

Quantum Computing since Democritus
Written by noted quantum computing theorist Scott Aaronson, this book takes readers on a
tour through some of the deepest ideas of math, computer science, and physics.

Full of insights, arguments, and philosophical perspectives, the book covers an amazing
array of topics. Beginning in antiquity with Democritus, it progresses through logic and set
theory, computability and complexity theory, quantum computing, cryptography, the inform-
ation content of quantum states, and the interpretation of quantum mechanics. There are also
extended discussions about time travel, Newcomb's Paradox, the Anthropic Principle, and
the views of Roger Penrose. Aaronson's informal style makes this fascinating book access-
ible to readers with scientific backgrounds, as well as students and researchers working in
physics, computer science, mathematics, and philosophy.
Scott Aaronson is an Associate Professor of Electrical Engineering and Computer Science at
the Massachusetts Institute of Technology. Considered one of the top quantum complexity
theorists in the world, he is well known both for his research in quantum computing and
computational complexity theory, and for his widely read blog Shtetl-Optimized. Professor
Aaronson also created Complexity Zoo, an online encyclopedia of computational complex-
ity theory, and has written popular articles for Scientific American and The New York Times.
His research and popular writing have earned him numerous awards, including the United
States Presidential Early Career Award for Scientists and Engineers and the Alan T. Water-
man Award.

Quantum Computing since Democritus
Scott Aaronson

Massachusetts Institute of Technology

CAMBRIDGE UNIVERSITY PRESS
Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi,

Mexico City
Cambridge University Press

The Edinburgh Building, Cambridge CB2 8RU, UK
Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521199568

© S. Aaronson 2013
This publication is in copyright. Subject to statutory exception and to the provisions of rel-
evant collective licensing agreements, no reproduction of any part may take place without

the written permission of Cambridge University Press.
First published 2013

Printed and bound in the United Kingdom by the MPG Books Group
A catalog record for this publication is available from the British Library

Library of Congress Cataloging in Publication data
Aaronson, Scott.

Quantum computing since Democritus / Scott Aaronson.
pages cm

Includes bibliographical references and index.
ISBN 978-0-521-19956-8 (pbk.)

1. Quantum theory – Mathematics. 2. Quantum computers. I. Title.
QC174.17.M35A27 2013

621.39 1 – dc23 2012036798
ISBN 978-0-521-19956-8 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
for external or third-party internet websites referred to in this publication, and does not
guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521199568

To my parents

Contents

Preface
Acknowledgments
1. Atoms and the void
2. Sets
3. Gödel, Turing, and friends
4. Minds and machines
5. Paleocomplexity
6. P, NP, and friends
7. Randomness
8. Crypto
9. Quantum
10. Quantum computing
11. Penrose
12. Decoherence and hidden variables
13. Proofs
14. How big are quantum states?
15. Skepticism of quantum computing
16. Learning
17. Interactive proofs, circuit lower bounds, and more
18. Fun with the Anthropic Principle
19. Free will
20. Time travel
21. Cosmology and complexity
22. Ask me anything
Index

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_005.html#filepos8111
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_006.html#filepos57267
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos61821
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos76699
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103439
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos129897
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos168571
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197174
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244756
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos303681
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos346562
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos413615
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos463777
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos489854
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos556080
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos592311
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos641522
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos669684
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos707857
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos782588
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos848318
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos891481
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos943208
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos985735
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_029.html#filepos1038232

Preface

A Critical Review of Scott Aaronson's Quantum Computing since
Democritus by Scott Aaronson

Quantum Computing since Democritus is a candidate for the weirdest book ever to be pub-
lished by Cambridge University Press. The strangeness starts with the title, which conspicu-
ously fails to explain what this book is about. Is this another textbook on quantum comput-
ing – the fashionable field at the intersection of physics, math, and computer science that's
been promising the world a new kind of computer for two decades, but has yet to build an
actual device that can do anything more impressive than factor 21 into 3 × 7 (with high
probability)? If so, then what does this book add to the dozens of others that have already
mapped out the fundamentals of quantum computing theory? Is the book, instead, a quixotic
attempt to connect quantum computing to ancient history? But what does Democritus, the
Greek atomist philosopher, really have to do with the book's content, at least half of which
would have been new to scientists of the 1970s, let alone of 300 BC?

Having now read the book, I confess that I’ve had my mind blown, my worldview re-
shaped, by the author's truly brilliant, original perspectives on everything from quantum
computing (as promised in the title) to Gödel's and Turing's theorems to the P versus NP
question to the interpretation of quantum mechanics to artificial intelligence to Newcomb's
Paradox to the black-hole information loss problem. So, if anyone were perusing this book
at a bookstore, or with Amazon's “Look Inside” feature, I would certainly tell that person to
buy a copy immediately. I’d also add that the author is extremely handsome.

Yet it's hard to avoid the suspicion that Quantum Computing since Democritus is basically
a “brain dump”: a collection of thoughts about theoretical computer science, physics, math,
and philosophy that were on the author's mind around the fall of 2006, when he gave a series
of lectures at the University of Waterloo that eventually turned into this book. The material
is tied together by the author's nerdy humor, his “Socratic” approach to every question, and
his obsession with the theory of computation and how it relates to the physical world. But if
there's some overarching “thesis” that I’m supposed to take away, I can't for the life of me
articulate what it is.

More pointedly, one wonders who the audience for this book is supposed to be. On
the one hand, it has way too much depth for a popular book. Like Roger Penrose's The
Road to Reality – whose preface promises an accessible adventure even for readers who
struggled with fractions in elementary school, but whose first few chapters then delve into
holomorphic functions and fiber bundles – Quantum Computing since Democritus is not
for math-phobes. A curious layperson could certainly learn a lot from this book, but he or
she would have to be willing to skip over some dense passages, possibly to return to them
later. So if you're someone who can stomach “science writing” only after it's been carefully
cleansed of the science, look elsewhere.

On the other hand, the book is also too wide-ranging, breezy, and idiosyncratic to be
used much as a textbook or reference work. Sure, it has theorems, proofs, and exercises,
and it covers the basics of an astonishing number of fields: logic, set theory, computability,
complexity, cryptography, quantum information, and computational learning theory, among
others. It seems likely that students in any of those fields, from the undergraduate level on
up, could gain valuable insights from this book, or could use it as an entertaining self-study
or refresher course. Besides these basics, the book also has significant material on quantum
complexity theory – for example, on the power of quantum proofs and advice – that (to this
reviewer's knowledge) hasn't appeared anywhere else in book form. But still, the book flits
from topic to topic too hastily to be a definitive text on anything.

So, is the book aimed at non-scientists who won't actually make it past the first chapter,
but want something to put on their coffee table to impress party guests? The only other
possibility I can think of is that there's an underserved audience for science books that are
neither “popular” nor “professional”: books that describe a piece of the intellectual land-
scape from one researcher's heavily biased vantage point, using the same sort of language
you might hear in a hallway conversation with a colleague from a different field. Maybe,
besides those colleagues, this hypothetical “underserved audience” would include preco-
cious high-school students, or programmers and engineers who enjoyed their theoretical
courses back in college and want to find out what's new. Maybe this is the same audience
that frequents these “science blogs” I’ve heard about: online venues where anyone in the
world can apparently watch real scientists, people at the forefront of human knowledge, en-
gage in petty spats, name-calling, and every other juvenile behavior, and can even egg the
scientists on to embarrass themselves further. (The book's author, it should be noted, writes
a particularly crass and infamous such blog.) If such an audience actually exists, then per-
haps the author knew exactly what he was doing in aiming at it. My sense, though, is that
he was having too much fun to be guided by any such conscious plan.

Now for the actual preface

While I appreciate the reviewer's kind words about my book (and even my appearance!)
in the preceding pages, I also take issue, in the strongest possible terms, with his ignorant
claim that Quantum Computing since Democritus has no overarching thesis. It does have a
thesis – even though, strangely, I wasn't the one who figured out what it was. For identify-
ing the central message of this book, I need to thank Love Communications, an advertising
agency based in Sydney, Australia, which put the message into the mouths of fashion mod-
els for the purpose of selling printers.

Let me explain – the story is worth it.
In 2006, I taught a course entitled “Quantum Computing since Democritus” at the

University of Waterloo. Over the next year, I posted rough notes from the course on my
blog, Shtetl-Optimized1 – notes that were eventually to become this book. I was heartened
by the enthusiastic response from readers of my blog; indeed, that response is what con-
vinced me to publish this book in the first place. But there was one response neither I nor
anyone else could have predicted.

On October 1, 2007, I received an email from one Warren Smith in Australia, who said
he had seen a television commercial for Ricoh printers. The commercial, he went on, fea-
tured two female fashion models in a makeup room, having the following conversation:

Model 1: But if quantum mechanics isn't physics in the usual sense – if it's not about
matter, or energy, or waves – then what is it about?
Model 2: Well, from my perspective, it's about information, probabilities, and observ-
ables, and how they relate to each other.
Model 1: That's interesting!

The commercial then flashed the tagline “A more intelligent model,” followed by a picture
of a Ricoh printer.

Smith said he was curious where the unusual text had come from, so he googled it. Do-
ing so brought him to Chapter 9 of my “Quantum Computing since Democritus” notes (p.
110), where he found the following passage:

But if quantum mechanics isn't physics in the usual sense – if it's not about matter, or
energy, or waves, or particles – then what is it about? From my perspective, it's about
information and probabilities and observables, and how they relate to each other.

So, it seemed, there was exactly one bit of dialogue in the commercial that I didn't write
(“That's interesting!”). Smith found a link2 where I could see the commercial for myself on
YouTube, and his story checked out.

Far more amused than annoyed, I wrote a post for my blog, entitled “Australian
Actresses Are Plagiarizing My Quantum Mechanics Lecture to Sell Printers.”3 After relat-
ing what had happened and linking to the video, the post ended

For almost the first time in my life, I’m at a loss for words. I don't know how to
respond. I don't know which of 500 000 possible jokes to make. Help me, readers.
Should I be flattered? Should I be calling a lawyer?

This would become the most notorious blog post I ever wrote. By the next morning, the
story had made the Sydney Morning Herald (“Ad agency cribbed my lecture notes: profess-
or”4), Slashdot (“Scott Aaronson, Printer Shill”5), and several other news sites. I happened
to be in Latvia at the time, visiting my colleague Andris Ambainis, but somehow journ-
alists tracked me down to my hotel room in Riga, waking me up around 5 a.m. to ask for
interviews.

Meanwhile, reactions on my blog and in other online forums were mixed. Some readers
said I’d be foolish if I didn't sue the ad agency for all it was worth. What if they had played
a few beats of a Rolling Stones song, without first getting permission? Cases like that, I
was assured, are sometimes settled for millions of dollars. Others said that even asking
the question made me a stereotypical litigious American, a personification of everything
wrong with the world. I should be flattered, they continued, that the ad writers had seen
fit to give my take on quantum mechanics all this free publicity. Dozens of commenters
offered variations on the same insipid joke, that I should ask for a date with the “models”
as my compensation. (I replied that I’d rather have a free printer, if it came down to it.) One
commenter simply wrote, “This really could be the funniest thing that has ever happened.”

For its part, Love Communications admitted that it had appropriated material from my
lecture, but said it had consulted a lawyer and thought it was perfectly within its fair-use
rights to do so. Meanwhile, I did get in touch with an Australian intellectual property law-
yer, who said that I might have a case – but it would take time and energy to pursue it. I felt
torn: on the one hand, plagiarism is one of the academic world's few unforgivable sins, and
I was miffed by the agency's completely unapologetic response, after they'd been caught
so red handed. On the other hand, if they had just asked me, I probably would have gladly
given them permission to use my words, for either a token sum or no money at all.

In the end, we found a solution that everyone liked. Love Communications apologized
(without admitting wrongdoing), and donated $5000 to two science outreach organizations
of my choice in Australia.6 In return, I didn't pursue any further action – and indeed, I
mostly forgot about the affair, except when colleagues would rib me (as they continue to
do) about Australian models.

But there's a final irony to the tale, and that's why I’m recounting it here (well, besides
just that it's a hilarious true story involving this book). If I had to choose one passage from
the entire book to be broadcast on TV, I think I would have chosen the exact same one that

the commercial writers chose – even though they were presumably just trawling for some
sciencey-sounding gobbledygook, and I hadn't highlighted the passage in any way, as its
centrality hadn't occurred to me.

The idea that quantum mechanics is “about” information, probabilities, and observables,
rather than waves and particles, certainly isn't an original one. The physicist John Archibald
Wheeler said similar things in the 1970s; and today an entire field, that of quantum com-
puting and information, is built around the idea. Indeed, in the discussion on my blog that
followed the Australian models episode, one the commonest (and to me, funniest) argu-
ments was that I had no right to complain, because the appropriated passage wasn't special
in any way: it was an obvious thought that could be found in any physics book!

How I wish it were so. Even in 2013, the view of quantum mechanics as a theory of in-
formation and probabilities remains very much a minority one. Pick up almost any physics
book – whether popular or technical – and you'll learn that (a) modern physics says all sorts
of paradoxical-seeming things, like that waves are particles and particles are waves, (b) at
a deep level, no one really understands these things, (c) even translating them into math
requires years of intensive study, but (d) they make the atomic spectra come out right, and
that's what matters in the end.

One eloquent statement of this “conventional view” was provided by Carl Sagan, in The
Demon-Haunted World:

Imagine you seriously want to understand what quantum mechanics is about. There
is a mathematical underpinning that you must first acquire, mastery of each mathem-
atical subdiscipline leading you to the threshold of the next. In turn you must learn
arithmetic, Euclidean geometry, high school algebra, differential and integral calculus,
ordinary and partial differential equations, vector calculus, certain special functions of
mathematical physics, matrix algebra, and group theory...The job of the popularizer of
science, trying to get across some idea of quantum mechanics to a general audience
that has not gone through these initiation rites, is daunting. Indeed, there are no suc-
cessful popularizations of quantum mechanics in my opinion – partly for this reason.
These mathematical complexities are compounded by the fact that quantum theory is
so resolutely counterintuitive. Common sense is almost useless in approaching it. It's
no good, Richard Feynman once said, asking why it is that way. No one knows why it
is that way. That's just the way it is (p. 249).

It's understandable why physicists talk this way: because physics is an experimental sci-
ence. In physics you're allowed to say, “these are the rules, not because they make sense,
but because we ran the experiment and got such-and-such a result.” You can even say
it proudly, gleefully – defying the skeptics to put their preconceived notions up against
Nature's verdict.

Personally, I simply believe the experimentalists, when they say the world works in a
completely different way than I thought it did. It's not a matter of convincing me. Nor do

I presume to predict what the experimentalists will discover next. All I want to know is:
What went wrong with my intuition? How should I fix it, to put it more in line with what the
experiments found? How could I have reasoned, such that the actual behavior of the world
wouldn't have surprised me so much?

With several previous scientific revolutions – Newtonian physics, Darwinian evolution,
special relativity – I feel like I more-or-less know the answers to the above questions. If my
intuition isn't yet fully adjusted even to those theories, then at least I know how it needs to
be adjusted. And thus, for example, if I were creating a new universe, I might or might not
decide to make it Lorentz invariant, but I’d certainly consider the option, and I’d under-
stand why Lorentz-invariance was the inevitable consequence of a couple of other proper-
ties I might want.

But quantum mechanics is different. Here, the physicists assure us, no one knows how
we should adjust our intuition so that the behavior of subatomic particles would no longer
seem so crazy. Indeed, maybe there is no way; maybe subatomic behavior will always re-
main an arbitrary brute fact, with nothing to say about it beyond “such-and-such formulas
give you the right answer.” My response is radical: if that's true, then I don't much care how
subatomic particles behave. No doubt other people need to know – the people designing
lasers or transistors, for example – so let them learn. As for me, I’ll simply study another
subject that makes more sense to me – like, say, theoretical computer science. Telling me
that my physical intuition was wrong, without giving me any path to correct that intuition,
is like flunking me on an exam without providing any hint about how I could've done bet-
ter. As soon as I’m free to do so, I’ll simply gravitate to other courses where I get As, where
my intuition does work.

Fortunately, I think that, as the result of decades of work in quantum computation and
quantum foundations, we can do a lot better today than simply calling quantum mechanics
a mysterious brute fact. To spill the beans, here's the perspective of this book:

Quantum mechanics is a beautiful generalization of the laws of probability: a general-
ization based on the 2-norm rather than the 1-norm, and on complex numbers rather
than nonnegative real numbers. It can be studied completely separately from its ap-
plications to physics (and indeed, doing so provides a good starting point for learning
the physical applications later). This generalized probability theory leads naturally to
a new model of computation – the quantum computing model – that challenges ideas
about computation once considered a priori, and that theoretical computer scientists
might have been driven to invent for their own purposes, even if there were no relation
to physics. In short, while quantum mechanics was invented a century ago to solve
technical problems in physics, today it can be fruitfully explained from an extremely
different perspective: as part of the history of ideas, in math, logic, computation, and
philosophy, about the limits of the knowable.

In this book I try to make good on the above claims, taking a leisurely and winding route to
do so. I start, in Chapter 1, as near to the “beginning” as I possibly can: with Democritus,
the ancient Greek philosopher. Democritus's surviving fragments – which speculate, among
other things, that all natural phenomena arise from complicated interactions between a few
kinds of tiny “atoms,” whizzing around in mostly empty space – get closer to a modern sci-
entific worldview than anything else in antiquity (and certainly closer than any of Plato's or
Aristotle's ideas). Yet no sooner had Democritus formulated the atomist hypothesis, than he
noticed uneasily its tendency to “swallow whole” the very sense-experiences that he was
presumably trying to explain in the first place. How could those be reduced to the motions
of atoms? Democritus expressed the dilemma in the form of a dialogue between the Intel-
lect and the Senses:

Intellect: By convention there is sweetness, by convention bitterness, by convention
color, in reality only atoms and the void.
Senses: Foolish intellect! Do you seek to overthrow us, while it is from us that you
take your evidence?

This two-line dialogue will serve as a sort of touchstone for the entire book. One of my
themes will be how quantum mechanics seems to give both the Intellect and the Senses un-
expected new weapons in their 2300-year-old argument – while still (I think) not producing
a clear victory for either.

In Chapters 2 and 3, I move on to discuss the deepest knowledge we have that inten-
tionally doesn't depend on “brute facts” about the physical world: namely, mathematics.
Even there, something inside me (and, I suspect, inside many other computer scientists!)
is suspicious of those parts of mathematics that bear the obvious imprint of physics, such
as partial differential equations, differential geometry, Lie groups, or anything else that's
“too continuous.” So instead, I start with some of the most “physics-free” parts of math yet
discovered: set theory, logic, and computability. I discuss the great discoveries of Cantor,
Frege, Gödel, Turing, Church, and Cohen, which helped to map the contours of mathemat-
ical reasoning itself – and which, in the course of showing why all of mathematics can't be
reduced to a fixed “mechanical process,” also demonstrated just how much of it could be,
and clarified what we mean by “mechanical process” in the first place. Since I can't resist,
in Chapter 4 I then wade into the hoary debate about whether the human mind, too, is gov-
erned by “fixed mechanical processes.” I set out the various positions as fairly as I can (but
no doubt reveal my biases).

Chapter 5 introduces computability theory's modern cousin, computational complexity
theory, which plays a central role in the rest of the book. I try to illustrate, in particular,
how computational complexity lets us systematically take “deep philosophical mysteries”
about the limits of knowledge, and convert them into “merely” insanely difficult unsolved
mathematical problems, which arguably capture most of what we want to know! There's
no better example of such a conversion than the P versus NP problem, which I discuss in

Chapter 6. Then, as warmups to quantum computing, Chapter 7 examines the many uses
of classical randomness, both in computational complexity and in other parts of life; and
Chapter 8 explains how computational complexity ideas were applied to revolutionize the
theory and practice of cryptography beginning in the 1970s.

All of that is just to set the stage for the most notorious part of the book: Chapter 9,
which presents my view of quantum mechanics as a “generalized probability theory.” Then
Chapter 10 explains the basics of my own field, the quantum theory of computation, which
can be briefly defined as the merger of quantum mechanics with computational complex-
ity theory. As a “reward” for persevering through all this technical material, Chapter 11
offers a critical examination of the ideas of Sir Roger Penrose, who famously holds that
the brain is not merely a quantum computer but quantum gravitational computer, able to
solve Turing-uncomputable problems – and that this, or something like it, can be shown
by an appeal to Gödel's Incompleteness Theorem. It's child's play to point out the prob-
lems with these ideas, and I do so, but what I find more interesting is to ask whether there
might be nuggets of truth in Penrose's speculations. Then Chapter 12 confronts what I see
as the central conceptual problem of quantum mechanics: not that the future is indetermin-
ate (who cares?), but that the past is also indeterminate! I examine two very different re-
sponses to that problem: first, the appeal, popular among physicists, to decoherence, and to
the “effective arrow of time” supplied by the Second Law of Thermodynamics; and second,
“hidden-variable theories” such as Bohmian mechanics. Even if hidden-variable theories
are rejected, I find that they lead to some extremely interesting mathematical questions.

The rest of the book consists of applications of the perspective developed earlier, to
various big, exciting, or controversial questions in math, computer science, philosophy,
and physics. Much more than the earlier chapters, the later ones discuss recent research –
mostly in quantum information and computational complexity, but also a bit in quantum
gravity and cosmology – that strikes me as having some hope of shedding light on these
“big questions.” As such, I expect that the last chapters will be the first to become outdated!
While there are minor dependencies, to a first approximation the later chapters can be read
in any order.

• Chapter 13 discusses new notions of mathematical proof (including probabilistic
and zero-knowledge proofs), then applies those notions to understanding the com-
putational complexity of hidden-variable theories.

• Chapter 14 takes up the question of the “size” of quantum states – do they encode
an exponential amount of classical information, or not? – and relates this question
to the quantum interpretation debate on the one hand, and to recent complexity-
theoretic research on quantum proofs and advice on the other.

• Chapter 15 examines the arguments of quantum computing skeptics: the people
who hold, not merely that building a practical quantum computer is hard (which

everyone agrees about!), but that it can never be done for some fundamental reas-
on.

• Chapter 16 examines Hume's Problem of Induction, using it as a jumping-off point
for discussing computational learning theory, as well as recent work on the learn-
ability of quantum states.

• Chapter 17 discusses some breakthroughs in our understanding of classical and
quantum interactive proof systems (e.g., the IP = PSPACE and QIP = PSPACE
theorems), but is mostly interested in those breakthroughs insofar as they've led to
non-relativizing circuit lower bounds – and, therefore, might illuminate something
about the P versus NP question.

• Chapter 18 examines the famous Anthropic Principle and “Doomsday Argument”;
the discussion starts out highly philosophical (of course), but eventually winds its
way to a discussion of postselected quantum computing and the PostBQP = PP
theorem.

• Chapter 19 discusses Newcomb's Paradox and free will, leading into an account of
the Conway–Kochen “free will theorem,” and the use of Bell's Inequality to gen-
erate “Einstein-certified random numbers.”

• Chapter 20 takes up time travel: in a now-familiar pattern, starting with a wide-ran-
ging philosophical discussion, and ending with a proof that classical or quantum
computers with closed timelike curves yield exactly the computational power of
PSPACE (under assumptions that are open to interesting objections, which I dis-
cuss at length).

• Chapter 21 discusses cosmology, dark energy, the Bekenstein bound, and the holo-
graphic principle – but, not surprisingly, with an eye toward what all these things
mean for the limits of computation. For example, how many bits can one store or
search through, and how many operations can one perform on those bits, without
using so much energy that one instead creates a black hole?

• Chapter 22 is “dessert”: it's based off the final lecture of the Quantum Computing
Since Democritus class, in which the students could ask me anything whatsoever,
and watch me struggle to respond. Topics addressed include the following: the pos-
sible breakdown of quantum mechanics; black holes and “fuzzballs”; the relevance
of oracle results in computational complexity; NP-complete problems and cre-
ativity; “super-quantum” correlations; derandomization of randomized algorithms;
science, religion, and the nature of rationality; and why computer science is not a
branch of physics departments.

A final remark. One thing you won't find in this book is much discussion of the “practic-
alities” of quantum computing: either physical implementation, or error correction, or the
details of Shor's, Grover's, or other basic quantum algorithms. One reason for this neglect

is incidental: the book is based on lectures I gave at the University of Waterloo's Institu-
te for Quantum Computing, and the students were already learning all about those aspects
in their other classes. A second reason is that those aspects are covered in dozens of other
books7 and online lecture notes (including some of my own), and I saw no need to reinvent
the wheel. But a third reason is, frankly, that the technological prospect of building a new
kind of computer, exciting as it is, is not why I went into quantum computing in the first
place. (Shhh, please don't tell any funding agency directors I said that.)

To be clear, I think it's entirely possible that I’ll see practical quantum computers in my
lifetime (and also possible, of course, that I won't see them). And if we do get scalable,
universal quantum computers, then they'll almost certainly find real applications (not even
counting codebreaking): mostly, I think, for specialized tasks like quantum simulation, but
to a lesser extent for solving combinatorial optimization problems. If that ever happens, I
expect I’ll be as excited about it as anyone on earth – and, of course, tickled if any of the
work I’ve done finds applications in that new world. On the other hand, if someone gave
me a practical quantum computer tomorrow, then I confess that I can't think of anything
that I, personally, would want to use it for: only things that other people could use it for!

Partly for that reason, if scalable quantum computing were proved to be impossible, that
would excite me a thousand times more than if it were proved to be possible. For such a
failure would imply something wrong or incomplete with our understanding of quantum
mechanics itself: a revolution in physics! As a congenital pessimist, though, my guess is
that Nature won't be so kind to us, and that scalable quantum computing will turn out to be
possible after all.

In summary, you could say that I’m in this field less because of what you could do with
a quantum computer, than because of what the possibility of quantum computers already
does to our conception of the world. Either practical quantum computers can be built, and
the limits of the knowable are not what we thought they are; or they can't be built, and the
principles of quantum mechanics themselves need revision; or there's a yet-undreamt meth-
od to simulate quantum mechanics efficiently using a conventional computer. All three of
these possibilities sound like crackpot speculations, but at least one of them is right! So
whichever the outcome, what can one say but – to reverse-plagiarize a certain TV commer-
cial – “that's interesting?”

What's new

In revising this manuscript for publication, the biggest surprise for me was how much
happened in the fields discussed by the book between when I originally gave the lectures
(2006) and “now” (2013). This book is supposed to be about deep questions that are as old

as science and philosophy, or at the least, as old as the birth of quantum mechanics and of
computer science almost a century ago. And at least on a day-to-day basis, it can feel like
nothing ever changes in the discussion of these questions. And thus, having to update my
lectures extensively, after the passage of a mere six years, was an indescribably pleasant
burden for me.

Just to show you how things are evolving, let me give a partial list of the developments
that are covered in this book, but that couldn't have been covered in my original 2006 lec-
tures, for the simple reason that they hadn't happened yet. IBM’s Watson computer defeated
the Jeopardy! world champion Ken Jennings, forcing me to update my discussion of AI
with a new example (see p. 37), very different in character from previous examples like
ELIZA and Deep Blue. Virginia Vassilevska Williams, building on work of Andrew Stoth-
ers, discovered how to multiply two n × n matrices using only O(n2.373) steps, slightly beat-
ing Coppersmith and Winograd's previous record of O(n2.376), which had held for so long
that “2.376” had come to feel like a constant of nature (see p. 49).

There were major advances in the area of lattice-based cryptography, which provides
the leading candidates for public-key encryption systems secure even against quantum
computers (see pp. 105–107). Most notably, solving a 30-year-old open problem, Craig
Gentry used lattices to propose the first fully homomorphic cryptosystems. These systems
let a client delegate an arbitrary computation to an untrusted server – feeding the server
encrypted inputs and getting back an encrypted output – in such a way that only the client
can decrypt (and verify) the output; the server never has any clue what computation it was
hired to perform.

In the foundations of quantum mechanics, Chiribella et al. (see p. 131) gave a novel ar-
gument for “why” quantum mechanics should involve the specific rules it does. Namely,
they proved that those rules are the only ones compatible with certain general axioms of
probability theory, together with the slightly mysterious axiom that “all mixed states can be
purified”: that is, whenever you don't know everything there is to know about a physical
system A, your ignorance must be fully explainable by positing correlations between A and
some faraway system B, such that you would know everything there is to know about the
combined system AB.

In quantum computing theory, Bernstein and Vazirani's “Recursive Fourier Sampling”
(RFS) problem – on which I spent a fair bit of time in my 2006 lectures – has been super-
seded by my “Fourier Checking” problem (see p. 145). RFS retains its place in history, as
the first black-box problem ever proposed that a quantum computer can provably solve su-
perpolynomially faster than a classical probabilistic computer – and, as such, an important
forerunner to Simon's and Shor's breakthroughs. Today, though, if we want a candidate for
a problem in BQP\PH – in other words, something that a quantum computer can easily do,

but which is not even in the classical “polynomial-time hierarchy” – then Fourier Checking
seems superior to RFS in every way.

Happily, several things discussed as “open problems” in my 2006 lectures have since
lost that status. For example, Andrew Drucker and I showed that BQP/qpoly is contained
in QMA/poly (and, moreover, the proof relativizes), falsifying my conjecture that there
should be an oracle separation between those classes (see p. 214). Also, in a justly celeb-
rated breakthrough in quantum computing theory, Jain et al. proved that QIP = PSPACE
(see p. 263), meaning that quantum interactive proof systems are no more powerful than
classical ones. In that case, at least, I conjectured the right answer! (There was actually an-
other breakthrough in the study of quantum interactive proof systems, which I don't discuss
in the book. My postdoc Thomas Vidick, together with Tsuyoshi Ito,8 recently showed that

NEXP MIP*, which means that any multiple-prover interactive proof system can
be “immunized” against the possibility that the provers secretly coordinate their responses
using quantum entanglement.)

Chapter 20 of this book discusses David Deutsch's model for quantum mechanics in the
presence of closed timelike curves, as well as my (then-)new result, with John Watrous, that
Deutsch's model provides exactly the computational power of PSPACE. (So that, in partic-
ular, quantum time-travel computers would be no more powerful than classical time-travel
computers, in case you were wondering.) Since 2006, however, there have been import-
ant papers questioning the assumptions behind Deutsch's model, and proposing alternative
models, which generally lead to computational power less than PSPACE. For example, one
model, proposed by Lloyd et al., would “merely” let the time traveler solve all problems in
PP! I discuss these developments on pp. 319–322.

What about circuit lower bounds – which is theoretical computer scientists’ codeword

for “trying to prove P NP,” in much the same way that “closed timelike curves” is
the physicists’ codeword for “time travel?” I’m pleased to report that there have been in-
teresting developments since 2006, certainly more than I would have expected back then.
As one example, Rahul Santhanam used interactive proof techniques to prove the non-re-
lativizing result that the class PromiseMA doesn't have circuits of any fixed polynomial
size (see p. 257). Santhanam's result was part of what spurred Avi Wigderson and myself,
in 2007, to formulate the algebrization barrier (see p. 258), a generalization of Baker, Gill,
and Solovay's relativization barrier from the 1970s (see pp. 245–246). Algebrization ex-
plained why the interactive proof techniques can take us only so far and no further in our

quest to prove P NP: as one example, why those techniques led to superlinear circuit
lower bounds for PromiseMA, but not for the class NP just “slightly below it.” The chal-

lenge we raised was to find new circuit lower bound techniques that convincingly evade
the algebrization barrier. That challenge was met in 2010, by Ryan Williams’ breakthrough

proof that NEXP ACC0 (discussed on pp. 260–261).
Of course, even Williams’ result, exciting as it was, is a helluva long way from a proof

of P NP. But the past six years have also witnessed a flowering of interest in, and
development of, Ketan Mulmuley's Geometric Complexity Theory (GCT) program (see

pp. 261–262), which is to proving P NP almost exactly as string theory is to the goal
of a unified theory of physics. That is, in terms of concrete results, the GCT program hasn't
yet come anywhere close to fulfilling its initial hopes, and even the program's most ardent
proponents predict a slog of many decades, while its mathematical complexities frighten
everyone else. What GCT has going for it is two things: firstly, that it's forged mathemat-
ical connections “too profound and striking to be mere coincidence,” and secondly, that it's
perceived (by no means universally!) as “the only game in town,” the only hunter currently
in the forest who's even carrying a sharp stick.

Let me mention just three other post-2006 developments relevant to this book. In 2011,
Alex Arkhipov and I proposed “BosonSampling” (see pp. 287–288): a rudimentary, al-
most certainly non-universal quantum computing model involving non-interacting photons,
which was just recently demonstrated on a small scale. Interestingly, the evidence that Bo-
sonSampling is hard to simulate on a classical computer seems stronger than the eviden-
ce that (say) Shor's factoring algorithm is hard to simulate. In 2012, Umesh Vazirani and
Thomas Vidick, building on earlier work of Pironio et al., showed how to use violations of
the Bell inequality to achieve exponential randomness expansion (see p. 305): that is, con-
verting n random bits into 2n bits that are guaranteed to be almost-perfectly random, unless
Nature resorted to faster-than-light communication to bias the bits. Meanwhile, the debate
about the “black hole information paradox” – i.e., the apparent conflict between the prin-
ciples of quantum mechanics and the locality of spacetime, when bits or qubits are dropped
into a black hole – has evolved in new directions since 2006. Possibly the two most import-
ant developments have been the increasing popularity and sophistication of Samir Mathur's
“fuzzball” picture of black holes, and the controversial argument of Almheiri et al. that an
observer falling into a black hole would never even get near the singularity, but would in-
stead encounter a “firewall” and burn up at the event horizon. I cover these developments
as best I can on pp. 346–349.

A few updates were occasioned not by any new discovery or argument, but simply by
me (gasp) changing my mind about something. One example is my attitude toward the ar-
guments of John Searle and Roger Penrose against “strong artificial intelligence.” As you'll

see in Chapters 4 and 11, I still think Searle and Penrose are wrong on crucial points, Searle
more so than Penrose. But on rereading my 2006 arguments for why they were wrong,
I found myself wincing at the semi-flippant tone, at my eagerness to laugh at these cel-
ebrated scholars tying themselves into logical pretzels in quixotic, obviously doomed at-
tempts to defend human specialness. In effect, I was lazily relying on the fact that everyone
in the room already agreed with me – that to these (mostly) physics and computer science
graduate students, it was simply self-evident that the human brain is nothing other than a
“hot, wet Turing machine,” and weird that I would even waste the class's time with such a
settled question. Since then, I think I’ve come to a better appreciation of the immense diffi-
culty of these issues – and in particular, of the need to offer arguments that engage people
with different philosophical starting-points than one's own.

Here's hoping that, in 2020, this book will be as badly in need of revision as the 2006
lecture notes were in 2013.

Scott Aaronson
Cambridge, MA

January 2013

1 www.scottaaronson.com/blog
2 www.youtube.com/watch?v=saWCyZupO4U
3 www.scottaaronson.com/blog/?p=277
4 www.smh.com.au/news/technology/professor-claims-ad-agency-cribs-lecture-notes/
2007/10/03/1191091161163.html
5 idle.slashdot.org/story/07/10/02/1310222/scott-aaronson-printer-shill
6 See www.scottaaronson.com/blog/?p=297
7 The “standard reference” for the field remains Quantum Computation and Quantum In-
formation, by Michael Nielsen and Isaac Chuang.

8 T. Ito and T. Vidick, A Multi-prover Interactive Proof for NEXP Sound against
Entangled Provers. In Proceedings of IEEE Symposium on Foundations of Computer
Science (2012), pp. 243–252.

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos129897
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos463777
http://www.scottaaronson.com/blog
http://www.youtube.com/watch?v=saWCyZupO4U
http://www.scottaaronson.com/blog/?p=277
http://www.smh.com.au/news/technology/professor-claims-ad-agency-cribs-lecture-notes/2007/10/03/1191091161163.html
http://www.smh.com.au/news/technology/professor-claims-ad-agency-cribs-lecture-notes/2007/10/03/1191091161163.html
http://idle.slashdot.org/story/07/10/02/1310222/scott-aaronson-printer-shill
http://www.scottaaronson.com/blog/?p=297

Acknowledgments

As my summer student in 2008, Chris Granade enthusiastically took charge of converting
the scattered notes and audio recordings from my course into coherent drafts that I could
post on my website, the first step on their long journey into book form. More recently, Alex
Arkhipov, my phenomenal PhD student at MIT, went through the drafts with a fine-tooth
comb, flagging passages that were wrong, unclear, or no longer relevant. I’m deeply grateful
to both of them: this book is also their book; it wouldn't exist without their help.

It also wouldn't exist without Simon Capelin, my editor at Cambridge University Press,
who approached me with the idea. Simon understood what I needed: he prodded me every
few months to see if I’d made progress, but never in an accusatory way, always relying on
my own internal guilt to see the project through. (And I did see it through – eventually.) Si-
mon also assured me that, even though Quantum Computing since Democritus was...a bit
different from CUP’s normal fare, he would make every effort to preserve what he called the
book's “quirky charm.” I also thank all the others at CUP and Aptara Corp. who helped to
make the book a reality: Sarah Hamilton, Emma Walker, and Disha Malhotra.

I thank the students and faculty who sat in on my “Quantum Computing since Democrit-
us” course at the University of Waterloo in Fall 2006. Their questions and arguments made
the course what it was (as you can still see in this book, especially in the last chapters).
On top of that, the students also took care of the audio recordings and preliminary written
transcripts. More broadly, I remember my two years as a postdoc at Waterloo's Institute for
Quantum Computing as one of the happiest times of my life. I thank everyone there, and
especially IQC’s director Ray Laflamme, for not only letting me teach such a nutty course
but encouraging it, and even (in Ray's and several other cases) sitting in on the course them-
selves and contributing many insights.

I thank MIT’s Computer Science and Artificial Intelligence Laboratory and its Electrical
Engineering and Computer Science Department, as well as the US National Science Found-
ation, the Defense Advanced Research Projects Agency, the Sloan Foundation, and TIBCO,
Inc., for all the support they've given me over the last six years.

I thank the readers of my blog, Shtetl-Optimized (http://www.scottaaronson.com/blog),
for their many comments on the draft chapters that I posted there, and for catching numerous
errors. I especially thank those readers who encouraged me to turn Quantum Computing
since Democritus into a book – some even promised they'd buy it when it came out.

http://www.scottaaronson.com/blog

I thank the people who advised me from my high school to my postdoc years: Chris
Lynch, Bart Selman, Lov Grover, Umesh Vazirani, and Avi Wigderson. John Preskill was
never “formally” an advisor, but I still think of him as one. I owe all of them more than I
can say. I also thank everyone else in (and beyond) the quantum information and theoretic-
al computer science communities whose discussions and arguments with me over the years
left their imprints on this book. I can't possibly produce a full list of such people, so here's
a partial one: Dorit Aharonov, Andris Ambainis, Michael Ben-Or, Raphael Bousso, Harry
Buhrman, Sean Carroll, Greg Chaitin, Richard Cleve, David Deutsch, Andy Drucker, Ed
Farhi, Chris Fuchs, Daniel Gottesman, Alex Halderman, Robin Hanson, Richard Karp, El-
ham Kashefi, Julia Kempe, Greg Kuperberg, Seth Lloyd, Michele Mosca, Michael Nielsen,
Christos Papadimitriou, Len Schulman, Lenny Susskind, Oded Regev, Barbara Terhal, Mi-
chael Vassar, John Watrous, Ronald de Wolf. I apologize for the inevitable omissions (or to
those who don't want their names in this book, you're welcome!).

Lastly, I thank my mom and dad, my brother David, and of course my wife Dana, who
will now finally be able to know me while I’m not putting off finishing the damn book.

1 Atoms and the void

I would rather discover a single cause than become king of the Persians.
– Democritus

So why Democritus? First of all, who was Democritus? He was this Ancient Greek dude.
He was born around 450 BC in this podunk Greek town called Abdera, where people from
Athens said that even the air causes stupidity. He was a disciple of Leucippus, according to
my source, which is Wikipedia. He's called a “pre-Socratic,” even though actually he was a
contemporary of Socrates. That gives you a sense of how important he's considered: “Yeah,
the pre-Socratics – maybe stick ’em in somewhere in the first week of class.” Incidentally,
there's a story that Democritus journeyed to Athens to meet Socrates, but then was too shy
to introduce himself.

Almost none of Democritus's writings survive. Some survived into the Middle Ages, but
they're lost now. What we know about him is mostly due to other philosophers, like Aris-
totle, bringing him up in order to criticize him.

So, what did they criticize? Democritus thought the whole universe is composed of atoms
in a void, constantly moving around according to determinate, understandable laws. These
atoms can hit each other and bounce off, or they can stick together to make bigger things.
They can have different sizes, weights, and shapes – maybe some are spheres, some are cyl-
inders, whatever. On the other hand, Democritus says that properties like color and taste are
not intrinsic to atoms, but instead emerge out of the interactions of many atoms. For if the
atoms that made up the ocean were “intrinsically blue,” then how could they form the white
froth on waves?

Remember, this is 400 BC. So far we're batting pretty well.
Why does Democritus think that things are made of atoms? He gives a few arguments,

one of which can be paraphrased as follows: suppose we have an apple, and suppose the
apple is made not of atoms but of continuous, hard stuff. And suppose we take a knife and
slice the apple into two pieces. It's clear that the points on one side go into the first piece and
the points on the other side go into the second piece, but what about the points exactly on
the boundary? Do they disappear? Do they get duplicated? Is the symmetry broken? None
of these possibilities seem particularly elegant.

Incidentally, there's a debate raging even today between atomists and anti-atomists. At is-
sue in this debate is whether space and time themselves are made up of indivisible atoms,
at the Planck scale of 10-33 cm or 10-43 s. Once again, the physicists have very little exper-
imental evidence to go on, and are basically in the same situation that Democritus was in,
2400 years ago. If you want an ignorant, uninformed layperson's opinion, my money is on

the atomist side. And the arguments I’d use are not entirely different from the ones Demo-
critus used: they hinge mostly on inherent mathematical difficulties with the continuum.

One passage of Democritus that does survive is a dialogue between the intellect and the
senses. The intellect starts out, saying “By convention there is sweetness, by convention
bitterness, by convention color, in reality only atoms and the void.” For me, this single line
already puts Democritus shoulder to shoulder with Plato, Aristotle, or any other ancient
philosopher you care to name: it would be hard to give a more accurate one-sentence sum-
mary of the entire scientific worldview that would develop 2000 years later! But the dia-
logue doesn't stop there. The senses respond, saying “Foolish intellect! Do you seek to
overthrow us, while it is from us that you take your evidence?”

I first came across this dialogue in a book by Schrödinger.1 Ah, Schrödinger! – you see
we're inching toward the “quantum computing” in the book title. We're gonna get there,
don't worry about that.

But why would Schrödinger be interested in this dialogue? Well, Schrödinger was inter-
ested in a lot of things. He was not an intellectual monogamist (or really any kind of mono-
gamist). But one reason he might've been interested is that he was one of the originators of
quantum mechanics – in my opinion the most surprising discovery of the twentieth century
(relativity is a close second), and a theory that adds a whole new angle to the millennia-old
debate between the intellect and the senses, even as it fails to resolve it.

Here's the thing: for any isolated region of the universe that you want to consider,
quantum mechanics describes the evolution in time of the state of that region, which we
represent as a linear combination – a superposition – of all the possible configurations of
elementary particles in that region. So, this is a bizarre picture of reality, where a given
particle is not here, not there, but in a sort of weighted sum over all the places it could be.
But it works. As we all know, it does pretty well at describing the “atoms and the void” that
Democritus talked about.

The part where it maybe doesn't do so well is the “from us you take your evidence” part.
What's the problem? Well, if you take quantum mechanics seriously, you yourself ought
to be in a superposition of different places at once. After all, you're made of elementary
particles too, right? In particular, suppose you measure a particle that's in a superposition
of two locations, A and B. Then the most naive, straightforward reading of quantum mech-
anics would predict that the universe itself should split into two “branches”: one where the
particle is at A and you see it at A, one where the particle is at B and you see it at B!
So what do you think: do you split into several copies of yourself every time you look at
something? I don't feel like I do!

You might wonder how such a crazy theory could be useful to physicists, even at the
crassest level. How could it even make predictions, if it essentially says that everything that
could happen does? Well, the thing I didn't tell you is that there's a separate rule for what

happens when you make a measurement: a rule that's “tacked on” (so to speak), external
to the equations themselves. That rule says, essentially, that the act of looking at a particle
forces it to make up its mind about where it wants to be, and that the particle makes its
choice probabilistically. And the rule tells you exactly how to calculate the probabilities.
And of course it's been spectacularly well confirmed.

But here's the problem: as the universe is chugging along, doing its thing, how are we
supposed to know when to apply this measurement rule, and when not to? What counts as a
“measurement,” anyway? The laws of physics aren't supposed to say things like “such-and-
such happens until someone looks, and then a completely different thing happens!” Physic-
al laws are supposed to be universal. They're supposed to describe human beings the same
way they describe supernovas and quasars: all just examples of vast, complicated clumps
of particles interacting according to simple rules.

So from a physics perspective, things would be so much cleaner if we could dispense
with this “measurement” business entirely! Then we could say, in a more sophisticated up-
date of Democritus: there's nothing but atoms and the void, evolving in quantum superpos-
ition.

But wait: if we're not here making nosy measurements, wrecking the pristine beauty of
quantum mechanics, then how did “we” (whatever that means) ever get the evidence in the
first place that quantum mechanics is true? How did we ever come to believe in this theory
that seems so uncomfortable with the fact of our own existence?

So, that's the modern version of the Democritus dilemma, and physicists and philosoph-
ers have been arguing about it for almost a hundred years, and in this book we're not going
to solve it.

The other thing I’m not going to do in this book is try to sell you on some favorite “inter-
pretation” of quantum mechanics. You're free to believe whatever interpretation your con-
science dictates. (What's my own view? Well, I agree with every interpretation to the extent
it says there's a problem, and disagree with every interpretation to the extent it claims to
have solved the problem!)

See, just like we can classify religions as monotheistic and polytheistic, we can classify
interpretations of quantum mechanics by where they come down on the “putting-yourself-
in-coherent-superposition” issue. On the one side, we've got the interpretations that en-
thusiastically sweep the issue under the rug: Copenhagen and its Bayesian and epistemic
grandchildren. In these interpretations, you've got your quantum system, you've got your
measuring device, and there's a line between them. Sure, the line can shift from one exper-
iment to the next, but for any given experiment, it's gotta be somewhere. In principle, you
can even imagine putting other people on the quantum side, but you yourself are always
on the classical side. Why? Because a quantum state is just a representation of your know-
ledge – and you, by definition, are a classical being.

But what if you want to apply quantum mechanics to the whole universe, including your-
self? The answer, in the epistemic-type interpretations, is simply that you don't ask that sort
of question! Incidentally, that was Bohr's all-time favorite philosophical move, his WWF
piledriver: “You're not allowed to ask such a question!”

On the other side, we've got the interpretations that do try in different ways to make
sense of putting yourself in superposition: many-worlds, Bohmian mechanics, etc.

Now, to hardheaded problem-solvers like ourselves, this might seem like a big dispute
over words – why bother? I actually agree with that: if it were just a dispute over words,
then we shouldn't bother! But as David Deutsch pointed out in the late 1970s, we can con-
ceive of experiments that would differentiate the first type of interpretation from the second
type. The simplest experiment would just be to put yourself in coherent superposition and
see what happens! Or if that's too dangerous, put someone else in coherent superposition.
The point being that, if human beings were regularly put into superposition, then the whole
business of drawing a line between “classical observers” and the rest of the universe would
become untenable.

But alright – human brains are wet, goopy, sloppy things, and maybe we won't be able
to maintain them in coherent superposition for 500 million years. So what's the next best
thing? Well, we could try to put a computer in superposition. The more sophisticated the
computer was – the more it resembled something like a brain, like ourselves – the further
up we would have pushed the “line” between quantum and classical. You can see how it's
only a minuscule step from here to the idea of quantum computing.

I’d like to draw a more general lesson here. What's the point of talking about philosoph-
ical questions? Because we're going to be doing a fair bit of it here – I mean, of philo-
sophical bullshitting. Well, there's a standard answer, and it's that philosophy is an intel-
lectual clean-up job – the janitors who come in after the scientists have made a mess, to
try and pick up the pieces. So in this view, philosophers sit in their armchairs waiting for
something surprising to happen in science – like quantum mechanics, like the Bell inequal-
ity, like Gödel's Theorem – and then (to switch metaphors) swoop in like vultures and say,
ah, this is what it really meant.

Well, on its face, that seems sort of boring. But as you get more accustomed to this sort
of work, I think what you'll find is...it's still boring!

Personally, I’m interested in results – in finding solutions to nontrivial, well-defined
open problems. So, what's the role of philosophy in that? I want to suggest a more exalted
role than intellectual janitor: philosophy can be a scout. It can be an explorer – mapping out
intellectual terrain for science to later move in on, and build condominiums on or whatever.
Not every branch of science was scouted out ahead of time by philosophy, but some were.
And in recent history, I think quantum computing is really the poster child here. It's fine
to tell people to “Shut up and calculate,” but the question is, what should they calculate?
At least in quantum computing, which is my field, the sorts of things that we like to cal-

culate – capacities of quantum channels, error probabilities of quantum algorithms – are
things people would never have thought to calculate if not for philosophy.

1 E. Schrödinger, What is Life? With Mind and Matter and Autobiographical Sketches,
Cambridge University Press (reprinted edition), 2012.

2 Sets

Here, we're gonna talk about sets. What will these sets contain? Other sets! Like a bunch
of cardboard boxes that you open only to find more cardboard boxes, and so on all the way
down.

You might ask “how is this relevant to a book on quantum computing?”
Well, hopefully we'll see a few answers later. For now, suffice it to say that math is the

foundation of all human thought, and set theory – countable, uncountable, etc. – that's the
foundation of math. So regardless of what a book is about, it seems like a fine place to start.

I probably should tell you explicitly that I’m compressing a whole math course into this
chapter. On the one hand, that means I don't really expect you to understand everything. On
the other hand, to the extent you do understand – hey! You got a whole math course in one
chapter! You're welcome.

So let's start with the empty set and see how far we get.
THE EMPTY SET.
Any questions so far?
Actually, before we talk about sets, we need a language for talking about sets. The

language that Frege, Russell, and others developed is called first-order logic. It includes
Boolean connectives (and, or, not), the equals sign, parentheses, variables, predicates, quan-
tifiers (“there exists” and “for all”) – and that's about it. I’m told that the physicists have
trouble with these. Hey, I’m just ribbin’ ya. If you haven't seen this way of thinking before,
then you haven't seen it. But maybe, for the benefit of the physicists, let's go over the basic
rules of logic.

Rules of first-order logic

The rules all concern how to construct sentences that are valid – which, informally, means
“tautologically true” (true for all possible settings of the variables), but which for now we
can just think of as a combinatorial property of certain strings of symbols. I’ll write logical
sentences in a typewriter font in order to distinguish them from the surrounding English.

So, for example, here are the Peano axioms for the nonnegative integers written in first-or-
der logic. In these, S(x) is the successor function, intuitively S(x) = x + 1, and I’m assuming
functions have already been defined.

Peano axioms for the nonnegative integers

The nonnegative integers themselves are called a model for the axioms: in logic, the word
“model” just means any collection of objects and functions of those objects that satisfies
the axioms. Interestingly, though, just as the axioms of group theory can be satisfied by
many different groups, so too the nonnegative integers are not the only model of the Peano
axioms. For example, you should check that you can get another valid model by adding ex-
tra, made-up integers that aren't reachable from 0 – integers ‘beyond infinity,’ so to speak.
Though once you add one such integer, you need to add infinitely many of them, since
every integer needs a successor.

Writing down these axioms seems like pointless hairsplitting – and indeed, there's an ob-
vious chicken-and-egg problem. How can we state axioms that will put the integers on a

more secure foundation, when the very symbols and so on that we're using to write down
the axioms presuppose that we already know what the integers are?

Well, precisely because of this point, I don't think that axioms and formal logic can be
used to place arithmetic on a more secure foundation. If you don't already agree that 1 + 1
= 2, then a lifetime of studying mathematical logic won't make it any clearer! But this stuff
is still extremely interesting for at least three reasons.

1. The situation will change once we start talking not about integers, but about dif-
ferent sizes of infinity. There, writing down axioms and working out their conse-
quences is pretty much all we have to go on!

2. Once we've formalized everything, we can then program a computer to reason for
us:

Well, you get the idea. The point is that deriving the conclusion from the premises
is purely a syntactic operation – one that doesn't require any understanding of what
the statements mean.

3. Besides having a computer find proofs for us, we can also treat proofs themselves
as mathematical objects, which opens the way to metamathematics.

Anyway, enough pussyfooting around. Let's see some axioms for set theory. I’ll state the
axioms in English; converting them to first-order logic is left as an exercise for the reader
in most cases.

Axioms of set theory

The axioms all involve a universe of objects called “sets,” and a relationship between sets

that's called “membership” or “containment” and written using the symbol . Every
operation on sets will ultimately be defined in terms of the containment relationship.

• Empty set: There exists an empty set: that is, a set x for which there is no y such

that y x.

• Extensionality: If two sets contain the same members, then the sets are equal. That

is, for all x and y, if (z x if and only if z y for all z), then x = y.
• Pairing: For all sets x and y, there exists a set z = {x, y}: that is, a set z such that,

for all w, w z if and only if (w = x or w = y).
• Union: For all sets x, there exists a set equal to the union of all sets in x.
• Existence of infinite sets: There exists a set x that contains the empty set and that

contains {y} for every y x. (Why must this x have infinitely many elements?)
• Power set: For all sets x, there exists a set consisting of the subsets of x.
• Replacement (actually an infinity of axioms, one for every function A map-

ping sets to sets): For all sets x, there exists a set z = {A(y) | y x}, which
results from applying A to all the elements of x. (Technically, one also has to define
what one means by a “function mapping sets to sets,” something that can be done
although I won't do it here.)

• Foundation: All nonempty sets x have a member y such that for all z, either z

x or z y. (This is a technical axiom, whose point is to rule out sets like
{{{{...}}}}.)

These axioms – called the Zermelo–Fraenkel axioms – are the foundation for basically all
of math. So I thought you should see them at least once in your life.

Alright, one of the most basic questions we can ask about a set is: how big is it? What's
its size, its cardinality? Meaning, how many elements does it have? You might say, just
count the elements. But what if there are infinitely many? Are there more integers than odd
integers? This brings us to Georg Cantor (1845–1918), and the first of his several enorm-
ous contributions to human knowledge. He says two sets have the same cardinality if and
only if their elements can be put in one-to-one correspondence. Period. And if, no matter
how you try to pair off the elements, one set always has elements left over, the set with the
elements left over is the bigger set.

What possible cardinalities are there? Of course, there are finite ones, one for each nat-
ural number. Then there's the first infinite cardinality, the cardinality of the integers, which

Cantor called 0 (“aleph-zero”). The rational numbers have the same cardinality
0, a fact that's also expressed by saying that the rational numbers are countable, meaning

that they can be placed in one-to-one correspondence with the integers. In other words, we
can make an infinite list of them so that each rational number appears eventually in the list.

What's the proof that the rational numbers are countable? You haven't seen it before?
Oh, alright. First, list 0 and then all the rational numbers where the sum of absolute values
of the numerator and denominator is 2. Then, list all the rational numbers where the sum
of absolute values of the numerator and denominator is 3. And so on. It's clear that every
rational number will eventually appear in this list. Hence, there's only a countable infinity
of them. QED.

But Cantor's biggest contribution was to show that not every infinity is countable – so,
for example, the infinity of real numbers is greater than the infinity of integers. More gen-
erally, just as there are infinitely many numbers, there are also infinitely many infinities.

You haven't seen the proof of that either? Alright, alright. Let's say you have an infinite
set A. We'll show how to produce another infinite set, B, which is even bigger than A. This
B will simply be the set of all subsets of A, which is guaranteed to exist by the power set
axiom. How do we know B is bigger than A? Well, suppose we could pair off every ele-

ment a A with an element f(a) B, in such a way that no elements of B were

left over. Then, we could define a new subset S A, consisting of every a that's not

contained in f(a). Notice that this S can't have been paired off with any a A – since
otherwise, a would be contained in f(a) if and only if it wasn't contained in f(a), contradic-
tion. Therefore, B is larger than A, and we've ended up with a bigger infinity than the one
we started with.

This is certainly one of the four or five greatest proofs in all of math – again, good to see
at least once in your life.

Besides cardinal numbers, it's also useful to discuss ordinal numbers. Rather than defin-
ing these, it's easier to just illustrate them. We start with the natural numbers:

Then, we say, let's define something that's greater than every natural number:

What comes after ω?

Now, what comes after all of these?

Alright, we get the idea:

Alright, we get the idea:

Alright, we get the idea:

We could go on for quite a while! Basically, for any set of ordinal numbers (finite or infin-
ite), we stipulate that there's a first ordinal number that comes after everything in that set.

The set of ordinal numbers has the important property of being well ordered, which
means that every subset has a minimum element. This is unlike the integers or the positive
real numbers, where any element has another that comes before it.

Now, here's something interesting. All of the ordinal numbers I’ve listed have a special

property, which is that they have at most countably many predecessors (i.e., at most
0 of them). What if we consider the set of all ordinals with at most countably many prede-

cessors? Well, that set also has a successor, call it α. But does α itself have 0 prede-
cessors? Certainly not, since otherwise α wouldn't be the successor to the set; it would be in

the set! The set of predecessors of α has the next possible cardinality, which is called
1.

What this sort of argument proves is that the set of cardinalities is itself well ordered.
After the infinity of the integers, there's a “next bigger infinity,” and a “next bigger infinity
after that,” and so on. You never see an infinite decreasing sequence of infinities, as you do
with the real numbers.

So, starting from 0 (the cardinality of the integers), we've seen two different ways
to produce “bigger infinities than infinity.” One of these ways yields the cardinality of sets
of integers (or, equivalently, the cardinality of real numbers), which we denote . The

other way yields 1. Is equal to 1? Or to put it another way: is there any in-
finity of intermediate size between the infinity of the integers and the infinity of the reals?

Well, this question was David Hilbert's first problem in his famous 1900 address. It stood
as one of the great math problems for over half a century, until it was finally “solved” (in a
somewhat disappointing way, as you'll see).

Cantor himself believed there were no intermediate infinities, and called this conjecture
the Continuum Hypothesis. Cantor was extremely frustrated with himself for not being able
to prove it.

Besides the Continuum Hypothesis, there's another statement about these infinite sets
that no one could prove or disprove from the Zermelo–Fraenkel axioms. This statement is
the infamous Axiom of Choice. It says that, if you have a (possibly infinite) set of sets,
then it's possible to form a new set by choosing one item from each set. Sound reasonable?
Well, if you accept it, you also have to accept that there's a way to cut a solid sphere into
a finite number of pieces, and then rearrange those pieces into another solid sphere a thou-
sand times its size. (That's the “Banach–Tarski paradox.” Admittedly, the “pieces” are a bit
hard to cut out with a knife...)

Why does the Axiom of Choice have such dramatic consequences? Basically, because it
asserts that certain sets exist, but without giving any rule for forming those sets. As Ber-
trand Russell put it: “To choose one sock from each of infinitely many pairs of socks re-
quires the Axiom of Choice, but for shoes the Axiom is not needed.” (What's the differen-
ce?)

The Axiom of Choice turns out to be equivalent to the statement that every set can be
well ordered: in other words, the elements of any set can be paired off with the ordinals 0,
1, 2,..., ω, ω + 1,..., 2ω, 3ω,...up to some ordinal. If you think, for example, about the set of
real numbers, this seems far from obvious.

It's easy to see that well-ordering implies the Axiom of Choice: just well-order the whole
infinity of socks, then choose the sock from each pair that comes first in the ordering.

Do you want to see the other direction? Why the Axiom of Choice implies that every set
can be well ordered? Yes?

OK! We have a set A that we want to well-order. For every proper subset B A,

we'll use the Axiom of Choice to pick an element f(B) A - B (where A - B means the

set of all elements of A that aren't also elements of B). Now we can start well-ordering A,
as follows: first let s0 = f({}), then let s1 = f({s0}), s2 = f({s0, s1}), and so on.

Can this process go on forever? No, it can't. For if it did, then by a process of “transfinite
induction,” we could stuff arbitrarily large infinite cardinalities into A. And while admit-
tedly A is infinite, it has at most a fixed infinite size! So the process has to stop somewhere.
But where? At a proper subset B of A? No, it can't do that either – since if it did, then we'd
just continue the process by adding f(B). So the only place it can stop is A itself. Therefore,
A can be well ordered.

Earlier I mentioned inherent mathematical difficulties with the continuum, so I’ve got a
puzzle somewhat related to that.

You know the real line, right? Suppose we want a union of open intervals (perhaps in-
finitely many) that covers every rational point. Question: does the sum of the lengths of
the intervals have to be infinite? One would certainly think so! After all, there are rational
numbers pretty much everywhere!

Solution: Not only can the sum of the lengths of the intervals be finite, it can be arbitrar-
ily close to zero! Simply enumerate the rational numbers, r0, r1, etc. Then put an interval
of size ε/2i around ri for every i.

Here's a harder one: we want a subset S of the points (x, y) in unit square [0, 1]2 so that,

for every real number x [0, 1], there's only a countable number of y in [0, 1] for which

(x, y) in S. Can we choose S so that, for every (x, y) [0, 1]2, either (x, y) S or

(y, x) S?
I’ll give you two answers: that it isn't possible, and that it is possible.
We'll start with why it isn't possible. For this, I’ll assume that the Continuum Hypothesis

is false. Then, there's some proper subset A [0, 1] that has cardinality 1. Let

B be the set of all y that appear in points (x, y) S over all x A. Since for each x

there's countably many such y, the set B also has cardinality 1. So, since we assumed

that 1 is less than , there must be some y0 [0, 1] not in B. Now observe that

there are 1 real numbers x A, but none of them satisfy (x, y0) S, and only

0 < 1 of them can satisfy (y0, x) S, so there's some x0 for which (x0, y0) and
(y0, x0) are not in S.

Now let's see why it is possible. For this, I want to assume both the Axiom of Choice

and the Continuum Hypothesis. By the Continuum Hypothesis, there are only 1 real
numbers in [0, 1]. So by the Axiom of Choice, we can well-order those real numbers, and

do it in such a way that every number has at most 0 predecessors. Now put (x, y) in S

if and only if y x, where means comparison with respect to the well-ordering

(not the usual ordering on real numbers). Then for every (x, y), clearly either (x, y) S

or (y, x) S.
This chapter's last puzzle is about the power of self-esteem and positive thinking. Is there

any theorem that you can only prove by assuming as an axiom that the theorem can be
proved?

3 Gödel, Turing, and friends

In the last chapter, we talked about the rules for first-order logic. There's an amazing result
called Gödel's Completeness Theorem that says that these rules are all you ever need. In oth-
er words: if, starting from some set of axioms, you can't derive a contradiction using these
rules, then the axioms must have a model (i.e., they must be consistent). Conversely, if the
axioms are inconsistent, then the inconsistency can be proved using these rules alone.

Think about what that means. It means that Fermat's Last Theorem, the Poincaré Con-
jecture, or any other mathematical achievement you care to name can be proved by starting
from the axioms for set theory, and then applying these piddling little rules over and over
again. Probably 300 million times, but still...

How does Gödel prove the Completeness Theorem? The proof has been described as “ex-
tracting semantics from syntax.” We simply cook up objects to order as the axioms request
them! And if we ever run into an inconsistency, that can only be because there was an in-
consistency in the original axioms.

One immediate consequence of the Completeness Theorem is the Löwenheim–Skolem
Theorem: every consistent set of axioms has a model of at most countable cardinality. (Note:
One of the best predictors of success in mathematical logic is having an umlaut in your
name.) Why? Because the process of cooking up objects to order as the axioms request them
can only go on for a countably infinite number of steps!

It's a shame that, after proving his Completeness Theorem, Gödel never really did any-
thing else of note. (Pause for comic effect.) Well, alright, I guess a year later he proved the
Incompleteness Theorem.

The Incompleteness Theorem says that, given any consistent, computable set of axioms,
there's a true statement about the integers that can never be proved from those axioms. Here,
consistent means that you can't derive a contradiction, while computable means that either
there are finitely many axioms, or else if there are infinitely many, at least there's an al-
gorithm to generate all the axioms.

(If we didn't have the computability requirement, then we could simply take our “axioms”
to consist of all true statements about the integers! In practice, that isn't a very useful set of
axioms.)

But wait! Doesn't the Incompleteness Theorem contradict the Completeness Theorem,
which says that any statement that's entailed by the axioms can be proved from the axioms?
Hold that question; we're gonna clear it up later.

First, though, let's see how the Incompleteness Theorem is proved. People always say
“the proof of the Incompleteness Theorem was a technical tour de force, it took 30 pages,

it requires an elaborate construction involving prime numbers,” etc. Unbelievably, 80 years
after Gödel, that's still how the proof is presented in math classes!

Alright, should I let you in on a secret? The proof of the Incompleteness Theorem is
about two lines. It's almost a triviality. The caveat is that, to give the two-line proof, you
first need the concept of a computer.

When I was in junior high school, I had a friend who was really good at math, but
maybe not so good at programming. He wanted to write a program using arrays, but he
didn't know what an array was. So what did he do? He associated each element of the ar-
ray with a unique prime number, then he multiplied them all together; then, whenever he
wanted to read something out of the array, he factored the product. (If he was programming
a quantum computer, maybe that wouldn't be quite so bad!) Anyway, what my friend did,
that's basically what Gödel did. He made up an elaborate hack in order to program without
programming.

Turing machines

OK, time to bring Mr. T. on the scene.
In 1936, the word “computer” meant a person (usually a woman) whose job was to com-

pute with pencil and paper. Turing wanted to show that, in principle, such a “computer”
could be simulated by a machine. What would the machine look like? Well, it would have
to able to write down its calculations somewhere. Since we don't really care about hand-
writing, font size, etc., it's easiest to imagine that the calculations are written on a sheet of
paper divided into squares, with one symbol per square, and a finite number of possible
symbols. Traditionally, paper has two dimensions, but without loss of generality we can
imagine a long, one-dimensional paper tape. How long? For the time being, we'll assume
as long as we need.

What can the machine do? Well, clearly it has to be able to read symbols off the tape
and modify them based on what it reads. We'll assume for simplicity that the machine reads
only one symbol at a time. But in that case, it had better be able to move back and forth on
the tape. It would also be nice if, once it's computed an answer, the machine can halt! But
at any time, how does the machine decide which things to do? According to Turing, this
decision should depend only on two pieces of information: (1) the symbol currently being
read, and (2) the machine's current “internal configuration” or “state.” Based on its internal
state and the symbol currently being read, the machine should (1) write a new symbol in
the current square, overwriting whatever symbol is there, (2) move backward or forward
one square, and (3) switch to a new state or halt.

Finally, since we want this machine to be physically realizable, the number of possible
internal states should be finite. These are the only requirements.

Turing's first result is the existence of a “universal” machine: a machine whose job is to
simulate any other machine described via symbols on the tape. In other words, universal
programmable computers can exist. You don't have to build one machine for email, another
for playing DVDs, another for Tomb Raider, and so on: you can build a single machine that
simulates any of the other machines, by running different programs stored in memory. But
this result is not even the main result of the paper.

So what's the main result? It's that there's a basic problem, called the halting problem,
that no program can ever solve. The halting problem is this: we're given a program, and we
want to decide if it ever halts. Of course, we can run the program for a while, but what if
the program hasn't halted after a million years? At what point should we give up?

One piece of evidence that this problem might be hard is that, if we could solve it, then
we could also solve many famous unsolved math problems. For example, Goldbach's Con-
jecture says that every even number 4 or greater can be written as a sum of two primes.
Now, we can easily write a program that tests 4, 6, 8, and so on, halting only if it finds a
number that can't be written as a sum of two primes. Then deciding whether that program
ever halts is equivalent to deciding the truth of Goldbach's Conjecture.

But can we prove there's no program to solve the halting problem? This is what Turing
does. His key idea is not even to try to analyze the internal dynamics of such a program,
supposing it existed. Instead, he simply says, suppose by way of contradiction that such a
program P exists. Then, we can modify P to produce a new program P' that does the fol-
lowing. Given another program Q as input, P'

1. runs forever if Q halts given its own code as input, or
2. halts if Q runs forever given its own code as input.

Now, we just feed P' its own code as input. By the conditions above, P' will run forever if it
halts, or halt if it runs forever. Therefore, P' – and by implication P – can't have existed in
the first place.

As I said, once you have Turing's results, Gödel's results fall out for free as a bonus.
Why? Well, suppose the Incompleteness Theorem was false – that is, there existed a con-
sistent, computable proof system F from which any statement about integers could be either
proved or disproved. Then given a computer program, we could simply search through
every possible proof in F, until we found either a proof that the program halts or a proof that
it doesn't halt. This is possible because the statement that a particular computer program
halts is ultimately just a statement about integers. But this would give us an algorithm to
solve the halting problem, which we already know is impossible. Therefore, F can't exist.

By thinking more carefully, we can actually squeeze out a stronger result. Let P be a pro-
gram that, given as input another program Q, tries to decide whether Q halts by the strategy
above (i.e., searching through every possible proof and disproof that Q halts in some formal
system F). Then, as in Turing's proof, suppose we modify P to produce a new program P'
that

1. runs forever if Q given its own code as input is proved to halt, or
2. halts if Q given its own code as input is proved to run forever.

