
Abstract

I describe the design of NooShare, a decentralised ledger similar to
Bitcoin [11] with the novel feature that its proofs of work are iterations
of essentially arbitrary Markov-Chain Monte-Carlo (MCMC) chains, the
scheduling of which can be purchased using the currency itself. It is a
novel economic basis for sharing fallow computational resources.

1



NooShare: A decentralized ledger of

shared computational resources

Alex Coventry
coventrty@gmail.com

February 18, 2012

1 Introduction

NooShare is a crypto-currency similar to Bitcoin [11]. Nooshares1 have
intrinsic utility which increases linearly with the number of people partic-
ipating in the network because they can be used to purchase scheduling of
essentially arbitrary Monte-Carlo algorithms in the proofs of work which
secure the Nooshare blockchain. Monte Carlo algorithms have been de-
veloped for an extremely wide variety of inference [8], optimization and
molecular dynamics problems2. The key idea is to include the output
of some arbitrary computation in the string which ends up being hashed.
This in itself is rather simple, but it raises some serious security and design
problems. See sections 2.2, 2.3 and 3 for an overview of these problems
and how I address them. There are some novel ideas there which may
also be useful in other contexts.

I welcome all critical feedback on all aspects of this document and
the ideas it presents. I am sure I have missed some important security
concerns. The major major weakness I see at the moment is that the
computational model of embarassingly parallel Monte Carlo calculations
is rather exotic, and not worth the trouble for most people to adopt it.

My development of NooShare is not intended as criticism of Bitcoin.
Although Bitcoin is not backed by any resource of intrinsic value, it has
already proved itself as trustworthy medium of exchange and therefore a
viable currency. As David Graeber demonstrates in Debt: the First Five
Thousand Years, money is whatever we say it is and has been attached to
metals of “intrinsic” value for only brief and relatively inhumane portions
of its history [9]. I am absolutely fascinated by the Bitcoin ecosystem and
believe it may enable previously impossible modes of human organization.
My main interest in developing NooShare is that, other things being equal,
there is obvious economic advantage to a blockchain ledger which secures
itself with computations which can simultaneously be turned to some
other purpose.

1A unit of the NooShare currency is called a nooshare. Abbreviated “NS.”
2I must admit that in these three fields of Monte Carlo algorithms I am only experienced

with the applications to inference, but it takes no expertise to craft a brief search which finds
tens of thousands of papers related to Monte-Carlo optimization and molecular dynamics.

2



Also, even though NooShare provides transaction semantics roughly
equivalent to Bitcoin’s, it is not intended as a replacement for Bitcoin’s
primary role as a medium of exchange in transactions involving existing
goods. NooShare’s computations cannot be executed on the Graphics
Processing Units (GPUs) which contribute the bulk of Bitcoin’s proofs
of work, so NooShare does not compete with Bitcoin for computational
resources, either.

NooShare’s intended role is as a new market for application of pre-
viously fallow computational resources. There have been a number of
attempts at such markets in the past, such as CPUShare [1] or Parabon
[2], but those I am aware of arose before the Bitcoin blockchain concept
was published, and rely on a centralized transaction system. NooShare is
the first fully decentralized market for computational resources.

2 Overview of protocol

2.1 Brief description of Bitcoin protocol

NooShare builds on the Bitcoin protocol. Here is a very brief overview of
the main Bitcoin concepts needed to understand NooShare. Further de-
tails of Bitcoin’s operation can be found in the seminal Bitcoin paper [11]
and the Bitcoin wiki [4]. Relevant wiki pages are linked in the following
text.

