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Preface

The proliferation of digital computing devices and their use in communication
continues to result in an increased demand for systems and algorithms capable of
mining textual data. Thus, the development of techniques for mining unstructured,
semi-structured, and fully structured textual data has become quite important in
both academia and industry. As a result, a one-day workshop on text mining was
held on May 2, 2009 in conjunction with the SIAM Ninth International Confer-
ence on Data Mining to bring together researchers from a variety of disciplines
to present their current approaches and results in text mining. The workshop sur-
veyed the emerging field of text mining, the application of techniques of machine
learning in conjunction with natural language processing, information extraction,
and algebraic/mathematical approaches to computational information retrieval.
Many issues are being addressed in this field ranging from the development of
new document classification and clustering models to novel approaches for topic
detection, tracking, and visualization.

With over 40 applied mathematicians and computer scientists representing
universities, industrial corporations, and government laboratories from six dif-
ferent countries, the workshop featured both invited and contributed talks on
the use of techniques from machine learning, knowledge discovery, natural lan-
guage processing, and information retrieval to design computational models for
automated text analysis and mining. Most of the invited and contributed papers
presented at the workshop have been compiled and expanded for this volume.
Collectively, they span several major topic areas in text mining:

1. Keyword extraction

2. Classification and clustering

3. Anomaly and trend detection

4. Text streams.

This volume presents state-of-the-art algorithms for text mining from both
the academic and industrial perspectives. Each chapter is self-contained and is
completed by a list of references. A subject-level index is also provided at the
end of the volume. Familiarity with basic undergraduate-level mathematics is
needed for several of the chapters. The volume should be useful for a novice to
the field as well as for an expert in text mining research.



xiv PREFACE

The inherent differences in the words written by authors and those used by
readers continue to fuel the development of effective search and retrieval algo-
rithms and software in the field of text mining. This volume demonstrates how
advancements in the fields of applied mathematics, computer science, machine
learning, and natural language processing can collectively capture, classify, and
interpret words and their contexts. The words alone are not enough.

Michael W. Berry and Jacob Kogan
Knoxville, TN and Baltimore, MD

August 2009
www.wiley.com/go/berry_mining



Part I

TEXT EXTRACTION,
CLASSIFICATION, AND
CLUSTERING





1

Automatic keyword extraction
from individual documents

Stuart Rose, Dave Engel, Nick Cramer
and Wendy Cowley

1.1 Introduction

Keywords, which we define as a sequence of one or more words, provide a
compact representation of a document’s content. Ideally, keywords represent in
condensed form the essential content of a document. Keywords are widely used
to define queries within information retrieval (IR) systems as they are easy to
define, revise, remember, and share. In comparison to mathematical signatures,
keywords are independent of any corpus and can be applied across multiple
corpora and IR systems.

Keywords have also been applied to improve the functionality of IR sys-
tems. Jones and Paynter (2002) describe Phrasier, a system that lists documents
related to a primary document’s keywords, and that supports the use of keyword
anchors as hyperlinks between documents, enabling a user to quickly access
related material. Gutwin et al. (1999) describe Keyphind, which uses keywords
from documents as the basic building block for an IR system. Keywords can also
be used to enrich the presentation of search results. Hulth (2004) describes Kee-
gle, a system that dynamically provides keyword extracts for web pages returned
from a Google search. Andrade and Valencia (1998) present a system that auto-
matically annotates protein function with keywords extracted from the scientific
literature that are associated with a given protein.

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd



4 TEXT MINING

1.1.1 Keyword extraction methods

Despite their utility for analysis, indexing, and retrieval, most documents do
not have assigned keywords. Most existing approaches focus on the manual
assignment of keywords by professional curators who may use a fixed taxonomy,
or rely on the authors’ judgment to provide a representative list. Research has
therefore focused on methods to automatically extract keywords from documents
as an aid either to suggest keywords for a professional indexer or to generate
summary features for documents that would otherwise be inaccessible.

Early approaches to automatically extract keywords focus on evaluating
corpus-oriented statistics of individual words. Jones (1972) and Salton et al.
(1975) describe positive results of selecting for an index vocabulary the
statistically discriminating words across a corpus. Later keyword extraction
research applies these metrics to select discriminating words as keywords for
individual documents. For example, Andrade and Valencia (1998) base their
approach on comparison of word frequency distributions within a text against
distributions from a reference corpus.

While some keywords are likely to be evaluated as statistically discriminating
within the corpus, keywords that occur in many documents within the corpus are
not likely to be selected as statistically discriminating. Corpus-oriented methods
also typically operate only on single words. This further limits the measurement of
statistically discriminating words because single words are often used in multiple
and different contexts.

To avoid these drawbacks, we focus our interest on methods of keyword
extraction that operate on individual documents. Such document-oriented
methods will extract the same keywords from a document regardless of the
current state of a corpus. Document-oriented methods therefore provide context-
independent document features, enabling additional analytic methods such as
those described in Engel et al. (2009) and Whitney et al. (2009) that characterize
changes within a text stream over time. These document-oriented methods are
suited to corpora that change, such as collections of published technical abstracts
that grow over time or streams of news articles. Furthermore, by operating on a
single document, these methods inherently scale to vast collections and can be
applied in many contexts to enrich IR systems and analysis tools.

Previous work on document-oriented methods of keyword extraction has com-
bined natural language processing approaches to identify part-of-speech (POS)
tags that are combined with supervised learning, machine-learning algorithms, or
statistical methods.

Hulth (2003) compares the effectiveness of three term selection approaches:
noun-phrase (NP) chunks, n-grams, and POS tags, with four discriminative fea-
tures of these terms as inputs for automatic keyword extraction using a supervised
machine-learning algorithm.

Mihalcea and Tarau (2004) describe a system that applies a series of syntactic
filters to identify POS tags that are used to select words to evaluate as key-
words. Co-occurrences of the selected words within a fixed-size sliding window
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are accumulated within a word co-occurrence graph. A graph-based ranking
algorithm (TextRank) is applied to rank words based on their associations in
the graph, and then top ranking words are selected as keywords. Keywords that
are adjacent in the document are combined to form multi-word keywords. Mihal-
cea and Tarau (2004) report that TextRank achieves its best performance when
only nouns and adjectives are selected as potential keywords.

Matsuo and Ishizuka (2004) apply a chi-square measure to calculate how
selectively words and phrases co-occur within the same sentences as a particular
subset of frequent terms in the document text. The chi-square measure is applied
to determine the bias of word co-occurrences in the document text which is
then used to rank words and phrases as keywords of the document. Matsuo and
Ishizuka (2004) state that the degree of biases is not reliable when term frequency
is small. The authors present an evaluation on full text articles and a working
example on a 27-page document, showing that their method operates effectively
on large documents.

In the following sections, we describe Rapid Automatic Keyword Extrac-
tion (RAKE), an unsupervised, domain-independent, and language-independent
method for extracting keywords from individual documents. We provide details
of the algorithm and its configuration parameters, and present results on a bench-
mark dataset of technical abstracts, showing that RAKE is more computationally
efficient than TextRank while achieving higher precision and comparable recall
scores. We then describe a novel method for generating stoplists, which we use to
configure RAKE for specific domains and corpora. Finally, we apply RAKE to a
corpus of news articles and define metrics for evaluating the exclusivity, essential-
ity, and generality of extracted keywords, enabling a system to identify keywords
that are essential or general to documents in the absence of manual annotations.

1.2 Rapid automatic keyword extraction

In developing RAKE, our motivation has been to develop a keyword extraction
method that is extremely efficient, operates on individual documents to enable
application to dynamic collections, is easily applied to new domains, and operates
well on multiple types of documents, particularly those that do not follow specific
grammar conventions. Figure 1.1 contains the title and text for a typical abstract,
as well as its manually assigned keywords.

RAKE is based on our observation that keywords frequently contain multiple
words but rarely contain standard punctuation or stop words, such as the function
words and , the, and of , or other words with minimal lexical meaning. Reviewing
the manually assigned keywords for the abstract in Figure 1.1, there is only
one keyword that contains a stop word (of in set of natural numbers). Stop
words are typically dropped from indexes within IR systems and not included in
various text analyses as they are considered to be uninformative or meaningless.
This reasoning is based on the expectation that such words are too frequently
and broadly used to aid users in their analyses or search tasks. Words that do
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Compatibility of systems of linear constraints over the set of natural numbers

Criteria of compatibility of a system of linear Diophantine equations, strict inequations, 
and nonstrict inequations are considered. Upper bounds for components of a minimal set 
of solutions and algorithms of construction of minimal generating sets of solutions for all 
types of systems are given. These criteria and the corresponding algorithms for 
constructing a minimal supporting set of solutions can be used in solving all the 
considered types of systems and systems of mixed types.

Manually assigned keywords:
linear constraints, set of natural numbers, linear Diophantine equations, strict 
inequations, nonstrict inequations, upper bounds, minimal generating sets

Figure 1.1 A sample abstract from the Inspec test set and its manually assigned
keywords.

carry meaning within a document are described as content bearing and are often
referred to as content words.

The input parameters for RAKE comprise a list of stop words (or stoplist), a
set of phrase delimiters, and a set of word delimiters. RAKE uses stop words and
phrase delimiters to partition the document text into candidate keywords, which
are sequences of content words as they occur in the text. Co-occurrences of words
within these candidate keywords are meaningful and allow us to identify word co-
occurrence without the application of an arbitrarily sized sliding window. Word
associations are thus measured in a manner that automatically adapts to the style
and content of the text, enabling adaptive and fine-grained measurement of word
co-occurrences that will be used to score candidate keywords.

1.2.1 Candidate keywords

RAKE begins keyword extraction on a document by parsing its text into a set of
candidate keywords. First, the document text is split into an array of words by the
specified word delimiters. This array is then split into sequences of contiguous
words at phrase delimiters and stop word positions. Words within a sequence are
assigned the same position in the text and together are considered a candidate
keyword.

Figure 1.2 shows the candidate keywords in the order that they are parsed
from the sample technical abstract shown in Figure 1.1. The candidate keyword

Compatibility – systems – linear constraints – set – natural numbers – Criteria –
compatibility – system – linear Diophantine equations – strict inequations – nonstrict 
inequations – Upper bounds – components – minimal set – solutions – algorithms – 
minimal generating sets – solutions – systems – criteria – corresponding algorithms – 
constructing – minimal supporting set – solving – systems – systems

Figure 1.2 Candidate keywords parsed from the sample abstract.
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linear Diophantine equations begins after the stop word of and ends with a
comma. The following word strict begins the next candidate keyword strict
inequations .

1.2.2 Keyword scores

After every candidate keyword is identified and the graph of word co-occurrences
(shown in Figure 1.3) is complete, a score is calculated for each candidate key-
word and defined as the sum of its member word scores. We evaluated several
metrics for calculating word scores, based on the degree and frequency of word
vertices in the graph: (1) word frequency (freq(w)), (2) word degree (deg(w)),
and (3) ratio of degree to frequency (deg(w)/freq(w)).

The metric scores for each of the content words in the sample abstract are
listed in Figure 1.4. In summary, deg(w) favors words that occur often and in
longer candidate keywords; deg(minimal) scores higher than deg(systems). Words
that occur frequently regardless of the number of words with which they co-occur
are favored by freq(w); freq(systems) scores higher than freq(minimal). Words that
predominantly occur in longer candidate keywords are favored by deg(w)/freq(w);
deg(diophantine)/freq(diophantine) scores higher than deg(linear)/freq(linear).
The score for each candidate keyword is computed as the sum of its member
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algorithms 2 1
bounds 1 1
compatibility 2
components 1
constraints 1 1
constructing 1
corresponding 1 1
criteria 2
diophantine 1 1
equations 1

1
1 1

generating 1 1 1

1

inequations 2 1 1
linear 1 1 1 2
minimal 1 3 2 1
natural 1 1
nonstrict 1 1
numbers 1 1
set 2 3 1
sets 1 1 1
solving 1
strict 1 1
supporting 1 1 1
system 1
systems 4
upper 1 1

Figure 1.3 The word co-occurrence graph for content words in the sample
abstract.
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Figure 1.4 Word scores calculated from the word co-occurrence graph.

minimal generating sets (8.7), linear diophantine equations (8.5), minimal supporting set 
(7.7), minimal set (4.7), linear constraints (4.5), natural numbers (4), strict inequations (4), 
nonstrict inequations (4), upper bounds (4), corresponding algorithms (3.5), set (2), 
algorithms (1.5), compatibility (1), systems (1), criteria (1), system (1), components 
(1),constructing (1), solving (1)

Figure 1.5 Candidate keywords and their calculated scores.

word scores. Figure 1.5 lists each candidate keyword from the sample abstract
using the metric deg(w)/freq(w) to calculate individual word scores.

1.2.3 Adjoining keywords

Because RAKE splits candidate keywords by stop words, extracted keywords do
not contain interior stop words. While RAKE has generated strong interest due to
its ability to pick out highly specific terminology, an interest was also expressed
in identifying keywords that contain interior stop words such as axis of evil . To
find these RAKE looks for pairs of keywords that adjoin one another at least
twice in the same document and in the same order. A new candidate keyword is
then created as a combination of those keywords and their interior stop words.
The score for the new keyword is the sum of its member keyword scores.

It should be noted that relatively few of these linked keywords are extracted,
which adds to their significance. Because adjoining keywords must occur twice
in the same order within the document, their extraction is more common on texts
that are longer than short abstracts.

1.2.4 Extracted keywords

After candidate keywords are scored, the top T scoring candidates are selected
as keywords for the document. We compute T as one-third the number of words
in the graph, as in Mihalcea and Tarau (2004).

The sample abstract contains 28 content words, resulting in T = 9 key-
words. Table 1.1 lists the keywords extracted by RAKE compared to the sample
abstract’s manually assigned keywords. We use the statistical measures precision,
recall and F -measure to evaluate the accuracy of RAKE. Out of nine keywords
extracted, six are true positives; that is, they exactly match six of the manu-
ally assigned keywords. Although natural numbers is similar to the assigned
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Table 1.1 Comparison of keywords extracted by RAKE to
manually assigned keywords for the sample abstract.

Extracted by RAKE Manually assigned

minimal generating sets minimal generating sets
linear diophantine equations linear Diophantine equations
minimal supporting set
minimal set
linear constraints linear constraints
natural numbers
strict inequations strict inequations
nonstrict inequations nonstrict inequations
upper bounds upper bounds

set of natural numbers

keyword set of natural numbers , for the purposes of the benchmark evaluation
it is considered a miss. There are therefore three false positives in the set of
extracted keywords, resulting in a precision of 67%. Comparing the six true
positives within the set of extracted keywords to the total of seven manually
assigned keywords results in a recall of 86%. Equally weighting precision and
recall generates an F -measure of 75%.

1.3 Benchmark evaluation

To evaluate performance we tested RAKE against a collection of technical
abstracts used in the keyword extraction experiments reported in Hulth (2003)
and Mihalcea and Tarau (2004), mainly for the purpose of allowing direct
comparison with their results.

1.3.1 Evaluating precision and recall

The collection consists of 2000 Inspec abstracts for journal papers from Computer
Science and Information Technology. The abstracts are divided into a training
set with 1000 abstracts, a validation set with 500 abstracts, and a testing set with
500 abstracts. We followed the approach described in Mihalcea and Tarau (2004),
using the testing set for evaluation because RAKE does not require a training
set. Extracted keywords for each abstract are compared against the abstract’s
associated set of manually assigned uncontrolled keywords.

Table 1.2 details RAKE’s performance using a generated stoplist, Fox’s sto-
plist (Fox 1989), and T as one-third the number of words in the graph. For
each method, which corresponds to a row in the table, the following information
is shown: the total number of extracted keywords and mean per abstract; the
number of correct extracted keywords and mean per abstract; precision; recall;
and F -measure. Results published within Hulth (2003) and Mihalcea and Tarau



10 TEXT MINING

Table 1.2 Results of automatic keyword extraction on 500 abstracts in the
Inspec test set using RAKE, TextRank (Mihalcea and Tarau 2004) and
supervised learning (Hulth 2003).

Extracted Correct
keywords keywords

Method Total Mean Total Mean Precision Recall F -measure

RAKE (T = 0.33)

KA stoplist (df > 10) 6052 12.1 2037 4.1 33.7 41.5 37.2
Fox stoplist 7893 15.8 2054 4.2 26 42.2 32.1

TextRank
Undirected, co-occ.

window = 2
6784 13.6 2116 4.2 31.2 43.1 36.2

Undirected, co-occ.
window = 3

6715 13.4 1897 3.8 28.2 38.6 32.6

(Hulth 2003)
Ngram with tag 7815 15.6 1973 3.9 25.2 51.7 33.9
NP chunks with tag 4788 9.6 1421 2.8 29.7 37.2 33
Pattern with tag 7012 14 1523 3 21.7 39.9 28.1

the, and, of, a, in, is, for, to, we, this, are, with, as, on, it, an, that, which, by, using, can, 
paper, from, be, based, has, was, have, or, at, such, also, but, results, proposed, show, 
new, these, used, however, our, were, when, one, not, two, study, present, its, sub, both, 
then, been, they, all, presented, if, each, approach, where, may, some, more, use, 
between, into, 1, under, while, over, many, through, addition, well, first, will, there, 
propose, than, their, 2, most, sup, developed, particular, provides, including, other, how, 
without, during, article, application, only, called, what, since, order, experimental, any

Figure 1.6 Top 100 words in the generated stoplist.

(2004) are included for comparison. The highest values for precision, recall, and
F -measure are shown in bold. As noted, perfect precision is not possible with
any of the techniques as the manually assigned keywords do not always appear
in the abstract text. The highest precision and F -measure are achieved using
RAKE with a generated stoplist based on keyword adjacency, a subset of which
is listed in Figure 1.6. With this stoplist RAKE yields the best results in terms of
F -measure and precision, and provides comparable recall. With Fox’s stoplist,
RAKE achieves a high recall while experiencing a drop in precision.

1.3.2 Evaluating efficiency

Because of increasing interest in energy conservation in large data centers, we
also evaluated the computational cost associated with extracting keywords with
RAKE and TextRank. TextRank applies syntactic filters to a document text to
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identify content words and accumulates a graph of word co-occurrences in a
window size of 2. A rank for each word in the graph is calculated through a
series of iterations until convergence below a threshold is achieved.

We set TextRank’s damping factor d = 0.85 and its convergence threshold to
0.0001, as recommended in Mihalcea and Tarau (2004). We do not have access
to the syntactic filters referenced in Mihalcea and Tarau (2004), so were unable
to evaluate their computational cost.

To minimize disparity, all parsing stages in the respective extraction methods
are identical, TextRank accumulates co-occurrences in a window of size 2, and
RAKE accumulates word co-occurrences within candidate keywords. After co-
occurrences are tallied, the algorithms compute keyword scores according to their
respective methods. The benchmark was implemented in Java and executed in the
Java SE Runtime Environment (JRE) 6 on a Dell Precision T7400 workstation.

We calculated the total time for RAKE and TextRank (as an average over 100
iterations) to extract keywords from the Inspec testing set of 500 abstracts, after
the abstracts were read from files and loaded in memory. RAKE extracted key-
words from the 500 abstracts in 160 milliseconds. TextRank extracted keywords
in 1002 milliseconds, over 6 times the time of RAKE.

Referring to Figure 1.7, we can see that as the number of content words
for a document increases, the performance advantage of RAKE over TextRank
increases. This is due to RAKE’s ability to score keywords in a single pass
whereas TextRank requires repeated iterations to achieve convergence on
word ranks.

Based on this benchmark evaluation, it is clear that RAKE effectively extracts
keywords and outperforms the current state of the art in terms of precision, effi-
ciency, and simplicity. As RAKE can be put to use in many different systems and
applications, in the next section we discuss a method for stoplist generation that
may be used to configure RAKE on particular corpora, domains, and languages.

1.4 Stoplist generation

Stoplists are widely used in IR and text analysis applications. However, there is
remarkably little information describing methods for their creation. Fox (1989)
presents an analysis of stoplists, noting discrepancies between stated conven-
tions and actual instances and implementations of stoplists. The lack of tech-
nical rigor associated with the creation of stoplists presents a challenge when
comparing text analysis methods. In practice, stoplists are often based on com-
mon function words and hand-tuned for particular applications, domains, or
specific languages.

We evaluated the use of term frequency as a metric for automatically selecting
words for a stoplist. Table 1.3 lists the top 50 words by term frequency in the
training set of abstracts in the benchmark dataset. Additional metrics shown for
each word are document frequency, adjacency frequency, and keyword frequency.
Adjacency frequency reflects the number of times the word occurred adjacent to



12 TEXT MINING

0

1

2

3

4

5

6

7

10 20 30 40 50 60 70 80 90 100 110 120

M
ill

is
ec

on
ds

Number of Vertices in Word Co -occurrence Graph

Extraction Time by Document Size

RAKE

TextRank

Figure 1.7 Comparison of TextRank and RAKE extraction times on individual
documents.

an abstract’s keywords. Keyword frequency reflects the number of times the word
occurred within an abstract’s keywords.

Looking at the top 50 frequent words, in addition to the typical function
words, we can see that system, control , and method are highly frequent within
technical abstracts and highly frequent within the abstracts’ keywords. Selecting
solely by term frequency will therefore cause content-bearing words to be added
to the stoplist, particularly if the corpus of documents is focused on a particular
domain or topic. In those circumstances, selecting stop words by term frequency
presents a risk of removing important content-bearing words from analysis.

We therefore present the following method for automatically generating a
stoplist from a set of documents for which keywords are defined. The algorithm
is based on the intuition that words adjacent to, and not within, keywords are
less likely to be meaningful and therefore are good choices for stop words.

To generate our stoplist we identified for each abstract in the Inspec training
set the words occurring adjacent to words in the abstract’s uncontrolled key-
word list. The frequency of each word occurring adjacent to a keyword was
accumulated across the abstracts. Words that occurred more frequently within
keywords than adjacent to them were excluded from the stoplist.
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Table 1.3 The 50 most frequent words in the Inspec training set listed in
descending order by term frequency.

Term Document Adjacency Keyword
Word frequency frequency frequency frequency

the 8611 978 3492 3
of 5546 939 1546 68
and 3644 911 2104 23
a 3599 893 1451 2
to 3000 879 792 10
in 2656 837 1402 7
is 1974 757 1175 0
for 1912 767 951 9
that 1129 590 330 0
with 1065 577 535 3
are 1049 576 555 1
this 964 581 645 0
on 919 550 340 8
an 856 501 332 0
we 822 388 731 0
by 773 475 283 0
as 743 435 344 0
be 595 395 170 0
it 560 369 339 13
system 507 255 86 202
can 452 319 250 0
based 451 293 168 15
from 447 309 187 0
using 428 282 260 0
control 409 166 12 237
which 402 280 285 0
paper 398 339 196 1
systems 384 194 44 191
method 347 188 78 85
data 347 159 39 131
time 345 201 24 95
model 343 157 37 122
information 322 153 18 151
or 315 218 146 0
s 314 196 27 0
have 301 219 149 0
has 297 225 166 0
at 296 216 141 0
new 294 197 93 4
two 287 205 83 5

(continued overleaf )
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Table 1.3 (Continued )

Term Document Adjacency Keyword
Word frequency frequency frequency frequency

algorithm 267 123 36 96
results 262 221 129 14
used 262 204 92 0
was 254 125 161 0
these 252 200 93 0
also 251 219 139 0
such 249 198 140 0
problem 234 137 36 55
design 225 110 38 68

To evaluate this method of generating stoplists, we created six stoplists, three
of which select words for the stoplist by term frequency (TF), and three which
select words by term frequency but also exclude words from the stoplist whose
keyword frequency was greater than their keyword adjacency frequency. We
refer to this latter set of stoplists as keyword adjacency (KA) stoplists since they
primarily include words that are adjacent to and not within keywords.

Table 1.4 Comparison of RAKE performance using stoplists based on term
frequency (TF) and keyword adjacency (KA).

Extracted Correct
keywords keywords

Stoplist
Method size Total Mean Total Mean Precision Recall F -measure

RAKE
(T = 0.33)

TF stoplist
(df > 10)

1347 3670 7.3 606 1.2 16.5 12.3 14.1

TF stoplist
(df > 25)

527 5563 11.1 1032 2.1 18.6 21.0 19.7

TF stoplist
(df > 50)

205 7249 14.5 1520 3.0 21.0 30.9 25.0

RAKE
(T = 0.33)

KA stoplist
(df > 10)

763 6052 12.1 2037 4.1 33.7 41.5 37.2

KA stoplist
(df > 25)

325 7079 14.2 2103 4.3 29.7 42.8 35.1

KA stoplist
(df > 50)

147 8013 16.0 2117 4.3 26.4 43.1 32.8
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Each of the stoplists was set as the input stoplist for RAKE, which was
then run on the testing set of the Inspec corpus of technical abstracts. Table 1.4
lists the precision, recall, and F -measure for the keywords extracted by each
of these runs. The KA stoplists generated by our method outperformed the
TF stoplists generated by term frequency. A notable difference between results
achieved using the two types of stoplists is evident in Table 1.4: the F -measure
improves as more words are added to a KA stoplist, whereas when more words are
added to a TF stoplist the F -measure degrades. Furthermore, the best TF stoplist
underperforms the worst KA stoplist. This verifies that our algorithm for gener-
ating stoplists is adding the right stop words and excluding content words from
the stoplist.

Because the generated KA stoplists leverage manually assigned keywords, we
envision that an ideal application would be within existing digital libraries or IR
systems and collections where defined keywords exist or are easily identified for
a subset of the documents. Stoplists only need to be generated once for particular
domains, enabling RAKE to be applied to new and future articles, facilitating
the annotation and indexing of new documents.

1.5 Evaluation on news articles

While we have shown that a simple set of configuration parameters enables
RAKE to efficiently extract keywords from individual documents, it is worth
investigating how well extracted keywords represent the essential content within
a corpus of documents for which keywords have not been manually assigned.
The following section presents results on application of RAKE to the Multi-
Perspective Question Answering (MPQA) Corpus (CERATOPS 2009).

1.5.1 The MPQA Corpus

The MPQA Corpus consists of 535 news articles provided by the Center for the
Extraction and Summarization of Events and Opinions in Text (CERATOPS).
Articles in the MPQA Corpus are from 187 different foreign and US news sources
and date from June 2001 to May 2002.

1.5.2 Extracting keywords from news articles

We extracted keywords from title and text fields of documents in the MPQA
Corpus and set a minimum document threshold of two because we are interested
in keywords that are associated with multiple documents.

Candidate keyword scores were based on word scores as deg(w)/freq(w)
and as deg(w). Calculating word scores as deg(w)/freq(w), RAKE extracted 517
keywords referenced by an average of 4.9 documents. Calculating word scores
as deg(w), RAKE extracted 711 keywords referenced by an average of 8.1
documents.
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This difference in average number of referenced document counts is the
result of longer keywords having lower frequency across documents. The metric
deg(w)/freq(w) favors longer keywords and therefore results in extracted key-
words that occur in fewer documents in the MPQA Corpus.

In many cases a subject is occasionally presented in its long form and more
frequently referenced in its shorter form. For example, referring to Table 1.5,
kyoto protocol on climate change and 1997 kyoto protocol occur less frequently
than the shorter kyoto protocol . Because our interest in the analysis of news
articles is to connect articles that reference related content, we set RAKE to
score words by deg(w) in order to favor shorter keywords that occur across more
documents.

Because most documents are unique within any given corpus, we expect to
find variability in what documents are essentially about as well as how each
document represents specific subjects. While some documents may be primarily
about the kyoto protocol , greenhouse gas emissions , and climate change, other
documents may only make references to those subjects. Documents in the former
set will likely have kyoto protocol , greenhouse gas emissions , and climate change
extracted as keywords whereas documents in the latter set will not.

In many applications, users have a desire to capture all references to extracted
keywords. For the purposes of evaluating extracted keywords, we accumulate

Table 1.5 Keywords extracted with word scores by deg(w) and deg(w)/freq(w).

Scored by deg(w) Scored by deg(w)/
freq(w)

Keyword edf(w) rdf(w) edf(w) rdf(w)

kyoto protocol legally obliged
developed countries

2 2 2 2

eu leader urge russia to ratify
kyoto protocol

2 2 2 2

kyoto protocol on climate
change

2 2 2 2

ratify kyoto protocol 2 2 2 2
kyoto protocol requires 2 2 2 2
1997 kyoto protocol 2 4 4 4
kyoto protocol 31 44 7 44
kyoto 10 12 – –
kyoto accord 3 3 – –
kyoto pact 2 3 – –
sign kyoto protocol 2 2 – –
ratification of the kyoto

protocol
2 2 – –

ratify the kyoto protocol 2 2 – –
kyoto agreement 2 2 – –
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counts on how often each extracted keyword is referenced by documents in the
corpus. The referenced document frequency of a keyword, rdf(k), is the number of
documents in which the keyword occurred as a candidate keyword. The extracted
document frequency of a keyword, edf(k), is the number of documents from which
the keyword was extracted.

A keyword that is extracted from all of the documents in which it is refer-
enced can be characterized as exclusive or essential , whereas a keyword that is
referenced in many documents but extracted from a few may be characterized as
general . Comparing the relationship of edf(k) and rdf(k) allows us to characterize
the exclusivity of a particular keyword. We therefore define keyword exclusivity
exc(k) as shown in Equation (1.1):

exc(k) = edf(k)

rdf(k)
. (1.1)

Of the 711 extracted keywords, 395 have an exclusivity score of 1, indicating
that they were extracted from every document in which they were referenced.
Within that set of 395 exclusive keywords, some occur in more documents than
others and can therefore be considered more essential to the corpus of documents.
In order to measure how essential a keyword is, we define the essentiality of a
keyword, ess(k), as shown in Equation (1.2):

ess(k) = exc(k) × edf(k). (1.2)

Figure 1.8 lists the top 50 essential keywords extracted from the MPQA cor-
pus, listed in descending order by their ess(k) scores. According to CERATOPS,
the MPQA corpus comprises 10 primary topics, listed in Table 1.6, which are
well represented by the 50 most essential keywords as extracted and ranked by
RAKE.

In addition to keywords that are essential to documents, we can also char-
acterize keywords by how general they are to the corpus. In other words, how

united states (32), human rights (24), kyoto protocol (22), international space station (18), 
mugabe (16), space station (14), human rights report (12), greenhouse gas emissions 
(12), chavez (11), taiwan issue (11), president chavez (10), human rights violations (10), 
president bush (10), palestinian people (10), prisoners of war (9), president hugo chavez 
(9), kyoto (8), taiwan (8), israeli government (8), hugo chavez (8), climate change (8), 
space (8), axis of evil (7), president fernando henrique cardoso (7), palestinian (7), 
palestinian territories (6), taiwan strait (6), russian news agency interfax (6), prisoners (6), 
taiwan relations act (6), president robert mugabe (6), presidential election (6), geneva 
convention (5), palestinian authority (5), venezuelan president hugo chavez (5), chinese 
president jiang zemin (5), opposition leader morgan tsvangirai (5), french news agency 
afp (5), bush (5), north korea (5), camp x-ray (5), rights (5), election (5), mainland china 
(5), al qaeda (5), president (4), south africa (4), global warming (4), bush administration 
(4), mdc leader (4)

Figure 1.8 Top 50 essential keywords from the MPQA Corpus, with correspond-
ing ess(k) score in parentheses.
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Table 1.6 MPQA Corpus topics and definitions.

Topic Description

argentina Economic collapse in Argentina
axisofevil Reaction to President Bush’s 2002 State of the Union Address
guantanamo US holding prisoners in Guantanamo Bay
humanrights Reaction to US State Department report on human rights
kyoto Ratification of Kyoto Protocol
mugabe 2002 Presidential election in Zimbabwe
settlements Israeli settlements in Gaza and West Bank
spacestation Space missions of various countries
taiwan Relations between Taiwan and China
venezuela Presidential coup in Venezuela

government (147), countries (141), people (125), world (105), report (91), war (85), united 
states (79), china (71), president (69), iran (60), bush (56), japan (50), law (44), peace 
(44), policy (43), officials (43), israel (41), zimbabwe (39), taliban (36), prisoners (35), 
opposition (35), plan (35), president george (34), axis (34), administration (33), detainees 
(32), treatment (32), states (30), european union (30), palestinians (30), election (29), 
rights (28), international community (27), military (27), argentina (27), america (27), 
guantanamo bay (26), official (26), weapons (24), source (24), eu (23), attacks (23), 
united nations (22), middle east (22), bush administration (22), human rights (21), base 
(20), minister (20), party (19), north korea (18) 

Figure 1.9 Top 50 general keywords from the MPQA Corpus, with corresponding
gen(k) score in parentheses.

often was a keyword referenced by documents from which it was not extracted?
In this case we define generality of a keyword, gen(k), as shown in Equation
(1.3):

gen(k) = rdf(k) × (1.0 − exc(k)). (1.3)

Figure 1.9 lists the top 50 general keywords extracted from the MPQA corpus,
listed in descending order by their gen(k) scores. It should be noted that general
keywords and essential keywords are not mutually exclusive. Within the top 50
for both metrics, there are several shared keywords: united states , president ,
bush , prisoners , election , rights , bush administration, human rights , and north
korea . Keywords that are both highly essential and highly general are essential
to a set of documents within the corpus but also referenced by a significantly
greater number of documents within the corpus than other keywords.

1.6 Summary

We have shown that our automatic keyword extraction technology, RAKE,
achieves higher precision and similar recall in comparison to existing techniques.
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In contrast to methods that depend on natural language processing techniques
to achieve their results, RAKE takes a simple set of input parameters and
automatically extracts keywords in a single pass, making it suitable for a wide
range of documents and collections.

Finally, RAKE’s simplicity and efficiency enable its use in many applications
where keywords can be leveraged. Based on the variety and volume of existing
collections and the rate at which documents are created and collected, RAKE
provides advantages and frees computing resources for other analytic methods.
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Algebraic techniques for
multilingual document
clustering

Brett W. Bader and Peter A. Chew

2.1 Introduction

Pages on the World Wide Web have tremendous variation, covering a wide range
of topics and viewpoints. Some are news pages, others are blogs. Given the sheer
volume of documents on the Web, clustering these pages by topic would be a
challenging problem. But web pages could be in any language, which complicates
an already challenging text mining problem.

In a series of articles published largely in the computational linguistics lit-
erature, we have outlined a number of computational techniques for clustering
documents in a multilingual corpus. This chapter reviews these techniques, pro-
vides some additional insight into these techniques, and presents some recent
advances. Specifically, we show multiple algebraic models for this problem that
were developed recently and that use matrix and tensor manipulations. These
methods can be applied not just to pairs of languages, but also to groups of
languages when a suitable multi-parallel corpus exists (Chew and Abdelali 2007).

In Sections 2.2 and 2.3, we review the problem and our experimental setup
for multilingual document clustering. Then, in Sections 2.4–2.9 we present our

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd
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various approaches and their results. Section 2.10 discusses our results and
summarizes our contribution.

2.2 Background

An early approach for dealing with documents in an information retrieval (IR)
setting was the vector space model (VSM) of Salton (Salton 1968; Salton and
McGill 1983). The principle behind the VSM is that a vector, with elements
representing individual terms, may encode a document’s meaning according to
the relative weights of these term elements. Then one may encode a corpus of
documents as a term-by-document matrix X of column vectors such that the rows
represent terms and the columns represent documents. Each element xij tabulates
the number of times term i occurs in document j . This matrix is sparse due to
the Zipfian distribution of terms in a language (Zipf 1935).

As a practical matter for better performance, the term counts in X often
are scaled. Many scaling approaches have been proposed, but the two most
popular, based on their widespread availability in software such as SAS, are
TFIDF (Term Frequency Inverse Document Frequency) and log-entropy scaling.
Other approaches have been considered by Chisholm and Kolda (1999). We
consider only the log-entropy scaling (see Equation (2.2)) in our approach here.

In 1990, Deerwester et al. (1990) proposed analyzing term-by-document
matrices using the singular value decomposition (SVD) to organize terms and
documents into a common semantic space based upon term co-occurrence.
Because the approach claimed to organize the surface terms into their underlying
semantics, the approach became known as latent semantic analysis (LSA).

In LSA a singular value decomposition of the (scaled) term–document matrix
X is computed

X = USVT . (2.1)

Typically, a truncated SVD is computed such that a small number of columns
(relative to the overall size of X) are retained. This amounts to keeping just the
first R singular values in S (and correspondingly the first R columns of U and
V ). This low-rank approximation to X is in effect a dimensionality reduction
that retains the most important information and leaves out noisier information.
Projecting documents into this smaller dimensional subspace, one obtains feature
vectors that may be used for similarity calculations or machine-learning tasks
(e.g. (Chew et al. 2008a)).

As a statistics-based approach rooted in linear algebra and matrix computa-
tions, LSA has spawned many variations and new application areas. Pertaining
to our current problem, Landauer and Littman (1990) extended latent semantic
indexing by using a collection of abstracts in more than one language (English
and French). Each ‘document’ is treated as the combination (in the bag of words
sense) of French and English versions of the same abstract, and a multilingual
space from LSA consists of terms from both languages coupled together. Their
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experiments showed that the two-language space was better for cross-language
retrieval than single-language spaces. Queries in one language for retrieval in
another language were shown to be just as effective as first translating the query
into the language of a monolingual corpus. Young (1994) also uses only two lan-
guages (Greek and English), and the source data was the Gospels. He shows that
LSA is effective in retrieving documents from either language without having to
translate the user’s query. The aspect that differentiates these studies from our
work is that we consider more than just pairs of languages for cross-language
information retrieval.

2.3 Experimental setup

For multilingual information retrieval experiments, one needs a multi-parallel
corpus, which means that each document has a complete translation in all the
languages. While many multilingual corpora exist and would work well, we use
the Bible and Quran as our multilingual corpora. Both are carefully translated
and are manually parallel aligned at the verse level (each verse contains roughly
a sentence or two). Such fine-grained parallelism helps our machine-learning
techniques learn concepts from word co-occurrences.

For training and testing purposes, we limited the selection of languages to
Arabic, English, French, Russian, and Spanish. The lexical statistics of these
translations of the Bible are listed in Table 2.1. The linguistic differences among
the languages are evident in the table. English has the fewest unique terms,
whereas Arabic has nearly five times as many unique terms and just over half
as many total words for the whole translation. The ordering in Table 2.1 roughly
corresponds to the ordering of languages on a spectrum that linguists identify on
one end as ‘isolating’ (one morpheme, or individual unit of meaning, per word)
and on the other end as ‘synthetic’ (high morpheme-per-word ratio).

