix-From bhhh", covbh3

[rowname=pnames colname=pnames];

print "Standard errors: ",se_sigma_b,se_beta1_b, se_beta2_b;

print "Wald test of hypothesis of constant hazard (sigma=1)";

Wald = (sigma-1)*inv(cov[2,2])*(sigma-1); * Wald test;

critval = cinv(.95,1); * calculates the 95th percentile of chi-square 1;

pval = 1 - probchi(wald,1); * calculates the probability value of Wald;

print "Results of Wald test Using Hessian" Wald critval pval;

Wald = (sigma-1)*inv(covbh3[2,2])*(sigma-1); * Wald test;

critval = cinv(.95,1); * calculates the 95th percentile of chi-square 1;

pval = 1 - probchi(wald,1); * calculates the probability value of Wald;

print "Results of Wald test Using BHHH" Wald critval pval;

/* ML Estimation of Restricted Model*/

print , "Maximum Likelihood Estimation of Restricted Model";

print "*************************************************";

theta = {4,-9};

crit = 1;

n = nrow(t);

result = j(10,7,0);

do iter = 1 to 10 while (crit > 1.0e-10);

beta1=theta[1,1];

beta2=theta[2,1];

w = (log(t) - ones#beta1 - x#beta2);

lnLr = d#w - exp(w);

lnLr = sum(lnLr);

g1 = -(d - exp(w));

g1 = sum(g1);

g2 = -x#(d - exp(w));

g2 = sum(g2);

g = g1//g2;

h11 = -exp(w);

296 APPENDIX E: COMPLETE PROGRAMS AND PROC IML ROUTINES



h12 = -x#exp(w);

h22 = -(x##2)#exp(w);

h11 = sum(h11);

h12 = sum(h12);

h21 = h12;

h22 = sum(h22);

h = (h11||h12)//(h21||h22);

db = -inv(h)*g;

thetanew = theta + db;

crit = sqrt(ssq(thetanew - theta));

result[iter,] = iter||(theta‘)||g1||g2||crit||lnLr;

theta = thetanew;

end;

cov = -inv(h);

cnames = {iter,beta1,beta2,g1,g2,crit,lnLr};

print "Iteration steps",result [colname=cnames];

pnames = {beta1,beta2};

print , "The Maximum Likelihood Estimates-Restricted Model", (theta‘)

[colname=pnames];

print , "Asymptotic Covariance Matrix-From Hessian of Restricted Model", cov

[rowname=pnames colname=pnames];

/* Gradient evaluated at restricted MLE estimates */

sigma = 1;

w = (ones/sigma)#(log(t) - ones#beta1 - x#beta2);

g1 = (ones/sigma)#(w#exp(w) - d#(w + ones));

g2=(ones/sigma)#(exp(w) - d);

g3 = (ones/sigma)#x#((exp(w) - d));

gmat = g1||g2||g3;

g1=sum(g1);

g2=sum(g2);

g3=sum(g3);

g=g1//g2//g3;

/* Hessian evaluated at restricted MLE estimates */

h11= -(ones/sigma**2)#((w##2)#exp(w) + 2#w#exp(w) - 2#w#d - d);

h11= sum(h11);

h12= -(ones/sigma**2)#(exp(w) - d + w#exp(w));

h12 = sum(h12);

h13= -(ones/sigma**2)#x#(exp(w) - d + w#exp(w));

h13 = sum(h13);

h21 = h12;

h31 = h13;

h22 = -(ones/sigma**2)#exp(w);

h22 = sum(h22);

h23 = -(ones/sigma**2)#x#exp(w);

h23 = sum(h23);

h32 = h23;

h33 = -(ones/sigma**2)#(x##2)#exp(w);

h33 = sum(h33);

h=(h11||h12||h13)//(h21||h22||h23)//(h31||h32||h33);

LM = g‘*(-inv(h))*g; * LM test;

critval = cinv(.95,1);

pval = 1 - probchi(LM,1);

print "Results of LM test Using Hessian" LM critval pval;
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/* BHHH evaluated at Restricted MLE*/

bhhh = gmat‘*gmat;

covbh3r = inv(bhhh);