Bitcoin is essentially a ledger of transactions which transfer funds be-
tween addresses (Elliptic-Curve Digital Signature Algorithm (ECDSA)
public keys) which are represented as base-58 strings. A transaction from
address a to address b is essentially a commitment, signed by a, of a
certain number of Bitcoins to address b. These transactions are broad-
cast over a peer-to-peer network, and participants (“miners”) gather all
the transactions they’ve seen on the network, check whether they’re al-
ready recorded in the ledger, and assemble the unrecorded transactions
into blocks. The ledger is recorded in a series of these blocks, and each
block contains a hash of the block which precedes it, so the blocks form a
chain. Actually, the blocks theoretically form a tree rather than a linear
chain, because in principle the hash of a given block B could be included
in several subsequent blocks, all of which would be claiming B as their
predecessor. However, the network always accepts the currently longest
such chain in the tree as the canonical ledger.

When miners generate blocks, they include a previously unbroadcast
coinbase transaction, which grants a reward to the public key of an address
they control. This reward is halved every four years. A summary of the
block (“header”) is generated along with a nonce, and the combination
is passed through two iterations of the SHA256 hash algorithm. If this
results in a hash image less than some threshold, the block, hash and
nonce are reported to the network, and as long as all the information in
the block is self-consistent and consistent with the ledger up to that point,
the block is prospectively accepted as the next in the chain. The work of
searching for these hash images is motivated by the reward in the coinbase
transaction. This sort of distributed exhaustive search for the solution to

3

https://en.bitcoin.it/wiki/Transaction
https://en.bitcoin.it/wiki/Technical_background_of_Bitcoin_addresses
https://en.bitcoin.it/wiki/Base58Check_encoding
https://en.bitcoin.it/wiki/Mining
https://en.bitcoin.it/wiki/Block
https://en.bitcoin.it/wiki/Blockchain
https://en.bitcoin.it/wiki/Protocol_specification#Transaction_Verification
https://en.bitcoin.it/wiki/Block_hashing_algorithm


a cryptographic problem is sometimes called a “Chinese Lottery” [13].
As long as a majority of the computational resources devoted to the

lottery are controlled by honest participants who only assemble blocks of
transactions consistent with the ledger to date, this hash-image require-
ment forces consensus about the ledger contents. For a party to change
the ledger, they would have to generate a chain of blocks with altered
transactions forking off from an earlier block, and find nonces for their
altered blocks which give appropriate hash images. An attack of this sort
is called “forking the blockchain,”, or sometimes the 51% attack, because
it requires more than half the network’s computational resources. Because
the Bitcoin network always takes the longest chain as canonical, a dishon-
est party would have to be able to find these nonces faster than the rest
of the network combined.

The threshold imposed on the hash image is controlled by the diffi-
culty parameter, and is periodically adjusted according to an estimate of
the current computational resources devoted to the problem, so that the
problem is solved approximately once every 10 minutes.

2.1.1 GPU-hostile crypto-currencies derived from Bitcoin

The SHA256 hash function used in the Bitcoin proof of work is highly
amenable to optimization on massively parallel Graphics Processing Units
(GPUs) and most Bitcoin mining is now done on specialized GPU hard-
ware as a result. The crypto-currencies Tenebrix [6] and Litecoin [5] are
derived from the Bitcoin codebase, but use members of the scrypt family
of hash functions [12] in place of SHA256. These hash functions can be
tuned to require rapid access a very large memory space, making them
particularly hard to optimize to specialized massively parallel hardware.

2.2 Changing the hashing function to do a useful
computation

Section 2.3 describes NooShare transactions which can schedule compu-
tation of arbitrary Monte Carlo functions in the proof-of-work lottery. In
this section I focus on the aspects of the protocol which would be needed
even if the Monte Carlo function used in the proof of work never changes.
Denote this function by A(s, d), where s is a seed for a pseudo-random
generator (PRNG) and d is some data string, perhaps from an earlier
iteration of A. Let R be some metric which takes a result generated by
A and returns a number representing its usefulness to the problem A is
being used to solve. For instance, if A is an MCMC procedure for sam-
pling from a Bayesian posterior distribution, it might return choices of
model parameters, and R(A(s, d)) might be the log likelihood for those
parameters given some fixed set of observations. Or, if A is a Monte-
Carlo molecular dynamics simulation, its return value might represent a
molecular configuration and R might be the negative of the configuration’s
potential energy.

