

‘-
-LIST, LL

5.00 Ca $56.95 : \ Printed in the USA.

BIOS Disassembly Ninjutsu Uncovered

LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

A-LIST, LLC, AND/OR ANYONE WHO HAS BEEN INVOLVED IN THE
WRITING, CREATION, OR PRODUCTION OF THE ACCOMPANYING CODE
(ON THE CD-ROM) OR TEXTUAL MATERIAL IN THIS BOOK CANNOT AND
DO NOT GUARANTEE THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE CODE OR CONTENTS OF THE BOOK. THE
AUTHORS AND PUBLISHERS HAVE WORKED TO ENSURE THE ACCURACY
AND FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS
CONTAINED HEREIN; HOWEVER, WE GIVE NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, REGARDING THE PERFORMANCE OF THESE
PROGRAMS OR CONTENTS.

THE AUTHORS, PUBLISHER, DEVELOPERS OF THIRD-PARTY SOFTWARE,
AND ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING
OF THIS WORK SHALL NOT BE LIABLE FOR ANY DAMAGES ARISING FROM
THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE,
OR TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS
INCLUDES, BUT IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF THE PRODUCT.

THE CD-ROM, WHICH ACCOMPANIES THE BOOK, MAY BE USED ON
A SINGLE PC ONLY. THE LICENSE DOES NOT PERMIT ITS USE ON
A NETWORK (OF ANY KIND). THIS LICENSE GRANTS YOU PERMISSION TO
USE THE PRODUCTS CONTAINED HEREIN, BUT IT DOES NOT GIVE YOU
RIGHT OF OWNERSHIP TO ANY OF THE SOURCE CODE OR PRODUCTS.
YOU ARE SUBJECT TO LICENSING TERMS FOR THE CONTENT OR
PRODUCT CONTAINED ON THIS CD-ROM. THE USE OF THIRD-PARTY
SOFTWARE CONTAINED ON THIS CD-ROM IS LIMITED THE RESPECTIVE
PRODUCTS.

THE USE OF "IMPLIED WARRANTY" AND CERTAIN "EXCLUSIONS" VARY
FROM STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF
THIS PRODUCT.

DISASSEMBLY
NINJUTSU
UNCOVERED

Copyright (¢) 2007 by A-LIST, LLC
All rights reserved.

No part of this publication may be reproduced in any way, stored in a retrieval system
of any type, or transmitted by any means or media, electronic or mechanical, including,
but not limited to, photocopying, recording, or scanning, without prior permission in writ-
ing from the publisher.

A-LIST, LLC

295 East Swedesford Rd.

PMB #285

Wayne, PA 19087
702-977-5377 (FAX)
mail@alistpublishing.com
http://www.alistpublishing.com

This book is printed on acid-free paper.

All brand names and product names mentioned in this book are trademarks or service
marks of their respective companies. Any omission or misuse (of any kind) of service marks
or trademarks should not be regarded as intent to infringe on the property of others.

The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products.

Darmawan Mappatutu Salihun. BIOS Disassembly Ninjutsu Uncovered.
ISBN-13: 978-1-931769-60-0
ISBN-10: 1-931769-60-5

Printed in the United States of America
06 7654 3 2 First Edition

A-LIST, LLC, titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc.

Book Editor: Julie Laing

cmp——
Contents

Preface 1
The Audience 2
The Organization 3
Software Tools Compatibility 4
Typographical Conventions 4

PART |I: THE BASICS 5
Chapter 1: PC BIOS Technology 7
Preview 7
1.1. Motherboard BIOS 8
1.2. Expansion ROM 12
1.3. Other Firmware within the PC 13
1.4. Bus Protocols Fundamentals 14
1.4.1. System-Wide Addressing 14
1.4.2. PCI Bus Protocol 16

1.4.3. Proprietary Interchipset Protocol Technology 23

Vi Contents

1.4.4. PCI Express Bus Protocol 25
1.4.5. HyperTransport Bus Protocol 27
Chapter 2: Preliminary Reverse Code Engineering 29
Preview 29
2.1. Binary Scanning 30
2.2. Introducing IDA Pro 31
2.3. IDA Pro Scripting and Key Bindings 38
2.4. IDA Pro Plugin (Optional) 47
Chapter 3: BIOS-Related Software Development Preliminary 61
Preview 61
3.1. BIOS-Related Software Development with Pure Assembler 62
3.2. BIOS-Related Software Development with GCC 67
PART II: MOTHERBOARD BIOS REVERSE ENGINEERING 77
Chapter 4: Getting Acquainted with the System 79
Preview 79
4.1. Hardware Peculiarities 80
4.1.1. System Address Mapping and BIOS Chip Addressing 80
4.1.2. Obscure Hardware Ports 96
4.1.3. Relocatable Hardware Ports 99

4.1.4. Expansion ROM Handling 101

Contents Vil

4.2. BIOS Binary Structure 101
4.3. Software Peculiarities 102
4.3.1. call Instruction Peculiarity 102
4.3.2. retn Instruction Peculiarity 103
4.3.3. Cache-as-RAM 108
4.4. BIOS Disassembling with IDA Pro 112
Chapter 5: Implementation of Motherboard BIOS 115
Preview 115
5.1. Award BIOS 116
5.1.1. Award BIOS File Structure 116
5.1.2. Award Boot-Block Reverse Engineering 121
5.1.2.1. Boot-Block Helper Routine 122
5.1.2.2. Chipset Early Initialization Routine 123
5.1.2.3. Super I/O Chip Initialization Routine 124
5.1.2.4. Jump to CMOS Values and Memory Initialization 124
5.1.2.5. BBSS Search and Early Memory Test Routines 125
5.1.2.6. Boot Block Is Copied and Executed in RAM 126
5.1.2.7. System BIOS Decompression and its Entry Point 128
5.1.3. Award System BIOS Reverse Engineering 142
5.1.3.1. Entry Point from the “Boot Block in RAM” 142
5.1.3.2. POST Jump Table Execution 142
5.1.3.3. Decompression Block Relocation and awardext.rom Decompression __143
5.1.3.4. Extension Components Decompression 146
5.1.3.5. Exotic Intersegment Procedure Call 149

Vill Contents

5.2. AMI BIOS 160
5.2.1. AMI BIOS File Structure 161
5.2.2. AMI BIOS Tools 162
5.2.3. AMI Boot-Block Reverse Engineering 163

5.2.3.1. Boot-Block Jump Table 163
5.2.3.2. Decompression Block Relocation 165
5.2.3.3. Decompression Engine Initialization 168
5.2.3.4. BIOS Binary Relocation into RAM 170
5.2.3.5. POST Preparation L

5.2.4. AMI System BIOS Reverse Engineering 182
Chapter 6: BIOS Modification 187

Preview 187

6.1. Tools of the Trade 188

6.2. Code Injection 193
6.2.1. Locating the POST Jump Table 195
6.2.2. Finding a Dummy Procedure in the POST Jump Table 197
6.2.3. Assembling the Injected Code 197
6.2.4. Extracting the Genuine System BIOS 200
6.2.5. Looking for Padding Bytes 201
6.2.6. Injecting the Code 202
6.2.7. Modifying the POST Jump Table 202
6.2.8. Rebuilding the BIOS Binary 204
6.2.9. Flashing the Modified BIOS Binary 204

6.3. Other Modifications 205

Contents IX

~
PARTY lll: EXPANSION ROM 209
Chapter 7: PCI Expansion ROM Software Development 211
Preview 211
7.1. PnP BIOS and Expansion ROM Architecture 212
7.1.1. PnP BIOS Architecture 212
7.1.2. “Abusing” PnP BIOS for Expansion ROM Development 212
7.1.3. POST and PCI Expansion ROM Initialization 213
7.1.4. PCI Expansion XROMBAR 213
7.1.5. PCI Expansion ROM 214
7.1.5.1. PCI Expansion ROM Contents 215
7.1.5.2. PC-Compatible Expansion ROMs 218

7.1.6. PCI PnP Expansion ROM Structure sl

7.2. PCI Expansion ROM Peculiarities 222
7.3. Implementation Sample 224
7.3.1. Hardware Testbed 224
7.3.2. Software Development Tool 225
7.3.3. Expansion ROM Source Code 225
7.3.3.1. Core PCI PnP Expansion ROM Source Code 226
7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code ______ 227

7.3.4. Building the Sample 227
7.3.5. Testing the Sample 229

7.3.6. Potential Bug and Its Workaround 230

X Contents

Chapter 8: PCl Expansion ROM Reverse Engineering

Preview

233

233

8.1. Binary Architecture

234

8.2. Disassembling the Main Code

236

236

8.2.1. Disassembling Realtek 8139 Expansion ROM
8.2.2. Disassembling Gigabyte GV-NX76T256D-RH
GeForce 7600 GT Expansion ROM

241

8.2.3. A Note on Expansion ROM Code-Injection Possibility

244

PART IV: BIOS NINJUTSU

Chapter 9: Accessing BIOS within the Operating System

Preview

245

247

247

9.1. General Access Method

248

9.2. Accessing Motherboard BIOS Contents in Linux

249

9.2.1. Introduction to flash_n_burn

251

9.2.2. Internals of flash_n_burn

255

9.3. Accessing Motherboard BIOS Contents in Windows

261

9.3.1. Kernel-Mode Device Driver of bios_probe

263

9.3.2, User-Mode Application of bios_probe

278

278

9.3.2.1. The Main Application
9.3.2.2. The PCI Library

292

9.4. Accessing PCI Expansion ROM Contents in Linux

297

9.5. Accessing PCI Expansion ROM Contents in Windows
9.5.1. The RTL8139 Address-Mapping Method

XI

301

301

9.5.2. The Atmel AT29C512 Access Method

305

9.5.3. Implementing the Methods in Source Code

305

9.5.4. Testing the Software

316

Chapter 10: Low-Level Remote Server Management

Preview

321

321

10.1. DMI and SMBIOS

322

10.2. Remote Server Management Code Implementation

334

Chapter 11: BIOS Security Measures

341

Preview

341

11.1. Password Protection

342

11.1.1. Invalidating the CMOS Checksum

343

11.1.2. Reading the BIOS Password from BDA

348

11.1.3 The Downsides — An Attacker's Point of View

357

11.2. BIOS Component Integrity Checks

357

11.2.1. Award BIOS Component Integrity Checks

358

11.2.2. AMI BIOS Component Integrity Checks

361

11.3. Remote Server Management Security Measures

363

11.4. Hardware-Based Security Measures

364

Xl Contents

. i
Chapter 12: BIOS Rootkit Engineering 375
Preview 375
12.1. Looking Back through BIOS Exploitation History 376
12.2. Hijacking the System BIOS 391
12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers 395
12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers 405
12.2.3. Extending the Technique to a BIOS from Other Vendors 413
12.3. PCI Expansion ROM Rootkit Development Scenario 414
12.3.1. PCI Expansion ROM Detour Patching 416
12.3.2. Multi-Image PCI Expansion ROM 418
12.3.3. PCI Expansion ROM Peculiarity in Network Cards 420
Chapter 13: BIOS Defense Techniques 421
Preview 421
13.1. Prevention Methods 422
13.1.1. Hardware-Based Security Measures 422
13.1.2. Virtual Machine Defense 426
13.1.2. WBEM Security in Relation to the BIOS Rootkit 427
13.1.3. Defense against PCI Expansion ROM Rootkit Attacks 429
13.1.4. Miscellaneous BIOS-Related Defense Methods 430
13.2. Recognizing Compromised Systems 440
13.2.1. Recognizing a Compromised Motherboard BIOS 440
13.2.2. Recognizing a Compromised PCI Expansion ROM 442

13.3. Healing Compromised Systems 443

Contents Xill

PART V: OTHER APPLICATIONS OF BIOS TECHOLOGY 445
Chapter 14: Embedded x86 BIOS Technology 447
Preview 447
14.1. Embedded x86 BIOS Architecture 448
14.2. Embedded x86 BIOS Implementation Samples 45]
14.2.1. TV Set-Top Box 451
14.2.2. Network Appliance 466
14.2.3. Kiosk 471
14.3. Embedded x86 BIOS Exploitation 473
Chapter 15: What's Next? 475
Preview 475
15.1. Future of BIOS Technology 476
15.1.1. Unified Extensible Firmware Interface 476
15.1.2. BIOS Vendors Road Map 481
15.2. Ubiquitous Computing and Development in BIOS 486
15.3. Future of BIOS-Related Security Threats 487
The CD-ROM Description 489

index 491

Preface

For many years, there has been a myth among computer enthusiasts and practitio-
ners that PC basic input/output system (BIOS) modification is a task only a hand-
ful of people or only the motherboard vendor can carry out. On the contrary, this
book will prove that with the right tools and approach, anyone can understand and
modify the BIOS to suit his or her needs without the existence of its source code.
It can be achieved by using a systematic approach to BIOS reverse engineering and
modification. An advanced level of this modification technique is injecting a cus-
tom code to the BIOS binary.

There are many reasons to carry out BIOS reverse engineering and modifica-
tion, from doing it for fun to achieving a higher performance in an overclocking
scenario, patching a certain bug, injecting a custom security code into the BIOS,
and taking commercial interest in the embedded x86 BIOS market. The emergence
of the embedded x86 platform as consumer electronic products such as TV set-top
boxes, telecom-related appliances, and embedded x86 kiosks has raised interest in
BIOS reverse engineering and modification. In the coming years, these techniques
will become even more important as state-of-the-art bus protocols delegate a lot of
their initialization task to firmware, i.e., the BIOS. Thus, by understanding the
techniques, you can dig into the relevant firmware codes and understand the im-
plementation of those protocols within the BIOS binary.

The main purpose of the BIOS is to initialize the system into an execution envi-
ronment suitable for the operating system. This task is becoming increasingly com-
plex over the years, as the x86 hardware evolves significantly. It’s one of the most
dynamic computing platforms on Earth. New chipsets are introduced every 3, or at
least 6, months. Each introduction brings a new code base for the silicon support
routine within the BIOS. Nevertheless, the overall architecture of the BIOS is
changing slowly, and the basic principle of the code inside the BIOS is preserved
over generations of its code. However, there has been a quite significant change
in the BIOS scene in the last few years with the introduction of the extensible
firmware interface (EFI) by Intel. Recently, EFI has evolved into universal extensible

2 Preface
~

firmware interface (UEFI), which is maintained by a UEFI forum. With these ad-
vances in BIOS technology, it’s even becoming more important to know systemati-
cally what lies within the BIOS.

In this book, the term BIOS has much broader meaning than only mother-
board BIOS, which should be familiar to most readers. It also means the expansion
read-only memory (ROM). The latter is the official term used to refer to the firm-
ware in the expansion cards within the PC, be it industry standard architecture
(ISA), peripheral component interconnect (PCI), or PCI Express.

So, what can you expect after reading this book? Understanding the BIOS will
open a new frontier. You will be able to grasp exactly how the PC hardware works
in its lowest level. Understanding contemporary BIOS will reveal the implementa-
tion of the latest bus protocol technology, i.e., HyperTransport and PCI Express.
On the software engineering front, you will be able to appreciate the application of
compression technology in the BIOS. Most important, you will be able to carry out
reverse engineering using advanced techniques and tools. You will be able to use
the powerful IDA Pro disassembler efficiently. If you have advanced knowledge in
hardware and software, you might even want to “borrow” some of the algorithms
within the BIOS for your own purposes. In short, you will be on the same level as
other BIOS code diggers.

This book also presents a generic approach to PCI expansion ROM develop-
ment using the widely-available GNU tools. There will be no more myth in the
BIOS, and everyone will be able to learn from this state-of-the-art software tech-
nology for their own benefit.

I've put the term Ninjutsu in the title of this book, since Ninjutsu is a collection
of techniques for information gathering, nondetection, avoidance, and misdirec-
tion — and thus matches the principles of hacking uncovered here.

The Audience

This book is primarily oriented toward system programmers and computer secu-
rity experts. In addition, electronic engineers, PC technicians, and computer enthu-
siasts can benefit a lot from this book. Furthermore, because of heavy explanation
of applied computer architecture (x86 architecture) and compression algorithm,
computer science students might find it useful. However, nothing prevents anyone
curious about BIOS technology to read this book and benefit from doing so.

Some prerequisite knowledge is needed to fully understand this book. It is not
mandatory, but it will be difficult to grasp some concepts without it. The most im-
portant knowledge is an understanding of x86 assembly language. Explanations

Preface 3

of the disassembled code resulting from the BIOS binary and the sample BIOS
patches are presented in x86 assembly language. They are scattered throughout the
book. Thus, it’s vital to know x86 assembly language, even if only with modest fa-
miliarity. It's also assumed that you have some familiarity with C programming
language. The chapter that dwells on expansion ROM development, along with the
introductory chapter in BIOS-related software development, uses C language heav-
ily for the example code. C language is also used heavily in the section that covers
[DA Pro scripts and plugin development. IDA Pro scripts have many similarities with
C programming language. Familiarity with the Windows application programming
interface (Win32 API) is not a requirement but is useful for grasping the concept in
the optional section of Chapter 2 that covers IDA Pro plugin development.

The Organization

The first part of the book lays the foundation knowledge to do BIOS reverse engi-
neering and expansion ROM development. This part introduces the following:

O Various bus protocols in use nowadays within the x86 platform, i.e., PCI, Hy-
perTransport, and PCI-Express. The focus is on the relationship between exe-
cution of BIOS code and implementation of protocols.

O Reverse-engineering tools and techniques needed to carry out the tasks in later
chapters, mostly an introduction to IDA Pro disassembler, along with its ad-
vanced techniques.

A A crash course on advanced compiler tricks needed to develop firmware. The
emphasis is on using GNU C compiler to develop a firmware framework.

The second part of this book reveals the details of motherboard BIOS reverse en-
gineering and modification. This includes in-depth coverage of BIOS file structure,
algorithms used within the BIOS, an explanation of various BIOS-specific tools from
its corresponding vendor, and an explanation of tricks to modify the BIOS.

The third part of the book deals with the development of PCI expansion ROM.
In this part, the PCI expansion ROM structure is explained thoroughly. Then, sys-
tematic development PCI expansion ROM with GNU tools is presented.

The fourth part of the book deals heavily with the security concerns within
the BIOS. This part is biased toward the possible implementation of rootkits within
the BIOS and a possible exploitation scenario that might be used by an attacker
exploiting the BIOS flaw. Computer security experts will find a lot of important

4 Preface

.

information in this part. This part is the central theme in this book. It’s presented
to improve awareness of malicious code that can be injected into the BIOS.

The fifth part of the book deals with the application of BIOS technology outside
of its traditional space, i.e., the desktop and server. This part presents various appli-
cations of the BIOS technology in the emerging embedded x86 platform. At the end
of this part, further application of the technology presented in this book is ex-
plained briefly. Some explanation regarding the UEFI is presented.

Software Tools Compatibility

This book mainly deals with reverse-engineering tools running in the Windows op-
erating system. However, in chapters that deal with PCI expansion ROM develop-
ment, an x86 Linux installation is needed. This is due to the inherent problems that
occurred with the Windows port of the GNU tools when trying to generate a flat
binary file from the executable and linkable file format (ELF).

Typographical Conventions

In this book, the courier font is used to indicate that text is one of the following:

O Source code O Directories or paths in the file system
O Numeric values O Datasheet snippets
O Configuration file entries O CPU registers

Hexadecimal values are indicated by prefixing them with 0x or by appending
them with h. For example, the integer value 4691 will, in hexadecimal, look like
0x1253 or 1253n. Hexadecimal values larger than four digits will be accompanied
by an underscore every four consecutive hexadecimal digits to ease reading of the
value, as in 0xFFFF_0000 and 0xFD_FF00_0000.

Binary values are indicated by appending them with b. For example, the integer
value 5 will, in binary, look like 101b.

Words will appear in the italic font in this book for following reasons:

O When defining a new term
O When emphasizing a point

Words will appear in the bold font in this book for the following:

A menu within application software in Windows
Emphasis

aao

Part |
THE BASICS

Chapter 1
PC BIOS Technology

Chapter 2
Preliminary Reverse Code
Engineering

Chapter 3
BlOS-Related Software
Development Preliminary

Chapter 1: PC BIOS Technology

This chapter is devoted to explaining the parts of a PC that make up the term basic
input/output system (BIOS). These are not only motherboard BIOS, which most
readers might already be accustomed to, but also expansion read-only memories
(ROMs). The BIOS is one of the key parts of a PC. BIOS provides the necessary
execution environment for the operating system. The approach that | take to ex-
plain this theme follows the logic of the execution of BIOS subsystems inside the PC.
It is one of the fastest ways to gain a systematic understanding of BIOS technology.
In this journey, you will encounter answers to common questions: Why is it there?
Why does it have to be accomplished that way? The discussion starts with the most
important BIOS: motherboard BIOS. On top of that, this chapter explains contem-
porary bus protocol technology, i.e., PCI Express, HyperTransport, and peripheral
component interconnect (PCI). A profound knowledge of bus protocol technology
is needed to be able to understand most contemporary BIOS code.

8 Part I: The Basics

1.1. Motherboard BIOS

Motherboard BIOS is the most widely known BIOS from all kinds of BIOS.
This term refers to the machine code that resides in a dedicated ROM chip on the
motherboard. Today, most of such chips are the members of flash-ROM family.
This name refers to a ROM chip programmed electrically in a short interval,
i.e., the programming takes only a couple of seconds.

There is a common misconception between the BIOS chip and the complemen-
tary metal-oxide semiconductor (CMOS) chip. The former is the chip that’s used
to store the BIOS code, i.e., the machine code that will be executed when the proc-
essor executes the BIOS, and the latter is the chip that’s used to store the BIOS pa-
rameters, 1.e., the parameters that someone sets when entering the BIOS, such as the
computer date and the RAM timing. Actually, CMOS chip is a misleading name. It
is true that the chip is built on CMOS technology. However, the purpose of the
chip is to store BIOS information with the help of a dedicated battery. In that re-
spect, it should have been called nonvolatile random access memory (NVRAM)
chip to represent the nature and purpose of the chip. Nonetheless, the CMOS chip
term is used widely among PC users and hardware vendors.

BIOS chip in KB
DIP type package WOL FAN2 S2LPT S1 (bottom)
ISAX 4
B_ON
PWR
BN SLOT1
1R ' . TEMP1
fidl . : AGP
PClx e EAN
B/ E—
—>DIMM2
JP42
FAN3 «+#e i e
J43 ==
TEMP3 FOC
JP1 | JP1
[CMOS RAM chip | SBILINK ¢ DEO IDE1 CMOS RAM battery|
PWR-ON JP12 JP10

Fig. 1.1. Motherboard with a DIP-type BIOS chip

' Programmed in this context means being erased or written into.

Chapter 1: PC BIOS Technology 9

BIOS chip in PLCC package

CMOS battery

Fig. 1.2. Motherboard with a PLCC-type BIOS chip

The widely-employed chip packaging for BIOS ROM is DIP' (Fig. 1.1) or
PLCCH (Fig. 1.2). Modern-day motherboards mostly use the PLCC package type.
The top marking on the BIOS chip often can be seen only after the BIOS vendor
sticker, e.g., Award BIOS or AMI BIOS, is removed. The commonly used format is
shown in Fig. 1.3.

O The vendor name field contains the name of the chip vendor, such as Win-
bond, SST, or Atmel.

O The chip number field contains the part number of the chip. Sometimes, this
part number includes the access time specification of the corresponding chip.

O The batch number field contains the batch number of the chip. It is used to
mark the batch, in which the chip belonged when it came out of the factory.
Some chips might have no batch number.

' Dual inline package, one of the chip packaging technologies.
4 Plastic lead chip carrier, one of the chip packaging technologies.

10

Part I: The Basics

Lat b1 > 1at b1.2
2 a2 b2 2 2a2 b2 &
vendor_name ATMEL
chip_number AT29C020C
batch_number %22?
3 a3 b3 a3 b3
——|ad4 b4 B 4134 h4 E
|
Fig. 1.3. BIOS chip marking Fig. 1.4. BIOS chip marking example

This chip marking is best explained by using an example (Fig. 1.4).

In the marking in Fig. 1.4, the AT prefix means “made by Atmel,” the part
number is 29C020C, and 90PC means the chip has 90 ns of access time. Detailed
information can be found by downloading and reading the datasheet of the chip
from the vendor’s website. The only information needed to obtain the datasheet is
the part number.

[t is important to understand the BIOS chip marking, especially the part num-
ber and the access time. The access time information is always specified in the cor-
responding chip datasheet. This information is needed when you intend to back up
your BIOS chip with a chip from a different vendor. The access time and voltage
level of both chips must match. Otherwise, the backup process will fail. The backup
process can be carried out by hot swapping or by using specialized tools such as
BIOS Saviour. Hot swapping is a dangerous procedure and is not recommended.
Hot swapping can destroy the motherboard and possibly another component
attached to the motherboard if it’s not carried out carefully. However, if you are
adventurous, you might want to try it in an old motherboard. The hot swapping
steps are as follows:

1. Prepare a BIOS chip with the same type as the one in the current motherboard
to be used as the target, i.e., the new chip that will be flashed with the BIOS in
the current motherboard. This chip will act as the BIOS backup chip. Remove
any sticker that keeps you from seeing the type of your motherboard BIOS chip

[

~]
.

Chapter 1: PC BIOS Technology 11

(usually, the Award BIOS or AMI BIOS logo). This will void your motherboard
warranty, so proceed at your own risk. The same type of chip here means a chip
that has the same part number as the current chip. If one can’t be found, you
can try a compatible chip, i.e., a chip that has the same capacity, voltage level,
and timing characteristic. Note that finding a compatible chip is not too hard.
Often, the vendor of flash-ROMs provides flash-ROM cross-reference docu-
mentation in their website. This documentation lists the compatible flash-ROM
from other vendors. Another way to find a compatible chip is to download
datasheets from two different vendors with similar part numbers and compare
their properties according to both datasheets. If the capacity, voltage level, and
access time match, then the chip is compatible. For example, ATMEL
AT29C020C is compatible with WINBOND W29C020C.

Prepare the BIOS flashing software in a diskette or in a file allocation table
(FAT) formatted hard disk drive (HDD) partition. This software will be used to
save BIOS binary from the original BIOS chip and to flash the binary into the
backup chip. The BIOS flashing software is provided by the motherboard
maker from its website, or sometimes it’s shipped with the motherboard driver CD.
Power off the system and unplug it from electrical source. Loosen the original
BIOS chip from the motherboard. It can be accomplished by first removing the
chip using a screwdriver or IC extractor from the motherboard and then reat-
taching it firmly. Ensure that the chip is not attached too tightly to the mother-
board and it can be removed by hand later. Also, ensure that electrical contact
between the IC and the motherboard is strong enough so that the system will
be able to boot.

Boot the system to the real-mode disk operating system (DOS). Beware that
some motherboards may have a BIOS flash protection option in their BIOS
setup. It has to be disabled before proceeding to the next step.

Run the BIOS flashing software and follow its on-screen direction to save the
original BIOS binary to a FAT partition in the HDD or to a diskette.

After saving the original BIOS binary, carefully release the original BIOS chip
from the motherboard. Note that this procedure is carried out with the com-
puter still running in real-mode DOS.

Attach the backup chip to the motherboard firmly. Ensure that the electrical
contact between the chip and the motherboard is strong enough.

Use the BIOS flashing software to flash the saved BIOS binary from the HDD
partition or the diskette to the backup BIOS chip.

Reboot the system and see whether it boots successfully. If it does, the hot
swapping has been completed.

12 Part I: The Basics

Hot swapping is not as dangerous as you might think for an experienced hard-
ware hacker. Nevertheless, use of a specialized device such as BIOS Saviour for
BIOS backup is bulletproof.

Anyway, you might ask, why would the motherboard need a BIOS? There are
several answers to this seemingly simple question. First, system buses, such as PCI,
PCI-X, PCI Express, and HyperTransport consume memory address space and
input/output (I/0O) address space. Devices that reside in these buses need to be ini-
tialized to a certain address range within the system memory or 1/O address space
before being used. Usually, the memory address ranges used by these devices are
located above the address range used for system random access memory (RAM)
addressing. The addressing scheme depends on the motherboard chipset. Hence,
you must consult the chipset datasheet(s) and the corresponding bus protocol for
details of the addressing mechanism. I will explain this issue in a later chapter that
dwells on the bus protocol.

Second, some components within the PC, such as RAM and the central process-
ing unit (CPU) are running at the “undefined” clock speed' just after the system is
powered up. They must be initialized to some predefined clock speed. This is where
the BIOS comes into play; it initializes the clock speed of those components.

The bus protocol influences the way the code inside the BIOS chip is executed,
be it motherboard BIOS or other kinds of BIOS. Section 1.4 will delve into bus pro-
tocol fundamentals to clean up the issue.

1.2. Expansion ROM

Expansion ROM! is a kind of BIOS that’s embedded inside a ROM chip mounted
on an add-in card. Its purpose is to initialize the board, in which it’s soldered
or socketed, before operating system execution. Sometimes, it is mounted into an
old ISA add-in card, in which case it’s called ISA expansion ROM. If it is mounted
to a PCI add-in card, it’s called PCI expansion ROM. In most cases, PCI or ISA ex-
pansion ROM is implanted inside an erasable or electrically erasable programmable
read-only memory chip or a flash-ROM chip in the PCI or ISA add-in card. In cer-
tain cases, it's implemented as the motherboard BIOS component.
Specifically, this is because of motherboard design that incorporates some onboard
PCI chip, such as a redundant array of independent disks (RAID) controller,

L "Undefined" clock speed in this context means the power-on default clock speed.

i Expansion ROM is also called option ROM in some articles and documentation. The terms are
interchangeable.

Chapter 1: PC BIOS Technology 13

SCSI controller, or serial advanced technology attachment (ATA) controller. Note
that expansion ROM implemented as a motherboard BIOS component is no dif-
ferent from expansion ROM implemented in a PCI or ISA add-in card. In most
cases, the vendor of the corresponding PCI chip that needs chip-specific initializa-
tion provides expansion ROM binary. You are going to learn the process of creat-
ing such binary in Part IIT of this book.

PCI expansion ROM chip

Fig. 1.5. PCI expansion ROM chip

Actually, there is some complication regarding PCI expansion ROM execution
compared with ISA expansion ROM execution. ISA expansion ROM is executed in
place,' and PCI expansion ROM is always copied to RAM and executed from there.
This issue will be explained in depth in Chapter 7 that covers the PCI expansion ROM.

1.3. Other Firmware within the PC

[t must be noted that motherboard and add-in cards are not the only ones that
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware
is used to control the physical devices within those drives and to communicate with
the rest of the system. However, those kinds of firmware are not considered in this
book. They are mentioned here just to ensure that you are aware of their existence.

* Executed in place means executed from the ROM chip in the expansion card.

14 Part |I: The Basics

.

1.4. Bus Protocols Fundamentals

This section explains bus protocols used in a PC motherboard, namely PCI, PCI
Express, and HyperTransport. These protocols are tightly coupled with the BIOS.
In fact, the BIOS is part of the bus protocol implementation. The BIOS handles
the initialization of the addressing scheme employed in these buses. The BIOS
handles another protocol-specific initialization. This section is not a thorough ex-
planation of the bus protocols themselves; it is biased toward BIOS implementa-
tion-related issues, particularly the programming model employed in the respective
bus protocol.

First, it delves into the system-wide addressing scheme in contemporary sys-
tems. This role is fulfilled by the chipset. Thus, a specific implementation is used as
an example.

1.4.1. System-Wide Addressing

If you have never been playing around with system-level programming, you might
find it hard to understand the organization of the overall physical memory address
space In x86 architecture. It must be noted that RAM is not the only hardware that
uses the processor memory address space; some other hardware is also mapped to the
processor memory address space. This memory-mapped hardware includes PCI
devices, PCI Express devices, HyperTransport devices, the advanced programmable
interrupt controller (APIC), the video graphics array (VGA) device, and the BIOS
ROM chip. It’s the responsibility of the chipset to divide the x86 processor memory
address space for RAM and other memory-mapped hardware devices. Among the
motherboard chipsets, the northbridge is responsible for this system address-space
organization, particularly its memory controller part. The memory controller de-
cides where to forward a read or write request from the CPU to a certain memory
address. This operation can be forwarded to RAM, memory-mapped VGA RAM, or
the southbridge; it depends on the system configuration. If the northbridge is em-
bedded inside the CPU itself, like in the AMD Athlon 64 and Opteron architecture,
the CPU decides where to forward these requests.

The influence of the bus protocol employed in x86 architecture to the system

address map is enormous. To appreciate this, analyze a sample implementation in
the form of a PCI Express chipset, Intel 955X-ICH7. This chipset is used with Intel
Pentium 4 processors that support [A-32E and are capable of addressing RAM
above the 4-GB limit.

Chapter 1: PC BIOS Technology 15

Fig. 1.6 shows that memory address space above the physical RAM is used for
PCI devices, APIC, and BIOS flash-ROM. In addition, there are some areas of
physical memory address space used by the RAM, i.e., memory address range
from 1 MB to TOLUD and from 4 GB to Remap Limit (in other words, below and
above the 4-GB limit). This division is the result of the 4-GB limit of 32-bit
addressing mode of x86 processors. Note that PCI Express devices are mapped to
the same memory address range as PCI devices but they can’t overlap each other.
Several hundred kilobytes of the RAM address range are not addressable because
this space is consumed by other memory-mapped hardware devices, though this
particular area may be available through system management mode (SMM). This is
because of the need to maintain compatibility with DOS. In the DOS days, several
areas of memory below | MB (10_0000h) were used to map hardware devices, such
as the video card buffer and BIOS ROM. The “BARs” mentioned in Fig. 1.6 are an
abbreviation for base address registers. These will be explained in Section 1.4.2.

System-wide Memary Legacy Memory
TP _AddressRange
""" i T : | ~|F_FFFFh
Device 1 PMUbasePMUImit | poc Lo System BIOS
o {Upper) 64 KB
I S (= | Remap Limit 'F 0000h
Remap Base/Limit 'M'B,m, M R » ' E FFFFh
........ ST, | TR N T System BIOS
ke 64 KB (16 K x 4]
AML | 4GB . [1_..E_m
Flash Memory D_FFFFh
Expansion Area
Yool grbe Tl APIC | (16 KB x 8) 'C_0000h
[i
Legacy Video |BFFFF1
Device 0 BARs Device 0Device 1 BARs pC| Memory Ak _
(EPBAR, GCC (MBASEY | agdress Range | (SMM Memory)
MCHBAR, (Graphics MLIMIT1, | (Substractively 128KB |, 000oh
PCIEXBAR, Stolen PMBASEY/ | pecoded to DMI) QLS00
DMIBAR) Memory) PMLIMIT1) B
' B - - TOLUD
Independently Programmable Main Memory ‘
Non-Overlapping Windows Address Range DOS Area
; 1MB
Legacy Memory
Address Range
A Py MUTEY SR 0

TOLUD = Top of Low Usable DRAM (top of memory that the operating system can see)

TOM =Top of Memory (top of the consumed physical memory)
Fig. 1.6. Intel 955X-ICH7 system address map

16 Part I: The Basics

The system address map in Fig. 1.6 shows that the BIOS chip is mapped to two
different address ranges, i.e., 4GB minus BIOS chip size to 4 GB and & 0000k to
F_FrFFh. The former BIOS flash-ROM address range varies from chipset to chip-
set, depending on the maximum BIOS chip size supported by the chipset. This
holds true for every chipset and must be taken into account when I delve into the
BIOS code in later chapters. The latter address range mapping is supported in most
contemporary chipsets. This 128-KB range (E 0000h—F FFFFh) is an alias to the
topmost 128-KB address range in the BIOS chip. Chipsets based on a different bus
protocol, such as HyperTransport or the older chipsets based on PCI, also employ
mapping of physical memory address space similar to that described here. It has to
be done that way to maintain compatibility with the current BIOS code from dif-
ferent vendors and to maintain compatibility with legacy software. Actually, there
are cost savings in employing this addressing scheme; the base code for the BIOS
from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed or only
needs to undergo minor changes.

1.4.2. PCI Bus Protocol

The PCI bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed
address and data lines. The bus is intended for use as an interconnect mechanism
between highly-integrated peripheral controller components, peripheral add-in
cards, and processor or memory systems. It is the most widely used bus in PC
motherboard design since the mid-1990s. It’s only recently that this bus system has
been replaced by newer serial bus protocols, i.e., PCI Express and HyperTransport.
The PCI Special Interest Group is the board that maintains the official PCI bus
standard.

PCI supports up to 256 buses in one system, with every bus supporting up to
32 devices and every device supporting up to eight functions. The PCI protocol de-
fines the so-called PCI-to-PCI bridges that connect two different PCI bus segments.
This bridge forwards PCI transactions from one bus to the neighboring bus seg-
ment. Apart from extending the bus topology, the presence of PCI-to-PCI bridges
is needed due to an electrical loading issue. The PCI protocol uses reflected-wave
signaling that only enables around 10 onboard devices per bus or only five PCI
connectors per bus. PCI connectors are used for PCI expansion cards, and they ac-
count for two electrical loads, one for the connector itself and one for the expan-
sion card inserted into the connector.

The most important issue to know in PCI bus protocol with regard to BIOS
technology is its programming model and configuration mechanism. This theme

Chapter 1: PC BIOS Technology 17

is covered in Chapter 6 of the official PCI specification, versions 2.3 and 3.0. It will
be presented with in-depth coverage in this section.

The PCI bus configuration mechanism is accomplished by defining 256-byte
registers called configuration space in each logical PCI device function. Note that
each physical PCI device can contain more than one logical PCI device and each
logical device can contain more than one function. The PCI bus protocol doesn’t
specify a single mechanism used to access this configuration space for PCI devices
in all processor architectures; on the contrary, each processor architecture has its
own mechanism to access the PCI configuration space. Some processor architec-
tures map this configuration space into their memory address space (memory
mapped), and others map this configuration space into their /0 address space
(I/0 mapped). Fig. 1.7 shows a typical PCI configuration space organization for
PCI devices that’s not a PCI-to-PCI bridge.

31— — 16 15 0 '
Device ID Vendor ID 00h
| Status Command 04h
| Class Code ' Revision ID | 08h
| "Header | Latency |Cache Line |
BIST Type Timer _ Size i 0Ch
10h
[14h
Base Address Registers 18h
1Ch
20h
; | 24h
Cardbus CIS Pointer 28h
Subsystem ID Subsystem Vendor ID | 2Ch
Expansion ROM Base Address 30h
Roserved - | Capabilities
& Pointer e
Reserved 38h
Max_Lat = Min_Gnt | Interrupt | Interrupt | 5.
= S | Pin Line |

Fig. 1.7. PCI configuration space registers for a non-PCl-to-PCl bridge device

18 Part I: The Basics

~

The PCI configuration space in x86 architecture is mapped into the processor
I/O address space. The I/O port addresses 0xCcF8—0xCFB act as the configuration ad-
dress port and 1/O ports 0xCEC—0xCFF act as the configuration data port. These ports
are used to configure the corresponding PCI chip, i.e., reading or writing the PCI
chip configuration register values. It must be noted that the motherboard chipset
itself, be it northbridge or southbridge, is a PCI chip. Thus, the PCI configuration
mechanism is employed to configure these chips. In most cases, these chips are a com-
bination of several PCI functions or devices; the northbridge contains the host
bridge, PCI-to-PCI bridge (PCI-to-accelerated graphics port bridge), etc., and the
southbridge contains the integrated drive electronics controller, low pin count
(LPC) bridge, etc. The PCI-to-PCI bridge is defined to address the electrical load-
ing issue that plagues the physical PCI bus. In addition, recent bus architecture uses
it as a logical means to connect different chips, meaning it’s used to travel the bus
topology and to configure the overall bus system. The typical configuration space
register for a PCI-to-PCI bridge is shown in Fig. 1.8.

31 e 16 15 BT 7 0
Device ID | Vendor ID 00h
Status | Command 04h
Class Code | RevisionID | 08h
BIST Header | primary | Cacheline | 0Ch

Type | Latency Timer | Size
Base Address Register 0 i | 10h
i Base Address Register 1 | 14h
: Secondary | Subordinate Sat:ﬁnrfdary Primary 18h
Latency Timer Bus Number Bus Number Bus Number
Secondary ;latus . YO Limit /O Base 1Ch
3 Memory Limit Memory Base 20h
Prefetchable Memary Limit Prefetchable Memory Base 24h
3 ~ Prefetchable Base Upper 32 Bits | 28n
Prefetchable Limit Upper 32 Bits d &, 2Ch
/O Limit Upper 16 Bits /O Base Upper 16 Bits | 30n
= Reserved | Capabilities 34h
| Pointer

L Expan_sion Rdﬁﬁas& Address __ 38h
' Bridge Control ' Interrupt Pin Interrupt Line | 3Ch

Fig. 1.8. PCI configuration space registers for a PCl-to-PCl bridge device

Chapter 1: PC BIOS Technology 19

Since the PCI bus is a 32-bit bus, communicating using this bus should be in
32-bit addressing mode. Writing or reading to this bus will require 32-bit addresses.
Note that a 64-bit PCI bus is implemented by using dual address cycle, i.e., two ad-
dress cycles are needed to access the address space of 64-bit PCI device(s). Com-
municating with the PCI configuration space in x86 is accomplished with the fol-
lowing algorithm (from the host or CPU point of view):

1. Write the target bus number, device number, function number, and offset or
register number to the configuration address port (1/0 ports 0xcFe—0xcrs), and
set the enable bit in it to one. In plain English: Write the address of the register
that will be read or written into the PCI address port.

2. Perform a 1-byte, 2-byte, or 4-byte I/O read from or write to the configuration
data port (I/O port oxcrc—0xcer). In plain English: Read or write the data into
the PCI data port.

With the preceding algorithm, you'll need an x86 assembly code snippet that
shows how to use those configuration ports.

Listing 1.1. PCI Configuration Read and Write Routine Sample

20

Part I: The Basics

This code snippet is a procedure that I injected into the BIOS of a mother-
board based on a VIA 693A-596B PCI chipset to patch its memory controller con-
figuration a few years ago. The code is clear enough; in line 1, the current data in
the processor’s general-purpose registers were saved. Then comes the crucial part,
as | said earlier: PCI is a 32-bit bus system; hence, you have to use 32-bit addresses
to communicate with the system. You do this by sending the PCI chip a 32-bit ad-
dress through eax register and using port 0xCFg as the port to send this data. Here’s
an example of the PCI register (sometimes called the offset) address format. In the
routine in listing 1.1, you see the following:

The 80000064h is the address. The meanings of these bits are as follows:

BitPosition |15 |14 |13 |12 |11 |10| 9 | 8 |7 |6 |5 |4 |3 |2]|1]0

BinaryValve | O/ 0| 0| 0| 0| 0] of of of 1| 1| o of 1| of 0O

Hexadecimal
Value

Fig. 1.9. PCI configuration address sample (low word)

BitPosition | 31 | 30 | 29 | 28 | 27 | 26 |25 |24 |23 (22 |21 |20 (19| 18 |17 | 16

Binary Value 11 0| of o) o of of of of o/ of of o] 1| O] O

Hexadecimal
Value

Fig. 1.10. PCI configuration address sample (high word)

Chapter 1: PC BIOS Technology 21

Table 1.1. PCI Register Addressing Explanation

Bit Position Meaning

31 This is an enable bit. Setting this bit to one will grant a write or read transaction
through the PCI bus; otherwise, the transaction will be interpreted as invalid, and an
attempt at accessing configuration space ignored. Because bits 24-30 are reserved
and set to zeroes (see the next line of this table), the leftmost nibble of the most signifi-
cant word of the configuration address must always be 1000, or 8h (see Fig. 1.10).

24-30 Reserved bits.

16-23 PCI bus number.

11-15 PCI device number.

8-10 PCI function number.

2-7 Offset address (double word or 32-bit boundary).

0-1 Unused, since the addressing must be in the 32-bit boundary.

Now, examine the previous value that was sent. If you are curious, you’ll find
that 80000064h means communicating with the device in bus 0, device 0, function
0, and offset 64. This is the memory controller configuration register of the
VIA 693A northbridge. In most circumstances, the PCI device that occupies bus 0,
device 0, function 0 is the host bridge. However, you need to consult the chipset data-
sheet to verify this. The next routines are easy to understand. If you still feel confused,
[suggest that you learn a bit more of x86 assembly language. In general, the code does
the following: It reads the offset data, modifies it, and writes it back to the device.

The configuration space of every PCI device contains device-specific registers
used to configure the device. Some registers within the 256-bytes configuration
space possibly are not implemented and simply return 0xrr on PCI configuration
read cycles.

As you know, the amount of RAM can vary among systems. How can PCI de-
vices handle this problem? How are they relocated to different addresses as needed?
The answer lays in the PCI configuration space registers. Recall from Figs. 1.7
and 1.8 that the predefined configuration header contains a so-called BAR. These
registers are responsible for PCI devices addressing. A BAR contains the starting
address within the memory, or I/O address space that will be used by the corre-
sponding PCI device during its operation. The BAR contents can be read from and
written into, i.e., they are programmable using software. It’s the responsibility of the
BIOS to initialize the BAR of every PCI device to the right value during boot time.
The value must be unique and must not collide with the memory or /O address

22 Part I: The Basics

that’s used by another device or the RAM. Bit 0 in all BARs is read only and is used
to determine whether the BARs map to the memory or 1/0O address space.

31 4 3 210

Base Address | 0|

b ek el
Prefetchable

Set to one. If there are no side effects on reads, the device
returns all bytes on reads regardless of the byte enables,
and host bridges can merge processor writes into this range
without causing errors. Bit must be set to zero otherwise,

Type 2 PR
00 - Locate anywhere in 32-bit address space
01 - Reserved
10 - Locate anywhere in 64-bit address space
11 - Reserved

Memory Space Indicator ———————— it
Fig. 1.11. Format of BAR that maps to memory space

3 2 1 0
[iein i] W TSATE =)
Base Address 0|1
Reserved —— ——

I/O Space Indicator -
Fig. 1.12, Format of BAR that maps to 1/0 space

Note that 64-bit PCI devices are implemented by using two consecutive BARs
and can only map to the memory address space. A single PCI device can implement
several BARs to be mapped to memory space while the remaining BAR is mapped
to 1/O space. This shows that the presence of BAR enables any PCI device to be re-
locatable within the system-wide memory and I/O address space.

How can BIOS initialize the address space usage of a single PCI device, since
BAR only contains the lower limit of the address space that will be used by the de-
vice? How does the BIOS know how much address space will be needed by a PCI
device? BAR contains programmable bits and bits hardwired to zero. The program-
mable bits are the most significant bits, and the hardwired bits are the least signifi-

Chapter 1: PC BIOS Technology 23

cant bits. The implementation note taken from PCI specification version 2.3
is as follows:

It's clear from the preceding implementation note that the BIOS can “interro-
gate” the PCI device to know the address space consumption of a PCI device. Upon
knowing this information, BIOS can program the BAR to an unused address within
the processor address space. Then, with the consumption information for the ad-
dress space, the BIOS can program the next BAR to be placed in the next unused
address space above the previous BAR address. The latter BAR must be located at
least in the address that’s calculated with the following formula:

However, it’s valid to program the BAR above the address calculated with the
preceding formula. With these, the whole system address map will be functioning
flawlessly. This relocatable element is one of the key properties that the PCI device
brings to the table to eliminate the address space collision that once was the night-
mare of ISA devices.

1.4.3. Proprietary Interchipset Protocol Technology

Motherboard chipset vendors have developed their own proprietary interchipset
protocol between the northbridge and the southbridge in these last few years,
such as VIA with V-Link, SiS with MuTIOL, and Intel with hub interface (HI).

24

Part I: The Basics

These protocols are only an interim solution to the bandwidth problem between the pe-
ripherals that reside in the PCI expansion slots, on-board PCI chips, and the main
memory, i.e., system RAM. With the presence of newer and faster bus protocols
such as PCI Express and HyperTransport in the market, these interim solutions are
rapidly being moved out of use. However, reviewing them is important to clean up
issues that might plague you once you discover the problem of understanding how
it fits to the BIOS scene.

These proprietary protocols are transparent from configuration and initializa-
tion standpoints. They do not come up with something new. All are employing
a PCI configuration mechanism to configure PCI compliant devices connected to
the northbridge and southbridge. The interchipset link in most cases is viewed as
a bus connecting the northbridge and the southbridge. This “protocol transpar-
ency” is needed to minimize the effect of the protocol on the investment needed to
implement it. As an example, the Intel 865PE-ICHS5 chipset mentioned this prop-
erty clearly in the i865PE datasheet, as follows:

Further information regarding these protocols can be found in the corre-
sponding chipset datasheets. Perhaps, some chipset’s datasheet does not mention
this property clearly. Nevertheless, by analogy, you can conclude that those chipsets
must have adhered to the same principle.

Chapter 1: PC BIOS Technology 25

1.4.4. PCI Express Bus Protocol

The PCI Express protocol supports the PCI configuration mechanism explained in
the previous subsection. Thus, in PCI Express-based systems, the PCI configura-
tion mechanism is still used. In most cases, to enable the new PCI Express en-
hanced configuration mechanism, the BIOS has to initialize some critical PCI Ex-
press registers by using the PCI configuration mechanism before proceeding to
using the PCI Express enhanced configuration mechanism. It's necessary because
the new PCI Express enhanced configuration mechanism uses BARs that have to be
initialized to a known address in the system-wide address space before the new PCI
Express enhanced configuration cycle.

PCI Express devices, including PCI Express chipsets, use the so-called root
complex register block (RCRB) for device configuration. The registers in the RCRB
are memory-mapped registers. Contrary to the PCI configuration mechanism that
uses 1/O read/write transactions, the PCI Express enhanced configuration mecha-
nism uses memory read/write transactions to access any register in the RCRB.
However, the read/write instructions must be carried out in a 32-bit boundary, i.e.,
must not cross the 32-bit natural boundary in the memory address space. A root
complex base address register (RCBAR) is used to address the RCRB in the mem-
ory address space. The RCBAR is configured using the PCI configuration mecha-
nism. Thus, the algorithm used to configure any register in the RCRB as follows:

1. Initialize the RCBAR in the PCI Express device to a known address in the mem-
ory address space by using the PCI configuration mechanism.

2. Perform a memory read or write on 32-bit boundary to the memory-mapped
register by taking into account the RCBAR value; i.e., the address of the register
in the memory address space is equal to the RCBAR value plus the offset of the
register in the RCRB.

Perhaps, even the preceding algorithm is still confusing. Thus, a sample code
is provided in Listing 1.2.

Listing 1.2. PCI Express Enhanced Configuration Access Sample Code

26 Part I: The Basics

Listing 1.2 is a code snippet from a disassembled boot block part of the Fox-
conn 955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel
955X-ICH7 chipsets. As you can see, the register that controls the RTC register in
the ICH7' is a memory-mapped register and accessed by using a memory read or
write instruction as per the PCI Express enhanced configuration mechanism. In the
preceding code snippet, the ICH7 RCRB base address is initialized to FED1 c000h.

I The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31,
function 0.

Chapter 1: PC BIOS Technology 27

Note that the value of the last bit is an enable bit and not used in the base address cal-
culation. That’s why it has to be set to one to enable the root-complex configura-
tion cycle. This technique is analogous to the PCI configuration mechanism. The
root-complex base address is located in the memory address space of the system
from a CPU perspective.

One thing to note is that the PCI Express enhanced configuration mechanism
described here is implementation-dependent; i.e., it works in the Intel 955X-ICH7
chipset. Future chipsets may implement it in a different fashion. Nevertheless, you
can read the PCI Express specification to overcome that. Furthermore, another
kind of PCI Express enhanced configuration mechanism won’t differ much from
the current example. The registers will be memory mapped, and there will be an
RCBAR.

1.4.5. HyperTransport Bus Protocol

In most cases, the HyperTransport configuration mechanism uses the PCI configu-
ration mechanism that you learned about in the previous section. Even though the
HyperTransport configuration mechanism is implemented as a memory-mapped
transaction under the hood, it’s transparent to programmers; i.e., there are no ma-
jor differences between it and the PCI configuration mechanism. HyperTransport-
specific configuration registers are also located in within the 256-byte PCI configu-
ration registers. However, HyperTransport configuration registers are placed at
higher indexes than those used for mandatory PCI header, i.e., placed above the
first 16 dwords in the PCI configuration space of the corresponding device. These
HyperTransport-specific configuration registers are implemented as new capabili-
ties, i.e., pointed to by the capabilities pointer' in the device’s PCI configuration
space. Please refer to Fig. 1.7 for the complete PCI configuration register layout.

‘ The capabilities pointer is located at offset 34h in the standard PCI configuration register layout.

Chapter 2: Preliminary Reverse
Code Engineering

Preview

This chapter introduces software reverse engineering techniques by using IDA Pro
disassembler. Techniques used in IDA Pro to carry out reverse code engineering of
a flat binary file are presented. BIOS binary flashed into the BIOS chip is a flat bi-
nary file.! That's why these techniques are important to master. The IDA Pro ad-
vanced techniques presented include scripting and plugin development. By becom-
ing acquainted with these techniques, you will able to carry out reverse code
engineering in platforms other than x86.

' Software reverse engineering is also known as reverse code engineering. It is sometimes abbreviated
as RCE.

“ A flat binary file is a file that contains only the raw executable code (possibly with self-contained
data) in it. It has no header of any form, unlike an executable file that runs within an operating sys-
tem. The latter adheres to some form of file format and has a header so that it can be recognized
and handled correctly by the operating system.

30 Part I: The Basics
~

2.1. Binary Scanning

The first step in reverse code engineering is not always firing up the disassembler
and dumping the binary file to be analyzed into it, unless you already know the
structure of the target binary file. Doing a preliminary assessment on the binary file
itself is recommended for a foreign binary file. I call this preliminary assessment bi-
nary scanning, 1.e., opening up the binary file within a hex editor and examining the
content of the binary with it. For an experienced reverse code engineer, sometimes
this step is more efficient rather than firing up the disassembler. If the engineer
knows intimately the machine architecture where the binary file was running, he or
she would be able to recognize key structures within the binary file without firing
up a disassembler. This is sometimes encountered when an engineer is analyzing
firmware.

Even a world-class disassembler like IDA Pro seldom has an autoanalysis fea-
ture for most firmware used in the computing world. I will present an example for
such a case. Start by opening an Award BIOS binary file with Hex Workshop ver-
sion 4.23. Open a BIOS binary file for the Foxconn 955X7AA-8EKRS2 mother-
board. The result is shown in Fig. 2.1.

A quick look in the American Standard Code for Information Interchange
(ASCII) section (the rightmost section in the figure) reveals some string. The most
interesting one is the -1n5- in the beginning of the binary file. An experienced pro-
grammer will be suspicious of this string, because it resembles a marker for
a header of a compressed file. Further research will reveal that this is a string to

mark the header of a file compressed with LHA,

H Hex Workshop - [ABGF1P50.BIN] HFTE:!

B Fle Edt Disk Optons Tools Window Help : =18] x|

[r#-iﬂ&" 80 *’*i‘"%'j}_mllil LeFD B0 ol e
£0n

i"'"« L

Alalre e/ zn M [BEE K #E

00000000 [R5CC 2D6EC 6B35 2DCO 4D01 000D 00DZ 0OOO([%.-1h5-.M....... ﬂ
00000010 |0000 5020 010C 3442 4746 3150 3530 2E62|..P ..4BGF1P50.b
DO0OD0020 [696E &£309 2000 002C CBBF 787E EB12 S2IE |inc. S, co oM, - 1
00000030 |927D E739 CCCC C301 CCC4 4155 5B33 1A1C).}.9...... AU[3..
0000D040 |A66E 9414 SA41 4485 2%A9 7111 211D EBE1|.h..ZAD.).g.!...
DO0000S0D |BADC 72Bb A9D0D E716 DDAA 783B C419 C957 . .Feesunese xB...W
ODDEDUEHO BDB7 DBBB B9D6 B69A 6D7A BSS9 49A4 01BB!...nuse mz.Y1...
00000070 |8607 0815 67B0 BS6C 53B4 E226 6FD1 E2A9(....g..1S..&....
ﬁD“DuDED'-‘i \E0 00B9 9FFF 7998 1357 7DEE FBF7 CFSF|J..... A o WE owm s ;'
B scriPso.. | = s =
Ready : |Offset; DODOODOG [Vislue: -13278 [E2dzeabytes | OWR W00

Fig. 2.1. Foxconn 955X7AA-8EKRS2 BIOS file opened with Hex Workshop

Chapter 2: Preliminary Reverse Code Engineering 31

You can try a similar approach to another kind of file. For example, every file
compressed with WinZip will start with ASCII code %, and every file compressed
with WinRAR will start with ASCII code rar!, as seen in a hex editor. This shows
how powerful a preliminary assessment is.

2.2. Introducing IDA Pro

Reverse code engineering is carried out to comprehend the algorithm used in soft-
ware by analyzing the executable file of the corresponding software. In most cases,
the software only comes with the executable — without its source code. The same
is true for the BIOS. Only the executable binary file is accessible. Reverse code en-
gineering is carried out with the help of some tools: a debugger; a disassembler;
a hexadecimal file editor, a.k.a. a hex editor, in-circuit emulator, etc. In this book,
I only deal with a disassembler and a hex editor. The current chapter only deals
with a disassembler, i.e., IDA Pro disassembler.

IDA Pro is a powerful disassembler. It comes with support for plugin and
scripting facilities and support for more than 50 processor architectures. However,
every powerful tool has its downside of being hard to use, and IDA Pro is not an
exception. This chapter is designed to address the issue.

There are several editions of IDA Pro: freeware, standard, and advanced.
The latest freeware edition as of the writing of this book is IDA Pro version 4.3. It’s
available for download at http://www.dirfile.com/ida_pro_freeware_version.htm.
It’s the most limited of the IDA Pro versions. It supports only the x86 processor
and doesn’t come with a plugin feature, but it comes at no cost, that’s why it’s pre-
sented here. Fortunately, it does have a scripting feature. The standard and ad-
vanced editions of IDA Pro 4.3 differ from this freeware edition. They come with
plugin support and support for more processor architecture. You will learn how to
use the scripting feature in the next section.

Use the IDA Pro freeware version to open a BIOS binary file. First, the
IDA Pro freeware version has to be installed. After the installation has finished, one
special step must be carried out to prevent an unwanted bug when this version
of IDA Pro opens a BIOS file with ROM extension. To do so, you must edit
the IDA Pro configuration file located in the root directory of the IDA Pro installa-
tion directory. The name of the file is ida.cfg. Open this file by using any text editor
(such as Notepad) and look for the lines in Listing 2.1.

32 Part I: The Basics

Listing 2.1. IDA Pro Processor-to-File Extension Configuration

Notice the following line:

This line must be removed, or just replace "z80" with " in this line to disable
the automatic request to load the z80 processor module in IDA Pro upon opening
a *.rom file. The bug occurs if the *.rom file is opened and this line has not been
changed, because the IDA Pro freeware version doesn’t come with the z80 processor
module. Thus, opening a *.rom file by default will terminate IDA Pro. Some

Chapter 2: Preliminary Reverse Code Engineering 33

motherboard BIOS files comes with the ROM extension by default, even though
it’s clear that it won’t be executed in a z80 processor. Fixing this bug will ensure
that you will be able to open a motherboard BIOS file with the ROM extension
flawlessly. Note that the steps needed to remove other file extension—to—processor
type “mapping” in this version of IDA Pro is similar to the z80 processor just
described.

Proceed to open a sample BIOS file. This BIOS file is da8r9025.rom, a BIOS file
for a Supermicro H8DAR-8 (original equipment-manufacturer version) mother-
board. This motherboard used the AMD-8131 HyperTransport PCI-X Tunnel chip
and the AMD-8111 HyperTransport I/O Hub chip. The dialog box in Fig. 2.2 will
be displayed when you start IDA Pro freeware version 4.3.

About

.'.--‘ \Welcome to the heeware ediion of The Interactive Disassembler Pro.

1| This version is fully funchional but does not offer all the bells and whistles

1| of the commercial versions of IDA Pro. With the commercial version of IDA Pro
4 you get

1| 1. Moe processors [more than 50]
| 2 More file formats.
| 3 Moe signatures. type libranies, symbol files.
|| 4. Better and faster analysis.
~14] 5. True 64-bit support.
1 6. Linux versions.
|| 7 Alocal and remote debugoer for Windows and Linux
|| 8. A comprehensive SDK [more than 100000 lines of source code).
| | S Muliple configurable desktops.
|| 10. Technical suppart, private board access, a year of free updates.
14 11. And much much more...

|| Try the commercial version of IDA Pro today!

Fig. 2.2. Snapshot of the first dialog box in IDA Pro freeware

Just click OK to proceed. The next dialog box, shown in Fig. 2.3, will
be displayed.

In this dialog box, you can try one of the three options, but for now just click
on the Go button. This will start IDA Pro with empty workspace as shown in Fig. 2.4.

34 Part I: The Basics
.

Welcome to IDAI B

I~ Don? dispiay this dislog box again

Fig. 2.3. Snapshot of the second dialog box in IDA Pro freeware

&, The interactive disassembler

Fie Edt Jump Search Yiew Options Windows Help

@l =] 2] =N] =]
-l w e u k| el] NPl el s B el Elsl e 8]
=

Fig. 2.4. Snapshot of the main window of IDA Pro freeware

Chapter 2: Preliminary Reverse Code Engineering 35

~—

[Load a new file [X |
Load file I:\A-List Publshiong\Rieverse_Engineered_BIOS\AMD-8111 HypeT
Processor type - :
lln?eJ 8086 processors: metapc :j . Set 3
Loading segment |0x00000000 Fhinaﬂut :
Loading gifset | 0x00000000 [V Indicator enabled |
O = |

v Create segments Kernel options]

[v Load as code segment '

W -Fename Dl Certes | :

I~ Manaaliosd . Kemel optionsg.

I ‘Eisegmentaans

W Weheimports seamert : Eww
I I~ Oortaignsegmente |- —
System DLL diectory |C - 1ND0WS

oK ~ Cancel Hep |

Fig. 2.5. Snapshot of loading a new binary file in IDA Pro freeware

Please confirm

Ttnluadadblnayhlg!a?nﬁ‘ﬁﬁsmnbhanMz
| 2 32bitmode
| Daymwmtu&samrﬂeiuazﬁmdu?

o] No| concel |

Fig. 2.6. Intel x86-compatible processor mode selections

36

Part I: The Basics

Then, locate and drag the file to be disassembled to the IDA Pro window (as
shown in the preceding figure). Then, IDA Pro will show the dialog box in Fig. 2.5.

In this dialog box, select Intel 80x86 processors: athlon as the processor type in
the dropdown list. Then, click the Set button to activate the new processor selec-
tion. Leave the other options as they are. (Code relocation will be carried out using
IDA Pro scripts in a later subsection.) Click OK. Then, IDA Pro shows the dialog
box in Fig. 2.6.

This dialog box asks you to choose the default operating mode of the x86-
compatible processor during the disassembling process. AMD64 Architecture Pro-
grammer’s Manual Volume 2: System Programming, February 2005, Section 14.1.5,
page 417, states the following:

After a RESET# or INIT, the processor is operating in 16-bit real mode.

In addition, IA-32 Intel Architecture Software Developer’s Manual Volume 3:
System Programming Guide 2004, Section 9.1.1, states the following:

gs and other registers following power-up
,—and—m processors. The state of

Thus, you can conclude that any thS-compatible processor will start its execu-
tion in 16-bit real mode just after power-up and you have to choose 16-bit mode in
this dialog box. It’s accomplished by clicking No in the dialog box. Then, the dialog
box in Fig. 2.7 pops up.

You mwmamym

ID& Pra can't Myﬂﬁmhy pulnt autarrmtically as
Mmmm&dm

'Fhmemmﬂhaym&rkwmmm
and press 'C'to start the autoanalysis.

[~ Dont display this message again || OK |

Fig. 2.7. Entry point information

Chapter 2: Preliminary Reverse Code Engineering 37

SEQURE;DEBEDRNE [reeeeemesews
segioo:pooaeoRn | This File is generated by The Interactive Disassembler (10A)

1
segiod: ponacven ; i Copyright (c) 2002 by PataRescue sa/nv, (idaBdatarescue.comd
‘weq000: paneane ; | Licensed to: Freeware version ke
L LR T st
Segong; a0000800 ; . .
-“EHI:HIIII!I{I IAddFESS of the machine code k
iseg000: 0R0R00aD L3
L LT e e T T T EE—— 3
segUnE:Deuanoa |.. ———— e ——
(Seq000:0hudubEe ; SegRent type: Pure code :
segO0i: 00URNAN0 segoDl segment byte public 'CODE' wsed2 K TR AN o nlmhd
seqing: danbaann assume cs:seglog F || Addres Lotgih I3 |
weq Ul : DaoARon assume es:nothing, ss:mething, ds:nothing, Fs:nothing, “feeglD0 . DOODOOS € Vi b
eqin; gBONRY db OFFh ; Pl ooomos © xistE
(5w 000: 00000001 db 8FFh ; ; i Bl segio0. oODOODE C PaEE
Sey00e: 0R000NE? db BFFh ; [B'naw disassembly result | Phmeragpemiibtie .
[5eqUun; 0s0e00wE db BFFh ; P+ segion c0o000s b
SeqUog: BoRBIREY ab wFFn B Il segoe . comons g ﬁ d
@b #FFh i Y
o wry . |Message pane | Pl |

= - P S ———

—— = —— - —— = —— — [—— .
= — P S —— i g e e — b
v T - — — :

Markieg typical code tsquences...
Flushing buffers, plesss sait...oh
file 'I3\a-List Publishiong\ieverse_Engineered BIDS\MD-E111 MyperTramport 10 Wub\BASR902€\dalrdli.ram’ iv succestfully loaded into the datas i
Compiling ™1le "C:\Program F1les\J0a Fresesre < 7\idc\fda.1de"...

Paecuting function ‘main’,..

Compiling file 'Cr\Progree Files\I0a Fressare «.7\10C\onload. 100 ...

Executing fusction "Omloed'...

104 13 acalysing the insut Tile... =
start to explore the ingut file right now. =

Fig. 2.8. IDA Pro workspace

This dialog box says that IDA Pro can’t decide where the entry point is located.
You have to locate it yourself later. Just click OK to continue to the main window
for the disassembly process (Fig. 2.8).

Up to this point, you have been able to open the binary file within IDA Pro.
This is not a trivial task for people new to IDA Pro. That’s why it’s presented in
a step-by-step fashion. However, the output in the workspace is not yet usable.
The next step is learning the scripting facility that IDA Pro provides to make sense
of the disassembly database that IDA Pro generates.

38 Part |I: The Basics

—

2.3. IDA Pro Scripting and Key Bindings

Try to decipher the IDA Pro disassembly database shown in the previous section
with the help of the scripting facility. Before you proceed to analyzing the binary,
you have to learn some basic concepts about the IDA Pro scripting facility. IDA Pro
script syntax is similar to the C programming language. The syntax is as follows:

1. IDA Pro scripts recognize only one type of variable, i.e., autc. There are no
other variable types, such as int or char. The declaration of variable in an IDA
Pro script as follows:

2. Every statement in an IDA Pro script ends with a semicolon (;), just like in the
C programming language.

3. A function can return a value or not, but there’s no return-type declaration.
The syntax is as follows:

4. A comment in an IDA Pro script starts with a double slash (//). The IDA Pro
scripting engine ignores anything after the slashes in the corresponding line.

5. IDA Pro “exports” its internal functionality to the script that you build by using
header files. These header files must be “included” in the script so that you can
access that functionality. At least one header file must be included in any IDA
Pro script, i.e., idc.idc. The header files are located inside a folder named idc
in the IDA Pro installation directory. You must read the IDC files inside this di-
rectory to learn about the functions exported by IDA Pro. The most important
header file to learn is idc.idc. The syntax used to include a header file in an IDA
Pro script is as follows:

6. The entry point of an IDA Pro script is the main function, just as in the C pro-
gramming language.

Now, it’s the time to put the theory into a simple working example, an IDA Pro
sample script (Listing 2.2).

Chapter 2: Preliminary Reverse Code Engineering 39

Listing 2.2. IDA Pro Code Relocation Script

As explained previously, the entry point in Listing 2.2 is function main. First,
this function displays a message in the message pane with a call to an IDA Pro in-
ternal function named Message in these lines:

40 Part I: The Basics
~—

Then, it creates a new segment with a call to another IDA Pro internal function,
SegCreate in this line:

‘SegCreate (| [OXFCO0, 0], [Ox1D000, 0}, OxF000, 0, 0, 0};
It calls another IDA Pro internal function named segRename to rename the
newly-created segment in this line:

SegRename ({0XF000, ©1, ™ FO6G");// Give a new name to the segment.

Then, it calls the relocate seg function to relocate part (one segment) of the
disassembled binary to the new segment in this line:

~relocate seg({0x7000, 0}, [OxF000, 01);

The pair of square brackets, i.e., [], in the preceding script is an operator used
to form the linear address from its parameters by shifting the first parameter 4 bits
to left (multiplying by 16 decimal) and then adding the second parameter to the re-
sult; e.g., (0x7000, 0] means (0x7000 << 4) + 0, i.e., 0x7_0000 linear address. This
operator is the same as the Mk _Fr(,) operator in previous versions of IDA Pro.

You must read idc.idc file to see the “exported” function definition that will al-
low you to understand this script completely, such as the v ge, SegCreate, and

SegRename functions. Another e'(ported function that may he of interest can be
found in the numerous IDC files in the idc directory of IDA Pro installation folder.
To be able to use the function, you must look up its definition in the exported
function definition in the corresponding *.idc header file. For example, seqcC
function is defined in the idc.idc file as shown in Listing 2.3.

Listing 2.3. SegCreate Function Definition

as Create a new segmmt

;:i’.f . startea =~ linear ,ae:ﬁiﬁaﬁ "‘qf the start of the segment

h’ endea = Iine&r "&ﬁ&iﬁ&& fﬁf th& enei of the segment
e

7 vase :

2L == A _ngaph___m & 1_ﬁ-—byte. memory chunk,

i _If a selector value is specified, the selector

4 = should aiready be defined.

7 use32 - 0: 16bit segment, 1: 32bit segment

/f - ~ align - Segment alignment; see below for alignment values.

4F — comb = - Segment combination; see below for combination values,

Chapter 2: Preliminary Reverse Code Engineering 41

IDA Pro internal functions have informative comments in the IDA Pro include
files for the scripting facility, as shown in Listing 2.3.

Anyway, note that a 512-KB BIOS binary file must be opened in IDA Pro with
the loading address set to 0000n to be able to execute the sample script in Listing 2.2.
This loading scheme is the same as explained in the previous section. In this case,
you will just open the BIOS binary file of the Supermicro H8DAR-8 motherboard
as in the previous section and then execute the script.

First, you must type the preceding script into a plain text file. You can use
Notepad or another ASCII file editor for this purpose. Name the file function.idc.
The script is executed by clicking the File|IDC file... menu or by pressing <F2>,
then the dialog box in Fig. 2.9 will be shown.

