World Academy of Science, Engineering and Technology 34 2007

Advanced Polymorphic Techniques

Philippe Beaucamps

Abstract—Nowadays viruses use polymorphic techniques to mu-
tate their code on each replication, thus evading detection by an-
tiviruses. However detection by emulation can defeat simple poly-
morphism: thus metamorphic techniques are used which thoroughly
change the viral code, even after decryption. We briefly detail this
evolution of virus protection techniques against detection and then
study the METAPHOR virus, today’s most advanced metamorphic
virus.

Keywords—Computer virus, Viral mutation, Polymorphism, Meta-
morphism, MetaPHOR, Virus history, Obfuscation, Viral genetic
techniques.

I. INTRODUCTION

HEN the first antiviral protections appeared in the late

80’s to answer the nascent viral threat, they consisted
of a mere binary scan of programs looking for known virus
signatures. Never mind, virus writers adapted their code so that
it would mutate its binary form on each replication: as early as
in 1988 a first virus protected itself using encryption, followed
in 1990 by the first polymorphic viruses which were able to
mutate their code as well as their decryption method. Their
ability to evade detection by the then antivirus software gave
them immediate “popularity”. Nevertheless antiviruses quickly
adapted to this protection by letting viruses decrypt themselves
and then only scanning the decrypted code looking for any
known signature. This led, as early as in 1997, to the first
metamor phic viruses which mutate their code in its decrypted
form.

This article will therefore study polymorphism and its mis-
cellaneous techniques and more particularly the most evolved
ones, namely metamorphic techniques. In order to do so, we
will study most notably the 2002 METAPHOR virus. For more
details, the reader may consult Eric Filiol’s books [5], [6] as
well as the VX Heavens website, which is crammed with
malware resources.

Il. POLYMORPHISM — EARLY STAGES

This section shortly describes the evolution and techniques
of viruses from the most basic techniques to simple poly-
morphic techniques and finally to advanced metamorphic
techniques. The reader may refer to [5], [6], [19], [1] for a
more exhaustive and detailed study.

A First Viruses

The first virus outbreak broke out in 1981 with the ELK
CLONER virus, followed by BRAIN in 1986, the first virus
to implement stealth techniques, and from then by numerous

Philippe Beaucamps is with the Loria, Vandoeuvre-lés-Nancy, France,
email: ph.beaucamps —at— gmail —dot— com, i

and also with the Virology and Cryptology Lab of the Ecole Supérieure et
d’Application des Transmissions (Army Signals Academy), Rennes, Francg5 3

other viruses. The most commonly used techniques consisted
in appending the viral code at the end of the executable
file, modifying the entry point to point at the virus and then
letting the virus spread among the system (Fig. 1). Thus, a
basic protection method is form analysis where each virus
is identified by a specific signature: such a signature is a
sequence of — not necessarily consecutive — bytes whose
detection inside a program allows to identify as undeniably as
possible infection by the virus. This method has the advantage
of being non-greedy in its complexity as well as subject to a
tiny rate of false alarms.

Header Header
Entry
Point
Ent
Code [|BE) | Code Point
and data and data

Fig. 1 Basic virus infection

Back in time, as early as in 1984, F. Cohen had been the
first one to study viruses from a theoretical point of view,
christening them and defining them as programs which are
able to infect other programs with a possibly evolved copy of
themselves. Thus, this definition already suggested the exis-
tence of viruses which would alter their form when replicating.
And indeed such viruses turned up quite quickly. Cohen also
showed that the problem of virus detection was undecidable,
meaning in other words that no algorithm would ever be able
to determine with unquestionable certainty whether a given
program is a virus or not [3].

B. Polymorphic Viruses

The first virus encrypting its code, CASCADE, appeared in
1988. Yet its decryption method remained unchanged from one
replication to another and thus it was not really a polymorphic
virus per se. In 1990 however, the first family of polymorphic
viruses appeared: the CHAMELEON viruses (or V2P) which
were developped by Mark Washburn, were based on the
CASCADE and VIENNA viruses and mutated the code of their
decryption method (fig. 2). The shock they created shaked the
antiviral community, since detection techniques using a fixed
signature had suddenly become obsolete for this new brand of
viruses.

World Academy of Science, Engineering and Technology 34 2007

Header
Entry
Point
Code
and data EnFry
7 Point

Encrypted
viral code

Fig. 2 Polymorphic virus infection

The famous WHALE virus appeared the same year: it
included polymorphism, stealth and armouring techniques and
mutated in particular the code of its mutation function using
obfuscation techniques (dead code, test repetition, redundant
code, ...). Then “boards” appeared, where were shared viruses
and e-zines, among which Phrack and 40Hex, and where
were worked out and shared new viral techniques. Then in
1992 the first polymorphic engines appeared, like MTE, TPE,
NED and DAME?, which could be linked to the virus to
produce a polymorphic variant. They were quickly followed
by the first virus creation toolkits, like VCL, PS-MPC and
G22, some of which including polymorphism features. This
signalled the start of massive creation — in thousands — of
simple and polymorphic viruses.

On the antiviral community side, the answer came in 1992
when Eugene Kaspersky worked out a technique now used by
most antivirus products, namely detection by code emulation.
Since one could not anymore rely on the static version of
a program’s code to detect a virus, the code was run in a
controlled (emulated or sandboxed) environment on a given
number of instructions, and periodically or in the end the
affected memory was analysed to detect the (possibly partially)
decrypted viral code. Indeed, and this is the base principle of
metamorphism, polymorphic codes had the major drawback of
always decrypting themselves into the memory into an invari-
ant and thus detectable form. However this detection technique
also has the disadvantage of being quite cpu-intensive.

Several techniques, called anti-emulation techniques, have
been developped as a result by virus writers to hinder this kind
of detection:

« Using unusual instructions which an emulator might not
support and interpret, or similar tricks that would prevent
the virus from decrypting itself correctly or that would
betray the presence of an emulator.

IMUTATION ENGINE (MTE) by Dark Avenger, TRIDENT POLYMORPHIC
ENGINE (TPE), NUKE ENCRYPTION DEVICE (NED) and DARK ANGEL’S
MuULTIPLE ENCRYPTOR (DAME).

2VIRUS CONSTRUCTION LAB (VCL), PHALCON/SKISM MASS-PRODU-
CED CODE GENERATOR (PS-MPC) and PHALCON/SKISM’S G2 VIRUS

GENERATOR (G2).
254

« Inserting dead code that will loop long enough to have the
emulator give up on detection, relying on the prohibitive
cost of emulation (this technique is used by the BISTRO
virus for instance).

« Random cancelling of decryption, thus running the viral
code only a random basis.

« Entry Point Obscuring (EPO) techniques, which consist
in avoiding executing the virus body at the very beginning
of the host’s execution, but rather executing it during the
host execution or even in the end.

« Using several encryption layers.

« Decrypting and running the code chunk by chunk, some
viruses decrypting and running only one instruction at a
time (like the DARK PARANOID virus, in 2004).

« Metamorphic techniques, which transform the encrypted
code.

These techniques are detailed in the literature [5], [6], [1]:
some of these techniques are used by METAPHOR and we
shall come back on them in the next section.