Now suppose we feed P' its own code as input. Then we know that P' will run forever,
without ever discovering a proof or disproof that it halts. For if P' finds a proof that it halts,
then it will run forever, and if it finds a proof that it runs forever, then it will halt, which is
a contradiction.

But there's an obvious paradox: why isn't the above argument, itself, a proof that P' will
run forever given its own code as input? And why won't P' discover this proof that it runs
forever – and therefore halt, and therefore run forever, and therefore halt, etc.?

The answer is that, in “proving” that P' runs forever, we made a hidden assumption:
namely, that the proof system F is consistent. If F were inconsistent, then there could per-
fectly well be a proof that P' halts, even if the reality were that P' ran forever.

But this means that, if F could prove that F was consistent, then F could also prove that P'
ran forever – thereby bringing back the above contradiction. The only possible conclusion
is that if F is consistent, then F can't prove its own consistency. This result is sometimes
called Gödel's Second Incompleteness Theorem.

The Second Incompleteness Theorem establishes what we maybe should have expected
all along: that the only mathematical theories pompous enough to prove their own consist-
ency are the ones that don't have any consistency to brag about! If we want to prove that
a theory F is consistent, then we can only do it within a more powerful theory – a trivial
example being F + Con(F) (the theory F plus the axiom that F is consistent). But then how
do we know that F + Con(F) is itself consistent? Well, we can only prove that in a still
stronger theory: F + Con(F) + Con(F + Con(F)) (which is F + Con(F) plus the axiom that
F + Con(F) is consistent). And so on infinitely. (Indeed, even beyond infinitely, into the
countable ordinals.)

To take a concrete example: the Second Incompleteness Theorem tells us that the most
popular axiom system for the integers, Peano Arithmetic, can't prove its own consistency.
Or in symbols, PA can't prove Con(PA). If we want to prove Con(PA), then we need to
move to a stronger axiom system, such as ZF (the Zermelo–Fraenkel axioms for set the-
ory). In ZF, we can prove Con(PA) pretty easily, by using the Axiom of Infinity to conjure
up an infinite set that then serves as a model for PA.

On the other hand, again by the Second Incompleteness Theorem, ZF can't prove its own
consistency. If we want to prove Con(ZF), the simplest way to do it is to posit the existence
of infinities bigger than anything that can be defined in ZF. Such infinities are called “large
cardinals.” (When set theorists say large, they mean large.) Once again, we can prove the
consistency of ZF in ZF + LC (where LC is the axiom that large cardinals exist). But if we
want to prove that ZF + LC is itself consistent, then we need a still more powerful theory,
such as one with even bigger infinities.

A quick question to test your understanding: while we can't prove in PA that Con(PA),
can we least prove in PA that Con(PA) implies Con(ZF)?

No, we can't. For then we could also prove in ZF that Con(PA) implies Con(ZF). But
since ZF can prove Con(PA), this would mean that ZF can prove Con(ZF), which contra-
dicts the Second Incompleteness Theorem.

I promised to explain why the Incompleteness Theorem doesn't contradict the Complete-
ness Theorem. The easiest way to do this is probably through an example. Consider the
“self-hating theory” PA + Not(Con(PA)), or Peano Arithmetic plus the assertion of its own
inconsistency. We know that, if PA is consistent, then this strange theory must be consistent
as well – since otherwise PA would prove its own consistency, which the Incompleteness
Theorem doesn't allow. It follows, by the Completeness Theorem, that PA + Not(Con(PA))
must have a model. But what could such a model possibly look like? In particular, what
would happen if, within that model, you just asked to see the proof that PA was inconsist-
ent?

I’ll tell you what would happen: the axioms would tell you that proof of PA's inconsist-
ency is encoded by a positive integer X. And then you would say “but what is X?” And
the axioms would say “X.” And you would say “But what is X, as an ordinary positive in-
teger?”

“What do you mean, ordinary positive integer?”
“I mean, not some abstract entity denoted by a symbol like X, but 1, or 2, or 3, or some

other concrete integer that we get by starting from 0 and then adding 1 a finite number of
times.”

“What do you mean, a finite number of times?”
“I mean, like, once, or twice, or three times...”
“But then your definition is circular!”
“Look, you know what I mean by finite!”
“No, no, no! Talk to the axioms.”
“Alright, is X greater or smaller than 10500000?”

“Greater.” (The axioms aren't stupid: they know that if they said “smaller,” then you
could simply try every smaller number and verify that none of them encode a proof of PA's
inconsistency.)

“Alright then, what's X + 1?”
“Y.”

And so on. The axioms will keep cooking up fictitious numbers to satisfy your requests,
and assuming that PA itself is consistent, you'll never be able to trap them in an inconsisten-
cy. The point of the Completeness Theorem is that the whole infinite set of fictitious num-
bers the axioms cook up will constitute a model for PA – just not the usual model (i.e., the
ordinary positive integers)! If we insist on talking about the usual model, then we switch
from the domain of the Completeness Theorem to the domain of the Incompleteness The-
orem.

Do you remember the puzzle from Chapter 2? The puzzle was whether there's any theor-
em that can only be proved by assuming as an axiom that it can be proved. In other words,
does “just believing in yourself” make any formal difference in mathematics? We're now
in a position to answer that question.

Let's suppose, for concreteness, that the theorem we want to prove is the Riemann Hy-
pothesis (RH), and the formal system we want to prove it in is Zermelo–Fraenkel set theory
(ZF). Suppose we can prove in ZF that, if ZF proves RH, then RH is true. Then taking the
contrapositive, we can also prove in ZF that if RH is false, then ZF does not prove RH.
In other words, we can prove in ZF + not(RH) that not(RH) is perfectly consistent with
ZF. But this means that the theory ZF + not(RH) proves its own consistency – and this, by
Gödel, means that ZF + not(RH) is inconsistent. But saying that ZF + not(RH) is incon-
sistent is equivalent to saying that RH is a theorem of ZF. Therefore, we've proved RH. In
general, we find that, if a statement can be proved by assuming as an axiom that it's prov-
able, then it can also be proved without assuming that axiom. This result is known as Löb's
Theorem (again with the umlauts), though personally I think that a better name would be
the “You-Had-the-Mojo-All-Along Theorem.”

Oh, you remember earlier we talked about the Axiom of Choice and the Continuum Hy-
pothesis? These are natural statements about the continuum that, since the continuum is
such a well-defined mathematical entity, must certainly be either true or false. So, how did
those things ever get decided? Well, Gödel proved in 1939 that assuming the Axiom of
Choice (AC) or the Continuum Hypothesis (CH) can never lead to an inconsistency. In oth-
er words, if the theories ZF + AC or ZF + CH were inconsistent, that could only be because
ZF itself was inconsistent.

This raised an obvious question: can we also consistently assume that AC and CH are
false? Gödel worked on this problem but wasn't able to answer it. Finally, Paul Cohen gave
an affirmative answer in 1963, by inventing a new technique called “forcing.” (For that,
he won the only Fields Medal that's ever been given for set theory and the foundations of
math.)

So, we now know that the usual axioms of mathematics don't decide the Axiom of
Choice and the Continuum Hypothesis one way or another. You're free to believe both,

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos76699

neither, or one and not the other without fear of contradiction. And sure enough, opinion
among mathematicians about AC and CH remains divided to this day, with many interest-
ing arguments for and against (which we unfortunately don't have time to explore the de-
tails of).

Let me end with a possibly surprising observation: the independence of AC and CH from
ZF set theory is itself a theorem of Peano Arithmetic. For, ultimately, Gödel and Cohen's
consistency theorems boil down to combinatorial assertions about manipulations of first-
order sentences – which can in principle be proved directly, without ever thinking about the
transfinite sets that those sentences purport to describe. (In practice, translating these res-
ults into combinatorics would be horrendously complicated, and Cohen has said that trying
to think about these problems in finite combinatorial terms led him nowhere. But we know
that in theory it could be done.) This provides a nice illustration of what, to me, is the cent-
ral philosophical question underlying this whole business: do we ever really talk about the
continuum, or do we only ever talk about finite sequences of symbols that talk about the
continuum?

Bonus addendum

What does any of this have to do with quantum mechanics? I will now attempt the heroic
task of making a connection. What I’ve tried to impress on you is that there are profound
difficulties if we want to assume the world is continuous. Take a pen, for example: how

many different positions can I put it in on the surface of a table? 1? More than

1? Less than 1? We don't want the answers to “physics” questions to depend on the
axioms of set theory!

Ah, but you say my question is physically meaningless, since the pen's position could
never actually be measured to infinite precision? Sure – but the point is, you need a phys-
ical theory to tell you that!

Of course, quantum mechanics gets its very name from the fact that a lot of the observ-
ables in the theory, like energy levels, are discrete – “quantized.” This seems paradoxical,
since one of the criticisms that computer scientists level against quantum computing is that,
as they see it, it's a continuous model of computation!

My own view is that quantum mechanics, like classical probability theory, should be
seen as somehow “intermediate” between a continuous and discrete theory. (Here, I’m as-
suming that the Hilbert space1 or probability space is finite dimensional.) What I mean is

that, while there are continuous parameters (the probabilities or amplitudes, respectively),
those parameters are not directly observable, and that has the effect of “shielding” us from
the bizarro universe of the Axiom of Choice and the Continuum Hypothesis. We don't
need a detailed physical theory to tell us that whether amplitudes are rational or irrational,

whether there are more or less than 1 possible amplitudes, etc., are physically mean-
ingless questions. This follows directly from the fact that, if we wanted to learn an amp-
litude exactly, then (even assuming no error!) we would need to measure the appropriate
state infinitely many times.

Exercise

Let BB(n), or the “nth Busy Beaver number,” be the maximum number of steps that an
n-state Turing machine can make on an initially blank tape before halting. (Here, the max-
imum is over all n-state Turing machines that eventually halt.)

1. Prove that BB(n) grows faster than any computable function.
2. Let S = 1/BB(1) + 1/BB(2) + 1/BB(3) + ···

Is S a computable real number? In other words, is there an algorithm that, given as
input a positive integer k, outputs a rational number S' such that |S - S'| < 1/k?

Further reading

An excellent resource for the material in this chapter is Gödel's Theorem: An Incomplete
Guide to its Use and Abuse, by Torkel Franzén (A. K. Peters Ltd, 2005).

1 Please don't be alarmed by the term “Hilbert space,” which I’ll use occasionally in this
book. All it means is “the space of all possible quantum states of some system.” With in-
finite-dimensional systems, the definition of Hilbert space is a bit subtle – but in this book,
we'll only care about finite-dimensional systems. And as we'll see in Chapter 9, the Hilbert
space of a finite-dimensional system is nothing other than : an N-dimensional complex
vector space.

4 Minds and machines

Now we're going to launch into something I know you've all been waiting for: a philosoph-
ical food fight about minds, machines, and intelligence!

First, though, let's finish talking about computability. One concept we'll need again and
again in this chapter is that of an oracle. The idea is a pretty obvious one: we assume we
have a “black box,” or “oracle,” that immediately solves some hard computational problem,
and then see what the consequences are! (When I was a freshman, I once started talking to
my professor about the consequences of a hypothetical “NP-completeness fairy”: a being
that would instantly tell you whether a given Boolean formula was satisfiable or not. The
professor had to correct me: they're not called “fairies”; they're called “oracles.” Much more
professional!)

Oracles were apparently first studied by Turing, in his 1938 PhD thesis. Obviously, any-
one who could write a whole thesis about these fictitious entities would have to be an ex-
tremely pure theorist, someone who wouldn't be caught dead doing anything relevant. This
was certainly true in Turing's case – indeed, he spent the years after his PhD, from 1939 to
1943, studying certain abstruse symmetry transformations on a 26-letter alphabet.

Anyway, we say that problem A is Turing reducible to problem B, if A is solvable by a
Turing machine given an oracle for B. In other words, “A is no harder than B”: if we had a
hypothetical device to solve B, then we could also solve A. Two problems are Turing equi-
valent if each is Turing reducible to the other. So, for example, the problem of whether a
statement can be proved from the axioms of set theory is Turing equivalent to the halting
problem: if you can solve one, you can solve the other.

Now, a Turing degree is the set of all problems that are Turing equivalent to a given prob-
lem. What are some examples of Turing degrees? Well, we've already seen two examples:
(1) the set of computable problems, and (2) the set of problems that are Turing equivalent
to the halting problem. Saying that these Turing degrees aren't equal is just another way of
saying that the halting problem isn't solvable.

Are there any Turing degrees above these two? In other words, is there any problem even
harder than the halting problem, one that we can't solve even with the help of an oracle to the
halting problem? Well, consider the following “super halting problem”: given a Turing ma-
chine with an oracle for the halting problem, decide if it halts! Can we prove that this super
halting problem is unsolvable, even given an oracle for the ordinary halting problem? Yes,
we can! We simply take Turing's original proof that the halting problem is unsolvable, and
“shift everything up a level” by giving all the machines an oracle for the halting problem.

Everything in the proof goes through as before, a fact we express by saying that the proof
“relativizes.”

Here's a subtler question: is there any problem of intermediate difficulty between the
computable problems and the halting problem? This question was first asked by Emil Post
in 1944, and was finally answered in 1956, by Richard Friedberg in the US and (independ-
ently) A. A. Muchnik in the USSR. The answer is yes. Indeed, Friedberg and Muchnik
actually proved a stronger result: that there are two problems A and B, both of which are
solvable given an oracle for the halting problem, but neither of which is solvable given an
oracle for the other. These problems are constructed via an infinite process whose purpose
is to kill off every Turing machine that might reduce A to B or B to A. Unfortunately, the
resulting problems are extremely contrived; they don't look like anything that might arise
in practice. And even today, we don't have a single example of a “natural” problem with
intermediate Turing degree.

Since Friedberg and Muchnik's breakthrough, the structure of the Turing degrees has
been studied in more detail than you can possibly imagine. Here's one of the simplest ques-
tions: if two problems A and B are both reducible to the halting problem, then must there
be a problem C that's reducible to A and B, such that any problem that's reducible to both
A and B is also reducible to C? Hey, whatever floats your boat! But this is the point where
some of us say, maybe we should move on to the next topic...(Incidentally, the answer to
the question is no.)

Alright, the main philosophical idea underlying computability is what's called the
Church–Turing Thesis. It's named after Turing and his adviser Alonzo Church, even though
what they themselves believed about “their” thesis is open to dispute! Basically, the thesis
is that any function “naturally to be regarded as computable” is computable by a Turing
machine. Or in other words, any “reasonable” model of computation will give you either
the same set of computable functions as the Turing machine model, or else a proper subset.

Already there's an obvious question: what sort of claim is this? Is it an empirical claim,
about which functions can be computed in physical reality? Is it a definitional claim, about
the meaning of the word “computable?” Is it a little of both?

Well, whatever it is, the Church–Turing Thesis can only be regarded as extremely suc-
cessful, as theses go. As you know – and as we'll discuss later – quantum computing
presents a serious challenge to the so-called Extended Church–Turing Thesis: that any
function naturally to be regarded as efficiently computable is efficiently computable by a
Turing machine. But in my view, so far there hasn't been any serious challenge to the ori-
ginal Church–Turing Thesis – neither as a claim about physical reality, nor as a definition
of “computable.”

There have been plenty of nonserious challenges to the Church–Turing Thesis. In fact,
there are whole conferences and journals devoted to these challenges – Google “hypercom-
putation.” I’ve read some of this stuff, and it's mostly along the lines of, well, suppose you

could do the first step of a computation in one second, the next step in a half second, the
next step in a quarter second, the next step in an eighth second, and so on. Then in two
seconds you'll have done an infinite amount of computation! Well, as stated it sounds a bit
silly, so maybe sex it up by throwing in a black hole or something. How could the hide-
bound Turing reactionaries possibly object? (It reminds me of the joke about the supercom-
puter that was so fast, it could do an infinite loop in 2.5 seconds.)

We should immediately be skeptical that, if Nature was going to give us these vast com-
putational powers, she would do so in a way that's so mundane, so uninteresting. Without
making us sweat or anything. But admittedly, to really see why the hypercomputing pro-
posals fail, you need the entropy bounds of Bekenstein, Bousso, and others – which are
among the few things the physicists think they know about quantum gravity, and which
we'll say something about later in the book. So the Church–Turing Thesis – even its origin-
al, nonextended version – really is connected to some of the deepest questions in physics.
But in my opinion, neither quantum computing, nor analog computing, nor anything else,
has mounted a serious challenge to that thesis in the 75 years since it was formulated.

A closely-related objection to this computation by geometric series is that we do sort
of understand why this model isn't physical: we believe that the very notion of time starts
breaking down when you get down to around 10-43 seconds (the Planck scale). We don't
know exactly what happens there. Nevertheless, the situation seems not the slightest bit
analogous to quantum computing (for example). In quantum computing, as we'll see, no
one has any quantitative idea of where the theory could break down and the computer could
stop working – which leads to the conjecture that maybe it won't stop working.

Once you get to the Planck scale, you might say we're getting into a really sophisticated
argument. Why not just say you're always limited in practice by noise and imperfection?

The question is why are you limited? Why can't you store a real number in a register?
I think that if you try to make the argument precise, ultimately, you're going to be talking
about the Planck scale.

If we interpret the Church–Turing Thesis as a claim about physical reality, then it should
encompass everything in that reality, including the goopy neural nets between your ears.
This leads us, of course, straight into the cratered intellectual battlefield that I promised to
lead you into.

As a historical remark, it's interesting that the possibility of thinking machines isn't
something that occurred to people gradually, after they'd already been using computers for
decades. Instead, it occurred to them immediately, the minute they started talking about
computers themselves. People like Leibniz and Babbage and Lovelace and Turing and von
Neumann understood from the beginning that a computer wouldn't just be another steam
engine or toaster – that, because of the property of universality (whether or not they called
it that), it's difficult even to talk about computers without also talking about ourselves.

Now, I ask you to put down this book for a few minutes, and read Turing's second fam-
ous paper, “Computing machinery and intelligence.”1

What's the main idea of this paper? As I read it, it's a plea against meat chauvinism. Sure,
Turing makes some scientific arguments, some mathematical arguments, some epistemolo-
gical arguments. But beneath everything else is a moral argument. Namely: if a computer
interacted with us in a way that was indistinguishable from a human, then of course we
could say the computer wasn't “really” thinking, that it was just a simulation. But on the
same grounds, we could also say that other people aren't really thinking, that they merely
act as if they're thinking. So what entitles us to go through such intellectual acrobatics in
the one case but not the other?

If you'll allow me to editorialize (as if I ever do otherwise...), this moral question, this
question of double standards, is really where Searle, Penrose, and every other “strong AI
skeptic” comes up empty for me. One can indeed give weighty and compelling arguments
against the possibility of thinking machines. The only problem with these arguments is that
they're also arguments against the possibility of thinking brains!

So, for example: one popular argument is that, if a computer appears to be intelligent,
that's merely a reflection of the intelligence of the humans who programmed it. But what if
humans’ intelligence is just a reflection of the billion-year evolutionary process that gave
rise to it? What frustrates me every time I read the AI skeptics is their failure to consider
these parallels honestly. The “qualia” and “aboutness” of other people is simply taken for
granted. It's only the qualia of machines that's in question.

But perhaps a skeptic could retort: I believe other people think because I know I think,
and other people look sort of similar to me – they've also got five fingers, hair in their
armpits, etc. But a robot looks different – it's made of metal, it's got an antenna, it lumbers
across the room, etc. So even if the robot acts like it's thinking, who knows? But if I accept
this argument, why not go further? Why can't I say, I accept that white people think, but
those blacks and Asians, who knows about them? They look too dissimilar from me.

In my view, one can divide everything that's been said about artificial intelligence into
two categories: the 70% that's somewhere in Turing's paper from 1950, and the 30% that's
emerged from a half-century of research since then.

So, after 60 plus years, there are some things we can say that would've surprised Alan
Turing. What are those things? Well, one of them is how little progress has been made,
compared to what he expected! Do you remember, Turing made a falsifiable prediction?

I believe that in about fifty years’ time it will be possible, to programme computers,
with a storage capacity of about 109, to make them play the imitation game so well
that an average interrogator will not have more than 70 per cent chance of making the
right identification after five minutes of questioning.

How well has his prediction fared? First, let's note that the prediction about computers
themselves was damn good. Turing predicted that in 50 years’ time (i.e., 2000), we'd be
programming computers with a storage capacity of about 109 (i.e., one gig).

But what about programming the computers to pass the imitation game? How well has
Turing's prediction fared there?

Well, some of you might have heard of a program called ELIZA, written by Joseph
Weizenbaum in 1966. This program simulates a psychotherapist who keeps spitting back
whatever you said. The amazing thing Weizenbaum found is that many people will spill
their hearts out to this program! And sometimes, if you then tell them they were talking to
a program (and an extremely simple one at that), they won't believe you.

Years ago, someone had the brilliant idea to take the original ELIZA program and let
it loose in AOL chat rooms to see what happened. If you go to http://fury.com/aoliza, you
can see some hilarious (fortunately anonymized) examples of people trying to seduce the
program, telling it about their infidelities, etc. Here's one of my favorite exchanges, from a
guy who, before moving on to amorous solicitations, had told the program that he planned
to finish his B of A and then “move into corporate business alliance with Starbucks”:

GUY: I think that u are getting off on playing with my mind
ELIZA: your mind?
GUY: frustrating me by not joining in my fantasy
ELIZA: your fantasy?
GUY: about having mind blowing sex with u
ELIZA: does that have anything to do with the fact that your b of a and then you will

move into corporate business alliance with starbucks?
The state of the art in terms of man–machine repartee has advanced beyond this, but not
that far beyond. It seems one actually needs to revise the Turing Test, to say that, if we
want to verify intelligence in a computer, then we need some minimal level of intelligence
in the human interrogator.

Of course, the problem here is that these guys assumed they were talking to a human.
To satisfy the conditions of the Turing Test, the interrogator would be trying to distinguish
a human from a computer. So, this isn't a real Turing Test; it's merely amusing. However,
for the past 15 years, a guy named Hugh Loebner has been running a contest2 that's closer
to what Turing had in mind. Here the testers are told that they're trying to distinguish hu-
mans from computers – yet many of the transcripts have been just as depressing, both from
the standpoint of machine intelligence and from that of human intelligence. (E.g., a woman
who tried to converse intelligently about Shakespeare got classified as a computer, since
“no human would know that much about Shakespeare...”)

You might wonder, what if we had a computer doing the interrogation instead of a hu-
man? As it turns out, that's not at all a hypothetical situation. In 2006, a guy named Luis von

http://fury.com/aoliza

Ahn won a MacArthur award for (among other things) his work on CAPTCHAs, which are
those tests that websites use to distinguish legitimate users from spambots. I’m sure you've
encountered them – you know, the things where you see those weird curvy letters that you
have to retype. The key property of these tests is that a computer should be able to generate
and grade them, but not pass them! (A lot like professors making up a midterm...) Only
humans should be able to pass the tests. So basically, these tests capitalize on the failures
of AI. (Well, they also capitalize on the computational hardness of inverting one-way func-
tions, which we'll get to later.)

One interesting aspect of CAPTCHAs is that they've already led to an arms race between
the CAPTCHA programmers and the AI programmers. When I was at Berkeley, some of
my fellow grad students wrote a program3 that broke a CAPTCHA called Gimpy maybe
30% of the time. So then the CAPTCHAs have to be made harder, and then the AI people
get back to work, and so on. Who will win?

You see: every time you set up a Yahoo! Mail account, you're directly confronting age-
old mysteries about what it means to be human...

Despite what I said about the Turing Test, there have been some dramatic successes of
AI. We all know about Kasparov and Deep Blue, and IBM’s Watson (the computer that
won at Jeopardy!, defeating the human champion Ken Jennings). Maybe less well known
is that, in 1996, a program called Otter4 was used to solve a 60-year-old open problem in
algebra called the Robbins Conjecture, which Tarski and other famous mathematicians had
worked on. (Apparently, for decades Tarski would give the problem to his best students.
Then, eventually, he started giving it to his worst students...) The problem is easy to state:
given the three axioms

• A or (B or C) = (A or B) or C
• A or B = B or A
• Not(Not(A or B) or Not(A or Not(B))) = A,

can one derive as a consequence that Not(Not(A)) = A?
Let me stress that this was not a case like Appel and Haken's proof of the Four-Color

Theorem, where the computer's role was basically to check thousands of cases. In this case,
the proof was 17 lines long. A human could check the proof by hand, and say, yeah, I
could've come up with that. (In principle!)

What else? Arguably there's a pretty sophisticated AI system that almost all of you used
this morning and will use many more times today. What is it? Right, Google.

You can look at any of these examples – Deep Blue, the Robbins conjecture, Google,
most recently Watson – and say, that's not really AI. That's just massive search, helped
along by clever programming. Now, this kind of talk drives AI researchers up a wall. They
say: if you told someone in the 1960s that in 30 years we'd be able to beat the world grand-

master at chess, and asked if that would count as AI, they'd say, of course it's AI! But now
that we know how to do it, it's no longer AI – it's just search. (Philosophers have a simil-
ar complaint: as soon as a branch of philosophy leads to anything concrete, it's no longer
called philosophy! It's called math or science.)

There's another thing we appreciate now that people in Turing's time didn't really appre-
ciate. This is that, in trying to write programs to simulate human intelligence, we're com-
peting against a billion years of evolution. And that's damn hard. One counterintuitive con-
sequence is that it's much easier to program a computer to beat Garry Kasparov at chess
than to program a computer to recognize faces under varied lighting conditions. Often the
hardest tasks for AI are the ones that are trivial for a five-year-old – since those are the ones
that are so hardwired by evolution that we don't even think about them.

In the last 60 years, have there been any new insights about the Turing Test itself? In my
opinion, not many. There has, on the other hand, been a famous “attempted” insight, which
is called Searle's Chinese Room. This was put forward around 1980, as an argument that
even a computer that did pass the Turing Test wouldn't be intelligent. The way it goes is,
let's say you don't speak Chinese. You sit in a room, and someone passes you paper slips
through a hole in the wall with questions written in Chinese, and you're able to answer the
questions (again in Chinese) just by consulting a rule book. In this case, you might be car-
rying out an intelligent Chinese conversation, yet by assumption, you don't understand a
word of Chinese! Therefore, symbol-manipulation can't produce understanding.

So, how might a strong AI proponent respond to this argument? Well, she might say:
you might not understand Chinese, but the rule book does! Or if you like, understanding
Chinese is an emergent property of the system consisting of you and the rule book, in the
same sense that understanding English is an emergent property of the neurons in your brain.

Searle's response to that is, fine, just memorize the rule book! Then there's no “system”
other than your own brain, but you still don't “understand” Chinese. To which the AI pro-
ponent shoots back: there is too another “system” in this case! Supposing you memorized
the rule book, we'd need to distinguish between the “original” you and the new, simulated
being brought into existence by your following of the memorized rules – a being whose
only relation to you might be that it happens to inhabit the same skull. That response might
sound crazy, but only to someone who's never studied computer science. To a computer
scientist, it seems perfectly reasonable to say that one computation (say, a LISP interpreter)
can conjure into existence a different, unrelated computation (say, a spaceship game) just
by dutifully executing rules.

Look, as I'll discuss later, I don't know whether the conclusion of the Chinese Room
argument is true or false. I don't know what conditions are necessary or sufficient for a
physical system to “understand” Chinese – and neither, I think, does Searle, or anyone else.
But considered as an argument, there are several aspects of the Chinese Room that have
always annoyed me. One of them is the unselfconscious appeal to intuition – “it's just a

rule book, for crying out loud!” – on precisely the sort of question where we should expect
our intuitions to be least reliable. A second is the double standard: the idea that a bundle of
nerve cells can understand Chinese is taken as, not merely obvious, but so unproblematic
that it doesn't even raise the question of why a rule book couldn't understand Chinese as
well. The third thing that annoys me about the Chinese Room argument is the way it gets
so much mileage from a possibly misleading choice of imagery, or, one might say, by try-
ing to sidestep the entire issue of computational complexity purely through clever framing.
We're invited to imagine someone pushing around slips of paper with zero understanding
or insight – much like the doofus freshmen who write (a + b)2 = a2 + b2 on their math tests.
But how many slips of paper are we talking about? How big would the rule book have to
be, and how quickly would you have to consult it, to carry out an intelligent Chinese con-
versation in anything resembling real time? If each page of the rule book corresponded to
one neuron of a native speaker's brain, then probably we'd be talking about a “rule book” at
least the size of the Earth, its pages searchable by a swarm of robots traveling at close to the
speed of light. When you put it that way, maybe it's not so hard to imagine that this enorm-
ous Chinese-speaking entity that we've brought into being might have something we'd be
prepared to call understanding or insight.5

Of course, everyone who talks about this stuff is really tiptoeing around the question of
consciousness. See, consciousness has this weird dual property that, on the one hand, it's
arguably the most mysterious thing we know about, and on the other hand, not only are we
directly aware of it, but in some sense it's the only thing we're directly aware of. You know,
cogito ergo sum and all that. So, to give an example, I might be mistaken about my shirt
being blue – I might be hallucinating or whatever – but I really can't be mistaken about my
perceiving it as blue. (Or if I can, then we get an infinite regress.)

Now, is there anything else that also produces the feeling of absolute certainty? Right –
math! Incidentally, I think this similarity between math and subjective experience might go
a long way toward explaining mathematicians’ “quasi-mystical” tendencies. (I can already
hear some mathematicians wincing. Sorry!) This is a good thing for physicists to under-
stand: when you're talking to a mathematician, you might not be talking to someone who
fears the real world and who's therefore retreated into intellectual masturbation. You might
be talking to someone for whom the real world was never especially real to begin with!

I mean, consider the computer proof of the Four-Color Theorem, which I briefly men-
tioned earlier. That proof solved a great, century-old mathematical problem, but it did so
by reducing the problem to the tedious enumeration of thousands of cases. Why did some
mathematicians look askance at the proof, or at least hold out hope for a better one? Be-
cause the computer “might have made a mistake”? Well, that's a feeble argument, since the
proof has now been rechecked by several independent groups of programmers using differ-
ent hardware and software, and at any rate, humans make plenty of mistakes too!

What it boils down to, I think, is that there is a sense in which the Four-Color Theorem
has been proved, and there's another sense in which many mathematicians understand
proof, and those two senses aren't the same. For many mathematicians, a statement isn't
proved when a physical process (which might be a classical computation, a quantum
computation, an interactive protocol, or something else) terminates saying that it's been
proved – however good the reasons might be to believe that physical process is reliable.
Rather, the statement is proved when they (the mathematicians) feel that their minds can
directly perceive its truth.

Of course, it's hard to discuss these things directly. But what I’m trying to point out is
that many people's “antirobot animus” is probably a combination of two ingredients:

1. the directly experienced certainty that they're conscious – that they perceive colors,
sounds, positive integers, etc., regardless of whether anyone else does, and

2. the belief that, if they were just a computation, then they could not be conscious in
this way.

For example, I think Penrose's objections to strong AI derive from these two ingredients. I
think his arguments about Gödel's Theorem are window dressing added later.

For people who think this way (as even I do, in certain moods), granting consciousness
to a robot seems strangely equivalent to denying that one is conscious oneself. Is there any
respectable way out of this dilemma – or in other words, any way out that doesn't rely on a
meatist double standard, with one rule for ourselves and a different rule for robots?

My own favorite way out is one that's been advocated by the philosopher David
Chalmers.6 Basically, what Chalmers proposes is a “philosophical NP-completeness reduc-
tion”: a reduction of one mystery to another. He says that, if computers someday become
able to emulate humans in every observable respect, then we'll be compelled to regard them
as conscious, for exactly the same reasons we regard other people as conscious. And as for
how they could be conscious — well, we'll understand that just as well or as poorly as we
understand how a bundle of neurons could be conscious. Yes, it's mysterious, but the one
mystery doesn't seem so different from the other.

Puzzles

• [The barely well-defined puzzle] Can we assume without loss of generality that a
computer program has access to its own source code?

• [The vague, ill-defined puzzle] If that which before the 1800s was called water
turned out to be CH4 instead of H2O, would it still be water, or would it be
something else?

Answers to exercise from last chapter

Recall that BB(n), or the “nth Busy Beaver number,” is the largest number of steps that an
n-state Turing machine can make on an initially blank tape before halting.

The first problem was to prove that BB(n) grows faster than any computable function.
Suppose there were a computable function f(n) such that f(n) > BB(n) for every n. Then,

given an n-state Turing machine M, we could first compute f(n), then simulate M for up to
f(n) steps. If M hasn't halted by then, then we know it never will halt, since f(n) is great-
er than the maximum number of steps any n-state machine could make. But this gives us
a way to solve the halting problem, which we already know is impossible. Therefore, the
function f doesn't exist.

So the BB(n) function grows really, really, really fast. (In case you're curious, here are
the first few values, insofar as they've been computed by people with too much free time:

BB(1) = 1, BB(2) = 6, BB(3) = 21, BB(4) = 107, BB(5) 47 176 870. Of course,
these values depend on exact details of how Turing machines are defined.)

The second problem was whether

is a computable real number. In other words, is there an algorithm that, given a positive
integer k, outputs a rational number S' such that |S - S'| < 1/k?

Did you have more trouble with this one? Alright, let's see the answer. The answer is
no – it isn't computable. For, suppose it were computable, then we'd give an algorithm to
compute BB(n) itself, which we know is impossible.

Assume by induction that we've already computed BB(1), BB(2),..., BB(n - 1). Then
consider the sum of the “higher-order terms”:

If S is computable, then Sn must be computable as well. But this means we can approximate
Sn within 1/2, 1/4, 1/8, and so on, until the interval that we've bounded Sn in no longer con-
tains 0. When that happens, we get an upper bound on 1/Sn. Since 1/BB(n + 1), 1/BB(n + 2),
and so on are so much smaller than 1/BB(n), any upper bound on 1/Sn immediately yields
an upper bound on BB(n) as well. But once we have an upper bound on BB(n), we can
then compute BB(n) itself, by simply simulating all n-state Turing machines. So assuming
we could compute S, we could also compute BB(n), which we already know is impossible.
Therefore, S is not computable.

1 http://www.loebner.net/Prizef/TuringArticle.html
2 http://www.loebner.net/Prizef/loebner-prize.html
3 http://www.cs.sfu.ca/~mori/research/gimpy/
4 W. McCune, Solution of the Robbins Problem, Journal of Automated Reasoning 19:3
(1997), 263–276. http://www.cs.unm.edu/~mccune/papers/robbins/
5 For further discussion of these issues, see Scott Aaronson, Why Philosophers Should
Care About Computational Complexity, in Computability: Turing, Gödel, Church, and
Beyond (MIT Press, 2013; edited by Oron Shagrir), http://www.scottaaronson.com/papers/
philos.pdf
6 See David J. Chalmers, The Conscious Mind: In Search of a Fundamental Theory, Oxford
University Press, 1997.

http://www.loebner.net/Prizef/TuringArticle.html
http://www.loebner.net/Prizef/loebner-prize.html
http://www.cs.sfu.ca/~mori/research/gimpy/
http://www.cs.unm.edu/~mccune/papers/robbins/
http://www.scottaaronson.com/papers/philos.pdf
http://www.scottaaronson.com/papers/philos.pdf

5 Paleocomplexity

By any objective standard, the theory of computational complexity ranks as one of the
greatest intellectual achievements of humankind – along with fire, the wheel, and comput-
ability theory. That it isn't taught in high schools is really just an accident of history. In any
case, we'll certainly need complexity theory for everything else we're going to do in this
book, which is why the next five or six chapters will be devoted to it. So before we dive in,
let's step back and pontificate about where we're going.

What I’ve been trying to do is show you the conceptual underpinnings of the universe, be-
fore quantum mechanics comes on the scene. The amazing thing about quantum mechanics
is that, despite being a grubby empirical discovery, it changes some of the underpinnings!
Others it doesn't change, and others it's not so clear whether it changes them or not. But if
we want to debate how things are changed by quantum mechanics, then we'd better under-
stand what they looked like before quantum mechanics.

It's useful to divide complexity theory into historical epochs:

• 1950s: Late Turingzoic
• 1960s: Dawn of the Asymptotic Age
• 1971: The Cook–Levin Asteroid; extinction of the Diagonalosaurs
• Early 1970s: The Karpian Explosion
• 1978: Early Cryptozoic
• 1980s: Randomaceous Era
• 1993: Eruption of Mt Razborudich; extinction of the Combinataurs
• 1994: Invasion of the Quantodactyls
• Mid-1990s to present: Derandomaceous Era

This chapter will be about “paleocomplexity”: complexity in the age before P, NP, and NP-
completeness, when Diagonalosaurs ruled the earth. Then Chapter 6 will cover the Karpian
Explosion, Chapter 7 the Randomaceous Era, Chapter 8 the Early Cryptozoic, and Chapter
9 the Invasion of the Quantodactyls.

We talked earlier about computability theory. We saw how certain problems are uncom-
putable – like, given a statement about positive integers, is it true or false? (If we could solve
that, then we could solve the halting problem, which we already know is impossible.)

But now let's suppose we're given a statement about real numbers – for example,

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197174
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244756
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos303681
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos346562
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos346562

– and we want to know if it's true or false. In this case, it turns out that there is a decision
procedure – this was proved by Tarski in the 1930s, at least when the statement only in-
volves addition, multiplication, comparisons, the constants 0 and 1, and universal and ex-
istential quantifiers (no exponentials or trig functions).

Intuitively, if all our variables range over real numbers instead of integers, then
everything is forced to be smooth and continuous, and there's no way to build up Gödel
sentences like “this sentence can't be proved.”

(If we throw in the exponential function, then it was recently proved that there's still no
way to encode Gödel sentences, modulo an unsolved problem in analysis.1 But if we throw
in the exponential function and switch from real numbers to complex numbers, then we're
again able to encode Gödel sentences – and the theory goes back to being undecidable! Can
you guess why? Well, once we have complex numbers, we can force a number n to be an
integer, by saying that we want e2πin to equal 1. So we're then back to where we were with
integers.)

Anyway, the attitude back then was, OK, we found an algorithm to decide the truth or
falsehood of any sentence about real numbers! We can go home! Problem solved!

Trouble is, if you worked out how many steps that algorithm took to decide the truth of

a sentence with n symbols, it grew like an enormous stack of exponentials: . So
I was reading in a biography2 of Tarski that, when actual computers came on the scene in
the 1950s, one of the first things anyone thought to do was to implement Tarski's algorithm
for deciding statements about the real numbers. And it was hopeless – indeed, it would
have been hopeless even on the computers of today! On the computers of the 1950s, it was

.
So, these days we talk about complexity. (Or at least most of us do.) The idea is, you im-

pose an upper bound on how much of some resource your computer can use. The most ob-
vious resources are (1) amount of time and (2) amount of memory, but many others can be
defined. (Indeed, if you visit my Complexity Zoo website,3 you'll find about 500 of them.)

One of the very first insights is, if you ask how much can be computed in 10 million
steps, or 20 billion bits of memory, you won't get anywhere. Your theory of computing will
be at the mercy of arbitrary choices about the underlying model. In other words, you won't
be doing theoretical computer science at all: you'll be doing architecture, which is an end-
lessly fascinating, nonboring topic in its own right, but not our topic.

So instead you have to ask a looser question: how much can be computed in an amount
of time that grows linearly (or quadratically, or logarithmically) with the problem size?
Asking this sort of question lets you ignore constant factors.

So, we define TIME(f(n)) to be the class of problems for which every instance of size n
is solvable in an amount of time that grows like a constant times f(n). Here, by “solvable,”
we mean solvable by some particular type of idealized computer (say, a Turing machine),
which we fix as a “reference.” A crucial empirical fact, on which the whole theory depends,
is that which type of idealized computer we choose won't matter very much, as long as
we stay within some broad limits (for example, we consider serial, deterministic, classical
computers only, not quantum computers or anything like that).

Likewise, SPACE(f(n)) is the class of problems solvable by our reference machine using
an amount of space (i.e., bits of memory) that grows like a constant times f(n).

What can we say about the relations between these classes? Well, for every function f(n),
TIME(f(n)) is contained in SPACE(f(n)). Why? Because a Turing machine can access at
most one memory location per time step.

What else? Presumably you agree that TIME(n2) is contained in TIME(n3). Here's a
question: is it strictly contained? In other words, can you solve more problems in n3 time
than in n2 time?

It turns out that you can. This is a consequence of a fundamental result called the Time
Hierarchy Theorem, which was proved by Hartmanis and Stearns in the mid-1960s and
later rewarded with a Turing Award. (Not to diminish their contribution, but back then Tur-
ing Awards were hanging pretty low on the tree! Of course you had to know to be looking
for them, which not many people did.)

Let's see how the proof goes. We need to find a problem that's solvable in n3 time but not
n2 time. What will this problem be? It'll be the simplest thing you could imagine: a time-
bounded analog of Turing's halting problem.

Given a Turing machine M, does M halt in at most n2.5 steps? (Here n2.5 is just some
function between n2 and n3.)

Clearly we can solve the above problem in n3 steps, by simulating M for n2.5 steps and see-
ing whether it halts or not. (Indeed, we can solve the problem in something like n2.5 log n
steps. We always need some overhead when running a simulation, but the overhead can be
made extremely small.)

But now suppose there were a program P to solve the problem in n2 steps. We'll derive a
contradiction. By using P as a subroutine, clearly we could produce a new program P' with
the following behavior. Given a program M as input, P'

1. runs forever if M halts in at most n2.5 steps given its own code as input, or
2. halts in n2.5 steps if M runs for more than n2.5 steps given its own code as input.

Furthermore, P' does all of this in at most n2.5 steps (indeed, n2 steps plus some overhead).

Now what do we do? Duh, we feed P' its own code as input! And we find that P' must do
the opposite of whatever it does: run forever if it halts, or halt if it runs forever. This gives
us a contradiction, which implies that P can never have existed in the first place.

Obviously, the choice of n3 versus n2 is not essential. We can substitute n17 versus n16,
3n versus 2n, etc. But there's actually an interesting question here: can we substitute any
functions f and g such that f grows significantly faster than g? The surprising answer is no!
The function g needs a property called time-constructibility, which means (basically) that
there's some program that halts in g(n) steps given n as input. Without this property, the
program P' wouldn't know how many steps to simulate M for, and the argument wouldn't
go through.

Now, every function you'll ever encounter in civilian life will be time constructible. But
in the early 1970s, complexity theorists made up some bizarre, rapidly growing functions
that aren't. And for these functions, you really can get arbitrarily large gaps in the com-
plexity hierarchy! So, for example, there's a function f such that TIME(f(n))=TIME(2f(n)).
Duuuuude.

Anyway, analogous to the Time Hierarchy Theorem is the Space Hierarchy Theorem,
which says there's a problem solvable with n3 bits of memory that's not solvable with n2

bits of memory.
Alright, next question: in computer science, we're usually interested in the fastest al-

gorithm to solve a given problem. But is it clear that every problem has a fastest algorithm?
Or could there be a problem that admits an infinite sequence of algorithms, with each one
faster than the last but slower than some other algorithm?

Contrary to what you might think, this is not just a theoretical armchair question: it's a
concrete, down-to-earth armchair question! As an example, consider the problem of mul-
tiplying two n-by-n matrices. The obvious algorithm takes O(n3) time. In 1968, Strassen
gave a more complicated algorithm that takes O(n2.78) time. A long string of improve-
ments followed, culminating in an O(n2.376) algorithm of Coppersmith and Winograd. And
that's where things stood for 23 years – until 2011, not long before this book went to press,
when Stothers4 and then Vassilevska5 announced improvements leading to an O(n2.373) al-
gorithm. But is that the end of the line? Might there be an algorithm to multiply matrices
in n2 time? Here's a weirder possibility: could it be that, for every ε > 0, there exists an
algorithm to multiply n-by-n matrices in time O(n2+ε), but as ε approaches zero, these al-
gorithms become more and more complicated without end?

See, some of this paleocomplexity stuff is actually nontrivial! (T. rex might've been a
dinosaur, but it still had pretty sharp teeth!) In this case, a 1967 result called the Blum Spee-
dup Theorem says that there really are problems that admit no fastest algorithm. Not only

that: there exists a problem P such that, for every function f, if P has an O(f(n)) algorithm
then it also has an O(log f(n)) algorithm!

Let's see how this goes. Let t(n) be a complexity bound. Our goal is to define a function
f, from integers to {0, 1}, such that if f can be computed in O(t(n)) steps, then it can also be
computed in O(t(n - i)) steps for any positive integer i. Taking t to be sufficiently fast grow-
ing then gives us as dramatic a speedup as we want: for example, if we set t(n) := 2t(n-1),
then certainly t(n - 1) = O(log t(n)).

Let M1, M2,...be an enumeration of Turing machines. Then let Si = {M1,..., Mi} be the
set consisting of the first i machines. Here's what we do: given an integer n as input, we
loop over all i from 1 to n. In the ith iteration, we simulate every machine in Si that wasn't
“cancelled” in iterations 1 to i - 1. If none of these machines halt in at most t(n - i) steps,
then set f(i) = 0. Otherwise, let Mj be the first machine that halts in at most t(n - i) steps.
Then we define f(i) to be 1 if Mj outputs 0, or 0 if Mj outputs 1. (In other words, we cause
Mj to fail at computing f(i).) We also “cancel” Mj, meaning that Mj doesn't need to be sim-
ulated in any later iteration. This defines the function f.

Certainly f(n) can be computed in O(n2t(n)) steps, by simply simulating the entire iter-
ative procedure above. The key observation is this: for any integer i, if we hardwire the
outcomes of iterations 1 to i into our simulation algorithm (i.e., tell the algorithm which Mj
get cancelled in those iterations), then we can skip iterations 1 to i, and proceed immedi-
ately to iteration i + 1. Furthermore, assuming we start from iteration i + 1, we can compute
f(n) in only O(n2t(n - i)) steps, instead of O(n2t(n)) steps. So the more information we “pre-
compute,” the faster the algorithm will run on sufficiently large inputs n.

To turn this idea into a proof, the main thing one needs to show is that simulating the
iterative procedure is pretty much the only way to compute f: or more precisely, any al-
gorithm to compute f needs at least t(n - i) steps for some i. This then implies that f has no
fastest algorithm.

Further reading

The next few chapters will continue to explore computational complexity theory. However,
for readers who just can't get enough, and really want to explore this subject in depth,
my own favorite books include: Computational Complexity by Christos Papadimitriou
(Addison-Wesley, 1994); Computational Complexity: A Modern Approach, by Sanjeev
Arora and Boaz Barak (Cambridge University Press, 2009); and The Nature of Computa-
tion, by Cristopher Moore and Stephan Mertens (Oxford University Press, 2011)

Puzzle 1 from last chapter

Can we assume, without loss of generality, that a computer program has access to its own
code? As a simple example, is there a program that prints itself as output?

The answer is yes: there are such programs. In fact, there have even been competitions
to write the shortest self-printing program. At the IOCCC6 (the International Obfuscated C
Code Contest), this competition was won some years ago by an extremely short program.
Can you guess how long it was: 30 characters? 10? 5?

The winning program had zero characters. (Think about it!) Admittedly, a blank file is
not exactly a kosher C program, but apparently some compilers will compile it to a pro-
gram that does nothing.

Alright, alright, but what if we want a nontrivial self-printing program? In that case, the
standard trick is to do something like the following (which you can translate into your fa-
vorite programming language):

Print the following twice, the second time in quotes.
“Print the following twice, the second time in quotes.”

In general, if you want a program to have access to its own source code, the trick is to
divide the program into three parts: (1) a part that actually does something useful (this
is optional), (2) a “replicator,” and (3) a string to be replicated. The string to be replic-
ated should consist of the complete code of the program, including the replicator. (In other
words, it should consist of parts (1) and (2).) Then by running the replicator twice, we get
a spanking-new copy of parts (1), (2), and (3).

This idea was elaborated by von Neumann in the early 1950s. Shortly afterward, two
guys (I think their names were Crick and Watson) found a physical system that actually
obeys these rules. You and I, along with all living things on Earth, are basically walking
computer programs with the semantics

Build a baby that acts on the following instructions, and also contains a copy of those
instructions in its reproductive organs.
“Build a baby that acts on the following instructions, and also contains a copy of those
instructions in its reproductive organs.”

Puzzle 2 from last chapter

If water weren't H2O, would it still be water?

Yeah, this isn't really a well-defined question: it all boils down to what we mean by the
word water. Is water a “predicate”: if x is clear and wet and drinkable and tasteless and
freezable to ice, etc.... then x is water? In this view, what water “is” is determined by sit-
ting in our armchairs and listing necessary and sufficient conditions for something to be
water. We then venture out into the world, and anything that meets the conditions is water
by definition. This was the view of Frege and Russell, and it implies that anything with the
“intuitive properties” of water is water, whether or not it's H2O.

The other view, famously associated with Saul7 Kripke, is that the word water “rigidly
designates” a particular substance (H2O). In this view, we now know that when the Greeks
and Babylonians talked about water, they were really talking about H2O, even though they
didn't realize it. Interestingly, “water = H2O” is thus a necessary truth that was discovered
by empirical observation. Something with all the same intuitive properties is water, but a
different chemical structure would not be water.

Kripke argues that, if you accept this “rigid designator” view, then there's an implication
for the mind–body problem.

The idea is this: the reductionist dream would be to explain consciousness in terms of
neural firings, in the same way that science explained water as being H2O. But Kripke says
there's a disanalogy between these two cases. In the case of water, we can at least talk co-
herently about a hypothetical substance that feels like water, tastes like water, etc., but isn't
H2O and therefore isn't water. But suppose we discovered that pain is always associated
with the firings of certain nerves called C-fibers. Could we then say that pain is C-fiber
firings? Well, if something felt like pain but had a different neurobiological origin, would
we say that it felt like pain but wasn't pain? Presumably we wouldn't. Anything that feels
like pain is pain, by definition! Because of this difference, Kripke thinks that we can't ex-
plain pain as “being” C-fiber firings, in the same sense that we can explain water as “being”
H2O.

I hope you're not bored here. Dude – this is considered one of the greatest philosophical
insights of the last four decades! I’m serious! Well, I guess if you don't find it interesting,
philosophy is not the field for you.

1 See http://www.ams.org/notices/199607/marker.pdf
2 A. Burdman Fefferman and S. Fefferman, Alfred Tarski: Life and Logic (Cambridge:
Cambridge University Press, 2008).
3 http://www.complexityzoo.com
4 A. Stothers, On the complexity of matrix multiplication. Unpublished PhD Thesis,
University of Edinburgh (2010). http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf

http://www.ams.org/notices/199607/marker.pdf
http://www.complexityzoo.com
http://www.maths.ed.ac.uk/pg/thesis/stothers.pdf

5 V. Vassilevska Williams, Breaking the Coppersmith–Winograd barrier. In Proceedings
of Annual ACM Symposium on Theory of Computing (2012). http://www.cs.berkeley.edu/
~virgi/matrixmult.pdf
6 http://www.ioccc.org/
7 See Saul Kripke, Naming and Necessity, Wiley-Blackwell, 1991 (reprint edition).

http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
http://www.cs.berkeley.edu/~virgi/matrixmult.pdf
http://www.ioccc.org/

6 P, NP, and friends

We've seen that if we want to make progress in complexity, then we need to talk about
asymptotics: not which problems can be solved in 10000 steps, but for which problems can
instances of size n be solved in cn2 steps as n goes to infinity? We met TIME(f(n)), the class
of all problems solvable in O(f(n)) steps, and SPACE(f(n)), the class of all problems solvable
using O(f(n)) bits of memory.

But if we really want to make progress, then it's useful to take an even coarser-grained
view: one where we distinguish between polynomial and exponential time, but not between
O(n2) and O(n3) time. From this remove, we think of any polynomial bound as “fast,” and
any exponential bound as “slow.”

Now, I realize people will immediately object: what if a problem is solvable in polyno-
mial time, but the polynomial is n50000? Or what if a problem takes exponential time, but
the exponential is 1.00000001n? My answer is pragmatic: if cases like that regularly arose
in practice, then it would've turned out that we were using the wrong abstraction. But so far,
it seems like we're using the right abstraction. Of the big problems solvable in polynomial
time – matching, linear programming, primality testing, etc. – most of them really do have
practical algorithms. And of the big problems that we think take exponential time – theorem-
proving, circuit minimization, etc. – most of them really don't have practical algorithms. So,
that's the empirical skeleton holding up our fat and muscle.

Petting zoo

It's now time to meet the most basic complexity classes – the sheep and goats of the Com-
plexity Zoo.

• P is the class of problems solvable by a Turing machine in polynomial time. In
other words, P is the union, over all positive integers k, of TIME(nk). (Note that,
by “problem,” we'll always mean decision problem: a problem where the inputs are
n-bit strings and the outputs are either yes or no.)

• PSPACE is the class of problems solvable in polynomial space (but unlimited
time). In other words, it's the union over all integers k of SPACE(nk).

• EXP is the class of problems solvable in exponential time. In other words, it's the
union over all integers k of TIME(2nk

).

Certainly P is contained in PSPACE. I claim that PSPACE is contained in EXP. Why?
Right: a machine with nk bits of memory can only go through 2nk

different configurations
before it either halts or else gets stuck in an infinite loop.

Now, NP is the class of problems for which, if the answer is yes, then there's a
polynomial-size proof of that fact that you can check in polynomial time. (The NP stands
for “Nondeterministic Polynomial,” in case you were wondering.) I could get more tech-
nical, but it's easiest to give an example: say, I give you a 10000-digit number, and I ask
whether it has a divisor ending in 3. Well, answering that question might take a Long, Long
TimeTM. But if your grad student finds such a divisor for you, then you can easily check
that it works: you don't need to trust your student (always a plus).

I claim that NP is contained in PSPACE. Why?
Right: in polynomial space, you can loop over all possible nk-bit proofs and check them

one by one. If the answer is “yes,” then one of the proofs will work, while if the answer is
“no,” then none of them will work.

Certainly P is contained in NP: if you can answer a question yourself, then someone else
can convince you that the answer is yes (if it is yes) without even telling you anything.

Of course, a question arises of whether P equals NP. In other words, if you can recognize
an answer efficiently, can you also find one efficiently? Maybe you've heard of this ques-
tion before.

Look, this P versus NP question, what can I say? People like to describe it as “probably
the central unsolved problem of theoretical computer science.” That's a comical understate-
ment. P vs. NP is one of the deepest questions that human beings have ever asked.

And not only that: it's one of the seven million-dollar prize problems of the Clay Math
Institute!1 What an honor! Imagine: our mathematician friends have decided that P vs. NP
is as important as the Hodge Conjecture, or even Navier–Stokes existence and smoothness!
(Apparently, they weren't going to include it, until they asked around to make sure it was
important enough.)

Dude. One way to measure P vs. NP's importance is this. If NP problems were feasible,
then mathematical creativity could be automated. The ability to check a proof would entail
the ability to find one. Every Apple II, every Commodore, would have the reasoning power
of Archimedes or Gauss. So by just programming your computer and letting it run, presum-
ably you could immediately solve not only P vs. NP, but also the other six Clay problems.
(Or five, now that Poincaré is down.)

But if that's the case, then why isn't it obvious that P doesn't equal NP? Surely, God
wouldn't be so benign as to grant us these extravagant powers! Surely, our physicist-intu-
ition tells us that brute-force search is unavoidable! (Leonid Levin told me that Feynman –
the king, or possibly court jester, of physicist-intuition – had trouble even being convinced
that P vs. NP was an open problem!)

Well, we certainly believe P NP. Indeed, we don't even believe there's a general
way to solve NP problems that's dramatically better than brute-force search through every
possibility. But if you want to understand why it's so hard to prove these things, let me tell
you something.

Let's say you're given an N-digit number, but instead of factoring it, you just want to
know if it's prime or composite.

Or let's say you're given a list of freshmen, together with which ones are willing to room
with which other ones, and you want to pair off as many willing roommates as you can.

Or let's say you're given two DNA sequences, and you want to know how many inser-
tions and deletions are needed to convert the one sequence to the other.

Surely, these are fine examples of the sort of exponentially hard NP problem we were
talking about! Surely, they, too, require brute-force search!

Except they don't. As it turns out, all of these problems have clever polynomial-time al-

gorithms. The central challenge any P NP proof will have to overcome is to separate
the NP problems that really are hard from the ones that merely look hard. I’m not just mak-

ing a philosophical point. While there have been dozens of purported P NP proofs
over the years, almost all of them could be rejected immediately for the simple reason that,
if they worked, then they would rule out polynomial-time algorithms that we already know
to exist.

So to summarize, there are problems like primality testing and pairing off roommates,
for which computer scientists (often after decades of work) have been able to devise
polynomial-time algorithms. But then there are other problems, like proving theorems, for
which we don't know of any algorithm fundamentally better than brute-force search. But is
that all we can say – that we have a bunch of these NP problems, and for some of them,
we've found a fast algorithm and for others, we haven't?

As it turns out, we can say something much more interesting than that. We can say that
almost all of the “hard” problems are the same “hard” problem in different guises – in the
sense that, if we had a polynomial-time algorithm for any one of them, then we'd also have
polynomial-time algorithms for all the rest. This is the upshot of the theory of NP-com-
pleteness, which was created in the early 1970s by Cook, Karp, and Levin.

The way it goes is, we define a problem B to be “NP-hard” if any NP problem can be
efficiently reduced to B. What the hell does that mean? It means that, if we had an oracle
to immediately solve problem B, then we could solve any NP problem in polynomial time.

That gives one notion of reduction, which is called Cook reduction. There's also a weak-
er notion of reduction, which is called Karp reduction. In a Karp reduction from problem
A to problem B, we insist that there should be a polynomial-time algorithm that transforms
any instance of A to an instance of B having the same answer.

What's the difference between Cook and Karp?
Right: with a Cook reduction, in solving problem A we get to call the oracle for problem

B more than once. We can even call the oracle adaptively – that is, in ways that depend
on the outcomes of the previous calls. A Karp reduction is weaker in that we don't allow
ourselves these liberties. Perhaps surprisingly, almost every reduction we know of is a Karp
reduction – the full power of Cook reductions is rarely needed in practice.

Now, we say a problem is NP-complete if it's both NP-hard and in NP. In other
words, NP-complete problems are the “hardest” problems in NP: the problems that single-
handedly capture the difficulty of every other NP problem. As a first question, is it obvious
that NP-complete problems even exist?

I claim that it is obvious. Why?
Well, consider the following problem, called DUH: we're given a polynomial-time Tur-

ing machine M, and we want to know if there exists an nk-bit input string that causes M
to accept. I claim that any instance of any NP problem can be converted, in polynomial
time, into a DUH instance having the same answer. Why? Well, DUH! Because that's what
it means for a problem to be in NP!

The discovery of Cook, Karp, and Levin was not that there exist NP-complete prob-
lems – that's obvious – but rather that many natural problems are NP-complete.

The king of these natural NP-complete problems is called 3-Satisfiability, or 3SAT.
(How do I know it's the king? Because it appeared on the TV show NUMB3RS.) Here we're
given n Boolean variables, x1,...,xn, as well as a set of logical constraints called clauses that
relate at most three variables each:

Then the question is whether there's some way to set the variables x1,...,xn to TRUE or
FALSE, in such a way that every clause is “satisfied” (that is, every clause evaluates to
TRUE).

It's obvious that 3SAT is in NP. Why? Right: Because if someone gives you a setting of
x1,...,xn that works, it's easy to check that it works!

Our goal is to prove that 3SAT is NP-complete. What will that take? Well, we need to
show that, if we had an oracle for 3SAT, then we could use it to solve not only 3SAT in
polynomial time but also any NP problem whatsoever. That seems like a tall order! Yet in
retrospect, you'll see that it's almost a triviality.

The proof has two steps. Step 1 is to show that, if we could solve 3SAT, then we could
solve a more “general” problem called CircuitSAT. Step 2 is to show that, if we could solve
CircuitSAT, then we could solve any NP problem.

In CircuitSAT, we're given a Boolean circuit and...wait, listen up, engineers: in computer
science, a “circuit” never has loops! Nor does it have resistors or diodes or anything weird
like that. For us, a circuit is just an object where you start with n Boolean variables x1,...,
xn, and then you can repeatedly define a new variable that's equal to the AND, OR, or NOT
of variables that you've previously defined. Like so:

We designate the last variable in the list as the circuit's “output.” Then the goal, in Cir-
cuitSAT, is to decide whether there's a setting of x1,..., xn such that the output is TRUE.

I claim that, if we could solve 3SAT, then we could also solve CircuitSAT. Why?
Well, all we need to do is notice that every CircuitSAT instance is really a 3SAT instance

in disguise! Every time we compute an AND, OR, or NOT, we're relating one new variable
to one or two old variables. And any such relationship can be expressed by a set of clauses
involving at most three variables each. So, for example,

becomes

So, that was Step 1. Step 2 is to show that, if we can solve CircuitSAT, then we can solve
any NP problem.

Alright, so consider some instance of an NP problem. Then by the definition of NP,
there's a polynomial-time Turing machine M such that the answer is “yes” if and only if
there's a polynomial-size witness string w that causes M to accept.

Now, given this Turing machine M, our goal is to create a circuit that “mimics” M. In
other words, we want there to exist a setting of the circuit's input variables that makes it
evaluate to TRUE, if and only if there exists a string w that causes M to accept.

How do we achieve that? Simple: by defining a whole buttload of variables! We'll have
a variable that equals TRUE if and only if the 37th bit of M's tape is set to ‘1’ at the 42nd
time step. We'll have another variable that equals TRUE if and only if the 14th bit is set to
‘1’ at the 52nd time step. We'll have another variable that equals TRUE if and only if M's
tape head is in the 15th internal state and the 74th tape position at the 33rd time step. Well,
you get the idea.

Then, having written down this buttload of variables, we write down a shitload of logical
relations between them. If the 17th bit of the tape is ‘0’ at the 22nd time step, and the tape
head is nowhere near the 17th bit at that time, then the 17th bit will still be ‘0’ at the 23rd
time step. If the tape head is in internal state 5 at the 44th time step, and it's reading a ‘1’
at that time step, and internal state 5 transitions to internal state 7 on reading a ‘1’, then the
tape head will be in internal state 7 at the 45th time step. And so on, and so on. The only
variables that are left unrestricted are the ones that constitute the string w at the first time
step.

The key point is that, while this is a very large buttload of variables and relations, it's
still only a polynomial buttload. We therefore get a polynomially large CircuitSAT instance,
which is satisfiable if and only if there exists a w that causes M to accept.

We've just proved the celebrated Cook–Levin Theorem: that 3SAT is NP-complete. This
theorem can be thought of as the “initial infection” of the NP-completeness virus. Since
then, the virus has spread to thousands of other problems. What I mean is this: if you want
to prove that your favorite problem is NP-complete, all you have to do is prove it's as hard
as some other problem that's already been proved NP-complete. (Well, you also have to
prove that it's in NP, but that's usually trivial.) So there's a rich-get-richer effect: the more
problems that have already been proved NP-complete, the easier it is to induct a new prob-

lem into the club. Indeed, proving problems NP-complete had become so routine by the
1980s or 1990s, and people had gotten so good at it, that (with rare exceptions) the two
main complexity conferences STOC and FOCS stopped publishing yet more NP-complete-
ness proofs.

I’ll just give you a tiny sampling of some of the earliest problems that were proved NP-
complete:

• Map Colorability: Given a map, can you color every country red, green, or blue,
in such a way that no two neighboring countries are colored the same? (Interest-
ingly, if you're only allowed to use two colors, then it's easy to decide whether or
not such a coloring is possible – why? On the other hand, if you're allowed four
colors, then it always is possible, at least for maps drawn in the plane – that's the
famous Four-Color Theorem. So then the problem is again easy. Only with three
colors is the problem NP-complete.)

• Clique: Given a set of N high-school students, together with which ones will sit at
a cafeteria table with which other ones, is there a “clique” of N/3 students who will
all sit at a table with each other?

• Packing: Given a set of boxes of specified dimensions, can you fit them into the
trunk of your car?

Etc., etc., etc.
To reiterate: although these problems might look unrelated, they're actually the same

problem in different costumes. If any one of them has an efficient solution, then all of them
do, and P = NP. If any one of them doesn't have an efficient solution, then none of them do,

and P NP. To prove P = NP, it's enough to show that some NP-complete problem

(no matter which one) has an efficient solution. To prove P NP, it's enough to show
that some NP-complete problem has no efficient solution. One for all and all for one.

So, there are the P problems, and then there are the NP-complete problems. Is there any-
thing in between? (You should be used to this sort of “intermediate” question by now – we
saw it both in set theory and in computability theory!)

If P = NP, then NP-complete problems are P problems, so obviously the answer is no.

But what if P NP? In that case, a beautiful result called Ladner's Theorem says
that there must be “intermediate” problems between P and NP-complete: in other words,
problems that are in NP, but neither NP-complete nor solvable in polynomial time.

How would we create such an intermediate problem? Well, I’ll give you the idea. The
first step is to define an extremely slow-growing function t. Then, given a 3SAT instance
F of size n, the problem will be to decide whether F is satisfiable and t(n) is odd. In other
words: if t(n) is odd, then solve the 3SAT problem, while if t(n) is even, then always output
“no.”

If you think about what we're doing, we're alternating long stretches of an NP-complete
problem with long stretches of nothing! Intuitively, each stretch of 3SAT should kill off
another polynomial-time algorithm for our problem, where we use the assumption that P

NP. Likewise, each stretch of nothing should kill off another NP-completeness re-

duction, where we again use the assumption that P NP. This ensures that the prob-
lem is neither in P nor NP-complete. The main technical trick is to make the stretches get
longer at an exponential rate. That way, given an input of size n, we can simulate the whole
iterative process up to n in time polynomial in n. That ensures that the problem is still in
NP.

Besides P and NP, another major complexity class is coNP: the “complement” of NP. A
problem is in coNP if a “no” answer can be checked in polynomial time. To every NP-com-
plete problem, there's a corresponding coNP-complete problem. We've got unsatisfiability,
map noncolorability, etc.

Now, why would anyone bother to define such a stupid thing? Because then we can ask a
new question: does NP equal coNP? In other words: if a Boolean formula is unsatisfiable,
is there at least a short proof that it's unsatisfiable, even if finding the proof would take ex-
ponential time? Once again, the answer is that we don't know.

Certainly, if P = NP, then NP = coNP. (Why?) On the other hand, the other direction

isn't known: it could be that P NP but still NP = coNP. So if proving P NP is

too easy, you can instead try to prove NP coNP!
This seems like a good time to mention a special complexity class, a class we quantum

computing people know and love: NP coNP.
This is the class for which either a yes answer or a no answer has an efficiently check-

able proof. As an example, consider the problem of factoring an integer into primes. Over
the course of my life, I must've met at least two dozen people who “knew” that factoring
is NP-complete, and therefore that Shor's algorithm – since it lets us factor on a quantum
computer – also lets us solve NP-complete problems on a quantum computer. Often these
people were supremely confident of their “knowledge.”

Before we look into the possible NP-completeness of factoring, let me at least explain
why I feel that factoring is not in P. Dare I say that the reason is that no one can solve it
efficiently in practice? Though it's not a good argument, people are certainly counting on it
not being in P. Admittedly, we don't have as strong a reason to believe that factoring is not

in P as we do to believe that P NP. It's even a semirespectable opinion to say that
maybe factoring is in P, and that we just don't know enough about number theory to prove
it. If you think about it for two seconds, you'll realize that factoring has profound differen-
ces from the known NP-complete problems. If I give you a Boolean formula, it might have
zero satisfying truth assignments, it might have one, or it might have 10 trillion. You simply
don't know, a priori. But if I give you a 5000-digit integer, you probably won't know its
factorization into primes, but you'll know that has one and only one factorization. (I think
some guy named Euclid proved that a while ago.) This already tells us that factoring is
somehow “special”: that, unlike what we believe about the NP-complete problems, factor-
ing has some structure that algorithms could try to exploit. And, indeed, algorithms do ex-
ploit it: we know of a classical algorithm called the Number Field Sieve, which factors an
n-bit integer in roughly 2n1/3

steps, compared to the ~2n/2 steps that would be needed for try-
ing all possible divisors. (Why only ~2n/2 steps, instead of ~2n?) And, of course, we know
of Shor's algorithm, which factors an n-bit integer in ~n2 steps on a quantum computer: that
is, in quantum polynomial time. Contrary to popular belief, we don't know of a quantum
algorithm to solve NP-complete problems in polynomial time. If such an algorithm existed,
it would have to be dramatically different from Shor's algorithm.

But can we pinpoint just how factoring differs from the known NP-complete problems,
in terms of complexity theory? Yes, we can. First of all, in order to make factoring a de-
cision (yes-or-no) problem, we need to ask something like this: given a positive integer N,
does N have a prime factor whose last digit is 7? I claim that this problem is not merely in

NP, but in NP coNP. Why? Well, suppose someone gives you the prime factorization
of N. There's only one of them. So if there is a prime factor whose last digit is 7, then you
can verify that, and if there's no prime factor whose last digit is 7, then you can also verify
that.

You might say, “but how do I know that I really was given the prime factorization? Sure,
if someone gives me a bunch of numbers, I can check that they multiply to N, but how do I
know they're prime?” For this, you'll have to take on faith something that I told you earlier:
that if you just want to know whether a number is prime or composite, and not what its

factors are, then you can do that in polynomial time. OK, so if you accept that, then the

factoring problem is in NP coNP.
From this, we can conclude that, if factoring were NP-complete, then NP would equal

coNP. (Why?) Since we don't believe NP = coNP, this gives us a strong indication (though
not a proof) that, all those people I told you about notwithstanding, factoring is not NP-
complete. If we accept that, then only two possibilities remain: either factoring is in P, or
else factoring is one of those “intermediate” problems whose existence is guaranteed by
Ladner's Theorem. Most of us incline toward the latter possibility – though not with as

much conviction as we believe P NP.