LM = g‘*covbh3r*g; * LM test;

critval = cinv(.95,1);

pval = 1 - probchi(LM,1);

print "Results of LM test Using BHHH" LM critval pval;

LR = -2*(lnLr-lnLu); * Likelihood Ratio test;

pval = 1 - probchi(LR,1);

print "Results of LR test" LR critval pval;

/* Let’s see if we get essentially the same maximum likelihood estimates if we use

a BHHH-based Newton-Raphson iteration. */

theta= {1,3.77,-9.35};

crit =1;

n=nrow(t);

ones = j(n,1,1);

result=j(60,9,0);

do iter= 1 to 60 while (crit>1.0e-10);

sigma=theta[1,1];

beta1=theta[2,1];

beta2=theta[3,1];

w = (ones/sigma)#(log(t) - ones#beta1 - x#beta2);

lnL = d#(w - log(sigma))- exp(w);

lnL = sum(lnL);

g1 = (ones/sigma)#(w#exp(w) - d#(w + ones));

g2=(ones/sigma)#(exp(w) - d);

g3 = (ones/sigma)#x#((exp(w) - d));

gmat = g1||g2||g3;

g1 = sum(g1);

g2 = sum(g2);

g3 = sum(g3);

g = g1//g2//g3;

bhhh = gmat‘*gmat;

db= inv(bhhh)*g;

thetanew = theta + db;

crit = sqrt(ssq(thetanew-theta));

theta = thetanew;

result[iter,] = iter||(theta‘)||g1||g2||g3||crit||lnL;

end;

cnames = {iter,sigma,beta1,beta2,g1,g2,g3,crit,lnL};

print "Calculation of Unrestricted MLE estimates using BHHH-Based Newton-Raphson Method";

print "Iteration steps ", result[colname=cnames];

finish;

run mle;
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Accelerated failure time models, 188

Adjusted coefficient of determination, 10

calculation, 10

Adjusted coefficient of variation, 7

definition, 7

Airlines data, 112, 115, 117, 119, 121, 122, 124, 126,

127, 128, 206

fixed/random effects model, covariance matrices, 128

fixed time effects analysis, 121

using Proc GLM, 122

firm effects analysis, 124

using Proc GLM, 126

groupwise heteroscedasticity estimators, 209

HCCME estimators, 220

least squares residuals, 206

comparison, 207

likelihood ratio test, 206

LSDVestimation

using Proc GLM, 119

using Proc IML, 115

using Proc panel, 117

using OLS calculations, 117

mean of residuals, 127

pooled regression model, 112

summary statistics, 254

temporary SAS data set, 208

time series plot, 206

regression, dummy variables, 48

Analysis of variance (ANOVA) techniques, 2, 5, 6, 12, 13, 45, 58

table, 12, 13, 58

ARCH(1) model, 88

process, 89, 91

ARCH(q) process, 89

unconditional variance, 89

Arellano–Bond GMM estimator, 224

first-step estimator, 222

second-step estimator, 222

Asymptotic covariance matrix, 65, 114, 234

Asymptotic variance, 116

Asymptotic variance-covariance matrix, 57

Attrition models, 153

Autocorrelation process, 93–96

detection, 96–101

Durbin–Watson test, 96

Lagrange multiplier test, 97

first-order, 96

occurrence, 93

ordinary least square (OLS) estimation problems,

94–95

parameters, 101, 102

FGLS estimation method, 101

GLS estimation method, 101

second-order, 96, 102, 104

Autoregressive conditional heteroscedastic models (ARCH)

44, 87–92

generalized ARCH models, 44, 89

process, 88, 91

testing effects, 90–92

Autoregressive autocorrelation model (AR) 101–109

AR(2) model, residuals, 102–105, 108, 109

first-order autocorrelation model (AR1) 94

fitness procedure, 101

Proc autoreg, 101

SAS usage, 101

Autoregressive moving average process, 88

Bartlett test statistic, 207

variance comparison, 207
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BHHH methods, algorithm, 192