Finally, we state Spinellis’s recent result [18], which estab-
lishes the general complexity of the detection of such viruses.
He shows that the problem of detecting polymorphic viruses,
of bounded length, is NP-complete, by reducing to it the well-
known SAT problem of satisfiability.

C. Metamorphic Viruses

Metamorphic viruses are in a sense advanced polymor-
phic viruses: on each replication, the code to be executed
completely mutates, without altering its functionality. Thus,
encryption is not anymore necessary and, when used, the
decryption method as well as the decrypted code of the virus
are different for each new generation. Figure 3 presents a
basic example of infection by a metamorphic virus, on its
1™ mutation: in practice, the code is often encrypted and the
decryption routine is sometimes scattered among the host’s
code (ZMisT virus for instance).

Entry
Point

Entry
Point

Fig. 3 Metamorphic virus infection on generation

The first metamorphic techniques made their appearance
in 1997 with the TINY MUTATION COMPILER (TMC), by
Ender. This virus had a compiler embedded in its body as well
as its own sources in encrypted pseudocode. On execution, the
virus decrypted its source code, inserted dead code, mixed up
its code and data, and recompiled everything.

World Academy of Science, Engineering and Technology 34 2007

On the same year, ZOmbie developped his ZOMBIE’S
CoDE MUTATION ENGINE (ZCME), which did not use any
encryption techniques but allocated a 16K buffer where it
randomly copied out its instructions, linking them with each
other with JMP instructions and filling the remaining space
with dead code.

In 1998, Vecna implemented Miss LEXOTAN, which dis-
assembled itself, added some dead code and modified the
form of its instructions, in a computational way most par-
ticularly (see later). To create dead code, it inserted most
notably meta-instructions XOR ebp, imm, with no effect,
but which defined which registers were used and thus should
not be modified. He also implemented REGSWAP later, which
shuffled the registers. Here is an excerpt from LEXOTAN:

xor bp, fill + ax + _bx + _ flag
; tells that registers ax, bx and

; the FLAGS are used by the code
ax, bx

bp, _ fill +
ax, 10h

ax

ax, 0

add
Xor
add
push
mov

_ax + _ flag

After transformation, this code may look like this, with no
jumps:

Xor
mov
Xor
push
add
pop
xXor
mov
push
mov
pop
add
Xor
push
mov
sub

bp, _ fill +
dx, bx

cx, cx i
cx i
ax, dx

CX ;
bp, _ fill + _ax + _ flag

bx, 34h

bx
bx,
ax
ax,
bx,
ax
bx,
ax,

_ax + __bx + _ flag

dead code

ffCcCh

bx
bx

10h
ax

In 2000, the BADBOY, ZMORPH, EvOL, ZPERM, BISTRO
and ZMisT viruses enter the growing list of metamorphic
viruses, using more or less complex techniques. ZPERM
most notably introduces the REAL PERMUTATION ENGINE
(RPME), which can be linked to other viruses, and enables
random permutation of the virus code, with insertion of dead
code and branching using JMP instructions.

ZMisT, by ZOmbie, is more particularly one of the most
evolved (and most stable) metamorphic viruses until now. It
uses the following techniques:

« Entry Point Obscuring (EPO).

o Metamorphism:

— (Random) encryption with two keys.

— Code integration: it’s the first virus to use this
method which consists in scattering the decryptor’s
code directly among the host’s code, which makes
the virus hard to detect and hard to disinfect. The
MISTFALL engine is used for this technique.

— Permutations (it uses ZPERM’s RPME engine).

— Dead code, generated by the EXECUTABLE TRASH
GENERATOR (ETG).

— Syntaxic modification of instructions.)55

The virus is analysed, along with other polymorphic and
metamorphic viruses, in [19].

Finally, METAPHOR, by Mental Driller, appears in 2002
and is certainly the most advanced metamorphic virus until
today. It may infect both E1£ (on Linux) and PE (on Win-
dows) files, on the local file system and on mounted partitions
(in Linux) or shared folders (in Windows).

Let’s also mention the recent development of Java and
MSIL2 viruses, which are platform-independent. .NET assem-
blies infection is simplified by the presence of assembler li-
braries (System.Reflection.Emit hamespace) and both
technologies enclose standard high level cryptography Ii-
braries. Only one metamorphic MSIL virus is known as of
today, —Gastropod—, and there still are very few Java and
MSIL viruses. But given the ubiquity of both technologies,
these viruses might well represent a threat in the near future
for any platform that supports them.

The rapid evolution of viral techniques towards first poly-
morphic and then metamorphic techniques motivated the
working out of new detection techniques, based on emulation
and behaviour analysis allowing to identify suspect behaviours.
However in the same time, they revealed two limitations that
are inherent to antiviral defence and benefit virus writers.
First, the efficiency of these methods relies on an often
prohibitive complexity when iterated on a high number of
files: defence cannot monopolize resources of the protected
system whereas attack has a priori no cost nor time limits.
Moreover a delay of a few hours or of a day is long enough
for a well-implemented virus to spread on a very large scale,
hence the interest for virus writers to complicate as much as
possible analysis of their viruses. Although these weaknesses,
combined with advanced metamorphic techniques, are not
used yet in a lot of viruses (or these very viruses are often
buggy and easily detected and stopped), they define a new
age of viral detection, in which current protection methods
will be thoroughly obsolete.

I1l. STUDY OF A METAMORPHIC VIRUS: METAPHOR

The cross-platform metamorphic virus METAPHOR* was
written in 2002 by The Mental Driller and was the second
highly advanced metamorphic virus (with ZMisT), and the
first ever polymorphic, and metamorphic, Linux virus. It was
published in 29A’s magazine [14]: its sources can be found
on VX Heavens [11]. It uses highly advanced metamorphic
techniques which combine the majority of the techniques used
by its predecessors. They’re used along with anti-heuristic and
anti-emulation techniques.

A. Overview of the techniques used by METAPHOR

Here are the main polymorphic techniques used by META-
PHOR:

« XOR / SUB / ADD encryption, with random key, or no
encryption at all;

3j.e. targetting .NET assemblies.
4METAPHOR is also known as SIMILE or ETAP.

World Academy of Science, Engineering and Technology 34 2007

« Branching technique;
o Pseudo-Random Index Decryption (PRIDE);
« Metamorphic techniques:

— Dead code insertion;

— Instruction modification;

— Random modification and permutation of registers;
— Code permutation;

— Mutation of the memory access profile.