Enter IDC file name to execute
e ——— : e ——

Fig. 2.9. IDC script execution dialog

42

Part I: The Basics

1st Publishit |r||:||"-'+ verse | nn neared BIOSVAMD-8111 I“-,in i I ranspor I lHubl ADNRI0Z5) j=1lr||| "5 1db (daBrS025 |urr|| [0 T
Lﬁ»ﬂHH'rllllﬂHIlw =
Yo|i3 588 4n 8 =t
] _L!“?"'XFH ""I'S't“' ;.‘.:_- =
L 4 e
T DVt [;n-u-l‘*m[8 mlua—i . -
SPROR: BRATVFFY o I ;2 ﬁ
SegM00: BEETFFFA g 2Fh ; / i
<pgA08: BOEITFFD db 3Bk ; 0 j
e 800 BRRTTFIC g 358 ;%
SeqO0n: BBTErED db | -
seqBud: BROTFFFE ab WFCh ; K
seqRaR: BRRTFFFF db "
SeqiNn: Ree/ii I seguon ends
<eq00: BATTFFFF r
| FROB:BEBE ; ~ees=—=sswscsa=—=m sEsss=zasssars==sTasscsaI=arsssssaISSSTsssss
_FRBD:oRen
 FoRR:eRO8 | Gegeent Lype: Beqular :
_Foou:sene _Foou segaent at BFO8EM private "° useld -
_Fiho:eces assume cs: Faee
L assume es:inothing, ss:nothing, ds:nothing, Fs:nothing, gs:nothing |
Foed:apos a TEh ; |
L o, &M ;i
_Fiig; eaaz db "
i gD aneg LU | |
e goes db L |
R R & 0 The message log of function.idc execution '
_Fme:aom a L
_Fhoo: eney db | BN |
|_F o0 pess @ v [
|_Fhon: soes L] LB !
-
A —
Comgtling file “CriProgram Filer\IDs Fressare 4, Fyidcida.10c”
IXEciting Tamction m T
Comptling file 15T Pub) Vi ong\Reverse_Enjineered SIDO\MT-£111 HyperTramspert 10 HUBADASR 02T\ function, fdc'...,
Executing func "ar' i,
Creating ctarget xtqlurtt insfde #nTry point Tuncticn main)
nﬂrljn segment (DOOFOONO-DOIN000G) ... \
L. Creating & new segment (D0OFQ00(-0RLGDODA) OF .J
Wae T O WO =y S T

Fig. 2.10. The result of executing function.idc

Just select the file and click Open to execute the script. If there’s any mistake in
the script, IDA Pro will warn you with a warning dialog box. Executing the script
will display the corresponding message in the message pane of IDA Pro as shown
in Fig. 2.10.

The script in Listing 2.2 relocates the last segment (64 KB) of the Supermicro
H8DAR-8 BIOS code to the correct place. You must be aware that IDA Pro is only
an advanced tool to help the reverse code engineering task; it’s not a magical tool
that’s going to reveal the overall structure of the BIOS binary without your significant
involvement in the process. The script relocates or copies BIOS code from physical
or linear address 0x7 0000-0x7 FFFF to OxF _0000-0xF FFFF. Now, consider

Chapter 2: Preliminary Reverse Code Engineering 43

the logical reason behind this algorithm. AMD-8111 HyperTransport /O Hub
Datasheet, Chapter 4, page 153, says this:

In addition, AMDG64 Architecture Programmer’s Manual Volume 2: System Pro-
gramming, February 2005, Section 14.1.5, page 417, says this:

From the preceding references, you should conclude that address 0oor 0000h—
00OF FFFFh is an alias to address FFFF_0000h—FFFF_FFFFh, i.e., they both point to
the same physical address range. Whenever the host (CPU) accesses some value in
the 000F 0000n—000F FFFFh address range, it’s actually accessing the value in the
FFFF_0000h—FFEFF_FEFFh range, and the reverse is also true. From this fact, I know
that I have to relocate 64 KB of the uppermost BIOS code to address 000F 0000h—
000r_rrrrh for further investigation. This decision is made based on my previous
experience with various BIOS binary files; they generally referenced an address with
FO00n used as the segment value within the BIOS code. Also, note that the last
64 KB of the BIOS binary file are mapped to last 64 KB of the 4-GB address
space, i.e.,, 4 GB-64 KB to 4 GB. That’s why you have to relocate the last 64 KB.

' DevB: 0x80 refers to register in device 0xB at offset 0x80 in the HyperTransport Bus. This register
controls the locking mechanism in the last megabyte at the top of 4-GB address space. Note that
HyperTransport device addressing is a “superset” of PCI device addressing,

44 Part I: The Basics
~

This addressing issue will be covered in depth in Section 5.1. Thus, if the concept
remains too hard to grasp, there is no need to worry about it.

Simple script of only several lines can be typed and executed directly within
IDA Pro without opening a text editor. IDA Pro provides a specific dialog box for
this purpose, and it can be accessed by pressing <Shift>+<F2>. This is more practi-
cal for a simple task, but as the number of lines in the routine grows, you might
consider coding the script in an external text editor. This is because there is
a limitation on the number of instruction that can be entered in the dialog box.
In this dialog box, enter the script to be executed and click OK to execute the script.
An example script is shown in Fig. 2.11.

Please enter text I

Enter IDC statement{s)

auto sic, dest; _‘_I
SegCreate{|0xFO00, 0. [0x10000, 0], 0xFODD, 0, 0, 0);

dest = [0xFO00, 0],

!{nr [sre={0x7000, 0], sre < [0x8000, O]; sic = sic + 4)

PatchDword(dest, Dword{src]);

dest = dest + 4;
} -
<] _I—I

Fig. 2.11. Simple IDA Pro script dialog box

The script shown in Fig. 2.11 is another form of the script shown in Listing 2.2.
Note that there is no need for the $include statement in the beginning of the script,
since by default all functions exported by IDA Pro in its scripts header files (*.idc)
are accessible within the scripting dialog box shown. The main function also doesn’t
need to be defined. In fact, anything you write within the dialog box entry will be-
have as if it’s written inside the main function in an IDA Pro script file.

At present, you can relocate the binary within IDA Pro; the next step is to dis-
assemble the binary within IDA Pro. Before that, you need to know how default key
binding works in IDA Pro. Key binding is the “mapping” between the keyboard
button and the command carried out when the corresponding key is pressed.
The cursor must be placed in the workspace before any command is carried out

Chapter 2: Preliminary Reverse Code Engineering 45

' in IDA Pro. Key binding is defined in the idagui.cfg file located in the IDA Pro instal-
lation directory. An excerpt of the key binding (hot key) is provided in Listing 2.4.

Listing 2.4. Key Binding Excerpt

You can alter idagui.cfg to change the default key binding. However, in this
book I only consider the default key binding. Now that you have grasped the key
binding concept, | will show you how to use it in the binary.

In the previous example, you were creating a new segment, i.e., 0x#000. Now,
you will go to the first instruction executed in the BIOS within that segment, i.e.,
address 0xF000: 0xFFF0. Press <G>, and the dialog box in Fig. 2.12 will be shown.

In this dialog box, enter the destination address. You must enter the address in
its complete form (seqment:offset) as shown in the preceding figure, i.e.,
#000: #¥F0. Then, click OK to go to the intended address. Note that you don’t have
to type the leading 0x character because, by default, the value within the input box
is in hexadecimal. The result will be as shown in Fig. 2.13.

46 Part I: The Basics

2] 0AVisweA | 53 HexViow] 7 Funcions| | Svuctaes | En Ercme| N Nomee | |
_FBBO:FFEB db q;
_FBO0:FFEC db 0 ;
| FODR:FFED db .
| F800:FFEE db 0 ;
_FOOO:FFEF db B ;
 FODBIFFFO db BEAh ; &
_FO0B:FFF1 db panh ; K
_Fana:FFF2 db @FFh ;
| FODB:FFF3 dh e
_FORB:FFFY db oFen ; |
_FB00e:FFF5 db 36h ; 0
_FOO8:FFFS db 3%h ; 9

FOBO:FFF7 db 2Fh ; /
FO00:FFFR db 36h ; @
_FOBO:FFFY db 32h ; 2
_FBOD:FFFA db 2Fh ; /
_FOOO:FFFB db 30h ;: @
__FBOA:FFFC db 35h ; S

| _FBOR:FFFD db b
| . FODRIFFFE db G@FCh ; B

_FOOU:FFFF db [A

_FOO0:FFFF _F8e _ ends £

Fig. 2.13. The "jump to address” result dialog box

& | FOBo:FFEB db 0
| _FeBB:FFEC a8 ;
| [Fese:rrep @ 0 ;
_FOBO:FFEE @ 8
_l BOB:FFEF db e ;
_FOOOFFFO ; ————————- -
L _FODO:FFFO jmp Far ptr loc_FFFAR
| FORO:FFFO ; — - e -
_FODR:FFFS db 38h ; D
FOOO:FFFA db 39h ; 9
CFOBD:FFET db 2Fh : / |
FROD:FFFA db 38n ; ©

Fig. 2.14. Converting values into code

(57 10A Vit | 23 Hew V| N o] V1 Furctrs] - Snge] B S| B B |

I
EIDA View-A
- _FROD:FFAR db 0 ; |
_FROB:FFAY db B ;
| FOOR:FFAR ; ——— e LI EL
_FORn:FFAR
_FBOD:FFAR loc_FFFAA: ; CODE XREF: FODB:FFFajJ
¥ _FOOR:FFAR jmp loc_Fobud |
_FBO0:FFAR ; It Rt el
_FBoo:FraD db B ;
_Fo0R:FFAE db B ;
_FBOD:TFAF db P
_Foab:FFED dab B :

Fig. 2.15. Following the jump

Chapter 2: Preliminary Reverse Code Engineering 47

The next step is to convert the value in this address into a meaningful machine
instruction. To do so, press <C>. The result is shown in Fig. 2.14.

Then, you can follow the jump by pressing <Enter>. The result is shown in
Fig. 2.15.

You can return from the jump you’ve just made by pressing <Esc>.

Up to this point, you've gained significant insight into how to use IDA Pro. You
just need to consult the key bindings in idagui.cfg in case you want to do something
and don’t know what key to press.

2.4. IDA Pro Plugin (Optional)

In this section, you will learn how to develop an IDA Pro plugin. This is an op-
tional section because you must buy the commercial edition of IDA Pro, i.e., IDA
Pro standard edition or IDA Pro advanced edition, to obtain its software develop-
ment kit (SDK). The SDK is needed to build an IDA Pro plugin. In addition, you
need Microsoft Visual Studio .NET 2003 IDE (its Visual C++ compiler) to build
the plugin. Visual Studio .NET 2003 isn’t mandatory; you can use another kind of
compiler or IDE that’s supported by the IDA Pro SDK, such as the GNU C/C++
compiler or the Borland C/C++ compiler, but I concentrate on Visual Studio
NET 2003 here.

The plugin is the most powerful feature of IDA Pro. It has far more use than
the scripting facility. Moreover, an experienced programmer can use it to automate
various tasks. The scripting facility lacks variable types and its maximum length is
limited, even though it’s far longer than a thousand lines. The need for a plugin
immediately arises when you have to build a complex unpacker for part of the bi-
nary that’s being analyzed or perhaps when you need a simple virtual machine to
emulate part of the binary.

I use IDA Pro 4.8 advanced edition with its SDK since IDA Pro 4.3 freeware
edition doesn’t support plugins. The first sample won’t be overwhelming. It will
just show how to build a plugin and execute it within IDA Pro. This plugin will dis-
play a message in the IDA Pro message pane when it’s activated. The steps to build
this plugin are as follows:

I. Create a new project by clicking File|New|Project (<Ctrl>+<Shift>+<N>).
2. Expand the Visual C++ Projects folder. Then, expand the Win32 subfolder
and select the Win32 Project icon in the right pane of this New Project dialog

48 Part I: The Basics

window. Then, type the appropriate project name in the Name edit box and
click OK. Steps 1 and 2 are summarized in Fig. 2.16.

New Project [X] I
Eroject Types: Iemplates: lﬁ st

{2 Visual Basic Profects - -
{3 Visual C# Projects =R E
] Visual J# Projects

WinZ2 Console 'Win32 Project

=] Visual C++ Projects Project
3 NET
£ an
& MFC —
o | inG2
ST SR L =
| Console application type of Win32 project. ——
Narnme: | <Enter name>
Location: I C:\Documents and Settings|OlgaiMy Documents Visual :_J Browse, ..
New Solution Name: I <Enter name > ¥ Create directory for Solution

Project will be created at C:\...\My Documents\Visual Studio Prajects| <Enter name >\ <Enter name >,

giess | oK cancel | Help [

Fig. 2.16. Creating a new project for an IDA Pro plugin

fed

Now, Win32 Application Wizard is shown. Ensure that the Overview tab
shows that you are selecting Windows Application. Then, proceed to the
Application Settings tab. From the Application type selection buttons, select
DLL, and from the Additional options checkboxes choose empty project.
Then, click finish. This step is shown in Fig. 2.17.

4. In the Solution Explorer on the right side of Visual Studio .NET 2003,
right-click the Source Files folder and go to Add|Add New Item... or Add|Add
Existing Item... to add the relevant source code files (*.cpp, *.c) into the plugin

project as shown in Fig. 2.18. Start by creating new source code file, i.e.,
main.cpp. Then, copy the contents of main source code file of the sample
]Jlngil'l from the IDA Pro SDK (sdk \plugins\vcsample\strings.cpp) to
main.cpp.

Chapter 2: Preliminary Reverse Code Engineering 49

Win32 Application Wizard - sample

Application Settings

Specify the type of application you will buld with this project and the options or lbraries you
want supported

o8
: 3 Solution 'sample’ (1 peotectqj__ e g
EE Z2 sample
f L::_ijeFerences
il Add New Item.. S SRR
FH Add Existing ltem... ¥ Cu
1 NewFolder Copy
“= AddClass. (S
“2 AddBesource.. X Remoye
Rename
g 1 Properties |
| Properties 5 x|

Fig. 2.18. Adding the source code file for the IDA Pro plugin project

50 Part |: The Basics

* Sample - Microsoft Visual C++ [design] - main.cpp*

File Edit View iﬂwld Debug Tools Window
G-l AddClass

) % & ae [€0 AddBesource. _

B[ctort oo mall) AdNewltem.. CuleShifeA

B Giobas) cd AddExistingtem.. ShifteAlteA <=3
g 77 This | =) New Folder == ";fa
E . ;j ;ziep AddWeb Reference... if1
% .| ’ "'«Set as SiEﬁUplPrDjeﬂ S 1
= shar wanc®

Fig. 2.19. Activating project property pages

5. Go to the project properties dialog by clicking the Project|project_name
Properties... menu.
6. Then, carry out the following modifications to project settings:
C/C++|General: Set Detect 64-bit Portability Issue checks to No.
b. C/C++|General: Set Debug Information Format to Disabled.

c. C/C++|General: Add the SDK include path to the Additional Include
Directories field, e.g., c: \Program Files\IDA\SDK\Include.

d. C}'C++|Preprocessor: Add _ Nt ; 1DP ; EA64_ to Preprocessor
Definitions. The =264 definition is required for the 64-bit version of
IDA Pro disassembler, i.e., the one that uses 64-bit addressing in the disas-
sembly database and supports the x86-64 instruction sets. Otherwise,

~_Ea64 _ is not needed and shouldn’t be defined.

e. C/C++|Code Generation: Turn off Buffer Security Check, set Basic
Runtime Checks to default, and set Runtime Library to Single Threaded.

f. C/C++|Advanced: Set the calling convention to __stdcall.

g. Linker|General: Change the output file from a *.dll to a *.p64 (for IDA Pro
64-bit version plugin) or to a *.plw (for IDA Pro 32-bit version plugin).

h. Linker|General: Add the path to your libve.wXX (i.e., libvc.w32 for the

32-bit version plugin or libve.w64 for the 64-bit version plugin) to
Additional Library Directories, e.g., C: \Program Files\IDA\SDK\libvc.wé4.

Chapter 2: Preliminary Reverse Code Engineering 51

i. Linker|Input: Add ida.lib to Aditional Dependencies.
j. Linker|Debugging: Set Generate Debug Info to No.
k. Linker|Command Line: Add /ExporT: PLUGTN.

These steps are carried out in the Project Property Pages as shown in Fig. 2.20.

rupl-» P perty Pages

- Suppress Startup Banner ' Yes (/naloga)
| Warming Level Level 3 (/W3)
| Detect 64-bit Portabilty Issues No
—{= ?r_ea_twmﬁsErrws ~ No

Ll

1]
T R e |

WP RN LY LRI T

TTESRT

- e — — —
—-—— [— e e

Fig. 2.20. IDA Pro plugin project property pages

Now, the compilation environment is ready. Open main.cpp in the workspace.
You will find the run function similar to Listing 2.5.

Listing 2.5. IDA Pro Plugin Entry-Point Function Sample

52

Part I: The Basics

1/ It will be called when the user selects the plugin.

1/

I/ arg - The input argument. It can be specified in
1/ the plagins.cfg file. The default is zero.
'

i

vold idaapi run{int arg)
f = S
msg ("just fyi: the &urr@g .éé;::a_en:add-:eas Is-¥a\n®;
get screen ea()): = =

Edit the run function until it looks like Listing 2.5. The run function is the
function called when an IDA Pro plugin is activated in the IDA Pro workspace.
In the SDK’s sample plugin, the run function is used to display a message in the
message pane of IDA Pro. Once the plugin compilation succeeds, you can execute
it by copying the plugin (*.plw or *.p64) to the plugin directory within the IDA Pro
installation directory and starting the plugin by pressing its shortcut key. The short-
cut key is defined in the wanted hotkey(] variable in main.cpp. Alternatively, you
can activate the plugin by typing rRunPlugin in the IDA Pro script dialog box and
clicking the OK button, as shown in Fig. 2.21.

& . Please enter text M= E3

Please enter IDC statementis]
My Documents™“binNw32 \plugins\\vcsanple.plw”. IJ'J.:_[

oK Cancsl Hep |

Fig. 2.21. Loading the IDA Pro plugin

Chapter 2: Preliminary Reverse Code Engineering 53

Pl T B
HECre AW .-15JFEE——;;@13§~J;¢1 aa'}- ;‘ao*

A [SET - KX B0 eSS HE~- rqlﬁ_ﬁmu, A&
BHS SRR[FAf e -a-'!—

ROM: 0D0DA00D :
ROK: oRDREOOD ;
RON: DERandgn ;
ROM: tpunRRmn
HON: pubonR0E
fik: pddbaoan ;
ROH: bRGnREDE
ROW:oDROORON
HOH: Baigpaon
ROH:A0080000 ; File Mame : T:\A-List Publishiong\Reverse_Engineered_B10S\AND- AL’
ROW:BOORABO0 ; Format : Blnary File

HUM:BOORANRD | Rase Address: BO0Bh Range: QOOON - AAANDH | oaded length: Haowoh
[HUH: BoDRBROD

MO AnhnRo0n : Processer = 28 I]

RON:Q00DRARD | Target assembler: 2ilpyg Macre Assemhler

s szas .
This File is generated by The Interactive bi ~
Copyright {c) 2806 by PataRescue sa/nv, (idaldatarescue.comd

Licensed to: Paul Ashton - Elue Lane Technologies (1-user fdvanced

= e e T T T T

. -

Input MDS : JDIBABESCTFEFDZBEICPAMIIGCTESSON I

C
Rin: auoanenD i s i
! . "ROMDL. 0O0OO0CE C Pl
MU DO0DORID | = e E = a T mt e i o o s e e R R TR SRS S S I A S S S s d e s SAOMOD s r il
HILH TG T < HOMOD. OOOGOOS C PO
ROM:ARDOAGON | ﬁ.?gnrnl tigpe: Pure code « BT m = I-:
HOH: 80000000 segreat HOM vl s LS _jj
— — - — 1 >
[rscuting Tunttion "Onload”. :.I
10a 15 enalyning the input Hie..
vou may LLACC to espiare the input iz TLGNE e,

The imuial l.ut:w'ﬂ;n & haE BeEn Tindghed.
Lu-'n"l'l-"\'. : ¢ "TiVA-LiST Foslishisngseverse Enginesred BIDS\ae-2111 wﬂrﬂwr 10 sl DA S\ function, i8c" . . .
wwCut ing function “matn’...
5 arget iegeent{imiide entry poini Tunciion sain]). Pl n loagding messa
. -";Il:hia A mew Segeent (GOFUO0Y-D0LDG000) ... ok ugl J dl Q gB
tign finishes{int18e relacsr ‘Il'r"r.{l"ﬂ

s 00 e OO TR seen | yrgune e | @75 w5
Fig. 2.22. Result of loading the IDA Pro plugin

Note that the path is delimited with a double backslash (\\). This is because the
backslash is interpreted as an escape character just as in the C programming lan-
guage. Thus, you must use a double backslash in the scripting dialog box. The re-
sult of the execution is a message displayed in the message pane during the loading
of the plugin, as shown in Fig. 2.22.

The message shown in Fig. 2.22 is the string passed as a parameter into the msg
function in the plugin source code in Listing 2.5. The msq function is defined inside
the IDA Pro SDK folder, i.e., the sdk/include/kernwin. hpp file, as follows:

Listing 2.6. Declaring and Defining the msg Function

tf{d].

e = R I IT, w2t
[e = — e e s o

54

Part I: The Basics

The msg function is useful as a debugging aid while developing the IDA Pro
plugin. To do so, you can log plugin-related messages in the IDA Pro message pane
with this function. Experienced C/C++ programmers will recognize that the msg
function is similar to variations of the printf function in C/C++.

Up to this point, the development of an IDA Pro plugin has been clear. How-
ever, you can develop another plugin that has a graphical user interface (GUI).
It will be dialog-based and use Windows message-loop processing during its execu-
tion. It will be more flexible than the script version. It is sometimes useful to have
an easily accessible user interface for an IDA Pro plugin. That’s why you will learn
about that here.

The plugin will use a lot of Windows application programming interface
(Win32 API). Hence, | recommend that you read a book by Charles Petzold, Pro-
gramming Windows (5th edition, Microsoft Press, 1998) if you haven’t been ex-
posed to Win32 APL. Use Win32 API to create a dialog box for the IDA Pro plugin.
The relevant material in Petzold’s book for this purpose is found in Chapters 1, 2, 3,
and I1. A thorough explanation about the source code will be presented. Neverthe-
less, it'll be hard to grasp this without significant background in Win32 API.

Start the plugin development. The first steps are just the same as explained
in the previous plugin example. Proceed accordingly, until you can show a message
in the TDA Pro message pane. Then, you have to modify three types of core functions

Chapter 2: Preliminary Reverse Code Engineering 55

in the IDA Pro plugin source code, ie., init, term, and run. The term function is
called when the plugin is in the process of being terminated, init is called when the
plugin is being started (loaded to the IDA Pro workspace), and run is called when
the plugin is activated by pressing its shortcut key or by invoking the plugin with
RunPlugin in an IDA Pro script.

Initialize the user interface inside init, and clean up the corresponding user
interface resources during the termination process inside term. Let’s get down
to the code.

Listing 2.7. BIOS Binary Analyzer Plugin Framework

—————— — e e

LFne:s00a ; Seguent bype: Rege
| Fuge: 2000 Foon sequent at OFSREN private *" useld
tFlll:m assune cs:_FBRO L
L} sed; mage assune es:nothing, ss:inothing, d@simetning, Fs:nathing, § | |
I_rlll anan @ Teh o
(L LIRS W 6
*Troee: ow b
*| Fone:onen [
*|_Fong: apea w8
il H 7 i [
* 1 peR: ahed [
'FTIII:HIT [
*| I og: anes (', |
M TH L 0
i_llll L1 L]
T 00 : g b @
*| ¥ oon; paec [

rgut T"ll

]Irt the Imn‘: file right now,

The “l'ﬂl" MMT 15 has peen finished,
ampiling File ‘mi \,I Liat Publirkiong\Reverse Enginesred DIDEAEE-S111 wpperTrantpert 1D s Rammuos s funcrion, 1.,

[Eadcuting function ‘main’.

creating Target ngmt{\mne sntry paint TuAcTion sata)..
1. -:um‘u |nn-+|! 1

Fig. 2.23. BIOS Binary Analyzer Plugin in action

56 Part I: The Basics
~

Now, dissect Listing 2.7. But first, note that the dialog box resource is added to
the plugin project just like in other Win32 projects. The plugin starts its life with
a call to the init function. This function is called when the plugin is first loaded
into the IDA Pro workspace. In Listing 2.7, this function initializes static variables
used to store the main window handle and the module (plugin) handle as shown at
the following lines:

int idaapi init(veid)
{

J/ Bome lines amitted. ..

// Get Cthe IDA Pro main wirndow handle,
hMainWindow = (HWND}callui{ui get hwnd).vptr;

/4 Get the plugin handle.
hModule = GetModuleHandie("award bios analyzer.pbd™):
return PLUGIN KEEP;

}

Those variables are used within the run function to initialize the dialog box

user interface with a call to Createpialog as shown at the following lines:

void idaapl mun{int arg)

i
[/ Some lines omitted..:
if (RULL == h plugin diq)
{
h plugin dlg = CreatebDialog(hiodule, MAKEINTRESCURCE(IDD MATH),
hMalnWwindow, plugin dig proc):
|
if(h plugin dlg)
{
ShowWindow (i plugin dig, SW SHOW);
;
}
The creat: »g function is a Win32 API function used to create a modeless

dialog box. A modeless dialog box is created to lump various tasks in one user

Chapter 2: Preliminary Reverse Code Engineering 57

interface. Note that the dialog box is created only once during the disassembling
session in the run function. It will be hidden or shown based on user request.
The run function is called every time the user activates the plugin. The task to
show the plugin dialog box is accomplished by run, whereas the task to hide it is
accomplished by the window procedure for the plugin dialog box, ie., the
plugin dlg proc function. The message handler for the plugin dialog box’s
WM_CLOSE message is responsible for hiding the dialog. This message handler is in-
side the dialog box window’s procedure plugin dlg proc at the following lines:

The resources used by this plugin are cleaned up by the term function. This
function is called upon the plugin termination or unloading process. It destroys the
window and sets the corresponding dialog box handle to nuLL as shown at the fol-
lowing lines:

The bulk of the work accomplished by the plugin’s user interface is in
the plugin_dlg_proc function. The entry point to this function is passed as one
of the parameters for the createdialog function during the creation of the plugin
user interface. This function digests the window’s messages received by the plugin.
The switch statement processes the window’s messages that enter plugin dlg proc,
and appropriate action is taken. One of the “handlers” in this big switch statement
provides a semiautomatic analysis for the Award BIOS binary. You will be able to
develop yor own BIOS binary analyzer plugin after you have grasped the concepts
of BIOS binary analysis explained in Chapter 5.

The plugin’s user interface contains a button for analysis purposes; it’s
marked by the Analyze caption. Take a look at the mechanism behind this button.
Listing 2.7 showed that the window procedure for the dialog box is named

58 Part |I: The Basics
‘v

Within this function is the big switch statement that tests the

type of window messages. In the event that the window message is a WM CoMMAND,
I.e., button press, message, the 1ow word (lower 16 bits) wparam parameter of
the window procedure will contain the resource id of the corresponding but-

ton. This parameter is used to identify Analyze button press as shown in the
following lines:

WM CONID)

OMMAND =

switch (LOWORD{wPazam)}

case IDC ANALYZE BTINARY:

{
static const char analyze form[] =
"Binary Analysis\n"
"Enter the start-and end address"
"for analysis below\n\n"
"e¢~g~tarting address N:8:8::>\n"
"<~E~nding address N:B:Bi:>\n" ;
start adar = get sScreen eall;
end addr = get screen eal);
if(1 = AskUsingForm c(analyze foom,
fstart addr, &end addr))
|
msg ("IDC ANALYZE: start addr = 0x%X\n",
start adgdr);
msg ("IDC ANALYZE: end addr = Ox¥X\n",
end adar);
analvze binary{start addr, end addr) ;
Frefturn. TRUE;

When the button is pressed, a new dialog box is shown. This dialog box is
created in an unusual manner by calling an IDA Pro exported function named

Chapter 2: Preliminary Reverse Code Engineering 59

.

AskUsingForm c. You can find the definition of this function in the kernwin. hpp file
in the IDA Pro SDK include directory. The dialog box asks the user to input
the start and the end addresses of the area in the binary file in IDA Pro to be ana-
lyzed as shown in Fig. 2.24.

Binary Analysis

Enter the starting and the ending addiesses
for the analysis below:

Starting address: | 0xF 0858 ~
Ending address: |0 0C0] .

oK Cancel]

Fig. 2.24. Binary Analyzer Plugin: binary analysis feature

When the user presses the OK button, the starting address and ending address
parameters will be used as input parameters to call the analyze binary function.
The analyze binary function analyzes the BIOS binary disassembled in the cur-
rently opened IDA Pro database. Understanding the guts of this function requires
in-depth knowledge of BIOS reverse engineering, particularly Award BIOS. The
function basically scans the BIOS binary and disassembles it on the basis of “binary
signature™ found in the binary. You will be able to construct more efficient ana-
lyzer after you are equipped with enough BIOS reverse engineering know-how.

I The term “binary signature™ is explained in Section 5.1.3.5 and in Section 6.3.

Chapter 3: BlO0S-Related
Software Development
Preliminary

Preview

This chapter explains the prerequisite knowledge you need in the development of
BIOS-related software, particularly BIOS patch and PCI expansion ROMs. The first
section explains how to build a flat binary file from assembly language code. Later
sections focus on how to use the GNU Compiler Collection (GCC) facility to build
a flat binary file. GCC linker script and its role in the development of flat binary
files are explained.

62 Part I: The Basics
v

3.1. BlOS-Related Software Development
with Pure Assembler

Every system programmer realizes that BIOS is “bare metal” software. It interfaces
directly with the machine, with no layer between the BIOS and the silicon. Thus,
any code that will be inserted into the BIOS, such as a new patch or a custom-built
patch, must be provided in flat binary form. Flat binary means there’s no executa-
ble file format, headers, etc., only bare machine codes and self-contained data.
Nevertheless, there’s an exception to this rule: Expansion ROM has a predefined
header format that must be adhered to. This section shows how to generate a flat
binary file from an assembly language file by using the netwide assembler (NASM)
and flat assembler (FASM).

Start with NASM. NASM is a free assembler and available for download at
http:/sourceforge.help/projects/nasm. NASM is available for both Windows and
Linux. It’s quite powerful and more than enough for now. Listing 3.1 shows a sam-
ple source code in NASM of a patch I injected into my BIOS.

Listing 3.1. Sample BIOS Patch in NASM Syntax

;o BEGIN TWEAK.ASM === e gt et ==
BITS 16 ; To make sure NASM adds the 66 prefix to 32-bit instructions

section text
start: e e
pushf : . = : s ==
push eax e ;
push dx 2 . '“ffa Wi .
mov eax, log reqg ; Patch tha i&qreglstar of the chipset
mov dx, in port |

out dx; eax

mov dx, out port

,,,,,,

in eax, dx
or eax, loq mask

out dx; eax

mov max, dram req ; Patch the DRAM controller of the chipset,

Chapter 3: BIOS-Related Software Development Preliminary 63

~—

64

Part I: The Basics

The code is assembled using NASM with the invocation syntax (in a windows
console, i.e., cmd or dosprmpt):

The resulting binary file is tweak.bin. The following is the hex dump of this bi-
nary in Hex Workshop version 3.02 — Hex Dump 3.1.

Hex Dump 3.1. NASM Fiat Binary Output Sample

If you want to analyze the output of the assembler, use ndisasm (netwide disas-
sembler) or another disassembler to ensure that the code emitted by the NASM
is exactly as desired.

You have been using NASM for BIOS patch development. Now proceed to
a relatively easier assembler, FASM. FASM lends itself to BIOS patch development
because it generates a flat binary file as its default output format. FASM is freeware
and available for download at http://flatassembler.net/download.php. This sec-
tion focuses on FASMW, the FASM version for Windows. Start by porting the pre-
vious patch into FASM syntax and assemble it with FASM. The source code is
shown in Listing 3.2.

Chapter 3: BIOS-Related Software Development Preliminary 65

Listing 3.2. Sample BIOS Patch in FASM Syntax

66 Part I: The Basics
v“

cut dx, eax

mov - dx, out port
in eax, dx

or eax, bank mask

put dx, eax

mov eax, tlb req j Activate Fast TLB lookup.
mov dx, ‘in port

out dx, eax

mov dx, out- port

in - eaxr; dx

or eax, tlb mask

out dx, eax ‘ s ' = ;
pop dx I
pop @ax : :

popt - '

To assemble the preceding listing, copy Listing 3.2 to the FASMW code editor
and then press <Ctrl>+<F9> to do the compilation. There is less hassle than with
NASM. The code editor is shown in Fig. 3.1.

FASM will place the assembly result in the same directory as the assembly
source code. FASM will give the result a name similar to the source file name but
with a *.com extension, not *.asm as the source code file did. The dump of the
binary result is not shown here because it’s just the same as the one assembled with
NASM previously. Note that FASM version 1.67 will emit a binary file with a *.bin
extension for the source code in Listing 3.2.

Even though using FASM or NASM is a matter of taste, I recommend FASM
because it's a little easier to use than NASM. Furthermore, FASM was built with
operating system development usage in mind. BIOS-related development would
benefit greatly because both types of software development are dealing directly with
“bare metal.” However, note that this recommendation is valid only if you intend
to use assembly language throughout the software development process, i.e., without
mixing it with another programming language. The next section addresses this
Issue in more detail.

Chapter 3: BIOS-Related Software Development Preliminary 67

-

* flat assembler 1 67.7

EEEHHS&WEMWHHD

. e e e o o F:'_"_IJ.I ”Lu;_a-—-“ .

USEIS : 16-bit real-mode codes

EEH

in port = OecIrB8h

out port = OcIch

dram_mask = 00020202h
dram_reg = 800000e4h
iog mask = 00000080h
ioq reg = B0O0O0ODOSO0h
hank_mask = Z0000840h
bank reg = 80000068h
tlb mask = 00000008h
tlb_reg = 8000006ch

8
N

Fig. 3.1. FASMW code editor

3.2. BI0S-Related Software Development
with GCC

In the previous section, you developed a BIOS patch using only assembly language.
For a simple BIOS patch, that’s enough. However, for complicated system-level soft-
ware development, you need to use a higher level of abstraction, i.e., a higher-level
programming language. That means the involvement of a compiler is inevitable.
This scenario sometimes occurs in the development of a BIOS plugin' or in the devel-
opment of an application-specific PCI expansion ROM binary.! I address this issue
by looking into an alternative solution, the GNU Compiler Collection, a.k.a. GCC.

" A BIOS plugin is system-level software that's integrated into the BIOS as a component to add
functionality to the BIOS. For example, you can add CD-playing capability to the BIOS for diskless
machines.

“ PCI expansion ROM binary is the software inside the ROM chip in a PCI expansion card.
It’s primarily used for initialization of the card during boot. However, it may contain other features.

68 Part |I: The Basics

GCC is a versatile compiler. GCC has some interesting features for BIOS-
related development:

O GCC supports mixed language development through inline assembly con-
structs inside C/C++ functions.

O GCC comes with GNU Assembler (GAS). GAS output can be combined seam-
lessly with GCC C/C++ compiler output through the GNU LD linker. GAS
supports AT&T assembler syntax and recently began to support Intel assembler
syntax, too.

0 GCC features so-called linker script support. Linker script is a script that gives
detailed control of the overall linking process.

Start with a review of the compilation steps in a C compiler to understand these
features. These steps are implemented not only in GCC but also in other C compilers.

Fig. 3.2 shows that the linker plays an important role, i.e., it links the object and
the library files from various sources into an executable fil¢ or pure machine code.
In this book, I am only concerned with pure machine code output because you are
dealing with the hardware directly without going through any software layer.

Linker script can control every aspect of the linking process, such as the reloca-
tion of the compilation result, the executable file format, and the executable entry
point. Linker script is a powerful tool when combined with various GNU binutils
Fig. 3.2 also shows that it’s possible to do separate compilation, i.e., compile some
assembly language source code and then combine the object file result with the
C language compilation object file result by using LD linker.

There are two routes to building a pure machine code or executable binary if
you are using GCC:

O Source code compilation = Object file 2 LD linker = Executable binary
O Source code compilation = Object file 2 LD linker = Object file = Objcopy =2
Executable binary

This section deals with the second route. I explain the linker script that’s used
to build the experimental PCI expansion ROM in Part III of this book. It’s a simple
linker script. Thus, it’s good for learning purposes.

Start with the basic structure of a linker script file. The most common linker
script layout is shown in Fig. 3.3.

' The format of an executable file is operating system dependent.
" GNU binutils is an abbreviation for GNU binary utilities, the applications that come with GCC for
binary manipulation purposes.

Chapter 3: BIOS-Related Software Development Preliminary 69
.

C Source Code

Sl O,

Preprocessor

—— ' 1

. Compiler | Assembly Source Code |
4 | : v :

- Assembler , Assembler J
v : R LR e

! Library, other object files > Linker uu . Object File
) 4
Executable File/Pure Machine Code

Fig. 3.2. C compiler compilation steps

Output File Format

Target Machine Architecture

Executable Code Entry Point

- Other Definitions ... |

~ Sections Definition |

Fig. 3.3. Linker script file layout

Linker script is just an ordinary plain text file. However, it conforms to certain
syntax dictated by LD linker and mostly uses the layout shown in Fig. 3.3. Consider
the makefile and the linker script used in Chapter 7 as an example. You have to re-
view the makefile with the linker script because they are tightly coupled.

70 Part I: The Basics
g

Listing 3.3. Sample Makefile

CC = goeg

CFLAGS = -

LD = ld
LLE

FEAGS = =T pal. rom. ld

build rom S{ROM BIN) S{ROM STZE)
crtd.or ext(.S

sy o Pl

S (ASM) G SE S<
¥ H'I: =

840 -0 S S<

> LEeary:

Chapter 3: BIOS-Related Software Development Preliminary 71

Listing 3.3 shows that there are two source files; the first one is an assembler
source code that’s assembled by GAS, and the second is a C source code that’s as-
sembled by the GNU C/C++ compiler. The object files from the compilation of
both source codes are linked by the linker to form a single object file. This process
is accomplished with the help of the linker script:

LDFLAGS Is previously defined to parse the linker script file:

The name of the linker script is pci_rom. 1d. The content of this script is shown
in Listing 3.4.

Listing 3.4 Sample Linker Script

72 Part I: The Basics

.

Now, return to Fig. 3.3 to understand the contents of listing 3.4. First, let me
clarify that a comment in a linker script starts with /* and ends with */ just as in
C programming language. Thus, the first effective line in Listing 3.4 is the line that
declares the output format for the linked files:

The preceding line informs the linker that you want the output format of the
linking process to be an object file in the elf32-i386 format, i.e., object file with ex-
ecutable and linkable format (ELF) for the 32-bit x86 processor family. The next
line informs the linker about the exact target machine architecture:

The preceding line informs the linker that the linked object file will be running
on a 32-bit x86-compatible processor. The next line informs the linker about the
symbol that represents the entry point of the linked object file:

This symbol actually is a label that marks the first instruction in the executable
binary produced by the linker. In the preceding linker script statement, the label
that marks the entry point is _start. In the current example, this label is placed in
an assembler file that sets up the execution environment. A file like this usually
named crt0 and found in most operating system source code. The relevant code
snippet from the corresponding assembler file is shown in Listing 3.5.

' Execution environment is the processor operating mode. For example, in a 32-bit x86-compatible
processor, there are two major operating modes, i.e., 16-bit real mode and 32-bit protected mode.
" Crt0 is the common name for the assembler source code that sets up an execution environment
for compiler-generated code. It is usually generated by C/C++ compiler. Crt stands for C runtime.

-

v

M = = e Y

it

Chapter 3: BIOS-Related Software Development Preliminary 73

Listing 3.5. Assembler Entry Point Code Snippet

Listing 3.5 is an assembly source code in AT&T syntax for x86 architecture.
It clearly shows the existence of the start label. The label is declared as a global label:

It must be declared as global label to make it visible to the linker during the
linking process. It’s also possible to place the entry point in C/C++ source code.
However, placing the entry point in C/C++ source code has a compiler-specific
issue. Some compilers add an underscore prefix to the label' in the source code,
and some compilers omit the prefix. Thus, I won’t delve into it. You can dig up
more information about this issue in the corresponding compiler.

¥ A label in C/C++ source code is the function name that’s globally visible — throughout
‘the source code.

74

Part |I: The Basics

Proceed to the next line in Listing 3.4:
boot_vect = OROO00;- -~ == = o oo |

This line is a constant definition. It defines the starting address for the text sec-
tion. The next lines are sections definition. Before I delve into it, Pll explain a bit
about these sections.

From the compiler’s point of view, the generated codes are divided into several
parts called sections. Every section plays a different role. A section that solely con-
tains executable codes is called a text section. A section that only contains uninitial-
ized data is called a data section. A section that only contains constants is called
a read-only data section. A section that only contains stack data during runtime
is called a base stack segment section. Some other types of sections are operating
system dependent, so they are not explained here. The sections are placed logically
adjacent to one another in the processor address space. However, it depends a lot
on the current execution environment. Fig. 3.4 shows the typical address mapping
of the previously mentioned sections for a flat binary file.

Position in CPU Sections layout
address space

entry_point address + file size
Base stack segment

Data section

Read-only data section

Text section

entry_point address a=s
Fig. 3.4. Sections layout sample

U9 = N Ve IV == 1

Chapter 3: BIOS-Related Software Development Preliminary 75

Now, return to the sections definition in Listing 3.4:

The preceding sections definition matches the layout shown in Fig. 3.4 because
the output of the makefile in Listing 3.3 is a flat binary file. The secrion keyword
starts the section definition. The .text keyword starts the text section definition,
the .rodata keyword starts the read-only data section definition, the .data key-
word starts the data section definition, and the .bss keyword starts the base stack
segment section. The aL1GN keyword is used to align the starting address of the cor-
responding section definition to some predefined multiple of bytes. In the preced-
ing section definition, the sections are aligned to a 4-byte boundary except for the
text section.

The name of the sections can vary depending on the programmer’s will. How-
ever, the naming convention presented here is encouraged for clarity.

Return to the linker script invocation again in Listing 3.3:

In the preceding linker invocation, the output from the linker is another object
file represented by the roM 0BJ constant. How are you going to obtain the flat bi-
nary file? The next line and previously-defined flags in the makefile clarify this:

76

Part I: The Basics

irrelevant lines amittedi..
S {OBJCOPY) $[GBJCOP!’ ~ FLAGS) $(ROM | CBJI $(RCH BIN)

In these makefile statements, a certain member of GNU binutils called objcopy
is producing the flat binary file from the object file. The -0 binary in the
oBJCOPY_FLAGS informs the objcopy utility that it should emit the flat binary file
from the object file previously linked by the linker. However, it must be noted that
objcopy merely copies the relevant content of the object file into the flat binary file;
it doesn’t alter the layout of the sections in the linked object file. The next line in
the makefile is as follows:

bulld rom $(ROM BIN) 3(ROM SIZE) ' St |

This invokes a custom utility to patch the flat binary file into a valid PCI expan-
sion ROM binary.
Now you have mastered the basics of using the linker script to generate a flat

binary file from C source code and assembly source code. Venture into the next
chapters. Further information will be presented in Chapter 7.

Part I
MOTHERBOARD BIOS
REVERSE ENGINEERING

Chapter 4
Getting Acquainted
with the System

Chapter 5
Implementation
of Motherboard BIOS

Chapter 6
BIOS Modification

Chapter 4: Getting Acquainted
with the System

Preview

This chapter explains the big picture of the BIOS code execution mechanism.
The BIOS does not execute code in the same way as most application software.
The hardware and software intricacies, as well as the compatibility issues, inherited
from the first-generation x86 processor complicate the mechanism. These intrica-
cies and the overall x86 hardware architecture are explained thoroughly in this
chapter. Note that the focus is on the motherboard, CPU, and system lc»gir:.i

System logic is another term for motherboard chipset.

80 Part Ill: Motherboard BIOS Reverse Engineering

4.1. Hardware Peculiarities

When it comes to the BIOS, PC hardware has many peculiarities. This section dis-
sects those features and looks at their effect on BIOS code execution.

4.1.1. System Address Mapping and BIOS Chip Addressing

The overall view of PC hardware architecture today is complex, especially for people
who didn’t grow up with DOS. What does modern-day hardware have to do with
DOS? DOS has a strong bond with the BIOS and the rest of the hardware. This dif-
ficult relationship has been inherited for decades in the PC hardware architecture
to maintain compatibility. DOS has many assumptions about the BIOS and the rest
of the hardware that interact with it. Unlike a modern-day operating system, DOS
allows the application software to interact directly with the hardware. Thus, many
predefined address ranges have to be maintained in today’s PC hardware as they
worked in the DOS days, Currently, the bulk of these predefined address range
tasks are handled by the motherboard chipset, along with present-day bus proto-
cols. These predefined address ranges lie in the first megabyte of x86 address space,
i.e., 0x0_0000—0xF FFFF. Be aware that this address range is mapped not only to
RAM but also to several other memory-mapped hardware elements in the PC
(more on this later).

An x86 CPU begins its execution at physical address 0xrrrr rrr0. This is the
address of the first instruction within the motherboard BIOS. It’s the responsibility
of the motherboard chipset to remap this address into the system BIOS chip.
The system BIOS is the first program that the processor executes. Table 4.1 explains
the typical memory map of an x86-based system just after the system BIOS has fin-
ished initialization.

Table 4.1. System-wide Address Mapping for 32-Bit Compatible x86 Processors

System-wide | Specific Explanation
Addressing Address
Range
Compatibility | 0x0_0000- DOS Area
Area 0x9 FFFF , :
The DOS area is 640 KB and is always mapped to
0 the main memory (RAM) by the motherboard chipset.

continues

e @

Chapter 4:

Table 4.1 Continued

Getting Acquainted With the System 81

System-wide
Addressing

Specific
Address
Range

Explanation

Compatibility
Area

(0x0_0000-
OxF_FFFF)

OxA_0000-
OxB_FFFF

Legacy VGA Ranges and/or Compatible SMRAM
Address Range

The legacy 128-KB VGA memory range 0xA0000—
0xBFFFF (frame buffer) can be mapped to an AGP
or PCl device. However, when compatible SMM
space is enabled, SMM-mode processor accesses
to this range are routed to physical system memory
at this address. Non-SMM-mode processor ac-
cesses to this range are considered to be to the
video buffer area as described previously.

0xC 0000-
0xD_FFEF

Expansion ROM Area

This is the 128-KB ISA or PCI expansion ROM re-
gion. The system BIOS copies PCl expansion ROM
to this area in RAM from the corresponding PCI ex-
pansion card ROM chip and executes it from there.
As for ISA expansion ROM, it only exists on systems
that support an ISA expansion card, and sometimes
the expansion ROM chip of the corresponding card
is hardwired to a certain memory range in this area.
In most cases, part of this memory range can be
assigned one of four read/write states: read only,
write only, read/write, or disabled. The setting of
certain motherboard chipset registers controls this
state assignment. The system BIOS is responsible
for assigning the correct read/write state.

OxE_0000—
OxE_FFFF

Extended System BIOS Area

This 64-KB area can be assigned read and write
attributes so that it can be mapped either to main
memory or to the BIOS ROM chip via the system
chipset. Typically, this area is used for RAM or ROM.
On systems that only support 64-KB BIOS ROM
chip capacity, this memory area is always mapped
to RAM.

continues

82

Part |l: Motherboard BIOS Reverse Engineering

Table 4.1 Continued

0000

(0x10

F_FFEF)

System-wide | Specific Explanation
Addressing | Address
| Range

Compatibility System BIOS Area

Area This area is a 64-KB segment. This segment can be

(0%0 0000— assigned read and write attributes. It is by defauit

OxF FEFF) (after reset) read/write disabled, and cycles are for-

= ' warded to the BIOS ROM chip via the system chip-

set. By manipulating the read/write attributes, the
system chipset can "shadow" the BIOS into the main
memory. When disabled, this range is not remapped
to main memory by the chipset.

Extended 0x10_0000- Main System Memory from 1 MB (10_0000h) to

Memory Area | Top of RAM the Top of the RAM

This area can have a hole, i.e., an area not mapped
to RAM but mapped to ISA devices. This hole de-
pends on the motherboard chipset configuration.

Top of RAM-

AGP or PCI Memory Space

This area has two specific ranges:

APIC Configurat from)X

to OxFEEF FFFF. This mapplng depends on the
motherboard chlpset If the chipset doesn't support
APIC, then this mapping doesn't exist.

High BIOS area from 4 GB to 2 MB. This address
range is mapped into the BIOS ROM chip. Yet,

it depends on the motherboard chipset. Some chip-
sets only support mapping 0xFFFC_0000

(4 GB-256 KB) to OxFFFE_FEFF (4 GB) for the
BIOS ROM chip. However, at least the

OxFFEF 0000 (4 GB-64 KB) to 0xFFFF_FFFF

(4 GB) memory space is guaranteed to map into the
BIOS ROM chip for all motherboard chipsets.

In most cases, anything outside of these specific
ranges but within the PCI memory space

(Top of RAM—4 GB) is mapped to a PCl or AGP
device that needs to map "local memory" (memory
local to the PCI card) to the system memory space.
This mapping is normally initialized by the system
BIOS. Access to this memory space is routed by the
system chipset (memory controller). In the case of
AMD Athlon 64 and Opteron platforms, the proces-
sor handles this routing because the memory con-
troller is embedded in the processor itself.

Chapter 4: Getting Acquainted With the System 83

The whole story is more than the preceding table. There are two more concepts
that need to be understood, i.e., address aliasing and BIOS shadowing.

Address aliasing refers to the capability of the motherboard chipset to map rwo
different physical address ranges' into one physical address range within a device all
at once. For example, every x86 chipset maps the 0xF 0000-0xF FFFF address
range and the 0xFFFF_F000-0xFFEF_FFFF address range to the last segmentt of the
BIOS ROM chip.

BIOS shadowing refers to the capability of the motherboard chipset to map one
physical address range into two different physical devices in two different instances.
For example, the 0xF000-0x=FFF address range can point to the last segment of the
BIOS ROM chip at one instance and then point to the RAM at the other instance,
depending on certain chipset register settings.

Now, see how these concepts work in a real-world scenario. Start with the ad-
dress aliasing samples. I'm going to present address aliasing examples from the
Intel 955X-ICH7 chipset. To understand the whole system, you have to look at the
block diagram.

The block diagram in Fig. 4.1 depicts the connections between the northbridge,
the southbridge, and the BIOS chip. The northbridge connects to the southbridge
via the direct media interface (DMI)," and the southbridge connects to the BIOS
ROM via the LPC interface. There’s no direct physical connection between the
northbridge and the BIOS chip. Thus, any read or write transaction from the proc-
essor to the BIOS chip will travel through the northbridge, then the DMI, then the
southbridge, and through the LPC interface to the BIOS chip. In addition, any logic
operation” performed by the northbridge and the southbridge as the read or write
transaction travels through them will affect the transaction that finally arrives in the
BIOS chip. Note that LPC doesn’t alter the transactions between the southbridge
and the BIOS chip.

Fig. 4.2 shows the Intel 955X Express system memory map from the CPU per-
spective just after power-on. Be aware that the memory controller carries out this
memory-mapping task.

' In this context, these address ranges are seen from the processor's perspective.

“The segment size is 64 KB because the processor is in real mode at this point.

“ The same address range in RAM.

“ Direct media interface (DMI) is the term used by Intel to refer to the connection between the
northbridge and the southbridge in the Intel 955X Express chipset.

¥ A logic operation in this context means a logic operation used for address space translation, such as
masking the destination address of the read/write operation or a similar task.

"I The memory controller is part of the northbridge in the Intel 955X chipset. However, for AMD64
systems, the memory controller is embedded in the processor.

84 Part lI: Motherboard BIOS Reverse Engineering

Processor |
l

X

200/266 MHz FSB
(800/1066 MT/s)
g3 = aballog

| I

Intel 955X Express chipset

_ | Channel A oDR2

|4 -

I
I
|
|
|
PCI Express Intel I DDR2
x16 Graphics 955X |
I
|
|
I
|

v

[Dispiaﬁ—{ Graphics card‘ ¥ northbridge
- Channel B DDR2
Read/Write transactions]\ o= 1 DDR2
from CPU to BIOS chip H
travel through the bus J\\{ Direct

A

media

i | Unterface |
USB 2.0 : T 1.1
] 8 ports, 480 Mbls ; 1 44——4*- [Power management|

b

1 4—*~—-+ I Clock generation J

'
1
] IDE fe— |
] 4 SATA ports }4—«) : 14————-»’ LAN connection |
- : il 1
‘ Agef?t;icl;tﬂlﬂ:;%h < -+ : ilcnt:; f ‘System management;
CODECs : southbridge (TCO)
l PCI Express x1 J“' N @ ='l SMBus 2.0/ F'C]
1
il | 0y
Intel PC| Express I
l Gigabit Ethernet : PCI bus
1 = I
] GPIO i L { spiBios |
T
|

LPC interface
—{ Super 1O

Flash BIOS

lOther ASICs (optionai]}—L

‘ TPM (optional)

———-p

Fig. 4.1. Intel 955X-ICH7 block diagram

85

Chapter 4: Getting Acquainted With the System

System-wide memory Legacy memory
address map address range
address range i
! ; System BIOS
Remap limit Yo" /__/S '.‘,-’ (Upper) 64 KB
TOM address range y s /f.u' 1{ F_0000h
Main memory /a\\ﬁﬁ - ! E_FFFFh
address range e H System BIOS
408 e 3 (Lower)
FRSEEEID F segment - {/| B4KB(16KBx4)
igh BI ; /
FFFF_0ooon| _ (High BIOS area) e, E_0000n
FFFE 0ooon | (High BIOS area) e ; Expansion area
- / 128 KB (16 KB x 8)
f C_0000h
High BIOS area ! i)
:r Legacy video area
APIC | (SMM Memory)
128 KB
PCI memory ;’ A_0000h
(Subractively i
decoded to DMI) !
]
TOLUD :
Main memory !
address range ! DOS area
MR e -
Legacy memory
address range
_____________ 0

0

Fig. 4.2. Intel 955X-ICH7 power-on default system address map
As shown in Fig. 4.2, the 0xFrFr_0000-0xFFFF_FFFF address range is an alias

into 0xF_0000—-0xF_rrFE.! The last segment of the BIOS ROM chip is mapped into

this address range. Hence, whenever a code writes to or reads from this address
range, the operation is forwarded to the southbridge by the northbridge; there is no

iThis is address aliasing, i.e., using two or more address ranges in the system-wide memory map for
the same address range in one physical device. In this particular sample, the F_0000h-F FFFFh

address range is aliased to FFFF 0000h-FFFE FFFFh.

86 Part ll: Motherboard BIOS Reverse Engineering

direct connection between the BIOS chip and the northbridge. This only applies at
the beginning of the boot stage, i.e., just after reset. Usually, the 0xF 0000—0xF Fres
address range will be mapped into the system dynamic-random access memory
(DRAM) chip after the BIOS reprograms the northbridge registers. The address
mapping is reprogrammed using the northbridge DRAM control register located in
the northbridge PCI configuration register. Intel has a specific name for these regis-
ters across its chipset datasheets, i.e., Programmable Attribute Map registers. Let’s see
how it looks like in the datasheet. The Intel 955X datasheet, Section 4.1.20, page 67, says:

i MCH in this datasheet snippet refers to the Intel 955X northbridge.
¥ PRIMARY PCI in this context refers to the DMI as shown in Fig. 4.1.

Chapter 4: Getting Acquainted With the System 87

The highlighted part of the table in the preceding datasheet snippet shows that
by default, 0xr 0000-0x# Frrr address range is “DRAM Disabled.” This means that
any read or write transactions to this address range are forwarded to the southbridge by
the northbridge, not to the RAM. This is BIOS shadowing. Because of the
northbridge setting, the BIOS ROM chip shadows part of the RAM,! making the
RAM in that address range inaccessible.

The dashed meandering arrow in Fig. 4.3 shows that read/write transactions to
the BIOS ROM chip are forwarded from the CPU when register 20n of the Intel
955X northbridge is in the power-on default value!l Remember that this applies
only when the CPU is accessing the 0xF_0000-0xr rrrr address range.

The longer dashed meandering arrow in Fig. 4.4 shows that read tramsactions
from the CPU are forwarded to the BIOS ROM chip via the northbridge and the
southbridge. The shorter dashed meandering arrow shows that write transactions
are forwarded to the system RAM via the northbridge. Both transactions occurred
when the value of bit 4 is 0b and that of bit 5 is 1b in the northbridge’s son register.
This register setting is called “Write Only.” Remember that this applies only when
the CPU is accessing the 0xr 0000~0xt rrrr address range.

‘The corresponding address range in the RAM.
“The power-on default value for the PAMO register sets bit 4 and bit 5 to 0.

88 Part lI: Motherboard BIOS Reverse Engineering

Processor

T Intel 955X Express chipset

e R L

v
e System memory
: |
! DDR2 I
| Intel |
: 955X B i
| northbridge DDR2 :
1
| j
o o} ol

from CPU to BIOS chip media
travel through the bus r interface

Read/Write transactions l Direct
actiol 17’1
1
1
1

LPC interface

______ , FlashBIOS

Fig. 4.3. Accessing the contents of the BIOS chip during
use of the "DRAM Disabled™ setting

The longer dashed meandering arrow in Fig. 4.5 shows that write transactions
from the CPU are forwarded to the BIOS ROM chip via the northbridge and the
southbridge. The shorter dashed meandering arrow shows that read transactions are
forwarded to the system RAM via the northbridge. Both transactions occurred
when the value of bit 4 is 15 and bit 5 is 0b in the northbridge’s register 90n. This
register setting is called “Read Only.” Remember that this applies only when the
CPU is accessing the 0xr_0000—0x_rrrF address range.

Chapter 4: Getting Acquainted With the System 89

Processor

! I

J 1

I I

I

1 T }ntel 955X Express chipset

T I

T .4 T
= o System memory
. |
! 1 DDR2
: Intel 1

955X 1 —»
I i 1
| northbridge A 5B 1 DDR2
|
|

Read transactions
from CPU to BIOS chip
travel through the bus

Write transactions
from CPU to DRAM

__\1_
— -_N—q-ﬁ
“« >
30
23
&2

LPC interface

_____ 1p Flash BIOS

Fig. 4.4. Accessing the contents of the BIOS chip during
use of the "Write Only" setting

The dashed meandering arrow in Fig. 4.6 shows that read and write transactions
from the CPU are forwarded to the system RAM chip via the northbridge. Both
transactions occurred when the value of bit 4 is 1b and that of bit 5 is 1b in the
northbridge’s 90n register. This register setting is called “Normal DRAM Opera-
tion.” Remember that this applies only when the CPU is accessing the 0xF 0000—
0xF_FFFF address range.

90 Part Il: Motherboard BIOS Reverse Engineering

Processor
1 !

1

I

Intel 955X Express chipset

|
I
I
I

I I

-— o

= °S

System memory

| I

! [

[| i DDR2
[Intel I :

: 955X I >

" northbridge { g 31| DOR2
1

I

==

from CPU to BIOS chip media from CP
travel through the bus interface et

Write transactions |_ 1+ Direct ;
7" | Read transactions
1
]
1

'~
I

I

I

I Intel

! ICH7

: southbridge
|

I

1
I
I
: LPC interface
1
I

______ , FlashBIOS

Fig. 4.5. Accessing the contents of the BIOS chip during
use of the "Read Only" setting

The previous figures show how BIOS shadowing works for the last BIOS seg-
ment. Other segments work in a similar way. It’s just the register, control bits posi-
tion, or both that differ. This conclusion holds true even for different chipsets and
different bus architecture.

The preceding explanations seem to indicate that any code will be able to write
into the BIOS ROM chip once the northbridge grants write access to the BIOS ROM
chip. However, this is not the case. In practice, the BIOS ROM chip has a write pro-
tection mechanism that needs to be disabled before any code can write into it.

Chapter 4: Getting Acquainted With the System 91

Processor
1
1
&l

Intel 955X Express chipset
v 1

Fadut [e & System memory
I 1
| 1 i
| I DDR2
I Intel 1 E
: 955X 1 —» i
i] H
i northbridge edded) anit § DDR2 f
I !
| |
-
14 Direct
1| media
f interface
T Read and Write transactions
I from CPU to DRAM. This state
1 is the normal DRAM
: operation.
I Intel
I ICH?7
| southbridge
I
I
SNy
|
1
: LPC interface
1
f » FlashBIOS

Fig. 4.6. Accessing the contents of the BIOS chip during
use of the “Normal DRAM Operation” setting

Then, what do all of the preceding explanations mean? They mean that the
mechanism is provided for BIOS shadowing purposes, i.e., not for altering BIOS
contents. For example, when a code in the BIOS sets the PAM control register to
“write only,” it can read part of the BIOS directly from the BIOS ROM chip and
subsequently copies that value to the same address within the system RAM, because
every write operation is forwarded to RAM.

92 Part Il: Motherboard BIOS Reverse Engineering

In the case of Intel 955X-ICH7 motherboards, there is an additional logic that
controls BIOS ROM accesses in the southbridge (ICH7) for the last segment of the
BIOS chip, i.e., 0xF_0000-0xF FFFF and its alias 0xFFFF_0000—0xFFFF_FEFE. Thus,
accesses to this last segment are forwarded to the BIOS chip by the southbridge if
the corresponding control registers enable the address decoding for the target ad-
dress range. Nevertheless, the power-on default value in ICH7 enables the decoding
of all address ranges possibly used by the BIOS chip. This can be seen from the
ICH7 datasheet, Section 10.1.28, page 373. The values of this register are reproduced
in Table 4.2.

Table 4.2. Firmware Hub Decode Enable Register Explanation

Bit | Description

FWH_F8_EN—RO. This bit enables decoding of two 512-KB firmware hub mem-
ory ranges and one 128-KB memory range.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFF80000h~FFFFFFFFh

FFBB0000h-FFRFFFFFh

15

FWH_F0_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFF00000h-FFF7FFFFh

FFB0O0000h—FFB7FFFFh

14

FWH_E8_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges.

0 = Disable

1 = Enable the following ranges for the firmware hub:
FFE80000h~FFEFFFFFh

FFAB0000h-FFAFFFFFh

13

FWH_EO0_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges

0 = Disable
12 | 1 = Enable the following ranges for the firmware hub:
FFEOOOOOh—FFE7FFFFh

FFAOO0000h—FFATFFFFh

continues

Chapter 4: Getting Acquainted With the System 93

Table 4.2 Continued
Bit Description
FWH_D8_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges.
0 = Disable
11

1 = Enable the following ranges for the firmware hub:
FFD80000h—FFDFFFFFh
FF980000h~FF9FFFFFh

FWH_DO_EN—R/W. Enables decoding of two 512-KB firmware hub memory

ranges.
0 = Disable

10 | 4 = Enable the following ranges for the firmware hub:
FFDO0000Oh-FFD7FFFFh
FF900000h-FF97FFFFh
FWH_C8_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges.
0 = Disable

® | 1=Enable the following ranges for the firmware hub:
FFC80000h—FFCFFFFFh
FF8800000h—FF8FFFFFh
FWH_CO0_EN—R/W. Enables decoding of two 512-KB firmware hub memory
ranges.
0 = Disable

8 | 1 = Enable the following ranges for the firmware hub:
FFF00000h—FFF7FFFFh

FFB0O000Oh-FFB7FFFFh

FWH_Legacy F_EN—R/W. Enables decoding of the legacy 128-KB range at
FO00Oh—FFFFFh.

7 | 0= Disable
1 = Enable the following ranges for the firmware hub:
FO000h~FFFFFh

FWH_Legacy E_EN—R/W. Enables decoding of the legacy 128-KB range at
E0000h-EFFFFh.

6 | 0=Disable
1 = Enable the following ranges for the firmware hub:
E0000h-EFFFFh

continues

94 Part |Il: Motherboard BIOS Reverse Engineering

Table 4.2 Continued
Bit Description
5:4 | Reserved
FWH_70_EN—R/W. Enables decoding of two 1-MB firmware hub memory ranges.
0 = Disable

3 | 1= Enable the following ranges for the firmware hub:
FF70 0000h—FF7F FFFFh
FF30 0000h-FF3F FFFFh

FWH_60_EN—R/W. Enables decoding of two 1-MB firmware hub memory ranges.
0 = Disable

2 | 1= Enable the following ranges for the firmware hub:

FF60 0000h-FF6F FFEFh

FF20 0000h-FF2F FFFFh

FWH_50_EN—R/W. Enables decoding of two 1-MB firmware hub memory ranges.
0 = Disable

1 1 = Enable the following ranges for the firmware hub:

FF50 0000h—FFS5F FFFFh

FF10 0000h-FF1F FFFFh

FWH_40_EN—R/W. Enables decoding of two 1-MB firmware hub memory ranges.
0 = Disable

0 | 1 =Enable the following ranges for the firmware hub:

FF40 0000h—-FF4F FFFFh

FF00 0000h—-FFOF FFFFh

Any read or write accesses to address ranges shown in Table 4.2 can be termi-
nated in the southbridge, i.e., not forwarded to the BIOS ROM chip if the firmware
hub Decode Control register bits value prevents the address ranges from being in-
cluded in the ROM chip select signal decode.

From the preceding chipsets analysis, you can conclude that the northbridge is
responsible for system address space management, i.e., BIOS shadowing, handling
accesses to RAM, and forwarding any transaction that uses the BIOS ROM as its
target to the southbridge, which then is eventually forwarded to the BIOS ROM by
the southbridge. Meanwhile, the southbridge is responsible for enabling the ROM
decode control, which will forward (or not) the memory addresses to be accessed
to the BIOS ROM chip. The addresses shown in Table 4.3 can reside either in the

Chapter 4: Getting Acquainted With the System 95

system DRAM or in the BIOS ROM chip, depending on the southbridge and
northbridge register setting at the time the BIOS code is executed.

Table 4.3. BIOS ROM Chip Address Mapping

Physical Also Known As Used by Address Aliasing Note

Address BIOS of

000F_0000h— | F_seg/F_segment | 1 Mb', 2 Alias to FFFF_0000h~

000F_FFFFh Mb, and 4 FFFF_FFFFh in all chipsets just
Mb after power-up

000E_0000h~ | E_seg/E_segment | 1 Mb, 2 Mb, | Alias to FFFE_0000h~

000E_FFFFh and 4 Mb FFFE_FFFFh in some chipsets

just after power-up

The address ranges shown in Table 4.3 contain the BIOS code, which is system-
specific. Therefore, you have to consult the chipset datasheets to understand it.
Also, note that the preceding address that will be occupied by the BIOS code during
runtimet! is only the & _seg'l, i.e., 0xF_0000-0xF_FFFF. Nevertheless, certain operat-
ing systems' mlght “trash™ this address and use it for their purposes. The ad-
dresses written in Table 4.3 only reflect the addressing of the BIOS ROM chip to
the system address space when it’s set to be accessed by the BIOS code or another
code that accesses the BIOS ROM chip directly.

The motherboard chipsets are responsible for the mapping of a certain BIOS
ROM chip area to the system address space. As shown, this mapping can be
changed by programming certain chipset registers. A BIOS chip with a capacity
greater than 1 Mb (i.e., 2-Mb and 4-Mb chips) has quite different addressing for its
lower BIOS area (i.e., c_seg, D_seq, and other lower segments). In most cases, these
areas are mapped to the near-4-GB address range. This address range is handled by
the northbridge analogous to the PCI address range.

The conclusion is that modern-day chipsets perform emulation for ¥ seg and
£_seg* handling. This is a proof that modern-day x86 systems maintains backward
compatibility. As a note, most x86 chipsets use this address aliasing scheme, at least

i Hereinafter, 1 Mb stands for 220 bits, also abbreviated Mibit or Mib, This unit is used fot measur-
ing RAM and ROM chip capability. Do not confuse it with Megabit (10P bits), which commonly
refers to transfer rates.

ii After the BIOS code executes.

iii Erom this point on, F *_seg will refer to the ¥ 0000h-F_FFFFh address range.

¥ Mostly embedded operating systems.

¥ Overwrite everything in the corresponding address range.

¥ From this point on, E_seg will refer to £ 0000h-E_FFFFh address range.

96 Part ll: Motherboard BIOS Reverse Engineering

for the F-segment address range, and most chipsets only provide the default ad-
dressing scheme for the F-segment just after power-up in its configuration registers
while other BIOS ROM segments remain inaccessible. The addressing scheme for
these segments is configured later by the boot block code by altering the related
chipset registers (in most cases, the southbridge registers).

The principles explained previously hold true for systems from ISA Bus to
modern-day systems, which connect the BIOS ROM chip to the southbridge
through the LPC interface Intel has introduced.

4.1.2. Obscure Hardware Ports

Some obscure hardware ports may not be documented in the chipset datasheets.
However, the chipset implies that those ports are already industry-standard ports,
and, indeed, they are. Thus, some datasheets don’t describe them. However, chipset
datasheets from Intel are helpful in this matter. They always include an explanation
of those ports. I present some of those ports here. I strongly recommend that you
read Intel or other chipset datasheets for further information.

: Chapter 4: Getting Acquainted With the System 97

98 Part Il: Motherboard BIOS Reverse Engineering

Furthermore, the LPC bus specification defines the usage of motherboard-
specific 1/O resources. However, the LPC specification doesn’t cover the usage of all
motherboard 1/O resources, i.e., /O addresses 0000n—00#n. Table 4.4 depicts the
usage of 1/0 address ranges by LPC bus.

Table 4.4. LPC Bus /0O Address Usage

Device I/0 Address Range /0 Address Range(s)
Usage
Parallel port 1 of 3 ranges 378h—37Fh (+ 778h—77Fh for ECP)

278h—27Fh (+ 678h—67Fh for ECP)
3BCh—3BFh (+ 7BCh—7BFh for ECP)

Note: 279h is read only. Writes to 279h
are forwarded to ISA for plug-and-play.

Serial ports 2 of 8 ranges 3F8h—3FFh, 2F8h—2FFh, 220h—
227h, 228h—22Fh, 238h—23Fh,
2E8h—2EFh, 338h—33Fh, 3EBh—3EFh

Audio 1 of 4 ranges SoundBlaster compatible:

220h—233h, 240h—253h, 260h—
273h, 280h—293h

Musical instru- 1 of 4 ranges 300h—301h, 310h—311h, 320h—

ment digital in- 321h, 330h—331h

terface

Microsoft sound | 1 of 4 ranges 530h—537h, 604h—60Bh, EBOh—ES87,

system F40h—F47h

Floppy disk con- | 1 of 2 ranges 3FOh—3F7h, 370h—377h

troller

Game ports 2 1-byte ranges Each mapped to any single byte in the

200h—20Fh range.