Indeed, for all we know, it could be the case that P = NP coNP but still P

NP. (This possibility would imply that NP coNP.) So, if proving P NP and

NP coNP are both too easy for you, your next challenge can be to prove P

NP coNP!
If P, NP, and coNP aren't enough to rock your world, you can generalize these classes

to a giant teetering mess that we computer scientists call the polynomial hierarchy.
Observe that you can put any NP problem instance into the form

Does there exist an n-bit string X such that A(X)=1?
Here A is a function computable in polynomial time.

Likewise, you can put any coNP problem into the form
Does A(X)=1 for every X?

But what happens if you throw in another quantifier, like so?
Does there exist an X such that for every Y, A(X,Y)=1?
For every X, does there exist a Y such that A(X,Y)=1?

Problems like these lead to two new complexity classes, which are called Σ2P and Π2P,
respectively. Π2P is the “complement” of Σ2P, in the same sense that coNP is the comple-
ment of NP. We can also throw in a third quantifier:

Does there exist an X such that for every Y, there exists a Z such that A(X,Y,Z)=1?
For every X, does there exist a Y such that for every Z, A(X,Y,Z)=1?

This gives us Σ3P and Π3P, respectively. It should be obvious how to generalize this to
ΣkP and ΠkP for any larger k. (As a side note, when k = 1, we get Σ1P = NP and Π1P =
coNP. Why?) Then taking the union of these classes over all positive integers k gives us
the polynomial hierarchy PH.

The polynomial hierarchy really is a substantial generalization of NP and coNP – in the
sense that, even if we had an oracle for NP-complete problems, it's not at all clear how we
could use it to solve (say) Σ2P problems. On the other hand, just to complicate matters fur-
ther, I claim that if P = NP, then the whole polynomial hierarchy would collapse down to
P! Why?

Right: if P = NP, then we could take our algorithm for solving NP-complete problems
in polynomial time, and modify it to call itself as a subroutine. And that would let us “flat-
ten PH like a steamroller”: first simulating NP and coNP, then Σ2P and Π2P, and so on
through the entire hierarchy.

Likewise, it's not hard to prove that, if NP = coNP, then the entire polynomial hierarchy
collapses down to NP (or in other words, to coNP). If Σ2P = Π2P, then the entire polyno-
mial hierarchy collapses down to Σ2P, and so on. If you think about it, this gives us a whole

infinite sequence of generalizations of the P NP conjecture, each one “harder” to
prove than the last. Why do we care about these generalizations? Because often, we're try-
ing to study conjecture BLAH, and we can't prove that BLAH is true, and we can't even
prove that if BLAH were false then P would equal NP. But – and here's the punchline – we
can prove that if BLAH were false, then the polynomial hierarchy would collapse to the
second or the third level. And this gives us some sort of evidence that BLAH is true.

Welcome to complexity theory!
Since I talked about how lots of problems have nonobvious polynomial-time algorithms,

I thought I should give you at least one example. So, let's do one of the simplest and most
elegant in all of computer science – the so-called Stable Marriage Problem. Have you seen
this before? You haven't?

Alright, so we have N men and N women. Our goal is to marry them off. We assume
for simplicity that they're all straight. (Marrying off gays and lesbians is technically harder,
though also solvable in polynomial time!) We also assume, for simplicity and with much
loss of generality, that everyone would rather be married than single.

So, each man ranks the women, in order from his first to last choice. Each woman like-
wise ranks the men. There are no ties.

Obviously, not every man can marry his first-choice woman, and not every woman can
marry her first-choice man. Life sucks that way.

So, let's try for something weaker. Given a way of pairing off the men and women, say
that it's stable if no man and woman who aren't married to each other both prefer each
other to their spouses. In other words, you might despise your husband, but no man who
you like better than him likes you better than his wife, so you have no incentive to leave.
This is the, um, desirable property that we call “stability.”

Now, given the men's and women's stated preferences, our goal as matchmakers is to
find a stable way of pairing them off. Matchmaker, matchmaker, make me a match, find me
a find, catch me a catch, etc.

First obvious question: does there always exist a stable pairing of men and women?
What do you think? Yes? No? As it turns out, the answer is yes, but the easiest way to prove
it is just to give an algorithm for finding the pairing!

So, let's concentrate on the question of how to find a pairing. In total, there are N! ways
of pairing off men with women. For the soon-to-be-newlyweds’ sake, we hope we won't
have to search through all of them.

Fortunately, we won't. In the early 1960s, Gale and Shapley invented a polynomial-
time – in fact linear-time – algorithm to solve this problem. And the beautiful thing about
this algorithm is, it's exactly what you'd come up with from reading a Victorian romance
novel. Later they found out that the same algorithm had been in use since the 1950s – not
to pair off men with women, but to pair off medical-school students with hospitals to do
their residencies in. Indeed, hospitals and medical schools are still using a version of the
algorithm today.

But back to the men and women. If we want to pair them off by the Gale–Shapley al-
gorithm, then as a first step, we need to break the symmetry between the sexes: which sex
“proposes” to the other? This being the early 1960s, you can guess how that question was
answered. The men propose to the women.

So, we loop through all the men. The first man proposes to his first-choice woman. She
provisionally accepts him. Then the next man proposes to his first-choice woman. She pro-
visionally accepts him, and so on. But what happens when a man proposes to a woman
who's already provisionally accepted another man? She chooses the one she prefers, and
boots the other one out! Then, the next time we come around to that man in our loop over
the men, he'll propose to his second-choice woman. And if she rejects him, then the next
time we come around to him he'll propose to his third-choice woman. And so on, until
everyone is married off. Pretty simple, huh?

First question: why does this algorithm terminate in linear time?
Right: because each man proposes to a given woman at most once. So the total number

of proposals is at most N2, which is just the amount of memory we need to write down the
preference lists in the first place.

Second question: when the algorithm does terminate, why is everyone married off?
Right: because if they weren't, then there'd be some woman who'd never been proposed

to, and some man who'd never proposed to her. But this is impossible. Eventually, the man
no one else wants will cave in, and propose to the woman no one else wants.

Third question: why is the pairing produced by this algorithm a stable one?

Right: because if it weren't, then there'd be one married couple (say, Bob and Alice),
and another married couple (say, Charlie and Eve), such that Bob and Eve both prefer each
other to their spouses. But in that case, Bob would've proposed to Eve before proposing to
Alice. And if Charlie also proposed to Eve, then Eve would've made clear at the time that
she preferred Bob. And this gives a contradiction.

In particular, we've shown, as promised, that there exists a stable pairing: namely, the
pairing found by the Gale–Shapley algorithm.

Problem set

1. We saw that 3SAT is NP-complete. By contrast, it turns out that 2SAT – the version
where we only allow two variables per clause – is solvable in polynomial time. Ex-
plain why.

2. Recall that EXP is the class of problems solvable in exponential time. One can
also define NEXP: the class of problems for which a “yes” answer can be verified
in exponential time. In other words, NEXP is to EXP as NP is to P. Now, we don't
know if P = NP, and we also don't know if EXP = NEXP. But we do know that if
P = NP, then EXP = NEXP. Why?

3. Show that P doesn't equal SPACE(n) (the set of problems solvable in linear space).
Hint: You don't need to prove that P is not in SPACE(n), or that SPACE(n) is not
in P – only that one or the other is true!

4. Show that, if P = NP, then there's a polynomial-time algorithm not only to decide
whether a Boolean formula has a satisfying assignment but also to find such an as-
signment whenever one exists.

5. [Extra credit] Give an explicit algorithm that finds a satisfying assignment
whenever one exists, and that runs in polynomial time assuming P = NP. (If there's
no satisfying assignment, your algorithm can behave arbitrarily.) In other words,
give an algorithm for problem 4 that you could implement and run right now –
without invoking any subroutine that you've assumed to exist but can't actually de-
scribe.

1 See http://www.claymath.org/millennium/

http://www.claymath.org/millennium/

7 Randomness

In the last two chapters, we talked about computational complexity up till the early 1970s.
Here, we'll add a new ingredient to our already simmering stew – something that was thrown
in around the mid-1970s, and that now pervades complexity to such an extent that it's hard
to imagine doing anything without it. This new ingredient is randomness.

Certainly, if you want to study quantum computing, then you first have to understand ran-
domized computing. I mean, quantum amplitudes only become interesting when they exhibit
some behavior that classical probabilities don't: contextuality, interference, entanglement (as
opposed to correlation), etc. So we can't even begin to discuss quantum mechanics without
first knowing what it is that we're comparing against.

Alright, so what is randomness? Well, that's a profound philosophical question, but I’m a
simpleminded person. So, you've got some probability p, which is a real number in the unit
interval [0, 1]. That's randomness.

But wasn't it a big achievement when Kolmogorov put probability on an axiomatic basis
in the 1930s? Yes, it was! But in this chapter, we'll only care about probability distributions
over finitely many events, so all the subtle questions of integrability, measurability, and so
on won't arise. In my view, probability theory is yet another example where mathematicians
immediately go to infinite-dimensional spaces, in order to solve the problem of having a
nontrivial problem to solve! And that's fine – whatever floats your boat. I’m not criticizing
that. But in theoretical computer science, we've already got our hands full with 2n choices.
We need choices like we need a hole in the head.

Alright, so given some “event” A – say, the event that it will rain tomorrow – we can talk
about a real number Pr[A] in [0, 1], which is the probability that A will happen. (Or rather,
the probability we think A will happen – but I told you I’m a simpleminded person.) And the
probabilities of different events satisfy some obvious relations, but it might be helpful to see
them explicitly if you never have before.

First, the probability that A doesn't happen equals 1 minus the probability that it happens:

Agree? I thought so.
Second, if we've got two events A and B, then

Third, an immediate consequence of the above, called the union bound:

Or in English: if you're unlikely to drown and you're unlikely to get struck by lightning,
then chances are you'll neither drown nor get struck by lightning, regardless of whether
getting struck by lightning makes you more or less likely to drown. One of the few causes
for optimism in this life.

Despite its triviality, the union bound is probably the most useful fact in all of theoretical
computer science. I use it maybe 200 times in every paper I write.

What else? Given a numerical random variable X, the expectation of X, or E[X], is

defined to be k Pr[X = k] k. Then given any two random variables X and Y, we have

This is called linearity of expectation, and is probably the second most useful fact in all of
theoretical computer science, after the union bound. Again, the key point is that any de-
pendencies between X and Y are irrelevant.

Do we also have

Right: we don't! Or rather, we do if X and Y are independent, but not in general.
Another important fact is Markov's inequality (or rather, one of his many inequalities):

if X 0 is a nonnegative random variable, then for all k,

Why? Well, if X were too many times larger than its expectation too often, then even if
X were 0 the rest of the time, it still wouldn't be enough to balance the expectation out.

Markov's inequality leads immediately to the third most useful fact in theoretical com-
puter science, called the Chernoff bound. The Chernoff bound says that if you flip a coin
1000 times, and you get heads 900 times, then chances are the coin was crooked. This is
the theorem that casino managers implicitly use when they decide whether to send goons
to break someone's legs.

Formally, let h be the number of times you get heads if you flip a fair coin n times. Then
one way to state the Chernoff bound is

where c is a constant that you look up since you don't remember it. (Oh, alright: c = 2 will
work.)

How can we prove the Chernoff bound? Well, there's a simple trick: let xi = 1 if the ith
coin flip comes up heads, and let xi = 0 if tails. Then consider the expectation, not of x1 +
··· + xn itself, but of exp(x1 + ··· + xn). Since the coin flips had better be uncorrelated with
each other, we have

Now we can just use Markov's inequality, and then take logs on both sides to get the
Chernoff bound. I’ll spare you the calculation (or rather, spare myself).

What do we need randomness for?
Even the ancients – Turing, Shannon, and von Neumann – understood that a random

number source might be useful for writing programs. So, for example, back in the 1940s
and 1950s, physicists invented a technique called Monte Carlo simulation, to study some
weird question they were interested in at the time involving the implosion of hollow
plutonium spheres. Monte Carlo simulation simply means gathering information about the
typical or average behavior of a possibly complicated dynamical system, not by explicitly
calculating the averages of various quantities that interest you, but simply by simulating the
system a bunch of times with different random initial configurations and collecting statist-
ics. Statistical sampling – say, of the different ways a hollow plutonium sphere might go
kaboom! – is one perfectly legitimate use of randomness.

There are many, many reasons you might want randomness – for foiling an eavesdropper
in cryptography, for avoiding deadlocks in communication protocols, and so on. But within
complexity theory, the usual purpose of randomness is to “smear out error”: that is, to take
an algorithm that works on most inputs, and turn it into an algorithm that works on all in-
puts most of the time.

Let's see an example of a randomized algorithm. Suppose I describe a number to you by
starting from 1, and then repeatedly adding, subtracting, or multiplying two numbers that
were previously described (as in the card game “24”). Like so:

You can verify (if you're so inclined) that j, the “output” of the above program, equals zero.
Now consider the following general problem: given such a program, does it output 0 or
not? How could you tell?

Well, one way would just be to run the program, and see what it outputs! What's the
problem with that?

Right: even if the program is very short, the numbers it produces at intermediate steps
might be enormous – that is, you might need exponentially many digits even to write them
down. This can happen, for example, if the program repeatedly generates a new number by
squaring the previous one. So a straightforward simulation isn't going to be efficient.

What can you do instead? Well, suppose the program has n operations. Then here's the
trick: first pick a random prime number p with n2 digits. Then simulate the program, but
doing all the arithmetic modulo p. Here there's a super-important point that often trips up
beginners: the only place where our algorithm is allowed to use randomness is in its own
choices – in this case, in its choice of the random prime number p. We're not allowed to

consider any sort of average over possible programs, since the program is simply the input
to the algorithm, and input is still worst case!

What can we say about the above algorithm? Well, it will certainly be efficient: that is, it
will run in time polynomial in n. Also, if the output isn't zero modulo p, then you certainly
conclude that isn't zero. However, this still leaves two questions unanswered.

1. Supposing the output is 0 modulo p, how confident can you be that it wasn't just a
lucky fluke, and that the output is actually 0?

2. How do you pick a random prime number?

For the first question, let x be the program's output. Then |x| can be at most , where n
is the number of operations – since the fastest way to get big numbers is by repeated squar-
ing. This immediately implies that x can have at most 2n prime factors.

On the other hand, how many prime numbers are there with n2 digits? The famous Prime

Number Theorem tells us the answer: about . Since is a lot bigger than 2n,
most of those primes can't possibly divide x (unless of course x = 0). So if we pick a random
prime and it does divide x, then we can be very, very confident (but admittedly not certain)
that x = 0.

So much for the first question. Now on to the second: how do you pick a random prime
with n2 digits? Well, our old friend the Prime Number Theorem tells us that, if you pick
a random number with n2 digits, then it has about a one in n2 chance of being prime. So
all you have to do is keep picking random numbers; after about n2 tries you'll probably hit
a prime! Instead of repeatedly picking a random number, why couldn't you just start at a
fixed number, and then keep adding 1 until you hit a prime?

Sure, that would work – assuming a far-reaching extension of the Riemann Hypothesis!
What you need is that the n2-digit prime numbers are more-or-less evenly spaced, so that
you can't get unlucky and hit some exponentially long stretch where everything's compos-
ite. Not even the Extended Riemann Hypothesis would give you that, but there is something
called Cramér's Conjecture that would.

Of course, we've merely reduced the problem of picking a random prime to a different
problem: namely, once you've picked a random number, how do you tell if it's prime? As I
mentioned in the last chapter, figuring out if a number is prime or composite turns out to be
much easier than actually factoring the number. Until recently, this primality-testing prob-
lem was another example where it seemed like you needed to use randomness – indeed, it
was the granddaddy of all such examples.

The idea was this. Fermat's Little Theorem (not to be confused with his Last Theorem!)
tells us that, if p is a prime, then xp = x(mod p) for every integer x. So if you found an x

for which xp x(mod p), that would immediately tell you that p was composite – even
though you'd still know nothing about what its divisors were. The hope would be that, if

you couldn't find an x for which xp x(mod p), then you could say with high confid-
ence that p was prime.

Alas, ’twas not to be. It turns out that there are composite numbers p that “pretend” to be
prime, in the sense that xp = x(mod p) for every x. The first few of these pretenders (called
the Carmichael numbers) are 561, 1105, 1729, 2465, and 2821. Of course, if there were
only finitely many pretenders, and we knew what they were, everything would be fine. But
Alford, Granville, and Pomerance1 showed in 1994 that there are infinitely many pretend-
ers.

But already in 1976, Miller and Rabin had figured out how to unmask the pretenders by
tweaking the test a little bit. In other words, they found a modification of the Fermat test
that always passes if p is prime, and that fails with high probability if p is composite. So,
this gave a polynomial-time randomized algorithm for primality testing.

Then, in a breakthrough a decade ago that you've probably heard about, Agrawal, Kayal,
and Saxena2 found a deterministic polynomial-time algorithm to decide whether a num-
ber is prime. This breakthrough has no practical application whatsoever, since we've long
known of randomized algorithms that are faster, and whose error probability can easily be
made smaller than the probability of an asteroid hitting your computer in mid-calculation.
But it's wonderful to know.

To summarize, we wanted an efficient algorithm that would examine a program con-
sisting entirely of additions, subtractions, and multiplications, and decide whether or not it
output 0. I gave you such an algorithm, but it needed randomness in two places: first, in
picking a random number; and second, in testing whether the random number was prime.
The second use of randomness turned out to be inessential – since we now have a determ-
inistic polynomial-time algorithm for primality testing. But what about the first use of ran-
domness? Was that use also inessential? As of 2013, no one knows! But large theoretical
cruise missiles have been pummeling this very problem, and the situation on the ground is
volatile. Consult your local theoretical computer science conference proceedings for more
on this developing story.

Alright, it's time to define some complexity classes. (Then again, when isn't it time?)
When we talk about probabilistic computation, chances are we're talking about one of

the following four complexity classes, which were defined in a 1977 paper of John Gill.3

• PP (Probabilistic Polynomial-Time): Yeah, apparently even Gill himself admit-
ted that it's a lousy name. But this is a serious book, and I will not tolerate any

seventh-grade humor. Basically, PP is the class of all decision problems for which
there exists a polynomial-time randomized algorithm that accepts with probabil-
ity greater than ½ if the answer is yes, or less than ½ if the answer is no. In other
words, we imagine a Turing machine M that receives both an n-bit input string x,
and an unlimited source of random bits. If x is a yes-input, then at least half of the
random bit settings should cause M to accept; while if x is a no-input, then at least
half of the random bit settings should cause M to reject. Furthermore, M needs to
halt after a number of steps bounded by a polynomial in n.

Here's the standard example of a PP problem: given a Boolean formula φ with
n variables, do at least half of the 2n possible settings of the variables make
the formula evaluate to TRUE? (Incidentally, just like deciding whether there
exists a satisfying assignment is NP-complete, so this majority-vote variant
can be shown to be PP-complete: that is, any other PP problem is efficiently
reducible to it.)
Now, why might PP not capture our intuitive notion of problems solvable by
randomized algorithms?
Right: because we want to avoid “Florida recount” situations! As far as PP is
concerned, an algorithm is free to accept with probability ½ + 2-n if the an-
swer is yes, and probability ½ - 2-n if the answer is no. But how would a mor-
tal actually distinguish those two cases? If n was (say) 5000, then we'd have
to gather statistics for longer than the age of the universe!
And, indeed, PP is an extremely big class: for example, it certainly contains
the NP-complete problems. Why? Well, given a Boolean formula φ with n
variables, what you can do is accept right away with probability ½ - 2-2n, and
otherwise choose a random truth assignment and accept it if and only if it sat-
isfies φ. Then your total acceptance probability will be more than ½ if there's
at least one satisfying assignment for φ, or less than ½ if there isn't.
Indeed, complexity theorists believe that PP is strictly larger than NP – al-
though, as usual, we can't prove it.

The above considerations led Gill to define a more “reasonable” variant of PP, as follows.

• BPP (Bounded-Error Probabilistic Polynomial-Time): This is the class of de-
cision problems for which there exists a polynomial-time randomized algorithm

that accepts with probability greater than if the answer is yes, or less than

if the answer is no. In other words: given any input, the algorithm can be

wrong with probability at most .

What's important about is just that it's some positive constant smaller
than ½. Any such constant would be as good as any other. Why? Well, sup-

pose we're given a BPP algorithm that errs with probability . If we're so
inclined, we can easily modify the algorithm to err with probability at most
(say) 2-100. How?
Right: just rerun the algorithm a few hundred times; then output the majority
answer! If we take the majority answer out of T independent trials, then our
good friend the Chernoff bound tells us we'll be wrong with a probability that
decreases exponentially in T.

Indeed, not only could we replace by any constant smaller than ½; we
could even replace it by ½ - 1/p(n), where p is any polynomial.
So, that was BPP: if you like, the class of all problems that are feasibly solv-
able by computer in a universe governed by classical physics.

• RP (Randomized Polynomial-Time): As I said before, the error probability of
a BPP algorithm can easily be made smaller than the probability of an asteroid
hitting the computer. And that's good enough for most applications: say, adminis-
tering radiation doses in a hospital, or encrypting multibillion-dollar bank transac-
tions, or controlling the launch of nuclear missiles. But what about proving theor-
ems? For certain applications, you really can't take chances.

And that leads us to RP: the class of problems for which there exists a
polynomial-time randomized algorithm that accepts with probability greater
than ½ if the answer is yes, or probability zero if the answer is no. To put it
another way: if the algorithm accepts even once, then you can be certain that
the answer is yes. If the algorithm keeps rejecting, then you can be extremely
confident (but never certain) that the answer is no.
RP has an obvious “complement,” called coRP. This is just the class of prob-
lems for which there's a polynomial-time randomized algorithm that accepts
with probability 1 if the answer is yes, or less than ½ if the answer is no.

• ZPP (Zero-Error Probabilistic Polynomial-Time): This class can be defined as
the intersection of RP and coRP – the class of problems in both of them. Equi-
valently, ZPP is the class of problems solvable by a polynomial-time randomized
algorithm that has to be correct whenever it does output an answer, but can output
“don't know” up to half the time. Again, equivalently, ZPP is the class of problems
solvable by an algorithm that never errs, but that only runs expected polynomial
time.

Sometimes you see BPP algorithms called “Monte Carlo algorithms,” and ZPP algorithms
called “Las Vegas algorithms.” I’ve even seen RP algorithms called “Atlantic City al-
gorithms.” This always struck me as stupid terminology. (Are there also Indian reservation
algorithms?)

Here are the known relationships among the basic complexity classes that we've seen
so far in this book. The relationships I didn't discuss explicitly are left as exercises for the
reader (i.e., you).

It might surprise you that we still don't know whether BPP is contained in NP. But think
about it: even if a BPP machine accepted with probability close to 1, how would you prove
that to a deterministic polynomial-time verifier who didn't believe you? Sure, you could
show the verifier some random runs of the machine, but then she'd always suspect you of
skewing your samples to get a favorable outcome.

Fortunately, the situation isn't quite as pathetic as it seems: we at least know that BPP
is contained in NPNP (that is, NP with NP oracle), and hence in the second level of the
polynomial hierarchy PH. Sipser, Gács, and Lautemann proved that in 1983. I’m actually
going to skip it, because it's a bit technical. If you want it, here it is.4

Incidentally, while we know that BPP is contained in NPNP, we don't know anything
similar for BQP, the class of problems solvable in polynomial time on a quantum computer.
BQP hasn't yet made its official entrance in this book – you'll have to wait a couple more
chapters! – but I’m trying to foreshadow it by telling you what it apparently isn't. In other
words, what do we know to be true of BPP that we don't know to be true of BQP? Con-
tainment in PH is only the first of three examples we'll see in this chapter.

In complexity theory, randomness turns out to be very closely related to another concept
called nonuniformity – though we won't get to see the connection until later. Nonuniformity
basically means that you get to choose a different algorithm for each input length n. Now,
why would you want such a stupid thing? Well, remember in Chapter 5 I showed you the
Blum Speedup Theorem – which says that it's possible to construct weird problems that ad-
mit no fastest algorithm, but only an infinite sequence of algorithms, with each one faster
than the last on sufficiently large inputs? In such a case, nonuniformity would let you pick
and choose from all algorithms, and thereby achieve the optimal performance. In other
words, given an input of length n, you could simply pick the algorithm that's fastest for in-
puts of that particular length!

But even in a world with nonuniformity, complexity theorists believe there would still be
strong limits on what could efficiently be computed. When we want to talk about those lim-
its, we use a terminology invented by Karp and Lipton in 1982.5 Karp and Lipton defined
the complexity class P/f(n), or P with f(n)-size advice, to consist of all problems solvable
in deterministic polynomial time on a Turing machine, with help from an f(n)-bit “advice
string” an that depends only on the input length n.

You can think of the polynomial-time Turing machine as a grad student, and the advice
string an as wisdom from the student's advisor. Like most advisors, this one is infinitely
wise, benevolent, and trustworthy. He wants nothing more than to help his students solve
their respective thesis problems: that is, to decide whether their respective inputs x in {0,
1}n are yes-inputs or no-inputs. But also like most advisors, he's too busy to find out what
specific problems his students are working on. He therefore just doles out the same advice
an to all of them, trusting them to apply it to their particular inputs x.

You could study advice that wasn't trustworthy, and in fact, I have. I defined some com-
plexity classes based on untrustworthy advice, but in the usual definition of advice, we as-
sume that it's trustworthy.

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos168571

We'll be particularly interested in the class P/poly, which consists of all problems solv-
able in polynomial time using polynomial-size advice. In other words, P/poly is the union
of P/nk over all positive integers k.

Now, is it possible that P = P/poly? As a first (trivial) observation, I claim the answer is
no: P is strictly contained in P/poly, and indeed in P/1. In other words, even with a single
bit of advice, you really can do more than with no advice. Why?

Right! Consider the following problem:
Given an input of length n, decide whether the nth Turing machine halts.

Not only is this problem not in P, it's not even computable – for it's nothing other than a
slow, “unary” encoding of the halting problem. On the other hand, it's easy to solve with a
single advice bit that depends only on the input length n. For that advice bit could just tell
you what the answer is!

Here's another way to understand the power of advice: while the number of problems in
P is only countably infinite (why?), the number of problems in P/1 is uncountably infinite.
(Why?)

On the other hand, just because you can solve vastly more problems with advice than
you can without, that doesn't mean advice will help you solve any particular problem you
might be interested in. Indeed, a second easy observation is that advice doesn't let you do
everything: there exist problems not in P/poly. Why?

Well, here's a simple diagonalization argument. I’ll actually show a stronger result, that
there exist problems not in P/nlog n. Let M1, M2, M3,...be a list of polynomial-time Turing
machines. Also, fix an input length n. Then I claim that there exists a Boolean function

f:{0, 1}n {0, 1} that the first n machines (M1,..., Mn) all fail to compute, even
given any nlog n-bit advice string. Why? Just a counting argument: there are Boolean

functions, but only n Turing machines and advice strings. So choose such a func-
tion f for every n; you'll then cause each machine Mi to fail on all but finitely many input
lengths. Indeed, we didn't even need the assumption that the Mi run in polynomial time.

Why do I care about advice? First of all, it shows up again and again, even if, for ex-
ample, all we want to know about is uniform computation. Even if all we want to know is
if we can derandomize BPP, it turns out to be a question about advice. So it's very con-
nected to the rest of complexity. Basically, you can think of an algorithm with advice as
being no different than an infinite sequence of algorithms, just like what we saw with the
Blum Speedup Theorem. It's just an algorithm, where as you go to larger and larger input
lengths, you get to keep using new ideas and get more speedup. This is one way to think
about advice.

I can give you another argument. You can think of advice as freeze-dried computation.
There's some great, enormous sort of computational effort, that we then encapsulate in this
convenient polynomially sized string over in the frozen foods section and that you can go
and heat into the microwave to do work with.

Advice formalizes the possibility that such results of some uncomputable process have
been hanging about the universe from the beginning of time. After all, we really don't know
the initial conditions of the universe. The usual argument that it's a justified assumption is
that, for whatever other state your computer might start in, there's some physical process
that gave rise to that state. Presumably, this is only a polynomial-time physical process. So
you could simulate the whole process that gave rise to that state, tracing it back to the Big
Bang if needed. But is this really reasonable?

Of course, all this time we've been dancing around the real question: can advice help us
solve problems that we actually care about, like the NP-complete problems? In particular,

is NP P/poly? Intuitively, it seems unlikely: there are exponentially many Boolean
formulas of size n, so even if you somehow received a polynomial-size advice string from
God, how would that help you to decide satisfiability for more than a tiny fraction of those
formulas?

But – and I’m sure this will come as a complete shock to you – we can't prove it's im-
possible. Well, at least in this case we have a good excuse for our ignorance, since if P =

NP, then obviously NP P/poly as well. But here's a question: if we did succeed

in proving P NP, then would we also have proved that NP P/poly? In other

words, would NP P/poly imply P = NP? Alas, we don't even know the answer to
that.

But as with BPP and NP, the situation isn't quite as pathetic as it seems. Karp and Lipton

did manage to prove in 1982 that, if NP P/poly, then the polynomial hierarchy PH
would collapse to the second level (that is, to NPNP). In other words, if you believe the
polynomial hierarchy is infinite, then you must also believe that NP-complete problems are
not efficiently solvable by a nonuniform algorithm.

This “Karp–Lipton Theorem” is the most famous example of a very large class of com-
plexity results, a class that's been characterized as “if donkeys could whistle, then pigs
could fly.” In other words, if one thing no one really believes is true were true, then another
thing no one really believes is true would be true! Intellectual onanism, you say? Nonsense!

What makes it interesting is that the two things that no one really believes are true would've
previously seemed completely unrelated to each other.

It's a bit of a digression, but the proof of the Karp–Lipton Theorem is more fun than a

barrel full of carp. So let's see the proof right now. We assume NP P/poly; what
we need to prove is that the polynomial hierarchy collapses to the second level – or equi-
valently, that coNPNP = NPNP. So let's consider an arbitrary problem in coNPNP, like so:

For all n-bit strings x, does there exist an n-bit string y such that φ(x,y) evaluates to
TRUE?

(Here φ is some arbitrary polynomial-size Boolean formula.)
We need to find an NPNP question – that is, a question where the existential quantifier

comes before the universal quantifier – that has the same answer as the question above. But
what could such a question possibly be? Here's the trick: we'll first use the existential quan-
tifier to guess a polynomial-size advice string an. We'll then use the universal quantifier to
guess the string x. Finally, we'll use the advice string an – together with the assumption that

NP P/poly – to guess y on our own. Thus:
Does there exist an advice string an such that for all n-bit strings x, φ(x,M(x,an)) eval-
uates to TRUE?

Here M is a polynomial-time Turing machine that, given x as input and an as advice, out-
puts an n-bit string y such that φ(x, y) evaluates to TRUE whenever such a y exists. By one
of the problems from last chapter, we can easily construct such an M provided we can solve
NP-complete problems in P/poly.

Alright, I told you before that nonuniformity was closely related to randomness – so
much so that it's hard to talk about one without talking about the other. So, in the rest of this
chapter, I want to tell you about two connections between randomness and nonuniformity:
a simple one that was discovered by Adleman in the 1970s, and a deep one that was dis-
covered by Impagliazzo, Nisan, and Wigderson in the 1990s.

The simple connection is that BPP P/poly: in other words, nonuniformity is at
least as powerful as randomness. Why do you think that is?

Well, let's see why it is. Given a BPP computation, the first thing we'll do is amplify
the computation to exponentially small error. In other words, we'll repeat the computation
(say) n2 times and then output the majority answer, so that the probability of making a mis-

take drops from to roughly . (If you're trying to prove something about BPP,
amplifying to exponentially small error is almost always a good first step!)

Now, how many inputs are there of length n? Right: 2n. And for each input, only a
fraction of random strings cause us to err. By the union bound (the most useful fact in all of

theoretical computer science), this implies that at most a fraction of random strings

can ever cause us to err on inputs of length n. Since < 1, this means there exists a
random string, call it r, that never causes us to err on inputs of length n. So fix such an r,
feed it as advice to the P/poly machine, and we're done!

So that was the simple connection between randomness and nonuniformity. Before mov-
ing on to the deep connection, let me make two remarks.

1. Even if P NP, you might wonder whether NP-complete problems can be
solved in probabilistic polynomial time. In other words, is NP in BPP? Well, we

can already say something concrete about that question. If NP BPP, then

certainly NP P/poly (since BPP P/poly). But that means PH col-
lapses by the Karp–Lipton Theorem. So if you believe the polynomial hierarchy is
infinite, then you also believe NP-complete problems are not efficiently solvable
by randomized algorithms.

2. If nonuniformity can simulate randomness, then can it also simulate quantumness?

In other words, is BQP P/poly? Well, we don't know, but it isn't considered
likely. Certainly Adleman's proof that BPP is in P/poly completely breaks down
if we replace the BPP by BQP. But this raises an interesting question: why does it
break down? What's the crucial difference between quantum theory and classical
probability theory, which causes the proof to work in the one case but not the oth-
er? I’ll leave the answer as an exercise for you.

Alright, now for the deep connection. Do you remember the primality-testing problem
from earlier in the chapter? Over the years, this problem crept steadily down the complexity
hierarchy, like a monkey from branch to branch.

• It's obvious that primality-testing is in coNP.
• In 1975, Pratt showed it was in NP.
• In 1977, Solovay, Strassen, and Rabin showed it was in coRP.
• In 1992, Adleman and Huang showed it was in ZPP.
• In 2002, Agrawal, Kayal, and Saxena showed it was in P.

The general project of taking randomized algorithms and converting them to deterministic
ones is called derandomization (a name only a theoretical computer scientist could love).
The history of the primality-testing problem can only be seen as a spectacular success of
this project. But with such success comes an obvious question: can every randomized al-
gorithm be derandomized? In other words, does P equal BPP?

Once again the answer is that we don't know. Usually, if we don't know if two complex-
ity classes are equal, the “default conjecture” is that they're different. And so it was with P
and BPP – (ominous music) – until now. Over the last decade and a half, mounting evid-
ence has convinced almost all of us that in fact P = BPP. We won't be able to review this
evidence in any depth. But let me quote one theorem, just to give you a flavor of it.

Theorem (Impagliazzo–Wigderson 1997):6 Suppose there exists a problem that's
solvable in exponential time, and that's not solvable in subexponential time even with
the help of a subexponential-size advice string. Then P = BPP.

Notice how this theorem relates derandomization to nonuniformity – and, in particular, to
proving that certain problems are hard for nonuniform algorithms. The premise certainly
seems plausible. From our current perspective, the conclusion (P = BPP) also seems plaus-
ible. And yet the two seem to have nothing to do with each other. So, this theorem might
be characterized as “If donkeys can bray, then pigs can oink.”

Where does this connection between randomness and nonuniformity come from? It
comes from the theory of pseudorandom generators. We're gonna see a lot more about
pseudorandom generators in the next chapter, when we talk about cryptography. But basic-
ally, a pseudorandom generator is just a function that takes as input a short string (called
the seed), and produces as output a long string, in such a way that, if the seed is random,
then the output looks random. Obviously, the output can't be random, since it doesn't have
enough entropy: if the seed is k bits long, then there are only 2k possible output strings, re-
gardless of how long those output strings are. What we ask, instead, is that no polynomial-
time algorithm can successfully distinguish the output of the pseudorandom generator from
“true” randomness. Of course, we'd also like for the function mapping the seed to the out-
put to be computable in polynomial time.

Already in 1982, Andy Yao realized that, if you could create a “good enough” pseudor-
andom generator, then you could prove P = BPP. Why? Well, suppose that, for any integer
k, you had a way of stretching an O(log n)-bit seed to an n-bit output in polynomial time, in
such a way that no algorithm running in nk time could successfully distinguish the output
from true randomness. And suppose you had a BPP machine that ran in nk time. In that
case, you could simply loop over all possible seeds (of which there are only polynomially
many), feed the corresponding outputs to the BPP machine, and then output the majority
answer. The probability that the BPP machine accepts given a pseudorandom string has
to be about the same as the probability that it accepts given a truly random string – since

otherwise the machine would be distinguishing random strings from pseudorandom ones,
contrary to assumption!

But what's the role of nonuniformity in all this? Well, here's the point: in addition to a
random (or pseudorandom) string, a BPP machine also receives an input, x. And we need
the derandomization to work for every x. But that means that, for the purposes of deran-
domization, we must think of x as an advice string provided by some superintelligent ad-
versary for the sole purpose of foiling the pseudorandom generator. You see, this is why we
had to assume a problem that was hard even in the presence of advice: because we need to
construct a pseudorandom generator that's indistinguishable from random even in the pres-
ence of the “adversary,” x.

To summarize: if we could prove that certain problems are sufficiently hard for nonuni-
form algorithms, then we would prove P = BPP.

This leads to my third difference between BPP and BQP: while most of us believe that
P = BPP, most of us certainly don't believe that P = BQP. (Indeed, we can't believe that, if
we believe factoring is hard for classical computers.) We don't have any “dequantization”
program that's been remotely as successful as the derandomization program. Once again, it
would seem there's a crucial difference between quantum theory and classical probability
theory, which allows certain ideas (like those of Sipser–Gács–Lautemann, Adleman, and
Impagliazzo–Wigderson) to work for the latter but not for the former.

Incidentally, Kabanets and Impagliazzo7 (and others) managed to obtain a sort of con-
verse to the derandomization theorems. What they showed is that, if we want to prove P
= BPP, then we'll have to prove that certain problems are hard for nonuniform algorithms.
This could be taken as providing some sort of explanation for why, assuming P = BPP,
no one has yet managed to prove it. Namely, it's because if you want to prove P = BPP,
then you'll have to prove certain problems are hard – and if you could prove those prob-
lems were hard, then you would be (at least indirectly) attacking questions like P vs. NP.
In complexity theory, pretty much everything eventually comes back to P vs. NP.

Puzzles

1. You and a friend want to flip a coin, but the only coin you have is crooked: it lands
heads with some fixed but unknown probability p. Can you use this coin to simu-
late a fair coin flip? (I mean perfectly fair, not just approximately fair.)

2. There are n people standing in a circle. They're each wearing either a red hat or
a blue hat, assigned uniformly and independently at random. They can each see
everyone else's hats but not their own. They want to vote on whether the number

of red hats is even or odd. Each person votes at the same time, so that no one's vote
depends on anyone else's. What's the maximum probability with which the people
can win this game? (By “win,” I mean that their vote corresponds to the truth.) As-
sume for simplicity that n is odd.

1 W. R. Alford, A. Granville and C. Pomerance, There are infinitely many Carmichael
numbers, Annals of Mathematics 2:139 (1994), 703–722. http://www.math.dartmouth.edu/
~carlp/PDF/paper95.pdf
2 M. Agrawal, N. Kayal, and N. Saxena, PRIMES is in P, Annals of Mathematics 160:2
(2004), 781–793. http://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
3 J. Gill, Computational Complexity of Probabilistic Turing Machines, SIAM Journal on
Computing 6:4 (1977), 675–695.
4 http://www.cs.berkeley.edu/~luca/cs278-01/notes/lecture9.ps
5 R. M. Karp and R. J. Lipton, Turing machines that take advice, L'Enseignement
Mathématique 28 (1982), 191–209.
6 R. Impagliazzo and A. Wigderson, P = BPP if E requires exponential circuits: derandom-
izing the XOR lemma. In Proceedings of ACM Symposium on Theory of Computing (New
York: ACM, 1997), pp. 220–9.
7 V. Kabanets and R. Impagliazzo, Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13:1/2 (2004), 1–46.

http://www.math.dartmouth.edu/~carlp/PDF/paper95.pdf
http://www.math.dartmouth.edu/~carlp/PDF/paper95.pdf
http://www.cse.iitk.ac.in/users/manindra/algebra/primality_v6.pdf
http://www.cs.berkeley.edu/~luca/cs278-01/notes/lecture9.ps

8 Crypto

Answers to puzzles from Chapter 7

Puzzle 1. We are given a biased coin that comes up heads with probability p. Using this coin,
construct an unbiased coin.

Solution. The solution is the “von Neumann trick”: flip the biased coin twice, interpreting
HT as heads and TH as tails. If the flips come up HH or TT, then try again. Under this
scheme, “heads” and “tails” are equiprobable, each occurring with probability p(1 - p) in any
given trial. Conditioned on either HT or TH occurring, it follows that the simulated coin is
unbiased.

Puzzle 2. n people sit in a circle. Each person wears either a red hat or a blue hat, chosen
independently and uniformly at random. Each person can see the hats of all the other people,
but not his/her own hat. Based only upon what they see, each person votes on whether or not
the total number of red hats is odd. Is there a scheme by which the outcome of the vote is
correct with probability greater than ½?

Solution. Each person decides his/her vote as follows: if the number of visible blue hats
is larger than the number of visible red hats, then vote according to the parity of the number
of visible red hats. Otherwise, vote the opposite of the parity of the number of visible red
hats. If the number of red hats differs from the number of blue hats by at least 2, then this
scheme succeeds with certainty. Otherwise, the scheme might fail. However, the probability
that the number of red hats differs from the number of blue hats by less than 2 is small –

.

Crypto

Cryptography has been a major force in human history for more than 3000 years. Numerous
wars have been won or lost by the sophistication or stupidity of cryptosystems. If you think
I’m exaggerating, read The Codebreakers by David Kahn,1 and keep in mind that it was

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244756

written before people knew about the biggest cryptographic story of all: the breaking of the
Nazis’ naval code in World War II, by a team that included Alan Turing.

And yet, even though cryptography has influenced human affairs for millennia, devel-
opments over the last 30 years have completely – yes, completely – changed our under-
standing of it. If you plotted when the basic mathematical discoveries in cryptography were
made, you'd see a few in antiquity, maybe a few from the Middle Ages till the 1800s, one in
the 1920s (the one-time pad), a few more around World War II, and then, after the birth of
computational complexity theory in the 1970s, boom boom boom boom boom boom boom...

Our journey through the history of cryptography begins with the famous and pathetic
“Caesar cipher” used by the Roman Empire. Here the plaintext message is converted into
a ciphertext by simply adding 3 to each letter, wrapping around to A after you reach Z.
Thus, D becomes G, Y becomes B, and DEMOCRITUS becomes GHPRFULWXV. More
complex variants of the Caesar cipher have appeared, but given enough ciphertext they're
all easy to crack, by using (for example) a frequency analysis of the letters appearing in the
ciphertext. Not that that's stopped people from using these things! Indeed, as recently as
2006, the head of the Sicilian mafia2 was finally caught after 40 years because he used the
Caesar cipher – the original one – to send messages to his subordinates!

Could there be a cryptosystem that was information-theoretically secure – by which we
mean, provably secure regardless of how much computation time an eavesdropper spent
trying to crack it? Amazingly (if you've never seen this before), the answer turns out to be
yes – but even more amazingly, it wasn't until the 1920s that such a system was discovered.
For reasons we'll see shortly, the prototypical information-theoretically secure system is
called the onetime pad. The idea is simple: the plaintext message is represented by a binary
string p, which is exclusive-ORed with a random binary key k of the same length. That is,

the ciphertext c is equal to p k, where denotes bitwise addition mod 2.
The recipient (who knows k) can decrypt the ciphertext with another XOR operation:

To an eavesdropper who doesn't know k, the ciphertext is just a string of random bits –
since XORing any string of bits with a random string just produces another random string.
The problem with the onetime pad, of course, is that the sender and recipient have to share
a key that's as long as the message itself. Furthermore, if the same key is ever used to en-
crypt two or more messages, then the cryptosystem is no longer information-theoretically
secure. (Hence, the name “one-time pad.”) To see why, suppose two plaintexts p1 and p2
are both encrypted via the same key k to ciphertexts c1 and c2, respectively. Then we have

and hence an eavesdropper can obtain the string p1 p2. By itself, this might or might
not be useful, but it at least constitutes some information that an eavesdropper could learn
about the plaintexts. But this is just a mathematical curiosity, right? Well, in the 1950s the
Soviets got sloppy and reused some of their onetime pads. As a result, the NSA, through
its VENONA project, was able to recover some (though not all) of the plaintext encrypted
in this way. This seems to be how Julius and Ethel Rosenberg were caught.

In the 1940s, Claude Shannon proved that information-theoretically secure cryptography
requires the sender and recipient to share a key at least as long as the message they want to
communicate. Like pretty much all of Shannon's results, this one is trivial in retrospect. (It's
good to be in on the ground floor!) Here's his proof: given the ciphertext and the key, the
plaintext had better be uniquely recoverable. In other words, for any fixed key, the function
that maps plaintexts to ciphertexts had better be an injective function. But this immediately
implies that, for a given ciphertext c, the number of plaintexts that could possibly have pro-
duced c is at most the number of keys. In other words, if there are fewer possible keys than
plaintexts, then an eavesdropper will be able to rule out some of the plaintexts – the ones
that wouldn't encrypt to c for any value of the key. Therefore, our cryptosystem won't be
perfectly secure. It follows that, if we want perfect security, then we need at least as many
keys as plaintexts – or equivalently, the key needs to have at least as many bits as the plain-
text.

I mentioned before that sharing huge keys is usually impractical – not even the KGB
managed to do it perfectly! So we want a cryptosystem that lets us get away with smaller
keys. Of course, Shannon's result implies that such a cryptosystem can't be information-
theoretically secure. But what if we relax our requirements? In particular, what if we as-
sume that the eavesdropper is restricted to running in polynomial time? This question leads
naturally to our next topic...

Pseudorandom generators

As I mentioned in the last chapter, a pseudorandom generator (PRG) is basically a function
that takes as input a short, truly random string, and produces as output a long, seemingly
random string. More formally, a pseudorandom generator is a function f with the following
properties.

1. f maps an n-bit input string (called the seed) to a p(n)-bit output string, where p(n)
is some polynomial larger than n.

2. f is computable in time polynomial in n.
3. For every polynomial-time algorithm A (called the adversary), the difference

is negligibly small – by which I mean, it decreases faster than 1/q(n) for any
polynomial q. (Of course, decreasing at an exponential rate is even better.) Or
in English, no polynomial-time adversary can distinguish the output of f from
a truly random string with any nonnegligible bias.

Now, you might wonder: how “stretchy” a PRG are we looking for? Do we want to stretch
an n-bit seed to 2n bits? To n2 bits? n100 bits? The answer turns out to be irrelevant!

Why? Because even if we only had a PRG f that stretched n bits to n + 1 bits, we could
keep applying f recursively to its own output, and thereby stretch n bits to p(n) bits for any
polynomial p. Furthermore, if the output of this recursive process were efficiently distin-
guishable from a random p(n)-bit string, then the output of f itself would have been ef-
ficiently distinguishable from a random (n + 1)-bit string – contrary to assumption! Of
course, there's something that needs to be proved here, but the something that needs to be
proved can be proved, and I’ll leave it at that.3

Now, I claim that if pseudorandom generators exist, then it's possible to build a compu-
tationally secure cryptosystem using only short encryption keys. Do you see why?

Right: first use the PRG to stretch a short encryption key to a long one – as long as the
plaintext message itself. Then pretend that the long key is truly random, and use it exactly
as you'd use a onetime pad!

Why is this scheme secure? As always in modern cryptography, what we do is to argue
by reduction. Suppose that, given only the ciphertext message, an eavesdropper could learn
something about the plaintext in polynomial time. We saw before that, if the encryption key
were truly random (that is, were a onetime pad), then this would be impossible. It follows,
then, that the eavesdropper would in effect be distinguishing the pseudorandom key from
a random one. But this contradicts our assumption that no polynomial-time algorithm can
distinguish the two!

Admittedly, this has all been pretty abstract and conceptual. Sure, we could do wonderful
things if we had a PRG – but is there any reason to suppose PRGs actually exist?

A first, trivial observation is that PRGs can only exist if P NP. Why?

Right: because if P = NP, then given a supposedly random string y, we can decide in
polynomial time whether there's a short seed x such that f(x) = y. If y is random, then such
a seed almost certainly won't exist – so if it does exist, we can be almost certain that y isn't
random. We can therefore distinguish the output of f from true randomness.

Alright, but suppose we do assume P NP. What are some concrete examples of
functions that are believed to be pseudorandom generators?

One example is what's called the Blum–Blum–Shub4 generator. Here's how it works:
pick a large composite number N. Then the seed, x, will be a random element of ZN. Given
this seed, first compute x2 mod N, (x2)2 mod N, ((x2)2)2 mod N, and so on. Then concaten-
ate the least-significant bits in the binary representations of these numbers, and output that
as your pseudorandom string f(x).

Blum et al. were able to show that, if we had a polynomial-time algorithm to distinguish
f(x) from a random string, then (modulo some technicalities) we could use that algorithm to
factor N in polynomial time. Or equivalently, if factoring is hard, then Blum–Blum–Shub
is a PRG. This is yet another example where we “prove” something is hard by showing
that, if it were easy, then something else that we think is hard would also be easy.

Alas, we don't think factoring is hard – at least, not in a world with quantum computers!
So can we base the security of PRGs on a more quantum-safe assumption? Yes, we can.
There are many, many ways to build a candidate PRG, and we have no reason to think that
quantum computers will be able to break all of them. Indeed, you could even base a can-
didate PRG on the apparent unpredictability of (say) the “Rule 110” cellular automaton, as
advocated by Stephen Wolfram in his groundbreaking, revolutionary, paradigm-smashing
book.

Of course, our dream would be to base a PRG's security on the weakest possible as-

sumption: P NP itself! But when people try to do that, they run into two interesting
problems.

The first problem is that P versus NP deals only with the worst case. Imagine if you were
a general or a bank president, and someone tried to sell you an encryption system with the
sales pitch that there exists a message that's hard to decode. You see what the difficulty is:
for both encryption systems and PRGs, we need NP problems that are hard on average, not
just in the worst case. (Technically, we need problems that are hard on average with respect
to some efficiently samplable distribution over the inputs – not necessarily the uniform dis-
tribution.) But no one has been able to prove that such problems exist, even if we assume P

NP.

That's not to say, though, that we know nothing about average-case hardness. As an ex-
ample, consider the Shortest Vector Problem (SVP). Here, we're given a lattice L in Rn,
consisting of all integer linear combinations of some given vectors v1, ..., vn in Rn. Then
the problem is to approximate the length of the shortest nonzero vector in L to within some
multiplicative factor k.

SVP is one of the few problems for which we can prove a worst-case/average-case equi-
valence (that is, the average case is every bit as hard as the worst case), at least when the
approximation ratio k is big enough. Based on that equivalence, Ajtai, Dwork,5 Regev,6 and
others have constructed cryptosystems and pseudorandom generators whose security rests
on the worst-case hardness of SVP. Unfortunately, the same properties that let us prove
worst-case/average-case equivalence also make it unlikely that SVP is NP-complete for the
relevant values of k. It seems more likely that SVP is intermediate between P and NP-com-
plete, just like we think factoring is.

Alright, so suppose we just assume NP-complete problems are hard on average. Even
then, there's a further difficulty in using NP-complete problems to build a PRG. This is
that breaking PRGs just doesn't seem to have the right “shape” to be NP-complete. What
do I mean by that? Well, think about how we prove a problem B is NP-complete: we take
some problem A that's already known to be NP-complete, and we give a polynomial-time
reduction that maps yes-instances of A to yes-instances of B, and no-instances of A to
no-instances of B. In the case of breaking a PRG, presumably the yes-instances would be
pseudorandom strings and the no-instances would be truly random strings (or maybe vice
versa).

Do you see the problem here? If not, let me spell it out for you: how do we describe a
“truly random string” for the purpose of mapping to it in the reduction? The whole point
of a string being random is that we can't describe it by anything shorter than itself! Ad-
mittedly, this argument is full of loopholes, one of which is that the reduction might be
randomized. Nevertheless, it is possible to conclude something from the argument: that if
breaking PRGs is NP-complete, then the proof will have to be very different from the sort
of NP-completeness proofs that we're used to.

One-way functions

One-way functions (OWFs) are the cousins of pseudorandom generators. Intuitively, an
OWF is just a function that's easy to compute but hard to invert. More formally, a function
f from n bits to p(n) bits is a one way function if we have the following.

1. f is computable in time polynomial in n.
2. For every polynomial-time adversary A, the probability that A succeeds at invert-

ing f,

is negligibly small – that is, smaller than 1/q(n) for any polynomial q.

The event f(A(f(x))) = f(x) appears in the definition instead of just A(f(x)) = x in order to
account for the fact that f might have multiple inverses. With this definition, we consider
algorithms A that find anything in the preimage of f(x), not just x itself.

I claim that the existence of PRGs implies the existence of OWFs. Can you tell me why?
Right: because a PRG is an OWF!
Alright then, can you prove that the existence of OWFs implies the existence of PRGs?
Yeah, this one's a little harder! The main reason is that the output of an OWF f doesn't

have to appear random in order for f to be hard to invert. And indeed, it took more than a
decade of work – culminating in a behemoth 1999 paper7 of Håstad, Impagliazzo, Levin,
and Luby – to figure out how to construct a pseudorandom generator from any one-way
function. Because of the result of Håstad et al., we now know that OWFs exist if and only if
PRGs do. The proof, as you'd expect, is pretty complicated, and the reduction is not exactly
practical: the blowup is by about n40! This is the sort of thing that gives polynomial time a
bad name – but it's the exception, not the rule! If we assume that the one-way function is a
permutation, then the proof becomes much easier (it was already shown by Yao in 1982)8

and the reduction becomes much faster. But of course that yields a less general result.
So far we've restricted ourselves to private-key cryptosystems, which take for granted

that the sender and receiver share a secret key. But how would you share a secret key with
(say) Amazon.com before sending them your credit card number? Would you email them
the key? Oops – if you did that, then you'd better encrypt your email using another secret
key, and so on ad infinitum! The solution, of course, is to meet with an Amazon employee
in an abandoned garage at midnight.

No, wait... I meant that the solution is public-key cryptography.

Public-key cryptography

It's amazing, if you think about it, that so basic an idea had to wait until the 1970s to be
discovered. Physicists were tidying up the Standard Model while cryptographers were still
at the Copernicus stage!

So, how did public-key cryptography finally come to be? The first inventors – or rather
discoverers – were Ellis, Cocks, and Williamson, working for GCHQ (the British NSA) in
the early 1970s. Of course, they couldn't publish their work, so today they don't get much
credit! Let that be a lesson to you.

The first public public-key cryptosystem was that of Diffie and Hellman, in 1976. A
couple of years later, Rivest, Shamir, and Adleman discovered the famous RSA system that
bears their initials. Do any of you know how RSA was first revealed to the world? Right:
as a puzzle in Martin Gardner's Mathematical Games column9 for Scientific American!

RSA had several advantages over Diffie–Hellman: for example, it only required one
party to generate a public key instead of both, and it let users authenticate themselves in
addition to communicating in private. But if you read Diffie and Hellman's paper,10 pretty
much all the main ideas are there.

Anyway, the core of any public-key cryptosystem is what's called a trapdoor one-way
function. This is a function that's

1. easy to compute,
2. hard to invert, and
3. easy to invert given some secret “trapdoor” information.

The first two requirements are just the same as for ordinary OWFs. The third requirement –
that the OWF should have a “trapdoor” that makes the inversion problem easy – is the new
one. For comparison, notice that the existence of ordinary one-way functions implies the
existence of secure private-key cryptosystems, whereas the existence of trapdoor one-way
functions implies the existence of secure public-key cryptosystems.

So, what's an actual example of a public-key cryptosystem? Well, most of you have seen
RSA at some point in your mathematical lives, so I’ll go through it quickly.

Let's say you want to send your credit card number to Amazon.com. What happens?
First, Amazon randomly selects two large prime numbers p and q (which can be done in
polynomial time), subject to the technical constraint that p - 1 and q - 1 should not be di-
visible by 3. (We'll see the reason for that later.) Then Amazon computes the product N
= pq and publishes it for all the world to see, while keeping p and q themselves a closely
guarded secret.

Now, assume without loss of generality your credit card number is encoded as a positive
integer x, smaller but not too much smaller than N. Then what do you do? Simple: you
compute x3 mod N and send it over to Amazon! If a credit card thief intercepted your mes-
sage en route, then she would have to recover x given only x3 mod N. But computing cube
roots modulo a composite number is believed to be an extremely hard problem, at least for

classical computers! If p and q are both reasonably large (say, 10000 digits each), then our
hope would be that any classical eavesdropper would need millions of years to recover x.

This leaves an obvious question: how does Amazon itself recover x? Duh – by using its
knowledge of p and q! We know from our friend Mr. Euler, way back in 1761, that the se-
quence

repeats with period (p - 1)(q - 1). So provided Amazon can find an integer k such that

it'll then have

Now, we know that such a k exists, by the assumption that p - 1 and q - 1 are not divisible
by 3. Furthermore, Amazon can find such a k in polynomial time, using Euclid's algorithm
(from way way back, around 300 BC). Finally, given x3 mod N, Amazon can compute (x3)k

in polynomial time by using a simple repeated squaring trick. So that's RSA.
To make everything as concrete and visceral as possible, I assumed that x always gets

raised to the third power. The resulting cryptosystem is by no means a toy: as far as anyone
knows, it's secure! In practice, though, people can and do raise x to arbitrary powers. As
another remark, squaring x instead of cubing it would open a whole new can of worms,
since any nonzero number that has a square root mod N has more than one of them.

Of course, if the credit card thief could factor N into pq, then she could run the exact
same decoding algorithm that Amazon runs, and thereby recover the message x. So the
whole scheme relies crucially on the assumption that factoring is hard! This immediately
implies that RSA could be broken by a credit card thief with a quantum computer. Classic-
ally, however, the best-known factoring algorithm is the Number Field Sieve, which takes

about steps.
As a side note, no one has yet proved that breaking RSA requires factoring: it's possible

that there's a more direct way to recover the message x, one that doesn't entail learning p
and q. On the other hand, in 1979 Rabin discovered a variant of RSA for which recovering
the plaintext is provably as hard as factoring.

Alright, but all this talk of cryptosystems based on factoring and modular arithmetic is
so 1993! Today, we realize that as soon as we build a quantum computer, Shor's algorithm
(to be discussed in Chapter 10) will break the whole lot of these things. Of course, this

point hasn't been lost on complexity theorists, many of whom have since set to work look-
ing for trapdoor OWFs that still seem safe against quantum computers. Currently, our best
candidates for such trapdoor OWFs are based on lattice problems, like the Shortest Vect-
or Problem (SVP) that I described earlier. Whereas factoring reduces to the abelian hid-
den subgroup problem, which is solvable in quantum polynomial time, SVP is only known
to reduce to the dihedral hidden subgroup problem, which is not known to be solvable in
quantum polynomial time despite more than a decade of effort.

Inspired by this observation, and building on earlier work by Ajtai and Dwork, Oded
Regev proposed11 public-key cryptosystems that are provably secure against quantum
eavesdroppers, assuming SVP is hard for quantum computers. Note that his cryptosystems
themselves are purely classical. On the other hand, even if you only wanted security against
classical eavesdroppers, you'd still have to assume that SVP was hard for quantum com-
puters, since the reduction from SVP to breaking the cryptosystem is a quantum reduction!
Later, in 2009, Chris Peikert12 discovered a way to “de-quantize” Regev's reduction, so that
now one only needs to assume the classical hardness of SVP.

Even more dramatically, Craig Gentry showed13 in 2009 that, by using the assumed
hardness of certain lattice problems related to SVP, one can construct fully homomorphic
cryptosystems: that is, public-key cryptosystems that let you perform arbitrary computa-
tions on encrypted data without ever encrypting it. Why is this important? Well, for applic-
ations like “cloud computing,” you might want (say) your mobile device to offload a long
computation to some server somewhere, but in a way that doesn't let the server see any of
your sensitive data. That is, you should be able to send the server encrypted inputs, and the
server should be able to do the long computation you paid for and send you back an encryp-
ted output, which you can then decrypt yourself (and maybe even verify) with the server
remaining none the wiser. As a bonus, because our current fully homomorphic encryption
systems are based on problems related to lattices, they share the property with Regev's sys-
tems that no one knows how to break them even with a quantum computer. Fully homo-
morphic cryptography is a possibility that was first raised in the 1970s, but no one knew
how to do it until a few years ago. So, this is one of the biggest developments in theoretical
cryptography for decades.

But is any of this practical? The conventional wisdom used to be no. A decade ago,
the key lengths and message lengths of these lattice-based cryptosystems, though formally
polynomial, were so large it was almost a joke: the blowup, in going from plaintext to
ciphertext, could be by a factor of millions (depending on what kind of security you want).
But lattice-based cryptography has been getting steadily closer to being practical – in part,
frankly, because people realized that you can get big efficiency improvements if you're
willing to be a little less rigorous about security. If scalable quantum computers able to
break RSA ever look like a serious threat, I predict that the response will be to switch over

to new public-key cryptosystems that look more like the lattice ones. And, again, the pro-
spect of fully homomorphic encryption might provide a separate reason to make the switch.

What about elliptic-curve cryptosystems, another important class of public-key
cryptosystems you might have heard about (and a class that, unlike lattice-based cryptosys-
tems, is already deployed commercially today)? Unfortunately, elliptic-curve cryptosys-
tems are easily breakable by quantum computers, since the problem of breaking them can
be expressed as an abelian hidden subgroup problem. (Elliptic-curve groups are abeli-
an.) On the other hand, the best-known classical algorithms for breaking elliptic-curve
cryptosystems apparently have higher running times than the Number Field Sieve for
breaking RSA – it's a question of ~2n versus ~2n1/3

. That could be fundamental, or it could
just be because algorithms for elliptic-curve groups haven't been studied as much.

This completes our whirlwind tour of classical complexity and cryptography; we are
ready to talk about quantum mechanics.

1 D. Kahn, The Codebreakers (New York: Scribner, 1996).
2 See http://en.wikipedia.org/wiki/Pizzino.
3 Oh, OK. For those hungering for a proof, see (for example) Oded Goldreich, Foundations
of Cryptography (Volume I: Basic Tools), Cambridge University Press, 2007.

http://en.wikipedia.org/wiki/Pizzino

4 L. Blum, M. Blum and M. Shub, A Simple Unpredictable Pseudo-Random Number Gen-
erator, SIAM Journal on Computing, 15 (1996), 364–383.
5 M. Ajtai and C. Dwork, A public-key cryptosystem with worst-case/average-case equi-
valence. In Proceedings of 29th Annual ACM Symposium on Theory of Computing (New
York: ACM, 1997), pp. 284–93.
6 O. Regev, On lattices, learning with errors, random linear codes, and cryptography.
Journal of the ACM, 56:6 (2009), 1–40.
7 J. Håstad, R. Impagliazzo, L. A. Levin and M. Luby, A pseudorandom generator from
any one-way function. SIAM Journal on Computing, 28:4 (1999), 1364–96. ht-
tp://citeseer.ist.psu.edu/hastad99pseudorandom.html
8 A. Chi-Chih Yao, Theory and applications of trapdoor functions [extended abstract]. In
Proceedings of 24th Annual IEEE Symposium on Foundations of Computer Science (Silver
Spring, MD: IEEE Computer Society Press, 1982), pp. 80–91.
9 See Martin Gardner, Penrose Tiles to Trapdoor Ciphers: And the Return of Dr. Matrix,
Mathematical Association of America, 1997.
10 http://citeseer.ist.psu.edu/340126.html
11 http://www.cs.tau.ac.il/~odedr/papers/qcrypto.pdf
12 C. Peikert, Public-key cryptosystems from the worst-case shortest vector problem [ex-
tended abstract]. In Proceedings of Annual ACM Symposium on Theory of Computing
(New York: ACM, 2009), pp. 333–42.
13 C. Gentry, Fully homomorphic encryption using ideal lattices. In Proceedings of Annual
ACM Symposium on Theory of Computing (New York: ACM, 2009), pp. 169–78.

http://citeseer.ist.psu.edu/hastad99pseudorandom.html
http://citeseer.ist.psu.edu/hastad99pseudorandom.html
http://citeseer.ist.psu.edu/340126.html
http://www.cs.tau.ac.il/~odedr/papers/qcrypto.pdf

9 Quantum

There are two ways to teach quantum mechanics. The first way – which for most physicists
today is still the only way – follows the historical order in which the ideas were discovered.
So, you start with classical mechanics and electrodynamics, solving lots of grueling differ-
ential equations at every step. Then, you learn about the “blackbody paradox” and various
strange experimental results, and the great crisis these things posed for physics. Next, you
learn a complicated patchwork of ideas that physicists invented between 1900 and 1926 to
try to make the crisis go away. Then, if you're lucky, after years of study, you finally get
around to the central conceptual point: that nature is described not by probabilities (which
are always nonnegative), but by numbers called amplitudes that can be positive, negative, or
even complex.

Look, obviously the physicists had their reasons for teaching quantum mechanics that
way, and it works great for a certain kind of student. But the “historical” approach also has
disadvantages, which in the quantum information age are becoming increasingly apparent.
For example, I’ve had experts in quantum field theory – people who've spent years calcu-
lating path integrals of mind-boggling complexity – ask me to explain the Bell inequality to
them, or other simple conceptual things like Grover's algorithm. I felt as if Andrew Wiles
had asked me to explain the Pythagorean Theorem.

As a direct result of what I think of as the “QWERTY” approach to explaining quantum
mechanics – which you can see reflected in almost every popular book and article, down to
the present – the subject acquired an unnecessary reputation for being complicated and hard.
Educated people memorized the slogans – “light is both a wave and a particle,” “the cat is
neither dead nor alive until you look,” “you can ask about the position or the momentum,
but not both,” “one particle instantly learns the spin of the other through spooky action-at-
a-distance,” etc. But they also learned that they shouldn't even try to understand such things
without years of painstaking work.

The second way to teach quantum mechanics eschews a blow-by-blow account of its dis-
covery, and instead starts directly from the conceptual core – namely, a certain generaliza-
tion of the laws of probability to allow minus signs (and more generally, complex numbers).
Once you understand that core, you can then sprinkle in physics to taste, and calculate the
spectrum of whatever atom you want. This second approach is the one I’ll be following here.

So, what is quantum mechanics? Even though it was discovered by physicists, it's not
a physical theory in the same sense as electromagnetism or general relativity. In the usual
“hierarchy of sciences” – with biology at the top, then chemistry, then physics, then math –
quantum mechanics sits at a level between math and physics that I don't know a good name

for. Basically, quantum mechanics is the operating system that other physical theories run
on as application software (with the exception of general relativity, which hasn't yet been
successfully ported to this particular OS). There's even a word for taking a physical theory
and porting it to this OS: “to quantize.”

But if quantum mechanics isn't physics in the usual sense – if it's not about matter, or
energy, or waves, or particles – then what is it about? From my perspective, it's about in-
formation and probabilities and observables, and how they relate to each other.

My contention in this chapter is the following: Quantum mechanics is what you would
inevitably come up with if you started from probability theory, and then said, let's try to
generalize it so that the numbers we used to call “probabilities” can be negative numbers.
As such, the theory could have been invented by mathematicians in the nineteenth century
without any input from experiment. It wasn't, but it could have been.

And yet, with all the structures mathematicians studied, none of them came up with
quantum mechanics until experiment forced it on them. And that's a perfect illustration of
why experiments are relevant in the first place! More often than not, the only reason we
need experiments is that we're not smart enough. After the experiment has been done, if
we've learned anything worth knowing at all, then we hope we've learned why the experi-
ment wasn't necessary to begin with – why it wouldn't have made sense for the world to be
any other way. But we're too dumb to figure it out ourselves!

Two other perfect examples of “obvious-in-retrospect” theories are evolution and special
relativity. Admittedly, I don't know if the ancient Greeks, sitting around in their togas, could
have figured out that these theories were true. But certainly – certainly! – they could've
figured out that they were possibly true: that they're powerful principles that would've at
least been on God's whiteboard when She was brainstorming the world.

In this chapter, I’m going to try to convince you – without any recourse to experiment –
that quantum mechanics would also have been on the whiteboard. I’m going to show you
why, if you want a universe with certain very generic properties, you seem forced to one of
three choices: (1) determinism, (2) classical probabilities, or (3) quantum mechanics. Even
if the “mystery” of quantum mechanics can never be banished entirely, you might be sur-
prised by just how far people could've gotten without leaving their armchairs! That they
didn't get far until atomic spectra and so on forced the theory down their throats is one of
the strongest arguments I know for experiments being necessary.

A less than 0% chance?

Alright, so what would it mean to have “probability theory” with negative numbers? Well,
there's a reason you never hear the weather forecaster talk about a -20% chance of rain to-

morrow – it really does make as little sense as it sounds. But I’d like you to set any qualms
aside, and just think abstractly about an event with N possible outcomes. We can express
the probabilities of those events by a vector of N real numbers:

Mathematically, what can we say about this vector? Well, the probabilities had better be
nonnegative, and they'd better sum to unity. We can express the latter fact by saying that
the 1-norm of the probability vector has to be unity. (The 1-norm just means the sum of the
absolute values of the entries.)

But the 1-norm is not the only norm in the world – it's not the only way we know to
define the “size” of a vector. There are other ways, and one of the recurring favorites since
the days of Pythagoras has been the 2-norm, or Euclidean norm. Formally, the Euclidean
norm means the square root of the sum of the squares of the entries. Informally, it means
you're late for class, so instead of going this way and then that way, you cut across the
grass.