B. Polymorphismin METAPHOR

1) Encryption techniques: First let’s describe the miscel-
laneous encryption techniques which are commonly used in
polymorphic viruses (see [15] for some more details and for
examples).

a) Basic encryption: The most simple ones, as well
as the most common ones, use a mere XOR (as shown in
the example), ADD or SUB encryption, with a key which is
randomly generated on each replication and which is stored
inside the virus data or directly inside the decryption method.
The following code is a basic example of such an encryption:

mov esi, offset enc_code_start

; start of encrypted code
edi, esi ; start of decrypted code
ecx, (offset enc _code end -

offset enc_code_start) / 4

mov
mov
; size in dwords

mov ebx, 6B3C728Ah ; encryption key
start:

lodsd ; load a dword in eax

xor eax, ebx ; decrypt it

stosd ; save it

loop start
end:

jmp enc_code_start

b) Siding key encryption: One drawback of the previous
technique is that, once the key has been chosen, each character
is encrypted in a unique way. Thus the sliding key encryption
updates the key as the decryption progresses, either in a fixed
way or for instance with the last encrypted character. For
instance, the previous code could be modified in the following
way:

eax, ebx
ebx, eax

Xor
add

c) Flow encryption: This method uses a key to generate a
keystream of the same size as the data to encrypt. For instance
the generation of this pseudo-random keystream might use
one or several linear feedback shift registers (LFSR, see
section 111-D1). Some basic implementations simply duplicate
as much as needed the input key. The previous code can be
easily adapted to this technique, in the case of a single register
(1fsr_init initializes the register, and 1£sr_ next shifts
the 32bits register, thus generating a new key):

mov

ebx, 6B3C728Ah
call 1lfsr init ; init the register from the key
start:
lodsd
call 1lfsr next ; ebx := 4 new bytes from keystream
XOor eax, ebx

256

d) Encryptionwith permutation: The input data is simply
permutated. Permutation can occur on the scale of the whole
data, of chunks of bytes (of fixed or variable length), or even
of each byte (with the ROR instruction for instance).

€) Multiple encryption: Several encryption techniques
are sequentially applied.

f) Random key encryption: The data is encrypted with a
random key which is not stored for future decryption. Upon
execution, the key (as well as the encryption technique) can
only be recovered by brute force attack or cryptanalysis. This
technique disables any code emulation analysis. The size of
the key space (and possibly its properties) allows to control
over the decryption time. This technique was introduced by
DarkMan in 1999 in his RANDOM DECODING ALGORITHM
ENGINE (RDAE), which implemented several encryption
techniques without storing the key: only the code’s CRC32
checksum was stored. These techniques are detailed in [2],
[7].

g) Code-dependent encryption: The binary code itself is
used as the encryption key, or a combination of the code and
a random key. This technique was usually used to ensure
that the code had not been modified — during an antiviral
analysis (where the code could be patched to disable some
anti-debugging techniques).

Upon decryption, the virus needs access to the decryption
key(s). This key is usually directly stored in the program:
inside the decryption procedure, inside the virus data or simply
related to the host program (for instance the key can be the
host’s filename). The case of RDA is different since the key
is retrieved by brute force. However other scenarios exist
where the key isn’t stored in the code but is inferred from
the environment. This technique is called environmental key
generation [16]. Here are some examples:

o The key is forged from the local environment. For in-
stance, the key is the hard disk serial number, combined
with some random value stored in the code, etc.

« The key depends on activation factors. For instance, it
depends on the current date and will only be valid during
some predetermined period. In consequence, the virus
itself will be disabled outside the valid periods.

o The key is stored on a web server, a news server, etc.

The most advanced implementation of this technique is the
proof of concept BRADLEY virus [4]. It uses several encryp-
tion layers, whose keys are retrieved from the environment.
The interest of such viruses from their writer’s point of view,
is that they can restrict the activity of their virus geographically
as well as temporally. Filiol also shows in [4] that, if the key
is unknown during the analysis, the cryptanalysis’s complexity
is exponential (in BRADLEY’S case).

As for METAPHOR, it encrypts its code with an initial
probability of 15/16 and uses an encryption method (with
random key) of type XOR, ADD or SUB.

However, METAPHOR’s decryption method is much more
interesting. It uses techniques that The Mental Driller had al-
ready implemented into the TUAREG engine (TAMELESS UN-

World Academy of Science, Engineering and Technology 34 2007

PREDICTABLE ANARCHIC RELENTLESS ENCRYPTION GEN-
ERATOR) and that he describes in another issue of 29A’s
magazine [13], [12]. This engine combined most notably two
novel techniques, with an anti-heuristic purpose, which also
took part in the mutation of the decryption routine. Both
techniques, the branching technique and the PRIDE technique,
are used in METAPHOR. Finally, an EPO technique is used to
give control to the decryption routine: METAPHOR changes
all calls to the exit function into calls to this routine.
Thus, the virus only gains control after execution of the
program, which contributes to its stealth and protects it from
the detection by emulation.

2) Branching technique: A basic decryption method has a
structure that often follows a common template which will
trigger an alarm in any heuristic engine, as one can see with
the examples from last section. Thus the branching technique
allows to simulate as much as possible the behaviour of an
innocuous program. Such programs will usually sequentially
test several conditions and, depending on the result, finally
branch on distinct paths. This technique therefore creates
several random tests, until a given recursivity level, that will
define an execution tree with leaves representing distinct ways
to decrypt the code. Figure 4 describes the execution tree for a
maximum depth of recursivity equal to 2: each terminal branch
has its own decryption code, though the final result is the same,
whatever branch is taken. Thus for a depth of recursivity equal
to n, 2™ decryption branches are generated.

| Initialization
| Initialization X
dec_start: X X/ \‘X
‘ Decryption
Dé(c.D\éc. Dé(c. I)éc.

dec_end: X

X

Basic decryption Decryption with branching

Fig. 4 Execution tree with and without branching technique

Furthermore, to reduce the risk of an heuristic alert upon
execution of a branch, terminal branches do not contain a
decryption loop but only its body: once the body is executed,
a jump is made to any one of the previous nodes in order
to carry on decryption. Thus, upon execution, each branch
makes the same computation and all branches are shared and
alternatively used to implement the decryption loop. Here is
the ¢ algorithm used in METAPHOR (Il. 15750 — 16075):

void do branching () {
int 1i;

make branch () ;
for (1 = 0; 1 < cnt_partial jumps; i++)
// redirect each jump at a random node
complete partial_ jump (partial jumps[i],
get_random_node ()) ;

}

void make branch () ({ 257

int jmp;
if (recLevel >= maxLevel) ({ // maximum depth?
insert code () ; // decryption code
build instr (OP_CMP, REG _ECX, code len);

// CMP ecx, code_ len
insert partial jump (OP_JNZ); // JINZ <?>
[cnt_partial_ jumps ++] = jmp;

// update the target in the end
// call the decrypted code

jmp =
partial_jumps

return;
}

recLevel ++;

add_node (insert_ label // save the new branch

()i

if (random boolean ()) { // test CMP or TEST?

int reg, val, op;

reg = get random_register ();

val 0x80000000 | (random () & Ox3fffffff);
// 0x8XYYYYYY (X < 4)

build instr (OP_CMP, reg, val); // CMP reg, val

op = OP_JB + (random () & 0x5); // JB/JA/JBE/JAE

jmp = build partial jump (op); // partial jump
} else {

int reg, val, op;

reg = get_random_register ();

val = 0x1 << (random () & 0x1f); // 27X (X < 32)

build instr (OP_TEST, reg, val); // TEST reg,val

op = OP JZ + (random () & 0x1); // JZ or JNZ

jmp = build partial_ jump (op) ; // partial jump

}

/+ first branch: x/
make_branch () ;
complete partial jump (jmp, ());

insert label

/+ alternative branch: */
make_branch () ;

recLevel --;

And here is an example code it could yield, for a recursivity
depth of 2:

bro:
cmp regl, vall ; regl, random register
; vall = 8XYYYYYYh (X < 4)
jec alto ; jec = jb / ja / jbe / jae
bril:
test reg2, val2 ; reg2, random register
; val2 = 2°X (X < 32)
jec altl ; jcec = jz / jnz
<Decryption code 1>
cmp ecx, code len
jnz brl’
altl:
<Decryption code 2>
cmp ecx, code_len
jnz brl
alto:
brl’:
cmp reg3, val3l
jecc altl’
<Decryption code 3>
cmp ecx, code_len
jnz bro0
altl’:
<Decryption code 4>
cmp ecx, code len
jnz bro0

World Academy of Science, Engineering and Technology 34 2007

As this will be detailed in section 111-C about metamorphic
techniques, this code is actually an intermediate representation
of the final code: once the code has been created, METAPHOR
generates the final x86 code by rewriting each instruction
into an equivalent sequence of instructions and by randomly
inserting dead code.

