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Although Voice over IP (VoIP) is rapidly being adopted, its security implications are not yet fully
understood. Since VoIP calls may traverse untrusted networks, packets should be encrypted to
ensure confidentiality. However, we show that it is possible to identify the phrases spoken within
encrypted VoIP calls when the audio is encoded using variable bit rate codecs. To do so, we train
a hidden Markov model using only knowledge of the phonetic pronunciations of words, such as
those provided by a dictionary, and search packet sequences for instances of specified phrases. Our
approach does not require examples of the speaker’s voice, or even example recordings of the words
that make up the target phrase. We evaluate our techniques on a standard speech recognition
corpus containing over 2,000 phonetically rich phrases spoken by 630 distinct speakers from across
the continental United States. Our results indicate that we can identify phrases within encrypted
calls with an average accuracy of 50%, and with accuracy greater than 90% for some phrases.
Clearly, such an attack calls into question the efficacy of current VoIP encryption standards. In
addition, we examine the impact of various features of the underlying audio on our performance
and discuss methods for mitigation.
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1. INTRODUCTION

Over the past few years, Voice over IP (VoIP) has become an attractive alterna-
tive to more traditional forms of telephony. Naturally, with its increasing pop-
ularity in daily communications, researchers are continually exploring ways to
improve both the efficiency and security of this new communication medium.
Unfortunately, while it has been well understood for some time now that VoIP
packets must be encrypted to ensure confidentiality [Provos 2004], it has been
shown that simply encrypting packets may not be sufficient from a privacy
standpoint. For instance, we recently showed that it is possible to determine
the spoken language of the encrypted conversation when VoIP packets are first
compressed with Variable Bit Rate (VBR) encoding schemes to save bandwidth,
and then encrypted with a length preserving stream cipher to ensure confiden-
tiality [Wright et al. 2007].

As surprising as these findings may be, some might argue that learning
the language of the speaker (e.g., Arabic) only affects privacy in a marginal
way. If both endpoints of a VoIP call are known (for example, Mexico City and
Madrid), then one might correctly conclude that the language of the conversa-
tion is Spanish, without performing any analysis of the traffic. In this article,
we show that the information leaked from the combination of using VBR and
length preserving encryption is indeed much more serious. Specifically, we
demonstrate that it is possible to spot arbitrary phrases of interest within the
encrypted conversation. Our techniques achieve far greater precision than one
would expect, thereby calling the effectiveness of the encryption scheme into
question.

At a high level, the success of our technique stems from exploiting the corre-
lation between the most basic building blocks of speech—namely, phonemes—
and the length of the packets that a VoIP codec outputs when presented with
these phonemes. Intuitively, to search for a word or phrase, we first build
a model by decomposing the target phrase into its most likely constituent
phonemes, and then further decomposing those phonemes into the most likely
packet lengths. Next, given a series of packet lengths that correspond to an
encrypted VoIP conversation, we simply examine the output stream for a sub-
sequence of packet lengths that match our model. Of course, speech naturally
varies for any number of reasons, and so two instances of the same word will
not necessarily be encoded the same way. Therefore, to overcome this, we make
use of profile hidden Markov models [Durbin et al. 1999] to build a speaker-
independent model of the speech we are interested in finding. Using these
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.
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models we are then able to determine when a series of packets is similar to
what we would expect given a set of phonemes.

As we show later, the approach we explore is accurate, even in the face of
very little information. We assume that an attacker only has access to: (1)
the ciphertext she wishes to search, (2) knowledge of the spoken language of
the conversation (e.g., using our earlier techniques [Wright et al. 2007] she may
know this is a Spanish conversation), and (3) statistics defining what phonemes
are mapped to what packet lengths by the VoIP codec. We argue that even
the last assumption is realistic, as this information can be readily gathered by
an adversary who can use the codec as a “black box” to compress prerecorded
speech. For example, in the case of English, there are relatively few phonemes
and therefore it is plausible to assume that the attacker can find sufficiently
many instances of each phoneme to generate realistic models. She can then use
these phonemes to construct models even for words she has not seen before.

Our results show that an eavesdropper who has access to neither the
speaker’s voice nor even a single utterance of the target phrase, can identify in-
stances of the phrase with average accuracy greater than 50%. In some cases,
accuracy can exceed 90%. Clearly, any system that is susceptible to such at-
tacks provides only a false sense of security to its users. These results are
particularly unnerving when one considers that many widely available VoIP
products, including the popular Skype software, make use of VBR [Zimmerman
2008]. In the following sections, we evaluate the effectiveness of our attack
under a variety of conditions to understand its real-world implications. Addi-
tionally, we explore methods to mitigate the information leaked from encrypted
VoIP. Beyond the technical details presented in our earlier work [Wright et al.
2008], we also investigate the performance of our method when allowing for
partial matches of a phrase, and provide a detailed examination of the features
that impact our ability to spot phrases.

The remainder of the article is organized as follows. In Section 2 we develop
intuition for why VBR-encoded speech is vulnerable to phrase spotting and
show some exploratory data analysis in support of this intuition. The relevant
background for understanding profile HMMs and the workings of our search
algorithm are given in Section 3. Section 4 presents our experimental method-
ology and results. In Section 5 we investigate the factors that determine the
effectiveness of our algorithm on different phrases, and in Section 6 we eval-
uate techniques for thwarting our attack. Finally, we review related work in
Section 7 and conclude in Section 8.

2. INTUITION AND EXPLORATORY DATA ANALYSIS

In what follows, we briefly review the principles of speech coding and speech
recognition that are most relevant to Voice over IP and to our attack. In VoIP,
connection setup and the transmission of voice data are typically performed
using separate connections. The control channel operates using a standard
application-layer protocol like the Session Initiation Protocol (SIP) [Rosenberg
et al. 2002], the Extensible Messaging and Presence Protocol (XMPP) [Saint-
Andre 2004], or an application-specific control channel like Skype [Skype 2009].
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Fig. 1. Basic CELP encoder.

The voice data is typically transmitted as a Real-time Transport protocol
(RTP) [Schulzrinne et al. 1996] stream over UDP, which carries a version of
the audio that has been compressed using a special-purpose speech codec such
as GSM [ETSI/GSM 1991], G.728 [Dimolitsas et al. 1993], or several others.