Wide generic 16-bit base address reg- | Can be mapped anywhere in the lower

ister 64 KB. AC '97 and other configuration

registers are expected to be mapped to
this range. It is wide enough to allow
many unforeseen devices to be sup-
ported.

512 bytes wide

Keyboard con- 60h and 64h
troller

continues

Chapter 4: Getting Acquainted With the System 99

v
Table 4.4 Continued
Device I/O Address Range /0 Address Range(s)
Usage
ACP| embedded | 62h and 66h
controller
Ad-lib 388h—389h

Super /O con- 2Eh—2Fh
figuration

Alternate super | 4E—4Fh
1/0 configuration

The super 1/O configuration address range and its alternate address range are
the most interesting among the 1/O address ranges in Table 4.4. In most circum-
stances, they are used to configure the chipset to enable access to the BIOS chip,
besides being used for other super 1/O-specific tasks.

4.1.3. Relocatable Hardware Ports

Several kinds of hardware ports are relocatable in the system 1/O address space, in-
cluding SMBus-related ports and power management-related ports. These ports
have a certain base address. The so-called base address is controlled using the pro-
grammable base address register (BAR). SMBus has an SMBus BAR, and power
management has a power management I/O BAR. Because these ports are pro-
grammable, the boot block routine initializes the value of the BARs in the begin-
ning of routine BIOS execution. Because of the programmable nature of these
ports, you must start reverse engineering of the BIOS in the boot block to find out,
which port addresses are used by these programmable hardware ports. Otherwise,
you will be confused by the occurrence of weird ports later in the reverse engineer-
ing process. An example of this case provided in Listing 4.1.

Listing 4.1. SMBus and ACPI BAR Initialization for VIA693A-596B

100

Part |l: Motherboard BIOS Reverse Engineering

There are more relocatable hardware ports than those described here. But at
least you've been given the hints about them. Thus, once you find code in the BIOS
that seems to be accessing weird ports, you know where to go.

Before closing this subsection, I would like to remind you that there are relo-
catable registers in the memory address space. However, you saw in Chapter 1 that

Chapter 4: Getting Acquainted With the System 101

these registers pertain to the new bus protocols, i.e., PCI Express and HyperTrans-
port. Thus, the explanation won’t be repeated here.

4.1.4. Expansion ROM Handling

There are more things to take into account, such as the video BIOS and other ex-
pansion ROM handling. The video BIOS is an expansion ROM; thus, it’s handled
in a way similar to that for other expansion ROMs. The basic rundown of PCI ex-
pansion ROM handling during boot is as follows:

1. The system BIOS detects all PCI chips in the system and initialize the BARs.
Once the initialization completes, the system will have a usable system-wide
addressing scheme.

2. The system BIOS then copies the implemented PCI expansion ROM into RAM
one by one in the expansion ROM area,! using the system-wide addressing
scheme, and executes them there until all PCI expansion ROM have been
initialized.

The logical structure of the BIOS binary as it fits the overall system address map"
is depicted in Fig. 4.7.

You learned in previous sections that x86 systems start execution at address
0xFFFE_FFFO. In Fig. 4.7, it is located in the boot block area. This area is the un-
compressed part of the BIOS binary. Hence, the processor can directly execute the
code located there. Other areas in the BIOS chip are occupied by padding bytes,
compressed BIOS components, and some checksums. This is the general structure
of modern-day BIOS, regardless of vendor.

The boot block contains the code used to verify the checksums of the com-
pressed BIOS component and the code used to decompress them. The boot block
also contains early hardware testing and initialization code.

The part of the BIOS that takes care of most initialization tasks, i.e., POST,
is called the system BIOS. In Award BIOS, this component sometimes is called origi-
nal.tmp by BIOS hackers because of the name of the compressed system BIOS.

H 4.2. BIOS Binary Structure

| iThe expansion ROM area in RAM is the C000:0000h-D000 : FEFFh address range.
| " System address map in this context is mapping of the memory address space.

102 Part lIl: Motherboard BIOS Reverse Engineering

The system BIOS is jumped into by the boot block after the boot block finishes its
task. Note that the system BIOS manages other compressed BIOS components dur-
ing its execution. It does so by decompressing, relocating, and executing the de-
compressed version of those components as needed.

Memory-mapped hardware

System RAM

(Optional — depends on chipset)
FFFF_FFFFh 7
Boot block
FFFF_EQOOh 4 B
Padding bytes ‘

n" compressed component

BIOS chip address range

3" compressed component

2™ compressed component

1% compressed component

FFFF_FFFFh - size of BIOS chip
Memory-mapped hardware

System RAM

Fig. 4.7. Typical BIOS binary logical view within the system address map

4.3. Software Peculiarities

There are some tricky areas in the BIOS code because of the execution of some of
its parts in ROM. I present some of my findings here.

4.3.1. call Instruction Peculiarity

The call instruction is not available during BIOS code execution within the BIOS
ROM chip. This is because the ca11 instruction manipulates the stack when there is
no writeable area in the BIOS ROM chip to be used for the stack. What I mean by
manipulating the stack is that the implicit push instruction is executed by the ca1l
instruction to save the return address in the stack. As you know, the address

Chapter 4: Getting Acquainted With the System 103

pointed to by ss: sp register pair at this point is in ROM,' meaning you can’t write
into it. So why don’t you use the RAM altogether? The DRAM chip is not even
available at this point. It hasn’t been tested by the BIOS code. Thus, you don’t even
know if RAM exists! There is a workaround for this issue. It is called cache-as-
RAM. However, it only works in contemporary processors. I will delve into it later.

4.3.2. retn Instruction Peculiarity

There is a macro called rom _carL that’s used for a stackless procedure call, i.e.,
calling a procedure without the existence of a stack. This has to be done during
boot block execution because RAM is not available and the code is executed within
the BIOS ROM chip. In some BIOSs, the called procedure returns to the calling
procedure with the retn instruction. Let me explain how to accomplish it. Remember
that the retn instruction uses the ss:sp register pair to point to the return address.
See how this fact is used in the rom_carr macro (Listing 4.2).

Listing 4.2. ROM_CALL Macro Definition

An example of this macro in action is shown in Listing 4.3.

Listing 4.3. ROM_CALL Macro Sample Implementation

i The ss:sp register pair points to address in the BIOS ROM chip before the BIOS is shadowed and
executed in RAM.

104 Part ll: Motherboard BIOS Reverse Engineering

As you can see in Listing 4.3, you have to take into account that the retn in-
struction is affected by the current value of the ss: sp register pair. However, the

ss register is not even loaded with the correct 16-bit protected mode value before
you use it! How does this code even work? The answer is complicated. Look at

the last time the ss register value was manipulated before the preceding code was
executed (Listing 4.4).

Listing 4.4. Initial Value of ss in Boot Block

Chapter 4: Getting Acquainted With the System 105

106 Part Il: Motherboard BIOS Reverse Engineering

Listing 4.4 at address r000:E062h shows that the ss register is loaded with
F000h;' this code implies that the hidden descriptor cache registeri is loaded with
ss*16 or the ¥ 0000 physical address value. This value is retained even when the
machine is switched into 16-bit protected mode at address F000: 6128 in Listing 4.4,
because the ss register is not reloaded. A snippet from [A-32 Intel Architecture
Software Developer’s Manual Volume 3: System Programming Guide 2004 explains:

Also, a snippet from Doctor Dobb’s Journal gives the following description
(emphasis mine):

i P000R is the effective real-mode 16-bit segment in the example code.
ii Each segment register has a corresponding descriptor cache.

Chapter 4: Getting Acquainted With the System 107

If you want to know more about descriptor cache and how it works, the most
comprehensive guide can be found in one of the issues of Doctor Dobb’s Journal
and in [A-32 Intel Architecture Software Developer’s Manual Volume 3: System Pro-
gramming Guide 2004, Section 3.4.2 (“Segment Registers”).

Back to the ss register. Now, you know that the “actor” here is the descriptor
cache register, particularly its base address part. The visible part of ss is only
a placeholder and the “register in charge” for the real address translation is the hid-
den descriptor cache. Whatever you do to this descriptor cache will be in effect
when any code, stack, or data value addresses are translated. In this case, you have
to use stack segment with “base address™ at the 0xF_0000 physical address in 16-bit
protected mode. This is not a problem, because the base address part of the ss
descriptor cache register is already filled with 0xF_0000 at the beginning of boot block
execution. This explains why the code in Listing 4.3 can be executed flawlessly. An-
other example is shown in Listing 4.5.

Listing 4.5. Another ROM_CALL Macro Sample Implementation

108 Part ll: Motherboard BIOS Reverse Engineering

In Listing 4.5, the retn instruction at address F000: 6036 will work in the end of
FO00_6000_write pci byte execution if ss:sp points to 0xF_61D1. Indeed, it has
been done, because the ss register contains 0xF 0000 in its descriptor cache base
address part. Moreover, as you can see, sp contains 6101h. Hence, the physical ad-
dress pointed to by ss:spis £ 0000n+61D1h, which is the F_61D1n physical address.

4.3.3. Cache-as-RAM

Another interesting anomaly in the BIOS code is the so-called cache-as-RAM.
Cache-as-RAM is accomplished by using the processor cache as a stack during
BIOS code execution in the BIOS ROM chip, before the availability of RAM. Note
that RAM cannot be used before the boot block code tests the existence of RAM.
Thus, stack operation! must be carried out in a cumbersome way, such as using the
ROM_CALL macro, as you saw in the previous section.

Cache-as-RAM usually exists as part of the boot block code. It resolves the lack
of RAM to be used as stack memory in the beginning of BIOS code execution.
It’s not a common feature. It’s only supported on recent processors and the BIOS.
Cache-as-RAM implementations can be found in Award BIOS for AMD64 moth-
erboards. In Listing 4.6, I provide a sample implementation from the disassembled
boot block of a Gigabyte K8N SLI motherboard. The release date of the corre-
sponding BIOS is March 13, 2006.

i Stack operation is the execution of instructions that manipulate stack memory, such as push, pop,
call, and rets.

Chapter 4: Getting Acquainted With the System 109

Listing 4.6 Cache-as-RAM Implementation Sample

110 Part ll: Motherboard BIOS Reverse Engineering

Chapter 4: Getting Acquainted With the System _ 111

112 Part Il: Motherboard BIOS Reverse Engineering

Listing 4.6 shows a cache-as-RAM sample implementation in an AMD64-based
motherboard. The code is self-explanatory. The most important trick is shown at
address F000:0646, where 16 KB of undefined data are “streamed” into the cache,
forcing the content of the cache to update and forcing the cache to point to the ad-
dress range assigned as the cache-as-RAM. At address 7000: 0665, the code sets up
the stack at the predefined cache-as-RAM address, effectively using the cache as the
stack for the next code within the boot block.

4.4. BIOS Disassembling with IDA Pro

You obtained enough skills in Chapter 2 to use IDA Pro efficiently, and you know
from previous sections the big picture of the BIOS binary structure. In this part,

I provide you with the basic steps to carry out systematic BIOS reverse engineering
based on that knowledge.

Chapter 4: Getting Acquainted With the System 113

Disassembling a BIOS is stepping through the first instructions that the proces-

sor executes. Thus, the following steps are guidelines:

1.

Start the disassembling in the reset vector of the processor. The reset vector is
the address of the first instruction that a processor executes. In the case of x86,
it is OXFFFE_0000.

From the reset vector, follow through the boot block execution paths. One path
will end with a hang; this is where an error is found during boot block execu-
tion. Look for the path that doesn’t end with a hang, The latter path will guide
you through the system BIOS decompression process and will jump into the
system BIOS once the boot block finished. You can emulate the decompression
process by using IDA Pro scripts or plugins. Alternatively, if the decompressor
for the compressed BIOS components is available, it can be used to decompress
the system BIOS; then the decompressed system BIOS is integrated into the
current IDA Pro disassembly database.

Follow the system BIOS execution until you find the POST execution. In some
BIOSs, the POST execution consists of jump tables. You just need to follow the
execution of this jump table to be able to see the big picture.

The preceding steps are applicable to any type of BIOS or other x86 firmware

that replaces the functionality of the BIOS, such as in routers or kiosks based on
embedded x86 hardware.

Chapter 5: Implementation
of Motherboard BIOS

Preview

This chapter explains how the BIOS vendor implements BIOS. It researches the
compression algorithm used by BIOS vendors and the formats of the compressed
components inside the BIOS binary. It also dissects several BIOS binary files from
different vendors so that you can discover their internal structure.

116

Part II: Motherboard BIOS Reverse Engineering

5.1. Award BIOS

This section dissects an Award BIOS binary. Use the BIOS for the Foxconn
955X7AA-8EKRS2 motherboard as sample implementation. It’s Award BIOS ver-
sion 6.00PG dated November 11, 2005. The size of the BIOS is 4 Mb/512 KB.

5.1.1. Award BIOS File Structure

An Award BIOS file consists of several components. Some of them are LZH level-1
compressed. You can recognize them by looking at the -1h5- signature in the
beginning of that component by using a hex editor. An example is presented in
Hex Dump 5.1.

Hex Dump 5.1. Compressed Award BIOS Component Sample

Beside the compressed components, there are pure 16-bit x86 binary compo-

nents. Award BIOS execution begins in one of these pure binary components.
The general structure of a typical Award BIOS binary as follows:

a

0

Boot block. The boot block is a pure binary component; thus, it’s not com-
pressed. The processor starts execution in this part of the BIOS.

Decompression block. This is a pure binary component. Its role is to carry out
the decompression process for the compressed BIOS components.

Systern BIOS. This is a compressed part. Its role is to initialize the system by do-
ing POST and calling other BIOS modules needed for system-wide initializa-
tion. In the old days, this component is always named original.tmp. Today’s
Award BIOS doesn’t use that name. Nevertheless, the BIOS hacking and modi-
fication community often refers to this component as original.tmp.

System BIOS extension. This component is compressed. Its role is as a “helper”
module for the system BIOS.

Other compressed components. These components are system dependent and
mainly used for onboard device initialization, boot-sector antivirus, etc.

i Pure binary refers to the component that is not compressed.

Chapter 5: Implementation of Motherboard BIOS 117

As per the IA-32 Intel Architecture Software Developer’s Manual Volume 3: Sys-

tem Programming Guide 2004, we know that the x86 processor starts its execution
in 16-bit real mode at address 0xF000:0xFFFO' following restart or power-up.

Hence, this address must contain 16-bit real-mode x86 executable code. It’s true
that 0xF000:0xFFFO contains the pure binary component of the BIOS, i.e., the boot
block code. The boot block resides in the highest address range in the system

memory map among the BIOS components, as previously shown in Fig. 4.7.
Before delving into the compressed components and the pure binary compo-

nents of this particular Award BIOS, you need to know how the binary is mapped

into the system address space. Fig. 5.1 is the starting point.

BIOS binary mapping to

system address map
Memory-mapped hardware
Part of BIOS chip mapped to
System RAM legacy BIOS address range
FFFE_FTFFh g Tk F_FFFFh
i Boot block AN Boot block -
FFFF_EO0000h A ;
Padding bytes + some code ; Some code F_0000h
FPFE BFFEN ™ e compression block / /| Decompression block | E_FFFFh
FFFE_A9COh il it i
= Padding byles BIOS chip SaiigLyie
Other comprassed address | Compressed component
components rangf__._,‘._,'__ pact E_0000h
FERS aDESHT— v = e
Compressed system BIOS | - i
FFF8_0000h V4 ‘ '.' i
Memory-mapped hardware ? :
Syste}:ﬁ RAM ;' ," ,"
F_FFFFh ORI [e i e
F_0000h s A i iy | ST i
EFFFFhl BIOSE_seg Alias ;
S U e B Ayl | g lh s
Legacy memory-mapped
hardware
0 System RAM

Fig. 5.1. Foxconn 955X7AA-8EKRS2 BIOS Mapping to System Address Map

1 0xF000: 0xFFFO is an alias to the reset vector at OxFFFFFFFO. It’s the chipset that carries out the

aliasing for backward compatibility purposes.

118

Part Il: Motherboard BIOS Reverse Engineering

BIOS binary mapping to BIOS binary mapping
system address map in hex editor
FFFF_FFFFh L W, JA\ n K A 7_FFFFh
FFFF_E000h calivay 4 A 7_E000h
Padding bytes + some code Padding bytes + some code
FFFE_BFFEh 3 = SLEFEEN
FFFE— A9CO Decompression block Decompression block 6 A9COh
3 : BIOS chip Padding bytes I
Padleg iy address range | o
Other compressed Other compressed
components components)
FFF9_4DE8h 1_4DE8h
Compressed system BIOS <7 Compressed system BIOS
FFF8_0000h V 0

Fig. 5.2. Foxconn 955X7AA-8EKRS2 BIOS mapping within a hex editor

Fig. 5.1 shows clearly the address aliasing for the last two segments of the
Award BIOS. Segment E000h is an alias to FFFE 0000h, and segment FOOOh is an
alias to FFFF 0000h. Apart from the aliasing, note that the 512-KB BIOS chip occu-
pies the last 512-KB address range right below 4 GB. Now, check out the mapping
of the BIOS binary in the system address map and its relation with the BIOS binary
mapping in a hex editor. You need to know this mapping to be able to modify the
BIOS binary. Fig. 5.2 shows such a mapping.

Figs. 5.1 and 5.2 are tightly coupled. Thus, you must remember that the last
128 KB of the BIOS binary is mapped into the 60000n—7FFFFh address range in the
hex editor and to the E0000h—F0000h address range in system address map. Note
that this mapping only applies just after power-on. It’s the default power-on value
for the chipset. It’s not guaranteed to remain valid after the chipset is repro-
grammed by the BIOS. However, the mapping in Figs. 5.1 and 5.2 applies while the
BIOS code execution is still in the boot block and hasn’t been copied to RAM.

Look at the details of the mapping of compressed components in Foxconn
Award BIOS inside a hex editor. The mapping is as follows:

p—

0_0000h—1_4DR8h: 4bgf1p50.bin. This is the system BIOS.

2. 1 _4pegh—1_ezren: awardext.rom. This is an extension to the system BIOS. The
routines within this module are called from the system BIOS.
3. 1 E2FFh—1_ FE30h: acpitbl.bin. This is the advanced configuration and power in-

terface table.

4. 1 FE31h—2 00DAh: awardbmp.bmp. This is the Award logo.
5. 2 00DBh—2 5A16h: awardeyt.rom. This component is also an extension to the
system BIOS.

Chapter 5: Implementation of Motherboard BIOS 119

6. 2 5a17n—2 7F7Bh: _en_code.bin. This module stores the words used in the
BIOS setup menu.
7. 2_7rich—2 8BBOh: _item.bin. This module contains the values related to items
in the BIOS setup menu.
8. 2 8BB1h—2 FF3Dh: 5209.bin. This is an expansion ROM for an onboard device.
9. 2_rr3Eh-3 62D8h: it8212.bin. This is an expansion ROM for an onboard device.
10. 3_62p9h—3 FA49h: b5789pxe.lom. This is an expansion ROM for an onboard
device.
11. 3 rFA4ah—4 8FDCh: raid_or.bin. This is an expansion ROM for the RAID con-
troller.
12. 4 srpph—4 cgéBh: cprfvl18.bin. This is an expansion ROM for an onboard
device.
13. 4_csech—4 D396h: ppminit.rom. This is an expansion ROM for an onboard
device.
14. 4 D397h—4 E381h: \F1\foxconn.bmp. This is the Foxconn logo.
15. 4_r382n—4 r100n: \F1\64n8iip.bmp. This is another logo displayed during boot.

After the last compressed component there are padding rrh bytes. An example
of these padding bytes is shown in Hex Dump 5.2.

Hex Dump 5.2. Padding Bytes after Compressed Award BIOS Components

The compressed components can be extracted easily by copying and pasting it
into a new binary file in Hex Workshop. Then, decompress this new file by using
LHA 2.55 or WinZip. If you are into using WinZip, give the new file an .Izh extension
so that it will be automatically associated with WinZip. Recognizing where you
should cut to obtain the new file is easy. Just look for the -1n5- string. Two bytes be-
fore the -1n5- string is the beginning of the file, and the end of the file is always 00h,
right before the next compressed file,i the padding bytes, or some kind of checksum.

i The -1h5- marker in its beginning also marks the next compressed file.

120 Part ll: Motherboard BIOS Reverse Engineering

As an example, look at the beginning and the end of the compressed awardext.rom
in the current Foxconn BIOS as seen within a hex editor. The bytes highlighted in
light-grey are the beginning of the compressed file, and the bytes highlighted in
dark-grey are the end of compressed awardext.rom.

Hex Dump 5.3. Compressed Award BIOS Component Header Sample

In the preceding hex dump, the last byte before the beginning of the com-
pressed awardext.rom is not an end-of-file marker,! i.e., not 00n, even though the
component is also in compressed state. The compressed component preceding
awardext.rom is the compressed system BIOS, and the byte highlighted in white
is a custom checksum that follows the end-of-file marker for this compressed
system BIOS. Other compressed components always end up with an end-of-file
marker, and no checksum byte precedes the next compressed component in the
BIOS binary.

Proceed to the pure binary component of the Foxconn BIOS. The mapping of
this pure binary component inside the hex editor as follows:

1. 6 a9coh—6 BFFEn: The decompression block. This routine contains the LZH
decompression engine
2. 7 E000h—7 FFFEh: This area contains the boot block code.

Between of the pure binary components lay padding bytes. Some padding bytes
are Frh bytes, and some are 00h bytes.

i The end-of-file marker is a byte with 00k value.

Chapter 5: Implementation of Motherboard BIOS 121

5.1.2. Award Boot-Block Reverse Engineering

This section delves into the mechanics of boot-block reverse engineering. The boot
block is the key into overall insight of the motherboard BIOS. Understanding the
reverse engineering tricks needed to reverse-engineer the boot block is valuable,
because these techniques tend to be applicable to BIOS from different vendors.
From this point on, I disassemble the boot-block routines. Now, I'll present some
obscure and important areas of the BIOS code in the disassembled boot block of
the Foxconn 955X7AA-8FKRS2 motherboard BIOS dated November 11, 2005.
In Section 2.3, you learned how to start disassembling a BIOS file with IDA Pro.
I won’t repeat that information here. All you have to do is open the 512-KB file
in IDA Pro and set the initial load address to 8 _0000n—F FrFFh. Then, create
new segments at FFF8 0000h—FFFD FFFFh and relocate the contents of
8 _0000h—D_FFFFh to that newly-created segment to mimic the mapping of the BIOS
binary in the system address map. You can use the IDA Pro script in Listing 5.1 to
accomplish this operation. The script in Listing 5.1 must be executed directly in the
IDA Pro workspace scripting window that’s called with <Shift>+<F2> shortcut.
You can add the appropriate include statements if you wish to make it a stand-
alone script in an ASCII file, as you learned in Chapter 2.

Listing 5.1. IDA Pro Relocation Script for Award BIOS with a 512-KB File

122

Part |l: Motherboard BIOS Reverse Engineering

Note that if you have the IDA Pro 64-bit version, you can directly load the Fox-
conn Award BIOS code to the FFF8_0000h—FFFF FFFFh address range and copy only
E_seg and F_seg to the legacy BIOS area in the E_0000n—F FFFFn address range.

After the relocation, start the disassembly at address F000:FF70n, i.e., the reset
vector. I'm not going to present the whole disassembly here, only the disassembly
of the “sharp corners” in the boot block execution, the places where you might be-
come lost in this boot-block reverse-engineering journey. In addition, I provide the
disassembly of codes that provide hints.

5.1.2.1. Boot-Block Helper Routine

Listing 5.2. Disassembly of the PCI Configuration Support Routine

Chapter 5: Implementation of Motherboard BIOS 123

5.1.2.2. Chipset Early Initialization Routine

The routine in this subsection initializes the memory-mapped root complex regis-
ter block (RCRB) used by the various functions and devices within the PCI Express
chipset. These routines are important because they indicate, which memory ad-
dress ranges are used by the chipset registers. So you can tell if a particular read or
write transaction into some arbitrary memory address range is a PCI Express en-
hanced configuration transaction or not. Some abbreviations are used in the com-
ments of Listing 5.3:

O PCI EX refers to PCI Express.

O Bxx:Dxx:Fxx refers to Bus xx: Device xx: Function xx. This is used to address
devices in the PCI bus or PCI Express bus because the PCI Express bus is back-
ward compatible with the PCI configuration mechanism.

0 BAR refers to the base address register.

8 Ctr refers to the controller.

124 Part Il: Motherboard BIOS Reverse Engineering

Listing 5.3. Disassembly of the Chipset Early Initialization Routine

5.1.2.3. Super I/0 Chip Initialization Routine

The routine in Listing 5.4 configures the super I/O chip through the LPC interface
in ICH7. Perhaps it’s not too obvious in the first sight. You can consult Section 6.3.1,
“Fixed I/O Address Ranges,” of the the ICH7 datashcet. Table 6.2 in that datasheet
mentions the usage of port address 2zh as the low pin count super 1/O (LPC SIO),
which is the LPC super I/O address.

Listing 5.4. Disassembly of the Super I/O Initialization Routine

5.1.2.4. Jump to CMOS Values and Memory Initialization

Listing 5.5. Disassembly of CMOS Values Initialization and Memory Initialization

Chapter 5: Implementation of Motherboard BIOS 125

5.1.2.5. BBSS Search and Early Memory Test Routines

These routines are bizarre; the Bess string seems to represent something related to
decompression. However, Award BIOS source code that leaked onto the Web in
2002 shows that the Bess string stands for boot block structure signature. These
routines initialize the DRAM area needed for BIOS execution and other various
devices needed for the later BIOS execution task.

Listing 5.6. Disassembly of the BBSS Search and Early Memory Test Routines

The BBSS “engine” is found using the following script:

Listing 5.7. IDA Pro Script to Search for the BBSS String

126 Part |l: Motherboard BIOS Reverse Engineering

The result of the execution of the script in Listing 5.7 is as follows:

These results are then used as a basis to jump into the right BBSS “engine” ad-
dress. Then the next routine is the BBSS routine itself.

Listing 5.8. BBSS Routine Disassembly

5.1.2.6. Boot Block Is Copied and Executed in RAM

Listing 5.9. Routine to Copy the Boot Block to and Execute the Boot Block
in RAM

Chapter 5: Implementation of Motherboard BIOS 127

128 Part ll: Motherboard BIOS Reverse Engineering

The last 128 KB of BIOS code at £000:0000h—F000: FFEFh are copied to RAM
as follows:

1. Northbridge and southbridge power-on default values alias the 7 0000h—F FFFFh
address space with FFFTE_FFFFh—TFFFF FEFEh, where the BIOS ROM chip address
space is mapped. That’s why the following code is safely executed:

2. Northbridge power-on default values disable DRAM shadowing for this ad-
dress space. Thus, reading or writing to this address space will not be forwarded
to DRAM but will be forwarded to the southbridge to be decoded. The default
values of the control registers in southbridge that control the mapping of this
address space dictate that accesses to this address space must be decoded as
transactions to the BIOS chip through the LPC bridge. Hence, a read operation
to this address space will be forwarded to the BIOS ROM chip without being al-
tered by the southbridge.

3. Close to the beginning of boot block execution, chipset early init is exe-
cuted. This routine reprograms the LPC bridge in the southbridge to enable de-
coding of address £_0000h—F FFFFL to ROM, i.e., forwarding the read operation
in this address space into the BIOS ROM chip. The northbridge power-on de-
fault values disable DRAM shadowing for this address space. Thus, reading or
writing to this address space will not be forwarded to DRAM.

4. Then comes the routine displayed previously that copied the last 128-KB BIOS ROM
chip content at address £ _0000n—#_reeh into DRAM at 1000:0000n—2000: FFEFh
and 18 _0000n—19 FFFFh. The execution continues at segment 2000h. This can
be accomplished because 1000: 0000h—2000: FFFFh address space is mapped only
to DRAM by the chipset, with no special address translation.

The algorithm preceding has been preserved from Award version 4.50PG to
Award version 6.00PG code. There is a only minor difference between the versions.

5.1.2.7. System BIOS Decompression and its Entry Point

Listing 5.10. System BIOS Decompression Routine

Chapter 5: Implementation of Motherboard BIOS 129

In the beginning of the pecompress_System BIOS procedure, the 512-KB BIOS
binary at the FFF8_0000h—FFFF_FFFFh address range is copied into 30_0000n—37_FFFFn
in system RAM. Then, the compressed BIOS code (4bgf1p50.bin) within 30_oooon—
37_FFFFh in RAM is decompressed into the 5000:0000h—6000: FFFFh address range,
also in RAM. Note that the location of the system BIOS in the compressed BIOS
binary varies in different Award BIOS version 6.00PG. However, the system BIOS
is always the first LHA-compressed component in that address range, i.e., the first
LHA-compressed component that will be found if you scan from 30 0000n to
37_rrrFn. The decompressed system BIOS later relocated to E000: 0000h—F000: FFFFh
in RAM. However, if decompression process failed, the current compressed
F_seg and F_seg located in RAM at 1000:0000h—2000: FFFFhi will be relocated to
E000:0000n—+000:0000n in RAM. Then the boot-block error-handling code will be
executed. Note that the problems because of address aliasing and DRAM shadowing
are handled during the relocation by setting the appropriate chipset registers.
Below is the basic rundown of this routine:

1. Early in the boot block execution, configure the northbridge and southbridge
registers to enable FFF0_0000n—Frrr FFFFh decoding. The LPC bridge will for-
ward access to this address to the BIOS ROM chip. The LPC bridge’s firmware
hub that decodes control registers'! is in charge here.

2. Copy all BIOS code from rrr8 0000h—FFFF FFFFh in the ROM chip into
30_0000nh—37_FFFFh in RAM.

3. Verify the checksum of the whole compressed BIOS image. Calculate the 8-bit
checksum of the copied compressed BIOS image in RAM (i.e., 30_0000h—
36 _BFEDh) and compare the result against the result stored in 36 BFFEh. If the
8-bit checksum doesn’t match, then stop the decompression process and go to
chk_sum_error; otherwise, continue the decompression routine.

4. Look for the decompression engine by looking for *Bpss+ string in segment
1000n. This segment is the copy of segment £000ni in RAM. This part is dif-
ferent from Award BIOS version 4.50 code. In that version, the decompression
engine is located in segment 2000k, i.e., the copy of segment 000h in RAM.

5. Decompress the compressed BIOS components by invoking the decompres-
sion engine from the previous step. Note that at this stage only the system
BIOS is decompressed. The other component is treated in different fashion.
The decompress routine only processes the decompressed and expansion area

i The copies of E_seg and F_seg will be relocated, along with the copy of the boot block, in RAM.
i The firmware hub control registers are located in Device 31 Function 0 Offset D8h, D9h, and DCh.
1l Segment EQ00OH is an alias of the 64-KB code located at FFFE_0000h-FFFE_FFFFh.

130

Part Il: Motherboard BIOS Reverse Engineering

information, then puts it in RAM near 0000:6000h. I delve into the details of
the decompression routines later. In this step, you only have to remember that
the decompressed system BIOS will be located at 5000: 0000h—6000: FFFFh after
the decompression process finished successfully.

6. Shadow the BIOS code. Assuming that the decompression routine successfully

is completed, the preceding routine then copies the decompressed system BIOS
from 5000:0000n—6000: FFEFh in RAM to E_0000h—F FFFFh, also in RAM. This
1s accomplished as follows:

® Reprogram the northbridge shadow RAM control register to enable write
only into £_0000n—TF FFTTh, i.e., forward the write operation into this ad-
dress range to DRAM, no longer to the BIOS ROM chip.

® Perform a string copy operation to copy the decompressed system BIOS
from 5000: 0000h—6000: FFFFh to E_0000h—F FFEFh.

® Reprogram the northbridge shadow RAM control register to enable read
only into E_0000h—F FFFFh, ie., forward the read operation into this ad-
dress range to DRAM, no longer to the BIOS ROM chip. This is also to
write-protect the system BIOS code.

7. Enable the microprocessor cache, then jump into the decompressed system
BIOS. This step is the last step in the normal boot block code execution path. Af-
ter enabling the processor cache, the code then jumps into the write-protected
system BIOS at 000:F80Dh in RAM, as seen in the preceding code. This jump
destination address is the same across Award BIOSs.

Consider the overall memory map that’s related to the BIOS components
(Table 5.1) just before the jump into the decompressed original.tmp is made. This
is important because it eases you in dissecting the decompressed original.tmp later.
Note that, by now, all code execution happens in RAM; no more code is executed
from within the BIOS ROM chip.

Table 5.1. BIOS Binary Mapping in Memory before original.tmp Execution

Address Decompression State | Description
Range in RAM | (by Boot Block Code)

6000h-6400b | N/A This area contains the header of the extension
component (component other than system
BIOS) fetched from the BIOS image at
30_0000h—37_FFFFh (previously, the BIOS
component at FFF8_0000h—FFFF_FFFFh in
the BIOS chip).

continues

Chapter 5: Implementation of Motherboard BIOS 131

Table 5.1 Continued

Address Decompression State | Description

Range in RAM | (by Boot Block Code)

}_OOOOh- Pure binary This area contains the decompression block,

2 _FFFFh (executable) the boot block, and probably the code for error

recovery in case something is wrong with the
BIOS. It's the copy of the last 128 KB of the
BIOS (previously, the BIOS component at
FFFE_0000h—FFFF_FFFFh in the BIOS chip).
This code is shadowed here by the boot block
in the BIOS ROM chip.

5_0000h- Decompressed This area contains the decompressed origi-

6_FFFFh nal.tmp. Note that the decompression process
is accomplished by part of the decompression
block in segment 1000h.

30_0000h- Compressed This area contains the copy of the BIOS (previ-
3/_FEFEh ously, at FFF8_0000h—FFFF_FFFFh in the
BIOS chip). This code is copied here by the
boot block code in segment 2000h.

E_0000h- Decompressed This area contains the copy of the decom-
F_FFFFh pressed original.tmp, which is copied here by
the boot block code in segment 2000h.

The last thing to note is that the boot-block explanation here only covers the
normal boot-block code execution path, which means it didn’t explain the boot-block
POST that takes place if the system BIOS is corrupted.

As promised, I now delve into the details of the decompression routine for the
system BIOS, mentioned in point 5. Start by learning the prerequisites.

The compressed component in an Award BIOS uses a modified version of the
LZH level-1 header format. The address ranges where these BIOS components will
be located After decompression are contained within this format. The format is
provided in Table 5.2. Remember that it applies to all compressed components.

Some notes regarding the preceding table:

0 The offset in the leftmost column and the addressing used in the contents column
are calculated from the first byte of the component. The offset in the LZH basic
header is used within the “scratch-pad RAM” (which will be explained later).

0 Each component is terminated with an £or byte, i.e., a 00h byte.

O In Award BIOS, there is the rRead_Header procedure, which contains the routine
to read and verify the content of this header. One key procedure call there

132

Part II: Motherboard BIOS Reverse Engineering

is a call into calc LzH hdr Crclé, which reads the BIOS component header
into a “scratch-pad” RAM area beginning at 3000:0000h (ds:0000h). This
scratch-pad area is filled with the LZH basic header values, which doesn’t
include the first 2 bytes.]

Table 5.2. LZH Level-1 Header Format Used in Award BIOSs

Starting Offset | Starting Off- | Size in Bytes | Contents
from First setin LZH
Byte (from Basic Header
Preheader)
00h N/A 1 for pre- The header length of the compo-
header, N/A for | nent. It depends on the
LZH basic file/component name. The formula
header is header length = filename
length + 25.
01lh N/A 1 for pre- The header 8-bit checksum, not
header, N/A for | including the first 2 bytes (header
LZH basic length and header checksum byte).
header
02h 00h 5 LZH method ID (ASCII string signa-
ture). In Award BIOS, it's "-Ih5-"
which means: 8-KB sliding diction-
ary (max 256 bytes) + static Huff-
man + improved encoding of posi-
tion and trees.
07h 05h 4 Compressed file or component size
in little-endian dword value, i.e.,
MSB" at 0ah, and so forth.
0Bh 0%h 4 Uncompressed file or component
size in little-endian dword value, i.e.,
MSB at 0ER, and so forth.

continues

i The first 2 bytes of the compressed components are the preheader, i.e., header size and header
8-bit checksum.
i MSB stands for most significant bit.

Chapter 5:

Implementation of Motherboard BIOS

133

Table 5.2 Continued

Starting Offset | Starting Off- Size in Bytes | Contents

from First setin LZH

Byte (from Basic Header

Preheader)

OFh 0Dh 2 Destination offset address in little-
endian word value, i.e., MSB at 10h,
and so forth. The component will be
decompressed into this offset address
(real-mode addressing is in effect here).

11h OFh 2 Destination segment address in little-
endian word value, i.e., MSB at 12h,
and so forth. The component will be
decompressed into this segment
address (real-mode addressing is in
effect here).

13h 11h 1 File attribute. The Award BIOS
components contain 20h here,
which is normally found in an LZH
level-1 compressed file.

14h 12h 1 Level. The Award BIOS components
contain 01h here, which means it's
an LZH level-1 compressed file.

15h 13h 1 Component file-name name-length
in bytes.

léh 14h File— Component file-name (ASCII string).

name length

16h + file- |14h + file- (2 File or component CRC-16 in little-

name length [name length endian word value, i.e., MSB at
[HeaderSize - 2h], and so forth.

18k + fide— |'lbh. + EFke=il Operating system ID. In the Award

name length |name length BIOS, it's always 20h (ASCI| space
character), which doesn't resemble
any LZH OS ID known to me.

130 fide— | 17h o+ FilaaNliD Next header size. In Award BIOS,

name length

name length

it's always 0000h, which means no
extension header.

134 Part ll: Motherboard BIOS Reverse Engineering

.

Now, proceed to the location of the checksum that is checked before and dur-
ing the decompression process. There’s only one checksum checked before decom-
pression of system BIOS in Award BIOS version 6.00PG (i.e., the 8-bit checksum of
the overall compressed components and the decompression block, or components
other than the boot block). It’s checked in the becompress_system B10s procedure
as shown in Listing 5.11.

Listing 5.11. Checksum Verification Subroutine inside
the Decompress_System_BIOS Procedure

Chapter 5: Implementation of Motherboard BIOS 135

The chk_sum_error is a label outside the pDecompress System BTOS procedure.
It’s jumped into if the checksum calculation fails. The checksum checking in List-
ing 5.11 can be simulated by using the IDA Pro script in Listing 5.12.

136 Part ll: Motherboard BIOS Reverse Engineering

Listing 5.12. Award BIOS Checksum Checking with IDA Pro Script

Chapter 5: Implementation of Motherboard BIOS 137

138 Part ll: Motherboard BIOS Reverse Engineering

The execution result of the script in Listing 5.12 in the current BIOS is as follows:

It must be noted that the system BIOS in Award BIOS version 6.00PG is always
the first compressed component found in the copy of the BIOS binary at the
30 0000h—37 FFFFh address range in system RAM if you scan from the beginning.
Moreover, it’s located in the binary in the 64-KB (100001) boundary.

Now, proceed to the key parts of the decompression routines. This decompres-
sion routine is an assembly language version of the original C source code of
the LHA decompressor by Haruhiko Okumura, with minor changes. Start with
the pecompress procedure called from the Decompress system BIOS procedure at
address 2000: FD5Bh.

Chapter 5: Implementation of Motherboard BIOS 139

Listing 5.13. Disassembly of the Decompress Procedure

140

Part Il: Motherboard BIOS Reverse Engineering

The decompress procedure in Listing 5.13 is more like a stub that calls the real
LHA decompression routine. The start address of the decompression engine is lo-
cated 14 bytes after the “BBss* string. The disassembly of this decompression en-

gine is provided in Listing 5.14.

Listing 5.14. Disassembly of the Decompression Engine

After looking at these exhaustive lists of disassembly, construct the memory
map of the BIOS components just after the system BIOS decompressed (Table 5.3).

Table 5.3. BIOS Binary Mapping in Memory after System BIOS Decompression

Starting Address of | Size Decompression Status | Component Description

BIOS Component

in RAM

(Physical Address)

5 _0000h 128 KB | Decompressed to RAM This is the system BIOS,
beginning at address in i.e., the main BIOS code.
column one. Sometimes, it is called

original .tmp.

30_0000h 512 KB | Not decompressed yet This is the copy of the

overall BIOS binary, i.e.,
the image of the BIOS
binary in RAM.

Chapter 5: Implementation of Motherboard BIOS 141

Some notes regarding the preceding decompression routine:

O Part of the decompression code calculates the 16-bit cyclic redundancy check
(CRC-16) value of the compressed component during the decompression
process.

O The decompression routine is using segment 3000nh as a scratch-pad area in
RAM for the decompression process. This scratch-pad area spans from 3 0000n
to 3 8000h, and it’s 32 KB in size. It’s initialized to zero before the decompres-
sion starts. The memory map of this scratch-pad area is as shown in Table 5.4.

Table 5.4. Memory Map of the Scratch-Pad Used by the Decompression Engine

Starting Index in | Size Description

the scratchpad (in Bytes)

Segment

371Ch 2000h Buffer. This area stores the "sliding window," i.e., the

temporary result of the decompression process be-

(8 KE) fore being copied to the destination address.
571Ch 1 LHA header length.
571Dh i LHA header sum (8-bit sum).

O In this stage, only the system BIOS that is decompressed. It is decompressed
to segment 5000h and later will be relocated to segment z000h—r000h. Other
compressed components are not decompressed yet. However, their original
header information was stored at 0000:6000nh—0000:6xxxh in RAM. Among
this information were the starting addresses of the compressed component.
Subsequently, their destination segments were patched to 4000h by the
Decompression Ngine procedure in the BIOS binary image at 30 0000h—37 FFFFh.
This can be done because not all of those components will be decompressed at
once. They will be decompressed one by one during system BIOS execution
and relocated from segment 4000h as needed.

00 The 20xxh in the headerl! behaves as an ID that works as follows:
® 40 (hi-byte) is an identifier that marks it as an “Extension BIOS” to be de-

compressed later during original.tmp execution.

flThe starting address is in the form of a physical address.
' The 40xxh value is the destination segment of the LHA header of the compressed component.

142 Part ll: Motherboard BIOS Reverse Engineering

® xxis an identifier that will be used in system BIOS execution to refer to the
component’s starting address within the image of the BIOS binary to be
decompressed. This will be explained more thoroughly in the system BIOS
explanation later.

5.1.3. Award System BIOS Reverse Engineering

I'll proceed as in the boot block in the previous section: I'll just highlight the places
where the “code execution path” is obscure. By now, you're looking at the disas-
sembly of the decompressed system BIOS of the Foxconn motherboard.

5.1.3.1. Entry Point from the "Boot Block in RAM"

This is where the boot block jumps after relocating and write-protecting the sys-
tem BIOS.

5.1.3.2. POST Jump Table Execution

The execution of the POST jump table in Award BIOS version 6.00PG is a bit dif-
ferent from Award version 4.50PGNM. In the older version, two different POST
jump tables were executed one after the other. In Award BIOS version 6.00PG, the
execution of the smaller jump table is “embedded” as part of the “main” POST
jump table execution. This can be seen in the disassembled code in Listing 5.16.
The entries in the POST jump table that are commented as dummy procedures in
Listing 5.16 accomplish nothing. They just return when they are called or merely
clear the carry flag and then return. Remember that the contents of the jump table
are addresses of the POST procedures in the same segment as the jump table.

From the boot block section, you know that at this point only the system BIOS
has been decompressed, out of the entire compressed component in the BIOS
binary. And you know that the decompression block is located at segment 1000h

i This image of the BIOS binary is already copied to RAM at 30_0000h-37_FFFFh.

Chapter 5: Implementation of Motherboard BIOS 143

in RAM. However, I show later that this decompression engine will be relocated
elsewhere and segment 1000h will be used by awardext.rom.

Listing 5.16. POST Jump Table Execution

5.1.3.3. Decompression Block Relocation and awardext.rom
Decompression

Listing 5.17. Decompression Block Relocation and awardext.rom
Decompression

144 Part li: Motherboard BIOS Reverse Engineering

Chapter 5: Implementation of Motherboard BIOS 145

In the code in Listing 5.17, the decompression block is found by searching for
the - Award Decompression Bios = string. The code then relocates the decom-
pression block to segment 400n. This code is the part of the first POST routine.
As you can see from the previous section, there is no “additional” POST routine
carried out before to this routine because there is no “index” in the additional
POST jump table for POST number 1.

Recall from boot block section that you know that the starting physical
address of the compressed BIOS components in the image of the BIOS binary at
30_0000h—37_FFFFh has been saved to RAM at 6000n—6400n during the execution
of the decompression engine. In addition, this starting address is stored in that area
by following this formula:

Note that destination segment address is starting at offset 11h from the be-
ginning of every compressed component. By using this formula, you can find out,
which component is decompressed on a certain occasion. In this particular case,
the decompression routine is called with 8200n as the index parameter. This breaks
down to the following:

This value (7#h) corresponds to compressed awardext.rom because it’s the
value in the awardext.rom header, i.e., awardext.rom’s “destination segment” is
4077h. Note that preceding the binary AND operation mimics the decompression
routine for extension components. The decompression routines will be clear later
when I explain the decompression routine execution during POST.

i The offset is calculated by including the preheader.

146

Part Il: Motherboard BIOS Reverse Engineering

5.1.3.4. Extension Components Decompression

Listing 5.18. Extension Components Decompression

Chapter 5: Implementation of Motherboard BIOS 147

148 Part ll: Motherboard BIOS Reverse Engineering

Chapter 5: Implementation of Motherboard BIOS 149

It’s clear in the call to the decompression block in Listing 5.18 that everything is
similar to the decompression during the execution of the boot block in RAM.
However, there are some things to note:

O Consider the amount of component handled. The preceding becompress Component
routine only decompress one component during its execution, whereas the
Decompress System BIOS routine in the boot block decompress the system
: BIOS and saves the information pertaining to the compressed extension com-
‘ ponent to RAM.
' O If the input parameter for Decompress Component in the di register has its MSB
| set and the value in di is not equal to o1, the target segment for the decom-
pression is not the default target segment for the extension components, i.e.,
not segment 4000h,
O If the input parameter for becompress_Component in the di register has its MSB
set and the value in di is equal to F0n, the target offset for the decompression is
not the default target offset for the extension components, i.e., not offset 0000h.

Apart from these things, the decompression process is uses the same decom-
pression engine as the one used during boot block execution.

5.1.3.5. Exotic Intersegment Procedure Call

There are some variations of intersegment procedure call in Award BIOS version
6.00PG system BIOS, along with the extension to the system BIOS. Delve into them
one by one.

Listing 5.19. First Variant of the EO00h Segment to FO00h Segment
' ~ Procedure Call

150 Part ll: Motherboard BIOS Reverse Engineering

As you can see in Listing 5.19, the procedure in the F000h segment (F_seq)
is called by using a weird stack trick. It may not be obvious how the instruction
in the procedure in Listing 5.19 can suddenly point to the right destination proce-
dure offset. 'm using the IDA Pro setFixup internal function to accomplish it.
As an example, I present the script to convert the instruction at address E000:70C5h
Lo point to the right destination procedure offset.

Listing 5.20. Using IDA Pro SetFixup Function

Chapter 5: Implementation of Motherboard BIOS 151

There is a second form of the E_seq to F_seg intersegment, call as shown in
Listing 5.21.

Listing 5.21. Second Variant of the EO00h Segment to FO00h Segment
Procedure Call

152 Part |l: Motherboard BIOS Reverse Engineering

The decompressed system BIOS extension in segment 1000n also has some
form of intersegment procedure call to execute the “services” of the system BIOS.
An example is shown in Listing 5.22.

Listing 5.22. 1000h Segment (XGROUP Segment) to EO00h Segment
Procedure Call

Chapter 5: Implementation of Motherboard BIOS 153

The system BIOS at segment £E000n also calls “services” provided by the system
BIOS extension.

Listing 5.23. First Variant of the E000h Segment to XGROUP Segment
Procedure Call

154 Part Il: Motherboard BIOS Reverse Engineering

Now, proceed to the convoluted procedure call from £ seg to F seg, courtesy

of the Award BIOS engineers. I don’t know why they do this. Just see how it works.
I present one example and then analyze the stack handling to see how it works. Call
this method call Fseqg 1

Listing 5.24. Third Variant of the E000h Segment to FO00h Segment
Procedure Call

Chapter 5: Implementation of Motherboard BIOS 155

If you don’t pay attention carefully, the code in Listing 5.24 will seem convo-
luted. However, if you construct the stack values by following the code execution
starting at £000:98c8, you'll be able to grasp it quite easily. Note that the index
added to the value of bp register in the disassembled code in Listing 5.24 and in Fig. 5.3
is in decimal, not in hexadecimal. The stack values are shown in Fig. 5.3.

156 Part ll: Motherboard BIOS Reverse Engineering

call_Fseg_ 1 (atE000:98c8h)stack values
when they are ready to be modified by inter seg call

This stack value is "trashed"
by retn 2 below
eeseen e 1B42h 24
[bp+20]
inter_seg call patches
98CEh the stack value to point to
the return address
E000h
Ppethl E000:E913h contains: retn 2
E913h
FOOOh
5
i, DR F000:8017h contains: ret ¢
inter_seg_call 8017h
patches the stack g
value to point to the A ax } .f\ddress of the "target procedure
“target procedure” [bp+8] in segment FOOOh
FO0Oh
F000:8016h contains: reln
01
[bp+4] R
ax
Popped from stack by
inter seg call
[op+0) c6

Fig. 5.3. Stack of the third variant of the EO00h segment to FOOOh
segment procedure call

Fig. 5.3 clearly shows that the value of the ax register is not used. The ax register
value merely serves as a placcholder. In Listing 5.24, it’s also clear that the called
procedure is returning immediately without accomplishing anything.

From this point on, call the system BIOS extension in RAM the xGroUP seg-
ment. The convoluted procedure call is also found on call from the £ _seq to the
%Groue segment. Name this procedure call ca11l xGrour seg.

Listing 5.25. Second Variant of the E000h Segment to XGROUP Segment
Procedure Call

Chapter 5: Implementation of Motherboard BIOS 157

Listing 5.25 shows a convoluted procedure call. As before, dissect this proce-
dure call using a stack manipulation figure. Note that the index added to the value
of the bp register in the disassembled code in Listing 5.25 and in Fig. 5.4 is in
decimal, not in hexadecimal. Fig. 5.4 shows the stack manipulation story.

158 Part li: Motherboard BIOS Reverse Engineering

call_XGROUP_seg (at E000:98EBh) stack values
when they are ready to be modified by inter seg call

This stack value is "trashed"
by retn 2 below

: inter seg call palches

e the stack value to point to
the return address

This stack value is "trashed"
by retf 2 below

E000:E913h contains: retn 2

inter seg call
patches the stack
value to point to the
"target procedure”

1000:C506h contains: retf 2

Address of the "target procedure
in segment 1000h

1000:C504h contains: retn

Popped from stack by

----------------- 7C20h
[bp+20]
98F1h
1h
[bp+16]
E000h
50 otz E913h
3 C506h
..“' ax
[bpt8]
1000h
o C504h
ax
(bp+0] flag

inter seg call

Fig. 5.4. Stack of the second variant of the EO0OOh segment
to XGROUP segment procedure call

Fig. 5.4 clearly shows that the constant value 1 that’s pushed to stack is not used
and merely serves as a placeholder. The target procedure resides in the xcroue
segment, i.e., segment 1000h.

There’s also a variation of this convoluted intersegment procedure call in the
call from the £ _seg to the ¥ _seg procedure. I won’t explain it in depth. However,
I will present an example code. | think it’s easy to figure out, because you’ve seen
two kinds of variations of this procedure before. If it’s still too hard to compre-
hend, draw the stack usage, like in Figs. 5.3 and 5.4.

Chapter 5: Implementation of Motherboard BIOS 159

Listing 5.26. Fourth Variant of the E000h Segment to FO00h Segment
Procedure Call

160 Part ll: Motherboard BIOS Reverse Engineering

This section explains the execution of the core BIOS binary, i.e., the system
BIOS. If you wish to find some routine within the system BIOS or wish to know
more about the overall Award BIOS version 6.00PG code, follow the POST jump
table execution to find the intended target. It’s only necessary if you don’t know
the “binary signature” of the target routine in advance. If the binary signature
is known, you can directly scan the target binary to find the routine. I delve more
into this issue in the BIOS modification chapter.

5.2. AMI BIOS

In this section, I dissect a sample AMI BIOS binary based on AMI BIOS code ver-
sion 8 (AMIBIOS8). AMI BIOS comes in several code bases. However, since 2002
AMI BIOS uses this version of the code base. The code base version is recognized
by inspecting the binary. The AMIBT05C0800 string in the BIOS binary identifies the
AMI BIOS binary as AMI BIOS code version 8.

i A binary signature is a unique block of bytes that represent unique block of machine instructions
within an executable file. - '

i
:
[

Chapter 5: Implementation of Motherboard BIOS 161

The BIOS binary that dissected here is the BIOS for a Soltek SL.865PE mother-
board. The BIOS release date is September 14, 2004. This motherboard uses an In-
tel 865PE chipset. It only supports a 4-GB memory address space. You may want to
download the datasheet of this chipset from Intel website to become accustomed to
the system-wide addressing scheme of this chipset and the role of its PCI configura-
tion register.

5.2.1. AMI BIOS File Structure

The structure of an AMI BIOS binary is similar to that of an Award BIOS binary.
The boot block is placed in the highest address range within the binary, and the
compressed components are placed below the boot block. Note that some padding
bytes! exist between them.

FFFF_FFFFh : R
‘ Boot block J I
FFFF_AQ0CQh| s i e o =

Padding bytes (FFh) |

nﬂ'l compressed component

[BIOS chip address range

e compressed component

2“dcompressed component

1% compressed component

FFFF_FFFFh — size of BIOS chip |
Memory -mapped hardware
| Syslam- RAM
o——— —
Fig. 5.5. AMI BIOS binary mapping to system address space

Fig. 5.5 shows the mapping of the BIOS binary components in the system-
wide address space of the respective motherboard. Note that the chipset dissected
here is different from the one dissected in the Award BIOS section. The current
chipset (Intel 865PE) only supports 4-GB addressing. That’s why you don’t see any

i The padding bytes in this BIOS are bytes with FFh values.

162 Part ll: Motherboard BIOS Reverse Engineering

mapping for an address range above the 4-GB limit in Fig. 5.5. I won’t explain the
mapping of the binary in detail because you see it from a hex editor and other
binary mapping-related concepts. Please refer to Section 5.1.1 in the Award BIOS
section for that. You will be able to infer it on your own once you've grasped the
concepl explained there.

5.2.2. AMI BIOS Tools

AMI BIOS tools are not as widespread and complete as Award BIOS tools. AMI
BIOS tools also can be harder to work with compared to Award BIOS tools. AMI
BIOS tools found freely in the Web are as follows:

O Amibcp is a BIOS modification tool made by American Megatrends, the maker
of AMI BIOS. This tool comes in several versions. Every version of the tool has
its corresponding AMI BIOS code base that it can work with. If the code base
version of the BIOS doesn’t match the AMIBCP version, you can’t modify the
BIOS binary. AMIBCP allows you to change the values of the BIOS setup with
it. However, altering the system BIOS in a more complicated modification is
quite hard even with this tool.

8 Amideco is the AMI BIOS binary decompressor, coded by Russian programmer
Anton Borisov. This tool can show the compressed modules within the AMI
BIOS binary, and it can decompress the compressed module within the BIOS
binary. To develop a decompressor like this one, you have to analyze the de-
compression block of the respective BIOS and then mimic that functionality in
the decompressor program you have made.

[won’t use the tool mentioned previously in the reverse engineering in this sec-
tion. They are mentioned just in case you want to modify AMI BIOS, because you
don’t even need it to carry out the AMI BIOS reverse engineering shown here.

There is free documentation from AMI that can help you in the reverse engi-
neering process, i.e., the AMIBIOS8 Check Point and Beep Code List. It is available
for download at American Megatrends’ official website (http://www.ami.com).
This document contains explanations about the meaning of the POST code and the
related task that’s carried out by the BIOS routine that emits the POST code. POST
codes are debugging codes written to the debugging port (port 80h) during BIOS
execution. You can use this documentation to comprehend the disassembled
source code from the BIOS binary. You will encounter such a usage in the next

Chapter 5: Implementation of Motherboard BIOS 163

two subsections. To use the document, you just need to compare the value written
to port 80h in the disassembled BIOS binary and the respective explanation
in the document.

5.2.3. AMI Boot-Block Reverse Engineéring

AMI BIOS boot block is more complicated compared to Award BIOS boot block.
However, as with other x86 BIOSs, this BIOS starts execution at address
OxEFFE FFFO (0xFO00:0xFFFO in real mode). Start to disassemble the Soltek
SL865PE BIOS in that address. I won’t repeat the steps to set up the disassembling
environment in IDA Pro because it was explained in the previous sections and
chapters.

5.2.3.1. Boot-Block Jump Table

AMI BIOS boot block contains a jump to execute a jump table in the beginning of
its execution, as shown in Listing 5.27.

Listing 5.27. AMI BIOS Boot Block Jump Table

164

Part Il: Motherboard BIOS Reverse Engineering

As shown in Listing 5.27, the jump table contains many entries. I won’t delve
into them one by one, so just peek at entries that affect the execution flow of the
boot block code. The entries in the preceding jump table prepare the system (CPU,
motherboard, RAM) to execute the code in RAM. To accomplish that, it tests
the RAM subsystem and carries out preliminary DRAM initialization as needed.
The interesting entry of the jump table is the stack space initialization with a call to
the setup stack function. This function is defined as shown in Listing 5.28.

Listing 5.28. setup_stack Function

Chapter 5: Implementation of Motherboard BIOS 165

The setup stack function initializes the space to be used as the stack at
segment 53h. This function also initializes the ds and es segment registers to enter
flat real mode or voodoo mode. In the end of the function, execution is directed
to the decompression block handler.

5.2.3.2. Decompression Block Relocation

The decompression block handler copies the decompression block from BIOS
ROM to RAM and continues the execution in RAM as shown in Listing 5.29.

Listing 5.29. Decompression Block Relocation Routine

166 Part ll: Motherboard BIOS Reverse Engineering

The copy decomp block function in Listing 5.29 copies 24 KB of boot block
code (0xFFFE_A000-0xFFFF_FFFF) to RAM at segment 0x8000 and continues the
code execution there. From Listing 5.29, you should realize that the mapping of the
offsets in the Fo00n segment and the copy of the last 24 KB of the F000h segment
in RAM at segment 8000h are identical.

Now, I delve into code execution in RAM.

Listing 5.30. Boot Block Execution in RAM

Chapter 5: Implementation of Motherboard BIOS 167

The execution of code highlighted in bold at address 0x8000: 0xA255 in Listing 5.30
is enigmatic. Start with the stack values right before the rett instruction takes place
in copy_decomp_block. Mind that before copy decomp block is executed at address
0xF000: 0xA08F, the address of the next instruction (the return address), i.e., 0xA091,
is pushed to stack. Thus, you have the stack shown in Fig. 5.6 before the retf in-
struction takes place in copy_decomp block.

Now, as you arrive in the decomp block start function, right before the ret
instruction, the stack values shown in Fig. 5.6 have already been popped, except
the value in the bottom of the stack, i.e., 0xa091. Thus, when the ret instruction
executes, the code will jump to offset 0xa091. This offset contains the code shown
in Listing 5.31.

Listing 5.31. Decompression Block Handler Routine

Bottom of stack /\
(higher addresses) 0xA091

Value of es register

0xFFFFA000 Stack address range
0x80000
(Iowa;r :3.,?;:;‘;'; decomp_blockl_start offset value \ /

Fig. 5.6. Stack values during 327 routine execution

168 Part Il: Motherboard BIOS Reverse Engineering

5.2.3.3. Decompression Engine Initialization

The decompression engine initialization is rather complex. Pay attention to its exe-
cution. The decompression engine initialization is shown in Listing 5.32.

Listing 5.32. Decompression Block Initialization Routine

Chapter 5: Implementation of Motherboard BIOS 169

The decompression engine used in AMIBIOSS is the LHA/LZH decompressor.
It’s similar to the one used in the AR archiver in the DOS era and the one used in
Award BIOS. However, the header of the compressed code has been modified.
Thus, the code that handles the header of the compressed components is different
from the ordinary LHA/LZH code. However, the main characteristic remains in-
tact, i.e., the compression algorithm uses a Lempel-Ziv front end and Huffman
back end. The decompression engine code is long, as shown in Listing 5.33.

Listing 5.33. Decompression Engine

The first call to this decompression engine passes 8r98ch as the source address
parameter and 120000h as the destination address parameter for the decompres-
sion. I made an IDA Pro plugin to simulate the decompression process. It’s a trivial
but time-consuming process. However, you might want to “borrow” some codes
from the original source code of the AR archiver that’s available freely on the Web
to build your own decompressor plugin. Note that the names of the functions

170

Part lI: Motherboard BIOS Reverse Engineering

in the AR achiver source code are similar to the names of the procedures in the pre-
ceding disassembly listing. It should be easier for you to build the decompressor
plugin with these hints.

Back to the code: after the compressed part decompressed to memory at
120000h, the execution continues to copy decomp result.

5.2.3.4. BIOS Binary Relocation into RAM

The copy decomp result function relocates the decompressed part of the boot
block as shown in Listing 5.34.

Listing 5.34. copy_decomp_result Function

Chapter 5: Implementation of Motherboard BIOS 171

172 Part ll: Motherboard BIOS Reverse Engineering

The copy_decomp_result function copies the decompression result from ad-
dress 120000h to segment F000h. The destination and the source of this operation
are provided in the header portion of the decompressed code at address 120000n.
This header format is somehow similar to the header format used by the decom-
pression engine module encounter previously. The header is shown in Listing 5.35.

Listing 5.35. Decompression Result Header

Then, the execution continues with a call to the procedure at the overwritten
part of segment F000h, as shown in Listing 5.36.

Listing 5.36. Calling the Procedure in the Overwritten FO0O0h Segment

Chapter 5: Implementation of Motherboard BIOS 173

The prepare sys BI0s function in Listing 5.36 accomplishes several tasks. First,
preparc_sys BIOS copies the BIOS binary from a high BIOS address (near the
4-GB address range) to RAM at segment 16 0000nh—19 FFFFh by calling the
Relocate BIOS Binary function. The Relocate BIOS Binary function also copies
the pure code of the BIOS binary (nonpadding bytes) to segment 12_0000h—15_FFFFh.
This action is shown in Listing 5.37.

Listing 5.37. Relocating BIOS Binary to RAM

Second, the prepare sys BT0S function checks the checksum of the BIOS bi-
nary relocated to segment 12_0000h—15 FFFFh by calling calc Module sum function.
This is actually an 8-bit checksum calculation for the whole BIOS image, as shown
in Listing 5.38. Note that the aforementioned address range is initialized with rrn
values in Relocate BIOS Binary function before being filled by the copy of the
BIOS binary.

Listing 5.38. BIOS Binary Checksum Calculation

174 Part ll: Motherboard BIOS Reverse Engineering

Third, the prepare sys BIos function validates the compressed AMI system
BIOS at 12_0000n and then decompresses the compressed AMI system BIOS into
RAM at segment 1a_0000h by calling Bootblock posT D7n. The disassembly of the
latter function is shown in Listing 5.39.

Listing 5.39. BIOS Binary Checksum Calculation

Chapter 5: Implementation of Motherboard BIOS 175

176 Part lIl: Motherboard BIOS Reverse Engineering

Chapter 5: Implementation of Motherboard BIOS 177

In the normal condition, the Bootblock POST D7h function shouldn’t return.
It will continue its execution in the “interface” segment (segment 1352h). The code
in the interface segment will decompress the system BIOS and other compressed
component, and then jump into the decompressed system BIOS to execute POST.
I’'m building a custom IDA Pro plugin to find the value of this interface segment
because it’s not easy to calculate it by hand. The interface segment also contains
a decompression engine. This “new” decompression engine is the same as the old
decompression engine that was overwritten during Bootblock POST D7h execution.
However, this new decompression engine is located in a higher offset address in the
same segment as the old one to accommodate space for the POST preparation
functions. Listing 5.39 also shows that the AMI BIOS code document mentioned in
the previous section becomes handy when you need to analyze the boot block code,
because you can infer the functionality of the code when you encounter a code that
emit a POST code to port 8oh. The next subsections also use this fact to infer
the code within the disassembled BIOS binary.

5.2.3.5. POST Preparation

The interface module is placed at segment 1352n. POST is prepared as shown
in Listing 5.40.

Listing 5.40. Preparing for POST

The expand function in Listing 5.40 decompresses the compressed module
within the BIOS. The relocate bios modules function in Listing 5.40 relocates the
decompressed module elements into their respective address ranges. These address
ranges are contained in the beginning of the decompressed BIOS modules and
are used by relocate bios modules to do the relocation. In this case, the starting

178 Part II: Motherboard BIOS Reverse Engineering

address of the decompressed BIOS module at this point is 1A_0000nh. Thus, the ad-
dress ranges for the BIOS modules are provided as shown in Listing 5.41.

Listing 5.41. BIOS Modules Memory Mapping

Chapter 5: Implementation of Motherboard BIOS 179

180

Part Il: Motherboard BIOS Reverse Engineering

As shown in Listing 5.41, the sizes of the address ranges that will be occupied by
the BIOS modules are encoded. The most significant bit in the size of the module
(the 31st bit in the second double word of every entry) is a flag for whether to relo-
cate the respective module. If it is set, then the relocation is carried out; otherwise,
it is not. Note that the current segment where the code executes (1352h) is also con-
tained in the address ranges shown earlier. However, that doesn’t mean that the
current code being executed will be prematurely overwritten, because its respective
address range is not functioning, i.e., its 31st bit is not set. Thus, no new code will
be relocated into it. To relocate the BIOS modules in this particular AMI BIOS bi-
nary, I'm using the IDA Pro script shown in Listing 5.42.

Listing 5.42. BIOS Modules Relocation Script

Chapter 5: Implementation of Motherboard BIOS 181

182 Part Il: Motherboard BIOS Reverse Engineering

After the BIOS modules’ relocation takes place, the execution continues to ini-
tialize some PCI configuration register. The routine initializes the chipset registers
that control the BIOS shadowing task to prepare for the POST execution. The boot
block execution ends here, and the system BIOS execution starts at the jump into
the Execute posT. I dissect this function in the next subsection.

5.2.4. AMI System BIOS Reverse Engineering

The system BIOS for this particular AMI BIOS is reverse engineered by analyzing
its POST jump table execution. The execution of the POST jump table starts with
a far jump to the 2771h segment from the interface module, as shown in Listing 5.43.

Listing 5.43. POST Jump Table Execution

]

Chapter 5: Implementation of Motherboard BIOS 183

Before POST jump table execution, the routine at segment 2771h initializes all
segment registers that will be used, and it initializes the preliminary interrupt rou-
tine. This task is shown in Listing 5.44.

Listing 5.44. Initializing Segment Registers before POST Execution

184 Part ll: Motherboard BIOS Reverse Engineering

The POST jump table is located in the beginning of segment 2771h, as shown
in Listing 5.45. 1

Listing 5.45. POST Jump Table

Chapter 5: Implementation of Motherboard BIOS 185

~—

Note that 'm not showing the entire POST jump table in Listing 5.45. To ana-
lyze the POST jump table entries semiautomatically, you can use the IDA Pro script
shown in Listing 5.46.

Listing 5.46. POST Jump Table Analyzer Script

186 Part ll: Motherboard BIOS Reverse Engineering

The POST entries marked as “dummy” in Listing 5.46 don’t accomplish any-
thing; they merely return by executing the retf instruction when they execute.
From this point on, system BIOS reverse engineering is trivial because you have
already marked and done some preliminary analysis on those POST jump table
entries. I am not going to delve into it because it would take too much space in
this book. You only need to follow this POST jump table execution to analyze
the system BIOS.

Chapter 6: BIOS Modification

Preview

This chapter delves into the principles and mechanics of BIOS modification. It puts
together all of the technology that you learned in previous chapters into a proof of
concept. Here 1 demystify the systematic BIOS modification process that only a few
have conquered. I focus on Award BIOS modification.

188 Part ll: Motherboard BIOS Reverse Engineering

6.1. Tools of the Trade

You are only as good as your tools. This principle also holds true in the realm of
BIOS modification. Thus, start by becoming acquainted with the modification
tools. The tools needed to conduct an Award BIOS modification are as follows:

O Disassembler: IDA Pro disassembler. A disassembler is used to comprehend
the BIOS binary routine to find the right place to carry out the modification.
The IDA Pro freeware version is available as a free download at
http://www.dirfile.com/ida_pro_freeware_version.htm.

O Hex editor: Hex Workshop version 4.23. The most beneficial feature of Hex
Workshop is its capability to calculate checksums for the selected range
of file that you open inside of it. You will use this tool to edit the BIOS binary.
However, you can use another hex editor for the binary editing purposes.

O Assembler: FASMW.! FASMW is freeware and available for download at
http://flatassembler.net in the download section.

O Modbin. There are two types of modbin, modbin6 for Award BIOS version
6.00PG and modbin 4.50.xx for Award BIOS version 4.5xPG. You need this
tool to look at the Award BIOS components and to modify the system BIOS.
You can download it at http://www.biosmods.com in the download section.
This tool also used to ensure that the checksum of the modified BIOS is cor-
rected after the modification. Modbin is not needed if you don’t want to do
modification to the system BIOS. In this chapter, you need modbin because
you are going to modify the system BIOS.

(1 Cbrom. This tool is used to view the information about the components inside
an Award BIOS binary. It’s also used to add and remove components from the
Award BIOS binary. Cbrom is available freely at http://www.biosmods.com in
the download section. Note that there are many versions of Cbrom. I can’t say
exactly, which one you should be using. Try the latest version if you are modi-
fying Award BIOS version 6.00PG; otherwise, try an older version. Cbrom is
not needed if you only modify the system BIOS and don’t touch the other
components in the Award BIOS binary.

O Chipset datasheets. They are needed if you want to build a patch for the corre-
sponding chipset setting. Otherwise, you don’t need it. For the purpose of the
sample modification in this chapter, you need the VIA 693A datasheet.
1t’s available for download at http://www.rom.by/doki.htm.

i The Windows version of FASM.

Chapter 6: BIOS Modification 189

There is one more BIOS tool resource on the Internet that I haven’t mention.
It's called Borg number one’s BIOS tool collection, or BNOBTC for short. It is the
most complete BIOS tool collection online. However, its uniform resource locator
(URL) sometimes moves from one host to another. Thus, you may want to use
Google to find its latest URL. At the writing of this book, BNOBTC was no longer
accessible. However, some of its contents are mirrored by other BIOS modification
websites.

You learned about the IDA Pro disassembler, FASM, and hex editor in the pre-
vious chapters. Thus, modbin, cbrom, and the chipset datasheet remain. I explore
them one by one.