Now, what happens if you try to come up with a theory that's like probability theory, but
based on the 2-norm instead of the 1-norm? I’m going to try to convince you that quantum
mechanics is what inevitably results.

Let's consider a single bit. In probability theory, we can describe a bit as having a prob-
ability p of being 0, and a probability 1 - p of being 1. But if we switch from the 1-norm to
the 2-norm, now we no longer want two numbers that sum to unity, we want two numbers
whose squares sum to unity. (I’m assuming we're still talking about real numbers.) In other
words, we now want a vector (α, β) where α2 + β2 = 1. Of course, the set of all such vectors
forms a circle:

The theory we're inventing will somehow have to connect to observation. So, suppose we
have a bit that's described by this vector (α, β). Then, we'll need to specify what happens if
we look at the bit. Well, since it is a bit, we should see either 0 or 1! Furthermore, the prob-
ability of seeing 0 and the probability of seeing 1 had better add up to unity. Now, starting
from the vector (α, β), how can we get two numbers that add up to unity? Simple: we can
let α2 be the probability of a 0 outcome, and let β2 be the probability of a 1 outcome.

But in that case, why not forget about α and β, and just describe the bit directly in terms
of probabilities? Ahh. The difference comes in how the vector changes when we apply an
operation to it. In probability theory, if we have a bit that's represented by the vector (p, 1
- p), then we can represent any operation on the bit by a stochastic matrix: that is, a matrix
of nonnegative real numbers where every column adds up to unity. So, for example, the
“bit flip” operation – which changes the probability of a 1 outcome from p to 1 - p – can be
represented as follows:

Indeed, it turns out that a stochastic matrix is the most general sort of matrix that always
maps a probability vector to another probability vector.
Exercise 1 for the non-lazy reader: Prove this.

But now that we've switched from the 1-norm to the 2-norm, we have to ask: what's the
most general sort of matrix that always maps a unit vector in the 2-norm to another unit
vector in the 2-norm?

Well, we call such a matrix a unitary matrix – indeed, that's one way to define what a
unitary matrix is! (Oh, alright. As long as we're only talking about real numbers, it's called
an orthogonal matrix. But same difference.) Another way to define a unitary matrix, again
in the case of real numbers, is as a matrix whose inverse equals its transpose.
Exercise 2 for the non-lazy reader: Prove that these two definitions are equivalent.

This “2-norm bit” that we've defined has a name, which as you might know is qubit.
Physicists like to represent qubits using what they call “Dirac ket notation,” in which the

vector (α, β) becomes α|0 + β|1 . Here, α is the amplitude of outcome |0 , and β is the

amplitude of outcome |1 .
This notation usually drives computer scientists up a wall when they first see it – espe-

cially because of the asymmetric brackets! But if you stick with it, you see that it's really
not so bad. As an example, instead of writing out a vector like (0, 0, 3/5, 0, 0, 0, 4/5, 0),

you can simply write , omitting all of the 0 entries.
So given a qubit, we can transform it by applying any two-by-two unitary matrix – and

that leads already to the famous effect of quantum interference. For example, consider the
unitary matrix

which takes a vector in the plane and rotates it by 45 degrees counterclockwise. Now con-

sider the state |0 . If we apply U once to this state, we'll get – it's like
taking a coin and flipping it. But then, if we apply the same operation U a second time,

we'll get |1 :

So in other words, applying a “randomizing” operation to a “random” state produces a de-
terministic outcome! Intuitively, even though there are two “paths” that lead to the outcome

|0 , one of those paths has positive amplitude and the other has negative amplitude. As a
result, the two paths interfere destructively and cancel each other out. By contrast, the two

paths leading to the outcome |1 both have positive amplitude, and therefore interfere con-
structively.

The reason you never see this sort of interference in the classical world is that probabilities
can't be negative. So, cancellation between positive and negative amplitudes can be seen
as the source of all “quantum weirdness” – the one thing that makes quantum mechanics
different from classical probability theory. How I wish someone had told me that when I
first heard the word “quantum”!

Mixed states

Once we have these quantum states, one thing we can always do is to take classical prob-
ability theory and “layer it on top.” In other words, we can always ask, what if we don't
know which quantum state we have? For example, what if we have a ½ probability of

and a ½ probability of ? This gives us what's called a
mixed state, which is the most general kind of state in quantum mechanics.

Mathematically, we represent a mixed state by an object called a density matrix. Here's
how it works: say, you have this vector of N amplitudes, (α1,..., αN). Then, you compute the
outer product of the vector with itself – that is, an N × N matrix whose (i, j) entry is αiαj
(again in the case of real numbers). Then, if you have a probability distribution over several
such vectors, you just take a linear combination of the resulting matrices. So, for example,
if you have probability p of some vector and probability 1 - p of a different vector, then it's
p times the one matrix plus 1 - p times the other.

The density matrix encodes all the information that could ever be obtained from some
probability distribution over quantum states, by first applying a unitary operation and then
looking at the state (or, as we say in the business, measuring it).
Exercise 3 for the non-lazy reader: Prove this.

This implies that if two distributions give rise to the same density matrix, then those
distributions are empirically indistinguishable, or in other words are the same mixed state.

As an example, let's say you have the state with ½ probability, and

with ½ probability. Then, the density matrix that describes your know-
ledge is

It follows, then, that no measurement you can ever perform will distinguish this mixture

from a ½ probability of |0 and a ½ probability of |1 .

The squaring rule

Why do we square the amplitudes instead of cubing them or raising them to the fourth
power or whatever? Certainly, it agrees with experiment. But what we really want to know

is: if you were designing the laws of physics, why would you do it this way and not some
other way? Why not, for example, just use the absolute values of the amplitudes, or the ab-
solute values cubed?

Alright, I can give you a couple of arguments for why to square the amplitudes.
The first argument is a famous result called Gleason's Theorem from the 1950s.

Gleason's Theorem lets us assume part of quantum mechanics and then get out the rest of
it! More concretely, suppose we have some procedure that takes as input a unit vector of
real numbers, and that spits out the probability of an event. Formally, we have a function f

that maps a unit vector v N to the unit interval [0, 1]. And let's suppose N = 3 –
the theorem actually works in any number of dimensions three or greater (but interestingly,
not in two dimensions). Then, the key requirement we impose is that, whenever three vec-
tors v1, v2, v3 are all orthogonal to each other,

Intuitively, if these three vectors represent “orthogonal ways” of measuring a quantum
state, then they should correspond to mutually exclusive events. Crucially, we don't need
any assumption other than that – no continuity, no differentiability, no nuthin’.

So, that's the setup. The amazing conclusion of the theorem is that, for any such f, there
exists a mixed state such that f arises by measuring that state according to the standard
measurement rule of quantum mechanics. I won't be able prove this theorem here, since it's
pretty hard. But it's one way that you can “derive” the squaring rule without exactly having
to put it in at the outset.
Exercise 4 for the non-lazy reader: Why does Gleason's Theorem not work in two dimen-
sions?

If you like, I can give you a much more elementary argument. This is something I put it
in one of my papers,1 though I’m sure many others knew it before.

Let's say we want to invent a theory that's not based on the 1-norm-like classical probab-
ility theory, or on the 2-norm-like quantum mechanics, but instead on the p-norm for some

p {1, 2}. Call (v1,..., vN) a unit vector in the p-norm if

Then, we'll need some “nice” set of linear transformations that map any unit vector in the
p-norm to another unit vector in the p-norm.

It's clear that for any p we choose, there will be some linear transformations that preserve
the p-norm. Which ones? Well, we can permute the basis elements, shuffle them around.
That'll preserve the p-norm. And we can stick in minus signs if we want. That'll preserve
the p-norm too. But here's the little observation I made: if there are any linear transforma-
tions other than these trivial ones that preserve the p-norm, then either p = 1 or p = 2. If
p = 1, we get classical probability theory, while if p = 2, we get quantum mechanics. So if
you don't want something boring, you have to set p = 1 or p = 2.
Exercise 5 for the non-lazy reader: Prove my little observation.

Alright, to get you started, let me give some intuition about why this observation might
be true. Let's assume, for simplicity, that everything is real and that p is a positive even in-

teger (though the observation also works with complex numbers and with any real p
0). Then, for a linear transformation A = (aij) to preserve the p-norm means that

whenever

Now we can ask: how many constraints are imposed on the matrix A by the requirement
that this be true for every v1,..., vN? If we work it out, in the case p = 2, we'll find that

there are constraints. But since we're trying to pick an N-by-N matrix, that still
leaves us N(N - 1)/2 degrees of freedom to play with.

On the other hand, if (say) p = 4, then the number of constraints grows like , which
is greater than N2 (the number of variables in the matrix). That suggests that it will be hard
to find a nontrivial linear transformation that preserves the 4-norm. Of course, it doesn't
prove that no such transformation exists – that's left as a puzzle for you.

Incidentally, this isn't the only case where we find that the 1-norm and 2-norm are “more
special” than other p-norms. So, for example, have you ever seen the following equation?

There's a cute little fact – unfortunately, I won't have time to prove it in this book – that
the above equation has nontrivial integer solutions when n = 1 or n = 2, but not for any
larger integers n. Clearly, then, if we use the 1-norm and the 2-norm more than other vector
norms, it's not some arbitrary whim – these really are God's favorite norms! (And we didn't
even need an experiment to tell us that.)

Real versus complex numbers

Even after we've decided to base our theory on the 2-norm, we still have at least two
choices: we could let our amplitudes be real numbers, or we could let them be complex. We
know the solution Nature adopted: amplitudes in quantum mechanics are complex num-
bers. This means that you can't just square an amplitude to get a probability; first, you have
to take the absolute value, and then you square that. So, why?

Years ago, at Berkeley, I was hanging out with some math grad students – I fell in
with the wrong crowd – and I asked them that exact question. The mathematicians just
snickered. “Give us a break – the complex numbers are algebraically closed!”2 To them it
wasn't a mystery at all.

But to me it is sort of strange. I mean, complex numbers were seen for centuries as fic-
titious entities that human beings made up, in order that every quadratic equation should
have a root. (That's why we talk about their “imaginary” parts.) So why should Nature, at
its most fundamental level, run on something that we invented for our convenience?

Alright, yeah: suppose we require that, for every linear transformation U that we can ap-
ply to a state, there must be another transformation V such that V2 = U. This is basically
a continuity assumption: we're saying that, if it makes sense to apply an operation for one
second, then it ought to make sense to apply that same operation for only half a second.

Can we get that with only real amplitudes? Well, consider the following linear trans-
formation:

This transformation is just a mirror reversal of the plane. That is, it takes a two-dimensional
Flatland creature and flips it over like a pancake, sending its heart to the other side of its

two-dimensional body. But how do you apply half of a mirror reversal without leaving the
plane? You can't! If you want to flip a pancake by a continuous motion, then you need to
go into...dum dum dum...THE THIRD DIMENSION.

More generally, if you want to flip over an N-dimensional object by a continuous mo-
tion, then you need to go into the (N + 1)st dimension.
Exercise 6 for the non-lazy reader: Prove that any norm-preserving linear transformation
in N dimensions can be implemented by a continuous motion in N + 1 dimensions.

But what if you want every linear transformation to have a square root in the same num-
ber of dimensions? Well, in that case, you have to allow complex numbers. So that's one
argument why you might want complex numbers at such a basic level of physics.

Alright, I can give you two other reasons why amplitudes should be complex.
The first comes from asking, how many independent real parameters are there in an N-

dimensional mixed state? As it turns out, the answer is exactly N2 – provided we assume,
for convenience, that the state doesn't have to be normalized (i.e., that the probabilities can
add up to less than unity). Why? Well, an N-dimensional mixed state is represented math-
ematically by an N × N hermitian3 matrix with positive eigenvalues. Since we're not nor-
malizing, we've got N independent real numbers along the main diagonal. Below the main
diagonal, we've got N(N - 1)/2 independent complex numbers, which means N(N - 1) real
numbers. Since the matrix is hermitian, the complex numbers below the main diagonal de-
termine the ones above the main diagonal. So the total number of independent real para-
meters is N + N(N - 1) = N2.

Now we bring in an aspect of quantum mechanics that I didn't mention before. If we
know the states of two quantum systems individually, then how do we write their com-
bined state? Well, we just form what's called the tensor product. So, for example, the tensor

product of two qubits, α|0 + β|1 and γ|0 + δ|1 , is given by

Here, I’ve used the notation |00 as a shorthand for |0 |0 , |01 as a shorthand

for |0 |1 , and so on. (Sometimes I’ll also use the notations |0 |0 and |0 |1
. These again mean the same thing: one qubit in the first state, “tensored with” or “sitting
next to” another qubit in the second state.) One important point about the tensor product

is that it doesn't commute: |0 |1 is a different state from |1 |0 ! For the
first corresponds to the binary string 01 (the first bit is 0 and the second bit is 1), while the
second corresponds to the binary string 10 (the first bit is 1 and the second bit is 0).

Again one can ask: did we have to use the tensor product? Could God have chosen some
other way of combining quantum states into bigger ones? Well, as it happens, there are
other ways to combine quantum systems – most notably, the so-called symmetric and an-
tisymmetric products – and those other ways are actually used in physics, to describe the
behavior of identical bosons and identical fermions, respectively. For me, though, saying
we take the tensor product is almost what we mean when we say we're putting together two
systems that are able to have an independent existence (as, I would say, identical bosons
and identical fermions are not able).

As you probably know, there are two-qubit states that can't be written as the tensor
product of one-qubit states. The most famous example is the EPR (Einstein–Podol-
sky–Rosen) pair:

Given a mixed state ρ on two subsystems A and B, if ρ can be written as a probability dis-

tribution over tensor product states |ψA |ψB , then we say ρ is separable. Otherwise,
we say ρ is entangled.

Now let's come back to the question of how many real parameters are needed to describe
a mixed state. Suppose we have a (possibly entangled) composite system AB. Then intuit-
ively, it seems like the number of parameters needed to describe AB – which I’ll call dAB –
should equal the product of the number of parameters needed to describe A and the number
of parameters needed to describe B:

If amplitudes are complex numbers, then happily this is true! Letting NA and NB be the
number of dimensions of A and B, respectively, we have

But what if the amplitudes are real numbers? In that case, in an N-by-N density matrix,
we'd only have N(N + 1)/2 independent real parameters. And it's not the case that, if N =
NANB, then

Can this same argument be used to rule out quaternions? Yes! With real numbers, the left-
hand side is too big, whereas with quaternions it's too small. Only with complex numbers
is it juuuuust right!

There's actually another phenomenon with the same “Goldilocks” flavor, which was ob-
served by Bill Wootters – and this leads to my third reason why amplitudes should be com-
plex numbers. Let's say we choose a quantum state

uniformly at random (if you're a mathematician, under the Haar measure). And then we

measure it, obtaining outcome |i with probability |αi|2. The question is, will the resulting
probability vector also be distributed uniformly at random in the probability simplex? It
turns out that, if the amplitudes are complex numbers, then the answer is yes. But if the
amplitudes are real numbers or quaternions, then the answer is no!

Linearity

We've talked about why the amplitudes should be complex numbers, and why the rule for
converting amplitudes to probabilities should be a squaring rule. But all this time, the ele-
phant of linearity has been sitting there undisturbed. Why should quantum states evolve to
other quantum states by means of linear transformations? One guess is that, if the trans-
formations weren't linear, you could crunch vectors to be bigger or smaller. Close! Steven
Weinberg4 and others proposed nonlinear variants of quantum mechanics in which the state
vectors do stay the same size. The trouble with these variants is that they'd let you take far-
apart vectors and squash them together, or take extremely close vectors and pry them apart!
Indeed, that's essentially what it means for such theories to be nonlinear. So our configura-

tion space no longer has this intuitive meaning of measuring the distinguishability of vec-
tors. Two states that are exponentially close might in fact be perfectly distinguishable. And
indeed, in 1998 Abrams and Lloyd5 used exactly this observation to show that, if quantum
mechanics were nonlinear, then one could build a computer to solve NP-complete prob-
lems in polynomial time. Of course, we don't know whether NP-complete problems are
efficiently solvable in the physical world. But in a survey6 I wrote years ago, I explained
why the ability to solve NP-complete problems would give us “godlike” powers – argu-
ably, even more so than the ability to transmit superluminal signals or reverse the Second
Law of Thermodynamics. The basic point is that, when we talk about NP-complete prob-
lems, we're not just talking about scheduling airline flights (or for that matter, breaking the
RSA cryptosystem). We're talking about automating insight: proving the Riemann Hypo-
thesis, modeling the stock market, seeing whatever patterns or chains of logical deduction
are there in the world to be seen.

So, suppose I maintain the working hypothesis that NP-complete problems are not ef-
ficiently solvable by physical means, and that if a theory suggests otherwise, more likely
than not that indicates a problem with the theory. Then there are only two possibilities:
either I’m right, or else I’m a god! And either one sounds pretty good to me...
Exercise 7 for the non-lazy reader: Prove that if quantum mechanics were nonlinear, then
not only could you solve NP-complete problems in polynomial time, you could also use
EPR pairs to transmit information faster than the speed of light.

Let me end this chapter by mentioning three central aspects of quantum mechanics that
make some appearances in this book.

The first is the No-Cloning Theorem. This is simply the statement that there's no proced-

ure, consistent with quantum mechanics, that takes as input an unknown quantum state |ψ

, and produces as output two separate copies of |ψ – that is, the tensor product |ψ

|ψ . The proof of this thing is so trivial, it's debatable whether it even deserves the name
“theorem” – but it's certainly important. Here's the proof: assume without loss of generality

that |ψ is just a single qubit, |ψ = α|0 + β|1 . Then a “cloning map,” which wrote a

copy of |ψ into another qubit initialized to (say) |0 , would need to do the following:

Notice that α2, αβ, and β2 are quadratic functions of α and β. But unitary transformations
can only ever produce linear combinations of amplitudes, and therefore can never produce
an evolution of the above sort. And that's pretty much the No-Cloning Theorem! We see
that, unlike classical information, which can be copied promiscuously across the universe,
quantum information has a “privacy” to it – indeed in some ways, it's less like classical in-
formation than like gold, oil, or other “indivisible” resources.

A few comments about the No-Cloning Theorem are in order.

• The theorem is not just an artifact of an unphysical insistence on perfect copyabil-
ity. Indeed, you might want to check that the linearity of quantum mechanics pro-
hibits making even making a “pretty good” copy of a qubit, for a suitable definition
of “pretty good.”

• Of course we can map the state (α|0 + β|1)|0 to α|0 |0 + β|1 |1 , by ap-
plying a Controlled-NOT gate from the first qubit to the second qubit. But that

doesn't produce two copies of the original state α|0 + β|1 ; instead it produces

an entangled state, where each individual qubit is in the mixed state .
Indeed, the only case where we can really regard that as “copying” is if α = 0 or β
= 0 – in which case we're talking about classical information, not quantum inform-
ation.

• If the No-Cloning Theorem reminds you of Heisenberg's famous Uncertainty Prin-
ciple – well, it should! The Uncertainty Principle says that there exist pairs of prop-
erties – most famously, the position and momentum of a particle – that can't both
be measured to arbitrary accuracy. I claim that the No-Cloning Theorem basically
implies the Uncertainty Principle and vice versa. For on the one hand, if you could
measure all properties of a quantum state to unlimited accuracy, then you could
produce arbitrarily-accurate clones. On the other hand, if you could copy a state |ψ

an unlimited number of times, then you could learn all its properties to arbitrary
accuracy – for example, by measuring the positions of some copies and the mo-
menta of others.

• There's one sense in which the No-Cloning Theorem has almost nothing to do
with quantum mechanics. Namely, a precisely analogous theorem can be proved
for classical probability distributions. If you have a coin that's heads-up with some
unknown probability p, there's no way to convert it into two coins that are both
heads-up with probability p independently of each other. Sure, you can look at your
coin, but the information about p you get that way is too limited to enable copying.
What's new in quantum mechanics is simply that the no-cloning principle applies,
not only to mixed states, but also to pure states---states such that, if you knew the
right basis in which to measure, then you could learn which state you had with ab-
solute certainty. But if you don't know the right basis, then you can neither learn
these states nor copy them.

So, that was the No-Cloning Theorem. The second aspect of quantum mechanics that I
should mention here is really a striking application of the No-Cloning Theorem. It's called
quantum key distribution (QKD), and it's a protocol by which Alice and Bob can agree on
a shared secret key, despite never having met in advance, and (unlike in public-key crypto-
graphy) without relying on any computational intractability assumption – indeed, the only
real assumptions they need are the validity of quantum mechanics, and the availability of
an authenticated classical channel. The possibility of this sort of cryptography was anticip-
ated by Stephen Wiesner7 in 1969, in a remarkable, decades-ahead-of-its-time paper that
Wiesner didn't manage to get published for 15 years. (Recently, while visiting Jerusalem, I
had the opportunity to meet Wiesner. He's now, by choice, a construction laborer there, and
an extremely interesting guy.) The first explicit QKD proposal was by Bennett and Brass-
ard8 in 1984, and is creatively known as BB84. I won't present the full details of the pro-
tocol here: while they're not terribly complicated, they also won't be important for us; and
in any case, there are plenty of good expositions of BB84 in textbooks and on the web.

Instead, let me just discuss the conceptual question of how quantum mechanics could
possibly allow secret key agreement, without Alice and Bob ever meeting in person and
without computational assumptions – something that's ruled out in the classical world by
Shannon's arguments (see Chapter 8). The basic idea is that Alice and Bob send each oth-
er qubits prepared randomly in two or more non-orthogonal bases: for example, the four

“BB84 states” . They then measure some of the qubits they re-

ceived in one of two random bases and send each
other the results over the authenticated classical channel, in order to check whether the
transmission was successful. If it wasn't, then they can try again. If it was, then they can
use other measurement outcomes – the ones they haven't communicated in the clear –

to establish a shared secret key. Aha, but how do they know that an eavesdropper, Eve,
wasn't secretly monitoring those qubits? The answer is the No-Cloning Theorem! Basic-
ally, one argues that if Eve had learned anything significant about those qubits, then she
wouldn't also have been able to stick qubits back into the channel that would pass Alice's
and Bob's verification tests with non-negligible probability. Because Eve wouldn't know
the right basis in which to measure each qubit, Alice and Bob would be able to detect the
very fact that Eve was monitoring the channel. The only thing Eve could do would be to
commandeer the channel completely and impersonate either Alice or Bob, in a so-called
“man-in-the-middle” (or woman-in-the-middle) attack. But that would require comprom-
ising not only the quantum channel, but also the classical channel that we assumed to be
authenticated.

Incidentally, Wiesner's paper introduced another striking application of the No-Cloning
Theorem, one that's interested me a great deal over the last few years: quantum money.
The idea here is simple: if quantum states are really unclonable, why not exploit that to
create cash that's physically impossible to counterfeit? As soon as you think about this,
though, you notice a difficulty: money is only useful if someone can verify it as legitim-

ate. So the question is: can you have quantum states |ψ that legitimate users can measure
in order to authenticate them, but that counterfeiters can't measure in order to copy them?
Well, Wiesner gave a scheme for doing exactly that ’ interestingly, one that wasn't rigor-
ously proved to be secure until quite recently.9 His scheme involved exactly the four states

that would later be known as the BB84 states.
However, the central drawback of Wiesner's scheme was that the only entity that knew

how to verify a bill as legitimate was the bank that originally printed the bill. For only the

bank knew in which bases the qubits had been pre-
pared, and it couldn't publish those bases without enabling counterfeiters. Recently, there's
been a spate of interest in what I call public-key quantum money: that is, quantum states
that a bank can prepare, that no one can feasibly copy, and that anyone can authenticate.
It's not hard to see that, if you want a public-key scheme, then you need computational
assumptions: quantum mechanics by itself is not enough. (For a counterfeiter with unlim-
ited computation time could always just do an exhaustive search, until it found a state that
the publicly-known verification procedure accepted.) There have been lots of public-key
quantum money schemes proposed over the past few years; unfortunately, the majority of
them have been broken, and the rest tend to be ad hoc. Recently, though, Paul Christiano
and I10 proposed a new public-key quantum money scheme called the “hidden subspace

scheme,” which we can prove secure under a relatively “standard” cryptographic assump-
tion. Our assumption – about the quantum hardness of solving a certain classical problem
involving polynomials – is a strong one, but at least it's not “tautological”; it has nothing
inherently to do with quantum money.

The third aspect of quantum mechanics, before we finish this chapter, is quantum tele-
portation. That name, of course, is catnip for journalists hungry to misunderstand, and
to see quantum mechanics as making possible the world of Star Trek. Crucially, though,
quantum teleportation solves a problem that wouldn't even exist, if not for quantum mech-
anics itself! Classically, you can always “teleport” information, for example by sending it
over the Internet. (When I was five years old and watching my dad's fax machine, it was a
great revelation to me that the paper wasn't being trans-materialized, but simply converted
into information and reconstituted at the other end.) The quantum teleportation problem is:
what if you want to send qubits over a classical channel? Naïvely, that seems totally im-
possible. Using a classical channel, the best you could ever do would be to send the results

of measuring a state |ψ in some basis – but unless the basis happened to contain |ψ , that

clearly wouldn't be enough information to reconstruct |ψ on the other end. That's why
it was an amazing discovery – by Bennett et al.11, in 1993 – that if Alice and Bob share

an EPR pair , then Alice can transmit an arbitrary qubit to Bob, via a protocol
wherein she sends Bob two classical bits, and Alice and Bob also measure their halves of
the EPR pair (“using up” the EPR pair in the process).

How does the protocol work? Well, suppose Alice wants to teleport |ψ = α|0 + β|1

to Bob. Then the first thing she does is, she applies a Controlled-NOT from |ψ onto her
half of the EPR pair. This has the result

Next, Alice applies a Hadamard to her first qubit (the one that was originally |ψ). This
produces the state

Finally, Alice measures both of her qubits in the {|0 , |1 } basis, and sends the result to

Bob. Note that, regardless of what |ψ was, Alice will see each of the four possible out-
comes (00, 01, 10, and 11) with probability ¼. Furthermore, if she sees 00 then Bob's state

is α|0 + β|1 , if she sees 01 then Bob's state is β|0 + α|1 , if she sees 10 then Bob's state

is α|0 - β|1 , and if she sees 11 then Bob's state is β|0 - α|1 . Therefore, after receiving
the two classical bits from Alice, Bob knows exactly which “corrections” to apply in order

to recover the original state α|0 + β|1 .
Two conceptual points: first, there's no instantaneous communication here. In order for

|ψ to be teleported, two classical bits need to get from Alice to Bob, and those bits can
only travel at the speed of light. Second, and even more interestingly, there's no violation

of the No-Cloning Theorem. In order to teleport |ψ to Bob, Alice had to measure her copy

of |ψ and thereby learn which classical bits to send him – and the measurement neces-
sarily destroyed Alice's copy. Could there exist some cleverer teleportation protocol, which

reproduced |ψ on Bob's end but also left a copy of |ψ intact on Alice's end? I claim that
the answer is no. What makes me so certain? Why, the No-Cloning Theorem!

Further reading

See this12 now classic paper by Lucien Hardy for a “derivation” of quantum mechanics
that's closely related to the arguments I gave, but much, much more serious and careful. Or,
for a newer and different derivation, see this paper13 by Chiribella et al., which “derives”
quantum mechanics as the unique theory that satisfies (1) various reasonable-sounding ax-
ioms that are also satisfied by classical probability theory, and (2) the axiom that every
“mixed state” described by the theory must be obtainable by starting with a larger “pure
state,” then tracing out part of it. (Already in the 1930s, Schrödinger had called attention
to the latter as a crucial and distinctive property of quantum mechanics. I confess, though,
that I don't have any better intuition for why I would want to create a world that satisfied
this particular “purification” axiom than for why I'd want to create a world that obeyed
the 2-norm generalization of probability theory!) Finally, see pretty much anything Chris
Fuchs14 has written, especially this paper15 by Caves, Fuchs, and Schack, which discusses
why amplitudes should be complex numbers rather than reals or quaternions.

1 http://www.scottaaronson.com/papers/island.pdf
2 A field F of numbers is called “algebraically closed,” if every algebraic equation in-
volving numbers from F can also be solved using numbers from F (except for trivially un-
solvable equations like 0 = 1). To illustrate, the rational numbers aren't algebraically closed
because the equation x2 = 2 has only irrational solutions, and even the real numbers aren't
algebraically closed because the equation x2 = -1 has only imaginary solutions. But it was
a big result in the early 1800s that the complex numbers are algebraically closed. A priori,
you might have guessed that you'd need to invent an unending tower of more and more
complicated numbers, in the course of trying to solve algebraic equations involving the pre-
vious numbers. But no, “the buck stops” at the complex numbers! For example, a solution

to the equation x2 = i is , which is still a complex number.
3 A matrix of complex numbers which is equal to its own conjugate transpose.
4 S. Weinberg, Precision tests of quantum mechanics, Physical Review Letters 62 (1989),
485.
5 http://www.arxiv.org/abs/quant-ph/9801041
6 http://www.scottaaronson.com/papers/npcomplete.pdf
7 Stephen Wiesner, “Conjugate coding,” ACM SIGACT News 15(1):78–88. 1983.

http://www.scottaaronson.com/papers/island.pdf
http://www.arxiv.org/abs/quant-ph/9801041
http://www.scottaaronson.com/papers/npcomplete.pdf

8 Charles H. Bennett and Gilles Brassard, “Quantum Cryptography: Public key distribution
and coin tossing,” Proceedings of the IEEE International Conference on Computers, Sys-
tems, and Signal Processing, Bangalore, p. 175, 1984.
9 Abel Molina, Thomas Vidick, and John Watrous, ”Optimal counterfeiting attacks and
generalizations for Wiesner's quantum money,” 2012. http://arxiv.org/abs/1202/4010.
10 Scott Aaronson and Paul Christiano, “Quantum Money from Hidden Subspaces,” in Pro-
ceedings of ACM Symposium on Theory of Computing, pp. 41–60, 2012. http://arxiv.org/
abs/1203.4740
11 Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres,
and William K. Wootters, “Teleporting an unknown quantum state via dual classical and
Einstein-Podolsky-Rosen channels,” Physical Review Letters 70:1895–1899, 1993.
12 http://www.arxiv.org/abs/quant-ph/0101012
13 G. Chiribella, G. M. D'Ariano and P. Perinotti, Informational derivation of Quantum
Theory. Physical Review A, 84 (2011), 012311. http://arxiv.org/abs/1011.6451
14 http://www.perimeterinstitute.ca/personal/cfuchs/
15 http://www.arxiv.org/abs/quant-ph/0104088

http://arxiv.org/abs/1202/4010
http://arxiv.org/abs/1203.4740
http://arxiv.org/abs/1203.4740
http://www.arxiv.org/abs/quant-ph/0101012
http://arxiv.org/abs/1011.6451
http://www.perimeterinstitute.ca/personal/cfuchs/
http://www.arxiv.org/abs/quant-ph/0104088

10 Quantum computing

Alright, so now we've got this beautiful theory of quantum mechanics, and the possibly-
even-more-beautiful theory of computational complexity. Clearly, with two theories this
beautiful, you can't just let them stay single – you have to set them up, see if they hit it off,
etc.

And that brings us to the class BQP: Bounded-Error Quantum Polynomial-Time. We
talked in Chapter 7 about BPP, or Bounded-Error Probabilistic Polynomial-Time. Inform-
ally, BPP is the class of computational problems that are efficiently solvable in the physical
world if classical physics is true. Now we ask, what problems are efficiently solvable in the
physical world if (as seems more likely) quantum physics is true?

To me it's sort of astounding that it took until the 1990s for anyone to really seriously ask
this question, given that all the tools for asking it were in place by the 1960s or even earlier.
It makes you wonder, what similarly obvious questions are there today that no one's asking?

So how do we define BQP? Well, there are four things we need to take care of.

1. Initialization. We say, we have a system consisting of n quantum bits (or qubits),
and these are all initialized to some simple, easy-to-prepare state. For convenience,
we usually take that to be a “computational basis state,” though later in the book
we'll consider relaxing that assumption. In particular, if the input string is x, then the

initial state will have the form |x |0...0 : that is, |x together with as many “an-
cilla” qubits as we want initialized to the all-0 state.

2. Transformations. At any time, the state of our computer will be a superposition
over all 2p(n) p(n)-bit strings, where p is some polynomial in n:

But what operations can we use to transform one superposition state to another?
Since this is quantum mechanics, the operations should be unitary transformations

– but which ones? Given any Boolean function f:{0, 1}n {0, 1}, there's
some unitary transformation that will instantly compute the function for us. For ex-

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244756

ample, we could take any unitary transformation that maps each basis state of the

form |x |0 to |x |f(x) .
But, of course, for most functions f, we can't apply that transformation efficiently.
Exactly by analogy to classical computing – where we're only interested in those
circuits that can be built up by composing a small number of AND, OR, and NOT
gates – here we're only interested in those unitary transformations that can be built
up by composing a small number of quantum gates. By a “quantum gate,” I just
mean a unitary transformation that acts on a small number of qubits – say, one,
two, or three.
Alright, let's see some examples of quantum gates. One famous example is the
Hadamard gate, which acts as follows on a single qubit:

Another example is the Toffoli gate, which acts as follows on three qubits:

Or in words, the Toffoli gate flips the third qubit if and only if the first two qubits
are both 1. Note that the Toffoli gate actually makes sense for classical computers
as well.

Now, it was shown by Shi1 that the Toffoli and Hadamard already constitute a uni-
versal set of quantum gates. This means, informally, that they're all you ever need
for a quantum computer – since, if we wanted to, we could use them to approxim-
ate any other quantum gate arbitrarily closely. (Or technically, any gate whose unit-
ary matrix has real numbers only, no complex numbers. But that turns out not to
matter for computing purposes.) Furthermore, by a result called the Solovay-Kit-
aev Theorem,2 any universal set of gates can simulate any other universal set effi-
ciently – that is, with at most a polynomial increase in the number of gates. So as
long as we're doing complexity theory, it really doesn't matter which universal gate
set we choose.
This is exactly analogous to how, in the classical world, we could build our circuits
out of AND, OR, and NOT gates, out of AND and NOT gates only, or even out of
NAND gates only.
Now, you might ask: which quantum gate sets have this property of universality?
Is it only very special ones? On the contrary, it turns out that in a certain precise
sense, almost any set of one- and two-qubit gates (indeed, almost any single two-
qubit gate) will be universal. But there are certainly exceptions to the rule. For
example, suppose you had only the Hadamard gate (defined above) together with
the following “controlled-NOT” gate, which flips the second qubit if the first qubit
equals 1:

That seems like a natural universal set of quantum gates, but it isn't. The so-called
Gottesman–Knill Theorem3 shows that any quantum circuit consisting entirely of
Hadamard and controlled-NOT gates can be simulated efficiently by a classical
computer.
Now, once we fix a universal set (any universal set) of quantum gates, we'll be in-
terested in those circuits consisting of at most p(n) gates from our set, where p is a
polynomial, and n is the number of bits of the problem instance we want to solve.
We call these the polynomial-size quantum circuits.

3. Measurement. How do we read out the answer when the computation is all done?

Simple: we measure some designated qubit, reject if we get outcome |0 , and ac-

cept if we get outcome |1 ! Recall that for simplicity, we're only interested here in
decision problems – that is, problems having a yes-or-no answer.
We further stipulate that, if the answer to our problem was “yes,” then the final

measurement should accept with probability at least , whereas if the answer

was “no,” then it should accept with probability at most . This is exactly the

same requirement as for BPP. And as with BPP, we can replace the and

by any other numbers we want (for example, 1 - 2-500 and 2-500), by simply
repeating the computation a suitable number of times and then outputting the ma-
jority answer.
Now, immediately there's a question: would we get a more powerful model of
computation if we allowed not just one measurement, but many measurements
throughout the computation!
It turns out that the answer is no – the reason being that you can always simulate
a measurement (other than the final measurement, the one that “counts”) using
a unitary quantum gate. You can say, instead of measuring qubit A, let's apply a
controlled-NOT gate from qubit A into qubit B, and then ignore qubit B for the
rest of the computation. Then it's as if some third party measured qubit A – the two
views are mathematically equivalent. (Is this a trivial technical point or a profound
philosophical point? You be the judge...)

4. Uniformity. Before we can give the definition of BQP, there's one last technical
issue we need to deal with. We talked about a “polynomial-size quantum circuit,”
but more correctly it's an infinite family of circuits, one for each input length n.
Now, can the circuits in this family be chosen arbitrarily, completely independent
of each other? If so, then we could use them to (for example) solve the halting
problem, by just hardwiring into the nth circuit whether or not the nth Turing ma-
chine halts. If we want to rule that out, then we need to impose a requirement called
uniformity. This means that there should exist a (classical) algorithm that, given n
as input, outputs the nth quantum circuit in time polynomial in n.
Exercise. Show that letting a polynomial-time quantum algorithm output the nth
circuit would lead to the same definition.

Alright, we're finally ready to put the pieces together and give a definition of BQP.

BQP is the class of languages L {0, 1}* for which there exists a uniform family

of polynomial-size quantum circuits, {Cn}, such that for all x {0, 1}n:

• if x L, then Cn accepts input |x |0...0 with probability at least .

• if x L, then Cn accepts input |x |0...0 with probability at most .

Uncomputing

So, what can we say about BQP?
Well, as a first question, let's say you have a BQP algorithm that calls another BQP al-

gorithm as a subroutine. Could that be more powerful than BQP itself? Or in other words,
could BQPBQP (that is, BQP with a BQP oracle) be more powerful than BQP?

It better not be! Incidentally, this is related to something I was once talking to Dave Ba-
con about. Why do physicists have so much trouble understanding the class NP? I suspect
it's because NP, with its “magical” existential quantifier layered on top of a polynomial-
time computation, is not the sort of thing they'd ever come up with. The classes that phys-
icists would come up with – the physicist complexity classes – are hard to delineate pre-
cisely, but one property I think they'd definitely have is “closure under the obvious things,”
like one algorithm from the class calling another algorithm from the same class as a sub-
routine.

I claim that BQP is an acceptable “physicist complexity class” – and in particular, that
BQPBQP = BQP. What's the problem in showing this?

Right, garbage! Recall that when a quantum algorithm is finished, you measure just
a single qubit to obtain the yes-or-no answer. So, what to do with all the other qubits?
Normally, you'd just throw them away. But now let's say you've got a superposition over
different runs of an algorithm, and you want to bring the results of those runs together and
interfere them. In that case, the garbage might prevent the different branches from interfer-
ing! So what do you do to fix this?

The solution, proposed by Charles Bennett in the 1980s, is to uncompute. Here's how it
works.

1. You run the subroutine.
2. You copy the subroutine's answer qubit to a separate location.
3. You run the entire subroutine backward, thereby erasing everything except the an-

swer qubit. (If the subroutine has some probability of error, this erasing step won't
work perfectly, but it will still work pretty well.)

As you'd see if you visited my apartment, this is not the solution I generally adopt. But if
you're a quantum computer, cleaning up the messes you make is a good idea.

Relation to classical complexity classes

Alright, so how does BQP relate to the complexity classes we've already seen?

First, I claim that BPP BQP: in other words, anything you can do with a classical
probabilistic computer, you can also do with a quantum computer. Why?

Right: because any time you were gonna flip a coin, you just apply a Hadamard gate to a
fresh 0 qubit instead. In textbooks, this usually takes about a page to prove. We just proved
it.

Can we get any upper bound on BQP in terms of classical complexity classes?

Sure we can! First of all, it's pretty easy to see that BQP EXP: anything you can
compute in quantum polynomial time you can also compute in classical exponential time.
Or to put it differently, quantum computers can provide at most an exponential advantage
over classical computers. Why is that?

Right: because if you allow exponential slowdown, then a classical computer can just
simulate the whole evolution of the state vector!

As it turns out, we can do a lot better than that. Recall that PP is the class of problems
like the following.

• Given a sum of exponentially many real numbers, each of which can be evaluated
in polynomial time, is the sum positive or negative (promised that one of these is
the case)?

• Given a Boolean formula in n variables, do at least half of the 2n possible variable
settings make the formula evaluate to TRUE?

• Given a randomized polynomial-time Turing machine, does it accept with probab-

ility ½?

In other words, a PP problem involves summing up exponentially many terms, and then
deciding whether the sum is greater or less than some threshold. Certainly, PP is contained
in PSPACE is contained in EXP.

In their original paper on quantum complexity, Bernstein and Vazirani showed that BQP

PSPACE. Shortly afterward, Adleman, DeMarrais, and Huang4 improved their res-

ult to show that BQP PP. (This was also the first complexity result I proved. Had I
known that Adleman et al. had proved it a year before, I might never have gotten started in
this business! Occasionally, it's better to have a small academic light cone.)

So, why is BQP contained in PP? From a computer science perspective, the proof is
maybe half a page. From a physics perspective, the proof is three words:

Feynman path integral!!!

Look, let's say you want to calculate the probability that a quantum computer accepts. The
obvious way to do it is to multiply a bunch of 2n × 2n unitary matrices, then take the sum of
the squares of the absolute values of the amplitudes corresponding to accepting basis states

(that is, basis states for which the output qubit is |1). What Feynman noticed in the 1940s
is that there's a better way – a way that's vastly more efficient in terms of memory (or pa-
per), though still exponential in terms of time.

The better way is to loop over accepting basis states, and for each one, loop over all
computational paths that might contribute amplitude to that basis state. So, for example, let

αx be the final amplitude of basis state |x . Then we can write

where each αx,i corresponds to a single leaf in an exponentially large “possibility tree,” and
is therefore computable in classical polynomial time. Typically, the αx,i will be complex

numbers with wildly differing phases, which will interfere destructively and cancel each
other out; then αx will be the tiny residue left over. The reason quantum computing seems
more powerful than classical computing is precisely that it seems hard to estimate that tiny
residue using random sampling. Random sampling would work fine for (say) a typical US
election, but estimating αx is more like the 2000 election.

Now, let S be the set of all accepting basis states. Then we can write the probability that
our quantum computer accepts as

where * denotes the complex conjugate. But this is just a sum of exponentially many terms,

each of which is computable in P. We can therefore decide in PP whether paccept

or paccept .
From my perspective, Richard Feynman won the Nobel Prize in Physics essentially for

showing BQP is contained in PP.

Of course, the question that really gets people hot under the collar is whether BPP
BQP: that is, whether quantum computing is more powerful than classical. Today, we have
evidence that this is indeed the case, most notably Shor's algorithm for factoring and dis-
crete log. I’ll assume you've heard of this algorithm, since it was one of the major scientific
achievements of the late twentieth century, and is why we're talking about these things in
the first place. If you haven't seen it, there are about 500000 expositions on the Web.5

It's worth stressing that, even before Shor's algorithm, computer scientists had amassed
formal evidence that quantum computers were more powerful than classical ones. Indeed,
this evidence is what paved the way for Shor's algorithm.

One major piece of evidence was Simon's algorithm.6 Suppose we have a function f:{0,

1}n {0, 1}n, which we can access only as a “black box,” that is, by feeding it
inputs and examining the outputs. We're promised that there exists a “secret XOR-mask” s

{0, 1}n, such that for all distinct (x, y) pairs f(x) = f(y) if and only if x y = s.

(Here denotes bitwise XOR.) Our goal is to learn the identity of s. The question is,
how many times do we need to query f to do that with high probability?

Classically, it's easy to see that ~2n/2 queries are necessary and sufficient. As soon as we

find a collision (a pair x y such that f(x) = f(y)), we know that s = x y, and
hence we're done. But until we find a collision, the function looks essentially random. In
particular, if we query the function on T inputs, then the probability of finding a collision is

at most ~T2/2n by the union bound. Hence, we need T 2n/2 queries to find s with
high probability.

On the other hand, Simon gave a quantum algorithm that finds s using only ~n queries.
The basic idea is to query f in superposition, and thereby prepare quantum states of the
form

for random (x, y) pairs such that x y = s. We then use the so-called quantum Fourier
transform to extract information about s from these states. This use of the Fourier trans-

form to extract “hidden periodicity information” provided a direct inspiration for Shor's

algorithm, which does something similar over the abelian group instead of . In a
by-now famous story, Simon's paper got rejected the first time he submitted it to a confer-
ence – apparently Shor was one of the few people who got the point of it.

Again, I won't go through the details of Simon's algorithm; see here7 if you want them.
So, the bottom line is that we get a problem – Simon's problem – that quantum computers

can provably solve exponentially faster than classical computers. Admittedly, this problem
is rather contrived, relying as it does on a mythical “black box” for computing a function
f with a certain global symmetry. Because of its black-box formulation, Simon's problem

certainly doesn't prove that BPP BQP. What it does prove is that there exists an

oracle relative to which BPP BQP. This is what I meant by formal evidence that
quantum computers are more powerful than classical ones.

As it happens, Simon's problem was not the first to yield an oracle separation between
BPP and BQP. Just as Shor was begotten of Simon, so Simon was begotten of Bern-
stein–Vazirani. In the long-ago dark ages of 1993, Bernstein and Vazirani devised a black-
box problem called Recursive Fourier Sampling. They were able to prove that any clas-
sical algorithm needs at least ~nlog n queries to solve this problem, whereas there exists a
quantum algorithm to solve it using only n queries.

Unfortunately, even to define the Recursive Fourier Sampling problem would take a
longer digression than I feel is prudent. (If you think Simon's problem was artificial, you
ain't seen nuthin’!) But the basic idea is this. Suppose we have black-box access to a

Boolean function f:{0, 1}n {0, 1}. We're promised that there exists a “secret

string” s {0, 1}n, such that f(x) = s • x for all x (where • denotes the inner product
mod 2). Our goal is to learn s, using as few queries to f as possible.

In other words: we know that f(x) is just the XOR of some subset of input bits; our goal
is to find out which subset.

Classically, it's obvious that n queries to f are necessary and sufficient: we're trying to
learn n bits, and each query can only reveal one! But quantumly, Bernstein and Vazirani
observed that you can learn s with just a single query. To do so, you simply prepare the
state

then apply Hadamard gates to all n qubits. The result is easily checked to be |s .
What Bernstein and Vazirani did was to start from the problem described above – called

Fourier sampling – and then compose it recursively. In other words, they created a Fourier
sampling problem where, to learn one of the bits f(x), you need to solve another Fourier
sampling problem, and to learn one of the bits in that problem you need to solve a third
problem, and so on. They then showed that, if the recursion is d levels deep, then any ran-
domized algorithm to solve this Recursive Fourier Sampling problem must make at least
~nd queries. By contrast, there exists a quantum algorithm that solves the problem using
only 2d queries.

Why 2d queries, you ask, instead of just 1d = 1? Because at each level of recursion, the
quantum algorithm needs to uncompute its garbage to get an interference effect – and that
keeps adding an additional factor of 2. Like so:

Indeed, one of my results8 shows that this sort of recursive uncomputation is an unavoid-
able feature of any quantum algorithm for Recursive Fourier Sampling.

So, once we have this gap of nd versus 2d, setting d = log n gives us nlog n queries on a
classical computer versus 2log n = n queries on a quantum computer. Admittedly, this sep-

aration is not exponential versus polynomial – it's only “quasipolynomial” versus polyno-
mial. But that's still enough to prove an oracle separation between BPP and BQP.

You might wonder: now that we have Simon's and Shor's algorithms – which do achieve
an exponential separation between quantum and classical – why muck around with this re-
cursive archeological relic? Well, one of the biggest open problems in quantum comput-
ing concerns the relationship between BQP and the polynomial hierarchy PH (defined in
Chapter 6). Specifically, is BQP contained in PH? Sure, it seems unlikely – but, as Bern-
stein and Vazirani asked back in 1993, can we actually find an oracle relative to which

BQP PH? Alas, two decades and I don't know how many disillusioned grad students
later, the answer is still no. Yet many of us still think a separation should be possible – and
until recently Recursive Fourier Sampling was pretty much the only candidate problem we
had for such a separation.

Finally, in 2009, I came up with a different candidate problem,9 called “Fourier Check-
ing,” which ought to give not merely an oracle separation between BQP and PH, but
(unlike Recursive Fourier Sampling) an exponential separation. Alas, proving this separa-
tion seems to require some new advances in classical complexity theory – specifically, in
constant-depth circuit lower bounds – beyond what we know today. But, as a result of Four-
ier Checking, it's possible that Recursive Fourier Sampling has finally been superseded,
retaining only its historical importance.

Quantum computing and NP-complete problems

From reading newspapers, magazines, and so on, one would think a quantum computer
could “solve NP-complete problems in a heartbeat” by “trying every possible solution in
parallel,” and then instantly picking the correct one.

Well, arguably that's the central misconception about quantum computing among
laypeople. Allow me to elaborate.

Obviously, we can't yet prove that quantum computers can't solve NP-complete prob-

lems efficiently – in other words, that NP BQP – since we can't even prove that P

NP! Nor do we have any idea how to prove that if P NP then NP BQP.
What we do have is the early result of Bennett, Bernstein, Brassard, and Vazirani, that

there exists an oracle relative to which NP BQP. More concretely, suppose you're

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197174

searching a space of 2n possible solutions for a single valid one, and suppose that all you
can do, given a candidate solution, is feed it to a “black box” that tells you whether that
solution is correct or not. Then how many times do you need to query the black box to find
the valid solution? Classically, it's clear that you need to query it ~2n times in the worst case
(or ~2n/2 times on average). On the other hand, Grover10 famously gave a quantum search
algorithm that queries the black box only ~2n/2 times. But even before Grover's algorithm
was discovered, Bennett et al. had proved that it was optimal! In other words, any quantum
algorithm to find a needle in a size-2n haystack needs at least ~2n/2 steps. So the bottom line
is that, for “generic” or “unstructured” search problems, quantum computers can give some
speedup over classical computers – specifically, a quadratic speedup – but nothing like the
exponential speedup of Shor's factoring algorithm.

You might wonder: why should the speedup be quadratic, rather than cubic or something
else? Let me try to answer that question without getting into the specifics either of Grover's
algorithm, or of the Bennett et al. optimality proof. Basically, the reason we get a quad-
ratic speedup is that quantum mechanics is based on the 2-norm rather than the 1-norm.
Classically, if there are N solutions, only one of which is right, then after one query we
have a 1/N probability of having guessed the right solution, after two queries we have a
2/N probability, after three queries a 3/N probability, and so on. Thus, we need ~N queries
to have a nonnegligible (i.e., close to unit) probability of having guessed the right solu-
tion. But quantumly, we get to apply linear transformations to vectors of amplitudes, which
are the square roots of probabilities. So the way to think about it is this: after one query,

we have a amplitude of having guessed the right solution, after two queries we

have a amplitude, after three queries a amplitude, and so on. So after

T queries, the amplitude of having guessed a right solution is , and the probab-

ility is . Hence, the probability will be close to unity after only

queries.
Alright, those of you who read my blog11 must be tired of polemics about the limitations

of quantum computers on unstructured search problems. So I’m going to take the liberty of
ending this section now.

Quantum computing and many-worlds

Since this book is titled Quantum Computing since Democritus, I guess I should end this
chapter with a deep philosophical question. Alright, so how about this one: if we managed
to build a nontrivial quantum computer, would that demonstrate the existence of parallel
universes?

David Deutsch, one of the founders of quantum computing in the 1980s, certainly thinks
that it would.12 Though to be fair, Deutsch thinks the impact would “merely” be psycho-
logical – since for him, quantum mechanics has already proved the existence of parallel
universes! Deutsch is fond of asking questions like the following: if Shor's algorithm suc-
ceeds in factoring a 3000-digit integer, then where was the number factored? Where did the
computational resources needed to factor the number come from, if not from some sort of
“multiverse” exponentially bigger than the universe we see? To my mind, Deutsch seems
to be tacitly assuming here that factoring is not in BPP – but no matter; for purposes of
argument, we can certainly grant him that assumption.

It should surprise no one that Deutsch's views about this are far from universally accep-
ted. Many who agree about the possibility of building quantum computers, and the form-
alism needed to describe them, nevertheless disagree that the formalism is best interpreted
in terms of “parallel universes.” To Deutsch, these people are simply intellectual wusses –
like the churchmen who agreed that the Copernican system was practically useful, so long
as one remembers that obviously the Earth doesn't really go around the sun.

So, how do the intellectual wusses respond to the charges? For one thing, they point out
that viewing a quantum computer in terms of “parallel universes” raises serious difficulties
of its own. In particular, there's what those condemned to worry about such things call
the “preferred basis problem.” The problem is basically this: how do we define a “split”
between one parallel universe and another? There are infinitely many ways you could ima-
gine slicing up a quantum state, and it's not clear why one is better than another!

One can push the argument further. The key thing that quantum computers rely on for
speedups – indeed, the thing that makes quantum mechanics different from classical prob-
ability theory in the first place – is interference between positive and negative amplitudes.
But to whatever extent different “branches” of the multiverse can usefully interfere for
quantum computing, to that extent they don't seem like separate branches at all! I mean,
the whole point of interference is to mix branches together so that they lose their individual
identities. If they retain their identities, then for exactly that reason we don't see interferen-
ce.

Of course, a many-worlder could respond that, in order to lose their separate identities
by interfering with each other, the branches had to be there in the first place! And the argu-
ment could go on (indeed, has gone on) for quite a while.13

Rather than take sides in this fraught, fascinating, but perhaps ultimately meaningless
debate, I’d like to end with one observation that's not up for dispute. What the lower bound

of Bennett et al. tells us is that, if quantum computing supports the existence of parallel
universes, then it certainly doesn't do so in the way most people think! As we've seen, a
quantum computer is not a device that could “try every possible solution in parallel” and
then instantly pick the correct one. If we insist on seeing things in terms of parallel uni-
verses, then those universes all have to “collaborate” – more than that, have to meld into
one another – to create an interference pattern that will lead to the correct answer being
observed with high probability.

Further reading

The definition and basic properties of BQP come from Ethan Bernstein and Umesh Vazir-
ani, “Quantum Complexity Theory,” SIAM Journal on Computing 26(5):1411–1473, 1997.
The definitive introduction to quantum computing is Michael A. Nielsen and Isaac L.
Chuang, Quantum Computation and Quantum Information, Cambridge University Press,
2011 (anniversary edition).

1 http://www.arxiv.org/abs/quant-ph/0205115
2 See http://arxiv.org/abs/quant-ph/0505030
3 See http://www.arxiv.org/abs/quant-ph/9807006

4 L. M. Adleman, J. DeMarrais, and M.-D. A. Huang, Quantum Computability, SIAM
Journal on Computing, 26:5 (1997), 1524–1540.
5 For a gentle introduction, readers might want to try my own popular-level exposition of
Shor's algorithm, entitled “Shor, I’ll do it”: http://www.scottaaronson.com/blog/?p=208.
6 D. R. Simon, On the Power of Quantum Cryptography, Proceedings of IEEE Symposium
on Foundations of Computer Science, (1994), 116–123.
7 http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec7.ps
8 http://www.scottaaronson.com/papers/uncompute.pdf
9 S. Aaronson, BQP and the polynomial hierarchy. In Proceedings of Annual ACM Sym-
posium on Theory of Computing (2010), pp. 141–50. http://www.scottaaronson.com/pa-
pers/bqpph.pdf
10 L. K. Grover, A Fast Quantum Mechanical Algorithm for Database Search, Proceedings
of ACM Symposium on Theory of Computing (1996), 212–219. http://arxiv.org/abs/quant-
ph/9605043
11 http://www.scottaaronson.com/blog/

http://www.arxiv.org/abs/quant-ph/0205115
http://arxiv.org/abs/quant-ph/0505030
http://www.arxiv.org/abs/quant-ph/9807006
http://www.scottaaronson.com/blog/?p=208
http://www.cs.berkeley.edu/~vazirani/f04quantum/notes/lec7.ps
http://www.scottaaronson.com/papers/uncompute.pdf
http://www.scottaaronson.com/papers/bqpph.pdf
http://www.scottaaronson.com/papers/bqpph.pdf
http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://www.scottaaronson.com/blog/

12 See for example David Deutsch, The Fabric of Reality, Penguin, 1997.
13 For more about this argument, see Scott Aaronson, “Why Philosophers Should Care
About Computational Complexity,” in Computability: Turing, Gödel, Church, and Beyond
(MIT Press, 2013; edited by Oron Shagrir), http://www.scottaaronson.com/papers/
philos.pdf

http://www.scottaaronson.com/papers/philos.pdf
http://www.scottaaronson.com/papers/philos.pdf

11 Penrose

This chapter is about Roger Penrose's arguments against the possibility of artificial intel-
ligence, as famously set out in his books The Emperor's New Mind1 and Shadows of the
Mind.2 It would be strange for a book like this one not to discuss these arguments, since,
agree with them or not, they're some of the most prominent landmarks at the intersection of
math, CS, physics, and philosophy. The reason we're discussing them now is that we finally
have all the prerequisites (computability, complexity, quantum mechanics, and quantum
computing).

Penrose's views are complicated: they involve speculations about an “objective collapse”
of quantum states, which would arise from an as-yet-undiscovered quantum theory of grav-
ity. Even more controversially, this hypothesized objective collapse would play a role in
human intelligence, through its influence on cellular structures called microtubules in the
brain.

But what is it that leads Penrose to make these exotic speculations in the first place? The
core of Penrose's thesis is a certain argument purporting to show that human intelligence
can't be algorithmic, for reasons related to Gödel's Incompleteness Theorem. And therefore,
some nonalgorithmic element must be sought in human brain function, and the only plaus-
ible source of such an element is new physics (coming, for example, from quantum gravity).
The “Gödel argument” itself didn't originate with Penrose: Gödel himself apparently be-
lieved some version of it (though he never published his views), and even in 1950 it was well
enough known for Alan Turing to rebut it in his famous paper “Computing machinery and
intelligence.” Probably the first detailed presentation of the Gödel argument in print came in
1961, from the philosopher John Lucas.3 Penrose's main innovation is that he takes the argu-
ment seriously enough to explore, at length, what the universe and our brains would actually
need to be like – or better, what they could possibly be like – if the argument were valid.
Hence, all the stuff about quantum gravity and microtubules.

But let's start by summarizing, in a few sentences, the Gödel argument itself for why hu-
man thought can't be algorithmic. How about this: the First Incompleteness Theorem tells
us that no computer, working within a fixed formal system F such as Zermelo–Fraenkel set
theory, can prove the sentence

G(F) = “This sentence cannot be proved in F.”
But we humans can just “see” the truth of G(F) – since if G(F) were false, then it would be
provable, which is absurd! Therefore, the human mind can do something that no present-day
computer can do. Therefore, consciousness can't be reducible to computation.

Alright, what do people think of this argument?
Yeah, there are two rather immediate issues.

• Why does the computer have to work within a fixed formal system F?
• Can humans “see” the truth of G(F)?

Actually, the response I prefer encapsulates both of the above responses as “limiting cases.”
Recall from Chapter 3 that, by the Second Incompleteness Theorem, G(F) is equivalent to
Con(F): the statement that F is consistent. Furthermore, this equivalence can be proved in
F itself for any reasonable F. This has two important implications.

First, it means that, when Penrose claims that humans can “see” the truth of G(F), really
he's just claiming that humans can see the consistency of F! When you put it that way, the
problems become more apparent: how can humans see the consistency of F? Exactly which
Fs are we talking about: Peano Arithmetic? ZF? ZFC? ZFC with large cardinal axioms?
Can all humans see the consistency of all these systems, or do you have to be a Penrose-
caliber mathematician to see the consistency of the stronger ones? What about the systems
that people thought were consistent, but that turned out not to be? And even if you did see
the consistency of (say) ZF, how would you convince someone else that you'd seen it? How
would the other person know you weren't just pretending?

(Models of Zermelo–Fraenkel set theory are like those 3D dot pictures: sometimes you
really have to squint...)

The second implication is that, if we grant a computer the same freedom that Penrose
effectively grants to humans – namely, the freedom to assume the consistency of the under-
lying formal system – then the computer can prove G(F).

So the question boils down to this: can the human mind somehow peer into the Platonic
heavens, in order to directly perceive (let's say) the consistency of ZF set theory? If the
answer is no – if we can only approach mathematical truth with the same unreliable,
savannah-optimized tools that we use for doing the laundry, ordering Chinese takeout,
etc. – then it seems we ought to grant computers the same liberty of being fallible. But in
that case, the claimed distinction between humans and machines would seem to evaporate.

Perhaps Turing himself said it best:4 “If we want a machine to be intelligent, it can't also
be infallible. There are theorems that say almost exactly that.”

In my opinion, then, Penrose doesn't need to be talking about Gödel's theorem at all. The
Gödel argument turns out to be just a mathematical restatement of a much older argument
against reductionism: “sure a computer could say it perceives G(F), but it'd just be shuff-
ling symbols around! When I say I perceive G(F), I really mean it! There's something it
feels like to be me!”

The obvious response is equally old: “what makes you sure that it doesn't feel like any-
thing to be a computer?”

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103439

Opening the black box

Alright, look: Roger Penrose is one of the greatest mathematical physicists on Earth. Is it
possible that we've misconstrued his thinking?

To my mind, the most plausible versions of Penrose's argument are the ones based on
an “asymmetry of understanding”: namely, that, while we know the internal workings of a
computer, we don't yet know the internal workings of the brain.

How can one exploit this asymmetry? Well, given any known Turing machine M, it's
certainly possible to construct a sentence that stumps M:

S(M) = “Machine M will never output this sentence.”
There are two cases: either M outputs S(M), in which case it utters a falsehood, or else M
doesn't output S(M), in which case there's a mathematical truth to which it can never as-
sent.

The obvious response is, why can't we play the same game with humans?
“Roger Penrose will never output this sentence.”

Well, conceivably there's an answer: because we can formalize what it means for M to
output something, by examining its inner workings. Indeed, “M” is really just shorthand
for the appropriate Turing machine state diagram. But can we formalize what it means for
Penrose to output something? The answer depends on what we believe about the internal
workings of the brain, or more precisely, Penrose's brain! And this leads to Penrose's view
of the brain as “noncomputational.”

A common misconception is that Penrose thinks the brain is a quantum computer. In
reality, a quantum computer would be much weaker than he wants! As we saw before,
quantum computers don't even seem able to solve NP-complete problems in polynomial
time. Penrose, by contrast, wants the brain to solve uncomputable problems, by exploiting
hypothetical collapse effects from a yet-to-be-discovered quantum theory of gravity.

I once asked Penrose: why not go further, and conjecture that the brain can solve prob-
lems that are uncomputable even given an oracle for the halting problem, or an oracle for
the halting problem for Turing machines with an oracle for the halting problem, etc.? His
response was that yes, he'd conjecture that as well.

My own view has always been that, if Penrose really wants to speculate about the im-
possibility of simulating the brain on a computer, then he ought to talk not about computab-
ility but about complexity. The reason is simply that, in principle, we can always simulate
a person by building a huge lookup table, which encodes the person's responses to every
question that could ever be asked within (say) a million years. If we liked, we could also
have the table encode the person's voice, gestures, facial expressions, etc. Clearly such a

table will be finite. So there's always some computational simulation of a human being –
the only question is whether or not it's an efficient one!

You might object that, if people could live for an infinite or even just an arbitrarily long
time, then the lookup table wouldn't be finite. This is true but irrelevant. The fact is, people
regularly do decide that other people have minds after interacting with them for just a few
minutes! (Indeed, maybe just a few minutes of email or instant messaging.) So unless you
want to retreat into Cartesian skepticism about everyone you've ever met on Facebook,
Gmail chat, etc., there must be a relatively small integer n such that, by exchanging at most
n bits, you can be reasonably sure that someone else has a mind.

In Shadows of the Mind (the “sequel” to The Emperor's New Mind), Penrose concedes
that a human mathematician could always be simulated by a computer with a huge lookup
table. He then argues that such a lookup table wouldn't constitute a “proper” simulation,
since (for example) there'd be no reason to believe that any given statement in the table was
true rather than false. The trouble with this argument is that it explicitly retreats from what
one might have thought was Penrose's central claim: namely, that a machine can't even sim-
ulate human intelligence, let alone exhibit it!

In Shadows, Penrose offers the following classification of views on consciousness.
A. Consciousness is reducible to computation (the view of strong-AI proponents).
B. Sure, consciousness can be simulated by a computer, but the simulation couldn't produce
“real understanding” (John Searle's view).
C. Consciousness can't even be simulated by computer, but nevertheless has a scientific ex-
planation (Penrose's own view, according to Shadows).
D. Consciousness doesn't have a scientific explanation at all (the view of 99% of everyone
who ever lived).
Now it seems to me that, in dismissing the lookup table as not a “real” simulation, Penrose
is retreating from view C to view B. For as soon as we say that passing the Turing Test
isn't good enough – that one needs to “pry open the box” and examine a machine's internal
workings to know whether it thinks or not – what could possibly be the content of view C
that would distinguish it from view B?

Again, though, I want to bend over backward to see if I can figure out what Penrose
might be saying.

In science, you can always cook up a theory to “explain” the data you've seen so far: just
list all the data you've got, and call that your “theory”! The obvious problem here is over-
fitting. Since your theory doesn't achieve any compression of the original data – i.e., since
it takes as many bits to write down your theory as to write down the data itself – there's no
reason to expect your theory to predict future data. In other words, your theory is worthless.

So, when Penrose says the lookup table isn't a “real” simulation, perhaps what he
means is this. Of course, one could write a computer program to converse like Disraeli
or Churchill, by simply storing every possible quip and counterquip. But that's the sort of

overfitting up with which we must not put! The relevant question is not whether we can
simulate Sir Winston by any computer program. Rather, it's whether we can simulate him
by a program that can be written down inside the observable universe – one that, in partic-
ular, is dramatically shorter than a list of all possible conversations with him.

Now, here's the point I keep coming back to: if this is what Penrose means, then he's left
the world of Gödel and Turing far behind, and entered my stomping grounds – the King-
dom of Computational Complexity. How does Penrose, or anyone else, know that there's
no small Boolean circuit to simulate Winston Churchill? Presumably, we wouldn't be able
to prove such a thing, even supposing (for the sake of argument) that we knew what a
Churchill simulator meant! All ye who would claim the intractability of finite problems:
that way lieth the P versus NP beast, from whose 2n jaws no mortal hath yet escaped.5

At risk of stating the obvious

Even if we supposed the brain was solving a hard computational problem, it's not clear why
that would bring us any closer to understanding consciousness. If it doesn't feel like any-
thing to be a Turing machine, then why does it feel like something to be a Turing machine
with an oracle for the halting problem?

All aboard the holistic quantum gravy train

Let's set aside the specifics of Penrose's ideas, and ask a more general question. Should
quantum mechanics have any effect on how we think about the brain?

The temptation is certainly a natural one: consciousness is mysterious, quantum mechan-
ics is also mysterious; therefore, they must be related somehow! Well, maybe there's more
to it than that, since the source of the mysteriousness seems the same in both cases: namely,
how do we reconcile a third-person description of the world with a first-person experience
of it?

When people try to make the question more concrete, they often end up asking “is the
brain a quantum computer?” Well, it might be, but I can think of at least four good argu-
ments against this possibility.

1. The problems for which quantum computers are believed to offer dramatic spee-
dups – factoring integers, solving Pell's equation, simulating quark–gluon plasmas,
approximating the Jones polynomial, etc. – just don't seem like the sorts of things

that would have increased Oog the Caveman's reproductive success relative to his
fellow cavemen.

2. Even if humans could benefit from quantum computing speedups, I don't see any
evidence that they're actually doing so. It's said that Gauss could immediately
factor large integers in his head – but if so, that only proves that Gauss's brain was
a quantum computer, not that anyone else's is!

3. The brain is a hot, wet environment, and it's hard to understand how long-range
coherence could be maintained there.6 With today's understanding of quantum er-
ror correction, this is no longer a knock-down argument, but it's still an extremely
strong one.

4. As I mentioned earlier, even if we suppose the brain is a quantum computer, it
doesn't seem to get us anywhere in explaining consciousness, which is the usual
problem that these sorts of speculation are invoked to solve!

Alright, look. So as not to come across as a total curmudgeon – for what could possibly
be further from my personality? – let me at least tell you what sort of direction I would pur-
sue if I were a quantum mystic.

Near the beginning of Emperor's New Mind, Penrose brings up one of my all-time fa-
vorite thought experiments: the teleportation machine. This is a machine that whisks you
around the galaxy at the speed of light, by simply scanning your whole body, encoding all
the cellular structures as pure information, and then transmitting the information as radio
waves. When the information arrives at its destination, nanobots (of the sort we'll have in
a few decades, according to Ray Kurzweil et al.) use the information to reconstitute your
physical body down to the smallest detail.

Oh, I forgot to mention: since obviously we don't want two copies of you running
around, the original is destroyed by a quick, painless gunshot to the head. So, fellow sci-
entific reductionists: which one of you wants to be the first to travel to Mars this way?

What, you feel squeamish about it? Are you going to tell me you're somehow attached
to the particular atoms that currently reside in your brain? As I’m sure you're aware, those
atoms are replaced every few weeks anyway. So it can't be the atoms themselves that make
you you; it has to be the patterns of information they encode. And as long as the informa-
tion is safely on its way to Mars, who cares about the original meat hard drive?

So, soul or bullet: take your pick!
Quantum mechanics does offer a third way out of this dilemma, one that wouldn't make

sense in classical physics.
Suppose some of the information that made you you was actually quantum information.

Then, even if you were a thoroughgoing materialist, you could still have an excellent reason
not to use the teleportation machine: because, as a consequence of the No-Cloning Theor-
em, no such machine could possibly work as claimed.