3) PRIDE technique (Pseudo-Random Index DEcryption):
The purpose of this technique is also to protect the virus from
a heuristic detection. Indeed, even with the modification of
the execution tree of the decryption procedure, it follows the
following common mechanism (for a basic encryption):

1) data := address of a buffer inside the data section of
the virus.

2) Sequentially read data and create a new buffer, which
will contain the decrypted data.

3) Give control to the new decrypted code.

The second stage of this procedure, which consists in
sequentially reading a sequence of 1000 bytes or more in
memory, presents a high risk of heuristic alert. Therefore, the
PRIDE technique consists in decrypting data in a pseudo-
random order and not anymore in a sequential order. Byte
10 will be decrypted, then byte 23, then byte 7, then byte
48, and so on. This memory access profile is much closer
to an innocuous application’s memory access profile. In the
same time, this technique reinforces the polymorphism of the
decryption code.

Here is the algorithm used for the PRIDE technique (lI.
15570 — 15652 and 15827 — 15984). size of data is the
size of the data to be encrypted, rounded up to a power of 2.
First the algorithm initializes its variables:

pride_start = (size_of data - 4) & random ();

// aligned on a dword boundary
(size of data - 8) & random () ;

// aligned on a gword boundary

get random key () ;

pride step =
pride_key =

Then it initializes the registers to be used by the decryption
routine: CR, IR and BR. CR is the counter register and contains
the sequential decryption index, IR is the index register
and contains the pseudo-random decryption index (XOR’ed
actually with CR), BR is the buffer register used as temporary
storage for encrypted data. Compared to the decryption routine
in section 111-B1, we have: CR = ecx, IR = esi = edi and
BR = eax. The following code is written at the beginning of
the decryption routine:

MOV CR, pride start

MOV IR, val ; val =
MOV BR, wval’ ; wval’

(size_of_data - 4) & random()

= random /()

Finally, when the decryption routine’s body must be gen-
erated (call to insert code inside the make branch
method), the algorithm writes:

PUSH IR
XOR IR, CR
MOV BR, [IR + source]
XOR BR, key ; or ADD BR, +/- key
; or nothing (no decryption)
ADD IR, dest
MOV [IR], BR ; write the decrypted dword
POP IR
ADD CR, val ; CR += [4;7]

258

AND CR, val’ ; val’ = ((random() &
; “size of data) | (size of data-4)) & -4
(-> CR := (CR % size_of code) & FFFFFFFCh)
ADD IR, pride step
AND IR, val’’ ; val’’ = ((random() &
; “size of data) | (size of data-1)) & -1
; (-> IR := IR % size_ of code)
CMP CR, pride_start
JNZ <?> ; jump at a random branch

Furthermore, the last instructions which update registers
CR and IR (ADD CR, wval and AND CR, val’ for the
CR register) are permutated with each other, with the obvi-
ous requirement that the AND instruction is executed before
its ADD counterpart. Also, as we can see, pride step
determines the “order” of decryption: when equal to 0, it
simply corresponds to a sequential decryption (starting at
index (IR ~ pride start)).

This ends the study of polymorphic techniques in META-
PHOR. Both techniques we described mainly aim to impede
any detection by emulation: however, in a sense, they also have
a mutation role, not anymore in the form but in the behaviour.
This proximity between signatures used for form analysis and
signatures used for behaviour analysis is studied into more
details in [6].

C. Metamorphism in METAPHOR

METAPHOR’s metamorphic engine takes up 70% of the
source code (11000 lines in all), the remaining 30% accounting
for the infection routines (20%) and the decryptor’s creation
routine (10%). This proportion isn’t uncommon: some meta-
morphic viruses devote up to 90% of their code to their
metamorphic engine. The engine is used to mutate the virus
body (more precisely the part to be encrypted) as well as the
decryptor itself.

The engine works according to the following template,
which The Mental Driller calls humorously accordion model:

1) Disassembly / Depermutation

2) Compression

3) Permutation

4) Expansion

5) Reassembly

One particularity of this engine, which conceptually differ-
entiates it from its predecessors, is the use of an intermediate
representation which allows to dissociate from the complexity
of the underlying processor’s instruction set and to simplify the
miscellaneous transformations and the code manipulation and
creation. For instance, equivalences between x86 instructions
are deferred until the reassembly stage, jumps at other code
instructions are translated into a pointer perspective (that are
much easier to manipulate, compared to offsets), etc.

1) Description of the pseudo-instruction set: METAPHOR
uses a limited instruction set. It only considers instructions
that are actually used by the code. Since this intermediate
representation isn’t used when modifying the host code, this
restriction is natural. This instruction set is organized as
follows:

« Base instructions with 2 operands: ADD, OR, AND, SUB,
XOR, CMP, MOV and TEST.

World Academy of Science, Engineering and Technology 34 2007

« Base instructions with 1 operand: PUSH, POP, Jcc, NOT,
NEG, CALL and JMP.

o Other instructions: SHIFT, MOVZX, LEA, RET and NOT.

o Macro-instructions:

— APICALL_ BEGIN, APICALL_END, APICALL_STORE,
which represent the instruction sequences which are
used when calling a Windows API (in the case of a
PE infection): since the registers to be used by these
calls are predefined, these macro-instructions ensure
their protection from register swapping transforma-
tions.

— SET WEIGHT which is used for “genetic” evolution
(see section 111-D2).

— LINUX GETPARAMS, Which is similar to ApIcaLL
BEGIN, and represents the loading of parameters into
general purpose registers.

— LINUX_SYSCALL Which represents a syscall (int
80h — used to call a system function); and LINUX
SYSCALL_STORE Which represents a syscall fol-
lowed by the result’s saving.

« Instruction used only by internal operations: Mov Mem,
Mem, used during the compression stage, and INC and
LITERAL BYTE (unencoded byte to be inserted as it is)
which are used during the reassembly stage.

The opcode choices are motivated by the equivalent x86
opcode organization and by the sake of simplifying the ma-
nipulation of instructions and the coding of transformations. In
particular, for the first type of opcodes, the opcode itself (for
instance ADD) is encoded into bits 6. .3, and the operand
types into bits 2..0 and 7: bit 7 specifies whether the
operands are 8 bits (for instance mov al, 12h) or 32 bits
(for instance mov eax, 12h) whereas bits 2. .0 specify
the type of operands (Reg, Imm, etc.).