Binary response models, 154

Bootstrap estimation method, 262, 267

calculating standard errors, 264

cumulative distributions, plot diagram, 263

estimation technique, 262

in regression analysis, 265

in SAS, 264

lower/upper confidence limit, 263

OLS estimates, 271

Proc Univariate statements, 265

Bootstrapped regression analysis, 267–269

gasoline consumption data, 269

residuals method, 266, 268

SAS, 267

Breusch–Pagan Lagrange multiplier test, 76, 78–80, 129

credit card expenditure data, 80

Central limit theorem, 5

Ceteris paribus condition, 2

Chi-square test, 191

distribution, 97, 207

table, 66

values, 189

Chow test static, 40, 41, 42

by Proc model, 42

structural break in gasoline data, 42–43

p value, 40, 41

Classical regression model, spherical disturbances assumption, 71

Cobb–Douglas model, 34, 35, 37

production data, 35

regression analysis, 35, 37

SAS code, 35

Coefficient of determination, 10, 14

calculation, 10

Coefficient of variation, 13, 51

definition, 13

Combined gasoline consumption data,

regression analysis, 41

Complex panel data models, 116

autocorrelation violations, 116

dynamic panel data models, 116

heteroscedasticity violations, 116

Conditional probabilities, 173

calculation, 173

Confidence interval, 7–8, 18, 189

Consumer price index (CPI), 9, 14

inflation rate, 14

Cook’s D statistic, definition, 20

Cook’s statistic, See Cook’s D statistic

Correlation, 15, 16

b/w variables, 16

coefficients, 25

matrix, 26

nature of, 15

scatter plots, 15

Covariance matrix, 95, 125, 128

construction, 95

diagonal elements, 125

Cox’s proportional hazard models, 190

CPI, See Consumer price index

Credit card expenditure data, 203

ALPHA vs. likelihood value plot, 281

Breusch–Pagan Lagrange multiplier test, 279

FGLS estimators, 280

GLS estimator, 283

heteroscedasticity, 278

iterative FGLS estimators, 203

maximum likelihood estimations (MLEs) parameters, 284

regression analysis, 205

White’s test, 278

Cross-equation correlation, 1, 140

Cross-model covariance matrix, 140

diagonal elements of, 140

Cumulative distribution function (CDF), 170

Cumulative hazard rate function, 171

CUSUM test, 41–45

critical values, 43

definition, 43

gasoline consumption data, 44, 45

plot, 45

procedure, 41

Data matrix, 7, 10

Data plotting, 15–16

Data set, 47

Data testing, 38

for structural breaks, 38

linear restriction hypothesis test, 38

Davidson/MacKinnon’s estimator, 81

DM1versions, 83

DM2 versions, 83

Definite matrix, 53

Degrees of freedom, 6, 13, 29, 65, 91

model, 10, 50

n–k, 29

Dependent variable, 6, 18

predictions of, 18–21

Determinants, 241

definition, 241

properties of, 241

Direct marketing companies, 153

Discrete choice models, 153

binary response models, 154

parameters interpretation, 155

shortcomings, 154

Discrete random variable, 153

Disturbance vector, 114

Dummy variables, 45

estimators, 72, 113

in models, 45–51

model, 114

vector, 114

Duration analysis, 169, 178

distribution functions, 178–186

exponential distribution, 179

lognormal distribution, 184

Weibull distribution, 179
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Durbin–Watson statistic test, 91, 96, 97, 101, 102

Box and Pierce’s test (B&P), 97

error sums of squares, 90

Ljung’s modification, 97

mean sums of squares, 90

serial correlation, 90

Dynamic panel data models, 220

dynamic panel data estimation, 221

generalized methods of moments

estimation (GMM), 220

estimation technique, 221

with explanatory variables, 223

Earning’s equation model, 47

data matrix, 47

dummy variable, 47

Elasticity, 2

definition, 2

vs. marginal effect, 2

Endogeneity, alternative hypothesis, 64

Engle’s ARCH model, See ARCH(1) model

Error sums of squares (SSE), 4, 78

Explanatory variables, 2, 3, 24, 45, 54, 55, 70, 71, 75, 110, 111,

114, 118, 129

categories, 45

estimation, 71

feasible generalized least squares (FGLS)

estimators, 71

generalized least squares (GLS)