This is not to say that you couldn't be teleported around at the speed of light. But the
teleportation process would have to be very different from the one above: it could not in-
volve copying you and then killing the original copy. Either you could be sent as quantum
information, or else – if that wasn't practical – you could use the famous quantum teleport-
ation protocol,7 which sends only classical information, but also requires prior entangle-
ment between the sender and the receiver. In either case, the original copy of you would
disappear unavoidably, as part of the teleportation process itself. Philosophically, it would
be just like flying from Newark to LAX: you wouldn't face any profound metaphysical di-
lemma about “whether to destroy the copy of you still at Newark.”

Of course, this neat solution can only work if the brain stores quantum information. But
crucially, in this case, we don't have to imagine that the brain is a quantum computer, or
that it maintains entanglement across different neurons, or anything harebrained like that.
As in quantum key distribution, all we need are individual coherent qubits.

Now, you might argue that in a hot, wet, decoherent place like the brain, not even a
single qubit would survive for very long. And from what little I know of neuroscience, I’d
tend to agree. In particular, it does seem that long-term memories are encoded as synaptic
strengths, and that these strengths are purely classical information that a nanobot could in
principle scan and duplicate without any damage to the original brain. On the other hand,
what about (say) whether you're going to wiggle your left finger or your right finger one
minute from now? Is that decision determined in part by quantum events?

Well, whatever else you might think about such a hypothesis, it's clear what it would
take to falsify it. You'd simply have to build a machine that scanned a person's brain, and
reliably predicted which finger that person would wiggle one minute from now. Today, as
I’ll discuss in Chapter 19, these are fMRI experiments that have made a start on this sort of
prediction, but only a few seconds in advance and only somewhat better than chance.

1 Oxford University Press, 2002 (reprint)
2 Oxford University Press, 1996 (reprint)
3 J. Lucas, Minds, Machines, and Gödel, Philosophy XXXVI: (1961), 112–127. ht-
tp://users.ox.ac.uk/~jrlucas/Godel/mmg.html
4 A. M. Turing, Computing machinery and intelligence, Mind 59 (1950), 433–460. ht-
tp://www.loebner.net/Prizef/TuringArticle.html
5 Again, for more, see Scott Aaronson, “Why Philosophers Should Care About Compu-
tational Complexity,” in Computability: Turing, Gödel, Church, and Beyond (MIT Press,
2013; edited by Oron Shagrir), http://www.scottaaronson.com/papers/philos.pdf

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos848318
http://users.ox.ac.uk/~jrlucas/Godel/mmg.html
http://users.ox.ac.uk/~jrlucas/Godel/mmg.html
http://www.loebner.net/Prizef/TuringArticle.html
http://www.loebner.net/Prizef/TuringArticle.html
http://www.scottaaronson.com/papers/philos.pdf

6 For more, see (for example) Max Tegmark, “The importance of quantum decoherence
in brain processes,” Physical Review E, 61:4194–4206, 1999. http://arxiv.org/abs/quant-ph/
9907009
7 http://researcher.watson.ibm.com/researcher/view_project.php?id=2862

http://arxiv.org/abs/quant-ph/9907009
http://arxiv.org/abs/quant-ph/9907009
http://researcher.watson.ibm.com/researcher/view_project.php?id=2862

12 Decoherence and hidden variables

Why have so many great thinkers found quantum mechanics so hard to swallow? To hear
some people tell it, the whole source of the trouble is that “God plays dice with the uni-
verse” – that, whereas classical mechanics could in principle predict the fall of every spar-
row, quantum mechanics gives you only statistical predictions.

Well, you know what? Whoop-de-doo! If indeterminism were the only mystery about
quantum mechanics, quantum mechanics wouldn't be mysterious at all. We could imagine,
if we liked, that the universe did have a definite state at any time, but that some fundamental
principle (besides the obvious practical difficulties) kept us from knowing the whole state.
This wouldn't require any serious revision of our worldview. Sure, “God would be throwing
dice,” but in such a benign way that not even Einstein could have any real beef with it.

The real trouble in quantum mechanics is not that the future trajectory of a particle is in-
deterministic – it's that the past trajectory is also indeterministic! Or more accurately, the
very notion of a “trajectory” is undefined, since until you measure, there's just an evolving
wavefunction. And crucially, because of the defining feature of quantum mechanics – in-
terference between positive and negative amplitudes – this wavefunction can't be seen as
merely a product of our ignorance, in the same way that a probability distribution can.

Now, I want to tell you about decoherence and hidden-variable theories, which are two
kinds of story that people tell themselves to feel better about these difficulties.

The hardheaded physicist will of course ask: given that quantum mechanics works, why
should we waste our time trying to feel better about it? Look, if you teach an introductory
course on quantum mechanics, and the students don't have nightmares for weeks, tear their
hair out, wander around with bloodshot eyes, etc., then you probably didn't get the point
across. So, rather than deny this aspect of quantum mechanics – rather than cede the field to
the hucksters, the Deepak Chopras and What the Bleep Do We Know? people – shouldn't we
map it out ourselves, even sell tickets to the tourists? I mean, if you're going to leap into the
abyss, better you should go with someone who's already been there and back.

Into the abyss

Alright, so consider the following thought experiment. Let |R be a state of all the particles

in your brain, which corresponds to you looking at a red dot. Let |B be a state that corres-
ponds to you looking at a blue dot. Now imagine that, in the far future, it's possible to place
your brain into a coherent superposition of these two states:

At least to a believer in the Many-Worlds Interpretation, this experiment should be dull as
dirt. We've got two parallel universes, one where you see a red dot and the other where you
see a blue dot. According to quantum mechanics, you'll find yourself in the first universe
with probability |3/5|2 = 9/25, and in the second universe with probability |4/5|2 = 16/25.
What's the problem?

Well, now imagine that we apply some unitary operation to your brain, which changes
its state to

Still a cakewalk! Now you see the red dot with probability 16/25 and the blue dot with
probability 9/25.

Aha! But conditioned on seeing the red dot at the earlier time, what's the probabil-
ity that you'll see the blue dot at the later time?

In ordinary quantum mechanics, this is a meaningless question! Quantum mechanics
gives you the probability of getting a certain outcome if you make a measurement at a cer-
tain time, period. It doesn't give you multiple-time or transition probabilities – that is, the
probability of an electron being found at point y at time t + 1, given that, had you measured
the electron at time t (which you didn't), it “would have” been at point x. In the usual view,
if you didn't actually measure the electron at time t, then it wasn't anywhere at time t: it was
just in superposition. And if you did measure it at time t, then of course that would be a
completely different experiment!

But why should we care about multiple-time probabilities? For me, it has to do with
the reliability of memory. The issue is this: does the “past” have any objective meaning?
Even if we don't know all the details, is there necessarily some fact-of-the-matter about
what happened in history, about which trajectory the world followed to reach its present
state? Or does the past only “exist” insofar as it's reflected in memories and records in the
present?

The latter view is certainly the more natural one in quantum mechanics. But, as John
Bell pointed out,1 if we take it seriously, then it would seem difficult to do science! For
what could it mean to make a prediction if there's no logical connection between past and
future states – if by the time you finish reading this sentence, you might as well find your-
self deep in the Amazon rainforest, with all the memories of your trip there conveniently
inserted, and all the memories of reading a quantum computing book conveniently erased?

Still here? Good!
Look, we all have fun ridiculing the creationists who think the world sprang into ex-

istence on October 23, 4004 BC at 9 a.m. (presumably Babylonian time), with the fossils
already in the ground, light from distant stars heading toward us, etc. But if we accept the
usual picture of quantum mechanics, then in a certain sense the situation is far worse: the
world (as you experience it) might as well not have existed 10-43 seconds ago!

Story 1. Decoherence

The standard response to these difficulties appeals to a powerful idea called decoherence.
Decoherence tries to explain why we don't notice “quantum weirdness” in everyday life –
why the world of our experience is a more-or-less classical world. From the standpoint of
decoherence, sure there might not be any objective fact about which slit an electron went

through, but there is an objective fact about what you ate for breakfast this morning: the
two situations are not the same!

The basic idea is that, as soon as the information encoded in a quantum state “leaks out”
into the external world, that state will look locally like a classical state. In other words, as
far as a local observer is concerned, there's no difference between a classical bit and a qubit
that's become hopelessly entangled with the rest of the universe.

So, for example, suppose we have a qubit in the state

And suppose this qubit becomes entangled with a second qubit, to form the following joint
state:

If we now ignore the second qubit and look only at the first qubit, the first qubit will be in
what physicists call the maximally mixed state:

(Other people just call it a classical random bit.) In other words, no matter what measure-
ment you make on the first qubit, you'll just get a random outcome. You're never going

to see interference between the |00 and |11 “branches” of the wavefunction. Why? Be-
cause, according to quantum mechanics, two branches will only interfere if they become
identical in all respects. But there's simply no way, by changing the first qubit alone, to

make |00 identical to |11 . The second qubit will always give away our would-be lovers’
differing origins.

To see an interference pattern, you'd have to perform a joint measurement on the two
qubits together. But what if the second qubit were a stray photon, which happened to pass

through your experiment on its way to the Andromeda galaxy? Indeed, when you consider
all the junk that might be entangling itself with your delicate experiment – air molecules,
cosmic rays, geothermal radiation,...well, whatever, I’m not an experimentalist – it's as if
the entire rest of the universe is constantly trying to “measure” your quantum state, and
thereby force it to become classical! Sure, even if your quantum state does collapse (i.e.,
become entangled with the rest of the world), in principle you can still get the state back –
by gathering together all the particles in the universe that your state has become entangled
with, and then reversing everything that's happened since the moment of collapse. That
would be sort of like Pamela Anderson trying to regain her privacy, by tracking down every
computer on Earth that might contain photos of her!

If we accept this picture, then it explains two things.

1. Most obviously, it explains why in everyday life, we don't usually see objects
quantumly interfering with their parallel-universe doppelgängers. (Unless we hap-
pen to live in a dark room with two slits in the wall...) Basically, it's the same reas-
on why we don't see eggs unscramble themselves.

2. As the flip side, the picture also explains why it's so hard to build quantum com-
puters: because not only are we trying to keep errors from leaking into our com-
puter, we're trying to keep the computer from leaking into the rest of the world!
We're fighting against decoherence, one of the most pervasive processes in the uni-
verse. Indeed, it's precisely because decoherence is so powerful that the quantum
fault-tolerance theorem2 came as a shock to many physicists. (The fault-tolerance
theorem says roughly that, if the rate of decoherence per qubit per gate operation
is below a constant threshold, then it's possible in principle to correct errors faster
than they occur, and thereby perform an arbitrarily long quantum computation.)

So, what about the thought experiment from before – the one where we place your brain
into coherent superpositions of seeing a blue dot and seeing a red dot, and then ask about
the probability that you see the dot change color? From a decoherence perspective, the res-
olution is that the thought experiment is completely ridiculous, since brains are big, bulky
things that constantly leak electrical signals, and therefore, any quantum superposition of
two neural firing patterns would collapse (i.e., become entangled with the rest of the uni-
verse) in a matter of nanoseconds.

Fine, a skeptic might retort. But what if in the far future, it were possible to upload your
entire brain into a quantum computer, and then put the quantum computer into a superposi-
tion of seeing a blue dot and seeing a red dot? Huh? Then what's the probability that “you”
(i.e., the quantum computer) would see the dot change color?

When I put this question to John Preskill years ago, he said that decoherence itself – in
other words, an approximately classical universe – seemed to him like an important com-

ponent of subjective experience as we understand it. And therefore, if you artificially re-
moved decoherence, then it might no longer make sense to ask the same questions about
subjective experience that we're used to asking. I’m guessing that this would be a relatively
popular response, among those physicists who are philosophical enough to say anything at
all.

Decoherence and the Second Law

We are going to get to hidden variables. But first, I want to say one more thing about deco-
herence.

When I was talking before about the fragility of quantum states – how they're so easy to
destroy, so hard to put back together – you might have been struck by a parallel with the
Second Law of Thermodynamics. Obviously, that's just a coincidence, right? Duhhh, no.
The way people think about it today, decoherence is just one more manifestation of the Se-
cond Law.

Let's see how this works. Given a probability distribution D = (p1,..., pN), there's this
fundamental measure of the “amount of randomness” in D called the entropy of D, and de-
noted H(D). Here's the formula for H(D), if you've never seen it before:

(Being a computer scientist, I’ll stipulate that all the logarithms are base 2. Also, pi log pi
is defined to be zero if pi = 0.) Intuitively, H(D) measures the minimum number of random
bits that you'd need to generate a single sample from D – on average, if you were generat-
ing lots of independent samples. It also measures the minimum number of bits that you'd
need to send your friend, if you wanted to tell her which element from D was chosen –
again on average, if you were telling her about lots of independent draws. To illustrate, a
distribution with no randomness has entropy zero, while an equal distribution over N pos-
sible outcomes has entropy log2 N (thus, the entropy of a single fair coin flip is log2 2 =
1). Entropy was the central concept in Claude Shannon's information theory (which he an-
nounced, in nearly complete form, in a single paper in 1948).3 But the roots of entropy go
all the way back to Boltzmann and those other thermodynamics dudes in the late 1800s.

Anyway, given a quantum mixed state ρ, the von Neumann entropy of ρ is defined to
be the minimum, over all unitary transformations U, of the entropy of the probability dis-
tribution that results from measuring UρU-1 in the standard basis. To illustrate, every pure

state has an entropy of zero, whereas the one-qubit maximally mixed state has an entropy
of unity.

Now, if we assume that the universe is always in a pure state, then the “entropy of the
universe” starts out zero, and remains zero for all time! On the other hand, the entropy of
the universe isn't really what we care about – we care about the entropy of this or that re-
gion. And we saw before that, as previously separate physical systems interact with each
other, they tend to evolve from pure states into mixed states – and therefore their entropy
goes up. In the decoherence perspective, this is simply the Second Law at work.

Another way to understand the relationship between decoherence and the Second Law is
by taking a “God's-eye view” of the entire multiverse. Generically speaking, the different
branches of the wavefunction could be constantly interfering with each other, splitting and
merging in a tangled bush:

What decoherence theory says is that in the real world, the branches look more like a nicely
pruned tree:

In principle, any two branches of this tree could collide with each other, thereby leading to
“macroscopic interference effects,” as in my story with the blue and red dots. But in prac-
tice, this is astronomically unlikely – since to collide, two branches would have to become
identical in every respect.

Notice that if we accept this tree picture of the multiverse, then it immediately gives us
a way to define the “arrow of time” – that is, to state noncircularly what the difference is
between the future and the past. Namely, we can say that the past is the direction toward the
root of the “multiverse tree,” and the future is the direction toward the leaves. According to
the decoherence picture, this is actually equivalent to saying that the future is the direction
where entropy increases, and it's also equivalent to saying that the past is the direction we
remember while the future is the direction we don't.

The tree picture also lets us answer the conundrums from before about the reliability of
memory. According to the tree picture, even though in principle we need not have a unique
“past,” in practice we usually do: namely, the unique path that leads from the root of the
multiverse tree to our current state. Likewise, even though in principle quantum mechan-
ics need not provide multiple-time probabilities – that is, probabilities for what we're going
to experience tomorrow, conditioned on what we're experiencing today – in practice such
probabilities usually make perfect sense, for the same reason they make sense in the clas-
sical world. That is, when it comes to transitions between subjective experiences, in prac-
tice we're dealing not with unitary matrices but with stochastic matrices.

At this point, the sharp-eyed reader might notice a problem: won't the branches have to
collide eventually, when the tree “runs out of room to expand”? The answer is yes. First,
if the Hilbert space is finite dimensional, then obviously the parallel universes can only
branch off a finite number times before they start bumping into one another. But even in an

infinite-dimensional Hilbert space, we need to think of each universe as having some finite
“width” (think of Gaussian wavepackets for example), so again we can only have a finite
number of splittings.

The answer of decoherence theory is that yes, eventually the branches of the multiverse
will start interfering with each other – just like eventually the universe will reach thermal
equilibrium. But by that time, we'll presumably all be dead.

Incidentally, the fact that our universe is expanding exponentially – that there's this va-
cuum energy pushing the galaxies apart – seems like it might play an important role in
“thinning out the multiverse tree,” and thereby buying us more time until the branches start
interfering with each other. This is something I’d like to understand better.

Oh, yes: I should also mention the “deep” question that I’m glossing over entirely here.
Namely, why did the universe start out in such a low-entropy, unentangled state to begin
with? Of course, one can try to give an anthropic answer to that question, but is there an-
other answer?

Story 2. Hidden variables

Despite how tidy the decoherence story seems, there are some people for whom it remains
unsatisfying. One reason is that the decoherence story had to bring in a lot of assumptions
seemingly extraneous to quantum mechanics itself: about the behavior of typical physical
systems, the classicality of the brain, and even the nature of subjective experience. A
second reason is that the decoherence story never did answer our question about the prob-
ability you see the dot change color – instead the story simply tried to convince us the ques-
tion was meaningless.

So if the decoherence story doesn't make you sleep easier, then what else is on offer at
the quantum bazaar? Well, now it's the hidden-variable theorists’ turn to hawk their wares.
(Most of the rest of this chapter will follow my paper “Quantum computing and hidden
variables.”4)

The idea of hidden-variable theories is simple. If we think of quantum mechanics as de-
scribing this vast roiling ocean of parallel universes, constantly branching off, merging, and
cancelling each other out, then we're now going to stick a little boat in that ocean. We'll
think of the boat's position as representing the “real,” “actual” state of the universe at a giv-
en point in time, and the ocean as just a “field of potentialities” whose role is to buffet the
boat around. For historical reasons, the boat's position is called a hidden variable – even
though, in some sense, it's the only part of this setup that's not hidden! Now, our goal will
be to make up an evolution rule for the boat, such that, at any time, the probability dis-

tribution over possible boat positions is exactly the |ψ|2 distribution predicted by standard
quantum mechanics.

By construction, then, hidden-variable theories are experimentally indistinguishable
from standard quantum mechanics. So presumably there can be no question of whether
they're “true” or “false” – the only question is whether they're good or bad stories.

You might say, why should we worry about these unfalsifiable goblins hiding in
quantum mechanics’ closet? Well, I’ll give you four reasons.

1. For me, part of what it means to understand quantum mechanics is to explore the
space of possible stories that can be told about it. If we don't do so, then we risk
making fools of ourselves by telling people that a certain sort of story can't be told
when in fact it can, or vice versa. (There's plenty of historical precedent for this.)

2. As we'll see, hidden-variable theories lead to all sorts of meaty, nontrivial math
problems, some of which are still open. And in the end, isn't that reason enough to
study anything?

3. Thinking about hidden variables seems scientifically fruitful: it led Einstein,
Podolsky, and Rosen to the EPR experiment, Bell to Bell's Inequality, Kochen and
Specker to the Kochen–Specker Theorem, and me to the collision lower bound (to
be discussed in Chapter 13).5

4. Hidden-variable theories will give me a perfect vehicle for discussing other issues
in quantum foundations – like nonlocality, contextuality, and the role of time. In
other words, you get lots of goblins for the price of one!

From my perspective, a hidden-variable theory is simply a rule for converting a unitary
transformation into a classical probabilistic transformation. In other words, it's a function
that takes as input an N-by-N unitary matrix U = (uij) together with a quantum state

and that produces as output an N-by-N stochastic matrix S = (sij). (Recall that a stochastic
matrix is just a nonnegative matrix where every column sums to unity.) Given as input the

probability vector obtained from measuring |ψ in the standard basis, this S should pro-

duce as output the probability vector obtained from measuring U|ψ in the standard basis.
In other words, if

then we must have

This is what it means for a hidden-variable theory to reproduce the predictions of quantum
mechanics: it means that, whatever story we want to tell about correlations between boat
positions at different times, certainly the marginal distribution over boat positions at any
individual time had better be the usual quantum-mechanical one.

OK, obvious question: given a unitary matrix U and a state |ψ , does a stochastic matrix
satisfying the above condition necessarily exist?

Sure it does! For we can always take the product transformation

which just “picks the boat up and puts it back down at random,” completely destroying any
correlation between the initial and final positions.

No-go theorems galore

So the question is not whether we can find a stochastic transformation S(|ψ , U) that maps
the initial distribution to the final one. Certainly we can! Rather, the question is wheth-
er we can find a stochastic transformation satisfying “nice” properties. But which “nice”
properties might we want? I’m now going to suggest four possibilities – and then show
that, alas, not one of them can be satisfied. The point of going through this exercise is that,
along the way, we're going to learn an enormous amount about how quantum mechanics
differs from classical probability theory. In particular, we'll learn about Bell's Theorem, the
Kochen–Specker Theorem, and two other no-go theorems that as far as I know don't have
names.

1. Independence from the state: Alright, so recall the problem at hand: we're given

a unitary matrix U and quantum state |ψ , and want to cook up a stochastic matrix

S = S(|ψ , U) that maps the distribution obtained by measuring |ψ to the distri-

bution obtained by measuring U|ψ .
The first property we might want is that S should depend only on the unitary U,

and not on the state |ψ . However, this is easily seen to be impossible. For if we
let

then

implies

whereas

implies

Therefore, S must be a function of U and |ψ together.
2. Invariance under time-slicings: The second property we might want in our

hidden-variable theory is invariance under time-slicings. This means that, if we
perform two unitary transformations U and V in succession, we should get the
same result if we apply the hidden-variable theory to VU as if we apply the theory
to U and V separately and then multiply the results. (Loosely speaking, the map
from unitary to stochastic matrices should be “homomorphic.”) Formally, what we
want is that

But again one can show that this is impossible – except in the “trivial” case that
S is the product transformation Sprod, which destroys all correlations between the
initial and final times.

To see this, observe that for all unitaries W and states |ψ , we can write W as a

product W = VU, in such a way that U|ψ equals a fixed basis state (|1 , for ex-
ample). Then applying U “erases” all the information about the hidden variable's
initial value – so that if we later apply V, then the hidden variable's final value

must be uncorrelated with its initial value. But this means that S(|ψ , VU) equals

Sprod(|ψ , VU).
3. Independence from the basis: When I defined hidden-variable theories, some of

you were probably wondering: why should we only care about measurement res-
ults in some particular basis, when we could've just as well picked any other basis?
So, for example, if we're going to say that a particle has a “true, actual” location
even before anyone measures that location, then shouldn't we say the same thing
about the particle's momentum, and its spin, and its energy, and all the other ob-
servable properties of the particle? What singles out location as being more “real”
than all the other properties?
Well, these are excellent questions! Alas, it turns out that we can't assign definite
values to all possible properties of a particle in any “consistent” way. In other
words, not only can we not define transition probabilities for all the particle's prop-
erties, we can't even handle all the properties simultaneously at any individual
time!
This is the remarkable (if mathematically trivial) conclusion of the Kochen–Speck-
er Theorem,6 which was proved by Simon Kochen and Ernst Specker in 1967.
Formally, the theorem says the following: suppose that for every orthonormal basis

B in 3, the universe wants to “precompute” what the outcome would be of
making a measurement in that basis. In other words, the universe wants to pick one
of the three vectors in B, designate that one as the “marked” vector, and return that
vector later should anyone happen to measure in B. Naturally, the marked vectors
ought to be “consistent” across different bases. That is, if two bases share a com-
mon vector, like so:

then the common vector should be the marked vector of one basis if and only if it's
also the marked vector of the other.

Kochen and Specker prove that this is impossible. Indeed, they construct an expli-

cit set of 117 bases (!) in 3, such that marked vectors can't be chosen for those
bases in any consistent way.
NerdNote: The constant 117 has since been improved to 31; see here7 for example.
Apparently, it's still an open problem whether that's optimal; the best lower bound
I’ve seen mentioned is 18.
The upshot is that any hidden-variable theory will have to be what those in the
business call contextual. That is, it will sometimes have to give you an answer
that depends on which basis you measured in, with no pretense that the answer
would've been the same had you measured in a different basis that also contained
the same answer.
Exercise: Prove that the Kochen–Specker Theorem is false in two dimensions.

4. Relativistic causality: The final property we might want from a hidden-variable
theory is adherence to the “spirit” of Einstein's special relativity. For our purposes,
I’ll define that to consist of two things.

1. Locality. This means that, if we have a quantum state |ψAB on two sub-
systems A and B, and we apply a unitary transformation UA that acts only
on the A system (i.e., is the identity on B), then the hidden-variable trans-

formation S(|ψAB , UA) should also act only on the A system.

2. Commutativity. This means that, if we have a state |ψAB , and we apply a
unitary transformation UA to the A system only followed by another unit-
ary transformation UB to the B system only, then the resulting hidden-vari-
able transformation should be the same as if we'd first applied UB and then
UA. Formally, we want that

Now, you might've heard of a little thing called Bell's Inequality. As it
turns out, Bell's Inequality doesn't quite rule out hidden-variable theories
satisfying the two axioms above, but a slight strengthening of what Bell
proved does the trick.
So what is Bell's Inequality? Well, if you look for an answer in almost
any popular book or website, you'll find page after page about entangled
photon sources, Stern–Gerlach apparatuses, etc., all of it helpfully illus-

trated with detailed experimental diagrams. This is necessary, of course,
since if you took all the complications away, people might actually grasp
the conceptual point!
However, since I’m not a member of the Physics Popularizers’ Guild, I’m
now going to break that profession's time-honored bylaws, and just tell
you the conceptual point directly.
We've got two players, Alice and Bob, and they're playing the following
game. Alice flips a fair coin; then, based on the result, she can either raise
her hand or not. Bob flips another fair coin; then, based on the result, he
can either raise his hand or not. What both players want is that exactly one
of them should raise their hand, if and only if both coins landed heads.
If that condition is satisfied, then they win the game; if it isn't then they
lose. (This is a cooperative rather than competitive game.)
Now here's the catch: Alice and Bob are both in sealed rooms (possibly
even on different planets), and can't communicate with each other at all
while the game is in progress.
The question that interests us is: what is the maximum probability with
which Alice and Bob can win the game?
Well, certainly they can win 75% of the time. Why?
Right: they can both just decide never to raise their hands, regardless of
how the coins land! In that case, the only way they'll lose is if both of the
coins land heads.
Exercise: Prove that this is optimal. In other words, any strategy of Alice
and Bob will win at most 75% of the time.
Now for the punchline: suppose that Alice and Bob share the entangled
state

with Alice holding one half and Bob holding the other half. In that case,
there exists a strategy8 by which they can win the game with probability

To be clear, having the state |Φ does not let Alice and Bob send messages
to each other faster than the speed of light – nothing does! What it lets

them do is to win this particular game more than 75% of the time. Naïvely,
we might have thought that would require Alice and Bob to “cheat” by
sending each other messages, but that simply isn't true – they can also
cheat by using entanglement!
So that was Bell's Inequality.
But what does this dumb little game have to do with hidden variables?
Well, suppose we tried to model Alice's and Bob's measurements of the

state |Φ using two hidden variables: one on Alice's side and the other
on Bob's side. And, in keeping with relativistic causality, suppose we de-
manded that nothing that happened to Alice's hidden variable could affect
Bob's hidden variable or vice versa. In that case, we'd predict that Alice
and Bob could win the game at most 75% of the time. But this prediction
would be wrong!
It follows that, if we want it to agree with quantum mechanics, then
any hidden-variable theory has to allow “instantaneous communication”
between any two points in the universe. Once again, this doesn't mean
that quantum mechanics itself allows instantaneous communication (it
doesn't), or that we can exploit hidden variables to send messages faster
than light (we can't). It only means that, if we choose to describe quantum
mechanics using hidden variables, then our description will have to in-
volve instantaneous communication.
Exercise: Generalize Bell's argument to show that there's no hidden-vari-
able theory satisfying the locality and commutativity axioms as given
above.
So what we've learned, from Alice and Bob's coin-flipping game, is that
any attempt to describe quantum mechanics with hidden variables will ne-
cessarily lead to tension with relativity. Again, none of this has any ex-
perimental consequences, since it's perfectly possible for hidden-variable
theories to violate the “spirit” of relativity while still obeying the “letter.”
Indeed, hidden-variable fans like to argue that all we're doing is unearthing
the repressed marital tensions between relativity and quantum mechanics
themselves!

Examples of hidden-variable theories

I know what you're thinking: after the pummeling we just gave them, the outlook for
hidden-variable theories looks pretty bleak. But here's the amazing thing: even in the teeth
of four different no-go theorems, one can still construct interesting and mathematically
nontrivial hidden-variable theories. I’d like to end this chapter by giving you three ex-
amples.

The flow theory

Remember the goal of hidden-variable theories: we start out with a unitary matrix U and a

state |ψ ; from them we want to produce a stochastic matrix S that maps the initial distribu-
tion to the final distribution. Ideally, S should be derived from U in a “natural,” “organic”
way. So, for example, if the (i, j) entry of U is zero, then the (i, j) entry of S should also be

zero. Likewise, making a small change to U or |ψ should produce only a small change in
S.

Now, it's not clear a priori that there even exists a hidden-variable theory satisfying the
two requirements above. So what I want to do first is give you a simple, elegant theory that
does satisfy those requirements.

The basic idea is to treat probability mass flowing through the multiverse just like oil
flowing through pipes! We're going to imagine that initially we have |αi|2 units of “oil” at

each basis state |i , while by the end we want |βi|2 units of oil at each basis state |i . Here

αi and βi are the initial and final amplitudes of |i , respectively. And we're also going to
think of |uij|, the absolute value of the (i, j)th entry of the unitary matrix, as the capacity of

an “oil pipe” leading from |i to |j .

Then the first question is this: for any U and |ψ , can all of the 1 unit of oil be routed from

s to t in the above network G(U, |ψ), without exceeding the capacity of any of the pipes?
I proved9 that the answer is yes. My proof uses a fundamental result from the 1960s

called the Max-Flow/Min-Cut Theorem. Those of you who were/are computer science ma-
jors will vaguely remember this from your undergrad classes. For the rest of you, well, it's
really worth seeing at least once in your life. (It's useful not only for the interpretation of
quantum mechanics but also for stuff like internet routing!)

So what does the Max-Flow/Min-Cut Theorem say? Well, suppose we have a network
of oil pipes like in the figure above, with a designated “source” called s, and a designated
“sink” called t. Each pipe has a known “capacity,” which is a nonnegative real number
measuring how much oil can be sent through that pipe each second. Then the max flow is
just the maximum amount of oil that can be sent from s to t every second, if we route the
oil through the pipes in as clever a way as possible. Conversely, the min cut is the smallest
real number C such that, by blowing up oil pipes whose total capacity is C, a terrorist could
prevent any oil from being sent from s to t.

As an example, what's the max flow and min cut for the network below?

Right: they're both 3.
As a trivial observation, I claim that for any network, the max flow can never be greater

than the min cut. Why?
Right: because by definition, the min cut is the total capacity of some “choke point” that

all the oil has to pass through eventually! In other words, if blowing up pipes of total ca-
pacity C is enough to cut the flow from s to t down to zero, then putting those same pipes
back in can't increase the flow to more than C.

Now, the Max-Flow/Min-Cut Theorem says that the converse is also true: for any net-
work, the max flow and min cut are actually equal.

Exercise (for those who've never seen it): Prove the Max-Flow/Min-Cut Theorem.
Exercise (hard): By using the Max-Flow/Min-Cut Theorem, prove that for any unitary

U and any state |ψ there exists a way to route all the probability mass from s to t in the

network G(U, |ψ) shown before.

So, we've now got our candidate hidden-variable theory! Namely: given U and |ψ , first

find a “canonical” way to route all the probability mass from s to t in the network G(U, |ψ
). Then define the stochastic matrix S by sij := pij/|αi|2, where pij is the amount of probability

mass routed from |i to |j . (For simplicity, I’ll ignore what happens when αi = 0.)
By construction, this S maps the vector of the |αi|2 to the vector of the |βi|2. It also has the

nice property that, for all i, j, if uij = 0, then sij = 0 as well.
Why?

Right! Because if uij = 0, then no probability mass can get routed from |i to |j .

Exercise (harder): Prove that it's possible to choose the “canonical” maximal flows in

such a way that making a small change to U or |ψ produces only a small change in the
matrix (pij) of transition probabilities.

The Schrödinger theory

So that was one cute example of a hidden-variable theory. I now want to show you an ex-
ample that I think is even cuter. When I started thinking about hidden-variable theories, this
was actually the first idea I came up with. Later I found out that Schrödinger had the same
idea in a nearly forgotten 1931 paper.10

Specifically, Schrödinger's idea was to define transition probabilities in quantum mech-
anics by solving a system of coupled nonlinear equations. The trouble is that Schrödinger
couldn't prove that his system had a solution (let alone a unique one); that had to wait for
the work of Masao Nagasawa11 in the 1980s. Luckily for me, I only cared about finite-di-
mensional quantum systems, where everything was much simpler, and where I could give
a reasonably elementary proof that the equation system was solvable.

So what's the idea? Well, recall that, given a unitary matrix U, we want to “convert” it
somehow into a stochastic matrix S that maps the initial distribution to the final one. This is
basically equivalent to asking for a matrix P of transition probabilities: that is, a nonnegat-
ive matrix whose ith column sums to |αi|2 and whose jth row sums to |βj|2. (This is just the
requirement that the marginal probabilities should be the usual quantum-mechanical ones.)

Since we want to end up with a nonnegative matrix, a reasonable first step would be to
replace every entry of U by its absolute value:

What next? Well, we want the ith column to sum to |αi|2. So let's continue doing the crudest

thing imaginable, and for every 1 i N, just normalize the ith column to sum
to |αi|2!

Now, we also want the jth row to sum to |βj|2. How do we get that? Well, for every 1

j N, we just normalize the jth row to sum to |βj|2.
Of course, after we normalize the rows, in general the ith column will no longer sum to

|αi|2. But that's no problem: we'll just normalize the columns again! Then we'll re-normalize
the rows (which were messed up by normalizing the columns), then we'll re-normalize the
columns (which were messed up by normalizing the rows), and so on ad infinitum.

Exercise (hard): Prove that this iterative process converges for any U and |ψ , and that
the limit is a matrix P = (pij) of transition probabilities – that is, a nonnegative matrix whose
ith column sums to |αi|2 and whose jth row sums to |βj|2.

Open problem (if you get this, let me know): Prove that making a small change to U

or |ψ produces only a small change in the matrix P = (pij) of transition probabilities.

Bohmian mechanics

Some of you might be wondering why I haven't mentioned the most famous hidden-vari-
able theory of all: Bohmian mechanics.12 The answer is that, to discuss Bohmian mechan-
ics, I’d have to bring in infinite-dimensional Hilbert spaces (blech!), particles with posi-
tions and momenta (double blech!), and other ideas that go against everything I stand for
as a computer scientist.

Still, I should tell you a little about what Bohmian mechanics is and why it doesn't fit
into my framework. In 1952, David Bohm proposed a deterministic hidden-variable the-
ory: that is, a theory where not only do you get transition probabilities, but the probabilities
are all either zero or unity! The way he did this was by taking as his hidden variable the

positions of particles in 3. He then stipulated that the probability mass for where the
particles are should “flow” with the wavefunction, so that a region of configuration space
with probability ε always gets mapped to another region with probability ε.

With one particle in one spatial dimension, it's easy to write down the (unique) differen-
tial equation for particle position that satisfies Bohm's probability constraint. Bohm showed
how to generalize the equation to any number of particles in any number of dimensions.

To illustrate, here's what the Bohmian particle trajectories look like in the famous
double-slit experiment:

Again, the amazing thing about this theory is that it's deterministic: specify the “actual”
positions of all the particles in the universe at any one time, and you've specified their “ac-
tual” positions at all earlier and later times. So, if you like, you can imagine that, at the
moment of the Big Bang, God sprinkled particles across the universe according to the usual
|ψ|2 distribution; but after that He smashed His dice, and let the particles evolve determin-
istically forever after. And that assumption will lead you to exactly the same experimental
predictions as the usual picture of quantum mechanics, the one where God's throwing dice
up the wazoo.

The catch, from my point of view, is that this sort of determinism can only work in an
infinite-dimensional Hilbert space, like the space of particle positions. I’ve almost never
seen this observation discussed in print, but I can explain it in a couple of sentences.

Suppose we want a hidden-variable theory that's deterministic like Bohm's, but that
works for quantum states in a finite number of dimensions. Then what happens if we apply

a unitary transformation U that maps the state |0 to

In this case, initially the hidden variable is |0 with certainty; afterward it's |0 with prob-

ability ½ and |1 with probability ½. In other words, applying U increases the entropy of
the hidden variable from zero to unity. So to decide which way the hidden variable goes,
clearly Nature needs to flip a coin!

A Bohmian would say that the reason determinism broke down here is that our wave-
function was “degenerate”: that is, it didn't satisfy the continuity and differentiability re-
quirements that are needed for Bohm's differential equation. But in a finite-dimensional
Hilbert space, every wavefunction will be degenerate in that sense! And that's why, if our
universe is discrete at the Planck scale, then it can't also be deterministic in the Bohmian
sense.

1 See John Bell, Speakable and Unspeakable in Quantum Mechanics: Collected Papers on
Quantum Philosophy (second edition), Cambridge University Press, 2004.
2 See http://www.arxiv.org/abs/quant-ph/9906129
3 C. E. Shannon. A Mathematical Theory of Communication, Bell System Technical
Journal 27:3 (1948), 379–423. http://www.alcatel-lucent.com/bstj/vol27-1948/articles/
bstj27-3-379.pdf
4 In Physical Review A 71:032325, 2005. http://www.scottaaronson.com/papers/qchv-
pra.pdf
5 See http://www.scottaaronson.com/papers/collision.pdf
6 See http://plato.stanford.edu/entries/kochen-specker/
7 http://www.arxiv.org/abs/quant-ph/0304013
8 See http://www.cs.berkeley.edu/~vazirani/s07quantum/notes/lecture1.pdf

http://www.arxiv.org/abs/quant-ph/9906129
http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-379.pdf
http://www.alcatel-lucent.com/bstj/vol27-1948/articles/bstj27-3-379.pdf
http://www.scottaaronson.com/papers/qchvpra.pdf
http://www.scottaaronson.com/papers/qchvpra.pdf
http://www.scottaaronson.com/papers/collision.pdf
http://plato.stanford.edu/entries/kochen-specker/
http://www.arxiv.org/abs/quant-ph/0304013
http://www.cs.berkeley.edu/~vazirani/s07quantum/notes/lecture1.pdf

9 In http://www.scottaaronson.com/papers/qchvpra.pdf
10 Erwin Schrödinger, “Über die Umkehrung der Naturgesetze,” Sitzungsber. Preuss. Akad.
Wissen. Phys. Math. Kl., 1:144–153, 1931
11 See, e.g., M. Nagasawa, Schrödinger Equations and Diffusion Theory (Basel:
Birkhäuser, 1993).
12 For an introduction, see for example http://plato.stanford.edu/entries/qm-bohm/

http://www.scottaaronson.com/papers/qchvpra.pdf
http://plato.stanford.edu/entries/qm-bohm/

13 Proofs

We're going to start by beating a retreat from QuantumLand, back onto the safe territory of
computational complexity. In particular, we're going to see how, in the 1980s and 1990s,
computational complexity theory reinvented the millennia-old concept of mathematical
proof – making it probabilistic, interactive, and cryptographic. But then, having fashioned
our new pruning-hooks (proving-hooks?), we're going to return to QuantumLand and reap
the harvest. In particular, I’ll show you why, if you could see the entire trajectory of a hidden
variable, then you could efficiently solve any problem that admits a “statistical zero-know-
ledge proof protocol,” including problems like Graph Isomorphism for which no efficient
quantum algorithm is yet known.

What is a proof?

Historically, mathematicians have had two very different notions of “proof.”
The first is that a proof is something that induces in the audience (or at least the prover!)

an intuitive sense of certainty that the result is correct. In this view, a proof is an inner
transformative experience – a way for your soul to make contact with the eternal verities of
Platonic heaven.

The second notion is that a proof is just a sequence of symbols obeying certain rules – or
more generally, if we're going to take this view to what I see as its logical conclusion, a proof
is a computation. In other words, a proof is a physical, mechanical process, such that, if the
process terminates with a particular outcome, then you should accept that a given theorem
is true. Naturally, you can never be more certain of the theorem than you are of the laws
governing the machine. But as great logicians from Leibniz to Frege to Gödel understood,
the weakness of this notion of proof is also its strength. If proof is purely mechanical, then
in principle you can discover new mathematical truths by just turning a crank, without any
understanding or insight. (As Leibniz imagined legal disputes one day being settled: “Gen-
tlemen, let us calculate!”)

The tension between the two notions of proof was thrown into sharper relief in 1976,
when Kenneth Appel and Wolfgang Haken announced a proof of the famous Four-Color
Map Theorem that every planar map can be colored with four colors, in such a way that no
two adjacent countries are colored the same. The proof basically consisted of a brute-force

enumeration of thousands of cases by computer; there's no feasible way for a human to ap-
prehend it in its entirety.

If the Four-Color Theorem was basically proved by brute force, then how can they be
sure they hit all the cases? The novel technical contribution that human mathematicians had
to make was precisely that of reducing the problem to finitely many cases – specifically,
about 2000 of them – which could then be checked by computer. Increasing our confid-
ence is that the proof has since been redone by another group, which reduced the number
of cases from about 2000 to about 1000.

Now, people will ask: how do you know that the computer didn't make a mistake? The
obvious response is that human mathematicians also make mistakes. I mean, Roger Pen-
rose likes to talk about making direct contact with Platonic reality, but it's a bit embarrass-
ing when you think you've made such contact and it turns out the next morning that you
were wrong!

We know the computer didn't make a mistake because we trust the laws of physics that
the computer relies on, and that it wasn't hit by a cosmic ray during the computation. But
in the last 20 years, there's been the question – why should we trust physics? We trust it in
life-and-death situations every day, but should we really trust it with something as import-
ant as proving the Four-Color Theorem? The truth is, we can play games with the definition
of proof in order to expand it to unsettling levels, and we'll be doing this for the rest of the
chapter.

Probabilistic proofs

Recall that we can think of a proof as a computation – a purely mechanical process that
spits out theorems. But what about a computation that errs with 2-1000 probability – is that
a proof? That is, are BPP computations legitimate proofs? Well, if we can make the prob-
ability of error so small that it's more likely for a comet to suddenly smash our computer
into pieces than for our proof to be wrong, it certainly seems plausible!

Now do you remember NP, the class of problems with polynomial-size certificates (for
the “yes” answers) that can be checked in polynomial time? So, once we're thinking about
randomized algorithms, the idea suggests itself of “combining” NP with BPP, to create a
new complexity class where you get a polynomial-size certificate for the “yes” answers,
and you also get to use a polynomial-time randomized algorithm to check the certific-
ate. Well, that hybrid class has indeed been invented, by Laszlo Babai in the 1980s. But
you probably won't guess what Babai called the class if you don't know already. Give up?
It's called MA, for “Merlin-Arthur.” Babai was imagining a game where “Merlin,” an all-
powerful but untrustworthy proving wizard, supplies a polynomial-size certificate, and then

“Arthur,” a skeptical, polynomial-time king, runs a randomized algorithm to check Mer-
lin's certificate. More formally, MA can be defined as the class of languages L for which
there exists a polynomial-time randomized algorithm V of Merlin such that for all x:

1. If x L, then there exists at least one certificate w such that V(x,w) accepts
with certainty.

2. If x L, then regardless of w, V(x,w) rejects with probability at least ½.

It turns out that, if you replace “with certainty” by “with probability at least ” in point
1, then you get exactly the same class MA. (That takes a page or so to prove; we won't do it
here.) One can also show that NP and BPP are contained in MA, and that MA is contained

in PP and Σ2P Π2P.
Now, once we have these characters Merlin and Arthur, we can also define more inter-

esting games. In particular, suppose Arthur gets to submit a random challenge to Merlin, to
which Merlin has to respond. Then you get a new class called AM (for “Arthur-Merlin”),
which contains MA but is not known to equal it, and is contained in Π2P. Actually, I should
tell you that most of us conjecture these days that NP = MA = AM; indeed, that's known
to follow from circuit lower bound hypotheses similar to the ones that make P = BPP (see
Chapter 7). But we're a long way from being able to prove that.

You might wonder, what happens if, after getting his answer from Merlin, Arthur gets
to ask Merlin a followup question, or three or four followups? You'd think Merlin would
be able to prove even more to Arthur, right? Wrong! Another surprising theorem says that
AM = AMAM = AMAMAM...– that is, asking Merlin any constant number of questions
gives Arthur exactly the same power as asking him just one question.

Zero-knowledge proofs

I was talking before about stochastic proofs, proofs that have an element of uncertainty
about them. We can also generalize the notion of proof to include zero-knowledge proofs,
proofs where the person seeing the proof doesn't learn anything about the statement in ques-
tion except that it's true.

Intuitively, that sounds impossible, but I’ll illustrate this with an example. Suppose we
have two graphs. If they're isomorphic, that's easy to prove. But suppose they're not iso-
morphic. How could you prove that to someone, assuming you're an omniscient wizard?

Simple: have the person you're trying to convince pick one of the two graphs at random,
randomly permute it, and send you the result. That person then asks: “which graph did I
start with?” If the graphs are not isomorphic, then you should be able to answer this ques-
tion with certainty. Otherwise, you'll only be able to answer it with probability ½. And thus
you'll almost surely make a mistake if the test is repeated a small number of times.

This is an example of an interactive proof system. Are we making any assumptions?
We're assuming you don't know which graph the verifier started with, or that you can't ac-
cess the state of his brain to figure it out. Or as theoretical computer scientists would say,
we're assuming you can't access the verifier's “private random bits.”

What's perhaps even more interesting about this proof system is that the verifier becomes
convinced that the graphs are not isomorphic without learning anything else! In particular,
the verifier becomes convinced of something, but is not thereby enabled to convince any-
one else of the same statement.

A proof with this property – that the verifier doesn't learn anything besides the truth of
the statement being proved – is called a zero-knowledge proof. Yeah, alright, you have to do
some more work to define what it means for the verifier to “not learn anything.” Basically,
what it means is that, if the verifier were already convinced of the statement, he could've
just simulated the entire protocol on his own, without any help from the prover.

Under a certain computational assumption – namely, that one-way functions exist – it
can be shown that zero-knowledge proofs exist for every NP-complete problem. This was
the remarkable discovery of Goldreich, Micali, and Wigderson in 1986.1

Because all NP-complete problems are reducible to each other (i.e., are “the same prob-
lem in different guises”), it's enough to give a zero-knowledge protocol for one NP-com-
plete problem. And it turns out that a convenient choice is the problem of three-coloring a
graph, meaning coloring every vertex red, blue, or green, so that no two neighboring ver-
tices are colored the same. This book is black-and-white, but you can use your imagination
and pretend that the graph below has two red vertices, two blue ones, and two green ones:

The question is: how can you convince someone that a graph is three-colorable, without
revealing anything about the coloring?

Well, here's how. Given a three-coloring, first randomly permute the colors – for ex-
ample, by changing every blue country to green, every green country to red, and every red
country to blue. (There are 3! = 6 possible permutations.) Next, send the verifier encrypted
messages encoding all the colors, which have the effect of “digitally committing” you to
those colors. In more detail, the messages should have the properties that

1. the verifier can't read them (that is, breaking the encryption is computationally in-
feasible), but

2. if you later decrypt the messages for the verifier, then the verifier can easily check
for itself that you did so correctly – i.e., that you didn't cheat by substituting colors
different from the ones that you previously committed to.

There's a relevant technical fact, which I’m simply going to assume without proof: that
given any one-way function, it's possible to achieve this sort of commitment (though pos-
sibly in a way that needs lots of rounds of interaction). If you don't want to take that on
faith, there are lots of easier ways to achieve digital commitment, provided you're willing
to make a stronger cryptographic assumption. For example, if you assume factoring is hard,
then the encrypted messages can be giant composite numbers, and the colors can be en-
coded by various properties of the prime factorizations of those numbers. Then you'd com-
mit to the colors by sending the composite numbers, and you'd “decommit” (that is, reveal
the colors) by sending the factorizations, whereupon the verifier could easily check for it-
self that those were the factorizations.

Anyway, given these encrypted colors, what can the verifier do? Simple: he can pick two
neighboring vertices, ask you to decrypt the colors, and then check that (1) the decryptions
are valid and (2) the colors are actually different. Note that, if the graph wasn't three-col-
orable, then either two adjacent countries must have gotten the same color, or else some

country must not even have been colored red, blue, or green. In either case, the verifier will
catch you cheating with probability at least 1/m, where m is the number of edges.

Finally, if the verifier wants to increase his confidence, we can simply repeat the pro-
tocol a large (but still polynomial) number of times. Note that each time you choose a fresh
permutation of the colors as well as fresh encryptions. If after (say) m3 repetitions, the veri-
fier still hasn't caught you cheating, he can be sure that the probability you were cheating is
vanishingly small.

But why is this protocol zero-knowledge? Intuitively, it's “obvious”: when you decrypt
two colors, all the verifier learns is that two neighboring vertices were colored differently –
but then, they would be colored differently if it's a valid three-coloring, wouldn't they?
Alright, to make this more formal, you need to prove that the verifier “doesn't learn any-
thing,” by which we mean that by himself, in polynomial time, the verifier could've pro-
duced a probability distribution over sequences of messages that was indistinguishable, by
any polynomial-time algorithm, from the actual sequence of messages that the verifier ex-
changed with you. As you can imagine, it gets a bit technical.

Is there any difference between the two zero-knowledge examples I just showed you?
Sure: the zero-knowledge proof for three-coloring a map depended crucially on the as-
sumption that the verifier can't, in polynomial time, decrypt the map by himself. (If he
could, he would be able to learn the three-coloring!) This is called a computational zero-
knowledge proof, and the class of all problems admitting such a proof is called CZK. By
contrast, in the proof for Graph Non-Isomorphism, the verifier couldn't cheat even with un-
limited computational power. This is called a statistical zero-knowledge proof, a proof in
which the distributions given by an honest prover and a cheating prover need to be close in
the statistical sense. The class of all problems admitting this kind of proof is called SZK.

Clearly SZK CZK, but is the containment strict? Intuitively, we'd guess that
CZK is a larger class, since we only require a protocol to be zero-knowledge against
polynomial-time verifiers, not verifiers with unlimited computation. And indeed, it's known
that if one-way functions exist, then CZK = IP = PSPACE – in other words, CZK is “as
big as it could possibly be.” On the other hand, it's also known that SZK is contained in the
polynomial hierarchy. (In fact, under a derandomization assumption, SZK is even in NP

coNP).

PCP

A PCP (Probabilistically Checkable Proof) is yet another impossible-seeming game one
can play with the concept of “proof.” It's a proof that's written down in such a way that
you, the lazy grader, only need to flip it open to a few random places to check (in a statist-
ical sense) that it's correct. Indeed, if you want very high confidence (say, to one part in a
thousand) that the proof is correct, you never need to examine more than about 30 bits. Of
course, the hard part is encoding the proof so that this is possible.

It's probably easier to see this with an example. Do you remember the Graph Noniso-
morphism problem? We'll show that there is a proof that two graphs are nonisomorphic,
such that anyone verifying the proof only needs to look at a constant number of bits (though
admittedly, the proof itself will be exponentially long).

First, given any pair of graphs G0 and G1 with n nodes each, the prover sends the verifier
a specially encoded string proving that G0 and G1 are nonisomorphic. What's in this string?
Well, we can choose some ordering of all possible graphs with n nodes, so call the ith graph
Hi. Then for the ith bit of the string, the prover puts a 0 there if Hi is isomorphic to G0, a 1
if Hi is isomorphic to G1, and otherwise (if Hi is isomorphic to neither) he arbitrarily places
a 0 or a 1. How does this string prove to the verifier that G0 and G1 are nonisomorphic?
Easy: the verifier flips a coin to get G0 or G1, and randomly permutes it to get a new graph
H. Then, she queries for the bit of the proof corresponding to H, and accepts if and only
if the queried bit matches her original graph. If indeed G0 and G1 are nonisomorphic, then
the verifier will always accept, and if not, then the probability of acceptance is at most ½.

In this example, though, the proof was exponentially long and only worked for Graph
Nonisomorphism. What kinds of result do we have in general? The famous PCP Theorem2

says that every NP problem admits PCPs – and furthermore, PCPs with polynomially long
proofs! This means that every mathematical proof can be encoded in such a way that any
error in the original proof translates into errors almost everywhere in the new proof.

One way of understanding this is through 3SAT. The PCP theorem is equivalent to the
NP-completeness of the problem of solving 3SAT with the promise that either the formula
is satisfiable, or else there's no truth assignment that satisfies more than (say) 90% of the
clauses. Why? Because you can encode the question of whether some mathematical state-
ment has a proof with at most n symbols as a 3SAT instance – in such a way that if there's
a valid proof, then the formula is satisfiable, and if not, then no assignment satisfies more
than 90% of the clauses. So given a truth assignment, you only need to distinguish the case
that it satisfies all the clauses from the case that it satisfies at most 90% of them – and this
can be done by examining a few dozen random clauses, completely independently of the
length of the proof.

Complexity of simulating hidden-variable theories

We talked last chapter about the path of a particle's hidden variable in a hidden-variable the-
ory, but what is the complexity of finding such a path? This problem is certainly at least as
hard as quantum computing – since even to sample a hidden variable's value at any single
time would in general require a full-scale quantum computation. Is sampling a whole tra-
jectory an even harder problem?

Here's another way to ask this question. Suppose that at the moment of your death,
your whole life flashes before you in an instant – and suppose you can then perform a
polynomial-time computation on your life history. What does that let you compute? As-
suming, of course, that a hidden-variable theory is true, and that while you were alive, you
somehow managed to place your own brain in various nontrivial superpositions.

To study this question, we can define a new complexity class called DQP, or Dynamical
Quantum Polynomial-Time. The formal definition of this class is a bit hairy (see my paper3

for details). Intuitively, though, DQP is the class of problems that are efficiently solvable
in the “model” where you get to sample the whole trajectory of a hidden variable, under
some hidden-variable theory that satisfies “reasonable” assumptions.

Now, you remember the class SZK, of problems that have statistical zero-knowledge

proof protocols? The main result from my paper was that SZK DQP. In other words,
if only we could measure the whole trajectory of a hidden variable, we could use a quantum
computer to solve every SZK problem – including Graph Isomorphism and many other
problems not yet known to have efficient quantum algorithms!

To explain why that is, I need to tell you that in 1997 Sahai and Vadhan discovered an
extremely nice “complete promise problem” for SZK. That problem is the following.

Given two efficiently-samplable probability distributions D1 and D2, are they close or
far in statistical distance (promised that one of those is the case)?

This means that when thinking about SZK, we can forget about zero-knowledge proofs,
and just assume we have two probability distributions and we want to know whether they're
close or far.

But let me make it even more concrete. Let's say that you have a function f:{1, 2,...,

N} {1, 2,..., N}, and you want to decide whether f is one-to-one or two-to-one,
promised that one of these is the case. This problem – which is called the collision prob-
lem – doesn't quite capture the difficulty of all SZK problems, but it's close enough for our
purposes.

Now, how many queries to f do you need to solve the collision problem? If you use a

classical probabilistic algorithm, then it's not hard to see that queries are necessary
and sufficient. As in the famous “birthday paradox” (where if you put 23 people in a room,
there's at least even odds that two of the people share a birthday), you get a square-root sav-
ings over the naïve bound, since what matters is the number of pairs for which a collision
could occur. But unfortunately, if N is exponentially large, as it is in the situations we're

thinking about, then is still completely prohibitive: the square root of an exponential
is still an exponential.

So what about quantum algorithms? In 1997, Brassard, Høyer, and Tapp4 showed how

to combine the savings from the birthday paradox with the unrelated savings
from Grover's algorithm, to obtain a quantum algorithm that solves the collision problem
in (this is going to sound like a joke) ~N1/3 queries. So, yes, quantum computers do give
at least a slight advantage for this problem. But is that the best one can do? Or could there
be a better quantum algorithm, that solves the collision problem in (say) log(N) queries, or
maybe even less?

In 2002, I proved the first nontrivial lower bound5 on the quantum query complexity of
the collision problem, showing that any quantum algorithm needs at least ~N1/5 queries.
This was later improved to ~N1/3 by Yaoyun Shi,6 thereby showing that the algorithm of
Brassard, Høyer, and Tapp was indeed optimal.

On the other hand – to get back to our topic – suppose you could see the whole trajectory
of a hidden variable. In that case, I claim that you could solve the collision problem with
only a constant number of queries (independent of N)! How? The first step is to prepare the
state

Now measure the second register (which we won't need from this point onward), and think
only about the resulting state of the first register. If f is one-to-one, then in the first register,
you'll get a classical state of the form i, for some random i. If f is two-to-one, on the other

hand, then you'll get a state of the form , where i and j are two values with f(i) =
f(j). If only you could perform a further measurement to tell these states apart! But alas, as
soon as you measure, you destroy the quantum coherence, and the two types of state look
completely identical to you.

Aha, but remember we get to see an entire hidden-variable trajectory! Here's how we

can exploit that. Starting from the state , first apply a Hadamard gate to every qubit.
This produces a “soup” of exponentially many basis vectors – but if we then Hadamard

every qubit a second time, we get back to the original state . Now, the idea is that
when we Hadamard everything, the particle “forgets” whether it was at i or j. (This can be
proved under some weak assumptions on the hidden-variable theory.) Then, when we ob-
serve the history of the particle, we'll learn something about whether the state had the form

i or . For in the former case, the particle will always return to i, but in the latter case,
it will “forget,” and will need to pick randomly between i and j. As usual, by repeating the
“juggling” process polynomially many times one can make the probability of failure expo-
nentially small. (Note that this does not require observing more than one hidden-variable
trajectory: the repetitions can all happen within a single trajectory.)

What are the assumptions on the hidden-variable theory that are needed for this to work?
The first is basically that if you have a bunch of qubits and you apply a Hadamard to one of
them, then you should only get to transfer between hidden-variable basis states that differ
in the first qubit.

Note that this assumption is very different from (and weaker than) requiring the hidden-
variable theory to be “local,” in the sense physicists usually mean by that. No hidden-vari-
able theory can be local. Some guy named Bell proved that.

And the second assumption is that the hidden-variable theory is “robust” to small errors
in the unitaries and quantum states. This assumption is needed to define the complexity
class DQP in a reasonable way.

As we've seen, DQP contains both BQP and the Graph Isomorphism problem. But inter-
estingly, at least in the black-box model, DQP does not contain the NP-complete problems.

More formally, there exists an oracle A such that NPA DQPA. The proof of this form-
alizes the intuition that, even as the hidden variable bounces around the quantum haystack,
the chance that it ever hits the needle is vanishingly small. It turns out that in the hidden-
variable model, you can search an unordered list of size N using N1/3 queries instead of the

~ you'd get from Grover's algorithm, but this is still exponential. The upshot is even
that DQP has severe computational complexity limitations.

1 See Oded Goldreich, Silvio Micali, and Avi Wigderson, “Proofs that Yield Nothing but
Their Validity, or All Languages in NP have Zero-Knowledge Proof Systems,” Journal of
the ACM 38(3):691–729, 1991.
2 The literature on the PCP Theorem is large; at least a dozen people made major con-
tributions to discovering and refining its proof. For a recent popular-level overview, see
Dana Moshkovitz, “The Tale of the PCP Theorem,” ACM Crossroads 18(3):23–26, 2012.
http://people.csail.mit.edu/dmoshkov/XRDS.pdf
3 http://www.scottaaronson.com/papers/qchvpra.pdf
4 G. Brassard, P. Høyer, and A. Tapp, Quantum cryptanalysis of hash and claw-free func-
tions, SIGACT News 28:2 (1997), 14–19. http://arxiv.org/abs/quant-ph/9705002
5 S. Aaronson, Quantum Lower Bound for the Collision Problem, Proceedings of ACM
Symposium on Theory of Computing, (2002), 635–642. http://www.scottaaronson.com/pa-
pers/collision.pdf
6 Y. Shi, Quantum Lower Bounds for the Collision and the Element Distinctness Problems,
Proceedings of IEEE Symposium on Foundations of Computer Science, (2002), 513–519.
http://arxiv.org/abs/quant-ph/0112086

http://people.csail.mit.edu/dmoshkov/XRDS.pdf
http://www.scottaaronson.com/papers/qchvpra.pdf
http://arxiv.org/abs/quant-ph/9705002
http://www.scottaaronson.com/papers/collision.pdf
http://www.scottaaronson.com/papers/collision.pdf
http://arxiv.org/abs/quant-ph/0112086

14 How big are quantum states?

I'm going to talk about the title question, but first, a little digression. In science, there's this
traditional hierarchy where you have biology on top, and chemistry underlies it, and then
physics underlies chemistry. If the physicists are in a generous mood, they'll say that math
underlies physics. Then, computer science is over somewhere with soil engineering or some
other nonscience.

Now, my point of view is a bit different: computer science is what mediates between the
physical world and the Platonic world. With that in mind, “computer science” is a bit of a
misnomer; maybe it should be called “quantitative epistemology.” It's sort of the study of the
capacity of finite beings such as us to learn mathematical truths. I hope I’ve been showing
you some of that.

How do we reconcile this with the notion that any actual implementation of a computer
must be based on physics? Wouldn't the order of physics and CS be reversed?

Well, by similar logic one could say that any mathematical proof has to be written on
paper, and therefore physics should go below math in the hierarchy. Or one could say that
math is basically a field that studies whether particular kinds of Turing machine will halt or
not, and so CS is the ground that everything else sits on. Math is then just the special case
where the Turing machines enumerate topological spaces or do something else that math-
ematicians care about. But then, the strange thing is that physics, especially in the form of
quantum probability, has lately been seeping down the intellectual hierarchy, contaminating
the “lower” levels of math and CS. This is how I’ve always thought about quantum comput-
ing: as a case of physics not staying where it's supposed to in the intellectual hierarchy! If
you like, I’m professionally interested in physics precisely to the extent that it seeps down
into the “lower” levels, which are supposed to be the least arbitrary ones, and forces me to
rethink what I thought I understood about those levels.

Anyway, on to the subject of this chapter, I think that it's helpful to classify interpretations
of quantum mechanics, or at least to reframe debates about them, by asking where they come
down on the question of the exponentiality of quantum states. To describe the state of a hun-
dred or a thousand atoms, do you really need more classical bits of information than you
could write down in the observable universe?

Roughly speaking, the Many-Worlds interpretation would say “absolutely.” This is a view
that David Deutsch defends very explicitly; if the different universes (or components of the
wavefunction) used in Shor's algorithm are not physically there, then where was the number
factored?

We also talked about Bohmian mechanics, which says “yes,” but that one component of
the vector is “more real” than the rest. Then, there is the view that used to be called the
Copenhagen view, but is now called the Bayesian view, the information-theoretic view, or
one of a host of other names.

In the Bayesian view, a quantum state is an exponentially long vector of amplitudes in
more-or-less the same sense that a classical probability distribution is an exponentially long
vector of probabilities. If you were to take a coin and flip it 1000 times, you would have
some set of 21000 possible outcomes, but we don't because of that decide to regard all of
those outcomes as physically real.

At this point, I should clarify that I’m not talking about the formalism of quantum mech-
anics; that's something that (almost) everyone agrees about. What I’m asking is wheth-
er quantum mechanics describes an actual, real “exponential-sized object” existing in the
physical world. So, the move that you make when you take the Copenhagen view is to say
that the exponentially long vector is “just in our heads.”

The Bohmian view is this strange kind of intermediate position. In the Bohmian view,
you do sort of see these exponential numbers of possibilities as somehow real; they're the
guiding field, but there's this one “more real” thing that they're guiding. In the Copenhagen
interpretation, these exponentially many possibilities really are just in your head. Presum-
ably, they correspond to something in the external world, but what that something is, we
either don't know or aren't allowed to ask. Chris Fuchs says that there's some physical con-
text to quantum mechanics – something outside of our heads – but that we don't know what
that context is. Niels Bohr tended to make the move toward “you aren't allowed to ask.”

Now that we have quantum computing, can we bring the intellectual arsenal of compu-
tational complexity theory to bear on this sort of question? I hate to disappoint you, but
we can't resolve this debate using computational complexity. It's not well defined enough.
Although we can't declare one of these views to be the ultimate victor, what we can do is
to put them into various “staged battles” with each other and see which one comes out the
winner. To me, this is the real motivation for studying questions about quantum proofs, ad-
vice, and communication, like the ones we're going to see in this chapter. Namely, we want
to understand: if you have a quantum state of n qubits, does it act more like n or like 2n

classical bits? Of course there's always a sort of exponentiality in our formal description of
a quantum state, but we want to know to what extent we can actually get at it, or root it out.

Before we embark on this quest, we'll need to arm ourselves with some complexity
classes. I know, I know: we have all these complexity classes, and they seem kind of eso-
teric. Maybe it's just a bad historical accident that we use all of these acronyms to express
our ideas, rather than coming up with sexy names like “black hole,” “quark,” or “super-
symmetry” as a physicist would. It's like the joke about the prisoners where one of them
calls out “37” and all of them will fall on the floor laughing, then another calls out “22” but

no one laughs because it's all in the telling. There are these staggering, mind-bending mys-
teries about truth, proof, computers, physics, and the very limits of the knowable, and for
ease of reference, we bottle the mysteries up using inscrutable sequences of three or four
capital letters. Maybe we shouldn't do that.

But we're going to do it anyway, starting with QMA (Quantum Merlin-Arthur), the
quantum generalization of MA. You can think of QMA as the set of truths such that, if you
had a quantum computer, you could be convinced of the answer by being given a quantum
state. More formally, it's the set of problems that admit a polynomial-time quantum al-
gorithm Q such that for every input x the following holds.

• If, on the input x, the answer the problem is “yes,” then there exists some quantum

state |φ of a polynomial number of qubits such that Q accepts |x |φ with prob-

ability greater than .
• If, on the input x, the answer the problem is “no,” then there does not exist any

polynomial-sized quantum state |φ such that Q accepts |x |φ with probability

greater than .

What I mean is that the number of qubits of |φ should be bounded by a polynomial in the
length n of x. You can't be given some state of 2n qubits. If you could, then that would sort
of trivialize the problem.

We want there to be a quantum state of reasonable size that convinces you of a “yes”
answer. So when the answer is “yes,” there's a state that convinces you, and when the an-
swer is “no,” there's no such state. QMA is sort of the quantum analog of NP. Recall that
we have the Cook–Levin Theorem, which gives us that the Boolean satisfiability prob-
lem (SAT) is NP-complete. There is also a Quantum Cook–Levin Theorem – which is a
great name, since both Cook and Levin are quantum computing skeptics (though Levin
much more so than Cook). The Quantum Cook–Levin theorem tells us that we can define a
quantum version of the 3SAT problem, which turns out to be QMA-complete as a promise
problem.

A promise problem is some problem you only have to get the right answer if there's some
promise on the input. If you, as the algorithm, have been screwed over by crappy input,
then any court is going to rule in your favor and you can do whatever you want. It may even
be a very difficult computation to decide if the promise holds or not, but that's not your de-

partment. There are certain complexity classes for which we don't really believe that there
are complete problems, but for which there are complete promise problems. QMA is one

such class. The basic reason we need a promise is because of the gap between and

. Maybe you would be given some input, but you'd accept with some probability that

is neither greater than nor less than . In that case, you've done something il-
legal, and so we assume that you aren't given such an input.

So what is this quantum 3SAT problem? Basically, think of n qubits stuck in an ion trap
(hey, I’m trying to bring in some physics), and now we describe a bunch of measurements,
each of which involves at most three of the qubits. Each measurement i accepts with prob-
ability equal to Pi. These measurements are not hard to describe, since they involve at most
three qubits. Let's say that we add up n of the measurements. Then, the promise will be
either there is a state such that this sum is very large, or that for all states, the sum is much
smaller. Then, the problem is to decide which of the two conditions holds. This problem
is complete in QMA in the same sense that the classical analog, 3SAT, is complete in NP.
This was first proved by Kitaev, and was later improved by many others.1

The real interest comes with the question of how powerful the QMA class is. Are there
truths that you can verify in a reasonable amount of time with quantum computers, but
which you can't verify with a classical computer? This is an example of what we talked
about earlier, where we're trying to put realistic and subjective views of quantum states into
“staged battle” with each other and see which one comes out the winner.

There's a result of John Watrous2 which gives an example where it seems that being
given an exponentially long vector really does give you some sort of power. The problem
is called group non-membership. You're given a finite group G. We think of this as being
exponentially large, so that you can't be given it explicitly by a giant multiplication table.
You're given it in some more subtle way. We will think of it as a black-box group, which
means that we have some sort of black box which will perform the group operations for
you. That is, it will multiply and invert group elements for you. You're also given a poly-
nomially long list of generators of the group.

Each element of the group is encoded in some way by some n-bit string, though you
have no idea how it's encoded. The point is that there are exponentially many group ele-
ments, but only polynomially many generators.

So now we're given a subgroup H G, which can also be given to us as a list of
generators. Now the problem is an extremely simple one: we're given an element x of the
group, and want to know whether or not it's in the subgroup. I’ve specified this problem

abstractly in terms of these black boxes, but you can instantiate it, if you have a specific
example of a group. For example, these generators could be matrices over some finite field,
and you're given some other matrix and are asked whether you can get to it from your gen-
erators. It's a very natural question.

Let's say the answer is “yes.” Then, could that be proved to you?
You can show how x was generated. There's one thing you need to say (not a very hard

thing), which is that if x H, then there is some “short” way of getting to it. Not ne-
cessarily by multiplying the generators you started with, but by recursively generating new
elements and adding those to your list, and using those to generate new elements, and so
on.