Generally speaking, the codec takes as input the audio stream from the user,
which is typically sampled at either 8,000 or 16,000 samples per second (Hz).
At some fixed interval, the codec takes the n most recent samples from the
input, and compresses them into a packet for efficient transmission across the
network. To achieve the low latency required for real-time performance, the
length of the interval between packets is usually fixed between 10 and 50ms,
with 20ms being the common case. Thus, for a 16kHz audio source, we have
n = 320 samples per packet, or 160 samples per packet for the 8kHz case.

Many common voice codecs are based on a technique called Code-Excited
Linear Prediction (CELP) Schroeder and Atal [1985], which is shown in
Figure 1. For each packet, a CELP encoder simply performs a brute-force
search over the entries in a codebook of audio vectors to output the one that
most closely reproduces the original audio. The quality of the compressed
sound is therefore determined by the number of entries in the codebook. The
index of the best-fitting codebook entry, together with the linear predictive
coefficients and the gain, make up the payload of a CELP packet. The larger
codebooks used for higher-quality encodings require more bits to index, which
results in higher bit rates and therefore larger packets.

In some CELP variants, such as QCELP [Gardner et al. 1993], Speex’s [Valin
and Montgomery 2006] variable bit rate mode, or the approach advocated by
Zhang et al. [1997], the encoder adaptively chooses the bit rate for each packet
in order to achieve a good balance of audio quality and network bandwidth.
This approach is appealing because the decrease in data volume may be sub-
stantial, with little or no loss in quality. For instance, in a two-way call, each
participant is idle roughly 63% of the time [Chu 2003], and therefore much of
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.
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Fig. 2. Distribution of bit rates used to encode four phonemes with Speex.

the conversation can be compressed with low bit rates. Unfortunately, this ap-
proach can also cause substantial information leakage within encrypted VoIP
calls because, in the standard specification for Secure RTP (SRTP) [Baugher
et al. 2004], the cryptographic layer does not pad or otherwise alter the size of
the original RTP payload.

Intuitively, the sizes of CELP packets leak information because the choice
of bit rate is largely based on the audio encoded in the packet’s payload. For
example, the variable bit rate Speex codec encodes vowel sounds at higher bit
rates than fricative sounds like “f” or “s”. In phonetic models of speech, sounds
are broken down into several different categories, including the aforementioned
vowels and fricatives, as well as stops like “b” or “d”, and affricatives like “ch”.
Each of these canonical sounds is called a phoneme, and the pronunciation
for each word in the language can then be given as a sequence of phonemes.
While there is no consensus on the exact number of phonemes in the English
language, most in the speech community put the number between 40 and 60.
For a listing of one commonly used set of 60 English phonemes, with examples
of each, see Appendix A.

To demonstrate the relationship between bit rate and phonemes, we encoded
several recordings from the TIMIT [Garofolo et al. 1993] corpus of phoneti-
cally rich English speech using Speex in wideband (i.e., 16 kHz sampling) vari-
able bit rate mode, and observed the bit rate used to encode each phoneme.
The probabilities for 8 of the 21 possible bit rates are shown for a handful of
phonemes in Figure 2. As expected, we see that the two vowel sounds, “aa” and
“aw”, are typically encoded at significantly higher bit rates than the fricative “f”
or the consonant “k”. Moreover, large differences in the frequencies of certain
bit rates (e.g., 16.6, 27.8, and 34.2 kbps), can be used to distinguish aa from aw
and f from k.

It is these differences in bit rate for the phonemes that make recognizing
words and phrases in encrypted traffic possible. To further illustrate the pat-
terns that occur in the stream of packet sizes when a certain word is spoken, we
examined the sequences of packets generated by encoding several utterances of
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Fig. 3. Bit rates for “artificial.”

Fig. 4. Bit rates for “intelligence.”

the words “artificial” and “intelligence” from the TIMIT corpus [Garofolo et al.
1993]. We represent the packets for each word visually in Figures 3 and 4 as
heatmaps. We show the encoder’s bit rate on the y-axis and position in the se-
quence on the x-axis. Starting with a plain white background, we darken the
cell at position (x, y) each time we observe a packet encoded at bit rate y and
position x for the given word.

In both graphs, we see several dark gray or black grid cells where the same
packet size is consistently produced across different utterances of the word,
and in fact, these dark spots are closely related to the phonemes in the two
words. In Figure 3, the bit rate in the 2nd–5th packets, which is associated with
the “a” in artificial, is usually quite high (35.8kbps), as we would expect for a
vowel sound. Then, in packets 12–14 and 20–22, we see much lower bit rates
for the fricative “f” and affricative “sh”. Similar trends are visible in Figure 4;
for example, the “t” sound maps consistently to 24.6 kbps in both words.
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.
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3. SPOTTING PHRASES WITH PROFILE HMMS

Our goal in this work is to recognize spoken phrases in encrypted VoIP con-
versations using only minimal knowledge of what the actual audio content of
the phrase should sound like. In fact, the techniques we develop here do not
require knowledge of the identity of the speaker, or any examples of the audio
produced by speaking the target word or phrase. For ease of exposition, we
begin the discussion of our machine learning techniques by first addressing a
much easier scenario, wherein the attacker does have access to several record-
ings of the target phrase being spoken, though not necessarily by the target
speaker. Later, we show how these techniques can be adapted to handle the
more challenging case where the attacker may have never heard the word or
phrase she wishes to detect.

3.1 Recognizing a Phrase by Training from Several Examples

If we assume that the same sequence of packet sizes is produced each time a
given word is spoken, then the problem of identifying instances of that word
can be reduced to a substring matching problem. However, human speech is
known to exhibit a high degree of variability, and the adaptive compression
performed by the codec may contribute additional variance to the resulting
stream of packet sizes. To handle this variation, we can instead apply matching
algorithms from the speech recognition and bioinformatics communities. In
both of these areas, techniques based on hidden Markov models [Rabiner 1989]
have proven to be extremely useful [Durbin et al. 1999; Wilpon et al. 1990],
especially when the training data itself may exhibit high variability.

In particular, the common bioinformatics problem of searching a protein
database for fragments of known protein families is similar in many ways
to searching a stream of packet sizes for instances of a word or phrase.
Proteins are made up of twenty different amino acids, while the Speex codec
in wideband mode produces twenty-one distinct packet sizes. There may be
significant variation between proteins in the same family or between different
utterances of the same phrase. Therefore, in this article, we adapt profile
hidden Markov model techniques [Eddy 1995], which were originally developed
for performing multiple sequence alignment of protein families and searching
protein databases [Krogh et al. 1994], to the task of finding words and phrases
in encrypted VoIP traffic.