Finally, a pseudo-instruction is encoded in 16 bytes:

XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX XX
operands -------- * LM %- instr -«

OP contains the instruction opcode, on one byte. Then
the operands are encoded (register index, memory address or
immediate value) on the following 10 bytes. Then LM (“Label
Mark™) is a flag on 1 byte telling whether this instruction is
the target of a branching instruction: when this is the case,
the instruction can neither be deleted nor compressed with
instructions preceding it. The last 4 bytes contain a pointer
which has miscellaneous significations along the execution:
during the disassembly, it contains the address of the initial
x86 instruction, during the permutation, it contains the in-
struction’s address inside the non-permutated code, etc.

Once the virus decrypted its code, it gives control to it. After
initialization of the variables and possible payload activation,
it defines the form of next generation (internal organization of
the code — where to put code, where to put data, etc.). Then
it starts the code transformation process.

2) Disassembly: The x86 code is first disassembled into an
intermediate representation which uses the previous instruction
set. This procedure loads the intermediate code into the buffer
pointed by variable InstructionTable. It also creates an

array of labels which contains all instructions which are tggg

target of a branching instruction. In the end, the computed
intermediate code has been depermutated and the inaccessible
code (dead code) removed: this is actually a direct conse-
quence from the routine’s algorithm.

The x86 code is disassembled by following the execution
flow. The algorithm uses an array, FutureLabelTable,
which contains instructions which are waiting for their dis-
assembly (namely these are the targets of conditional jumps
and direct calls). Here is the algorithm:

« If the current instruction was already disassembled, sim-
ply add a JgMP instruction which points at the disas-
sembled instruction. Then carry on disassembly with
an instruction from FutureLabelTable (if any) or
terminate.

« Otherwise:

1) If previous instructions did point at the current
instruction, update them in order to point at the new
disassembled instruction.

2) Create the new pseudo-instruction. The following
cases are more specifically distinguished:

— INC and DEC instructions are replaced by their
ADD and SUB counterparts: during the reassem-
bly stage, the opposite transformation will be
applied (or not).

— If this is a JMP instruction: either its target
was already disassembled and we simply insert
a JMP instruction pointing at that instruction
(by creating a label), or the target has not been
disassembled yet and we insert a mere NOP.

— If the instruction is a conditional jump or a direct
call: if the target has been disassembled yet, add
it to the wait array FutureLabelTable. Then
insert the corresponding branching instruction
(pointing at the disassembled target, if it exists,
or at the x86 target instruction).

3) Finally, if this was a JMP instruction whose target
had not been disassembled yet, continue with this
target. If the target was already disassembled, or the
instruction is a RET, continue with an instruction
from FutureLabelTable (if any). Otherwise
continue with the next instruction.

Code permutation is carried out, as we will see, using
unconditional jumps (no “opaque predicates” or similar tricks):
during the disassembly, the JMP instruction used to join two
permutated blocks is replaced by a NOP instruction and the
disassembly continues with the new block. Given that the
pseudo-code is built in a linear way, its final shape will be
that of the depermutated code. Similarly, inaccessible code
that was inserted will never be disassembled.

3) Compression: After disassembly and depermutation, the
generated pseudocode is compressed. This cancels the expan-
sion effects of the previous generations, since the compression
rules are exactly the inverse of the expansion rules. There are
five kinds of rules:

1) Instr -> Instr rules:

¢ XOR Reg, -1 ->
¢ SUB Reg, Imm ->

NOT Reg

ADD Reg, -Imm

World Academy of Science, Engineering and Technology 34 2007

NOP
CMP Reg, O

¢« OR Reg, O ->

¢ AND Reg, Reg ->
L]

2) Instr / Instr -> Instr rules:

e PUSH Imm / POP Reg
-> MOV Reg, Imm
¢ MOV Mem, Imm / PUSH Mem
-> PUSH Imm
¢ OP Mem, Imm / OP Mem, Imm2
-> OP Mem, (Imm OP Imm2)
e NOT Reg / NEG Reg
->ADD Reg, 1

e TEST X, Y / !=Jcc
-> NOP

e Joc @xxx / !Jcc @xxX
-> JMP @xxXxX

* ...
3) Instr / Instr / Instr -> Instr rules:

e MOV Mem, Reg / OP Mem, Reg2 /
Mov Reg, Mem -> OP Reg, Reg2

e ...
4) Instr / Instr / Instr -> Instr / Instr rules:
e MOV Mem, Reg / TEST Mem, Reg2 /
Jcc @xxx -> TEST Reg, Reg2 / Jcc @xxX

5) Macro-operations identification rules:

e PUSH eax / PUSH ecx / PUSH edx
-> APICALL BEGIN

e POP edx / POP ecx / POP eax
-> APICALL_ END

e POP edx / POP ecx / POP ebx / POP eax
-> LINUX_GETPARAMS

¢ CALL Mem / MOV Mem2, eax
-> CALL Mem / APICALL_ STORE Mem2

« INT 80h
-> LINUX_SYSCALL

e INT 80h / MOV Mem, eax
-> LINUX_ SYSCALL_STORE

e PUSH Regl / MOV Regl, Imml / MOV Reg2,
Imm2 / MOV Mem, Reg2 / POP Regl
-> SET_WEIGHT Mem, Imml, Regl, Reg2

Notation !=Jcc denotes “any opcode that is not a condi-
tional jJump” and the notation ! Jcc denotes the inverse of the
last Jcc (for instance, JA and JBE). Furthermore, some of
these rules might not be verified in the general case, but they
are in the case of METAPHOR’s code.

The algorithm is simple. It compresses the code as much as
possible. When it looks up the next instruction, it skips any
NOP instruction that is not the target of jump or a call (flag
LM is set). As long as it did not reach the end of the code,
it tries to compress chunks of one, two or three instructions
starting from the current instruction: if a compression occurs,
it makes a three instructions step-back and continues. This
allows to take into account any new reduction opportunity
that might have appeared with an instruction created by
the last reduction. For the sake of simplicity, instructions
that are deleted are simply replaced by NOP instructions.
In the end, the algorithm identifies all sequences of instruc-
tions that correspond to macro-instructions (APICALL =,
LINUX SYSCALLx, LINUX GETPARAMS, SET WEIGHT)
and replaces them accordingly. Also note that, for a reduction
— of any type — to occur, no instruction, except the first one,

shall be the target of a jump (flag L.M). 260

The algorithm also allows to reduce sequences of operations
into a unique operation. For instance, ADD Reg, X / SUB
Reg, Y will be reduced into ADD Reg, (X - Y): these
decompositions are created during the expansion. Finally,
when a Jcc instruction is replaced by a JMP instruction,
the following code is deleted (NOPed) until reaching a label
(instruction with 1M = 1).