For example, if we started with the group n, the additive group modulo n, and if we
have some single starting element 1, we can we just keep adding 1 to itself, but it will take
us a while to get to 25000. But if we recursively build 2 = 1 + 1, 4 = 2 + 2 and so on by
repeatedly applying the group operation to our new elements, we'll get to whatever element
we want quickly.

Is it always possible to do it in polynomial time? It turns out the answer is yes, for any
group. The way to see that is to construct a chain of subgroups from the one you started
with. It takes a little work to show, but it's a theorem of Babai and Szemerédi, which holds
whether or not the group is solvable.

Now here's the question: what if x H? Could you demonstrate that to someone?
Sure, you could give them an exponentially long proof, and if you had an exponentially
long time, you could demonstrate it, but this isn't feasible. We still don't know quite how to
do with this, even if you were given a classical proof and allowed to check it via quantum
computation, though we do have some conjectures about that case.

Watrous showed that you can prove non-membership if you're given a certain quantum
state, which is a superposition over all the elements of the subgroup. Now this state might
be very hard to prepare. Why?

It's exponentially large, but there are other exponentially large superposition states
which are easy to prepare, so that can't be the whole answer. The problem turns out to be
one of uncomputing garbage.

So we know how to take a random walk on a group, and so we know how to sample a
random element of a group. But here, we're asked for something more. We're asked for a
coherent superposition of the group's elements. It's not hard to prepare a state of the form

|g |garbageg . Then how do you get rid of that garbage? That's the question. Basic-

ally, this garbage will be the random walk or whatever process you use to get to g, but how
do you forget how you got to that element?

But what Watrous said is to suppose we had an omniscient prover, and suppose that
prover was able to prepare that state and give it to you. Well then, you could verify that an
element is not in the subgroup H. We can do this in two steps.

1. Verify that we really were given the state we needed (we'll just assume this part for
now).

2. Use the state |H to prove that x H by using controlled left-multiplication:

Then, do a Hadamard and measure the first qubit. In more detail, you have the left

qubit act as the control qubit. If x H, then xH is a permutation of H, and so
we get interference fringes (the light went both through the x slit and the xH slit). If

x H, then we have that xH is a coset, and thus shares no elements in common

with H. Hence, H|xH = 0, and so we measure random bits. We can tell these
two cases apart.

You also have to verify that this state |H really was what we were given. To do this, we
will do a test like what we just did. Here, we pick the element x by taking a classical random

walk on the subgroup H. Then, if |H were really the superposition over the subgroup, |xH

would just be shifted around by x, whereas if x H, we get something else. You have
to prove that this is not only a necessary test, but a sufficient one as well. That's basically
what Watrous proved.

This gives us one example where it seems like having a quantum state actually helps
you, as if you could really get at the exponentiality of the state. Maybe this isn't a staggering
example, but it's something.

An obvious question is whether, in all of those cases where a quantum proof seems to
helps you, you could do just as well if you were given a classical proof that you then veri-

fied via quantum computation. Are we really getting mileage from having the quantum
state, or is our mileage coming from the fact that we have a quantum computer to do the
checking? We can phrase the question by asking if QMA = QCMA, where QCMA is like
QMA except that the proof now has to be a classical proof. Greg Kuperberg and I wrote a
paper3 where we tried to look at this question directly. One thing we showed looks kind of
bad for the realistic view of quantum states (at least in this particular battle): if the Normal
Hidden Subgroup problem (what the problem is isn't important right now) can be solved in
quantum-polynomial time, and it seems like it can, and if we make some other group-the-
oretic assumptions that seem plausible according to all the group theorists that we asked,
then the Group Non-membership Problem is actually in QCMA. That is, you can dequant-
ize the proof and replace it with a classical one.

On the other hand, we showed that there exists a quantum oracle A relative to which

QMAA QCMAA. This is a really simple thing to describe. To start with, what is a
quantum oracle? Quantum oracles are just quantum subroutines to which we imagine that
both a QMA and a QCMA machine have access. While classical oracles act on the compu-
tational basis (possibly in superposition within a quantum state), quantum oracles can act
on an arbitrary basis. To see the idea behind the oracle that we used, let's say that you're
given some n-qubit unitary operation U. Moreover, let's say that you're promised that either

U is the identity matrix I or that there exists some secret “marked state” |ψ such that U|ψ

= -|ψ ; that is, that U has some secret eigenvector corresponding to an eigenvalue of -1.
The problem is then to decide which of these conditions holds.

It's not hard to see that this problem, as an oracle problem, is in QMA. Why is it in

QMA? Because the prover would just have to give the verifier |ψ , and the verifier would

apply U|ψ to verify that, yes, U|ψ = -|ψ . So that's not saying a whole lot.
What we proved is that this problem, as an oracle problem, is not in QCMA. So even

if you had both of the resources of this unitary operation U and some polynomial-sized
classical string to kind of guide you to this secret negative eigenvector, you'd still need ex-

ponentially many queries to find |ψ .
This gives some evidence in the other direction, that maybe QMA is more powerful

than QCMA. If they were equivalent in power, then that would have to be shown using a
quantumly nonrelativizing technique: that is, a technique that is sensitive to the presence of

quantum oracles. We don't really know of such a technique right now, besides techniques
that are also classically nonrelativizing and don't seem applicable to this problem.

So there's really another sort of metaquestion here, which is if there's some kind of sep-
aration between quantum and classical oracles. That is, if there's some kind of question
that we can only answer with quantum oracles. Could we get a classical oracle separation
between QMA and QCMA? Greg Kuperberg and I tried for a while and couldn't do it.
Very recently, Andy Lutomirski4 proposed a candidate problem that he (and I) conjecture
should give such a separation, but no one has been able to prove it yet. If you can, that'd be
great.

OK. So that was quantum proofs. There are other ways we can try and get at the question
of how much stuff is there to be extracted from a quantum state. Holevo's Theorem deals
with the following question: if Alice wants to send some classical information to Bob, and
if she has access to a quantum channel, can she use this to her advantage? If quantum states
are these exponentially long vectors, then intuitively, we might expect that, if Alice could
send some n-qubit state, maybe she could use this to send Bob 2n classical bits. We can
arrive at this from a simple counting argument. The number of quantum states of n qubits,
any pair of which are of almost zero inner product with each other, is doubly exponential
in n. All we're saying is that, in order to specify such a state, you need exponentially many
bits. Thus, we might hope that we could get some kind of exponential compression of in-
formation. Alas, Holevo's Theorem tells us that it is not to be. You need n qubits to reliably
transmit n classical bits, with just some constant factor representing that you're willing to
tolerate some probability of error, but really nothing better than you would get with a clas-
sical probabilistic encoding.

Here's a handwaving intuition: You can only measure it once. Each bit of information
you extract cuts in half the dimensionality of the Hilbert space. Sure, in some sense, you
can encode more than n bits, but then you can't reliably retrieve them.

This theorem was actually known in the 1970s, and was ahead of its time.
It was only recently that anyone asked a very natural and closely related question: what

if Bob doesn't want to retrieve the whole string? We know from Holevo's theorem that get-
ting the whole string is impossible, but what if Bob only wants to retrieve one bit and Alice

doesn't know which one ahead of time? Can Alice create a quantum state |ψx such that,

for whichever bit xi Bob wants to know, he can just measure |ψx in the appropriate basis
and would then learn that particular bit? After he's learned xi, then he's destroyed the state
and can't learn any more, but that's OK. Alice wants to send Bob a quantum phonebook,
and Bob only wants to look up one number. It turns out that, via a proof from Ambainis,

Nayak et al.,5 this is still not possible. What they proved is that to encode n bits in this

manner, so that any one can be read out, you need at least qubits.
Maybe you could get some small savings, but certainly not an exponential saving.

Shortly after, Nayak proved that actually, if you want to encode n bits, you need n qubits.
If we're willing to lose a logarithmic factor or two, I can show rather easily how this is a
consequence of Holevo's theorem. The reason that it's true illustrates a technique that I’ve
gotten a lot of mileage out of, and there might be more mileage that can still be gotten out
of it.

Suppose, by way of contradiction, that we had such a protocol that would reliably en-
code n bits into no more than log n qubits in such a way that any one bit could then be
retrieved with high probability – we'll say with error at most one-third. Then, what we
could do is to take a bunch of copies of the state. We just want to push down the error
probability, so we take a tensor product of, say, log n copies. Given this state, what Bob
can do is to run the original protocol on each copy to get xi and then take the majority
vote. For some sufficiently large constant times log n, this will push down the error rate
to at most n-2. So for any particular bit i, Bob will be able to output a bit yi such that

. Now, since Bob can do that, what else can he do? He can
keep repeating this, and get greedy. I’m going to run this process and get x1, but now, be-
cause the outcome of this measurement could be predicted almost with certainty given this
state, you can prove, because of that, that you aren't getting a lot of information, and so
the state is only slightly disturbed by the measurement. This is just a general fact about
quantum measurements. If you could predict the outcome with certainty, then the state
wouldn't be disturbed at all by the measurement.6

So this is what we do. We've learned x1 and the state has been damaged only slightly.
When we run the protocol again, we learn what x2 is with only small damage. Since small
damage plus small damage is still small damage, we can find what x3 is and so on. So, we
can recover all of the bits of the original string using fewer qubits then the bound shown by
Holevo. Based on this, we can say that we can't have such a protocol.

Why do we care about any of this? Well, maybe we don't, but I can tell you how this stuff
entered my radar screen. Now, we're not going to ask about quantum proofs, but about a
closely related concept called quantum advice. So we'll bring in a class called BQP/qpoly:
the set of problems efficiently solvable by a quantum computer, given a polynomially sized
quantum advice state. What's the difference between advice and proof? As we discussed in
Chapter 7, advice depends only on the input length n but is absolutely trustworthy, whereas
a proof depends on the actual input but needs to be checked.

So the advantage of advice is that you can trust it, but the disadvantage is that it might
not be as useful as it isn't tailored to the particular problem instance that you're trying to

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244756

solve. So we can imagine that maybe it's hard for quantum computers to solve NP-com-
plete problems, but only if the quantum computer has to start in some all-zero initial state.
Maybe there are some very special states that were created in the Big Bang and that have
been sitting around in some nebula ever since (somehow not decohering), and if we get on
a spaceship and find these states, they obviously can't anticipate what particular instance of
SAT we wanted to solve, but they sort of anticipated that we would want to solve some in-

stance of SAT. Could there be this one generic SAT-solving state |ψn , such that, given any

Boolean formula P of size n, we could, by performing some quantum computation on |ψn

, figure out whether P is satisfiable? What we're really asking here is whether NP
BQP/qpoly.

What can we say about the power of BQP/qpoly? We can adapt Watrous's result about
quantum proofs to this setting of quantum advice. Returning to the Group Nonmembership
Problem, if the Big Bang anticipated what subgroup we wanted to test membership in, but

not what element we wanted to test, then it could provide us with the state |H that's a
superposition over all the elements of H, and then whatever element we wanted to test for
membership in H, we could do it. This shows that a version of the Group Non-membership
Problem is in BQP/qpoly.

I didn't mention this earlier, but we can prove that QMA PP,7 so there's evidently
some limit on the power of QMA. You can see that, in the worst case, all you would have
to do is search through all possible quantum proofs (all possible states of n qubits), and
see if there's one that causes our machine to accept. You can do better than that, and that's
where the bound of PP comes from.

What about BQP/qpoly? Can you see any upper bound on the power of this class? That
is, can you see any way of arguing what it can't do?

Do we even know that both BQP/qpoly isn't equal to ALL, the set of all languages
whatsoever (including uncomputable languages)? Let's say you were given an exponen-
tially long classical advice string. Well, then, it's not hard to see that you could then solve

any kind of problem whatsoever. Why? Because say that f: {0, 1}n {0, 1} is the
Boolean function we want to compute. Then, we just let the advice be the entire truth table
for the function, and then we just need to look up the appropriate entry in the truth table,
and we've solved any problem of size n we want to solve. The halting problem, you name
it.

For another example, consider the famous constant Ω defined by Gregory Chaitin.8 In-
formally, Ω is the probability that a “randomly generated computer program” halts on a
blank input, in some fixed Turing-universal programming language. (Technically, in order
for the probability to be well defined, the programming language needs to be “self-delim-
iting,” which means that you can never produce a valid program by adding more bits to
the end of another valid program.) The bits in the binary expansion of Ω are almost of like
the wisdom of God: they encode the answers to a huge number of mathematical questions
(Goldbach's Conjecture, the Riemann Hypothesis, etc.) in what one could call a maximally
efficient way. It would be wild to be given such a thing as “advice”! (Though note that, as a
practical matter, extracting interesting information from the advice – the truth or falsehood
of Goldbach's Conjecture and so forth – would require immense computations and would
almost certainly be completely impractical. In practice Ω would probably look no different
to you than a uniformly random string. But still: dude!)

Intuitively, it seems a bit implausible that BQP/qpoly = ALL, because being given a
polynomial number of qubits really isn't like being given an exponentially long string of
classical bits. The question is, how much can this “sea” of exponentially many classical
bits that are needed to describe a quantum state determine what we get out?

I guess I’ll cut to the chase and tell you that, at a workshop years ago, Harry Buhrman
asked me this question, and it was obvious to me that BQP/qpoly wasn't everything, and
he told me to prove it. And eventually I realized that anything you could do with polynomi-
ally sized quantum advice, you could do with polynomially sized classical advice, provided
that you can make a measurement and then postselect on its outcome. That is, I proved

that BQP/qpoly PostBQP/poly. In particular, this implies that BQP/qpoly
PSPACE/poly.9 (Later on, in 2010, Andrew Drucker and I10 improved this result still fur-

ther, to show that in fact BQP/qpoly QMA/poly, which in some sense gives the
“optimal” upper bound on BQP/qpoly in terms of a classical advice class, assuming BQP/
qpoly isn't just flat-out equal to BQP/poly. But I won't say more about that here.) The up-
shot is that anything you can be told by quantum advice, you can also be told by classical
advice of a comparable size, provided that you're willing to spend exponentially more com-
putational effort to extract what that advice is trying to tell you.

It's again a two-minute endeavor to give a handwaving proof that BQP/qpoly
PSPACE/poly. I like the way that Greg Kuperberg described the proof. What he said is
that what we do if we have some quantum advice and we want to simulate it using clas-
sical advice by postselection is to use a “Darwinian training set” of inputs. We'll say that
we've got this machine that takes classical advice, and then we want to describe to this ma-

chine some set of quantum advice using only classical advice. To do so, we consider some
test inputs X1, X2,..., XT. Note, by the way, that our classical advice machine doesn't know

the true quantum advice state |ψ . The classical advice machine starts by guessing that
the quantum advice is the maximally mixed state, since without a-priori knowledge any
quantum state is equally likely to be the advice state. Then, X1 is an input to the algorithm
such that if the maximally mixed state is used in place of the quantum advice, the algorithm
produces the wrong answer with a probability of greater than one-third. If the algorithm
still guesses the right answer, then making a measurement changes the advice state to some
new state ρ1. So why is this process described as “Darwinian?” The next part of the clas-
sical advice, X2 describes some input to the algorithm such that the wrong answer will be
produced with probability greater than one-third if the state ρ1 is used in place of the actual
quantum advice. If, despite the high chance of getting the wrong answer when run with X1
and X2 as input, the algorithm still produces two correct answers, then we use the resultant
estimate of the advice state ρ2 to produce the next part of the classical advice X3. Basically,
we're trying to teach our classical advice machine the quantum state by repeatedly telling
it, “supposing you got all the previous lessons right, here's a new test you're still going to
fail. Go and learn, my child.”

The point is that, if we let |ψn be the true quantum advice, then since we can decompose
the maximally mixed state into whatever basis we want, we can imagine it as a mixture of
the true advice state that we're trying to learn, and a bunch of things that are all orthogonal
to it. Each time that we give a wrong answer with a probability greater than one-third, it's
like we're lopping off another third of this space. We then postselect on succeeding. We
also know that if we were to start with the true advice state, then we would succeed, and
so this process has to bottom out somewhere; we eventually winnow away all the chaff and
run out of examples where the algorithm fails.

So, in this setting, quantum states are not acting like exponentially long vectors. They're
acting like they only encode some polynomial amount of information, although extracting
what you want to know might be exponentially more efficient than if the same information
were presented to you classically. Again, we're getting ambiguous answers, but that's what
we expected. We knew that quantum states occupy this weird kind of middle realm between
probability distributions and exponentially long strings. It's nice to see exactly how this in-
tuition plays out, though, in each of these concrete scenarios. I guess this is what attracts
me to quantum complexity theory. In some sense, this is same stuff that Bohr and Heisen-
berg argued about, but we're now able to ask the questions in a much more concrete way –
and sometimes even answer them.

1 See for example J. Kempe, A. Kitaev, and O. Regev, The Complexity of the local
Hamiltonian problem. SIAM Journal on Computing 35:5 (2006), 1070–1097. ht-
tp://arxiv.org/abs/quant-ph/0406180.
2 J. Watrous, Succinct quantum proofs for properties of finite groups. In Proceedings
of IEEE Symposium on Foundations of Computer Science (2000), pp. 537–46. ht-
tp://arxiv.org/abs/cs.CC/0009002
3 S. Aaronson and G. Kuperberg, Quantum Versus Classical Proofs and Advice, Theory of
Computing 3:7 (2007), 129–157. http://arxiv.org/abs/quant-ph/0604056
4 http://arxiv.org/abs/1107.0321
5 See A. Ambainis, A. Nayak, A. Ta-Shma, and U. V. Vazirani, Dense quantum coding and
quantum finite automata, Journal of the ACM, 49:4 (2002), 496–511. This paper also con-
tains Nayak's later improvement.
6 What we're talking about here is simply what, in another language, the physicist Yakir
Aharonov and his collaborators call the concept of “weak measurement.”
7 For a nice proof due to Vyalyi, see eccc.hpi-web.de/eccc-reports/2003/TR03-021/
8 See, for example, Chaitin's article http://www.cs.auckland.ac.nz/CDMTCS/chaitin/
sciamer3.html for a nice popular account of Ω.
9 S. Aaronson, Limitations of Quantum Advice and One-Way Communication, Theory of
Computing 1 (2005), 1–28. http://theoryofcomputing.org/articles/v001a001/v001a001.pdf
10 S. Aaronson and A. Drucker, A full characterization of quantum advice. In Proceedings
of Annual ACM Symposium on Theory of Computing (2010), pp. 131–40. http://arxiv.org/
abs/1004.0377

http://arxiv.org/abs/quant-ph/0406180
http://arxiv.org/abs/quant-ph/0406180
http://arxiv.org/abs/cs.CC/0009002
http://arxiv.org/abs/cs.CC/0009002
http://arxiv.org/abs/quant-ph/0604056
http://arxiv.org/abs/1107.0321
http://eccc.hpi-web.de/eccc-reports/2003/TR03-021/
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/sciamer3.html
http://www.cs.auckland.ac.nz/CDMTCS/chaitin/sciamer3.html
http://theoryofcomputing.org/articles/v001a001/v001a001.pdf
http://arxiv.org/abs/1004.0377
http://arxiv.org/abs/1004.0377

15 Skepticism of quantum computing

Last chapter, we talked about whether quantum states should be thought of as exponentially
long vectors, and I brought up class BQP/qpoly and concepts like quantum advice. Actually,
I’d say that the main reason why I care is something I didn't mention last time, which is that
it relates to whether we should expect quantum computing to be fundamentally possible or
not. There are people, like Leonid Levin and Oded Goldreich, who just take it as obvious
that quantum computing must be impossible.1 Part of their argument is that it's extravagant
to imagine a world where describing the state of 200 particles takes more bits then there
are particles in the universe. To them, this is a clear indication something is going to break
down. So part of the reason that I like to study the power of quantum proofs and quantum
advice is that it helps us answer the question of whether we really should think of a quantum
state as encoding an exponential amount of information.

So, on to the Eleven Objections.

1. Works on paper, not in practice.
2. Violates Extended Church–Turing Thesis.
3. Not enough “real physics.”
4. Small amplitudes are unphysical.
5. Exponentially large states are unphysical.
6. Quantum computers are just souped-up analog computers.
7. Quantum computers aren't like anything we've ever seen before.
8. Quantum mechanics is just an approximation to some deeper theory.
9. Decoherence will always be worse than the fault-tolerance threshold.

10. We don't need fault-tolerance for classical computers.
11. Errors aren't independent.

What I did is to write out every skeptical argument against the possibility of quantum com-
puting that I could think of. We'll just go through them, and make commentary along the
way. Let me just start by saying that my point of view has always been rather simple: it's
entirely conceivable that quantum computing is impossible for some fundamental reason. If
so, then that's by far the most exciting thing that could happen for us. That would be much
more interesting than if quantum computing were possible, because it changes our under-
standing of physics. To have a quantum computer capable of factoring 10000-digit integers
is the relatively boring outcome – the outcome that we'd expect based on the theories we
already have.

I like to engage skeptics for several reasons. First of all, because I like arguing. Second,
often I find that the best way to come up with new results is to find someone who's saying
something that seems clearly, manifestly wrong to me, and then try to think of counterar-
guments. Wrong claims are a fertile source of research ideas.

So what are some of the skeptical arguments that I’ve heard? The one I hear more than
any other argument is “well, it works formally, on paper, but it's not gonna work in the real
world.” People actually say this, and they actually treat it like it was an argument. For me,
the fallacy here is not that people can have ideas that don't work in the real world, but rather
that if they don't work in the real world, they can still “work on paper.” Of course, there
could be assumptions such that an idea only works if the assumptions are satisfied. Thus,
the question becomes if the assumptions are stated clearly or not.

I was happy to find out that I wasn't the first person to point out this particular fallacy.
Immanuel Kant wrote an entire treatise demolishing it: On the Common Saying: “That may
be right in theory but does not work in practice.”

The second argument is that quantum computing must be impossible because it violates
the Extended Church–Turing Thesis: “Anything that is efficiently computable in the phys-
ical world is computable in polynomial time on a standard Turing machine.” That is, we

know that quantum computing can't be possible (assuming BPP BQP), because we
know that BPP defines the limit of the efficiently computable.

So, we have this thesis, and quantum computing violates the thesis, so (if you have faith
in the thesis) it must be impossible On the other hand, if you replaced factoring with NP-
complete problems, then this argument would actually become more plausible to me, be-
cause I would think that any world in which we could solve NP-complete problems effi-
ciently would not look much like our world. For NP-intermediate problems like factoring
and Graph Isomorphism, I’m not willing to take some sort of a-priori theological position.
But the diagram below shows how I think things most likely stand.

So that was the second argument. On to the third: “I’m suspicious of all these quantum
computing papers because there isn't enough of the real physics that I learned in school.
There's too many unitaries and not enough Hamiltonians. There's all this entanglement,
but my professor told me not to even think about entanglement, because it's all just kind
of weird and philosophical, and has nothing to do with the structure of the helium atom.”
What can one say to this? Certainly, this argument succeeds in establishing that we have
a different way of talking about quantum mechanics now, in addition to the ways people
have had for many years. Those making this argument are advancing an additional claim,
though, which is that the new way of talking about quantum mechanics is wrong. And
that claim, of course, requires a separate argument. I don't know if any further response is
needed.

The fourth argument is that “these exponentially small amplitudes are clearly unphys-
ical.” This is another argument that Leonid Levin has made. Consider some state of 1000
qubits, such that each component has an amplitude of 2-500. We don't know of any physical

law that holds to more than about a dozen decimal places, and you're asking for accuracy
to hundreds of decimal points. Why should someone even imagine that makes any sense
whatsoever?

The obvious repudiation of argument 4, then, is that I can take a classical coin and flip
it a thousand times. Then, the probability of any particular sequence is 2-1000, which is far
smaller than any constant we could ever measure in nature. Does this mean that probability
theory is some “mere” approximation of a deeper theory, or that it's going to break down if
I start flipping the coin too many times?

For me the key point is that amplitudes evolve linearly, and in that respect are similar to
probabilities. We've got minus signs, and so we've got interference, but maybe if we really
thought about why probabilities are okay, we could argue that it's not just that we're always
in a deterministic state and just don't know what it is, but that this property of linearity is
something more general. Linearity is the thing that prevents small errors from creeping up
on us. If we have a bunch of small errors, the errors add rather than multiplying. That's lin-
earity.

Argument 5 gets back to what we were talking about in the previous chapter: “it's obvi-
ous that quantum states are these extravagant objects; you can't just take 2n bits and pack
them into n qubits.” Actually, I was arguing with Paul Davies, and he was making this argu-
ment, appealing to the holographic principle and saying that we have a finite upper bound
on the number of bits that can be stored in a finite region of spacetime. If you have some
1000-qubit quantum state, it requires 21000 bits, and according to Davies, we've just viol-
ated the holographic bound.2

So how should one respond to that? First of all, this information, whether or not we think
it's “there,” can't generally be read out. This is the content of results like Holevo's theorem.
In some sense, you might be able to pack 2n bits into a state, but the number of bits that you
can reliably get out is only n.

The holographic bound says, informally, that the maximum number of bits that can be
stored in any finite region is proportional to the region's surface area, at roughly the rate
of one bit per Planck area, or 1.4 × 1069 bits per meter squared. Why should the maximum
number of bits grow like the surface area, rather than the volume? That's a very profound
question that people like Ed Witten and Juan Maldacena probably stay up at night worrying
about. The doofus answer is that if you try to take lots and lots of bits and pack them into
some volume (such as a cubical hard disk), then at some point, your cubical hard disk will
collapse and form a black hole. A flat drive will also collapse, but a one-dimensional drive
won't collapse.

Here's the thing: there seem to be all these bits near the event horizon of the black hole.
Why the event horizon? Because if you're standing outside a black hole, then you never ac-
tually see anything fall through the event horizon. Instead, because of time dilation, all the

infalling objects will seem to get eerily frozen just outside the event horizon – approaching
it, Zeno-like, but never reaching it.

Then, if you want to preserve unitarity, and not have pure states evolve into mixed states
when something gets dropped into a black hole, you say that when the black hole evapor-
ates via Hawking radiation, then the bits get peeled off like scales, and go flying out into
space. Again, this is not something that people really understand. People treat the holo-
graphic bound (rightfully) as the one of the few clues we have for a quantum theory of
gravity, but they don't yet have the detailed theory that implements the bound, except for
some special model systems.

The other funny thing about this is that, in classical general relativity, the event horizon
doesn't play a particularly special role. You could pass through it and you wouldn't even
notice. Eventually, you'll know you passed through it, because you'll be sucked into the
singularity, but while you're passing through it, it doesn't feel special. On the other hand,
this information point of view says that as you pass through, you'll pass a lot of bits near
the event horizon. What is it that singles out the event horizon as being special in terms of
information storage? It's very strange, and I wish I understood it (see Chapter 22 for further
discussion).

There actually is an interesting question here. The holographic principle says that you
can store only so much information within a region of space, but what does it mean to have
stored that information? Do you have to have random access to the information? Do you
have to be able to access whatever bit you want and get the answer in a reasonable amount
of time? In the case that these bits are stored in a black hole, apparently if there are n bits
on the surface, then it takes on the order of n3/2 time for the bits to evaporate via Hawking
radiation. So, the time-order of retrieval is polynomial in the number of bits, but it still isn't
particularly efficient. A black hole should not be one's first choice for a hard disk.

Argument 6: “a quantum computer would merely be a souped-up analog computer.”
This I’ve heard again and again, from people like Robert Laughlin, Nobel laureate, who
espoused this argument in his popular book A Different Universe.3 This is a popular view
among physicists. We know that analog computers are not that reliable, and can go haywire
because of small errors. The argument proceeds to ask why a quantum computer should be
any different, since you have these amplitudes which are continuously varying quantities.

But the response to this argument has been known since 1996 or so. It's called the
Threshold Theorem.4 Informally, the Threshold Theorem says that, if you can just make
the probability of error per qubit per time step sufficiently small – less than some constant,
which was traditionally estimated at 10-6, but might be as high as 0.1 or 0.2 – then you can
do something called quantum fault-tolerance, which stops the errors from ever building up
and destroying the computation. An analogous fault-tolerance theorem for classical com-
puting was proved by John von Neumann in the 1950s, but in some sense, it ultimately

ended up not being needed, since once transistors came along they were so reliable that
people almost never had to worry about them failing. In the mid-1990s, some physicists
conjectured that the “analog” nature of quantum computers would make quantum fault-tol-
erance impossible. In more detail, the intuition was that, since measurement in quantum
mechanics is a destructive process, the very act of making a measurement to see whether
an error had occurred, or to copy quantum information as a safeguard against future errors,
would already destroy the information you were trying to protect. But this intuition turned
out to be mistaken: there are clever ways to measure only the “error syndrome,” which tells
you whether an error has occurred and how to fix it, without measuring and destroying the
“legitimate” quantum information. What ultimately makes such measurements possible is
the linearity of quantum mechanics: the spear on which a thousand wrong intuitions about
how quantum mechanics works have died!

Is there a similar Threshold Theorem for analog computers? No, and there can't be. The
point is, there's a crucial property that is shared by discrete theories, probabilistic theories
and quantum theories, but that is not shared by analog or continuous theories. That prop-
erty is insensitivity to small errors. Once again, that's really a consequence of linearity.

Note that, if we want a weaker Threshold Theorem, we could consider a computation
taking t time steps, where the amount of error per time step could be 1/t. Then, the
Threshold Theorem would be trivial to prove. If we had a product of unitaries U1U1...U100,
and each one were to be corrupted by 1/t (1/100 in this case), then we'd have a product like

The product of all these errors still won't be much, again because of linearity. An obser-
vation made by Bernstein and Vazirani5 was that quantum computation is sort of naturally
robust against one-over-polynomial errors. “In principle,” that could be taken to answer the
question already; what remains is “merely” showing how to tolerate larger and more real-
istic amounts of error, rather than just one-over-polynomial error.

On to argument 7. This is an argument raised, for example, by Michel Dyakonov.6 The
argument goes that all the systems we have experience with involve very rapid decoheren-
ce, and thus that it isn't plausible to think that we could “just” engineer some system which
is not like any of the systems in nature that we have any experience with.

A nuclear fission reactor is also unlike any naturally occurring system in many ways.
What about a spacecraft? Things don't normally use propulsion to escape the earth. We
haven't seen anything doing that in nature. Or a classical computer.

Next, there are the people who just take it for granted that quantum mechanics must be
an approximate theory that only works for a small number of particles. When you go to a
larger number of particles, something else must take over. The trouble is, there have been

experiments that have tested quantum mechanics with fairly large numbers of particles,
like the Zeilinger group's experiment with buckyballs. There have also been SQUID exper-

iments that have prepared the “Schrödinger cat state” |0...0 + |1...1 on n qubits, where,
depending on what you want to count as a degree of freedom, n is as large as several bil-
lion.

Again, though, the fundamental point is that discovering a breakdown of QM would be
the most exciting possible outcome of trying to build a quantum computer. And, how else
are you going to discover that, but by investigating these things experimentally and seeing
what happens? Astonishingly, I meet people (especially computer scientists) who ask me
“what, you're going to expect a Nobel Prize if your quantum computer doesn't work?” To
them, it's just so obvious that a quantum computer isn't going to work that it isn't even in-
teresting.

Some people will say, “no, no, I want to make a separate argument. I don't believe that
quantum mechanics is going to break down, but even if it doesn't, quantum computing
could still be fundamentally impossible, because there's just too much decoherence in the
world.” These people are claiming that decoherence is a fundamental problem. That is, that
the error will always be worse than the fault-tolerance threshold, or that some nasty little
particle will always pass through and decohere your quantum computer.

The next argument is a little more subtle: for a classical computer, we don't have to go
through all this effort. You just get fault-tolerance naturally. You have some voltage that
either is less than a lower threshold or is greater than an upper threshold, and that gives
us two easily distinguishable states that we can identify as 0 and 1. We don't have to go
through the same amount of work to get fault-tolerance. In modern microprocessors, for
example, they don't even bother to build in much redundancy and fault-tolerance, because
the components are just so reliable that such safeguards aren't needed. The argument then
proceeds by noting that you can, in principle, do universal quantum computing by exploit-
ing this fault-tolerant machinery, but that this should raise a red flag – why do you need all
that error correction machinery? Shouldn't this make you suspicious?

Here's my response. The only reason we don't need fault-tolerance machinery for clas-
sical computers is that the components are so reliable, but we haven't been able to build re-
liable quantum computer components yet. In the early days of classical computing, it wasn't
clear at all that reliable classical components would exist. Von Neumann actually proved a
classical analog of the Threshold Theorem, then later, it was found that we didn't need it.
He did this to answer skeptics who said there was always going to be something making a
nest in your JOHNNIAC, insects would always fly into the machine, and that these things
would impose a physical limit on classical computation. Sort of feels like history's repeat-
ing itself.

We can already see hints of how things might eventually turn out. People have been
looking at proposals such as non-abelian anyons where your quantum computer is “natur-
ally fault tolerant,” since the only processes that can cause errors have to go around the
quantum computer with a nontrivial topology. These proposals show that it's conceivable
we'll someday be able to build quantum computers that have the same kind of “natural”
error correction that we have in classical computers.

I wanted to have a round number of arguments, but I wound up with 11. So, Argument 11
comes from people who understand the Fault-Tolerance Theorem, but who take issue with
the assumption that the errors are independent. This argument posits that it's ridiculous to
suppose that errors are uncorrelated, or even that they're only weakly correlated, from one
qubit to the next. Instead, the claim is that such errors are correlated, albeit in some very
complicated way. In order to understand this argument, you have to work from the skeptics’
mind-set: to them, this isn't an engineering issue, it's given a priori that quantum computing
is not going to work. The question is how to correlate the errors such that quantum com-
puting won't work.

My favorite response to this argument comes from Daniel Gottesman, who was arguing
about this against Levin, who believes that the errors will be correlated in some conspiracy
that defies the imagination. Gottesman said, supposing the errors were correlated in such a
diabolical fashion and that Nature should undergo so much work to kill off quantum com-
putation, why couldn't you turn that around and use whatever diabolical process Nature
employs to get access to even more computational power? Maybe you could even solve
NP-complete problems. It seems like Nature would have to expend enormous amounts of
effort just to correlate qubits so as to kill quantum computation.

In other words, not only would your errors have to be correlated in some diabolical way,
they'd have to be correlated in some unpredictable diabolical way. Otherwise, you could
deal with the problem in general.

To summarize, I think that arguing with skeptics is not only fun but extremely useful. It
could be that quantum computing is impossible for some fundamental reason. But I'm still
waiting for an argument that really engages my imagination nontrivially. People are object-
ing to this or to that, but they aren't coming up with some fully imagined, alternative picture
of the world in which quantum computing wouldn't be possible. That's what's missing for
me, what I keep looking for and not finding.7

I’ll close with a question that you should think about before the next chapter. If we see
500 ravens, which are all black, should we expect that the 501st raven we see will also be
black? If so, why? Why would seeing 500 black ravens give you any grounds whatsoever
to draw such a conclusion?

1 See, for example, http://www.cs.bu.edu/fac/lnd/expo/qc.htm and ht-
tp://www.wisdom.weizmann.ac.il/~oded/on-qc.html
2 Davies subsequently published this argument; see http://arxiv.org/abs/quant-ph/0703041
3 Basic Books, 2006.
4 For gentle introductions to the Threshold Theorem, see for example http://arxiv.org/
abs/quant-ph/9705031 by John Preskill or http://arxiv.org/abs/quant-ph/9812037 by Dorit
Aharonov.
5 www.cs.berkeley.edu/~vazirani/pubs/bv.ps
6 See http://arxiv.org/abs/quant-ph/0610117, or the more recent http://arxiv.org/abs/
1212.3562
7 For a recent discussion of quantum computing skepticism on my blog, see ht-
tp://www.scottaaronson.com/blog/?p=1211

http://www.cs.bu.edu/fac/lnd/expo/qc.htm
http://www.wisdom.weizmann.ac.il/~oded/on-qc.html
http://www.wisdom.weizmann.ac.il/~oded/on-qc.html
http://arxiv.org/abs/quant-ph/0703041
http://arxiv.org/abs/quant-ph/9705031
http://arxiv.org/abs/quant-ph/9705031
http://arxiv.org/abs/quant-ph/9812037
http://www.cs.berkeley.edu/~vazirani/pubs/bv.ps
http://arxiv.org/abs/quant-ph/0610117
http://arxiv.org/abs/1212.3562
http://arxiv.org/abs/1212.3562
http://www.scottaaronson.com/blog/?p=1211
http://www.scottaaronson.com/blog/?p=1211

16 Learning

The puzzle from last chapter is known as Hume's Problem of Induction.
Puzzle: If you observe 500 black ravens, what basis do you have for supposing that the

next one you observe will also be black?
Many people's answer would be to apply Bayes's Theorem. For this to work, though, we

need to make some assumption such as that all the ravens are drawn from the same distri-
bution. If we don't assume that the future resembles the past at all, then it's very difficult to
get anything done. This kind of problem has led to lots of philosophical arguments like the
following.

Suppose you see a bunch of emeralds, all of which are green. This would seem to lend
support to the hypothesis that all emeralds are green. But then, define the word grue to mean
“green before 2050 and blue afterwards.” Then, the evidence equally well supports the hy-
pothesis that all emeralds are grue, not green. This is known as the grue paradox.

If you want to delve even “deeper,” then consider the “gavagai” paradox. Suppose that
you're trying to learn a language, and you're an anthropologist visiting an Amazon tribe
speaking the language. (Alternatively, maybe you're a baby in the tribe. Either way, suppose
you're trying to learn the language from the tribe.) Then, suppose that some antelope runs by
and some tribesman points to it and shouts “gavagai!” It seems reasonable to conclude from
this that the word “gavagai” means “antelope” in their language, but how do you know that
it doesn't refer to just the antelope's horn? Or it could be the name of the specific antelope
that ran by. Worse still, it could mean that a specific antelope ran by on some given day of
the week! There's any number of situations that the tribesman could be using the word to
refer to, and so we conclude that there is no way to learn the language, even if we spend an
infinite amount of time with the tribe.

There's a joke about a planet full of people who believe in anti-induction: if the sun has
risen every day in the past, then today, we should expect that it won't. As a result, these
people are all starving and living in poverty. Someone visits the planet and tells them, “Hey,
why are you still using this anti-induction philosophy? You're living in horrible poverty!”

“Well, it never worked before...”
What we want to talk about here is the efficiency of learning. We've seen all these philo-

sophical problems that seem to suggest that learning is impossible, but we also know that
learning does happen, and so we want to give some explanation of how it happens. This is
sort of a problem in philosophy, but in my opinion, the whole landscape around the prob-
lem has been transformed in recent years by what's called “computational learning theory.”
This is not as widely known as it should be. Even if you're (say) a physicist, it's nice to

know something about this theory, since it gives you a framework – different from the
better-known Bayesian framework, but related to it, and possibly more useful in some con-
texts – for deciding when you can expect a hypothesis to predict future data.

I think a key insight that any approach has to take on board – whether it's Bayesianism,
computational learning theory, or something else – is that we're never considering all logic-
ally conceivable hypotheses on an equal footing. If you have 500 ravens, each either white
or black, then in principle there are 2500 hypotheses that you have to consider. If the ravens
could also be green, that would produce still more hypotheses. In reality, though, you're
never considering all of these as equally possible. You're always restricting your attention
to some minuscule subset of hypotheses – broadly speaking, those that are “sufficiently
simple” – unless the evidence forces you to a more complex hypothesis. In other words,
you're always implicitly using what we call Occam's Razor (all though it isn't at all clear if
it's what Occam meant).

Why does this work? Fundamentally, because the universe itself is not maximally com-
plicated. We could well ask why it isn't, and maybe there's an anthropic explanation, but
whatever the answer, we accept as an article of faith that the universe is reasonably simple,
and we do science.

This is all talk and blather, though. Can we actually see what the trade-offs are between
the number of hypotheses we consider and how much confidence we can have in predicting
the future? One way we do this was formalized by Leslie Valiant in 1984.1 His framework
is called PAC learning, where PAC stands for “probably approximately correct.” We aren't
going to predict everything that happens in the future, nor will we even predict most of it
with certainty, but with high probability, we'll try to get most of it right.

This might sound like pure philosophy, but you can actually connect some of this stuff
to experiments. For example, this theory has been used in experiments on things like neur-
al networks and machine learning. When I was writing a paper on PAC learning once, I
wanted to find out how the theory was actually used, so I looked on Google Scholar. At the
time of this book's publication, the paper by Valiant has been cited about 4000 times. Based
on this, we can infer that further papers are likely.

So how does PAC learning work? We'll have a set S which could be finite or infinite,
called our sample space. For example, we're an infant trying to learn a language, and are
given some examples of sentences which are grammatical or ungrammatical. From this, we
need to come up with a rule for deciding whether a new sentence is grammatical or not.
Here, our sample space is the set of possible sentences.

A concept is a Boolean function f: S {0, 1} that maps each element of the
sample space to either 0 or 1. We can later remove the assumption that concepts are
Boolean, but for simplicity, we'll stick with it for now. In our example, the concept is the

language that we're trying to learn; given a sentence, the concept tells us whether it is or
isn't grammatical. Then, we can have a concept class, denoted C. Here, C can be thought
of as the set of languages which our baby comes in to the world thinking a priori to be pos-
sible, before gathering any data as to the actual language spoken.

For now, we're going to say that we have some probability distribution D over the
samples. In the infant example, this is like the distribution from which the child's parents or
peers draw what sentences to speak. The baby does not have to know what this distribution
is. We just have to assume that it exists.

So what's the goal? We're given m examples xi drawn independently from the distribu-
tion D, and for each xi, we're given f(xi); that is, we're told whether each of our examples is
or isn't grammatical. Using this, we want to output a hypothesis language h such that

where ~ means that x is drawn from distribution D. That is, we want our hypothesis h to
disagree with the concept f no more than ε of the time given examples x drawn from our
distribution D. Can we hope to do this with certainty? No? Well, why not?

You might get unlucky with the samples you're given, like getting the sample sampler
over and over again. If the only sentence you're ever exposed to as a baby is “what a cute
baby!” then you're not going to have any basis for deciding whether “we hold these truths
to be self-evident” is also a sentence. In fact, we should assume that there are exponentially
many possible sentences, of which the baby only hears a polynomial number.

So, we say that we only need to output an ε-good hypothesis with probability 1 - δ over
the choice of samples. Now, we can give the basic theorem from Valiant's paper.

Theorem: In order to satisfy the requirement that the output hypothesis h agrees with 1
- ε of the future data from drawn from D, with probability 1 - δ over the choice of samples,
it suffices to find any hypothesis h that agrees with

samples chosen independently from D.
The key point about this bound is that it's logarithmic in the number of possible hypo-

theses |C|. Even if there are exponentially many hypotheses, this bound is still polynomial.
Now, why do we ask that the distribution D on which the learning algorithm will be tested
is the same as the distribution from which the training samples are drawn?

Because if your example space is a limited subset of sample space, then you're hosed.

This is like saying that nothing should be on the quiz that wasn't covered in class. If the
sentences that you hear people speaking have support only in English, and you want a hy-
pothesis that agrees with French sentences, this is not going to be very possible. There's
going to have to be some assumption about the future resembling the past.

Once you make this assumption, then Valiant's theorem says that for a finite number of
hypotheses, with a reasonable number of samples, you can learn. There's really no other
assumption involved.

This goes against a belief in the Bayesian religion, that if your priors are different then
you'll come to an entirely different conclusion. The Bayesians start out with a probability
distribution over the possible hypotheses. As you get more and more data, you update this
distribution using Bayes's Rule.

That's one way to do it, but computational learning theory tells us that it's not the only
way. You don't need to start out with any assumption about a probability distribution over
the hypotheses. You can make a worst-case assumption about the hypothesis (which we
computer scientists love to do, being pessimists!), and then just say that you'd like to learn
any hypothesis in the concept class, for any sample distribution, with high probability over
the choice of samples. In other words, you can trade the Bayesians’ probability distribution
over hypotheses for a probability distribution over sample data.

In a lot of cases, this is actually preferable: you have no idea what the true hypothesis
is, which is the whole problem, so why should you assume some particular prior distribu-
tion? We don't have to know what the prior distribution over hypotheses is in order to apply
computational learning theory. We just have to assume that there is a distribution.

The proof of Valiant's theorem is really simple. Given a hypothesis h, call it bad if it dis-
agrees with f for more than an ε fraction of the data. Then, for any specific bad hypothesis
h, since x1,..., xm are independent we have that

This bounds the probability that this bad hypothesis gave the right prediction on the

samples. Now, what is the probability that there exists a bad hypothesis h C that
agrees with all the sample data? We can use the union bound:

Pr[there exists a bad h that agrees with f for all samples] < |C| (1 - ε)m.
We can set this equal to δ and solve for m. Doing so gives that

QED.
This gives us a bound on the number samples needed for a finite set of hypotheses, but

what about infinite concept classes? For example, what if we're trying to learn a rectangle
in the plane? Then our sample space is the set of points in the plane, and our concept class
is the set of all filled-in rectangles. Suppose we're given m points, and for each one are told
whether or not it belongs to a “secret rectangle.”

Well, how many possible rectangles are there? There are 2 0 possibilities, so we
can't apply the previous theorem! Nevertheless, given 20 or 30 random points in the rect-
angle, and 20 or 30 random points not in the rectangle but near it, intuitively it seems like
we have a reasonable idea of where the rectangle is. Can we come up with a more gen-
eral learning theorem to apply when the concept class is infinite? Yes, but first we need a
concept called shattering.

For some concept class C, we say that a subset of the sample space {s1, s2,..., sk} is
shattered by C if, for all 2k possible classifications of s1, s2,..., sk, there is some function f

C that agrees with that classification. Then, define the VC dimension of the class C,
denoted VCdim(C), as the size of the largest subset shattered by C.

What is the VC dimension of the concept class of rectangles? We need the largest set of
points such that, for each possible setting of whether each point is or is not in the rectangle,
there is some rectangle that contains only the points we want and not the other ones. The
diagram below illustrates how to do this with four points. On the other hand, there's no way
to do it with five points (proof: exercise for you!).

One corollary of the next theorem is that one can perform PAC learning, with a finite num-
ber of samples, if and only if the VC dimension of the concept class is finite.

Theorem (Blumer, Ehrenfeucht, Haussler, and Warmuth, 1989):2 In order to produce a
hypothesis h that will explain a 1 - ε fraction of future data drawn from distribution D, with
probability 1 - δ, it suffices to output any h in C that agrees with

sample points drawn independently from D. Furthermore, this is tight (up to the dependen-
ce on ε).

This theorem is harder to prove than the last one, and would take a whole chapter in it-
self, so we'll skip it here. The intuition behind the proof, however, is simply Occam's Razor.
If the VC dimension is finite, then after seeing a number of samples that's larger than the
VC dimension, the entropy of the data that you've already seen should only go roughly as
the VC dimension. You make m observations, after which the possible number of things

that you've seen is less than 2m, otherwise VCdim(C) m. It follows that to describe
these m observations takes less than m bits. This means that you can come up with a theory
that explains the past data, and that has fewer parameters than the data itself.

If you can do that, then intuitively you should be able to predict the next observation. On
the other hand, supposing you had some hypothetical theory in (say) high-energy physics
such that, no matter what the next particle accelerator found, there'd still be some way of –
I don't know – curling up extra dimensions or something to reproduce those observations –
well, in that case you'd have a concept class whose VC dimension was at least as great as
the number of observations you were trying to explain. In such a situation, computational
learning theory gives you no reason to expect that whatever hypothesis you output will be
able to predict the next observation.

The upshot is that this intuitive trade-off between the compressibility of past data and
the predictability of future data can actually be formalized and proved; given reasonable
assumptions, Occam's Razor is a theorem.

What if the thing that we're trying to learn is a quantum state, say some mixed state ρ?
We could have a measurement E with two outcomes. In quantum mechanics, the most gen-
eral type of measurement is called a positive operator-valued measurement, or POVM. A
POVM is just an ordinary “projective” measurement – the type of measurement we dis-
cussed earlier – except that, before measuring, you get to perform any unitary transforma-
tion you want on the state ρ being measured, together with some additional “ancilla state”
independent of ρ. For present purposes, all you need to know is the following: if you have a
two-outcome POVM M, acting on an n-dimensional state mixed state ρ, then you can com-
pletely characterize M by an n × n hermitian matrix E, all of whose eigenvalues belong to
[0, 1]. Then the probability that M “accepts” ρ is simply tr(Eρ) (where tr, the trace, is the
sum of diagonal entries), and the probability that M “rejects” ρ is 1 - tr(Eρ).

Now, if we're given some state ρ, what we'd like to be able to do is to predict the
outcome of any measurement made on the state: that is, to estimate the acceptance probab-
ility tr(Eρ) for any two-outcome POVM measurement E. This is easily seen to be equival-
ent to quantum state tomography, which is recovering the density matrix ρ itself.

But, what is ρ? It's some n-qubit state represented as a 2n × 2n matrix with 4n independent
parameters. The number of measurements needed to do tomography on an n-qubit state is
well known to grow exponentially with n. Indeed, this is already a serious practical prob-
lem for the experimenters. To learn an eight-qubit state, you might have to set your detector
in 65536 different ways, and to measure in each way hundreds of times to get a reasonable
accuracy.

So again, this is a practical problem for experimenters. But is it a conceptual problem as
well? Some quantum computing skeptics seem to think so; we saw in the last chapter that

one of the fundamental criticisms of quantum computing is that it involves manipulating
these exponentially long vectors. To some skeptics, this is an inherently absurd way of de-
scribing the physical world, and either quantum mechanics is going to break down when
we try to do this, or there's something else that we must not have taken into account, be-
cause you clearly can't have 2n “independent parameters” in your description of n particles.

Now, if you need to make an exponential number of measurements on a quantum state
before you know enough to predict the outcome of further measurements on it, then this
would seem to be a way of formalizing the above argument and making it more persuas-
ive. After all, our goal in science is always to come up with hypotheses that succinctly ex-
plain past observations, and thereby let us predict future observations. We might have other
goals, but at the least we want to do that. So if, to characterize a general state of 500 qubits,
you had to make more measurements than you could in the age of the universe, that would
seem to be a problem with quantum mechanics itself, considered as a scientific theory. I’m
actually inclined to agree with the skeptics about that.

In 2006, I had a paper3 where I tried to use computational learning theory to answer
this argument. Here's how Umesh Vazirani explained my result. He said, suppose you're a
baby trying to learn a rule for predicting whether or not a given object is a chair. You see a
bunch of objects labeled “chair” or “not-chair,” and based on that you come up with gen-
eral rules (“a chair has four legs,” “you can sit on one,” etc.) that work pretty well in most
cases. Admittedly, these rules might break down if (say) you're in a modern art gallery, but
we don't worry about that. In computational learning theory, we only want to predict most
of the future observations that you'll actually make. If you're a Philistine, and don't go to
MOMA, then you don't worry about any chairlike objects that might be there. We need to
take into account the future intentions of the learner, and for this reason, we relax the goal
of quantum state tomography to the goal of predicting the outcomes of most measurements
drawn from some probability distribution D.

More formally, given a mixed state ρ on n qubits, as well as given measurements E1,

E2,..., Em ~ D and estimated probabilities pj Tr(Ejρ) for each j {1, 2,..., m},
the goal is to produce a hypothesis state σ that has, with probability at least 1 - δ, the prop-
erty that

For this goal, here's a theorem that bounds the number of sample measurements needed.

Theorem: Fix error parameters ε, δ, and γ and fix η > 0 such that γε 7η. Call E
= (E1,..., Em) a “good” training set of measurements if any hypothesis state σ that satisfies

|Tr(Eiσ) - Tr(Eiρ)| η also satisfies

Then, there exists a constant K > 0 such that E is a good training set with probability at
least 1 - δ over E1,..., Em drawn from D, provided that m satisfies

It's important to note that this bound is only linear in the number of qubits n, and so this
tells us that the dimensionality is not actually exponential in the number of qubits, if we
only want to predict most of the measurement outcomes.

Why is this theorem true? Remember the result of Blumer et al., which said that you can
learn with a number of samples that grows linearly with the VC dimension of your concept
class. In the case of quantum states, we're no longer dealing with Boolean functions. You
can think of a quantum state as a real-valued function that takes as input a two-outcome
measurement E, and produces as output a real number in [0, 1] (namely, the probability that
the measurement accepts). That is, ρ takes a measurement E and returns Tr(Eρ).

So, can one generalize the Blumer et al. result to real-valued functions? Fortunately, this
was already done for me by Alon, Ben-David, Cesa-Bianchi, and Haussler, and by Bartlett
and Long among others.

Next, recall from Chapter 14 the lower bound on random access codes of Ambainis,
Nayak et al., which tells us how many classical bits can be reliably encoded into a state of n
qubits. Given an m-bit classical string x, suppose we want to encode x into a quantum state
of n qubits, in such a way that any bit xi of our choice can later be retrieved with probability
at least 1 - ε. Ambainis et al. proved that we really can't get any savings by packing clas-
sical bits into a quantum state in this way. That is to say, n still must be linear in m. Since
this is a lower bound, we can view it as a limitation of quantum encoding schemes. But we
can also turn it on its head, and say: this is actually good, as it implies some upper bound
on the VC dimension of quantum states considered as a concept class. Roughly speaking,
the theorem tells us that the VC dimension of n-qubit states considered as a concept class
is at most m = O(n). To make things more formal, we need a real-valued analog of VC di-

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos592311

mension (called the “fat-shattering” dimension; don't ask), as well as a theorem saying that
we can learn any real-valued concept class using a number of samples that grows linearly
with its fat-shattering dimension.

What about actually finding the state? Even in the classical case, I’ve completely ignored
the computational complexity of finding a hypothesis. I’ve said that if you somehow found
a hypothesis consistent with the data, then you're set, and can explain future data, but how
do you actually find the hypothesis? For that matter, how do you even write down the an-
swer in the quantum case? Writing out the state explicitly would take exponentially many
bits! On the other hand, maybe that's not quite so bad, since even in the classical case, it
can take exponential time to find your hypothesis.

What this tells us is that, in both cases, if you care about computational and representa-
tional efficiency, then you're going to have to restrict the problem to some special case. The
results from this chapter, which tell us about sample complexity, are just the beginning of
learning theory. They answer the first question, the information-theoretic question, telling
us that it suffices to take a linear number of samples. The question of how to find and rep-
resent the hypothesis comprises much of the rest of the theory. As yet, very little is known
about this part of learning theory in the quantum world.

I can tell you, however, some of what's known in the classical case. Maybe disappoint-
ingly, a lot of what's known takes the form of hardness results. For example, with a concept
class of Boolean circuits of polynomial size, we believe it's a computationally hard prob-
lem to find a circuit (or equivalently, a short efficient computer program) that outputs the
data that you've already seen, even supposing such a circuit exists. Of course, we can't ac-
tually prove that this problem has no polynomial-time algorithm (for that would prove P

NP), nor, as it turns out, can we even prove in our current state of knowledge that
it's NP-complete. What we do know is that the problem is at least as hard as inverting one-
way functions, and hence breaking almost all modern cryptography. Remember, when we
were talking about cryptography in Chapter 8, we talked about one-way functions, which
are easy to compute but hard to invert? As we discussed then, Håstad, Impagliazzo, Levin,
and Luby4 proved in 1997 that from any one-way function one can construct a pseudoran-
dom generator, which maps n “truly” random bits to (say) n2 bits that are indistinguishable
from random by any polynomial-time algorithm. And Goldreich, Goldwasser, and Micali
had shown earlier5 that from any pseudorandom generator one can construct a pseudor-

andom function family: a family of Boolean functions f: {0, 1}n {0, 1} that are
computed by small circuits, but are nevertheless indistinguishable from random functions
by any polynomial-time algorithm. And such a family of functions immediately leads to a
computationally intractable learning problem.

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos303681

Thus, we can show based on cryptographic assumptions that these problems of finding
a hypothesis to explain data that you've seen are probably hard in general. By tweaking
this result a bit, we can say that, if finding a quantum state consistent with measurements
that you've made can always be done efficiently, then there's no one-way function secure
against quantum attack. What this is saying is that we kind of have to give up hope of solv-
ing these learning problems in general, and that we have to just look at special cases. In
the classical case, there are special concept classes that we can learn efficiently, such as
constant-depth circuits or parity functions. I expect that something similar is true in the
quantum world.

Puzzle

In addition to the aforementioned rectangle learning puzzle, here's another raven puzzle,
due to Carl Hempel. Let's say that you want to test our favorite hypothesis that all ravens
are black. How do we do this? We go out into the field, find some ravens, and see if they're
black. On the other hand, let's take the contrapositive of our hypothesis, which is logically
equivalent: “all not-black things are nonravens.” This suggests that I can do ornithology
research without leaving my office! I just have to look at random objects, note that they
are not black, and check if they are ravens. As I go along, I gather data that increasingly
confirms that all not-black things are nonravens, confirming my hypothesis. The puzzle is
whether this approach works. You're allowed to assume for this problem that I do not go
out bird-watching in fields, forests, or anywhere else.

1 L. Valiant, A Theory of the Learnable, Communications of the ACM 27:11 (1984),
1134–1142. http://www.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearn-
able.pdf. For a good introduction see An Introduction to Computational Learning Theory
by Michael Kearns and Umesh Vazirani, MIT Press, 1994.

2 A. Blumer, A. Ehrenfeucht, D. Haussler, and M. K. Warmuth, Learnability and the
Vapnik-Chernonenkis dimension, Journal of the ACM 36:4 (1989), 929–965.
3 S. Aaronson, The learnability of quantum states. Proceedings of the Royal Society, A463
(2088), 2007. http://arxiv.org/abs/quant-ph/0608142

4 J. Håstad, R. Impagliazzo, L. A. Levin, and M. Luby, A Pseudorandom Generator
from any One-way Function. SIAM Journal on Computing 28:4 (1999), 1364–1396.

5 O. Goldreich, S. Goldwasser and S. Micali, How to construct random functions.
Journal of the ACM, 33:4 (1986), 792–807.

http://www.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
http://www.mpi-inf.mpg.de/~mehlhorn/SeminarEvolvability/ValiantLearnable.pdf
http://arxiv.org/abs/quant-ph/0608142

17 Interactive proofs, circuit lower bounds, and
more

I ended last chapter by giving you a puzzle problem: can I do ornithology without leaving
my office?

I want to know if all ravens are black. The old-fashioned approach would involve going
outside, looking for a bunch of ravens and seeing if they're black or not. The more modern
approach: look around the room at all of the things that are not black and note that they also
are not ravens. In this way, I become increasingly convinced that all not-black things are not
ravens, or equivalently that all ravens are black. Can I be a leader in the field of ornithology
this way?

If your answer is “You wouldn't be getting a random sample of nonblack things by just
sitting in your office,” let me point out that going outside wouldn't get me a random sample
of all ravens either.

Something completely tangential that I’m reminded of: there's this game where you're
given four cards, each of which you're promised has a letter on one side and a number on
the other. If what you can see of the cards is shown in the figure below, which cards do you
need to flip over to test the rule that all cards with a K on one side have a 3 on the other?

Apparently, if you give this puzzle to people, the vast majority get it wrong. In order to

test that K 3, you need to flip the K and the 1. On the other hand, you can give
people a completely equivalent problem, where they're a bouncer at a bar and need to know
if anyone under 21 (or 19 in Canada) is drinking, and where they're told that there's someone
who is drinking, someone who isn't drinking, someone who's over 21 and someone who's
under 21. In this scenario, funny enough, most people get it right. You ask the person who's
drinking, and the underage customer. This is a completely equivalent problem to the cards,
but if you give it to the people in the abstract way, many say (for example) that you have
to turn over the 3 and the Q, which is wrong. So, people seem to have this built-in ability

to reason logically about social situations, but they have to be painstakingly taught to apply
that same ability to abstract mathematical problems.1

Anyway, the point is that there are many, many more not-black things then there are
ravens, so if there were a pair (raven, not-black), then we would be much more likely to
find it by randomly sampling a raven then sampling a not-black thing. Therefore, if we
sample ravens and fail to find a not-black raven, then we're much more confident in saying
that “all ravens are black,” because our hypothesis had a much higher chance of being fals-
ified by sampling ravens.

Interactive proofs

“Interactive proofs” have been central objects of study in theoretical computer science and
cryptography since the 1980s. Since this book is centered around quantum computing, I'd
like to begin our discussion of interactive proofs in an unconventional way: by asking the
question can quantum computers be simulated efficiently by classical computers?

I was talking to Ed Fredkin a while ago, and he said that he believes that the whole uni-
verse is a classical computer and thus everything can be simulated classically. But instead
of saying that quantum computing is impossible, he takes things in a very interesting direc-
tion, and says that BQP must be equal to P. Even though we have factoring algorithms for
quantum computers that are faster than known classical algorithms, that doesn't mean that
there isn't a fast classical factoring algorithm that we don't know about. On the other side
you have David Deutsch, who makes an argument that we've talked about several times be-
fore: if Shor's algorithm doesn't involve these “parallel universes,” then how is it factoring
the number?2 Where was the number factored, if not using these exponentially many uni-
verses? I guess one way that you could criticize Deutsch's argument (certainly not the only
way), is to say he's assuming that there isn't an efficient classical simulation. We believe
that there's no way for Nature to perform the same computation using polynomial classical
resources, but we don't know that. We can't prove that.

Why can't we prove it? The crucial point is that, if you could prove that P BQP,

then you would have also proved that P PSPACE. Physicists might think it's obvi-
ous these classes are unequal and it doesn't even require proof, but that's another matter...As
for going in the other direction and proving P = BQP, I guess people have tried that. I don't
know if I should say this on record, but I’ve even spent a day or two on it. It would at least
be nice to put BQP in AM, or the polynomial hierarchy – some preliminary fact like that.

Unfortunately, I think we simply don't yet understand efficient computation well enough to
answer such questions, completely leaving aside the quantum aspect.

The question is, if P BQP, P NP, etc., why can't anyone prove these
things? There are several arguments that have been given for that. One of them is relativ-
ization. We can talk about giving a P computer and a BQP computer access to the same
oracle. That is, give them the same function that they can compute in a single computation
step. There will exist an oracle that makes them equal and there will exist another oracle
that makes them unequal. The oracle that makes them equal, for example, could just be a
PSPACE oracle which kind of sandwiches everything and just makes everything equal to
PSPACE. The oracle that makes them unequal could be an oracle for Simon's Problem,
or some period-finding problem that the quantum computer can solve but the classical one
can't.

If two classes are the same, then intuitively, how can giving them more power make
them different? The key is to realize that, when we feed an oracle to a class, we aren't acting
on the class itself. We're acting on the definition of the class. As an example, even though
we believe P = BPP in the real world, it's very easy to construct an oracle O where PO

BPPO. Clearly, if what we were doing was operating on the classes, then operating
on two equal classes would give two results that were still equal. But that's not what we're
doing, and maybe the notation is confusing that way. A rough analogy: it's true that Obama
is the president, and it's also true that, if Romney had won the election, then he would've
been the president. But we can't just blindly substitute the first of these equations into the
second in order to conclude that, if Romney had won the election, then he would've been
Obama.

So, the message of relativization is that any technique for solving P versus NP, or most
of the other great problems of complexity theory, is going to have to be sensitive to the
presence of these oracles. This doesn't sound like such a big deal until you realize that al-
most every proof technique we have is not sensitive to the presence of oracles. It's very
hard to come up with a technique that is sensitive, and that – to me – is why interactive
proofs are interesting. This is the one clear and unambiguous example I can show you of
a technique we have that doesn't relativize. In other words, we can prove that something is
true, which wouldn't be true if you just gave everything an oracle. You can see this as the
foot in the door or the one distant point of light in this cave that we're stuck in. Through
the interactive proof results, we can get a tiny glimmer of what the separation proofs would
eventually have to look like if we ever came up with them. The interactive proof techniques

seem much too weak to prove anything like P NP, or else you would have heard

about it. Already, though, we can use these techniques to get some nonrelativizing separa-
tion results. I’ll show you some examples of that also.

What about P versus BPP? The consensus there is that P and BPP actually are equal. We
know from Impagliazzo and Wigderson3 that, if we could prove that there exists a problem
solvable in 2n time that requires circuits of size 2cn, for some c > 0, then we could construct
a very good pseudorandom generator; that is, one which cannot be distinguished from ran-
dom by any circuit of fixed polynomial size. Once you have such a generator, you can use it
to derandomize any probabilistic polynomial-time algorithm. You can feed your algorithm
the output of the pseudorandom generator, and your algorithm won't be able to tell the dif-
ference between it and a truly random string. Therefore, the probabilistic algorithm could
be simulated deterministically. So we really seem to be seeing a difference between classic-
al randomness and quantum randomness. It seems like classical randomness really can be
efficiently simulated by a deterministic algorithm, whereas quantum “randomness” can't.
One intuition for this is that, with a classical randomized algorithm, you can always just
“pull the randomness out,” i.e., treat the algorithm as deterministic and the random bits as
part of its input. On the other hand, if we want to simulate a quantum algorithm, what does
it mean to “pull the quantumness out”?

So let's see this one example of a nonrelativizing technique. So we've got a Boolean for-
mula (like the ones used in SAT) in n variables which is not satisfiable. What we'd like is
a proof that it's not satisfiable. That is, we'd like to be convinced that there is no setting
of the n variables that causes our formula to evaluate to TRUE. This is what we saw be-
fore as an example of a coNP-complete problem. The trouble is that we don't have enough
time to loop through every possible assignment and check that none of them work. Now
the question that was asked in the 1980s was “what if we have some super-intelligent alien
that comes to Earth and can interact with us?” We don't trust the alien and its technology,
but we'd like it to prove to us that the formula is unsatisfiable in such a way that we don't
have to trust it. Is this possible?

In computational complexity, when we have no idea how to answer a question, we often
settle for finding an “oracle” that makes the answer either yes or no. For example, let's
say we want to reassure ourselves that, given a Boolean circuit computing some function
f, there's no polynomial-time algorithm that takes as input a description of the circuit, and
that reliably discovers some particular kind of pattern or regularity in f. (Note that much of
modern cryptography is based on beliefs of that kind!) The trouble is that usually, there's

no hope of proving such a conjecture, without proving P NP as a first step! On the
other hand, very often we can prove a weaker claim: that no polynomial-time algorithm
can discover the pattern or regularity in question, so long as it accesses f as a black box
only. That is, we can prove that, if the algorithm only learns about f by picking various x

and then asking a magic subroutine for the value of f(x), then it will need to access the sub-
routine exponentially many times.

It's probably like what physicists do when they do perturbative calculations. You do it
because it you can, and because it at least provides a consistency check on what you really
care about. (If even the black-box version turned out to be false, then your “real” conjecture
would be in deep doodoo!)

So, this is what Fortnow and Sipser did in the late 1980s.4 They said, alright, suppose
you have an exponentially long string, and an alien wants to convince you that this expo-
nentially long string is the all-zero string. That is, that there are no 1s anywhere. So can
this prover do it? Let's think of what could happen. The prover could say, “the string is all
zeros.”

“Well, I don't believe you. Convince me.”
“Here, this location's a zero. This one's also a zero. So is this one...”

OK, now there's only 210000 bits left to check, and so the alien says “trust me, they're all
zeros.” There's not a whole lot the prover can do. Fortnow and Sipser basically formally
proved this obvious intuition. Take any protocol of messages between you and the prover
that terminates with you saying “yes” if you're convinced and “no” if you aren't. What we
could then do is to then pick one of the bits of the string at random, surreptitiously change
it to a 1, and almost certainly, the entire protocol goes through as before. You'll still say that
the string is all zeros.

As always, we can define a complexity class: IP. This is the set of problems where you
can be convinced of a “yes” answer by interacting with the prover. So we talked before
about these classes like MA and AM – those are where you have a constant number of in-
teractions. MA is where the prover sends a message to you and you perform a probabilistic
computation to check it. In AM, you send a message to the prover, and then the prover
sends a message back to you and you run a probabilistic computation. It turns out that with
any constant number of interactions you get the same class AM, so let's be generous and al-
low polynomially many interactions. The resulting class is IP. So what Fortnow and Sipser

did is they gave a way of constructing an oracle relative to which coNP IP. They
showed that, relative to this oracle, you cannot verify the unsatisfiability of a formula via
a polynomial number of interactions with a prover. Following the standard paradigm of the

field, of course we can't prove unconditionally that coNP IP, but this gives us some
evidence; that is, it tells us what we might expect to be true.

Now for the bombshell (which was discovered by Lund, Fortnow, Karloff, and Nisan):5

in the “real,” unrelativized world, how do we show that a formula is unsatisfiable? We're
going to somehow have to use the structure of the formula. We'll have to use that it's a

Boolean formula that was explicitly given to us, and not just some abstract Boolean func-
tion. What will we do? Let's assume this is a 3SAT problem. Since 3SAT is NP-complete,
that assumption is without loss of generality. There's a bunch of clauses (n of them) in-
volving three variables each, and we want to verify that there's no way to satisfy all the
clauses.

Now what we'll do is map this formula to a polynomial over a finite field. This trick is
called arithmetization. Basically, we're going to convert this logic problem into an algebra
problem, and that'll give us more leverage to work with. This is how it works: we rewrite
our 3SAT instance as a product of degree-3 polynomials. Each clause – that is, each OR of
three literals – just becomes 1 minus the product of 1 minus each of the literals: e.g., (x OR
y OR z) becomes

Notice that, so long as x, y, and z can only take the values 0 and 1, corresponding to FALSE
and TRUE, this polynomial is exactly equivalent to the logic expression that we started
with. But now, what we can do is reinterpret the polynomial as being over some much lar-
ger field. Pick some reasonably large prime number N, and we'll interpret the polynomial
as being over GFN (the field of N elements). I’ll call the polynomial P(x1,..., xn).