The general outline of our strategy is as follows: (1) build a profile HMM
for the target phrase, (2) transform the profile HMM into a model suitable
for performing searches on packet sequences, and (3) apply Viterbi decoding
[Viterbi 1967] on the stream of packets to find subsequences of packets that
match the profile. We elaborate on each of these steps next.

3.1.1 Building a Profile HMM. A profile HMM [Durbin et al. 1999], shown
in Figure 5, consists of three interconnected chains of states, which describe
the expected packet lengths at each position in the sequence of encrypted VoIP
packets for a given phrase. The Match states, shown in Figure 5 as squares,
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Fig. 5. An example profile HMM.

represent the expected distribution of packet sizes at each position in the se-
quence. Insert states, shown as diamonds, and Delete states, shown as circles,
allow for variations from the typical sequence. The Insert states emit packets
according to a uniform distribution or some other distribution that represents
the overall frequencies of packet sizes in VoIP streams, and thus they allow for
additional packets to be “inserted” in the expected sequence. Delete states are
silent, meaning that they simply transition to the next state without emitting
any packets; doing so allows for packets that are normally present to be omit-
ted from the sequence. Initially, the Match states’ emission probabilities are
set to a uniform distribution over packet sizes, and the transition probabilities
in the model are set in such a way that the Match states are the most likely
state in each position.

Given an initial model and a set of example sequences of packets for the tar-
get phrase, there is a well-known Expectation-Maximization [Dempster et al.
1977] algorithm due to Baum et al. [1970] that uses dynamic programming
to iteratively improve the model’s parameters to better represent the given
training sequences. This algorithm is guaranteed to find a locally optimal set
of parameters that maximizes the likelihood of the model given the training
sequences. Unfortunately, parameters chosen via this method are not guaran-
teed to be globally optimal, and often the difference between local optima and
the global optimum is substantial. Therefore, we apply simulated annealing
[Kirkpatrick et al. 1983] in the Baum-Welch algorithm to decrease the risk of
not progressing out of a local optimum. After this algorithm has converged, we
apply Viterbi training [Vogel et al. 1996] to the resulting model to further re-
fine its parameters for use in searching streams of packets for the given target
phrase. While this last step is not guaranteed to find an optimal set of parame-
ters, it does maximize the contribution of the most likely sequences of states to
the model’s likelihood, and it is widely used in bioinformatics applications for
training the models used in searching protein databases [Durbin et al. 1999].

3.1.2 Searching with a Profile HMM. In an encrypted VoIP call, packets
for the target phrase will be surrounded by packets that comprise the rest of
the conversation. To isolate the target phrase from its surroundings, we add
five new states to the standard profile HMM to create a search HMM, which is
shown in Figure 6. The most important new state is the Random state, shown
as a diamond in the figure because, like the Insert states, it emits packets ac-
cording to a uniform or other “random” distribution. When we search a stream
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.
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Fig. 6. An example search HMM.

of packets, the Random state will match packets that are not part of the phrase
of interest, and the states in the profile part of the model will match the pack-
ets in the target phrase. Two new silent states, called the Profile Start and
Profile End states, are shown in Figure 6 as circles. They allow for transitions
between the Random state and the profile part of the model. Because we want
to find only instances of the entire target phrase, transitions from the Profile
Start state are weighted such that the transition to the Match state in the first
position is much more likely than the others.

To find instances of our target phrase in the sequence of packets from a
VoIP conversation, we use the Viterbi algorithm [Viterbi 1967] to find the most
likely sequence of states in the model to explain the observed packet sizes.
Each subsequence of states which belong to the profile part of the model is
called a hit, and is potentially an instance of the target phrase. To evaluate
the goodness of each hit, we compare the likelihood of the packet lengths given
the profile model, versus their likelihood under the overall distribution from
the Random state. More formally, we calculate the log odds score for a hit
consisting of packet lengths !i, ..., !j, as

scorei, j = log
P(!i, ..., !j|Pro f ile)
P(!i, ..., !j|Random)

. (1)

Intuitively, this score tells us how well the packets match our model, and we
discard any hit whose score falls below a given threshold. We return to how to
set these thresholds in Section 4.7.

3.2 Synthesizing Training Data

Thus far, we have made the simplifying assumption that the adversary could
build her models using several audio recordings of each word or phrase she
wanted to detect. However, in practice, this assumption is far from realistic.
Because of the distribution of words in natural language, even in very large
corpora, there will be many words that occur only a few times, or not at all.
The speech recognition community has developed efficient techniques for con-
structing word models without the need for labeled training examples of every
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word. In this section, we show how similar strategies can be applied to our task
of spotting words in encrypted VoIP, even when the eavesdropper has never ac-
tually heard any of the words in the target phrase.

The techniques in this section rest on the idea that all spoken words in a
language are formed by concatenating phonemes, much like words in written
language are formed by making strings of letters. In a phonetic acoustic model
of speech (refer to Chapter 3 of Jelinek’s text on speech recognition [Jelinek
1998]), small, profile-like HMMs are trained to represent the sounds that cor-
respond to each phoneme. Then, to construct a word HMM, the HMMs for the
phonemes used to pronounce the word are concatenated to form a long chain
of states that represents the sequence of sounds in the word. Similarly, phrase
HMMs are constructed by concatenating word models. Typically, the sequence
of phonemes used to pronounce each word is taken from a phonetic pronuncia-
tion dictionary, such as PRONLEX [Kingsbury et al. 1997], although they may
also be taken from the pronunciatons given in a standard English dictionary.
Because these pronunciation dictionaries are relatively easy to create and can
be stored as plain text files, it is much easier and less expensive to obtain a
large-vocabulary pronunciation dictionary than to obtain a corpus of speech
recordings for the same words.

3.2.1 Building Word Models from Phonemes. Rather than concatenating
independently trained HMMs, which are not robust to variations in pronun-
ciation and dialect, we instead choose to use a heuristic that simultaneously
retains the simplicity and efficiency of the basic profile HMM topology and
the techniques outlined in the previous section, yet captures a wide range of
pronunciations for each word. We use a phonetic pronunciation dictionary,
together with a library of examples of the packet sequences that correspond
to each phoneme, to generate a synthetic training set for the phrase in ques-
tion. Then, using this synthetic training set in place of actual instances of the
phrase, we can train a profile HMM and use it to search VoIP conversations
just as described in Section 3.1. This novel approach affords us great flexibility
in finding an essentially unlimited number of phrases.