Start with modbin. Modbin is a console-based utility to manipulate Award sys-
tem BIOS. You know that there are two flavors of modbin, one for each Award
BIOS version. However, the usage of these tools are similar, just load the BIOS
file into modbin and modify the system BIOS with it. Moreover, there is one
“undocumented feature” of modbin that’s useful for BIOS modification purposes:
During modbin execution, when you start to modify the BIOS binary that’s cur-
rently loaded, modbin will generate some temporary files. These temporary files are
Award BIOS components. They are extracted by modbin from the BIOS binary file.
Each of the two types of modbin generates different kinds of temporary files.
However, both versions extract the system BIOS. Both also pack all temporary
files into one valid Award BIOS binary when you save changes in modbin. Here are
the details:

O Modbin version 4.50.80C extracts the following components from an Award
BIOS version 4.50PG binary:

® Bios.rom. It is the compressed version of last 128 KB of the BIOS file.
It contains the compressed original.tmp, the boot block, and the decom-
pression block.

® Original.tmp. It is the decompressed system BIOS.
The execution of modbin 4.50.80C is shown in Fig. 6.1.
O Modbin version 2.01 extracts the following components from an Award BIOS
version 6.00PG binary:
® Mistring.bin. It is the compressed version of _en_code.bin.

® Original.bin. It is the decompressed system BIOS.
® Xgroup.bin. It is the decompressed system BIOS extension.

The execution of modbin 2.01 is shown in Fig. 6.2.

190 Part ll: Motherboard BIOS Reverse Engineering

CADIOS M- 1\W0DEIN. EXL

Rkl & vios_Madification

) Mk a1 Fridr

& ratiah the foier 20 e
| o [CImoven e
3 ettt B v ot
Diupdate 2y

([E) Wil Ui B updats e ith .t
3 ORIGINAL TMP |
= mos.nom

othes piaces

e LOCE Ok 1L2)
&) My Dot

> A7

| Modbin 4.50.80C | " Temporary files
in action [generated by
| Modbin 4.50.80C

Fig. 6.1. Modbin 4.50.80C in action

! » 2
e or load fAwvardBIOS version 6.8 hinary

& option allows vou to write all the
uil if ied data

Modbin 2.01.01 E emporary files createdﬁ
| in action | by Modbin 2.01.01

Fig. 6.2. Modbin 2.01 in action

Modbin might extract even more components than those previously-described.
However, | am only interested in the extracted system BIOS and system BIOS ex-
tension, since both provide you with the opportunity to modify the core BIOS code
flawlessly. Figs. 6.1 and 6.2 show the existence of the temporary decompressed
Award BIOS components at runtime. Thus, during the existence of these tempo-
rary files, you can edit the temporary system BIOS (original.tmp or original.bin).
The net effect of modifying this binary will be applied to the overall BIOS binary

Chapter 6: BIOS Modification 191

when you save all changes and exit modbin. Modbin is working “under the hood”
to compress the modified temporary system BIOS into the BIOS binary that you
saved. Now can you see the pattern? It is a neat way to modify the system BIOS.
You don’t have to worry about the checksums, either. Modbin will fix them. Here
is a system BIOS modification technique that I've tested; it works flawlessly:

1. Open the BIOS binary to be patched with modbin.

2. Open the temporary system BIOS (original.tmp or original.bin), generated by
step 1, in the hex editor and subsequently patch it with the hex editor. At this
point, you can also copy the decompressed system BIOS to another directory to
be examined with disassembler. Remember that at this point modbin must stay
open or active.

3. Save the changes and close modbin.

Note that both versions of modbin work flawlessly in Windows XP service pack 2
and under normal usage; modbin enables you to change BIOS settings, unhide op-
tions, setting default values, etc. I won’t delve into it because it’s easy to become ac-
customed to. I will emphasize one point: modbiné version 2.01 has an issue with
some 512-KB and 1-MB Award BIOSs. If you modify the system BIOS using the
preceding steps, the changes are not saved in the modified BIOS binary. In this par-
ticular case, you can use LHA to compress the modified system BIOS and replace
the original system BIOS in the BIOS binary and can subsequently make some
changes with modbiné version 2.01 to fix the checksums.

The next tool to learn is cbrom. There are several versions of cbrom. All of
them have related functions: to insert a BIOS component, to extract a BIOS com-
ponent, to remove a BIOS component or to display information about compo-
nents inside an Award BIOS binary. However, there is one thing that you must
note: Cbrom cannot extract or insert the system BIOS, but it can extract or insert
the system BIOS extension. Cbrom is often used in accordance with modbin; cbrom
is used to manipulate components other than the system BIOS, and modbin is used
to manipulate the system BIOS. Cbrom is also a console-based utility. Now, see
how it works.

Fig. 6.3 shows the commands applicable to cbrom. Displaying the options
or help in cbrom is just like in DOS days; just type /2 to see the options and
their explanation.

Now, get into a little over-the-edge chrom usage. Remove and reinsert the
system BIOS extension in Iwill VD133 BIOS. This BIOS is based on Award BIOS ver-
sion 4.50PG code. Thus, its system BIOS extension is decompressed into segment 4100h

192 Part ll: Motherboard BIOS Reverse Engineering

7lago
soeml-7

tem BIOS

1 :\OLGANDARMAUAN>

Fig. 6.3. Cbrom command options

during POST, not to segment 1000h as you saw in Chapter 5, when you reverse en-
gineered Award BIOS. Here is an example of how to release the system BIOS exten-
sion from this particular BIOS binary using cbrom in a windows console:

E:\BIOS_M~1>CBROM207.EXE 'VEBB’TZ’B”BK& Jother 4100:0 release
f‘BROM v2 07 (C) Award Software 2000 All Rigl;ts
[Other] ROM is relé‘:
E:\BIOS M1

Reg_e;ved.

Note that the system BIOS extension is listed as the “other” component. Now,
see how you insert the system BIOS extension back to the BIOS binary:

E: \BIGB“ M~1>CBRMO7:?E§€E VBS&?BJB'BB{ fother 4100:0 wardexr. rom .
CBROM V2,07 (C)Bward Software 2000 m Rights Reserved.
Adding awardext.rom .. 66.7% e =

E:\BIOS M~1>
So far, I've been playing with cbrom. The rest is just more exercise to become
accustomed with it.

Proceed to the last tool, the chipset datasheet. Reading a datasheet is not a trivial
task for a beginner to hardware hacking. The first thing to read is the table

Chapter 6: BIOS Modification 193

of contents. However, | will show you a systematic approach to reading the chipset
datasheet efficiently:

I. Go to the table of contents and notice the location of the chipset block diagram.
The block diagram is the first thing that you must comprehend to become
accustomed to the chipset datasheet. And one more thing to remember: you
have to be acquainted with the bus protocol, or at least know the configuration
mechanism, that the chipset uses.

2. Look for the system address map for the particular chipset. This will lead you to
system-specific resources and other important information regarding the ad-
dress space and 1/0 space usage in the system.

3. Finally, look for the chipset register setting explanation. The chipset register
setting will determine the overall performance of the motherboard when
the BIOS has been executed. When a bug occurs in a motherboard, it’s often
the chipset register value initialization that causes the trouble.

You may want to look for additional information. In that case, just proceed on
your own.

Once you have read and can comprehend some chipset datasheets, it will be
much easier to read and comprehend a new chipset datasheet. Reading a chipset data-
sheet is necessary when you want to develop a certain patch that modifies the chipset
register setting during POST or after POST, before the operating system is loaded.

Now, you have completed the prerequisites to modify the BIOS. The next sec-
tion will delve into the details of Award BIOS modification.

6.2. Code Injection

, Code injection is an advanced BIOS modification technique. As the name implies,
! this technique is accomplished by injecting code to the BIOS. This section focuses
on injected code that will be executed during the boot process, when the BIOS
is executed to initialize the system. There are several techniques to inject code
in Award BIOS:

I O Patch the POST jump table in the system BIOS to include a jump into a cus-
tomized or injected routine. This technique is portable among the different

i Code injection is adding a custom-made code into an executable file.

194 Part Il: Motherboard BIOS Reverse Engineering

versions of Award BIOS.! Thus, this is the primary modification technique
in this chapter.

O Redirect one of the jumps in the boot block into the custom injected proce-
dure. In this case, the injected procedure is also placed in the boot block. How-
ever, this technique has some drawbacks, i.c., the padding bytes in the boot
block area are limited. Thus, the injected code must fit in the limited space.
Moreover, you can’t inject code that uses stack because stack is unavailable dur-
ing boot block execution. Thus, I won’t delve into this technique here.

O Build an ISA expansion ROM and insert it into the BIOS binary by using
cbrom. This technique works fine for older Award BIOS versions, mostly ver-
sion 4.50PG. It works in Award BIOS version 6.00PG but not in all Award
BIOS version 6.00PG binary files. Thus, it cannot be regarded as portable.
Moreover, it has some issues with a system that has modified BIOS. Thus, I
won’t delve into it.

From now on, you will learn the technique to patch the POST jump table. Re-
call from Section 5.1.3.2 that there is a jump table called the POST jump table in the
system BIOS. The POST jump table is the jump table used to call POST routines
during system BIOS execution.

The basic idea of the code injection technique is to replace a “dummy” entry in
the POST jump table with an offset into a custom-made procedure that you place
in the padding-bytes section of the system BIOS. The systematic steps of this tech-
nique are as follows:

1. Reverse engineer the Award BIOS with IDA Pro disassembler to locate the
POST jump table in the system BIOS. It’s recommended that you start the re-
verse engineering process in the boot block and proceed to the system BIOS.
However, as a shortcut, you can jump right into the entry point of the decom-
pressed system BIOS at Fo00: F80Dh.

2. Analyze the POST jump table; find a jump to dummy procedure. If you find
one, continue to next step; otherwise, stop here because it’s not possible to
carry out this code injection method in the BIOS.

3. Assemble the custom procedure using FASMW. Note the resulting binary size.
Try to minimize the injected code size to ensure that the injected code will fit

" There are two major revision of Award BIOS code, i.e., Award BIOS version 4.50PG and Award
BIOS version 6.00PG. There is also a rather unclear version of Award BIOS code that’s called Award
BIOS version 6. However, Award BIOS version 6 is not found in recent Award BIOS binary releases.

Chapter 6: BIOS Modification 195

into the “free space™ of the system BIOS. The “free space” is the padding-bytes
section of the system BIOS.

4. Use modbin to extract the genuine system BIOS from the BIOS binary file.

5. Use hex editor to analyze the system BIOS to look for padding bytes, where you
can inject code. If you don’t find a suitable area, you’re out of luck and cannot
proceed to injecting code. However, the latter is the seldom case.

6. Inject the assembled custom procedure to the extracted system BIOS by using
the hex editor.

7. Use a hex editor to modify the POST jump table to include a jump to the pro-
cedure.

8. Use modbin to pack the modified system BIOS into the BIOS binary.

9. Flash the modified BIOS binary to the motherboard.

As a sample code-injection case study, I will show you how to build a patch for
Iwill VD133 motherboard BIOS. The BIOS date is July 28, 2000, and the file name
is vd30728.bin. A motherboard is based on the VIA 693A-596B chipset. This patch
has been tested thoroughly and works perfectly. The BIOS of this motherboard is
based on the older Award BIOS version 4.50PG code. However, as you have
learned, this code injection procedure is portable among Award BIOS versions be-
cause all versions use the POST jump table to execute POST. Proceed as explained
in the code injection steps earlier.

e o — . —— L ——T—— - —

6.2.1. Locating the POST Jump Table

I won’t go into detail explaining how to find the POST jump table in Award BIOS

version 4.50PG. It’s a trivial task after you’ve learned the Award BIOS reverse engi-

neering procedure detailed in the previous chapter. One hint, though: Decompress

T the system BIOS and go directly to the system BIOS entry point at F000: F80Dh to

| start searching for the POST jump table. You will find the POST jump table shown
in Listing 6.1.

Listing 6.1. Iwill VD133 POST Jump Table

196 Part ll: Motherboard BIOS Reverse Engineering

Chapter 6: BIOS Modification 197

6.2.2. Finding a Dummy Procedure in the POST Jump Table

As seen in Listing 6.1, Iwill VD133 system BIOS contains some dummy procedures.
Thus, this step is completed.

6.2.3. Assembling the Injected Code

Listing 6.2 is the source code of the procedure that I inject into the Iwill VD133
BIOS. It’s in FASM syntax.

Listing 6.2. VIA 693A Chipset Patch Source Code in FASM Syntax

198 Part ll: Motherboard BIOS Reverse Engineering

Chapter 6: BIOS Modification 199

200 Part |l: Motherboard BIOS Reverse Engineering

The patch source code in FASMW is assembled by pressing <CTRL>+<F9>;
it’s as simple as that. The result of assembling this procedure is a binary file that,
when viewed with Hex Workshop, looks like Hex Dump 6.1.

Hex Dump 6.1. VIA 693A Chipset Patch

I won’t dwell on a line-by-line explanation because Listing 6.2 is properly
commented. I will just explain the big picture of the functionality of the code. Listing 6.2
is a patch to improve the performance of the memory subsystem of the VIA 693A
chipset. It initializes the memory controller of VIA 693A to a high performance set-
ting. One thing to note in Listing 6.2 that to appropriately initialize a PCI chipset
such as VIA 693A, it’s not enough to relax the read and write timing from and to
the chipset in the code. More importantly, you have to initialize only one register at
a time to minimize the “sudden load” on the chipset during the initialization proc-
ess. This is especially true for performance-related registers within the chipset.
If you fail to do so, it’s possible that the patch will make the system unstable.

6.2.4. Extracting the Genuine System BIOS

Extracting the genuine system BIOS that you will modify is easy. Simply load the
corresponding BIOS binary file (vd30728.bin) in modbin, as you learned in Sec-
tion 6.1. You will need to use modbin version 4.50.80C to do that. Once the binary
is loaded in modbin 4.50.80C, the system BIOS will be automatically extracted

‘ Chapter 6: BIOS Modification 201

to the same directory as the BIOS binary and will be named original.tmp. However,
you have to pay attention to avoid closing modbin before the modification to the
system B1OS with third-party tools is finished. “Third party” in this context means
) the hex editor and other external tools used to modify the extracted system BIOS.

6.2.5. Looking for Padding Bytes

Finding padding bytes in Award system BIOS is quite easy; just look for block of
FFh bytes. In Award BIOS version 4.50PG code, the padding bytes are located near
the end of the first segment' of the system BIOS. Note that the first segment of the
system BIOS is mapped into the E000h segment during POST execution and that
the POST jump table is located in this segment. Thus, code that’s injected in this
segment can be called by placing the appropriate offset address into the POST
jump table. Now, view these padding bytes from within Hex Workshop.

Hex Dump 6.2. VD30728.BIN System BIOS Padding Bytes

The bytes with rrh values in the preceding hex dump are the padding bytes that
will replace the custom patch.

i The first segment refers to the first 64 KB.

202 Part Il: Motherboard BIOS Reverse Engineering

6.2.6. Injecting the Code

Before injecting code into the system BIOS, you must ensure that there are enough
consecutive padding bytes to be replaced by the injected code. If you compare Hex
Dump 6.2 and Hex Dump 6.1, it’s clear that there are enough padding bytes.
You only need 83n bytes to replace in the system BIOS to inject the procedure, and
Hex Dump 6.2 shows more padding bytes than that. Now, compare the hex dump
before (Hex Dump 6.2) and after (Hex Dump 6.3) the injection of the code.

Hex Dump 6.3. VD30728.bin System BIOS after Code Injection

The hex values highlighted in bold in Hex Dump 6.3 are the injected code that
replaces the padding bytes.

6.2.7. Modifying the POST Jump Table

Modifying the POST jump table is an easy task. Just look at the location of the pre-
viously injected code and place the offset address of the injected code into the
dummy POST jump table entry. However, I must emphasize that this method
works only for code that’s injected into the first segment of the system B1OS binary.

e) i =

Chapter 6: BIOS Modification 203

This is because the POST jump table entries only contain the 16-bit offset addresses
of the corresponding POST procedures.!

Now, let’s get down to the details. As shown in Hex Dump 6.3, the injected code
entry point is at offset Erroh in the first segment of the system BIOS. In addition, you
know that the POST jump table is located in the same segment as the injected code!
Thus, all you have to do is to replace one of the dummy-procedure offsets in the
POST jump table with the er=onh value. To do so, replace the dummy procedure call
offset at address £000: 61Dch,i shown in Listing 6.1, with the £000h value (the in-
jected procedure entry point offset). The result of this action is shown in Listing 6.3.

Listing 6.3. Modified POST Jump Table Disassembly

i The POST procedures are located in the same segment as the POST jump table.

ii As per the “Award System BIOS Reverse Engineering” section in previous chapter, you know that
the POST jump table is located in segment E000h, the first segment of the Award system BIOS
(original.tmp or original.bin).

iii £000:61DCh in the system BIOS is shown as address 610Ch if you look at the binary in Hex
Workshop.

204 Part |l: Motherboard BIOS Reverse Engineering

6.2.8. Rebuilding the BIOS Binary

Rebuilding the BIOS binary is simple. Just finish the modification on the tempo-
rary system BIOS. Then save the changes in modbin. Once you have saved the
changes, modbin will pack all temporary decompressed components into the BIOS
binary. In this particular example, the changes are saved in modbin 4.50.80C and
modbin is closed.

6.2.9. Flashing the Modified BIOS Binary

Flashing the modified BIOS binary into the motherboard BIOS chip is trivial.
For Award BIOS, just use the awardflash program that’s shipped with the mother-
board BIOS. I don’t have to discuss this step in detail because it’s trivial to do.

Chapter 6: BIOS Modification 205

Now, you have completed all of the modification steps and are ready to test
the modified BIOS binary. In this particular modification example, I've tested
the modified BIOS binary and it works as expected. Note that sometimes,
you have to restart the system a few times to ensure that the system is fine after
the modification.

6.3. Other Modifications

After the basics of Award BIOS reverse engineering in the previous chapter, various
modification techniques come to mind. Frankly, you can modify almost every as-
pect of the BIOS by adjusting the boot block, modifying the system BIOS, adding
new components, etc.
As you know, the boot block starts execution at address F000:FFFOh or at its
alias at rrerrreon. In Award BIOS, this entry point always jumps to r000:F05Bh.
You can redirect this jump into a custom-made procedure that’s injected in the
boot-block padding bytes and subsequently jump back to F000:F058h in the end of
the injected procedure. The padding bytes in boot block are few. Thus, only a little
code can be injected there. That’s one possible modification.
| Another type of modification is patching certain “interesting” procedures
within the system BIOS binary. However, there is one inherent problem with it.
Searching for the location of an interesting procedure can be time-consuming if
you intend to make a similar modification in several BIOS files. To alleviate this
problem, you can use a technique normally used in the computer security realm
called “forming a binary signature.” A binary signature is a unique block of bytes
that represents certain consecutive machine instructions.
You might be tempted to think that it’s hard to find a pattern on a binary file
with 256 possible combination per byte. This is true to some degree. However, the
system BIOS binary contains more code than the data section, even though they

overlap. Thus, finding a byte pattern is quite easy, because x86 instruction bytes
have particular rules that must be adhered to, just like other processor architec-
tures. In addition, it’s natural not to waste precious space in RAM and a BIOS chip
by repeating the same group of instructions. This space-saving technique is accom-
plished by forming a procedure or routine for a group of instructions that will be
invoked from another section of the binary. This provides the huge possibility to
find a unique group of instructions, a byte pattern, within the binary because

206 Part ll: Motherboard BIOS Reverse Engineering

it means that they are rarely repeated. The task of forming a new signature is not
too hard. These are the “algorithm™:

1. Find the interesting procedure with a disassernbler.

Observe the instruction groups that make up the procedure and note their
equivalent hexadecimal values.

3. Find some bytes, i.e., a few instructions lumped as a group as the “initial guess”
for the signature. Search for other possibilities of occurrence of the initial guess
in the binary with a hex editor. If the group occurs more than once, add some
instruction bytes into the initial guess and repeat until only one occurrence is
found in the binary. Voil3, the signature is formed.

Once you have formed the signature, the task of patching the system BIOS file
is trivial. You can even build a “patcher” to automate the process.

To be able to locate a specific procedure to patch, you have to know something
about it; this allows you to make an intelligent guess about its location. In a Win-
dows binary file, a call to certain operating system function is the necessary hint.
For BIOS binary, here are a few tips:

3 If you are looking for an I/O-related procedure, start by looking for “suspi-
cious” access to the particular I/O port. It’s better to know the protocol that’s
supposed to be used by the 1/O port in advance. For example, if you want to
find the chipset initialization routine, start looking for accesses to the PCI con-
figuration address port (cF8h—CFBh) and data port (cFch—CFFh). That’s because
access to the chipset is through PCI configuration cycles. In addition, if you
want to look for the integrated drive electronics (IDE) device initialization rou-
tines, you have to start looking for accesses to ports 170h—1F7h and 170h—177h.

O Some devices are mapped to some predefined memory address range. For ex-
ample, the VGA frame buffer is mapped to B 0000h or B 8000h. These are
quirks you must know.

O By using the BIOS POST code' as a reference, you can crosscheck an output to
the POST code port, i.e., port 80n with the routine you are looking for. During
BIOS execution, a lot of POST code is written to port 80h, and each POST code
corresponds to completion of a routine or a corresponding error code. It can
be a valuable hint.

i POST code in this context is not the POST routine but the hexadecimal value written to port80h
that can be displayed in a specialized expansion card called the POST card.

Chapter 6: BIOS Modification 207

In principle, you have to know the big picture and then narrow the target in
each step. For BIOS binary, in most cases you have to be particularly aware of the
hardware protocol you are targeting and the memory or I/O address range that re-
lates to the protocol. Once the protocol is known, you can look for the procedure
quite easily. BIOS routines are implementations of the bus protocol, sometimes
with only modest modification from the samples in the protocol documentation.

As a sample of the BIOS patching scenario, modify the so-called EPA proce-
dure. The Environmental Protection Agency (EPA) procedure is the procedure that
draws the EPA logo during Award BIOS execution. Disable this feature by replacing
the EPA procedure call with nop (do nothing) instructions. The EPA procedure in
Award BIOS is a quite well-known procedure. Thus, the signature is already wide-
spread on the Net. In Iwill VD133 BIOS, to modify the EPA procedure look for the
80 8EEL 0110 F646 1430 byte pattern as follows:

Then subsequently patch it, as illustrated in the BIOS modification change log:

208

Part Il: Motherboard BIOS Reverse Engineering

If you want to try this modification yourself, patch the highlighted instructions
by using the hex editor to nop (20n) as shown in the BIOS modification change log
just considered. In this sample, the signature is known in advance. Hence, there is
no difficulty in carrying out the modification.

You can make other advanced modifications to the BIOS binary. I hope that
the explanation of the basic principles in this chapter will be enough so that you
dare to try more extreme modifications.

Part 111
EXPANSION ROM

Chapter 7
PCI Expansion ROM
Software Development

Chapter 8
PCI Expansion ROM
Reverse Engineering

Chapter 7: PCI Expansion ROM
Software Development

Preview

This chapter is devoted to explaining the development of PCI expansion ROM.
I start with the prerequisite knowledge, i.e., an explanation of the Plug and Play
(PnP) BIOS architecture and PCI expansion ROM architecture, both hardware and
software. Then, I proceed to develop a straightforward PCI expansion ROM example.
The material in this chapter has been published in CodeBreakers Journal.l

i “Low Cost Embedded x86 Teaching Tool,” CodeBreakers Journal, Volume 1, Issue 1, 2006.

212 Part lll: Expansion ROM

7.1. PnP BIOS and Expansion ROM Architecture

You learned in Chapter 1 that expansion ROMs are initialized during POST execu-
tion. The card’s expansion ROMs were called by the system BIOS to initialize the
card properly before the loading of the operating system.

7.1.1. PnP BIOS Architecture

This section does not provide a complete explanation of the PnP BIOS architecture.
It only explains the parts of the PnP BIOS architecture necessary to develop a PCI
expansion ROM.

These parts are the specification of the initialization code that resides in the ex-
pansion cards and the specification of the bootstrap process, i.e., transferring control
from the BIOS to the operating system after the BIOS has finished initializing the sys-
tem. Initialization of option ROM is part of the POST routine in the system BIOS.
The related information from the “Plug and Play BIOS Specification, version 1.0A”
is provided in the Chapter 7 folder on the CD supplied along with this book.

7.1.2. “Abusing” PnP BIOS for Expansion ROM Development

At this point, you know that the facility of PnP BIOS that will help in developing
the PCI expansion ROM is the bootstrap entry vector (BEV). The reason for select-
ing this bootstrap mechanism is that the core functionality of the PC that will be used
must not be disturbed by the new functionality of the PC as the PCI expansion ROM
development tool and target platform. In other words, by setting up the option ROM
to behave as an RPL device, the option ROM will only be executed as the bootstrap
device if the RPL, i.e., boot from LAN support, is activated in the system BIOS.
By doing things this way, you can switch between normal usage of the PC and us-
age of the PC as a PCI expansion ROM development and target platform by setting
the appropriate system BIOS setting, i.e., the boot from LAN activation entry.

To put simply, here 1 develop an experimental PCI expansion ROM that be-
haves like an ordinary LAN card ROM, such as the one used in diskless machines,
e.g., etherboot ROMs. I use the part of the PCI expansion ROM routine to boot
the machine, replacing the “ordinary” operating system boot mechanism.

In later sections, I demonstrate how to implement this logic by developing
a custom PCI expansion ROM that can be flashed into a real PCI expansion card
“hacked” to behave so that the PnP BIOS thinks it’s a real LAN card.

Chapter 7: PClI Expansion ROM Software Development 213

7.1.3. POST and PCI Expansion ROM Initialization

System POST code mostly treats add-in PCI devices like those soldered on to the
motherboard. The one exception is the handling of expansion ROMs. The POST
code detects the presence of an option ROM in two steps. First, the code deter-
mines if the PCI device has implemented an expansion ROM base address register
(XROMBAR) in its PCI configuration space registers.! If the register is imple-
mented, the POST must map and enable the ROM in an unused portion of the
address space and check the first 2 bytes for the aassh signature. If that signature
is found, there is a ROM present; otherwise, no ROM is attached to the device.
If a ROM is attached, POST must search the ROM for an irnageii that has the
proper code type and whose vendor ID and device ID fields match the correspond-
ing fields in the device’s PCI configuration registers.

After finding the proper image, POST copies the appropriate amount of data
into RAM. Then the device’s initialization code is executed; determining the ap-
propriate amount of data to copy and how to execute the device’s initialization
code will depend on the code type for the field.

7.1.4. PCI Expansion XROMBAR

Some PCI devices, especially those intended for use on add-in cards in PC architec-
tures, require local EPROMs for expansion ROM. The 4-byte register at offset 30n in
a type 00h predefined header'il is defined to handle the base address and size informa-
tion for this expansion ROM. Fig. 7.1 shows how this word is organized. The register
functions exactly like a 32-bit BAR except that the encoding and usage of the bottom
bits is different. The upper 21 bits correspond to the upper 21 bits of the expansion
ROM base address. The number of bits (out of these 21) that a device actually im-
plements depends on how much address space the device requires. For instance, a
device that requires a 64-KB area to map its expansion ROM would implement the
top 16 bits in the register, leaving the bottom 5 (out of these 21) hardwired to 0. De-
vices that support an expansion ROM must implement this register.
Device-independent configuration software can determine how much address
space the device requires by writing a value of all ones to the address portion of the

| i Refer to Fig. 1.7 in Chapter 1 for the PCI configuration space register layout that applies to PCI
add-in cards.
ii Image refers to the expansion ROM binary file inside the add-in card ROM chip.

' iii Refer to Fig. 1.7 in Chapter 1 for type 00h predefined header for PCI devices. The header in this
context is PCI configuration space header.

214 Part lil: Expansion ROM

register and then reading the value back. The device will return zeros in all don’t-
care bits, effectively specifying the size and alignment requirements. The amount of
address space a device requests must not be greater than 16 MB.

3 110 10

Expansion ROM Base Address Reserved '
(Upper 21 bits)

~—

COE = I
Expansion ROM Enable

Fig. 7.1. PCI XROMBAR layout

Bit 0 in the register is used to control whether or not the device accepts accesses
to its expansion ROM. When this bit is 0, the device’s expansion ROM address
space is disabled. When the bit is 1, address decoding is enabled using the parame-
ters in the other part of the base register. This allows a device to be used with or
without an expansion ROM depending on system configuration. The memory
space bit in the command register! has precedence over the expansion ROM enable
bit. A device must respond to accesses to its expansion ROM only if both the mem-
ory space bit and the expansion ROM base address enable bit are set to 1. This bit’s
state after reset is 0.

To minimize the number of address decoders needed, a device may share a de-
coder among the XROMBAR and other BARs. When expansion ROM decode is
enabled, the decoder is used for accesses to the expansion ROM, and device-
independent software must not access the device through any other BARs.

7.1.5. PCI Expansion ROM

The hardware aspect of PCI expansion ROM was explained in the preceding sec-
tion. The XROMBAR is used to aid in the addressing of the ROM chip soldered
into the corresponding PCI expansion card.

The PCI specification provides a mechanism whereby devices can supply ex-
pansion ROM code that can be executed for device-specific initialization and, pos-
sibly, a system boot function. The mechanism allows the ROM to contain several

"The command register is located in the PCI configuration space header of a PCI device.

Chapter 7: PCI Expansion ROM Software Development 215

images to accommodate different machine and processor architectures. This section
explains the required information and layout of code images in the expansion
ROM. Note that PCI devices that support an expansion ROM must allow that
ROM to be accessed with any combination of byte enables. This specifically means
that dword accesses to the expansion ROM must be supported.

The information in the ROMs is laid out to be compatible with existing Intel
x86 expansion ROM headers for ISA, EISA, and MC adapters, but it will also sup-
port other machine architectures. The information available in the header has been
extended so that more optimum use can be made of the function provided by the
adapter and so that the runtime portion of the expansion ROM code uses the
minimum amount of memory space. PCI expansion ROM header information
supports the following functions:

3 A length code is provided to identify the total contiguous address space needed
by the PCI device ROM image at initialization.

O An indicator identifies the type of executable or interpretive code that exists in
the ROM address space in each ROM image.

O A revision level for the code and data on the ROM is provided.

O The vendor ID and device ID of the supported PCI device are included in the
ROM.

One major difference in the usage model between PCI expansion ROMs and
standard ISA, EISA, and MC ROMs is that the ROM code is never executed in place.
It is always copied from the ROM device to RAM and executed from RAM. This en-
ables dynamic sizing of the code (for initialization and runtime) and provides
speed improvements when executing runtime code.

7.1.5.1. PCI Expansion ROM Contents

PCI device expansion ROMs may contain code (executable or interpretive) for
multiple processor architectures. This may be implemented in a single physical
ROM, which can contain as many code images as desired for different system and
processor architectures, as shown in Fig. 7.2. Fach image must start on a 512-byte
boundary and must contain the PCI expansion ROM header. The starting point of
each image depends on the size of previous images. The last image in a ROM has
a special encoding in the header to identify it as the last image.

216 Part lll: Expansion ROM

.

Image 0

Image 1

Image N

Fig. 7.2. PCI expansion ROM structure

7.1.5.1.1. PCI Expansion ROM Header Format

The information required in each ROM image is split into two areas. One area, the
ROM header, must be located at the beginning of the ROM image. The second
area, the PCI data structure, must be located in the first 64 KB of the image.
The format for the PCI expansion ROM header is given in Table 7.1. The offset is
a hexadecimal number from the beginning of the image, and the length of each
field is given in bytes. Extensions to the PCI expansion ROM header, the PCI data
structure, or both may be defined by specific system architectures. Extensions for
PC-AT-compatible systems are described later.

Table 7.1. PCl Expansion ROM Header Format

Offset Length Value Description
Oh 1 55h ROM signature, byte 1
1h 1 ARh ROM signature, byte 2
2h-17h 16h Xx Eﬁsirevzc; g))rocessor architecture
o gudois q
18h-15%h 2 Xx Pointer to PCI data structure

O ROM signature. The ROM signature is a 2-byte field containing a 55h in the
first byte and aah in the second byte. This signature must be the first 2 bytes of
the ROM address space for each image of the ROM.

Chapter 7: PCI Expansion ROM Software Development 217

O Pointer to PCI data structure. The pointer to the PCI data structure is a 2-byte
pointer in little-endian format that points to the PCI data structure. The refer-
ence point for this pointer is the beginning of the ROM image. .

7.1.5.1.2. PCI Data Structure Format

The PCI data structure must be located within the first 64 KB of the ROM image
and must be dword aligned. The PCI data structure contains the information in Table 7.2. |

Table 7.2. PCI Data Structure Format

Offset Length Description "

0 4 Signature, the string "PCIR" ‘

4 2 Véndor identification ‘

s 6 2 Device identification “
8 2 Pointer to vital product data ‘

A 2 PCI data structure length |

C 1 PCI data structure revision ‘

D 3 Class code |

10 2 Image length :

12 2 Revision level of code/data ‘

| 14 1 Code type |
15 1 Indicator !L

16 2 Reserved |

O Signature. These 4 bytes provide a unique signature for the PCI data structure. 1
The string "pcTR" is the signature with P being at offset 0, ¢ at offset 1, etc. !
O Vendor identification. The vendor identification field is a 16-bit field with the ‘
same definition as the vendor identification field in the configuration space for .
this device. I
O Device identification. The device identification field is a 16-bit field with the
same definition as the device identification field in the configuration space for ‘
this device. '
O Pointer to vital product data. The pointer to vital product data (VPD) is a 16-bit I
field that is the offset from the start of the ROM image and points to the VPD. i

218 Part lll: Expansion ROM

This field is in little-endian format. The VPD must be within the first 64 KB of
the ROM image. A value of 0 indicates that no-VPD is in the ROM image.

O PCI data structure length. The PCI data structure length is a 16-bit field that
defines the length of the data structure from the start of the data structure
(the first byte of the signature field). This field is in little-endian format and
is in units of bytes.

O PCI data structure revision. The PCI data structure revision field is an 8-bit field
that identifies the data structure revision level. This revision level is 0.

O Class code. The class code field is a 24-bit field with the same fields and defini-
tion as the class code field in the configuration space for this device.

O Image length. The image length field is a 2-byte field that represents the length
of the image. This field is in little-endian format, and the value is in units of
512 bytes.

O Revision level. The revision level field is a 2-byte field that contains the revision
level of the code in the ROM image.

O Code type. The code type field is a 1-byte field that identifies the type of code
contained in this section of the ROM. The code may be executable binary for
a specific processor and system architecture or interpretive code. The code
types are assigned as shown in Table 7.3.

Table 7.3. Code Types

Type Description
0 Intel x86, PC-AT compatible
R 1 Open firmware standard for PCI42
2=FF Reserved

O Indicator. Bit 7 in this field tells whether or not this is the last image in the
ROM. A value of 1 indicates “last image”; a value of 0 indicates that another
image follows. Bits 0—6 are reserved.

7.1.5.2. PC-Compatible Expansion ROMs

This section describes further specification on ROM images and the handling of
ROM images used in PC-compatible systems. This applies to any image that speci-
fies Intel x86, PC-AT compatible in the code type field of the PCI data structure,
and any PC-compatible platform.

Chapter 7: PCI Expansion ROM Software Development 219

The standard header for PCI expansion ROM images is expanded slightly for
PC compatibility. Two fields are added. One at offset 021 provides the initialization
size for the image. Offset 03n is the entry point for the expansion ROM 18TT func-
tion (Table 7.4).1

Table 7.4. PC-Compatible Expansion ROM Format

Offset Length Value Description
Oh 1 55h ROM signature byte 1
1h 1 ARh ROM signature byte 2
oh 1 s {;itSiz-:lizzla)tyi&r; size: size of the code in units
3h 3 o Entry point for I_NI'J.' fupction; POST does a
FAR CALL to this location
6h-17h 12h XX Reserved (application unique data)
18h-1%h 2 XX Pointer to PCI data structure

7.1.5.2.1. POST Code Extensions

POST code in these systems copies the number of bytes specified by the initializa-
tion size field into RAM and then calls the 1n1T function whose entry point is at
offset 03h. POST code is required to leave the RAM area where the expansion ROM
code was copied to as writable until after the INIT function has returned. This al-
lows the INIT code to store some static data in the RAM area and to adjust the run-
time size of the code so that it consumes less space while the system is running.
The specific set of steps for the system POST code when handling each expansion
ROM are as follows:

1. Map and enable the expansion ROM to an unoccupied area of the memory
address space.

2. Find the proper image in the ROM and copy it from ROM into the compatibil-
ity'area of RAM (typically co000h to £0000h) using the number of bytes speci-
fied by initialization size.

3. Disable the XROMBAR.

i The TNTT function is the first routine that’s called (FAR CALL) by the system BIOS POST routine
to start PCI expansion ROM execution.

220

Part lli: Expansion ROM

4. Leave the RAM area writable and call the tn1T function.
5. Use the byte at offset 02h (which may have been modified) to determine how
much memory is used at runtime.

Before system boot, the POST code must make the RAM area containing ex-
pansion ROM code read only. The POST code must handle VGA devices with ex-
pansion ROMs in a special way. The VGA device’s expansion BIOS must be copied
to c0000h. VGA devices can be identified by examining the class code field in the
device’s configuration space.

7.1.5.2.2. INIT Function Extensions

PC-compatible expansion ROMs contain an TNTT function responsible for initializ-
ing the 1/O device and preparing for runtime operation. 1n1T functions in PCI ex-
pansion ROMs are allowed some extended capabilities because the RAM area
where the code is located is left writable while the Tn1T function executes.

The 1n1T function can store static parameters inside its RAM area during the
iNIT function. This data can then be used by the runtime BIOS or device drivers.
This area of RAM will not be writable during runtime.

The 11T function can also adjust the amount of RAM that it consumes dur-
ing runtime. This is done by modifying the size byte at offset 02n in the image.
This helps conserve the limited memory resource in the expansion ROM area
(C0000h—DFFFFh).

For example, a device expansion ROM may require 24 KB for its initialization
and runtime code but only 8 KB for the runtime code. The image in the ROM will
show a size of 24 KB so that the POST code copies the whole thing into RAM.
Then, when the 11T function is running, it can adjust the size byte down to 8 KB.
When the 1817 function returns, the POST code sees that the runtime size is 8 KB
and can copy the next expansion BIOS to the optimum location.

The 1n1T function is responsible for guaranteeing that the checksum across the
size of the image is correct. If the TNTT function modifies the RAM area, then a new
checksum must be calculated and stored in the image.

If the 1817 function wants to remove itself from the expansion ROM area, it
does so by writing a zero to the initialization size field (the byte at offset 021). In
this case, no checksum has to be generated (since there is no length to checksum
across). On entry, the INIT function is passed three parameters: the bus number,
the device number, and the function number of the device that supplied the ex-
pansion ROM. These parameters can be used to access the device being initial-
ized. They are passed in x86 registers: [2H] contains the bus number, the upper

Chapter 7: PCI Expansion ROM Software Development 221

5 bits of [AL] contain the device number, and the lower 3 bits of [AL] contain
the function number.

Before calling the 81T function, the POST code will allocate resources to the
device (using the BAR and interrupt line register) and will complete handling of
any user-definable features.

7.1.5.2.3. Image Structure

A PC-compatible image has three lengths associated with it: a runtime length, an
initialization length, and an image length. The image length is the total length of
the image, and it must be greater than or equal to the initialization length.

The initialization length specifies the amount of the image that contains both
the initialization and the runtime code. This is the amount of data that the POST
code will copy into RAM before executing the initialization routine. Initialization
length must be greater than or equal to runtime length. The initialization data cop-
ied into RAM must checksum to 0 (using the standard algorithm).

The runtime length specifies the amount of the image that contains the runtime
code. This is the amount of data the POST code will leave in RAM while the system
is operating. Again, this amount of the image must checksum to 0.

The PCI data structure must be contained within the runtime portion of
the image (if there is one); otherwise, it must be contained within the initializa-
tion portion.

7.1.6. PCI PnP Expansion ROM Structure

Having learned the PCI expansion ROM structure and PnP ROM structure from
Section 7.1.4 and Section 7.1.5, you can deduce the layout of a PCI PnP expansion
ROM. The layout is shown in Fig. 7.3.

Note that the layout shown in Fig. 7.3 doesn’t apply to every PCI expansion
ROM. Some PCI expansion ROM only adheres to the PCI expansion ROM specifi-
cation, not to the PnP specification. I provide an example in Chapter 8. Further-
more, the place of the checksum shown in Fig. 7.3 is not mandatory. The checksum
can be located anywhere in the padding byte area or even in another “noninvasive”
place across the PCI expansion ROM binary.

One more thing: PCI expansion ROMs that adhere to both the PCI expansion
ROM specification and the PnP specification are mostly expansion ROMs for boot
devices, including RAID controllers, SCSI controllers, LAN cards (for boot from
LAN), and some other exotic boot devices.

222 Part lll: Expansion ROM

Oh
| AAS5h (ROM signature)
- xxh (ROM size)
o jmp INIT
18h \
PCI Data Structure Pointer \
1Ah Plug and Play I‘
Data Structure Pointer
PCI Data Structure s
A Plug and Play Data Structure
INIT function A’
Padding bytes |
[‘Ghecksum

Fig. 7.3. PCI PnP expansion ROM layout

7.2. PCI Expansion ROM Peculiarities

It is clear from Section 7.1 that the PCI specification and the PnP BIOS specification
have a flaw that can be exploited:

Chapter 7: PClI Expansion ROM Software Development 223

For instance, you can hack a PCI SCSI controller card that has an expansion
ROM to behave so that the PnP BIOS thinks it’s a real LAN card. You can “boot
from LAN” with this card.

I have been experimenting with this flaw, and it works as predicted. By making
the PCI expansion ROM contents to conform to an RPL PCI card,! I was able to
execute the custom-made PCI expansion ROM code. The details of PCI card I
tested are as follows:

M Realtek 8139A LAN card (vendor ID = 10£ch, device ID = 8139n). This is a real
PCI LAN card, used for comparison purposes. I equipped it with Atmel
AT29C512 flash ROM (64 KB). It is purchased separately because the card
doesn’t come with flash ROM. The custom PCI expansion ROM were flashed
using the flash program provided by Realtek (rtflash.exe). I enabled and set the
address space consumed by the flash ROM chip in the XROMBAR of the Realtek
chip with Realtek’s rset8139.exe software. This step is carried out before flash-
ing the custom-made expansion ROM. Keep in mind that the expansion ROM
chip is not accessible until the XROMBAR has been initialized with the right
value, unless the XROMBAR value has been hardwired to unconditionally sup-
port certain address space for expansion ROM chip.

0O Adaptec AHA-2940U SCSI controller card (vendor ID = 9004, device ID =8178).
It has been equipped with a soldered PLCC SST 29EE512 flash ROM (64 KB).
The custom PCI expansion ROM code flashed using a flash program
(flash4.exe) from Adaptec. This utility is distributed with the Adaptec PCI SCSI
controller BIOS update. The SCSI controller chip has its XROMBAR value
hardwired to support a 64-KB flash ROM chip. The result is a bit weird;
no matter how I changed the BIOS setup (boot from LAN option), the PCI
initialization routine (not the BEV routine) always executed. I think this is
because the controller’s chip subclass code and interface code are inside the PCI
chip that refers to the SCSI bus-controller boot device. The “hacked” card be-
have as if it’s a real PCI LAN card; i.e., the system boots from the hacked card if
I set the motherboard BIOS to boot from LAN and the experimental BEV rou-
tine inside the custom PCI expansion ROM code is invoked.

i RPL refers to remote program loader. One implementation of an RPL device is a LAN card that
supports boot from LAN.

224 Part lll: Expansion ROM

7.3. Implementation Sample

This section provides an implementation sample from my testbed. The sample is
a custom PCI expansion ROM that will be executed after the motherboard BIOS
has done initialization. The sample is “jumped into” through its BEV by the
motherboard BIOS during bootstrap.i

7.3.1. Hardware Testbed

The hardware I used for this sample is the Adaptec AHA-2940U PCI SCSI control-
ler card. The PCI vendor 1D of this card is 0x2004, and its PCI device ID is 0x8178.
It has a soldered PLCC SST 29EE512 flash ROM (64 KB) for its firmware. It cost
around $2.50. I obtained this hardware from a refurbished PC component seller.

The PC used for expansion ROM development and as the target platform has
the following hardware configuration shown in Table 7.5.

Table 7.5. PC Hardware Configuration for Testbed

Processor Intel Pentium Il 450 MHz

Motherboard Iwill VD133 (slot 1) with VIA 693A northbridge and VIA 596B

southbridge
Video Card PowerColor Nvidia Riva TNT2 M64 32 MB
RAM 256-MB SDRAM
Sound Card Addonics Yamaha YMF724
Network Card Realtek RTL8139C

"Hacked" PCI Card | Adaptec AHA-2940U PCI SCSI controller card

Hard Drive Maxtor 20 GB 5400 RPM
CD-ROM Teac 40X
Monitor Samsung SyncMaster 551v (15)

iIn this context, bootstrap is the process of loading and starting the operating system.

Chapter 7: PCl Expansion ROM Software Development 225

7.3.2. Software Development Tool

I needed three kinds of software for the development of this sample:

O A development environment that provides a compiler, assembler, and linker
for x86. I used GNU software, i.e., GNU AS assembler, GNU LD linker, GNU
GCC compiler, and GNU Make. These development tools were running on
Slackware Linux 9.0 in the development PC. I used Vi as the editor and Bourne
Again Shell (bash) to run these tools. Note that the GNU LD linker must sup-
port the ELF object file format to be able to compile the sample source code
(provided in a later section). Generally, all Linux distributions support this ob-
ject file format by default. As an addition, I used a hex dump utility in Linux to
inspect the result of the development.

0O A PCI PnP expansion ROM checksum patcher. As shown in Section 7.1, a valid
PCI expansion ROM has many checksum values that need to be fulfilled. Be-
cause the development environment cannot provide that, I developed a custom
tool for it. The source code of this tool is provided in a later section.

O An Adaptec PCI expansion ROM flash utility for AHA-2940UW. The utility is named
flash4.exe; it comes with the Adaptec AHA-2940UW BIOS version 2.57.2
distribution. It’s used to flash the custom-made expansion ROM code into the
flash ROM of the card. I used a bootable CD-ROM to access real-mode DOS
and invoke the flash utility; it also needs DOS4GW. DOS4GW is provided with
the Adaptec PCI BIOS distribution.

7.3.3. Expansion ROM Source Code

The basic rundown of what happens when the compiled source code executed is as
follows:

1. During POST, the system BIOS look for implemented PCI expansion ROMs
from every PCI expansion card by testing the XROMBAR of each card. If it is
implemented,! then system BIOS will copy the PCI expansion ROM from the
address pointed to by the XROMBAR, i.e., the expansion ROM chip to RAM in
the expansion ROM area.il Then the system BIOS will jump to the 1T function
of the PCI expansion ROM. After the PCI expansion ROM has done its initiali-

I XROMBAR consumed address space.
1 Expansion ROM area in RAM is at the CO000h-DFFFFh physical address.

226 Part lll: Expansion ROM

zalion, execution is back to the system BIOS. The system BIOS will check the
runtime size of the PCI expansion ROM that was initialized previously. It will
copy the next PCI expansion ROM from another PCI card (if it exists) to RAM
at the following address:

This effectively “trashed” the unneeded portion of the previous expansion ROM.

2. Having done all PCI expansion ROM initialization, the system BIOS will write-
protect the expansion ROM area in RAM. You can protect the code against this
possibility by copying to 0000:0000h in RAM.

3. The system BIOS then does a bootstrap. It looks for an IPL device; if you set up
the motherboard BIOS to boot from LAN by default, the IPL device will be the
“LAN card.” 1nt 19h (bootstrap) will point into the PnP option ROM BEV of
the “LAN card” and pass execution into the code there. Therefore, this executes
code in the write-protected RAM pointed to by the BEV. There’s no writeable
area in the code, unless you are loading part of this code into a read-write en-
abled RAM area and executing it from there.

4. 'Then, the custom PCI PnP expansion ROM code is executed. The expansion
ROM code will copy itself from the expansion ROM area in RAM to physical
address 0000 _0000h and continue execution from there. After copying itself,
the code switches the machine into 32-bit protected mode and displays "1ie110
Wworld!" in the display. Then the code enters an infinite loop.

The next two subsections deal with the expansion ROM source code. The first
section provides the source code of the expansion ROM, and the second one pro-
vides the source code of the utility used to patch the binary file resulting from mov-
ing the first section’s source code into a valid PCI PnP expansion ROM.

7.3.3.1. Core PCI PnP Expansion ROM Source Code

The purpose of the source code provided in this section is to show how a PCI PnP
expansion ROM source code might look. The role of each file is as follows:

O Makefile. Makefile used to build the expansion ROM binary.

O Crt0.5. Assembly language file that contains all the headers needed and is the
entry point for the BEV. The source code in this file initializes the machine
from real mode into 32-bit protected mode and prepares an execution envi-
ronment for the modules that are compiled with C compiler.

Chapter 7: PCI Expansion ROM Software Development 227

O Main.c. C language source code jumped right after crt0.S finishes its execution.
It displays the "Hello world!" message and then enters infinite loop.

O Video.c. C language source code that provides helper functions for character
display on the video screen. The functions interface directly with the video
buffer hardware. Functions in this file are called from main.c.

O Ports.c. C language source code that provides helper functions to interface di-
rectly with the hardware. It provides port 1/O read-write routines. Functions in
this file are called from video.c.

O Pci_rom.ld. Linker script used to perform linking and relocation to the object
file resulting from crt0.S, video.c, ports.c, and main.c.

- The overall source code is shown in Listings 7.1-7.6 on the CD supplied along
with the book.

7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code

The source code provided in this section is used to build the build_rom utility,
which is used to patch the checksums of the PCI PnP expansion ROM binary pro-
duced by Section 7.3.3.1. The role of each file as follows:

O Makefile. Makefile used to build the utility

O Build_rom.c. C language source code for the build_rom utility

Listing 7.7. PCI Expansion ROM Checksum Utility Makefile

7.3.4. Building the Sample

The following steps are needed to build a valid PCI PnP expansion ROM from the
code provided in the preceding sections. Assume that all commands mentioned
here are typed in a bash within Linux. I used the Slackware 9.0 Linux distribution
in my development testbed.

1. Create a new directory for the core PCI expansion ROM source code. From
now on, regard this directory as the root directory.

228 Part lll: Expansion ROM

2. Copy all core source-code files into the root directory.

3. Create a new directory inside the root directory. From now on, regard this
directory as the rom tool directory.

4. Copy all PCI PnP expansion ROM checksum utility source code files into the
root directory.

5. Invoke “make” from within the rom tool directory. This will build the utility
needed for a later step. The resulting build_rom utility will be copied automati-
cally to the root directory, where it will be needed in a later build step.

6. Invoke “make” from within root directory. This will build the valid PCI PnP
expansion ROM that can be directly flashed to target PCI card, i.e., the
“hacked” Adaptec AHA 2940 card. This expansion ROM binary will be named
rom.bin.

When you invoke “make” from the root directory, you will see messages in the
shell similar to the following message:

The result of these build steps is shown in Hex Dump 7.1. I'm using a hex dump
utility in my Slackware Linux to obtain the result by invoking “hexdump -f fmt
rom.bin” in Bash.

Hex Dump 7.1. rom.bin

Chapter 7: PCI Expansion ROM Software Development 229

The preceding hex dump is a condensed version of the real hex dump shown in
the Linux console. I condensed it to show only the interesting parts. A hex dump
utility is invoked using a custom hex dump formatting file named fmt to show the
formatted hex values in Hex Dump 7.1. The listing for this formatting file is shown
in Listing 7.9. This file is just an ordinary ASCII text file.

Listing 7.9. fmt

bytes in 6-digit hexadecimal, then to display two spaces, and to display 12 bytes with
each byte shown as 2-digit hexadecimal. The second line is telling the hex dump to
display two spaces and then display the ASCIT of the byte. If it is a nonprintable ASCII
character, it should display a dot. The third line is telling the hex dump to move to n
the ext line in the output device, which in this case is the Linux console.

H The first line in Listing 7.9 is telling the hex dump to display the addresses of the

7.3.5. Testing the Sample

Testing the PCI expansion ROM binary is trivial. | used the aforementioned
flash4.exe to flash the rom.bin file from real mode DOS by invoking the following
command:

You can see the result by activating boot from LAN in the BIOS. You will see
L the "Hello World!" displayed on the screen.

230 Partlll: Expansion ROM

7.3.6. Potential Bug and Its Workaround

I have to emphasize that anyone building a PCI expansion ROM has to check the
value of the vendor ID and device ID within the source code. It’s possible that
the expansion ROM code is not executed' because there is a mismatched vendor
ID or device ID between the expansion ROM and the value hardwired into the
PCI chip. I haven’t done further work on this issue, but I strongly suggest avoid-
ing this mismatch.

There is a specific circumstance, in which the PCI initialization routine that
I made is screwed up during development using the Adaptec AHA-2940U SCSI
controller card with soldered PLCC SST 29EE512 flash ROM. In this case, I was
not able to complete the boot of the testbed PC, because the motherboard BIOS
possibly will hang at POST. In my case, this was because of wrong placement of
the entry point to the PCI initialization routine. This entry point is a jump in-
struction at offset 03h from the beginning of the ROM binary image file.
It should’ve been placed there, but it was inadvertently placed at offset 04h. Thus,
the PC hangs during the execution of the PCI tn1T function. The “brute force”
workaround for this is as follows:

1. Install the corresponding “screwed up” SCSI controller card into one of the
PClI slots if you haven’t done it yet — with the PC turned off and unplugged.

2. Short-circuit the lowest address pins of the soldered flash ROM during boot
until you can enter pure DOS mode. In my case, I use a metal wire. This wire
is “installed” while the PC powered off and unplugged from its electrical
source. | was short-circuiting address pin 0 (A0) and address pin 1 (Al).
Short-circuiting A0 and Al is enough, because you only need to generate a
wrong PCI ROM header in the first 2 bytes. Find the datasheet of the flash
ROM from its manufacturer’s website to know, which of the pin is the lowest
address pin. This step is done on purpose to generate a checksum error in the
PCI ROM header “magic number,” i.e., aAa55h. The reason for this step is if
the PCI ROM header “magic number” is erratic, the motherboard BIOS will
ignore this PCI expansion rom. Thus, you can proceed to boot to DOS and
going through POST without hanging.

! The system BI1OS executes or initializes expansion ROM by executing a far jump into its initializa-
tion vector (offset 03h from the beginning of the expansion ROM binary).

Chapter 7: PCl Expansion ROM Software Development 231

3. When you enter pure DOS, release the wire or conductor used to short-circuit
the address pins. You will be able to flash the correct ROM binary into the flash
ROM chip of the SCSI controller flawlessly. This step is carried out with the PC
powered on and running DOS.

4. Flash the correct ROM binary file to the flash ROM chip. Then, reboot to make
sure everything is OK.

If you are using a hacked SCSI controller card, the PCI 18T function has to be
working flawlessly, because it’s always executed by the motherboard BIOS on boot.
This PCI card “resurrection” is a dangerous procedure. Hence, it must be carried
out carefully. Nevertheless, my experience shows that it works in the testbed with-
out causing any damage.

Chapter 8: PCI Expansion ROM
Reverse Engineering

Preview

This chapter is devoted to explaining PCI expansion ROM reverse engineering,
You learned the structure of the PCI expansion ROM in the previous chapter.
Thus, it will be straightforward to do the reverse engineering. However, I note
some differences among different PCI expansion ROMs.

234 Part lll: Expansion ROM

8.1. Binary Architecture

In the previous chapter, you learned about PCI expansion ROM structure. The
structure of such a binary is summarized in Fig. 8.1.

7{* ~ooocH A

"Basic” ROM Header |

Protocol-Specific Runtime
Data Structure binary length

Initialization
length
Runtime Code

Initialization Code

Checksum

P s
v ROM length s s

Fig. 8.1. PCI expansion ROM binary layout

Fig. 8.1 represents the layout of a PCI expansion ROM binary for single-
machine architecture. I won’t delve into more complex PCI expansion ROM binary
layout, such as the PCI expansion ROM binary for multiple-machine architecture;
because it will be straightforward to analyze once you understand its simpler coun-
terpart. Fig. 8.1 shows the lowest address range in the ROM binary that is occupied by

i PCI expansion ROM binary layout for multiple-machine architecture (with multiple images)
is shown in Fig. 7.2.

Chapter 8: PCI Expansion ROM Reverse Engineering 235

“basic” ROM header. This “basic” ROM header contains the jump into the InNTT
function of the corresponding PCI expansion ROM. Review the structure of the ba-
sic ROM header for a PCI expansion ROM.

Fig. 8.2 shows the structure of the basic header in an expansion ROM. Within
this header is the jump into the initialization function. Thus, the logical step to start
expansion ROM reverse engineering is to follow this jump. Upon following this
jump, you arrive in the initialization function and its associated “helper” functions.
Note that an expansion ROM is called with a far call by the system BIOS to start its
initialization. Thus, expect that a ret £ (return far) instruction will mark the end of an
expansion ROM. Indeed, that’s the case, as you will discover in the next section.

Furthermore, recall from Section 7.1.5 that a PCI expansion ROM is not re-
quired to adhere to the PnP specification. Hence, stick to the PCI expansion ROM
basic header to guide you to the “main code execution path,” i.e., the initialization
function for the PCI expansion ROM.

? AA55h (ROM signature)
XXh (ROM size)
PCI expansion ROM ImpINIT
basic header
v PCI data structure pointer

PCI data structure |

INIT function E

Padding bytes (optional)

Fig. 8.2. PCI expansion ROM basic header

236 Part lll: Expansion ROM

8.2. Disassembling the Main Code

In this section, you will learn how to disassemble PCI expansion ROMs. It is a straight-
forward process because you known the PCI expansion ROM structure. To do so,
start the disassembling process in the expansion ROM header and proceed until
you find the return into the system BIOS, i.e., the last ret £ instruction.!

8.2.1. Disassembling Realtek 8139 Expansion ROM

As the first example, disassemble the Realtek 8139A/B/C/D¥ expansion ROM. From
this point on, I refer to this chip family as Realtek 8139X. The expansion ROM for
Realtek 8139X is named rpl.rom, possibly to refer to remote program load. As
shown later, this particular PCI expansion ROM adheres to both the PCI expansion
ROM specification and the PnP specification. You can download the ROM binary
from Realtek’s website (http://www.realtek.com.tw/downloads/downloadsl-
3.aspx?lineid=1&famid=3&series=16&Software=True). The ROM file that’s dis-
sected here is from 2001. That’s the latest version I could find on Realtek’s website.

Get down to the disassembling business. First, make a rudimentary IDA Pro
script that will help you dissect the binary. The script is shown in Listing 8.1.

Listing 8.1. Rudimentary PCl Expansion ROM Parser

Listing 8.1 is constructed based on the PCI expansion ROM specification and
PnP specification that you learned in the previous chapter, specifically, the header
layout. To use the script in Listing 8.1, open the ROM binary starting at segment
0000h and offset 0000h in IDA Pro. You can’t know the exact loading segment for
any expansion ROM because it depends on the system configuration. The system
BIOS is responsible for system-wide address space management, including initializ-
ing the base address for the XROMBARs and loading and initializing every PCI ex-
pansion ROM in the system. That’s why you load the binary in segment 0000h.

i It's possible that there are ret f instructions in a PCI expansion ROM other than the retf instruc-
tion that takes the execution flow back into the system BIOS. Look for the latter.

i There are four varieties of Realtek 8139 fast Ethernet controller chip: Realtek 8139A,
Realtek 8139B, Realtek 8139C, and Realtek 8139D. Among these chip revisions, Realtek 8139D
is the most recenl.

Chapter 8: PCI Expansion ROM Reverse Engineering 237

Actually, any segment is OK; it won’t make a difference. Furthermore, as shown
later, every data-related instruction would use references based on the code seg-
ment.! You have to disassemble the binary in 16-bit mode, because the processor is
running in real-mode during expansion ROM initialization. The result of parsing
rpl.rom with IDA Pro script is in Listing 8.1.

Listing 8.2. Rpl.rom Parsing Result

i The code segment is pointed to by the cs register in x86 processors.

238 Part lll: Expansion ROM

Chapter 8: PCl Expansion ROM Reverse Engineering 239

Listing 8.2 clearly shows the PCI expansion ROM basic header, PCI data struc-
ture, and PnP data structure, along with their associated pointers within rpl.rom
after it has been being parsed using the idc script in Listing 8.1. Listing 8.2 also
shows that rpl.rom implements bootstrap entry vector (BEV). I delve into it soon.
For now, dissect the main code execution path during the initialization of the
expansion ROM, i.e., when 1817 function is far-called! by the system BIOS during
POST. The code execution path is shown in Listing 8.3.

Listing 8.3. Rpl.rom Main Code Execution Path

i The entry point (pointer) to the INIT function is placed at the offset 03h from the beginning of the
expansion ROM. The instruction in that address is called using a 16-bit far call by the system BIOS
to execute expansion ROM initialization. Note that PCI expansion ROM is always copied to RAM
before being executed.

240 Part lll: Expansion ROM

Listing 8.3 reveals the main code execution path. It’s a linear execution path.
The listing shows that the return to the system BIOS is accomplished with the retf
instruction as expected. To recognize the initialization code execution path in a PCI
expansion ROM, you just have to find where the rett instructions are located.
Tracing the execution path with the retf instruction is enough, unless the expan-
sion ROM is using an exotic procedure call that “abuses” the ret £ instruction.!

Now, proceed to dissect the code execution path that starts from the BEV.
The BEV is executed if you choose to boot from a local area network (LAN) in the
motherboard BIOS setting; otherwise, it won’t be executed. Furthermore, when
BEV is used, the LAN card is treated as the boot device, much like the role of the
hard drive in a normal operating system loading scenario. Listing 8.2 at address
0000:003Dh shows that the BEV value is offset 16sh from the beginning of the ex-
pansion ROM. Thus, that address will be the starting point.

i1 have seen such an “abuse” of the ret £ instruction to do procedure calling when reverse engineer-
ing Award BIOS.
" A real network card or a card with expansion ROM that's “hacked” into a network card-like ROM.

Chapter 8: PCl Expansion ROM Reverse Engineering 241

Listing 8.4. Rpl.rom BEV Code Execution Path

Listing 8.4 shows the flow of the code execution during BEV invocation by
the system BIOS. It doesn’t show the overall disassembly; it only shows the impor-
tant sections.

8.2.2. Disassembling Gigabyte GV-NX76T256D-RH
GeForce 7600 GT Expansion ROM

Now, dissect a PCI Express card expansion ROM, the GeForce 7600 GT expansion
ROM. This card is a video card based on the Nvidia 7600 GT chip. Every video card
is equipped with an expansion ROM to initialize it and provide the video output
early in the boot stage. You may wonder if this is a new expansion ROM structure
exclusively for PCI Express devices. That’s not the case. The PCI Express specifica-
tion doesn’t define a new expansion ROM structure. Thus, PCI Express devices
adhere to the PCI expansion ROM structure you learned in previous chapter. Now,
dissect the expansion ROM.

242 Part lll: Expansion ROM

Listing 8.5. GeForce 7600 GT Expansion ROM Main Code Execution Path

Chapter 8: PCI Expansion ROM Reverse Engineering 243

244 Part lll: Expansion ROM

Listing 8.5 shows that the PCI Express expansion ROM used in the
GeForce 7600 GT video card doesn’t adhere to the PnP BIOS specification.
However, it adheres to the PCI expansion ROM specification, i.e., with the pres-
ence of a valid PCI data structure.! Note that even though Listing 8.5 at address
0000:0012h shows that it contains a nonzero value, it doesn’t point to a valid PnP
data structure.! Thus, you found the main code execution path by following
the jump to the 1nIT function and tracing the execution until you found the retf
instruction that marks the return to the system BIOS.

8.2.3. A Note on Expansion ROM
Code-Injection Possibility

The PCI expansion ROM disassembly session in the previous sections shows that
the PCI expansion ROM is relatively straightforward to reverse-engineer. Further-
more, it’s relatively easy to inject code into an operational PCI expansion ROM. All
you have to do to implement it are the following:

O Redirect the InIT function pointer.

O Fixing the ROM checksum as needed.

O Fix the overall ROM size in the header if the new binary is bigger than the
older one.

One thing to note: the overall ROM size (including the injected code) must not
be bigger than the capacity of the ROM chip.

i A valid PCI data structure in PCI expansion ROM starts with the “>CTR” string.
ii A valid PnP data structure in PCI expansion ROM starts with the “$PnP” string.

Part IV
BIOS NINJUTSU

Chapter 9
Accessing BIOS
within the Operating System

Chapter 10
Low-Level Remote Server
Management

Chapter 11
BIOS Security Measures

Chapter 12
BIOS Rootkit Engineering

Chapter 13
BIOS Defense Techniques

Chapter 9: Accessing BIOS
within the Operating System

Preview

In this chapter, you will learn to access the contents of a BIOS chip directly within
an operating system, including the contents of the PCI expansion ROM chip. The
first section explains the basic principles; the next sections delve into specific issues
of the operating system and their corresponding interfaces. The chapter explores
the proof of concept of this idea in Linux and Windows.

248 Part IV: BIOS Ninjutsu

9.1. General Access Method

Accessing the BIOS chip contents directly within a running operating system may
seem like a tough job. It won’t be as hard as you think. You can access and manipu-
late the BIOS chip directly within the operating system only if the chip is EEPROM
or flash ROM. Fortunately, all motherboards since the late 1990s use one of these
types of chip.

Different operating systems have different software layers. However, the logical
steps to access the BIOS contents within them remain almost the same. This is be-
cause of the programming model in x86 architecture. Most operating systems in
x86 architecture use two privilege levels provided by the hardware to allow seamless
access to system resources among applications. They are known as ring 0, or the
kernel mode, and ring 3, or the user mode. Any software that runs in kernel mode is
free to access and manipulate the hardware directly, including the BIOS chip. Thus,
the general steps to access the BIOS chip in the motherboard directly within the
operating system are as follows:

1. Enter kernel mode in the operating system. In most cases, you need to make an
operating system-specific device driver in this step. You have to build a device
driver for two reasons. First, the operating system will grant kernel-mode access
only to device drivers. Second, in most cases, operating systems don’t provide a
well-defined software interface to manipulate the BIOS chip — if they even
have such an interface. At first sight, it might seem that you have to use a differ-
ent approach to provide access to manipulate the BIOS chip for a user-mode
application in Linux and Windows through the device driver. However, this is
not the case. Uniform software architecture works just fine. The basic purpose of
the device driver is to provide direct access to the BIOS chip address space for the
user mode application. As shown in a later section, you don’t even need to build
a device driver in Linux for this concept to work, because the Linux kernel
provides access to the BIOS address space through the virtual file in /dev/mem.
The basic method for “exporting” the BIOS chip address space to a user-mode
application is as follows:

a. Map the physical address range of the BIOS chip, i.e., the address space
near the 4-GB limit to the virtual address space of the process' that will ac-
cess the BIOS chip.

i Process in this context means an instance of a currently running user-mode application.

Chapter 9: Accessing BIOS within the Operating System 249

b. Create a pointer to the beginning of the mapped BIOS chip in the process’s
virtual address space.

¢. Use the pointer in the previous step to manipulate the contents of the BIOS
chip directly from the user-mode application. This means you can use an
indirection operator to read the contents of the chip. However, for a write
operation, there are some prerequisites because a BIOS chip is ROM. The
same is true for BIOS chip erase operation.

2. Perform hardware-specific steps to access and manipulate the BIOS chip contents.
In this step, you need to know the details of the hardware method for accessing
the BIOS chip. This method is explained in the chipset datasheet and the BIOS
chip datasheet. Generally, the hardware method is a series of steps as follows:

a. Configure the chipset registers to enable read and write access to the BIOS
chip address space. In x86, the BIOS chip address space is located near the
4-GB limit. Usually, the chipset registers that control access to the BIOS
chip are located in the southbridge.

b. Probe the BIOS chip in some predefined addresses to read the manufac-
turer identification bytes and the chip identification bytes. These identifica-
tion bytes are needed to determine the method you should use to access the
contents of the BIOS chip. Note that every BIOS chip manufacturer has its
own command set to access the contents of the chip. Some commands have
been standardized by the JEDEC Solid State Technology Association.

c. Write and read the binary to and from the chip according to manufac-
turer’s specification.

This is the big picture of the method that you have to use to access and
manipulate the BIOS contents within operating system. The next sections delve
into operating system-specific implementations of the concepts.

9.2. Accessing Motherboard BIOS Contents
in Linux

You learned about general direct access to the BIOS chip within an operating sys-
tem in Section 9.1. As a proof of concept, I show you how to perform this task in
Linux. I conduct the experiment in an Iwill VD133 motherboard. This mother-
board is old, from 2000. I chose it for two reasons. First, I want to show you that
even in an old motherboard this task can be performed. Second, because this

250 Part IV: BIOS Ninjutsu

motherboard is old enough, its datasheets are available free of charge on the Intemnet.!
You need the chipset datasheet and its BIOS chip datasheet to be able to access and ma-
nipulate the BIOS contents. The specifications of the system that I use are as follows:

0 The motherboard is Iwill VD133 with a VIA 693A northbridge and a VIA 596B
southbridge. The original BIOS is dated July 28, 2000. The BIOS chip is a Win-
bond W49F002U flash ROM chip.

O The operating system is Linux Slackware 9.1 with kernel version 2.4.24.
The source of the kernel is installed as well. It’s needed to compile the software
so that I can access the BIOS chip contents directly.

From this point on, regard the preceding system as the target system.
Now, continue to the documentation that you need to carry out the task:

8 The chipset datasheet, particularly the southbridge datasheet, is needed. In an
x86 motherboard, the southbridge controls access into the BIOS chip. In this
case, you need the VIA 596B datasheet. Fortunately, the chipset datasheet is free
online at http://www.megaupload.com/?2d=FF297]QD.

O The BIOS chip datasheet is also needed, because every BIOS chip has its own
command set, as explained in Section 9.1. In this case, you need the Winbond
W49F002U datasheet. It’s available online at http://www.winbond.com/
e-winbondhtm/partner/_Memory_F_PF.htm.

A tool is also needed to access the BIOS chip. I prefer to build the tool myself
because I'll have full control of the system without relying on others. Fortunately,
the Freebios project developers have done the groundwork. They have made
a Linux BIOS flasher! program. It’s called f1ash n_burn. The source code of this
program is free at http://sourceforge.net/cvs/?group_id=3206. It’s also accessible
at http://freebios.cvs.sourceforge.net/freebios/freebios/util/flash_and_burn/ for
manual download. It’s unfortunate that this tool is not included by default in the
Freebios distribution. With this tool, you can dump the BIOS binary from the
BIOS chip and flash the BIOS binary file to the BIOS chip directly in Linux. More
importantly, I'll show you how it works under the hood. You might want to
download it and tailor it to your liking later.

i Datasheets for Intel chipsets and AMD chipsets are usually available for download upon the intro-
duction of the chipset to the market. This is not the case for chipsets made by VIA, Nvidia, SiS, and
many other manufacturers.

ii BIOS flasher is software used to burn, or flash, a BIOS binary [ile into the BIOS chip.