If the formula is unsatisfiable, then no matter what setting x1,..., xn you pick for the vari-
ables, there's going to be some clause in the formula that isn't satisfied. Hence, one of the
degree-3 polynomials that we're multiplying together will be zero, and hence the product
will itself be zero. So, there being no satisfying assignments is equivalent to getting zero
when you take the sum of the P(x1,..., xn) over all 2n possible Boolean settings of x1,..., xn.

The problem, of course, is that this doesn't seem any easier than what we started with!
We've got this sum over exponentially many terms, and we have to check every one of
them and make sure that they're all zero. But now, we can have the prover help us. If we
just have this string of all zeros, and he just tells us that it's all zeros, we don't believe him.
But now, we've lifted everything to a larger field, and we have some more structure to work
with.

So now what can we do? What we ask the prover to do is to sum for us over all 2n-1

possible settings of the variables x2,..., xn, leaving x1 unfixed. Thus, the prover sends us a
univariate polynomial Q1 in the first variable. Since the polynomial we started with had
poly(n) degree, the prover can do this by sending us a polynomial number of coefficients.
He can send us this univariate polynomial. Then, what we have to verify is that Q1(0) +
Q1(1) = 0 (everything being mod N). How can we do that? The prover has given us the
claimed value of the entire polynomial. So just pick an r1 at random from our field. Now,
what we would like to do is verify that Q1(r1) equals what it's supposed to. Forget about 0

and 1, we're just going to go somewhere else in the field. Thus, we send r1 to the prover.
Now, the prover sends a new polynomial Q2, where the first variable is fixed to be r1, but
where x2 is left unfixed and x3,..., xn are summed over all possible Boolean values (like be-
fore). We still don't know that the prover hasn't been lying to us and sending bullshit poly-
nomials. So what can we do?

Check that Q2(0) + Q2(1) = Q1(r1), then pick another element r2 at random and send it
to the prover. In response, he'll send us a polynomial Q3(X). This will be a sum of P(x1,...,
xn) over all possible Boolean settings of x4 up to xn, with x1 set to r1 and x2 set to r2, and x3
left unfixed. Again, we'll check and make sure that Q3(0) + Q3(1) = Q2(r2). We'll continue
by picking a random r3 and sending it along to the prover. This keeps going for n iterations,
when we reach the last variable. What do we do when we reach the last iteration? At that
point, we can just evaluate P(r1,..., rn) ourselves without the prover's help, and check dir-
ectly if it equals Qn(rn).

We have a bunch of tests that we're doing along the way. My first claim is that, if there
is no satisfying assignment, and if the prover was not lying to us, then each of the n tests
accepts with certainty. The second claim is that, if there was a satisfying assignment, then
with high probability, at least one of these tests would fail. Why is that the case? The way
I think of it is that the prover is basically like the girl in Rumpelstiltskin. The prover is just
going to get trapped in bigger and bigger lies as time goes on until finally the lies that will
be so preposterous that we'll be able to catch them. This is what's going on. Why? Let's
say that, for the first iteration, the real polynomial that the prover should give us is Q1, but
that the prover gives us Q1' instead. Here's the thing: these are polynomials of not too large
a degree. The final polynomial, P, has degree at most three times the number of clauses.
We can easily fix the field size to be larger. So let the degree d of the polynomial be much
smaller than the field size N.

A quick question: suppose we have two polynomials P1 and P2 of degree d. How many
points can they be equal at (assuming they aren't identical)? Consider the difference P1 -
P2. Since this is also a polynomial of degree at most d, by the Fundamental Theorem of Al-
gebra, it can have at most d distinct roots (again, assuming it's not identically zero). Thus,
two polynomials that are not equal can agree in at most d places, where d is the degree.
This means that, if these are polynomials over a field of size N, and we pick a random ele-
ment in the field, we can bound the probability that the two will agree at that point: it's at
most d/N.

Going back to the protocol, we assumed that d is much less than N, and so the probability
that Q1 and Q1' agree at some random element of the field is much less than unity. So when
we pick r1 at random, the probability that Q1(r1) = Q1'(r1) is at most d/N. Only if we've
gotten very unlucky will we pick r1 such that these are equal, so we can go on and assume

that Q1(r1) Q1'(r1). Now, you can picture the prover sweating a little. He's trying to
convince us of a lie, but maybe he can still recover. But next, we're going to pick an r2 at
random. Again, the probability that he'll be able to talk himself out of the next lie is going
to be at most d/N. This is the same in each of the iterations, so the probability that he can
talk himself out of any of the lies is at most nd/N. We can just choose N to be big enough
that this will be much smaller than unity.

Why not just run this protocol over the positive integers? Because we don't have a way
of generating a random positive integer, and we need to be able to do that. So we just pick
a very large finite field.

So this protocol gives us that coNP IP. Actually, it gives us something stronger.
A standard kind of argument shows us that the biggest IP could possibly be in our wild-

est dreams would be PSPACE. You can prove that anything you can do with an interactive
protocol, you can simulate in PSPACE. Can we bring IP up? Make it bigger? What we
were trying to verify was that all of these values of P(x1,..., xn) summed to zero, but the
same proof would go through as before if we were trying to verify that they summed to
some other constant (whatever we want).

In other words, with Merlin's help, Arthur can actually count the number of Boolean
strings x1,..., xn such that P(x1,..., xn) = 1, not just decide whether the number is zero. More

formally, Arthur can solve any problem in the complexity class P (pronounced “sharp-
P”), which was defined by Valiant in 1979.6

OK, time for a digression. Unlike the other complexity classes we've seen so far, P
consists not of yes-or-no decision problems but of functions. A function f, mapping bin-

ary strings to nonnegative integers, is said to be in P if there exists a polynomial-time
algorithm V and polynomial p, such that f(x) is equal to the number of p(n)-bit strings w

that cause V(x, w) to accept. In simpler terms, P is the class of all problems that can
be phrased as counting the number of solutions to an NP problem. Now, if we ask where

P fits in with the complexity classes we've already seen, we encounter an apples-and-
oranges issue: how do we compare a class of functions with classes of languages? But a

simple solution, often used in practice, is to consider the class P P, which consists of all

languages decidable by a P machine with access to a P oracle.

Exercise for the non-lazy reader: Show that P P = PPP, where PP is the “majority-
vote” class defined in Chapter 7. (That is, in some sense, PP “already contains the power

of P latent within it.”)
Now, an extremely important result proved in 1990, called Toda's Theorem, says that P

P contains the entire polynomial hierarchy PH. If it's not intuitively obvious to you why
a counting oracle is so powerful – well, it shouldn't be obvious! Toda's Theorem came as
a great surprise to everyone. Sadly, I don't have time here to discuss the proof of Toda's
Theorem,7 but I'll have several occasions to use the theorem in the remainder of this book.

Anyway, in terms of complexity classes, what we observed earlier means that P P

IP: in an interactive protocol, Merlin can convince Arthur of the solution to any

P problem, and therefore any P P problem as well (since Arthur can simply use Merlin in

place of the P oracle). By Toda's Theorem, this in turn means that IP contains PH.
After this “LFKN Theorem” came out, a number of people carried out a discussion by

email, and a month later Shamir figured out that IP = PSPACE – that is, IP actually “hits
the roof.”8 I won't go through Shamir's result here, but this means that, if a super-intelligent
alien came to Earth, it could prove to us whether white or black has the winning strategy in
chess, or if chess is a draw. It could play us and beat us, of course, but then all we'd know is
that it's a better chess player. But it could prove to us which player has the winning strategy
by reducing chess to this game of summing polynomials over large finite fields. (Technical
note: this only works for chess with some reasonable limit on the number of moves, like
the “50-move rule” used in tournament play.)

This is already something that is – to me – pretty counterintuitive. Like I said, it gives
us a very small glimpse of the kinds of technique we'd need to use to prove nonrelativizing

results like P NP. A lot of people seem to think that the key is somehow to transform
these problems from Boolean to algebraic ones. The question is how to do that. I can show
you, though, how these techniques already let you get some new lower bounds. Heck, even
some quantum circuit lower bounds.

First claim: if we imagine that there are polynomial-size circuits for counting the number
of satisfying assignments of a Boolean formula, then there's also a way to prove to someone
what the number of solutions is. Do you see why this would follow from the interactive
proof result? Well, notice that, to convince the verifier about the number of satisfying as-
signments of a Boolean formula, the prover itself does not need to have more computation-
al power than is needed to count the number of assignments. After all, the prover just keeps

having to compute these exponentially large sums! In other words, the prover for P can

be implemented in P. If you had a P oracle, then you too could be the prover. Using

this fact, Lund et al. pointed out that if P P/poly – that is, if there's some circuit
of size polynomial in n for counting the number of solutions to a formula of size n – then

P P = MA. For in MA, Merlin can give Arthur the polynomial-size circuit for solving
P problems, and then Arthur just has to verify that it works. To do this, Arthur just runs
the interactive protocol from before, but where he plays the part of both the prover and the
verifier, and uses the circuit itself to simulate the prover. This is an example of what are
called self-checking programs. You don't have to trust an alleged circuit for counting the
number the solutions to a formula, since you can put it in the role of a prover in an inter-
active protocol.

Now, we can prove that the class PP, consisting of problems solvable in probabilistic
polynomial-time with unbounded error, does not have linear-sized circuits. This result is
originally due to Vinodchandran.9 Why? Well, there are two cases. If PP doesn't even have
polynomial-sized circuits, then we're done. On the other hand, if PP does have polynomial-

sized circuits, then so does P P, by the basic fact (which you might enjoy proving) that P

P = PPP. Therefore, P P = MA by the LFKN Theorem, so P P = MA = PP, since PP

is sandwiched in between MA and P P. But one can prove (and we'll do this shortly) that

P P doesn't have linear-sized circuits, using a direct diagonalization argument. Therefore,
PP doesn't have linear-sized circuits either.

In fact, the conclusion is stronger: for any fixed k, we can find a language L in P P, or
even PP, such that L cannot be decided by a circuit of size O(nk). That's very different from
saying that there is a single language in PP that does not have circuits of polynomial size.
The second statement is almost unimaginably harder to show! If you give me your (polyno-
mial) bound, then I find a PP problem that defeats circuits constrained by your bound, but
the problem might be solvable by circuits with some larger polynomial bound. To defeat
that larger polynomial bound, I’d have to construct a different problem, and so on indefin-
itely.

Let's go back now and fill in the missing step in the argument. We want to show for

some fixed k that P P doesn't have circuits of size nk. How many possible circuits are
there of size nk? Something like n2nk

. Now what we can do is define a Boolean function f
by looking at the behavior of all circuits of size nk. Order the possible inputs of size n as
x1,..., x2^n. If at least half of the circuits accept x1, then set f(x1) = 0, while if more than half
of the circuits reject x1, then set f(x1) = 1. This kills off at least half of the circuits of size
nk (i.e., causes them to fail at computing f on at least one input). Now, of those circuits that
got the “right answer” for x1, do the majority of them accept or reject x2? If the majority
accept, then set f(x2) = 0. If the majority reject, then set f(x2) = 1. Again, this kills off at
least half of those circuits remaining. We continue this Darwinian process, where each time
we define a new value of our function we kill off at least half of the remaining circuits of

size nk. After log2(n2nk
) + 1 2nk log(n) steps, we will have killed off all of the

circuits of size nk. Furthermore, the process of constructing f involves a polynomial number

of counting problems, each of which we can solve in P P. So the end result is a problem

that is in P P, but which by construction does not have circuits of size nk (for any fixed k
of our choice). This is an example of a relativizing argument, because we paid no attention

to whether these circuits had any oracles or not. To get this argument to go down from P

P to the smaller class PP, we had to use a nonrelativizing ingredient: namely, the interactive
proof result of LFKN.

But does this actually give us a nonrelativizing circuit lower bound? That is, does there
exist an oracle relative to which PP has linear-sized circuits? Years ago, I was able to con-
struct such an oracle.10 This shows that Vinodchandran's result was nonrelativizing – in-
deed, it's one of the few examples in all of complexity theory of an indisputably nonrelativ-
izing separation result. In other words, the relativization barrier – which is one of the main

barriers to showing P NP – can be overcome in some very limited cases.

New developments

Anyway, that's where things stood when I first wrote this chapter in 2006. Since then, there
have been some exciting developments. First, in 2007, Rahul Santhanam11 improved on
Vinodchandran's result, to show that PromiseMA – the class of all promise problems with
Merlin–Arthur proof protocols – does not have circuits of size nk, for any fixed k.

Shortly afterward, inspired by Santhanam's result, Avi Wigderson and I12 discovered
a new barrier to further progress in complexity theory, which we called “algebrization.”
Basically, algebrization extends the original relativization barrier of Baker, Gill, and So-
lovay, in that, when we study a question about complexity classes relative to some oracle
A, we now let one of the complexity classes access a “low-degree polynomial extension”
of A, rather than just A itself. This more powerful kind of oracle access gives us some addi-
tional leverage; in particular, it lets us mimic all the standard non-relativizing results based
on arithmetization. So, for example, while (as we discussed before) it's not true that IPA =

PSPACEA for every oracle A, it turns out it is true that PSPACEA IP~A, where ~A
denotes a low-degree polynomial over a large finite field that happens to equal A when re-
stricted to Boolean inputs. Thus, we say that the IP = PSPACE theorem does “algebrize,”
even though it doesn't relativize. On the other hand, Avi and I also showed that, for most
of the famous open problems – including not only P vs. NP, but also P vs. BPP, NEXP
vs. P/poly, and others – any solution will require “non-algebrizing techniques,” which fail
relative even to these new algebraic oracles, in the same sense that the IP = PSPACE the-
orem failed relative to ordinary oracles. So, the upshot is that the techniques used for the
interactive proof breakthroughs can only get us so far: sure, they evade the relativization
barrier, but only to smack headfirst into a “generalized” relativization barrier waiting a few
steps beyond.

Are there lower bound techniques that avoid the relativization and algebrization barri-
ers? Yes; in fact they've existed for decades. In the early 1980s, Furst, Saxe, and Sipser13

and (independently) Ajtai14 discovered a revolutionary technique for lower-bounding the
sizes of constant-depth circuits: for example, AC0 circuits, which consist of AND, OR, and
NOT gates arranged into O(1) layers (where each AND and OR gate can have an arbitrary
number of inputs). Furst et al. and Ajtai showed that, for certain functions like the parity of
n bits, any AC0 circuit must have an exponential number of gates. Since their techniques
were highly combinatorial – based on looking at the behaviors of actual, individual gates –
they evaded the relativization barrier. Since then, other lower bounds have been proved
along these lines – most notably those of Razborov15 and Smolensky16 for AC0 circuits
augmented with the ability to perform arithmetic mod p (where p is some fixed prime).

Alas, in 1993, Razborov and Rudich pointed out17 that almost all of these
“combinatorial-style” lower bounds ran up against a barrier they called “Natural Proofs” –
one that, in some ways, is complementary to the relativization barrier. To summarize in a
paragraph: the combinatorial lower bound techniques work by showing that certain func-
tions (e.g., PARITY) are hard for small circuits, because these functions “look like random
functions” in some efficiently computable respect, whereas any function computed by a
small circuit must look non-random in that respect. However, any argument of this sort can
be turned on its head, and used to distinguish “truly” random functions from pseudoran-
dom functions – thereby, ironically, solving some of the same problems we wanted to prove
were hard! The Furst et al. and Ajtai arguments were able to work because AC0 circuits
are too weak to compute pseudorandom functions – in fact, the impossibility of pseudor-
andomness in AC0 can be derived as a consequence of their lower-bound proofs. But we
can't expect any similar arguments to work for proving lower bounds against more power-
ful circuit classes like P/poly – assuming, as almost all of us believe, that those classes do
have pseudorandom functions. (In slogan form, the fact of computational hardness is what
makes proving computational hardness so hard!) Furthermore, Naor and Reingold have
shown18 that, under plausible cryptographic assumptions, even the class TC0 – consisting
of constant-depth circuits with MAJORITY gates – is able to compute pseudorandom func-
tions. So the Razborov–Rudich natural proof barrier really seems to kick in just “slightly”
above AC0.

If you want to evade the natural proof barrier, you seem to need techniques that “zero
in” on some special property of the function f that you're trying to prove is hard – a prop-
erty that f doesn't share with a random function. The obvious example of a technique that
does zero in on such a special property is “diagonalization” – i.e., the sort of technique we

used earlier to prove that P P doesn't have linear-size circuits. (Recall that our proof used

the ability of a P machine to simulate all possible linear-size circuits, and evade simula-
tion by any of them.) Alas, while these sorts of technique evade the natural proof barriers,
they're also precisely the ones that don't evade the relativization barrier! I mean, yes, they
evade relativization if you soup them up with interactive proof techniques – but even then,
they're still subject to the algebrization barrier.

So, let's ask the obvious next question: is there a circuit lower bound that evades all three
barriers simultaneously – relativization, algebrization, and natural proofs? In my opinion,
the first convincing example of such a lower bound came very recently, in 2010, with Ryan

Williams' breakthrough result19 that NEXP ACC0. Here NEXP is nondeterministic
exponential time, while ACC0 is a slight extension of AC0, to allow modular arithmetic in
any base (recall that we already knew lower bounds, if AC0 were extended to allow arith-
metic modulo a specific prime). You might notice that this result seems pathetically weak,
compared with what we believe is true! Yet it's a real milestone because of its evasion of
all the known barriers (strictly speaking, we don't know whether the natural proof barrier
applies to ACC0, but if it does then Williams's proof evades it!). To pull this off, Williams
had to use the “kitchen sink”: diagonalization, insights from interactive proofs, and various
new and old results about nontrivial structure in ACC0 functions.

Is there a fourth barrier, to which even Williams's new result is subject? Well, I don't
know! As a general rule, before we can think about the barriers to a given technique, I'd say
we need at least two successful examples of applications of the technique, for pretty much
the same reason why we need at least two points to fit a line.

In any case, one thing the existing lower bounds have made clear is the depth of ideas

needed even to prove things ridiculously weaker than P NP. This is the reason why

I don't get heart palpitations every time another claimed P NP proof arrives in my
in-box (and they do show up at least once per month)! It's not just because I've seen so
many previous attempts crash and burn; it's because I ask myself, how does this generalize,
or subsume, or build on the nontrivial solutions we already know to tiny subproblems of P
versus NP?

The (secret?) fear of many of us is that, to make further progress in circuit lower bounds,
it will be necessary to ramp up this field's mathematical sophistication by orders of mag-
nitude. At any rate, that's a central contention of Ketan Mulmuley's “Geometric Complexity

Theory” (GCT) program,20 which tries to tackle circuit lower bounds using algebraic geo-
metry, representation theory, and seemingly every other subject about which yellow books
have been written. GCT is a whole topic to itself, and it would take me too far afield to
even start to explain it. I'll simply say that, personally, I like to call GCT “the string theory
of computer science”: on the one hand, it's made such striking mathematical connections
that, once you see them, you feel like the program must be somehow on the right track. On
the other hand, if you judge the program by how many answers it's delivered to the sorts of
question it originally sought to address – questions not internal to the program itself – then
the results haven't yet lived up to the early hopes.

Quantum interactive proofs

While we're waiting for better classical circuit lower bounds, let me now circle back and
tell you something about quantum interactive proof systems. Well, I guess a first thing to
say is that even results about classical interactive proof systems – the results we already
saw – can be used to get quantum circuit lower bounds. So, for example, by slightly modi-
fying our proof that PP does not have circuits of size nk, one can prove that PP doesn't even
have quantum circuits of size nk. OK, but this is peanuts. Let's try to throw in quantum to
something and get a different answer.

We can define a complexity class QIP: Quantum Interactive Proofs. This is the same as
IP, except that now you're a quantum polynomial-time verifier, and instead of exchanging
classical messages with the prover, you can exchange quantum messages. For example, you
could send the prover half of an EPR pair and keep the other half, and play whatever other
such games you want.

Certainly, this class is at least as powerful as IP. You could just restrict yourself to clas-
sical messages if that's what you wanted to do. Since IP = PSPACE, we also know QIP
has to be at least as big as PSPACE. Using a semidefinite programming argument, Kitaev

and Watrous21 also proved early on that QIP EXP. In 2006, when I first wrote this
chapter, this was actually all we knew about where QIP lies. But in 2009, Jain, Ji, Upad-
hyay, and Watrous had this breakthrough where they showed22 that QIP can even be sim-
ulated in PSPACE, and hence QIP = IP = PSPACE. So, ultimately, quantum interactive
proof systems turned out to have exactly the same power as classical ones. Amusingly, in
the classical case, the big surprise was that these systems can simulate PSPACE, while in
the quantum case, the big surprise was that PSPACE can simulate them!

So, is there any way in which quantum interactive proof systems are interestingly differ-
ent from classical ones? Well, one amazing fact – which was proved by Kitaev and Wat-

rous,23 and which played a crucial role in the proof of the QIP = PSPACE theorem – is
that any quantum interactive protocol can be simulated by one that takes place in three
rounds. In the classical case, we had to play this whole Rumpelstiltskin game, where we
kept asking the prover one question after another until we finally caught him in a lie. We
had to ask the prover polynomially many questions. But in the quantum case, it's no longer
necessary to do that. The prover sends you a message, you send a message back, then the
prover sends you one more message and that's it. That's all you ever need.

We won't prove here why that's true, but I can give you some intuition. Basically, the

prover prepares a state that looks like r|r |q(r) . This r is the sequence of all the ran-
dom bits that you would use in the classical interactive protocol. Let's say that we're taking
the classical protocol for solving coNP or PSPACE, and we just want to simulate it by a
three-round quantum protocol. We sort of glom together all the random bits that the veri-
fier would use in the entire protocol and take a superposition over all possible settings of
those random bits. Now what's q(r)? It's the sequence of messages that the prover would
send back to you if you were to feed it the random bits in r. Now, the prover will just take
the q register and second r register and will send it to you. Certainly, the verifier can check
that then q(r) is a valid sequence of messages given r. What's the problem? Why isn't this
a good protocol?

The superposition could be over a subset of the possible random bits! How do we know
that the prover didn't just cherry-pick r to be only drawn from those that he could success-
fully lie about? The verifier needs to pick the challenges. You can't have the prover pick-
ing them for you. But now, we're in the quantum world, so maybe things are better. If you
imagine in the classical world that there was some way to verify that a bit is random, then
maybe this would work. In the quantum world, there is such a way. For example, if you
were given a state like

you could just rotate it and verify that, had you measured in the standard basis, you would
have gotten 0 and 1 with roughly equal probability. More precisely: if the outcome in the
standard basis would have been random, then you'll accept with unit probability; if the out-
come would have been far from random, then you'll reject with noticeable probability.

Still, the trouble is that our |r is entangled with the |q(r) qubits. So we can't just

apply Hadamard operations to |r – if we did, we'd just get garbage out. However, it turns
out that what the verifier can do is to pick a random round i of the protocol being simu-
lated – say, there are n such rounds – and then ask the prover to uncompute everything after
round i. Once the prover has done that, he's eliminated the entanglement, and the verifier
can then check by measuring in the Hadamard basis that the bits for round i really were ran-
dom. If the prover cheated in some round and didn't send random bits, this lets the verifier
detect that with probability that scales inversely with the number of rounds. Finally, you
can repeat the whole protocol in parallel a polynomial number of times to increase your
confidence. (I’m skipping a whole bunch of details – my goal here was just to give some
intuition.)

Let's compare the quantum situation to the classical world. There, you've just got MA
and AM: every proof protocol between Arthur and Merlin with a larger constant number of
rounds collapses to AM. If you allow a polynomial number of rounds, then you go up to IP
(which equals PSPACE). In the quantum world, you've QMA, QAM, and then QMAM,
which is the same as QIP = PSPACE. There's also another class, QIP[2], which is different
from QAM in that Arthur can send any arbitrary string to Merlin (or even a quantum state)
instead of just a random string. In the classical case, AM and IP[2] are the same, but in the
quantum case, we don't know that.

That's our tour of interactive proofs, so I’ll end with a puzzle for next chapter. God flips
a fair coin. Assuming that the coin lands tails, She creates a room with a red-haired person.
If the coin lands heads, She creates two rooms: one has a person with red hair and the other
has a person with green hair. Suppose that you know that this is the whole situation, then
wake up to find a mirror in the room. Your goal is to find out which way the coin landed. If
you see that you've got green hair, then you know right away how the coin landed. Here's
the puzzle: if you see that you have red hair, what is the probability that the coin landed
heads?

1 For more about this, see How the Mind Works by Steven Pinker (W. W. Norton & Com-
pany, reissue edition, 2009).

2 D. Deutsch, The Fabric of Reality: The Science of Parallel Universes – and Its Im-
plications (London: Penguin, 1998).

3 R. Impagliazzo and A. Wigderson, P = BPP if E requires exponential circuits: Der-
andomizing the XOR lemma. In Proceedings of ACM Symposium on Theory of Computing
(1997), pp. 220–229.

4 L. Fortnow and M. Sipser, Are there interactive protocols for CO-NP languages? In-
formation Processing Letters, 28:5 (1988), 249–51.

5 C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan, Algebraic methods for interactive
proof systems. Journal of the ACM, 39:4 (1992), 859–68.

6 L. G. Valiant, The complexity of enumeration and reliability problems, SIAM Journal
on Computing, 8:3 (1979), 410–421.
7 For nice proofs, see for example Lance Fortnow's “A Simple Proof of Toda's Theorem”
(http://theoryofcomputing.org/articles/v005a007/v005a007.pdf), or the book Gems of The-
oretical Computer Science by Uwe Schöning (Springer, 1998).

8 A. Shamir, IP = PSPACE. Journal of the ACM, 39:4 (1992), 869–77.
9 N. V. Vinodchandran, A note on the circuit complexity of PP. Theoretical Computer

Science, 347:1/2 (2005), 415–18.
10 S. Aaronson, Oracles are subtle but not malicious. In Proceedings of IEEE Conference
on Computational Complexity (2006), pp. 340–54. http://arxiv.org/pdf/cs.CC/0504048.pdf

11 R. Santhanam, Circuit lower bounds for Merlin–Arthur classes. SIAM Journal on
Computing, 39:3 (2009), 1038–61.

12 S. Aaronson and A. Wigderson, Algebrization: a new barrier in complexity theory.
ACM Transactions on Computing Theory, 1:1 (2009), 2:1–54.

13 M. L. Furst, J. B. Saxe, and M. Sipser, Parity, circuits, and the polynomial-time hier-
archy. Mathematical Systems Theory, 17:1 (1984), 13–27.

14 M. Ajtai. Sigma_1^1-formulae on finite structures. Annals of Pure and Applied Lo-
gic, 24 (1983), 1–48.

15 A. A. Razborov, On the method of approximations. In Proceedings of ACM Sym-
posium on Theory of Computing (New York: ACM, 1989), pp. 167–76.

16 R. Smolensky, Algebraic methods in the theory of lower bounds for Boolean circuit
complexity. In Proceedings of ACM Symposium on Theory of Computing (New York:
ACM, 1987), pp. 77–82.

17 A. A. Razborov and S. Rudich, Natural proofs. Journal of Computer and System
Sciences, 55:1 (1997), 24–35.

18 M. Naor and O. Reingold, Number-theoretic constructions of efficient pseudo-ran-
dom functions. Journal of the ACM, 51:2 (2004), 231–62.

19 R. Williams, Non-uniform ACC circuit lower bounds. In Proceedings of IEEE Con-
ference on Computational Complexity (Silver Springs, MD: IEEE Computer Society Press,
2011), pp. 115–25.
20 For more information, see K. Mulmuley, The GCT program toward the P vs. NP
problem. Communications of the ACM, 55:6 (2012), 98–107, ht-

http://theoryofcomputing.org/articles/v005a007/v005a007.pdf
http://arxiv.org/pdf/cs.CC/0504048.pdf
http://ramakrishnadas.cs.uchicago.edu/

tp://ramakrishnadas.cs.uchicago.edu/, or Joshua Grochow's beautiful PhD thesis (Sym-
metry and equivalence relations in classical and geometric complexity theory. Doctoral dis-
sertation, University of Chicago (2012). http://people.cs.uchicago.edu/~joshuag/grochow-
thesis.pdf).
21 http://www.cpsc.ucalgary.ca/~jwatrous/papers/qip2.ps

22 R. Jain, Z. Ji, S. Upadhyay, and J. Watrous, QIP = PSPACE. Journal of the ACM,
58:6 (2011), 30.

23 A. Kitaev and J. Watrous, Parallelization, amplification, and exponential time sim-
ulation of quantum interactive proof systems. In Proceedings of Annual ACM Symposium
on Theory of Computing (New York: ACM, 2000), pp. 608–17.

http://ramakrishnadas.cs.uchicago.edu/
http://people.cs.uchicago.edu/~joshuag/grochow-thesis.pdf
http://people.cs.uchicago.edu/~joshuag/grochow-thesis.pdf
http://www.cpsc.ucalgary.ca/~jwatrous/papers/qip2.ps

18 Fun with the Anthropic Principle1

This is a chapter about the Anthropic Principle, and how you apply Bayesian reasoning
where you have reason about the probability of your own existence, which seems like a very
strange question. It's a fun question, though – which you can almost define as a question
where it's much easier to have an opinion than to have a result. But then, we can try to at
least clarify the issues, and there are some interesting results that we can get.

There's a central proposition that many people interested in rationality believe they should
base their lives around – even though they generally don't in practice. This is Bayes's The-
orem.

If you talk to philosophers, this is often the one mathematical fact that they know. (Kidding!)
As a theorem, Bayes's Theorem is completely unobjectionable. The theorem tells you how
to update your probability of a hypothesis H being true, given some evidence E.

The term P[E|H] describes how likely you are to observe the evidence E in the case that
the hypothesis H holds. The remaining terms on the right-hand side, P[H] and P[E], are the
two tricky ones. The first one describes the probability of the hypothesis being true, inde-
pendent of any evidence, while the second describes the probability of the evidence being
observed, averaged over all possible hypotheses (and weighted by the hypotheses’ probabil-
ities). Here, you're making a commitment that there are such probabilities in the first place –
in other words, that it makes sense to talk about what the Bayesians call a prior. When you're
an infant first born into the world, you estimate there's some chance that you're living on the
third planet around the local star, some other chance you're living on the fourth planet and
so on. That's what a prior means: your beliefs before you're exposed to any evidence about
anything. You can see already that maybe that's a little bit of a fiction, but supposing you
have such a prior, Bayes's Theorem tells you how to update it given new knowledge.

The proof of the theorem is trivial. Multiply both sides by P[E], and you get that
P[H|E]P[E] = P[E|H]P[H]. This is clearly true, since both sides are equal to the probability
of the evidence and the hypothesis together.

So if Bayes's Theorem seems unobjectionable, then I want to make you feel queasy
about it. That's my goal. The way to do that is to take the theorem very, very seriously as
an account of how we should reason about the state of the world.

I’m going to start with a nice thought experiment which is due to the philosopher Nick
Bostrom.2 This is called God's Coin Toss. Last chapter, I described the thought experiment
as a puzzle.

Imagine that, at the beginning of time, God flips a fair coin (one that lands heads or tails
with equal probability). If the coin lands heads, then God creates two rooms: one has a per-
son with a red hair and the other has a person with green hair. If the coin lands tails, then
God creates one room with a red-haired person. These rooms are the entire universe, and
these are the only people in the universe.

We also imagine that everyone knows the entire situation and that the rooms have mir-
rors. Now, suppose that you wake up, look in the mirror and learn your hair color. What
you really want to know is which way the coin landed. Well, in one case, this is easy. If
you have green hair, then the coin must have landed heads. Suppose that you find you have
red hair. Conditioned on that, what probability should you assign to the coin having landed
heads?

One half is the first answer that someone could suggest. You could just say, “look, we
know the coin was equally likely going to land heads or tails, and we know that in either
case that there was going to be a red-haired person, so being red-haired doesn't really tell
you anything about which way it landed, and therefore it should be a half.” Could someone
defend a different answer?

STUDENT: It seems more likely for it to have landed tails, since in the heads case,
the event of waking up with red hair is diluted with the other possible event of waking
up with green hair. The effect would be more dramatic if there were a hundred rooms
with green hair.

SCOTT: Exactly.
STUDENT: It isn't clear at all that the choice of whether you're the red- or the green-

haired person in the heads case is at all probabilistic. We aren't guaranteed that.
SCOTT: Right. This is a question.
STUDENT: It could have been that, before flipping the coin, God wrote down a rule

saying that if the coin lands heads, make you red-haired.
SCOTT: Well, then we have to ask, what do we mean by “you?” Before you've looked

in the mirror, you really don't know what your hair color is. It really could be either,
unless you believe that it's really a part of the “essence” of you to have red hair. That
is, if you believe that there is no possible state of the universe in which you had green
hair, but otherwise would have been “you.”

STUDENT: Are both people asked this question, then?

SCOTT: Well, the green-haired person certainly knows how to answer, but you can
just imagine that the red-haired people in the heads and tails cases are both asked the
question.

To make the argument a little more formal, you can just plop things into Bayes's The-
orem. We want to know the probability P[H|R] that the coin landed heads, given that you
have red hair. We could do the calculation, using that the probability of us being red haired
given that the coin lands heads is ½, all else being equal. There are two people, and you
aren't a priori more likely to be either the red-haired or the green-haired person. Now, the
probability of heads is also ½ – that's no problem. What's the total probability of your hav-
ing red hair? That's just given by P[R|H]P[H] + P[R|T]P[T]. As we've said before, if the
coin lands tails, you certainly have red hair, so P[R|T] = 1. Moreover, we've already as-

sumed that P[R|H] = ½. Thus, what you get out is that P[H|R] = ¼/¾ = . So, if we do

the Bayesian calculation, it tells us that the probability should be and not ½.
Do you see an assumption that you could make that would get the probability back to

½?
STUDENT: You could make the assumption that whenever you exist, you have red

hair.
SCOTT: Yeah, that's one way, but is there a way to do it that doesn't require a prior

commitment about your hair color?
Well, there is a way to do it, but it's going to be a little bit strange. One way is to point out
that in the heads world, there are twice as many people in the first place. So you could say
that you're a priori twice as likely to exist in a world with twice as many people. In other
words, you could say that your own existence is a piece of evidence you should condition
upon. I guess if you want to make this concrete, the metaphysics that this would correspond
to is that there's some sort of a warehouse full of souls, and depending on how many people
there are in the world, a certain number of souls get picked out and placed into bodies. You
should say that in a world with more people, it would be more likely that you'd be picked
at all.

If you do make that assumption, then you can run through the same Bayesian ringer. You
find that the assumption precisely negates the effect of reasoning that if the coin landed
heads, then you could have had green hair. So you get back to ½.

Thus, we see that depending on how you want to do it, you can get an answer of either
a third or a half. It's possible that there are other answers that could be defended, but these
seem like the most plausible two.

That was a fairly serene thought experiment. Can we make it more dramatic? Part of the
reason that this feels like philosophy is that there aren't any real stakes here. Let's get closer
to something with real stakes in it.

The next thought experiment is, I think, due to the philosopher John Leslie.3 Let's call
it the Dice Room. Imagine that there's a very, very large population of people in the world,
and that there's a madman. What this madman does is, he kidnaps ten people and puts them
in a room. He then throws a pair of dice. If the dice land snake-eyes (two ones), then he
simply murders everyone in the room. If the dice do not land snake-eyes, then he releases
everyone, then kidnaps 100 people. He now does the same thing: he rolls two dice; if they
land snake-eyes, then he kills everyone, and if they don't land snake-eyes, then he releases
them and kidnaps 1000 people. He keeps doing this until he gets snake-eyes, at which point
he's done. So now, imagine that you've been kidnapped. You have been watching the news
and you know the entire situation. You can assume either that you do or do not know how
many other people are in the room.

So you're in the room. Conditioned on that fact, how worried should you be? How likely
is it that you're going to die?

One answer is that the dice have a 1/36 chance of landing snake-eyes, so you should be
only a “little bit” worried (considering). A second reflection you could make is to consider,
of people who enter the room, what the fraction is of people who ever get out. Let's say
that it ends at 1000. Then, 110 people get out and 1000 die. If it ends at 10000, then 1110
people get out and 10000 die. In either case, about 8/9 of the people who ever go into the
room will die.

STUDENT: But that's not conditioning on the full set of information. That's just con-
ditioning on the fact that I’m in the room at some point.

SCOTT: But you'll basically get the same answer, no matter what time you go into
the room. No matter when you assume the process terminates, about 8/9 of the people
who ever enter the room will be killed. For each termination point, you can imagine
being a random person in the set of rooms leading up to that point. In that case, you're
much more likely to die.

STUDENT: But aren't you conditioning on future events?
SCOTT: Yes, but the point is that we can remove that conditioning. We can say that

we're conditioning on a specific termination point, but that no matter what that point
is, we get the same answer. It could be 10 steps or 50 steps, but no matter what the ter-
mination point is, almost all the people who go into the room are going to die, because
the number of people is increasing exponentially.

If you're a Bayesian, then this kind of seems like a problem. You could see this as a
bizarre madman-related thought experiment, or if you preferred to, you could defend the
view that this is the actual situation the human species is in. We'd like to know what the

probability is that we're going to suffer some cataclysm or go extinct for some reason. It
could be an asteroid hitting the earth, nuclear war, global warming, or whatever else. So
there are kind of two ways of looking at it. The first way is to say that all of these risks
seem pretty small – they haven't killed us yet! There have been many generations, and in
each one, there have been people predicting imminent doom and it never materialized. So
we should condition on that and assign a relatively small probability to our generation be-
ing the one to go extinct. That's the argument that conservatives like to make; I’ll call it the
Chicken Little Argument.

Against that, there's the argument that the population has been increasing exponentially,
and that if you imagine that the population increases exponentially until it exhausts the re-
sources of the planet and collapses, then the vast majority of the people who ever lived will
live close to the end, much like in the dice room. Even supposing that with each generation
there's only a small chance of doom, the vast majority of the people ever born will be there
close to when that chance materializes.

STUDENT: But it still seems to me like that's conditioning on a future event. Even if
the answer is the same no matter which future event you choose, you're still condi-
tioning on one of them.

SCOTT: Well, if you believe in the axioms of probability theory, then if p = P[A|B] =
P[A|¬B], then P[A] = p.

STUDENT: Yes, but we're not talking about B and ¬B, we're talking about an infinite
list of choices.

SCOTT: So you're saying the infiniteness makes a difference here?
STUDENT: Basically. It's not clear to me that you can just take that limit, and not

worry about it. If your population is infinite, maybe the madman gets really unlucky
and is just failing to roll snake-eyes for all eternity.

SCOTT: OK, we can admit that the lack of an upper bound on the number of rolls
could maybe complicate matters. However, one can certainly give variants of this
thought experiment that don't involve infinity.

The argument that I’ve been talking about goes by the name of the Doomsday Argu-
ment.4 What it's basically saying is that you should assign to the event of a cataclysm in
the near future a much higher probability that you might naïvely think, because of this sort
of reasoning. One can give a completely finitary version of the Doomsday Argument. Just
imagine for simplicity that there are only two possibilities: Doom Soon and Doom Late. In
one, the human race goes extinct very soon, whereas in the other it colonizes the galaxy.
In each case, we can write down the number of people who will ever have existed. For the
sake of discussion, suppose 80 billion people will have existed in the Doom Soon case, as
opposed to 80 quadrillion in the Doom Late case. So now, suppose that we're at the point
in history where almost 80 billion people have lived. Now, you basically apply the same

sort of argument as in God's Coin Toss. You can make it stark and intuitive. If we're in the
Doom Late situation, then the vast, vast majority of the people who will ever have lived
will be born after us. We're in the very special position of being in the first 80 billion hu-
mans – we might as well be Adam and Eve! If we condition on that, we get a much lower
probability of being in the Doom Late case than of being in the Doom Soon case. If you do
the Bayesian calculation, you'll find that if you naïvely view the two cases as equally likely,
then after applying the Doomsday reasoning we're almost certainly in the Doom Soon case.
For, conditioned on being in the Doom Late case, we almost certainly would not be in the
special position of being among the first 80 billion people.

Maybe I should give a little history. The Doomsday Argument was introduced by an
astrophysicist named Brandon Carter in 1974. The argument was then discussed intermit-
tently throughout the 1980s. Richard Gott,5 who was also an astrophysicist, proposed the
“mediocrity principle”: if you view the entire history of the human race from a timeless
perspective, then all else being equal we should be somewhere in the middle of that history.
That is, the number of people who live after us should not be too much different from the
number of people who lived before us. If the population is increasing exponentially, then
that's very bad news, because it means that humans are not much longer for the world. This
argument seems intuitively appealing, but has been largely rejected because it doesn't really
fit into the Bayesian formalism. Not only is it not clear what the prior distribution is, but
you may have special information that indicates that you aren't likely to be in the middle.

So the modern form of the Doomsday Argument, which was formalized by Bostrom,
is the Bayesian form where you just assume that you have some prior over the possible
cases. Then, all the argument says is that you have to take your own existence into account
and adjust the prior. Bostrom, in his book about this, concludes that the resolution of the
Doomsday Argument really depends on how you'd resolve the God's Coin Toss puzzle. If

you give as your answer to the puzzle, that corresponds to the Self-Sampling As-
sumption (SSA) that you can sample a world according to your prior distribution and then
sample a person within that world at random. If you make that assumption about how to
apply Bayes's Theorem, then it seems very hard to escape the doomsday conclusion.

If you want to negate that conclusion, then you need an assumption he calls the Self-
Indication Assumption (SIA). That assumption says that you are more likely to exist in a
world with more beings than one with fewer beings. You would say in the Doomsday Ar-
gument that, if the “real” case is the Doom Late case, then while it's true that you are much
less likely to be one of the first 80 billion people, it's also true that because there are so
many more people you're much more likely to exist in the first place. If you make both
assumptions, then they cancel each other out, taking you back to your original prior distri-

bution over Doom Soon and Doom Late, in exactly the same way that making the SIA led
us to get back to ½ in the coin toss puzzle.

In this view, it all boils down to which of the SSA and SIA you believe. There are some
arguments against Doomsday that don't accept these presuppositions at all, but those argu-
ments are open to different objections. One of the most common counterarguments against
Doomsday that you hear is that cavemen could have made the same argument, but that
they would have been completely wrong. The problem with that counterargument is that
the Doomsday Argument doesn't at all ignore that effect. Sure, some people who make the
argument will be wrong; the point is that the vast majority will be right.

STUDENT: It seems as though there's a tension between wanting to be right yourself
and wanting to design policies that try to maximize the number of people who are
right.

SCOTT: That's interesting.
STUDENT: Here's a variation I want to make on the red room business: suppose that

God has a biased coin such that with 0.9 probability, there's one red and many, many
greens. With 0.1 probability, there's just a red. In either case, in the red-haired per-
son's room, there's a button. You have the option to push the button or not. If you're in
the no-greens case, you get a cookie if you press the button, whereas if you're in the
many-greens case, you get punched in the face if you press the button. You have to
decide whether to press the button. So now, if I use the SSA and find that I’m in a red
room, then probably we're in the no-greens case and I should press the button.

SCOTT: Absolutely. It's clear that what probabilities you assign to different states
of the world can influence what decisions you consider to be rational. That, in some
sense, is why we care about any of this.

There's also an objection to the Doomsday Argument that denies that it's valid at all to talk
about you being drawn from some class of observers. “I’m not a random person, I’m just
me.” The response to that is that there are clearly cases where you think of yourself as a
random observer. For example, suppose there's a drug that kills 99% of the people who take
it, but such that 1% are fine. Are you going to say that since you aren't a random person,
the fact that it kills 99% of the people is completely irrelevant? Are you going to just take
it anyway? So for many purposes, you do think of yourself as being drawn over some dis-
tribution of people. The question is when is such an assumption valid and when isn't it?

STUDENT: I guess to me, there's a difference between being drawn from a uniform
distribution of people and a uniform distribution of time. Do you weight the probabil-
ity of being alive in a given time by the population at that time?

SCOTT: I agree; the temporal aspect does introduce something unsettling into all of
this. Later, we'll get to puzzles that don't have a temporal aspect. We'll see what you
think of those.

STUDENT: I’ve also sometimes wondered “why am I a human?” Maybe I’m not a
random human, but a random fragment of consciousness. In that case, since humans
have more brain matter than other animals, I’m much more likely to be a human.

SCOTT: Another question is if you're more likely to be someone who lives for a long
time. We can go on like this. Suppose that there's lots of extraterrestrials. Does that
change the Doomsday reasoning? Almost certainly, you wouldn't have been a human
at all.

STUDENT: Maybe this is where you're going, but it seems like a lot of this comes
down to what you even mean by a probability. Do you mean that you're somehow en-
coding a lack of knowledge, or that something is truly random? With the Doomsday
Argument, has the choice of Doom Soon or Doom Late already been fixed? With that
drug argument, you could say, “no, I’m not randomly chosen – I am me – but I don't
know this certain property of me.”

SCOTT: That is one of the issues here. I think that as long as you're using Bayes's
Theorem in the first place, you may have made some commitment about that. You cer-
tainly made a commitment that it makes sense to assign probabilities to the events in
question. Even if we imagine the world was completely deterministic, and we're just
using all this to encode our own uncertainty, then a Bayesian would tell you that's what
you should do anytime you're uncertain about anything, no matter what the reason.
You must have some prior over the possible answers, and you just assign probabilities
and start updating them. Certainly, if you take that view and try to be consistent about
it, then you're led to strange situations like these.

As the physicist John Baez has pointed out, anthropic reasoning is kind of like science
on the cheap.6 When you do more experiments, you can get more knowledge, right? Check-
ing to see if you exist is always an experiment that you can do easily. The question is,
what can you learn from having done it? It seems like there are some situations where it's
completely unobjectionable and uncontroversial to use anthropic reasoning. One example
is asking why the Earth is 93 million miles away from the Sun and not some other distance.
Can we derive 93 million miles as some sort of a physical constant, or get the number from
first principles? It seems clear that we can't, and it seems clear that to the extent that there's
an explanation, it has to be that if Earth were much closer, it would be too hot and life
wouldn't have evolved, whereas if it were much further, it'd be too cold. This is called the
“Goldilocks Principle”: of course, life is going to only arise on those planets that are at
the right temperature for life to evolve. It seems like even if there's a tiny chance of life
evolving on a Venus or a Mars, it'd still be vastly more likely that life would evolve on a
planet roughly our distance from the Sun, and so the reasoning still holds.

Then there are much more ambiguous situations. This is actually a current issue in phys-
ics, which the physicists argue over. Why is the fine structure constant roughly 1/137 and

not some other value? You can give arguments to the effect that if it were much different,
we wouldn't be here.

STUDENT: Is that the case like with the inverse-square law of gravity? If it weren't r2,
but just a little bit different, would the universe be kind of clumpy?

SCOTT: Yes. That's absolutely right. In the case of gravity, though, we can say that
general relativity explains why it's an inverse square and not anything else, as a direct
consequence of space having three dimensions.

STUDENT: But we wouldn't need that kind of advanced explanation if we just did sci-
ence on the cheap and said “it's gotta be this way by the Anthropic Principle.”

SCOTT: This is exactly what people who object to the Anthropic Principle are wor-
ried about – that people will just get lazy and decide that there's no need to do any
experiment about anything, because the world just is how it is. If it were any other
way, we wouldn't be us; we'd be observers in a different world.

STUDENT: But the Anthropic Principle doesn't predict, does it?
SCOTT: Right, in many cases, that's exactly the problem. The principle doesn't seem

to constrain things before we've seen them. The reductio ad absurdum that I like is
where a kid asks her parents why the moon is round. “Clearly, if the moon were
square, you wouldn't be you, but you would be the counterpart of you in a square-
moon universe. Given that you are you, clearly the moon has to be round.” The prob-
lem being that if you hadn't seen the moon yet, you couldn't make a prediction. On the
other hand, if you knew that life was much more likely to evolve on a planet that's 93
million miles away from the Sun than 300 million miles away, then even before you'd
measured the distance, you could make such a prediction. In some cases, it seems like
the principle really does give you predictions.

STUDENT: So apply the principle exactly when it gives you a concrete prediction?
SCOTT: That would be one point of view, but I guess one question would be what if

the prediction comes out wrong?
As was mentioned before, this does feel like it's “just philosophy.” You can set things

up, though, so that real decisions depend on it. Maybe you've heard of the surefire way of
winning the lottery: buy a lottery ticket and if it doesn't win, then you kill yourself. Then,
you clearly have to condition on being alive to ask the question of whether you are alive
or not, and so because you're asking the question, you must be alive, and thus must have
won the lottery. What can you say about this? You can say that in actual practice, most of
us don't accept as a decision-theoretic axiom that you're allowed to condition on remaining
alive. You could jump off a building and condition on there happening to be a trampoline
or something that will rescue you. You have to take into account the possibility that your
choices are going to kill you. On the other hand, tragically, some people do kill themselves.

Was this in fact what they were doing? Were they eliminating the worlds where things
didn't turn out how they wanted?

Of course, everything must come back to complexity theory at some point. And indeed,
certain versions of the Anthropic Principle should have consequences for computation.
We've already seen how it could be the case with the lottery example. Instead of winning
the lottery, you want to do something even better: solve an NP-complete problem. You
could use the same approach. Pick a random solution, check if it's satisfying, and if it isn't,
kill yourself. Incidentally, there is a technical problem with that algorithm. Do you see what
it is?

Right. If there's no solution then you'd seem to be in trouble. On the other hand, there's
actually a very simple fix to this problem: Add some dummy string like *n that acts as a
“get out of jail free” card.

So we say that there are these 2n possible solutions, and that there's also this dummy
solution you pick with some tiny probability like 2-2n. If you pick the dummy solution, then
you do nothing. Otherwise, you kill yourself if and only if the solution you picked is un-
satisfying. Conditioned upon there being no solution and your being alive, then you'll have
picked the dummy solution. Otherwise, if there is a solution, you'll almost certainly have
picked a satisfying solution, again conditioned on your being alive.

As you might expect, you can define a complexity class based on this principle: BPPpath.
Recall the definition of BPP: the class of problems solvable by a probabilistic polynomial
time algorithm with bounded error. That is, if the answer to a problem is “yes,” at least

of the BPP machine's paths must accept, whereas if the answer is “no,” then at most

of the paths must accept. So BPPpath is just the same, except that the computation
paths can all have different lengths.7 They have to be polynomial, but they can be different.

Here's the point: in BPPpath, if a choice leads to more different paths, then it can get
counted more. Let's say, for example, that in 2n - 1 branches we just accept or reject – that
is, we just halt, but in one branch we're going to flip more coins and do something more. In
BPPpath, we can make one branch completely dominate all the other branches. I’ve shown
an example of this in the figure below – suppose we want the branch colored in gray to
dominate everything else. Then we can hang a whole tree from that path, and it will dom-
inate the paths we don't want (colored in black).

A simple argument shows that BPPpath is equivalent to a class that I’ll call PostBPP
(BPP with postselection). PostBPP is again the set of problems solvable by a polynomial

time probabilistic algorithm where again you have the versus acceptance con-
dition, but now, if you don't like your choice of random bits, then you can just kill yourself.
You can condition on having chosen random bits such that you remain alive. Physicists call
this postselection. You can postselect on having random bits with some very special prop-

erty. Conditioned on having that property, a “yes” answer should cause of the paths

to accept, and a “no” answer should cause no more than to accept.
If you want a formal definition, PostBPP is the class of all languages L for which there

exist polynomial time Turing machines A and B the thing that decides to postselect) such
that:

1. For every x L, Prr[A(x, r)B(x, r)] 2 3.

2. For every x L, Prr[A(x, r)B(x, r)] 1 3.

As a technical issue, we also require that Pr[B(x, r)] > 0.
Can you see why this is equivalent to BPPpath?

First, here's a proof that PostBPP BPPpath. Given an algorithm with postselec-
tion, you make a bunch of random choices, and if you like them you make a bunch more
random choices, and those paths overwhelm the paths where you didn't like your random

bits. What about the other direction? BPPpath PostBPP?
The point is, in BPPpath we've got this tree of paths that have different lengths. What we

could do is complete it to make a balanced binary tree. Then, we could use postselection
to give all these ghost paths suitably lower probabilities than the true paths, and thereby
simulate BPPpath in PostBPP.

Now that we know that PostBPP = BPPpath, we can ask how big BPPpath is. By the

argument we gave before, NP BPPpath.
On the other hand, is NP = BPPpath? Certainly, that's going to be hard to show, even if

it's true. One reason is that BPPpath is closed under complement. Another reason is that it

contains BPP. In fact, you can show that BPPpath contains MA and P NP (P with parallel
queries to an NP oracle, meaning queries that can't depend on the answers to previous quer-

ies). I’ll leave that as an exercise. In the other direction, it's possible to show that BPPpath

is contained in BPP NP, and thus in the polynomial hierarchy. Under a derandomization
hypothesis, then, we find that the Anthropic Principle gives you the same computational

power as P NP.

How about an upper bound? Let's show that BPPpath PP? Deciding whether to
accept or reject is kind of this exponential summation problem. You can say that each of
the paths, which is a dummy path, contributes both an accept and a reject, while each of
the accepting paths contributes two accepts and each of the rejecting paths contributes two
rejects. Then, just ask if there are more accepts than rejects. That will simulate it in PP.

Of course, none of this would be complete if we didn't consider quantum postselection.
That's what I wanted to end with. In direct analogy to PostBPP, we can define PostBQP
as the class of decision problems solvable in polynomial time by a quantum computer with
the power of postselection. What I mean is that this is the class of problems where you get
to perform a polynomial-time quantum computation and then you get to make some meas-
urement. If you don't like the measurement outcome, you get to kill yourself and condition
on still being alive.

In PostBQP, we're going to have to define things a bit differently, because there's no
analog of r. Instead, we'll say that you perform a polynomial-time quantum computation,
make a measurement that accepts with probability greater than zero, and then condition
on the outcome of that measurement. Finally, you perform a further measurement on the
reduced quantum state that tells you whether to accept or reject. If the answer to the prob-

lem is “yes,” then the second measurement should accept with probability at least ,
conditioned on the first measurement accepting. Likewise, if the answer to the problem is

“no,” the second measurement should accept with probability at most , conditioned
on the first measurement accepting.

Then, we can ask how powerful PostBQP is. One of the first things you can say is that,

certainly, PostBPP PostBQP. That is, we can simulate a classical computer with

postselection. In the other direction, we have PostBQP PP. There's this proof that

BQP PP due to Adleman, DeMarrais and Huang.8 In that proof, they basically do

what physicists would call a Feynman path integral, where you sum over all possible con-
tributions to each of the final amplitudes. It's just a big PP computation. From my point of

view, Feynman won the Nobel Prize in Physics for showing that BQP PP, though he

didn't state it that way. Anyway, the proof easily generalizes to show that PostBQP
PP, because you just have to restrict your summation to those paths where you end up in
one of those states you postselect on. You can make all the other paths not matter by mak-
ing them contribute an equal number of pluses and minuses.

Can you simulate multiple postselections with one postselection? That's another great
question. The answer is yes. We get to that by using the so-called Principle of Deferred
Measurement, which tells us that, in any quantum computation, we can assume without
loss of generality that there's only one measurement at the end. You can simulate all the
other measurements using controlled-NOT gates, and then just not look at the qubits con-
taining the measurement outcomes. The same thing holds for postselection. You can save
up all the postselections until the end.

What I showed some years ago is that the other direction holds as well: PP
PostBQP.9 In particular, this means that quantum postselection is much more powerful
than classical postselection, which seems kind of surprising. Classical postselection leaves
you in the polynomial hierarchy while quantum postselection takes you up to the counting
classes, which we think of as much larger.

Let's run through the proof. So we've got some Boolean function f:{0, 1}n {0,
1} where f is efficiently computable. Let s be the number of inputs x for which f(x) = 1. Our

goal is to decide whether s 2n-1. This is clearly a PP-complete problem. For sim-
plicity, we will assume without loss of generality that s > 0. Now using standard quantum
computing tricks (which I’ll skip), it's relatively easy to prepare a single-qubit state like

This also means that we can prepare the state

That is, essentially a conditional Hadamard applied to |ψ , for some real α and β to be spe-

cified later. Let's write out explicitly what H|ψ is:

So now, I want to suppose that we take the two-qubit state above and postselect on the
second qubit being 1, then look at what that leaves in the first qubit. You can just do the
calculation and you'll get the following state, which depends on what values of α and β we
chose before:

Using postselection, we can prepare a state of that form for any fixed α and β that we
want. So now, given that, how do we simulate PP? What we're going to do is keep prepar-
ing different versions of that state, varying the ratio β/α through {2-n, 2-n+1,..., ½, 1, 2,...,

2n}. Now, there are two cases: either s < 2n-1 or s 2n-1. Suppose that the first case

holds. Then, s and 2n - 2s have the same sign. Since α and β are real, the states |ψα, β lie
along the unit circle:

If s < 2n-1, then as we vary β/α the state |ψα, β will always have a positive amplitude for

both |0 and |1 (it will lie in the upper-right quadrant). It's not hard to see that, at some

point, the state is going to become reasonably balanced. That is, the amplitudes of |0 and

|1 will come within a constant of each other, as is shown by the solid red vector in the fig-

ure above. If we keep measuring these states in the {|+ , |- } basis, then one of the states

will yield the outcome |+ with high probability.

In the second case, where s 2n-1, the amplitude of |1 is never positive, no matter

what α and β are set to, while the amplitude of |0 is always positive. Hence, the state al-

ways stays in the lower-right quadrant. Now, as we vary β/α through a polynomial number

of values, |ψα, β never gets close to |+ . This is a detectable difference.
So I wrote this up, thinking it was a kind of cute proof. A year later, I realized that there's

this Beigel–Reingold–Spielman Theorem,10 which showed that PP is closed under inter-
section. That is, if two languages are both in PP, then the AND of those two languages
is also in PP. This solved a problem that was open for 20 years. What I noticed is that
PostBQP is trivially closed under intersection, because, if you want to find the intersection
of two PostBQP languages, just run their respective PostBQP machines and postselect on
both computations giving a valid outcome, and then see if they both accept. You can use
amplification to stay within the right error bounds. Since PostBQP is trivially closed under
intersection, it provides an alternate proof that PP is closed under intersection that I think is
much simpler than the original proof. The way to get this simpler proof really is by thinking
about quantum anthropic postselection. It's like a higher-level programming language for
constructing the “threshold polynomials” that Beigel–Reingold–Spielman needed for their
theorem to work. It's just that quantum mechanics and post-selection give you a much more
intuitive way of constructing these polynomials.

Let me bring out another interesting consequence of the PostBQP = PP theorem, this
one for quantum computing. We saw before that PostBPP = BPPpath is contained in the
polynomial hierarchy. On the other hand, suppose PostBQP = PP were contained in the
polynomial hierarchy. Then PPP = P#P would also be contained in PH – but, by Toda's The-

orem (that PH P#P), that would mean PH would collapse to a finite level! So the
conclusion is that, unless PH collapses, PostBQP really is strictly larger than PostBPP.
Yes, quantum and classical postselection are both absurdly powerful, but we can be quite
confident that the quantum kind is more powerful! Indeed, I'd say we can be much more

confident of that inequality than of the more familiar conjecture BPP BQP, which is
“merely” based on stuff like the presumed classical hardness of factoring, nothing as “ro-
bust” as the infinitude of the polynomial hierarchy.

But does any of this imply anything about the power of quantum computers in the “real”
world, as opposed to hypothetical postselected worlds? Since I first wrote this chapter in
2006, there have been some new developments that strongly suggest the answer is yes.
Namely, Bremner, Jozsa, and Shepherd (2011)11 pointed out that, if every distribution that
can be sampled in quantum polynomial time could also be sampled in classical polynomial
time, then PostBPP would equal PostBQP, which (by the above reasoning) would cause
the polynomial hierarchy to collapse. Furthermore, this conclusion holds even if we tie
quantum computing's hands behind its back, and consider only the distributions that can be

sampled by extremely rudimentary, almost certainly nonuniversal, kinds of quantum com-
puters. The example of Bremner et al. was what they called the “instantaneous quantum
computer,” whose only ability is to apply a Hamiltonian that's a sum of tensor products
of Pauli operators on various subsets of qubits. In independent work, Alex Arkhipov and
I12 obtained the same conclusion for linear-optical quantum computers, in which the only
thing you're allowed to do is generate a bunch of identical photons, send them through a
complicated network of “passive optical elements” (i.e., beamsplitters and phaseshifters),
then measure how many photons ended up at every possible location. In both cases, you
end up with a quantum computing model that probably can't implement Shor's algorithm,
Grover's algorithm, or any other “standard” quantum algorithm – and, for that matter, that
probably can't even do universal classical computation! Yet, in these models, you can eas-
ily generate samples from a probability distribution that can't be efficiently sampled by a
classical computer, unless PostBPP = PostBQP and the polynomial hierarchy collapses.
Furthermore, from a technological standpoint, these models might be easier to realize than
universal quantum computing.13

Right now, the biggest theoretical challenge in this area is to show that, even if a classical
computer could generate samples from approximately the same probability distribution as
a quantum computer, this would still cause the polynomial hierarchy to collapse. The main
thing Arkhipov and I did in our paper was to give evidence that even this stronger statement
is true. But making it rigorous seems to require a significant advance in classical complex-
ity theory: appealing to the PostBPP = PostBQP theorem is no longer enough. In case you
care, Arkhipov and I showed that it would suffice to prove that estimating the permanent
of an n × n matrix of independent, complex Gaussian entries, with high probability over
the matrix, is a #P-complete problem. It's already known that approximating the permanent
of an arbitrary complex matrix is #P-complete, and also that exactly computing the per-
manent of a Gaussian random matrix is #P-complete. So “all that's left” is to show that the
problem is still #P-complete, even after we combine approximation and average-case in the
same problem!

I just had a couple puzzles to leave you with. We discussed the temporal aspect and how
it introduced additional confusion into the Doomsday Argument. There's one puzzle that
doesn't involve any of that, but which is still quite unsettling. This puzzle – also due to
Bostrom – is called the Presumptuous Philosophers. Imagine that physicists have narrowed
the possibilities for a final theory of physics down to two a-priori equally likely possib-
ilities. The main difference between them is that Theory 1 predicts that the universe is a
billion times bigger than Theory 2 does. In particular, assuming the universe is relatively
homogeneous (which both theories agree about), Theory 2 predicts that there are going to
be about a billion times as many sentient observers in the universe. So the physicists are
planning on building a massive particle accelerator to distinguish the two theories – a pro-

ject that will cost many billions of dollars. Now, the philosophers come along and, say, that
Theory 2 is the right one to within a billion-to-one confidence, since, conditioned on The-
ory 2 being correct, we're a billion times more likely to exist in the first place. The question
is whether the philosophers should get the Nobel Prize in Physics for their “discovery.”

Of course, what the philosophers are assuming here is the Self-Indication Assumption.
So here's where things stand with the SSA and SIA. The SSA leads to the Doomsday Ar-
gument, while the SIA leads to Presumptuous Philosophers. It seems like, whichever one
you believe, you get a bizarre consequence.

Finally, if we want to combine the anthropic computing idea with the Doomsday Ar-
gument, then there's the Adam and Eve puzzle. Suppose that Adam and Eve are the first
two observers, and that what they'd really like is to solve an instance of an NP-complete
problem, say, 3SAT. To do so, they pick a random assignment, and form a very clear inten-
tion beforehand that if the assignment happens to be satisfying, then they won't have any
kids, whereas if the assignment is not satisfying, then they will go forth and multiply. Now,
let's assume the SSA. Then, conditioned on having chosen an unsatisfying assignment, how
likely is it that they would be an Adam and Eve in the first place, as opposed to one of
the vast number of future observers? If we assume that they'll ultimately have (say) 22n

descendants, then the probability would seem to be at most 2-2n +1. Therefore, conditioned
upon the fact that they are the first two observers, the SSA predicts that, with overwhelm-
ing probability, they will pick a satisfying assignment. If you're a hardcore Bayesian, you
can take your pick between SSA and SIA and swallow the consequences either way!

1 Starting in this chapter, we've included some Q&A dialogues with students who took the
class.
2 See for example Nick Bostrom, Anthropic Bias: Observation Selection Effects in Science
and Philosophy, Routledge, 2010.
3 See for example John Leslie, The End of the World: The Science and Ethics of Human
Extinction, Routledge, 1998.
4 There is a huge literature on the Doomsday Argument, but the books by Bostrom and
Leslie referenced earlier are good starting points, as is http://en.wikipedia.org/wiki/Dooms-
day_argument.

5 J. R. Gott III, Implications of the Copernican principle for our future prospects.
Nature, 363:6427 (1993), 315–319.
6 http://math.ucr.edu/home/baez/week246.html

7 BPPpath was defined in Y. Han, L. A. Hemaspaandra, and T. Thierauf, Threshold
computation and cryptographic security. SIAM Journal on Computing, 26:1 (1997), 59–78.

http://en.wikipedia.org/wiki/Doomsday_argument
http://en.wikipedia.org/wiki/Doomsday_argument
http://math.ucr.edu/home/baez/week246.html

8 L. M. Adleman, J. DeMarrais, and M.-D. A. Huang, Quantum computability. SIAM
Journal on Computing, 26:5 (1997), 1524–40.
9 S. Aaronson, Quantum computing, postselection, and probabilistic polynomial-time. Pro-
ceedings of the Royal Society A, 461:2063 (2005), 3473–82. http://arxiv.org/abs/quant-ph/
0412187

10 R. Beigel, N. Reingold, and D. A. Spielman, PP is closed under intersection. Journal
of Computer and System Sciences, 50:2 (1995), 191–202.
11 M. Bremner, R. Jozsa, and D. Shepherd, Classical simulation of commuting quantum
computations implies collapse of the polynomial hierarchy. Proceedings of the Royal Soci-
ety A, 467:2126 (2010), 459–72. http://arxiv.org/abs/1005.1407
12 S. Aaronson and A. Arkhipov, The computational complexity of linear optics. In Pro-
ceedings of Annual ACM Symposium on Theory of Computing (2011), pp. 333–42. ht-
tp://arxiv.org/abs/1011.3245
13 Indeed, as this book was undergoing final revisions, four quantum optics groups an-
nounced the first experimental demonstrations of my and Arkhipov's “BosonSampling”
proposal, albeit so far only with 3 identical photons. See http://www.scottaaronson.com/
blog/?p=1177 for more information.

http://arxiv.org/abs/quant-ph/0412187
http://arxiv.org/abs/quant-ph/0412187
http://arxiv.org/abs/1005.1407
http://arxiv.org/abs/1011.3245
http://arxiv.org/abs/1011.3245
http://www.scottaaronson.com/blog/?p=1177
http://www.scottaaronson.com/blog/?p=1177

19 Free will

So, in this chapter, we're going to ask – and hopefully answer – this question of whether
there's free will or not. If you want to know where I stand, I’ll tell you: I believe in free will.
Why? Well, the neurons in my brain just fire in such a way that my mouth opens and I say I
have free will. What choice do I have?

Before we start, there are two common misconceptions that we have to get out of the way.
The first one is committed by the free will camp, and the second by the anti-free-will camp.

The misconception committed by the free will camp is the one I alluded to before: if
there's no free will, then none of us are responsible for our actions, and hence (for example)
the legal system would collapse. Well, I know of only one trial where the determinism of
the laws of physics was actually invoked as a legal defense. It's the Leopold and Loeb trial
in 1926.1 Have you heard of this? It was one of the most famous trials in American history,
next to the OJ trial. So, Leopold and Loeb were these brilliant students at the University
of Chicago (one of them had just finished his undergrad at 18), and they wanted to prove
that they were Nietzschean supermen who were so smart that they could commit the perfect
murder and get away with it. So they kidnapped this 14-year-old boy and bludgeoned him to
death. And they got caught – Leopold dropped his glasses at the crime scene.

They were defended by Clarence Darrow – the same defense lawyer from the Scopes
Monkey Trial, considered by some to be the greatest defense lawyer in American history. In
his famous closing address, he actually made an argument appealing to the determinism of
the universe. “Who are we to say what could have influenced these boys to do this? What
kind of genetic or environmental influences could've caused them to commit the crime?”
(Maybe Darrow thought he had nothing to lose.) Anyway, they got life in prison instead of
the death penalty, but apparently, it was because of their age, and not because of the determ-
inism of the laws of physics.

Alright, what's the problem with using the nonexistence of free will as a legal defense?
STUDENT: The judge and the jury don't have free will either.
SCOTT: Thank you! I’m glad someone got this immediately, because I’ve read whole

essays about this, and the obvious point never gets brought up.
The judge can just respond, “The laws of physics might have predetermined your crime,

but they also predetermined my sentence: DEATH!” (In the US, anyway. In Canada, maybe
30 days' jail term...)

Actually, I've since found a couplet by Ambrose Bierce that makes the point very elo-
quently:

“There's no free will,” says the philosopher;

“To hang is most unjust.”
“There is no free will,” assent the officers;
“We hang because we must.”

Alright, that was the misconception of the free will camp. Now on to the misconception
of the anti-free-will camp. I’ve often heard the argument that says that, not only is there no
free will, but the very concept of free will is incoherent. Why? Because either our actions
are determined by something, or else they're not determined by anything, in which case
they're random. In neither case can we ascribe them to “free will.”

For me, the glaring fallacy in the argument lies in the implication Not Determined

Random. If that were correct, then we couldn't have complexity classes like NP –
we could only have BPP. The word “random” means something specific: it means you
have a probability distribution over the possible choices. In computer science, we're able to
talk perfectly coherently about things that are nondeterministic, but not random.