estimators, 71

measurement errors, 54, 55

revisited estimation, 80

types, 110

observed/controllable, 110

unobserved/uncontrollable, 110

Exponential distribution, 179, 183

hazard function, 179, 183

probability density function, 179

survival function, 179, 183

Extra variable model, 7

sums of squares of error, 7

F-statistic value, 13, 25, 30, 64, 121

formula, 29, 34, 37, 39

critical value, 37

Proc IML use, 29

hypothesis tests, 13

Failure times/censoring, 169–170

Feasible generalized least squares (FGLS),

134

asymptotic covariance matrix, 134

cross-equation covariance, 140

estimation, 84, 87, 88

by credit card data, 87, 88

estimator, 86, 102, 232

cross-sectional correlation, 232

general procedure, 86

Proc Reg output, 86

SAS step, 86

standard errors, 233

Grunfeld’s investment data set, 134, 135

OLS residuals, 134

Fitted/full model, 93

degree of autocorrelation, 93

residuals, 93

Fixed effects model, 113–123

estimation methods, 113

between-group effects approach, 113

least squares dummy variable approach, 113

within-group effects approach, 113

Proc GLM, 118

Frisch–Waugh theorem, 6, 114

GARCH model, 89–91

effects, 91

principle, 90

unconditional variance, 90

Gasoline consumption data, 38, 94, 98, 99, 100, 101,

103, 104, 105, 107, 108, 109

AR(1) model, 100

iterated FGLS estimates, 107

output, 100, 101

AR(2) model, 101, 104, 105

iterated FGLS estimates, 108

MLE estimates, 103, 105

output, 101

AR models, residuals comparison, 109

autocorrelation, 98, 99

Durbin–Watson statistics, 98

Proc Autoreg detecting method, 98, 99

full model residuals, 94

time series plot, 94

independent variables, 26

Proc Corr output, 26

model, 93

multicollinearity output, 25

OLS vs. AR(2) models, 109

residuals comparison, 109

reduced model residuals, 94

time series plot, 94

regression analysis, 39, 40

Gauss–Markov theorem, 5

Generalized least squares (GLS) estimation technique,

86, 133

estimator, 96

Generalized methods of moments estimation (GMM), 148, 220

Arellano–Bond, 224

cigar.txt panel data, 222

dynamic panel data models, 220, 221

estimators, 150

2SLS, 151

labor equation, 150

weight matrix, 151

White’s estimator, 151

explanatory variables, 223

optimal weight matrix, 221
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General linear hypothesis, 27, 28, 29