To generate one synthetic sequence of packets for a given phrase, we begin
by splitting the phrase into a list of one or more words. For each word in the list,
we replace it with the list of phonemes taken from a randomly selected pronun-
ciation of the word from our phonetic pronunciation dictionary. For example,
given the phrase “the bike,” we look up “the” and “bike” in our pronunciation
dictionary and get the phonemes “dh ah” and “b ay k,” giving us a sequence of
5 phonemes: “dh, ah, b, ay, k.” Then, for each of the phonemes in the resulting
list, we replace it with one example sequence of packets sizes taken from our
library for the given phoneme.

3.2.2 Improved Phonetic Models. Because the sounds produced in a
phoneme can vary significantly depending on the phonemes that come im-
mediately before and immediately after, it is essential that we estimate
packet distributions based on the diphones (pairs of consecutive phonemes) or
triphones (three consecutive phonemes), rather than the individual phonemes
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.



Uncovering Spoken Phrases in Encrypted Voice over IP Conversations · 35: 11

Fig. 7. Overview of the training and detection process.

in the phrase. To do so, we start by grouping the phonemes in the phrase into
groups of three, so that the triphones overlap by one phoneme on each end. For
example, from our sequence of phonemes

dh, ah, b , ay, k

we get the triphones

(dh, ah, b ), (b , ay, k).

We then check the resulting list of triphones to make sure that we have a
sufficient number of examples in our library for each triphone in the list. If the
library contains too few examples of one of the triphones, we split it into two
overlapping diphones. Returning to our example, if we have no samples of the
triphone (dh, ah, b ), we replace it with the diphones (dh, ah) and (ah, b ), giving
us the sequence

(dh, ah), (ah, b ), (b , ay, k).

Similarly, we replace any diphones lacking sufficient training data with single
phonemes. As this small example illustrates, this technique allows us to use
a better phonetic model for sequences of phonemes for which we have several
examples in our library, yet allows a great deal of flexibility for combinations
of words or sounds that we have not seen before. If, for instance, the training
corpus in our example does not contain “the bike”, but it does have examples
of people saying “the” (dh, ah), “a bird” (ah, b, er, d), and “bicameral” (b, ay,
k, ae, m, ax, r, ax, l), we can still derive a good model for the packets that will
occur when a VoIP caller says “the bike.”

Thus, to identify a phrase without using any examples of the phrase or any
of its constituent words, we apply this concatenative synthesis technique to
generate a few hundred synthetic training sequences for the phrase. We use
these sequences to train a profile HMM for the phrase and then search for the
phrase in streams of packets, just as in the previous section. An overview of
the entire training and detection process is given in Figure 7.

4. EMPIRICAL EVALUATION

To evaluate our phrase spotting technique, we focus our efforts on assessing
the impact of various features of the underlying audio on phrase spotting
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performance, and examine the ability of an attacker to detect the presence of
phrases within an encrypted packet stream. In these experiments, we use au-
dio recordings from the TIMIT continuous speech corpus [Garofolo et al. 1993],
one of the most widely used corpora in the speech recognition community. The
TIMIT corpus contains 6,300 phonetically rich English sentences spoken by
a total of 630 people: 462 speakers randomly selected by the corpus’ creators
as a training set and the remaining 168 speakers designated as a test set.
Speakers in the dataset include males and females with eight distinct regional
dialects from across the continental United States. Both the test and training
sets include all gender and region combinations.

One of the most appealing features of TIMIT for our evaluation is that it
includes time-aligned phonetic transcriptions of each sentence that denote the
start and end of each phoneme. After encoding the audio in the training set
with Speex in wideband VBR mode, we use these phonetic transcriptions to
build our library of packet sequences that correspond to each phoneme, di-
phone, and triphone in the training set. Although TIMIT includes a primitive
pronunciation dictionary containing pronunciations for each word in the cor-
pus, the included pronunciations were originally taken from an old version of
Merriam-Webster’s Pocket Dictionary, and thus may represent “proper” Amer-
ican English rather than colloquial speech. Therefore, we also use the phonetic
transcriptions for the training sentences to build up an empirically-derived pro-
nunciation dictionary based on the way the speakers say each word in the train-
ing data. For increased coverage in our empirical dictionary, we also include
pronunciations from the PRONLEX dictionary, which were derived in a simi-
lar to our empirically-derived dictionary by using the CALLHOME telephone
speech corpus [Kingsbury et al. 1997].

4.1 Experimental Setup

To evaluate the effectiveness of our phrase spotting techniques, we use the
TIMIT training data to build HMMs to search for 122 target sentences. Specif-
ically, we sample uniformly over the available pronunciations for each of the
words in the sentence to determine the sequence of phonemes to synthesize.
We then use the synthesis technique described in Section 3.2 to generate the
sequence of packets associated with those phonemes. Since there are many pos-
sible pronunciations and packet sequences associated with each of the words in
the sentence, we repeat this process 400 times for each sentence to create a di-
verse collection of training samples. This data is then used to train the profile
HMMs created using the HMMER software package [Eddy 2009]. In our ex-
periments, we use the default initial transition and emission probabilities for
HMMER, except in the case of the Random state where we use the unigram
distribution of packet sizes found in our training data.

In order to produce realistic testing data, we simulate VoIP conversations for
each of the speakers in the TIMIT test set by taking two copies of each of the
given speaker’s sentences, and concatenating all of them in a random order.
By randomly placing multiple copies of the same phrase within a simulated
ACM Transactions on Information and System Security, Vol. 13, No. 4, Article 35, Pub. date: December 2010.
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conversation, we can ensure that our ability to spot the phrase is not dependent
on the context of the preceding or succeeding phrases in the conversation. We
create five of these simulated conversations for each speaker to minimize any
impact of the sentences’ location in the conversation on the performance of our
algorithms.

We then encode the simulated conversations with wideband Speex in VBR
mode and use the profile HMMs to search for instances of each phrase in the
resulting stream of packet lengths. From the Viterbi alignment of the packet
lengths to the phrase HMM, we get the subsequence(s) of packets indicating
potential hits for the phrase, with log odds scores for each. Subsequences with
scores above a given threshold are considered definitive hits, and each hit is
labeled as a true positive only if it contains all of the words for the given phrase.
Any definitive hit which does not contain all words in the phrase is considered
a false positive.