English is largely an isolating language because most words have one or
just a few morphemes. For example, verbs may have markers for tense (e.g. the
morpheme ‘ed’ is the past tense inflection); nouns may be compound or plural
(e.g. the morpheme ‘s’ often indicates a plural noun).

German is closer to the other end of the spectrum as a synthetic language
because it has many compound nouns composed of individual morphemes. But

Table 2.1 Lexical statistics of the translations of the Bible used for training.

Language (translation) Unique terms Total word count

English (King James) 12 335 789 744
French (Darby) 20 428 812 947
Spanish (Reina Valera 1909) 28 456 704 004
Russian (Synodal 1876) 47 226 560 524
Arabic (Smith Van Dyke) 55 300 440 435
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there are other languages with even starker differences. Payne (Payne 1997)
cites an illustrative example that comes from Yup’ik Eskimo, tuntussuqatarnik-
saitengqiggtuq , which means ‘he had not yet said again that he was going to
hunt reindeer’. This word is composed of many morphemes, as evidenced by
the fact that the English translation has multiple words. For example, the first
morpheme, tuntu , refers to reindeer. So if the concept were to change instead to
‘she was going to hunt reindeer’, then there would be a whole new unique word
starting with tuntu containing only some of the morphemes from the example
along with a different morpheme due to the change in gender of the subject.
Thus, it is easy to see why such a language would prove troublesome for VSMs.
Each word, which is packed with more meaning, is represented by a single direc-
tion in vector space instead of a collection of directions based on its constituent
morphemes.

Hence, these language differences provide a challenge to statistical techniques
that rely on co-occurrence patterns. Synthetic languages, which have more unique
terms representing more diverse concepts, will have fewer terms co-occurring
with other terms from an isolating language, making it more difficult to learn
from relationships from co-occurrence patterns.

For our system, we do not consider traditional stemming or stoplists because
we want the most generalizable system that does not rely on expert knowledge
of a language. We prefer to rely solely on the statistical properties of the corpus
for an extensible system for languages that may be applied to less common or
obscure languages.

The Bible has 31 226 verses, which we use as individual ‘documents’ in
our training set. The Quran has 114 suras (or chapters), which we use as the
documents in our test set. With the five languages, we have 570 individual test
queries. For each new query document, we project its vector representation into
the space of US−1 and compute a cosine similarity with all other document
feature vectors. The highest similarity indicates the best match available, which
for our case should be a matching translation of the query document. We use
S−1 instead of other alternatives because if we consider the documents in X as
our test set, then the projection of X on US−1 is close to the matrix V , which is
the document-by-concept matrix from the SVD.

To assess the performance of our techniques, we consider two measures of
precision used in multilingual IR. For the first, we split the test set into each of
the 25 possible language-pair combinations, where these include each language
to itself. For each pair, we have 228 distinct queries (i.e. chapters). The goal is
to retrieve the corresponding translation of that chapter in the other language.
We calculate the average precision at one document (P1), which is the average
percentage of times that the translation of the query ranked highest. P1 may be
calculated as an average over all queries for each language pair or as an overall
average, which we report here. P1 is a fairly strict measure of precision that
essentially measures success in retrieving documents when the source and target
languages are specified.
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For the second measure, we considered average multilingual precision at five
documents (MP5), which is the average percentage of the top five documents
that are translations of the query document. We calculate MP5 as an average for
all queries and all languages. Essentially, MP5 measures success in multilingual
clustering. MP5 is a stricter measure than P1; since the target language is not
specified, there are more possibilities to choose from.

2.4 Multilingual LSA

In the context of cross-language IR, one starts with a parallel multilingual corpus.
The approach used in Landauer and Littman (1990) and Young (1994) for pairs
of languages, and used in Chew and Abdelali (2007) for multiple languages, is
to stack all term–document matrices for each language, one on top of another;
see Figure 2.1. The rows correspond to terms in all of the languages, and the
truncated SVD finds the optimal rank R representation of this matrix. The factor
matrices group terms and documents into orthogonal basis vectors based upon
term and document co-occurrence patterns in X.

French

Arabic

Russian

Spanish

English ≈ VT

S

U1

U2

U3

U4

U5

Figure 2.1 An illustration of the multilingual LSA using the SVD.
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The best results for five languages and a rank 300 SVD give an average
P1 score of 76.0% and an average MP5 score of 26.1%. While the P1 score is
respectable, the MP5 score is disappointing because it means that documents are
clustering more by language than by topic.

We observed in our results an imbalance in the importance of common terms
(e.g. determiners, pronouns, conjunctions, prepositions) in the concept vectors of
the U matrix. This fact stemmed from the way the standard log-entropy formula
treated common terms with respect to other terms with higher information gain.
This insight led us to modify the log-entropy formula so that the common terms
with high entropy were less influential in the SVD. Our simple modification to
log-entropy involved raising the global term weight to a power α > 1:

Xtd = log(Xtd + 1)

[
1 + Ht

log N

]α

(2.2)

where Ht =∑d(Xtd/Ft) log(Xtd/Ft) is the entropy of term t and Ft is the raw
frequency of term t in the corpus.

The overall effect of this modification is that α > 1 mitigates the influence of
common terms in the SVD. As α increases, the ‘weight’ of elements in X shifts
away from common terms to less common, more information-rich terms, and a
corresponding shift is evident in the principal singular vectors. However, if α is
too large, then the X matrix consists mainly of low-entropy terms (e.g. proper
nouns).

Our computational studies showed that α = 1.8 significantly improved
retrieval results for all of our techniques. Figure 2.2 shows the global term
weights for all terms in English. The first term index corresponds to the word
‘and’. There are roughly 60 000 terms that appear only once each (so-called
hapax legomena) in the Bible. These appear on the right of the plot and have a
global term weight of one, no matter what the value of α is.

With the improved global term weighting, the best results for five languages
and a rank 300 SVD give an average P1 score of 88.0% and an average MP5 score
of 65.7%. We see a large increase in P1 (p value = 7 × 10−51) and a dramatic
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Figure 2.2 Improved term–document matrix weighting by raising global term
weight to a power of α.
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increase in multilingual precision (p value = 0). Nevertheless, the documents are
still clustering more by language than by topic.

2.5 Tucker1 method

In Chew et al. (2007), we pursued a new paradigm in multilingual text analysis
where, instead of stacking the language matrices one on top of another to create
one tall matrix for the SVD, the matrices are stacked one behind another in a
third dimension to form a multi-set array, see Figure 2.3.

When the data is organized in this manner and all three dimensions are
the same, the object is called an n-way array or a tensor, which we denote
with a script font, e.g. X . There are many decompositions or factorizations of
tensors to choose from, several of which are generalizations of the matrix SVD
(Kolda and Bader 2009). One of the most basic approaches to consider is the
Tucker1 model (Kolda and Bader 2009; Tucker 1966), which finds a single
orthonormal factor matrix in one of the modes that applies across all slices in
parallel. Mathematically, the Tucker1 model is

Xk ≈ AkV
T for k = 1, . . . , K, (2.3)

where the notation Xk and Ak refers to the kth frontal slice of tensors X and
A, respectively, with what is called slab notation. The matrix V is the set of
principal eigenvectors of

∑
k XT

k Xk (which is the same as the principal right
singular vectors of the matrix formed by stacking the slices Xk on top of each
other). Each matrix Ak is the matrix that best fits the data in a least squares
sense, which is just Ak = XkV because V is orthonormal.

To use the same framework as outlined previously for multilingual LSA where
we project new documents in the space of UkS

−1
k , we normalize the columns in

each Ak so that they have unit length and the weight is stored in a diagonal
matrix Sk . Then the Tucker1 representation becomes

Xk ≈ UkSkV
T for k = 1, . . . , K. (2.4)
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X5

Figure 2.3 Multi-set array of term-by-document matrices.



28 TEXT MINING

Xk Uk VT

Sk

=

Figure 2.4 An illustration of the Tucker1 model.

For our case where the row dimension is not constant, however, we may assume
that the tensor has a row dimension of the largest matrix and that the other
smaller matrices are padded with rows of zeros in order to adapt the Tucker1
model. The resulting factor matrices Uk will have a corresponding number of
zero rows. Figure 2.4 shows the Tucker1 model.

Using a rank 300 Tucker1 model, we get an average P1 score of 89.5%
and an average MP5 score of 71.3%. With this tensor representation, we see
a small increase over SVD in P1 (p value = 8 × 10−3) and a large increase in
multilingual precision (p value = 4 × 10−11). However, the fact that each Uk

does not form an orthogonal space in the Tucker1 model may be limiting the
performance of this tensor approach. When projecting new documents onto these
oblique axes to get document feature vectors, distances between features are
distorted, which could adversely affect cosine similarity calculations.

2.6 PARAFAC2 method

PARAFAC2 (Harshman 1972) is a tensor decomposition that has orthogonal
basis vectors and is extensible to multi-set data. PARAFAC2 has been used in
the analysis of chemometric data, specifically in chromatography with retention
time shifts among samples. In chromatography, each sample being analyzed may
have a different elution profile, meaning that the signal may take longer or shorter
to collect. In such cases, each matrix may have a different number of rows, which
is just like the form of our multilingual multi-set data.

In Chew et al. (2007) we apply the PARAFAC2 technique to the multi-set
term–document array of Figure 2.3. The mathematical model of PARAFAC2 is

Xk ≈ UkHSkV
T for k = 1, . . . ,K, (2.5)

where each Uk is an orthogonal matrix that may have a different number of
rows for each k, H is a dense matrix that is predominantly diagonal for our
application, Sk is a diagonal matrix containing weights for each level of k, and
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Xk Uk VT

Sk

H=

Figure 2.5 An illustration of the PARAFAC2 model.

V is a dense matrix that is not necessarily orthogonal. Figure 2.5 shows the
PARAFAC2 model. We project new documents in the space of UkS

−1
k .

The algorithm to fit a PARAFAC2 model is decidedly more complex than
for Tucker1, so we will only refer to the algorithm in Kiers et al. (1999), which
we implemented in MATLAB using the Tensor Toolbox (Bader and Kolda 2006,
2007a,b).

Due to memory constraints, we were not able to compute a rank 300
PARAFAC2 model. Instead we computed a rank 240 PARAFAC2 model, which
provided an average P1 score of 89.8% and an average MP5 score of 78.5%.
With this tensor representation, and even though the rank of the model is
lower than previously, we see a large and highly significant increase in MP5
over Tucker1 (p value = 2 × 10−17). However, the increase over Tucker1 is
insignificant for P1 (p value = 0.6).

2.7 LSA with term alignments

In Bader and Chew (2008) we returned to the matrix formulation of the term-
by-document matrix. Our approach was inspired by Hendrickson (2007), who
showed that LSA was related to Fiedler vectors of a graph Laplacian. This con-
nection suggested a means to incorporate additional information beyond just
term–document relationships into the SVD.

The basis of this approach is that the SVD may be calculated in several differ-
ent ways; see Table 2.2. If we consider the third option listed, where one can get
U and V from the eigenvectors of a block matrix with X and XT on the off diag-
onal, then we may add information to the diagonal blocks that complements the
information only found in X. In the context of LSA and a term–document matrix
X, these diagonal blocks correspond to term–term and document–document sim-
ilarity information. In Bader and Chew (2008) we consider adding information
only to the first diagonal block (labeled D1) corresponding to the terms; see
Figure 2.6.

There are several possible methods which can be used to add information
to D1. Conceptually, the simplest approach involves consulting a dictionary
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Table 2.2 Calculating the SVD X = U�V T may be accomplished via an
eigendecomposition of different matrices involving X.

Matrix Eigenvectors Eigenvalues

XXT → U & �2

XT X → V & �2[
0 X

XT 0

]
→ 1√

2

(
U+

√
2U0 −U+

V 0 V

)
&

(
�

0
−�

)

U+ is the matrix of singular vectors with positive singular values, U0 is the matrix of
singular vectors with zero singular values.
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terms docs

te
rm

s
do

cs

eigendecomposition

V

eigenvectors eigenvalues

&

XT

XD1

Figure 2.6 Eigendecomposition of block matrix with term-alignment information
yields stronger cross-lingual term relationships.

and populating the block so that Dij = 1 if the term pair (i, j) occurs in a
dictionary, and zero otherwise. Another option, which was used in Bader and
Chew (2008), involves computing the pairwise mutual information (PMI) of
two terms appearing together in the same documents across the whole cor-
pus. This draws upon one of the ideas which underpins statistical machine
translation (SMT) (Brown et al. 1994). To preserve sparsity in the matrix, we
retain the value only for the pair (i, j) that has the highest PMI in both direc-
tions. Because the resulting matrix is not symmetric and symmetry is needed
in D1 to obtain real eigenvalues, we symmetrize the matrix using a modi-
fied Sinkhorn balancing procedure. Sinkhorn balancing (Sinkhorn 1964) is also
needed to equalize contributions between terms. The standard Sinkhorn balancing
procedure normalizes the row and column sums to one, but we use a modi-
fied procedure that makes each row and column of D1 have unit length. This
modification was found to produce better results than creating a doubly stochas-
tic matrix D1. All together, we call this technique LSA with term alignments
(LSATA).

By adding term-alignment information to the diagonal block, we strengthen
the co-occurrence information that LSA normally finds in the parallel corpus via
the SVD. To understand this mathematically, we consider the solution obtained
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from LSA and then apply a power method to update U and V . Here is one
iteration of the power method on our block matrix:

Unew = D1U + XV, (2.6)

Vnew = XT U. (2.7)

The terms XV and XT U are the standard relationships in LSA. The term D1U

is new, and it reinforces term–term relationships from external information
(although note that under our approach, the information is not ‘external’ in that it
is implied by the same corpus from which we get the term-by-document matrix).
A graphical representation of this interpretation is shown in Figure 2.7, where
in one of the concept vectors in U the term ‘house’ dominates the correspond-
ing terms in Spanish and French, for example. After multiplication with D1, the
relationship between these three words is strengthened, and all three terms have
similar values.

This observation leads to another consideration: the weighting of D1 relative
to X. If the values of D1 are very small compared to X, then any contribution
from D1 will be negligible. The opposite happens if the values in D1 are very
large compared to X. Hence, the matrices D1 and X must be numerically balanced
by, say, multiplying D1 by some parameter β. For our corpus and particular scal-
ing of D1 (Sinkhorn-balanced PMI) and X (log-entropy with α = 1.8), we deter-
mined empirically that a value of β = 12 provides good results. Alternatively,
β can be determined automatically by routinely balancing the two contributions
from D1U and XV in Equations (2.6)–(2.7). One possible approach is to set

β = ‖XV ‖F

‖D1U‖F

. (2.8)

Algorithmically, β could be computed iteratively inside an eigensolver or
externally by looping over an eigensolver and adjusting β until it converges to
a constant value.

In our numerical experiments, using a rank 300 LSATA model and β = 12,
we get an average P1 score of 91.8% and an average MP5 score of 80.7%. With
this matrix representation, we see a small increase over PARAFAC2 in P1 and in

house

casa

maison

=

Figure 2.7 Term-alignment matrix D1 strengthens the cross-lingual term rela-
tionships in U identified by LSA.
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multilingual precision. Although these increases are small, they are statistically
significant (p values of 1 × 10−4 and 4 × 10−3, respectively).

2.8 Latent morpho-semantic analysis (LMSA)

In Chew et al. (2008b) we investigated alternate formulations of cross-language
retrieval using the VSM. A recurring pattern in our results was that Arabic
and Russian tended to have lower P1 scores than English, French, and Spanish.
This occurred irrespective of whether Arabic and Russian were the source or
target languages of the query, and it held for all of our techniques. This pattern
suggested a linguistic explanation to the problem and a corresponding linguistic
solution.

As discussed previously, languages fall on a spectrum from isolating to syn-
thetic. Arabic and Russian are synthetic languages, where meaning is shaped
through inflection and suffixation of words. This means that these languages have
more unique terms (see Table 2.1), which means that, for example in English, the
terms walk , walks , walking , and walked would correspond to separate rows in
X, and the co-occurrence patterns of these words may indicate that they are not
related. For morphologically complex languages like Arabic and Russian, even
more extreme examples could be found.

To address this problem, we have developed a morphologically more sophisti-
cated alternative to LSA, which we call latent morpho-semantic analysis (LMSA)
(Chew et al. 2008b). In this technique we perform a statistical analysis of the
language to identify tokenizations of character n-grams that maximize mutual
information among all possible nonoverlapping n-grams. We then use these
tokenizations to form a morpheme-by-document matrix instead of a term-by-
document matrix, weight it using log-entropy scaling (or other), and apply the
SVD to get a morpheme-by-concept matrix U and corresponding singular values
S, which we subsequently use in the standard way.

The benefits of this approach are twofold. First, all of the benefits of LSA
(language independence, speed of implementation, fast runtime processing) are
retained in this method. Second, we are more able to deal with out-of-vocabulary
terms in new documents because they may be broken down into their constituent
morphemes, which are more likely to be represented in the training corpus. Our
approach is related to stemming, except that all parts of the word are retained
in a morpheme-by-document matrix, not just the stems. Furthermore, this proce-
dure may be performed by a statistical analysis of the language, so no language
expertise is required.

Using a rank 300 LMSA model, we get an average P1 score of 88.7%
and an average MP5 score of 73.7%. With this linguistic representation, we
see performance about on par with the Tucker1 tensor technique: no statisti-
cal difference in P1 but a small (2.4%) improvement in multilingual precision
(p value = 5 × 10−3).
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2.9 LMSA with term alignments

With the development of LMSA, it is a simple extension to consider the term-
alignment framework of LSATA using morphemes instead of terms. We may call
this technique LMSATA, or LMSA with term alignments (in this case, terms refer
to morphemes). Morpheme alignments are determined using mutual information
in the same manner as terms are with LSATA. Then a 2 × 2 block matrix is
formed with morpheme alignments in D1 (scaling factor β = 12) and morpheme-
by-document matrix X with log-entropy weighting. An eigendecomposition of
this matrix yields eigenvectors from which we extract individual U matrices for
each language.

Using a rank 300 LMSATA model, we get an average P1 score of 94.6%
and an average MP5 score of 81.7%. With this linguistic representation, we
see an increase over the previous best method, LSATA, with a large gain in
P1 (p value = 5.1 × 10−8) and a slight but insignificant increase for MP5
(p value = 0.18).

2.10 Discussion of results and techniques

The results from all of our methods are tabulated in Table 2.3. Note that a number
of techniques from standard IR and computational linguistics were combined to
achieve much higher multilingual precisions. In fact, our best method reported
here, LMSATA, relies on a broad collection of techniques including: (1) morpho-
logical analysis of language using techniques from statistical machine translation;
(2) techniques from latent semantic analysis, including dimensionality reduction
using the SVD; and (3) numerical linear algebra for simultaneously analyzing
term co-occurrences and term–term alignments.

It is difficult to compare these techniques in terms of computational per-
formance because they were not implemented on a single machine/architecture;
some are parallel codes, others are serial MATLAB implementations. Generally
speaking, the SVD-based techniques, such as LSA and LMSA, are the fastest.

Table 2.3 Aggregate results from all algebraic techniques.

Method Average P1 Average MP5

SVD/LSA (α = 1.0) 76.0% 26.1%
SVD/LSA (α = 1.8) 88.0% 65.7%
Tucker1 89.5% 71.3%
PARAFAC2 89.8% 78.5%
LSATA 91.8% 80.7%
LMSA 88.7% 73.7%
LMSATA 94.6% 81.7%
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The eigenvector-based approach of LSATA and LMSATA requires more time
due to the larger matrix and term-alignment step. The tensor-based techniques
Tucker1 and PARAFAC2 are the slowest due to the data being organized as a
large three-way array. The morphological tokenization of LMSA and LMSATA
adds an extra processing step that adds time to both the training and test sets,
and the resulting morpheme-by-document matrix is smaller yet denser.

As a demonstration of what is possible when the framework achieves high
multilingual precision (around 90%), we present in Figures 2.8 and 2.9 a visu-
alization of how the books of the Bible, color-coded according to language,
are represented in two-dimensional space. Note that the books cluster first to
their counterparts in other languages, and then into larger clusters containing
related books. In particular, Figure 2.9 shows that John and Acts have tight
clusters, while there is some mixing among Matthew, Mark, and Luke, which
seems reasonable; Bible scholars call these three synoptic gospels because they
share a similar perspective. This kind of visualization is possible only when

Figure 2.8 Visualization of clustering of multilingual Bible books. Rectangle rep-
resents area of detail shown in Figure 2.9.
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Figure 2.9 Partial visualization of clustering of multilingual Bible books.

multilingual precision is satisfactorily high. In summary, these techniques have
effectively allowed us to factor out language, focusing only on topic, just as we
had hoped.
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Content-based spam email
classification using
machine-learning algorithms

Eric P. Jiang

3.1 Introduction

With the rapid growth of the Internet and advances in computer technology email
has become a preferred form of communication and information exchange for
both business and personal purposes. It is fast and convenient. In recent years,
however, the effectiveness and confidence in email have been diminished quite
noticeably by spam email, or bulk unsolicited and unwanted email messages.
Spam email has been a painful annoyance for email users with an overwhelm-
ing amount of unwelcome messages flowing into their mailboxes. Now, it has
also evolved into a primary medium for spreading phishing scams and malicious
viruses. The cost of spam in the United States alone in terms of decreased pro-
ductivity and increased technical expenses for businesses has reached tens of
billions of dollars annually.1 Worldwide spam volume has increased significantly
and during the first quarter of 2008, spam email accounted for more than nine
out of every ten email messages sent over the Internet.2

1 http://www.spamlaws.com/spam-stats.html
2 http://www.net-security.org/
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Over the years, various spam filtering technology and anti-spam software
products have been developed and deployed. Some of them are designed to
detect and stop spam email at the TCP/IP or SMTP level and may rely on DNS
blacklists of domain names that are known to originate spam. This approach has
been commonly used. However, it can be insufficient due to the lack of accuracy
of the name lists, since spammers can now register hundreds of free webmail ser-
vices such as Hotmail and Gmail and then rotate them every few minutes during
a spam campaign. The other major type of spam filtering technology functions at
the client level. Once an email message is downloaded, its content can be exam-
ined to determine whether the message is spam or legitimate. Several supervised
machine-learning algorithms have been used in client-side spam detection and
filtering. Among them, naive Bayes (Mitchell 1997; Sahami et al. 1998), boost-
ing algorithms such as logitBoost (Androutsopoulos et al. 2004; Friedman et al.
2000), support vector machines (SVMs) (Christianini and Shawe-Taylor 2000;
Drucker et al. 1999), instance-based algorithms such as k-nearest neighbor (Aha
and Albert 1991), and Rocchio’s classifier (Rocchio 1997) are commonly cited.
More recently, a number of other interesting algorithms for spam filtering have
been developed. One uses an augmented latent semantic indexing (LSI) space
model (Jiang 2006) and another applies a radial basis function (RBF) neural
network (Jiang 2007).

This chapter considers five supervised machine-learning algorithms for an
evaluation study of spam filtering application. The algorithms selected in this
study include widely used ones with good classification results and some recently
proposed methods. More specifically, we evaluate these five classification algo-
rithms: naive Bayes classifier (NB), support vector machines (SVMs), logitBoost
algorithm (LB), augmented latent semantic indexing space model (LSI) and radial
basis function (RBF) networks.

Spam filtering is a cost-sensitive classification task since misclassifying legit-
imate email (a false positive error) is generally more costly than misclassifying
spam email (a false negative error). Fairly recently, there have been several stud-
ies (Androutsopoulos et al. 2004; Zhang et al. 2004) surveying machine-learning
techniques in spam filtering. Using a constant λ to measure the higher cost of
false positives, these studies have evaluated several algorithms on spam filter-
ing by integrating the λ value or a function of λ into the algorithms through
a variety of cost-sensitive adjustment strategies. This was done by increasing
algorithm thresholds on spam confidence scores, adding more weights on legit-
imate training samples, or empirically adjusting algorithm decision thresholds
using cross-validation. Different adjustment strategies have also been applied to
different algorithms in the studies. Since all the algorithms were designed with
cost-insensitive tasks in mind, applying such simple cost-sensitive adjustments
on the algorithms can produce unreliable results. Apparently this insufficiency
has been recognized and, for some algorithms, the studies reported only the best
results among several adjustment trials.

This chapter provides a related study of five machine-learning algorithms on
spam filtering from a different perspective. The main objective of the study is to
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learn whether and to what extent the algorithms are adaptable and applicable to
the cost-sensitive email classification problem and to identify the characteristics
of the algorithms most suitable for adaptability. In this study, we selected two
benchmark email testing corpora for experiments that were constructed from two
different languages and have reverse ratios of the number of spam emails to the
number of legitimate emails in the training data. We also vary feature size in the
experiments to analyze the usefulness of feature selection for these algorithms.

The rest of the chapter is organized as follows. In Section 3.2, the five
machine-learning algorithms that are investigated for spam filtering applica-
tions are briefly described. In Section 3.3, several data preprocessing procedures,
including feature selection and message representation, are discussed. Spam filter-
ing is a cost-sensitive classification task and a related discussion of effectiveness
measures is included in Section 3.4. We then compare the algorithms, using two
popular email testing corpora. The experimental results and analysis are reported
in Section 3.5, and an empirical comparison of the characteristics of the five clas-
sifiers is presented in Section 3.6. Finally, some concluding remarks are provided
in Section 3.7.

3.2 Machine-learning algorithms

Spam email filtering is an application of automated text classification with two
categories. A number of machine-learning algorithms, which have been success-
fully used in text classification (Sebastiani 2002), can also be applied in spam
filtering. Given a collection of labeled email samples, these algorithms can learn
from the samples to classify previously unseen email into the categories based
on their content. The algorithms of NB, LB, SVM, augmented LSI, and RBF are
among those that have achieved good performance for spam filtering. They are
included in this study and are briefly described in this section.

In this chapter, we use D = {d1, d2, . . . , dn} to denote a training set of email
samples with size n and C = {cl, cs} the email categories (cl , legitimate; cs ,
spam). We assume each email message di can be expressed as a numeric vec-
tor representing the weights of terms or features di = (t1, t2, . . . , tm) ∈ �n (see
Section 3.3.2).

3.2.1 Naive Bayes

The NB classifier is a probabilistic learning algorithm that derives from Bayesian
decision theory (Mitchell 1997). The probability of a message d being in class
c, P(c|d), is computed as

P(c|d) ∝ P(c)

m∏
k=1

P(tk|c), (3.1)

where P(tk|c) is the conditional probability of feature tk occurring in a message
of class c and P(c) is the prior probability of a message occurring in class c.
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P(tk |c) can be used to measure how much evidence tk contributes that c is the
correct class (Manning et al. 2008). In email classification, the class of a message
is determined by finding the most likely or maximum a posteriori (MAP) class
cMAP defined by

cMAP = arg max
c∈{cl ,cs }

P(c|d) = arg max
c∈{cl ,cs }

P(c)

m∏
k=1

P(tk|c). (3.2)

Since Equation (3.2) involves a multiplication of many conditional probabilities,
one for each feature, the computation can result in a floating point underflow.
In practice, the multiplication of probabilities is often converted to an addition
of logarithms of probabilities and, therefore, the maximization of the equation is
alternatively performed by

cMAP = arg max
c∈{cl ,cs }

[
log P(c) +

m∑
k=1

log P(tk|c)
]

. (3.3)

All model parameters, i.e. class priors and feature probability distributions, can
be estimated with relative frequencies from the training set D. Note that when
a given class and message feature do not occur together in the training set, the
corresponding frequency-based probability estimate will be zero, which would
make the right hand side of Equation (3.3) undefined. This problem can be
mitigated by incorporating some correction such as Laplace smoothing in all
probability estimates.

NB is a simple probability learning model and can be implemented very
efficiently with a linear complexity. It applies a simplistic or naive assumption
that the presence or absence of a feature in a class is completely independent
of any other features. Despite the fact that this oversimplified assumption is
often inaccurate (in particular for text domain problems), NB is one of the most
widely used classifiers and possesses several properties (Zhang 2004) that make
it surprisingly useful and accurate.

3.2.2 LogitBoost

LB is a boosting algorithm that implements forward stagewise modeling to form
additive logistic regression (Friedman et al. 2000). Like other boosting methods,
LB adds base models or learners of the same type iteratively, and the construction
of each new model is influenced by the performance of those preceding ones.
This is accomplished by assigning weights to all training samples and adaptively
updating the weights through iterations. Suppose fm is the mth base learner and
fm(d) is the prediction value of message d . After fm is constructed and added
to the ensemble, the weights on training samples are updated in such a way that
the subsequent base learner fm+1 will focus more on those difficult samples to
classify by fm. In the iteration process, the probability of d being in class c
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is estimated by applying a sigmoid function, which is also known as the logit
transformation, to the response of the ensemble that has been built so far, i.e.

P(c|d) = eF(d)

1 + eF(d)
, F (d) = 1

2

∑
fm(d). (3.4)

Once the iteration terminates and the final ensemble F is created, the classification
of target email messages is determined by the probability in Equation (3.4).

A popular base learner choice for LB is decision stump, a one-level deci-
sion tree that uses an attribute in training data to classify training samples into
categories. In text classification, since we deal with continuous attributes, the
decision tree is actually a threshold function on one of the data attributes and
hence it becomes a regression stump (Androutsopoulos et al. 2004). It can be
shown that the LB algorithm maximizes the probability of the data with respect
to the ensemble if each base learner fm is determined by minimizing the squared
error on the fitted regression of weighted training data (Witten and Frank 2005).
The model’s iteration number m is specified by the user and we set it to 50,
which is the smallest feature size used in this study.

3.2.3 Support vector machines

SVMs (Christianini and Shawe-Taylor 2000) have been considered the most
promising algorithm in text classification. The algorithm uses linear models to
implement nonlinear category boundaries by transforming a given instance space
into a linearly separable one through nonlinear mappings. In the transformed
space, an SVM constructs a separating hyperplane that maximizes the distance
between the training samples of two categories. This is done by selecting two
parallel hyperplanes that are each tangent to at least one sample of its category;
such samples on the tangential hyperplanes are called the support vectors. The
distance between the two tangential planes is the margin of the classifier, which
is to be maximized, and that is why a linear SVM is also known as a maximal
margin classifier.

Assume the class variable for the ith training sample is ci = {1,−1}, indi-
cating the spam (1) or legitimate (−1) category, respectively. A hyperplane in
the sample space can be written as

w · d + b = 0, (3.5)

where w is a normal vector that is perpendicular to the hyperplane, and b is
a bias term. If the given training data is linearly separable, we can select two
hyperplanes that contain no points between them and then maximize the distance
(margin) between the hyperplanes, which is 2/‖w‖. Maximizing the margin is
equivalent to solving the following constrained minimization problem:

min
w

‖w‖2

2
, subject to ci(w · di + b) ≥ 1. (3.6)



42 TEXT MINING

The optimization problem in Equation (3.6) can be solved by the standard
Lagrange multiplier method with the new objective function:

‖w‖2

2
−
∑

i

λi[ci(w · di + b) − 1]. (3.7)

Since the Lagrangian involves a large number of parameters, this is still a dif-
ficult problem. Fortunately, the problem can be simplified by transforming the
Lagrangian in Equation (3.7) into the following dual formation that contains only
Lagrange multipliers:

max
∑

i

λi − 1

2

∑
i,j

λiλj cicj di · dj , subject to λi ≥ 0, and
∑

i

λici = 0.

(3.8)
The dual optimization problem can usually be solved by using some numerical
quadratic programming techniques such as the sequential minimal optimization
algorithm (Platt 1999). The terms λi from Equation (3.8) are used to define the
decision boundary (∑

i

λicidi · d
)

+ b = 0. (3.9)

In order to deal with the cases where the training samples cannot be fully sep-
arated and also small misclassification errors are permitted, the so-called soft
margin method was developed for choosing a hyperplane that intends to reduce
the number of errors committed by the decision boundary while maximizing the
width of the margin. The method introduces a positive-valued slack variable ξ

that measures the degree of misclassification error on a sample and solves the
following modified optimization problem:

min
w

‖w‖2

2
+ C

∑
i

ξi, subject to ci(w · di + b) ≥ 1 − ξi, (3.10)

where a linear penalty function is used and C is a user-specified constant that
determines an error tolerance level. In our experiments, we set C = 1.

The linear SVM described above can be extended into a nonlinear classi-
fier. Conceptually, we could just transform the training data (where no linear
decision boundaries can be found) to a new feature space so that a linear deci-
sion boundary can be constructed to separate the data in the transformed space.
However, this feature transformation approach raises a few issues about high
feature dimensionality and high computational requirements. Alternatively, non-
linear classifiers can be created by applying a procedure similar to the linear ones
to construct maximum margin hyperplanes, except that every dot product in the
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transformed space is replaced by a kernel function in the original feature space.
Computing the dot products using kernels is considerably cheaper than using
the transformed features. Several different kernel functions have been proposed
and, for text classification, it seems that the SVM with a simple linear kernel
performs comparably to nonlinear alternatives (Joachims 1998). An SVM with a
linear kernel is used in our evaluation.

3.2.4 Augmented latent semantic indexing spaces

Latent semantic indexing (LSI) (Deerwester et al. 1990) is a well-known infor-
mation retrieval technique. By deploying a rank-reduced feature–document space
through the singular value decomposition (SVD) (Golub and van Loan 1996),
it effectively transforms individual documents into their semantic content vec-
tors to estimate the major associative patterns of features and documents and to
diminish the obscuring noise in feature usage (Berry et al. 1995).

LSI can be used as a learning algorithm for spam filtering by replacing the
notion of query relevance with the notion of category membership. An experi-
ment of this approach on the Ling-Spam corpus was reported in Gee (2003) and
it constructs a single LSI space to accommodate both spam and legitimate email
training data. This simple application has some drawbacks (Jiang 2006). LSI
itself is a completely unsupervised learning algorithm and when it is applied to
(supervised) spam filtering, valuable category discriminative information embed-
ded in training data should be extracted and integrated in model learning to boost
classification accuracy. There are several approaches that can be used toward this
goal. For instance, we can select distinctive features by exploring their category
distributions (see Section 3.3) and introduce two separate LSI learning spaces
(one for each email category). Feature selection also helps reduce computational
requirements due to the SVD algorithm in the model.

For a given email training set, each of the two rank-reduced spaces can
be constructed by using the data of its respective category and conceptually it
would provide a more accurate category content profile than that produced from
a single combined space. In practice, however, this dual-space approach may
still encounter difficulties in classifying some email messages since many spam
messages are purposely crafted to look legitimate and to mislead spam filters.
This has been verified by our extensive experiments. In order to ameliorate this
problem, a new model that uses augmented LSI learning spaces was proposed
in Jiang (2006). More precisely, for each constructed category LSI space, this
model augments the space with a small number of the training samples that are
closest to the category in appearance but actually belong to the other category
in label. This augmented LSI space model can effectively help classify those
difficult target messages correctly, which are similar to the augmented samples
used in the training, while maintaining accurate classification of other messages.
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Expansion of the augmented training samples is carried out by cluster cen-
troids. For each email category, we construct one or multiple clusters. For each
cluster cj , its centroid is computed as

acj
= 1

k

k∑
i=1

dni
, dni

∈ cj , (3.11)

and it can be used to represent the most important topic covered in the cluster
(Jiang 2006). Once the cluster centroids of a category c are identified, all training
samples from the other category are compared against the centroids and the most
similar ones are then chosen to add to the training set of c. Selecting the sizes
of clusters and augmented samples of a category can vary depending on the data
to be learned. The cluster size can also be set by a silhouette plot (Kaufman
and Rousseeuw 1990) on a given training dataset. In our experiments, we use
the augmented sample sizes of 18 and 70 for the corpora PU1 and ZH1 (see
Section 3.5), respectively.

To use two separate augmented LSI spaces for classification, several
approaches have been considered and evaluated in Jiang (2006) that coordinate
and classify target email messages into their respective classes. For a given
target message, the first approach simply projects it onto both LSI spaces and
then uses the most semantically similar training sample to decide the class
for the message. The second approach classifies the message similarly but by
applying a fixed number of the top most similar training samples in the spaces
and using either the sum or average of computed similarity values from both
classes to make its classification decision. The third approach is a hybrid one
that intends to combine the ideas of the first two methods and also to mollify
some of their shortcomings. Essentially, it determines the class for the target
message by linearly balancing the votes or decisions made by the first two
methods. Experiments indicate that in general the hybrid approach delivers
significantly better classification results (Jiang 2006) and it is used in the study.

3.2.5 Radial basis function networks

RBF networks have many applications in science and engineering and can also be
used to build learning models for filtering spam email (Jiang 2007). A typical RBF
network has a feedforward connected structure of three layers: an input layer, a
hidden layer of nonlinear processing neurons, and an output layer (Bishop 1995).
For email classification, the input layer of the network has n neurons and it takes
input training samples d . The hidden layer contains k computational neurons;
each neuron can be mathematically described by an RBF φi that maps a distance
between two vectors in the Euclidean norm into a real value:

φi(x) = φ(‖x − ai‖2), i = 1, 2, . . . , k, (3.12)

where ai are the RBF centers in the input sample space and, in general, k is
less than the size of training samples. The output layer of the network has two
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neurons that produces the target message category according to

cj =
k∑

i=1

wijφi(x), j = 1, 2, (3.13)

where wij is the weight connecting the ith neuron in the hidden layer to the j th
neuron in the output layer. The neuron activation φi is a nonlinear function of the
distance; the closer the distance, the stronger the activation. The most commonly
used basis function is the Gaussian

φ(x) = e
− x2

2σ2 , (3.14)

where σ is a width parameter that controls smoothness properties of the basis
function.

In the spam filtering model (Jiang 2007), the network parameters, i.e. centers,
widths, and weights, are set by a two-stage training procedure, which is compu-
tationally efficient. The first stage of training is to form a representation of the
density distribution in input space in terms of the parameters of the RBFs. The
centers ai and widths σ are determined by relatively fast and unsupervised clus-
tering algorithms, clustering each email category independently to obtain k basis
functions for the category. In general, the larger the value of k, the better the
classification outcomes and, of course, the higher the cost it carries in network
training. With the computed and fixed centers and widths for the hidden layer,
the second stage of training selects the weights of the output layer by a logistic
regression procedure. Once all network parameters are determined, the model
can be deployed to target email messages for classification, and classification
outcomes from the network are computed by a weighted sum of the hidden layer
activations, as is shown in Equation (3.13).

Recently, an RBF-based semi-supervised text classifier has also been devel-
oped (Jiang 2009). It integrates a clustering-based expectation maximization
algorithm into the RBF training process and can learn for classification from
a very small number of labeled training samples and a large pool of additional
unlabeled data effectively.