The function A can be included in a hash function HA by the following
simple procedure: Let H(·) be a conventional cryptographic hash function
such as SHA256 or scrypt. Let D(H(·)) be some function which generates

4

http://www.slideshare.net/dakami/bitcoin-8776098
https://en.bitcoin.it/wiki/Difficulty
https://en.bitcoin.it/wiki/Difficulty
http://www.tarsnap.com/scrypt.html


a data string of the form A requires for its second argument (“d” in the pre-
vious paragraph.)3 Given a string S, define Â(S) = A(H(S), D(H(S))).
A hash incorporating the computation in A is given by

H1
A(S) = H(H(S) + Â(S)),

where + denotes concatenation as strings. That is, we use H(S) to choose
the PRNG seed and initial data string we feed to A, then concatenate the
data string from A with H(S) and hash again. The hash function H1

A

could be plugged straight into Bitcoin’s proof of work lottery, but this
would not be secure and the results reported in the blockchain would
probably not be very interesting. In this section I will describe how to
extend this simple idea to make it more secure and useful, building the
expression for HA up in stages. To help you keep track of the extra compo-
nents of HA at each step the current version is indicated by a superscript
(“H1

A”, “H2
A”, “H3

A”, . . . ) The two problems I will address in this section
are

1. From the perspective of whatever Monte Carlo problem motivates
A, choosing results by the hash they generate rather than their R
value is basically useless. For the network’s repeated computation
of A to be useful to the Monte Carlo problem, there has to be an
incentive for miners to report the best results they have seen.4

2. It may be possible to maliciously craft the block chain so that the
second argument to A, D(H(S)), results in A running very slowly,
or never even producing any output. This could be used to fork the
block chain with minimal computational resources, so there has to
be a way to detect such malice, and an alternative protocol for the
network when faced with it.

3. Someone could find a way to compute A much more rapidly than
everyone else, which could also be used to facilitate a blockchain
fork.

2.2.1 Encouraging miners to report the best results

For the security of the NooShare ledger the hash function HA(S) must be a
good approximation to a random oracle and therefore have no correlation
at all with R(Â(S))), the measure of value for the Monte Carlo problem.

3For some applications, like Bayesian sampling from a posterior distribution, complete
analysis of the results requires a full Markov Chain (di) with di+1 = A(·, di). It may therefore
be useful for D to take extra parameters, such as relevant parts of the blockchain to date
or earlier results from local execution of A. Actually reporting the full chain to the network
would require far too much bandwidth, so the best results the network reports must be seen as
approximate modes in the inference problem’s parameter space, the neighborhoods of which
can be investigated more thoroughly in locally computed Markov Chains which start with
these modes.

4If NooShare were actually using a fixed algorithm A in its proof of work, there would
be a simpler scheme than the one described here. Adjusting the difficulty threshold required
for HA(h) according to the rank of R(Â(h)) relative to results reported in earlier blockchain
lotteries would generally result in better results making it into the blockchain. That scheme
won’t work for the full NooShare protocol because as described in section 2.3, A can be
specified by potential attackers.

5



This means that out of all the iterations of A which go into generating a
NooShare block, the one which wins the proof of work lottery is essentially
arbitrary. Many interesting results from other iterations of A will thus
simply be thrown away unless they are reported in some other fashion.
For this reason each block generation in NooShare is followed by a second
competition in which miners report the best results they generated during
the lottery, and the reporter of the very best receives a reward. This
section describes how the competition is structured so no one can cheat
it.