We adapt standard metrics from the information retrieval community to as-
sess the effectiveness of our approach. Let T Pt, FPt, and FNt be the number
of true positives, false positives, and false negatives achieved when operating
with threshold t. Then, the precision at t is defined as prect = T Pt/(T Pt + FPt)
and measures the probability that a reported match is correct. We also use
recall, defined as recallt = T Pt/(T Pt + FNt), as the probability that the algo-
rithm will find the phrase if the phrase is indeed contained within the cipher-
text. Ideally a search algorithm would exhibit precision and recall both close
to 1.0.

To assess the accuracy of our approaches under different parameters, we
compute recall and precision over a variety of thresholds. An intuitive way to
derive the threshold for a given model would be to use the average log odds
score (Eq. (1)) of the training sequences. However, since the log odds score is
proportional to the length of the phrase, we cannot directly compare the perfor-
mance of models for different phrases at the same log odds score. Therefore, to
compare accuracy between models for different phrases, we set the threshold
for each model to be some fraction of the model’s log odds score on the training
data. Explicitly, for each phrase p, let σp be the average log odds score ob-
served during training for the model mp. σp will be proportional to the length
of mp. For a multiplier δ ∈ [0, 2] we set the testing threshold tp = δ × σp, and
compute the average precision and recall at multiplier δ using T Ptp , FPtp, and
FNtp for each phrase p in our testing set. We can then examine how precision
relates to recall by plotting average precision versus average recall at each
value of δ.

With these comparison metrics at hand, we can now proceed to analyze the
accuracy of our approach. First, we take an analytical approach and examine
the performance of our method over a range of thresholds to study the impact
of the pronunciation dictionary, the speaker’s gender, background noise, and
sampling rate. We further examine our results under less stringent definitions
of true and false positives to better understand the realistic impact of these re-
sults; specifically, we look at the performance with respect to individual pack-
ets. Finally, we assume the viewpoint of an attacker and empirically estimate
a specific threshold for each phrase.
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Fig. 8. The impact of pronunciation dictionary choice.

4.2 The Importance of Accurate Pronunciation Dictionaries

In order to build a model for a phrase, we first must know the phonemes
that comprise the phrase. While the TIMIT pronunciation dictionary describes
which phonemes should appear in each phrase, we believe that these phonemes
may not necessarily be representative of colloquial speech. To verify this hy-
pothesis, we compare the accuracy of our approach using models built with this
pronunciation dictionary and with models built with our empirically derived
dictionary. The results of this analysis are presented in Figure 8.

Clearly, the quality of the pronunciation dictionary is critical to the success
of our phrase spotting technique. With the default TIMIT pronunciations, we
achieve equal recall and precision at around 0.28. However, using the more
realistic pronunciation dictionary, we simultaneously achieve recall of 0.50 and
precision of 0.51. In other words, on average we are able to find 50% of the
instances of the phrases of interest, and when the algorithm indicates a match,
there is a 51% chance that the flagged packets do indeed encode the given
phrase. These results are especially disconcerting given that the conversation
was encrypted in order to prevent an eavesdropper from recovering this very
information. In light of these results, we perform the remaining experiments
using only the empirically derived pronunciation dictionary.

4.3 Gender Differences

To further explore the impact of training data composition on the accuracy of
our approach, we divided the testing and training set by gender and performed
the same test. The hope here is that we might be able to eliminate any sort
of gender variation to improve models. In Figure 9, we see that this is not
the case. It appears that any improvement due to gender-specific training is
more than offset by the decrease in the size of the training set. Our accuracy
for female speakers, who comprise only 30% of the dataset, decreases more
than for the male speakers, for whom we can still spot phrases with nearly
unchanged accuracy.
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Fig. 9. Recall and precision by gender.

Fig. 10. Precision and recall when presented with noisy data.

4.4 Robustness to Noise

We also evaluate the impact of noise on our ability to identify phrases. For
this test, we add pink noise to the simulated conversations in the TIMIT test
data. We chose pink noise rather than white noise or any number of back-
ground sounds (metal pots and pans clanging, a baby crying, etc.), because the
energy is logarithmically distributed across the range of human hearing. This
makes pink noise much more difficult for the codec’s noise removal algorithm
to filter, and therefore should influence the choice of bit rates in the packets.
Furthermore, the use of such additive noise generation techniques is common
practice for exploring the impact of noise on speech recognition methods (e.g.,
Tibrewala and Hermansky [1997], Okawa et al. [1998], Junqua et al. [1994]).

We experimented with three additive noise scenarios: 90% sound to 10%
noise, 75% to 25%, and 50% to 50%. With 10% noise, the recordings sound as
if they were transmitted over a cell phone with poor reception, and with 50%
noise it is almost impossible to tell what is being said. Figure 10 shows the
results for these experiments. Notice that with 10% noise, we are still able to
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Fig. 11. Precision and recall for narrowband (8kHz) data.

achieve recall of .39 and precision of .40. Even with 25% noise, we can still
achieve recall and precision of .22 and .23, respectively. These results show
that as long as the quality of the voice channel is reasonable, the attacker can
still identify an alarming number of phrases.

4.5 Wideband versus Narrowband

The Speex codec that we use for our evalution, in addition to offering the op-
tion of variable bit rate compression, also offers different modes of operation in
order to handle audio inputs of varying fidelity. Its narrowband mode operates
on an input signal sampled at 8kHz, and aims to provide telephone-quality
speech with low bandwidth requirements. Wideband mode operates on input
signals sampled at 16kHz, with the goal of improved audio quality at the cost
of increased traffic volume.

Fortunately, the TIMIT corpus comes to us sampled at 16kHz. To compare
our search HMM’s performance on narrowband-encoded speech to our existing
results on wideband data, we downsample the TIMIT recordings to 8kHz and
compress them with Speex in narrowband mode. Using the resulting narrow-
band packets, we synthesize training data, build phrase models, and run the
HMM search just as we did for the wideband data. In Figure 11, we see that
our search algorithm is significantly less effective on narrowband data. The
recall and precision results are in fact roughly similar to those we achieve on
wideband data with 10% noise. This change in performance is due primarily
to the decrease in the number of bit rates from twenty-one in wideband mode
to only nine in narrowband mode. In effect, this reduction in bit rates requires
that more phonemes be grouped into the same bit rate, thereby reducing the
information about the underlying audio represented in the packet sizes.

4.6 Relaxing the Criteria for Exact Matches

Due to our strict definition of a true positive, the aforementioned analysis
might understate the practical performance of our technique. For instance,
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Fig. 12. Precision and recall when relaxing the requirement that all words be found in a hit.

in several of the false negatives, the reason why the target sentence was not
identified was because the model failed to match one or two of the words at
the beginning or end of the phrase. In general, this behavior is due to limited
training data to represent the appropriate phonetic context at the beginning
and end of phrases.