3.3 Data preprocessing

In this section, we begin with some data preprocessing procedures that include
feature selection and message representation, followed by a discussion of classi-
fication effectiveness measures for spam filtering.

3.3.1 Feature selection

As in general text classification, appropriate feature selection can be quite useful
in aiding email classification. A term or feature is referred to as a word, a
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number, or a symbol in an email message. In spam filtering, features from training
samples are selected according to their contributions to profiling legitimate or
spam messages and those unselected features are removed from the data for
model learning and deployment. The objectives of feature selection are twofold.
On one hand, it is designed for dimensionality reduction in the message feature
space. Dimensionality reduction aims to trim down the number of features to be
modeled while the content of individual messages is still preserved. It generally
helps speed up a model training process. On the other hand, feature selection
intends to filter out irrelevant features, helping build an accurate and effective
model for spam filtering. This is particularly valuable to certain machine-learning
algorithms such as RBF networks, which treat every data feature equally in their
distance computations and therefore are somewhat incapable of distinguishing
relevant features from irrelevant ones.

Two steps of feature selection are used in our experiments. First, for a given
set of training data, features are extracted and selected with an unsupervised
setting. This is carried out by removing the stop or common words and applying
a word stemming procedure. Then, the features with low message frequencies or
low corpus frequencies are eliminated from the training data, as these features
may not help much in differentiating messages for categories and may add some
obscuring noise in email classification. The selection process also removes those
features with very high corpus frequencies in the training data as many of these
features distribute almost equally between spam and legitimate categories and
may not be valuable in characterizing the email categories. Next, features are
selected by their frequency distributions between spam and legitimated training
messages. This supervised feature selection procedure intends, using those labeled
training samples, to further identify the features that distribute most differently
between the categories.

There are several supervised feature selection methods that have been widely
used in text classification (Sebastiani 2002). They include the chi-square statistic
(CHI), information gain (IG), and odds ratio (OR) criteria. The IG criterion
quantifies the amount of information gained for category prediction by knowledge
of the presence or absence of a feature in a message. More precisely, IG of a
feature t about a category c can be expressed as

IG(t, c) =
∑

c′∈{c,c}

∑
t ′∈{t,t}

P(t ′, c′) log
P(t ′, c′)

P (t ′)P (c′)
, (3.15)

where P(c′) and P(t ′) denote the probability that a message belongs to category
c′ and the probability that a feature t ′ occurs in a message, respectively, and
P(t ′, c′) is the joint probability of t ′ and c′. All probabilities can be estimated
by frequency counts from the training data. Another popular feature selection
method is CHI. It measures the lack of independence between the occurrence of
feature t and the occurrence of class c. In other words, features are ranked with
respect to the quantity
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CHI(t, c) = n[P(t, c)P (t, c) − P(t, c)P (t, c)]2

P(t)P (t)P (c)(c)
, (3.16)

where n is the size of training data D (see Section 3.2) and the probability
notations have the same interpretations as in Equation (3.15). For instance, P(c)

represents the probability that a message does not belong to category c. The third
feature selection criterion, OR, has also been used in text classification and it
measures the ratio of the odds of term t occurring in a message of class c to the
odds of the term not occurring in c and can be defined as

OR(t, c) = P(t |c)(1 − P(t |c))
(1 − P(t |c))P (t |c) . (3.17)

The effectiveness of the feature selection methods for text classification
has been studied and compared, e.g. by Yang and Pedersen (1997), and some
experiments with the criteria described above have also been conducted in this
study. Among these three feature selection methods, our experiments suggest
that the IG measure produces more stable classification results, so we used it in
the selection process.

Through feature selection, the feature dimensionality of a training dataset
can be reduced significantly. For instance, in the experiments with PU1 (see
Section 3.5.1) the original feature size of the corpus, which is over 20 000 can
be trimmed down to tens, hundreds, and thousands.

3.3.2 Message representation

After feature selection, each message is encoded as a numeric vector whose ele-
ments are the values of the retained feature set. Each feature value is associated
with a local and global feature weight, representing the relative importance of the
feature in the message and the overall importance of the feature in the corpus,
respectively. Our experiments indicate that feature frequencies are more infor-
mative than a simple binary coding (which, for instance, is used in Zhang et al.
(2004)) in the context of email classification.

There are several choices to weight a feature or term locally and globally
based on its frequencies. For a given term t and document d , the traditional
‘log(tf)–idf’ term weight is defined as

wt,d = log(1 + tft,d) log
|D|
dft

, (3.18)

where tft,d is the term frequency (tf) of t in d , dft is the document frequency
(df) of t , or the number of documents in a collection D that contain t , and
|D| is the size of the collection. The second component on the right hand side
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of Equation (3.18) represents the inverse document frequency (idf) of t . This
term weighting scheme is used in this work and it produces good classification
results.

3.4 Evaluation of email classification

The effectiveness of a text classifier can be evaluated in terms of its precision
(p) and recall (r) measures. For a classifier and with respect to a category c,
if the numbers of true positive, false positive, and false negative decisions on
category c from the classifier are tp, fp, and fn, respectively, then the precision
and recall are defined as

p = tp

tp + fp
, r = tp

tp + fn
. (3.19)

In brief, the precision measure is gauged by the percentage of documents classi-
fied to c which actually are, whereas the recall is quantified by the percentage of
documents from c that are categorized by the classifier. Clearly, these two quan-
tities trade off against one another and one single measure that balances both is
the F -measure, which is the weighted harmonic mean of precision and recall.
With an equal weight for both precision and recall, we have the commonly used
F1 measure

F1 = 2pr

p + r
. (3.20)

All these effectiveness measures, however, do not take a possible unbalanced
misclassification cost into consideration. Spam email filtering can be a cost-
sensitive learning process in the sense that misclassifying a legitimate message
to spam (false positive) is typically a more severe error than misclassifying a
spam message to legitimate (false negative). In reality, if a legitimate message
is mistakenly classified and placed into a user’s trash-mail box, then the user
may not find this out for a short or long period of time and, depending on how
important the message is, a delayed reading of the message could come with
some negative consequences. In our experiments, an accuracy measure that uses
a weight λ to reflect the unbalanced cost between false positive and false negative
errors, or the weighted accuracy (Androutsopoulos et al. 2004), is used as the
effectiveness criterion and it can be defined as

WA(λ) = λtn + tp

λ(tn + fp) + (tp + fn)
, (3.21)

where the quantities tp, fp, and fn are the same as in Equation (3.19), tn denotes
the true negative classification count, and λ is a cost parameter. The WA formula
assumes that a false positive error is λ times more costly than a false negative
one. We use λ = 1 for the case where both false positive and false negative
errors have an equal cost and also a value of λ that is greater than one, such as



CONTENT-BASED SPAM EMAIL CLASSIFICATION 49

nine, to indicate a higher cost of false positive errors. It is still arguable if such
a higher cost in spam filtering can be quantified by a simple constant (Hidalgo
2002), and the cost should perhaps depend on several variable external factors.
In this study, we use λ = 9 (or any other number in a similar quantity) just as
a value to illustrate whether or not and how the effectiveness of the algorithms
may change when a cost-sensitive condition is imposed.

3.5 Experiments

In this section, we use two benchmark email testing corpora to compare the
efficacy of the five machine-learning algorithms, discussed in Section 3.2, for
spam email filtering and provide the experimental results and analysis. Note that
the input data to the classifiers is the preprocessed message vectors after both
feature selection and feature weighting.

3.5.1 Experiments with PU1

PU1 is a benchmark spam testing corpus that contains a total of 1099 real
email messages received by a single email user over a certain period of time
(Androutsopoulos et al. 2004) and it is partitioned into 618 legitimate and 481
spam messages. The messages in the corpus have been preprocessed with all
attachments, HTML tags, and header fields, except for subject lines which were
removed, and the retained words in the email subject line and body text were
encoded numerically for privacy protection.

There are a few other publicly accessible spam datasets such as the 2005
TREC spam corpus that can be used for spam filtering evaluation. However, most
of them were aggregated from multiple different email sources or recipients, and
some of the large ones were constructed by simply adding some newly gathered
email messages to what had been collected. For very understandable privacy
reasons, it has been a challenge for IT researchers to find coherent, reliable,
and updated public email data, which can reflect what an average email user
receives, for conducting experiments and producing meaningful and comparable
testing results.

It should be pointed out that, in this study, we use only email subject line
and body text as the email content. This is a constraint imposed by construction
of the corpora we used in the experiments. The machine-learning algorithms
investigated in this chapter, however, can plainly be applied to broader email
content. As noted by several previous studies, e.g. Zhang et al. (2004), the features
from other email text such as headers are indeed useful in discriminating spam
email. Therefore, we expect that the classification accuracy of the algorithms
presented in this section would be further increased if we were to use the broader
content that includes email header fields.

The experiments on PU1 are performed using 10-fold cross-validation. That
is, the corpus is partitioned into 10 equally sized subsets and each experiment
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takes one subset for testing and the remaining ones for training and the process
repeats 10 times with each subset taking a turn for testing. The effectiveness is
then evaluated by averaging over the 10 experiments, delivered as an average
weighted accuracy defined in Equation (3.21). Various feature sizes are also used
in the experiments that range from 50 to 1650 with an increment of 100.

Classification effectiveness of the five algorithms, measured by the average
weighted accuracy over all feature sizes that have been considered, is shown
in Figure 3.1 (λ = 1) and Figure 3.2 (λ = 9), respectively. The case of λ = 1
may reflect classification efficacy of the algorithms for general cost-insensitive
learning with a small number of classes. Figure 3.1 shows that RBF performs
very well over small feature sizes, but, along with LB, it produces less accurate
classification than all other three classifiers at large feature sizes. On the other
hand, LSI behaves in a fairly opposite way: it is the least accurate classifier
over small feature sizes but achieves good accuracy at large feature sizes. The
relatively stable performance of NB, SVM, and LB through all feature sets can
be observed, where NB is the top performer, followed closely by SVM and then
LB at a distance.

Now, we turn to the case of λ = 9 and we intend to use the generated weighted
accuracy values to demonstrate whether or not and how the accuracy results of
an algorithm change when a false positive error is to be punished more than
a false negative error or a cost-sensitive condition is imposed. The changes, if
any, should ultimately depend on how well the algorithm can profile legitimate
messages and make small numbers of false positive errors. For both NB and LB
classifiers, their accuracy values in this case are not significantly different from
those in Figure 3.1 and, relatively, their false positive errors are comparable to
their false negative ones. Similar observations can also be made for SVM. On the
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Figure 3.1 Average weighted classification accuracy with λ = 1 (PU1).
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Figure 3.2 Average weighted classification accuracy with λ = 9 (PU1).

other hand, since LSI, followed very closely by RBF, carries somewhat smaller
numbers of false positive errors than other classifiers, its accuracy values are
lifted for it to become the top performer. A detailed analysis of LSI and RBF on
their error counts suggests that a richer feature set generally helps the classifiers
characterize legitimate messages and improve classification of the category. But it
may not be useful for them to improve their classification of spam messages. One
possible explanation for this phenomenon may be related to the vocabularies used
in the respective email categories. It is hypothesized that spam email has a strong
correspondence between a small set of features and the category, while legitimate
email likely carries more sophisticated characteristics. The spam category could
attain good classification with a small vocabulary while the legitimate category
requires a large vocabulary, which can be assisted by feature expansion.

3.5.2 Experiments with ZH1

In this subsection, we present the experiments of the five classifiers on a Chinese
spam corpus ZH1 (Zhang et al. 2004). The experiments aim to demonstrate the
capability of individual classifiers to classifying email written in a language with a
different linguistic structure. Chinese text does not have explicit word boundaries
like English, and words in the text can be extracted by some specially designed
word segmentation software (Zhang et al. 2004). The construction of corpus ZH1
is very similar to PU1 where ZH1 is made up of 1205 spam and 428 legitimate
email messages. All messages in the corpus are also numerically encoded. Note
that, in contrast to PU1, ZH1 has more spam email than legitimate email in
the corpus and this helps examine whether or not and how the classifiers are
possibly influenced in their model learning by unbalanced training sample sizes
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between the categories. Experiments on ZH1 are also performed using 10-fold
cross-validation and the same feature sets as those with PU1.

Figure 3.3 and Figure 3.4 show the average weighted accuracy values obtained
by all five classifiers over the feature sizes for λ = 1 and λ = 9, respectively.
For the case of equal misclassification cost (λ = 1), Figure 3.3 indicates that
SVM and LB perform best over most feature sizes, followed by LSI and then
RBF; in this case, NB evidently fails to be comparable. When a higher cost on
false positive errors is considered (λ = 9), similar observations can be made from
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Figure 3.4, but this time, at those feature sizes that are greater than 350, both
LSI and RBF become much more competitive than LB and SVM. All four of
these classifiers achieve high classification accuracy.

3.6 Characteristics of classifiers

In comparison to general text classification, spam email filtering represents a
special, cost-sensitive, and very challenging classification task. It has two cate-
gories to be classified. The cost of the two types of misclassification errors is
different and many spam messages are purposely and carefully constructed to
look very much like legitimate ones. Though both spam and legitimate email
messages may have a similar appearance, there may be still some important and
different characteristics for each email category that should not be overlooked.
For instance, in contrast to spam email, legitimate email has in general a broader
vocabulary and also perhaps more eclectic subject matter. Ideally, a successful
machine-learning algorithm used in this particular classification domain should
fully utilize potential differences between the email categories and, more impor-
tantly, should be capable of profiling legitimate messages accurately and carry
only a small number of false positive misclassification errors.

As in many other applications of machine learning, declaring one algorithm
as the best for spam filtering is a difficult task and perhaps almost impossible.
The experiments and analysis conducted in this study, however, have revealed
some interesting characteristics among the five classifiers investigated. They are
summarized below.

Naive Bayes (NB). This classifier is simple and the fastest in model learning
among the five classifiers. It can work well for text classification. Since the algo-
rithm assumes that individual features are completely independent of one another,
the classifier can benefit from effective feature selection, which is demonstrated
in the PU1 experiments. In the same vein, NB can perform poorly if it is applied
to a dataset where there are some observable dependencies among features. One
possible explanation for the inadequate performance of NB on ZH1 is the lan-
guage on which the corpus is based. Chinese is a language with a vast vocabulary
and it is extremely difficult to automatically extract meaningful words or features
correctly from a Chinese document; many Chinese words are also polysemous
(the words can have very different meanings depending on the context in which
they are used). All of these language characteristics may contribute to inaccu-
rate probability estimation and heavy feature dependencies, which can inevitably
reduce the power of the NB algorithm.

LogitBoost (LB). As a boosting algorithm, LB combines multiple simple base
learners (decision stumps in this case) iteratively to make a powerful classifier.
Although the base learner has a very simple structure, the ensemble construction
can still be very time consuming. The success of LB on text classification or spam
filtering seems to depend on the dataset but generally LB delivers competitive
results. One interesting and unique characteristic of the method is its insensibility
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to feature size and large feature sizes may not help improve its classification
accuracy. Hence, it seems that a relatively small feature size such as 250 could
be used for the model training. Finally, the learning ability of the classifier for
profiling a category appears to be influenced by the size of available training
samples of the category.

SVM . As reported by several previous studies, SVM is a very stable classifier
and is also scalable to feature dimensionality. In this study, SVM consistently
performs as the best or as a very competitive classifier, in particular when cost-
insensitive classification is considered. The linear SVM used in this study is also
relatively fast in model training.

Augmented latent semantic indexing spaces (LSI). The LSI model constructs
two separate rank-reduced and augmented learning spaces, one for each email
category. In this study, the model has been demonstrated to be a very reliable
classifier and it consistently delivers competitive classification results. The model
also seems well suited to cost-sensitive spam filtering and this could be in part
due to its integrated clustering component for constructing the augmented LSI
spaces. Good performance of the classifier generally requires a feature size of
about 500 or larger. Algorithm training can be expensive if the feature size
becomes very large.

Radial basis function networks . The RBF-based classifier performs reason-
ably well, especially when it is evaluated as a cost-sensitive learning algorithm.
This is likely contributed by the clustering process used in its first stage of net-
work training. The model’s performance appears to be affected by the clustering
accuracy and, in addition, the classifier seems to be sensitive to feature size, so
any excessive feature selection attempts should be avoided.

Overall, in terms of adaptability to cost-sensitive spam filtering, the classifiers
based on LSI and RBF demonstrate their strength in this evaluation. Although
these are two quite different machine-learning algorithms, they share one common
characteristic: that is, both use a clustering component in their model training.
Since clustering can potentially group messages by topics, an integrable clustering
process can benefit from machine-learning algorithms in enhancing their profile
accuracy of legitimate email (i.e. the category with a large vocabulary), and in
reducing their numbers of false positive errors.

3.7 Concluding remarks

In this chapter, we provide an evaluation study of five current machine-learning
algorithms proposed for spam filtering. The algorithms are described and com-
pared by using various feature sizes, determined through an effective feature
selection procedure, and by conducting experiments on some benchmark spam
testing corpora constructed from two different languages. In particular, this study
evaluates the adaptability of the algorithms for cost-sensitive spam filtering and,
in this regard, the classifiers based on augmented LSI spaces, SVM, and RBF net-
works are the top performers. The experimental results also suggest that the newly
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proposed LSI and RBF classifiers represent two very competitive alternatives to
other well-known methods for text and spam classification.

Content-based spam email filtering is a challenging classification task and
success of the process can practically be influenced by many choices that include
the selection of the algorithm, data and data preprocessing, feature selection, and
decision criteria. In this study, we use only the email subject line and body
text as the content for learning. For future work, we plan to expand the email
content for spam filtering by the features contained in header fields, which seem
to be reliable and useful (Zhang et al. 2004). Also, we plan to revisit some
machine-learning algorithms to further improve their classification effectiveness
on cost-sensitive learning. For instance, we would like to see how an optimal
number of clusters for the LSI and RBF classifiers can be determined to create
an accurate representation of topics among messages of both email categories.
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Utilizing nonnegative matrix
factorization for email
classification problems

Andreas G. K. Janecek and Wilfried N. Gansterer

4.1 Introduction

About a decade ago, unsolicited bulk email (‘spam’) started to become one of
the biggest problems on the Internet. A vast number of strategies and techniques
were developed and employed to fight email spam, but none of them can be
considered a final solution to this problem. In recent years, phishing (‘password
fishing’) has become a severe problem in addition to spam email. The term
covers various criminal activities which try to fraudulently acquire sensitive data
or financial account credentials from Internet users, such as account user names,
passwords, or credit card details. Phishing attacks use both social engineering and
technical means. In contrast to unsolicited but harmless spam email, phishing is
an enormous threat for all big Internet-based commercial operations.

Generally, email classification methods can be categorized into three groups,
according to their point of action in the email transfer process. These groups
are pre-send methods, post-send methods, and new protocols, which are based
on modifying the transfer process itself. Pre-send methods, which act before
the email is transported over the network, are very important because of their
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potential to avoid the wasting of resources caused by spam. However, since the
efficiency of these methods depends on their widespread deployment, most of the
currently used email filtering techniques belong to the group of post-send meth-
ods. Amongst others, this group comprises techniques such as black-, white-, and
graylisting, or rule-based filters, which block email based on a predetermined
set of rules. Using these rules, features describing an email message can be
extracted. After extracting the features, a classification process can be applied
to predict the class (ham, spam, phishing) of unclassified email. An important
approach for increasing the speed of the classification process is to perform
feature subset selection (removal of redundant and irrelevant features) or dimen-
sionality reduction (use of low-rank approximations of the original data) prior to
the classification.

Low-rank approximations replace a large and often sparse data matrix with
a related matrix of much lower rank. The objective of these techniques – which
can be utilized in many data mining applications such as image processing, drug
discovery, or text mining – is to reduce the required storage space and/or to
achieve more efficient representations of the relationship between data elements.
Depending on the approximation technique used, great care must be taken in
terms of storage requirements. If the original data matrix is very sparse (as is the
case for many text mining problems), the storage requirements for the reduced
rank matrices might be higher than for the original data matrix with higher
dimensions (since the reduced rank matrices are often almost completely dense).
Besides well-known techniques like principal component analysis (PCA) and sin-
gular value decomposition (SVD), there are several other low-rank approximation
methods like vector quantization (Linde et al. 1980), factor analysis (Gorsuch
1983), QR decomposition (Golub and Van Loan 1996) or CUR decomposition
(Drineas et al. 2004). In recent years, another approximation technique for non-
negative data has been used successfully in various fields. The nonnegative matrix
factorization (NMF, see Section 4.2) determines reduced rank nonnegative fac-
tors W and H which approximate a given nonnegative data matrix A, such that
A ≈ WH.

In this chapter, we investigate the application of NMF to the task of email
classification. We consider the interpretability of the NMF factors in the email
classification context and try to take advantage of information provided by the
basis vectors in W (interpreted as basis emails or the basis features). Moti-
vated by this context, we also investigate a new initialization technique for
NMF based on ranking the original features. This approach is compared to stan-
dard random initialization and other initialization techniques for NMF described
in the literature. Our approach shows faster reduction of the approximation
error than random initialization and comparable results to existing but often
more time-consuming approaches. Moreover, we analyze classification meth-
ods based on NMF. In particular, we introduce a new method that combines
NMF with LSI (Latent Semantic Indexing) and compare this approach to stan-
dard LSI.
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4.1.1 Related work

The utilization of low-rank approximations in the context of email classification
has been analyzed in Gansterer et al. (2008b). In this work, LSI was applied
successfully both on purely textual features and on features extracted by rule-
based filtering systems. Especially the features from rule-based filters allowed
for a strong reduction of the dimensionality without losing significant accuracy
in the classification process. Feature reduction is particularly important if time
constraints play a role, as in the online processing of email streams. In Gansterer
et al. (2008a) a framework for such situations was presented – an enhanced
self-learning variant of graylisting (temporarily rejecting email messages) was
combined with a reputation-based trust mechanism to separate SMTP communi-
cation from feature extraction and classification. This architecture minimizes the
workload on the client side and achieves very high spam classification rates. A
comparison of the classification accuracy achieved with feature subset selection
and low-rank approximation based on PCA in the context of email classification
can be found in Janecek et al. (2008).

Nonnegative matrix factorization. Paatero and Tapper (1994) published an arti-
cle on positive matrix factorization , but the work by Lee and Seung (1999)
five years later achieved much more popularity and is known as a standard
reference for NMF. The two NMF algorithms introduced in Lee and Seung
(1999) – multiplicative update algorithm and alternating least squares (Berry
et al. 2007; Lee and Seung 2001) – provide good baselines against which newer
algorithms (e.g. the gradient descent algorithm) have to be judged.

NMF initialization. All algorithms for computing the NMF are iterative and
require initialization of W and H. While the general goal – to establish initializa-
tion techniques and algorithms that lead to better overall error at convergence – is
still an open issue, some initialization strategies can improve the NMF in terms of
faster convergence and faster error reduction. Although the benefits of good NMF
initialization techniques are well known in the literature, rather few algorithms
for non-random initializations have been published so far.

Wild et al. (Wild 2002; Wild et al. 2003, 2004) were among the first to inves-
tigate the initialization problem of NMF. They used spherical k -means clustering
based on the centroid decomposition (Dhillon and Modha 2001) to obtain a struc-
tured initialization for W. More precisely, they partition the columns of A into
k clusters and select the centroid vectors for each cluster to initialize the corre-
sponding columns in W. Their results show faster error reduction than random
initialization, thus saving expensive NMF iterations. However, since this decom-
position must run a clustering algorithm on the columns of A, it is expensive as
a preprocessing step (cf. Langville et al. (2006)).

Langville et al. (2006) also provided some new initialization ideas and com-
pared the aforementioned centroid clustering approach and random seeding to
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four new initialization techniques. While two algorithms (Random Acol and
Random C) only slightly decrease the number of NMF iterations and another
algorithm (Co-occurrence) turns out to contain very expensive computations, the
SVD–Centroid algorithm clearly reduces the approximation error and therefore
the number of NMF iterations compared to random initialization. The algo-
rithm initializes W based on a SVD–centroid decomposition (Wild 2002) of
the low-dimensional SVD factor Vn×k , which is much faster than a centroid
decomposition on Am×n since V is much smaller than A. Nevertheless, the SVD
factor V must be available for this algorithm, and the computation of V can
obviously be time consuming.

Boutsidis and Gallopoulos (2008) initialized W and H using a technique
called nonnegative double singular value decomposition (NNDSVD) which is
based on two SVD processes, one approximating the data matrix A (rank k
approximation) and the other approximating positive sections of the resulting
partial SVD factors. The authors performed various numerical experiments and
showed that NNDSVD initialization is better than random initialization in terms
of faster convergence and error reduction in all test cases, and generally appears
to be better than the centroid initialization in Wild (2002).

4.1.2 Synopsis

This chapter is organized as follows. In Section 4.2 we review some basics of
NMF and make some comments on the interpretability of the basis vectors in
W in the context of email classification (‘basis features’ and ‘basis emails’).
We also provide some information about the data and feature sets used in this
chapter. Some ideas about new NMF initialization techniques are discussed in
Section 4.3, and Section 4.4 focuses on new classification methods based on
NMF. We conclude our work in Section 4.5.

4.2 Background

In this section, we review the definition and characteristics of NMF and give
a brief overview of the two NMF algorithms considered in this work, as well
as their termination criteria and computational complexity. We then describe
the datasets used for experimental evaluation and make some remarks on
the interpretability of the NMF factors W and H in the context of email
classification problems.

4.2.1 Nonnegative matrix factorization

NMF (Lee and Seung 1999; Paatero and Tapper 1994) consists of reduced
rank nonnegative factors W ∈ R

m×k and H ∈ R
k×n with (problem-dependent)

k � min{m, n} that approximate a given nonnegative data matrix A ∈ R
m×n so

that A ≈ WH. Despite the fact that the product WH is only an approximate fac-
torization of A of rank at most k, WH is called a nonnegative matrix factorization
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of A. The nonlinear optimization problem underlying NMF can generally be
stated as

min
W,H

f (W, H) = 1

2
||A − WH||2F , (4.1)

where ||.||F is the Frobenius norm. Although the Frobenius norm is commonly
used to measure the error between the original data A and WH, other measures
are also possible, e.g. an extension of the Kullback–Leibler divergence to positive
matrices (Dhillon and Sra 2006). Unlike the SVD, the NMF is not unique, and
convergence is not guaranteed for all NMF algorithms. If they converge, then
they usually converge to local minima only (potentially different ones for different
algorithms). Fortunately, the data compression achieved with only local minima
has been shown to be of desirable quality for many data mining applications
(Langville et al. 2006).

Due to its nonnegativity constraints, NMF produces so-called ‘additive parts-
based’ (or ‘sum-of-parts’) representations of the data (in contrast to many other
linear representations such as SVD, PCA, or ICA (Independent Component Anal-
ysis)). This is an impressive benefit of NMF, since it makes the interpretation of
the NMF factors much easier than for factors containing positive and negative
entries, and enables a non-subtractive combination of parts to form a whole (Lee
and Seung 1999). For example, the features in W (called ‘basis vectors’) may
be topics of clusters in textual data, or parts of faces in image data. Another
favorable consequence of the nonnegativity constraints is that both factors W
and H are often naturally sparse (see, e.g., the update steps of the alternating
least squares algorithm below, where negative elements are set to zero).

4.2.2 Algorithms for computing NMF

NMF algorithms can be divided into three general classes: multiplicative update
(MU), alternating least squares (ALS), and gradient descent (GD) algorithms. A
review of these three classes can be found in Berry et al. (2007). In this chapter,
we use implementations of the MU and ALS algorithms (these algorithms do
not depend on a step size parameter, as is the case for GD) from the Statistics
Toolbox v6.2 in MATLAB (included since the R2008a release). The termination
criteria for both algorithms were also adapted from the MATLAB implementation.
Pseudo code for the general structure of NMF algorithms is given in Algorithm 1.

Algorithm 1 – General structure of NMF algorithms

1: given matrix A ∈ R
m×n with k � min {m,n}:

2: for rep = 1 to maxrepetition do
3: W = rand(m, k);
4: H = rand(k, n);
5: for i = 1 to maxiter do
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6: perform NMF update steps
7: check termination criterion
8: end for
9: end for

Most algorithms need pre-initialized factors W and H, but some algorithms
(e.g. the ALS algorithm) only need one pre-initialized factor. The standard ALS
algorithm uses a pre-initialized W, but the algorithm also works with a pre-
initialized factor H (in this case, lines 1 and 3 in Algorithm 3 have to be
exchanged). In the basic form of most NMF algorithms, the factors are initialized
randomly. Different update steps are briefly described in the following.

Multiplicative update. The update steps for the MU algorithm given in Lee and
Seung (2001) are based on the mean squared error objective function. Adding
ε in each iteration avoids division by zero. A typical value used in practice is
ε = 10−9.

Algorithm 2 – Update steps for the MU algorithm

1: H = H . ∗ (WT A) ./(WT WH + ε);
2: W = W . ∗ (AHT ) ./(WHHT + ε);

Alternating least squares algorithm. ALS algorithms were first mentioned in
Paatero and Tapper (1994). In an alternating manner, a least squares step is
followed by another least squares step. In this rather simple case, all negative
elements resulting from the least squares computation are set to 0 to ensure
nonnegativity. The standard ALS algorithm only needs to initialize the factor W;
the factor H is computed in the first iteration.

Algorithm 3 – Update steps for the ALS Algorithm

1: solve for H : WT WH = WT A;
2: set all negative elements in H to 0;
3: solve for W : HHT WT = HAT ;
4: set all negative elements in W to 0;

Both algorithms are iterative and depend on the initialization of W (and H).
Since the iterates generally converge to a local minimum, often several instances
of the algorithm are run using different random initializations, and the best of the
solutions is chosen. A proper nonrandom initialization of W and/or H (depending
on the algorithm) can avoid the need to repeat several factorizations. Moreover,
it may speed up convergence of a single factorization and reduce the error as
defined in Equation (4.1).
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Termination criterion

Generally, the termination criterion for NMF algorithms comprises three com-
ponents. The first condition is based on the maximum number of iterations (the
algorithm iterates until the maximal number of iterations is reached). The second
condition is based on the required approximation accuracy (if the approximation
error in Equation (4.1) drops below a predefined threshold, the algorithm stops).
Finally, the third condition is based on the relative change of the factors W and
H from one iteration to another. If this change is below a predefined threshold
δ, then the algorithm also terminates.

Computational complexity of NMF

A single update step of the MU algorithms has the complexity O(kmn) (since
A is m × n, W is m × k, and H is k × n), see, for example, Li et al. (2007) and
Robila and Maciak (2009). Considering the number of iterations i of the NMF
yields an overall complexity of O(ikmn). For the ALS algorithm, the complexity
for solving the equations in lines 1 and 3 of Algorithm 3 need to be consid-
ered additionally. In its most general form, these equations are solved using an
orthogonal triangular factorization.

4.2.3 Datasets

The datasets used for evaluation consist of 15 000 email messages, divided into
three groups – ham, spam, and phishing. The email messages were taken partly
from the Phishery1 and partly from the 2007 TREC corpus.2 The email messages
are described by 133 features. A part of these features is purely text based, other
features comprise online features and features extracted by rule-based filters.
Some of the features specifically test for spam messages, while other features
specifically test for phishing messages. As a preprocessing step we scaled all
feature values to [0,1] to ensure that they have the same range.

The structure of phishing messages tends to differ significantly from the
structure of spam messages, but it may be quite close to the structure of regular
ham messages (because for a phishing message it is particularly important to
look like a regular message from a trustworthy source). A detailed discussion
and evaluation of this feature set has been given in Gansterer and Pölz (2009).

The email corpus was split into two sets (for training and for testing), the
training set consisting of the oldest 4000 email messages of each class (12 000
messages in total), and the test set consisting of the newest 1000 email messages
of each class (3000 messages in total). This chronological ordering of historical
data allows for simulation of the changes and adaptations in spam and phishing
messages which occur in practice. Both email sets are ordered by the classes – the
first group in each set consists of ham messages, followed by spam and phishing

1 http://phishery.internetdefence.net
2 http://trec.nist.gov/data/spam.html
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messages. Due to the nature of the features, the data matrices are rather sparse.
The larger (training) set has 84.7% zero entries, and the smaller (test) set has
85.5% zero entries.

4.2.4 Interpretation

A key characteristic of NMF is the representation of basis vectors in W and
the representation of basis coefficients in the second NMF factor H. With these
coefficients the columns of A can be represented in the basis given by the columns
of W. In the context of email classification, W may contain basis features or
basis emails , depending on the structure of the original data. If NMF is applied
to an email × feature matrix (i.e. every row in A corresponds to an email
message), then W contains k basis features . If NMF is applied on the transposed
matrix (feature × email matrix, i.e. every column in A corresponds to an email
message), then W contains k basis email messages .

Basis features. Figure 4.1 shows three basis features ∈ R
12 000 (for k = 3) for

our training set when NMF is applied to an email × feature matrix. The three
different groups of objects – ham (first 4000 messages), spam (middle 4000 mes-
sages), and phishing (last 4000 messages) – are easy to identify. The group of
phishing emails tends to yield high values for basis feature 1, while basis feature 2
shows the highest values for the spam messages. The values of basis feature 3
are generally smaller than those of basis features 1 and 2, and this basis feature
is clearly dominated by the ham messages.

Basis email messages. The three basis email messages ∈ R
133 (again for k =

3) resulting from NMF on the transposed (feature × email ) matrix are plotted
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Figure 4.2 Basis email messages for k = 3.

in Figure 4.2. The figure shows two features (16 and 102) that have a relatively
high value in all basis emails, indicating that these features do not distinguish
well between the three classes of email. Other features better distinguish between
classes. For example, features 89–91 and 128–130 have a high value in basis
email 1, and are (close to) zero in the other two basis emails. Investigation of the
original data shows that these features tend to have high values for phishing email,
indicating that the first basis email represents a phishing message. Using the same
procedure, the third basis email can be identified to represent ham messages
(indicated by features 100 and 101). Finally, basis email 2 represents spam.

This rich structure observed in the basis vectors should be exploited in the
context of classification methods. However, the structure of the basis vectors
heavily depends on the concrete feature set used. In the following, we discuss the
application of feature selection techniques in the context of NMF initialization.

4.3 NMF initialization based on feature ranking

As already mentioned in Section 4.1.1, the initialization of the NMF factors has a
big influence on the speed of convergence and the error reduction of NMF algo-
rithms. Although the benefits of good initialization are well known, randomized
seeding of W and H is still the standard approach for many NMF algorithms.
Existing approaches, such as initialization based on spherical k -means clustering
(Wild 2002) or nonnegative double singular value decomposition (NNDSVD)
(Boutsidis and Gallopoulos 2008) can be rather time consuming. Obviously, the
trade-off between the computational cost in the initialization step and the compu-
tational cost of the actual NMF algorithm needs to be balanced carefully. In some
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situations, an expensive preprocessing step may overwhelm the cost savings in
the subsequent NMF update steps. In the following, we introduce a simple and
fast initialization step based on feature subset selection and show comparisons
with random initialization and the NNDSVD approach mentioned earlier.

4.3.1 Feature subset selection

The main idea of feature subset selection (FS) is to rank features according to how
well they differentiate between object classes. Redundant or irrelevant features
can be removed from the dataset as they can lead to a reduction of classification
accuracy or clustering quality and to an unnecessary increase of computational
cost. The output of the FS process is a ranking of features based on the applied
FS algorithm. The two FS methods used in this chapter are based on information
gain and gain ratio, both reviewed briefly in the following.

Information gain. One option for ranking the features of email messages accord-
ing to how well they differentiate the three classes ham, spam, and phishing is
to use their information gain , which is also used to compute splitting criteria for
decision trees. The overall entropy I of a given dataset S is defined as

I (S) := −
C∑

i=1

pi log2 pi, (4.2)

where C denotes the total number of classes and pi the portion of instances that
belong to class i. The reduction in entropy or the information gain is computed
for each attribute A according to

IG(S, A) := I (S) −
∑
vεA

|SA,v|
|S| I (SA,v), (4.3)

where v is a value of A and SA,v is the set of instances where A has value v.

Gain ratio. Information gain favors features which assume many different values.
Since this property of a feature is not necessarily connected with the splitting
information of a feature, we also ranked the features based on their information
gain ratio, which normalizes the information gain and is defined as GR(S, A) :=
IG(S, A)/splitinfo(S, A), where

splitinfo(S, A) := −
∑ |SA,v|

|S| log2
|SA,v|
|S| . (4.4)

4.3.2 FS initialization

After determining the feature ranking based on information gain and gain ratio,
we use the k first ranked features to initialize W (denoted as FS initialization
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in the following). Since feature selection aims at reducing the feature space,
our initialization is applied in the setup where W contains basis features (i.e.
every row in A corresponds to an email message, cf. Section 4.2.4). FS methods
are usually computationally inexpensive (see, e.g., Janecek et al. (2008) for a
comparison of information gain and PCA runtimes) and can thus be used as a
computationally cheap but effective initialization step. A detailed runtime com-
parison of information gain, gain ratio, NNDSVD, random seeding, and other
initialization methods as well as the initialization of H (at the moment H is
randomly seeded) are work in progress.

Results. Figures 4.3 and 4.4 show the NMF approximation error for our new
initialization strategy for both information gain (infogain) and gain ratio feature
ranking as well as for NNDSVD and random initialization when using the ALS
algorithm. As a baseline, the figures also show the approximation error based
on an SVD of A, which gives the best possible rank k approximation of A.
For rank k = 1, all NMF variants achieve the same approximation error as the
SVD, but for higher values of k the SVD has a smaller approximation error than
the NMF variants (as expected, since SVD gives the best rank k approxima-
tion in terms of approximation error). Note that when the maximum number of
iterations inside a single NMF factorization (maxiter) is high (maxiter = 30 in
Figure 4.4), the approximation errors are very similar for all initialization strate-
gies used and are very close to the best approximation computed with SVD. On
the other hand, with a small number of iterations (maxiter = 5 in Figure 4.3), it
is clearly visible that random seeding cannot compete with initialization based on
NNDSVD and feature selection. Moreover, for this small value of maxiter , the
FS initializations (both information gain and gain ratio ranking) show better error
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Figure 4.3 Approximation error for different initialization strategies and varying
rank k using the ALS algorithm ( maxiter = 5).
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Figure 4.4 Approximation error for different initialization strategies and varying
rank k using the ALS algorithm ( maxiter = 30).

reduction than NNDSVD with increasing rank k . For higher values of maxiter
the gap between the different initialization strategies decreases until the error
curves become basically identical when maxiter is about 30 (see Figure 4.4).