Once someone has generated a block using HA and broadcast it to
the network, each miner broadcasts their best result (Â(S), R(Â(S))), in
the sense that the value metric R(Â(S)) is largest. To prevent a flood
of these reports, the default client delays the report by a random inter-
val, and does not bother to send it if it has already seen a better re-
port. All miners watch the network for the best such report, and verify
it by recomputing R(Â(S)). This verification is potentially moderately
computationally intensive, so to secure the network against a malicious
flood of bogus reports with high R values, the reports must be signed by
ECDSA keys containing miniature proofs of work, namely their base-58
representations5 are required to start with some fixed prefix, perhaps the
characters NShr. On average, a key with this specific prefix can be found
by generating about 200,000 random keys, an expensive operation which
must be completed before mining. Bulk generation of Bitcoin addresses
can be dramatically accelerated by using GPUs, so the NooShare address-
generation algorithm replaces all SHA256 hashes in the Bitcoin algorithm
with scrypt, a GPU-hostile hashing algorithm.6 I will call such proof-of-
work keys work addresses and denote them by the symbol a. Any work
addresses which have been used to sign bogus reports are permanently
blacklisted by the network, and the blacklist is tracked both internally by
the default NooShare client and in the blockchain by the inclusion of one
bogus report per blacklisted work address.

By a mechanism which I will describe shortly, the best report ends up
in the NooShare blockchain ledger, and the work address which signs it is
awarded a prize. It has to be possible to verify that the work address a
which signed the report belongs to the miner which generated the result.
Otherwise, miners could rip the result out of the best report they’ve seen,
sign it themselves, and include the stolen report in the blocks they sub-
sequently generate, so that if they win the block-generation lottery they
also win the best-result competition from the prior block. To prevent this
both the result reports and the headers which are hashed in the proof
of work lottery itself must include some extra information. The headers
include an entry for a, and an entry for the signature of the block by a.
The signature entries of the headers are excluded from the signed texts
for obvious reasons. Let sa(h) denote this signature. Then we define

H2
A(h) = H1

A(h + sa(h))

5To distinguish them from Bitcoin addresses, NooShare addresses will start with N instead
of 1.

6I haven’t yet determined how difficult this proof of work needs to be. It should be a simple
matter to test it by changing vanitygen to use scrypt instead of SHA256.

6

https://github.com/samr7/vanitygen


When miners report the best results they have generated, they send

(a, h, sa(h), Â(h + sa(h)), R(Â(h + sa(h)))).

It is then possible to verify reports by checking sa(h), recomputing Â(h+
sa(h)) and R(Â(h + sa(h)))), and checking equality.

Ensuring that the best result reports are included in the
blockchain For this competition to work, it is also important that
miners have an incentive to include in the blocks they generate the best
results they have seen reported. This is similar to the problem recently
addressed by the “red balloons” payment strategy [7], but admits of a
much simpler solution because we only have to encourage the inclusion of
a single report per generated block.

The best-result competition for a given block is allowed to run until
ten subsequent blocks have been generated, and the NooShare ledger then
assigns the prize to the best report embedded in these ten blocks. The
coinbase address of the first block to include the best report is also awarded
a prize. Any miner who tries to bias the competition by excluding the best
report from a block they generate simply loses this prize to a subsequent
miner who is prepared to include it.

2.2.2 Adapting to prohibitively long runtimes for A

It may happen that A(S, d) does not halt in a reasonable time for some
values of S and d, and NooShare miners need a way to respond to this. Al-
though this is already a potential problem for fixed A (perhaps a somewhat
remote one), it becomes critical in section 2.3, where untrusted parties are
able to specify A.

For this reason, the NooShare network always accepts blocks hashed
using HA, where A(S) = S is the identity algorithm, but the difficulty
threshold for HA set to ten times the difficulty for HA. The default
NooShare mining application always keeps track of the CPU time used
by the current hashing function, and periodically runs HA to measure its
CPU usage. If any iteration of HA takes 20 times more CPU time than
the mean for the last fifty runs of HA, that iteration is killed. If the mean
CPU time for HA exceeds ten times that of HA, the miner switches over
to using HA until the next block is generated.