Therefore, to better gauge the potential improvements we can attain if our
requirement for a true positive were slightly relaxed, we report the recall and
precision achieved when the search HMM is allowed to miss a small fraction
of the words in a phrase, which is illustrated in Figure 12. Both recall and
precision increase in this more relaxed setting, although the improvement is
greater for recall than precision. When we consider reported matches that
contain at least n−2 of the n words in the phrase as true positives, our approach
achieves recall of .55 and precision of .53. Compared to our original, stricter
classification, this represents an increase of 9% to recall and 4% to precision.
These results show that our definition of a true positive is an important part of
the explanation for why the technique fails on some phrases. Note that when
we limit ourselves to all but two of the words in a reported match to be a true
positive, we can attain 100% recall for some phrases.

Further, we can quantify the performance of our method in terms of the
proportion of packets that are correctly identified as being part of a given
phrase. From the annotations on the TIMIT data, we can determine whether
each packet contains audio for our target phrase. We then compare the se-
quences of packets flagged by our HMM search algorithm with this ground
truth to determine the true positives and false positives for the algorithm with
respect to packets. The precision versus recall curve based on per-packet re-
sults, shown in Figure 13, indicates that our performance improves slightly
over that of our per-word results. This alternate view of our results achieves
a precision and recall of 0.6. As a whole, these results indicate that an at-
tacker can very accurately identify phrases if they are willing to tolerate loose
matches.
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Fig. 13. Precision and recall when measuring hits on a per-packet basis.

4.7 An Attacker’s Point of View

Until now, we studied the success of our techniques across a wide range of
thresholds. An attacker, on the other hand, would need to pick a single thresh-
old in advance. Unfortunately for the attacker, picking an optimal threshold in
such cases is an open research problem. Therefore, to explore the problem of
threshold selection, we discuss a technique to estimate a good threshold, and
the resulting expected performance.

As mentioned in Section 3, for a phrase p, the average log odds score σp
that is observed during the training of model mp is roughly indicative of how
well the model will be able to perform in practice. Loosely speaking, if σp is
large, then the model will exhibit high true positive rates. We use this obser-
vation to our advantage when selecting the attack threshold tp. That is, we
empirically estimate tp as a linear function of σp, setting tp = δ × σp, where δ
is a multiplier that maximizes the “quality” of the search algorithm. To com-
plete our task of selecting a threshold we must then solve two problems: (1)
select a general function that defines the “quality” of the search algorithm at
a specific threshold; and (2) choose a way to estimate the δ that maximizes
quality.

While we could define the “quality” at threshold tp as either recalltp or
precisiontp

, neither metric is appropriate for this task. Instead, to achieve a
good balance of precision and recall, we define the quality of a search algo-
rithm at threshold t to be the difference between the number of true positives
and the number of false positives at tp: T Ptp − FPtp.

If the adversary has access to a relatively small number of recorded phrases,
she can build search HMMs for them and use the performance of these models
to derive a good value of δ for use in setting the thresholds for other phrases
that she really wants to search for. We use leave-out-k cross validation to es-
timate her chances of success using the TIMIT testing data. In each of sev-
eral iterations, we select k phrases ( p̃1, . . . , p̃k) at random from the testing
set and find the thresholds tp̃1 , . . . , tp̃k that maximize the difference in true
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Fig. 14. Attacker’s recall and precision for 122 phrases.

positives and false positives for each phrase. We set δ p̃i = tp̃i/σ p̃i for each
i ∈ [1, k], and set δ to be the average over δ p̃i. Then, for each phrase p in
the remainder of the test set, we estimate our maximizing threshold for p to be
tp = δ×σp, and calculate the recall and precision when searching for phrase p at
threshold tp.

Setting k to be 1/4 of our testing set, this technique achieves mean recall
and precision rates of .32 and .75, respectively. Given that our original av-
erages were .50 and .51, it seems that our estimation technique is somewhat
conservative, selecting thresholds that are higher than optimal. The values
of recall and precision achieved for each phrase using our threshold selection
algorithm are presented in Figure 14. Each of the points indicates the recall
and precision for one of the 122 phrases in our test set. Because simple scatter
plots often plot many points on top of one another, we also vary the background
color to indicate the density of the points in each area of the graph. Dark back-
grounds indicate high density, and light backgrounds indicate areas of low den-
sity. While this algorithm is not optimal, its recall is often above 40%, and we
can recognize most of the phrases with precision greater than 80%. We believe
this shows concretely that an attacker with access to only population statis-
tics, and the ciphertext of a VBR encoded and encrypted VoIP conversation has
almost a one in three chance of finding a phrase of her choice!

5. ANALYSIS OF RESULTS

While our phrase spotting approach performs well on average, there are sev-
eral phrases that we excel at uncovering and many that we are simply unable
to find. Figure 15 shows the precision and recall for four phrases that our
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Fig. 15. Precision and recall for several interesting phrases.

Fig. 16. Cumulative distribution function for phrase recall and precision.

approach does particularly well in finding, and Appendix B provides an ex-
panded listing of the best and worst phrases in our evaluation. The phrase that
exhibited the best accuracy was “Young children should avoid exposure to con-
tagious diseases,” on which we achieve precision of 1.0 and recall of .99. Several
other phrases were discovered with precision ranging from .92 to .84 and recall
ranging from .82 to .72. There were also a number of phrases that we are un-
able to detect with sufficient accuracy. Of the 122 phrases tested, ten phrases
yield an average precision and recall of zero. An example of one of these phrases
is “Straw hats are out of fashion this year.” As shown in the cumulative distri-
bution function in Figure 16, approximately half of the phrases we test have
recall of less than 0.1, and yet most phrases yield a precision exceeding 0.8.
These results naturally raise questions about which features of the phrases
make them easily detectable, and why certain phrases are so difficult to
detect.
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Fig. 17. Phrase length versus mean precision for our 122 test phrases.

To investigate this disparity, we examine a number of features of the
phrases. These features include the length of the phrase, its phonetic com-
position, the speakers of the phrase, and its distribution of packets sizes and
phonemes. Of these features, only the length of the phrase, and the overall
performance of the speakers of the phrase correlated with either recall or preci-
sion. Specifically, we have found that phrase length correlates with the phrase’s
precision, and that the average true positive rate of the speakers of the phrase
correlates with both its recall and precision. In this section, we discuss these
two features in greater detail to glean an understanding of when our proposed
attack might be most dangerous to the privacy of VoIP calls.