Chapter 9: Accessing BIOS within the Operating System 251

9.2.1. Introduction to flash_n_burn

Let me show you how to compile the source code. You need to copy the source
code into a directory and then compile it from there. In this example, place the
code in the ~/Project/freebios flash n_burn directory. Then, compile it by
invoking the make utility as shown in Shell Snippet 9.1. Note that you can clean the
compilation result by invoking make clean inside the source code directory.

Shell Snippet 9.1. Compiling flash_n_burn

The results of the compilation in Shell Snippet 9.1 are two executable files
named flash on and flash_rom, as shown in Shell Snippet 9.2. Note that I have
removed irrelevant files entries in Shell Snippet 9.2.

Shell Snippet 9.2. Executables for flash_n_burn

In reality, the f1ash_on executable is not used because its functionality already
is present in the flash_rom executable. Originally, f1ash_on was used to activate

252

Part IV: BIOS Ninjutsu

access to the BIOS chip through the southbridge of the SiS chipset. However, this
functionality has since been integrated into the f1ash rom utility. Thus, I only con-
sider the usage of flash rom here. Running the flash rom utility is as simple as
invoking it as shown in Shell Snippet 9.3. If you input the wrong parameters,
flash_rom will show the right input parameters. This is shown in Shell Snippet 9.3.
Note that to take full advantage of f1ash_rom, you have to acquire an administra-
tor account, as shown in Shell Snippet 9.4. Without an administrator account, you
can’t even read the contents of the BIOS chip. This is because of the I/O privilege
level needed to run the software.

Shell Snippet 9.3. Finding flash_rom Valid Input Parameters

I now dump the BIOS binary of the target system. However, before that, I have
to log on as administrator. The result is shown in Shell Snippet 9.4. Note that I have
condensed the console output to highlight the important parts.

Shell Snippet 9.4. Dumping the BIOS Binary from BIOS Chip into the File
in Linux

Chapter 9: Accessing BIOS within the Operating System 253

Shell Snippet 9.4 shows the BIOS chip probing process. First, flash rom
enables access to the BIOS chip by configuring the VIA 596B southbridge registers.
Then, it probes for every chip that it supports. In this case, Winbond W49F002U is
detected and its content is dumped into the dump.bin file. Notice the -r parameter
passed into flash_rom. This parameter means: I want to read the BIOS chip con-
tents. You can confirm this from Shell Snippet 9.3.

The BIOS binary that I dumped previously is in binary format. Thus, to view it,
I need a special utility from Linux named hexdump. This utility is meant to be com-
pliant with the portable operating system interface. You can find this utility in most
UNIX and Linux distributions. I use the command shown in Shell Snippet 9.5 to
view the contents of the BIOS binary in the Linux console.

Shell Snippet 9.5. Reading the BIOS Binary in Linux

The command in the preceding shell snippet is using a custom formatting file
named fmt. This file is an ordinary text file used to format the output of hexdump.
The content of this file is shown in Listing 9.1.

Listing 9.1. fmt Content

254 Part IV: BIOS Ninjutsu

If you are confused about the meaning of Listing 9.1, please refer to the expla-
nation of Listing 7.9 in Section 7.3.4. Both files are the same. The result of the com-
mand in Shell Snippet 9.5 is shown in Hex Dump 9.1.

Hex Dump 9.1. dump.bin

Hex Dump 9.1 is a condensed version of the output from the Linux console.
This hex dump shows the first compressed part in the BIOS binary and the end of
the boot block.

Then, I proceed to flash the binary that I dumped earlier to ensure that the
flash_rom utility is working as expected. This process is shown in Shell Snippet 9.6.

Shell Snippet 9.6. Flashing the BIOS Binary in Linux

Chapter 9: Accessing BIOS within the Operating System 255

Shell Snippet 9.6 shows that the f1ash rom utility probes the motherboard to
find the BIOS chip, flashes the BIOS binary into the BIOS chip, and then verifies
the result before exiting back to the console.

Now, you should be comfortable with the BIOS flashing utility. In the next sub-
section, you will learn the details of method used to access the BIOS chip contents
once you have obtained an administrator account.

9.2.2. Internals of flash n _burn

Now, you will learn how flash n burn accesses the BIOS chip directly in Linux.
This is the most important concept to grasp in this section. You'll start with the
techniques to traverse the source code of flash n burn efficiently. A proficient
programmer or hacker has an efficient way to extract information from source
codes. There are two important tools to do so:

1 A powerful text editor that can traverse the source code by parsing a tag file
generated from the source code.

O A program can be used to create the tag file from the source code. A tag file is
a file that “describes” the interconnections between the data structures and the
functions in a source code. In this particular source code, I'm using vi as the
text editor and ctags as the program to create the tag file.

Start with the creation of the tag file. You need to move into the root directory
of the source code and then create the tag file there, as shown in Shell Snippet 9.7.

Shell Snippet 9.7. Creating the Tag in Linux

256 Part IV: BIOS Ninjutsu

The parameters in the ctags invocation in Shell Snippet 9.7 are read as follows:

O -r means traverse the directories recursively starting from the current directory
and include in the tag file the source code information from all traversed
directories.

0O * means create tags in the tag file for every file that ctags can parse.

Once you've invoked ctags like that, the tag file will be created in the current
directory and named tags, as shown in Shell Snippet 9.8.

Shell Snippet 9.8. The Tag File

I condensed the shell output in Shell Snippet 9.8 to save space. Now, you can
traverse the source code using vi. I'll start with flash_rom.c. This file is the main
file of the f1ash n burn utility. Open it with vi and find the main function within
the file. When you are trying to understand a source code, you have to start with
the entry point function. In this case, it’s main. Now, you can traverse the source
code; to do so, place the cursor in the function call that you want to know and then
press <Ctrl>+<|> to go to its definition. If you want to know the data structure
definition for an object, place the cursor in the member variable of the object and
press <Ctrl>+<]>; vi will take you to the data structure definition. To go back from
the function or data structure definition to the calling function, press <Ctrl>+<t>.
Note that these key presses apply only to vi; other text editors may use different
keys. As an example, refer to Listing 9.2. Note that I condensed the source code and
added some comments to explain the steps to traverse the source code.

Listing 9.2. Traversing flash_n_burn Source Code

i An object is a data structure instance. For example, if a data structure is named my type, then
a variable of typemy Lype is an object, asinmy Lype a variable;a variable isan object.

Chapter 9: Accessing BIOS within the Operating System 257

The current version of flash n burn doesn’t support VIA 596B southbridge.
Thus, T added my own code to support this southbridge. Without it, I would not be
able to access the BIOS chip in Linux. I'll explain how to add this support. It’s the
time to implement the trick to traverse the source code that you've just learned.

The entry point of flash n_burn is a function named main in the flash_rom.c
file. In this function, you found a call to the function enable flash write that
enables the decoding of BIOS address ranges near the 4-GB limit. Now, go to the
definition of this function. You will find the call to a member function of the
supported southbridge object. This member function is named doit. It’s a chipset-
specific function defined to enable the access to the BIOS address ranges. The call
to doit is shown in Listing 9.3.

Listing 9.3. Call to the doit Member Function

258 Part IV: BIOS Ninjutsu

Before delving into the chipset-specific routine, let me show you the declaration of
the data structure that contains the doit function as its member. You can move to this
declaration by placing the cursor in the doit word in the call to the doi t function:

Then move forward in the source code.l You will arrive in the data structure
declaration, as shown in Listing 9.4.

i To move forward in vi, press <Ctrl>+<]>.

——

Chapter 9: Accessing BIOS within the Operating System 259

Listing 9.4. FLASH_ENABLE Data Structure Declaration

As you can see, the data structure is named FrAsi ENABLE, and one of its mem-
bers is a pointer to the function named doit. Listing 9.5 shows the instances of
FLASH ENABLE that are traversed during the process of trying to enable access to the
BIOS chip through the southbridge. These instances of FLAsH ENABLE are parts of
an object named enables. You have to traverse the source code to this object’s
definition to know, which chipset it’s currently supporting. To do so, go back from
the previous rrasi ENABLE declaration’ to function enable flash write. Then,
go forward in the source code to find the definition of enables.il The definition
of enables is shown in Listing 9.5.

Listing 9.5. The enables Object Definition

As you can see, the enables object hasn’t support the VIA 596B southbridge yet.
There is no device identifier for VIA 596B, nor is there a function named
enable flash vt82C5968 or something similar to it. I added the support for VIA
596B by adding a new member to enables, as shown in Listing 9.6.

i To move backward in vi, press <Ctrl>+<t>,
1 Place the cursor in the enables word and then press <Ctrl>+<]>.

260 Part IV: BIOS Ninjutsu

Listing 9.6. New enables Object Definition

Listing 9.6 shows that I added a new instance of FLASH ENABLE to the enables
object, this new instance represents the PCI-to-ISA bridge in VIA 596B south-
bridge. The PCI-to-ISA bridge’s PCI vendor ID is 1106h, its device ID is 596h, and
its doit function is named enable flash vt82C596B. Note that the BIOS chip is
located behind the ISA bus; that’s why the PCI configuration registers that control
access to the BIOS chip is in the PCI-to-ISA bridge. Furthermore, the southbridge
has many PCI functions in it. PCI-to-ISA bridge is only one of them. Modern-day
chipsets replace the PCI-to-ISA bridge functionality with an LPC bridge, and the
BIOS chip is connected to the chipset through LPC interface. Now, let me show the
implementation of the function enable flash vt82C596B.

Listing 9.7. enable_flash_vt82C596B

Chapter 9: Accessing BIOS within the Operating Systel:n 261

Listing 9.7 shows how to enable access to the BIOS chip, i.e., by enabling the
decoding of the BIOS address range and then by enabling writing to the BIOS chip
in the corresponding PCI-to-1SA bridge configuration registers. The f1ash n burn
source code doesn’t require you to carry out the doit function successfully to con-
tinue probing for the right BIOS chip and writing or reading into it. However, most
of today’s motherboards need to carry out that function successfully to able to ac-
cess the BIOS chip. After I added the code in Listing 9.7 and modified the enables
data structure as shown in Listing 9.6, I recompiled the new tlash n_burn source
code and then tried to dump the BIOS contents. It worked as expected.

Information about the PCI-to-ISA bridge configuration registers in the VIA 596B
southbridge can be found in its datasheet.

9.3. Accessing Motherboard BIOS Contents
in Windows

In this section, I show you how to access the contents of the BIOS chip in Win-
dows. Building a BIOS flasher utility for Windows from scratch is a hassle. Thus,
I will show you how to port to Windows the £1ash n burn utility that you learned
about in the previous section. Porting this utility is not easy because some operating

262

Part IV: BIOS Ninjutsu

system-specific issues must be resolved. Before that, I highlight the logical architec-
ture of the Windows version of the flash n burn utility that you will build.
It is shown in Fig. 9.1. From now on, I will refer to this windows version of
flash _n_burn as bios_probe because the final executable created from the source
code is bios_probe.exe.

Fig. 9.1 depicts the logical architecture of bios probe. The division of
flash_n_burn from its Linux version into components shown in the figure is not
clear. The Linux version has an overlapped component implementation because of
the presence of /dev/men and the I/O privilege level (10PL). /dev/mem is a virtual
file representation of the overall physical memory address space in Linux. IOPL is
a feature that enables a user with administrator privilege to access the I/O port
directly in Linux. Both of these features don’t exist in Windows. Therefore, I have
to divide bios probe into the components shown in Fig. 9.1 to determine, which
of the routines that must be separated from the rest of the source code developed
separately as a Windows device driver.

Now, it’s clear that components 2 and 3 in Fig. 9.1 must be implemented in
a device driver. Component 2 consists of direct I/O functions that normally exist
in Linux, namely, outb, cutw, ocutl, inb, inw, and inl. Component 3 will replace
the functionality of the mmap function that exists in Linux but not in Windows.
In the Linux version of flash n_burn, the mmap function maps the BIOS chip to
the address space of the requesting user-mode application.

1. BIOS contents manipulation routines

This component manipulates the BIOS contents by means of
pointers in user-mode application context.

User mode (Ring 3)

Kernel mode (Ring 0)

2. Direct I/O routines 2. BIOS chip mapping routine
This component provides This component maps the BIOS chip
direct access to the I/O port to the virtual address space of the
requesting user-mode application

Fig. 9.1. bios_probe logical architecture

Chapter 9: Accessing BIOS within the Operating System 263

B3 vo.26
B 2 exe
0D libpi
() release
2 sys

Fig. 9.2. Directory structure of flash n burn (Windows version)

You can download the source code of bios probe that I explain here from
http://www.megaupload.com/?d=3QOD8V00. At this Web address is version 0.26
of the source code. However, this latest Windows version has not been well-tested
yet. I have only tested it successfully in a motherboard based on the VIA 596B
southbridge with a Winbond W49F002U flash ROM chip and in a motherboard
based on the Intel ICHS5 southbridge with Winbond W39V040FA flash ROM.
The directory structure of this source code is shown in Fig. 9.2.

The root directory in the bios probe source code is named v0.26. This name
represents the version number of the source code. The source code supports many
flash ROM chips; I only explain the two that I have tested.

The directory named exe under the root directory contains the source code for
the user-mode application of bios_probe, and the directory named sys contains
the source code of the device driver. The directory named 1ibpci under the exe
directory contains the source code for the static library used to probe the PCI bus.
I delve more into these directories in the next subsections.

With this source code, you have a solid foundation to add support for another
kind of chipset and for another flash chip.

9.3.1. Kernel-Mode Device Driver of bios_probe

In this subsection, both driver and device driver refer to the kernel-mode device
driver of bi os probe.

You need the Windows 2000 or Windows XP driver development kit (Win-
dows 2000 or Windows XP DDK) to build the driver of bios_probe. You build the
driver by invoking the build utility in the DDK build environment.! For example,
Shell Snippet 9.9 is from the Windows XP DDK free build environment, which
1 used to build the bios probe device driver.

i The DDK build environment is a console with its environment variables set to suit device driver
development.

264 Part IV: BIOS Ninjutsu

Shell Snippet 9.9. Building the device driver

Now, I will show you the overall source code of the driver that implements
components 2 and 3 in Fig. 9.1. I start with the interface file that connects the user-
mode application and the device driver.

Listing 9.8. The interface.h File

Chapter 9: Accessing BIOS within the Operating System 265

266

Part IV: BIOS Ninjutsu

Listing 9.8 shows the contents of the interface.h inc1ude file. This file is located
in the root directory of the source code. It provides the interface between the
user-mode application of bios probe and its Windows device driver. MMIO in
Listing 9.8 stands for memory-mapped 1/0.

It’s important that you have a background in Windows 2000/XP device driver
development to comprehend Listing 9.8 completely. If you are unfamiliar with
such development, I recommend reading The Windows 2000 Device Driver Book:
A Guide for Programmers (Second Edition) by Art Baker and Jerry Lozano, or Pro-
gramming the Microsoft Windows Driver Model (Second Edition) by Walter Oney.

Listing 9.8 provides the interface between the user-mode application and the
device driver by defining some input/output control (IOCTL) codes and some data
structures. The IOCTL codes are defined with the cTL copt macro. For example,
to read one byte from any port, 10cTL_READ PORT BYTE is defined as follows:

A user-mode application uses the IOCTL codes as the communication code to
“talk” with the device driver through the peviceIocontrol Windows API func-
tion. You can think of an IOCTL as a “phone number” to contact certain service
provided by the device driver. This logic is shown in Fig. 9.3.

The TOCTL code is passed from the user-mode application through the
DeviceloControl APL The I/O manager subsystem of the Windows kernel will
pass this IOCTL code to the right device driver by using an I/O request packet
(IRP). An IRP is a data structure used by the I/O manager to communicate with
device drivers in Windows.

Chapter 9: Accessing BIOS within the Operating System 267

User-mode application

DeviceloControl

User mode (Ring 3)

Kernel mode (Ring 0)

1/0 Manager

One of the payload in this
IRP is the IOCTL code
passed into the I/O
Manager by
DeviceloControl.

I/0 request packet

Kernel-mode device driver

Fig. 9.3. Working principle of the IOCTL code

Listing 9.9. DeviceloControl Win32API Function Declaration

Listing 9.9 shows that the IOCTL code is the second input parameter when you
invoke the DeviceIoControl function. Beside the IOCTL code, DeviceIoControl
has some pointer-to-void parameters' used by user-mode applications to exchange

i Pointer-to-void is a parameter declared with the LPVOID type. In Listing 9.9, parameters of this
type are LPVOID lpInBuffer and LPVOID lpOutBuffer.

268

Part IV: BIOS Ninjutsu

data with device drivers. Because the parameters are pointer-to-void, you can set
the pointer to point to anything. Thus, to make these parameters usable, you have
to define some data structures that will be used by the user-mode application and
the device driver. You use the pointer-to-void in DeviceIoControl to point to an
instance of this data structure. To do so, you cast the pointer-to-void to pointer-
to-your-data-structure and manipulate the contents of the data structure instance
with the latter pointer. These data structures are defined in Listing 9.8 with
atypdef struct keyword, for example, as follows:

Continuing the “phone number” analogy that I mentioned before, you can
think of the content of these data structures as the “conversation” between the
user-mode application and the device driver. Note that in thebics probe device
driver, every IOCTL code is associated with one data structure, but not the other
way around. For example, T0CTL_READ PORT_LONG is associated with 1o LoNG
data structure; TOCTL_WRITE_PORT LONG is also associated with 10 LonG. Both
IOCTT, READ PORT BYTE and IOCTL WRITE PORT BYTE are associated with
10_ByTE. And so on.

Proceed to the most important part of the bios probe device driver. Start with
the internal header of the device driver. It is named bios_probe.h and is shown in
Listing 9.10.

Listing 9.10. The bios_probe.h File

Chapter 9: Accessing BIOS within the Operating System 269

A

ey o e

= e e T

The internal header of the device driver is not exported to external entities; i.e.,
b it’s not to be included by external software modules that are not part of the

270 Part IV: BIOS Ninjutsu

bios_probe device driver. This file contains the declaration of internal functions
and data structures of the device driver.

I start with an explanation of the function declarations. The entry point of a Win-
dows device driver is a function named DriverEntry. It’s shown in Listing 9.10.
This function has two input parameters, a driver object pointer and a pointer to
a Unicode string that points to the registry entry associated with the driver. These
parameters are passed into the device driver by Windows when the driver is loaded
into memory for the first time. The responsibility of briverEntry is to initialize the
function pointers that will point to functions that provide services within the driver
and to initialize the exported name! of the driver so that a user-mode application
can open a handle to the driver. I'll delve more into this when you arrive at the
bios_probe.c file. Functions that start with the word Dispatch in Listing 9.10 are
the “services” provided by the driver. The names of these functions are clear
enough for their intended purposes.

There is one data structure declaration in Listing 9.10: DEVICE EXTENSION.
Roughly speaking, pEvICE_EXTENSION is the place for globally visible driver variables,
namely, variables expected to retain their value during the lifetime of the driver.

Listing 9.11. The bios_probe.c File

Listing 9.11 shows the implementation of functions declared in Listing 9.10.
I'll explain the functions one by one.

The DriverEntry function executes when Windows loads the device driver
into memory. The first thing this function does is install the function pointers for
the driver “services”™:1i

i Exported name in this context is an object name that is part of the name space in Windows 2000/XP.
A user-mode application can “see” and use this name.

ii Services in this context are the subroutines or functions that the driver provides for a user-mode
application to use. They are requested by the user-mode application through the Windows APL.

Chapter 9: Accessing BIOS within the Operating System 271

DriverObject in the preceding code snippet is a pointer to the driver object
for bios probe. It's passed by the Windows kernel to the driver when the kernel
initializes the driver. Several function pointers must be initialized. You saw that the
function pointer members of the driver object are initialized to point to the func-
tions that previously have been declared in the header file. For example,
the Driverinlcoad member of the driver object is initialized with a pointer to the
DispatchUnload function. Drivertnload is the function executed when the driver
is unloaded from memory. This function pointer must be initialized for the device
driver to work. Next, the MajorFunction array is for members of the driver object.
This array contains pointers to functions that deal with IRPs. Once the members of
this array are being initialized, the I/O manager will pass the right IRP into its asso-
ciated function in the bios _probe driver when a user-mode application is request-
ing a service from the driver. For example, when a user-mode application calls the
CreateFile API to open a handle to the driver, the driver will serve this request in
the function pointed to by the MajorFunction[IRP_MJ CREATE] member of the
bios_probe driver object, DispatchCreate. When a user-mode application calls
the closeHandle API and passes the handle of the bios_probe driver that it re-
ceives from a previous call to the createrile API as the input parameter to
CloseHandle, the driver will serve this request in the function pointed to by
the MajorFunction[IRP MJ CLOSE] member of the bios probe driver object,
DispatchClose. As for the function pointed to by the MajorFunction [IRP_MJ_READ]
member of the driver object, it will be called when a user-mode application calls
the ReadFile API and passes the handle of the bios probe driver. Furthermore,
DispatchWrite deals with the call to thewriterile API, and DispatchIoControl
deals with the call to the peviceIocontrol API. Note that each of the function
pointer members of the MajorFunction array is called from the user mode through
the Windows APL. The Windows API in turn “calls” the I/O manager. Then, the
I/O manager generates the IRP to inform the driver to respond with the right func-
tion to serve the user-mode application. The process of “calling” the functions
pointed to by the MajorFunction array is shown in Fig. 9.4.

How can the user-mode application open a handle to the driver? The driver
must be visible to the user-mode application to achieve that. A device driver can be
visible to the user-mode application in Windows 2000/XP through the object man-
ager. This part of Windows 2000/XP manages the objects within the operating system.

272 Part IV: BIOS Ninjutsu

| Kemel e !

: Windows API i Kernel-mode device driver ‘

‘ B | | Manager IRP MajorFunctionarray ‘

| __L; e R— T w2 — > DispatchCreate \
} CloseHandle el etk 4 - ———» DispatchClose | |
User-mode | ReadFile \ord) L "DispatchRead | |
v i T : . - —» DispatchRead | |
SO R Wiy sk o J. sy P
WriteFile ! ; Sl el Al — ! Dispatchwrite ||
| W Pskhictiol |

DeviceloControl o j =t Sl _—-]' DispatchloControl ‘ [
I Py e S |
5 ' |

Fig. 9.4. "Calling" the member of MajorFunction array from the user-mode application

Everything that has been exported to the object manager namespace will be visible
to the user-mode application and can be opened through the createrile API
The driver name! is exported by creating a Unicode name for the driver with the
RtlInitUnicodeString kernel function:

Then, pointer to the resulting Unicode name is used as the third parameter
in the call to ToCreateDevice when you create the device for the driver. This way,
the driver will be visible to the user-mode code. However, you have to traverse
the object manager namespace to arrive at the driver, ie., pass
\\\\. \\Device\\unicodeDeviceNamel! as the first parameter to the CreateFile
function. The createrile function is defined as follows:

i The driver name as seen from object manager is not the file name of the driver.
" The unicodeDeviceName string is only a place holder. You have to change it to the real name of
the device.

Chapter 9: Accessing BIOS within the Operating System 273

In many cases, a symbolic link is created by the priverEntry function to ease
the user-mode application. The bios_probe driver is no exception in this case. You
saw the following in Listing 9.11:

In this snippet, a symbolic link is created. Thus, the createrile function can
open a handle to the driver by just passing \\\\.\\unicodeDosDeviceName.]
Nonetheless, it’s a matter of taste whether to create a symbolic link or not.

Functions pointed to by the MajorFunction member of the driver object have
a common syntax:

The I/O manager passed two parameters to these functions when they are being
called. The first parameter is a pointer to the device object associated with the
driver, and the second is a pointer to the IRP data structure in the nonpaged pool
of the kernel memory space.

Remember that device object is different from driver object. There is only
one driver object for each driver; there can be more than one device object
for each driver, i.e., if the driver contains more than one device. How do you know
if a driver contains more than one device object? Just look at how many times
the driver calls the loCreatebevice function in its source code. Every call to
IoCreateDevice creates one device object. That is, if the function call was success-
ful. In the bios_probe driver, this function is called only once, during the execu-
tion of the DriverEntry function:

i The unicodeDosDeviceName string is only a place holder. You have to change it to the real sym-
bolic link name of the device.

274 Part IV: BIOS Ninjutsu

In the end of DriverEntry function execution, the contents of the device ex-
tension are initialized. The device extension contains information about mapping
the BIOS chip into user-mode application:

In the preceding code snippet, it’s clear that the device extension data structure
is capable of mapping physical address ranges. The maximum number of ranges
that can be mapped by the device extension is MAX MAPPED MMTO.

I'm not going to explain the Dispatchcreate function because this function
does nothing. It’s just setting the “success” value to return to the I/O manager
when it’s invoked. It exists merely to satisfy the requirement to respond the
CreateFile and CloseHandle API with the right value when a user-mode applica-
tion opens the access to the driver.

The most important part of the driver is the IOCTL code handler. Most com-
munication between the user-mode application and the bios probe driver occurs
using IOCTL code. Once a handle to the driver is successfully opened, IOCTL code
will flow to the driver. The code is handled by pispatchIoControl function.
In this function, the IOCTL code is examined in a big switch statement and the
appropriate handler function is called to serve the request. For example, when an
IOCTL code of the type READ_PORT BYTE is accepted, the DispatchIoControl
function will invoke ReadPortByte. ReadPortByte then responds by fetching
a byte from the requested hardware port and transfer the result to the user-mode

Chapter 9: Accessing BIOS within the Operating System 275

application. Note that some parts of ReadportByte are implemented as an inline
assembly routine because the code is dealing with the hardware directly. All
similar handler functions, i.e., ReadPortWord, ReadPortLong, WritePortByte,
WritePortWord, and WritePortLong, work similarly to ReadPortByte. The differ-
ences lie in the sizes of the function parameters that they work with and in the types
of operations they carry out. Functions that start with the word write carry out
a write operation to the designated hardware port.

Other functions invoked by DispatchToControl are MapMmio and UnmapMmio.
These functions map and unmap the physical address' ranges to/from the virtual
address space of the user-mode application. The BIOS address range is a MMIO
address range. You can map a certain MMIO address range into the virtual address
space of a user-mode application' as follows:

1. Map the I/O address range from the physical address space into the kernel’s
virtual address space with the MmMap1ospace function.

2. Build a memory descriptor list (MDL) to describe the 1/O address range that’s
mapped into the kernel’s virtual address space in Step 1.

3. Map the I/O address range from the kernel’s virtual address space obtained
in Step 1 into the wuser-mode virtual address space with the
MmMaplockedPagesSpecifyCache function. The first parameter of this func-
tion is the MDL obtained in Step 2.

4. 'The return value of Step 3 is a pointer to the starting address of the mapped 1/0
address range as seen from the virtual address space of the user-mode application.

The preceding steps are accomplished in the MapMmio function:

I This physical address space includes the BIOS chip address space.
ii The 1/O address range is mapped in the kernel mode device driver.

276 Part IV: BIOS Ninjutsu

Chapter 9: Accessing BIOS within the Operating System 277

The reverse of mapping the BIOS address space into a user-mode application is
carried out in UnmapMmio. This function must be called when you are done tinker-
ing with the BIOS chip in your user-mode application. Otherwise, the system
is likely to crash. Nonetheless, I have added in Listing 9.11 a workaround for
a user-mode application that fails to do so in the bios probe device driver. This
workaround is placed in the bispatchclose function.

278 Part IV: BIOS Ninjutsu

9.3.2. User-Mode Application of bios_probe

The original user-mode component of flash n_burn in Linux supports many
flash ROM chips. In this subsection, I won’t explain support for all of those chips in
bios_probe. [will just take one example: Winbond W39V040FA.

The user-mode part of bios probe consists of two logical components:

O The main application. This component consists of several files: direct_io.c,
error_msg.c, flash_rom.c, jedec.c, direct_io.h, error_msg.h, flash.h, jedec.h, and
all other source files for flash ROM chip support. The name of the flash ROM
support files are the same as the chip names or part numbers. Bios probe exe-
cution starts in flash_rom.c file. Flash_rom.c contains the entry point function,
main. This main application is based on bios probe source code from the
Freebios project.

O The PCI library. The files of this component are placed in libpci directory in-
side the exe directory. Its purpose is to detect the PCI devices that exist in the
system, and construct objects to represent them. The data structure is used by
the main application to enable access to the BIOS chip through the southbridge
that exists in the system. This component consists of several files, i.e., access.c,
filter.c, generic.c, i386-ports.c, header.h, internal.h, and pcih. This library
is a Windows port of the original PCI library in pciutils version 2.1.11 for
Linux by Martin Mares. I removed many files from the original library to slim
it down and keep the source code manageable; bios probe doesn’t need them.

I explain the components individually in the next subsections. The explanation

for the PCI library is brief.

9.3.2.1. The Main Application

I start with a short explanation of the purpose of each file in the main application
source code:

O flash_rom.c. This file contains the entry point to bios_probe, i.e., the main
function. It also contains the routine to invoke the PCI library, the routine to
enable access to the flash ROM chip through the southbridge, and an array of
objects that contain the support functions for the flash ROM chips. The im-
plementation of the flash ROM chip handler exists in the support file for each
type of flash ROM.

m)

aa

aao

Chapter 9: Accessing BIOS within the Operating System 279

flash.h. This file contains the definition of a data structure named flashchip.
This data structure contains the function pointers and variables needed to access
the flash ROM chip. The file also contains the vendor identification number and
device identification number for the flash ROM chip that bios _probe supports.
error_msg.h. This file contains the display routine that declares error messages.
error_msg.c. This file contains the display routine that implements error mes-
sages. The error-message display routine is regarded as a helper routine because
it doesn’t possess anything specific tobios probe.

direct_io.h. This file contains the declaration of functions related tobios probe
device driver. Among them are functions to directly write and read from
the hardware port.

direct_io.c. This file contains the implementation of functions declared in
direct_io.h and some internal functions to load, unload, activate, and deactivate
the device driver.

jedec.h. This file contains the declaration of functions that is “compatible” for
flash ROM from different manufacturers and has been accepted as the JEDEC
standard. Note that some functions in jedec.h are not just declared but also im-
plemented as inline functions.

jedec.c. This file contains the implementation of functions declared in jedec.h.
Flash_chip_part_number.c. This is not a file name but a placeholder for the files
that implement flash ROM support. Files of this type are w49f002u.c,
w39v040fa.c, etc.

Flash_chip_part_number.h. This is not a file name but a placeholder for the files that
declare flash ROM support. Files of this type are w49f002u.h, w39v040fa.h, etc.

Consider the execution flow of the main application. First, remember that with

ctags and vi you can decipher program flow much faster than going through the
files individually. Listing 9.12 shows the condensed contents of flash_rom.c.

Listing 9.12. Condensed flash_rom.c

As with other console-based applications, the entry point of bios probe is the
function main. So, start with this function. The main function starts by checking the
user input to see whether the user wants to read from the flash ROM or write into
it and whether the user wants to verify the operation upon completion or not.

280 Part IV: BIOS Ninjutsu

Then, main calls a function named myusec_calibrate delay. The latter function
then calibrates the loop counter needed for an approximately 1-msec delay, as
shown in Listing 9.13.

Listing 9.13. Calling the Microsecond Calibration Routine

Chapter 9: Accessing BIOS within the Operating System 281

You need an approximately 1-msec delay for some transactions with the flash
ROM chip, particularly those related to read and write operations. That’s why
the calibration is needed. Note that the counter' in the myusec_delay function
is declared a volatile variable to ensure that there is no optimization by the com-
piler. Therefore, it will be placed in RAM. If the counter is optimized, it’s possible
that the increment operation will soon make the counter overflow and will create
unwanted side effects because it's placed in a register and loop is unrolledi by
the compiler.

After the calibration is finished, the main function calls the InitDriver func-
tion to initialize the device driver.

Listing 9.14. Calling the Driver Initialization Routine

i'The counter is the i variable.
ii Read more about loop unrolling in the Intel Optimization Reference Manual

282 Part IV: BIOS Ninjutsu

~

InitDriver is a function declared in direct io.h and implemented in
direct_io.c. This function extracts the driver from the executable file, activates it,
and then tries to obtain a handle to it. This process is shown in Listing 9.15.

Listing 9.15. Driver Initialization Function

Chapter 9: Accessing BIOS within the Operating System 283

284

Part IV: BIOS Ninjutsu

The handle obtained in TnitDriver is used for direct I/O functions, such as
outb, outl, and inw.

Upon completing the device driver initialization, main calls enable flash
write. The purpose of enable flash write is to configure the PCI configuration
register in the southbridge of the motherboard to enable access to the BIOS chip
address space. In many systems, the BIOS chip address space cannot be accessed
after the operating system boots. The enable flash write function is complex,
as you can see in Listing 9.16.

Listing 9.16. Enabling Access to the BIOS Chip Address Space

Chapter 9: Accessing BIOS within the Operating System 285

The enable flash write function uses 1ibpci to probe the PCI bus to look
for PCI devices and then scrutinize those devices for supported southbridges.
When a supported southbridge is found, enable flash write then calls the
appropriate initialization function to enable access to the BIOS chip address space
through the southbridge. The supported southbridges are represented by an array
of objects of the FLASH_ENABLE type named enables, as shown in Listing 9.17.

Listing 9.17. Data Structure to Enable Access in a Specific Southbridge

286 Part |V: BIOS Ninjutsu

The return value from enable flash write is not checked in the main func-
tion because some motherboards don’t protect access to the BIOS chip
address space.

After the enable flash write function returns, main probes the system for
the supported flash ROM chip, as shown in Listing 9.18.

Listing 9.18. Probing for the Supported Flash ROM Chip

As you can see in Listing 9.18, probe flash is a complicated function. Its input
parameter is a pointer to a £lashchip object. However, it may not be obvious that
probe flash expects this input parameter to be a pointer to an array of objects
rather than a pointer to a single object. It’s OK if the array contains just one object,
as long as there is a NULL to indicate the end of the array. If probe_flash succeeds,
the return value is a pointer to the f1ashchip object that matches the current flash
ROM chip in the system. Otherwise, it returns NULL. The while loop in the
probe flash function walks through the array of flashchip objects to find
a matching flash ROM. The process starts with mapping the address space
of the BIOS chip' to the address space of bios probe by invoking the
MapPhysicalAddressRange function. MapPhysicalAddressRange returns a pointer
to the starting virtual address for the requested physical address spaceli

i The physical address space near the 4-GB limit.
ii The virtual address is in the context of f1lash n_burn user-mode application.

Chapter 9: Accessing BIOS within the Operating System 287

This pointer is used to communicate with the BIOS chip by reading and writing
into the virtual address space.! Every chip supported by bios probe has its own
method to read, obtain manufacturer identification from the chip, and write to the
chip. These unique properties are shown in the flashchip data structure and
in the flashchips array in Listing 9.19.

Listing 9.19. The flashchip Data Structure and the Array of flashchip Objects

i Reading and writing are accomplished using pointer indirection and dereference operator.

288 Part IV: BIOS Ninjutsu

In the source code, the array of flashchip objects is named flashchips.
One of the usable objects in flasnhchips array represents the operation that you
can carry out for Winbond W49F002U flash ROM. This object contains data and
function pointers that “describe” Winbond W49F002U flash ROM, as shown in
Listing 9.19. The definition of the constants in the object is in the flash.h file.

Listing 9.20. Winbond W49F002U Constants

The implementation of the function pointers in the Winbond W49F002U
object in Listing 9.19 is in the w49f002u.c file, as shown in Listing 9.21.

Listing 9.21. Winbond W49F002U Functions Implementation

Chapter 9: Accessing BIOS within the Operating System 289

Listing 9.21 shows the implementation of functions used to manipulate the
contents of Winbond W49F002U flash ROM chip. It is imperative to read the
Winbond W49F002U datasheet if you want to understand. It’s available free of
charge at http://www.winbond.com/e-winbondhtm/partner/ Memory F_PF.htm.

The implementation of the function pointers for the Winbond W39V040FA
object in Listing 9.19 is in the w39v040fa.c file, as shown in Listing 9.22.

Listing 9.22. Winbond W39V040FA Functions Implementation

Listing 9.22 shows that Winbond W39V040FA has its own method for locking
every 64-KB block in the 512-KB flash ROM address space. You won’t be able
to write into these blocks unless you disable the protection first. The registers that
control the locking method of these blocks are memory-mapped registers. That's
why in Listing 9.22 the code maps the “blocking registers” physical address range
into the process’s virtual address space. The blocking registers are mapped to the
FFBB0002h—FFBF0002h address range. This kind of blocking method or a similar one
is used in flash ROM that adheres to Intel’s firmware hub specification. If you are still
confused, see the snippet from the Winbond W39V040FA datasheet in Table 9.1.

Table 9.1. Block Locking Registers Type and Access Memory Map Table

for Winbond W39V040FA
Register Register Control Device Physical 4-GB System
Type Block Address Memory Address
BLR7' RIW 7 7FFFFh—70000h FFBF0002h
BLR6 RW 6 6FFFFh—60000h FFBE00O2h
BLR5 R/W 5 SFFFFh-50000h FFBD0002h
BLR4 R/W 4 4FFFFh—40000h FFBCO00Zh
BLR3 R/W o 3FFFFh—-30000h FFEB000Zh
BLR2 R/W 2 2FFFFh-20000h FFBAOOOZh
BLR1 RIW 1 1FFFFh—10000h FFB90002h
BLRO R/W 0 OFFFFh—-00000h FFBB000Zh

i BLR stands for block locking register. A BLR size is 1 byte.

290 Part IV: BIOS Ninjutsu

The device physical address column in Table 9.1 refers to the physical address of
the blocking registers when it’s not mapped into the 4-GB system-wide address space.

Table 9.2. Block Locking Register Bits Function Table

Bit Function
7-3 Reserved
2 Read Lock

1: Prohibited to read in the block where set.

0: Normal read operation in the block where clear. This is the default
state.

1 Lock Down

1: Prohibited further to set or clear the read-lock and write-lock bits. This
lock-down bit can only be set not clear. Only if the device is reset or
repowered is the lock-down bit cleared.

0: Normal operation for read-lock or write-lock. This is the default state.

0 Write Lock
1: Prohibited to write in the block where set. This is the default state.
0: Normal programming or erase operation in the block where clear.

Table 9.2, also from the Winbond W39V040FA datasheet, shows that the lowest
three bits of the block locking register (BLR) controls the access into W39V040FA.
You can even “disable” the chip by setting the value of bit 0, bit 1, and bit 2 in all
BLRs to one. This setting will “lock” the chip, making it inaccessible until the next
reboot. It’s imperative to read the Winbond W39V040FA datasheet if you want to
know its internal working principle.

After successfully initializing the object that represents the BIOS chip, themain
function calls the appropriate member function of the object to carry out the op-
eration that bios probe user requested. This process is shown in Listing 9.23.

Listing 9.23. Fulfilling User Request in the main Function

Chapter 9: Accessing BIOS within the Operating System 291

After fulfilling the user request, the main function then cleans up the resources
it used and terminates bios_probe execution. Up to this point, the bios probe
execution path should be clear to you.

One important fact has been uncovered so far. Pay attention to the Winbond
W39V040FA datasheet snippet in Tables 9.1 and 9.2. It’s clear that if the BIOS initial-
izes the lock-down bit to 1 during boot, you won’t be able to access the BIOS chip.

292 Part IV: BIOS Ninjutsu

Therefore, a rootkit cannot be installed to the BIOS chip from within the operating
system because of the hardware protection.

I experimented with a DFI 865PE Infinity motherboard’ to confirm that the
lock-down bit works. Indeed, it does. When 1 set the lock-down bit in Windows,
the chip is inaccessible for reading and for writing. Reading the BIOS chip address
space returns 0 bytes, and writing is impossible.

9.3.2.2. The PCI Library

The PCI library in the Windows version of bios probe is based on pciutils
version 2.1.11 for Linux. Nonetheless, many functions and files have been re-
moved to make it as slim as possible. In this subsection, I highlight the important
parts of the library. From this point on, I refer to the Windows version of the PCI
library as 1ibpci.

Libpci source code is a standalone static library. However, it needs the Win-
dows equivalent of the direct I/O functions' in Linux to compile. In bios probe,
they are provided in direct_io.h and direct_io.c files.

Libpci is used in bios_probe during execution of the enable flash write
function to detect the southbridge and enable access to the BIOS chip, as shown in
Listing 9.24.

Listing 9.24. Usage of libpci by the Main Application

i DFI 865PE Infinity uses an Intel ICH5 southbridge and a Winbond W39V040FA flash ROM chip.
1 The direct I/O functions are inb, outb, inw, out, inl, and out1l.

Chapter 9: Accessing BIOS within the Operating System 293

Listing 9.24 shows how enable [lash write works. It allocates the resources
needed to access the PCI bus by calling the pci alloc function. This function is
declared in the pci.h file and implemented in access.c. The resource allocation in it
is shown in Listing 9.25. Note that I removed many PCI access methods from the
original pciutils PCI library. The ones left provide only direct access to the hard-
ware. I have to do so because the other access methods are only supported in Linux
or UNIX but not in Windows.

Listing 9.25. The pci_alloc Function

Hsl

e

c file

S

for the
alling the

€SS.

e
L ‘

the acc

- S
5 : G o
b b et B e

B R L

L L

Palal

ction pomters

fun
_alloc function by ¢
lemented in

the

€5
in the pci

is also imp

tializ

ini
ction

£

ion

L
e

o

ini

3
8
o
0
o
=
=

ous
=1
t Funct

The p

sting 9.26.

ect previ

e

)

BIOS Ninjutsu
enable flash write
s ob
tion.

S
t func

It’s shown in

L e L EEL

Pl ind

i

e

S e

Part IV
Then,
= 4 &

- e
L .
: b

Listing 9.26. The pc

pei

294

Chapter 9: Accessing BIOS within the Operating System 295

After the access method for the PCI bus is established, enable flash write
scans the bus by calling the pci_scan_bus function. This function is also imple-
mented in the access.c file. It’s shown in Listing 9.27.

Listing 9.27. The pci_scan_bus Function

Following PCI bus scanning, enable flash write initializes the so-called
PCI filter to prepare to match the bus-scanning result to the southbridge
supported by flash n burn. This task is accomplished by calling the
pci_filter init function. The matching process is accomplished in the
pci_filter match function. Both of these functions are implemented in the
filter.c file, as shown in Listing 9.28.

296 Part IV: BIOS Ninjutsu

Listing 9.28. The pci_filter_init and pci_filter_match Functions

As you can see in Listing 9.28, the bus-scanning result and the supported
southbridges are matched by comparing the vendor identifier and the user identi-
fier of the corresponding PCI chips. My explanation on libpci ends here.
It should be enough for you to traverse the source code on your own and under-
stand how it works.

You can see the screenshot of bios probe in action in Fig. 9.5.

Fig. 9.5 shows bios probe dumping the contents of the DFI 865PE Infinity
motherboard into a file named dump.bin. The flash ROM chip in this mother-
board is a Winbond W39V040FA. The explanation about methods used to access
the motherboard BIOS chip ends here. Move to a more challenging theme
in the upcoming sections: methods to access PCI expansion ROM within the
operating system.

Chapter 9: Accessing BIOS within the Operating System 297

o* CHWINDOWStsyst

Fig. 9.5. bios_probe version 0.26 screenshot

9.4. Accessing PCI Expansion ROM Contents
in Linux

You might think that accessing the contents of PCI expansion ROM in Linux will
be tough. That’s not the case. There are already source codes on the Web that can
help you. One open-source project that deals with PCI expansion ROM is the
ctflasher project. This project is at http://ctflasher.sourceforge.net. As of the writ-
ing of this book, Ctflasher was releasing source code version 3.5.0. With this utility,
you can read, erase, and verify the supported flash ROMs in the PCI expansion
card directly in Linux. Ctflasher supports kernel versions 2.4 and 2.6. Currently,
ctflasher only supports some network interface cards (NICs), the proprietary
ctflasher card, the SiS 630 motherboard, and a flasher card that connects through
the IDE port.

The architecture of ctflasher is based on an LKM. Thus, to use it, you have to
load the kernel module in advance. After the LKM has been loaded, you can access
the flasher through the /proc interface by using the cat command. The HIOWTO
file from ctflasher version 3.5.0 explains the usage as follows:

Part IV: BIOS Ninjutsu

Chapter 9: Accessing BIOS within the Operating System 299

Because ctflasher is released under general public license and BSD license, you
can use the code without charge in your software. As explained in the previous sub-
sections, to understand ctflasher source code without wasting your precious time,
you can use ctags and vi to help traversing the source code. The directory struc-
ture of the source code is shown in Fig. 9.6.

300

Part IV: BIOS Ninjutsu

T - -

OB
ok

E

=8
jo
n

m?

-
W
wn
=

g

3
o
o
25
©
o

BEBBDB

el

@ Makefile
&) Makefile.common

~$) todo

Fig. 9.6. Ctflasher directory structure

In Fig. 9.6, ctflasher source code is placed in the directory named
flasher 3.5.0. There are dedicated directories for the flash model that it sup-
ports, namely, nics, bios, ct, and ide. Nics contains source code related to PCI
network interface cards that ctflasher supports. Bios contains source code for a
motherboard based on the SiS 630 chipset. ct contains source code for the proprie-
tary ctflasher hardware. 1de contains files for the IDE flasher interface.

The directory named modules is empty at first. It will be filled by ctflasher’s
LKM when you have finished compiling the code. The directory named bui1dz. 6
contains the makefile for kernel 2.6. Finally, the directory named f1ash contains
the source code for the flash ROM chip supported by ctflasher.

Ctflasher source code is well structured, and it’s easy to understand. For PCI
NIC, you start to learn the ctflasher source code by studying the NIC support files
in the nics directory and then proceed to the flash directory to learn about the
flash ROM-related routines. The PCI NIC support file provides routines needed to
access the flash ROM on board, and the flash ROM support file provides the spe-
cific write, erase, and read routine for the corresponding flash ROM chip.

I explain the routine for manipulating the flash ROM chip on board a PCI NIC
in the next subsection. Even though Linux and Windows differ greatly, the princi-
ples and logic is the same for this task in both operating systems. Thus, the contents
of the next subsection should help you understand ctflasher source code.

Chapter 9: Accessing BIOS within the Operating System 301

9.5. Accessing PCI Expansion ROM Contents
in Windows

In this section, you will learn about techniques to manipulate PCI expansion
ROM directly in Windows. Before reading about the access method, 1 recom-
mend that you to review the XROMBAR concept in Chapter 7, Section 7.1.4. After
reading that section, you might think that, just as you are accessing the system
BIOS in the motherboard, you will use a memory-mapping trick to access the
contents of the PCI expansion ROM, Akin to the explanation in Section 9.3. That
trick might work for some PCI NICs. However, some PCI NICs don’t use their
XROMBAR. I mean, you don’t access the contents of the ROM by using the
XROMBAR. I give an example of such a NIC in this section, i.e., NIC based on
the Realtek RTL8139' chip.

The source code of the program that T explain here can be downloaded at
http://www.megaupload.com/?d=ZW8C9CQ9. The software is a revamped ver-
sion of the bios_probe that you learned in Section 9.3. This is bios probe version
0.31. It has support for one type of PCI NIC and one type of flash ROM, i.e., Real-
tek 8139 NIC and Atmel AT29C512 flash ROM. I explain the details of the source
code in Section 9.5.3. You need some prerequisite knowledge to understand it.
Thus, I provide some sections for that purpose. Have fun.

9.5.1. The RTL8139 Address-Mapping Method

The contents of the flash ROM on a NIC based on the RTL8139 chip are not di-
rectly accessible in the physical memory address space of the CPU. RTL8139 maps
the flash ROM in the I/O address space, not in the memory address space. The
first PCI BAR in RTL8139 carries out the mapping. This BAR has its least sig-
nificant bit hardwired to one, which means it’s mapped to I/O space. The follow-
ing is a condensed snippet from the RTL8139 datasheet!! You can view and
download this datasheet for free at http://pdfl.alldatasheet.com/datasheet-pdf/
view/84677/ETC/RTL8139.html

i The Realtek 8139 family of chips currently consists of four variants: RTL8139A, RTL8139B,
RTLB139C, and RTL8139D. I refer to them collectively as RTL8139.

i The first BAR is the 32-bit register at offset 10h in the PCI configuration space of the device.

iii The datasheet is free from Realtek’s website.

302 Part IV: BIOS Ninjutsu

As you see in the preceding datasheet snippet, the address range used by RTL8139
chip is hardwired to the I/O address space. This means anything that resides “behind”
this chip and needs some addressing method will be accessible only through the 1/0
address range claimed by RTL8139. That includes the flash ROM in the NIC.

The RTL8139 chip defines 256 registers that are relocatable in the PCI memory
address space or the I/O address space. The size of each register is 1 byte. Four con-
secutive registers among them are used to access the contents of the flash ROM,
namely, registers D4n—D7h. Note that these registers are not the PCI configuration
register of the chip. They are a different set of registers. You can read and write to
these registers. Table 9.3 shows the meaning and functionality of the bits within
these registers.

Table 9.3. Flash Memory Read/Write Register (Offset 00D4h-00D7h, R/W)

Bit RIW Symbol Description
31-24 | R°W | MD7-MDO | Flash Memory Data Bus: These bits set and reflect
the state of the MD7-MDO pins during the write and the
read process.
23-21 —_ — Reserved

continues

i T0AR is the first BAR, located at offset 10h.

Chapter 9: Accessing BIOS within the Operating System 303

Table 9.3 Continued

Bit R/W Symbol Description

20 w ROMCSB | Chip Select: This bit sets the state of the ROMCSB pin.
19 W OEB Output Enable: This bit sets the state of the OEB pin.
18 W WEB Write Enable: This bit sets the state of the WEB pin.
17 W SWRWEnN | Enable software access to flash memory:

0: Disable read/write access to flash memory using
software.

1: Enable read/write access to flash memory using soft-
ware and disable the EEPROM access during flash
memory access via software.

16-0 W MA16-MAQ | Flash Memory Address Bus: These bits set the state of
the MA16-MAOD pins.

After reading Table 9.3, it’s clear that to access the flash ROM, you need to do
a read/write operation to register D4h—D7h of RTL8139. However, you have to de-
termine where they are located in the I/0 address space, because they are relocat-
able because of the nature of the PCI bus.

The I/O base is detected with the following steps:

1. Scan the PCI bus to check for the presence of the RTL8139 PCI device, i.e.,
a PCI device with a vendor identifier of 10Ech and device identifier of 8139.

2. Once RTL8139 has been located, read the first BAR in the device to determine
its I/O base address. Remember that the last two bits in the BAR value must be
discarded because it’s only a hardwired bit to aid in determining that device is
mapped to the I/O space. They are not to be used in addressing.

A single byte from the flash ROM “behind” RTL8139 must be read in two steps,
as follows:

1. Write the address of the byte inside the flash ROM that you want to read. This
step must be carried out as the control bits in register Dén are set as follows:
a. Set the swrwEn bit to one. This enables access to flash ROM through
RTL8139.
b. Set the wes bit to one. The pin that this bit controls is active low. Thus,
when you set this bit to one, the pin is deactivated, which means you are
not doing a write transaction to the flash ROM chip.

304

Part IV: BIOS Ninjutsu

c. Set the romMcsB bit to zero. The pin that this bit controls is active low. Thus,
when you set this bit to zero, you effectively activate the “chip select” line
where the pin is attached.

d. Set the ozB bit to zero. The pin that this bit controls is active low. Thus,
when you set this bit to zero, you effectively activate the “output enable”
line where the pin is attached.

2. Read the value from register b7h in Realtek 8139.

"Byte-load" cycle

Set the values of the control bits in register D6 as follows:
1. Set SWRWERN to one to enable access to the flash ROM.
This bit is "active high" and does not control any pin.
2. Set WEB to zero to activate the write-enable pin.
The pin that is controlled by this bit is active low.
3. Set ROMCSB to zero to activate the chip-select pin.
The pin that is controlled by this bit is active low.
4. Set OEB to one to disable the output-enable pin.
The pin that is controlled by this bit is active low.,

"Start-writing" cycle

Set the values of the control bits in register D6 as follows:

1. Set SWRWER to one to enable access to the flash ROM.
This bit is "active high" and does not control any pin.

2. Set WEB to one to deactivate the write-enable pin.
The pin that is controlled by this bit is active low.

3. Set ROMCSB to one to deactivate the chip-select pin.
The pin that is controlled by this bit is active low.

4. Set OEB to one to disable the output-enable pin.
The pin that is controlled by this bit is active low.

{}

"Wait for write-completed” cycle

In this step, perform a delay to wait until the writing to
the entire sector of the flash ROM is completed.
Some flash ROMs need about 10 msec to write

1 sector. Consult their datasheets to ensure this.

Fig. 9.7. Method for writing a single sector to flash ROM in RTL8139 NIC

Chapter 9: Accessing BIOS within the Operating System 305

This logic is similar to reading the contents of the PCI configuration register.

As for writing a single byte, it can’t be done, because RTL8139 only supports
sectored flash ROM. Thus, when you want to change a single byte in the flash
ROM, you have to write the whole sector and you have to set the values of the four
control bits in register néh accordingly. The write operation is a bit more complex.
Thus, I provide in Fig. 9.7 a block diagram to show the process of writing the
whole sector.

Fig. 9.7 will be clear when you arrive in the source code implementation.
At this point, you have mastered the prerequisite to work with RTL8139.

9.5.2. The Atmel AT29C512 Access Method

Almost all aspects of carrying out transactions with Atmel AT29C512 through the
RTL8139 chip were explained in the previous subsection. The remaining informa-
tion specific to AT29C512 explains how to erase the chip contents and how long
the delay must be when you have written a single sector to it.

AT29C512 needs a 10-msec (maximum) delay to write a single sector. How-
ever, my experiment shows that an approximately 9-msec delay is enough.

To delete the entire chip, you need to write specific values to specific addresses in
the chip. Doing so is described in Software Chip Erase Application Note for AT29 Series
Flash Family. These bytes sequence will be shown in the source code implementation.
You can find the related documentation online at http://www.atmel.com/dyn/
products/product_card.asp?family id=624&family name=Flash+Memory&part
id=1803.

9.5.3. Implementing the Methods in Source Code

I'm using the bios probe source code as the starting point to implement the
methods to access the flash ROM in RTL8139 in Windows. I'm doing it to reduce
development time. However, I have to remind you that current support for
PCI expansion ROM in the source is a “quick hack.” It’s not seamlessly integrated
into the overall source code because a strict timing requirement dictates that some
part of the code must run in the device driver. The modifications I use to allow
support for PCI expansion ROM in bios probe are adding some new files for the
user-mode application and adding new files to the device driver. The latter adds
support for the time-critical part of the code. The rest of the files are also modified

306

Part IV: BIOS Ninjutsu

to accommodate these changes. These are the new files in the user-mode applica-
tion source code:

m]

0

pci_cards.h. This file defines the data structures to virtualize access to the PCI
expansion card.

pci_cards.c. This file virtualizes access to PCI expansion cards.

rtl8139.h. This file declares read and write functions to flash ROM in RTL.8139
NIC.

rtl8139.c. This file implements read and write functions to flash ROM in
RTL8139 NIC.

at29¢512.h. 'This file declares read, write, erase, and probe functions for
AT29C512 flash ROM.

at29c512.c. This file implements read, write, erase, and probe functions for
AT29C512 flash ROM.

These are the new files in the device driver source code:

rtl8139_hack.h. This file declares a specific function to write to AT29C512 f{lash
ROM when it’s placed in RTL8139 NIC.
rtl8139_hack.c. This file implements the function declared in rtl8139_hack.h.

Before 1 show you the content of these new files, I explain the changes that

I made to accommodate this new feature in the other source code files. The first
change is in the main file of the user-mode application: flash_rom.c. I added three
new input commands to read, write, and erase the contents of PCI expansion ROM.

Listing 9.29. Changes in flash_rom.c to Support PCl| Expansion ROM

The files to interface with the driver in the user-mode application (direct_io.c
and interfaces.h) are changed as well.

Listing 9.30. Changes in direct_io.c to Support PC| Expansion ROM

Chapter 9: Accessing BIOS within the Operating System 307

308 PartIV: BIOS Ninjutsu

Listing 9.31. Changes in interfaces.h to Support PCI Expansion ROM

Note that interfaces.h is used both in the driver and in the user-mode applica-
tion source code. I define two new IOCTL codes to support accessing the PCI ex-

pansion ROM.
On the driver side, I made a small change to the device extension data structure

to support RTL8139 NIC. It’s shown in Listing 9.32.

Listing 9.32. Change in bios_probe.h to Support PCl Expansion ROM

The core driver file, bios_probe.c, is also adjusted to accommodate the changes.
It’s shown in Listing 9.33.

Chapter 9: Accessing BIOS within the Operating System _ 309

Listing 9.33. Changes in bios_probe.c to Support PCl Expansion ROM

310 Part IV: BIOS Ninjutsu
~

== ~ pbevExt = (PDEVICE EXTENSION) pDO->DeviceExtensicn;
- pDevExt->rt18139TcBase = *ploBase;

F else |
status = STATUS BUFFER. TOO SMALL;
}
}braak' : . = j'iéV

case IE)CT ’R'I'L8139 ROM WRITE RACK.' // Must be called after =
: // IOCTL | RTLB130 - IOBASE HACK.

bufLength =
irpStack—>ParametersADeviceIOControl.OutputBufferLenqth;

i »DngrmtI"IOCTL RTL8133 ROM WRTTF, H;ACK T
; “buffeziw@ngth zd\n" 5 bquength),

buf = (OCHARY) MmGetSystemAddressFoerlSafe(
plrp->MdlAddress, NormalPagePriority):

phevExt = {PDEVICE EXTENSIGN) pDO*>Dev1ceExtenslon,

e qumet("IOCTL RTLRLZ?‘? ROM WRTTE HP&CK;
‘ "“pDevExL-brL1813BIcBase = &xX\n", pDevExtr>rt1813QIoBase},

WriteRt1813%RomHack (pDevExt->rt181391I0Base, buflength,
baf);
tbreak:
Q?'Tt;elevantj&% = e

I used the call to the pbge: int function in Listing 9.33 when I was debugging
the device driver. You can use the DebugView utility from Sysinternals to view the
debug messages. Debugview is free of charge. To use it, run bebugview and activate
the Capture | Capture Kernel, Capture | Pass-Through, and Capture | Capture
Events options. Disable the Capture | Capture Wind32 option because it will clut-
ter the output with unnecessary messages. 'The sample output for this driver is

shown in Fig. 9.8.

Chapter 9: Accessing BIOS within the Operating System 311

0.00000000 DeviceObject 8198F028
37 74486542 DeviceObject 8198F028
82117462 IOCTL_RTL6139_ROM+WRITE HACK: buffer length = 65536

.82118751 IOCTL_RTL8139 ROM WRITE HACK: pDevExt—»>rtl81391cBase = BB801
.82120514 WriteRtl19139RomHack: baseAddr = B801

82120895 WriteRt18139RomHack: icBase = B800

.82121277 Setting up microsecond timing loop

.54805756 14554 loops per second

.92562681 UriteRt18139RomHack: output buffer = EBO4AASS

.92566681

»_-] 0000 e W = O

Fig. 9.8. DebugView output for the bios_probe driver

You already know the changes in the bios_probe files that you learned in Sec-
tion 9.3 to accommodate the new PCI expansion ROM feature. There are the new
files in source code version 0.31. Start with the new files in the driver.

Listing 9.34. Contents of rtI8139_hack.h

Listing 9.35. Contents of rtl8139_hack.c

Listing 9.34 declares the writert18139RomHack function, which is used by
the driver to respond to the TOCTL RTL8139 ROM WRITE HACK request from
the user-mode application. In Listing 9.35, this function writes the contents of
the file buffer' to AT29C512 flash ROM. Note that the file buffer in the user-mode

i This buffer is filled in the user-mode application.

312 Part IV: BIOS Ninjutsu

application is not copied to a nonpaged pool in the kernel mode. This is because of
the nature of the IOCTL code that specifies the type of the buffering as
METHOD OUT DIRECT: the I/O manager in Windows will lock down the user buffer
pointed to by the 1poutBuffer parameter! in the DeviceIoControl function to
physical memory and construct the necessary page tables in kernel-mode context to
access it. The buf pointer in WriteRt18139%RomHack is a pointer in the kernel-mode
context to this buffer. Listing 9.35 also shows how to write to flash ROM. The for
loop writes one sector'! at a time and waits approximately 9 msec after loading the
sector’s bytes before proceeding to the next sector. This delay is needed to wait for
the flash ROM to finish writing the entire sector.

Proceed to the new files in the user-mode application. The coupling between
the PCI expansion ROM feature and the rest of the bios probe code is provided
by the pci_card.h file, as shown in Listing 9.36.

Listing 9.36. pci_cards.h

i The fifth parameter of the DeviceIoControl function.
1 One sector is 128 bytes in AT29C512.

Chapter 9: Accessing BIOS within the Operating System 313

The implementation of the functions and data structures declared in
pci_cards.h is in the pci_cards.c file, as shown in Listing 9.37.

' Listing 9.37. pci_cards.c

The function pointer members of the pci cards array in pci_cards.c are im-
plemented in the rtl8139.c file, as shown in Listing 9.38.

Listing 9.38. rti8139.c

314 Part IV: BIOS Ninjutsu

Chapter 9: Accessing BIOS within the Operating System 315

The functions in Listing 9.38 provide the read and write access to flash ROM |
in RTL8139 NIC. !
The last file that I'm going to explain is the at29¢512.c file. This file contains |
the functions used to manipulate the content of the AT29C512 chip. It’s shown .
in Listing 9.39. "

Listing 9.39. at29¢512.c

|

|

|

i

|

|

;

i

|

As you can see in Listing 9.39, I made a “quick hack” method to provide high-
performance code to write into AT29C512. The implementation of this high- i
performance code is in the form of a dedicated function to write into the flash ROM F:
entirely in the device driver. This dedicated function is named writeRt18139RomHack ,
in Listing 9.35. Even though the same function name is used in the user-mode source 4
code in the direct_io.h file, these functions are different. writert18139RomHack in
direct_io.h calls the function with the same name in the device driver through the
I/O manager! by using the TocT1, RT1,8139 RoM WRITE HACK IOCTL code.
At this point, everything should be clear. Read the source code if you are still
confused in some parts. Next, | show you how I test the executable.

i If you call the DeviceloControl function in user mode, you are actually interacting with the 1/0 i
manager. ‘r |
|

316 Part IV: BIOS Ninjutsu

9.5.4. Testing the Software

Testing the new version of bios probe is easy. First, I test the capability to erase
the flash ROM. It is shown in Fig. 9.9.

To ensure that the flash ROM is indeed erased, I dumped the contents into
a binary file, as shown in Fig. 9.10.

Fig. 9.10. Reading the flash ROM contents

Chapter 9: Accessing BIOS within the Operating System 317

|
|
The dump result is as expected. The binary file only contains #¥n bytes, as 1
shown in Hex Dump 9.2. 1
|

Hex Dump 9.2. PCI Expansion ROM Contents After They Have Been Erased

To ensure that everything is right, I reboot the system and boot from the i
RTL8139 NIC. If the boot failed, then the erase operation is successful. | set the |
BIOS to boot from the LAN as shown in Fig. 9.11.

The machine is booted and fails as expected, because other boot devices are
disabled. It’s shown in Fig. 9.12. |

Network bool from AHD As79C976A

Enter

Fig. 9.11. Boot from LAN in the BIOS setting

318

Part IV: BIOS Ninjutsu

Fig. 9.12. Boot from a LAN failure after erasing the flash ROM

LAWINDOWS \system 3 \emd, axe

Fig. 9.13. Flashing the binary file to PCI expansion ROM in Windows

Chapter 9: Accessing BIOS within the Operating System 319

The next step is to test the PCI expansion ROM flashing in Windows. It’s
shown in Fig. 9.13.

The file that I flash in Fig. 9.13 is the binary file that you learn in Chapter 7.
However, | customized the source code in Chapter 7 to generate this file, i.e., I fixed
the vendor identifier and device identifier so that they match the RTL8139 NIC.
If this file is successfully flashed, then when I reboot again and activate boot from
LAN, the Hello world string will be displayed on the screen. Then the system halts.
Indeed, that’s the result. Fig. 9.14 shows it.

Now, you have nothing to worry about when accessing the contents of the
ROM chip directly in the operating system, regardless of whether it’s motherboard
BIOS or PCI expansion ROM. The upcoming chapters are even more interesting.

Hello. world _

Fig. 9.14. The result of flashing to PCI expansion ROM

Chapter 10: Low-Level Remote
Server Management

Preview

You might not be aware of the presence of low-level remote access to x86 system
hardware and firmware through software interfaces called the desktop manage-
ment interface (DMI) and system management basic input/output system
(SMBIOS). They were competing standards. DMI reached the end of its life cycle in
2005. Therefore, my explanation regarding these protocols focuses on SMBIOS.
Nevertheless, some artifacts from the DMI era are still found in SMBIOS for com-
patibility reasons. The first section explains the SMBIOS interface, and the second ‘-
section deals with the real-world implementation of the interface in a sample BIOS '
binary, along with a simple SMBIOS structure table parser. You also get a glimpse
of Windows management instrumentation (WMI). |

322 Part IV: BIOS Ninjutsu

10.1. DMI and SMBIOS

DMI and SMBIOS are standards developed and maintained by the Distributed
Management Task Force (DMTF). These standards are meant to take part in
a software layer to provide seamless remote management for server and desktop
machines. The purpose is to lower the total cost of ownership for organizations
running various machines. The more machines an organization has, the greater the
benefit it receives from being able to centralize the management tasks of the ma-
chines, such as monitoring machine performance and updating certain software.
This machine management paradigm is termed Web-based enterprise management
(WBEM) by the DMTF (http://www.dmtf.org/standards/wbem/). In this context,
DMI or SMBIOS is only one of the software layers that provide management func-
tions. Note that DMI has been deprecated and replaced by SMBIOS.

Fig. 10.1 shows a simplified logical architecture for a WBEM computing
environment.

WBEM manager
software

| Local terminal ‘

TCP/IP connection

Operating system-specific WBEM_
"client"

v \

Other SMBIOS
manageable structures
components

table
A

Power-on BIOS

Remote machine ool

(to be managed)

Fig. 10.1. WBEM logical architecture

Chapter 10: Low-Level Remote Server Management 323

Fig. 10.1 shows that the operating system-specific “client” application manages
access not only to the so-called SMBIOS structures table but also to “other man-
ageable components.” In Windows, this client is WMI. In a UNIX-based operating
system, the operating system-specific client depends on the vendor that provides it.
Big vendors such as Sun Microsystems, Hewlett-Packard, and IBM provide a custom
WBEM client application. Some Linux distributions from big vendors, such as
Novell/SUSE, also implements WBEM client software. I won’t delve into the UNIX
version of the client software in this book because it varies so much. There is open-
source activity around the UNIX implementation of WBEM at http://openwbem.org/.
As for WMI, I offer a little explanation. However, this chapter covers the BIOS level
implementation of the WBEM paradigm. Therefore, the operating system-specific
layer of WBEM will not be the major theme here.

Even if Fig. 10.1 shows a kind of client-server relationship between the WBEM
manager software and the system that hosts the manageable components, in the
real world, the system doesn’t have to be set up as client and server for the WBEM
to work. For example, in Windows machines, as long as remote access to the WMI
of the remote machine is granted, the local machine can “ask” the remote machine
to perform management tasks.

The requirements and specifics about WBEM for hardware devices are available
in the “Windows Hardware Instrumentation Implementation Guidelines” at
http://download.microsoft.com/download/5/7/7/577a5684-8a83-43ae-9272-
ff260a9¢20e2/whiig-1.doc. The SMBIOS implementation guideline is provided in
Chapter 2.7 in the document:

It’s clear in the preceding citation that the WMI subsystem in Windows will
“parse” the SMBIOS data provided by the BIOS and then “export” it to the WBEM

manager software as needed through the WMI interface.

324 Part [V: BIOS Ninjutsu

.

In Fig. 10.1, an arrow runs from the power-on BIOS code to the SMBIOS
structure tables. This arrow means the SMBIOS structures table is populated by the
BIOS code that is executed during system initialization.

SMBIOS is a BIOS feature specific to the x86 platform. It's implemented as part
of the WBEM initiative. The role of SMBIOS is to provide system-specific informa-
tion to the upper layer in the WBEM implementation, i.e., the operating system
layer. To easily understand the SMBIOS, you can download version 2.4 of its speci-
fication at http://www.dmtf.org/standards/smbios/. I often refer to the contents of
this specification.

In the earlier implementation of SMBIOS, the information was presented as
a “callable interface,” i.e., platform-specific function calls. The current implementa-
tion of SMBIOS presents the information to the upper layer in the form of a data
structure. This data structure is shown as the SMBIOS structures table in Fig. 10.1.

The entry point to this data structure table is a string signature, sm . This en-
try point is placed in a 16-byte boundary inside physical address range 0x£0000—
0xFFFEF in the x86 architecture. The table! itself need not be located in this address
range. The SMBIOS specification states that it must be in the 4-GB address range
because it has to be addressed with 32-bit addressing; nevertheless, many BIOSs
implement the table within the 0xF0000-0xFFFFE physical address range. The entry
point of SMBIOS structure table is described in Table 10.1; this table can also be
found in the DMTF “Systern Management BIOS (SMBIOS) Reference Specification,”
version 2.4, released on July 4, 2004.

Table 10.1. SMBIOS Structure Table Entry Point

Offset Name Length Description
00h Anchor string | 4 bytes _sM_, specified as four ASCI| characters
(5F 53 4D 5F).
04h Entry point Byte Checksum of the EPS. This value, when
structure added to all other bytes in the EPS, will
(EPS) result in the value 00h (using 8-bit
checksum addition calculations). Values in the EPS

are summed starting at offset 00h for
entry point length bytes.

continues

i The SMBIOS data structure table is not the same as an SMBIOS entry point, even though both
of them are data structures. In the real-world implementation, the latter provides the entry point
for the former.

Chapter 10: Low-Level Remote Server Management

Table 10.1 Continued

325

Offset

Name

Length

Description

05h

Entry point
length

Byte

Length of the EPS, starting with the
anchor string field, in bytes, currently 1Fh.

Note: This value was incorrectly stated in
v2.1 of the SMBIOS specification as 1Eh.
Because of this, there might be SMBIOS
v2.1 implementations that use either the 1Eh
or the 1Fh value, but SMBIOS v2.2 or later
implementations must use the 1Fh value.

Oeh

SMBIOS major
version

Byte

Identifies the major version of the SMBIOS
specification implemented in the table
structures, e.g., the value will be 0an for
revision 10.22 and 02h for revision 2.1.