Runtime. In this subsection we analyze runtimes for computing NMF for differ-
ent values of rank k and different values of maxiter using the ALS algorithm. All
runtime comparisons in this chapter were measured on a SUN Fire X4600M2
with eight AMD quad-core Opteron 8356 processors (32 cores overall) with
2.3 GHz CPU and 64 GB of memory. Since the MATLAB implementation of the
ALS algorithm is not the best implementation in terms of runtime, we computed
the ALS update steps (see Algorithm 3) using an economy-size QR factoriza-
tion: that is, only the first n columns of the QR factorization factors Q and R are
computed (here n is the smaller dimension of the original data matrix A). This
saves computation time (about 3.7 times faster than the original ALS algorithm
implemented in MATLAB), but achieves identical results to the MATLAB imple-
mentation. The algorithms terminated when the number of iterations exceeded
the predefined threshold maxiter ; that is, the approximation error was not inte-
grated in the stopping criterion. Consequently, the runtimes do not depend on
the initialization strategy used (neglecting the marginal runtime savings due to
sparse initializations). In this setup, a linear relationship between runtime and the
rank of k can be observed. Reducing the number of iterations (lower values of
maxiter) brings important reductions in runtimes. This underlines the benefits of
our new initialization techniques. As Figure 4.3 has shown, our FS initialization
reduces the number of iterations required for achieving a certain approximation
error compared to existing approaches.

Table 4.1 compares runtimes needed to achieve different approximation error
thresholds with different values of maxiter for different initialization strategies.
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Obviously, a given approximation error ||A − WH||F can be achieved much
faster with small maxiter and high rank k than with high maxiter and small rank
k . As can be seen in Table 4.1, an approximation error of 0.04 or smaller can
be computed in 1.5 and 1.6 seconds, respectively, when using gain ratio and
information gain initialization (here, only five iterations (maxiter) are needed
to achieve an approximation error of 0.04). To achieve the same approximation
error with NNDSVD or random initialization, more than 5 seconds are needed
(here, 20 iterations are needed to achieve the same approximation error).

4.4 NMF-based classification methods

In this section we investigate new classification algorithms which utilize NMF
for developing a classification model. First, we look at the classification accu-
racy achieved with the basis features in W when initialized with the techniques
explained in Section 4.3. Since, in this case, NMF is computed on the complete
data, this technique can only be applied on data that is already available before
the classification model is built.

In the second part of this section we introduce a classifier based on NMF
which can be applied dynamically to new email data. We present a combination
of NMF with LSI and compare it to standard LSI based on SVD.

4.4.1 Classification using basis features

Figures 4.5 and 4.6 show the overall classification accuracy for a ternary clas-
sification problem (ham, spam, phishing) using different values of maxiter for
all four initialization strategies mentioned in Section 4.3. As the classification
algorithm we used a support vector machine (SVM) with a radial basis kernel
provided by the MATLAB LIBSVM (v2.88) interface (Chang and Lin 2001).
For the results shown in this section, we performed fivefold cross-validation on
the larger email corpus (consisting of 12 000 email messages, cf. Section 4.2.3).

The results based on the four NMF initialization techniques (infogain, gainra-
tio, nndsvd, and random) were achieved by applying an SVM on the rows of W,
where every email message is described by k basis features , i.e. every column of
W corresponds to a basis feature (cf. Section 4.2.4). As NMF algorithm we used
multiplicative update (MU). For comparison to the original features, we applied
a standard SVM classification on the email messages characterized by k best
ranked information gain features (SVMinfogain). The graph for SVMinfogain is
identical in both figures since the maxiter factor in the NMF algorithm has no
influence on the result.

Classification results. For lower ranks (k < 30), the SVMinfogain results are
markedly below the results achieved with nonrandomly initialized NMF (info-
gain, gainratio, and nndsvd). This is not very surprising, since W contains com-
pressed information about all features (even for small ranks of k ). Random NMF
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Figure 4.5 SVM (RBF kernel) classification accuracy for different initialization
methods using the MU algorithm ( maxiter = 5).
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Figure 4.6 SVM (RBF kernel) classification accuracy for different initialization
methods using the MU algorithm ( maxiter = 30).

initialization of W (random) achieves even lower classification accuracy for max-
iter = 5 (see Figure 4.5). The classification result remains unsatisfactory even for
large values of k . With larger maxiter (cf. Figure 4.6), the classification accuracy
for randomly seeded W increases and achieves results comparable to infogain,
gainratio, and nndsvd. Comparing the results of the FS initialization and nndsvd
initialization, it can be seen that there is no large gap in the classification accu-
racy. We would like to point out the clear decline in the classification accuracy of
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nndsvd for k = 6 (in both figures). Surprisingly, the classification results for max-
iter = 5 are only slightly worse than for maxiter = 30, which is in contrast to the
approximation error results shown in Section 4.3. Consequently, fast (and accu-
rate) classification is possible for small maxiter and small k (e.g. the average clas-
sification accuracy over infogain, gainratio, and nndsvd is 96.75% for k = 10 and
maxiter = 5, compared to 98.34% for k = 50, maxiter = 50).

4.4.2 Generalizing LSI based on NMF

Now we look at the classification process in a dynamic setting where newly
arriving email messages are to be classified. Obviously, this is not suitable
for computing a new NMF for every new incoming email message. Instead,
a classifier is constructed by applying NMF on a training sample and using the
information provided by the factors W and H in the classification model. In the
following, we present adaptations of LSI based on NMF and compare them to
standard LSI (based on SVD). Note that in this section our datasets are transposed
compared to the experiments in Sections 4.3 and 4.4.1. Hence, every column of
A corresponds to an email message.

Review of VSM and standard LSI. A VSM (Raghavan and Wong 1999) is a
widely used algebraic model where objects and queries are represented as vectors
in a potentially very high-dimensional metric vector space. Generally speaking,
given a query vector q, the distances of q to all objects in a given feature × object
matrix A can be measured (for example) in terms of the cosines of the angles
between q and the columns of A. The cosine ϕi of the angle between q and the
i th column of A can be computed as

(VSM) : cos ϕi = e
i Aq

||Aei ||2||q||2 . (4.5)

LSI (Langville 2005) is a variant of the basic VSM. Instead of the original
matrix A, the SVD is used to construct a low-rank approximation Ak of A, such
that A = U�V ≈ Uk�kV

k =: Ak . When A is replaced with Ak, then the cosine
of ϕi for the angle between q and the i th column of A is approximated as

(SVD-LSI) : cos ϕi ≈ e
i Vk�kU


k q

||Uk�kV

k ei ||2||q||2

. (4.6)

Since some terms on the right hand side of this equation only need to be com-
puted once for different queries (e

i Vk�k and ||Uk�kV
k ei ||2), LSI saves storage

and computational cost. Further, the approximated data often gives a cleaner and
more efficient representation of the relationship between data elements (Langville
et al. 2006) and can uncover latent information in the data.

NMF-based classifiers. We investigate two novel concepts for using NMF as a
low-rank approximation within LSI (see Figure 4.7). The first approach, which
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Figure 4.7 Overview: (a) basic VSM; (b) LSI using SVD; (c) LSI using NMF.

we call NMF-LSI, simply replaces the approximation within LSI with a different
approximation. Instead of using Uk�kV

k , we approximate A with Ak := WkHk

from the rank k NMF. Note that when using NMF, the value of k must be fixed
prior to the computation of W and H. The cosine of the angle between q and
the i th column of A can then be approximated as

(NMF-LSI) : cos ϕi ≈ e
i H

k W
k q

||WkHkei ||2||q||2 . (4.7)

To save computational cost, the leftmost term in the denominator and the
leftmost part of the numerator (both involving Wk and Hk) can be computed a
priori.

The second classifier. which we call NMF-BCC (NMF Basis Coefficient Clas-
sifier), is based on the idea that the basis coefficients in H can be used to classify
new email. These coefficients are representations of the columns of A in the basis
given by W. If W, H, and q are given, we can calculate a column vector x that
minimizes the equation

min
x

||Wx − q||. (4.8)

Since x is the best representation of q in the basis given by W, we search for
the column of H which is closest to x for assigning q to one of the three classes
of email. Moreover, the residual in Equation (4.8) indicates how close q is to the
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email messages in A. The cosine of the angle between q and the i th column of
H can be approximated as

(NMF-BCC) : cos ϕi ≈ e
i Hx

||Hei ||2||x||2 . (4.9)

It is obvious that the computation of the cosines in Equation (4.9) is much
faster than for both other LSI variants mentioned earlier (since usually H is a
much smaller matrix than A), but the computation of x causes additional cost.
These aspects will be discussed further at the end of this section.

Classification results. A comparison of the results achieved with LSI based on
SVD (SVD-LSI), LSI based on NMF (NMF-LSI), the basis coefficient classifier
(NMF-BCC), and a basic VSM (VSM) is shown in Figures 4.8 and 4.9, again
for different values of maxiter . In contrast to Section 4.4.1, where we performed
a cross-validation on the larger email corpus, here we used the big corpus as
the training set and tested with the smaller corpus consisting of the 1000 newest
email messages of each class. For classification, we considered the column of A
with the smallest angle to q (no majority count) to assign q to one of the classes
ham, spam, and phishing. The results shown in this section were achieved with
random initialization.

Obviously, there is a big difference in the classification accuracy achieved
with the NMF approaches for small and larger values of maxiter . With maxiter =
5 (see Figure 4.8), the NMF variants can hardly compete with LSI based on SVD
and VSM. However, when maxiter is increased to 30, all NMF variants except
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Figure 4.8 Classification accuracy for different LSI variants and VSM
( maxiter = 5).
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Figure 4.9 Classification accuracy for different LSI variants and VSM
( maxiter = 30).

NMF-BCC(mu) show comparable results (see Figure 4.9). For many values of
k, the NMF variants achieved better classification accuracy than a basic VSM
with all original features. Moreover, the standard ALS variant (NMF-LSI(als))
achieves very comparable results to LSI based on SVD, especially for small
values of rank k (between 5 and 10). Note that this improvement of a few percent
is substantial in the context of email classification. Moreover, as discussed in
Section 4.2.4, the purely nonnegative linear representation within NMF makes
the interpretation of the NMF factors much easier than that for the standard LSI
factors. It is interesting to note that initialization of the factors W and H does
not improve the classification accuracy when using the NMF-LSI and NMF-BCC
classifiers. This is in contrast to the previous sections – especially when maxiter
is small, the initialization was important for the SVM.

Runtimes. The computational runtime for all LSI variants comprises two steps.
Prior to the classification process, the low-rank approximations of SVD and NMF,
respectively, have to be computed. Afterward, any newly arriving email message
(a single query vector) has to be classified.

Figure 4.10 shows the runtimes needed for computing the low-rank approx-
imations, and Figure 4.11 shows the runtimes for the classification process of
a singly query vector. As already mentioned in Section 4.3.2, the NMF run-
times depend almost linearly on the value of maxiter . Figure 4.10 shows that for
almost any a given rank k, the computation of an SVD takes much longer than
an NMF factorization with maxiter = 5, but is faster than a factorization with
maxiter = 30. For computing the SVD we used MATLAB’s svds() function,
which computes only the first k largest singular values and associated singular
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Figure 4.10 Runtimes for computing low-rank approximations based on SVD and
variants of NMF of a 12 000 × 133 matrix ( alsqr(30) refers to the ALS algorithm
computed with explicit QR factorization and maxiter set to 30).

0 10 20 30 40 50
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

rank k

R
un

tim
e 

[s
]

NMF–LSI
SVD–LSI
NMF–BCC

Figure 4.11 Runtimes for classifying a single query vector.

vectors of a matrix. The computation of the complete SVD usually takes much
longer (but is not needed in this context). There is only a small difference in the
runtimes for computing the ALS algorithm (using the economy-size QR factor-
ization, cf. Section 4.3.2) and the MU algorithm, and, of course, no difference
between the NMF-LSI and the NMF-BCC runtimes (since the NMF factorization
has to be computed identically for both approaches). The difference in the compu-
tational cost between NMF-LSI and NMF-BCC is embedded in the classification
process of query vectors, not in the factorization process of the training data.
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Looking at the classification runtimes in Figure 4.11, it can be seen that the
classification process using the basis coefficients (NMF-BCC) is faster than for
SVD-LSI and NMF-LSI. Although the classification times for a single email are
modest, they have to be considered for every single email that is classified. The
classification (performed in MATLAB) of all 3000 email messages in our test
sample took about 36 seconds for NMF-LSI, 24 seconds for SVD-LSI, and only
13 seconds for NMF-BCC (for rank k = 50).

Rectangular versus square data. Since the dimensions of the email data matrix
used in this work are very imbalanced (12 000 × 133), we also compared runtime
and approximation errors for data of the same size, but with balanced dimensions.
We created square random matrices of dimension

√
133 × 12 000 ≈ 1263 and

performed experiments on them identical to those in the previous section.
Figure 4.12 shows the runtime needed to compute the first k largest singular

values and associated singular vectors for SVD (again using the svds() function
from MATLAB) as well as the two NMF factorizations with different values of
maxiter . For square A, the computation of the SVD takes much longer than for
unbalanced dimensions. In contrast, both NMF approximations can be computed
much faster (cf. Figure 4.10). For example, the computation of an SVD of rank
k = 50 takes about eight times longer than the computation of an NMF of the
same rank.

The approximation error for square random data is shown in Figure 4.13. The
approximation error of both SVD and NMF is generally higher than for the email
dataset (see Figures 4.3 and 4.4). It is interesting to note that the approximation
error of the ALS algorithm decreases with increasing k until k ≈ 35, and then
increases again with higher values of k. Nevertheless, especially for smaller
values of k, the ALS algorithm achieves an approximation error comparable to
the SVD with much lower computational runtimes.
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Figure 4.12 Runtimes for computing low-rank approximations based on SVD
and variants of NMF of a random 1263 × 1263 matrix.
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Figure 4.13 Approximation error for low-rank approximations based on SVD
and variants of NMF on a random 1263 × 1263 matrix.

4.5 Conclusions

The application of nonnegative matrix factorization (NMF) to ternary email clas-
sification tasks (ham vs. spam vs. phishing messages) has been investigated. We
have introduced a fast initialization technique based on feature subset selection
(FS initialization) which significantly reduces the approximation error of the NMF
compared to randomized seeding of the NMF factors W and H. Comparison of
our approach to existing initialization strategies such as NNDSVD (Boutsidis
and Gallopoulos 2008) shows basically the same accuracy when many NMF
iterations are performed, and much better accuracy when the NMF algorithm is
restricted to a small number of iterations.

Moreover, we investigated and evaluated two new classification methods
which are based on NMF. We showed that using the basis features of W generally
achieves much better results than using the original features. While the number
of iterations (maxiter) in the iterative process for computing the NMF seems
to be a crucial factor for the classification accuracy when random initialization
is used, the classification results achieved with FS initialization and NNDSVD
depend only weakly on this parameter, leading to high classification accuracy
even for small values of maxiter (see Figures 4.5 and 4.6). This is in contrast to
the approximation error illustrated in Figures 4.3 and 4.4, where the number of
iterations is important for all initialization variants.

As a second classification method we constructed NMF-based classifiers to
be applied on newly arriving email messages without recomputing the NMF. For
this purpose, we introduced two LSI classifiers based on NMF (computed with
the ALS algorithm) and compared them to standard LSI based on SVD. Both
new variants achieved a classification accuracy comparable to standard LSI when
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using the ALS algorithm and can often be computed faster, especially when the
dimensions of the original data matrix are close to each other (in this case, the
computation of the SVD usually takes much longer than an NMF factorization).

A copy of the codes used in this chapter is available from the authors or at
http://rlcta.univie.ac.at.

Future work. Our investigations indicate several important and interesting direc-
tions for future work. First of all, we will focus on analyzing the computational
cost of various initialization strategies (FS initialization vs. NNDSVD etc.). More-
over, we will look at updating schemes for our NMF-based LSI approach, since
for real-time email classification a dynamical adaptation of the training data (i.e.
adding new email to the training set) is essential. We also plan to work on
strategies for the initialization of H (currently, H is randomly initialized) for our
FS initialization (Section 4.3) and the comparison of the MU and ALS algo-
rithms to other NMF algorithms (gradient descent, algorithms with sparseness
constraints, etc.).
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5

Constrained clustering with
k -means type algorithms

Ziqiu Su, Jacob Kogan and Charles Nicholas

5.1 Introduction

Clustering is a fundamental data analysis task that has numerous applications in
many disciplines. Clustering can be broadly defined as a process of partitioning
a dataset into groups, or clusters, so that elements of the same cluster are more
similar to each other than to elements of different clusters.

In many cases additional information about the desired type of clusters is
available (e.g. Basu et al. (2009)). When incorporated into the clustering pro-
cess this information may lead to better clustering results. Motivated by Basu
et al. (2004) we consider pairwise constrained clustering . In pairwise constrained
clustering, we may have information about pairs of vectors that may not belong
to the same cluster (cannot-links), information about pairs of vectors that must
belong to the same cluster (must-links), or both. (For the first introduction of
constrained clustering with a focus on instance-level constraints see Wagstaff
and Cardie (2000) and Wagstaff et al. (2001).)

We focus on three k-means type clustering algorithms and two different
distance-like functions. The clustering algorithms are k-means (Duda et al.
2000), smoka (Teboulle and Kogan 2005), and spherical k-means (Dhillon and
Modha 1999). The distance-like functions are ‘reverse Bregman divergence’ (see

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd
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e.g. Kogan (2007a)) and ‘cosine’ similarity (see e.g. Berry and Browne (1999)).
We show that for these algorithms and distance-like functions the pairwise
constrained clustering problem can be reduced to clustering with cannot-link
constraints only. We substitute cannot-link constraints by penalty, and propose
clustering algorithms that tackle clustering with penalties.

The chapter is organized as follows. In Section 5.2 we introduce basic nota-
tions, and briefly review batch and incremental versions of classical quadratic
k-means. Section 5.3 presents the clustering algorithm equipped with Bregman
divergences and constraints. We show by an example that a straightforward adop-
tion of batch k-means may lead to erroneous results, and introduce a modification
of incremental k-means that generates a sequence of partitions with improved
quality. We show that must-link constraints can be eliminated (the elimination
technique is based on the methodology proposed in Zhang et al. (1997)). When
information about a large number of must-linked vectors is available, the pro-
posed elimination technique may significantly reduce the size of the dataset.
Section 5.4 introduces a smoka type clustering with constrains (see e.g. Teboulle
and Kogan (2005) and Teboulle (2007)). Elimination of must-link constraints is
based on results reported in Kogan (2007b). Section 5.5 presents spherical k-
means with constraints. Numerical experiments that illustrate the usefulness of
constraints are collected in Section 5.6. Brief conclusions and future research
directions are given in Section 5.7.

5.2 Notations and classical k-means

The entries of a vector a ∈ Rn are denoted by (a[1], . . . , a[n])T . The size of a
finite set A is denoted by |A|. For a set of m vectors A = {a1, . . . , am} ⊂ Rn,
a prescribed subset C of Rn, and a ‘distance-like’ function d(x, a) we define a
centroid c = c (A) of the set A as a solution of the minimization problem

c = arg min

{∑
a∈A

d(x, a), x ∈ C
}

. (5.1)

Examples of distance-like functions include the squared Euclidean distance
d(x, a) = ‖x − a‖2, and the relative entropy (also known as Kullback–
Leibler divergence) d(x, a) =∑n

i=1 a[i] log(a[i]/x[i]). While in the case
of d(x, a) = ‖x − a‖2 the set C may be the entire space, when d(x, a) =∑n

i=1 a[i] log(a[i]/x[i]), the set C housing centroids x should be restricted to
vectors with at least nonnegative entries (in many text mining applications
a[i] ≥ 0).

The quality of the set A is denoted by Q(A) and is defined by

Q(A) =
m∑

i=1

d (c, a) , where c = c (A) (5.2)
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(we set Q(∅) = 0 for convenience). Let � = {π1, . . . , πk} be a partition of A,
i.e. ⋃

i

πi = A, and πi ∩ πj = ∅ if i �= j.

We abuse notation and define the quality of the partition � by

Q (�) = Q(π1) + · · · + Q(πk) =
k∑

i=1

∑
a∈πi

d(ci , a), where ci = c (πi) . (5.3)

We aim to find a partition �min = {πmin
1 , . . . , πmin

k } that minimizes the value of
the objective function Q. The problem is known to be NP-hard (see e.g. Brucker
(1978)) and we seek algorithms that generate ‘reasonable’ solutions.

It is easy to see that centroids and partitions are associated as follows:

1. Given a partition � = {π1, . . . , πk} of the set A one can define the cor-
responding centroids {c (π1) , . . . , c (πk)} by

c (πi) = arg min

{∑
a∈πi

d(x, a), x ∈ C
}

. (5.4)

2. For a set of k ‘centroids’ {c1, . . . , ck} one can define a partition � =
{π1, . . . , πk} of the set A by

πi = {a : a ∈ A, d(ci , a) ≤ d(cl , a) for each l = 1, . . . , k} (5.5)

(we break ties arbitrarily). Note that, in general, c (πi) �= ci .

The classical batch k-means algorithm is a procedure that iterates between the two
steps described above to generate a partition �′ from a partition � (Duda et al.
2000). While step 2 is straightforward, step 1 requires us to solve a constrained
optimization problem. The degree of difficulty involved depends on the distance-
like function d(·, ·) and the set C. The entire procedure is essentially a gradient-
based algorithm.

Incremental k-means is an iterative algorithm that seeks to change the cluster
affiliation of one vector per iteration.

Definition 5.2.1 A first variation of a partition � is a partition �′ obtained from
� by removing a single vector a from a cluster πi of � and assigning this vector
to an existing cluster πj of �.

The decision of which vector to move is based on exact computation of the
change in the objective. The change � in the objective Q caused by moving a
vector a from cluster πi to cluster πj is given by

� = |πi |
|πi | − 1

||c(πi) − a||2 − |πj |
|πj | + 1

∣∣∣∣c(πj ) − a
∣∣∣∣2 (5.6)

(see e.g. (Kogan 2007a)).
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Definition 5.2.2 The partition nextFV (�) is a first variation of � so that for
each first variation �′ one has

Q (nextFV (�)) ≤ Q
(
�′) . (5.7)

The computational complexity involved in finding the first variation does not
exceed that required by the second step of batch k-means.

In the next section we show by an example that a straightforward appli-
cation of batch k-means to clustering with cannot-link constraints may lead to
erroneous results. The section suggests modifications of incremental k-means for
constrained clustering of datasets equipped with Bregman distances.

5.3 Constrained k-means with Bregman divergences

We start with a detailed description of k-means constrained clustering and elim-
ination of must-link constraints for a dataset equipped with squared Euclidean
distance. At the end of the section the results are extended to Bregman distances.

5.3.1 Quadratic k-means with cannot-link constraints

We first focus on clustering with cannot-link constraints only. The constraints
are substituted by a nonnegative penalty function, and a k-means like clustering
is introduced on the dataset equipped with the penalty function. Partitioning of
the constrained dataset and clustering of the dataset equipped with the penalty
function are illustrated in Section 5.6.

For a vector set A = {a1, . . . , am} ⊂ Rn and a symmetric penalty function p :
Rn × Rn → R+, p(a, a) = 0, p(a, a′) = p(a′, a), we define Q(A), the quality
of A, as

Q(A) =
∑
a∈A

‖c − a‖2 + 1

2

∑
a,a′∈A

p(a, a′), (5.8)

where c is the unique solution of

min
x



∑
a∈A

‖x − a‖2 + 1

2

∑
a,a′∈A

p(a, a′)


 ,

which is given by the arithmetic mean of A. Our aim is to identify an optimal
k-cluster partition of A.

Given a partition {π1, . . . , πk} and the corresponding centroids ci , it is tempt-
ing to adopt the two-stage batch k-means procedure with the following modifi-
cation of Equation (5.5) that defines the new partition {π ′

1, . . . , π
′
k} as

π ′
i =

{
a′ : ‖ci − a′‖2 +

∑
a∈πi

p(a, a′) ≤ ‖cl − a′‖2
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+
∑
a∈πl

p(a, a′) for each l = 1, . . . , k

}
. (5.9)

We first show that the assignment step (i.e. Equation (5.9)) may lead to erroneous
results.

Example 5.3.1 Consider the one-dimensional dataset

A = {a1, a2, a3, a4, a5} = {−2.9, −0.9, 0, 0.9, 2.9}, (5.10)

with p(ai , aj ) = p = 4 when i �= j . Consider the three-cluster partition

� = {π1, π2, π3}
with

π1 = {a1, a2}, π2 = {a3}, π3 = {a4, a5}
(see Figure 5.1 where the clusters are encircled ). Note that

Q(�) = (2 + p) + 0 + (2 + p) = 4 + 2p = 12.

An application of the assignment step (5.9) leads to the three-cluster partition �′

π ′
1 = {a1}, π ′

2 = {a2, a3, a4}, π ′
3 = {a5}

with
Q(�′) = 0 + (3p + 2(0.9)2) + 0 = 1.62 + 3p = 13.62

(see Figure 5.2).
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Figure 5.1 Initial three-cluster partition.
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Figure 5.2 Three-cluster partition generated by batch k-means.

The assignment decision in Equation (5.9) ignores any anticipated change of
centroid, and potential additional vector assignments coming from other clusters.
As a result, the proposed batch iteration fails to improve the original partition
(and, as the example shows, may lead to a partition of inferior quality).

Reassignment of a vector a from cluster πi to cluster πj changes the objec-
tive by

� = |πi |
|πi | − 1

||c(πi) − a||2 − |πj |
|πj | + 1

∣∣∣∣c(πj ) − a
∣∣∣∣2

+
∑
a′∈πi

p(a, a′) −
∑

a′∈πj

p(a, a′)

(see Equation (5.6)). We denote by �(a) the maximal value of the right hand
side of Equation (5.11) over j = 1, . . . , m. We note that removal of a from πi

and assigning it back to πi is a reassignment with zero change of the objective.
Hence �(a), the maximal value of the right hand side of Equation (5.11), is
always nonnegative. To minimize the objective we shall select a vector a whose
reassignment maximizes �(a). The incremental k-means algorithm we propose
is given next. A single iteration of the algorithm applied to either one of the
partitions � or �′ of Example 5.3.1 generates a partition

�′′ = {{−2.9}, {−0.9, 0}, {0.9, 2.9}}
with Q(�′′) = 10.405 (see Figure 5.3).
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Figure 5.3 Optimal three-cluster partition generated by incremental k-means.

Algorithm 4 – Incremental k -means algorithms

1: For a user-supplied nonnegative tolerance tol ≥ 0 do the following:
2: Start with an initial partitioning

�(0) = {π
(0)
1 , . . . , π

(0)
k }.

3: Set the index of iteration t = 0.
4: Generate the partition nextFV

(
�(t)

)
.

5: if
[
Q
(
�(t)

)− Q
(
nextFV

(
�(t)

))
> tol

]
then

6: set �(t+1) = nextFV
(
�(t)

)
7: increment t by 1
8: go to 5
9: end if

10: Stop.

5.3.2 Elimination of must-link constraints

We now reduce incremental k-means clustering of a vector set A = {a1, . . . , am}
with both must-link and cannot-link constraints to that of (in general) a smaller
vector set B = {b1, . . . , bM} (M ≤ m) with a different penalty function P(b, b′),
and no must-link constraints. To simplify the presentation we assume throughout
that p(a, a′) = 0 for any pair of must-linked vectors a and a′.
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Consider the transitive closure of must-link constraints (see e.g. Basu et al.
(2009)). For a vector a ∈ A let π(a) be a set of vectors a′ in A so that there
is a finite subset

{
ai1 , . . . , aip

} ⊆ A with a = ai1 , a′ = aip , and aij and aij+1

must-linked, j = 1, . . . , p − 1. The sets π(a) are equivalence classes, i.e.

1. for each a, a′ ∈ A either π(a) = π(a′), or π(a) ∩ π(a′) = ∅;

2. A =⋃a∈A π(a).

We denote the finite set collection {π(a)}a∈A by {π1, . . . , πM}. For i = 1, . . . ,M

let

1. bi = c(πi) = (1/|πi |)
∑

a∈πi
a, the centroid of πi ;

2. qi = Q(πi), the quality of πi ;

3. m(bi ) = mi = |πi |, the size of πi .

The vector set B = {b1, . . . , bM} is the new set to be clustered. For two vectors
bi , bj ∈ B the penalty is defined by

P(bi , bj ) =
∑

a∈πi, a′∈πj

p(a, a′). (5.11)

Each k-cluster partition �B of the set B induces a k-cluster partition �A of the
set A with no must-link violations. We define the quality QB(πB) of a subset
πB = {bi1, . . . , bip } ⊆ B by

QB(πB) =
p∑

j=1

mij ‖c − bij ‖2 + 1

2

∑
l,j

P (bil , bij ), (5.12)

where

c = mi1bi1 + · · · + mip bip

mi1 + · · · + mip

is the (weighted) arithmetic mean of the set πB = {bi1 , . . . , bip } and the associ-
ated subset

⋃p

j=1 πij of A. The quality functions of the sets πB and
⋃p

j=1 πij

are related as follows:

Q


 p⋃

j=1

πij


 =

p∑
j=1

qij + QB(πB) (5.13)

(for the unconstrained case see Kogan (2007a)). Hence, for each pair of associated
partitions �B and �A the difference between Q(�A) and QB(�B) is the same
constant

∑M
i=1 qi .
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Incremental clustering of the set B is identical to Algorithm 4 with change �

in the objective function caused by reassignment of a vector b from the cluster
πB

i to the cluster πB
j given by

� = Mi · m(b)

Mi + m(b)

∣∣∣∣∣∣c (πB
i

)
− b
∣∣∣∣∣∣2 − Mj · m(b)

Mj − m(b)

∣∣∣∣∣∣c (πB
j

)
− b
∣∣∣∣∣∣2

+
∑

b′∈πB
i

P (b, b′) −
∑

b′∈πB
j

P (b, b′), (5.14)

where Ml =∑b∈πB
l

m(b). In what follows, we extend these results to Bregman
distances.

5.3.3 Clustering with Bregman divergences

Let ψ : Rn → (−∞, +∞] be a closed proper convex function (Rockafellar
1970). Suppose that ψ is continuously differentiable on int(dom ψ) �= ∅.

The Bregman distance (also called ‘Bregman divergence’) Dψ : dom ψ ×
int(dom ψ) → R+ is defined by

Dψ(x, y) = ψ(x) − ψ(y) − ∇ψ(y)(x − y), (5.15)

where ∇ψ is the gradient of ψ .
This function measures the convexity of ψ , i.e. Dψ(x, y) ≥ 0, if and only

if the gradient inequality for ψ holds, i.e. if and only if ψ is convex. With ψ

strictly convex one has Dψ(x, y) ≥ 0 and Dψ(x, y) = 0 iff x = y.
Note that Dψ(x, y) is not a distance (it is, in general, not symmetric and

does not satisfy the triangle inequality). With ψ(x) = ||x||2 (dom ψ = Rn) one
has Dψ(x, y) = ||x − y||2. With ψ(x) =∑n

j=1 x[j ] log x[j ] − x[j ] (dom ψ =
Rn

+ with the convention 0 log 0 = 0), we obtain the Kullback–Leibler relative
entropy distance

Dψ(x, y) =
n∑

j=1

x[j ] log
x[j ]

y[j ]
+ y[j ] − x[j ] ∀ (x, y) ∈ Rn

+ × Rn
++. (5.16)

Note that under the additional assumption
∑n

j=1 x[j ] =∑n
j=1 y[j ] = 1,

the Bregman divergence Dψ(x, y) reduces to
∑n

j=1 x[j ] log(x[j ]/y[j ]) (for
additional examples of Bregman distances see e.g. Banerjee et al. (2005) and
Teboulle et al. (2006)). Note that Bregman distance Dψ(x, y) is convex with
respect to the x variable. Hence, centroid computation in Equation (5.1) is an
‘easy’ optimization problem.

By reversing the order of variables in Dψ , i.e.

←−
Dψ(x, y) = Dψ(y, x) = ψ(y) − ψ(x) − ∇ψ(x)(y − x) (5.17)
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(compare with Equation (5.15)) and using the kernel

ψ(x) = ν

2
‖x‖2 + µ


 n∑

j=1

x[j ] log x[j ] − x[j ]


 , (5.18)

we obtain

←−
Dψ(x, y) = Dψ(y, x) = ν

2
‖y − x‖2 + µ

n∑
j=1

[
y[j ] log

y[j ]

x[j ]
+ x[j ] − y[j ]

]
.

(5.19)

While in general
←−
Dψ(x, y) given by Equation (5.16) is not necessarily convex

in x, when ψ(x) is given either by ‖x‖2 or by
∑n

j=1 x[j ] log x[j ] − x[j ] the

resulting functions
←−
Dψ(x, y) are strictly convex with respect to the first variable.

Extension of Algorithm 4 to ‘reversed’ Bregman distances requires the fol-
lowing:

1. The ability to compute c (π) for a finite set π (see Equation (5.1)).

2. A convenient expression for QB(πB) of a subset πB = {bi1, . . . , bip } ⊆ B
(see (5.12)).

3. A convenient formula for the change � in the objective function caused
by reassignment of a vector b from the cluster πB

i to the cluster πB
j (see

(5.14)).

We next list results already available in the literature and relevant to the above
three points. The first result1 holds for all Bregman divergences with reversed
order of variables

←−
Dψ(x, y) = Dψ(y, x) (see Banerjee et al. (2005)):

Theorem 5.3.2 If z = (a1 + · · · + am)/m, then
∑m

i=1 Dψ(ai , z) ≤∑m
i=1 Dψ

(ai , x).

The result shows that the centroid of any set equipped with reversed Bregman
distance is given by the arithmetic mean.

The change � in the objective Q caused by moving a vector a from cluster
πi to cluster πj is given by

� = (mi − 1)[ψ(c−
i ) − ψ(ci )] − ψ(ci ) + (mj + 1)[ψ(c+

j ) − ψ(cj )] + ψ(cj ),

(5.20)
where mi and mj denote the size of the clusters πi and πj , c−

i is the centroid of
πi with a being removed, and c+

j is the centroid of πj with a being added (see
Kogan (2007a)).

1 Note that this distance-like function is not necessarily convex with respect to x.
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In text mining applications, due to sparsity of the data vector a, most coor-
dinates of centroids c−, c+, and c coincide. Hence, when the function ψ is
separable, computation of ψ(c−

i ) and ψ(c+
j ) is relatively cheap.

Elimination of must-links requires an analogue of Equations (5.12) and (5.14).
The following two statements are provided by Kogan (2007a):

Theorem 5.3.3 If A = π1 ∪ π2 ∪ · · · ∪ πk with mi = |πi |, ci = c (πi), i =
1, . . . , k,

c = c (A) = m1

m
c1 + · · · + mk

m
ck, where m = m1 + · · · + mk,

and � = {π1 π2, . . . , πk}, then

Q (�) =
k∑

i=1

Q(πi) +
k∑

i=1

mid(c, ci) =
k∑

i=1

Q (πi) +
k∑

i=1

mi [ψ(ci ) − ψ (c)] .

(5.21)

Theorem 5.3.4 Let �B = {πB
1 , . . . , πB

k } be a k-cluster partition of the set B =
{b1, . . . , bM}. If �′

B is a partition obtained from B by removal of a single vector b
from cluster πB

i with centroid ci = c
(
πB

i

)
and assignment of b to πB

j with centroid

cj = c
(
πB

j

)
, then the change of quality � = QB (�B) − QB

(
�′

B
)

is given by

� = [Mi − m(b)]
[
ψ(c−

i ) − ψ(ci )
]− m(b)ψ(ci )

+ [Mj + m(b)
] [

ψ(c+
j ) − ψ(cj )

]
+ m(b)ψ(cj ). (5.22)

We are now in a position to present the constrained clustering algorithm for a
dataset with ‘reversed’ Bregman distance (see Algorithm 5). The next section
describes a constrained clustering algorithm based on a nonlinear optimization
approach.

Algorithm 5 – Constrained k-means with Bregman distance

1: For a dataset A, a set of must-link and cannot-link constraints, and a
user-supplied nonnegative tolerance tol ≥ 0 do the following:

2: Substitute cannot-link constraints by a penalty function p.
3: Build a transitive closure B = {b1, . . . , bM} of must-link constraints.
4: Use Equation (5.11) to define the penalty P(bi , bj ) for each pair bi , bj ∈ B.
5: Start with an initial k-cluster partitioning �

(0)

B = {πB
1 , . . . , πB

k }.

6: Set the index of iteration t = 0.
7: Use the change of quality

� = [Mi − m(b)]
[
ψ(c−

i ) − ψ(ci)
]− m(b)ψ(ci )



92 TEXT MINING

+ [Mj + m(b)
] [

ψ(c+
j ) − ψ(cj )

]
+ m(b)ψ(cj )

+
∑

b′∈πB
i

P (b, b′) −
∑

b′∈πB
j

P (b, b′)

generated by removal of a single vector b from cluster πB
i with centroid

ci = c
(
πB

i

)
and assignment of b to πB

j with centroid cj = c
(
πB

j

)
to

identify the partition nextFV
(
�(t)

)
.

8: if
[
Q
(
�(t)

)− Q
(
nextFV

(
�(t)

))
> tol

]
then

9: set �(t+1) = nextFV
(
�(t)

)
10: increment t by 1
11: go to 8
12: end if
13: Stop.

5.4 Constrained smoka type clustering

First we briefly recall smoka type clustering (Teboulle and Kogan 2005). Note
that for a vector a and k vectors x1, . . . , xk one has

lim
s→0

−s log

(
k∑

l=1

e− ‖xl−a‖2

s

)
= min

{‖x1 − a‖2, . . . , ‖xk − a‖2} . (5.23)

When x1, . . . , xk are centroids of a k-cluster partition � = {π1, . . . , πk} one has

Q (�) =
k∑

i=1

∑
a∈πi

‖xi − a‖ =
∑
a∈A

min
{‖x1 − a‖2, . . . , ‖xk − a‖2}

= lim
s→0

∑
a∈A

[
−s log

(
k∑

l=1

e− ‖xl−a‖2

s

)]
. (5.24)

The right hand side of Equation (5.24) shows that the problem of finding the
best k-cluster partition with no constraints can be restated as the problem of
identifying the k best centroids x1, . . . , xk . While both expressions

∑
a∈A

[
−s log

(
k∑

l=1

e− ‖xl−a‖2

s

)]
and

∑
a∈A

min
{‖x1 − a‖2, . . . , ‖xk − a‖2}

are functions of x1, . . . , xk , the one on the left is differentiable, while the one on
the right is not. This observation suggests use of the smooth approximation

∑
a∈A

[
−s log

(
k∑

l=1

e− ‖xl−a‖2

s

)]
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in order to approximate optimal centroids. Application of smooth approximations
to k-means clustering appears, for example, in Rose et al. (1990), Marroquin and
Girosi (1993), Nasraoui and Krishnapuram (1995), Teboulle and Kogan (2005),
and Teboulle (2007).