To keep the runtimes for HA and HA roughly comparable, at least the
outer hash function needs to be GPU-hostile, i.e.

H3
A(S) = Hscrypt(H(S + sa(S)) + Â(H(S + sa(S))))

If it’s substantially more efficient to do so, the inner hash function H can
be something faster like SHA256.

2.2.3 Protecting against massive speedups in computation
of A

Someone who figured out a much faster way to compute the Monte Carlo
function A could place a proportionately greater fraction of entries in

7



the Chinese lottery, making the blockchain ledger vulnerable to a “51%
attack” with relatively modest computational resources. For this rea-
son, every second block uses the fixed benchmark algorithm A with the
hash-image difficulty set so that on average a block is generated every 30
minutes.7

This is a decentralized modification of the “trusted nodes” concept8

used by the SolidCoin cryptocurrency [3].9 It means that even if someone
figures out a way to compute HA instantly, they still need to either do
the same for HA (which essentially means cracking the scrypt hash), or
control more than a quarter of the network’s hashing power. Effectively,
the 51% attack would become a 26% attack, but as the network grows
this should be a sufficient defense.

2.3 Allowing control of A in return for NooShares

The computation A can be specified by a special transaction TA which
destroys the NooShares it contains. This is known as a “scheduling trans-
action.” After TA appears in the blockchain (in, say, block n), the corre-
sponding HA is scheduled for use in the proof of work. The number of the
block in which HA is used is nA = Fn+24+2e, where Fm is the earliest block
available for scheduling with number at least m and e is sampled from the
geometric distribution with mean 12, using a PRNG seeded from the hash
of block n + 1. If a block contains multiple scheduling transactions, they
are scheduled in the order the block lists them. NooShare uses this ran-
dom scheduling of the hashing algorithm to complicate any attempts to
facilitate forking the blockchain by scheduling maliciously crafted hash-
ing algorithms. Any such attempt would require control over the hashing
algorithm in an unbroken range of blocks.

The computational resources demanded by a scheduled computation
A are controlled by the fact that miners will switch over to hashing with
HA if the mean runtime for A is ten times greater than for A.

2.4 Prices and rewards

The coinbase reward for generating a block is 50 NooShares. Unlike the
Bitcoin block reward, this reward is never reduced, because NooShares
have intrinsic utility (the computations they can buy) which increases with
the size of the computational resources devoted to the network. There
is thus no need to encourage mining with the prospect of deflationary
scarcity.

7The HA difficulty for the other blocks is the same, and the difficulty is reset at each block
by taking the median time to solution of the last 336 HA blocks.

8The recent SolidCoin “trusted node” exploit is not a risk here, because there is no node to
attack. The only parallel is that every second block is verified by a different method, meaning
that any attack which overruns the blockchain needs to undermine at least two distinct proofs
of work.

9This citation acknowledges the source of a technical idea and in no way reflects any
investment, emotional or otherwise, in the SolidCoin drama. Please leave NooShare and I out
of it.

8



The prize for the result with the best R value is five NooShares, and
the prize for the coinbase address of the block which first reports it is also
five NooShares.

The scheduling transactions TA must commit at least 65 NooShares,
with anything in excess of that going to the best result reported.

It is important that the reward for block generation is substantially
higher than the reward for the best result, since the blockchain’s need for
bit-identical calculations (see section 3.2.1) forces HA to run a good deal
slower than A could run standalone, mainly because hardware implemen-
tations of floating-point arithmetic are inconsistent. This disparity means
that, for instance, if the prize for reporting the best result was 100 times
the reward for generating a block, miners might get a higher expected
return from generating results from A independently of the blockchain
lottery, and only generating HA for the result with the highest R value
that they choose to report to the network.