For each feature that we examine, we calculate the sample correlation coef-
ficient (i.e., Pearson’s r) between the feature, and the recall (respectively, preci-
sion). Intuitively, r captures the strength of the linear dependence between two
variables, and r2 indicates the amount of variance in the values of the variables
that can be attributed to that dependence. In addition, we test the significance
of the correlation by using the Student’s t-test, which is defined as

t =
r
√

n − 2√
1 − r2

,

where r is the correlation coefficient, and n = 122 is the number of phrases
in our test. The t-test indicates the level of confidence that we can place in
the fact the dependence between the feature and recall (or, precision) is linear.
With our test of 122 phrases, we require a value of t > 2.36 for 99% confidence
in our correlation measure.

5.1 Phrase Length

The first feature that we discuss is the length of the phrase, which we define as
the average number of packets that make up the phrase when it is spoken in
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Fig. 18. Cumulative distribution function of per-speaker true positive rates.

a VoIP call. Figure 17 show the average phrase length versus the average pre-
cision for the phrase calculated over all thresholds. Here, we find a moderate
correlation of r = 0.41 between the phrase’s length and its precision. This indi-
cates that r2 = 16.8% of the variation in the precision is caused by the length of
the phrase. When we apply the Student’s t-test, we find that t = 4.92, which in-
dicates that there is a linear relation between the phrase length and precision
with 99% confidence. There is, however, no correlation between phrase length
and recall (r = 0.04).

The relationship between phrase length and precision is intuitive when we
consider the possible effects of a long phrase on our search HMM. Longer
phrases are easier to spot reliably because, with each additional packet, the
search HMM collects additional evidence that it has really found an instance of
the target phrase. Likewise, short phrases are difficult to spot reliably because
it is much easier for short patterns of packets to occur by chance as a result
of other speech that is not an instance of the target phrase. Therefore, as the
length of the phrase increases, the number of false positives from the search
HMM decreases, causing the detector’s precision to increase.

5.2 Problem Speakers

In addition to phrase length, we also found that the performance of our tech-
nique depends at least in part on the individual speaker. That is, there are
some speakers in the dataset for whom our phrase spotting techniques work
exceptionally well regardless of the phrase, and some for whom we are not able
to spot phrases accurately at all. To demonstrate this, we calculated the aver-
age true positive rate that our algorithm achieves for each speaker in the test
set as the fraction of the speaker’s utterances that our algorithm correctly de-
tects. Figure 18 shows the cumulative distribution function of our per-speaker
true positive rates across all speakers in the dataset.

Then, we quantify the dependence between our performance on individual
speakers and our ability to recognize the phrases in the dataset. For each
phrase, we calculated the average true positive rates for each user who spoke
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Fig. 19. Average per-speaker true positive rate versus recall.

Fig. 20. Average per-speaker true positive rate versus precision.

the phrase to derive the average speaker true positive rate for the phrase. To
better identify the relationship between the speakers of a phrase and the ac-
curacy with which we detect it, we exclude from this part of the analysis two
of the 122 phrases because they were spoken by everyone in the dataset. The
remaining 120 phrases were each spoken by 7 people.

Figure 19 shows the average speaker true positive rate for the phrase versus
our average recall for the phrase across all threshold levels. The sample cor-
relation coefficient for this correlation is r = 0.32, which indicates that 10.2%
of the variation in recall is due to the effects of the speakers. The t-test for
these variables shows that a linear dependence exists between the two with
99% confidence (t = 3.67). Furthermore, there is also a correlation between
the speaker’s average true positive rate and precision (r = 0.34), and again the
t-test suggests a linear dependence with 99% confidence (t = 3.93). The correla-
tion between precision and the average speaker true positive rate is shown in
Figure 20.

The diference in performance among users can be attributed to the fact
that our synthetic generation of training data trains the search HMM to
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Fig. 21. Impact of padding on the search algorithm.

find phrases as they would be spoken by the average user in our TIMIT cor-
pus. Thus, many users with unusual dialects or acoustic features may not be
well represented within our training data, leading to misclassification of their
speech. Unfortunately, the relatively small size of the TIMIT corpus makes it
difficult to further examine the acoustic features of the users to discern those
features which impact our techniques the most. Additionally, it is reasonable
to assume that there are several higher-order interactions among features of
the phrases and the speaker’s acoustics that more directly affect performance,
but which are not easily observable in the data.

6. TECHNIQUES FOR MITIGATION

Given our phrase spotting methodology’s reliance on packet sizes and their
ordering, there are two apparent ways of defeating our technique: (1) altering
the order of packets, or (2) quantizing packet sizes to reduce the information
about the underlying audio. Due to the real-time nature of VoIP, reordering
packets may reduce the perceived audio quality of the call. Unfortunately, this
reduction in quality may be difficult to measure after the fact and even harder
to predict a priori. For example, the current ITU standard for objective voice
quality measurement [Rix et al. 2001] has not been validated for use with noise
reduction or echo cancellation, both of which are frequently used with codecs
like Speex. Therefore, in the following section we limit our examination of
mitigation strategies to packet padding.

To explore the trade-off between padding and search accuracy, we encrypted
both our training and testing datasets to multiples of 128, 256, or 512 bits
and applied our approach. The results are presented in Figure 21. The use of
padding, in this case, is quite encouraging as a mitigation technique. When
padding to multiples of 128 bits, we achieve only 0.15 recall at 0.16 precision.
Increasing padding so that packet sizes are multiples of 256 bits gives recall of
.04 at .04 precision. Finally, by using a block size of 512 bits, we ensure that
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all packet sizes are exactly the same, and consequently our recall and precision
are reduced to zero.

Nevertheless, padding to 128-, 256-, and 512-bit blocks results in overhead
of 8.81%, 16.5%, and 30.82%, respectively. We also note that these bandwidth
estimates are likely lower than the overhead incurred in practice, because as
Chu notes [Chu 2003], in a two-way call each participant is idle roughly 63%
of the time, enabling the transmission of many smaller packets. Our testing
data, on the other hand, is comprised of continuous speech, and so the smaller
packets that indicate silence are less prevalent.

7. RELATED WORK

In 1982, Simmons and Holdridge [1982] highlighted the shortcomings of an
early design for encrypting voice traffic using a semantically insecure version
of RSA. They showed that an adversary with knowledge of the recipient’s public
key could recover the audio from an encrypted conversation by precomputing
ciphertexts for a moderate number of sounds and then observing when the
same ciphertexts were transmitted.