hypothetical model, 27

least squares estimator, 28

restriction equation, 27

SAS use, 29

testing, 33

Proc Reg output, 34

variance-covariance matrix, 28

General panel data model, 111, 120

GNP, See Gross national product

Goldfeld–Quandt tests, 78

explanatory variable, 78

Good fit model, 25

Goodness-of-fit statistics, 6–7, 185

adjusted coefficient of determination, 6

assessment method, 185

Proc Lifereg, 185

coefficient of determination, 6

definition, 6

Gross national product, 9

Group-specific mean square errors, 207

Groupwise heteroscedasticity estimator, 205, 209

airlines data analysis, 205

airlines data set, 208, 209

assumption for model, 208

Chi-squared distribution, 207

homoscedasticity assumption, 205

likelihood ratio test, 206

mean square error (MSE), 207

using Harvey’s multiplicative heteroscedasticity approach, 210

Grunfeld data analysis, 136

using Proc Syslin SUR, 136–140

Grunfeld data set, 134, 135, 228

FGLS estimator, 229

FGLS pooled estimators, 228

pooled OLS regression, 135

Proc Syslin SUR, 136

Grunfeld investment model, 1

Harvey’s multiplicative heteroscedasticity, 204, 208

MLE estimates, 204

single parameter, 204

model parameters estimation, 204

variance-covariance matrix, 205

Hausman analysis, 65

by Proc IML, 65

consumption data, 65

Hausman’s specification test, 61, 64–69, 128–130

by Proc model, 66–69

consumption data, 66

generation, 129

Hausman–Taylor estimator, 210

coefficients estimates, 212

endogenous/exogenous variables, 210

for random effects model, 210

instrumental variables, 212

Proc IML, 218

Proc model output, 216–217

PSID, 212

random effects and LSDV model, 212

standard errors, 218

steps, 211

wages equation, 219

Hazard function, 170–178

definition, 170

HCCME estimators, 82

credit card data, 82

OLS estimate of covariance matrix, 219

Heteroscedasticity, 70, 71, 72, 74, 76, 78, 91

detection, 72, 74

formal hypothesis tests, 74–80

least squares residuals, 72

residual plots, 78

testing, 91

nominal exchange data, 91

variance-covariance matrix, 71

Heteroscedastic variance, 22

funnel-shaped graph, 22

Homoscedasticity, 80, 207

null hypothesis, 80, 207

Human’s specification test, 151

exogenous/endogenous variable, 151

OLS/2SLS estimates, 152

Proc model procedure, 151

Hypothesis testing, 7–8, 27, 28, 39

confidence intervals, 8

linear restrictions, 28

regression coefficient, 8

Idempotent matrices, 243

definition, 243

econometrics, 243

Identity matrix, 240

definition, 240

properties, 240

Independent disturbances, 93

assumption, 93

Independent regressions, 78

Independent variables, See Explanatory variables

Inflation rate, 14, 15

definition, 14

Instrumental variables, 52, 55, 56

estimation of, 55–60

covariance matrix, 56

data matrix, 60

standard error, 58, 60

data matrix, 56

least squares model, 55

matrix, 56

exper, 56

exper
2, 56

motheduc, 56

regression, 58

Instrumental variables analysis, 58

Proc Syslin, 58

earning data, 58
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Insurance companies, 153

Inverse matrix, 242

construction of, 242

definition, 242

Proc IML, 243

properties of, 242

Investment equation model, 14, 17

complete data set, 14

correlation analysis, 17

Investment equation regression analysis, 21

Iterative FGLS estimation, 202

credit card expenditure data, 203

estimation process, steps, 203

estimators, 202

heteroscedasticity, 202

Joint distribution, 202

log-likelihood function, 203

maximum likelihood estimation, 202

OLS residuals, 202

two-step estimation process, 202

Kaplan Meier method, 172

survival function, 176

bar graph, 176

Kronecker products, 244

econometric data analysis, 244

FGLS estimation, 244

properties of, 244

Lagrange multiplier test (LM), 79, 90, 97, 129, 192

ARCH(q) effects, 90

steps, 90

Least squares dummy variable (LSDV) model, 113, 114,

116, 118

coefficient of determination, 118

disadvantage, 113

error degrees of freedom, 118

parameter estimation, 116

OLS, 116

root mean square, 118

Least squares estimation method, 1, 4, 55, 96, 125

parameters, 96

FGLS, 96

iterated FGLS, 96

MLE, 96

Least squares estimator, 4, 5, 24, 30, 39, 52, 53, 71, 80, 102

asymptotic normality, 5

consistency, 4

correlation, 24

instrumental variables estimator, 57

probability limits, 52

unrestricted, 39

variance, 24

Least squares theory, 3–5

Linear functions, derivatives, 247

Linear model(s), 2, 6, 53, 70, 71, 89

assumptions, 2

conditional expectation, 53

disturbance vector, 70

symmetric matrix, 71

variance, 70

Linear regression, 72

Linear restriction hypothesis, 28

F statistic, 28

Log-likelihood function, 203

credit card data set plot, 89, 204

values, 89

Log-log model, 2

marginal effect, 2

Lognormal distribution, 184, 185

cumulative density function, 184

hazard functions, 184, 185

bar graph, 185

probability density function, 184

survival functions, 184, 185

bar graph, 185

Marginal effects, 2

Matrix, 237

addition and subtraction operations, 238

definitions, 237

diagonal matrix, 238

identity matrix, 238

multiplication operations, 239

properties of, 245

rank, 245

definition, 245

full rank, 245

properties of, 245

scalar multiplication operations, 238

square matrix, 238

trace,

definition, 241

properties of, 242

transpose of, 240

Matrix algebra, 239, 246

associative laws, 239

commutative laws of addition, 239

differential calculus, 246

Hessian matrix, 246

Jacobian matrix, 246

simple linear function derivatives, 246

distributive laws, 239

Maximum likelihood estimation (MLE), 86, 206

multivariate value, 206

Mean intervals, 20

for investment equation data, 18–19

prediction graphs, 18

Proc Reg output, 20

Mean square error, 13, 28, 207, 211, 268

Model of interest, 46

Mroz2, See Temporary SAS data set

Multicollinearity, 24–26

degree of correlation, 24

p values, 25

sets of statistics, 24
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Multiple linear regression model, 1, 3, 4