It is also important that the total of the prizes connected to a given
block (block reward + best-result reward + best-result-in blockchain award)
be less than the cost of scheduling a computation A for that block. Other-
wise it would be cost-effective for an attacker to repeatedly specify compu-
tations which they can solve much faster than everybody else, and collect
all the associated prizes.

3 Implementation

The NooShare client builds on the Satoshi Bitcoin client, the most com-
plete and thoroughly tested Bitcoin client currently available.

3.1 Security

On the one hand, the best outcome for NooShare is that it becomes a
marketplace for the allocation of substantial computational resources, on
the other it executes code provided by anonymous strangers, and the
history of applications which do this is fraught with privilege-escalation
and denial-of-service attacks. Fortunately, sandboxing technologies are
now extremely reliable, and by combining a few orthogonal sandboxes it is
possible to ensure that a succesful attack on NooShare by this route would
require multiple zero-day exploits in high-profile security technologies.

3.1.1 Lua

The Monte Carlo algorithms used for NooShare’s proofs of work are ex-
pressed as Lua scripts. Although Lua does not count as a “high-profile
security technology,” it has is written in extremely simple C and pro-
vides simple namespace-based sandboxes which have been used in multi-
ple untrusted-execution contexts with moderate security demands, such
as Zippy Log, GINGA-NCL [15] and World of Warcraft. While the Lua
sandbox has not been used in particularly hostile or high-stakes environ-
ments, any attack on the NooShare hashing function would need to exploit
a vulnerability in it.

9

http://lua-users.org/wiki/SandBoxes
https://github.com/indygreg/zippylog/wiki/Lua-Integration
http://www.ginga.org.br/
http://www.wowwiki.com/Secure_Execution_and_Tainting


Lua makes it easy to specify a custom memory allocator. The Lua
process will be pre-assigned a block of memory to allocate from, and
unable to allocate memory beyond that.

3.1.2 Google Native Client

The Lua library is built and run in Google’s Native Client (NaCl) frame-
work [16]. The Lua process communicates with a trusted process via a
custom protocol over NaCl’s “simple RPC” API. This drastically reduces
the attack surface relative NaCl’s standard usage in Google Chrome, as
the trusted codebase is only responsible for brokering data transfer and
the extensive system resources brokered by the Pepper API in Google
Chrome are simply not available to the sandboxed computation.

3.1.3 VMWare

The hashing function is executed in a headless VMWare virtual machine
instance running linux using hardware virtualization. Requiring hardware
virtualization restricts the use of NooShare to relatively modern machines,
but older machines are unlikely to find much use on the network anyway.

An appealing feature of the Google Native Client code verifier is that
it forbids all VM-related x86 opcodes.10. Thus, even if a hostile Lua
script manages to induce execution of arbitrary Native Client code, there
is nothing in the binary which will allow it direct communication with
the VMWare Virtual machine monitor (VMM.) It would probably also
be reasonably straightforward to modify the VMM to take a “sandbox”
signal from the guest OS, after which all but a restrictive whitelist of VM
interactions would fail and shut down the guest, but that isn’t necessary
at this stage.

3.1.4 Linux sandboxing

The linux utrace framework can be used for sandboxing untrusted code
[10]. The Lua process will run in a sandbox which is restricted to the
syscalls required by the Native Client framework.11 It will also run under
an AppArmor profile [14, p. 265] which denies it file system and remote
network access.

3.1.5 Update mechanism

So that security patches to the sandbox component systems can be applied
reliably, NooShare needs a mechanism for pushing updates to clients. For
the time being, mandatory NooShare client updates are enforced using
network-wide alert system which causes affected clients to cease operating.
This is based on the Bitcoin alert system.

10See function NaClAddNaClIllegalIfApplicable in the Native Client source code, subver-
sion revision 6679, in particular the NACLi SVM and NACLi VMX cases.

11It’s simple enough to do, but I haven’t yet determined the exact list of syscalls it needs.