Next we briefly describe smoka clustering with cannot-link constraints only.
For two vectors a, a′, and a set of k vectors x1, . . . , xk, one has

lim
s→0

−s log


 k∑

i,j=1

e− ‖xi−a‖2+‖xj −a′‖2

s


 = min

i,j

{‖xi − a‖2 + ‖xj − a′‖2} . (5.25)

We denote the left hand side of (5.25) by ψ(a, a′), and define φ(a, a′) as

lim
s→0

−s log

(
k∑

i=1

e− ‖xi−a‖2+‖xi−a′‖2

s

)
= min

i

{‖xi − a‖2 + ‖xi − a′‖2} . (5.26)

Clearly ψ(a, a′) ≤ φ(a, a′), and the equality holds only when a and a′ belong to
the same cluster. This observation motivates the introduction of a penalty func-
tion for cannot-linked vectors a, a′ as p(a, a′) = ρ

(
φ(a, a′) − ψ(a, a′)

)
where

ρ : R+ → R+ is a monotonically increasing function with ρ(0) = 0 so that
p(a, a′) = 0 when a and a′ belong to the same cluster (the simplest but, perhaps,
not the best choice for the function ρ is ρ(t) = t).

Since we intend to approximate the right hand side of Equations (5.25) and
(5.26) by the corresponding expressions on the left hand side with ‘small’ val-
ues of s, we shall consider penalty function ps(a, a′) = ρ

(
φs(a, a′) − ψs(a, a′)

)
where

ψs(a, a′) = −s log


 k∑

i,j=1

e− ‖xi−a‖2+‖xj −a′‖2

s


 (5.27)

and

φs(a, a′) = −s log

(
k∑

i=1

e− ‖xi−a‖2+‖xi−a′‖2

s

)
. (5.28)

For fixed vectors a, a′ the expressions ψs and φs are functions of
x = (xT

1 , . . . , xT
k )T ∈ Rkn, and we shall abuse notation and denote the penalty

by ps(x; a, a′).
Our goal is to minimize

Fs(x) =
m∑

i=1

−s log

(
k∑

l=1

e− ‖xl−ai‖2

s

)
+ 1

2

∑
a,a′∈A

ps(x; a, a′) (5.29)

with respect to x ∈ Rkn.
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We now turn to must-link constraints. Elimination of must-link constraints is
again based on ‘collapsing’ a set of vectors that should be placed together in the
same cluster into the set’s centroid b and clustering the transitive closure of must-
link constraints B = {b1, . . . , bM}. This approach with no cannot-link constraints
was introduced in Kogan (2007b). The objective function to be minimized is

−s

M∑
i=1

mi log

(
k∑

l=1

e− ‖xl−bi‖2

s

)
, (5.30)

where mi = m(bi). To incorporate cannot-link constraints we again introduce a
penalty function. The penalty Ps(x; b, b′) should reflect the cluster size m(b) and
is defined as follows:

Ps(x; b, b′) = [m(b) + m(b′)
]

× ρ


−s


log

(
k∑

i=1

e− ‖xi−b‖2+‖xi−b′‖2

s

)
− log


 k∑

i,j=1

e− ‖xi−b‖2+‖xj −b′‖2

s






 . (5.31)

We shall abuse notation and denote the objective to be minimized by Fs(x):

Fs(x) = −s

M∑
i=1

mi log

(
k∑

l=1

e− ‖xl−bi‖2

s

)
+ 1

2

∑
b,b′∈B

Ps(x; b, b′), (5.32)

where x = (xT
1 , . . . , xT

k

)T
. The clustering algorithm is presented next (see Algo-

rithm 6). The following section describes the constrained clustering algorithm
designed to handle unit length vectors.

Algorithm 6 – Constrained smoka clustering

1: For a dataset A, a set of must-link and cannot-link constraints, positive
parameters s and ε, and a user-supplied nonnegative tolerance tol ≥ 0 do
the following:

2: Build a transitive closure B = {b1, . . . , bM} of must-link constraints.
3: Select initial cluster set x0 ∈ Rkn and set the index of iterations t = 0.
4: Use gradient descent to generate y from x(t).
5: if Fs

(
x(t)
)− Fs(y)> tol then

6: increment t by 1
7: set x(t) = y
8: go to 5
9: end if

10: Stop.
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5.5 Constrained spherical k-means

This section describes a clustering algorithm designed to handle l2 unit norm vec-
tors. The unconstrained version of the algorithm introduced in Dhillon and Modha
(1999) was motivated by information retrieval (IR) applications and designed to
handle vectors with nonnegative entries. In Dhillon et al. (2003) the algorithm
was extended to vector datasets with arbitrary entries (see also Kogan (2007a)
for detailed treatment of general n-dimensional datasets).

The algorithm is reminiscent of the quadratic k-means algorithm, but the
‘distance’ between two unit vectors x and y is measured by d(x, y) = xT y (so
that the two unit vectors x and y are equal if and only if d(x, y) = 1). We
define the set C housing centroids as the union of the unit (n − 1)-dimensional
l2 sphere

Sn−1
2 = {x : x ∈ Rn, xT x = 1}

centered at the origin (when it does not lead to ambiguity we shall denote the
sphere just by S).

For a set of vectors A = {a1, . . . , am} ⊂ Rn, and the ‘distance-like’ function
d(x, a) = aT x, we define centroid c = c (A) of the set A as a solution of the
maximization problem

c =




arg max

{∑
a∈A

xT a, x ∈ S
}

if a1 + · · · + am �= 0,

0 otherwise.

(5.33)

Equation (5.33) immediately yields

c (A) =



a1 + · · · + am

‖a1 + · · · + am‖ if a1 + · · · + am �= 0,

0 otherwise.
(5.34)

Note that:

1. For A ⊂ Rn
+ (which is typical for many IR applications) the sum of the

vectors in A is never zero, and c (A) is a unit length vector.

2. The quality of the set A is just Q(A) =∑a∈A aT c (A) = ‖a1 + · · · +
am‖.

3. While the motivation for spherical k-means is provided by IR applications
dealing with vectors with nonnegative coordinates residing on the unit
sphere, Equation (5.34) provides solutions to the maximization problem
in Equation (5.33) for any set A ⊂ Rn.

Spherical batch k-means is a procedure similar to the batch k-means algorithm
with the obvious substitution of min by max in Equation (5.4).
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5.5.1 Spherical k-means with cannot-link constraints only

In the presence of cannot-link constraints we introduce a nonpositive symmetric
penalty function p(a, a′) ≤ 0. For a cluster π we define

Q (π) =
∑
a∈π

aT c (π) + 1

2

∑
a,a′∈π

p(a, a′), (5.35)

with c (π) given by Equation (5.34). The quality of partition � = {π1, · · · , πk}
is defined by

Q(�) =
k∑

i=1

Q (πi) . (5.36)

We first show that a straightforward adaptation of spherical batch k-means to
datasets equipped with a penalty may lead to erroneous results.

Example 5.5.1 Let A = {a1, a2, a3, a4, a5} ⊂ R2 with

a1 =
[

1
0

]
, a2 =

[
cos 31◦
sin 31◦

]
, a3 =

[
cos 45◦
sin 45◦

]
,

a4 =
[

cos 59◦
sin 59◦

]
, a5 =

[
0
1

]
,

and p(ai , aj ) = −1, i �= j . Consider an initial three-cluster partition (see
Figure 5.4)

� = {π1, π2, π3}, with π1 = {a1, a2}, π2 = {a3}, π3 = {a4, a5},

−0.5 0 0.5 1 1.5
−0.5

0

0.5

1

1.5

a1

a2

a3

a4

a5

Figure 5.4 Initial three-cluster partition.



CONSTRAINED CLUSTERING WITH k-MEANS TYPE ALGORITHMS 97

−0.5 0 0.5 1 1.5−0.5

0

0.5

1

1.5

a1

a2

a3

a4

a5

Figure 5.5 Three-cluster partition generated by spherical batch k-means.

with Q(�) = 4.8546 + 2p. An application of one batch iteration generates par-
tition �′ with Q(�′) = 4.9406 + 3p (see Figure 5.5). For each penalty p <

−0.086 one has Q(�′) < Q(�), i.e. an application of one iteration of the algo-
rithm leads to an inferior partition.

The incremental version of spherical batch k-means is analogous to that
of k-means with the obvious reverse of the inequality in Equation (5.7).
An application of a single iteration of incremental algorithm to partition �

(see Example 5.5.1) generates partition �′′ = {{a1, a2}, {a3, a4}, {a5}} with
Q
(
�′′) = 4.9124 + 2p < 4.8546 + 2p = Q(�) (see Figure 5.6).

Algorithm 7 – Incremental spherical k-means algorithm

1: Given user-supplied tolerance tolI ≥ 0, do the following:
2: Start with a partitioning �(0).
3: Set the index of iteration t = 0.
4: Generate nextFV

(
�(t)

)
.

5: if
[
Q
(
nextFV

(
�(t)

))− Q
(
�(t)

)
> tolI

]
then

6: set �(t+1) = nextFV
(
�(t)

)
7: increment t by 1
8: go to 5
9: end if

10: Stop.
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Figure 5.6 Optimal three-cluster partition.

5.5.2 Spherical k-means with cannot-link and must-link
constraints

We start with an elementary observation. If π = {a1, · · · , am} and π ′ =
{a′

1, . . . , a′
m′ } are two clusters, then

Q(π ∪ π ′) =
∣∣∣∣∣
∑
a∈π

a +
∑
a′∈π ′

a′
∣∣∣∣∣+

∑
a∈π, a′∈π ′

p(a, a′). (5.37)

By setting b =∑a∈π a, b′ =∑a′∈π ′ a′, and P(b, b′) =∑a∈π, a′∈π ′ p(a, a′) one
gets

Q(π ∪ π ′) = ∣∣b + b′∣∣+ P(b, b′).

This observation makes repetition of the construction presented in Section 5.3.2
possible. Consider the transitive closure {π1, . . . , πM} of must-link constraints.
For i = 1, . . . , M let bi =∑a∈πi

a, and for each pair of indices 1 ≤ i, j ≤ M

denote
∑

a∈πi , a′∈πj
p(a, a′) by P(bi , bj ).

Our goal now is to cluster the set B = {b1, . . . , bM}. For a subset πB =
{bi1 , . . . , bip } ⊆ B the quality of the set is denoted by QB(πB) and is defined by

QB(πB) =
∣∣∣∣∣∣
∑

b∈πB
b

∣∣∣∣∣∣+
1

2

∑
b, b′∈πB

P(b, b′). (5.38)

The quality of the set πB is equal to the quality of the associated subset πA =⋃p

j=1πij of A, i.e. QB
(
πB) = Q

(
πA) .
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The incremental spherical k-means algorithm for the dataset A with penalty
function p and must-link constraints is identical to Algorithm 7 applied to the
dataset B equipped with penalty function P and with no must-link constraints.

5.6 Numerical experiments

We now demonstrate that useful cannot-link constraints may lead to superior
clustering results. We apply Algorithm 4 to a small three collection dataset clas-
sic3:2

• DC0 (Medlars Collection 1033 medical abstracts)

• DC1 (CISI Collection 1460 information science abstracts)

• DC2 (Cranfield Collection 1398 aerodynamics abstracts).

We denote the overall collection of 3891 documents by DC. Many clustering algo-
rithms are capable of partitioning DC into three clusters with small (but not zero)
‘misclassification’ (see e.g. Dhillon et al. (2003); Dhillon and Modha (2001)).

We preprocess all the text datasets following the methodology of Dhillon et al.
(2003), so that the clustering algorithm deals with 3891 vectors of dimension 600.
An application of PDDP (Principal Direction Divisive Partitioning; see Boley
(1998)) generates the initial three-cluster partition for DC. The confusion matrix
for the partition is given in Table 5.1. This partition is used later as an input for
both Algorithm 4 and Algorithm 7. Both algorithms are applied to the dataset
with no must-link constraints. The penalty function p(a, a′) is defined as follows.
For collection DC0 we sort all the document vectors a00, a01, a02 . . . with respect
to the distance to the collection average (a00 is the nearest). We select first r0

vectors a00, a01, . . . a0r0−1 and for each a not in D0 define p(a0i , a) = p > 0,
i = 1, . . . , r0 − 1. For the other two document collections DC1 and DC2 the
penalty function is defined analogously.

Table 5.1 PDDP generated ‘confusion’ matrix with 250
‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1362 13 6
Cluster 1 7 1372 120
Cluster 2 91 13 907

2 Available from http://www.cs.utk.edu/∼lsi.



100 TEXT MINING

5.6.1 Quadratic k-means

An application of Algorithm 4 with zero penalty and tol = 0.001 (i.e. just
incremental k-means) to the PDDP generated partition improves the confusion
matrix (see Table 5.2). Algorithm 4 with p = 0.01 generates the final parti-
tion with the confusion matrix given in Table 5.3. The penalty increase to 0.09
leads to the perfect diagonal confusion matrix given in Table 5.4. The values
of penalty versus ‘misclassification’ of final partitions generated by Algorithm 4
with tol = 0.001 are given in Table 5.5. In these experiments r0 = r1 = r2 = 1.
Selection of r0 = r1 = r2 = 2 and penalty values one-half of those shown in
Table 5.5 produce results similar to those collected in Table 5.5.

5.6.2 Spherical k-means

An application of Algorithm 7 with zero penalty and tol = 0.001 to the PDDP
generated partition does not change the confusion matrix given by Table 5.1.
The decrease of penalty to p = −0.1 slightly improves the confusion matrix (see
Table 5.6). With penalty p = −0.4 the algorithm generates the perfect diagonal
confusion matrix (see Table 5.4). Further decrease in penalty does not change

Table 5.2 PDDP followed by Algorithm 4 with p = 0 generated
‘confusion’ matrix with 75 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1437 22 9
Cluster 1 1 1360 5
Cluster 2 22 16 1019

Table 5.3 PDDP followed by Algorithm 4 with p = 0.01
generated ‘confusion’ matrix with 40 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1453 17 8
Cluster 1 1 1377 4
Cluster 2 6 4 1021

Table 5.4 PDDP followed by Algorithm 4 with p = 0.09
generated ‘confusion’ matrix with 0 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1460 0 0
Cluster 1 0 1398 0
Cluster 2 0 0 1033
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Table 5.5 Penalty vs. ‘misclassification’ with
r0 = r1 = r2 = 1.

Penalty Misclassification

0.00 75
0.01 40
0.02 20
0.03 17
0.04 8
0.05 5
0.06 4
0.07 2
0.08 1
0.09 0

Table 5.6 PDDP followed by Algorithm 7 with
p = −0.1 generated ‘confusion’ matrix with
228 ‘misclassified’ documents.

Cluster/DocCol DC0 DC1 DC2

Cluster 0 1375 13 6
Cluster 1 6 1376 115
Cluster 2 2 79 912

Table 5.7 Penalty vs. ‘misclassification’ with
r0 = r1 = r2 = 1.

Penalty Misclassification

0.0 250
−0.1 228
−0.2 59
−0.3 4
−0.4 0

this result. The values of penalty versus ‘misclassification’ of final partitions
generated by Algorithm 7 with tol = 0.001 are given in Table 5.7. In these
experiments r0 = r1 = r2 = 1.

5.7 Conclusion

The chapter presents three clustering algorithms: constrained k-means, con-
strained spherical k-means, and constrained smoka. Each algorithm is capable
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of clustering a vector dataset equipped with must-link constraints and a penalty
function that penalizes violations of cannot-link constraints.

Numerical experiments with the first two algorithms show improvement of
clustering performance in the presence of constraints. At the same time a single
iteration of each algorithm changes the cluster affiliation of one vector only.
A straightforward application of the algorithms to large datasets is, therefore,
impractical.

In contrast, a single iteration of the proposed constrained smoka clustering
changes all k clusters. Numerical experiments with constrained smoka and large
datasets with must-link and cannot-link constraints will be reported elsewhere.
Judicious selection of constraints is of paramount importance to the success of
clustering algorithms. We plan to perform and report experiments with large
datasets equipped with cannot-link and must-link constraints in the near future.
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Survey of text visualization
techniques

Andrey A. Puretskiy, Gregory L. Shutt
and Michael W. Berry

6.1 Visualization in text analysis

Visualization has been proven to be a very powerful tool in a wide variety of
fields, including text mining. While text mining can reduce an enormous quantity
of data to a significantly smaller subset, this subset is often still much too large
for a human analyst to reasonably process, comprehend, detect trends, and draw
conclusions from. Text visualization and visual text mining postprocessing tools
can therefore be of crucial importance in facilitating knowledge discovery, as
well as providing a big picture overview of overwhelmingly large amounts of
data. This chapter explores several such visual techniques and describes specific
examples of software that utilizes them.

There exist many different purposes for text visualization, dependent upon the
user’s needs at a particular time. One major purpose of visualization is to facilitate
the tracing of alterations performed upon a document or set of documents over
time. This may focus upon changes to the content of the document(s), or on
authorship tracking. Visualizations in this category typically use variations of the
time line plot technique, which typically involves constructing a color-coded plot
that traces the changes made by each individual author over time. In applications

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd
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where many different authors may be collaborating on a single document, this
often results in an incredibly complex and difficult to read plot.

Sometimes a quick, complete, and graphical summary of a large document is
all that the user requires. Tag clouds and other similar techniques have proven
highly useful in this area. A tag cloud is a summary of a document or a collection
of documents that relies upon font size, color, and/or text placement to indicate
the relative importance of key terms to the user. The key terms may be chosen
according to any number of schemes, some as simple as a straightforward term
count. Though perhaps not particularly useful for detailed analysis, a tag cloud
is highly effective in summarizing large amounts of text in an easily readable,
and understandable, visual manner.

Another major purpose of text visualization is general text exploration: that
is, a general search for interesting patterns or relationships within the data. Quite
often, the user has very limited prior information regarding the target of his or her
search, thus the term ‘exploration’ describes this type of analysis better. In order
to facilitate it, visualization software in this category typically creates an altered,
graphical term space representation – for example, an interconnected graph of all
of the terms in a book, where terms may be connected based on co-occurrence
within a single chapter or section. Many variations of this approach exist, but
one aspect that most of them have in common is that they are heavily reliant
upon the user’s attention and perception. The user’s ability to notice, interpret,
and understand patterns in the dataset is a critical part of the analysis process
when such software is utilized.

Sentiment tracking (and its related visualization software) is a relative new-
comer to the text visualization arena, and yet it is a highly promising technique
that has a great capability for insightful analysis of textual data. Various tech-
niques for sentiment tracking exist. One common approach attempts to connect
adjectives from the text to one of a number of basic emotion descriptor adjectives
via a thesaurus synonym path. The length of the connecting paths determines how
each text adjective is categorized. A percentage breakdown plot may then be con-
structed to indicate the overall content of basic emotions or sentiments within
the text over time.

Many text mining procedures produce unlabeled, textual results (e.g. groups
of interrelated terms that describe features contained in the original input dataset).
In order to draw potentially useful conclusions, further interpretation of these
results is necessary. This often requires a great commitment of time and effort
on the part of human analysts. Visual postprocessing tools tailored for specific
text mining packages can therefore greatly facilitate the analysis process. This
chapter will discuss one such visual tool, FutureLens , in great detail.

6.2 Tag clouds

Conceptually, tag clouds are somewhat similar to histograms; however, they offer
greater flexibility for the visual representation of the relative importance of each
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Figure 6.1 A tag cloud of the paper in Shutt et al. (2009), generated by the
TagCrowd application.

tag. The font size and color, as well as the orientation of the text (vertical or
horizontal) and the proximity of tags to one another, may be used to convey
information to the observer (Kaser and Lemire 2007). A basic tag cloud gener-
ator is a relatively simple and straightforward program that obtains term counts
from textual data, then generates HTML that takes the term counts into consid-
eration. Frequently, the user is allowed to choose the total number of terms in
the tag cloud summary. The tag cloud generating code then selects these terms
based on the overall counts and generates HTML code where font sizes vary
according to the relative relationship between the overall term counts. Figure 6.1
demonstrates a straightforward and easy-to-use tag cloud generator application,
TagCrowd (Steinbock 2009). The text of the paper in Shutt et al. (2009) was
used to generate the tag cloud in the figure.

Figures 6.2 and 6.3 demonstrate a more complex application, Wordle (Fein-
berg 2009). This generator includes many additional graphical capabilities. It

Figure 6.2 A tag cloud of the paper in Shutt et al. (2009), generated by the
Wordle application using the ‘Vigo’ font type and a randomized predominant text
orientation.
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Figure 6.3 A tag cloud of the paper in Shutt et al. (2009), generated by the
Wordle application using the ‘Boope’ font type and with the predominant text
orientation set to horizontal.

gives the user the ability to alter text and background color in a variety of ways.
Font type may be modified. The predominant orientation of the words in the
word cloud may be set in a variety of ways, ranging from completely horizontal,
to mostly horizontal or mostly vertical, to completely vertical. Wordle is capable
of automatically randomizing all of these parameters.

Both Steinbock (2009) and Feinberg (2009), as well as many other tag
cloud generators, allow free noncommercial use of the images and/or HTML
code that they generate. TagCrowd and Wordle both use the Creative Commons
license, meaning users are allowed to copy, distribute, and transmit the materi-
als (Commons 2009a,b). While Wordle does not limit usage to noncommercial
applications, TagCrowd allows noncommercial use only. It should be noted that
the source code of the generators is copyrighted by the respective authors and
does not fall under the Creative Commons license.

6.3 Authorship and change tracking

The development of authorship tracking visual software was motivated by
Wikipedia-like collaborative environments, where multiple users may make
incremental changes to a single document over a relatively long time period.
Software such as History Flow, a project of the Collaborative User Experience
Research Group at IBM, allows the user to visually trace the changes to a par-
ticular document. The software creates a series of color-coded bars (by author),
each corresponding to a single version or revision of the document. Same-color
segments on adjacent bars are connected, creating a three-dimensional visual
effect that provides the user with information on the way the document was
altered over time by multiple authors. History Flow also includes additional
visualization modes that allow the user to track a single author’s activity through
the collaboratively developed document, as well as to trace the changes by
their relative age. IBM researchers have used History Flow to effectively study
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cooperation and conflict among authors on Wikipedia, including such aspects
as vandalism and repair (Viégas et al. 2004). More information on History
Flow, including screenshots of the software in action, may be found at Viégas
et al. (2009).

6.4 Data exploration and the search
for novel patterns

TextArc uses JavaScript and functions as an online application to visualize com-
plex textual datasets. It has been applied to works of literature, such as Alice in
Wonderland and Hamlet . The visualization provided by TextArc consists of two
levels. First, the original text is available around the periphery of the visualiza-
tion area. Second, an interconnected graph of terms is provided in the middle of
the visualization area. The two areas are interconnected, meaning that the user is
able to select any particular term in the middle area and quickly see its context in
the full text that is displayed along the periphery. This software allows the user
to easily determine any given term’s relevance or relative importance to any part
of the literary work (Paley 2009). Figures 6.4 and 6.5 demonstrate how TextArc
was used to explore Shakespeare’s Hamlet .

6.5 Sentiment tracking

Sentiment tracking involves tracing an author’s changing attitudes through a par-
ticular piece of text. In order to accomplish this, it is necessary to categorize the
terms from the text to certain broad descriptor adjectives. Descriptor adjectives
may vary: for example, the SEASR (Software Environment for the Advancement

Figure 6.4 TextArc applied to Shakespeare’s Hamlet. Not surprisingly, the name
‘Hamlet’ figures prominently in the work.
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Figure 6.5 TextArc allows the user to easily track the connections between var-
ious terms. Here, we see that the term ‘Hamlet’ is related to the term ‘lord’. It is
also possible to track either term further.

Figure 6.6 SEASR’s Sentiment Tracking project applied to Turn of the Screw,
by Henry James (1898). Each unit on the X-axis corresponds to a group of 12
sentences. The Y-axis shows the sentiment composition for all six of Parrott’s
core emotions (Parrott 2000).
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Figure 6.7 SEASR’s Sentiment Tracking project applied to Turn of the Screw,
by Henry James (1898). This figure shows the presence of anger in the literary
work.

of Scholarly Research) Sentiment Tracking project used Parrot’s six core emo-
tions in its sentiment tracking demonstration (Figures 6.6, 6.7, and 6.8): Love,
Joy, Surprise, Anger, Sadness, and Fear (Parrott 2000). The Sentiment Track-
ing project uses UIMA (Unstructured Information Management Applications), a
component framework for analyzing unstructured content, including but not lim-
ited to text. UIMA began as a project at IBM, but evolved into an open source
project at the Apache Software Foundation (SEASR 2009b). Several different
metrics may be used in order to categorize the terms from the text. The approach
used by the SEASR/UIMA Sentiment Tracking project involves searching for
the shortest path through a thesaurus from each term within the text to one of the
descriptor adjectives. Synonym symmetry is another useful technique, and may
be helpful as a ‘tie breaker’ (SEASR 2009a).

6.6 Visual analytics and FutureLens

FutureLens is a Java-based visual analytics environment that has been used
to support the extraction and tracking of scenarios and plots from news
articles defining the VAST 2007 Contest (Scholtz et al. 2007). Using groups
of related persons, locations, organizations, and context-specific words and
phrases identified (through time) by nonnegative tensor factorization (NTF)
models (Bader et al. 2008b), FutureLens was instrumental in extracting the
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Figure 6.8 SEASR’s Sentiment Tracking project applied to Turn of the Screw,
by Henry James (1898). This figure shows the presence of joy in the literary work.

underlying (fictitious) criminal and terrorist activities created by Whiting et al.
for the VAST 2007 Contest. Section 6.7 briefly describes the scenario mining
process and expectations that warrant the design of visual analytic software
like FutureLens. An early prototype of FutureLens is discussed in Section 6.8,
followed by an illustration of some of the important features of FutureLens
in Section 6.9. Examples of scenario discovery with the VAST 2007 Contest
dataset are provided in Section 6.10 and Section 6.11. A brief discussion of
future enhancements to FutureLens is given in Section 6.12 (Shutt et al. 2009).

6.7 Scenario discovery

The intent of the IEEE VAST 2007 Contest (Scholtz et al. 2007) was to promote
the development of benchmark datasets and metrics for visual analytics as well
as to establish a forum for evaluating different solution strategies. In provid-
ing news stories, blog entries, background information, and limited multimedia
materials (small maps and data tables), the contest organizers challenged the
participants to investigate a major law enforcement/counter-terrorism scenario,
form a hypothesis, and collect supporting evidence. Tasks that each team/entry
was expected to address included: (1) identify entities (e.g. people, places, and
activities) from text and multimedia information; (2) develop interactive tools to
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visualize/analyze this information; (3) answer specific (contest-provided) ques-
tions based on the analysis; and (4) produce a video that demonstrates how those
answers were derived. FutureLens was primarily used for the second task to visu-
alize and track the entity groups generated by the nonnegative tensor factorization
models discussed in Bader et al. (2008a,b).

6.7.1 Scenarios

The primary (crime and terrorism-based) scenarios depicted in the VAST 2007
Contest involved wildlife law enforcement incidents occurring in the fall of 2004.
Endangered species issues and ecoterrorism activities played key roles in the
underlying terrorist scenario/plot. The data used to describe the details of the
plot included text, images, and some statistics. Although activities of certain
animal rights groups, such as the People for the Ethical Treatments of Animals
(PETA) and Earth Liberation Front (ELF), were involved with the plot, the con-
test organizers did not consider them to be the primary (interesting) parties for
investigation. In fact, such sideplots were used to deflect attention from the main
criminal/terrorist scenarios, thus providing a realistic challenge.

6.7.2 Evaluating solutions

Although entries (or answers) submitted to the VAST 2007 Contest were judged
according to the correctness of the answers to the questions and the evidence
provided, a more subjective assessment of the quality of the displays, interactions,
and support for the analytical process was also provided. The last category is of
particular interest because the field of text mining, in general, could greatly benefit
from the design of more intuitive visualizations that expose or verify potential
scenarios of human activity.

Following the traditional cues of journalistic reporting, visual analytics (as
reflected by the VAST 2007 contest) seeks to answer the questions (who, what,
where, and when) for an alleged activity using the the most relevant documents or
other materials from the dataset as evidence. Contest participants were required
to describe the plot(s) and subplots(s) and how people, motivations, activities,
and locations relate to the plot; that is, their relationships, and any uncertainties
or information gaps that exist. For example, some of the questions each entry
was required to answer include:

• (Who) Who are the players engaging in questionable activities in the
plot(s)? When appropriate, specify the organization they are associated
with.

• (When/What) What events occurred during this time frame that are most
relevant to the plot(s)?

• (Where) What locations are most relevant to the plot(s)?
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6.8 Earlier prototype

Many of the concepts and ideas of this project stem from FeatureLens, a Uni-
versity of Maryland (Human–Computer Interaction Laboratory) text and pattern
visualization program (Don et al. 2007, 2008; Kumar 2009). FeatureLens allows
the user to explore frequently occurring terms or patterns in a collection of doc-
uments. Connections between these frequent terms and the dates at which they
appear in the set of documents can quickly be visualized and investigated. A
screenshot of the FeatureLens prototype is shown in Figure 6.9.

Figure 6.9 FeatureLens prototype (written in Ruby) developed at the University
of Maryland Human–Computer Interaction Laboratory.

While FeatureLens may sound suitable for the given task, it is not without
its shortcomings. For one, its design is rather complex as it requires a MySQL
database server, an HTTP server, and an Adobe Flash-enabled web browser to
function properly. As such, it is not a trivial task to set up an instance of Fea-
tureLens from scratch and may take an inexperienced user a significant amount
of time to get started. Datasets must be parsed and stored in the database, an
operation that an end user cannot perform, so examining arbitrary datasets is out
of the question. In implementing the architecture of FeatureLens, the designers
chose to use a variety of languages: Ruby for the back end, XML to communicate
between the front end and back end, and OpenLaszlo for the interface. Because
of this variety in languages, adapting and modifying FeatureLens would prove
quite difficult. Responsiveness of the interface also tends to degrade to the point
that it impacts usability when given even the simplest of tasks. Clearly a better
solution was needed.
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6.9 Features of FutureLens

FutureLens is a text visualization tool that implements much of the functionality
of FeatureLens while adding several necessary features. The most significant
among the additional features is the capability to create term collections and
phrases. The user may do this by simply clicking and dragging selected terms or
entities onto each other. FutureLens is written in the Java programming language
using the Standard Widget Toolkit so it is not only cross-platform but uses native
widgets where possible to maintain a look and feel consistent with the users’
platform. For end users not familiar with the program, FutureLens has a built-
in feature that demonstrates its basic functionality. An example of FutureLens
running under Mac OS X is shown in Figure 6.10.

Figure 6.10 FutureLens prototype (written in Java) developed at the University
of Tennessee for visualization of NTF-generated outputs.

All the basic functionality of FutureLens can be seen in this example. The
boxes along the bottom show the terms that are currently being investigated.
The intensity of the color in these boxes hints at the concentration of the term
throughout the documents. A graph of the percentage of documents containing the
term versus time is shown at the top, while the raw text of the selected document
is shown to the right with the selected terms highlighted in the appropriate color.
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Multiple terms can easily be combined into extended patterns by dragging and
dropping. Terms may be combined into either collections or phrases. A collection
is created when the user drags and drops terms onto each other. Term adjacency
does not affect search results for a collection. If the users holds down the Copy
key (this key varies depending on the operating system; for example, on Mac OS
X this is the Alt key), a phrase rather than a collection will be created. In this
case, term adjacency will be considered when the software performs searching.
While this presents an excellent overview of the data, it is also possible to load
the output (groups of terms and/or entities) derived from a data clustering method.
An example of this is shown in Figure 6.11.

Figure 6.11 FutureLens tracking the co-occurrences of grouped terms and enti-
ties (persons, locations, and organizations).

Here a file containing pertinent terms output from a nonnegative tensor
factorization (NTF) tool has been loaded as a separate view into FutureLens.
The view is nearly identical to the overview. However, the list of terms has
been limited to only what was contained in the input file. This allows the user to
quickly view the different clusters of entities through time (Bader et al. 2008b).
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6.10 Scenario discovery example: bioterrorism

Figures 6.12 through 6.16 demonstrate how FutureLens may be used together
with NTF to quickly reconstruct a bioterrorism-related plotline that was buried
within the VAST 2007 text corpus. In Figure 6.12, one of the NTF output groups
has been loaded into FutureLens. Each NTF output group contained 15 top rank-
ing (most relevant) entities and 35 top ranking terms that described a particular
feature of the input dataset. The user is aware that he or she should be searching
for some sort of interesting and nefarious scenario. The selected terms (Monkey-
pox , Exotic, Pets , Chinchilla) constitute a good starting point. However, the user
will not find all news articles with the occurrence of the relatively common words
Pets and Exotic relevant. Thus, the two terms are combined into the phrase Exotic
Pets , as shown in Figure 6.13. Figure 6.14 demonstrates how FutureLens allows

Figure 6.12 FutureLens with the bioterrorism NTF output group loaded. The
panel on the left shows the terms and entities relevant to the NTF output group.
The top-level graph summarizes the frequency of the selected terms and entities
over time. The monthly frequency plots in the center of the screen allow the user a
more detailed view of the term/entity occurrence over time. The monthly plots are
clickable; the results of that operation are demonstrated in the subsequent figures.
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Figure 6.13 Demonstration of phrase creation in FutureLens. The terms Exotic
and Pets from Figure 6.12 have now been combined into a phrase Exotic Pets.
The phrase creation technique has the effect of significantly decreasing the total
number of hits, thereby reducing on-screen clutter and allowing the user to focus
his or her search. Additionally, this figure demonstrates the effect of the user’s
clicking one of the bars in the monthly plots. Doing so causes the corresponding
text to be displayed in the panel on the right of the screen. If the user-selected
terms are contained within the text, they will be highlighted in appropriate colors.
This allows the user to quickly ascertain the context of the selected terms, and
possibly also to locate additional terms or entities of interest. A phrase is created
when the user drags selected terms onto each other while holding down the COPY

key (e.g. ALT on Mac OS X).

the user to easily identify a key news story within the large dataset. The article
shown in this figure contains a great amount of relevant information regarding an
outbreak of a potentially deadly virus, monkeypox, in the Los Angeles area. The
article implies that the outbreak may not have been accidental, and connects it to
an animal rights activist and chinchilla breeder named Cesar Gil. In order to fully
reconstruct the plotline, the user selects the names Cesar Gil and Gil from the
Entities list, as shown in Figure 6.15. However, this results in too many instances
of Gil being found, and most of them are probably irrelevant. Exploiting the link
between Gil and chinchilla breeding, the user combines the terms Chinchilla and
Gil into a collection. This helps the user to quickly identify a relevant article that
contains an advertisement for Gil’s chinchilla breeding business (Figure 6.16).
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Figure 6.14 Key news story identification using FutureLens. The monthly plots
allow for convenient visualization of term co-occurrence over time. As demon-
strated in this figure, term co-occurrence allows the user to quickly extract the
most relevant and informative textual data from a large dataset. In this example,
the news article that contains all of the user’s selected terms contains a great deal
of information relevant to the chinchilla–bioterrorism plot. The context provided
by the article tells the user exactly in what way many of the terms and entities
within the NTF output group are relevant to the bioterrorism scenario that was
hidden within this textual dataset.

Not all of the articles that are relevant to this plotline have been shown in the
figures; however, FutureLens enables the user to quickly and easily identify them
all. FutureLens also helps the user to focus on the relevant parts of the article
(Shutt et al. 2009).

6.11 Scenario discovery example: drug trafficking

Figures 6.17 through 6.21 demonstrate how FutureLens may be used together
with NTF to quickly reconstruct a drug trafficking plotline that was buried
within the VAST 2007 text corpus. In Figure 6.17, the corresponding NTF
output group has been loaded into FutureLens. Figure 6.18 shows both term
chaining techniques: Tropical and Fish are combined into the phrase Tropical
Fish; Cocaine and Drugs are combined into a single collection of terms. As
a result of this operation several news articles are found, including one that
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Figure 6.15 Entity of interest search using FutureLens. The key news article
demonstrated in Figure 6.14 revealed that an individual named Cesar Gil is a
key player in this scenario. FutureLens allows the user to expand the search by
including alternative forms of this individual’s name (e.g. Gil). However, this may
cause a significant number of irrelevant search results. Figure 6.16 demonstrates
how the user might use FutureLens’ collection creation capability to focus the
search.

discusses the use of trade in exotic pets (including tropical fish) as a cover for
drug smuggling (including cocaine trafficking). The next figure, Figure 6.19,
shows the selection of what appears to be a company name, Global Ways ,
from the Entities list. As shown, the user is able to quickly find a story that
identifies Global Ways as a company that imports exotic tropical fish from South
America into the United States. Given the previously established connection
between drug trafficking and tropical fish imports, Global Ways may be worth
investigating further. As Figure 6.20 shows, shortly after publication of the
story advertising Global Ways’ import business, the Fish and Wildlife Service
had issued a warning to avoid handling shipments of tropical fish that may
have entered the United States through Miami. According to this story, the
packaging of some of these shipments appears to have been contaminated with
an unknown toxic substance. Global Ways is listed as one of the suspects.
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Figure 6.16 Term collection creation in FutureLens. A collection of terms may
be created in FutureLens by simply dragging selected terms onto each other. A
collection of terms differs from a phrase because term adjacency does not matter
for a collection search. In this example, the user has been able to determine that
the Gil of interest is highly likely to be mentioned in a news article that also
contains the term chinchilla. The user created a collection containing both terms,
thereby greatly reducing the total number of search hits on the term Gil alone.
Furthermore, this leads to the discovery of a highly relevant article, one in which
the individual named Gil is advertising the sale of chinchillas that would later be
proved to have been intentionally infected with the potentially deadly monkeypox
virus.

Finally, Figure 6.21 identifies the owner of Global Ways as Madhi Kim ,
thereby allowing the analyst to continue tracing relationships through the
dataset.

6.12 Future work

While FutureLens provides numerous features for plot and scenario discovery,
there is still room for improvement. It works well for evidence generation but
it has no automation for any type of scenario discovery. Methods that locate
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Figure 6.17 The drug trafficking NTF output group loaded into FutureLens.