matrix form, 3

Newton–Raphson method, 157–163, 192

algorithm, 157

for Logit model, 157–163

Nonspherical disturbances, 70, 71

autocorrelation, 70

heteroscedasticity, 70

Null hypothesis, 6, 8, 13, 29, 30, 32, 61, 62, 65, 80, 101, 128, 129

Off-diagonal elements, 140

Omitted variable model, 53

bias, 53

Ordinary least squares (OLS) analysis, 58, 59, 72, 86, 149

earning data, 59

estimator, 4, 31, 33, 53, 56, 83, 102, 255, 256

consistency, 56

histogram of, 257–260

labor equation, 149

mean and standard deviation, 256

probability, 53

simulated type, 1 error rate, 256

estimation, 58, 82, 234

covariance matrix, 82

critical assumption, 142

equation-by-equation, 140

estimation techniques, 144

keynesian model, 143

problems, 142–144

standard errors, 82

structural equation, 144

model, 58, 97, 104, 154

of credit card expenses data, 72

regression statistics, 25

residuals, 75, 86

Overidentifying restrictions testing, 63

in earning data, 63

Panel data method, 110, 111

advantages, 110–111

definition, 110

overview, 110

Panel data models, 111–112, 219, 224

autocorrelation, 224, 227

covariance matrices, robust estimation of, 219

FGLS methods estimators, 225

fixed effects, 111

GLS estimation, 225

heterogeneity, 224

homoscedastic disturbances, 219

ordinary least squares estimation method, 111

pooled regression, 111

PROC IML code, 226

random effects, 111

Poisson regression, 163–165

estimation, 165–168

parameters interpretation, 165

Pooled regression model, 112–113, 118

coefficient of determination, 113

expression equation, 113

parameters estimation, 112

OLS, 112

root mean square error, 113, 118

Prais–Winsten Method, 234

transformations, 96

usage, 96

Prediction intervals graphs, 21

Proc Reg output, 21

Price index of gasoline (Pg), 38

Probability distribution function, 171

Probability of failure (PDF), 174

calculation, 174

Probability plots, 22

Probit and Logit models, 155

estimation/inference, 156

Proc autoreg, 96, 102

CUSUMLB procedure, 44

CUSUMUB procedure, 44

usage, 102

reference guide, 91

Proc Corr procedure, 16

general form, 16

Proc GLM, 49, 121

airlines data regression, 49–50

data analysis, 49

dummy variables, 49

Proc Gplot, 16, 20

confidence intervals, 20

Proc IML analysis, 11, 47, 57, 114, 204, 248, 272

1�1 matrices, 249

Anderson–estimator, 289

Arellano–Bond method, 224, 290

code computes, 286

concatenate matrices, 252

control statements, 252

CPI, 272

create row and column vectors, 237

creating matrices/vectors operations, 249

data analysis, 47, 57

data matrix, 57

determinants of matrices, 241

diag command, 252

diagonal matrix, 251

DO-END statement, 253

DO iterative statement, 253

dynamic panel data, 287

econometric analysis, 251

elementary matrix operations, 250

addition/subtraction, 250

inverses, eigenvalues, and eigenvectors, 250

Kronecker products, 250

GMM calculations, 222

GNP and Invest time series, 272

groupwise heterogeneity, 286

Grunfeld’s data analysis, 229
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Hausman’s specification test, 212, 276