Here is an example of compression (this code represents a
basic decryption routine):

test esi, vall nop
mov [Mem], val2 mov esi, (val2 + val3l3)
add [Mem], val3 nop
push [Mem] nop
pop esi nop
mov [Mem2], esi mov edi, esi
and esi, -1 nop
push [Mem2] nop
pop edi nop
push val4 mov ecx, val4
pop [Mem3] nop
or [Mem3], O nop
mov ecx, [Mem3] nop
mov ebx, vals mov ebx, val5 XOR valé
xor ebx, valé nop
label:
push [esi] mov eax, [esi]
or esi, 0 nop
pop eax nop
mov [Mem4], eax ==> XOr eax, ebx
push [Mem4] nop
pop [Mem5] nop
xor [Mem5], ebx nop
mov eax, [Mem5] nop
mov [Memé], eax mov [edi], eax
push [Memé6] nop
pop [edi] nop
not esi add esi, 4
neg esi nop
add esi, 3 nop
sub edi, 0 nop
add edi, 4 add edi, 4
mov [MemlO0], 4 sub ecx, 4
and [Meml10], -1 nop
add ecx, [MemlO] nop
mov [Memll], ecx cmp ecx, O
sub [Memll], 5 jnz label
add [Memll], 5 nop
jnz label nop

4) Variable reorganization. METAPHOR aims to mutate
at the semantic level (instructions expansion / compression)
and at the code level (permutation) as well as at the code
behaviour level. We already mentionned previously that it was
mutating the internal organization of the viral code. When
the virus gains control, it allocates into memory a space of
(340000h + X) bytes, where X is a random value between
oh and 01F000h. This space is then organized into 5 sections
(see figure 5):

« Section Code contains the decrypted x86 code.

« Section Buf fers contains the miscellaneous arrays and
buffers used by the virus.

« Section Data contains the virus global variables.

o Section Disasm contains the disassembled code and
then the result of the expansion of the permutated code.
When creating the decryption routine, it will contain its
pseudocode as well as the reassembled code.

o La section Disasm2 is first used as a buffer, then it

World Academy of Science, Engineering and Technology 34 2007

contains the result of the permutation of the compressed
pseudocode, and finally it contains the reassembled code.

000000h
Code
080000h
Buffers
0EO0000Oh
Data 160000h
Disasm
200000h
300000h

Fig. 5 METAPHOR’s memory organization (generation 0)

Before starting the mutation and replication process, sec-
tions are randomly permutated and each section is shifted
by a random value between oh and 7FFFh. In the end, the
maximum required size (into memory) is: 300000h + 5
x 7FFFh = 340000h. Thus, upon execution, METAPHOR
never has a unique memory access profile.

The virus contains about 200 global variables, each of these
variables being allocated 8 bytes inside the Data section.
These variables are accessed by their offset in that section. A
register is specifically assigned, which isn’t modified during
the virus execution, and which contains that section’s address.
During generation 0, this base register is ebp. Thus, to access
to the contents of variable InstructionTable, which is
at offset 10h of the Data section, one uses:

mov eax, [ebp + 10h]

Given that this register (ebp) is strictly reserved to data
access, it is sufficient to spot all instructions that use it to
identify read and write accesses to a variable and to list
these very variables. Method IdentifyVariables does
this job and replaces in each one of those instructions the offset
by the index of the associated variable. Then the variables
are shuffled: their organization inside the Data section is
thus completely modified. Then, during reassembly, when
an instruction uses one of these variables, the instruction is
updated to contain the new base register (initially ebp) and
the new offset of the referenced variable.

Thus the memory access profile is modified. This kind of
transformation isn’t however taken to extremes. For instance,
the code often reads the contents of pseudo-instructions, as
in the following code excerpt (where esi and edi contain
pseudo-instructions addresses):

mov ecx, [esi+1l] ; Get the value in ECX
mov eax, [esi]

add esi, 5

and eax, 7 ; Get the register in EAX
mov [edi+1], eax ; Set the register

mov [edi+7], ecx ; Set the value

This kind of access can be profiled, since the internal
organization of an instruction does not mutate. However Thg,

Mental Driller could have taken memory access profile muta-
tion to extremes by modifying this very internal organization
of pseudo-instructions. Given the massive use of instructions
accessing the contents of these pseudo-instructions, impact
would have been even stronger, even though the mutation of
the organization of pseudo-instructions is quite limited (might
we add a few padding bytes to increase mutation possibilities).

Let’s note that, in this transformation’s implementation,
variables are aligned on 8 bytes boundaries so that they can be
randomly positionned on any one of the first 4 bytes: finally,
only 4 bytes are used by a variable.

5) Permutation: Once the compression is over, the engine
permutates the code by splitting it into blocks of random
sizes, between Foh and 1E0h. When doing the splitting, the
following breaks are avoided:

« between a CALL instruction and the associated APICALL
STORE instruction;

« before a JMP or a RET instruction, to avoid two consec-
utive jumps;

« before a JMP or a Jcc instruction, in order for the com-
pression process to correctly compress any Jcc + JMP
or CMP/TEST + Jcc instructions.

Once the code blocks have been computed and shuffled,
the new code is built (and its address saved into variable
PermutationResult). A jump at the first code block is
inserted at the very beginning of the code and the code blocks
are linked with each other using JMP instructions, except in
the following cases:

« The target block directly follows the current block.

o The block’s last instruction is an unconditional jump or

a return instruction.
The final result shall look like:

jmp @blockl
@block4 :

(ends with a ret)

jmp @block4
@blockl:

jmp @block2

6) Expansion: The expansion stage consists in applying
the inverse rules from the compression stage. This method
is called on the virus compressed pseudocode and, later, on
the decryption routine’s code.

The first step consists in randomly modifying the used
registers. A bijective transformation is applied, which takes
into account the following requirements:

« No register should of course be transformed in ESP.

o The base register (initially EBP) used to store the Data

section’s address (see section I11-C4) should not be any

World Academy of Science, Engineering and Technology 34 2007

of EAX, ECX or EDX (which are used by system calls).

o The 8 bits register used by 8 bits operations in the code
must be related to a general purpose register (EAX, EBX,
ECX Or EDX).

Then, the expansion can start: it will update registers as
well as accesses to the virus’ global variables. The expansion’s
result is stored in variable ExpansionResult. To control
the size of expansion, a maximum level of recursivity is first
chosen: it cannot be larger than 3. Then, for each instruction,
we increment the recursivity level and we randomly trans-
form it, by using the inverse compression rules. Intermediate
instructions which are generated are also transformed. NOP
instructions are ignored in the compressed code (to avoid an
uncontrolled increase of size, after several generations).

When an instruction is generated, which uses a temporary
memory address, this memory address points at the Data
section and should not have been allocated for the virus
global variables nor by any previous instruction in the current
expansion chain. The VarMarksTable array is used to mark
which addresses have been allocated. As for global variables,
the allocated address is randomly aligned on one of the first 4
bytes. However, this is different in the case of the decryption
routine since the memory has not been allocated yet (with
a call to malloc): the space to be used by intermediate
operations is then the data section that was allocated inside
the host file for the decryption operations.