Figure 6.18 Two types of term chaining, phrase creation and collection creation,
help the user to quickly identify relevant news stories.
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Figure 6.19 Among entities of interest produced by NTF, there appears a com-
pany name, Global Ways. FutureLens enables the user to further explore the
relationship between this company, the tropical fish trade, and drug trafficking.

Figure 6.20 FutureLens helps the user to identify news stories that connect
Global Ways to drug trafficking.
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Figure 6.21 The owner of Global Ways is identified with the help of FutureLens.
Further investigation of the owner’s connections and associations is possible at
this point.

interesting features in the dataset could be added to create a single analysis tool.
As it stands now, the output of data mining models such as that created by
nonnegative tensor factorization (see Bader et al. (2008b)) must be entered man-
ually into the software environment. Eliminating this human interaction would
greatly increase the efficiency of scenario discovery. An obvious extension for
dynamic (time-varying) datasets is certainly needed. The portability and intuitive
word/phrase tracking capability of FutureLens, however, make this public-domain
software environment a solid contribution to the text mining community.
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Adaptive threshold setting
for novelty mining

Wenyin Tang and Flora S. Tsai

7.1 Introduction

In the age of information, it is easy to accumulate various documents such as news
articles, scientific papers, blogs, advertisements, etc. These documents contain
rich information as well as useless or redundant information. People who are
interested in a certain topic may only want to track the new developments of
an event or the different opinions on the topic. This motivates the study of
novelty mining, or novelty detection, which aims to retrieve novel, yet relevant,
information, given a specific topic defined by a user (Zhang and Tsai 2009a). A
typical novelty mining system consists of two modules: (1) categorization; and
(2) novelty mining. The categorization module classifies each incoming document
into its relevant topic bin. Then, the novelty mining module detects the documents
containing enough novel information in the topic bin. This chapter will focus on
the later module. Due to its importance in information retrieval, a great deal of
attention has been given to novelty mining in the past few years. The pioneering
work for novelty mining was performed at the document level (Zhang et al.
2002). Later, more contributions were made to novel sentence mining, such as
those reported in TREC 2002–2004 Novelty Track (Harman 2002; Soboroff
2004; Soboroff and Harman 2003), those in comparing various novelty metrics
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(Allan et al. 2003; Tang and Tsai 2009: Zhao et al. 2006), and those in integrating
various natural language processing (NLP) techniques (Kwee et al. 2009; Ng et al.
2007; Zhang and Tsai 2009b).

Novelty mining is a process of mining novel text in the relevant documents
of a given topic. The novelty of any document or sentence is quantitatively mea-
sured by a novelty metric based on its history documents and represented by a
novelty score. The final decision on whether a document or sentence is novel
or not depends on whether the novelty score falls above or below a threshold.
As an adaptive filtering algorithm, novelty mining is one of the most challeng-
ing problems in information retrieval. One primary challenge is how to set the
threshold of novelty scores adaptively. In the novelty mining system, since there
is little or no training information available, the threshold cannot be predefined
with confidence. The motivations for designing an adaptive threshold setting for
the novelty mining system are manifold. There is little training information in
the initial stages of novelty mining and different users may have different defi-
nitions about novelty. Motivations of adaptive threshold setting will be analyzed
in detail later (in Section 7.2.2).

To the best of our knowledge, few studies have focused on adaptive threshold
setting in novelty mining. A simple threshold setting algorithm was proposed in
Zhang et al. (2002), which decreases the redundancy threshold a little if a redun-
dant document is retrieved as a novel one based on a user’s feedback. Clearly
it is a weak algorithm because it can only decrease the redundancy threshold.
This chapter addresses the problem of setting an adaptive threshold by modeling
the score distributions of both novel and nonnovel documents. Although score
distribution-based threshold-setting algorithms have been proposed for relevant
document/sentence retrieval (Arampatzis et al. 2000, Robertson 2002; Zhai et al.
1999; Zhang and Callan 2001), the novelty score in novelty mining has its dis-
tinctive characteristics. In our experimental study, we find that scores from the
novel and nonnovel classes heavily overlap. This is intuitive because novel and
nonnovel information are always interlaced in one document, while in the rele-
vance retrieval problem most of the nonrelevant documents show little similarity
with relevant ones. Second, we find that the score distributions for both novel
and nonnovel classes can be approximated by Gaussian distributions (detailed in
Section 7.2.3). In the relevance retrieval problem, however, the scores of nonrele-
vant documents follow an exponential distribution (Arampatzis et al. 2000). This
also implies that most nonrelevant documents are dissimilar to relevant ones.

The score distributions of classes provide the global information necessary
for constructing an optimization criterion for threshold setting, while the thresh-
old that optimizes this criterion is the best we can obtain until new user feedback
is provided. Our proposed method, the Gaussian-based adaptive threshold set-
ting (GATS) algorithm, is a general algorithm, which can be tuned according to
different performance requirements, by employing different optimization criteria,
such as the Fβ score (Equation (7.7)), which is the weighted harmonic average
of precision and recall where β controls the trade-off between them.
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The novelty mining system combined with GATS has been tested on both
document-level and sentence-level data and compared to the novelty mining
system using various fixed thresholds. The experimental results show that a good
performance of GATS can be obtained at both levels.

The remainder of this chapter is organized as follows. Section 7.2 first ana-
lyzes the motivations of threshold setting in novelty mining, and then introduces
the GATS algorithm. Section 7.3 tests GATS at both the sentence level and
document level. Section 7.4 concludes the chapter.

7.2 Adaptive threshold setting in novelty mining

7.2.1 Background

Novelty mining is the process of mining novel text in the relevant documents
of a given topic. The novelty of a document or sentence (later we refer only
to documents without losing any generalization) can be quantitatively measured
by a novelty metric and represented by a novelty score. The most commonly
used novelty metric, the cosine distance metric, will be employed throughout
this chapter as it yielded good results for novelty mining compared to more
complex metrics (Zhang et al. 2002). Since cosine similarity does not measure
the degree of novelty directly, we convert the cosine similarity scores to novelty
scores by subtracting these similarity scores from one. The cosine similarity
novelty metric compares the current document to each of its history documents
separately, whereas the minimum novelty score among them will be used as the
novelty score of the current document. Specifically,

Ncos(dt ) = min
1≤i≤t−1

[1 − cos(dt , di)], where (7.1)

cos(dt , di) =
∑n

k=1 wk(dt ) · wk(di)

‖dt‖ · ‖di‖ ,

and where Ncos(d) denotes the cosine similarity-based novelty score of document
d and wk(d) is the weight of the kth word in document weighted vector d . The
weighting function used in our work is the term frequency.

The final decision on whether a document is novel or not depends on whether
the novelty score falls above or below a threshold. The document predicted as
‘novel’ will be pushed into the history document list.

When novelty mining adopts a fixed threshold, no user feedback is considered
and the whole process is unsupervised. When novelty mining adopts an adaptive
threshold setting algorithm, the system needs to respond to any new feedback
from the user. Based on the feedback from the user, the new threshold output by
this algorithm will replace the current one and be used for future incoming doc-
uments until new feedback is available. Note that when no feedback is received,
the system will fix the threshold at the initial threshold.
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7.2.2 Motivation

There are several reasons motivating us to design an adaptive threshold setting
algorithm for novelty mining. First of all, there is little or no training informa-
tion in the initial stages of novelty mining. Therefore, the threshold can hardly
be predefined with confidence. The training information that is necessary for
threshold setting includes the statistics of data and users’ reading habits. For
example, a topic with 90% novel documents needs a relatively low threshold for
novelty scores to retrieve most of the documents. On the other hand, different
users may have different definitions of ‘novel’ information. For example, one
user might regard a document with 50% novel information as a novel document
while another user might only regard a document with 80% novel information
as a novel document. The threshold of novelty scores should be higher for the
user with a stricter definition of the ‘novel’ document. As novelty mining is an
accumulating system, more training information will be available for threshold
setting, based on user feedback given over time. The adaptive threshold setting
algorithm is able to utilize this available information and customizes the novelty
mining system to the user’s needs.

Satisfying different performance requirements is another important motivation
for employing an adaptive threshold setting algorithm for novelty mining. For
example, when users do not want to miss any novel information, a high-recall
system that only filters out very redundant documents is desired. When users
want to read the most novel documents first, a high-precision system that only
retrieves very novel documents is preferred. Therefore, the threshold should be
tuned according to different performance requirements.

Next, we will introduce the proposed method, namely GATS, and explain
how it works with novelty mining.

7.2.3 Gaussian-based adaptive threshold setting

GATS is a score distribution-based threshold-setting method. It models the score
distributions of both novel and nonnovel documents by Gaussian probability
distributions. The score distributions of both classes provide global information
on the data, from which we can construct an optimization criterion for searching
the optimal threshold. Therefore, two major issues in GATS are: (1) modeling
the novelty score distributions; and (2) constructing the optimization criterion for
searching the best threshold. Next, we will introduce these two issues separately.

Novelty score distributions

Assume there are n training documents, d1, d2, . . . , dn, each of which belongs to
either novel class c1 or nonnovel class c0. For any document di , i = 1, 2, . . . , n,
its novelty score, xi , can be estimated by some novelty metric such as cosine
similarity as defined in Equation (7.1).
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To find the empirical novelty score distributions of data, some training datasets
are needed. Here, we use topics N54 and N69 from the TREC 2004 Novelty
Track data (Soboroff 2004) and assume all the novel and nonnovel documents are
known beforehand. The following steps are processed on both training datasets
separately.

Step 1: Calculate the novelty scores xi of each document di , i = 1, 2, . . . , n,
using Equation (7.1), where the history document list includes all the
history novel documents.

Step 2: Divide the scores of each class into several equal width bins with a
bin width equal to [max(scores) − min(scores)]/no. of bins, where
the number of bins for any class ck equals the maximum integer
smaller than nk/5. Then, we can obtain the number of documents
falling in the lth bin of the kth class, denoted as nk,l , where, l =
1, 2, . . . , no. of bins and k ∈ {c0, c1}.

Step 3: Obtain the empirical distributions of novelty scores, where the number
of documents in each bin is normalized as follows:

pe(x|ck) = no. of bins

nk

× nk,l, (7.2)

where nk and nk,l are the total number of documents in the class
ck and the number of documents falling in the lth bin of class ck,
respectively. The empirical distributions of novelty scores for topics
N54 and N69 are shown in Figures 7.1 and 7.2, respectively.

The Gaussian distribution (also called the normal distribution) in the random
variable X with mean µ and variance σ 2 has the probability density function
(pdf)

p(x) = 1

σ
√

2π
e
−
(

x−µ

σ
√

2

)2

. (7.3)

If we assume that both novelty scores of the novel class and nonnovel class follow
the Gaussian distributions, for any class ck, k ∈ {0, 1}, the maximum likelihood
estimations for the Gaussian probability density function p(x|ck) ∼ G(µk, σ

2
k )

are given by

µk = 1

nk

∑
i∈ck

xi, (7.4)

σ 2
k = 1

nk

∑
i∈ck

(xi − µ)2. (7.5)

The Gaussian probability density function estimated for each class is repre-
sented by the dashed lines in Figures 7.1 and 7.2. It would appear that novelty
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Figure 7.1 Empirical and probability distribution approximation for TREC 2004
Novelty Track data topic N54.

scores from both the novel and nonnovel classes can be well fitted by Gaussian
distributions.

Optimization criterion

Assume we have an incoming document stream d1, d2, to dn, of which n1 are
novel. After filtering the document stream by the novelty mining system with a
threshold θ , any document can be classified in one of four classes as shown in
Table 7.1.

Precision and recall are two widely used measures for evaluating the quality of
results in information retrieval. Precision can be seen as a measure of exactness,
whereas recall is a measure of completeness. In novelty mining, precision reflects
how likely the system-retrieved documents are truly novel and recall reflects how
likely the truly novel documents can be retrieved by the system. Precision and
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Figure 7.2 Empirical and probability distribution approximation for TREC 2004
Novelty Track data topic N69.

Table 7.1 Contingency table in the novelty
mining system.

Novel Nonnovel

Retrieved R1 R0
Nonretrieved N1 N0
Total n1 n0

recall for novel documents are defined as follows:

precision = R1

R1 + R0
, (7.6)

recall = R1

n1
.
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In novelty mining, the most commonly used evaluation measure is the F

score (Soboroff 2004) (see also Section 3.4 in this book), which is the harmonic
average of precision and recall:

F = 2 × precision × recall

precision + recall
. (7.7)

The F score is a special case of the Fβ score, i.e. the weighted harmonic average
of precision and recall

Fβ = 1
β

precision + 1−β

recall

, (7.8)

where β is the parameter to control the weights of precision and recall.
The numbers of documents in each class of the contingency table, R1, R0,

N1, and N0, are functions of θ and can be approximated by the probability
distributions of the novel and nonnovel classes. For example, given a threshold
θ , the estimation of R1(θ) is proportional to the probability of novel documents
with novelty scores greater than the θ . Specifically,

R1(θ) = n1 · P(x > θ |c1) (7.9)

= n1 ·
∫ +∞

θ

p(x|c1)dx.

Similarly, we can obtain the other functions

R0(θ) = n0 · P(x > θ |c0), (7.10)

N1(θ) = n1 · P(x < θ |c1),

N0(θ) = n0 · P(x < θ |c0).

Substituting Equations (7.9) and (7.10) into Equation (7.6), precision and recall
can be rewritten as functions of the threshold θ , as follows:

precision(θ) = Pc1P(x > θ |c1)

Pc1P(x > θ |c1) + Pc0P(x > θ |c0)
, (7.11)

recall(θ) = P(x > θ |c1), (7.12)

where Pc1 and Pc0 are the prior probabilities of the novel and nonnovel classes
which can be estimated by

Pc1 = n1/n and Pc0 = n0/n. (7.13)

After obtaining precision and recall as functions of θ , we can construct the
optimization criterion for determining the best threshold. Substituting Equations
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(7.11) and (7.12) into Equation (7.7), we can obtain the criterion Fβ(θ), whose
maximum value corresponds to the best threshold θ∗, i.e.

θ∗ = arg max
θ

Fβ(θ) (7.14)

= arg max
θ

1
β

precision(θ)
+ 1−β

recall(θ)

= arg max
θ

P (x > θ |c1)

β[P(x > θ |c1) + Pc0
Pc1

P(x > θ |c0)] + (1 − β)
.

GATS is a general method that can be tuned according to different per-
formance requirements, by employing the different optimization criteria. By
employing Fβ , GATS will adjust the threshold automatically according to the
certain performance requirement, by setting a proper value of β. A bigger β

gives a heavier weight for precision and will lead to a precision-oriented system
and vice versa. The effects of β variation on performance monitoring will be
discussed in detail in Section 7.3.

7.2.4 Implementation issues

There are several implementation issues for GATS. The first issue is how GATS
should be combined with novelty mining. Figure 7.3 shows the flowchart of
novelty mining combined with GATS. After predicting the ith document di ,
i = 1, 2, . . . , the system checks whether there is any new user feedback for the
current document or any history document. If there is any available new feedback,
the current threshold will be updated by GATS. Finally, the system will use this
newly updated threshold to predict the next incoming document.

The second implementation issue concerns whether the number of feedbacks
is enough for Gaussian probability estimation in GATS, in the initial stage of
novelty mining. In our experiments, we found that the minimum number of
feedbacks nmin of both novel and nonnovel documents should not be less than 4.
A smaller nmin will degrade the accuracy of probability estimation and lead
to an unreliable Gaussian probability model, while a large nmin will not start
the adaptive threshold setting until the system accumulates enough user feed-
back. In our experimental study, we set nmin = 4 for both novel and nonnovel
documents.

When the number of feedbacks does not meet the requirement of nmin, the
initial threshold is necessary. Therefore, setting the initial threshold is another
implementation issue. Due to the characteristics of novelty mining, we found that
there are more novel documents in the early stage of document accumulation.
Therefore, the initial threshold should be a little lower, where most of the doc-
uments can be retrieved. As the accumulating documents increase, the possible
user feedback also increases to trigger GATS. In our experiments, we set the
initial threshold θ0 = 0.3 for novelty scores.
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Figure 7.3 Novelty mining combined with GATS.

7.3 Experimental study

7.3.1 Datasets

Two public datasets, TREC 2004 Novelty Track data (Soboroff 2004) and
TREC 2003 Novelty Track data (Soboroff and Harman 2003), were used in
our experiments. The TREC 2004 and 2003 Novelty Track data is developed
from AQUAINT collection. The news providers of the document set are Xin
Hua, New York Times, and APW. This data is for sentence-level novelty
mining, where both relevant and novel sentences for all 50 topics are selected
by TREC’s assessors and retrieved from the National Institute of Standards
and Technology (NIST). For TREC 2004, there were a total of 8343 relevant
sentences, of which 3454 (41.4%) were novel. In TREC 2003, 10 226 (65.73%)
out of 15 557 sentences were novel.

From the TREC 2004 and 2003 Novelty Track sentence-level data, we built a
set of document-level datasets, document-level TREC 2004 and document-level
TREC 2003. In order to obtain the documents, we first combined the sentences by
sentence type (headline or text), into documents according to their document id.
Then, we performed our experiments on the document-level TREC 2004/2003.
Because we already had the ground truth for the novelty of each TREC sentence,
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we easily calculated the actual percentage of novel sentences (PNS) in that docu-
ment. If we set a low PNS threshold, most documents in the dataset are considered
to be novel. By choosing to set different thresholds, we can observe the perfor-
mance of GATS document-level novelty mining on datasets with different PNS.

In this experimental study, the focus was on novelty mining rather than rel-
evant document categorization. Therefore, our experiments start with all given
relevant documents (sentences), from which the novelty documents (sentences)
are identified.

7.3.2 Working example

To illustrate the use of GATS in practice, we will first present a working example
of GATS used for sentence-level novelty mining. Consider the following sen-
tences from topic N39 in TREC 2003:

1. CLUES POINT TO PHILIPPINE STUDENT AS VIRUS AUTHOR By
JOHN MARKOFF c.2000 N.Y. Times News Service

2. Law enforcement officials and computer security investigators focused on
the Philippines Friday in their search for the author of a software program
that convulsed the world’s computer networks.

3. Investigators in both Asia and the United States said clues appeared to
point to a college student in his early 20s using a Philippine Internet
service provider.

4. The rogue program, borne as an attachment to an e-mail with the subject
line ‘I Love You,’ surfaced in Asia on Wednesday.

5. It moved from there to Europe and the United States on Thursday, clogging
or disabling corporate e-mail systems and destroying data on personal
computers.

6. Although the spread of the infection appeared to slow Friday, at least eight
variations of the original program had been identified by antivirus firms.

7. Once it is launched, the ‘I Love You’ program, among other things, tries
to fetch an additional program from a Philippine Web site enabling it to
steal passwords from the victim’s computer.

8. American security experts said they had found evidence that a person
using the ‘spyder’ alias found in the ‘I Love You’ program had written
two versions of a password-stealing program found in recent months.

9. ‘Our theory is that he had written this program twice and was looking for
a way to get broader distribution for it,’ said Peter S. Tippett of ICSA.net,
a computer security firm based in Reston, Va.

10. At the same time, Fredrik Bjorck, a Swedish computer security researcher
who last year helped identify the author of a similar program called
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Melissa, told Swedish television that he had identified the perpetrator of
the latest attack as a German exchange student named Mikael.

11. He said that Mikael was in his 20s and that he had used Internet service
providers in the Philippines to spread his programs.

12. Bjorck said Mikael had published information on how to get rid of the ‘I
Love You’ program.

13. He did not identify Mikael’s location.

14. The ICSA.net researchers said they had disassembled one of the four
components of the ‘I Love You’ program and had discovered that its
instructions closely matched two similar programs that they had captured
last fall and in January.

15. Once a computer was infected, the program was set up to fetch the
password-stealing component from a Philippine Web site.

16. After it was installed in the computer it was programmed to relay the
stolen passwords to an e-mail account also in the Philippines.

17. But after the ‘I Love You’ outbreak was detected on Wednesday, the
company running the Philippine Web site, Sky Internet, quickly removed
the password program from its system.

18. Computer investigators said that both the ‘I Love You’ program and the
password-stealing modules discovered earlier had references to Amable
Mendoza Aguiluz Computer College, which they said had seven campuses
in the Philippines.

When sentence-level novelty mining is used with a fixed threshold of 0.55,
sentences 9, 11, and 15 are determined as nonnovel, as shown in Figure 7.4 (a
cross is nonnovel, a check novel). If we provide feedback as shown and process
the sentences again using the GATS option, then the threshold will be automati-
cally adjusted. We set the feedback at ‘1’ for ‘Novel’ for sentences 2–5, and ‘0’
for ‘Nonnovel’ for sentences 8, 9, 11, and 15, as shown in Figure 7.4. In this
scenario, after running GATS based on user feedback, the threshold was auto-
matically adjusted to 0.60 for sentences 16 and beyond, as shown in Figure 7.5.
In this figure, sentence 16 was compared to the most similar sentence, in this
case sentence 15, and because the novelty score of 0.5980 is below the threshold
value, sentence 16 is now rated as ‘Novel’. As seen in Figure 7.6, the resulting
novelty rating changed for sentences 16, 17, and 18 from ‘Novel’ to ‘Nonnovel’,
based on the threshold adjustment from user feedback. This example shows how
GATS works for a real-life scenario.
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Figure 7.4 Sentence-level novelty mining results for TREC03 topic N39.

Figure 7.5 Threshold adjustment to 0.6000 for sentence 16 after running GATS.
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Figure 7.6 Sentence-level novelty mining results for TREC03 topic N39 after
running GATS.

7.3.3 Experiments and results

We also compared the performance of novelty mining using GATS to that of
novelty mining using fixed thresholds. Figure 7.7 shows the precision–recall
(PR) curves of these two algorithms on TREC 2004 Novelty Track data. In
information retrieval, PR curves are commonly used to compare algorithms,
where the algorithm with a larger area under the curve is regarded as a
better algorithm (Davis and Coadrich 2006). For novelty mining using fixed
thresholds, the corresponding PR curve (black line) is plotted by varying the
fixed threshold from 0.05 to 0.95. For each threshold, the precision and recall
for each topic are calculated and the average precision and recall over 50 topics
are reported. For novelty mining with GATS, the PR curve is plotted by varying
the parameter β of the optimization criterion Fβ score from 0.1 to 0.9. Again,
for each value β, the precision and recall for each topic are calculated and the
average precision and recall over 50 topics are reported.

From Figure 7.7, we can observe that novelty mining with GATS outperforms
the system with fixed thresholds. The precision and recall obtained by novelty
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Figure 7.7 Precision–recall curves of novelty mining with fixed threshold vs.
adaptive threshold by GATS (tuning for Fβ ) with complete user feedback on TREC
2004 Novelty Track data.

mining with GATS will not fall within the regions of the extreme values, in
which the F score can be very low. In practice, our users usually require a high-
recall system with the precision no lower than a lower bound, or a high-precision
system with the recall no lower than a lower bound. An extremely high recall
with an extremely low precision is useless because this system just marks almost
all documents as novel. On the other hand, an extremely high precision with an
extremely low recall means that the system only marks very few documents as
novel. Both cases make little sense.

Moreover, since there is no prior information available for a user to choose a
suitable fixed threshold, the system with a predefined threshold can hardly lead
to a suitable tradeoff between precision and recall, and hence can hardly obtain
a good F score. On the contrary, GATS will optimize the F score automatically,
based on user feedback over time.

Besides the PR curve, we also compare two algorithms using the Fβ score.
Table 7.2 shows the performance of the two algorithms evaluated with Fβ scores
of β = 0.2, 0.5, and 0.8. For novelty mining employing GATS, the parameter
β is set to 0.2, 0.5, and 0.8 accordingly. For novelty mining employing the
fixed threshold, the highest Fβ scores are reported in tables after various trial-
and-error attempts. From Table 7.2, by comparing to the best fixed threshold,
we discovered that GATS can obtain similar or slightly better results for TREC
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Table 7.2 Comparison of performance evaluated by Fβ

(β = 0.2, 0.5, 0.8) on TREC 2004 Novelty Track data.

Performance of the novelty mining system

Adaptive threshold Best fixed threshold
by GATS (β) by trial and error (θ )

F0.2 0.7706 (0.2) 0.7758 (0.15)
F0.5 0.6155 (0.5) 0.6126 (0.45)
F0.8 0.5396 (0.8) 0.5281 (0.60)

2004 Novelty Track data. The best fixed thresholds for F0.2, F0.5, and F0.8 are
0.15, 0.45, and 0.60, respectively. Examination of the PR curves in Figure 7.7
suggests that the corresponding region of the best fixed thresholds is covered by
the PR curve of GATS. This implies that GATS can be effective in searching for
the best threshold in novelty mining, under different performance requirements.

In the following subsections, we test GATS by assuming complete feed-
back for document-level novelty mining (NM) data with low, medium, and high
novelty ratios. This will provide some guidelines on how GATS should be used.

Case 1: High novelty ratio

To construct document-level NM data with a high novelty ratio, we chose TREC
2003 Novelty Track data because the ground truth novelty ratio at sentence level
was naturally high (65.73%). By setting the PNS threshold to 0.25, the document-
level novelty ratio is 79.20%, i.e. 79.20% of incoming documents are novel. In
this case, GATS does not perform as well as the best result of the fixed threshold
(see Figure 7.8).

Case 2: Medium novelty ratio (30%–75%)

We constructed document-level NM data with a medium novelty ratio by using
TREC 2004 Novelty Track data because the ground truth novelty ratio at sentence
level is 41.40%. By setting the PNS threshold to 0.03, the document-level novelty
ratio is 47.73%, i.e. 47.73% of incoming documents are novel. In this case, GATS
performs comparable to the best result of the fixed threshold (see Figure 7.9).

Case 3: Low novelty ratio (30%)

We also constructed document-level NM data with a low novelty ratio by
using TREC 2004 Novelty Track data. In setting the PNS threshold to 0.5, the
document-level novelty ratio is 27.71%, i.e. 27.71% of incoming documents are
novel. In this case, the GATS algorithm outperforms the best result of the fixed
threshold (see Figure 7.10).
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Figure 7.8 Precision–recall curves of novelty mining with fixed threshold vs.
adaptive threshold by GATS (tuning for Fβ) with complete user feedback on
document-level TREC 2003 Novelty Track data (with PNS threshold 0.25).
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Figure 7.10 Precision–recall curves of novelty mining with fixed threshold vs.
adaptive threshold by GATS (tuning for Fβ ) with complete user feedback on
document-level TREC 2004 Novelty Track data (with PNS threshold 0.5).

Discussion

Although both the fixed threshold and the GATS parameter β control the trade-
off between precision and recall, they play different roles in novelty mining. The
fixed threshold cannot reflect the trade-off between precision and recall directly.
Since different data may have different characteristics and different metrics may
output different values of novelty scores, the fixed threshold can hardly be pre-
defined with confidence. On the contrary, the parameter β in GATS reflects
the weights of precision and recall directly (β is the weight of precision while
1 − β is the weight of recall), and hence can be set based on the performance
requirement directly.

From our experimental results on document-level NM data with low, medium,
and high novelty ratios, we find that GATS is extremely useful for data with low
novelty ratios, useful for data with medium novelty ratios, but not as useful as
the best fixed threshold for data with a novelty ratio higher than 75%. Therefore,
GATS is not recommended for topics with high novelty ratios. In this case, setting
a lower fixed threshold to force most of the documents to be ‘novel’ would be a
better choice.

7.4 Conclusion

This chapter addressed the problem of setting an adaptive threshold by utiliz-
ing user feedback over time. The proposed method, the Gaussian-based adaptive
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threshold setting (GATS) algorithm, modeled the distributions of novelty scores
from both novel and nonnovel classes by the Gaussian distributions. Class dis-
tributions learnt from user feedback yielded the global information of data used
for the construction of an optimization criterion for searching the best threshold.
GATS is a general method, which can be tuned according to different perfor-
mance requirements, by combining with different optimization criteria. In this
chapter, the most commonly used performance evaluation measure in NM, the
Fβ score, has been employed as the optimization criterion. The Fβ score is the
weighted harmonic average of precision and recall, where β and (1 − β) are
weights for precision and recall, respectively.

In the experimental study, the NM system employing the GATS algorithm
was tested on experimental datasets with complete user feedback on data with
low, medium, and high novelty ratios (percentage of novel sentences/documents).
The experimental results suggest that GATS is very effective in finding the best
threshold in the NM system. Moreover, GATS is able to meet the different per-
formance requirements by setting the weights of precision and recall externally.
GATS has been shown to be extremely effective for data with a low novelty
ratio, useful for data with a medium novelty ratio, and not as effective for data
with a high novelty ratio.
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Text mining and cybercrime

April Kontostathis, Lynne Edwards
and Amanda Leatherman

8.1 Introduction

According to the most recent 2008 online victimization research, approximately
1 in 7 youths (ages 10 to 17 years) experience a sexual approach or solicitation
by means of the Internet (National Center for Missing and Exploited Children
2008). In response to this growing concern, law enforcement collaborations and
nonprofit organizations have been formed to deal with sexual exploitation on the
Internet. Most notable is the Internet Crimes Against Children (ICAC) task force
(Internet Crimes Against Children 2009). The ICAC Task Force Program was
created to help state and local law enforcement agencies enhance their investiga-
tive response to offenders who use the Internet, social networking websites, or
other computer technology to sexually exploit children. The program is currently
composed of 59 regional task force agencies and is funded by the United States
Department of Justice, Office of Juvenile Justice and Delinquency Prevention.

The National Center for Missing and Exploited Children (NCMEC) has set
up a CyberTipLine for reporting cases of child sexual exploitation including child
pornography, online enticement of children for sex acts, molestation of children
outside the family, sex tourism of children, child victims of prostitution, and
unsolicited obscene material sent to a child. All calls to the tip line are referred
to appropriate law enforcement agencies – and the magnitude of the calls is
staggering. From March 1998, when the CyberTipLine began operations, until
April 20, 2009, there were 44 126 reports of ‘Online Enticement of Children for
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Sexual Acts’, one of the reporting categories. There were 146 in the week of April
20th, 2009 alone (National Center for Missing and Exploited Children 2008).

The owners of Perverted-Justice.com (PJ) began a grassroots effort to identify
cyberpredators in 2002. PJ volunteers pose as youths in chat rooms and respond
when approached by an adult seeking to begin a sexual relationship with a child.
We are currently working with the data collected by PJ from these conversations
in an effort to understand cyberpredator communications.

Cyberbullying, according to the National Crime Prevention Council, is using
the Internet, cell phones, video game systems, or other technology to send or post
text or images intended to hurt or embarrass another person – and is a growing
threat among children. In 2004, half of US youths surveyed stated that they or
someone they knew had been victims or perpetrators of cyberbullying (National
Crime Prevention Council 2009a). Being a victim of cyberbullying is a common
and painful experience. Nearly 20% of teens had a cyberbully pretend to be
someone else in order to trick them online, getting the victim to reveal personal
information; 17% of teens were victimized by someone lying about them to others
online; 13% of teens learned that a cyberbully was pretending to be them while
communicating with someone else; and 10% of teens were victimized by someone
posting unflattering pictures of them online, without permission (National Crime
Prevention Council 2009b).

The anonymous nature of the Internet may contribute to the prevalence of
cyberbullying. Kids respond to cyberbullying by avoiding communication tech-
nologies or messages altogether. They rarely report the conduct to parents (for
fear of losing phone/Internet privileges) or to school officials (for fear of getting
into trouble for using cell phones or the Internet in class) (Agatston et al. 2007;
Williams and Guerra 2007).

As we analyzed cyberbullying and cyberpredator transcripts from a variety of
sources, we were struck by the similar communicative tactics employed by both
cyberbullies and cyberpredators – in particular, masking identity and deception.
We were also struck by the similar responses of law enforcement and youth advo-
cacy groups: reporting and preventing. Victims are physically and psychologically
abused by predators and bullies who trap them in vicious communicative cycles
using modern technologies; their only recourse is to report the act to authorities
after it has occurred. By the time a report is made, unfortunately the aggressor
has moved on to a new victim.

Cyberbullying and Internet predation frequently occur over an extended
period of time and across several technological platforms (i.e. chat rooms,
social networking sites, cell phones, etc.). Techniques that link multiple online
identities would help law enforcement and national security agencies identify
criminals, as well as the forums in which they participate. The threat to youth
is of particular interest to researchers, law enforcement, and youth advocates
because of the potential for it to get worse as membership of online communities
continues to grow (Backstrom et al. 2006; Kumar et al. 2004; Leskovec et al.
2008) and as new social networking technologies emerge (Boyd and Ellison
2007). Much of modern communication takes place via online chat media
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in virtual communities populated by millions of anonymous members who
use a variety of chat technologies to maintain virtual relationships based on
daily (if not hourly) contact (Ellison et al. 2007; O’Murchu et al. 2004). MSN
Messenger, for example, reports 27 million users and AOL Instant Messenger
has the largest share of the instant messaging market (52% as of 2006) (IM
MarketShare 2009); however, Facebook, the latest social networking craze,
reported over 90 million users worldwide (Nash 2008). These media, along with
MySpace, WindowsLive, Google, and Yahoo, all have online chat technologies
that can be easily accessed by anyone who chooses to create a screen name and
to log on; no proof of age, identity, or intention is required. A recent update
to Facebook also allows users to post and receive Facebook messages via text
messaging on their cell phones (FacebookMobile 2009).

We describe the current state of research in the areas of cyberbullying and
Internet predation in Section 8.2. In Section 8.3, we describe several commercial
products which claim to provide chat and social networking site monitoring for
home use. Finally in Section 8.4 we offer our conclusions and discuss opportu-
nities for future research into this interesting and timely field.

8.2 Current research in Internet predation
and cyberbullying

This section provides a summary of research into Internet predation and cyber-
bullying. We first review the technology that is available for capturing Internet
Messager (IM) and Internet Relay Chat (IRC). Next we discuss the datasets that
are currently available for research in the area. Finally we survey several research
articles for both Internet predation and cyberbullying detection, as well as provide
a summary of the literature as it relates to legal issues.

8.2.1 Capturing IM and IRC chat

Data collection is the first step in any research project in text mining. Data
collection for the study of cybercrime needs to focus primarily on capturing data
from chat rooms and social networking sites; however, there are both legal and
technical issues that must be overcome. In this section we discuss the work by
several research groups which have successfully captured online chat.

In Dewes et al. (2003) a multi-layered approach for capturing web chat from
various sources including IRC and Web-based (both HTTP and java) chat systems
is used. They begin by casting a wide net, essentially capturing all network traffic
that passes through a particular router. Several filters are then applied to separate
the chat traffic from nonchat traffic. Early experiments show that 91.7% of the
chat traffic can be identified (recall) and 93.7% of the traffic that is captured is
indeed chat (precision).

Other research groups take a more direct approach. Gianvecchio et al. signed
into Yahoo chat rooms and logged all posts for a two-week period in order
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to capture data for their bot detection study (Gianvecchio et al. 2008). Others
set up host servers and monitor all activity directly at the server level (Cooke
et al. 2005). Several low-cost commercial products for capturing relevant network
packets are also available (ICQ-Sniffer 2009).

8.2.2 Current collections for use in analysis

There is very little reliable labeled data concerning predator communications;
much of the work that has appeared in both computer science and communi-
cation studies forums is focused on anecdotal evidence and chat log transcripts
from PJ (Perverted-Justice.com 2008). PJ began as a grassroots effort to identify
cyberpredators. Its volunteers pose as youths in chat rooms and respond when
approached by an adult seeking to begin a sexual relationship with a minor.
When these activities result in an arrest and conviction, the chat log transcripts
are posted online. New chat logs continue to be added to the website. There
were 325 transcripts, representing arrests and convictions, on the site as of July
2009. Details about early research projects that use this data are described in
Section 8.2.4.

The use of PJ transcripts for research into cyberpredation is controversial. The
logs contain transcripts of conversations between a predator and a pseudo-victim,
an adult posing as a young teenager. However, the predators who participated
in these conversations were convicted, based, at least in part, on the content
of the chat logs, which provides a measure of credibility to the data. We have
been in communication with several researchers who are working on related
projects in computer science, media and communication studies, criminal justice,
and sociology and have not been able to identify another source of data. We
will continue to seek transcripts that contain conversations between predators
and minors; however, it will be extremely difficult. Law enforcement agencies
are rarely able to share chat log transcripts (when they have them), even for
scholarly examination, because the logs are not stored in a central repository and
only excerpts are used when cases go to trial (Personal Communication 2008).

A second dataset was created by Dr Susan Gauch, University of Arkansas,
who collected chat logs during a chat room topic detection project (Bengel
et al. 2004). Dr Gauch’s project included the development of a crawler that
downloaded chat logs (ChatTrack). Unfortunately, the software is no longer
available. This chat data, although somewhat dated, has been used in some
of the preliminary studies involving an analysis of predator communications
(Kontostathis et al. 2009).

We have identified one additional publically available dataset which can
be used for research on the communication styles of cybercriminals. In 2009,
the Content Analysis for the Web 2.0 workshop (held in conjunction with
WWW2009) proposed three independent shared tasks: text normalization,
opinion and sentiment analysis, and misbehavior detection. The misbehavior
detection task addressed the problems of detecting inappropriate activity in
which some users in a virtual community are harassing or offensive to some
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other members of the community. A common training dataset was made
available to all task participants. The provided dataset was intended as a
representative sample of what can be found in Web 2.0. The data were collected
from five different public sites, including Twitter, MySpace, Slashdot, Ciao, and
Kongregate. Interested parties should refer to the CAW 2.0 website for additional
information (CAW2.0 2009). This data is exclusively intended for research
purposes. A research project which used this data to detect cyberbullying is
discussed in Section 8.2.5.

8.2.3 Analysis of IM and IRC chat

Much of the social networking research in computer science has focused on
chat room data (Jones et al. 2008; Muller et al. 2003). A lot of this work has
centered on identifying discussion thread subgroups within a chat forum (Acar
et al. 2005; Camtepe et al. 2004); some researchers focus on the technical
difficulties encountered when trying to parse chat log data (Tuulos and Tirri
2004; Van Dyke et al. 1999). Surprisingly few researchers have attempted to
deal with the creation of specific applications for analysis and management of
Internet predators or cyberbullies. The few that we have identified are described
in the following subsections.

8.2.4 Internet predation detection

We have identified articles that take two different approaches to detection of
cyberpredator communications. The first uses a bag-of-words approach and a
standard statistical classification technique. The second leverages research in
communications theory to develop more sophisticated features for input to the
classifier.