07h

SMBIOS minor
version

Byte

Identifies the minor version of the SMBIOS
specification implemented in the table
structures, e.g., the value will be 16h for
revision 10.22 and 01h for revision 2.1.

08h

Maximum
structure size

Maximum
structure
size

Size of the largest SMBIOS structure, in
bytes. This encompasses the structure's
formatted area and text strings. This is the
value returned as StructureSize from the
PnP Get SMBIOS Information function.

0Ah

Entry Point
Revision

Byte

Identifies the EPS revision implemented in
this structure and identifies the formatting
of offsets OBh to OFh, as one of the
following:

00h — Entry point is based on the
SMBIOS v2.1 definition; formatted area is
reserved and set to all 00h.

01h~FFh — Reserved for assignment in
the SMBIOS v2.4 specification

0Bh—O0Fh

Formatted
area

5 bytes

The value present in the entry point
revision field defines the interpretation to
be placed upon these 5 bytes.

10h

Intermediate
anchor string

5 bytes

DbMI, specified as five ASCII characters
(5F 44 4D 49 5F). Note: This field is
paragraph-aligned, to allow legacy DMI
browsers to find this entry point within the
SMBIOS EPS.

cantinues

326

Part IV: BIOS Ninjutsu

Table 10.1 Continued

Offset Name Length Description
15h Intermediate Byte Checksum of intermediate entry point
checksum structure (IEPS). This value, when added
to all other bytes in the IEPS, will result in
the value 00h (using 8-bit addition
calculations). Values in the IEPS are
summed starting at offset 10h, for OFh
bytes.
1éh Structure table | Word Total length of the SMBIOS structure
length table, pointed to by the structure table
address, in bytes.
18h Structure table | Dword The 32-bit physical starting address of
address the read-only SMBIOS structure table
that can start at any 32-bit address. This
area contains all of the SMBIOS
structures fully packed together. These
structures can then be parsed to produce
exactly the same format as that returned
from a Get SMBIOS Structure function
call.
1Ch Number of Word Total number of structures present in
SMBIOS struc- the SMBIOS structure table. This is
tures the value returned as NumStructures
from the Get SMBIOS Information
function.
1Eh SMBIOS bi- Byte Indicates compliance with a revision of
nary-coded this specification. It is a binary-coded
decimal revi- decimal value, where the upper nibble
sion indicates the major version and the lower

nibble the minor version. For revision 2.1,
the returned value is 21h. If the value is
00h, only the major and minor versions
in offsets 6 and 7 of the EPS provide the
version information.

Even Table 10.1 might obscure how this table entry point fits into the overall
SMBIOS architecture. Therefore, Fig. 10.2 shows the logical way to access the
SMBIOS structure table.

Chapter 10: Low-Level Remote Server Management 327

Physical address space
4GB| 3

Physical address space
OXFFFFF '!

SMBIOS entry point >

0xF0000

0
Fig. 10.2. Searching for SMBIQS structure table

You can realize that the low-level remote management feature exists if an oper-
ating system is running, because the operating system provides connection from
the machine to the outside world. Indeed, the WBEM architecture mandates this.
However, the operating system doesn’t have to be a full-fledged operating system
like Windows or UNIX — or even small-scale operating system-like software, such
as the remote program loader or Intel’s PXE ROM code. If the machine boots from
NIC, it is enough. As long as there is software that provides connection to the ma-
chine, you can remotely query the low-level system features by scanning and pars-
ing the SMBIOS information in SMBIOS structure table.

You now know how to access the SMBIOS structure table. Next, consider some
interesting parts of the SMBIOS structure table. I have to explain the basic organi-
zation of the table entries first. Every entry in the structure table is called an
SMBIOS structure. It's composed of two parts. The first is the formatted section and
the second is an optional unformatted section, as shown in Fig. 10.3.

The formatted section contains the predefined header for the SMBIOS struc-
ture, and the unformatted section contains the strings associated with the contents
of the formatted section or another kind of data as dictated by the SMBIOS specifi-
cation. The unformatted section is not mandatory. The presence of the unfor-
matted section depends on the type of the structure. The header of the SMBIOS

328

Part IV: BIOS Ninjutsu

structure is crucial in determining the type of the structure. The organization of
bytes in the header is shown in Table 10.2, which also can be found in the version 2.4
of the SMBIOS specification.

Formatted Section

Unformatted Section
(Optional)

Fig. 10.3. Organization of an SMBIOS structure

Table 10.2. Organization of Bytes in the SMBIOS Structure Header

Offset Name Length | Description

00h Type Byte Specifies the type of structure. Types 0 through
127 (7Fn) are reserved for and defined by this
specification. Types 128 through 256 (80h to
FFh) are available for system- and OEM-specific
information.

0lh Length Byte Specifies the length of the formatted area of the
structure, starting at the Type field. The length of
the structure's string set is not included.

02h Handle Word Specifies the structure's handle, a unique 16-bit
number in the range 0—0FFFEh (for version 2.0)
or 0—0FEFFh (for versions 2.1 and later). The
handle can be used with the Get SMBIOS
Structure function to retrieve a specific
structure; the handle numbers are not required to
be contiguous. For v2.1 and later, handle values
in the range OFFO0Oh—OFFFFh are reserved for
use by this specification. If the system configura-
tion changes, a previously-assigned handle might
no longer exist. However, once a handle has been
assigned by the BIOS, the BIOS cannot reassign
that handle number to another structure.

The offset in Table 10.2 is calculated from the first byte in the SMBIOS struc-
ture. Note that the Type byte in Table 10.2 is the first byte of an SMBIOS structure.
As seen in the description of the Type byte, there are 128 predefined types of

Chapter 10: Low-Level Remote Server Management 329

SMBIOS structures. As stated previously, there are some interesting SMBIOS struc-
tures. For example, SMBIOS structure type 15 is the system event log. This structure
is interesting because by using information from this structure, you can access the
CMOS parameters in the machine. Table 10.3 shows the relevant contents of this
structure; this table can also be found in version 2.4 of the SMBIOS specification.

Table 10.3. Relevant Contents of System Event Log Structure in SMBIOS

SMBIOS
Offset | Specification | Name Length | Value Description
Version

ooh 2.0+ Type Byte 15 Event log type indicator.

01lh 2.0+ Length | Byte Varl Length of the structure,
including the Type and
Length fields. The length is
| 14h forv2.0
implementations or
computed by the BIOS as
17n + (x * y) for v2.1 and
higher implementations; x is
the value present at offset
15h and y is the value
present at offset 16h.

02h 2.0+ Handle Word Var The handle, or instance
number, associated with the
structure.

04h 2.0+ Log area | Word Var The length, in bytes, of the
length overall event log area, from
the first byte of header to the
last byte of data.

06h 2.0+ Log Word Var Defines the starting offset (or
header index) within the nonvolatile
start storage of the event log's
offset header from the access
method address. For single-
byte indexed I/O accesses,
the most significant byte of
the start offset is set to 00h.

continues

1.0+ means specification version 2.0 or later.
it Var means the value varies.

330 Part IV: BIOS Ninjutsu

Table 10.3 Continued

SMBIOS
Offset | Specification | Name Length | Value Description
Version

08h 2.0+ Log data | Word Var Defines the starting offset
start off- (or index) within the nonvola-
set tile storage of the event log's
first data byte from the ac-
cess method address.

For single-byte indexed 1/O
accesses, the most signifi-
cant byte of the start offset is
set to 00n.

Note: The data directly
follows any header
information. Therefore,

the header length can be
determined by subtracting
the header start offset from
the data start offset.

0Ah 2.0+ Access Byte Var Defines the location and
method method used by higher-level
software to access the log
area according to one of the
following:

00h indexed /O — one 8-bit
index port, one 8-bit data
port. The access method
address field contains the
16-bit /O addresses for the
index and data ports.

01h indexed I/0O — two 8-bit
index ports, one 8-bit data
port. The access method
address field contains the
16-bit 1/0 address for the
index and data ports.

02h indexed I/O — one
16-bit index port, one 8-bit
data port. The access
method address field con-
tains the 16-bit /O address
for the index and data ports.

continues

Chapter 10: Low-Level Remote Server Management 331

Table 10.3 Continued

SMBIOS
Offset | Specification | Name Length | Value Description
Version

0Ah 2.0+ Access Byte Var 03h memory-mapped physi-
method cal 32-bit address — The
access method address field
contains the 4-byte (Intel
dword format) starting physi-
cal address.

04h — Available via general-
purpose nonvolatile data
functions.

The access method address
field contains the 2-byte (In-
tel word format) GPNV (gen-
eral-purpose nonvolatile)
handle.

05h—7Fh — Available for
future assignment via this
specification.

80h—FFh — BIOS vendor or
OEM specific.

0Bh 2.0+ Log Byte Var This bit field describes the
status current status of the system
event log:

Bits 7:2 — Reserved, set to
Zeros. -

Bit 1 — Log area full if one.
Bit 0 — Log area valid if one.

0Ch 2.0+ Log Dword | Var Unique token that is

change reassigned every time the
token event log changes. It can be
used to determine if
additional events have
occurred since the last time
the log was read.

continues

332 Part IV: BIOS Ninjutsu

Table 10.3 Continued

SMBIOS
Offset | Specification | Name Length | Value Description
Version
10h 2.0+ Access Dword | Var The address associated
method with the access method,
address the data present depends

on the access method

field value. The area's format
can be described by the
following 1-byte-packed

"C" union:

Some server vendors use information obtained from the system event log struc-
ture to change the contents of the CMOS chip in the system remotely with their
proprietary WBEM manager software.

Another interesting SMBIOS structure is the management device structure
(type 34). With information from this structure, you can devise a program to
monitor the system hardware parameters remotely, such as the voltage levels of
a remote PC’s processor, the remote PC’s fan spin rate, the remote PC’s fan fail-
ures, and overheating problems on a remote PC. The layout of this structure is
shown in Table 10.4; it and Tables 10.5 and 10.6 are also available in version 2.4 of
the SMBIOS specification.

Chapter 10: Low-Level Remote Server Management 333

Table 10.4. Management Device Structure, Formatted Section

Offset Name Length | Value | Description
00h Type Byte 34 Management device indicator
01h Length Byte 0Bh Length of the structure
02h Handle Word Varies | The handle, or instance number,

associated with the structure

04h Description | Byte String | The number of the string that contains
additional descriptive information about
the device or its location

05h Type Byte Varies | Defines the device's type (see Table 10.5)

06h Address Dword Varies | Defines the device's address

0ah Address Byte Varies | Defines the type of addressing used to
Type access the device (see Table 10.6)

Table 10.5. Management Device Type

Byte Value | Meaning
0lh Other
02h Unknown
03h National Semiconductor LM75
04h National Semiconductor LM78
05h National Semiconductor LM79
06h National Semiconductor LM80
07h National Semiconductor LM81
08h Analog Devices ADM9240
05Sh Dallas Semiconductor DS1780
0Bh Maxim 1617
0Bh Genesys GL518SM
OCh Winbond W83781D
0Dh Holtek HT82H791

334 Part IV: BIOS Ninjutsu

Table 10.6. Management Device Address Type

Byte Value Meaning
01h Other
02h Unknown
03h 1/O port
04h Memory
05h System management bus

Tables 10.4 to 10.6 show the meaning of the bytes in management device struc-
ture. With the help of information from these tables, it will be quite easy for you to
make the WBEM manager software query system parameters in a remote PC.
However, to make remote hardware monitoring a reality, you first have to grant
access to the remote system. For a malicious attacker, that would mean he or she
has already implanted a backdoor in the remote machine and escalated his or her
privilege to the administrator level. Without the administrator privilege, the at-
tacker can’t install a device driver, meaning he or she won’t be able to poke around
the hardware directly. With the administrator privilege, the attacker has the free-
dom to alter the BIOS. Altering the BIOS directly within the operating system was
explained in Chapter 9.

You might want to find another interesting SMBIOS structure in the SMBIOS
specification. For that purpose, surf to DMTF website at http://www.dmtf.org and
download the latest SMBIOS specification. As for the real-world code example that
shows how to parse the SMBIOS structure table, be patient; the next section
explains this.

10.2. Remote Server Management Code
Implementation

The remote server management code explained in this section is the implementa-
tion of the SMBIOS protocol that you learned in the previous section. Section 10.1
showed how SMBIOS provides detailed low-level information pertaining to the PC
that implements SMBIOS.

Before I move forward to how to parse the SMBIOS structure table, I would like
to show you how a particular BIOS implements it. In Award BIOS version 6.00PG,

Chapter 10: Low-Level Remote Server Management 335

the basic SMBIOS structure is placed in the compressed awardext.rom file. You
learned about the innards of the Award BIOS binary in Chapter 5. Reread that
chapter if you forget the Award BIOS binary structure.

I emphasize the basic SMBIOS structure here because the contents of the
SMBIOS structure table will vary depending on the system configuration. It varies
because the SMBIOS table also presents information about hardware in systems
other than the motherboard, such as information about the installed processor and
PCI expansion cards.

Hex Dump 10.1 shows the basic SMBIOS structure table in awardext.rom of
Foxconn 955X7AA-8EKRS2 BIOS, dated November 19, 2005.

Hex Dump 10.1. SMBIOS Basic Structure in Foxconn BIOS

Hex Dump 10.1 gives you a glimpse into the BIOS-level implementation of the
SMBIOS interface.

Now, move to the next step: parsing the SMBIOS structure table from a run-
ning system. To accomplish the goal, extend the bios probel source code. You can
download the source code for this section at http://www.megaupload.com/
?d=9VERFZMS5. The links provide the source code for bios probe version 0.34.
This version has rudimentary SMBIOS table parsing support. The major difference
between this version and version 0.31 that you learned in Chapter 9 is the SMBIOS
support.

How is the SMBIOS support added? First, there is a simple change to the
flash_rom.c file to add a new switch to parse the SMBIOS table. This change is
shown in Listing 10.1.

i Bios_probe is the revamped version of the flash n_burn utility for windows that you learned

in Chapter 9.

336 Part IV: BIOS Ninjutsu

Listing 10.1. SMBIOS Support in flash_rom.c

As you can see in Listing 10.1, the SMBIOS support is provided in one dedi-
cated function named dump_smbios_area. This function maps the SMBIOS physi-
cal address range (0xF0000-0xFFFFF) to the address space of the bios probe user
mode application with the help of the bios probe driver that you learned in Chap-
ter 9. Then, dump smbios area scans this area for the presence of the SMBIOS
structure table entry point. It does so by scanning the sw_signature string. Upon
finding the entry point, dump_smbios area then locates the SMBIOS table by read-
ing the value of the structure table entry in the SMBIOS EPS. The
dump_smbios_area function also reads the length of the SMBIOS table by reading
the structure table length from the entry point. Then, dump_smbios area unmaps
the SMBIOS entry point from bios_probe and proceeds to map the real SMBIOS
structure table to the bios probe address space. The dump_smsbios_area function
then copies the contents of the SMBIOS table to a dedicated buffer and parses
the SMBIOS structure table by calling the parse smbios table function.
The parse smbios table function is implemented in the smbios.c file and de-
clared in the smbios.h file. After the SMBIOS buffer is parsed, dump smsbios area
then unmaps the mapped SMBIOS structure table physical address and returns.

The parse smbios table function is shown in Listings 10.2 and 10.3. This
function is only a rudimentary function for parsing an SMBIOS structure table.
It should be easy for you to extend it.

Listing 10.2. smbios.h

Chapter 10: Low-Level Remote Server Management _ 337

Listing 10.3. smbios.c

Listings 10.1-10.3 show how to access the SMBIOS information present in the
system for Windows-based machines. Nevertheless, this information is also pro-
vided by the WMI subsystem in Windows. It’s possible that WMI doesn’t parse all
of the SMBIOS structure table in the system. In that case, you probably want
greater control over the SMBIOS structure table by parsing it yourself and using
the information for your purposes. The use of bios probe version 0.34 to dump
SMBIOS data in my system' is shown in Fig. 10.4.

U CAWINDOWS wystem 3 2\emd exe

Fig. 10.4. Dumping the SMBIOS area in my system

The binary dump of the SMBIOS area is shown in Hex Dump 10.2.

Hex Dump 10.2. SMBIOS Area of My System

Address Bamadammi?alwmw E ""gw')'”:: : ASCII Values

00000000 0013 0000 0102 0CEQ 0307 QODE CBTF 0000 A kA s e i

00000010 9900 375ﬂ 355' 556& 6978 20&4'5563 GBGF .7Phoenix Techn
09000020 Hﬁ 5C : 036 2&30 DlUgJ.ES, LTD 6 0 =

%‘e@aooeo 2000 000
00000070 3550 452D 5738 :
00000080 030D 0300 0103 0203 0402 0202 0220 0020

T e B I It e e

i The system is built on an DFI 865PE Infinity motherboard, 512 MB of RAM, and a Celeron 2.0 GHz.

338 Part IV: BIOS Ninjutsu

Hex Dump 10.2 only shows the starting part of the SMBIOS structure table.
It’s too long; therefore, I've condensed it to save space. Listing 10.4 shows the text
file result of the parsing process. This result is also a condensed version of the
real text file.

Listing 10.4. SMBIOS Structure Table Parsing Result in My System

I've provided two screenshots in a local windows update server to give you
a glimpse of what kind of remote data you can obtain through WMI. They are
shown in Figs. 10.5 and 10.6.

Some detailed information about the Windows machine that has been con-
nected to the local Windows update server is obtained through the WMI interface
exposed by the remote machine to the local Windows update server.

At this point, you might be thinking, what can be done with the SMBIOS
information? Well, for an attacker, it can be used to obtain detailed information
about the target system, in case he or she wants to infect it with a rootkit placed
in the hardware of the target system. However, the first step is to obtain
administrator privilege.

Some WMI vulnerabilities have been exposed over the past few years, and those
can be your ticket to your goal.

Chapter 10: Low-Level Remote Server Management

o e

e

e e -

Tl s wysieee i

o !

i ——

st sdatun repnen EZHLZ00R B3 Ay

freteres brihe

F T —— s - = P ——|
.

-

bk

-
W veremn s A S SRR

Fig. 10.5. Detailed information about a Windows machine that has been updated

in the local Windows update server

| =— e e e e T B e 1 TR]

Fig. 10.6. Status information about a Windows machine that has been updated

in the local Windows update server

Chapter 11: BIOS Security |
Measures

Preview

This chapter talks about security measures implemented in the BIOS and security
measures at the operating system level related with the BIOS. The security meas-
ures come in the form of password protection, BIOS component integrity checks,
operating system-level protection, and hardware-based security measures. The
component integrity check is not meant to be a security measure by BIOS vendors.

Nevertheless, it has accidentally become one against random code injection to the [
BIOS binary. i

342 Part IV: BIOS Ninjutsu

11.1. Password Protection

The BIOS provides a mechanism that uses passwords to protect the PC from unau-
thorized usage and BIOS configuration changes. Some BIOSs implement two types
of passwords, user password and supervisor password. In some motherboards, there
is additional control over this password under BIOS’s Advanced BIOS Features
menu in the Security Option setting. The Security Option setting consists of two
selectable options, the System option and the Setup option. If you set the Security
Option to System, BIOS will ask you for password upon boot. If you set the Security
Option to Setup, BIOS will ask you for password when you enter the BIOS setup
menu. As for the user password and supervisor password, I haven’t found any dif-
ferences between them. Only the Security Option setting shows a difference in
a password authentication request in my motherboard, although yours may differ.
Fig. 11.1 shows the BIOS security option setting for my motherboard.

Phoenix - AwardBIOS CMOS Setup Utility
Advanced BIOS Features

BIOS Flash Protect Disabled Item Help
CPU L1 & L2 Cache é A =
Hypervr—Threading Terchnnlngy

Quick Power On Sell Test

RAID or SCSI Card Boot

Hard Disk Boot Priority

USB Flash Disk Type

First Boot Device

Second Boot Device

Third Boot Device

Boot Other Device

Swap Floppy Drive

Boot Up Floppy Seek

Boot Up MumLock Status

Gate A28 Option

Typematic Rate Setting

Security Optien Setup

tl+¢:Move Enter:Select +/ /PU)PD:Ualue FiB:8ave ESC:Exit Fl:General Help
F5: Previous Ualues F6:CMOS Reloaded F?: Optimized Defaults

Fig. 11.1. BIOS security option in DFlI 865PE Infinity motherboard

The password protection code implemented in BIOS is quite easy to break.
There are two methods to break this password protection mechanism. The first one is
to carry out a brute-force attack to the CMOS chip'! content, invalidating the CMOS
chip checksum. (From this point on, I refer to the CMOS chip as simply CMOS.)

i DEI 865PE Infinity revision 1.1; the BIOS date is December 28, 2004.
i The chip that stores the BIOS setting.

Chapter 11: BIOS Security Measures 343

With this method, you reset the contents of the CMOS to their default values,
thereby disabling the password upon next boot. The second one is to read the
password directly from the BIOS data area (BDA). Nevertheless, the second
method is not guaranteed to work all the time. Endrazine described these methods
in a SecurityFocus article.! However, the person who discovered and shared these
methods with the public for the first time was Christophe Grenieri I show you the
implementation of these methods in Windows and Linux later. I explain the meth-
ods one by one.

11.1.1. Invalidating the CMOS Checksum

The first method to circumvent BIOS password protection is to invalidate the CMOS
checksum. This method works only if the machine is already booted into the operating
system. This way, you invalidate the CMOS checksum within the context of the oper-
ating system. If the machine is not powered, this method is not usable because the
BIOS will ask for the password before it’s booted to the operating system.

CMOS contents consist of at least 128 bytes of BIOS setting data. They are ac-
cessible through physical ports 0x70i and 0x71.¥ Nevertheless, some mother-
boards use more than 128 bytes. There are three bytes of interest among the 128
bytes in CMOS, i.e., the bytes at offsets 0xE, 0x2E, and 0x2r. Offset 0xE contains
the status of the CMOS, including the CMOS checksum; offset 0x2E contains the
high-order byte of the CMOS checksum; and offset 0x2F contains the low-order
byte of the CMOS checksum. Start with offset 0xe, which has a size of 1 byte. This |
offset contains CMOS diagnostic status. The meaning of each bit is as follows:

(1 Bit 7 — Real time clock power status (0 = CMOS has not lost power, 1 = CMOS
has lost power)

0O Bit 6 — CMOS checksum status (0 = checksum is good, 1 = checksum is bad)

(0 Bit 5— POST configuration information status (0 = configuration information
is valid, 1 = configuration information in invalid)

O Bit 4 — Memory size compare during POST (0 = POST memory equals
configuration, 1 = POST memory does not equal configuration)

i See the article titled “BIOS Information Leakage” at
http://www.securityfocus.com/archive/1/archive/1/419610/100/0/threaded

ii See Grenier's website at http://www.cgsecurity.org.

iii Port 0x70 acts as the “address port,” used to address the contents of the CMOS.

¥ Port 0x71 acts as the “data port,” used to read/write 1 byte from/into the CMOS chip.

344 Part IV: BIOS Ninjutsu

O Bit 3 — Fixed disk/adapter initialization (0 = initialization good, 1 = initializa-
tion bad)

Bit 2 — CMOS time status indicator (0 = time is valid, 1 = time is invalid)

Bit 1-0 — Reserved

Qo

When the CMOS checksum is invalid, the BIOS will reset the BIOS setting to the
default setting. The preceding list shows that Bit 6 of offset 0xz indicates an invalid
CMOS checksum with the value of one. This bit will be set if you invalidate the
CMOS checksum at offset 0x2£ or 0x2F. In my experiment, the value at offset 0x2k is
replaced with its inversion. This is enough to invalidate the CMOS checksum. Now,
I show how to implement this logic in bios_probe source code version 0.36. You can
download this source code at http://www.megaupload.com/2d=UASIJUHQ. This
version of bios probe is able to reset the CMOS checksum by using the method de-
scribed previously within Windows XP/2000. Two files in the source code accommo-
date the CMOS checksum modification feature, i.e., cmos.c and cmos.h. Listings 11.1
and 11.2 show the related functions.

Listing 11.1. CMOS Checksum Reset Function Declaration in the cmos.h File

Listing 11.2. CMOS Checksum Reset Function Implementation
in the cmos.c File

Chapter 11: BIOS Security Measures 345

I,

Return Value:
Not used, can be anything
——kf
{
. const unsigned CMOS INDEX = 0x70;
_const unsigned CMOS_DATA = Ox71

unsigned chay

iue;

outb (0%2E, CMOS INDEX);
value = inb(CMOS DATA);

printf ("original cmos checksum = 0x3%X\n", value);

#aiue = ~vq£ﬁ

printf ("new cmos checksum = Ox3X\n", value);

outb (0x2E, CMOS_ INDEX);
outbi(value, CMOS DATA); // Write invalid checksum.

recurn=0;

3-/f Irrelevant mdP amitted

As you can see in Listing 11.2, the original CMOS checksum value at offset
0x2E is inverted and written back to that offset. Fig. 11.2 shows how to use this
CMOS checksum invalidation feature.

AWINDOWS\system 3 2%cmd. exe

Flasherscur

ucks ...

Fig. 11.2. Resetting the CMOS checksum value with bio

(7]
o]
N
[s]
o
®

346

Part IV: BIOS Ninjutsu

There are also some changes in the flash_rom.c file to accommodate the new
input parameter to invalidate the CMOS checksum. They are shown in Listing 11.3.

Listing 11.3. Changes in flash_rom.c To Accommodate CMOS Checksum
Invalidation

Listing 11.3 shows that the changes in flash_rom.c are mainly to accommo-
date the input parameter and call the reset cmos function in the cmos.c file. Like
in previous chapters, bios probe can run flawlessly only with the administrator
privilege.

Chapter 11: BIOS Security Measures 347

It's easy to implement the idea that you have learned in this subsection in Linux.
Listing 11.4 shows the source code of a simple program to reset the CMOS checksum.
You have to run this program as root to be able to obtain the necessary IOPL.

Listing 11.4. Linux Implementation of CMOS Checksum Invalidation
in the cmos_reset.c File

348 Part IV: BIOS Ninjutsu

To compile the source code in Listing 11.4, you can invoke GCC with the com-
mand shown in Shell Snippet 11.1 in Linux shell.

Shell Snippet 11.1. Compiling Linux Version Source Code of CMOS Check-
sum Invalidation

The output from command in Shell Snippet 11.1 is an executable file named
cmos_reset. You can execute it in the shell as shown in Shell Snippet 11.2.

Shell Snippet 11.2. Running the cmos_reset Utility

Shell Snippet 11.2 shows the inverted CMOS checksum high byte as expected in
the source code.

11.1.2. Reading the BIOS Password from BDA

The second method to circumvent BIOS password protection is to use information
from BDA to obtain the BIOS password. Again, this method works only if the ma-
chine is already booted into the operating system. You read the contents of BDA
within the context of the operating system. Nonetheless, this password breaking
method is not guaranteed to work in all circumstances. 1 found out in my experi-
ments that if the password length was less than eight characters, all of them exist in
the BDA. However, if it’s eight or more, not all password characters are available in
the BDA within the operating system. This is because of the limited size of the key-
board buffer. Furthermore, I experimented in an Award BIOS version 6.00PG-
based motherboard. Other BIOSs might give different results.

The BDA location starts at physical address 0x400. Typically, it spans 255 bytes.
The BDA stores status data related to the interrupt service routines in the BIOS.
The keyboard buffer used by the BIOS is at offset 0x1& within the BDA. The length
of this buffer is 32 bytes. This is the location that you will dump into file to see the
BIOS password. The last characters in this buffer are the BIOS password that the
user enters during boot if the system is protected with a BIOS password.

Chapter 11: BIOS Security Measures 349

Like in the previous subsection, use bios probe version 0.36 to read the con-
tents of the BDA within Windows XP/2000. This version of bios_probe has been
modified for that. Now, I show you the BDA dumping support in its source code.
The declaration of the BDA dumping function is in the cmos.h file, as shown in
Listing 11.5.

Listing 11.5. BDA Dumping Function Declaration in the cmos.h File

The implementation of the BDA dumping function is in the cmos.c file,
as shown in Listing 11.6.

Listing 11.6. BDA Dumping Function Implementation in the cmos.c File

350 Part IV: BIOS Ninjutsu

Chapter 11: BIOS Security Measures 351

Minor changes are made in the flash_rom.c file to accommodate the BDA
dumping function. They are shown in Listing 11.7.

Listing 11.7. Changes in flash_rom.c to Accommodate BDA Dumping
Function

Now, I'll show you the result of dumping the keyboard buffer in my PC.
Fig. 11.3 shows the command to tell bios probe to dump the BDA.

352 Part IV: BIOS Ninjutsu

.

C:AWINDOWS\system32\cmd.exe

Fig. 11.3. Dumping the BDA with bios probe

Hex Dump 11.1 shows the result of dumping the BDA when I set the BIOS
password to “testing” in my motherboard.

Hex Dump 11.1. BDA Keyboard Buffer When the BIOS Password Is "Testing"

The password string in the keyboard buffer is stored as ASCII characters paired
with keyboard scan codes. For example, the t character is stored as 74h and 14n.
74h is the ASCII code for the t character and 14 is its scan code. I don’t know why
the characters of the password are repeated in the keyboard buffer; perhaps, it’s for
Unicode compatibility. Nonetheless, when the password string consists of eight or
more characters, the keyboard buffer is not large enough to store all of the charac-
ters. Hex Dump 11.2 shows this when I set the BIOS password to “destruct” in my
motherboard.

Hex Dump 11.2. BDA Keyboard Buffer When the BIOS Password Is "Destruct”

As you can see in Hex Dump 11.2, the string of password characters stored in
the keyboard buffer in the BDA is incomplete; the keyboard buffer only shows
“estruct,” yet the complete password is “destruct.” I tried to enter “estruct” during
the BIOS password request at boot time. It did not work. That means that Award
BIOS version 6.00PG in my machine validates the entire BIOS password.

Chapter 11: BIOS Security Measures _ 353

Now, I show you how to dump the BDA in Linux. It’s quite easy to implement.
Nonetheless, some quirks from the Linux’s mmap function must be handled cor-
rectly to make the program works flawlessly. I name this small utility bda_dump.
The overall source code of this application is shown in Listing 11.8. The bda_dump
utility must be executed with a root account; otherwise, you won’t receive enough
permission and the program will fail.

Listing 11.8. Linux BDA Dumper Source Code (bda_dump.c)

i
|
|
L
|

354 Part IV: BIOS Ninjutsu

Chapter 11: BIOS Security Measures 355

There is a quirk of the mmap function in Linux, which maps the physical mem-
ory when it is used with the /dev/men file handle as its parameter. The mmap func-
tion is only able to map physical memory in a multiple of the page size of the proc-
essor’s memory management unit. Furthermore, the physical memory that’s
mapped must lie in the corresponding page size boundary. In x86 architecture, this
page size is 4 KB. Therefore, the mapped physical memory range must lie in the
4-KB boundary and its size must be at least 4 KB. That’s why the code snippet in
Listing 11.9 is in the overall source code in Listing 11.8.

Listing 11.9. Workaround for the Quirk of the mmap Function

356 Part IV: BIOS Ninjutsu

The preceding code is a workaround for the quirk of the mmap function because
the BDA doesn’t lie in 4-KB boundary and its size is not a multiple of 4 KB.
To compile the code in Listing 11.8, invoke GCC as shown in Shell Snippet 11.3.

Shell Snippet 11.3. Compiling bda_dump Source Code

The output from the command in Shell Snippet 11.3 is an executable file
named bda_dump. You can execute it in the shell as shown in Shell Snippet 11.4.

Shell Snippet 11.4. Running the bda_dump Utility

Shell Snippet 11.4 shows that the page size is bigger than the BbA s1zE constant
in the bda_dump source code. You don’t need to worry about it. That’s because the
workaround has been placed in the source code. Shell Snippet 11.4 shows that the
BDA keyboard buffer is dumped into a file named bda.bin. The result of the BDA
dumping process in my system is shown in Shell Snippet 11.5. Note that I'm using
a special hex dump! formatting file named fmt. This file is the same as the file named
fmt described in Listing 7.9 in Chapter 7.

Shell Snippet 11.5. bda_dump Result

i The hexdump utility in Linux.

Chapter 11: BIOS Security Measures 357

The password that I entered in the BIOS setup for the machine where the
bda dump utility runs is “testing.” Shell Snippet 11.5 shows that string in the BDA
keyboard buffer.

At this point, you can conclude that the BDA dumping method is only reliable
in certain circumstances; nevertheless, BIOSs other than Award BIOS version
6.00PG probably are vulnerable to this attack.

11.1.3 The Downsides — An Attacker's Point of View

From an attacker’s point of view, both methods to break BIOS password protection
that you learned previously have downsides:

O They need administrator privilege to be executed. An attacker needs an addi-
tional exploit to raise his or her privilege level to administrator. This is an
added security measure in the legitimate PC owner side.

O At some points, the attacker must have physical access to the attacked machine
because some machines need certain key presses to reload the default CMOS set-
ting after a CMOS brute-force attack. This is necessary to boot the operating sys-
tem after shutdown. Without pressing a certain key, the boot process will stop at
BIOS initialization; the machine won’t proceed further to boot the operating sys-
tem. This is also an added security measure in the legitimate PC owner side.

O Sometimes, knowing the BIOS password is not helpful to a remote attacker if the
machine is already running in an operating system environment. For example, if
the attacker’s intention is to install rootkits, this could be easily done without the
BIOS password if the machine is already booted to the operating system.

At this point, you might realize that BIOS password protection is meant to be a
. “local” security measure. It works against unlawful PC usage in a local environ-
ment. It works perfectly for systems that are shut down and powered on regularly,

such as desktops in an office.

11.2. BIOS Component Integrity Checks

As you have learned in the previous chapters, every BIOS binary consists of some
pure binary components, which are not compressed, and some compressed com-
ponents. The BIOS code has a certain mechanism to check the integrity of each of
these components. Most BIOSs use a checksum mechanism to check the integrity
of their components.

358 Part IV: BIOS Ninjutsu

The BIOS component checksum mechanism is not meant to be as a security
measure. However, it can guard against “random” code injection into the BIOS
binary because a BIOS component will be considered invalid when its checksum is
wrong. If someone injects a code into a BIOS component without fixing all of the
checksum, the BIOS will halt its execution at the checksum-checking routine dur-
ing system initialization because it detects a wrong component checksum and sub-
sequently calls the boot block routine that will ask you to update the BIOS. In the
worst-case scenario, if the boot block checksum is wrong, it’s possible that the
BIOS will halt the system initialization execution in boot block or reset the system
repeatedly. The next subsections show you the implementation of the BIOS com-
ponent checksum routines.

11.2.1. Award BIOS Component Integrity Checks

In Award BIOS versions 4.50 and 6.00PG, there are two types of checksums.
The first one is an 8-bit checksum, and the second one is a 16-bit CRC. The 8-bit
checksum is used for various purposes, for example, to verify the overall checksum
of the system BIOS, along with the compressed components, and to verify the in-
tegrity of the header of compressed components.! Listing 11.10 shows the 8-bit
checksum calculation routine for the header of LZH compressed components in
Award BIOS version 6.00PG. This routine is located in the decompression block.

Listing 11.10. 8-Bit Checksum Calculation Routine Sample in Award BIOS
Version 6.00PG

i Refer to Table 5.2 in Chapter 5 for a detailed LZH header format.

Chapter 11: BIOS Security Measures 359

Listing 11.10 is taken from the disassembly of the BIOS of Foxconn
955X7AA-8EKRS2 motherboard. The routine shown is called every time the Award
BIOS decompression engine decompresses a compressed BIOS component.
This routine is part of the so-called decompression block. The 8-bit checksum out-
put of the routine in is placed in the ax register. You can use the binary signature!
from the hex values in Listing 11.10 to look for this routine in another Award B1OS
binary.

Now, proceed to the 16-bit CRC. First, let me refresh your memory about the
compressed component in Award BIOS binary. Every compressed component in
Award BIOS binary contains a header. The header contains a 16-bit CRC value. It’s
located 5 bytes before the end of the header.! This 16-bit CRC is the checksum of
the compressed component. It’s calculated before the component is compressed
and inserted into the overall BIOS binary. In most cases, Cbrom is used to carry
out this process in Award BIOS binaries. The 16-bit CRC is inserted into the header
of the component once the compression process is finished. This 16-bit CRC must
be verified during system initialization to ensure that the decompression process
contains no errors. Listing 11.11 shows the 16-bit CRC verification routine in
Award BIOS version 6.00PG. This listing is also taken from the disassembly of the
BIOS of Foxconn 955X7AA-8EKRS2 motherboard.

Listing 11.11. 16-Bit CRC Verification Routine in Award BIOS Version 6.00PG

i In this context, a binary signature is a unique byte sequence that identifies the routine or function
of interest. It can be formed easily by concatenating the hex values of some consecutive assembly

language mnemonics.
ii Refer to Table 5.2 in Chapter 5 for a detailed LZH header format.

360 Part IV: BIOS Ninjutsu

Chapter 11: BIOS Security Measures 361

Listing 11.11 shows a routine named Make CRC16 Table. This routine builds '
a lookup table to ease the calculation of 16-bit CRC values. Such calculation is !
a time-consuming task; that’s why a lookup table needs to be built. The routine |
named patch_crclé calculates the 16-bit CRC values for every finished “window”
during the decompression process. The Award BIOS component compression al- J
gorithm is based on a modified sliding-window algorithm. Therefore, the com- h
pressed component is decompressed on a window-by-window basis. A window in
Award BIOS components contains 8 KB of data or code. Again, you can search for i
this routine easily by making a binary signature based on Listing 11.11. i

If you are modifying Award BIOS binary by using modbin, Cbrom, or both,)
don’t worry about the checksums because both of these programs will fix the i
checksums for you. Nevertheless, attackers who want to inject code into the BIOS il
binary might choose a brute-force approach, disabling the checksum verification in ‘
the BIOS binary altogether by replacing the checksum verification routines with il
bogus routines. This is not recommended because it increases the possibility of sys- '
tem initialization failure. Nevertheless, hackers can use it as a last resort. |

11.2.2. AMI BIOS Component Integrity Checks i

AMI BIOS integrity checks seem to be only in the form of 8-bit checksum verifica- ,
tions. I haven’t done complete reverse engincering on any AMI BIOS binary. |
Nevertheless, I'll show you every routine that I'’ve found so far. The first routine |
verifies the 8-bit checksum of the overall BIOS binary. It’s shown in Listing 11.12.

The listings in this subsection come from the IDA Pro disassembly database of
BIOS binary for Soltek SL-865PE motherboard.

362 Part IV: BIOS Ninjutsu

Listing 11.12. 8-bit Checksum Verification Routine for AMI BIOS Version 8.00

Note that the routine shown in Listing 11.12 is not directly shown in the boot
block because it’'s a compressed part in the overall BIOS binary. You can view
it only after it has been decompressed. The second routine is part of the POST

Chapter 11: BIOS Security Measures 363

routine with code D7h. It’s shown in Listing 11.13. This routine is also an 8-bit
checksum calculation routine.

Listing 11.13. 8-bit Checksum Verification Routine for AMI BIOS Version 8.00
Components

Listings 11.12 and 11.13 clearly show that the checksum verification routines in
AMI BIOS version 8.00 are variations of the 8-bit checksum calculation routine. |
There may be another checksum verification mechanism embedded in one of AMI {
BIOS POST routines. |

11.3. Remote Server Management Security Measures |

As you learned in Chapter 10, low-level remote machine management is never car-
ried out outside of an operating system context. Even when the remote machine is
running as remote program-loader machine, there is still some kind of operating
system in charge of the system locally to serve the remote management software.
In this section, I focus on a widely-used remote management interface: WML

364 Part IV: BIOS Ninjutsu

The varieties of UNIX don’t have a unified approach in implementing WBEM,
that’s why I'm just talking about WMI at this point. The talk focuses on its security
measures against remote attacks. I'm not talking about SMBIOS because it has no
security measures other than administrator account protection. In Chapter 10,
I demonstrated that you can parse the SMBIOS information at your will once you
have obtained the administrator privilege.

WMI has a two-level security measure. The first level is operating system-level
authentication that asks the user for Windows logon information, and the second
level is a namespace-level security measure. A user who has logged into a machine
in an enterprise network will be granted to access WMI information within that
computing environment only to his or her assigned namespace. The same is true
for a remote WMI application. A WMI application cannot access WMI procedure
or data in a remote machine outside of the context of the namespaces granted by
the remote machine when the application sets up a connection to the remote ma-
chine. The context of the namespaces depends on the login information given to
the remote machine by the WMI application. Therefore, from an attacker’s point of
view, it’s difficult to break the security measure of a WMI application because it’s
using a two-level security measure. Nonetheless, because WMI and Internet infor-
mation services are tightly connected, the weak point often attacked as an entry
point is Internet information services. This is especially true because WMI has
a scripting front end that has some known bugs.

A security breach in a WMI application is dangerous because it can grant
unlimited access to the entire network within an organization and provide the at-
tacker with feature-rich remote control over the organization resources. Even if the
attacker only obtains that access for a while, he or she can implant a backdoor any-
where in the organization to ensure future access to the organization’s resources.

11.4. Hardware-Based Security Measures

Hardware-based security measures can be effective against BIOS tampering. In this
section, I explain the internal security measures in the BIOS chip.

Some BIOS chips have internal registers to control read and write access to its
content. For example, the Winbond W39V040FA! series of flash ROM chip has in-
ternal registers known as block locking registers (BLRs). These registers are able to
block read and write access to the chip entirely, making the chip inaccessible even

i You can search for and download the datasheet of this chip at http://www.alldatasheet.com.

Chapter 11: BIOS Security Measures 365

from low-level software such as device driver. Table 11.1 shows the locations of
these registers' in system-wide memory map.

Table 11.1. BLR Types and Access Memory Map Table

for Winbond W39V040FA
Registers | Registers Control Device Physical 4-GB System Memory
Type Block Address Address
BLR7" R/W 7 TFFFFh—70000h FFBF0002h
BLR6 RW 6 6FFFFh—60000h FFBE0002h
BLR5 RW 5 5FFFFh—-50000h FFBD0002h
BLR4 RW 4 4FFFFh—-40000h FFBC0002h
BLR3 RW 3 3FFFFh—-30000h FFBB000Zh
BLR2 R/W 2 2FFFFh-20000h FFBA0002h
BLR1 RW 1 1FFFFh—10000h FFB90002h
BLRO RW 0 OFFFFh—00000h FFB80002h

The device physical address column in Table 11.1 refers to the physical address
of the blocking registers with respect to the beginning of the chip not in system-
wide address space context. The meaning of cach bit in the BLRs is shown in
Table 11.2.

Table 11.2. BLR Bits Function Table

Bit Function
7-3 Reserved
2 Read Lock

1: Prohibit to read in the block where set.

0: Normal read operation in the block where clear. This is the de-
fault state.

continues

i Tables 11.1 and 11.2 are identical to Tables 9.1 and 9.2 in Chapter 9. They are reproduced here for
your convenience.
1 The size of a BLR is 1 byte.

366 Part IV: BIOS Ninjutsu

Table 11.2 Continued

Bit Function

1 Lock Down

1: Prohibit further to set or clear the read-lock or write-lock
bits. This lock-down bit can only be set, not cleared. Only if the
device is reset or repowered is the lock-down bit cleared.

0: Normal operation for read-lock or write-lock. This is the
default state.
0 Write Lock
1: Prohibited to write in the block where set. This is the default state.

0: Normal programming or erase operation in the block where clear.

The lock-down bit,! along with the read-lock and write-lock bits in Table 11.2,
can disable access to the W39V040FA chip entirely. The lock-down bit can be set
but cannot be cleared; it will be cleared only during power up or restart. Therefore,
if the BIOS code sets this bit upon system initialization, you will never be able to
change it. Furthermore, if it’s set with the read-lock and write-lock bits, the BIOS
chip will be inaccessible within an operating system; you won’t be able to read the
contents of the BIOS chip. Even if you are able to read something from the BIOS
chip address space, the result will be bogus. I conducted an experiment on these
bits and can show you the result. | set the lock-down bit, read-lock bit, and write-
lock bit by using a modified version of bios probe software that you learned in
Chapter 9, and subsequently try to read the contents of the chip. This modified ver-
sion of bios probe is bios probe version 0.35. You can download the modified
source code at http://www.megaupload.com/?d=LZ71RQLO0. The locking feature
support in bios probe source code is added in several files: flash_rom.c,
w39v040fa.c, and w39v040fa.h. Let me review the changes. Start with the
flash_rom.c file. The changes in flash_rom.c to accommodate the new chip-locking
ability'! are shown in Listing 11.14.

i The lock-down bit is bit 1.
il Chip locking means disabling access to the BIOS chip entirely.

Chapter 11: BIOS Security Measures 367

Listing 11.14. Changes in flash_rom.c To Accommodate Chip Locking

368 Part IV: BIOS Ninjutsu

Chapter 11: BIOS Security Measures 369

The try lock w39v040fa function in Listing 11.14 activates the chip-locking
mechanism. This function is called by the main function if the user invokes
bios probe with a -lock input parameter. The try lock w39v040fa function
calls the 1ock 29v040fa function to activate the chip-locking mechanism if the
flash ROM chip in the system is a Winbond W39V040FA. The Lock 39v040fa
function is declared in the w39v040fa.h file, as shown in Listing 11.15.

Listing 11.15. Declaring the lock_39v040fa Function

The implementation of the 1ock _39v040fa function is in the w39v040fa.c file,
as shown in Listing 11.16.

Listing 11.16. Implementing the lock_39v040fa Function

370 Part IV: BIOS Ninjutsu

Listings 11.14-11.16 sum up the changes to implement the chip-locking
mechanism in bios_probe source code.

First, I show you the result when I read the BIOS chip contents before activat-
ing the chip-locking mechanism. It’s shown in Hex Dump 11.31

Hex Dump 11.3. Contents of the BIOS Chip (Read before Activating Chip Locking)

i The hex dump only shows some parts of the entire BIOS address range because of the space con-
straints in this book. '

Chapter 11: BIOS Security Measures

0402 0202 0220
0420 0400 0103
P 038E 6400 FAOB
000000CO 4104 OAOO 0BQO FFFF 536F 636B 6574 :
00000D0 3738 0043 6E74 656C 0049 6E74 656C 2852 78, Intel.intel(R
00000ED 2920 4365 6C65 726F 6E28 5229 2043 5055) Celercn(R) CPU

0
0
0

: IhnERER S e s
0000 0000 iosermvrrsiiaan e
0000 3641 3739 4144 34476A79ADIG
0007FTFO EASB E000 FO2A 4D52 4223 0200 0000 6OFF . [.,.*MRB*..., .

Now, I show you the result of activating the chip-locking mechanism in my
experiment. | invoke the new bios probe as shown in Fig. 11.4 to disable further
access to the BIOS chip.

Disabling all access to the Winbond W39V040FA chip

372 Part IV: BIOS Ninjutsu

el CAWINDOWS\system 3 2vem

Fig. 11.5. Reading BIOS chip contents after access to the chip is disabled

Then, I try to read the contents of the BIOS chip, as shown in Fig. 11.5.
Fig. 11.5 indicates that everything is fine. Nevertheless, the hex dump of the re-
sult is in Hex Dump 11.4.

Hex Dump 11.4. New_dump.bin, the Result of Reading the BIOS Chip after
Access Is Disabled

Address Hexadecimal Value

00000006 0000 0000 0000 0000 0000 aoan-aooo 0000
00000010 0000 0000 0000 10000 000 00! 000
00000020 0000 0060 0000 0000 0000 Qan.oooo‘ooom
00000030 0000 0000 G000 0000 0000 000 0000 0000 ... ST =
00000040 0000 0000 0000 0000 0000 0000 0000 0000 «vvvevosessiasns
00000050 0000 0000 0000 0000 0000 0000 0000 0000 . .vssvuwrsavarene

| ASCIT Value

Chapter 11: BIOS Security Measures 373

Hex Dump 11.4 shows a bogus result, because every byte contains 00n.i
It shouldn’t be 00h in all address ranges because the original hexadecimal dump
doesn’t contain 00h in all address ranges. You can compare Hex Dumps 11.3 and
11.4 to clarify my statement. At this point, you can conclude that the BIOS chip
doesn’t respond when it’s accessed after being disabled. A further writing experi-
ment that I carried out on the BIOS chip also gave a bogus result. The content of
the BIOS chip doesn’t change after access to the BIOS chip is disabled. Rebooting
the machine confirms this result.

The little experiment that I carried out shows that a hardware security measure
that’s implemented correctly can fight against BIOS tampering effectively. None-
theless, it only works for motherboard BIOS; PCI expansion ROM that’s not part
of the motherboard BIOS still risks of being easily tampered with.

Some motherboard manufacturers also don’t implement this feature correctly.
They only set the write-lock bit in the BIOS chip when you set BIOS flash protect
to enabled in the BIOS setting. They don’t set the lock down bit. Therefore, it’s easy
for Windows-based or Linux-based software to tamper with the BIOS chip con-
tents. You learned how to do that in Chapter 9. You can imagine the effect if the
software is a malicious application. 1

i Every byte in the hex dump result contains 00k, from the beginning to end. It’s not shown entirely
because of the space constraints in this book.

374 Part IV: BIOS Ninjutsu

Now, into another issue that seems to be a hardware solution to BIOS tamper-
ing, the so-called dual BIOS' solution that uses two BIOS chips to protect against
system failure caused by malfunction in one chip. Some motherboard manufactur-
ers that sell motherboards equipped with dual BIOS state that one purpose of dual
BIOS is to fight a malicious BIOS virus. Indeed, this kind of protection will work
against old viruses such as the CIH, or Chernobyl, virus written by Chen Ing Hau
of Taiwan that render the BIOS contents useless and made the system unable to
boot. Nonetheless, as I explained previously, the hardware protection will prevent
BIOS tampering only if the BIOS chip is inaccessible or at least the write-lock and the
lock-down bits in the chip are set to one. Dual BIOS won’t protect the system from
“correct” BIOS tampering, because as long as the system can boot perfectly from
the primary BIOS chip, it will boot from it. In this case, the system won’t be aware
that the BIOS chip contents have been modified; as long as the modification
doesn’t screw up the BIOS, it’s OK. By “correct” BIOS tampering, [mean a modifi-
cation to BIOS chip that still keeps the system usable. For example, a BIOS code in-
jection is legitimate BIOS tampering from the dual BIOS point of view, because the
system will still boot from the primary BIOS chip. Therefore, dual BIOS might be
useful against BIOS viruses that render the BIOS unusable, but it can’t fight nonde-
structive BIOS tampering. Gigabyte Technology' implements dual BIOS in its
motherboards by using two BIOS flash chips. Upon boot, the BIOS code will check
the integrity of the BIOS module checksums. If there is a checksum error, the cur-
rently executed BIOS code will switch execution to the other BIOS chip that was
not used to boot the system. I don’t know how this is accomplished because I have
never reverse-engineered BIOS binary for dual BIOS motherboards. However,
after reading the motherboard manual, it seems that the checksum checks are
executed in the boot block code. If you're interested in digging deeper into the
subject of dual BIOS, you can download Gigabyte Technology’s GA-965P-DS4
motherboard manual at http://www.gigabyte.com.tw/Support/Motherboard/
Manual Model.aspx?ClassValue=Motherboard&ProductID=2288&ProductName=
GA-965P-DS4 and read the section that introduces the flash BIOS method to start
your investigation.

i Some manufacturers name this feature top-hat flash, and there are many other terms. I stick to
dual BIOS.

ii Gigabyte Technology is based in Taiwan. It’s one of the three big manufacturers of PC peripherals.
The official website is http://www.gigabyte.com.tw.

Chapter 12: BIOS Rootkit
Engineering

Preview

In the previous chapters, you learned the basic techniques to interact with the
firmware in the system. This chapter combines those techniques into the ultimate
tool, the BIOS rootkit. I start by reviewing the history of BIOS exploitation and
dissecting the legendary CIH virus, and then proceed to explaining how to devise
a BIOS rootkit. The techniques that you learn in this chapter could be classified
as “forbidden” techniques; in the ninjutsu realm they would be kinjutsu, or “for-
bidden” skills. The techniques I show here are only for experts because they are
complicated, are risky, and can damage your system permanently. Don’t try any
of these techniques if you don’t understand their mechanism in detail. You have
been warned.

376 Part IV: BIOS Ninjutsu

12.1. Looking Back
through BIOS Exploitation History

In the history of PC-based computing, there was one major virus outbreak on
the PC BIOS, the CIH virus, written by Chen Ing Hau of Taiwan. There were
several variants of CIH. This section shows a snippet from source code of CIH
version 1.5. It shows the method used by CIH to destroy the BIOS. I don’t ex-
plain the infection method used by CIH in detail because the focus in this chapter
is synthesizing a BIOS rootkit. The source code is available at http://vx.netlux.org/
src_view.php?file=cih15.zip. This websitc has a search feature; you can use it to lo-
cate other versions of CIH source code.

As with other viruses’ code, CIH source code is twisted and hard to under-
stand because it uses many indirect branching instructions. I show you the basic
idea behind this virus before delving into its code snippets. The characteristics of
CIH 1.5 are as follows:

1. It infects executable [iles, particularly the so-called portable executable (PE) file.
In this context, PE files are 32-bit executable files that run on the Windows
platform.

2. It modifies the interrupt descriptor table (IDT) with an exception handler entry
that points to the custom exception handler routine in the virus code.

3. It raises an exception (o enter kernel mode. The kernel mode code is in the vi-
rus’s custom exception handler routine.

4. Characteristics 2 and 3 imply that the virus code must be able to modify IDT
entries from user-mode code. Therefore, CIH cannot run in Windows versions
based on an NT kernel, i.e., it cannot run in Windows NT/2000/XP because
IDT is not accessible to user-mode code in these Windows versions. CIH can
run only in Windows 9x operating syslems because IDT can be modified from
user-mode code in these operating systems.

5. In its exception handler, it installs a new file system hook in Windows 9x to
infect executable files. This file system hook also contains code to destroy the
syslem.

6. The code to destroy the system is time based. The code checks the current
date before executing the destruction code. If the date matches the prede-
fined “activation date” in the virus code, it will destroy the system; otherwise,
it will not. It doesn’t destroy the system immediately after the infection.

Chapter 12: BIOS Rootkit Engineering 377

CIH Source Code

i Executable File Template Segment

. IDT Modification Routine
Virus Code Segment (Running in User Mode)

L ’ Exception Handler Routine
-3 (Running in Kernel Mode)

o File System API Hook Routine
S| (Running in Kemnel Mode)

Fig. 12.1. CIH source code layouts

7. The destruction code destroys the content of the BIOS chip in systems that use
the Intel PIIX' chipset. It also destroys the contents of the HDD. I don’t delve
into the HDD destruction routine in this section. I focus on the BIOS destruc-
tion code instead.

Now you have an idca of what the CIH code contains. Fig. 12.1 shows the
rough layout of CIH 1.5 source code.

Fig. 12.1 shows that CIH source code uses two logical segments. The first is
used as the template for the infected PE files, while the second is used for the virus
routines. The second segment is divided into three components: IDT modification
routine, exception handler routine, and file system API hook routine. 1 won’t explain
the contents of the first segment. If you want to understand this segment, look for
tutorial on the PE file format on the Web. The second segment contains all of the
code that you need to understand. A glimpse of the algorithm used by CIH 1.5 was
already presented in the explanation of its characteristics. Now, I'll show the heavily
commented code for the second segment in CIH 1.5 source code. You'll examine
its code flow later.

Listing 12.1. Contents of the Second Segment in CIH Source Code

Now, examine the code related to the destruction of the BIOS contents in List-
ing 12.1. Start with the entry point of the virus code. In an infected executable file,

i This southbridge chip is used with Intel 440BX, 430BX, and 440GX northbridges. PIIX stands for
PCI-to-ISA/TDE Xcelerator.

378

Part IV: BIOS Ninjutsu

the entry point of the executable is diverted to the virus entry point, ie., the
MyVirusstart label in Listing 12.1. The original entry point is executed after the virus
code executes. Thus, you start the analysis from this label. According to Fig. 12.1,
in the first component in the virus segment it is routine to modify the IDT. I show
you how it’s implemented in Listing 12.3. But before going to the IDT modifica-
tion routine, I would like to note a trick used by the CIH author to calculate the
runtime address of labels within the virus code. A sample of this trick is shown in
Listing 12.2.

Listing 12.2. Runtime Address Calculation Routine

As you can see, the runtime address of the stopTorunvirus label is calculated as
follows: First, the runtime address of the @0 label is popped into ebx. The call @0
instruction saves this address to stack. Then, the distance from the StopToRunvVirus

Chapter 12: BIOS Rootkit Engineering 379

label to the @0 label is added to the runtime address of the @0 label and stored in the
ecx register. This operation is carried out in the following line:

lea ecx, StopToRunVirusCode=@0Tebx} = =i asEEEe T
Now, look into the IDT modification routine. It’s shown in Listing 12.3.

Listing 12.3. IDT Modification Routine

The IDT modification routine is difficult to understand. Thus, I will draw the
contents of the stack to clarify it. First, the routine in Listing 12.3 places a dummy

380 Part IV: BIOS Ninjutsu

32-bit value to stack. Then, it stores the physical address of the IDT and its limit to
stack. Tig. 12.2 shows the contents of the stack after the execution of sidt instruc-
tion in Listing 12.3.

Contents of the stack
IDT start address (32 bit) =
esp -~ | This dword formerly
cils . - contained the
IDT limit (16 bit) - *dummy” value from
esp-02h———— — the EAX register

Fig. 12.2. Contents of the stack just before the IDT is modified

After the sidt instruction, the 32-bit IDT physical address is popped to the ebx
register and used as the base address to calculate the IDT entry that’s going to be
modified. Listing 12.3 shows that the HookExceptionNumber constant is used to refer
to the IDT entry that will be modified. If you look at CIH 1.5 source code, you’ll
notice that the BookExceptionNumber constant will be replaced with 4 or 6 upon as-
sembling. IDT entry number 4 is overflow exception, and entry number 6 is invalid
opcode exception. However, the CIH binaries found back then never used one of
those numbers. Instead, they used IDT entry number 3 — breakpoint exception.
Modifying IDT entry number 3 was convenient because it confused debuggers and
made the analysis of CIH harder for antivirus researchers in those days. Listing 12.4
shows a snippet from the disassembly of CIH with build number 2690 that uses int
3h (exception number 3) to jump into kernel mode.

Listing 12.4. CIH Build 2690 Disassembly Using int 3h

Listing 12.3 also shows that the modified IDT entry points to the runtime ad-
dress of MyExceptionHook. Therefore, when an exception with a number malching
the HookExceptionNumber constant is raised, the virus code execution will jump to
the MyExceptiontook label. This brings you to the second component of the virus
code segment in Fig. 12.1 — the exception-handler routine. This routine is marked

Chapter 12: BIOS Rootkit Engineering 381

with the MyFxceptionHook label. Listing 12.5 shows the jump into this exception
handler and the contents of the exception handler.

%
Listing 12.5. CIH Exception Handler
M

382 Part IV: BIOS Ninjutsu

In Listing 12.5, when CIH generates the exception by using the int instruction,
CIH execution jumps into the MyFxceptionHook label. During this jump, the con-
text of the code execution switches from user mode to kernel mode. Therefore,
when CIH execution arrives at the MyExceptionHook label, it’s in kernel mode,
which means CIH has full control of the system. At this point, the zero flag is not
set and the debug registers are still in their default values! Thus, CIH code will
branch to allocate system memory to be used by the virus. It does so by calling
a kernel function named PageAllocate. (Because the CIH code is executing in
kernel mode at this point, kernel functions are available to be called directly.) After
allocating system memory, CIH execution returns to the code right after the previ-
ous int instruction (that generates the exception) with an iretd instruction, ie.,
right after the “merge all virus code section” comment. This also switches CIH exe-
cution from kernel mode back to user mode.

The lines of code right after the first exception copy the virus code to the allo-
cated system memory, and subsequently set the zero flag. Then, the virus code gen-
erates the same exception as before. However, this time the zero flag is set, not like
before. Therefore, the virus code execution jumps into the MyExceptionHook label
and installs the file system hooks. Listing 12.6 shows this process.

I Windows 9x doesn’t alter the debug registers values during boot. Therefore, the power-up
and reset values are preserved, i.e., 00000000h for DRO-DR3 registers. Sce Intel 64 and IA-32 Intel
Architecture Software Developer’s Manual: Volume 3A, Table 9-1, for debug registers power-up and
reset values.

Chapter 12: BIOS Rootkit Engineering 383

Listing 12.6. CIH Routine to Install File System Hook

Even Listing 12.6 might be still confusing. Many virus codes are cryptic like
this. Thus, I'll give you a graphical representation of the flow of execution. Use the
labels, function names, and comments from Listing 12.6 as your guide to traverse
the code. Fig. 12.3 shows the code flow. '

| Second invocation of int HookExceptionNumber
Zeroflag=1

4
Rty e o

MyExceptionHook

R |

InstallMyFileSystemApiHook
Install a file system hook for Windows 9x that points to the
FileSystemApiHook label in the virus code. This virus code
resides in the previously-allocated system memory.
Modify the IFSMgr_InstallFileSystemApiHook entry point
in the kernel to point lo the InstallFileSystemApiHook
label in the virus code. This virus code resides in the previously-
allocated system memory.

™

o

ExitRing0Init

7 —>
e

ReadyRestoreSE

e
et L — e
Original entry point of the
infected executable

Note:
Courier new font denotes a label in the virus code or a
function name.

Fig. 12.3. Installing the file system hook

384

Part IV: BIOS Ninjutsu

Fig. 12.3 shows that a file system API is installed into the kernel of the operat-
ing system. Therefore, every time a call to the file system API is made, this hook
is executed. Note that after the hook is installed, the execution in CIH virus
source code is no longer “linear”; the file system API hook code is dormant and
executes only if the operating system requests it — much like a device driver.
As you can see in the virus segment source code, this hook checks the type of op-
eration carried out, and infects the file with a copy of the virus code if the file is
an executable file. Don’t forget that at this point, the file system hook is a resi-
dent entity in the system — think of it as part of the kernel. It has been copied to
system memory allocated for hooking purposes by the virus code in the begin-
ning of Listing 12.6. Fig. 12.4 shows the state of the CIH virus in the system’s vir-
tual address space right after file system API hook installation. This should clarify
the CIH code execution up to this point.

Don’t forget that the file system API hook will be called if the operating system
interacts with a file, such as when opening, closing, writing, or reading it.

The file system API hook is long. Therefore, I only show its interesting parts in
Listing 12.7. In this listing, you can see how the virus destroys the BIOS contents.
[focus on that subject.

V86 region
CIH copies itself to
shared system e = ==
memory region Private application region
(Memory region for
VxD and VMM). | 0
— | Executable infected by CIH
' [~ . Windows 9x
=51 ¥ | virtual address space
Yy | Shared application region

ﬂ CIH file system API hook

; This file system API hook memory region |
was allocated by CIH code previously. |

Fig. 12.4. CIH state in memory after file system APl hook installation

Chapter 12: BIOS Rootkit Engineering 385

Listing 12.7. File System APl Hook

Listing 12.7 is well commented, and you should be able to understand it. How-
ever, I will clarify some sections that can confuse you. You need some datasheets to
understand the BIOS destruction code in Listing 12.7, namely, datasheets for the
Intel 440BX, Intel 430TX, and Intel 82371AB (PI11X4) chipsets and some flash ROM
datasheets — I'm using Winbond W29C020C and SST29EE010 datasheets.

Start with the entry point to the BIOS destruction routine. The routine is called
from the routine following the CloseFile label. The virus code checks whether the
date stored in the CMOS matches the predefined date in the virus. If they match,
the BIOS destruction code is “called” by the virus.

Now, proceed to the BIOS destruction routine. First, this routine enables access
to the BIOS chip by configuring the X-Bus chip select register in the Intel PITX4
southbridge. This process is shown in Listing 12.8.

Listing 12.8. Enabling Access to the BIOS Chip

386 Part IV: BIOS Ninjutsu

Register 4£h in PITX4 controls access to the BIOS chip, particularly, the decod-
ing of the BIOS chip address ranges. The quote from its datasheet is shown here.

Note that the PIIX4 southbridge can be coupled with one of three Intel
northbridges, namely, Intel 440BX, 430TX, or 440MX.

Chapter 12: BIOS Rootkit Engineering 387

Proceed to next routine that maps the BIOS chip address ranges to the real
BIOS chip, not to the BIOS shadow in DRAM. This routine is shown in Listing 12.9.

Listing 12.9. Mapping the Real BIOS Chip to BIOS Address Range

The routine in Listing 12.9 is clear if you read the Intel 440BX/430TX datasheet. |
The relevant snippet from the Intel 440BX datasheet is given here. \ ‘r

388 Part IV: BIOS Ninjutsu

Chapter 12: BIOS Rootkit Engineering 389

By comparing the preceding datasheet snippet and Listing 12.9, you will be able to
conclude that routine in Listing 12.9 sets up the northbridge to forward every transaction
to the BIOS chip address range, to the PCI bus, and eventually to the real BIOS chip.

The next routine enables writing to the BIOS chip. As you learned in Chapter 9, most
of the BIOS chip is write-locked by default and you have to enter a special byte sequence to
enable writing into it. The code snippet in Listing 12.10 accomplishes this task.

Listing 12.10. Disabling Write Protection in the BIOS Chip

390

Part IV: BIOS Ninjutsu

The code in Listing 12.10 can be confusing. You have to compare the values
written into the BIOS chip address ranges and a sample BIOS chip to understand iL.
A snippet from Winbond 29C020C datasheet provided here can be used as reference.

Note that the destination addresses of the memory write transaction shown
in the preceding datashect snippet are only 16-bits values because you only need
to specify the lowest 16 bits of the destination addresses correctly. You don’t need
to specify the more significant bytes addresses precisely. As long as the overall des-
tination address resides in the BIOS chip address ranges, the BIOS chip will decode
it correctly as “commands.” Those write transactions won’t be interpreted as
“normal” write transactions to the BIOS chip; rather, they will be treated as com-
mands to configure the internal setting of the BIOS chip. That’s why it doesn’t mat-
ter whether you specily e5555h or £5555h as the destination address of the mov in-
struction. Both are the same from the BIOS chip’s perspective because both reside
in the BIOS chip address ranges. The important issue when writing command bytes
into the BIOS chip is to make sure the data you write into it, i.c., the sequence of
the bytes and their corresponding lowest 16-bits addresses are exactly as mentioned
in the datasheet. If the code writes to an address range outside of the BIOS chip ad-
dress ranges, it won’t be interpreted as the BIOS chip configuration command be-
cause the BIOS chip won’t respond to addresses outside of its range.

From the Winbond W29C020C datasheet snippet, it’s clear that the routine
disables the write protection of the BIOS chip. This byte sequence also applies to
SST flash ROM chips. However, ’'m not sure if it’s already a JEDEC standard to
disable the BIOS chip write-protection feature.

At this point, you should be able to understand Listing 12.7 completely with the
help of the hints I provided in Listings 12.8 through 12.10 and their corresponding
explanations.

Chapter 12: BIOS Rootkit Engineering 391

| After the previous analysis, it’s clear that this particular CIH virus version only
attacks systems with Intel 440BX, Intel 430TX, or Intel 440MX' northbridge and
. Intel P11X4 southbridge — effectively, the contents of the BIOS chip in these sys-
tems are destroyed. On top of that, those systems must be running Windows 9x for
the virus to work. Systems with other chipsets can also be destroyed, but the con-
tents of their BIOS will be left unharmed, possibly because of chipset incompatibil-
ity. Nonetheless, this doesn’t mean CIH was a minor threat when it spread around
1998-2000. Intel was then a dominant player in PC hardware. Therefore, its hard-
ware was all over the place. That’s why CIH attacked many PCs during that time.
The flashback to the history of BIOS-related attacks ends here. You will learn
about BIOS rootkits in the upcoming sections.

12.2. Hijacking the System BIOS

There are plenty of possibilities to implement a BIOS rootkit. I explain one of them
in this section. I won’t go so far as to provide you with a working proof of concept
\ because of the limited space in this book. However, I provide pointers to relevant
articles that will guide you through the internals of the rootkit. Implementing the
rootkit in the BIOS should be a trivial task after you've grasped the concept in this
chapter. It’s also important to note that there’s the possibility that a BIOS cannot be
injected with a rootkit because it doesn’t have enough free space for the rootkit —
even if the rootkit code is compressed.
F Building a BIOS rootkit simply means injecting your code into the BIOS to con-
ceal your presence in the target system. You learned the basic concept of BIOS code
injection in Chapter 6. In that chapter, you injected your custom code through the
POST jump table. The code injection method in this section is a bit different; some
mix that technique with redirection technique known as detour patching. The main
target of the code injection is not the POST jump table but the BIOS interrupt handler.
BIOS interrupt handlers in some cases are twisted routines. Their initializations
are carried out during both boot-block code execution and main system BIOS exe-
cution. I explain in this section how to traverse the BIOS disassembly database for
Award BIOS version 4.51PG code to find the “interesting” BIOS interrupt handlers
and their initialization. As you will see in the next subsection, this method also
works for Award BIOS version 6.00PG. The last subsection in this section explains
the issue of implementing the rootkit development method in Award BIOS to the
BIOS from other vendors.

i Intel 440MX is a modified Intel 440BX chipset for mobile computing applications.

392 Part IV: BIOS Ninjutsu

BIOS interrupt 19h (bootstrap)

* Loads master boot record (MBR) — 512 Bytes at the first sector in HDD— '
to 0000:7C00h.

« Jumps into 0000:7C00h and executes the MBR.

* MBR copies itself to 0000:600h and continues execution there.

The jump into boot sector execution

= MBR code looks for active partition in the partition table — MBR at offset
1BEh-1FEh.

* MBR overwrites the previous MBR code at 0000:7C00h with the boot
sector code of the active partition.

* The execution then jumps from MBR code to boot sector code to execute
the boot sector.

Boot sector execution

» Boot sector loads the first 16 sectors from the boot partition — Including
the boot sector itself, which is the first section — to RAM at 0D00:0000h.
= Execution continues at segment DOOh. This is actually the first stage of
| Windows boot loader.
* Windows boot loader loads NTLDR at segment 2000h and jumps into it.
Note: Up to this point, the execution remains in 16-bit real-mode code.

* NTLDR executes the embedded OSLOADER.EXE, which switches
[the machine to 32-bit protected mode.
|» OSLOADER.EXE loads the “real” operating system, i.e., the Windows
' kernel, which consists of ntoskrnl.exe, hal.dll, and the associated
dependencies.