When an instruction uses an immediate value, this value
is computationally decomposed into a sequence of operations
that finally yield the expected immediate value. This expan-
sion is managed by method Xp MakeComposedOPImm. It
uses operators ADD, AND, OR and XOR (the SUB opera-
tor is randomly generated when transforming ADD instruc-
tions). Here is for instance the algorithm used to generate a

MOV Dest, Imm instruction:
int vl = random (), v2 = random ();
choose randomly among:
* MOV Dest, vl
ADD Dest, Imm - v1
* MOV Dest, vl & Imm
OR Dest, ((v2 & Imm) "~ (vl & Imm)) | (v2 & Imm)
* MOV Dest, (v2 & “v1) | Imm
AND Dest, vl | Imm
* MOV Dest, vl | Imm
AND Dest, vl | Imm
* MOV Dest, vl
XOR Dest, vl = Imm
* MOV Dest, Imm

In addition, dead code is inserted, with probability 1/16,
after each expansion of an instruction of the compressed code
(if this instruction’s opcode was a CMP, TEST, CALL Or
APICALL STORE, a mere NOP is inserted):

« Instructions that do nothing, like:

MOV Reg, Reg
ADD Reg, O
AND Reg, -1
262

NOP
o Tests that always fail, like:
CMP Reg, Reg / JNZ [RandomLabell]
o Useless x86 instructions: STC, CLC.

7) Reassembly: The last stage consists in assembling the
pseudo-code into valid x86 code. When several translations
are possible, the algorithm chooses one at random. Also, short
jumps and long jumps are randomly used (when a short jump
is possible), and jumps at subsequent addresses are stored in
array JmpRelocationTable, in order to be updated in
the end. After completion of this stage, the code is ready for
encryption and copy out in the host.

D. Randomness Techniques

1) Pseudo-Random Numbers Generator (PRNG): META-
PHOR makes a heavy use of random numbers. It uses its own
pseudo-random numbers generator, with two seeds, seed1l
and seed?2, which are initialized depending on the UNIX date
for seedl and on the code’s first bytes for seed2. Then
a random value is generated using the following algorithm
(ror X denotes right rotation by X bits):
int random () {

"= (seed2 + ror_ 13

seedl "=
(seedl + ror 17 (seed2))

seed2 =
return seedl + ror_ 17 (seedl ~

}

Though this may not be obvious at first sight, the second
seed is very weak, given furthermore that it is initialized
depending on the code’s first bytes which have a low ran-
domness: thus we get, in the worst case, a cyclic generator
of 32 pseudo-random numbers (as soon as seed2 reaches
value 0x00000000 or value OxFFFFFFFF). For a random
seed2, a few tests allow to compute the PRNG’s period
about 40000, which is barely better that the glibc’s gener-
ator (random () function), whose statistical properties are
particularly weak and whose period is in the order of 30000.

Polymorphic viruses usually have their own pseudo-random
generator, often of poor quality, which protects them at least
from a heuristic alert due to a strong utilization of a system’s
PRNG. Yet, some generators exist that are quite powerful and
have a small cost, but their use in polymorphic viruses is
scarce. Here are some of them:

o Linear Congruential Generator (LCG), of which the

following code is an implementation:
(void) {

(seedl + seed2));
~ (seedl + seed2);
seed2) ;

unsigned int lcg next
seed »= 1664525u;
seed += 1013904223u;
return seed;

}

« Registers generaztors, like Xorshift generators (the fol-
lowing example code comes from [10]) and generators
with linear feedback shift registers (LFSR):

/% Galois’ LFSR, with taps 32 31 29 1 x/

unsigned int lfsrg next (void) {
static unsigned int seed = time (NULL) ;
int 1i;
for (i = 0; 1 < 32; 1i++) // shift 32 times
seed = (seed >> 1) ~

(- (signed int) (seed & 1) & 0xd0000001u) ;

World Academy of Science, Engineering and Technology 34 2007

return seed;

unsigned int xorshift128 next (void) ({
/% initialization with random values =/
static unsigned int

x = 123456789, y = 362436069,
z = 521288629, w = 88675123;
unsigned int t;
t =x " (x << 11) ;
X =YY =2; 2 =W;
return w = (w ~ (w >> 19)) ~ (t ~ (t >> 8));

2) “Genetic” techniqgues. METAPHOR combines genetic
characteristics to its generator. Here is the principle. The virus
contains some sort of genetic material which will have a
tendency to favour some behaviours rather than others. On
each replication, this genetic material is updated with a small
random variation from the preceding material.

For instance, a gene contains the current propension of the
virus to encrypt its code or not: the virus initially encrypts
its code with probability 1/16. Depending on its decision, the
gene will be altered in favour or in disfavour of encryption: if
the virus encrypts its body, it will have next time a higher prob-
ability to encrypt again its body, and conversely. Thus after a
few generations, either the code will have a strong propension
to encryption, or a strong propension to absence of encryption.
The propension strengh is related to the survival time (and to
the number of replications) of the virus. Thus, if the virus has
a strong propension to encryption, this means that most of the
previous generations chose encryption and survived: this is
kind of an implementation of natural selection, where viruses
are preys and antiviruses are predators. Thus, let’s imagine
that the antivirus easily detects encrypted replications of the
virus (using statistical entropy analysis for instance) but not
unencrypted replications. In this case, encrypted replications
will be detected before being able to replicate and increase
their propension to encryption, and in the end, most of the
survivors will come from unencrypted ancestors, with a high
propension to no encryption.

METAPHOR contains a genetic material of 24 genes. In
other words, 24 of its choices depend on its genetic history
and its survival abilities. These genes are used for instance
for:

o Number of files to infect: initially, only 50% are infected.

« Choice of the method of infection: position of the viral
code, EPO type, type of the system calls, etc.

« Encryption of the viral code, or no encryption: initially,
the code is encrypted with probability 1/16.

« Encryption method (ADD, XOR, SUB): initially, all meth-
ods have the same probability of being chosen.

« Decryption routine’s code: form of the instructions, ob-
fuscation type, use of anti-heuristic methods, etc.

Given that the virus does not store any information in its
host other than its code, it must still be able to update its
genetic material, from one generation to another. This is where
SET_ WEIGHT macro-instructions come into play: they’re lo-
cated on disassembly and, on reassembly, the “evolved” gene
is used.

Here is the algorithm used to update the genes (function
CheckForBooleanWeight). We notice that the genes vazl(;3

ues cannot exceed a minimal and a maximal threshold (thus
the associated probability never reaches 1 or 0).

/%
Returns 1 or 0, depending on the gene’s contents.
*/

int query gene (int gene) ({

int val = get_gene (gene);
if ((random () & OxFF) >= val) {
// return 1 and increase propension to 1

do {
// minimal threshold reached?
if (val < 0x08) return 1;
if ((random () & OxO0F) > 0)
// increase propension to 1:
set_gene (gene, -- val);
} while ((random () & O0xO0F) == 0);
// repeat with probability 1/16
return 1;
} else {
do {
// maximal threshold reached?
if (val >= 0xF8) return 0;
if ((random () & OxOF) > 0)
// increase propension to 0
set_gene (gene, ++ val);
} while ((random () & O0xO0F) == 0);
// repeat with probability 1/16
return 0;

For a more detailled analysis of genetic viruses, one may
refer to M. Ludwig’s books [9], [8].