A statistical approach

Pendar used the PJ transcripts to separate predator communication from vic-
tim communication (Pendar 2007). In this study, the author downloaded the PJ
transcripts and indexed them. After preprocessing to reduce some of the prob-
lems associated with Internet communication (i.e. handling netspeak), the author
developed attributes for each chat log. The attributes consisted of word unigrams,
bigrams, and trigrams. Terms that appeared in only one log or in more than 95%
of the logs were removed from the index. Afterward approximately 10 000 uni-
grams, 43 000 bigrams, and 13 000 trigrams remained. The author describes using
701 log files.1. Each log file was split into victim communication and predator
communication, resulting in 1402 total input instances, each with 10 000–43 000
attributes, depending on the model being tested. Additional feature extraction and
weighting completed the indexing process.

1 It appears as if the perverted-justice.com site has changed its method of presenting the chat
data in recent years.
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The data file was split into a 1122 instance training set and a 280 instance test
set, stratified by class (i.e. the test set contained 140 predator instances and 140
victim instances). Classification was then attempted using both support vector
machine (SVM) and distance-weighted k-nearest neighbor (k-NN) classifiers.
The F -measure (see also Sections 3.4 and 7.2.3) reported by the author ranged
from 0.415 to 0.943. The k-NN classifier was a better classifier for this task
and trigrams were shown to be more effective than unigrams and bigrams. The
maximum performance (F -measure = 0.943) was obtained when 30 nearest
neighbors were used and 10 000 trigrams were extracted and used as attributes.

An approach based on communicative theory

In contrast to the purely statistical methods employed by Pendar, Kontostathis
et al. used a rule-based approach in Kontostathis et al. (2009). This project
integrates communication and computer science theories and methodologies to
develop tools to protect children from cyberpredators.

The theory of luring communication provides a model of the communication
processes that child sexual predators use in the real world to entrap their victims
Olson et al. (2007). This model consists of three major stages:

1. gaining access to the victim;

2. entrapping the victim in a deceptive relationship;

3. initiating and maintaining a sexually abusive relationship.

During the gaining access phase, the predator maneuvers him- or herself into
professional and social positions where he or she can interact with the child in
a seemingly natural way, while still maintaining a position of authority over the
child. For example, gaining employment at an amusement park or volunteering
for a community youth sports team. The next phase, entrapping the victim in
a deceptive relationship, is a communicative cycle that consists of grooming,
isolation, and approach. Grooming involves subtle communication strategies that
desensitize victims to sexual terminology and reframe sexual acts in child-like
terms of play or practice. In this stage, offenders also isolate their victims from
family and friend support networks before approaching the victim for the third
phase: sexual contact and long-term abuse.

In previous work, we expanded and modified the luring theory to accom-
modate the difference between online luring and real-world luring (Leatherman
2009). For example, the concept ‘gaining access’ was revised to include the initial
entrance into the online environment and initial greeting exchange by offenders
and victims, which is different from meeting kids at the amusement park or
through a youth sports league. Communicative desensitization was modified to
include the use of slang, abbreviations, netspeak, and emoticons in online conver-
sations. The core concept underpinning entrapment is the ongoing deceptive trust
that develops between victims and offenders. In online luring communications,
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this concept is defined as perpetrator and victim sharing personal information,
information about activities, relationship details, and compliments.

Communications researchers define two primary goals for content analysis
(Riffe et al. 1998):

1. describe the communication; and

2. draw inferences about its meaning.

In order to perform a content analysis for Internet predation, we developed
a codebook and dictionary to distinguish among the various constructs defined
in the luring communication theoretical model. The coding process occurred in
several stages. First, a dictionary of luring terms, words, icons, phrases, and net-
speak for each of the three luring communication stages was developed. Second,
a coding manual was created. This manual has explicit rules and instructions for
assigning terms and phrases to their appropriate categories. Finally, software that
mimics the manual coding process was developed (this software is referred to as
ChatCoder below).

Twenty-five transcripts from the PJ website were carefully analyzed for
the development of the dictionary. These 25 online conversations ranged from
349 to 1500 lines of text. The perpetrators span from 23 to 58 years of age,
were all male, and were all convicted of sexual solicitation of minors over the
Internet.

We captured key terms and phrases that were frequently used by online sex-
ual predators, and identified their appropriate category labels within the luring
model: deceptive trust development, grooming, isolation, and approach (Leather-
man 2009; Olson et al. 2007). The dictionary included terms and phrases common
to net culture in general, and luring language in particular. Some examples appear
in Table 8.1. The version of coding dictionary used in these experiments con-
tained 475 unique phrases. A breakdown of the phrase count by category appears
in Table 8.2.

In order to provide a baseline for the usefulness of the codebook for detecting
online predation, we ran two small categorization experiments. In the first exper-
iment, we coded 16 transcripts in two ways: first we coded the predator dialogue
(so only phrases used by the predator were recorded), and then we coded for the
victim. Thus, we had 32 instances, and each instance had a count of the phrases
in each of the coding categories (eight attributes). Our class attribute was binary
(predator or victim).

We used the J48 classifier within the Weka suite of data mining tools (Witten
and Frank 2005) to build a decision tree to predict whether the coded dialogue
was predator or victim. The J48 classifier builds a C4.5 decision tree with reduced
error pruning (Quinlan 1993). This experiment is similar to that in Pendar (2007),
but Pendar used a bag-of-words approach and an instance-based learner. The clas-
sifier correctly predicted the class 60% of the time, a slight improvement over the
50% baseline. This is remarkable when we consider the fact that we were cod-
ing individuals who were in conversation with each other, and therefore the
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Table 8.1 Sample excerpts from the codebook for Internet predation.

Phrase Coding category

are you safe to meet Approach
i just want to meet Approach
i just want to meet and mess around Approach
how cum Communicative desensitization
if i don’t cum right back Communicative desensitization
i want to cum down there Communicative desensitization
i just want to gobble you up Communicative desensitization
you are a really cute girl Compliment
you are a sweet girl Compliment
are you alone Isolation
do you have many friends Isolation
let’s have fun together Reframing
let’s play a make believe game Reframing
there is nothing wrong with doing that Reframing

Table 8.2 Dictionary summary - phrase count by category.

Category Phrase count

Activities 11
Approach 56
Communicative desensitization 220
Compliment 35
Isolation 43
Personal information 29
Reframing 57
Relationship 24

terminology used was similar. Stratified threefold cross-validation, as imple-
mented within Weka, was used to evaluate the results.

In a second experiment we built a C4.5 decision tree to distinguish between
PJ and ChatTrack transcripts. The ChatTrack dataset is described in Section 8.2.2.
We coded 15 PJ transcripts (both victim and predator dialogue) and 14 transcripts
from the ChatTrack dataset (Bengel et al. 2004). The classifier that was built was
able to distinguish the PJ transcripts 93% of the time. We also used stratified
threefold cross-validation for evaluation in these experiments.

As we analyzed the PJ transcripts, we noticed recurring patterns within the
dialogue used by the suspects and began to wonder if we could cluster different
types of predators via their language pattern usage.

We chose the k-means (Hartigan and Wong 1979) clustering algorithm
because it is known to be both simple and effective. The k-means algorithm
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partitions a set of objects into k subclasses. It attempts to find the centers of
natural clusters in the data by assuming that the object attributes form a vector
space, and minimizing the intra-cluster variance. Thus, k-means generally forms
tight, circular clusters around a centroid, and the algorithm outputs this centroid.
k-means is particularly applicable to numeric attributes, and all of our attributes
are numeric.

In our experiments, we counted the number of phrases in each of the eight
coding categories for the 288 transcripts that were available on the PJ website as
of August 2008 (predator only), and created an eight-dimensional vector for each
instance. Thus, we used the same attributes that were used in the categorization
experiments, but we were able to use all of the PJ transcripts. The vectors were
column normalized by dividing by the maximum value in each column (i.e.
all activities values were divided by the maximum value for activities). These
vectors were then input to the k-means algorithm, and a set of clusters was
determined.

The user must provide a value of k to the k-means clustering tool, and we were
unsure about the number of categories of suspects that we might find, so we tried
various values for k. We found that k = 4 produced the best result (the minimum
intra-cluster variance), suggesting the hypothesis that there are four different
types of Internet predators. More work is needed to determine labels for these
categories of suspects. The centroid for each cluster appears in Figure 8.1. This
figure clearly shows that some suspects spend more time overall with the victim
(lines that are higher on the graph) and also that suspects in different clusters
used different strategies during their conversations (as determined by line shape).
For example, cluster 2 has a higher ratio of compliments vs. communicative
desensitization as compared to cluster 3.
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8.2.5 Cyberbullying detection

In 2006, the Conference on Human Factors in Computing Systems (CHI) ran a
workshop on the misuse and abuse of interactive technologies, and in 2008 Rawn
and Brodbeck showed that participants in first-person shooter games had a high
level of verbal aggression, although in general there was no correlation between
gaming and aggression (Rawn and Brodbeck 2008).

Most recently, in 2009 the Content Analysis for the Web 2.0 (CAW 2.0)
workshop was formed and held in conjunction with WWW2009. As noted above,
the CAW 2.0 organizers devised a shared task to deal with online harassment,
and also developed a dataset to be used for research in this area. Only one
submission was received for the misbehavior detection task. A brief summary of
that paper follows.

Yin et al. define harassment as communication in which a user intentionally
annoys another user in a web community. In Yin et al. (2009) detection of
harassment is presented as a classification problem with two classes: positive
class for posts which contain harassment and negative class for posts which do
not contain harassment.

The authors combine a variety of methods to develop the attributes for input
to their classifier. They use standard term weighting techniques, such as TFIDF
(Term Frequency–Inverse Document Frequency) to extract index terms and give
appropriate weight to each term. They also develop a rule-based system for
capturing sentiment features. For example, a post that contains foul language
and the word ‘you’ (which can appear in many forms in online communication)
is likely to be an insult directed at someone, and therefore could be perceived as a
bullying post. Finally, some web communities seem to engage in friendly banter
or ‘trash talk’ that may appear to be bullying, but is instead just a communicative
style. The authors also were able to identify contextual features by comparing a
post to a window of neighboring posts. Posts that are unusual or which generate
a cluster of similar activity from other users are more likely to be harassing.

After extracting relevant features, the authors developed an SVM classifier
for detecting bullying behavior in three of the datasets provided by the CAW 2.0
conference organizers. They chose two different types of communities: Kongre-
gate, which captures IM conversations during game play; and Slashdot/MySpace,
which tend to be more asynchronous discussion-style forums where users write
longer messages and discussion may continue over days or weeks. The authors
manually labeled the three datasets. The level of harassment in general was very
sparse. Overall only 42 of the 4802 posts in the Kongregate dataset represented
bullying behavior. The ratio of bullying to nonbullying in Slashdot was similar
(60 out of 4303 posts). MySpace was a little higher with 65 out of 1946 posts.

The authors employed an SVM to develop a model for classifying harassing
posts. Their experimental results show that including the contextual and sentiment
features improves the classification over the local weighting (TFIDF) baseline
for the three datasets. The maximum recall was achieved with the chat-style
collection (recall was 0.595 for Kongregate). Precision was best when the dataset
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contained more harassment (precision was 0.417 for MySpace). Overall the F -
measure ranged from 0.298 to 0.442, so there is much room for improvement.
A random chance baseline would be less than 1%, however, so the experimental
results show that detection of cyberbullying is possible.

8.2.6 Legal issues

Companies have long been aware of the potential for misuse of email for bullying
and harassment. In Sipior and Ward (1999), the authors report on the increased lit-
igation surrounding sexual harassment in the workplace, particularly harassment
via email.

Internet predation and cyberbullying are relatively new crimes, and, as such,
the legal community is struggling to work with the technical community to protect
victims while also protecting the civil rights of innocent users of Internet chan-
nels. Early attempts at collaboration between technicians and law enforcement,
as described in a case study in Axlerod and Jay (1999), were initially frustrating.
The collaborative work eventually paid off as computer scientists learned what is
(and is not) permitted under the US legal system, and law enforcement officials
learned to trust and use technical solutions to their best advantage.

In Burmester et al. (2005) the authors describe a combined hardware and
software solution for providing law enforcement personnel with information in
cases of cyberstalking. The article provides a profile of a technically advanced
cyberstalker (who shares many traits with Internet predators and cyberbullies),
as well as develops a solution that recognizes the very real constraints placed
upon law enforcement officials, such as chain-of-custody issues, and providing
proof of integrity of digital evidence.

8.3 Commercial software for monitoring chat

Many commercial products profess to provide parents with the tools to pro-
tect their children from Internet predators and cyberbullies. We provide a brief
overview of several popular products in this section.

Like most of the parental control products we identified, eBlaster records
everything that occurs on a monitored computer and forwards the information to
a designated recipient, but does not provide a mechanism for filtering or analyzing
all the data it collects (eBlaster 2008). Net Nanny can also record everything,
and offers multiple levels of protection for different users (Net Nanny 2008).
The latest version of Net Nanny claims to send alerts to parents when it detects
predatory or bullying interactions on a monitored computer. The alerts appear to
be based on simple keyword matching (PC Mag 2008).

IamBigBrother captures everything on the computer including chats, instant
messages, email, and websites (IamBigBrother 2009). The program also records
all Facebook and MySpace keystrokes, and captures all passwords typed. IamBig-
Brother can also take a picture of the screen when certain words are used.
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This feature allows parents to identify keywords that they are concerned about
(personal information, foul language, sexual terms, etc.). Unfortunately, the pro-
gram does not include predefined words; parents have to define problematic
words themselves (TopTenReviews 2009). The software also captures Internet
activity from programs like America Online, MSN, and Outlook Express. The
program can record incoming and outgoing Yahoo Mail, Hotmail, and Gmail.
IamBigBrother can operate in a stealth mode that cannot be detected by users.
Users/children also cannot avoid IamBigBrother by clearing cache or history.

While IamBigBrother appears to focus primarily on keystroke capture and
surveillance, Kidswatch Internet Security appears to focus more on blocking
(TigerDirect 2009). The program allows parents to control their children’s access
to inappropriate web content and sends email notifications to parents when their
children try to visit blocked or restricted sites. Parents can select content to be
restricted from a list of over 60 categories. According to the Kidswatch website:
‘Our dynamic content categorization technology attempts to categorize thousands,
even millions, of websites based on content.’ Parents have the option to over-
ride restricted lists if they choose, and are encouraged to submit websites they
think should be blocked to the software producer. Kidswatch also supports chat
protocols for Yahoo, MSN, ICQ, AIM, and Jabber.

Parents receive email alerts when a ‘suspect phrase or word’ is encountered in
an online chat. The alert report can include the phrase or the entire conversation.
The alerts are based on a customizable list of 1630 words and phrases. Although
the surveillance and alert features are similar to the one featured in the Net Nanny
and IamBigBrother programs, Kidswatch takes this feature one step further by
providing information about known sex offenders and on the locations of sex
offenders in the user’s neighborhood.

Similar to other control programs, the Safe Eyes Parental Control program
limits access to restricted sites that fall into 35 predetermined categories of
website content (InternetSafety 2009). The program also prevents children from
accidentally finding inappropriate sites. When restricted sites are accessed, par-
ents are alerted by email, text message, or phone call.

CyberPatrol provides filtering and monitoring features that can use the com-
pany’s presets or can be customized by parents (CyberPatrol 2009). Several
features that distinguish this program are the ability to customize settings for
child, young teen, mature teen, or adult and the ability to block objectionable
words and phrases commonly used by cyberbullies and predators. Parents receive
weekly and daily reports on web pages visited and length of visits; however, there
does not appear to be an alert feature.

Bsecure provides filtering – with ‘patent-pending technology and human
review’ (Bsecure 2009) that blocks offensive websites from users’ comput-
ers – and reporting options similar to other programs, but this program also
offers an Application Control that allows parents to control music sharing, file
sharing, and instant messaging programs. The software appears to be similar to
CyberPatrol. Bsecure does not offer an alert feature.
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The latest versions of Windows Vista and Apple’s OS X 10.5 (Leopard)
include integrated parental controls. Their features appear to be similar to most
commercial monitoring and filtering products and neither operating system, unlike
many commercial products, requires an annual subscription (Consumer Search
2008). Unfortunately neither product provides specific protection against preda-
tion or cyberbullying.

Finding information about AOL parental controls proved to be fairly difficult
without an AOL userid and AOL installed. Like Windows Vista and OS X 10.5,
AOL does not require installation of any additional software on the computer
being monitored. There is no indication that AOL provides specific features for
protection against Internet predators or cyberbullies.

McAfee and Norton are primarily known as antivirus and security software
products. Both now offer parental control built in as well. As with the operating
system products, the parental controls are designed to block specific websites
and monitor online activity in general.

8.4 Conclusions and future directions

The Internet continues to grow and to reach younger audiences. Opportunities
for connecting with classmates, friends, and people with shared interests abound.
Email, online chat, and social networking sites allow us to interact with people
in the same town and people on the other side of the world.

Unfortunately, the opportunity for misuse comes with any new technology.
There were sexual predators and bullies long before the advent of the Internet and
chat rooms. Cyberbullying and Internet predation threaten minors, particular teens
and tweens who do not have adequate supervision when they use the computer.
As Internet connectivity moves to the cell phone, the portable gaming device,
and the multi-player gaming console, more avenues for contact and exploitation
of youth become available.

Our literature review shows that there are few scholars researching cyberpre-
dation and cyberbullying. As more researchers enter this field, future research
should attempt to be more proactive in addressing the role that newer technolo-
gies, particularly cell phones and peer-to-peer devices, play in new incarnations
of cybercrime, like sexting. There is room for researchers in the fields of infor-
mation retrieval and text mining to contribute solutions to these vexing problems.
Classifiers that identify predatory behavior can be developed. New datasets can
be collected, labeled, and distributed to other research groups. Collaborations
with network engineers, psychologists, sociologists, law enforcement, and com-
munications specialists can provide new insight into understanding, detecting,
and stopping cybercrime.

Cybercrime continues to escalate and evolve as new technologies are intro-
duced and as their popularity grows among young people. We have found only
three research articles that use text mining techniques to classify cyberpredators
and cyberbullies. This interesting and socially relevant subfield of text mining
is begging for attention from the research community. The research to date
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provides a starting point for exploration – an exploration that moves away from
solely focusing on the computer platform as the site of cybercrimes to studying
the network level as bullying and predation move from text-only, and to include
streaming audio and video.
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Events and trends in text
streams

Dave Engel, Paul Whitney and Nick Cramer

9.1 Introduction

Text streams – collections of documents or messages that are generated and
observed over time – are ubiquitous. Our research and development are targeted
at developing algorithms to find and characterize changes in topic within text
streams. To date, this research has demonstrated the ability to detect and describe
(1) short-duration atypical events and (2) the emergence of longer term shifts
in topical content. This technology has been applied to predefined temporally
ordered document collections but is suitable also for application to near-real-time
textual data streams.

Massive amounts of text stream data exist and are readily available, especially
over the Internet. Analyzing this text data for content and for detecting change in
topic or sentiment can be a daunting task. Mathematical and statistical methods
in the area of data mining can be very helpful to the analyst looking for these
changes. Specifically, we have implemented some of these techniques into a
surprise event and emerging trend detection technology designed to monitor a
stream of text or messages for changes within the content of that data stream.

Some of the event types that one might want to detect in a text stream (which
could be a sequence of news articles, a sequence of messages, or an evolving
dialogue) are shown in Figure 9.1. In each case, time is along the x -axis. The y-
axis corresponds to some measure of topic (such as the number of words or events

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd
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Slope discontinuity

Figure 9.1 Typical event or trend types.

that occur within the data). In the context of a text stream, a point discontinuity
in topics could correspond to a single time step with a relatively unique content.
A jump discontinuity could correspond to an abrupt change in the content of the
text stream. A slope discontinuity could correspond to a ramping up (or down)
in a topic for that text stream.

Typically, jump and point discontinuities are detected more readily than slope
discontinuities (Eubank and Whitney et al. 1989). For our terminology, we refer
to the instantaneous discontinuity types (point or jump) as a surprise event (see
Grabo (2004) for more information on surprise events). We define an emerging
trend as a change in topic for an extended period of time, as illustrated by the
jump discontinuity or the slope discontinuity (see Kontostathis et al. (2003) for
a more concise definition of emerging trend).

Much of the research in information mining from text streams focuses either
on describing new events and salient features or in clustering documents (He et al.
2007; Kumaran and Allan 2004; Mei and Zhai 2005). For instance, the goal of
the Topic Detection and Tracking (TDT) Research Program (Allan 2002) was to
break down the text into individual news stories, to monitor the stories for events
that have not been seen before, and to gather the stories into groups that each
discuss a single topic. This program used a training set to identify stories (topics)
to track. A good source of research in trend analysis was compiled in Survey of
Text Mining: Clustering, Classification, and Retrieval (Kontostathis et al. 2003)
and also in the article ‘Detecting emerging trends from scientific corpora’ (Le
et al. 2005). In both, the main focus is tracking defined topics and trying to detect
changes.
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The difference in our approach is that we monitor and evaluate the occur-
rence of individual terms (the least common denominator between documents)
for changes over time. Once individual terms have been determined as surpris-
ing or emerging , then terms related temporally are identified to help the analyst
identify the story/topic involved with the surprising (emerging) terms. As a pre-
processing step, a text analysis tool is used to extract words from the text stream
and give information about terms within the documents. With this information,
mathematical algorithms are used to score each term. Using these scores (statis-
tical metrics, which we call surprise or emergence statistics), we evaluate each
term over the period represented by the text stream. When a sufficiently surpris-
ing (emerging) term occurs, related terms (based on the temporal profile) are
found and are useful in explaining the broader nature of the event.

Detected events and the explanatory terms can be represented in a variety
of ways. From our experience, graphical representations tend to be the most
desirable (if not most useful) form for the analysts.

A description of the data (text streams) and the extraction and reduction
of relevant features are discussed in the next two sections. The methodology
for the detection of (surprising) events and (emerging) trends is discussed in
Sections 9.4 and 9.5. In Section 9.6, we discuss temporally related terms and
present an example to illustrate the capabilities of our technology. The last two
sections discuss differences in our algorithms, contrast our algorithms with other
topicality measures, and summarize our technology development.

9.2 Text streams

Many text analysis tools operate on a fixed collection of text documents. For
certain tasks, a fixed text collection is appropriate. However, information analysis
professionals often seek to discover and track surprising events and emerging
trends over time and in a timely fashion. A text stream is necessary to support
this analytic task (Hetzler et al. 2005). Text streams are often rich with surprising
or emerging events and interesting topic evolution over time. Detection of these
events can provide information analysts with valuable information and clues
about their content.

For our methodology, a document is simply defined as a unique collection of
text. A text stream is a collection of documents in which each document has an
associated time stamp. Each document typically contains metadata describing the
publication time and date or is assigned a time and date when collected. In either
case, the time stamp allows us to orient the document text in the temporal stream.

Text streams are generated from a variety of data sources. Some examples
include journal publications, conference abstracts, really simple syndication
(RSS) news feeds, blog postings, and email transmissions. To handle the
collection of text streams from the variety of sources, we have developed and
implemented resources. These resources include:

• conference PDF text extractors;
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• Outlook email harvesters;

• RSS news feed harvesters;

• blog post harvesters.

An information analyst might want to follow information only within a win-
dow of time. Text streams can evolve over time, with not only new content being
added to the collection but also old content being removed. The resource that we
have implemented supports an evolving text collection which helps an analyst
focus on the most relevant and timely information.

9.3 Feature extraction and data reduction

Once the data (text stream) has been collected, the next step involves processing
the data (documents) to evaluate suitability of the data content and prepare the
data for subsequent processing. We use IN-SPIRE for this processing (IN-SPIRE
2009). IN-SPIRE is a text analysis and visualization tool that statistically ana-
lyzes unstructured text within a collection of documents, identifies topics (i.e.
terms with high-frequency and nonuniform distributions), and visually clusters
the documents based on their topical similarity. IN-SPIRE provides the following
capabilities for the preprocessing steps for event and trend detection:

1. Dataset evaluation. An initial evaluation of the document collection is per-
formed by information analysts to determine if the datasets are sufficiently
rich.

2. Content identification and index creation. Relevant content is extended
from text, largely ignoring many of the other categorical fields (e.g. authors
and place names).

3. Topical feature selection. Vocabulary terms that are statistically good dis-
criminators are identified. In addition, relevant terms/keywords to the
domain can be provided to augment and enrich the automatic topic selec-
tion process. This topical term and phrase identification process acts as a
dimensionality reduction that helps focus the analyses.

In our modeling, the (document frequency) temporal profile for each term
is the dependent variable. Therefore, the selection of terms that represent the
document set is a key task. This task is accomplished within IN-SPIRE. An
important feature of this capability is the automatic keyword extraction. This
capability allows keywords to be single words or phrases that reflect the content
of a document. An in-depth description of this technology is included in the first
chapter of this book.
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9.4 Event detection

Our research is focused on processing massive amounts of text streams to identify
events that have just occurred or are currently occurring. You can think of this as
a possible triage capability that an analyst needs to identify (surprising) events
so that he or she can delve into the material to gain in-depth insight. However,
finding these events in a timely fashion is not an easy task.

Different algorithms for detecting surprising events have been researched
and five of these algorithms have been implemented into our research toolkit.
For each algorithm, the unit of calculation is a term or keyword that can be a
single word or multiple words. Each of our algorithms requires a preprocessing
of the time-sequenced documents (as described in Section 9.3).

In statistics, we deal with numbers. Therefore, the first step in analyzing text
using statistical models (algorithms) is to convert the text to numbers. For our
analytical methods, we have done this by counting the number of documents
that contain a given term (keyword). For each document, a time stamp is iden-
tified, allowing our analysis to be done temporally. The overall time interval for
which the documents occur is divided into equally spaced time bins (we may use
hourly, daily, or even weekly intervals, depending on the temporal granularity
of the data being examined). The number of documents that contain a specific
term within each time bin becomes the main variable of our analysis (call it a
temporal profile).

We analyze each temporal profile (one for each term) using one of our algo-
rithms and define a surprise statistic, which is calculated in each time interval.
Figure 9.2 illustrates the temporal profiles used in our analysis. Seven profiles
are shown; each profile represents the number of documents that contain the
specific term within each time bin. Each term is normalized individually (by the
maximum number of occurrences of the individual term) and then plotted (i.e.
the vertical axis for each term is scaled 0 to 1). The maximum number of occur-
rences of each individual term within a single time interval is shown on the right
side of each profile (e.g. six documents for the term influenza).

Also illustrated in Figure 9.2 is our surprise text mining methodology
(Whitney et al. 2009). For this method, the number of occurrences (xi) within
a single time step/bin is compared against the number of occurrences within
a previous time window (multiple consecutive time bins). The comparison is
repeated for every time step (i.e. moving time window). The time bin with the
maximum surprise score is considered the location of the surprise event. These
maximum values will be identified by the circles for each term. The previous
time window for the location of the surprise event starts at the vertical line and
ends at the time bin represented by the circle (but not including this time step).

The task is then to compare the document counts (number of documents
containing a specific term), at a single time step (step i ), to the document counts in
the time window just before the current time step (np consecutive time steps/bins).



172 TEXT MINING

03/17

influenza

usa

serious

previously

country

food

team

6

7

5

5

6

6

5

03/27 04/06 04/16 04/26 05/06

i−1

j = i–np
xixj∑

Figure 9.2 Modeling scheme and temporal profiles for the event detection algo-
rithms (term label on left side of each profile and maximum number of occurrences
per profile on right side of each profile).

The goal is to find the times when these two measurements (counts) are not
(statistically) the same. Think of this like a hypothesis test in statistics: we define
the null hypothesis (Ho) and alternate hypothesis (H a) as

Ho: xi = 1

np

i−1∑
j=i−np

xj , and

Ha: xi �= 1

np

i−1∑
j=i−np

xj .

The goal of a hypothesis test is to reject the null hypothesis and accept
the alternate hypothesis. We have developed our algorithms with this in mind.
The first surprise algorithm is based on a chi-square statistic (Pearson method)
constructed from the following 2 × 2 table (Agresti 2002):


xi Ni − xi

i−1∑
j=i−np

xj

i−1∑
j=i−np

Nj −
i−1∑

j=i−np

xj




where, for this table, xi is the count (number of documents containing a specific
term) at the ith time step/bin, Ni is the total number of documents at the ith time
step,

∑
xj is the sum of the document counts containing the term in the (np)

time steps prior to the ith time step, and
∑

Nj is the total number of documents
in the (np) time steps prior to time t (time at the ith time step). The amount
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of time (both the width of a time interval and the number of time windows) is
a user-selected parameter of the procedure. A value sufficiently large for a chi-
square statistic is one way to flag a surprising event/term. This statistic looks
for deviations in the number of occurrences of a specific term normalized by the
total number of documents (within the same time interval).

The formula used for the chi-square statistic is

χ2 = n..

(|n11n22 − n12n21| − 1
2Yn..

)2
n1.n2.n.1n.2

, (9.1)

where the previous 2 × 2 frequency table is rewritten as(
n11 n12

n21 n22

)

and
n1. = n11 + n12,

n2. = n21 + n22,

n.1 = n11 + n21,

n.2 = n12 + n22, and

n.. = n11 + n12 + n21 + n22.

Also, Y in Equation (9.1) is either 0 or 1. If Y is 1, the Yates continuity
correction is applied for the low sample size in which the count in at least one
cell is ≤5 (Fleiss 1981).

The second algorithm for calculating the surprise statistic is another form
of the chi-square algorithm known as the likelihood ratio. The likelihood ratio
(for a hypothesis) is the ratio of the maximum value of the likelihood function
over the subspace represented by the hypothesis, to the maximum value of the
likelihood function over the entire parameter space (Dunning 1993). This statistic
is calculated using the same 2 × 2 table as above and is as follows:

χ2 = 1

2

(
n11 log

n11

m11
+ n12 log

n12

m12
+ n21 log

n21

m21
+ n22 log

n22

m22

)
, (9.2)

where

m11 = (n11 + n12)(n11 + n21),

m12 = (n11 + n12)(n12 + n22),

m21 = (n11 + n21)(n21 + n22), and

m22 = (n12 + n22)(n21 + n22)

Another of our algorithms for calculating the surprise statistic is a Gaussian
algorithm. The Gaussian statistic is based on comparing the observed value xi to
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the average over the previous values (1/np)
∑

xj , normalized by the standard
deviation of these previous values. We put a floor of 1.0 on the standard deviation
because we are dealing with count data. This statistic is

G =
xi − 1

np

∑i−1
j=i−np xj

s ·
(

1 + 1
np

) , (9.3)

where np is the number of time intervals in the previous time windows and s is
the standard deviation.

Finally, combining the previous algorithms (chi-square and Gaussian) forms
the final two algorithms within our toolkit for the surprise statistic. Each com-
bined statistic is accomplished by taking the square root of the chi-square statistic
plus the absolute value of the Gaussian statistic, as follows:

Csurprise =
√

χ2 + |G|. (9.4)

9.5 Trend detection

Starting from the algorithms for detecting surprising events, we developed a
modeling scheme for detecting (emerging) trends. The modeling scheme is shown
in Figure 9.3. In this figure, x is the number of documents within a time step
that contains the specific term, i is the current time step (time interval/bin), np
is the number of time steps in the previous time window, and nc is the number
of time steps in the current time window (Engel et al. 2009).

For detecting trends, we compare the document counts (number of documents
containing a specific term) of the current time window (current time step i plus
the next (nc) time steps) to the document counts in the time window just prior
to the current time step (np consecutive time steps). The goal is to find the times
when these two measurements (counts) are not (statistically) the same. Similar
to the surprise statistic, we calculate an emergence statistic in which we define
the null hypothesis (Ho) and alternate hypothesis (Ha) as

Ho :
1

nc

i+nc∑
j=i

xj = 1

np

i−1∑
j=i−np

xj , and

Ha :
1

nc

i+nc∑
j=i

xj >
1

np

i−1∑
j=i−np

xj .

The event detection technology is designed to be used to monitor a stream of
text or messages for changes within the content of that stream. An analyst might



EVENTS AND TRENDS IN TEXT STREAMS 175

03/17

11

caused

healthmap

director

died

affected

country

north

6

5

6

7

6

6

03/27 04/06 04/16 04/26 05/06

i−1

j = i–np
xj∑

i+nc

j = i
xj∑

Figure 9.3 Modeling scheme and temporal profiles for the trend detection algo-
rithms.

be watching a news feed or exploring a large collection of message traffic. This
technology would be used to detect and describe changes in those text streams.

For the emergence statistic, the two chi-square algorithms are the same as
the algorithms for the surprise statistic (Equations (9.1) and (9.2)), but the 2 × 2
frequency table is replaced by



i+nc∑
j=i

xj

i+nc∑
j=i

Nj −
i+nc∑
j=i

xj

i−1∑
j=i−np

xj

i−1∑
j=i−np

Nj −
i−1∑

j=i−np

xj




where, for this table,
∑

xj in the first row is the sum of all the documents
containing the individual term in the current time window,

∑
Nj in the first row

is the total number of documents within this time period,
∑

xj in the second
row is the sum of all the documents containing the term within the period prior
to the current time step (previous window), and

∑
Nj in the second row is the

total number of documents within this (previous) time window. The number of
time steps within each interval (previous window and current window) is a user-
selected parameter of the procedure. (Note that these window sizes need not be
equal.)

For detecting trends, the Gaussian algorithm is modified from the surprise
implementation to incorporate the multiple time steps in the current time window
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(time past the current time step, i ). The new Gaussian algorithm is defined by

G =
1
nc

∑i+nc
j=i xj − 1

np

∑i−1
j=i−np xj√

si

nc
+ sj

np

,

where si is the standard deviation of counts in the current time window and sj

is the standard deviation of the counts in the previous time window.

9.6 Event and trend descriptions

To illustrate the (surprise) event detection and (emerging) trend detection capabil-
ities, both technologies have been used in the analysis illustrated in Figures 9.4
through 9.8. In this analysis, the source of the data (text) is the International
Society for Infectious Diseases (ProMED-mail 2009). This website is a global
electronic reporting system for outbreaks of emerging infectious diseases and
toxins, open to all sources. Contributions to this site tend to be from medical
professions. In Figure 9.4, the documents from this (ProMed-mail) dataset have
been cumulated into one-day time intervals, with the number of documents per
time interval displayed.

The results from both the surprise analysis and the emergence analysis are
shown in Figures 9.5 through 9.8. Figures 9.5 and 9.6 show results from the

5
10

15

Time
Time Interval = 1 day

# 
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Figure 9.4 Binned document frequencies for the ProMed-mail dataset, one-day
time resolution.
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Figure 9.5 Temporal profiles sorted by the chi-square (Pearson) surprise score
(ProMed-mail).
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(ProMed-mail).
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chi-square (Pearson) algorithms. The temporal profiles for the top 20 surprising
terms are shown in Figure 9.5. The temporal profiles for the top 20 emerging
terms are shown in Figure 9.6. From these two plots, the main topic within this
dataset becomes obvious (H1N1, the swine flu outbreak of 2009). On April 24,
the surprise analysis (Figure 9.5) starts to select terms that first appear about the
swine flu outbreak (serious , vaccination , epidemic). However, the results of the
emergence analysis (Figure 9.6) clearly explain when and what occurred. The
results of using the Gaussian algorithms to analyze this ProMed-mail dataset are
shown in Figures 9.7 and 9.8. The results from the Gaussian surprise analysis
show that no swine flu outbreak terms were selected as significantly surprising
for this analysis. The results of the emergence analysis, however, did show the
selection of several (swine flu) relevant terms (Figure 9.8).

Similarities between terms within a given set can give an analyst more infor-
mation than just a single term can provide (including multi-term keywords).
We assess similarity based on the distances between vectors of the temporal
occurrence of each term. There are a large number of candidate algorithms for
calculating distances between temporal profiles. Our preferred implementation is
based on the correlation function between the vectors and is, for two such vectors
(x, y), equal to 1 − |corr(x, y)|. This distance often results in interpretable term
groupings (Kaufman and Rousseeuw 1990). Using combined related term pro-
files, one can gain more detailed information about the events. For illustration,
Figure 9.9 shows the related terms for the term mexico (from the analysis of the
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Figure 9.7 Temporal profiles for the ProMed-mail dataset, sorted by the Gaus-
sian surprise score.
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Figure 9.8 Temporal profiles for the ProMed-mail dataset, sorted by the Gaus-
sian emergence score.
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ProMed-mail dataset). From this, it is obvious that the main topic about this term
(mexico) is the 2009 swine flu (H1N1) outbreak.

9.7 Discussion

In the previous section, the surprise and emergence algorithms were used to
analyze the ProMed-mail dataset. From Figure 9.4, we see that the maximum
number of documents (reports) for a single day (from March 13 through May
13) was 17. In Figure 9.6, we see that the maximum number of documents that
contained the term h1n1 was only 4 (number on the right hand side of each
temporal profile). Because of the low number of term occurrences and document
counts, the surprise algorithms did not produce the desired results compared to
the results from the emergence algorithms.

A comparison of the surprise statistic (maximum value for each term) and the
emergence statistic is shown in Figure 9.10. Also shown in this figure is a com-
parison of the IN-SPIRE topicality score to the surprise and emergence statistic.
The IN-SPIRE topicality score is a measure that defines discriminating terms
within a set of documents. This comparison was done using the ProMed-mail
dataset and the chi-square (Pearson) algorithms. The fundamental observation is
that the metrics are uncorrelated, at least for this corpora, because no correlation
is seen in any of these plots (or very low correlation for the surprise–emergence
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Figure 9.10 Comparison of topicality (topicality), event detection (surprise
score), and trend detection (emergence score) algorithms (ProMed-mail dataset).
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plot), which suggests that these three statistics provide different information about
the dataset.

9.8 Summary

Mathematical and statistical methods in the area of text mining can be very
helpful for the analysis of the massive amounts of text stream data that exists.
Analyzing this data for content and for detecting change can be a daunting task.
Therefore, we have implemented some of these text mining techniques into a sur-
prise event and emerging trend detection technology that is designed to monitor
a stream of text or messages for changes within the content of that data stream.

In this chapter, we have described our algorithmic development in the area of
detecting evolving content in text streams (events and trends). We have compared
our results to text analysis results on a static document collection and found that
our techniques produce results that are different and enhance those results.

A recent dataset was analyzed using our surprise and emergence algorithms.
In this analysis, the emergence algorithms did a very good job of finding the
emergence of the most relevant subject matter (H1N1, swine flu outbreak) and
when the event began (April 24, 2009).