Hausman–Taylor’s estimates, 218

heteroscedasticity, 277

identity matrix, 240

IF-THEN/ELSE statement, 253

Kronecker products calculation, 244

linear equations, 248

linear hypothesis, 275

matrix-generating functions, 251

block diagonal matrices, 251

diagonal matrix, 251

identity matrix, 251

J matrix, 251

matrix inverses, 243

matrix multiplications, 239

max(min) commands, 251

of investment data, 11

Proc IML code, 273

restricted least squares estimator, 274

robust variance-covariance matrices, 277

SAS procedures, 212

standard errors of estimator, 274

statements, 30

SUMMARY command, 253

trace of a matrix, 242

transpose matrix, 240

VecDiag function, 252

White’s test, 277–278

within-group mean residuals

estimates, 215

Proc IML code, 226

FGLS estimator, 226

general linear hypothesis, 273

Kronecker product, 244

Proc IML command, 65, 237

create row and column vectors, 237

identity matrix, 238

matrix multiplications, 239

trace of a matrix, 241

Proc IML diag command, 252

diagonal matrix, 252

Proc Import statement, 9

Proc Life procedure, 173

Proc Lifereg models, 178, 191

Proc Lifetest analysis, 173, 175, 178

tabular presentation, 175

Proc Lifetime, 177

Proc model, 151, 215

HCCME option, 219

instrumental variable regression, 215

OLS/2SLS models, 151

procedure, 76

Proc Panel, 81, 114, 116–118, 120, 121, 123, 125, 128–131,

212, 219–221

documentation, 81

procedure, 114

Proc Plot procedure, 15

statements for, 15

Proc Reg analysis, 12, 15, 32, 47, 62, 101, 151, 255

data analysis, 47

endogeneity, 62

investment equation data, 15

of investment data, 12

OLS estimates, 32

tableout option of, 255

t test, 32

Proc Reg module, 21

Proc Reg statements, 268

OLS regression, 268

Proc Syslin, 60, 151

earning data output, 60

procedure, 148

Proc Univariate, 255

data, 213

histogram option, 255

module, 22

Production data-translog model, 36

regression analysis, 36

Quadratic form, derivative of, 247

Quarterly investment data, 31, 33

Proc IML output, 31

Proc Reg output, 33

Random effects model, 123–131, 210

estimation, 130–131

Hausman–Taylor estimator, 210

random disturbances, assumptions, 211

tabular presentation, 130

tests, 125–128

Hausman specification, 125

Lagrange multiplier (LM), 125

Wages data, 213

Rank, 245

definition, 245

equivalence, 246

Proc IML, 245

properties of, 245

Real _Invest

scatter plot, 18

vs. time plot, 17

vs. time trend, 18

vs. Real GNP plot, 16

Real_GNP coefficient, 14

RECID data, 172, 173, 175–177, 179, 180, 185, 186, 188, 190, 192

exponential distribution, 188

Kaplan Meier survival function plot, 176

lifetime hazard function plot, 179

lifetime survival function plot, 176, 177

normal distribution fit, 186, 192

Proc Lifetest analysis, 173

survival functions testing, 180–182

Weibull distribution fit, 190

REG procedure model, 12, 15, 18, 25, 33–37, 39–41, 46, 48, 59,

62–64, 72, 85, 87, 88, 112, 135, 149, 160, 186, 188, 190, 192,

194, 195, 201, 205, 209, 214, 269, 270
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Regression analysis, 1, 3, 8, 9, 18, 24, 46, 78, 178, 205