E. Detection of METAPHOR

Analysis of METAPHOR comes to an end. As we saw,
several advanced techniques of polymorphism and of anti-
emulation / anti-heuristic protection are implemented in this
virus. Nevertheless they’re not taken to their extremes and thus
this mutation model is still detectable, mainly because of the
following “weaknesses”:

« The viral code’s encryption can always be identified by
a stastical analysis of the code [6]. Indeed, a program
usually has a predefined entropy profile, which shows
few variations when comparing miscellaneous executable
files. Encrypted data, however, have a specific entropy
profile which is much more uniform, depending on the
underlying encryption system, and thus is characteristic
of an encrypted content. Same goes for compressed data.
Any antivirus using this kind of analysis will most likely
consider as suspect a program that contains a lot of en-
crypted content. However, several legitimate applications
use encrypted data, for the purpose of intellectual prop-
erty protection. This is the case of “packed” applications
(even though malware also uses packers on a regular
basis), and this is also the case of Skype for instance.

o When the virus is executed, it compresses its code into
a form that is roughly the same from one generation
to another, by conception: METAPHOR is therefore
vulnerable to any form analysis that monitors memory. As
we might have expected, this weakness can be corrected
to some extent, using miscellaneous techniques that are
preferably not described here but easy to find out. Another

World Academy of Science, Engineering and Technology 34 2007

weakness is also the immutability of METAPHOR’s
mutation grammar.

« METAPHOR’s mutation grammar is globally simple and
does not use any sophihsticated obfuscation tricks — this
is by conception given that the virus wants to be able
to revert effects of mutation. In other words, using more
advanced obfuscation techniques, possibly along with the
addition of metadata into the code (as is the case with
Miss LEXOTAN — see section 11-C), would lead to a virus,
which would be much harder to detect (speaking of its
mere detectability as well as of the complexity of its
detectability).

o Except during decryption, METAPHOR does not protect
itself from behaviour analysis.

E. Filiol studies into more details some aspects of META-
PHOR in [6], from a theoretical point of view, and most
notably regarding the detection barrier on which METAPHOR
sits astride: if it mostly inclines towards detectability, some
modifications would be sufficient to have it incline towards
the other side (see the POC virus PBMOT). To sum up,
METAPHOR is a highly advanced virus, which could be really
dangerous with a few improvements (PBMOT certainly is
the most appropriate proof). Other advances, as on the field
of functional polymorphism, would also give metamorphic
viruses more sophisticated means of defence against detection.

1V. CONCLUSION

If polymorphic and above all metamorphic techniques de-
scribed in this document enable viruses to protect themselves
in a more efficient way against detection, their sophistication
mostly stems from antiviral protection. For antiviral protection
is in fact eternally submitted to two paradoxes:

« The more it develops, the more viruses, worms and other
malwares use advanced protection techniques which get
harder and harder to bypass. In a sense, it sentences
itself indirectly to its own impotence (wrt these advanced
techniques). Yet currently it still remains efficient, thanks
to the mediocre quality of most malwares or to the com-
plexity of the mentionned protection techniques, which
discourages most malware writers.

« And secondly, if on one side the increase of RAM size
and CPU speed, as well as the upcoming of multi-core
processors, seem to be in favour of antiviral protection,
it also enables malwares to use more and more complex
techniques, without having to worry about their cost.
And this is all the more true as, as we told previously,
antiviruses will always be limited in time and CPU cost,
unlike malwares.

Also, it should be noted that the state of the art of current
metamorphic techniques (with viral protection purpose) is
not representative of the threat they represent. Some antiviral
experts sweep blatantly away — recently again [17] — this threat
on the pretext that it never actually proved itself except for
proving its own uselessness. And as a matter of fact, the history
of metamorphic viruses tends to corroborate this: there are few
of them, most of which are poorly accomplished and contain

critical flaws (bugs or conception flaws which make detectigg4

easy). In the same time, development of rootkit techniques
draws away attention. Yet, both threats are real, with different
maturities, but none of them should be overlooked. Even
though the second one is mostly implemented in worms, which
currently represent the most important infectious threat, and
even though it is more technical than the first one, and thus
within the means of more hackers.

All in all, if virus writers were a bit less “in a hurry”
and refined their techniques, the antiviral community could be
quickly overtaken. An advanced use of syntactic and functional
polymorphism techniques, combined with advanced stealth
techniques, would theoretically make the complexity of the
detection problem prohibitive or even undecidable [6] (POC
virus PBMOT).

REFERENCES

[1] John Aycock. Computer Viruses and Malware. Springer, 2006.

[2] Philippe Beaucamps and Eric Filiol. On the possibility of practically
obfuscating programs — towards a unified perspective of code protection.
Journal in Computer Virology, 3(1), April 2007.

[3] Fred Cohen. Computer viruses - theory and experiments, 1984.

[4] Eric Filiol. Strong cryptography armoured computer viruses forbidding
code analysis: the BRADLEY virus. In Proceedings of the 14th EICAR
conference, May 2004.

[5] Eric Filiol. Computer viruses: from theory to applications. Springer
Verlag, 2005.

[6] Eric Filiol. Advanced viral techniques. Springer Verlag France, 2007.
An english translation is pending, due mid 2007.

[7]1 Kharn. Exploring RDA. .aware €Zine, 1, January 2007.

[8] Mark Ludwig. Computer Viruses, Artificial Life and Evolution. Ameri-
can Eagle Publications, Inc., 1993.

[9] Mark Ludwig. The Giant Black Book of Computer Viruses. American

Eagle Publications, Inc., 1995.

George Marsaglia. Xorshift RNGs. Journal of Satistical Software,

8(14), 2003.

The Mental Driller. METAPHOR source code. Version 1D available at:

http://vx.netlux.org/src_view.php?file=metaphorld.zip.

The Mental Driller. TUAREG details and source code.

29A#5: http://vx.org.ua/29a/29A-5.html.

The Mental Driller. Advanced polymorphic engine construction. 29A,

5, December 2000. Available at: http://vx.netlux.org/lib/vmd03.html.

The Mental Driller. Metamorphism in practice or ”how i made META-

PHOR and what i’ve learnt”. 29A, 6, February 2002. Available at:

http://vx.netlux.org/lib/vmd01.html.

MidNyte. An introduction to encryption, April 1999. Available at:

http://vx.netlux.org/lib/vmn{04,05,06} .html.

James Riordan and Bruce Schneier. Environmental key generation

towards clueless agents. In Lecture Notes In Computer Science, volume

1419, pages 15 — 24, 1998.

Alisa Shevchenko. The evolution of self-defense technologies in

malware. Available at: http://www.net-security.org/article.php?id=1028,

July 2007.

Diomidis Spinellis. Reliable identification of bounded-length viruses is

NP-complete. IEEE Transactions on Information Theory, 49(1):280 —

284, January 2003.

Peter Szor. The Art of Computer Virus Research and Defense. Addison

Wesley Professional, 2005.

[10]
[11]
[12] Available in
[13]

[14]

[15]

[16]

[17]

[18]

[19]

Philippe Beaucamps is a PhD student at the CNRS / LORIA in Nancy,
France. He works on the modelization of viral infections, and on formal and
practical malware detection and protection.

Contact address: Loria, Equipe Carte, B.P. 239, 54506 Vandoeuvre-lés-
Nancy Cédex, France