10

https://en.bitcoin.it/wiki/Alerts


3.2 Bit-identical calculations

Execution of a cryptographic hash algorithm needs to be bit-identical
across machines, and Lua needs to be adjusted to ensure that this will be
the case for the NooShare hashes.

3.2.1 Software floating point

It is notoriously difficult to ensure bit-identical calculations using hard-
ware floating point. For this reason, the NooShare Lua is modified to use
a software floating point library.

3.2.2 The Lua table data structure

Lua tables refer to certain types of objects by their memory address,
leading to variability in the order of iteration over a table’s entries. To
prevent this, the Lua table algorithm is modified to keep a counter that
is updated whenever a new Lua object is added to a table. The current
counter value is stored in the object, and the modified Lua tables refer to
this value rather than the memory address when looking up an object.

References

[1] http://packages.ubuntu.com/maverick/cpushare.

[2] http://www.parabon.com/capacity-market/.

[3] http://wiki.solidcoin.info/wiki/Trusted_Nodes.

[4] Bitcoin Wiki. http://bitcoin.it.

[5] Litecoin web page. http://litecoin.org.

[6] Tenebrix web page. http://tenebrix.org.

[7] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. On
bitcoin and red balloons. http://research.microsoft.com/apps/

pubs/?id=156072, 2011.

[8] S.P. Brooks, Gelman, G.L. A.E. Jones, and X.L. Meng, editors.
Handbook of Markov chain Monte Carlo. Springer-Verlag, 2010.

[9] David Graeber. Debt: the First Five Thousand Years. Melville House,
2011.

[10] Roland McGrath. seccomp via utrace. http://www.redhat.com/

archives/utrace-devel/2009-March/msg00159.html, 2009.

[11] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system.
http://bitcoin.org/bitcoin.pdf, 2008.

[12] Colin Percival. Stronger key derivation via sequential memory-hard
functions. presented at BSDCan ’09, May 2009. See also http://

www.tarsnap.com/scrypt/scrypt.pdf.

[13] Jean-Jacques Quisquater and Yvo G. Desmedt. Chinese Lotto as an
Exhaustive Code-Breaking Machine. Computer, 24(11), 1991.

11

http://packages.ubuntu.com/maverick/cpushare
http://www.parabon.com/capacity-market/
http://wiki.solidcoin.info/wiki/Trusted_Nodes
http://bitcoin.it
http://litecoin.org
http://tenebrix.org
http://research.microsoft.com/apps/pubs/?id=156072
http://research.microsoft.com/apps/pubs/?id=156072
http://www.redhat.com/archives/utrace-devel/2009-March/msg00159.html
http://www.redhat.com/archives/utrace-devel/2009-March/msg00159.html
http://bitcoin.org/bitcoin.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf


[14] Kyle Rankin and Benjamin Hill. The Official Ubuntu Server Book.
Prentice Hall, 2009.

[15] L.F.G. Soares, M.F. Moreno, and C. De Salles Soares Neto. Ginga-
NCL: Declarative middleware for multimedia IPTV services. Com-
munications Magazine, IEEE, 48(6):74–81, 2010.

[16] B. Yee, D. Sehr, G. Dardyk, J.B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N Fullagar. Native client: A sandbox
for portable, untrusted x86 native code. In 30th IEEE Symposium
on Security and Privacy, 2009.

12


	Introduction
	Overview of protocol
	Brief description of Bitcoin protocol
	GPU-hostile crypto-currencies derived from Bitcoin

	Changing the hashing function to do a useful computation
	Encouraging miners to report the best results
	Adapting to prohibitively long runtimes for A
	Protecting against massive speedups in computation of A

	Allowing control of A in return for NooShares
	Prices and rewards

	Implementation
	Security
	Lua
	Google Native Client
	VMWare
	Linux sandboxing
	Update mechanism

	Bit-identical calculations
	Software floating point
	The Lua table data structure