More recently, the increasing popularity of Internet telephony has encour-
aged several studies of VoIP and security. Wang et al. [2005] proposed a method
of tracking VoIP calls across anonymizing networks, like ToR [Dingledine et al.
2004], through the use of packet timing as a watermark. Verscheure et al.
[2006] then presented an entirely passive method for identifying the endpoints
of an anonymized VoIP call by observing patterns in the packet stream due to
the encoder’s voice activity detection. Work by Pelaez-Moreno et al. [2001] and
Aggarwal et al. [2005] has examined the problem of speech recognition from
compressed VoIP. Finally, we have shown in earlier work that it is possible to
identify the language spoken by the callers in a VoIP conversation using only
the sizes of the encrypted packets [Wright et al. 2007].

Additionally, there is a growing body of work focusing on inference of
sensitive information from encrypted network connections using packet sizes
and timing information. Sun et al. [2002] and Liberatore and Levine [2006]
have shown that it is possible to identify Web pages traversing encrypted
HTTP connections (e.g., SSL) using only the number and size of the encrypted
HTTP packets. In a similar vein, Saponas et al. [2007] proposed a method
to identify videos played over an encrypted network channel using the total
size of the packets transmitted in a short window of time. Additionally, packet
interarrival times have been used to infer keystrokes within encrypted SSH
sessions [Song et al. 2001].

The techniques presented in this article are heavily influenced by the speech
recognition community and its established methods for wordspotting. The
most widely accepted method of wordspotting in continuous speech data takes
advantage of Hidden Markov Models (HMMs) trained on acoustic features
of complete words (e.g., Rohlicek et al. [1989] and Wilpon et al. [1990]), or
the composition of phonemes into words (e.g., Rohlicek et al. [1993] and Rose
and Paul [1990]). For HMMs trained on whole-word acoustic data, detection
rates can reach upwards of 95%, but such approaches are inherently limited
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to relatively small vocabularies where there is an abundance of training data
available for each word. On the other hand, phonetically trained acoustic
HMMs are able to spot any word based solely on its phonetic transcription and
acoustic data for the phonemes. However, detection rates for these phoneme-
based systems tend to fall to between 75% and 85% due to the difficulty of
capturing word-specific pronunciation variability. At a high level, our VoIP
phrase spotting technique uses phonetically trained HMMs, but the specifics
of their use are drastically different from that of typical speech since we do not
have access to the underlying acoustic data. Despite the coarse nature of the
information gained from encrypted VoIP packet sizes, our performance is not
significantly worse than that of early wordspotting methods in speech.

8. CONCLUSION

Voice over IP technologies are rapidly replacing traditional telephony despite
the fact that relatively little is known about the security and privacy impli-
cations of its adoption. Although previous work has shown that the combina-
tion of VBR compression with length-preserving encryption leaks information
about VoIP conversations [Wright et al. 2007], the true extent of this infor-
mation leakage is not fully understood. In our earlier work on phrase spot-
ting [Wright et al. 2008], we showed that this information leakage is far worse
than originally thought by using a profile hidden Markov model trained using
speaker- and phrase-independent data. Our approach detected the presence
of some phrases within encrypted VoIP calls with recall and precision exceed-
ing 90%. On average, our method achieved recall of 50% and precision of 51%
for a wide variety phonetically rich phrases spoken by a diverse collection of
speakers.

In this article, we expanded upon these initial results to better understand
the impact of noise, dictionary size, gender, and audio quality on the perfor-
mance of our techniques. Moreover, we also examine the performance of our
phrase spotting methodology with partial matching, which shows an increase
in both the recall and precision. Finally, we examined the underlying reasons
behind the performance of our techniques, and found that the primary indi-
cators of performance for our approach are the length of the phrase and the
speaker of the phrase.

Overall, the results of our study show that an attacker can spot a variety of
phrases in a number of realistic settings, and underscores the danger in using
the default encryption transforms of the SRTP protocol, none of which specifies
the use of padding [Baugher et al. 2004]. Given that many existing VoIP imple-
mentations, including Skype [Zimmerman 2008], make use of variable bit rate
encoding methods, these attacks reflect a potentially serious violation of user
privacy. Although padding could introduce inefficiencies into real-time proto-
cols, our analysis indicates that it offers significant confidentiality benefits for
VoIP calls. An important direction of future work in this area focuses on the de-
velopment of padding techniques that provide an appropriate balance between
efficiency and privacy.
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APPENDICES

A. COMMON ENGLISH PHONEMES

Table I. List of Phoneme Symbols Used in the TIMIT Corpus
Symbol Example Word Symbol Example Word

Stops:

b bee

Semivowels:

l lay
d day r ray
g gay w way
p pea y yacht
t tea hh hay
k key hv ahead
dx muddy, dirty el bottle
q bat

Vowels:

iy beet

Affricates: jh joke ih bit
ch choke eh bet

Fricatives:

s sea ey bait
sh she ae bat
z zone aa bott

zh azure aw bout
f fin ay bite

th thin ah but
v van ao bought

dh then oy boy

Nasals:

m mom ow boat
n noon uh book
ng sing uw boot
em bottom ux toot
en button er bird
eng washington ax about
nx winner ix debit

axr butter
ax-h suspect

B. PHRASE SPOTTING PERFORMANCE ON SELECTED PHRASES

Table II. An Examination of the Performance of Our Algorithm on
the Eight Best and Worst Phrases in our Experiment

Phrase Area
Young children should avoid exposure to contagious diseases. 0.98
Even a simple vocabulary contains symbols. 0.96
Military personnel are expected to obey government orders. 0.95
Cory and Trish played tag with beach balls for hours. 0.92
Youngsters love common candy as treats. 0.92
Weather-proof galoshes are very useful in Seattle. 0.89
Don’t ask me to carry an oily rag like that. 0.89
Ralph controlled the stopwatch from the bleachers. 0.00
The best way to learn is to solve extra problems. 0.00
The bungalow was pleasantly situated near the shore. 0.00
The emblem depicts the acropolis all aglow. 0.00
The fish began to leap frantically on the surface of the small lake. 0.00
The morning dew on the spider web glistened in the sun. 0.00
The sound of Jennifer’s bugle scared the antelope. 0.00

Phrases are ranked by the area under the Recall/Precision curves described in
Section 4. Phrases that are easier to find have area close to 1.0.
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