Fig. 12.5. Windows XP kernel loading stages

Chapter 12: BIOS Rootkit Engineering 393

The technique explained here is derived from the technique explained in the eEye
BootRoot rootkit. The BootRoot! rootkit works much like the boot-sector virus back
in the nineties. Its basic idea is to hijack the operating system loading process by using
a modified boot sector — modifying the kernel in the process to conceal the presence
of the remote attacker. As you may have known, the loading of the Windows XP ker-
nel is nol a single-stage process. The typical booting process for new technology file
system-based (NTFS-based) Windows XP installation in the hard drive is shown in
Fig. 12.5. Note that if Windows XP is installed on a 32-bit file allocation table
(FAT32) partition, the booting process is more complicated and is not well repre-
sented in Fig. 12.5. Nevertheless, the basic principles are the same.

Fig. 12.5 is only a highlight of the booting process; you can find the details
by reverse engineering in your Windows XP system. Detailed information can be
found at rwid’s NTES reverse engineering dump at http://www.reteam.org/board/
index.php?act=Attach&type=post&id=26 and the Linux NTFS project documenta-
tion at http://www.linux-ntfs.org/content/view/19/37/. In addition, you may want (o
read a book on digital forensics, such as File System Forensic Analysis by Brian Carrier.

Back at Fig. 12.5, you can clearly see that during Windows XP loading stages
you have the chance to modify the operating system kernel (ntoskrnl.exe, hal.dil),
either by hacking the Windows boot loader or by hacking the BIOS interrupt handlers.
In this section, I show the latter scenario, i.e., how to implement an approach simi-
lar to the BootRoot rootkit at the BIOS level. The essence of the technique is to
modify the interrupt handlers for interrupts that can alter the kernel before or during
the operating system’s kernel loading process. Figs. 12.6 and 12.7 show how this trick
works in a real-world scenario for interrupt 13n.

Figs. 12.8 and 12.9 show how the principle is applied Lo interrupt 19n,

The next two subsections focus on the technique to locate the interrupt 13h han-
dler and interrupt 19h handler within the BIOS binary. Interrupt 13h handles disk-
related aclivily — a rootkit developer is particularly interested in the disk sectors’
loading routine. Interrupt 19h is the bootstrap loader; it loads the operating system
code to RAM and jumps into it to start operating system execution. The explanations
in those sections are focused on Award BIOS. Note that the principles are applicable
to the BIOS from other vendors. However, the biggest obstacle for the BIOS from
other vendors is the technique and tools to integrate the changes into onc usable
BIOS binary. I stick to Award BIOS because its modification tools are widely available

! For more information on the BootRoot rootkit, read http://www.blackhat.com/presentations/
bh-usa-05/bh-us-05-soeder.pdf

394 Part IV: BIOS Ninjutsu

on the Web and the modification technique is well researched — you learned about it
in previous chapters.

Before proceeding to read the hijacking technique, be aware that I use the word
extension in this section in two contexts. When the word extension is not in quota-
tion marks, it refers to the compressed BIOS components in the BIOS other than
the system BIOS and the system BIOS extension. When the word extension is in
quotation marks, it refers to the custom procedure that’s injected to the BIOS to
modify the behavior of the interrupt handler for rootkit purposes. I express the
word in this way because of a lack of terms to refer to these two concepts.

Interrupt 13h handler before being altered by rootkit

: Reading HDD sector example: [

mov ah, 02h ; Invoke read disk sector interrupt. .h

mov al, 1 ; One sector. o

mov cx, 01h : Read sector 1 in the first cylinder. | /

mov dx, 80h : Read sector from HDD. | Interrupt 13h handler ' f Loading disk
mov bx, 0 : it sectors
mov es, bx : Set destination segment. Read the sector(s) into | <\ {, RAM
mov bx, 7C00h ; Set destination offset. designated memory i 3

int 13h »| buffer using ATA l A
command set |

; Now, the sector(s) are in memory starting at (I/O port read/write). \

; address 0000:7C00h. 3

Fig. 12.6. Working principles of the original interrupt 13h handler

Interrupt 13h handler after being altered by rootkit
: Reading HDD sector example: “New” Interrupt 13h handler '
Read the sector(s) into
mov ah, 02h ; Invoke read disk sector interrupt. | | designated memory b
mov al, 1 : One sector. buffer using ATA { I;S.?E:Psg disk
mov ¢x, 01h : Read sector 1 in the first cylinder. | command set | to RAM
mov dx, 80h : Read sector from HDD. (/O port read/write). it
mav bx, 0 : Save sector L} Altering the
mov es, bx ; Set destination segment. addresses for OS-related| | \ . % fer
mov bx, 7C00h ; Set destination offset. | sectors in the HDD. Alter | |
int 13h the contents before
returning if the sector(s)
; Now, the sector(s) are in memory starting at being read are the
; address 0000:7C00h. zperaftmg system
, ernel.

Fig. 12.7. Working principles of the altered interrupt 13h handler

Chapter 12: BIOS Rootkit Engineering 395
In‘a) e sk
rrupt 19h handler before being altered by rootkit T Boot devices ! |

Interrupt 19h handler Sl :
Read the MBR from HDD, i ' i
boot sector from floppy, o! i :

; Boolstrap example: boot sector from other / - i

bootable media into £i C’ :

Int 19h » 0000:7C00h and jump : e i

; Al this point, the code into it to start executing / i :

; execution has left the BIOS. the OS {I ; 6’ ;

; Int 19h handler jumps wxy Mo ¥ : Lt;;c;ll!;.g """""

; into the first code in the OS.

; Sometimes, it is not the real 0S ggg‘ ﬁecngR

; yet but an OS boot loader code. i

Fig. 12.8. Working principles of original interrupt 19h handler

Interrupt 19h handler after being altered by rootkit

“New” Interrupt 19h handler

Read the MBR from HDD,
boot sector from floppy, or|
boot sector from other
bootable media into
0000:7C00h.

Patch the OS boot loader
in memory so that it will

; Bootstrap example:

Int 19h

“call” your “custom code”.

; At this point, the cade
; execution has left the BIOS.
; Int 19h handler jumps
; into the first code in the OS.

Your "custom code” will
alter the kernel to hide
the rootkit. Jump into the
modified OS loader.

Altering the _OS

t loader in RAM

; Sometimes, it is not the real OS
; yet but an OS boot loader code.

Fig. 12.9. Working principles of altered interrupt 19h handler

12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers

The BIOS binary that I dissect in this subsection is vd30728.bin. This is the latest
BIOS for the Iwill VD133 motherboard, released in 2000. You can down-load the
binary at http://www.iwill.net/product_legacy2.asp?na=VD133&SID=32&MID=
26&Value=60. This binary is placed inside a self-decompressing file, vd30728.exe.
Remember, this BIOS is an Award BIOS binary based on Award BIOS 4.51PG code.

396 Part IV: BIOS Ninjutsu

There are two kinds of interrupts in the x86 platform, hardware interrupts and
software interrupts. The processor views both kinds of interrupts in almost the
same fashion. The difference is minor, i.e., the so-called programmable interrupt
controller (PIC) prioritizes hardware interrupts before reaching the processor in-
terrupt line, whereas software interrupts don’t have such a prioritizing mechanism.

Interrupts 13h and 19h are software interrupts. Nonetheless, you have to track
down the interrupt-related initialization from the hardware interrupt initialization
to grasp the overall view of BIOS interrupt handling. In most cases, the BIOS code
disables the interrupt before the hardware-related interrupt initialization is fin-
ished. The overview of BIOS interrupts is shown in Table 12.1.

Table 12.1. Interrupt Vector Overview

Interrupt Number (Hex) Description
00-01 Exception handlers
02 Nonmaskable interrupt (NMI)
03-07 Exception handlers
08 Interrupt request (IRQ) O; system timer
09 IRQ 1; keyboard
oA IRQ 2; redirected to IRQ 9
0B IRQ 3; serial port, i.e., COM2/COM4
oc IRQ 4, serial port, i.e., COM1/COM3
0D IRQ 5; reserved/sound card
OE IRQ 6; floppy disk controller
OF IRQ 7; parallel port, i.e., LPT1
10-6F Software interrupt
70 IRQ 8; real-time clock
it IRQ 9; redirected IRQ2
72 IRQ 10; reserved
73 IRQ 11; reserved
74 IRQ 12; PS/2 mouse
75 IRQ 13; math coprocessor
76 IRQ 14, hard disk drive
i, IRQ 15; reserved
78-FF Software interrupts

Chapter 12: BIOS Rootkit Engineering 397

The hardware that controls the delivery of hardware interrupt requests (IRQs)
to the processor is the PIC. It must be initialized before enabling any interrupt in
the system. In vd30728.bin, the PIC is initialized by the boot block code, as shown
in Listing 12.11.

Listing 12.11. PIC Initialization in the vd30728.bin Boot Block

398 Part IV: BIOS Ninjutsu

Tracking the PIC initialization in the BIOS disassembly is important because
it leads to the interrupt initialization routine, which provides the 32-bit
(segment :address) pointer to the interrupt handler. You might be asking about the
relationship between the PIC initialization and the interrupt initialization; all inter-
rupts (except NMI) are disabled before the completion of the PIC initialization.
Once you have located the interrupt-handler routine, you can use various tricks to
patch it, such as detour patching.

Listing 12.11 shows PIC initialization in the boot block. This is an ordinary PIC
initialization using the so-called initialization command word (ICW). The initiali-
zation ends with an operation command word (OCW) that disables all IRQ lines.
You can find numerous tutorials about PIC-related subjects on the Web if you feel
uncomfortable with it, for example, at http://www.beyondlogic.org/interrupts/
interupt.htm.

From the preceding code, you can infer that the processor is not serving any in-
terrupt yet because the PIC is “virtually” disabled. However, nothing can prevent
an NMI from happening because it has a direct interrupt line to the processor.

Now, proceed to the next stage of interrupt-related initialization in the current
BIOS binary, initializing the 16-bit interrupt vectors. In the current BIOS binary,

i Detour patching is a method to patch executables by redirecting the execution of the executable using
a branch instruction such that a custom code will be executed when the original executable is being exe-
cuted. It’s described at http://research.microsoft.com/~galenh/Publications/HuntUsenixNt99.pdf.

Chapter 12: BIOS Rootkit Engineering _ 399

it’s in the system BIOS’s POST jump table at the eighth entry. The disassembly is
shown in Listing 12.12. I'm using some abbreviated words in the listing, such as
ivect, which refers to interrupt vector; ISR, which refers to in-service register in the
PIC; EOI, which refers to end of interrupt; and IRR, which refers to the interrupt
request register in the PIC.

Listing 12.12. Interrupt Vectors Initialization in the vd30728.bin System BIOS

If you are having difficulties understanding the flow of execution in the beginning
of Listing 12.12, read Chapter 5 again. The IsR in the PIC ISR n IRR HouseKeeping
procedure name refers to the in-service register, not interrupt scrvice routine —
especially, in the section that explains the POST jump table.

The code in Listing 12.12 shows that the first 32 entries of the 16-bit BIOS in-
terrupt vectors are contained in a table — I will call it the interrupt vector table from
this point. A rootkit developer is particularly interested in entry 13h and 19n be-
cause both of these entries are the vectors to interrupt 13h and 19h handlers.

Now, let me give you a glimpse of the contents of the interrupt 13h handler.
It is shown in Listing 12.13.

Listing 12.13. Interrupt 13h Handler

400 Part IV: BIOS Ninjutsu

Listing 12.13 does not show the whole disassembly result because it’s too long
and won’t be easy to comprehend. It only shows the interesting part that can
become your starting point to inject your modification to the original interrupt 13h
handler. As you can clearly see, two functions seem to be left over from a previous
Award BIOS code base. They are named do_nothing and do_nothing 2. You can
reroute this function call to call your custom code. This method is the 16-bit real
mode version of the detour patching technique that I mentioned before.

In your custom int 13h “extension” code, you can do whatever you want.
As an example, you can code your own kernel patcher. But it will likely be so big
that there is not enough free space in the system BIOS for it. In that case, you can
make it execute as a separate BIOS module. This can become complex. A theoreti-
cal scenario is as follows:!

1. Create a new BIOS module that will alter the kernel when it loads to memory.
This new BIOS module contains the main code of the “extension” to the inter-
rupt handler.

i1 haven'’t tried this method in a real-world situation yet, so the feasibility is unknown.

Chapter 12: BIOS Rootkit Engineering 401

T

2. Carry out BIOS code injection using the POST jump table. Given the position
of the BIOS interrupt-handler initialization in the POST jump table, inject
a new POST entry right after the BIOS interrupt-handler initialization entry to
decompress your “extension” code and alter the interrupt-handler routine to
branch into the “extension” upon interrupt-handler routine execution. Note
that the “extension” code might need to be placed in memory above the 1-MB
barrier because you don’t have enough [ree space below that barrier. In that
case, you have to use an x86 voodoo-mode trick in your injected POST routine
code to branch to the “extension” code.

3. Integrate the module to the BIOS binary with Cbrom,! using the /other switch.
Nevertheless, pay attention to the LZH header’s segment :offset. This element
must be handled like other compressed BIOS components that are not the sys-
tem BIOS and its extension.!

C:\WINDOWS\system32\cmd.exe

Fig. 12.10. Cbrom /other option explanation

Note that Cbrom can compress new BIOS modules and integrate them with the
original binary by using the /other command line option. By using this option, you
can place the starting address ol the decompressed version of your module upon

1Various versions of Cbrom can be downloaded from http://www.rebelshavenforum.com/
sisubb/ultimatebb.php?ubb=get_topicif=52;t=000004
ii Read Section 5.1.3.4 about decompression of extension BIOS components.

402

Part IV: BIOS Ninjutsu

booting. Actually, this switch does nothing to the additional BIOS module other
than create the right destination segment:offset address in the LZH header of the
compressed version of the module that you add into the BIOS. Thus, you have
to decompress the module by calling the BIOS decompression routine in your
injected POST jump table routine. From Section 5.1.3.4, you know that the
segment :of fset that 'm referring to in this context is fake, because the destination
address of the decompression is always segment 2000h for an extension component
in Award BIOS unless some of the bits are set according Lo the rule explained in
that section. Fig. 12.10 is a screenshot of an older version of Cbrom showing the
hint to use the /other option.

Now, proceed to the sample code for decompression of a compressed BIOS
component. [t’s shown in Listing 12.14.

Listing 12.14. Sample Code for Decompression of a Compressed BIOS
Component

Chapter 12: BIOS Rootkit Engineering 403

Listing 12.14 shows the code for the 11th POST jump table entry, which calls
the BIOS decompression block routines to decompress an extension component
named nnoprom.bin. With this sample, you can infer how you should implement
your custom routine to decompress the “extension” to the interrupt 13h handler
if you have to compress it and store it as a standalone extension BIOS module.

Watch your address space consumption in your custom code. Make sure you
don’t cat up the space that’s still being used by other BIOS code upon the execution
of your module. This can become complex — to the point that it cannot be imple-
mented reliably. This issue can be handled by avoiding the interrupt 13n handler
and patching the interrupt 19h handler instead.

You want to patch interrupt 19h handler because when it’s being called the ma-
chine is more than ready to load the operating system; no other hardware initializa-
tion needs to be carried out. You are free to mess with the BIOS modules. However,
you have to watch carefully and not alter the BIOS-related data structure in RAM
that will be used by the operating system, such as the BDA and the read-only BIOS
code at segments E000h and F000h. Now, let me show you how interrupt 19h han-
dler is implemented in this particular BIOS. Look at Listing 12.15.

Listing 12.15. Interrupt 19h Handler

Looking at Listing 12.15, you will notice that there are plenty of places to put
a branch in your custom procedure. In particular, you can divert the bootstrap vec-
tor that jumps to 0000:7c00h to another address — the address of your custom
procedure that loads the operating system kernel and patches it. Keep in mind that
your custom procedure can be injected into the free space or padding bytes of the
system BIOS, just like the trick you learned in Section 6.2.

404

Part IV: BIOS Ninjutsu

Another issue in fusing your “extension” to the BIOS interrupt 19h hander is
the need to implement the custom procedure as an extension BIOS component if
the size of the procedure is big enough and it doesn’t fit in the free space in the
system BIOS. This case isn’t the same as the one with the interrupt 13h handler,
because when interrupt 19h is invoked, the BIOS module decompression routine in
segment 2000h might already be gone. To fight against this issue, you can compress
your procedure using LHA level 0 when you insert the custom procedure module
into the BIOS binary using Cbrom. Thus, the procedure won’t be compressed
and placed as a pure binary component in the overall BIOS binary. Now, how do
you implement the compression? This part is easy: Place a decompression routine
in the beginning of the module and compress the rest of the module after the de-
compression routine. Upon the first execution of your custom procedure, decom-
press the compressed part. Indeed, this part is quite hard to implement, but it is
not impossible. My advice is to use an LZH-based compression algorithm, because
the decompression code will be short. This method is illustrated in Fig. 12.10.

Overall BIOS binary

1* extension BIOS component
(compressed) . —
1 s Standard LHA header

& Decompression engine

“Compressed” custom procedure

Compressed int 19h “extension”
(int 19h “extension”) i

N" extension BIOS component F el
(compressed)

System BIOS extension

System BIOS |

Fig. 12.11. Conceptual view of a compressed interrupt 1oh handler "extension”

Chapter 12: BIOS Rootkit Engineering 405

Fig. 12.11 depicts the implementation of a compressed interrupt 19h extension
that’s explained in the preceding paragraph. Keep in mind that this implementa-
tion is specific to Award BIOS.

There is a slightly confusing fact about vd30728.bin. If you trace the disassem-
bly until the ISA POST jump table, you will see that there is IDT initialization. This
may surprisc you, because you may think that this renders unusable the former in-
terrupt vectors initialized at post_8s in the POST jump table. That’s not it. Look at
Listing 12.16; the secret lies in the code.

Listing 12.16. Misleading IDT Initialization

As you can see in Listing 12.16, the IDT is indeed used during Isa_posT_ls.
But after it's used, the processor’s interrupt-related registers are restored to the
original BIOS interrupt vectors that start at address 0000:0000n. This is shown
clearly in the Reinit IDT n Leave 16bit_pMode procedure. Thus, you have to be
aware of such a trick that might fool you. Note that I do not provide any binary
signature for the interrupt handler in Award BIOS because you should be able to
do it yourself after reading the book this far.

12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers

’m not going to explain many things in this subsection because Award BIOS 6.00PG
is similar to version 4.51. I will only provide the disassembly source code to show
you how similar they are. Because of this similarity, all methods explained in the
previous subsection are applicable to Award BIOS 6.00PG. The good news is that
Award BIOS 6.00PG contains relatively more free space than its older sibling does.

In this section, I'll show the disassembly of Foxconn 955X7AA-8EKRS2 BIOS
dated November 11, 2005. You worked with this file in Chapter 5, in the Award
BIOS reverse engineering section. Now, let me show you the PIC initialization code
in the boot block. The disassembly is shown in Listing 12.17.

Listing 12.17. PIC Initialization in the Foxconn 955X7AA-8EKRS2 Boot Block

406 Part IV: BIOS Ninjutsu

Chapter 12: BIOS Rootkit Engineering 407

Look carefully at Listing 12.17 and compare it with Listing 12.11. You can see
that the code is similar. This code must have been inherited from Award BIOS
4.51PG base code by Award BIOS 6.00PG code. I don’t need to explain it in detail
because you can easily grasp it from the explanation in the previous subsection.

Now, let me proceed to the system BIOS disassembly to find the interrupt han-
dlers. Start with the Foxconn 955X7AA-8EKRS2 POST jump table entries and the
call to initialize the interrupt vectors. It is shown in Listing 12.18.

Listing 12.18. POST Jump Table and Call to Interrupt Vectors Initialization
Procedure

408 Part IV: BIOS Ninjutsu

Chapter 12: BIOS Rootkit Engineering 409

As you can see in Listing 12.18, the interrupt vectors initialization is almost an
exact copy of the Award BIOS 4.51PG code that’s shown in Listing 12.12. The fun-
damental difference is in the POST jump table entry number; in the code for List-
ing 12.18, the initialization is carried out by POST routine at entry 27. There is also
a difference not shown in the listings: there is no ISA POST jump table in Award
BIOS 6.00PG code, only one long POST jump table.

Consider the next listing.

Listing 12.19. Foxconn 9556X7AA-8EKRS2 Interrupt 13h Handler

410 Part IV: BIOS Ninjutsu

Listing 12.19 shows the interrupt 13n handler. It’s in some respects quite similar
to the code in Award 4.51PG shown in the previous subsection.

The last and most interesting handler is the one for interrupt 19n. It’s shown in
Listing 12.20.

Listing 12.20. Foxconn 955X7AA-8EKRS2 Interrupt 19h Handler

}J
Chapter 12: BIOS Rootkit Engineering 411 }

=

The basic code flow of the interrupt 19h handler in Listing 12.20 is similar to that
of the same handler in Award BIOS 4.51PG code. However, the details differ because
Award BIOS 6.00PG code supports more boot devices than its older sibling does.

The preceding explanation implies that when you are modifying the interrupt
handler, you are working with the system BIOS because the interrupt handler is lo-
cated there. There is an issue in the newer Award BIOS 6.00PG. This BIOS cannot

412 Part IV: BIOS Ninjutsu

be modified with modbin version 2.01.01 as explained in Chapter 6 because even if
you alter the temporary system BIOS file that’s decompressed by modbin when it’s
opening a BIOS binary, modbin won’t include the changes in the output binary file.
It will use the original (unmodified) system BIOS. However, there is a workaround
for that. The basic principle of this workaround is to compress the modified system
BIOS by using Cbrom and adding it to the overall BIOS binary as the “other”
component that will be decompressed to segment 5000h when the BIOS executes.!
The details of this method are as follows:

1. Suppose that the name of the overall BIOS binary file is 865pe.bin and the
name of the system BIOS file is system.bin. In this step, I assume that you have
modified system.bin. You can obtain the original system.bin by opening
865pe.bin with modbin, copying the temporary system BIOS to a new file
named system.bin, and subsequently modifying it.

2. Extract all components of 865pe.bin except the system BIOS, and place them in
a temporary directory by using the suitable Cbrom command. For example, to
extract awardext.rom, use cobrom 865pe.bin /other 407F:0 extract.

3. Release all components of 865pe.bin except the system BIOS and place them
in a temporary directory by using the suitable Cbrom command. For example,
to extract awardext.rom, use cbrom 865pe.bin /other 407F:0 release. At this
point, the components left in 865pe.bin are the system BIOS, the boot block,
and the decompression block.

4. Compress system.bin and add it as a new component to 865pe.bin by using Cbrom
with the following command: cbrom 865pe.bin /other 5000:0 system.bin.
This step compresses system.bin and places it inside 865pe.bin next to the
original system BIOS.

5. Open 865pe.bin with a hex editor and copy the compressed system.bin inside
865pe.bin into a new binary file. Then close the hex editor. You can give this
new file an *.Iha extension because it’s an LHA compressed file. Then release
the compressed system.bin from 865pe.bin by using Cbrom with the following
command: cbrom 865pe.bin /other 5000:0 release.

6. Open 865pe.bin with the hex editor again — at this point, the compressed
system.bin is not inside 865pe.bin because it has been released. Then replace

i Recall from Section 5.1.2.7 that the system BIOS is decompressed to section 5000h because
its header indicates that segment as the destination segment for the compressed system BIOS when
it is decompressed.

Chapter 12: BIOS Rootkit Engineering 413

the original system BIOS with the compressed system.bin file obtained in the
previous step. Add padding Fen bytes if necessary. Then close the hex editor.
Combine all remaining components that you extracted in step 2 back with
865pe.bin, and you’re done.

The preceding steps have been proven to work on some Award BIOS binary
that cannot be worked with by using the modification method that alters the tem-
porary system BIOS file generated by modbin. Note that you don’t need modbin in
these steps. However, you can use modbin to verify the validity of the binary after
step 7 has been carried out.

The subsections on Award BIOS end here. In the next subsection, I explain the
issue that plagues the implementation of the BIOS from other vendors.

12.2.3. Extending the Technique to a BIOS
from Other Vendors

Implementing the technique that you learned in the previous two subsections to
a BIOS other than Award BIOS is hard but not impossible. It is difficult because of
the lack of tools in the public domain to carry out BIOS modification. Decompressing
and analyzing a BIOS other than Award BIOS is quite easy, as you have seen in AMI
BIOS reverse engineering in Section 5.2. However, the main obstacle is compressing
the modified BIOS components back into a working BIOS binary, along with correct-
ing the checksums. Even the public-domain BIOS modification tool sometimes does
not work as expected. I can give some guidelines to a possible solution to this
problem, specifically for AMI BIOS and Phoenix BIOS.

There are some tools for AMI BIOS available on the Internet, such as Mmtool
and Amibcp. You can work on PCI expansion ROM embedded within an AMI
BIOS! binary by using Mmtool. As for Amibcp, it works much like modbin for
Award BIOS binaries. Amibcp lets you work with the system BIOS within an AMI
BIOS binary. Moreover, some old versions of this tool released in 2002 or earlier
can add a new compressed component into the AMI BIOS binary. It’s possible that
it enables you to add a new compressed module into the binary. I haven’t done in-
depth research on this AMI BIOS exploitation scenario yet.

On the other hand, the only Phoenix BIOS tool that I'm aware of is Phoenix BIOS
Editor. This tool works for the BIOS from Phoenix before Phoenix Technologies

i PCI expansion ROM embedded within the overall BIOS binary is used for onboard PCI devices,
such as a RAID controller and an onboard LAN chip.

414 Part IV: BIOS Ninjutsu

merges with Award Software. This tool generates temporary binary files underneath
its installation directory upon working on a BIOS binary. You can use that to modify
the BIOS. It’s unfortunate that I haven’t researched it further and cannot present it to
you. However, I can roughly say that the temporary binary files are compiled into one
working Phoenix BIOS binary when you close the Phoenix BIOS editor. It seems you
can alter the system BIOS by altering those temporary binary files.

The lack of a public domain tool for motherboard BIOS modification can be
handled by avoiding injecting the rootkit into the motherboard BIOS. But then,
how would you inject the rootkit code? Simply: Inject it into the PCI expansion
ROM. I explain this theme in the next section.

12.3. PCI Expansion ROM Rootkit
Development Scenario

The PCI expansion ROM rootkit is theoretically easier to implement than the
motherboard BIOS rootkit explained in the previous section. This is because the PCI
expansion ROM is simpler than motherboard BIOS. Fig. 12.12 shows the basic idea
of the PCI expansion ROM rootkit.

Fig. 12.12 shows the basic concept of injecting a rootkit procedure into PCI
expansion ROM. As you can see, this method is detour patching applied to 16-bit
code, simple and elegant. The figure shows how the original jump to the PCI ini-
tialization procedure can be redirected to an injected rootkit procedure.
It shows how you can then jump to the original PCI initialization procedure
upon completion of the rootkit procedure. The effectiveness of this method is
limited by the size of the free space in the PCI expansion ROM chip and a rather
obscure constraint in the x86 booting process — I elaborate more on the latter
issue later because it’s a protocol inconsistency issue. If the rootkit is bigger than
20 KB, this method possibly cannot be used because most PCI expansion ROMs
don’t have free space bigger than that. A typical PCI expansion ROM chip is
32 KB, 64 KB, or 128 KB.

Before proceeding further, let me refresh your memory about the picture of the
PCI expansion ROM execution environment at large. PCI expansion ROMs (other
than a video card’s PCI expansion ROM) are executing in the following execution
environment:

O The CPU (and its floating-point unit), RAM, I/O controller chip, PIC, program-
mable interval timer chip, and video card’s expansion ROM have been initialized.

Chapter 12: BIOS Rootkit Engineering 415

O The motherboard BIOS calls the PCI expansion ROM with a 16-bit far jump.
O Interrupt vectors have been initialized.
O The CPU is operating in 16-bit real mode.

PCI expansion ROM structure
injected with rootkit

Oh AA55h (ROM signature)

Typical PCI expansion ROM structure " i —rs 1
oh| AAS5h (ROM signature) (ROM size in multiple of 512 bytes) J

; T 3h jmp rootkit_procedure ‘\

[- {
2| (ROM size in multiple of 512 bytes) | \\
3h ! jmp INIT .\ X ‘ \

\ 18h PCl data structure pointer \ “
\ [('
— - | o)
18h | PCI data structure pointer AT | |
-G ARRE i = /i
Y : PCI data structure :
| = -
. : I " |
PCI data structure ; | 'l
!
h INIT function ’f
<2 i _ : I
INIT function ‘ | Padding bytes (optional) &
, \\ L | Checksum | /
Padding bytes (optional) N rootkit_procedure
Checksum |
Padding bytes (optional)
 Checksum |

Fig. 12.12. PCI expansion ROM rootkit basic concepts

From the preceding execution environment, you might be asking why the video
card’s expansion ROM is treated exclusively. That’s because the video card is the
primary output device, which means it has to be ready before initialization of non-
critical parts of the system. The video card displays the error message, doesn’t it?

If you look carefully at the execution environment, you’ll notice that the in-
terrupt handlers have been initialized because the interrupt vectors have been

416 Part IV: BIOS Ninjutsu

initialized. This opens a chance for you to create a rootkit that alters the interrupt
handler routines.

Now, I’ll proceed to the mechanics to inject a custom code to the PCI expan-
sion ROM. However, I won’t go too far and provide you with a proof of concept.
I do show a PCI expansion ROM code injection “template,” however — in Sec-
tion 12.3.1. At the end of that section, I elaborate on one obscure issue in PCI ex-
pansion ROM rootkit development. In a real-world scenario, the PCI expansion
card already has a working binary in its expansion ROM chip. Therefore, you have
to patch that binary to reroute the entry point' to jump into your rootkit proce-
dure. I use FASMW as the assembler to inject the code into the working binary
because it has many [eatures that let you inject your code and make a working
injected PCI expansion ROM binary right away.

12.3.1. PCI Expansion ROM Detour Patching

Listing 12.21 shows the template to inject a code into a PCI expansion ROM named
rpl.rom. Note that rpl.rom is the original PCI expansion ROM binary file. Look at
the source code carefully because it contains many nonstandard assembly language
tricks specific to FASM.

Listing 12.21. PCI Expansion ROM Detour Patching Example

Listing 12.21 is indeed hard to understand for the average assembly language
programmer who hasn’t work with FASM. I'll start by explaining the idea behind
the source code. You know the basic idea of a PCI expansion ROM rootkit from
Fig. 12.12. In that figure, you saw that to inject a rootkit code into a working PCI
expansion ROM binary, you have to patch the entry point of the original PCI ex-
pansion ROM and place your code in the “free space” following the original binary.
Moreover, you also have to ensure that the size of the new binary is in a multiple of
512 bytes and it has a correct 8-bit checksum. These restrictions can be broken

i The entry point is the jump at offset 03h in the beginning of the PCI expansion ROM binary.

Chapter 12: BIOS Rootkit Engineering 417

down into a few fundamental requirements such that the assembler is able to carry
out all tasks in one source code.’ They are as follows:

1. The assembler must be able to work with the original binary, in particular read-
ing bytes from it and replacing bytes in the original binary.

2. The assembler must be able to produce a final executable® binary file that com-
bines both the injected code and the original binary file.

Among all assemblers that I've come across, only FASM meets both of the pre-
ceding requirements. That’s why I'm using FASM to work with the template.

Place the contents of the included
binary file in the very beginning of
the output binary

Expand macro calls into assembly
| language code ‘

‘ Compile the overall assembly ‘
| language code, append the result
after the included binary file in the
output binary ‘

Execute the “fasm interpreter
instructions” in the source code to
modify the output binary

Fig. 12.13. Overview of PCI expansion ROM "detour patch”
assembling steps in FASM (simplified)

i The tasks in this context refer to calculating the checksum, adding padding bytes, patching the
original PCI expansion ROM, etc.
1 Executable in this context means the final PCI expansion ROM.

418 Part IV: BIOS Ninjutsu

Fig. 12.13 presents the overview of the compilation steps when FASM assem-
bles the source code in Listing 12.21.

Perhaps, you are confused about what the phrase “FASM interpreter instruc-
tions” means. These instructions manipulate the result of the compilation process,
for example, the load and store instructions. I'll explain their usage to clarify this
issue. Start with the 1oad instruction:

The preceding code snippet means: obtain the 16-bit value from address
_org_rom start + 0x18 in the output binary and place it in the
_org pcir reserved variable. This should be clear enough. Now move on to the
store instruction:

The preceding code snippet means: Store a byte with a 0x£9 value to address
org rom start + 0x15 in the output binary. This code patches or replaces the
byte at address _org _rom start + 0x15 with 0xE9.

More information about the FASM-specific syntax in Listing 12.21 is available
in the FASM programmer’s manual, version 1.66 or newer. You can download this
manual at http://flatassembler.net/docs.php.

The code in Listing 12.21 will display some messages and wait for the user to
press the <x> key on the keyboard during boot, i.e., when the PCI expansion ROM
is being initialized. It has a timeout, however. Thus, if the user doesn’t press “x”
and the timeout passes, the injected code jumps into the original PCI expansion
ROM code and the boot process will resume. The rest of the source code is easy
enough to understand.

Now, you know the principle and the template needed to create your own cus-
tom code to be injected into a PCI expansion ROM. The rest depends on your
imagination.

12.3.2. Multi-Image PCI Expansion ROM

If you are a proficient hardware engineer or hardware hacker, you might read the PCI
specification carefully and find out why I don’t use the PCI expansion ROM multi-
image approach to implement the rootkit in the PCI expansion ROM. Recall from
Fig. 7.2 in Chapter 7 that a single PCI expansion ROM binary can contain more than
one valid PCI expansion ROM — every PCI expansion ROM in this binary is referred

Chapter 12: BIOS Rootkit Engineering 419

to as an image. This concept directly corresponds to the PCI expansion ROM data
structure. Recall from Table 7.2 in Chapter 7 that you can see the last byte in the data
structure is a flag that signifies whether or not the current image is the last image in
the PCI ROM binary. If you set this flag to indicate that the current image is not the
last image in the PCI data structure for the first image, then you might think that the
mainboard BIOS will execute the second image, too, when it initializes the PCI expansion
ROM. However, this is not the case. Look at Fig. 12.14.

Fig. 12.14 shows that even if a PCI expansion ROM contains more than one
valid image, only one is executed by the motherboard: the first valid image for the
corresponding processor architecture that the motherboard supports. I have vali-
dated this hypothesis a few times in my experimental x86 machines. It seems to be
that the multiple image facility in PCI protocol is provided so that a single PCI ex-
pansion card can plug into machines with different machine architecture and initialize
itself seamlessly by providing specific code (one image in the overall binary) for each
supported machine architecture. This means only one image will be executed in one
system, as confirmed by my experiments. In my experiment, I create a single PCI
expansion ROM binary, which contains two valid PCI expansion ROMs for x86 ar-
chitecture. | plugged the PCI expansion card that contains the PCI expansion ROM
binary in several machines. However, the second image was never executed; only
the first one was executed. Nonetheless, this opens the possibility to create an in-
jected code that supports several machine architectures. I'm not going to talk about
it in this book. However, you might be interested in conducting research about
such a possibility.

Motherboard BIOS PCIl expansion ROM

| Call PCI expansion ROM | Image no. 1
| init function
\ e S PCI expansion ROM init
" Next BIOS routines L function
. Image no. 2

PCI expansion ROM init
function

Fig. 12.14. Multi-image PCI expansion ROM initialization

420 Part IV: BIOS Ninjutsu

12.3.3. PCI Expansion ROM Peculiarity
in Network Cards

The last issue regarding a PCI expansion ROM-based BIOS rootkit is the peculiar-
ity of PCI expansion ROM in a network card. My experiments show that PCI ex-
pansion ROM for a network card is executed only if the BIOS setting in the moth-
erboard is set to boot from LAN. Even the PCI expansion ROM’s init function won’t
be executed if this is not set. I've read all related documentation, such as PCI speci-
fication version 3.0, and various BIOS boot specifications to confirm that this be-
havior is inline with all specifications. However, I couldn’t find one that talked
aboul it specifically. Nonetheless, it’s safe to assume that you have to account for
this standard behavior if you are injecting your code into PCI expansion ROM bi-
nary in a network card. You have to realize that the administrator in the target sys-
tem might not set the boot from LAN option in its BIOS; therefore, your code will
never execute. Pay attention to this issue.
This concludes my explanation of the PCI expansion ROM-based rootkit.

Chapter 13: BIOS Defense
Techniques

Preview

The previous chapters explained BIOS-related security issues mainly from the at-
tackers’ point of view. This chapter dwells on the opposite point of view, that of the
defenders. The focuses are on the prevention and mitigation of BIOS-related at-
tacks. I start with the prevention method and then advance to the mitigation methods
to heal systems that have been compromised by BIOS-related attack techniques.

422 Part IV: BIOS Ninjutsu

-

13.1. Prevention Methods

This section explains the methods to prevent an attacker from implanting a BIOS-
based rootkit in your system. As you learned in the previous chapters, there are two
kinds of subsystems that can be attacked by a BIOS-based rootkit: the motherboard
BIOS and the PCI expansion ROM. | start with the motherboard BIOS and pro-
ceed to the PCI expansion ROM issue.

13.1.1. Hardware-Based Security Measures

Recall from Section 11.4 that there is a hardware-based security measure in
the motherboard BIOS chip to prevent an attacker from altering its contents.
Certain registers in the BIOS chip — the BLRs — can prevent access to the BIOS
chip, and their value cannot be changed after the BIOS initializes them,! meaning
that only changing the BIOS setup would change the status of the hardware-based
protection. Therefore, the attacker needs physical access to the system to disable the
protection. Nonetheless, there is a flaw to this prevention mechanism. If the default
value of the BIOS setting in the BIOS code disables this protection, there is a possibility
that the attacker can invalidate the values inside the CMOS chip remotely — within
the running operaling system — and restart the machine remotely afterwards to
disable the hardware-level protection. This happens because most machines force
loading of the default value of the BIOS setting if the checksum of values in the
CMOS is invalid.

Before proceeding, a comparison study among flash ROM chips used as the
BIOS chip in the motherboard is important because you need to know the nature
of the implementation of the hardware-level protection. I presented the hardware-
based protection example in Chapter 11 with the Winbond W39V040FA chip.
Now, look at another sample from a different manufacturer. This time, I present
a chip made by Silicon Storage Technology (SST), the SST49LF004B flash ROM
chip. This chip is a 4-megabit (512-KB) FWH-based BIOS chip. It’s compatible
with the LPC protocol. Therefore, it’s connected with the other chip in the moth-
erboard through the LPC bus.

i Once the lock-down bit in the chip is activated, the state of the write-prolection mechanism can-
not be changed before the next boot or reboot. This doesn’t imply that you can change the write-
protection mechanism in the next reboot. For example, if the lock-down bit initialization is carried
out by the BIOS, you cannot change the state of the write protection unless you change the BIOS.

Chapter 13: BIOS Defense Techniques 423

— 7TFFFFh ‘
Block 7 access is controlled “
by top boot lock (TBL#) pin Hgor) Boot block
A4 = T0000h} 58 | b eVl
7y — BFFFFh
Block 6
- 160000h | ST i |
— SFFFFh
Block§ =
50000h 1
~— 4FFFFh
Block4 < |
40000h| .|
— 3FFFFh
Block 3 <
— GDDDOh»)
Blocks 0-6 access is controlled — 2FFFFh
by write-protect (WP#) pin Block2 < I
— 20000h | o =
— AFFFFh |
J
Block1 <
_ 10000n Wil -
— OFFFFH‘
Block0 —_—
(B4KB) ~ 2000h 4-KB seclor 2
1000h : , 4-KB sector 1 2
4-KB sector 0
Y — 0000h| i SRR AT

Fig. 13.1. SST49LF004B memory map

Because most working principles of an FWH-based flash ROM chip are the
same, I won’t dwell on it. Please refer to Section 11.4 about the fundamentals on
this issue. You can download the datasheet for SST49LF004B at http://www.sst.com/
products.xhtml/serial_flash/49/SST49LF004B.

Now, proceed to SST49LF004B internals. First, look at the memory map of
SST49LF004B in Fig. 13.1. This memory map is shown from the flash ROM address
space, not the system-wide memory address space of x86 systems.

As you can see in Fig. 13.1, SST49LF004B is composed of eight 64-KB blocks,
which means the total capacity of this chip is 512 KB. Every block has its control
register, named BLR, that manages the reading and writing. You learned about
the fundamentals of the BLR in Section 11.4. Therefore, I will proceed directly
to the memory map of the BLRs from the SST49LF004B datasheet. It’s shown
in Table 13.1.

424 Part IV: BIOS Ninjutsu

.

Table 13.1. SST49LF004B BLRs Memory Map

Registers (BLRs) Block Protected memory 4-GB system
size address range memory address
(in the chip)
T BLOCK LK 64 KB TEFFFh-70000h FFBFO0002h
T_MINUSO1 LK 64 KB 6FFFFh—60000h FFBE0002h
T _MINUS02 LK 64 KB SFFFFh—=50000h FFBD0O002h
T _MINUSO3 LK 64 KB AFFFFh—40000h FFBC0O002h
T _MINUSO04_LK 64 KB 3FFFFh—30000h FFBB0002h
T_MINUSOS_LK 64 KB 2FFFFh—20000h FFBA0002h
T MINUSO6 LK 64 KB 1FFFFh-10000h FEFBY90002h
T MINUS07 LK 64 KB OFFFFh—00000h FFBB80002h

The protected memory address range column in Table 13.1 refers to the physical
address of the BLR with respect to the beginning of the chip address space; it is not
in the system-wide address space context. If you compare the contents of Table 13.1
and Table 11.1 in Chapter 11, it’s immediately clear that both tables are almost
identical. The difference is only in the name of the BLR. This naming depends on
the vendor. Nonetheless, both names refer to the BLR. Just as in Winbond
W39V040FA, the BLRs in SST49LF004B are 8-bit registers. Table 13.2 shows the
meaning of each bit in these registers.

Table 13.2. SST49LF004B BLRs Bit

Reserved bit [7:2] | Lock-down bit[1] | Write-lock bit [0] | Lock-status
000000 0 0 Full access
000000 0 1 Write-locked (default
state at power-up)
000000 1 0 Locked open (full
access locked down)
000000 1 1 Write-locked down

Table 13.2 shows that the topmost six bits in each BLR are reserved. It means
that these bits should not be altered. The lowest two bits control the locking

Chapter 13: BIOS Defense Techniques 425

mechanism in the chip. Moreover, recall from Fig. 13.1 that the top boot block
(TBL#) and write-protect (WP#) pins in the SST49LF004B control the type of ac-
cess granted into the contents of the chip. These pins are overrides to the BLR con-
tents because their logic states determine the overall protection mechanism in the
chip. The working principle of the BLR bits, the TBL# pin, and WP# pin are ex-
plained in SST49LF004B datasheet. A snippet is shown here.

The motherboard maker can use the override pins to implement a custom
BIOS protection mechanism in its motherboard by attaching the pin to another
programmable chip. Nonetheless, that approach will reduce the compatibility of
the motherboard with flash ROM from other vendors; this is not a problem for
flash ROM soldered into the motherboard, however, because the chip would never
be replaced.

The hardware-based protection explained in Section 11.4, and the current ex-
planation are similar because both BIOS chips adhere to a standard FWH specifica-
tion. Intel conceived this standard. The first implementation of this standard was
on the Intel 82802AB chip in 2000. Many firmware and chipset vendors adopted
the standard shortly after the first implementation. The BLR explained in Section 11.4,
and in this section is also part of the FWH specification. If you want to know

426 Part IV: BIOS Ninjutsu

the original FWH specification, download the Intel 82802AB datasheet at
http://www.intel.com/design/chipsets/datashts/290658.htm?iid=ipp_810chpst+
info_ds_fwh&. Reading the Intel 82802AB datasheet will give you a glimpse of the
implementation of other FWH-based flash ROM chips.

Based on the preceding analysis, the prerequisite for a hardware-based security
measure in a motherboard BIOS chip to work without a flaw from remote attacks
is that the BIOS code must implement the default value of the BIOS setting that pre-
vents writing into the BIOS chip after boot completes — preventing writing to the BIOS
chip within the operating system. It’s better if the BIOS code disables access to the BIOS
chip because the attacker won’t be able to read and analyze the contents of the BIOS
chip within the operating system. This prevention method will protect the system
from remote attacks that will disable the hardware-based BIOS chip protection by
invalidating the CMOS checksum and restarting the system. If the BIOS code doesn’t
provide the protection code, you still have a chance to protect your system
or at least raise the bar for an attacker who wants to infect your BIOS with a rootkit
from a remote place. This prevention method is accomplished by developing a de-
vice driver that will initialize the BLR upon the boot of the operating system.
The initialization by the driver will configure the BLR bits so that the BIOS chip
contents will be write-locked. This way, the attacker has to work to find the driver
before he or she can infect the BIOS. This is especially hard for the attacker if the
driver is stealthy.

I'm not proposing a BIOS patching approach to alleviate the “bad” BIOS code
implementation of the protection mechanism — BIOS that doesn’t write-lock the
BIOS chip upon boot — because I think it will be hard to modify the BIOS binary
to make that happen, especially for a BIOS that has no publicly-available modifica-
tion tool. It’s just too risky to implement such a thing in the today’s BIOS.

13.1.2. Virtual Machine Defense

Another prevention method that may help defend a BIOS rootkit is the implemen-
tation of a virtual machine. When attackers target the operating system running
within the virtual machine, they may find a BIOS within that operating system.
However, it’s not the real motherboard BIOS. Therefore, they won’t harm the sys-
tem. However, this method won’t work if the attackers realize that the system is
running on top of a virtual machine because they will try to gain full control of the
system to gain access to the real BIOS chip in the motherboard. As a side note,
some virtual machines use a modified version of AMI BIOS as the BIOS.

Chapter 13: BIOS Defense Techniques 427

Another issue that I haven’t researched yet is the “presentation” of the emu-
lated hardware inside the virtual machine. I don’t know yet how real the virtual
machine—emulated hardware looks when an attacker has gained full access to the
virtual machine entity remotely.

13.1.2. WBEM Security in Relation to the BIOS Rootkit

In this subsection, 'm not going to delve into the issue of implementing a WBEM
security measure because a WBEM-based attack entry point is in the application
layer, not in the BIOS. However, I want to explain the danger caused by a com-
promised WBEM infrastructurel in connection with a BIOS rootkit deployment
scenario. This is important because few people are aware that a compromised
WBEM infrastructure can help attackers launch a firmware-level assault on the sys-
tems inside the WBEM infrastructure.

Attackers who have gained access to the overall WBEM infrastructure likely will
implement a low-level rootkit to maintain their access in the compromised sys-
tems. This means they will probably try to infect the compromised system with
BIOS rootkit. Here is the possible attack scenario that uses WBEM as an aid to
launch an organization-wide BIOS rootkit infection.

In Chapter 10, 1 talked about WMI as one implementation of WBEM. In prac-
tice, one use of WMI is to detect the configuration of the client machines con-
nected to a local Windows update server. This server provides the latest patches and
updates for Microsoft Windows inside an organization. A local Windows update
server detects the configuration of the client machine before sending the updates
and patches to the client machine. The detection is carried out through WMI inter-
face. The client configuration data are stored in the local Windows update server so
that future updates for the client can be performed faster; time is not wasted prob-
ing for the details of the client through the WMI interface again. Because the local
Windows update server caches the client machine configuration, attackers who
compromise the server will have access to the configuration data of the machines
that have been using the server. Recall from Fig. 10.6 that the motherboard type
and BIOS version of the client computer are among the configuration information
available in the server. With this information, attackers can launch an organization-
wide BIOS rootkit infection more easily. Such a scenario is shown in Fig. 13.2.

| WBEM infrastructure in this context consists of desktops and servers that implement a certain
WBEM specification and can respond to remote queries that request the system-level configuration
information.

428 Part IV: BIOS Ninjutsu

Step 1 |
Compromise the local .
' Windows update server [~ ¢

-

S (Oriai
Local Windows update server o i

Switch

P
\,

b il

—
—

/A

TTP server NN

Step 2

g Deskto,
Based on the data o s P -
obtained from the local |-~ ‘~.‘\ /,/
Windows update server, S S et

| devise a system-specific -
| BIOS rootkit and "install” |
the rootkit in the target

'machines
L

Fig. 13.2. WBEM-aided attack scenario

Note that in Fig. 13.2, the local Windows update server is not marked as the
target of step 2 of the attack. However, the Windows update server can become the
target of BIOS rootkit infection if the attackers desire. The comments in Fig. 13.2
may not be obvious. Therefore, steps of the attack procedure are as follows:

1. The attackers penetrate the organization’s computer network and compromise
the local Windows update server.

2. Based on the detailed client data in the Windows update server, the attackers
search as needed for relevant datasheets regarding the next target — the ma-
chine that will be infected with a BIOS rootkit. Datasheets may be unnecessary

Chapter 13: BIOS Defense Techniques 429

if the system is already well known to the attacker. Then, the attacker devises
the system-specific BIOS rootkit. Many organizations, workstations and desk-
tops use the same hardware configuration, or at least they have many similari-
ties. This eases the deployment of BIOS rootkit by the attackers.

In the real world, few organizations may implement a local Windows update
server. Nonetheless, an attack scenario like this must be addressed because it greatly
affects the organization.

13.1.3. Defense against PCI Expansion ROM Rootkit Attacks

Compared to the rootkit in the motherboard BIOS, a PCI expansion ROM-based
rootkit is hard to protect because there is no hardware security measure imple-
mented in the PCI expansion ROM chip. The size of the PCI expansion ROM chip
varies from 32 KB to 128 KB, and most flash ROM chips in this category don’t have
a special write-protection feature. 'There is no BLR-like feature in most PCI expan-
sion ROM chips. Therefore, any valid access to the PCI expansion ROM chip is
immediately granted at the hardware level.

The absence of hardware-level protection in the PCI expansion ROM chip
doesn’t mean that you can’t overcome a security threat. There are hypothetical
methods that you can try. They haven’t been tested, and most of them are Windows-
specific. Nonetheless, they are worth mentioning. The methods are as follows:

O Some PCI expansion card chipsets' map the expansion ROM chip in the mem-
ory address space. In Windows, this memory address space is accessed directly
using the MmGetSystemAddressForMdlsafe kernel function and other memory
management functions. By hooking into this function in the kernel, you can fil-
ter unwanted accesses to a certain memory address range in the system. If the
filter is applied to a memory-mapped PCI expansion ROM chip, it can guard
against malicious access to the PCI expansion ROM contents. The same princi-
ple can be applied to a UNIX-like operating system, such as Linux. However,
the kernel function that you have to watch for is different, because the operat-
ing system is different from Windows. In any case, the implementation of your

" In this context, PCI expansion ROM chipsets are the controller chip in the PCI expansion card,
such as the Adaptec AHA-2940U SCSI controller, the Nvidia GeForce 6800 chip, and the ATI
Radeon 9600XT chip.

430 Part IV: BIOS Ninjutsu

“hook function” is in the form of a kernel-mode device driver that watches for
malicious attempts to access predefined memory address ranges. Predefined
memory address ranges in this context refers to the memory address ranges that
have been reserved for the PCI expansion ROM by the motherboard BIOS dur-
ing system-wide address space initialization upon boot.

O Some PCI expansion card chipsets map the expansion ROM to the 1/O address
space. You learned about this when you were working with the RTL8139-based
card in Chapter 9. The /O address space of the expansion ROM is accessed
through PCI bus transactions. There is no way to prevent those transactions if the
attackers use direct hardware access, i.e., write to the PCI data port and address
port directly. If the attackers use a kernel function to carry out the PCI bus
transactions, you can filter it, akin to the method explained in the previous
method.

Both of the preceding hypothetical prevention methods work only if the attack-
ers don’t have physical access to the machine. If they do, they can install the rootkit
by rebooting the machine to an unsecured operating system, such as DOS, and re-
flash the PCI expansion ROM with an infected PCI expansion ROM binary.

The previous explanation clarifies the issue of preventing PCI expansion ROM-
based attacks. You can conclude that it’s still a weak point in the defense against
a firmware-level security threat.

In the future, when hardware-level protection similar to the BLR in the moth-
erboard BIOS chip is implemented in the PCI expansion ROM chip, implementing
a protection mechanism in the PCI expansion card will be easier for hardware ven-
dors and third-party companies.

13.1.4. Miscellaneous BIOS-Related Defense Methods

There are some prevention methods in addition to those I have talked about in the
previous subsections. I will explain one of them, the Phoenix TrustedCore BIOS.
This type of BIOS has just entered the market. It’s worth exploring in this subsection
because it gives a glimpse into the future of BIOS protection against malicious code.

In coming years, BIOS implementation will be more secure than most BIOS
currently on the market. This is because of the industry-wide adoption of standards
by Trusted Computing Group (TCG), such as the Trusted Platform Module
(TPM) and the TPM Software Stack (TSS). The Phoenix TrustedCore BIOS is one
BIOS implementation that adheres to standards by TCG.

Chapter 13: BIOS Defense Techniques 431

~

| 1. TCG Architecture Overview

it el ametinein) .

3. Trusted Platform Module

(TPM) Main Specification, Parts
2. Platform-Specific Design ‘ 14, je. |
Guide Document, .e., PC | _ > C Design Philosophies e 4. TPM Software Stack (TSS) ‘
Platform Specification Document Document I
Document | TPM Structures Document |
T TPM Commands Document
© Compliance Document

Fig. 13.3. Steps in comprehending TCG standards implementation in PC architecture

TCG standards are quite hard to understand. Therefore, I give an overview of
them before moving to Phoenix-specific implementation — the Phoenix Trusted-
Core. TCG standards consist of many documents. It’s not easy to grasp the docu-
mentation effectively. Fig. 13.3 shows the steps for reading the TCG standards
documents to understand their implementation in PC architecture.

Fig. 13.3 shows that the first document you have to read is the TCG Specification
Architecture Overview. Then, proceed to the platform-specific design guide document,
which in the current context is the PC platform specification document. You have to
consult the concepts explained in the TPM main specification, parts 1-4, and the
1SS document while reading the PC platform specification document — the
dashed arrows in Fig. 13.3 mean “consult.” You can download the TCG
Specification Architecture Overview and TPM main specification, parts 1-4,
from https://www.trustedcomputinggroup.org/specs/TPM. The TSS document is
available for download at https://www.trustedcomputinggroup.org/specs/TSS,
and the PC platform specification document is available for download at
https://www.trustedcomputinggroup.org/specs/PCClient.

The PC platform specification document consists of several files; the relevant
ones are TCG PC Client-Specific Implementation Specification for Conventional
BIOS (as of the writing of this book, the latest version of this document is 1.20 fi-
nal) and PC Client TPM Interface Specification FAQ. Reading these documents will
give you a glimpse of the concepts of trusted computing and some details about its
implementation in PC architecture.

Before moving forward, I'll explain a bit more about the fundamental concept
of trusted computing that is covered by the TCG standards. The TCG Specification
Architecture Overview defines trust as the “expectation that a device will behave in
a particular manner for a specific purpose.” The advanced features that exist

432

Part IV: BIOS Ninjutsu

in a trusted platform are protected capabilities, integrity measurement, and integrity
reporting. The focus is on the integrity measurement feature because this feature re-
lates directly to the BIOS. As per the TCG Specification Architecture Overview, integrity
measurement is “the process of obtaining metrics of platform characteristics that af-
fect the integrity (trustworthiness) of a platform; storing those metrics; and putting
digests of those metrics in PCRs [platform configuration registers].” I'm not going to
delve into this definition or the specifics about PCRs. Nonetheless, it’s important to
note that in the TCG standards for PC architecture, core root of trust measurement
(CRTM) is synonymous with BIOS boot block. At this point, you have seen a preview
of the connection between the TCG standards and its real-world implementation.
The logical position of CRTM in the overall system is shown in Fig. 13.4.

System

Fig. 13.4. System-wide logical architecture of a PC in TCG terminology

Chapter 13: BIOS Defense Techniques 433

As you can see, Fig. 13.4 shows that CRTM is the BIOS boot block and that the
CPU reset vector points to a location inside the CRTM.

Now, examine Phoenix TrustedCore. Its documentation is available for
download at the following links:

0O 'The link to the Phoenix TrustedCore SP3b datasheet is http://www.phoenix.com/
NR/rdonlyres/C672D334-DD93-4926-AC40-EF708B75CD13/0/TrustedCore
SP3b_ds.pdf.

O The link to the Phoenix TrustedCore white paper is https://forms.phoenix.com/
whitepaperdownload/trustedcore_wp.aspx. Note that this link points to an
electronic form that you have to fill in before you are allowed to download the
white paper. The white paper is free.

O The link to download the Phoenix TrustedCore Notebook white paper is
http://www.phoenix.com/NR/rdonlyres/7E40E21F-15C2-4120-BB2B-
01231EB2A2E6/0/trustedcore_NB_ds.pdf. This white paper is quite old.
Nonetheless, it’s worth reading.

With regard to TCG standards, there are two requirements for the BIOS boot
block that are fulfilled by the Phoenix TrustedCore, as follows:

1. A host-platform manufacturer-approved agent or method modifies or replaces
code or data in the boot block.

2. The manufacturer controls the update, modification, and maintenance of the
BIOS boot block component, and either the manufacturer or a third-party sup-
plier may update, modify, or maintain the POST BIOS component.

In this case, the boot block plays a role as the CRTM, which means it is used to
measure the integrity of other modules in the PC firmware. Having read the pre-
ceding requirements, go back to the prevention method theme. What does Phoenix
TrustedCore BIOS offer? To put it simply, this new approach to BIOS implementa-
tion provides two levels of protection against tampering for the BIOS boot block:

3 Any modification to BIOS code must meet strong authentication requirements.
The system prevents a nonmanufacturer-approved BIOS flashing utility from
writing into the CRTM. This is achieved by activating the hardware-based
write-lock to the boot block except in a specific case, i.e., when a manufacturer-
approved BIOS flashing utility is updating the boot block.

434 Part IV: BIOS Ninjutsu

0 Any modification to BIOS code must meet strong verification requirements.
The system uses a strong cryptographic method to verify the integrity of the firm-
ware. This is achieved by using a strong cryptographic algorithm, such as RSA.

Phoenix provides details of implementation for both of the preceding protec-
tion levels in its TrustedCore white paper, as cited here:

Now, I move forward to show you how the preceding points are being imple-
mented in the Phoenix TrustedCore BIOS products. Phoenix implemented the
concept by combining both the BIOS binary and the BIOS flasher program into
one “secure”™ BIOS flasher executable. It’s still unclear whether there is a non-
Windows version of this binary; I couldn’t find any clues about that in Phoenix
documentation.

What follows is the logical diagram of the BIOS flashing procedure for Phoenix
TrustedCore binaries. This logical diagram is a reproduction of the logical diagram
in the Phoenix TrustedCore white paper.

i The combined BIOS binary and BIOS flasher software is supposed to be secure. However, some-
one might be able to break its protection in the future.

Chapter 13: BIOS Defense Techniques 435

RN
[\ System power—onlrese%
\\\\\\;\i\xxmxx;x\'

ANANRR RN NN Y | Pecom
Normal POST path \ Boot block execuh& e
—\ RN

e—protecl (Iock—down) CRTM ~|
Recommended: Lock down other* S3-resume path
\ flocks of flash part, with

/7//'

BIOS recovery operatlon .

—~
\ﬂg sion blocks if needed . q| N (no CRTM update allowed);S: |
§ uthenticate - - =

Lt ¢ N...BIOS |

h‘ool to 0 \1

|
I
I
F—"""-r"rrrn I

I Run secure ﬂash update tooLﬂL |
for BIOS update | S

B | 8
<“BIOS version.._ YES
\ rollmg back?

|
|
|
| \a \’\}‘v" < \\
|
I
|

e s e o o

Present credentials for [
i+ authentication and issue
L. (suspend) S3-resume

e \
. NO YES <‘~“Systern policy allows -

BE?‘@:'LT_;, chiaealdl N _this roll back? s>+
ol T o ?v?\ NN \—\\Jrﬂ”r\—\—\ S] \“\ \\>\'y\>
tferform BIOS update operation, N
AN RN NN __t\ SANAANN YR ANY

E\TVnte protect L—do@ﬁﬁﬁfM\

Recommended: Lock down other\

N blocks of flash part, with V o —— —
stclusmn blacks if needed. Ngl Legend
AAXAANN SANSANANNNNY

‘ § BIOS operations i

[T_IH_ OS-present operations
|

=t 8 S m - - - - -
- Continue S3-resume to OS)
s RO R

Fig. 13.5. BIOS update algorithm for the Phoenix TrustedCore binary

Fig. 13.5 shows that in Phoenix TrustedCore every BIOS update procedure
always starts from the boot block code. It never starts from other — more vulner-
able — machine states. The normal BIOS update process is carried out in the
S3-resume path. The BIOS recovery procedure doesn’t use the same path. None-
theless, the Phoenix TrustedCore BIOS update process is more secure compared to
most BIOS update procedures on the market.

436

Part IV: BIOS Ninjutsu

Phoenix Secure WinFlash’

 You are about mmmm Hmba@dwed: e Version 2015
1]8emmm&mummeﬁemaipw e =
2] Before continuing, close all other applications.

m¥mmmmmmmm

Fig. 13.6. Phoenix Secure WinFlash

Some steps in the BIOS update procedure in Fig. 13.5 may not be obvious yet.
I'll do my best to explain them. The normal BIOS update path for Phoenix
TrustedCore is the left branch in Fig. 13.5 — the path marked “Normal POST
path.” In this path, the BIOS update procedure starts inside the operating system,
i.e.,, Windows. It’s accomplished by running the Phoenix Secure WinFlash applica-
tion. Fig. 13.6 shows the screenshot of the application.

Fig. 13.6 is taken from a BIOS update utility for a Compaq Presario V2718WM
notebook.

The BIOS binary to be flashed to the BIOS chip is buffered in RAM while Win-
Flash is running. Then, the BIOS update procedure moves to the next step, initializ-
ing the credentials necessary to verify the integrity of BIOS binary during BIOS
update. Then, WinFlash “restarts” the machine. This restart is not an ordinary
restart that you are used to seeing, because the code execution in the machine will
be redirected as if it is waking from the S3 ACPI sleep state. This process is called
S3-resume in Fig. 13.5. The details of the ACPI S3 sleep state are explained in ver-
sion 3.0 of the ACPI specification. The relevant subsections from the specification
are cited here for your convenience.

Chapter 13: BIOS Defense Techniques 437

438

Part IV: BIOS Ninjutsu

The preceding excerpt states that there are some ACPI registers called sLp Tvpx
registers — x in SLP_TYPx is a one-digit number. These registers play an important
role in the power management of the system. As such, manipulating them will
change the power state of the machine, such as entering sleep state. Therefore, you
can conclude that WinFlash manipulates the registers before restarting the machine
to force an S3-resume just after the machine is restarted.

The next step in the normal BIOS update procedure in Fig. 13.5 is to authenti-
cate the BIOS binary to be flashed. This authentication process uses the credentials
that have been buffered to RAM by WinFlash when the machine is still running in
Windows. Note that in the S3 sleep state, the contents of RAM from the previous
session are preserved. That’s why the credentials are available in RAM for the au-
thentication process, which runs in the BIOS code for S3-resume context. In the cur-
rent step, the machine executes the BIOS update routine in the S3-resume context.
Therefore, it’s possible the BIOS is not executing a routine in its own binary but is
branching to a certain BIOS flashing routine in RAM, which is buffered to RAM by
WinFlash before the machine restarts. I'm not sure about the details because there
is no official documentation about this process. You can reverse-engineer the Win-
Flash executable file if you are curious. You can download the WinFlash utility for
the Compaq Presario V2718WM notebook at http://h10025.www1.hp.com/ewfrf/wc/
softwareDownloadIndex?softwareitem=0b-43515-1&lc=en&cc=us&dlc=en&tool=
softwareCategory&product=3193135&query=Presario%20v2718&0s=228 The exe-
cutable file in the preceding link will be installed to c:\Program Files\sp33749.

Chapter 13: BIOS Defense Techniques 439

Now, proceed to the next step: the check for the BIOS version rolling back.
In this step, the BIOS update routine checks if the requested task is a BIOS version
rollback task. If it is, then the BIOS update routine will consult the system policy
about whether to allow rollback or not. If it’s not allowed, no BIOS rollback will
happen. Otherwise, the BIOS update routine will replace the current BIOS with an
older BIOS version. On the other hand, if the requested task is not a BIOS version
rollback, the BIOS update routine will proceed to flash the new BIOS binary to the
BIOS chip.

The next step is to write-protect the BIOS chip so that it won’t be tampered
with. The last step is to continue the S3-resume process until the boot process
completed.

As for the BIOS recovery path, it’s not a secure way to update the contents of
the BIOS. In this case, the system will boot from the boot block and carry out the
BIOS update routine to update the BIOS binary. However, from Fig. 13.5, it’s clear
that the CRTM (boot block) is not tampered with by this procedure. Thus, the in-
tegrity of the BIOS cannot be easily compromised because an attacker is only able
to implant his code in a non-boot block area of the BIOS and that can be easily de-
tected by an integrity check subroutine in the boot block.

In any case, you have to be aware that the BIOS update routine in Phoenix
Secure WinFlash is running in the S3-resume context, which is not an ordinary
processor-execution context. This is a safe way to modify the BIOS chip context
because a remote attacker won'’t be able to do it easily. In the S3-resume context,
the machine is not running inside an operating system context, which implies that
there is no interconnection with the outside world.

As a side note, you might be asking about the preliminary result of the Phoenix
Secure WinFlash application. I used IDA Pro 4.9 to do a preliminary analysis, and
the result shows that it’s compiled using Borland compiler. I haven’t done any fur-
ther research yet.

In the TCG standards document, the PCI expansion ROM is protected using
one of the PCRs to verify the integrity of the option ROM. However, the PCR only
exists in systems that implement the TPM chip in the motherboard. Therefore, this
method of protecting the PCI expansion ROM cannot be used in most desktops
and server systems on the market.

In closing this subsection, I would like to make one recommendation: Read the
TCG PC Client Specific Implementation Specification for Conventional BIOS docu-
ment. You might find some concepts within this document that you can imple-
ment to protect the BIOS against various threats.

440 Part IV: BIOS Ninjutsu

13.2. Recognizing Compromised Systems

The previous section explains the methods of preventing BIOS rootkits from being
installed in the system. In this section, I talk about methods to detect whether a sys-
tem has been compromised by a BIOS rootkit. It’s not going to be a detailed expla-
nation; the focus is in the detection principles.

13.2.1. Recognizing a Compromised Motherboard BIOS

The easiest way to detect the presence of a BIOS rootkit in a machine is to compare
the installed BIOS with the same BIOS from the manufacturer’s website. “The same
BIOS” in this context means the BIOS file with exactly the same revision as the one
installed in the system that you are investigating. The BIOS ID string can help you
do that. Typically, the BIOS ID string is formatted as follows:

The B10s_revision in the BIOS ID string format indicates the revision of the
BIOS binary. It is sometimes a combination of a number and a character, or it can
be just numbers. This depends on the manufacturer. In many cases, information
about the BIOS release date is enough to download the same BIOS from the manu-
facturer website. If you want to ensure you have downloaded exactly the same
BIOS, cross-check the BIOS ID string. After you have obtained the BIOS from the
manufacturer, you can use a hex editor or another utility to compare the bytes in
both BIOSs to check the integrity of the BIOS in the system that you are investigating.
There is a problem with this approach, however: if the binary in the manufacturer’s
website has been infected by the same rootkit, you won’t know if the BIOS you are
investigating is infected.

You learned about BIOS code injection in Section 6.2. The method explained in
that section is POST jump table code injection. To fight against it, you can build
a BIOS unpacker that scans the POST jump table in the system BIOS. It’s not too
hard to carry out this task for Award BIOS and most BIOSs on the market because
the compression algorithm that they use is based on variants of Lempel-Ziv with
a Huffman coding as a back-end. The preliminary unpacker development can be
accelerated by using IDA Pro scripts or a plugin or by using IDA Python. The basic
principle of this method is to scan the POST jump table for suspicious entries.
You may want to scan the entries for a particular suspicious signature or signatures.

Chapter 13: BIOS Defense Techniques 441

Another method to detect the presence of a BIOS rootkit is to create a digital
signature for every legitimate BIOS binary and then compare the digital signature
of a suspected BIOS binary with the legitimate BIOS binary. This method only
works if you have taken the preventive step of creating the digital signature for the
BIOS in advance — before the suspected security breach happened.

If you have located some types of BIOS rootkits, you can use an antivirus-like
approach, i.e., create a rootkit signature to detect the presence of a rootkit in sus-
pected BIOS binaries. This method works if you have encountered many BIOS
rootkits. Otherwise, you have to guess what the BIOS rootkit might look like.

There is also a possibility that the BIOS rootkit is a combo rootkit, i.e., it consists of
a kernel-mode driver rootkit (within the operating system) and a rootkit embedded in
the BIOS. The typical logical architecture of such a rootkit is shown in Fig. 13.7.

Fig. 13.7 shows that such a combo rootkit uses the kernel-mode driver rootkit to
hide the presence of the BIOS rootkit from rootkit detectors that scan the BIOS chip
address range. In Windows, the typical method of hiding the BIOS rootkit is to carry
out detour patching to certain memory management kernel APIs, such as MuMapIo-
space. The kernel-mode device driver of the combo rootkit patches the original
MmMapIoSpace and returns a bogus result to the caller. The kernel-mode driver can
hide the original BIOS binary in a “bad sector” of the HDD and return that data upon
request to read the contents of the BIOS address range. To fight against a combo
rootkit like this, you must use available methods to deal with kernel-mode rootkits.
One of such approach is to scan for an altered MuMapTospace kernel function. The
method of carrying out this task is outside the scope of this book.

The purpose of the kernel-mode driver is to hide the presence
of the BIOS rootkit. It does so by filtering read and write
operations to the BIOS chip address range.

| Kernel-mode driver rootkit

i~) Lkt 0 S

Operating system \

Fig. 13.7. Combo BIOS rootkit logical architecture

442 Part IV: BIOS Ninjutsu

In the previous section, you learned that WBEM interfaces could become the
entry point to launch an organization-wide BIOS rootkit infection. Thus, an un-
usual network traffic overload through this interface is a hint that there could be an
attack that relates to a firmware rootkit infection.

13.2.2. Recognizing a Compromised PCI Expansion ROM

Detecting a PCI expansion ROM rootkit is relatively easier than detecting a moth-
erboard BIOS rootkit because of the simplicity of the PCI expansion ROM struc-
ture. There are several indications that a PCI expansion ROM may have been in-
fected by a rootkit:

3 There is virtually no free space in the PCI expansion ROM chip. In most cases,
an unaltered PCI expansion ROM binary doesn’t use all of the PCI expansion
ROM chip; there is always a little empty space left in the chip. Therefore, you
should be wary if a PCI expansion ROM chip is full of code. This may seem il-
logical. Nevertheless, it’s true.

3 It’s easy to detour the PCI expansion ROM entry point. Therefore, you should
be suspicious when the PCI expansion ROM entry point jumps into weird ad-
dresses, such as near the end of the PCI expansion ROM chip. The same is true
if you find that the PCI expansion ROM entry point jumps into a suspicious
routine that deals with devices that don’t have any logical connection with the
PCI expansion card where the ROM resides: For example, if a VGA card PCI
expansion ROM calls a routine to interact with the HDD.