To help understand the important topics defined by each term (keyword),
related terms are found. For the swine flu analysis, the term mexico was found to
be a significant emerging term. The related term analysis showed that this term
was temporally related to the swine flu (H1N1) outbreak (2009).
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Embedding semantics
in LDA topic models

Loulwah AlSumait, Pu Wang, Carlotta Domeniconi
and Daniel Barbará

10.1 Introduction

The huge advancement in databases and the explosion of the Internet, intranets,
and digital libraries have resulted in giant text databases. It is estimated that
approximately 85% of worldwide data is held in unstructured formats with an
increasing rate of roughly 7 million digital pages per day (White 2005). Such huge
document collections hold useful yet implicit and nontrivial knowledge about
the domain. Text mining (TM) is an integral part of data mining that is aimed
at automatically extracting such knowledge from the unstructured textual data.
The main tasks of TM include text classification, text summarization, document
and/or word clustering, in addition to classical natural language processing tasks
such as machine translation and question-answering. The learning tasks are more
complex when processing text documents that arrive in discrete or continuous
streams over time.

Topic modeling is a newly emerging approach to analyze large volumes of
unlabeled text (Steyvers and Griffiths 2005). It specifies a statistical sampling
technique to describe how words in documents are generated based on (a small
set of) hidden topics. In this chapter, we investigate the role of prior knowledge
semantics in estimating the topical structure of large text data in both batch and
online modes under the framework of latent Dirichlet alglocation (LDA) topic

Text Mining: Applications and Theory edited by Michael W. Berry and Jacob Kogan
 2010, John Wiley & Sons, Ltd
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modeling (Blei et al. 2003). The objective is to enhance the descriptive and/or
predictive model of the data’s thematic structure based on the embedded prior
knowledge about the domain’s semantics.

The prior knowledge can be either external semantics from prior-knowledge
sources, such as ontologies and large universal datasets, or a data-driven seman-
tics which is a domain knowledge that is extracted from the data itself. This
chapter investigates the role of semantic embedding in two main directions. The
first is to embed semantics from an external prior-knowledge source to enhance
the generative process of the model parameters. The second direction which suits
the online knowledge discovery problem is to embed data-driven semantics. The
idea is to construct the current LDA model based on information propagated from
topic models that were learned from previously seen documents of the domain.

10.2 Background

Given the unstructured nature of text databases, many challenges face TM algo-
rithms. First, there are a very high number of possible features to represent a
document. Such features can be derived from all the words and/or phrase types
in the language. Furthermore, in order to unify the data structure of documents, it
is necessary to use a dictionary of all the words to represent a document, which
results in a very sparse representation. Another critical challenge stems from the
complex relationships between concepts and from the ambiguity and context sen-
sitivity of words in text. Thus, a good TM algorithm must be efficient to process
such large and challenging data so that the documents are represented in short
descriptions in which only the essential and most discriminative information is
preserved. The rest of this section is focused on three major advancements to
solve this problem, then the LDA topic models will be introduced in Section 10.3.

10.2.1 Vector space modeling

The first major progress in text processing was due to the vector space model
(Salton 1983), in which a document is represented as a vector of dimension W ,
wd = (w1d, . . . , wWd), where each dimension is associated with one term of the
dictionary. Each entry wid is the term frequency – inverse document frequency
(tf-idf) of the term i in document d given by wid = nid × log(D/ni). The local
frequency of the term (nid ) is weighted by its global frequency in the whole cor-
pus to reduce the importance of common words that appear in many documents
since they are naturally bad discriminators. To represent the whole corpus, the
term – document matrix, X, is constructed. X is a W × D matrix whose rows
are indexed by the terms of the dictionary and whose columns are indexed by
the documents.

Although the VSM has empirically shown its effectiveness and is widely
used, it suffers from a number of inherent shortages to capture inter- and intra-
document statistical structure and provides a small reduction only in the descrip-
tion of the corpus.
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10.2.2 Latent semantic analysis

To address the shortages of the VSM, researchers in information retrieval (IR)
have introduced latent semantic analysis (LSA) (Deerwester et al. 1990), which
is a factor analysis that reduces the term – document matrix to a K-dimensional
subspace that captures most of the variance in the corpus. By computing the
singular value decomposition (SVD), the term – document matrix X is decom-
posed into three matrices X = U�V T . The rows in U give the occurrence of
the original words which correspond to the K concepts of the new factor space,
while the columns in V give the relation between the documents and each of the
K concepts.

Although LSA overcomes some of the drawbacks of the VSM, it suffers from
a number of limitations. First, given the high-dimensionality nature of text data,
computation of the SVD is expensive. In addition, the new feature space is very
difficult to interpret since each dimension is a linear combination of a set of
words from the original space. LSA is also not generalizable to incorporate other
side information such as time and author.

10.2.3 Probabilistic latent semantic analysis

Researchers have proposed statistical approaches to understand LSA, some of
whom have discussed its relationship to Bayesian methods (Story 1996) and
generative probabilistic models (Papadimitriou et al. 2000). As a major advance
in the application of Bayesian methods to document modeling, Hofmann (1999)
introduced probabilistic latent semantic analysis (pLSA), also called the aspect
model , as an alternative to LSA. It is a latent variable model that associates an
unobserved class (aspect) variable zk with each document d and represents each
aspect by a distribution over words p(w|z). The pLSA model is parameterized
by the joint distribution of a document d and a word wdi that appears in it,
p(d, wdi) = p(d)

∑K
z=1 p(wdi |z)p(z|d).

A graphical model of pLSA is shown in Figure 10.1. Given the hidden aspects,
the documents and words are conditionally independent. In addition, pLSA allows
the documents to be associated with a mixture of topics weighted by the posterior
p(z|d).

The generative process of a model specifies a probabilistic sampling procedure
that describe how words in documents can be generated based on the hidden
topics. Thus, the generative process of the pLSA is as follows:

1. Draw a document with probability p(d).

2. For each word i in document d:

(a) Draw a latent aspect zi with probability p(zi |d).

(b) Draw a word wdi with probability p(wdi |zi).

Nonetheless, this is not a true generative model as the variable d is a dummy
random variable that is indexed by the documents in a training set (Blei et al.
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Figure 10.1 A graphical model of pLSA (left) and LDA (right).

2003). As a consequence, pLSA is inclined to overfit the training data, which
harms its ability to generalize the inferred aspect model to generate previously
unseen documents.

Despite its limitation, pLSA has influenced a huge amount of work in statis-
tical machine learning and TM. As a result, a class of statistical models, named
probabilistic topic models (PTMs), have been created to uncover the underlying
structure of large collections of discrete data, such as text. PTMs are generative
models of documents that assume the existence of hidden variables, representing
topics associated with the observed text documents which are responsible for
the patterns of word use. Topic models are aimed at discovering these hidden
variables based on hierarchical Bayesian analysis. Among the variety of topic
models proposed, LDA (Blei et al. 2003) is a truly generative model that is
capable of generalizing the topic distributions so that it can be used to generate
unseen documents as well.

10.3 Latent Dirichlet allocation

The LDA PTM is a three-level hierarchical Bayesian network that represents
the generative probabilistic model of a corpus of documents. The basic idea
is that documents are represented by a mixture of topics where each topic is a
latent multinomial variable characterized by a distribution over a fixed vocabulary
of words. The completeness of the LDA’s generative process for documents is
achieved by considering Dirichlet priors on the document distributions over topics
and on the topic distributions over words. This emerging approach has been suc-
cessfully applied to find useful structures in many kinds of documents, including
emails, the scientific literature (Griffiths and Steyvers 2004), libraries of digital
books (Mimno and McCallum 2007), and news archives (Wei and Croft 2006).
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This section introduces the LDA topic model with a brief description of
its graphical model and generative process (Section 10.3.1) and the posterior
inference (Section 10.3.2). The section concludes with a brief review of an online
version of LDA, namely OLDA.

10.3.1 Graphical model and generative process

LDA relates words and documents through latent topics based on the bag-of-
words assumption, i.e. the exchangeability , for the words in a document and for
the documents in a corpus. The graphical model of LDA is given in Figure 10.1.
The documents θ are not directly linked to the words w. Rather, this relationship
is governed by additional latent variables, z, introduced to represent the respon-
sibility of a particular topic in using that word in the document, i.e. the topic(s)
that the document is focused on. By introducing the Dirichlet priors α and β

over the document and topic distributions, respectively, the generative model of
LDA is complete and is capable of processing unseen documents.

So, the structure of the LDA model allows the interaction of the observed
words in documents with structured distributions of a hidden variable model (Blei
et al. 2003). Learning the structure of the hidden variable model can be achieved
by inferring the posterior probability distribution of the hidden variables, i.e. the
topical structure of the collection, given the observed documents. This interaction
can be viewed in the generative process of LDA:

1. Draw K multinomials φk from a Dirichlet prior β, one for each topic k.

2. Draw D multinomials θd from a Dirichlet prior α, one for each docu-
ment d .

3. For each document d in the corpus, and for each word wdi in the document:

(a) Draw a topic zi from multinomial θd ; (p(zi |α)).

(b) Draw a word wi from multinomial φz; (p(wi |zi, β)).

Inverting the generative process, i.e. fitting the hidden variable model to the
observed data (words in documents), corresponds to inferring the latent variables
and, hence, learning the distributions of underlying topics. The hidden structure
of topics in the LDA model is described by the posterior distribution of the
hidden variables given the D documents

p(�, z, �|w, α, β) = p(w, �, z,�|α, β)∫
φ1:K

∫
θ1:D

p(w|α, β)
. (10.1)

10.3.2 Posterior inference

In LDA, exploring the data and extracting the topics correspond to computing
the posterior expectations. These are the topic probability over terms (E(�|w)),
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the document proportions over topics (E(�|w)), and the topic assignments of
words (E(z|w)). Although the LDA model is relatively simple, exact inference
of the posterior distribution in Equation (10.1) is intractable (Blei et al. 2003).
The solution is to use sophisticated approximations such as variational expec-
tation maximization (Blei et al. 2003) and expectation propagation (Minka and
Lafferty 2002).

Griffiths and Steyvers (2004) proposed a simple and effective strategy for
estimating φ and θ . It is an approximate iterative technique that is a special form
of Markov chain Monte Carlo (MCMC) methods. Gibbs sampling is able to
simulate a high-dimensional probability distribution p(x) by iteratively sampling
one dimension xi at a time, conditioned on the values of all other dimensions,
which is usually denoted x¬i .

Under Gibbs sampling, φ and θ are not explicitly estimated. Instead, the poste-
rior distribution over the assignments of words to topics, P(z|w), is approximated
by means of the Monte Carlo algorithm, see Heinrich (2005) for a detailed deriva-
tion of the algorithm. Gibbs sampling iterates over each word token in the text
collection in a random order and estimates the probability of assigning the cur-
rent word token to each topic (P(zi = j)), conditioned on the topic assignments
to all other word tokens (z¬i) as (Griffiths and Steyvers 2004)

P(zi = j |z¬i , wi,α, β) ∝
CKW

w¬i ,j
+ βwdi ,j∑W

v=1(C
KW
v,j + βv,j )

× CKD
d¬i ,j

+ αd,j∑K
k=1(C

KD
d,k + αd,k)

, (10.2)

where CKW
w¬i ,j

is the number of times word w is assigned to topic j , not including
the current token instance i; and CKD

d¬i ,j
is the number of times topic j is assigned

to some word token in document d , not including the current instance i. From
this distribution, i.e. p(zi |z¬i , w), a topic is sampled and stored as the new topic
assignment for this word token. After a sufficient number of sampling iterations,
the approximated posterior can be used to get estimates of φ and θ by examining
the counts of word assignments to topics and topic occurrences in documents.

Given the direct estimate of topic assignments z for every word, it is important
to obtain its relation to the required parameters � and �. This is achieved
by sampling new observations based on the current state of the Markov chain
(Steyvers and Griffiths 2005). Thus, estimates �́ and �́ of the word – topic and
topic – document distributions can be obtained from the count matrices

φ́ik = CWK
i,k + βi,k∑W

v=1(C
WK
v,k + βv,k)

, θ́dk = CDK
d,k + αd,k∑K

j=1(C
DK
d,j + αd,j )

. (10.3)

Gibbs sampling has been empirically tested to determine the required length
of the burn-in phase, the way to collect samples, and the stability of inferred
topics (Griffiths and Steyvers 2004; Heinrich 2005; Steyvers and Griffiths 2005).
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10.3.3 Online latent Dirichlet allocation (OLDA)

OLDA is an online version of the LDA model that is able to process text streams
(AlSumait et al. 2008). The OLDA model considers the temporal ordering infor-
mation and assumes that the documents arrive in discrete time slices. At each
time slice t of a predetermined size ε, e.g. an hour, a day, or a year, a stream of
documents, St = {d1, . . . , dDt }, of variable size, Dt , is received and ready to be
processed. A document d received at time t is represented as a vector of word
tokens, wt

d = {wt
d1, . . . , w

t
dNd

}. Then, an LDA topic model with K components
is used to model the newly arrived documents. The generated model, at a given
time, is used as a prior for LDA at the successive time slice, when a new data
stream is available for processing (see Figure 10.2 for an illustration). The hyper-
parameters β can be interpreted as the prior observation counts on the number
of times words are sampled from a topic before any word from the corpus is
observed (Steyvers and Griffiths 2005), bishop. So, the count of words in topics,
resulting from running LDA on documents received at time t , can be used as the
priors for the t + 1 stream.

Thus, the per-topic distribution over words at time t , �
(t)
k , is drawn from a

Dirichlet distribution governed by the inferred topic structure at time t − 1 as
follows:

�
(t)
k |β(t)

k ∼ Dirichlet (β
(t)
k )

∼ Dirichlet (ω�̂
(t−1)
k ), (10.4)

where �̂
(t−1)
k is the frequency distribution of a topic k over words at time t − 1

and 0 < ω ≤ 1 is an evolution tuning parameter that is introduced to control the
evolution rate of the model. Since the Dirichlet hyperparameters determine the
smoothness degree of the priors, it is important to control its effect and to balance
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Figure 10.2 A flowchart of OLDA.
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between the weight of the past and current semantics in the inference process
according to the homogeneity and the evolution rate of the domain’s thematic
structure. This sequential model is expanded in Section 10.5 to allow data-driven
semantic embedding from a wider range of previous models.

Given the definition of β(t) in expression (10.4), the topic distributions in
consecutive models are aligned so that the evolution of topics in a sequential
corpus is captured. For example, if a topic distribution at time t corresponds
to a particular theme, then the distribution that has the same ID number in
the consecutive models will relate to the same theme, assuming that it appears
consistently over time. Thus, the inferred word distribution of topic k at time t

can be considered a drifted description of the latent variable k at time t − 1. The
drift is driven by the natural evolution of the topic which includes the changes
that occur in the terminology and/or in the interactions with other topics. To
model this evolution, an evolutionary matrix , B(t)

k , is constructed to capture the
evolution of each topic k at each time epoch t within a sliding history window ,
δ. This is given as follows:

Bk =




φt−δ
1 . . . φ

(t−1)
1 φ

(t)
1

φt−δ
2 . . . φ

(t−1)
2 φ

(t)
2

...
...

...
...

φt−δ

W(t) . . . φ
(t−1)

W(t) φ
(t)

W(t)


 , (10.5)

where each entry Bk(v, t) is the weight of word v under topic k at time t .1 Thus,
working with the evolutionary matrix will allow for tracking the drifts of existing
topics, detection of emerging topics, and visualizing the data in general.

Thus, the generative model for time slice t of the proposed OLDA model can
be summarized as follows:

1. For each topic k = 1, . . . , K :

(a) Compute β
(t)
k = ω�̂

(t−1)
k .

(b) Generate a topic �
(t)
k ∼ Dirichlet (·|β (t)

k ).

2. For each document, d = 1, . . . ,D(t):

(a) Draw �
(t)
d ∼ Dirichlet (·|α(t)).

(b) For each word token, wdi , in document d:

i. Draw z
(t)
i from multinomial �

(t)
d ; (p(z

(t)
i |α(t)

d )).

ii. Draw w
(t)
di from multinomial �

(t)
zi

; p(w
(t)
di |z(t)

i , β(t)
zi

).

1 New observed terms at time t are assumed to have 0 count in φ for all topics in previous
streams.
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Maintaining the models’ priors as Dirichlet is essential to simplify the infer-
ence problem by making use of the conjugacy property of Dirichlet and multi-
nomial distributions. In fact, by tracking the history as prior patterns, the data
likelihood and, hence, the posterior inference of LDA are left the same. Thus,
implementing Gibbs sampling in Equation (10.2) in OLDA is straightforward.
The main difference of the online approach is that the sampling is performed
over the current stream only. This makes the time complexity and memory usage
of OLDA efficient and practical. In addition, the β under OLDA are constructed
from historic observations rather than fixed values.

10.3.4 Illustrative example

The LDA and OLDA models can be illustrated by generating artificial data from
a known topic model and applying the topic models to check whether the data is
able to infer the original generative structure. To illustrate the LDA model, six
sets of documents are generated from three topic distributions that are equally
weighted. Table 10.1 shows the dictionary and topic distributions of the data.

For each set, 16 documents of size 16 word tokens, on average, are generated.
After the word assignment vector, z, is randomly initialized, LDA is trained over
the documents with the number of components K equal to the true number of
components, i.e. K is set to 3. Table 10.2 gives the word – topic correlation
counts of LDA averaged over the six sets of documents after 50 iterations of
Gibbs sampling. It can be seen that the LDA model is able to correctly estimate
the density of each topic.

Table 10.1 Topic distributions of simulated data. Each
column is a multinomial distribution of a topic over the
dictionary.

Topic k1 k2 k3
33% 34% 33%

Dictionary↓ p(wi |k1) p(wi |k2) p(wi |k3)

river 0.37 0 0
stream 0.41 0 0
bank 0.22 0.28 0
money 0 0.3 0.07
loan 0 0.2 0
debt 0 0.12 0
factory 0 0 0.33
product 0 0 0.25
labor 0 0 0.25
news 0.05 0.05 0.05
reporter 0.05 0.05 0.05
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Table 10.2 The frequency distributions of topics
discovered by LDA from the static simulated data with
K equal to 3.

Topic T1 T2 T3
29.8% 35.5% 34.7

Dictionary f (wi |T1) f (wi |T2) f (wi |T3)

river 0 0 78
stream 0 0 93
bank 0 56 71
money 0 103 0
loan 0 56 0
debt 0 28 0
factory 85 0 0
production 73 0 0
labor 61 0 0
news 3 19 15
reporter 10 15 14

Table 10.3 Topic distributions of dynamic simulated data over three streams.
The rule ( ) indicates that the corresponding word or topic has not yet
emerged.

Stream t = 1 t = 2 t = 3

Topic k1 k2 k3 k1 k2 k3 k1 k2 k3
40% 60% 0% 40% 50% 10% 30% 40% 30%

Dictionary↓ p(wi |kj ) p(wi |kj ) p(wi |kj )

river 0.2 0 – 0.4 0 0 0.37 0 0
stream 0.4 0 – 0.2 0 0 0.41 0 0
bank 0.3 0.35 – 0.25 0.36 0.1 0.22 0.28 0
money 0 0.3 – 0 0.24 0 0 0.3 0.07
loan 0 0.25 – 0.05 0.22 0.1 0 0.2 0
debt – – – 0 0.08 0 0 0.12 0
factory – – – 0 0 0.37 0 0 0.33
product – – – 0 0 0.33 0 0 0.25
labor – – – – – – 0 0 0.25
news 0.05 0.05 – 0.05 0.05 0.05 0.05 0.05 0.05
reporter 0.05 0.05 – 0.05 0.05 0.05 0.05 0.05 0.05

Given the same dictionary, three streams of documents are generated from
evolving descriptions of topics to demonstrate the OLDA model. Table 10.3
shows the distributions of topics in the three time epochs. Topic 3 emerges as a
new topic at the second time epoch. In addition to the new terms introduced by
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Table 10.4 Topics discovered by OLDA from dynamic simulated data.

t = 1 t = 2 t = 3

ID Topic ID Topic ID Topic
distribution distribution distribution

1 news reporter 1 news reporter 1 reporter news
2 bank 2 bank 2 bank
3 money loan 3 money loan debt 3 money loan debt
4 stream river 4 river stream 4 river stream
5 bank news 5 bank factory production 5 production factory labor

topic 3, a number of terms such as debt and labor gradually emerge. The weight
(importance) of topics also varies between the streams. The OLDA topic model
is trained on the corresponding documents of each stream with K set to 5. At
each time epoch, OLDA is trained on the currently generated documents only.
Table 10.4 lists the highest important words under each topic of the evolving
simulated data that were discovered by OLDA with K set to 5 at each time
epoch. After 50 iterations of Gibbs sampling on each stream, OLDA converged
to aligned topic models that correspond to the true topic densities and evolution.

Another observation stems from the setting of K , i.e. the number of compo-
nents. When K is set to the true number of topics, the topic distributions included
some common words in addition to the semantically descriptive ones, see for
example the words news and reporter in topics T1, T2, and T3 in Table 10.2.
When K is increased to 5, the topics became more focused as the common words
are mapped into individual topics, see topics 1 and 2 in Table 10.3.

10.4 Embedding external semantics
from Wikipedia

This section investigates the role of embedding semantics from a source by
enhancing the generative process of the model parameters. Such human-defined
concept databases provide a natural source of semantics that can provide useful
knowledge regarding the hidden thematic structure of the data. We model external
knowledge using Wikipedia (Wikipedia 2009). Wikipedia is currently considered
the richest online encyclopedia, which consists of a huge number of catego-
rized and consistently structured documents. After the identification of related
Wikipedia concepts, LDA is applied to learn a model of the topics discussed in
the corresponding Wikipedia articles. The learned topics represent priors about
the available knowledge that will be embedded in the inference process of the
LDA model to enhance the discovered topics from the text data, which will be
referred to hereafter as the test documents.
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10.4.1 Related Wikipedia articles

In this work, each Wikipedia article is represented by its title and considered
as a single concept. Since Wikipedia includes a large variety of concepts and
domains, it is important to use the most related articles to the test documents
in order to ensure semantic relatedness and, hence, enhance the inferred model.
The related Wikipedia articles are defined to be all Wikipedia concepts that are
mentioned in a preset number of test documents, ρ. This is done by searching
for the title of the Wikipedia article in the test documents. The threshold value
ρ controls the number of Wikipedia articles, D, to be retrieved and, hence, the
amount of noise that is allowed to be included in the generative model.

10.4.2 Wikipedia-influenced topic model

After the identification of related Wikipedia concepts, LDA is applied to learn the
topics that are discussed in the corresponding Wikipedia articles. In particular,
LDA learns two Wikipedia distributions, the topic – word distribution φ and the
topic – document distribution θ , from

φik = CWK
wi,k

+ βi∑W
v=1 CWK

v,k + βv

, θmk = CDK
m,k + αk∑K

j=1 CDK
m,j + αj

, (10.6)

where m is the index of the Wikipedia article. Within the related Wikipedia
articles, CWK

i,k is the number of times word i is assigned to topic k and CDK
m,k

is the number of times topic k is assigned to some word token in Wikipedia
article m.

The prior distributions φ and θ are then updated into posteriors using the test
documents. Specifically, the topic – word distribution φ is updated to a new φ̂,
and a new topic – document distribution θ̂ is learned from scratch using the test
documents

φ̂ik = CWK
wi,k

+ CWK
wi,k

+ βi∑V
v=1 CWK

v,k + CWK
v,k + βv

, θ̂dk = CDK
d,k + αk∑K

j=1 CDK
d,j + αj

, (10.7)

where d is the index of the test document, CWK
v,k is the number of times word v is

assigned to topic k, and CDK
d,k is the number of times topic k is assigned to some

word in test document d . Hence, the generative process of the test documents is
influenced by the Wikipedia topic model.

10.5 Data-driven semantic embedding

When a topic is observed at a certain time, it is more likely to appear in the future
with a similar distribution over words. Unlike general data mining techniques,
such an assumption is trivial in the area of TM. It is widely acceptable, for
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instance, to consider the documents and the words in the documents to be statis-
tically dependent. Once a word occurs in a document, it is likely to occur again.
Consequently, a similar implication can be made about the topic distribution over
time. Despite their natural drifts, the underlying themes of any domain are, in
general, consistent. Hence, incorporating prior knowledge about the underlying
semantics would eventually enhance the identification and description of topics
in the future. In this section, the role of previously discovered topics in inferring
future semantics in text streams is investigated under the framework of OLDA
topic modeling. A detailed version of the proposed approach can be found in
AlSumait et al. (2009).

OLDA is extended to enable semantic embedding in three major directions.
First, instead of generating the topic parameters based on the most recently
estimated model, the history window is set to incorporate more models in the
parameter generation process. Second, the contribution of the semantic history
in the inference process is controlled by assigning different weights to different
time epochs. Lastly, given the evolutionary matrices of topics defined in Equation
(10.5), the priors can be generated using a weighted linear combination of the
semantics extracted from all the models that fall within the history window.
These three factors are further explained in the following subsections.

10.5.1 Generative process with data-driven
semantic embedding

To incorporate inferred semantics from past data, the proposed approach considers
all the topic – word distributions learned within a sliding history window, δ, when
constructing the current priors. As a result, OLDA can provide alternatives for
full, short, or intermediate memory of history.

Given the sliding history window of size c, 1 < c ≤ t , the weight of past
models in the prior construction can be controlled by defining a vector of evo-
lution tuning parameters ω, instead of the single parameter in expression (10.4).
The evolution tuning vector can be used to control the weights of individual
models as well as the total weight of history with respect to new semantics. The
setting depends mainly on the homogeneity of the data and on the evolution rate
of the domain.

The overall influence of history in topic estimation is an important factor
that can effect the semantic description of the data. For example, some text
repositories, like the scientific literature, persistently introduce novel ideas and,
as a consequence, topic distributions change faster compared to other datasets. On
the other hand, a great part of the news in news feeds, like sports, stock markets,
and weather, are steady over time. Thus, for such consistent topic structures,
assigning a higher weight for historic information, compared to the weight of
current observations, would improve topic prediction, while the settings should
be reversed in fast evolving datasets.

By adjusting the total weight of history, i.e.
∑δ

c=1 ωc, the OLDA model
provides a direct way to deploy and tune the influence of history in the inference
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process. If the total history weight is equal to one, this would (relatively) balance
the weights of historic and current observations. When the total weight of history
is less (greater) than one, the historic semantic has less (more) influence than the
semantic of the current stream.

Thus, given the sliding window δ, the history weight vector ω, and the evo-
lutionary matrix of topic kB(t)

k , as defined in Equation (10.5), the parameters of
topic k at time t can be determined by a weighted mixture of the topic’s past
distributions

β
(t)
k = B(t−1)

k ω (10.8)

= �̂
(t−δ)
k ω1 + · · · + �̂

(t−2)
k ωδ−1 + �̂

(t−1)
k ωδ. (10.9)

Given the equality in Equation (10.8), the per-topic distribution over words at
time t , �

(t)
k , is drawn from a Dirichlet distribution governed by the evolutionary

matrix of the topic as follows:

�
(t)
k |β(t)

k ∼ Dirichlet (β
(t)
k )

∼ Dirichlet (B(t−1)
k ω). (10.10)

By updating the priors as described above, the structure of the model is kept
simple, as all the historic knowledge patterns are printed in the priors rather than
in the structure of the graphical model itself. In addition, the learning process
on the new stream of data starts from what has been learned so far, rather than
starting from arbitrary settings that do not relate to the underlying distributions.

10.5.2 OLDA algorithm with data-driven semantic embedding

An overview of the proposed OLDA algorithm with semantic embedding is
shown in Algorithm 8. In addition to the text streams, S(t), the algorithm takes
as input the sliding history window size δ, weight vector ω, and fixed Dirichlet
values, a and b, for initializing the priors α and β, respectively, at time slice 1.
Note that b is also used to set the priors of new words that appear for the first
time in any time slice. The output of the algorithm is the generative models and
the evolution matrices Bk for all topics.

Algorithm 8 – OLDA with semantic embedding

1: INPUT: b; a; δ; ω; �; S(t), t = {1, 2, 3 . . . }
2: t = 1
3: loop
4: New text stream S(t) is received after time delay equal to �

5: if t = 1 then
6: β

(t)
k = b, k ∈ {1, . . . , K}

7: else
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8: β t
k = Bt−1

k ω, k ∈ {1, . . . , K}
9: end if

10: α
(t)
d = a, d = 1, . . . ,D(t)

11: initialize �(t) and θ(t) to zeros
12: initialize topic assignment, z(t), randomly for all word tokens in S(t)

13: [�(t), �(t), z(t)] = GibbsSampling(S(t), β(t), α(t))
14: if t < δ then
15: Bt

k = B(t−1)
k ∪ �̂

(t)
k , k ∈ {1, . . . , K}

16: else
17: Bt

k = B(t−1)
k (1 : W(t), 2 : δ) ∪ �̂

(t)
k , k ∈ {1, . . . , K}

18: end if
19: end loop

10.5.3 Experimental design

LDA with semantic embedding is evaluated in the problem domain of document
modeling. Perplexity is a canonical measure of goodness that is used in language
modeling. It evaluates the generalization performance of the model on previously
unseen documents. Lower perplexity means a better generalization performance
and, hence, a better estimation of density. Formally, for a test set of M documents,
the perplexity is (Blei et al. 2003)

perplexity(Dtest ) = exp

{
−
∑M

d=1 log p(wd)∑M
d=1 Nd

}
. (10.11)

We tested OLDA under different configurations of historic semantic embed-
ding. A summary of the conducted models and their parameter settings are listed
in Table 10.5. The window size, δ, was set to values from 0 to 5. The OLDA
model with history window of size 0 ignores the history and processes the text
stream using a fixed symmetric Dirichlet prior. Under such a model, the esti-
mation is influenced by the semantics of the current stream only. This model,
named OLDAFixed, and the OLDA model with δ = 1 are considered as baselines
to which the rest of the tested models are compared. To compute the perplexity
at every time instance, the documents of the next stream are used as the test set
of the model currently generated.

All models were run for 500 iterations and the last sample of the Gibbs sam-
pler was used for evaluation. The number of topics, K , is fixed across all the
streams. K , a, and b are set to 50, 50/K , and 0.01, respectively. All experiments
are run on a 2 GHz Pentium M-processor laptop using the MATLAB Topic Mod-
eling Toolbox, authored by Mark Steyvers and Tom Griffiths.2. The two datasets
used in our experiments for the OLDA model with historic semantic embedding
are described below.

2 The Topic Modeling Toolbox is available at: http://psiexp.ss.uci.edu/research/programs data/
toolbox.htm
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Table 10.5 Name and parameter settings of OLDA models. The * indicates
that the model was applied on the data.

Reuters NIPS Model name δ ω

* * OLDAFixed 0 NA(β = 0.05)
* * 1/ω(1) 1 1
* * 2/ω(1) 2 1, 1
* 2/ω(0.8) 2 0.2, 0.8
* * 2/ω(0.7) 2 0.3, 0.7
* * 2/ω(0.6) 2 0.4, 0.6
* * 2/ω(0.5) 2 0.5, 0.5
* * 3/ω(1) 3 1, 1, 1
* * 3/ω(0.8) 3 0.05, 0.15, 0.8
* * 3/ω(0.7) 3 0.1, 0.2, 0.7
* 3/ω(0.6) 3 0.15, 0.25, 0.6
* * 3/ω(0.33) 3 0.33, 0.33, 0.34
* * 4/ω(1) 4 1, 1, 1, 1

* 4/ω(0.9) 4 0.01, 0.03, 0.06, 0.9
* 4/ω(0.8) 4 0.03, 0.07, 0.1, 0.8
* * 4/ω(0.7) 4 0.05, 0.1, 0.15, 0.7
* 4/ω(0.6) 4 0.05, 0.15, 0.2, 0.6
* * 4/ω(0.25) 4 0.25, 0.25, 0.25, 0.25

* 5/ω(1) 5 1, 1, 1, 1, 1
* 5/ω(0.7) 5 0.05, 0.05, 0.1, 0.15, 0.7
* 5/ω(0.6) 5 0.05, 0.1, 0.15, 0.2, 0.6

* * 5/ω(0.2) 5 0.2, 0.2, 0.2, 0.2, 0.2

Reuters-21578.3 The corpus consists of newswire articles classified by topic
and ordered by their date of issue. There are 90 categories with some articles
classified in multiple topics. For our experiments, only articles with at least one
topic were kept for processing. For data preprocessing, stop words were removed
while the remaining words were down-cased and stemmed to their root source.
The resulting dataset consists of 10 337 documents, 12 112 unique words, and
a total of 793 936 word tokens. For simplicity, we partitioned the data into 30
slices and considered each slice as a stream.

NIPS dataset.4 The NIPS set consists of the full text of 13 years of the
proceedings from 1988 to 2000 of the Neural Information Processing Systems
(NIPS) Conference. The data was preprocessed for down-casing, removing stop
words and numbers, and removing those words appearing less than five times in
the corpus. The dataset contains 1740 research papers, 13 649 unique words, and
2 301 375 word tokens in total. The set is divided into 13 streams based on the
year of publication.

3 The original dataset is available to download from the UCI Knowledge Discovery in Databases
Archive: http://archive.ics.uci.edu/ml/.

4 The original dataset is available at the NIPS Online Repository: http://nips.djvuzone.org/txt.html.
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10.5.4 Experimental results

Wikipedia-influenced LDA was run on nine subsets of the Reuters dataset which
correspond to the first nine streams. The perplexity of a model was computed
using the successive stream as the test set. Figure 10.3 shows the perplexity
of Wikipedia-influenced LDA compared to the corresponding models that were
trained on the Reuters documents only. It can be seen that the perplexity of LDA
with Wikipedia articles is lower in five out of the nine models. We believe that
the higher perplexity in some cases with Wikipedia is due to the unstructured
approach used to partition the data, which does not guarantee the representation
of all the classes in each stream. Thus, any document in the test set that belongs to
a new class would eventually increase the perplexity. However, when this factor
is neutralized, incorporating external knowledge from Wikipedia does improve
the performance.

To test the data-driven semantic embedding, OLDA was first run on the
Reuters dataset. It was found that by increasing the window size, δ, OLDA
resulted in lower perplexity than the baselines. Figure 10.4 plots the perplexity
of OLDA and OLDAFixed at every stream of Reuters under different settings of
window size, δ, and the weight vector, ω, was fixed on 1/δ. The figure clearly
shows that embedding semantics enhanced the document modeling performance.
In addition, incorporating semantics from more models, i.e. using a window size
greater than 1, further improves the perplexity with respect to OLDA with short
memory (δ = 1).
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Figure 10.3 Perplexity of OLDA on Reuters with and without Wikipedia articles.
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Figure 10.4 Perplexity of OLDA on Reuters for various window sizes compared
to OLDAFixed.

Testing with NIPS resulted in a slightly different behavior. When ω was
fixed, increasing the window size did show a reduction in the model’s perplexity,
compared to OLDA with short memory. This is illustrated in Figure 10.5. The
larger the window, the lower the perplexity of the model. Nonetheless, the OLDA
model only showed improvements with respect to OLDAFixed when the window
size was larger than 3. In addition to the window size, previous experiments on
NIPS suggested the effect of the total weight of history in estimating the topical
semantics of heterogeneous and fast evolving domains like scientific research
(AlSumait et al. 2008). The experiments explained next provide evidence of
such a justification. Nonetheless, it is worth mentioning here that the OLDA
model outperforms OLDAFixed in its ability to automatically detect and track
the underlying topics.

To investigate the role of the total history weight, we tested OLDA on NIPS
and Reuters under a variety of ω settings. Figure 10.6 shows the average per-
plexity of OLDA with δ fixed at 2 and the total sum of ω set to 0.05, 0.1, 0.15,
0.2, and 1 for both datasets. Both baselines, OLDAFixed and OLDA with short
memory, are also shown. We found that the contribution of history in NIPS is
completely opposite to that in Reuters. While increasing the weight for history
resulted in a better topical description of Reuters news, lower perplexities were
reported with NIPS only for topic models that assign a lower weight for his-
tory. In fact, the history weight and perplexity in NIPS (Reuters) are negatively
(positively) correlated.
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Figure 10.5 Perplexity of OLDA on NIPS for various window sizes compared to
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Reuters’ documents span a short period of time while the streams of NIPS
are yearly based. As a result, the Reuters’ topics are homogeneous and more
stable. So, letting the current generative model be heavily influenced by the past
topical structure will eventually result in a better description of the data. On the
other hand, although there is a set of predefined publication domains in NIPS,
like algorithms, applications, and visual processing, these topics are very broad
and interrelated. Furthermore, research papers usually cover more topics and
continuously introduce novel ideas and topics. Hence, the influence of previous
semantics should not exceed the topical structure of the present.

10.6 Related work

The problem of embedding semantic information within the document repre-
sentation and/or distance metrics has recently been investigated intensively in
the domain of text classification and clustering (e.g. AlSumait and Domeniconi
(2008), Cristianini et al. (2002)). However, the problem of embedding semantic
information within the generative model and the inference process of LDA topic
modeling is a new research area. Very recently (Andrzejewski et al. 2009), domain
knowledge has been implemented in the form of must-link and cannot-link prim-
itives about the word compositions that should have high or low probability in
the topics. These primitives are incorporated in LDA using a mixture of Dirichlet
tree priors.

A number of papers in the literature have used LDA topic modeling to rep-
resent some kind of semantic embedding. In the domain of text segmentation,
the work in Sun et al. (2008) used an LDA-based Fisher kernel to measure text
semantic similarity between blocks of documents in the form of latent seman-
tic topics that were previously inferred using LDA. The kernel is controlled by
the number of shared semantics and word co-occurrences. Phrase discovery is
another area that aims at identifying phrases (n-grams) in text. Wang et al. (2007)
presented a topical n-gram model that automatically identified feasible n-grams
based on the context that surround it. Moreover, there are some research efforts to
incorporate prior knowledge from large universal datasets, like Wikipedia. Phan
et al. (2008) built a classifier on both a small set of labeled documents and an
LDA topic model estimated from Wikipedia.

10.7 Conclusion and future work

In this chapter, the effect of embedding semantic information in the framework
of probabilistic topic modeling is investigated. In particular, static and online
LDA topic models are first introduced and two directions to embed semantics
within their inference process are defined. The first direction updates the topical
structure based on prior knowledge that is learned from Wikipedia. The second
approach constructs the parameters based on the topical semantics that have been
inferred by the past generated models.
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This work can be extended in many directions. LDA with external semantic
embedding can be used to build an unsupervised classifier that can effectively
group documents based on their content with no need for labeled training
documents. In addition, it can be extended to work online on text streams and
using an evolving external knowledge. The effect of the embedded historic
semantics on detecting emerging and/or periodic topics constitutes future work.
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