assumptions, 3

objectives, 3, 18

by Proc IML, 9

data analysis, 10

data reading, 9

By Proc Reg, 12, 46

data analysis, 12

data interpretation, 12

earnings data, 46

credit card expenditure data, 205

parameters interpretation, 2

Proc Lifereg, 178

Proc Phreg, 178

residual analysis, 8

Regression coefficient(s), 13, 18

Regression model(s), 1, 14, 53, 61, 93, 187

adjusted R2 value, 14

autocorrelation, 93

coefficient of determination (R2), 14

Cox proportional hazard, 187

dependent variable, 1

endogeneity, 53

endogenous explanatory variable, 61

independent variable, 1

parametric, 187

testing overidentifying restrictions, 61

Regression summary statistics, 79

credit card expenditure data, 79

Residual analysis, 20–23

column, 19

Proc Reg, 20

residual graphs, 21

types of plots, 8

Residual vector, definition, 4, 7

Residuals, 21–23, 73, 92

GARCH model, 92

normal probability plot, 22, 23

standardized, definition, 20

vs. age plot, 73

vs. average expense plot, 73

vs. income plot, 74

vs. predicted response plot, 21

vs. predicted values plot, 23

vs. time plot, 22

Response variable, 170

Response vector, 10

Restricted least squares estimator, 31–33

least squares estimator, 31

Proc IML output, 32

of variance-covariance matrix, 32

standard errors, 32

variance expression, 31

variance-covariance matrix, 31, 32

Restricted model, See Cobb-Douglas model

Robust estimators, 84

Proc IML output, 84

variance-covariance matrix, 84

Root mean square error (RMSE), 19, 78,

87, 268

Sargan’s hypothesis test, 61

regression-based, 61

steps, 61–62

SAS system, 79, 90, 267

bootstrapped regression analysis, 267–271

Breusch–Pagan test, 79

code usage, 120

data set, 9, 10, 65

data step statements, 217

IML program, 293

Log transformations, 267

Proc autoreg module, 90

Proc model statements, 40

program, 220

data simulation, 256

statements, 18, 66, 81, 256

test, 78

Seemingly unrelated regression (SUR) models, 132, 133,

138, 139, 244

equations, 40

GLS estimator, 133

OLS model, 133

system, 58

Semi-log model, 2, 47, 57

earnings model, 47

elasticity, 2

marginal effect, 2

Serial correlation, 95

assumptions estimation, 95

Simple linear regression model, 3, 54, 55

explanatory variable, 54

least squares estimation, 3

testing steps, 61

Simple panel data models, 116

analyzing method, 116

Proc Panel, 116

Proc TSCSREG procedure, 116

Simultaneous equation models, 142

Hausman’s specification test, 151

identification problem, 145

endogenous variables, 147

exogenous variables, 147

structural equation parameters, 144–146

OLS estimation problems, 142–144

OLS regression, 148

Proc Syslin procedure, 148

reduced form equations, 144–145

two-stage least squares (2SLS) method, 147

Wage-price inflation equation, 142

specification tests, 61

explanatory variables, 63

instrumental variables, 63

testing overidentifying restrictions, 61

weak instruments, 63

Spherical disturbances, 70
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Standard error(s), 18, 86, 87

column, 14

definition, 8

Strike data duration analysis, 196–200

Subject-specific heterogeneity, 111, 113, 123

effects, 128, 129

Sums of squares for error (SSE), 5, 7

Sums of squares for regression (SSR), 5

Survival function, 170–178

definition, 170

Kaplan Meier method, 172

life table method, 172

plot, 176

standard error, 172

Temporary SAS data set, 9, 10, 61, 65, 90, 172, 186, 208

Test statistic, 11, 28–30, 65, 66, 78, 79

Proc IML statements, 79

value, 14, 79

Time series data, 93

Translog model, 35, 36

Transpose matrix, 240

definition, 240

properties, 240

True population model, 54

OLS estimate, 54

probability limits, 54

Two-stage least squares estimator (2SLS) analysis, 56, 62, 148

assumption of homoscedastic disturbances, 148

labor equation, 149

weight matrix, 151

Two-way fixed effects model, 123

Proc GLM estimation method, 123

Unbiased estimator, 5, 8, 33, 71, 266

Unknown coefficients, 1, 2

U.S. gasoline consumption (G), 38

time series plot, 38

Variance, 5, 95

Variance-covariance matrix, 95, 113

Variance inflation factors (VIF), 24

values, 25

Wage equation, 56, 64

regression equation, 64

Wages data, 213

random effects model, 213

within-group effects model, 214

Wald’s chi-square test, 161, 192

values, 161, 188

Weak instruments analysis, 64

in earning data, 64

Weibull distribution, 179, 183, 184, 190

cumulative density function, 179

hazard functions, 183

probability density function, 179

survival function, 184

bar graph, 184

Weighted least squares regression

methods, 84, 85

credit card expenditure data, 85

Proc Reg option, 84

SAS statements, 84

White’s estimator, 80, 81, 83, 148, 219, 220

Proc model statements, 81

HCCME option, 81

variance-covariance matrix, 80

White’s general test, 74–78

credit card expense data, 76–78

Proc IML programme, 74

test statistic value, 76

Within-group model, 113, 120, 211, 212

disadvantages, 113

disturbance variances, 207, 208

GLS estimation, 207

merge data, 208

OLS model, 208

time-invariant disturbance, 211

residuals vector, 207, 215

root mean square, 120

Wages data, 214
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