O You have to be suspicious when you find a kernel-mode driver rootkit in the
operating system that alters kernel functions that deal with memory-mapped
I/O devices, for example, a rootkit that alters the MmMapiospace kernel function
in Windows. As you learned in the previous chapter, some PCI expansion cards
map their expansion ROM chip to the memory-mapped 1/O address space.
When a rootkit is installed on such a card, the attacker must have been altering
any access to the memory address range of the PCl expansion ROM chip to re-
turn a bogus result to conceal the presence of the rootkit.

O You should watch for any difference in the ROM binary in the system that
you're investigating and the ROM binary from the PCI expansion card vendor
when the ROM binary is the same version.

Besides the preceding detection principles, if you have taken the preventive step
of generating hash value for the original PCI expansion ROM binary, you can

Chapter 13: BIOS Defense Techniques 443

compare this hash value with the hash value generated from the current PCI expan-
sion ROM binary. If the values differ, then some modification must have been
made to the ROM binary. It could be a rootkit infection.

13.3. Healing Compromised Systems

Healing a system infected by a BIOS rootkit is a straightforward process. All you
have to do is to replace the infected BIOS binary with a clean or uninfected BIOS
binary. As you learned in the previous sections, few of today’s systems have imple-
mented TCG standards. Therefore, the BIOS update process is easier, because you
always have the ability to flash the BIOS from real-mode DOS. The details of the
process are as follows:

O If the BIOS rootkit infection took place in the motherboard BIOS, then flash
a clean BIOS binary to the infected motherboard BIOS. It’s strongly recom-
mended that you carry out this process from real-mode DOS, because if the
BIOS rootkit is a combo rootkit, you’ll never know if the BIOS flashing proce-
dure has taken place or if you have been fooled by the kernel-mode driver
rootkit of the combo rootkit.

01 If the BIOS rootkit infection took place in the PCI expansion ROM, then flash
a clean ROM binary to the infected PCI expansion card. Most PCI expansion
ROM flashing utilities run in DOS; if yours is not doing so, then try to find
a DOS version of the PCI expansion ROM flasher. As in the previous point, us-
ing a PCI expansion ROM flasher in Windows or another sophisticated operat-
ing system such as Linux is risky because you can be fooled by the kernel-mode
driver rootkit of a combo rootkit.

(1 In the case of an incomplete or failed BIOS rootkit or PCI expansion ROM
rootkit infection, the system might not be able to boot properly. This is not
a problem if the BIOS ROM chip or the PCI expansion ROM chip is socketed,
because you can take the chip out and flash it with a clean binary somewhere
else. However, if the BIOS ROM chip or the PCI expansion ROM chip is sol-
dered to the motherboard or PCI expansion card, you can’t do that. In this
case, you can use the trick from Section 7.3.6 to force BIOS or PCI expansion
ROM reflashing. Section 7.3.6 explained the details for the PCI expansion
ROM. Thus, I only explain the details for the motherboard BIOS here. The basic

i The combo rootkit is explained in Section 13.2.1.

Part IV: BIOS Ninjutsu

principle is still the same, i.e., to intentionally generate a checksum error. How-
ever, in this case, you have to generate a system BIOS checksum error so that
the boot block will enter BIOS recovery mode. The steps are as follows:

1. Provide a BIOS recovery diskette in advance. Place a clean uninfected BIOS
binary in this BIOS recovery diskette.

2. Short-circuit the two most significant address pins in the motherboard
BIOS chip that are used to address the system BIOS address range briefly
during power-up. You have to be careful when doing this, because the
motherboard can be easily damaged.

3. Once you have entered the boot block BIOS recovery mode, the BIOS
flashing process will execute automatically — as long as you have inserted
the recovery diskette.

Note that some soldered motherboard BIOS chips cannot be handled as
I mention in the preceding steps because the needed address pins cannot
be reached easily. In that case, you can’t resurrect the motherboard.

The last issue to consider is cleaning the system from the infection of a kernel-
mode driver rootkit if the BIOS rootkit is a combo rootkit. 'm not going to explain
about it here because there are many books and articles on the subject. This type of
rootkit is considered an ordinary rootkit.

My explanation about BIOS defense techniques ends here. It’s up to you to ex-
plore further after you have grasped the basics in this chapter.

PartV
OTHER APPLICATIONS
OF BIOS TECHNOLOGY

Chapter 14
Embedded x86
BIOS Technology

Chapter 15
What's Next?

Chapter 14: Embedded
x86 BIOS Technology

Preview

This chapter delves into the use of x86 BIOS technology outside of its traditional
implementation — desktop PC and servers. It presents a glimpse at the implemen-
tation of x86 BIOS technology in network appliances and consumer electronic de-
vices. This theme is interesting because x86 architecture will soon penetrate almost
every sector of our lives — not as PC desktops or servers but as embedded systems.
Advanced Micro Devices (AMD) has been realizing its vision of x86 everywhere
since 2005. Moreover, as our lives increasingly depend on this architecture, the se-
curity of its BIOS becomes increasingly important. Therefore, this chapter presents
an overview about that issue as well.

448 Part V: Other Applications of BIOS Technology

14.1. Embedded x86 BIOS Architecture

The embedded system theme sometimes scares programmers who haven’t ven-
tured into this class of computing devices. Programmers accustomed to desktop
and server development often consider programming for embedded devices as
an exotic task. However, as you will soon see, embedded devices based on x86 ar-
chitecture share a fair number of similarities with their desktop or server coun-
terparts. Thus, you have nothing to worry about when it comes to programming
for embedded systems.

Let me start with the boot process of embedded x86 systems. Embedded x86
systemns can be classified into two types based on their boot process, i.e., those that
boot into an operating system stored in a secondary storage device' and those
that boot into an operating system stored as part of the BIOS. Figs. 14.1 and 14.2
show the typical boot process for each type.

Power-on/reset

Y

BIOS boot block execution

{}

BIOS POST

as part of the BIOS binary

Fig. 14.1. Embedded x86 system boot process when
the operating system is part of the BIOS binary

i A secondary storage device is a mass storage device such as an HDD or a CompactFlash drive.

Chapter 14: Embedded x86 BIOS Technology 449

Power-on/reset

v,

BIOS boot block execution

{}

BIOS POST execution

Blﬂs POST muhne loadslhe
~ entry point of the 0S from a secondary
t-slofaga devkmo RManéimnpshm it

V

OS execution J

Fig. 14.2. Embedded x86 system boot process when the operating system
is stored in a secondary storage device

Fig. 14.1 shows that the operating system will be executed as part of the POST
when the operating system is stored in the BIOS binary. Subsection 14.2.1 presents
a sample implementation of this concept. In most cases, the operating system
embedded in the BIOS binary is compressed to provide more space for code inside
the operating system.

Fig. 14.2 shows a more conservative embedded x86 boot concept; the operating
system is loaded from a secondary storage device such as a CompactTlash drive,
HDD, or other mass storage device, much like desktop PCs or servers. Note that
Fig. 14.2 doesn’t clearly show the boot process for the embedded x86 system as
a customized boot process. You have to keep in mind that although the embedded
x86 boot process in Fig. 14.2 works like such processes for ordinary PCs or servers,
it’s not the same because these embedded x86 systems mostly use a customized
BIOS to suit their needs. For example, an embedded x86 system used as a car navi-
gation system would need to be able to boot as fast as possible, so the BIOS for this
system must be customized to boot as fast as it can. The BIOS must remove unnec-
essary test procedures during POST and hard-code its options as much as possible.

450 Part V: Other Applications of BIOS Technology

Embedded x86 system

Dedicated
software application

“ Application programming
| | interface (API)

Power management

Operating system BIOS

Device management, System initialization and™
process management, etc. power management handling

Hardware

Fig. 14.3. Typical embedded x86 architecture
without BIOS—operating system integration

Embedded x86 System

BIOS

Dedicated
software application

Operating system

System-wide management
during operational session,
i.e., device management,

process management, efc.

System initialization and |
power management handling

Hardware

Fig. 14.4. Typical embedded x86 architecture with BIOS-operating system integration

Chapter 14: Embedded x86 BIOS Technology 451

Some embedded x86 BIOS systems are hybrids between an ordinary desktop
BIOS and the BIOS shown in Fig. 14.1. The user of the system can set the BIOS op-
tion to boot the operating system embedded in the BIOS or to boot like a typical
desktop PC. In the latter case, it can boot to the PC operating system or to another
embedded x86 operating system. Note that even if the BIOS is a hybrid BIOS you
cannot boot to both operating systems simultaneously in one machine. The BIOS
option provides only one operating system to boot into on one occasion.

The typical system-wide logical architecture of an embedded x86 system with
its operating system loaded from secondary storage is shown in Fig. 14.3. A system
with the operating system integrated into the BIOS is shown in Fig. 14.4.

Even if it’s not shown clearly in Fig. 14.3 and 14.4, you have to be aware that the
BIOSs in both systems are highly customized for their target application. It’s in the
nature of an embedded system to be optimized according to its target application.
It’s important to meet that requirement, because it can reduce the cost and
improve the overall performance of the system. The dedicated software application
in Fig. 14.3 and 14.4 refers to the software application that runs on top of the oper-
ating system and serves the user of the embedded x86 system. At this point, the big
picture of embedded x86 systems, particularly their BIOS, should be clear.

14.2. Embedded x86 BIOS
Implementation Samples

This section talks about implementations of BIOS in x86 embedded systems.
It delves into three categories of embedded x86 systems, i.e., the TV set-top box,
the network appliance, and the kiosk. I explain the TV set-top box in detail; the
other systems have been explained in detail.

14.2.1. TV Set-Top Box

Set-top box (STB) is a term used to describe a device that connects to an external
signal source and turns the signal into content to be displayed on a screen; in most
cases, the screen is that of a television. The external signal source can be coaxial cable
(cable television), Ethernet, a satellite dish, a telephone line (including digital sub-
scriber line, or DSL), or an ultra high or very high frequency (UHF or VHF) antenna.
Nonetheless, this definition is not rigid. In this section, I use the term to refer to
a PC-based device. Even if the system cannot connect to one of the external signal
sources mandated by the preceding definition, as long as it can play multimedia

452 Part V: Other Applications of BIOS Technology
~

content without booting to a full-fledge desktop or server operating system' I re-
gard it as an STB. The ability to play multimedia content in this context must in-
clude video playback capability.

Now, I want to delve into a unique motherboard used as a building block ta
create a multimedia PC, also known as a PC-based STB. The motherboard is Acorp
4865GQET. This motherboard uses the Intel 865G chipset. It’s interesting because
its BIOS has a unique feature: It can play DVDs and browse the Internet without
booting to a full-fledge desktop or server operating system. It does so by booting ta
a small operating system named etBIOS, which is embedded in its BIOS. However,
this behavior depends on the BIOS setting. The motherboard can boot an ordinarg
desktop operating system as well if it’s set to boot to the desktop operating system.
The Acorp 4865GQET BIOS is based on Award BIOS version 6.00PG. Moreover,
one component, the etBIOS module, is “unusual.” It’s a small-footprint operating
system for embedded x86 systems developed by Elegent Technologies! The boot
process of this motherboard is illustrated in Fig. 14.5.

Fig. 14.5 shows that the boot process is much like that for an ordinary BIOS be=
cause the boot setting is stored in the CMOS chip. The CMOS setting determines
whether to boot to a desktop or server operating system or to etBIOS. EtBIOS has
the capability to play audio CDs and DVDs out of the box. These features are pro=
vided by etDVD and etBrowser, which exist as part of the etBIOS module by de-
fault. Sample screenshots of these features are shown in Fig. 14.6 and 14.7,
respectively.

Besides the capability to play audio CDs and DVDs, etBIOS has the ability te
browse the Web.

Some systems using etBIOS are also equipped with an etBIOS-compatible TV
tuner to enable TV content playback.

Now, you likely have grasped the basic idea of etBIOS. It’s time to explore
the technical details. I start with the Acorp 4865GQET BIOS binary. | use BIOS ver=
sion 1.4 for this motherboard; the date of the BIOS is August 19, 2004. This BIOS
binary is Award BIOS 6.00PG with etBIOS as one of its components. The size of the
binary file is 512 KB. The layout of the components is shown in Fig. 14.8.

i An operating system used in a desktop or server platform, such as the desktop version of Win-
dows, Linux, or FreeBSD.
ii The Elegent Technologies website is at http://www.elegent.com/index.htm.

Chapter 14:

Embedded x86 BIOS Technology 453

BIOS boot block execulion]

.

BIOS POST execution

Read boot setting

from CMOS

Boot to etBIOS?

Load etBIOS from
BIOS chip to RAM

Load desktop/server OS
from secondary storage device
to RAM

Fig. 14.6. EtBIOS DVD playback screen- Fig. 14.7. EtBIOS audio CD
shot (courtesy of Elegent Technologies) playback screenshot
(courtesy of Elegent Technologies)

454

Part V: Other Applications of BIOS Technology

System BIOS (compressed)

awardext.rom (compressed)

cpucode.bin (compressed)

: e PO R, =

acpitbl.bin (compressed)

awardbmp.bmp (compressed)

awardeyt.rom (compressed)

_en_code.bin (compressed)

sdg_2919.dat (compressed)

040603.dat ("compressed") = "Compressed" etBIOS

865.bmp (compressed)

Decompression block
(not compressed)

Boot block

(not compressed)
Ox7FFFF

Fig. 14.8. Acorp 4865GQET BIOS component layout

Fig. 14.8 shows the location of the “compressed” etBIOS binary inside the
Acorp 4865GQET BIOS binary. I use the word compressed to refer to the compres-
sion state of this component because the component is not exactly compressed
from Award BIOS LZH compression perspective. The header of this component
shows an -1no- signature, which in LZH compression terms means a plain copy of
the original binary file without any compression. However, the LZH header is ap-
pended at the start of the binary file. Hex Dump 14.1 shows a snippet of the BIOS
binary, focusing on the beginning of the etBIOS binary.

Chapter 14: Embedded x86 BIOS Technology 455

Hex Dump 14.1. "Compressed” etBIOS Binary Header

The address shown in Hex Dump 14.1 is relative to the start of the overall i
BIOS binary file. You can clearly see the -1no- signature (it is highlighted) in Hex
Dump 14.1.

The next step is to reverse-engineer the Acorp 4865GQET BIOS binary. As with {
other Award BIOS 6.00PG binaries, start with the boot block. Then, continue to the I
system BIOS. In the previous steps, the reverse engineering result is just like that of
an ordinary Award BIOS 6.00PG binary. Nonetheless, there are differences in the
execution routine of the POST jump table. Listing 14.1 shows the relevant disas-
sembly result of the system BIOS in the Acorp 4865GQET BIOS binary, along with
the disassembly of etBIOS that has been copied to RAM.

Listing 14.1. Acorp 4865GQET BIOS POST Routine Disassembly

456 Part V: Other Applications of BIOS Technology

Chapter 14: Embedded x86 BIOS Technology 457

458 Part V: Other Applications of BIOS Technology

Chapter 14: Embedded x86 BIOS Technology 459

460 Part V: Other Applications of BIOS Technology

Chapter 14: Embedded x86 BIOS Technology 461

462 Part V: Other Applications of BIOS Technology

Chapter 14: Embedded x86 BIOS Technology 463

The segment addressing in Listing 14.1 needs clarification. The segment named
E seg is segment E000h in the system BIOS, a 16-bit segment with a base address
of E0000n; the offset of the code in this segment is relative to £0000n. The segment
named exec et bios is a small 32-bit segment with a base address set to 0000h;
the offset of the code in this segment is relative to 0000h. In addition, the segment

464

Part V: Other Applications of BIOS Technology

named ET 810s is the relocated etBIOS binary in RAM, a 32-bit segment with
a base address set to 0000h; offsets in this segment are relative to 0000h.

Listing 14.1 shows that the etBIOS binary is executed as part of the execution of
the POST jump table. Moreover, the etBIOS module inside the BIOS binary is rec-
ognized by using a 4-byte signature, as shown in Hex Dump 14.2.

Hex Dump 14.2. etBIOS Module Signature Bytes

This signature is checked on two occasions in Listing 14.1: at address
E_seg:9a51h and at address E_seg: 9ca4n. | found this signature in two different in-
stances of etBIOS usage: The first is in this Acorp 4865GQET motherboard and the
other one is in the Acorp 7KM400QP motherboard. Therefore, this byte sequence
is indeed made of the signature bytes. Furthermore, the etBIOS module is always
given *.dat extension.

Fig. 14.9 shows the simplified algorithm for the etBIOS execution in Listing 14.1.

The simplified diagram in Fig. 14.9 of the Listing 14.1 algorithm doesn’t show
all possible routes to execute the routines in the etBIOS routine. It only shows the
most important route that will eventually execute etBIOS module in the Acorp
4865GQET BIOS. Listing 14.1 also shows a call to an undefined function that is ap-
parently a decompression function. (I haven’t completed for you the reverse engi-
neering in that function.) From this fact, you can conclude that even if the etBIOS
module is not stored as an LZH-compressed component in the overall BIOS bi-
nary, it’s still using a compression scheme that it employs itself. Another fact that
may help you complete the reverse engineering of the etBIOS module is the exis-
tence of the GCC string shown in Hex Dump 14.3.

Hex Dump 14.3. GCC String in etBIOS Binary from the Acorp 4865GQET
Motherboard

Chapter 14: Embedded x86 BIOS Technology

'BIOS POST Execution
exec POST

=

' *YES | Next POST routine

chk_etbios existence |

=

init_et bios bin
init et bios

R

enter_et bios_init

e

. search ET BIOS sign pos

= oy

relocate ET BIOS |

=i

ET_BIOS_sign_found

far jump to exec et _bios:E9B1Bh

Note: Courier new font
denotes the location in the
disassembly result or the
procedure or function name.

| Jump to ET_BI0S:100000h |

| etBIOS execution ‘

Fig. 14.9. EtBIOS execution algorithm for Listing 14.1

465

466 Part V: Other Applications of BIOS Technology

The address in Hex Dump 14.3 is relative to the beginning of the etBIOS bi-
nary. You can “cut and paste” the etBIOS binary by using the information from its
LZH header. Recall from Table 5.2 in Subsection 5.1.2.7 that the LZH header con-
tains information about the “compressed” file size, along with the length of the
“compressed” file header. You can use this information to determine the start and
end of the etBIOS module and then copy and paste it to a new binary file by using a
hex editor. This step simplifies the etBIOS analysis process.

In Sections 3.2 and 7.3, you learn about BIOS-related software development.
Some techniques that you learn in those sections are applicable to embedded x86
software development and the reverse engineering of embedded x86 systems.
Of particular importance is the linker script technique described in Section 3.2.
By using a linker script, you can control the output of GCC. Inferring from the linker
script technique that you learned in Section 3.2, you can conclude that the binary file
that forms the etBIOS module possibly is a result of using a linker script, or at least
using GCC tricks. This hint can help you complete etBIOS reverse engineering.

Many embedded x86 system developers are using GCC as their compiler of
choice because of its versatility. Thus, it’s not surprising that Elegent Technologies
also uses it in the development of its etBIOS and related products.

Now, you likely have grasped the basics of PC-based STB. In the next subsec-
tion, I delve into network appliances based on embedded x86 technologies.

14.2.2. Network Appliance

This subsection talks about a network appliance device that is an embedded x86
system; I don’t provide in-depth analysis like I did in the previous subsection be-
cause it’s hard to obtain the binary of the BIOS in these devices. They are not pub-
licly accessible. Nonetheless, it’s important to talk about this class of devices to give
you a sense of effective reverse engineering when it comes to “foreign” systems.
The focus will be on a router.

[start with an overview of the BIOS used in the Juniper M7i router. This router
is an embedded x86 device. A picture of the router is shown in Fig. 14.10.

Fig. 14.10. Juniper M7i router

Chapter 14: Embedded x86 BIOS Technology 467

Fig. 14.11. Juniper M7i hard disk setup in its BIOS (courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25; reproduced with permission)

Fig. 14.12. Juniper M7i boot setting in its BIOS (courtesy of Rendo Ariya Wibawa,
http://rendo.info/?p=25, reproduced with permission)

468

Part V: Other Applications of BIOS Technology

The Juniper M7i router uses Award BIOS. BIOS screenshots are shown in
Figs. 14.11 and 14.12.

The Award BIOS screenshots in Figs. 14.11 and 14.12 show that the “release
number” of the BIOS is 2A69TUO00. If you try to find an Award BIOS with this re-
lease number on the Web, you will find that it is for the Asus TUSL2C mother-
board. The Asus TUSL2C uses the Intel 815EP chipset. However, the boot log of
Juniper M7i shows that the motherboard in the router is based on the Intel 440BX
chipset. The boot log is shown in Listing 14.2.

Listing 14.2. Boot Log of the Juniper M7i Router (Courtesy of Rendo Ariya
Wibawa, http://rendo.info/?p=25; Reproduced with Permission)

Chapter 14: Embedded x86 BIOS Technology 469

470

Part V: Other Applications of BIOS Technology

Notice the following lines from Listing 14.2:

These lines clearly state that the motherboard in Juniper M7i is based on the
Intel 440BX chipset. You might be confused; which is right, the BIOS “release
number” logic or the logic shown in the boot log? I think the right one is the boot
log because Juniper Networks is big enough company that it could have asked
Award to make a custom BIOS when Juniper M7i was developed. Award must have
used a different BIOS “release number” scheme for the Juniper router even though
it’s also an x86 platform, much like desktops or servers.

From the preceding information, you can conclude that there is a possibility to
attack Juniper M7i with a BIOS rootkit. However, because the API for this router is
not known publicly, it’s hard to infect an operational Juniper M7i with a BIOS
rootkit. Attacking a router such as Juniper M7i will require reverse engineering of
JunOS$ — the operating system of the Juniper Networks router. The reverse engi-
neering process is needed to figure out the API to access the hardware in a running
Juniper M7i router.

Some routers and hardware-based firewalls made by Cisco Systems also use
embedded x86 as their platform — for example, the Cisco PIX series firewall. There
are numerous other examples of network appliances based on embedded x86.
The basic architecture of these systems is similar to that shown in Fig. 14.3. Most of
them use customized BIOS; probably a modified version of the commodity BIOS
from desktop or server platforms.

Chapter 14: Embedded x86 BIOS Technology 471

14.2.3. Kiosk

This subsection talks about the typical implementation of an x86-based kiosk.
The term kiosk in this context refers to a point-of-sale or point-of-service (POS)
device. POS devices include automatic teller machines (ATMs) and cash registers.
In recent years, increasing numbers of POS devices have become x86-based, because
the overall cost/performance ratio is better than that for other architecture.
I won’t go into the detail of a complete POS device analysis. | want to focus on one
building block of the system — named the single board computer (SBC) — and give
an overview of its operating system. Fig. 14.13 shows the typical architecture of
a POS device.

I won’t explain all of the POS device components in Fig. 14.13; I want to focus
on the SBC. Nowadays, the SBC is the heart of every POS device because every
component in the system communicates with it. Many SBCs used in a POS device
today are based on x86; one of them is Advantech PCM-5822.

POS device

Operating system

Hardware

Single Board Ccmputer (SBC)
OMotherboard with on-board display controller, on-board audio controller, on-board
microprocessor, on-board Ethernet controller, CompactFlash card interface support,
IDE interface support, etc.

=RAM (in many cases, soldered to motherboard)

Mass storage | Display device : Input d@e ‘ Output device
Device . Custom k d Display and other
CompactFlash, CRT monitor, LCD tol:;,.? r;creegr? ,aet'c. interface; depends

hard disk, etc. toucn screen, etc. on the application

Fig. 14.13. Typical POS device architecture

You can find information about this SBC on the Web at http://www.advantech.com/
products/Model_Detail.asp?model_id=1-1TGZM2. This SBC has an on-board
AMD Geode GX1 or Geode GXLV-200 processor. Geode is a family of x86 processors

472 Part V: Other Applications of BIOS Technology

produced by AMD for embedded application. You can download the relevant data-
sheets for the AMD Geode GX processor family at http://www.amd.com/us-en/
ConnectivitySolutions/ProductInformation/0,,50_2330_9863_9919,00.htmL The
chipset used in Advantech PCM-5822 is CX5530, a custom chipset for the AMD
Geode GX processor family.

Advantech PCM-5822 SBC comes preloaded with a BIOS based on Award BIOS
version 4.50PG. The BIOS is much like the standard Award BIOS 4.50 that you can
find on desktop PCs produced around 1998-2000. You can download the BIOS for
Advantech PCM-5822 at http://www.advantech.com/support/detail_list.asp?model_id=
PCM-5822. It’s quite easy to modify the BIOS in this SBC because it uses the “stan-
dard” Award BIOS 4.50. Therefore, the modification tools for it are available in the
public domain.

The BIOS on this SBC is vulnerable to a code injection attack because of the us-
age of Award BIOS 4.50.! Some vendors have customized the BIOS before using it
in a POS device. However, it is usually still vulnerable to BIOS code injection be-
cause most customization is only carried out to reduce the boot time — removing
certain checks during POST, changing the boot logo, and perhaps hard-coding
some BIOS options. These customizations don’t protect the BIOS against code in-
jection attack.

Performing an attack on a POS device based on this SBC is difficult because the
operating system running on it is customized for the embedded system, such as Win-
dows CE or embedded Linux. Nonetheless, becoming accustomed to the API of those
operating systems is trivial for an experienced system programmer because those op-
erating systems are descendants of their desktop or server counterpart. The POS ven-
dors choose to use Windows CE or embedded Linux because of the versatility, quick
development time, and cost efficiency. In most cases, upon seeing a POS device, you
wouldn’t be able to recognize its operating system. Nevertheless, you might see it
clearly when the POS is out of service and it displays error messages. Otherwise, you
can only guess from a part number or some other vendor-related identifier in the
POS device. | was able to figure out the operating system used in an ATM for one
bank because the out-of-service error message was an embedded system version of
the famous blue screen of death (BSOD) in Windows on the desktop platform. Upon
seeing it, | knew that the ATM used Windows XP Embedded edition because the er-
ror message displays the BSOD. Some systems uses Windows XP Embedded edition
instead of Windows CE to take advantage of operating system features.

i This was explained in Section 6.2 — the section about code injection in Award BIOS.

Chapter 14: Embedded x86 BIOS Technology 473

14.3. Embedded x86 BIOS Exploitation

In the Subsection 14.2.3, you saw that some embedded x86 devices use a customized
desktop version of Award BIOS. The same is true for the BIOS from other vendors.
Therefore, the security hole found in the desktop version of a BIOS likely can be
ported to its embedded x86 BIOS counterpart. This section gives an overview of a
possible exploitation scenario to the embedded x86 BIOS.

As already mentioned, embedded x86 systems mostly use a customized operat-
ing system, such as Windows CE, Windows XP Embedded edition, or Embedded
Linux. Suppose that attackers have gained administrator privileges in one of these
machines. How would they “install” malicious software in the machine? If they tar-
get the BIOS, they must understand the underlying architecture of the operating
system to be able to access the BIOS chip. Fig. 14.14 shows the details of the steps
for accessing the BIOS in embedded x86 systems.

Compromise the embedded x86 device
(gain administrator privilege if it exists)

Find the API documentation of the OS used
in the embedded x86 device

Use the APl documentation to find a way to |
access memory-mapped I/O devices in the |
embedded xB86 system programmatically; |
this information is used to develop software
to access lhe BIOS chip within the OS

“Install” the “custom code” to the BIOS chip |
by using the software developed in the
prefious step

Fig. 14.14. Steps to access the BIOS chip in embedded x86 systems

474 Part V: Other Applications of BIOS Technology

—~—

Accessing the BIOS chip in embedded x86 systems is not a big problem if the
operating system is Windows XP Embedded edition because the API used in this
operating system is the same as the APl in other Windows XP editions. I provided
sample source code to access the BIOS chip in Windows XP in Section 9.3. It’s un-
fortunate that I don’t have access to a system with Windows XP Embedded edition
to try the application. Nevertheless, I think the sample source code should be port-
able — maybe directly executable — to Windows XP Embedded edition. On the
other side, Windows CE is tricky because the API is not exactly the same as that of
Windows XP. Indeed, the Windows CE API is highly compatible with the API in
the desktop version of Windows. However, for a low-level API, i.e., a kernel API,
it’s not exactly the same. You can read the Microsoft Developer Network online
documentation at http://msdn.microsoft.com to find out more about the Win-
dows CE API. As for systems that use embedded Linux, these are easier for attack-
ers to work with because the source code of the operating system is available in the
public domain, along with some documentation about the system. As for embed-
ded x86 systems with the operating system integrated into the BIOS, as in the case
of etBIOS in Subsection 14.2.1, you have to reverse-engineer a compatible version of
the operating system from a publicly-available BIOS binary before trying to com-
promise systems that use the operating system. You have to reverse-engineer the
binary because there’s no public domain documentation that plays a role similar to
that of MSDN as Windows documentation.

The next problem that attackers face is how to “inject” their code into the em-
bedded x86 BIOS in the system so that the BIOS will not be broken. This is not
a big deal for systems with Award BIOS because the code injection method is al-
ready known. For example, Acorp 4865GQET uses Award BIOS 6.00PG as its base
code, so it’s trivial to inject code into it. The same is true for the Advantech PCM-5822
because it uses Award BIOS 4.50PG. Moreover, the BIOS version used in embed-
ded x86 versions always seems to be an older version compared to its desktop
counterpart. As for BIOSs from other vendors, there’s no published code injection
method; nevertheless, the possibility is there, waiting to be exploited.

Chapter 15: What's Next?

Preview

This chapter talks about the future of BIOS technology. It provides industry insight
into future trends in BIOS technology, including security-related issues. Some
BIOS-related technologies in this chapter probably have reached the market since
this book was written. Nevertheless, they are not yet likely to be widespread. Future
trends in embedded x86 BIOS technology are also explained briefly.

476 Part V: Other Applications of BIOS Technology

15.1. Future of BIOS Technology

This section talks about advances in BIOS technology. The first subsection explains
the basics of the unified extensible firmware interface (UEFI). UEFI is the specifica-
tion that must be met by future firmware to be compatible with the future comput-
ing “ecosystem” — operating system, hardware, and various other system compo-
nents. Some of today’s products adhere to the EFI specification — the predecessor
to UEFL

The second subsection delves into vendor-specific implementation of the UEFI
specification; it highlights the road map of BIOS-related development.

15.1.1. Unified Extensible Firmware Interface

The UEFI specification was born as the successor to EFI specification version 1.10.
It is designed to cope with the inability of the current BIOS to efficiently scale with
and adapt to the current advances in desktop, server, mobile, and embedded tech-
nology, particularly, in terms of development complexity and cost efficiency.
The most recent specification of UEFI as of the writing of this book is UEFI specifica-
tion version 2.0, released January 31, 2006. You can download the specification at
http://www.uefi.org/specs/. UEFI is an interface specification between the operat-
ing system and the firmware in the system — during system boot and during run-
time if the firmware possesses runtime routines. Fig. 15.1 shows a simplified dia-
gram of a UEFI-compliant system.

Operating system

UEFI |

System

[%
Firmware core routines ‘ firmware

Hardware —‘

Fig. 15.1. Simplified diagram of UEFI in the system-wide architecture

Chapter 15: What's Next? 477

The history of UEFI starts with the development of EFI by Intel as the core
firmware for the Intel Itanium platform. EFI was conceived to be a platform-
independent firmware interface. That is why it easily adapts to the PC architecture —
and not only PC architecture but other processor architectures as well. UEFI is the
latest incarnation of the EFI specification for platform firmware. The primary goal
of the UEFI specification is to define an alternative boot environment that alleviates
some problems inherent to BIOS-based systems, such as high cost and complex
changes needed whenever new functionalities or innovations are going to be incor-
porated into platform firmware.

As with other interface specifications, you have to understand the basic archi-
tecture of a UEFI-based system to understand how it works. Fig. 15.2 shows the ar-
chitecture of a UEFI-compliant system.

Fig. 15.2 explains the relationships among various components that form
a UEFI-compliant system. The platform hardware in Fig. 15.2 shows that the mass
storage device — illustrated as a cylinder — contains a UEFI system partition. This
partition is used by certain UEFI binaries, including the UEFI operating system
loader. Some firmware vendors refer to this partition as the hidden disk partition
(HDP) because it is hidden from the operating system and the user.

Operating system

UEF| operating system loader

(OTHER)
SMBIOS

UEFI boot service UEFI runtime services

:| Interfaces from
:| other required
i| specifications
: Platform hardware

Fig. 15.2. UEFI-compliant system architecture

478 Part V: Other Applications of BIOS Technology

On top of the platform hardware lies the UEFI boot services and UEFI runtime
services. The UEFI boot services are APIs provided by UEFI-compliant firmware
during boot time. The UEFI operating system loader, UEFI application, and UEFI
drivers use them to function correctly. These APIs are not available when the boot
process completes.

The UEFI runtime services are APIs provided by UEFI-compliant firmware
during boot time, as well as during runtime. The UEFI operating system loader
loads the operating system’s first-stage loader to the main memory and passes sys-
tem control to it.

The other interfaces in the platform firmware, such as the ACPI and SMBIOS
interfaces, exist as part of the UEFI-compliant firmware. Their functionalities do
not change; the UEFI-compliant firmware merely “encapsulates” them to provide
a UEFI-compliant system. One characteristic of UEFI is to provide an evolution
path for established interface standards such as ACPI and SMBIOS. It doesn’t exist
as a replacement for these interface specifications.

Details of the standard boot process in UEFI-compliant firmware are shown
in Fig. 15.3.

. E-ueki—) I“' UEFl (
~ driver |]lapp!naﬁonj (Fimatvades - — — — (O

~~=p UEFI API

]

" Platform

UEFI image UEFIOS Boot services
_initialization / loading loader _termination
Foree g g s __loading - el
Standard firmware Drivers and applications Boot from Operation handed off
platform initialization loaded iteratively ordered list of to OS loader

UEFI OS loaders

— API specified — — Value-added implementation

Boot manager 1‘—; UEFI binaries
| [—)

Fig. 15.3. Boot process of UEFI-compliant firmware

Chapter 15: What's Next? 479

Fig. 15.3 shows clearly that UEFI-compliant firmware consists of two main
parts, the UEFI boot manager and UEFI binaries. The UEFI boot manager is remi-
niscence of the “system BIOS” in the legacy BIOS binary. UEFI binaries don’t have
exact analogues in the legacy BIOS binary architecture. UEFI binaries consist of
UEFI drivers, UEFI applications, UEFI boot code, and an optional operating sys-
tem loader. The UEFI driver can be regarded as a replacement for the legacy PCI
option or expansion ROM used to initialize expansion cards and onboard devices.
However, some UEFI drivers act as bus drivers used to initialize the bus in the sys-
tem. It’s more like a preboot version of the device driver usually found inside
a running operating system. UEFI applications are software applications that run in
the UEFI preboot environment, e.g., the operating system loader. UEFI boot code
is the code in the UEFl-compliant firmware that loads the operating system loader
to main memory and executes the operating system. The operating system loader
can be implemented as part of the UEFI binaries as a value-added implementation.
In this respect, the operating system loader is regarded as a UET] application.

Recall from Fig. 15.2 that in a UEFI-compliant system, the mass-storage
device — part of the platform hardware — contains a UEFI system partition.
This partition is a custom partition in the mass-storage device that stores some
UEFI binaries, particularly those that relate directly to the loading of the operating
system loader. Moreover, a value-added UEFI application can be stored in this
partition. The UEFI system partition is a mandatory part of a UEFI-compliant
system because it’s required by UEFI-compliant firmware to boot from a mass-
storage device.!

Fig. 15.3 shows that one of the steps carried out by UEFI boot manager is to ini-
tialize UEFI images. The UEFI images in Fig. 15.3 consist of UEFI drivers and UEFI
applications. Note that the operating system loader in Fig. 15.3 is also a UEFI appli-
cation, even though it’s not shown explicitly in the image. Therefore, it’s also
a UEFI image. UEFI images fall into a class of files defined by the UEFI specification
that contain executable code. The executable format of UEFI images is PE32+.
It's derived from Microsoft’s portable executable (PE) format. The “+” sign de-
notes that PE32+ provides a 64-bit relocation “fix-up™ extension to the standard
PE32 format. Moreover, this executable format uses a different signature to distin-
guish it from the standard PE32 format. At this point, it’s unclear how the image is
executed in a UEFI-compliant system. The UEFI specification explains in detail the
execution environment in which UEFI images are executed. The relevant snippets
from the specification are in the following citation.

i A mass storage device is called a block device in some documentation.

480 Part V: Other Applications of BIOS Technology

Chapter 15: What's Next? 481

As you can see from the previous citation, the system is running in protected
mode or long mode with flat memory addressing to run the UEFI routines. It’s also
clear from the citation that the code that runs in one of these execution environ-
ments is compiled using C compiler. C is chosen as the standard language because
it’s well suited for a system programming task like this. Note that the executable in-
side a UEFI image can be in the form of EFI byte code, i.e., not in the form of “na-
tive” executable binary of the platform, in which it runs. EFI byte code is portable
among platforms because it’s executed inside an EFI interpreter that must be pre-
sent in a UEFI-compliant firmware.

There is more to the UEFI specification. [want to give you some places to start so
that you can understand the specification more easily. The specification is more than
1,000 pages long. It’s hard to grasp without a “map.” The keys are in Chapters I and 2
of the UEFI specification, especially Section 1.5 and all of Chapter 2. Once you have
grasped those sections, you will be ready to dive into any sections that interest you.

15.1.2. BIOS Vendors Road Map

Here, I want to focus on the EFI and UEFI products of two major firmware ven-
dors, AMI and Phoenix Technologies, because that type of development is the di-
rection in which BIOS technology is going.

Let me show you what AMI has up in its sleeve. AMI has several products that
implement the EFI specification. There’s no product yet that conforms to the UEFI
specification. But from this discussion, you will be able to see where AMI is heading.
The EFI-related products are as follows:

O AMI Aptio. Aptio is a firmware code base compliant with EFI 1.10 and written in C
language. The structure of the latest Aptio firmware code base, according to its
specification document, includes the following:

® [t has a porting template, which eases the process of porting code into dif-
ferent platforms. Note: EFI is a cross-platform firmware interface.
® The directories are structured as board, chipset, and core functional directories.

482

Part V: Other Applications of BIOS Technology

It uses a table-based initialization method.
It incorporates a compatibility support module (CSM), which provides
routines to support legacy BIOS interfaces that might be needed by the op-
erating system running in the target system.

® It supports the AMI HDP. Recall from Subsection 15.1.1 that HDP is used
by EFI-compliant firmware to store some data. HDP is shown as the UEFI
system partition in Fig. 15.2.

® [t supports intelligent platform-management interface (IPMI) version 2.0.

O AMI Enterprise64 BIOS. This is EFI 1.10-compliant firmware used in Itanium
systems.

O AMI preboot applications (PBAs). This suite of EFI applications and tools are
stored in AMI HDP. Again, HDP is analogous to the UEFI system partition in
UEFI terms. Recall from Fig. 15.3 that AMI PBAs are EFI or UEFI applications.
AMI provides the following applications in AMI PBAs:
® AMI Rescue and Rescue Plus (image-based and nondestructive system re-

covery utility)

Web browser

Diagnostic utilities

BIOS upgrade

Hidden partition backup and restore

AMI Aptio has a module that complies with the TCG standard. This module is
implemented as an EFI or UEFI driver. Based on the latest publicly-available AMI
Aptio specification, this module is still under development.

Looking at the various products from AMI, it’s clear that AMI is heading into
UEFI-based firmware, along with its value-added applications. If you look at
the publication date of the UEFI specification — January 31, 2006 — and compare
it to the current state of AMI firmware offerings, you will realize that the UEFI-
compliant products must still be under development. Moreover, AMI states in its
white paper that it uses the so-called AMI Visual eBIOS development environment
to develop the current generation of BIOS-related software. This development en-
vironment speeds up BIOS-related software development compared to the DOS-
based tools used in the previous generation of software produced by AMI. At the
moment, AMI still produces AMIBIOSS for its customers — motherboard makers
such as Gigabyte and DFL. Most AMIBIOS8 variants are not based on EFI or UEFI
yet. Nevertheless, they provide a seamless migration path to UEFI-based imple-
mentation in the future because of the modularity of AMIBIOSS.

Chapter 15: What's Next? 483

AMIBIOSB-based | Future AMI BIOS
products for desklop | I products
and server ‘ | for desktop and server |
wros E
AMI Agtio-based | Future AMI Aptio-based
BBl i
Loy s 2otk b Lo A [+%
" AR Future AMI
AMI| Enterprise64 BIOS Enterprise64
products | BIOS products
sl -
| Future AM! PBAs
|
i
i
|

Fig. 15.4. AMI UEFI-compliant products road map

Thus, the explanations about AMI EFI and UEFI products give a glimpse into
the future of BIOS-related products from AMI. I summarize them in Fig. 15.4.

Note that Fig. 15.4 is only a forecast; it may not turn out like this. I provide this
forecast because AMI hasn’t release to the public any document regarding its prod-
uct road map.

Now, look at another big firmware vendor in the desktop, server, mobile, and
embedded field, Phoenix Technologies. Phoenix has broad product offerings that
use EFI and UEFI technologies. All of those products are based on its so-called
Core System Software (CSS). Phoenix emphasizes the security issue in its products
based on CSS. The products are even marketed under the TrustedCore name, the
exact naming as follows:

O TrustedCore Server and Embedded Server for server applications
O TrustedCore Embedded for embedded system applications

1 TrustedCore Desktop for desktop platforms

O TrustedCore Notebook for mobile platforms

484

Part V: Other Applications of BIOS Technology

You learned details about the implementation of Phoenix TrustedCore for
desktop platforms in Chapter 13. Therefore, I won’t explain it in detail in this chap-
ter. But look at a comparison of TrustedCore variants. It’s shown in Table 15.1.

Table 15.1. Comparison of Phoenix TrustedCore Products

ment in both
Microsoft NET
and heterogenous
environments

» Optimized for
easy implementa-
tion in blade,
cluster, and grid
models

Integrates trust
capabilities with
enterprise security
policy to deliver
more secure
networks

CoreArchitect 2.0
support with drag-
and-drop feature
and automatic
code creation

and operating
environments to
build everything
from Windows in-
dustrial PCs to
embedded blades
systems

Delivers the wid-
est range of boot
options in the
marketplace

Boots from multi-
ple media types or
from the network

Leverages indus-
try standard x86
architecture and
industry econom-
ics to enable en-
tirely new embed-
ded device types

+ CoreArchitect 2.0
support with drag-
and-drop feature
and automatic
code creation

= Early bring-up for
fast prototype
builds

» Supports the lat-
est industry hard-
ware bus stan-
dards

¢ Supports the lat-
est industry soft-
ware standards

* CoreArchitect 2.0
support with drag-
and-drop feature
and automatic
code creation

TrustedCore TrustedCore TrustedCore TrustedCore

Server and Embedded Desktop Notebook

Embedded Server

e Delivers break- e Supports com- = Supports the lat- « Supports full
through IPMI sup- plete range of est CPUs and range of mobile
port for remote embedded plat- chipsets from all computing chip-
server manage- forms, chipsets, major vendors sets and form

factors, including
notebook,
subnotebook,
and tablet PC

Optimized power
management

Includes Speed-
step & PowerNow
support and
power handling
of all ACPI power
states

Supports Absolute
ComputracePlus

CoreArchitect 2.0
support with
drag-and-drop
feature and
automatic code
creation

Table 15.1 does not state explicitly that Phoenix products based on the

TrustedCore code base are EFI compliant. In fact, the TrustedCore code base is

Chapter 15: What's Next? 485

an EFI version I.1-compliant product. Therefore, the evolutionary steps that this
product needs to take to be UEFI 2.0-compliant are minor, much like the
changes in AMI Aptio and AMI Enterprise64 BIOS, shown in Fig. 15.4. There-
fore, I think it’s easy to predict the direction of Phoenix BIOS-related develop-
ments in the coming years.

Another possible area for expansion in the BIOS field is the remote manage-
ability feature in servers and embedded server platforms. Intel has defined the
technical specification for remote manageability that runs as part of the server
hardware — IPMI. You «can download the latest specification at
http://www.intel.com/design/servers/ipmi/. IPMI is particularly interesting be-
cause it enables a “server” machine to remotely carry out management tasks, such
as rebooting a remote server that stops operating normally. This is possible because
of the use of a dedicated “sideband” signaling interface that doesn’t require the
presence of a working operating system to manage the remote machine. Normally,
you will need the operating system in the remote machine to be working flawlessly
to connect into it through the network. However, IPMI dictates the presence of the
so-called baseboard management controller (BMC). The BMC is a “daughter”
board — a board plugged into the motherboard — containing a specialized micro-
processor that handles health monitoring and alert and management functions in-
dependently of the main processor. Therefore, even if the main processor halts, the
system can still be reached through the BMC. Administrators can restart or repair
the machine through the BMC interface. It will be exciting to watch how this tech-
nology will be implemented in future systems.

Besides the IPMI technology, it’s important to pay attention to the implemen-
tation of Intel Active Management Technology because it has been implemented in
some of the most recent chipsets from Intel. These technologies need firmware
level supports to work. This fact is exciting for firmware developers, as well as
firmware reverse engineers. For gudelines, you might want to look for product
white papers and documentation from AMI and Phoenix related to advanced tele-
communications computing architecture (ATCA), because ATCA systems mostly
implement “deep” remote manageability features such as [IPMI.

i The “server” machine is not exactly a server in terms of a client-server relationship. It’s more like
a supervisor machine that inspects the server being monitored.

486 Part V: Other Applications of BIOS Technology

15.2. Ubiquitous Computing and Development
in BIOS

The term ubiquitous computing refers to the integration of computing devices inta
daily life, rather than having the computing devices as distinct objects. This te
refers to situations, in which people do not perceive the computing device a8
a computing device; rather, they view it as an everyday apparatus in the same wa
they perceive a microwave oven.

In Chapter 14, I presented a TV STB based on embedded x86 technology. £
you read in Section 14.2.1, this device can be considered part of the ubiquitous
computing trend because it’s used by people without them even noticing that it's

a computing device. However, they are aware that it’s an electronic entertain=
ment device.

As explained in Section 14.2.1, the implementation of the “core” etBIOS is more
like a workaround to the Award BIOS binary used as the basis for the embedded
x86 TV STB. In this respect, it can be viewed as the inability of the aged BIOS archi=
tecture to cope with new advances in firmware technology. In the future, this won's
be as much of a problem because BIOS technology will move to UEFI-complian
solutions. As you learned in Section 15.1, the UEFI specification has a UEFI applica
tion. New features such as the etBIOS that convert ordinary x86 systems inte
embedded x86 appliances will be easier to develop. Moreover, because of the pres
ence of a UEFI specification, developers of value-added UEFI applications such a
etBIOS will be able to port their application among BIOS vendors almost sea
lessly because all system firmware will adhere to the UEFI specification. The A
vision of x86 everywhere that I mention in Chapter 14 s also a driving force behiné
the advances in embedded x86 firmware technology that will bring more x86-ba
embedded platforms into daily life.

They key to x86 firmware development that will help the realization o
a ubiquitous computing environment is the presence of a well-defined interface
to build an embedded application on top of the system firmware. The UE
specification has paved the way by providing such an interface for the develog
ment of a preboot application, also known as a UEFI application. I predict that
there will be significant growth in UEFI applications in the coming yea
particularly value-added applications that turn x86 platforms into value-added®
embedded x86 appliances.

Chapter 15: What's Next? 487

15.3. Future of BIOS-Related Security Threats

In the previous sections, I talked about advances in BIOS-related technology. Now,
let me continue into the security implications of those advances, such as possible
exploitation scenarios and exposed weaknesses.

Start with the BIOS code injection possibility. In Section 6.2, I explained the
BIOS code injection in Award BIOS through the so-called POST jump table.
A simple code injection technique like that is not applicable to EFI or UEFI because
of the presence of cryptographic code integrity check in the EFI- or UEFI-
compliant firmware. Therefore, future code-injection techniques must overcome
the cryptographic code integrity check. As you have learned in Section 13.1.4, the
code integrity check in Phoenix TrustedCore is in the boot block. Other EFI- and
UEFI-compliant BIOS binaries may implement the code integrity check in the
same way, because even the main BIOS module must not be altered illegally during
boot time to ensure the security of the system. Therefore, a code injection attack on
a UEFI-compliant BIOS will include an attack on the code integrity check in the
boot block and a code injection in the main BIOS module. Another possible
and probably easier scenario is to develop a UEFI application that will be inserted
into the UEFI-compliant BIOS. However, an attack like this must first ensure that
if the system is using TPM hardware, the hash value in TCG hardware for the cor-
responding UEFI application must be updated accordingly. This kind of attack is
more complex than the BIOS code injection in Section 6.2.

Another consideration is the use of a C compiler to build UEFI binary compo-
nents. Moving up in the complexity of BIOS-related development has its conse-
quences — it can increase the possibility of complex attacks such as buffer over-
flows and attacks on software developed using compilers of a higher level than
assemblers, such as a C compiler. Nonetheless, the attacker must take into account
the cryptographic-based protection applied to BIOS code integrity checks.

Another issue of concern is the emergence of attacks to systems that imple-
mented the IPMI specification. If attackers gain access to such a system, they will be
able to take control of the system even when its main processor is not functioning
correctly. I'm researching the possibility of IPMI-based attacks. The concern is im-
portant because the ATCA systems widely used in telecommunication systems al-
ways implement IPMI.

———
The CD-ROM Description

To properly understand the BIOS, it is necessary to understand how the PC
hardware works in its lowest level, grasp the idea of the latest bus protocol technol-
ogy, i.e., HyperTransport and PCI Express, and carry out reverse engineering using
advanced techniques and tools, such as the IDA Pro disassembler. Unfortunately,
because of the limited size of this book, it is impossible to place all complete ver-
sions of provided listings in the printed version. Therefore, BIOS code diggers will
find the complete versions of all listings on the CD supplied along with this book.

Materials for each chapter are grouped by folders numbered according to the
numbers of the corresponding chapters. The contents of each folder is as follows:

O Complete versions of all listings, hex dumps and shell snippets provided in this
book, supplied with the FileList.txt file containing their detailed descriptions.

O The IMAGES folder includes the color illustrations for the appropriate chapter.

O The SRC folder includes the completed projects, ready to be compiled and used
according to your goals.

Index

1

16-bit CRC, 141, 358, 359
16-bit protected mode, 104

8
8-bit checksum, 359

A

Acorp 4865GQET, 452, 454, 474

Acorp 7KM400QP motherboard, 464

ACPI specification, 436

Adaptec AHA-2940U PCI SCSI
controller, 223, 224, 228

Address aliasing, 83

Address space, 12

Advanced Micro Devices, 447

Advanced programmable interrupt
controller, 14

Advanced telecommunications
computing architecture, 485

Advantech PCM-5822, 472, 474

AHA-2940UW, 225

AMD, 14, 447

AMD Athlon 64, 14

AMDeé64, 112

AMD-8111 HyperTransport I/O Hub
chip, 33

AMD-8131 HyperTransport PCI-X
Tunnel chip, 33

American Megatrends, 162

AMI, 16
AMI Aptio, 481
AMI BIOS, 9, 11, 160, 413, 426
binary decompressor, 162
binary structure, 161
integrity check, 361
POST routines, 363
AMI BIOS tools, 162
AMI Enterprise64 BIOS, 482, 485
AMI preboot applications, 482
AMIBCP, 162
AMIBIOSS, 169
API, 266, 271
hook, 377, 384
APIC, 14
ASCII, 30, 121, 229, 352
AT&T assembler syntax, 68
AT29C512, 305, 315
flash ROM, 311
ATA, 13
ATCA, 485
Atmel, 9
Audio CDs, 452
Automatic teller machines, 471
Award BIOS, 9, 11, 57, 116, 118, 149,
154, 160, 187, 195, 205, 359, 391,
405, 468
binary, 188
version 4.50PG, 191
version 4.5xPG, 188
version 6.00PG, 188, 357, 358

492 Index

BARs, 15, 21, 99, 213
Base address registers, 15,21, 99, 213
Base stack segment section, 74

Baseboard management controller, 485

BBSS, 126
BDA, 343, 348
dumping function, 349
BEV, 212, 239, 241
routine, 223
Binary files
flat, 29, 61
Binary signature, 59, 160, 205, 359
BIOS, 1, 7
address space, 277
binary, 1, 11, 29, 188
code, 8
code execution, 80, 102
data area, 343
decompression block, 403
flashing software, 11, 255, 261
hackers, 101
hardware-based security, 364
integrity checks, 357
modification, 187
modules, 178
parameters, 8
password protection, 342
patches, 2, 61
PnP, 211
recovery diskette, 444
reverse engineering, 186
rootkit, 375, 427, 428, 429, 440,
443,470
security, 341
shadowing, 83
BIOS binary:
analyzer, 59
overall structure, 42
rebuilding, 204

BIOS chip:
accessing directly from the OS, 248
marking, 9
chip probing process, 253

BIOS password breaking, 357

BIOS ROM, 15
chip packaging, 9

BIOS Saviour, 10

BIOS-related attacks, 421

BIOS-related security issues, 421

BIOS-related software, 61

Block locking registers, 364, 365, 422,
423

BLRs, 364, 365, 422,423

Blue screen of death, 472

BMC, 485

BNOBTC, 189

Boot block, 101, 108, 116, 149, 166,
398, 433
checksum, 358
execution, 149

Boot devices, 221

Boot from LAN, 212, 221, 223, 420
activation, 212

Bootstrap entry vector, 212, 223,
239, 241

Bootstrap process, 212

Borg number one’s BIOS tool
collection, 189

Borland C/C++ compiler, 47

BSOD, 472

Bus protocol, 7

c

C programming language, 53
C/C++,73

Cache-as-RAM, 108

Cbrom, 188, 191, 401, 404, 412
CD-ROM drives, 13

Checksums
patching, 227
Chernobyl, virus, 374, 375, 376, 377, 380
Chip-locking mechanism, 370
Chipset, 12
datasheets, 188
CIH, 374, 380
source code, 377
Cisco PIX series firewall, 470
Client-server relationship, 485
CMOS, 8, 329, 342, 422
brute-force attack, 357
diagnostic status, 343
CMOS checksum, 345
modification feature, 344
Code injection, 193
Compagq Presario V2718WM
notebook, 438
Core root of trust
measurement, 432, 433
CPU, 12,43, 414
CRC-16, 141
CRTM, 432, 433
Ctflasher, 297, 300

D

Dallas Semiconductor, 333

Data section, 74

Debug registers, 382

Debugger, 31

Decompression block, 116

Decompression engine, 168, 177
code, 169

Desktop management interface, 321

Device ID, 213, 215

DFI 865PE Infinity motherboard, 292

DIP, 9

Direct media interface, 83

Disassembler, 31

Index 493

Distributed Management Task
Force, 322, 322, 324, 334
DMI, 83, 321, 322
DMTF, 322, 324, 334
DOS, 11, 80
real-mode, 11, 443
DOS4GW, 225
DRAM, 86, 103, 128, 387
initialization, 164
Dual address cycle, 19
Dual inline package, 9
DVDs, 452

E

EEPROM, 248
EFL, 1,476
EISA, 215
E1E. 4,72
Embedded Linux, 473
Embedded x86 BIOS systems, 451
Embedded x86 hardware, 113
Environmental Protection Agency, 207
EPA, 207

procedure, 207
etBIOS, 454, 464, 465

execution algorithm, 465
Executable and linkable format, 4, 72
Expansion ROM, 12, 213, 219

INIT function, 219

F

Failed BIOS rootkit, 443
FASM, 62, 66, 197, 417
FASMW, 188, 194, 200
FAT, 11

FAT32, 393

Firmware, 13, 218, 224, 477
Firmware-level assault, 427
Flash ROM, 11, 223, 305

494 Index

Flash_n_burn, 255

Flat binary file, 29, 61

Foxconn, 359
955X7AA-8EKRS2, 30, 335, 405
BIOS, 120

G

GAS, 68,71
GCC, 348, 356, 464
GeForce 7600 GT expansion
ROM, 241
Geode GX1, 471
Geode GXLV-200, 471
GNU:
Assembler, 68, 71
binutils, 68, 76
C/C++ compiler, 3, 47, 225
Compiler Collection, 61
LD linker, 225
Make, 225
software, 225
tools, 2, 4

H

Hardware devices:
memory mapped, 15, 80
HDD, 11
HDP, 477
Hewlett-Packard, 323
Hex Dump, 202
Hex editor, 31
Hex Workshop, 64, 188, 200, 201
Hidden disk partition, 477
Holtek, 333
Hub interface, 23
Huffman, 169
HyperTransport, 3, 7, 12, 14, 101
protocol, 27

I/O:
address space, 17
manager, 266
privilege level, 262
read/write transactions, 25
request packet, 266

1A-32, 36

IA-32E, 14

IBM, 323

IC extractor, 11

ICH7, 92, 124

IDA Pro, 2, 29, 30, 31, 112, 121, 135,
150, 169, 185, 236, 361
advanced edition, 31
database, 59
freeware, 31, 188
key binding, 44
plugins, 47, 177
scripting, 38
scripts, 3
SDK, 47, 53
standard edition, 31

Ida.cfg, 31

IDC files, 40

IDT, 376, 378, 380, 405

Intel, 14, 23, 96
815EP chipset, 468
955X-ICH7, 14, 27, 83
assembler syntax, 68
ICHS5 southbridge, 263
Itanium, 477
Pentium 4, 14
PIIX, 377

Interrupt descriptor table, 376, 378,
380, 405

IOCTL, 266, 267, 274, 308, 312
codes, 266

10PL, 262

IRP, 266, 271

IRQ lines, 397, 398

ISA, 12, 215, 409
expansion ROM, 194

Iwill VD133 motherboard, 191, 195, 197,
207, 249, 235

J

JEDEC Solid State Technology
Association, 249
Juniper M7i, 466, 470

K

Kernel mode, 380
driver rootkit, 442

-

LAN, 212, 240, 317
Lempel-Ziv, 169
LHA, 30, 129
decompression routine, 140
LHA/LZH decompressor, 169
Linux, 247, 248, 249, 257, 262, 292, 297,
300, 323, 353, 355
BIOS flasher for, 250
Slackware 9.1, 250
Linux NTES project, 393
LKM, 297
LPC, 18, 83
bridge, 26, 128, 260
protocol, 422
SI0, 124
LZH, 116, 131, 132, 358

MC ROM, 215
MDL, 275
Memory descriptor list, 275

Index 495

Memory-mapped 1/0, 266
Microsoft Visual Studio .NET 2003, 47
MMIO, 266, 275
Modbin, 188

execution, 189

version 2.01, 189

version 4.50.80C, 189, 200
Motherboard:

BIOS, 8

chipset, 14, 79
MuTIQL, 23

N

NASM, 62, 66

National Semiconductor, 333
Nonvolatile random access memory, 8
Northbridge, 14, 23, 88, 128

Notepad, 31

Novell/SUSE, 323

NTEFS, 393

Nvidia GeForce 6800 chip, 429
NVRAM, 8

0o

Object file, 72
Obscure hardware ports, 96
OCW, 398

operating system

kernel mode, 248
Operation command word, 398
Opteron, 14

P

Padding bytes, 201

PGl 3, 7,12
bus protocol, 16
configuration registers, 182
configuration space, 18

496 Index

connectors, 16
device function, 17
expansion cards, 16
function number, 21
INIT function, 230
library, 278, 292
PnP expansion ROM
registers, 20
SCSI controller, 223
PCI bus:
32-bit, 19
64-bit, 19
configuration mechanism, 17
configuration registers, 260
data structure, 217
device number, 21
number, 21
scanning, 295
PCI chips:
on-board, 24
PCI devices:
64-bit, 22
PCI expansion ROM, 4, 61. 211
reverse engineering, 233
rootkit, 414, 442
structure, 234
PCI Express, 7, 12, 14, 15, 101
protocol, 25
checksum patcher, 225
source code, 226
PCIl-Express, 3
PCI-to-ISA bridge, 260, 261
configuration registers, 261
PCI-to-PClI bridge, 17, 18
PCI-X, 12
PE files, 376
format, 377
Phoenix BIOS, 413
Phoenix Technologies, 483

Phoenix TrustedCore, 430, 434
BIOS, 430
PIIX4, 386
Plastic lead chip carrier, 9, 223, 230
PLCC, 9, 223, 230
Plug and Play, 211
PnP, 211
BIOS, 212
ROM, 221
POS device, 471
POST, 101, 116, 142, 193, 202, 212, 221,
239, 362, 449
codes, 162
execution, 201
jump table, 182, 194, 203, 399, 403
jump table execution, 185
jump table patching, 193
POST code:
extensions, 219
Protocols:
proprietary, 24

RAID, 12,119, 221
RAM, 103, 149, 164, 403, 414
addressing, 12
timing, 8
RCBAR, 25
RCRB; 25,123
Read transactions, 88
Real-mode DOS, 443
Realtek 8139 fast Ethernet
controller, 236
Relocatable hardware ports, 100
Remap Limit, 15
Reverse code engineering, 31
ROM, 2,7, 212
checksum, 244
image, 216

initialization, 239

signature, 216, 219
Root complex base address register, 25
Root complex register block, 25
Rootkits, 357

kernel-mode, 380, 442
Routers, 113

S

53 ACPI sleep state, 436
SBC, 471
SCSI, 221, 230
bus-controller boot device, 223
SDK, 47
Sections, 74
Silicon Storage Technology, 422
Single board computer, 471
SiS, 23
SiS 630 motherboard, 297
Slackware Linux, 225, 228
SMBIOS, 321, 322, 364
architecture, 326
protocol, 334
SMBus, 99
SMM, 15
Soltek SI.865PE:
BIOS, 163
motherboard, 361
Southbridge, 14, 23, 88, 128
SST, 9, 422
Sun Microsystems, 323
Supermicro H8DAR-8, 33
Symbolic link, 273
System address map, 16
System address space management, 94
System BIOS, 116
extension, 116
System logic, 79
System-wide Address Mapping, 80

Index 497

T
TCG, 430
TOLUD, 15
TPM, 430

Software Stack, 430
Trusted Computing Group, 430
Trusted Platform Module, 430
TSS, 430
TV set-top box, 451

U

Ubiquitous computing, 486

UEF], 2, 476
boot services, 478
runtime services, 478
specification, 479

UHF, 451

Unicode, 272

Uified extensible firmware interface, 2, 476

UNIX, 253, 293, 323, 327, 364, 429

'/

Vendor ID, 213, 215
VGA, 14, 206
RAM, 14
VHF, 451
VIA, 23
596B southbridge, 250, 253
693A northbridge, 21, 200, 250
Vital product data, 217
V-Link, 23
VPD, 217

w

WBEM, 322, 323, 332, 427
infrastructure, 427

Web-based enterprise management, 322,
323,332,427

498 Index

Win32 AP, 3, 54
Winbond, 9, 333
W29C020C, 385, 390
W39V040FA, 278, 290, 263, 296, 364,
369, 422
W49F002U flash ROM, 250, 288
Window messages, 58
Window procedure, 57
Windows, 247, 261, 300, 337, 441
device drivers, 266
kernel, 266, 271
Windows 2000/XP, 263, 271, 344,
349, 393
DDK, 263
Windows 9x, 376
Windows CE, 472
API, 474
Windows management
instrumentation, 321, 323, 364, 427
Windows NT/2000/XP, 376

Windows XP Embedded, 472

WinFlash, 438

WinRAR, 31

WinZip, 31, 119

WMI, 321, 323, 364, 427
vulnerabilities, 338

Write transactions, 88 , _'

Ll —
A E L e Lo
s Ehi'y

X e
x86, 1, 19, 29, 80, 101, 249
BIOS, 447, 475 =
boot concept, 449 =
embedded hardware, 113, 448 K
XROMBAR, 213, 214, 223, 225, =
236, 301 -

z

280 processor, 32

:
9
1
!
i
f

e it T ———

	Front Cover

	Back Cover

	Front Matter

	Table of Contents

	Preface

	The Audience
	The Organization
	Software Tools Compatibility
	Typographical Conventions

	Part I: The Basics

	Chapter 1: PC BIOS Technology

	Preview
	Motherboard BIOS
	Expansion ROM
	Other Firmware within the PC
	Bus Protocols
Fundamentals
	System-Wide Addressing
	PCI Bus Protocol

	Proprietary Interchipset Protocol Technology
	PCI Express Bus Protocol
	HyperTransport Bus Protocol

	Chapter 2: Preliminary Reverse Code Engineering

	Preview
	Binary Scanning
	Introducing IDA Pro
	IDA Pro Scripting and Key Bindings
	IDA Pro Plugin (Optional)

	Chapter 3: BIOS-Related Software Development Preliminary

	Preview
	BIOS-Related Software Development
with Pure Assembler
	BIOS-Related Software Development with GCC

	Part II: Motherboard BIOS Reverse Engineering

	Chapter 4: Getting Acquainted with the System

	Preview
	Hardware Peculiarities

	System Address Mapping and
 BIOS Chip Addressing
	Obscure Hardware Ports

	Relocatable Hardware Ports

	Expansion ROM Handling

	BIOS Binary Structure

	Software Peculiarities
	call Instruction Peculiarity

	retn Instruction Peculiarity
	Cache-as-RAM

	BIOS Disassembling with IDA Pro

	Chapter 5: Implementation of Motherboard BIOS

	Preview
	Award BIOS
	Award BIOS File Structure

	Award Boot-Block Reverse Engineering
	Boot-Block Helper Routine
	Chipset Early Initialization Routine
	Super I/O Chip Initialization Routine
	Jump to CMOS Values and Memory Initialization
	BBSS Search and Early Memory Test Routines
	Boot Block Is Copied and Executed in RAM
	System BIOS Decompression and its Entry Point

	Award System BIOS Reverse Engineering
	Entry Point from the "Boot Block in RAM"
	POST Jump Table Execution
	Decompression Block Relocation and awardext.rom Decompression
	Extension Components Decompression
	Exotic Intersegment Procedure Call

	AMI BIOS
	AMI BIOS File Structure
	AMI BIOS Tools
	AMI Boot-Block Reverse Engineering
	Boot-Block Jump Table
	Decompression Block Relocation
	Decompression Engine Initialization
	BIOS Binary Relocation into RAM
	POST Preparation

	AMI System BIOS Reverse Engineering

	Chapter 6: BIOS Modification

	Preview
	Tools of the Trade
	Code Injection
	Locating the POST jump Table
	Finding a Dummy Procedure in the POST jump Table
	Assembling the Injected Code
	Extracting the Genuine System BIOS
	Looking for Padding Bytes
	Injecting the Code
	Modifying the POST Jump Table
	Rebuilding the BIOS Binary
	Flashing the Modified BIOS Binary

	Other Modifications

	Part III: Expansion ROM

	Chapter 7: PCI Expansion ROM Software Development

	Preview
	PnP BIOS
 and Expansion ROM Architedure
	PnP BIOS Architecture

	"Abusing"
 PnP BIOS for Expansion ROM Development
	POST and PCI Expansion ROM Initialization

	PCI Expansion XROMBAR

	PCI Expansion ROM

	PCI Expansion ROM Contents
	PCI Expansion ROM Header Format
	PCI Data Structure Format

	PC-Compatible Expansion ROMs
	POST Code Extensions
	INIT Function Extensions

	Image Structure

	PCI PnP Expansion ROM Structure

	PCI Expansion ROM Peculiarities
	Implementation Sample
	Hardware Testbed

	Software Development Tool
	Expansion ROM Source Code
	Core PCI PnP Expansion ROM Source Code
	PCI PnP Expansion ROM Checksum Utility Source Code

	Building the Sample

	Testing the Sample
	Potential Bug and Its Workaround

	Chapter 8: PCI Expansion ROM Reverse Engineering

	Preview
	Binary Architecture
	Disassembling the Main Code
	Disassembling Realtek 8139
 Expansion ROM
	Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600 GT Expansion ROM

	A Note on Expansion ROM Code-Injection Possibility

	Part IV: BIOS Ninjutsu

	Chapter 9: Accessing BIOS within the Operating System

	Preview
	General Access Method
	Accessing Motherboard BIOS Contents in Linux

	Introduction to flash_n_burn
	Internals of flash_n_burn

	Accessing Motherboard BIOS Contents in Windows

	Kernel-Mode Device Driver of bios_probe

	User-Mode Application
 of bios_probe
	The Main Application
	The PCI Library

	Accessing PCI Expansion ROM Contents in Linux

	Accessing PCI Expansion ROM Contents in Windows

	The RTL8139 Address-Ma
pping Method
	The Atmel AT29C512
Access Method
	Implementing the Methods in Source Code
	Testing the Software

	Chapter 10: Low-Level Remote Server Management

	Preview
	DMI and SMBIOS

	Remote Server Management Code Implementation

	Chapter 11: BIOS Security Measures

	Preview
	Password Protection
	Invalidating
the CMOS Checksum
	Reading the BIOS Password from BDA

	The Downsides - An Attacker's Point of View

	BIOS Component Integrity Checks
	Award BIOS Component Integrity Checks

	AMI BIOS Component Integrity Checks

	Remote Server Management Security Measures
	Hardware-Based Security Measures

	Chapter 12: BIOS Rootkit Engineering

	Preview
	Looking Back
through BIOS Exploitation History
	Hijacking the System BIOS
	Hijacking Award BIOS 4.51PG Interrupt Handlers

	Hijacking Award BIOS 6.00PG Interrupt Handlers

	Extending the Technique to a BIOS
from Other Vendors

	PCI Expansion ROM Rootkit Development Scenario

	PCI Expansion ROM Detour Patching

	Multi-Image PCI Expansion ROM

	PCI Expansion ROM Peculiarity in Network Cards

	Chapter 13: BIOS Defense Techniques

	Preview
	Prevention Methods
	Hardware-Based Security Measures

	Virtual Machine Defense
	WBEM Security in Relation to the BIOS Rootkit

	Defense against PCI Expansion ROM Rootkit Attacks

	Miscellaneous BIOS-Related Defense Methods

	Recognizing Compromised Systems
	Recognizing a Compromised Motherboard BIOS

	Recognizing a Compromised PCI Expansion ROM

	Healing Compromised Systems

	Part V: Other Applications of BIOS Technology

	Chapter 14: Embedded x86 BIOS Technology

	Preview
	Embedded x86 BIOS Architecture

	Embedded x86 BIOS Implementation Samples

	TV Set-Top Box
	Network Appliance

	Kiosk

	Embedded x86 BIOS Exploitation

	Chapter 15: What's Next?

	Preview
	Future of BIOS Technology

	Unified Extensible Firmware Interface

	BIOS Vendors Road Map

	Ubiquitous Computing and Development in BIOS

	Future of BIOS-Related Security Threats

	The CD-ROM Description

	Index

	1
	8
	A
	B
	C
	D
	E
	F
	G
	H
	I

	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