Look, in computer science we have many different sources of nondeterminism. Argu-
ably, the most basic source is that we have some algorithm, and we don't know in advance
what input it's going to get. If it were always determined in advance what input it was going
to get, then we'd just hardwire the answer. Even talking about algorithms in the first place,
we've sort of inherently assumed the idea that there's some agent that can freely choose
what input to give the algorithm.

STUDENT: Not necessarily. You can look at an algorithm as just a big compression
scheme. Maybe we do know all the inputs we'll ever need, but we just can't write them
in a big enough table, so we write them down in this compressed form.

SCOTT: OK, but then you're asking a technically different question. Maybe there's
no efficient algorithm for some problem such that there is an efficient compression
scheme. All I’m saying is that the way we use language – at least in talking about
computation – it's very natural to say there's some transition where we have this set
of possible things that could happen, but we don't know which is going to happen or
even have a probability distribution over the possibilities. We would like to be able
to account for all of them, or maybe at least one of them, or the majority of them, or
whatever other quantifier we like. To say that something is either determined or ran-
dom is leaving out whole swaths of the Complexity Zoo.2 We have lots of ways of
producing a single answer from a set of possibilities, so I don't think it's logically in-
coherent to say that there could exist transitions in the universe with several allowed
possibilities over which there isn't even a probability distribution.

STUDENT: Then they're determined.
SCOTT: What?

STUDENT: According to classical physics, everything is determined. Then, there's
quantum mechanics, which is random. You can always build a probability distribution
over the measurement outcomes. I don't think you can get away from the fact that
those are the only two kinds of things you can have. You can't say that there's some
particle that can go to one of three states, but that you can't build a probability distri-
bution over them. Unless you want to be a frequentist about it, that's something that
just can't happen.

SCOTT: I disagree with you. I think it does make sense. As one example, we talked
about hidden-variable theories. In that case, you don't even have a probability dis-
tribution over the future until you specify which hidden-variable theory you're talk-
ing about. If we're just talking about measurement outcomes, then yes, if you know
the state that you're measuring and you know what measurement you're applying,
quantum mechanics gives you a probability distribution over the outcomes. But if you
don't know the state or the measurement, then you don't even get a distribution.

STUDENT: I know that there are things out there that aren't random, but I don't con-
cede this argument.

SCOTT: Good! I’m glad someone doesn't agree with me.
STUDENT: I disagree with your argument, but not your result that you believe in free

will.
SCOTT: My “result”?
STUDENT: Can we even define free will?
SCOTT: Yeah, that's an excellent question. It's very hard to separate the question of

whether free will exists from the question of what the definition of it is. What I was
trying to do is, by saying what I think free will is not, give some idea of what the
concept seems to refer to. It seems to me to refer to some transition in the state of the
universe where there are several possible outcomes, and we can't even talk coherently
about a probability distribution over them.

STUDENT: Given the history?
SCOTT: Given the history.
STUDENT: Not to beat this to death, but couldn't you at least infer a probability dis-

tribution by running your simulation many times and seeing what your free will entity
chooses each time?

SCOTT: I guess where it becomes interesting is, what if (as in real life) we don't have
the luxury of repeated trials?

Newcomb's Paradox

So let's put a little meat on this philosophical bone with a famous thought experiment. Sup-
pose that a super-intelligent Predictor shows you two boxes: the first box has $1000, while
the second box has either $1000000 or nothing. You don't know which is the case, but the
Predictor has already made the choice and either put the money in or left the second box
empty. You, the Chooser, have two choices: you can either take the second box only, or
both boxes. Your goal, of course, is money and not understanding the universe.

Here's the thing: the Predictor made a prediction about your choice before the game star-
ted. If the Predictor predicted you'll take only the second box, then he put $1000000 in it.
If he predicted you'll take both boxes, then he left the second box empty. The Predictor has
played this game thousands of times before, with thousands of people, and has never once
been wrong. Every single time someone picked the second box, they found a million dol-
lars in it. Every single time someone took both boxes, they found that the second box was
empty.

First question: why is it obvious that you should take both boxes? Right: because
whatever's in the second box, you'll get $1000 more by taking both boxes. The decision of
what to put in the second box has already been made; your taking both boxes can't possibly
affect it.

Second question: why is it obvious that you should take only the second box? Right:
because the Predictor's never been wrong! Again and again you've seen one-boxers walk
away with $1000000, and two-boxers walk away with only $1000. Why should this time
be any different?

This paradox was popularized by a philosopher named Robert Nozick in 1969.3 There's
a famous line from his paper about it: “To almost everyone, it is perfectly clear and obvious
what should be done. The difficulty is that these people seem to divide almost evenly on
the problem, with large numbers thinking that the opposing half is just being silly.”

There's actually a third position – a boring “Wittgenstein” position – which says that the
problem is simply incoherent, like asking about the unstoppable force that hits the immov-
able object. If the Predictor actually existed, then you wouldn't have the freedom to make a
choice in the first place; in other words, the very fact that you're debating which choice to
make implies that the Predictor can't exist.

STUDENT: Why can't you get out of the paradox by flipping a coin?
SCOTT: That's an excellent question. Why can't we evade the paradox using probab-

ilities? Suppose the Predictor predicts you'll take only the second box with probability
p. Then he'll put $1000000 in that box with the same probability p. So your expected
payoff is

leading to exactly the same paradox as before, since your earnings will be maximized
by setting p = 1. So my view is that randomness really doesn't change the fundamental
nature of the paradox at all.

To review, there are three options: are you a one-boxer, a two-boxer, or a Wittgenstein?
STUDENT: Is it really meaningless if you replace the question “what do you choose

to do” with “how many boxes will you take?” It's not so much that you're choosing;
you're reflecting on what you would in fact do, whether or not there's choice involved.

SCOTT: That is, you're just predicting your own future behavior? That's an interesting
distinction.

STUDENT: How good of a job does the Predictor have to do?
SCOTT: Maybe it doesn't have to be a perfect job. Even if he only gets it right 90%

of the time, there's still a paradox here.
STUDENT: So by the hypothesis of the problem, there's no free will and you have to

take the Wittgenstein option.
SCOTT: Like with any good thought experiment, it's never any fun just to reject the

premises. We should try to be good sports.
I can give you my own attempt at a resolution,4 which has helped me to be an intellec-
tually fulfilled one-boxer. First of all, we should ask what we really mean by the word
“you.” I’m going to define “you” to be anything that suffices to predict your future
behavior. There's an obvious circularity to that definition, but what it means is that
whatever “you” are, it ought to be closed with respect to predictability. That is, “you”
ought to coincide with the set of things that can perfectly predict your future behavior.
Now let's get back to the earlier question of how powerful a computer the Predictor
has. Here's you, and here's the Predictor's computer. Now, you could base your de-
cision to pick one or two boxes on anything you want. You could just dredge up some
childhood memory and count the letters in the name of your first-grade teacher or
something and based on that, choose whether to take one or two boxes. In order to
make its prediction, therefore, the Predictor has to know absolutely everything about
you. It's not possible to state a priori what aspects of you are going to be relevant in
making the decision. To me, that seems to indicate that the Predictor has to solve what
one might call a “you-complete” problem. In other words, it seems the Predictor needs
to run a simulation of you that's so accurate it would essentially bring into existence
another copy of you.

Let's play with that assumption. Suppose that's the case, and that now you're pondering
whether to take one box or two boxes. You say, “alright, two boxes sounds really good
to me because that's another $1000.” But here's the problem: when you're pondering
this, you have no way of knowing whether you're the “real” you, or just a simula-
tion running in the Predictor's computer. If you're the simulation, and you choose both
boxes, then that actually is going to affect the box contents: it will cause the Predictor
not to put the million dollars in the box. And that's why you should take just the one
box.

STUDENT: I think you could predict very well most of the time with just a limited
dataset.

SCOTT: Yeah, that's probably true. In a class I taught at Berkeley, I did an experiment
where I wrote a simple little program that would let people type either “f” or “d” and
would predict which key they were going to push next. It's actually very easy to write
a program that will make the right prediction about 70% of the time. Most people
don't really know how to type randomly. They'll have too many alternations and so on.
There will be all sorts of patterns, so you just have to build some sort of probabilist-
ic model. Even a very crude one will do well. I couldn't even beat my own program,
knowing exactly how it worked. I challenged people to try this and the program was
getting between 70% and 80% prediction rates. Then, we found one student that the
program predicted exactly 50% of the time. We asked him what his secret was and he
responded that he “just used his free will.”

STUDENT: It seems like a possible problem with “you-completeness” is that, at an in-
tuitive level, you is not equal to me. But then, anything that can simulate me can also
presumably simulate you, and so that means that the simulator is both you and me.

SCOTT: Let me put it this way: the simulation has to bring into being a copy of you.
I’m not saying that the simulation is identical to you. The simulation could bring into
being many other things as well, so that the problem it's solving is “you-hard” rather
than “you-complete.”

STUDENT: What happens if you have a “you-oracle” and then decide to do whatever
the simulation doesn't do?

SCOTT: Right. What can we conclude from that? If you had a copy of the Predictor's
computer, then the Predictor is screwed, right? But you don't have a copy of the Pre-
dictor's computer.

STUDENT: So this is a theory of metaphysics which includes a monopoly on predic-
tion?

SCOTT: Well, it includes a Predictor, which is a strange sort of being, but what do
you want from me? That's what the problem stipulates.

One thing that I liked about my solution is that it completely sidesteps the mystery of
whether there's free will or not, in much the same way that an NP-completeness proof

sidesteps the mystery of P versus NP. What I mean is that, while it is mysterious how your
free will could influence the output of the Predictor's simulation, it doesn't seem more mys-
terious than how your free will could influence the output of your own brain! It's six of one,
half a dozen of the other.

One reason I like this Newcomb's Paradox is that it gets at a connection between “free
will” and the inability to predict future behavior. Inability to predict the future behavior of
an entity doesn't seem sufficient for free will, but it does seem somehow necessary. If we
had some box, and if without looking inside this box, we could predict what the box was
going to output, then we would probably agree among ourselves that the box doesn't have
free will. Incidentally, what would it take to convince me that I don't have free will? If after
I made a choice, you showed me a card that predicted what choice I was going to make,
well that's the sort of evidence that seems both necessary and sufficient. And modern neur-
oscience does get close to this in some restricted situations. For example, in the famous
experiments of Libet from the 1980s,5 they'd attach electrodes to someone's brain and tell
them that they could press a certain button whenever they felt like it. A full second or more
before the subject was conscious of making the decision to press the button, certainly be-
fore they physically moved their finger, you could see a so-called readiness potential form-
ing in the pattern of neural firings. Now, that doesn't yet imply that one can actually predict
when the subject will press the button: a crucial, rarely discussed gap in these experiments
is that they failed to address how often the readiness potential formed without the subject
pressing the button. On the other hand, more recent experiments – for example, those of
Soon et al.6 in 2008 – have used fMRI scans to predict which of two buttons the subject
would press, somewhat better than chance (e.g., 60% of the time) and a few seconds be-
fore the subject was consciously aware of the decision. It's easy to overstate the signific-
ance of this sort of result: after all, we can also predict human decisions somewhat better
than chance without fMRI, just by exploiting the fact that most humans tend to do the same
things over and over! Conjurors, seducers, advertisers, and so on have known that since the
dawn of history. On the other hand, it would be foolish to think that neuroscience's predic-
tion abilities won't steadily improve. If so, then at some point, they might well force even
diehard free-will believers to admit that at least some choices are much less “free” than
they feel – or at least, that whatever is determining these choices acts earlier in time than it
seems to subjective awareness.

If free will depends on an inability to predict future behavior, then it would follow from
that free will somehow depends on our being unique: on it being impossible to copy us.
This brings up another of my favorite thought experiments: the teleportation machine.

Suppose that, in the far future, there's a very simple way of getting to Mars – the Mars
Express – in only 10 minutes. It encodes the positions of all the atoms in your body as in-
formation, then transmits it to Mars as radio waves, reconstitutes you on Mars, and (natur-

ally) destroys the original. Who wants to be the first to sign up and buy tickets? You can
assume that destroying the original is painless. If you believe that your mind consists solely
of information, then you should be lining up to get a ticket, right?

STUDENT: I think there's a big difference between the case where you take someone
apart then put them together on the other end, and the case where you look inside
someone to figure out how to build a copy, build a copy at the end and then kill the
original. There's a big difference between moving and copying. I’d love to get moved,
but I wouldn't go for the copying.

SCOTT: The way moving works in most operating systems and programming lan-
guages is that you just make a copy then delete the original. In a computer, moving
means copy-and-deleting. So, say you have a string of bits x1,..., xn and you want to
move it from one location to another. Are you saying it matters whether we first copy
all of the bits then delete the first string, or copy-and-delete just the first bit, then copy-
and-delete the second bit and so on? Are you saying that makes a difference?

STUDENT: It does if it's me.
ANOTHER STUDENT: I think I’d just want to be copied, then based on my experiences

decide whether the original should be destroyed or not, and if not, just accept that
there's another version of me out there.

SCOTT: OK. So which of the two yous is going to make the decision? You'll make it
together? I guess you could vote, but you might need a third you to break the tie.

STUDENT: Are you a quantum state or a classical state?
SCOTT: You're ahead of me, which always makes me happy. One thing that's always

really interested me about the famous quantum teleportation protocol (which lets you
“dematerialize” a quantum state and “rematerialize” it at another location) is that in
order for it to work, you need to measure – and hence destroy – the original state. But
going back to the classical scenario, it seems even more problematic if you don't des-
troy the original than if you do. Then you have the problem of which one is “really”
you.

STUDENT: This reminds me of the many-worlds interpretation.
SCOTT: At least there, two branches of a wavefunction are never going to interact

with each other. At most, they might interfere and cancel each other out, but here the
two copies could actually have a conversation with each other! That adds a whole new
layer of difficulties.

STUDENT: So if you replaced your classical computer with a quantum computer, you
couldn't just copy-and-delete to move something...

SCOTT: Right! This seems to me like an important observation. We know that if you
have an unknown quantum state, you can't just copy it, but you can move it. So then
the following question arises: is the information in the human brain encoded in some
orthonormal basis? Is it copyable information or noncopyable information? The an-

swer does not seem obvious a priori. Notice that we aren't asking if the brain is a
quantum computer (let alone a quantum gravity computer a la Penrose), or whether it
can factor 300-digit integers. Maybe Gauss could, but it's pretty clear that the rest of
us can't. But even if it's only doing classical computation, the brain could still be do-
ing it in a way that involves single qubits in various bases, in such a way that it would
be physically impossible to copy important parts of the brain's state. There wouldn't
even have to be much entanglement for that to be the case. We know that there are all
kinds of tiny effects that can play a role in determining whether a given neuron will
fire or not. So, how much information do you need from a brain to predict a person's
future behavior (at least probabilistically)? Is all the information that you need stored
in “macroscopic” variables like synaptic strengths, which are presumably copyable in
principle? Or is some of the information stored microscopically, and possibly not in a
fixed orthonormal basis? These are not metaphysical questions. They are, in principle,
empirically answerable ones.

Now that we've got quantum in the picture, let's stir the pot a little bit more and bring
in relativity. There's this argument (again, you can read whole PhD theses about all these
things) called the block-universe argument. The idea is that somehow special relativity pre-
cludes the existence of free will. Here you are, and you're trying to decide whether to order
pizza or Chinese take-out. Here's your friend, who's going to come over later and wants to
know what you're going to order. As it happens, your friend is traveling close to the speed
of light in your rest frame. Even though you perceive yourself agonizing over the decision,
from her perspective, your decision has already been made.

STUDENT: You and your friend are spacelike-separated, so what does that even
mean?

SCOTT: Exactly. I don't really think, personally, that this argument says anything
about the existence or nonexistence of free will. The problem is that it only works
with spacelike-separated observers. Your friend can say, in principle, that in what she
perceives to be her spacelike hypersurface, you've already made your decision – but
she still doesn't know what you actually ordered! The only way for the information to
propagate to your friend is from the point where you actually made the decision. To
me, this just says that we don't have a total time-ordering on the set of events – we just
have a partial ordering. But I’ve never understood why that should preclude free will.

I have to rattle you up somehow, so let's throw quantum, relativity, and free will all into
the stew. There was a paper recently by Conway and Kochen called The Free Will The-
orem,7 which got a fair bit of press. So what is this theorem? Basically, Bell's Theorem
(discussed in Chapter 12), or rather an interesting consequence of Bell's Theorem. It's kind
of a mathematically obvious consequence, but still very interesting. You can imagine that
there's no fundamental randomness in the universe, and that all of the randomness we ob-

serve in quantum mechanics and the like was just predetermined at the beginning of time.
God just fixed some big random string, and whenever people make measurements, they're
just reading off this one random string. But now suppose we make the following three as-
sumptions.

1. We have the free will to choose in what basis to measure a quantum state. That is,
at least the detector settings are not predetermined by the history of the universe.

2. Relativity gives some way for two actors (Alice and Bob) to perform a measure-
ment such that in one reference frame Alice measures first, and in another frame
Bob measures first.

3. The universe cannot coordinate the measurement outcomes by sending informa-
tion faster than light.

Given these three assumptions, the theorem concludes that there exists an experiment –
namely, the standard Bell experiment – whose outcomes are also not predetermined by the
history of the universe. Why is this true? Basically, because supposing that the two out-
comes were predetermined by the history of the universe, you could get a local hidden-vari-
able model, in contradiction to Bell's Theorem. You can think of this theorem as a slight
generalization of Bell's Theorem: one that rules out not only local hidden-variable theor-
ies but also hidden-variable theories that obey the postulates of special relativity. Even if
there were some nonlocal communication between Alice and Bob in their different galax-
ies, as long as there are two reference frames such that Alice measures first in one and Bob
measures first in the other, you can get the same inequality. The measurement outcomes
can't have been determined in advance, even probabilistically; the universe must “make
them up on the fly” after seeing how Alice and Bob set their detectors. I wrote a review8

of Steven Wolfram's book9 a while ago where I mentioned this, as a basic consequence of
Bell's Theorem that ruled out the sort of deterministic model of physics that Wolfram was
trying to construct. I didn't call my little result the Free Will Theorem, but now I’ve learned
my lesson: if I want people to pay attention, I should be talking about free will! Hence, this
chapter.

Actually, since I first wrote this chapter, the basic observation behind the Con-
way–Kochen “Free Will Theorem” has been used to great effect in quantum information
science, to get protocols for generating so-called Einstein-certified random numbers. These
are numbers that are physically guaranteed to be random, unless Nature resorted to faster-
than-light communication to bias them, or did something equally drastic seeming (e.g.,
sent information backward in time). So, this is extremely different from the pseudorandom-
ness we discussed in Chapter 8: here the numbers are really random assuming basic prin-
ciples of physics, rather than apparently random assuming computational complexity hypo-
theses. You might ask: once we assume the current framework of physics (and in particular,

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos303681

quantum mechanics), isn't it obvious that we can generate true random numbers? Ah, but
even then, suppose your quantum-mechanical random number generator wasn't working
correctly, or was secretly tampered with by an adversary. What we want are numbers that
might or might not pass some statistical test, but, if they do pass the test, we can conclude
are random without knowing anything about the detailed physics of the devices that gen-
erated the numbers. Rather, all we want to assume is that the devices satisfied some really
basic physical principles like locality.

At an intuitive level, it's not hard to understand how Bell's Theorem and the Con-
way–Kochen “Free Will Theorem” might give you this. I mean, the whole point of those
results is that Alice and Bob do a certain experiment on entangled particles, and quantum
mechanics predicts a result for the experiment that can't possibly be explained using local
hidden variables. Instead, Alice and Bob's measurement outcomes must be genuinely prob-
abilistic – with Nature “rolling the dice on the fly” at the instant of measurement – simply
because that's the only way to explain the outcomes without Alice's choice of measurement
conveying a signal to Bob or vice versa.

But there's a major problem here: namely, Alice and Bob need random numbers to per-
form a Bell-type experiment in the first place! For their choices of measurement have to be
random as well. So it's far from obvious whether, by performing a Bell experiment, Alice
and Bob can get more random bits out than they originally put in! And, in any case, the
most we can hope for is randomness expansion: that is, a protocol by which Alice and

Bob can convert n truly random bits into m n truly random bits, assuming no faster-
than-light communication and so forth. Well, such randomness expansion is precisely what
we now know to be achievable. The first result along these lines came from Pironio et al.
(2010),10 who (building on earlier ideas by Roger Colbeck) showed how to use Bell ex-
periments to expand n random bits into n2 nearly random bits. More recently, Vazirani and
Vidick (2012)11 showed how to get exponential randomness expansion, investing n random
bits and getting out cn for some c > 1. At the time of this writing, it remains open whether
one can expand randomness by even more than an exponential amount in this way.

Years ago, I was at one of John Preskill's group meetings at Caltech. Usually, it was
about very physics-y stuff and I had trouble understanding. But once, we were talking
about a quantum foundations paper by Chris Fuchs, and things got very philosophical very
quickly. Finally, someone got up and wrote on the board: “Free Will or Machine?” And
asked for a vote. “Machine” won, seven to five.

I’ll leave you with the following puzzle for next chapter: Dr. Evil is on his moon base,
and he has a very powerful laser pointed at the Earth. Of course, he's planning to obliterate
the Earth, being evil and all. At the last minute, Austin Powers hatches a plan, and sends
Dr. Evil the following message: “Back in my lab here on Earth, I’ve created a replica of

your moon base down to the last detail. The replica even contains an exact copy of you.
Everything is the same. Given that, you actually don't know if you're in your real moon
base or in my copy here on Earth. So if you obliterate the Earth, there's a 50% chance you'll
be killing yourself!” The puzzle is, what should Dr. Evil do? Should he fire the laser or not?
(See here12 for the paper about this.)

1 See, for example, http://law2.umkc.edu/faculty/projects/ftrials/leoploeb/leopold.htm
2 http://www.complexityzoo.com

3 R. Nozick, Newcomb's problem and two principles of choice. In Essays in Honor of
Carl G. Hempel, ed. N. Rescher, Synthese Library, Dordrecht, the Netherlands. (1969), pp.
114–115.
4 After giving these lectures in 2006, I learned that Radford Neal independently proposed
similar ideas. See R. M. Neal, Puzzles of anthropic reasoning resolved using full non-in-
dexical conditioning, http://www.cs.toronto.edu/~radford/ftp/anth.pdf

5 B. W. Libet, Do we have free will? Journal of Consciousness Studies, 6 (1999),
47–57.

6 C. S. Soon, M. Brass, H.-J. Heinze, and J.-D. Haynes, Unconscious determinants of
free decisions in the human brain. Nature Neuroscience, 11 (2008), 543–45.
7 http://arxiv.org/abs/quant-ph/0604079
8 http://www.scottaaronson.com/papers/nks.pdf
9 S. Wolfram, A New Kind of Science, Wolfram Media, 2002.

10 S. Pironio, A. Ac n, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz,
S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random numbers certi-
fied by Bell's theorem. Nature, 464 (2010), 1021–4. http://arxiv.org/abs/0911.3427
11 U. Vazirani and T. Vidick, Certifiable quantum dice – or, true random number generation
secure against quantum adversaries. In Proceedings of Annual ACM Symposium on Theory
of Computing (2012), pp. 61–76. http://arxiv.org/abs/1111.6054
12 Adam Elga, Defeating Dr. Evil with self-locating belief. http://philsci-archive.pitt.edu/
1036/

http://law2.umkc.edu/faculty/projects/ftrials/leoploeb/leopold.htm
http://www.complexityzoo.com
http://www.cs.toronto.edu/~radford/ftp/anth.pdf
http://arxiv.org/abs/quant-ph/0604079
http://www.scottaaronson.com/papers/nks.pdf
http://arxiv.org/abs/0911.3427
http://arxiv.org/abs/1111.6054
http://philsci-archive.pitt.edu/1036/
http://philsci-archive.pitt.edu/1036/

20 Time travel

In the last chapter, we talked about free will, superintelligent predictors, and Dr. Evil plan-
ning to destroy the Earth from his moon base. Now I’d like to talk about a more down-to-
earth topic: time travel. The first point I have to make is one that Carl Sagan made: we're all
time travelers – at the rate of one second per second! Har har! Moving on, we have to distin-
guish between time travel into the distant future and into the past. Those are very different.

Travel into the distant future is by far the easier of the two. There are several ways to do
it.

• Cryogenically freeze yourself and thaw yourself out later.
• Travel at relativistic speed.
• Go close to a black hole horizon.

This suggests one of my favorite proposals for how to solve NP-complete problems in
polynomial time: why not just start your computer working on an NP-complete problem,
then board a spaceship traveling at close to the speed of light and return to Earth to pick up
the solution? If this idea worked, it would let us solve much more than just NP. It would also
let us solve PSPACE-complete and EXP-complete problems – maybe even all computable
problems, depending on how much speedup you want to assume is possible. So what are the
problems with this approach?

STUDENT: The Earth ages, too.
SCOTT: Yeah, so all your friends will be dead when you get back. What's a solution to

that?
STUDENT: Bring the whole Earth with you, and leave your computer floating in space.
SCOTT: Well, at least bring all your friends with you!

Let's suppose you're willing to deal with the inconvenience of the Earth having aged ex-
ponentially many years. Are there any other problems with this proposal? The biggest prob-
lem is, how much energy does it take to accelerate to relativistic speed? Ignoring the time
spent accelerating and decelerating, if you travel at a v fraction of the speed of light for a
proper time t, then the elapsed time in your computer's reference frame is

It follows that, if you want t to be exponentially larger than t, then v has to be expo-
nentially close to unity. There might already be fundamental difficulties with that, coming
from quantum gravity, but let's ignore that for now. The more obvious problem is, you're
going to need an exponential amount of energy to accelerate to this speed v. Think about
your fuel tank, or whatever else is powering your spaceship. It's going to have to be expo-
nentially large! Just for locality reasons, how is the fuel from the far parts of the tank going
to affect you? Here, I’m using the fact that spacetime has a constant number of dimensions.
(Well, and I’m also using the Schwarzchild bound, which limits the amount of energy that
can be stored in a finite region of space: your fuel tank certainly can't be any denser than a
black hole!)

Let's talk about the more interesting kind of time travel: the backward kind. If you've
read any science fiction, you've probably heard the notion of closed timelike curves (CTCs):
regions of spacetime where locally it always looks like time is moving steadily forward
with the laws of physics being perfectly obeyed, but globally you find that time has the to-
pology of a loop, so that by going far enough into the future you re-encounter the present.
So, basically just a fancier, more Einsteinian way to say “time travel into the past.”

But can CTCs actually exist in Nature? This question has a very long history of being
studied by physicists on weekends. It was discovered early on, by Gödel and others, that
classical general relativity admits CTC solutions. All of the known solutions, however,
have some element that can be objected to as being “unphysical.” For example, some solu-
tions involve wormholes, but that requires “exotic matter” having negative mass to keep
the wormhole open.1 They all, so far, involve either nonstandard cosmologies or else types
of matter or energy that have yet to be experimentally observed. But that's just classic-
al general relativity. Once you put quantum mechanics in the picture, it becomes an even
harder question. General relativity is not just a theory of some fields in spacetime, but of
spacetime itself, and so once you quantize it, you'd expect there to be fluctuations in the
causal structure of spacetime. The question is, why shouldn't that produce CTCs?

Incidentally, there's an interesting metaquestion here: why have physicists found it so
hard to create a quantum theory of gravity? The technical answer usually given is that, un-
like (say) Maxwell's equations, general relativity is not renormalizable. But I think there's
also a simpler answer, one that's much more understandable to a doofus layperson like me.
The real heart of the matter is that general relativity is a theory of spacetime itself, and so
a quantum theory of gravity is going to have to be talking about superpositions over space-
time and fluctuations of spacetime. One of the things you'd expect such a theory to answer
is whether CTCs can exist. So quantum gravity seems “CTC-hard,” in the sense that it's at
least as hard as determining if CTCs are possible! And even I can see that this can't possibly
be a trivial question to settle. Even if CTCs are impossible, presumably they're not going

to be proven impossible without some far-reaching new insight. Of course, this is just one
instantiation of a general problem: that no one really has a clear idea of what it means to
treat spacetime itself quantum mechanically.

In the field I come from, it's never our place to ask if some physical object exists or not,
it's to assume it exists and see what computations we can do with it. Thus, from now on,
we'll assume CTCs exist. What would the consequences be for computational complexity?
Perhaps surprisingly, I’ll be able to give a clear and specific answer to that.

So how would you exploit a CTC to speed up computation? First, let's consider the naïve
idea: compute the answer, then send it back in time to before your computer started.

From my point of view, this “algorithm” doesn't work even considered on its own terms.
(It's nice that, even with something as wacky as time travel, we can definitively rule certain
ideas out!) I know of at least two reasons why it doesn't work.

STUDENT: The universe can still end in the time you're computing the answer.
SCOTT: Yes! Even in this model where you can go back in time, it seems to me that

you still have to quantify how much time you spend in the computation. The fact that
you already have the answer at the beginning doesn't change the fact that you still have
to do the computation! Refusing to count the complexity of that computation is like
maxing out your credit card, then not worrying about the bill. You're going to have to
pay up later!

STUDENT: Couldn't you just run the computation for an hour, go back in time, con-
tinue the computation for another hour, then keep repeating until you're done?

SCOTT: Ah! That's getting toward my second reason. You just gave a slightly less
naïve idea, which also fails, but in a more interesting way.

STUDENT: The naïve idea involves iterating over the solution space, which could be
uncountably large.

SCOTT: Yeah, but let's assume we're talking about an NP-complete problem, so that
the solution space is finite. If we could merely solve NP-complete problems, we'd be
pretty happy.

Let's think some more about the proposal where you compute for an hour then go back
in time, compute for another hour then go back again and so on. The trouble with this pro-
posal is that it doesn't take seriously that you're going back in time. You're treating time as a
spiral, as some sort of scratchpad that you can keep erasing and writing over, but you're not
going back to some other time, you're going back to the time that you started from. Once
you accept that this is what we're talking about, you immediately start having to worry
about the Grandfather Paradox (i.e., where you go back in time and kill your grandfather).
For example, what if your computation takes as input a bit b from the future, and produces
as output a bit ¬b, which then goes back in time to become the input? Now when you use
¬b as input, you compute ¬¬b = b as output, and so on. This is just the Grandfather Paradox
in a computational form. We have to come up with some account of what happens in this

situation. If we're talking about CTCs at all, then we're talking about something where this
sort of behavior can happen, and we need some theory of what results.

My own favorite theory was proposed by David Deutsch2 in 1991. His proposal was
that, if you just go to quantum mechanics, the problem is solved. Indeed, quantum mechan-
ics is overkill: it works just as well to go to a classical probabilistic theory. In the latter case,
you have some probability distribution (p1,...,pn) over the possible states of your computer.
Then the computation that takes place within the CTC can be modeled as a Markov chain,
which transforms this distribution to a different one. What should we impose if we want
to avoid Grandfather Paradoxes? Right: that the output distribution should be the same as
the input one. We should impose the requirement that Deutsch calls causal consistency: the
computation within the CTC must map the input probability distribution to itself. In de-
terministic physics, we know that this sort of consistency can't always be achieved – that's
just another way of stating the Grandfather Paradox. But as soon as we go to probabilistic
theories, well, it's a basic fact that every Markov chain has at least one stationary distribu-
tion. In this case of the Grandfather Paradox, the unique solution is that you're born with
probability ½, and if you're born, you go back in time and kill your grandfather. Thus, the
probability that you go back in time and kill your grandfather is ½, and hence you're born
with probability ½. Everything is consistent; there's no paradox.

One thing that I like about Deutsch's resolution is that it immediately suggests a model

of computation. First, we get to choose a polynomial-size circuit C: {0, 1}n {0,
1}n. Then Nature chooses a probability distribution D over strings of length n such that
C(D) = D, and gives us a sample y drawn from D. (If there's more than one fixed point D,
then we'll suppose to be conservative that Nature makes her choice adversarially.) Finally,
we can perform an ordinary polynomial-time computation on the sample y. We'll call the
complexity class resulting from this model PCTC.

STUDENT: Shouldn't we be talking about BPPCTC, since P doesn't have access to any
randomness, whereas with closed timelike curves you have to have a distribution?

SCOTT: That's a tricky question–even with a fixed-point distribution, we can still re-
quire the CTC computer to produce a deterministic output (so that in essence, random-
ness is only used to avoid the Grandfather Paradox and not for any other purpose). On
the other hand, if you relax that requirement and let the answer have some probability
of error, it turns out that you get the same complexity class. That is, one can show that
PCTC = BPPCTC = PSPACE.

What can we say about this class? My first claim is that NP PCTC; that is, CTC
computers can solve NP-complete problems in polynomial time. Do you see why? More

concretely, suppose we have a Boolean formula φ in n variables, and we want to know if
there's a satisfying assignment. What should our circuit C do?

STUDENT: If the input is a satisfying assignment, spit it back out?
SCOTT: Good. And what if the input isn't a satisfying assignment?
STUDENT: Iterate to the next assignment?
SCOTT: Right! And go back to the beginning if you've reached the last assignment.

We'll just have this loop over all possible assignments, and we stop as soon as we get to a
satisfying one. Assuming there exists a satisfying assignment, the only stationary distribu-
tions will be concentrated on satisfying assignments. So when we sample from a stationary
distribution, we'll certainly see such an assignment. (If there are no satisfying assignments,
then the stationary distribution is uniform.)

We're assuming that Nature gives us this stationary distribution for free. Once we set up
the CTC, its evolution has to be causally consistent to avoid grandfather paradoxes. But
that means Nature has to solve a hard computational problem to make it consistent! That's
the key idea that we're exploiting.

Related to this algorithm for solving NP-complete problems is what Deutsch calls the
“knowledge creation paradox.” The paradox is best illustrated through the movie Star Trek
IV. The Enterprise crew has gone back in time to the present (meaning to 1986) in order to
find a humpback whale and transport it to the twenty-third century. But to build a tank for
the whale, they need a type of plexiglass that hasn't been invented yet. So in desperation,
they go to the company that will invent the plexiglass, and reveal the molecular formula to
that company. They then wonder: how did the company end up inventing the plexiglass?
Hmmmm...

Note that the knowledge creation paradox is a time travel paradox that's fundamentally
different from the Grandfather Paradox, because here there's no actual logical inconsisten-
cy. This paradox is purely one of computational complexity: somehow this hard computa-
tion gets performed, but where was the work put in? In the movie, somehow this plexiglass
gets invented without anyone ever having taken the time to invent it!

As a side note, my biggest pet peeve about time travel movies is how they always say,
“Be careful not to step on anything, or you might change the future!” “Make sure this guy
goes out with that girl like he was supposed to!” Dude – you might as well step on anything
you want. Just by disturbing the air molecules, you've already changed everything.

OK, so we can solve NP-complete problems efficiently using time travel. But can we do
more than that? What is the actual computational power of CTCs? I claim that, certainly,
PCTC is contained in PSPACE. Do you see why?

Well, we've got this exponentially large set of possible inputs x {0, 1}n to the cir-
cuit C, and our basic goal is to find an input x that eventually cycles around (that is, such

that C(x) = x, or C(C(x)) = x, or...). For then we'll have found a stationary distribution. But
finding such an x is clearly a PSPACE computation. For example, we can iterate over all
possible starting states x, and for each one apply C up to 2n times and see if we ever get
back to x. Certainly, this is in PSPACE.

My next claim is that PCTC is equal to PSPACE. That is, CTC computers can solve not
just NP-complete problems, but all problems in PSPACE. Why?

Well, let M0, M1,...be the successive configurations of a PSPACE machine M. Also, let
Macc be the “halt and accept” configuration of M, and let Mrej be the “halt and reject” con-
figuration. Our goal is to find which of these configurations the machine goes into. Note
that each of these configurations takes a polynomial number of bits to write down. Then,
we can define a polynomial-size circuit C that takes as input some configuration of M plus
some auxiliary bit b. The circuit will act as follows:

So, for each configuration that isn't the accepting or rejecting configuration, C increments
to the next configuration, leaving the auxiliary bit as it was. If it reaches an accepting con-
figuration, then it loops back to the beginning and sets the auxiliary bit to 1. Similarly, if it
reaches a rejecting configuration, then it loops back and sets the auxiliary bit to 0.

Now if we think about what's going on, we have two parallel computations: one with the
answer bit set to 0, the other with the answer bit set to 1. If the true answer is 0, then the
rejecting computation will go around in a loop, while the accepting computation will lead
into that loop. Likewise, if the true answer is 1, it's the accepting computation that will go
around in a loop. The only stationary distribution, then, is a uniform distribution over the
computation steps with b set to the correct answer. We can then read off a sample and look
at b, to find out whether the PSPACE machine accepts or rejects.

Thus, we can tightly characterize PCTC as equal to PSPACE. One way to think about it
is that having a CTC makes time and space equivalent as computational resources. In ret-
rospect, maybe we should have expected that all along, but we still have to show it!

Now, there's an obvious question that we have to ask: what if we have a quantum com-
puter acting inside the CTC? Obviously, we need to know the answer. How does this work?
Now we have a polynomial-sized quantum circuit instead of a classical circuit, and we say
that we have two sets of qubits: “CTC qubits” and “chronology-respecting qubits.” We can
do some quantum computation on both of them, but we're only really going to care about
the CTC qubits.

At this point I need to introduce a concept that we haven't seen so far in this book, that
of the superoperator. A superoperator is the most general type of operation allowed in
quantum mechanics; it includes both unitary transformations and measurements as special
cases. In fact, every superoperator can be thought of as just a giant unitary transformation,
involving the system we're acting on as well as a second, “ancilla” system (which, in some

cases, will look like it's “measuring” the first system). For this reason, superoperators don't
actually change the rules of quantum mechanics at all: they're just a convenient way to rep-
resent the effects on system A of a unitary transformation that might also involve some
other system B (which we don't care about at the moment). Roughly speaking, superoper-
ators are to unitary transformations as mixed states are to pure states.

Mathematically, a superoperator is a function S that maps a mixed state (i.e., density
matrix) ρ to another mixed state S(ρ). We'll assume for simplicity that ρ and S(ρ) live in the
same number of dimensions, though it's possible to relax even that rule. Then the rule is
that a superoperator must have the form

where

is the identity matrix.
Exercises for the non-lazy reader: Prove that superoperators always map valid mixed

states (that is, hermitian positive semi-definite matrices with trace 1) to other valid mixed
states. Give an example of a superoperator that (unlike a unitary transformation) can map
a pure state to a mixed state. For more of a challenge, prove that every unitary transforma-
tion possibly involving an ancilla system gives rise to some superoperator, and conversely
that every superoperator can be realized by a unitary transformation possibly involving an
ancilla system.

So, to return to the subject of CTCs, if we start with a global unitary transformation on
both the CTC and the causality-respecting qubits, then “trace out” (or ignore) the causality-
respecting ones, we're left with some induced superoperator S that acts on the CTC qubits.
Then, Nature will adversarially find a mixed state ρ that is a fixed point of S: i.e., such that

S(ρ) = ρ. It's not always possible to find a pure state ρ = |ψ ψ| with that property, but by
basic linear algebra (Deutsch worked out the details) there is always such a mixed state.

Exercise for the non-lazy reader: Prove this.
Here, ρ is a state just over the CTC qubits. The only real reason for the other qubits is

that, without them, the superoperator would always be unitary, in which case the maxim-
ally mixed state I would always be fixed point. And that would trivialize the model.

As a general principle, quantum computers can simulate classical ones, and (as is easily
shown) it's no different when we throw in CTCs. So we can certainly say that BQPCTC
contains PSPACE. But what's an upper bound on BQPCTC?

EXPSPACE would certainly work. Can you give a better upper bound?
So we're given an n-qubit superoperator (specified implicitly by a circuit), and we want

to find a fixed point of it. This is basically a linear algebra problem. We know that you
can do linear algebra in time polynomial in the dimension of the Hilbert space, which in
this case is 2n. This implies that we can simulate BQPCTC in EXP. So we now have that
BQPCTC is somewhere between PSPACE and EXP. In my survey paper on “NP-complete
problems and physical reality,”3 pinning this down further was the main technical open
problem!

Around 2008, John Watrous and I were able to solve the problem.4 Our result was that
BQPCTC = PCTC = PSPACE. In other words, if CTCs existed, then quantum computers
would be no more powerful than classical ones.

STUDENT: Do we know anything about other classes with closed timelike curves?
Like PSPACECTC?

SCOTT: That one is going to be PSPACE again. On the other hand, you can't just
take any complexity class and append a CTC to it. You have to say what that means,
and for some classes (like NP) it won't even make any sense.

In the last part of the chapter, I can give you a little hint of why BQPCTC
PSPACE. Given a superoperator S that's described by a polynomial-size quantum circuit,
which maps n qubits to n qubits, our goal is to compute a mixed state ρ such that S(ρ) = ρ.
We won't be able to write down ρ explicitly (it would be far too large to fit in a PSPACE
machine's memory), but all we're really aiming to do is to simulate the result of some
polynomial-time computation that could have been performed on ρ.

Let vec(ρ) be the “vectorization” of ρ (a vector with 22n components, one for each matrix
entry of ρ). Then there exists a 22n × 22n matrix M such that, for all ρ, S(ρ) = ρ if and only
if M vec(ρ) = vec(ρ). In other words, we can just expand everything out from matrices to
vectors, and then our goal is to find a +1 eigenvector of M.

Define P := limz 1(1 - z)(I - zM)-1. Then by Taylor expansion

MP = M limz 1(1 - z)(I + zM + z2M2 + ···)

= limz 1(1 - z)(M + zM2 + z2M3 + ···)

= limz 1(1 - z)/z(zM + z2M2 + z3M3 + ···)

= limz 1(1 - z)/z[(I - zM)-1 - I]

= limz 1(1 - z)/z(I - zM)-1

= limz 1(1 - z)(I - zM)-1

= P.
In other words, P projects onto fixed points of M. For all v, M(Pv) = (Pv).
So now all we need to do is start with some arbitrary vector v – say, vec(I) where I is the

maximally mixed state – and then compute:

But how do we do apply this matrix P in PSPACE? Well, we can apply M in PSPACE
since it's just a polynomial-time quantum computation. But what about taking a matrix in-
verse? Here, we borrow something from computational linear algebra. Csanky's algorithm,
proposed in the 1970s, lets us compute the inverse of an n × n matrix not merely in poly-
nomial time, but by a circuit of depth log2n. Similar algorithms are actually used in prac-
tice today, for example, when doing scientific computing with lots of parallel processors.
Now, “shifting everything up” by an exponential, we find that it's possible to invert a
22n × 22n matrix using a circuit of size 2O(n) and depth O(n2). But computing the output
of an exponential-size, polynomial-depth circuit (which is described to us implicitly) is a
PSPACE computation – in fact it's PSPACE-complete. As a final step, one can take the

limit as z 1 using algebraic rules, and some further tricks due to Beame, Cook,
and Hoover.5

Obviously, I’m skipping a lot of details.
There's an additional point an additional point that needs to be argued: that this P always

projects onto the vectorization of a density matrix. If you look at the power series above,
each individual term maps a vectorization of a density matrix onto another such vectoriz-
ation, so the sum has to project onto vectorizations of density matrices as well. (Well, you
might worry about the normalization, but that works out also.)

Since I first wrote this chapter in 2006, there have been some interesting further devel-
opments in the tale of CTC computation – so, I now feel like I should “travel back in time”
to report about them! First, a debate erupted in the quantum computing community about

whether Deutsch's causal consistency model is really the “right” way to think about CTCs.
It started with a paper by Bennett et al.6 who pointed out that Deutsch's framework fails
to respect the “statistical interpretation of mixed states.” In other words, if you feed a state
ρ = (ρ1 + ρ2)/2 as input to a CTC computer, the result might not be the same as if you feed
ρ1 with probability ½ and ρ2 with probability ½. The problem is particularly severe if you
imagine that the input to the CTC is just one half of some larger entangled state – in that
case, there's no well-defined prescription for what the CTC computer should do. On the
one hand, you could argue that this is completely unsurprising: after all, the whole point
of a CTC computer would be to solve hard problems by breaking the linearity of quantum
mechanics or even classical probability theory! And when you break linearity, you're ask-
ing for precisely this sort of ill-definedness. On the other hand, it is indeed pretty unpleas-
ant to have one's face rubbed in the ill-definedness.

So, what do Bennett et al. propose as an alternative? Their prescription is that, if you
want to talk about CTCs at all, then you need to assume that what happens inside the CTC
isn't causally affected by anything in the entire rest of the universe. And thus, the output
states of CTCs could be useful as “quantum advice states” (see Chapter 14), but not as
anything more than that. So Bennett and others' analog of the complexity class BQPCTC
is actually a subclass of BQP/qpoly. My own reaction is that, sure, you can do this, but
it basically amounts to defining CTCs out of existence! In other words, while Deutschian
CTCs are indeed “diseased” in serious ways, this seems to me like a perfect example of a
medicine that ends the disease only by killing the patient. If we remove CTCs from the dy-
namics – if we stipulate that Nature can hand you certain static “advice states,” which you
can interpret (if you like) as the fixed points of superoperators, but you don't get to specify
your own superoperator S and have Nature find a fixed point of S for you – then one can
ask, in what sense are we still talking about CTCs at all?

A second major salvo in the CTC wars came with a paper by Lloyd et al.7 in 2009.
Unlike Bennett et al., these authors didn't want to “define CTCs out of existence,” but
they gave a formal model for how they work that was extremely different from Deutsch's.

Putting a pure state |ψ into a closed timelike curve basically just means that you apply

some transformation to |ψ , then you perform a projective measurement, then you postse-

lect on getting back the same state |ψ that you started with. If the postselection succeeds,

then you're allowed to say that |ψ has “travelled through time and met up with its past
self.” So, this gives rise to a complexity class that's contained in PostBQP, or postselec-
ted quantum polynomial time. Indeed, it's not hard to show that you get exactly PostBQP,

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos592311

which, by my PostBQP = PP theorem (see Chapter 18), means you get exactly PP, be-
lieved to be larger than NP but properly contained in PSPACE. Lloyd et al. actually ar-
gue that their model is more “reasonable” than Deutsch's, because Deutsch's lets you solve
PSPACE-complete problems with polynomial resources, whereas theirs “merely” lets you
solve PP-complete problems! On the other hand, there's also a clear sense in which their
model is less reasonable: namely, there can easily be postselected measurements that suc-

ceed with probability zero. (For example, if you start with a qubit in state |0 , then apply a

NOT to it, then measure in the {|0 ,|1 } basis, you'll never find it back in its initial state.)
For this reason, the model of Lloyd et al. can't be said to “resolve the grandfather para-
dox” in the same way Deutsch's does. Indeed, the only way to deal with grandfather para-
doxes is to assume that small errors always cause postselected measurements to succeed
with nonzero probability, the analog of the old idea that “if you go back in time and try to
kill your grandfather, you'll always find that the gun jams, or something else mysteriously
prevents you.” (More about that shortly.)

My own view is that Lloyd et al. are talking less about CTCs themselves than about
certain postselected quantum-mechanical experiments that “simulate” or “model” CTCs.
(Indeed, one feature of the model of Lloyd et al. is that, at least with small numbers of
qubits and moderately large postselection success probabilities, you can actually do the
requisite experiments. The experiments were in fact done,8 leading both to the entirely
predictable results and to the entirely predictable misunderstandings by the popular press,
which dutifully reported that physicists had now experimentally demonstrated a quantum
time machine.)

Probably the biggest change in my own thinking about CTC computation came as a res-
ult of understanding a point that Deutsch had discussed in his original CTC paper. Inex-
cusably, though, I overlooked this point until much later, when I gave a talk about the
BQPCTC = PSPACE theorem, and the philosopher of science Tim Maudlin (who was in
the audience) forced me to come to terms with the point. The point is the following: even
if (1) the laws of physics let us implement any polynomial-size circuit C we want, and (2)
finding the fixed point of an arbitrary polynomial-size circuit is a PSPACE-complete prob-
lem, that still doesn't directly imply that we could use CTCs to solve PSPACE-complete
problems.

The problem is that the simulation of the abstract circuit C by the “real” laws of physics,
even if it works fine in a non-CTC world, might not preserve the preserve the property that
finding fixed points is PSPACE-complete. In other words, the laws of physics that we're us-
ing to implement C might always allow an “out” – for example, an asteroid destroying the
computer or the computer mysteriously never turning on – that maintain causal consistency

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos782588

inside the CTC without ever needing to run C. (This, of course, is the computational ana-
log of “the gun jamming” when you go back in time to try to kill your grandfather.) If so,
then when you run your CTC computer, you might always just get one of these spurious,
easy-to-find, computationally uninteresting fixed points.

Now, you might object that even in ordinary life, without time travel, there's always the
possibility of an asteroid hitting our computer, or some other unforeseen calamity caus-
ing our “real” computation to diverge from our abstract mathematical model of it! Yet we
normally don't take that obvious fact to have relevance for complexity theory, or to mean
that the laws of physics don't support universal computation at all. So why is the situation
different with CTCs in the picture? Because now we're doing something new and exotic:
asking Nature to find a fixed point of a given physical evolution, but not specifying which
fixed point. That being so, if there are “doofus” fixed points lying around – ones that don't
correspond to any fixed point of the original circuit C being simulated, and don't require
solving any hard computational problem – then why shouldn't Nature be lazy and choose
one of those, rather than one of the “hard” fixed points? If so, then in the presence of CTCs,
“mysterious” computer failures would be the norm rather than an exotic aberration.

To solve this problem, one would need to show that finding a fixed point of the uni-
verse's actual evolution equations – given by the Standard Model, quantum gravity, or
whatever – is a PSPACE-complete problem (and also that it's possible in principle to set
up the requisite initial states). Crucially, it's not enough here to point out that the laws of
physics are Turing universal, because it's easy to construct toy examples of “physical laws”
that are Turing universal, yet for which fixed points are easy to find. (To illustrate, imagine
that every physical system contained a “control bit” b, and that the universe ran a universal
computation if b = 1 or applied the identity map if b = 0. Such a universe would be as cap-
able of universal computation as ours is, yet it could always return doofus fixed points by
setting b = 0.) What my and Watrous's result showed was simply that there exist computa-
tionally efficient laws for which finding fixed points is a hard computational problem, but
it remains open whether our actual universe's laws are among them.

Interestingly, Deutsch's view is that CTCs must not enable the solution of hard computa-
tional problems. For if they did, then they would violate what Deutsch calls the “Evolution-
ary Principle”: the principle that “knowledge can only come into existence via evolutionary
processes” (or, translated into computer-science terms, that NP-complete and similar prob-
lems shouldn't be “solvable as if by magic”). Thus, Deutsch would say that the final laws
of physics, whatever they are, will necessarily admit these doofus fixed points, thereby pre-
venting Nature from having to solve a PSPACE-complete problem to ensure consistency
around a CTC. Personally, I find this a strange way to argue. If CTCs existed, it's obvi-
ous that they would force us to reevaluate pretty much everything we thought we under-
stood about space, time, causality, and more. What on earth makes Deutsch so confident
that the Evolutionary Principle would survive such an upheaval, when so many other basic-

seeming intuitions would not? Conversely, why not uphold the Evolutionary Principle, and
much else besides, by simply conjecturing that CTCs can't exist – a conjecture that seems
perfectly compatible with everything we know?

As usual, I’ll end with a puzzle for next chapter. Suppose you can only fit a single bit at
a time through a CTC. You can make as many CTCs as you like, but you can only send one
bit through each, not a polynomial number of bits. (After all, we don't want to be extravag-
ant!) In this alternate model, can you solve NP-complete problems in polynomial time?

1 For an accessible introduction to this topic, see K. Thorne, Black Holes and Time Warps:
Einstein's Outrageous Legacy, W. W. Norton & Company, 1995 (reprint edition).
2 David Deutsch, Quantum mechanics near closed timelike lines. Physical Review D 44
(1991), 3197–3217.
3 http://www.scottaaronson.com/papers/npcomplete.pdf
4 S. Aaronson and J. Watrous, Closed timelike curves make quantum and classical com-
puting equivalent. In Proceedings of the Royal Society A, 465 (2009), 631–647. ht-
tp://arxiv.org/abs/0808.2669
5 P. Beame, S. A. Cook, and H. J. Hoover, Log depth circuits for division and related prob-
lems. SIAM Journal on Computing, 15:4 (1986), 994–1003.
6 C. H. Bennett, D. Leung, G. Smith, and J. A. Smolin, Can closed timelike curves or non-
linear quantum mechanics improve quantum state discrimination or help solve hard prob-
lems? Physical Review Letters 103 (2009), 170502. http://arxiv.org/abs/0908.3023
7 S. Lloyd, L. Maccone, R. Garcia-Patron, V. Giovannetti, and Y. Shikano, The quantum
mechanics of time travel through post-selected teleportation. Physical Review D, 84 (2011),
025007. http://arxiv.org/abs/1007.2615
8 http://arxiv.org/abs/1005.2219

http://www.scottaaronson.com/papers/npcomplete.pdf
http://arxiv.org/abs/0808.2669
http://arxiv.org/abs/0808.2669
http://arxiv.org/abs/0908.3023
http://arxiv.org/abs/1007.2615
http://arxiv.org/abs/1005.2219

21 Cosmology and complexity

Puzzle from last chapter: What can you compute with “narrow” CTCs that only send one bit
back in time?

Solution: let x be a chronology-respecting bit, and let y be a CTC bit. Then, set x := x

y and y := x. Suppose that Pr[x = 1] = p and Pr[y = 1] = q. Then, causal consistency

implies p = q. Hence, Pr[x y = 1] = p(1 - q) + q(1 - p) = 2p(1 - p).
So we can start with p exponentially small, and then repeatedly amplify it. We can thereby

solve NP-complete problems in polynomial time (and indeed PP ones also, provided we
have a quantum computer).

I’ll start with the “New York Times model” of cosmology – that is, the thing that you read
about in popular articles until fairly recently – which says that everything depends on the
density of matter in the universe. There's this parameter Ω which represents the mass dens-
ity of the universe, and if it's greater than unity, the universe is closed. That is, the matter
density of the universe is high enough that, after the Big Bang, there has to be a Big Crunch.
Furthermore, if Ω > 1, spacetime has a spherical geometry (positive curvature). If Ω = 1, the
geometry of spacetime is flat and there's no Big Crunch. If Ω < 1, then the universe is open,
and has a hyperbolic geometry. The view was that these are the three cases.

Today, we know that this model is wrong in at least two ways. The first way it's wrong
is of course that it ignores the cosmological constant. As far as astronomers can see, space
is roughly flat. That is, no one has detected a nontrivial spacetime curvature at the scale of
the universe. There could be some curvature, but if there is, then it's pretty small. The old
picture would therefore lead you to think that the universe must be poised on the brink of
a Big Crunch: change the matter density just a tiny bit, and you could get a spherical uni-
verse that collapses or a hyperbolic one that expands forever. But in fact, the universe is not
anywhere near the regime where there would be a Big Crunch. Why are we safe? Well, you
have to look at what the energy density of the universe is made up of. There's matter, in-
cluding ordinary matter as well as dark matter, there's radiation, and then there's the famous
cosmological constant detected a decade ago, which describes the energy density of empty
space. Their (normalized) sum Ω seems to equal unity as far as anyone can measure, which
is what makes space flat, but the cosmological constant Λ is not zero, as had been assumed
for most of the twentieth century. In fact, about 70% of the energy density of the observable
universe (in this period of time) is due to the cosmological constant.

Along the diagonal black line is where space is flat. This is where the energy densities
due to the cosmological constant and matter sum to unity. In the previous view, there was
no cosmological constant, and space was flat, and so we're at the intersection of the two
solid black lines. You can see the other solid black line slowly starts curving up. If you're
above this line, then the universe expands forever, whereas if you're below this line, then
the universe recollapses. So if you're at the intersection, then you really are right at the

brink between expanding and collapsing. But, given that 70% of the energy density of the
universe is due to Λ, you can see that we're somewhere around the intersection of the diag-
onal line with the blue oval – i.e., nowhere near where we recollapse.

But that's only one thing that's wrong with the simple “spherical/flat/hyperbolic” tricho-
tomy. Another thing wrong with it is that the geometry of the universe and its topology are
two separate questions. Just assuming the universe is flat doesn't imply that it's infinite. If
the universe had a constant positive curvature, that would imply it was finite. Picture the
Earth; on learning that it has a constant positive curvature, you would conclude it's round. I
mean, yes, it could curve off to infinity where you can't see it, but assuming it's homogen-
eous in curvature, mathematically it has to curve around in either a sphere or some other
more complicated finite shape. If space is flat, however, that doesn't tell you whether it's is
finite or infinite. It could be like one of the video games where when you go off one end
of the screen, you reappear on the other end. That's perfectly compatible with geometric
flatness, but would correspond to a closed topology. The answer, then, to whether the uni-
verse is finite or infinite, is unfortunately that we don't know. (For more, see this paper1 by
Cornish and Weeks.)

STUDENT: But with positive curvature, you could have something that tapers off in-
finitely like a paraboloid.

SCOTT: Yes, but that wouldn't be uniform positive curvature. Uniform means that the
curvature is the same everywhere.

STUDENT: It seems like what's missing in all these pictures so far is time. Are we
saying that time started at some fixed point, or that time goes all the way back to neg-
ative infinity?

SCOTT: All of these pictures assume that there was a Big Bang, right? All of these
are Big Bang cosmologies.

STUDENT: So if time started at some finite point, then time is finite. But relativity
tells us that there's really no difference between space and time, right?

SCOTT: No, it doesn't tell us that. It tells us that time and space are interrelated in a
nontrivial way, but time has a different metric signature than space. As an aside, this is
one of my pet peeves. I actually had a physicist ask me once how P could be different
from PSPACE since “relativity tells us that time and space are the same.” Well, the
point is that time has a negative signature. This is related to the fact that you can go
backward and forward in space, but you can only go forward in time. We talked in the
last chapter about CTCs. The point about CTCs is that they would let you go back-
ward in time and as a consequence, time and space really would become equivalent as
computational resources. But as long as you can only go one direction in time, it's not
the same as space.

STUDENT: So can we go far in space enough to loop around?

SCOTT: If your arm was long enough, could you stretch it out in front of you and
punch yourself in the back of your head? As I was saying, the answer is that we don't
know.

STUDENT: As far as the spread of mass is concerned, I think that people believe that
is finite, because of the Big Bang.

SCOTT: That's a misconception about the Big Bang. The Big Bang is not something
that happens at one point in space; the Big Bang is the event that creates spacetime
itself. The standard analogy is that the galaxies are little spots on a balloon, and as
the balloon expands, it's not that the spots are rushing away from each other, it's that
the balloon is getting bigger. If spacetime is open, then it could well be that instead of
just having a bunch of matter crowded around, you've actually got an infinite amount
of matter at the moment of the Big Bang. As time goes by, the infinite universe gets
stretched out, but at any point in time, it would still go on infinitely. If you look at
our local horizon, we see things rushing away from each other, but that's just because
we can't go past that horizon and see what's beyond it. So the Big Bang isn't some
explosion that happened at some time and place; it's just the beginning of the whole
manifold.

STUDENT: But then shouldn't the mass/energy not spread out faster than the speed of
light?

SCOTT: That's another great question; I’m glad to have something I can actually ex-
plain! Within a fixed reference frame, you can have two points appearing to recede
from each other faster than light, but the reason is they appear to recede is just that the
intervening space is expanding. Indeed, the empirical fact is that faraway galaxies do
rush away from each other faster than light. What's limited by the speed of light is the
speed with which an ant can move along the surface of the expanding balloon – not
the expansion speed of the balloon itself.

STUDENT: So would it be possible to observe an object moving away faster than the
speed of light?

SCOTT: Well, if some light was emitted a long time ago (say, shortly after the Big
Bang), then by the time that light reaches us, we may be able to infer that the galaxy
the light came from must now be receding away from us faster than the speed of light.

STUDENT: Can two galaxies move toward each other faster than the speed of light?
SCOTT: In a collapse, yes.
STUDENT: How do we avoid all the old paradoxes that come with allowing objects

to move faster than the speed of light?
SCOTT: In other words, why doesn't faster-than-light expansion or contraction cause

causality problems? See, this is where I start having to defer to people who actually
understand GR. But let me take a shot: there are certainly possible geometries of
spacetime – for example, those involving wormholes, or Gödel's rotating universe –

that do have causality problems. But what about the actual geometry we live in? Here,
things are just receding away from each other, which is not something you can actu-
ally use to send signals faster than light. What you can get, in our geometry, are ob-
jects that are so far away from each other that naïvely they should “never have been
in causal contact,” but nevertheless seem like they must have been. So, the hypothesis
is that there was a period of rapid inflation in the extremely early universe, so that ob-
jects could reach equilibrium with each other and only then be causally separated by
inflation.

So what is this cosmological constant? Basically, a kind of antigravity. It's something that
causes two given points in spacetime to recede away from each other at an exponential rate.
What's the obvious problem with that? As the Woody Allen character's mother told him,
“Brooklyn is not expanding.” If this expansion is such an important force in the universe,
why doesn't it matter within our own planet or galaxy? Because on the scale that we live,
there are other forces like gravity that are constantly counteracting the expansion. Imagine
two magnets on the surface of a slowly expanding balloon: even though the balloon is ex-
panding, the magnets still stick together. It's only on the scale of the entire universe that the
cosmological constant is able to win over gravity.

You can talk about this in terms of the scale factor of the universe. Let's measure the
time t since the beginning of the universe in the rest frame of the cosmic background ra-
diation (the usual trick). How “big” is the universe as a function of t? Or to put it more
carefully, given two test points, how has the distance between them changed as a function
of time? The hypothesis behind inflation is that at the very beginning – at the Big Bang –
there's this enormous exponential growth for a few Planck times. Following that, you've
got some expansion, but also have gravity trying to pull the universe together. It works out
there that the scale factor increases as t2/3. Ten billion years after the Big Bang, when life
is first starting to form on Earth, the cosmological constant starts winning out over gravity.
After this, it's just exponential all the way, like in the very beginning but not as fast.

It's an interesting question as to why we should be alive at a time when the cosmological
constant is 70% and matter is 30% of the energy density. Why shouldn't one of them be
almost all and the other negligible? Why should we be living in the small window where
they're both of the same order of magnitude? One argument you can make is the anthropic
one: if we were in a later epoch, then there'd maybe be two or three of us here, and the rest
of us would be outside of the cosmological horizon. The universe would be a much thinner
place.

So that's how physicists would describe the cosmological constant, but how I would de-
scribe it is just the inverse of the number of bits that can ever be used in a computation!
More precisely:

In Planck units, the cosmological constant is about 10-121, and so we find that 10122 is
about the maximum number of bits that could ever be used in a computation in the physical
world. (We're going to get later to what exactly we mean by the maximum number of bits
that can be involved in a computation.) How do we get to that interpretation of the cosmo-
logical constant?

STUDENT: What's the definition of the cosmological constant?
SCOTT: It's the vacuum energy. Again, this is physics. People don't define things,

they observe them. They don't actually know what this vacuum energy is, they just

know it's there. It's an energy of empty space, and could have many different possible
origins.

STUDENT: An average?
SCOTT: Well, yes, but it seems to be very close to constant wherever people can

measure it and also seems to be very constant over time. No one has found any de-
viation from the assumption that it's the same everywhere. One way to think of it is
that, in a vacuum, there's always these particle/antiparticle pairs forming and annihil-
ating each other. Empty space is an extremely complicated thing! So maybe it's not so
surprising that it should have a nonzero energy. Indeed, the hard problem in quantum
field theory is not to explain why there's a cosmological constant, but rather to explain
why it isn't 10120 times larger than it is! A naïve quantum field theory argument gives
you a prediction that the entire universe should just blow apart in an instant.

STUDENT: So is this ΩΛ?
SCOTT: No, ΩΛ is the fraction of the total energy density that's composed of the cos-

mological constant. So that also depends on the matter density, and unlike Λ itself it
can change with time.

To see what any of this has to do with computation, we have to take a detour into the
holographic bound. This is one of the few things that seems to be known about quantum
gravity, with the string theorists and loop quantum gravity people actually agreeing. Plus
it's a bound, which is a language I speak. My treatment will follow a nice survey paper2 by
Bousso. I’m going to make this assigned reading, but only for the physicists. We saw way

back that there's this Planck area p
2 = G /c3. You can get it by combining a bunch of

physical constants together until the units cancel such that you get length squared. Planck
himself did that back around 1900. This is clearly very deep, because you're throwing to-
gether Newton's constant, Planck's constant and the speed of light and you're getting an
area scale which is on the order of 10-69 m2.

The holographic bound says that, in any region of spacetime, the amount of entropy that
you can put in the region – or up to a small constant, the number of bits you can store in
it – is at most the surface area of the region measured in Planck units divided by 4. This is
the surprising part: the number of bits you can store doesn't grow with the volume, it grows
with the surface area. I can show you a derivation of this (or rather, what the physicists take
to be a derivation).

STUDENT: Does the derivation tell you why you divide by 4 and not, say, 3?
SCOTT: The string theorists believe they have an explanation of that. It's one big

success that they like to lord over other quantum gravity approaches! For the loop
quantum gravity people, the constant comes out wrong and they have to adjust it by

hand by what they call the Immirzi parameter. (Note added: since 2006, there have
been claims by the LQG camp to have solved this problem.)

The rough intuition is that, if you try to build a cube of bits (say, a hard disk) and keep
making it bigger and bigger, then it's eventually going to collapse to a black hole. At that
point, you can still put more bits in it, but when you do that, the information just sort of
gloms onto the event horizon in a way that people don't fully understand. But however it
happens, from that point on, the information content is just going to increase like the sur-
face area.

To “derive” this, the first ingredient we need is the so-called Bekenstein bound. Beken-
stein was the guy who back in the 1970s realized that black holes should have an entropy.
Why? If there's no entropy and you drop something into a black hole, it disappears, which
would seem to violate the Second Law of Thermodynamics. Furthermore, black holes ex-
hibit all sorts of unidirectional properties: you can drop something in a black hole but you
can't get it out, or you can merge two black holes and get a bigger one but then you can't
split one black hole into multiple smaller black holes. This unidirectionality is extremely
reminiscent of entropy. This is obvious in retrospect; even someone like me can see it in
retrospect.

So what is this Bekenstein bound? It says that in Planck units, the entropy S of any given
region satisfies

where k is Boltzmann's constant, E is the energy of the region, and R is the radius of
the region (again, in Planck units). Why is this true? Basically, this formula combines π,
Boltzmann's constant, Planck's constant and the speed of light. It has to be true. (I’m learn-
ing to think like a physicist. Kidding!) Seriously, it comes from a thought experiment where
you drop some blob of stuff into the black hole and figure out how much the temperature
of the black hole must increase (using physics we won't go into), and then use the rela-
tion between temperature and entropy to figure out how much the entropy of the black hole
must have increased. You then apply the Second Law and say that the blob you dropped
in must have had at most the entropy gained by the black hole. For otherwise, the total en-
tropy of the universe would have decreased, contradicting the Second Law.

STUDENT: Doesn't the area go like the square of the radius?
SCOTT: It does.
STUDENT: Then why should R appear in the Bekenstein bound and not R2?
SCOTT: We're getting to that!

That's fact one. Fact two is the Schwarzschild bound, which says that the energy of a

system can be at most proportional to its radius. In Planck units, E R/2. This is again
because, if you were to pack matter/energy more densely than that, it would eventually col-
lapse to a black hole. If you want to build a hard disk where each bit takes a fixed amount
of energy to represent, then you can make a one-dimensional Turing tape which could go
on indefinitely, but if you tried to make it even two dimensional, then when it became big
enough it would collapse to a black hole. The radius of a black hole is proportional to its
mass (its energy) by this relationship. You could say that a black hole gives you the most
bang for your buck in terms of having the most energy in a given radius. So black holes
are maximal in at least two senses: they have the most energy per radius and also the most
entropy per radius.

Now, if you accept these two facts, then you can put them together:

That is, the entropy of any region is at most the surface area in Planck units divided by 4.
As for explaining why we divide A by 4, in effect we've reduced the problem to explaining

why E R/2. The π goes away since the surface area of a sphere is 4πR2.
There actually is a problem with the holographic bound as I’ve stated it – it clearly fails

in some cases. One of them would be a closed spacetime. Let's say that space is closed – if
you go far enough in one direction you appear back in another direction – and let's say that
this region here can be at most proportional to the surface area. But how do I know that this
is the inside? There's a joke where a farmer hires a mathematician to build a fence in as ef-
ficient a fashion as possible – that is, to build a fence with the most area inside given some
perimeter. So the mathematician builds a tiny circle of fence, steps inside and declares the
rest of the Earth to be outside. Maybe the whole rest of the universe is the inside! Clearly,
the amount of entropy in the entire rest of the universe could be more than the surface area
of this tiny little black hole, or whatever else it is. In general, the problem with the holo-
graphic bound is that it is not “relativistically covariant.” You could have the same surface
area, and in one reference frame the holographic bound is true, whereas in another it might
fail.

Anyway, it appears that Bousso and others have essentially solved these problems. The
way they do it is by looking at “null hypersurfaces,” which are made up of paths traced by
photons (geodesics). These are relativistically invariant. So the idea is that you have some
region, and you look at the light rays emanating from the surface of the region. Then, you
define the inside of the region to be the direction in which the light rays are converging
upon each other. One advantage of doing it this way is that you can switch to another refer-
ence frame, but these geodesics are unchanged. On this account, the way you should inter-
pret the holographic bound is as upper bounding the amount of entropy you could see in the
region if you could travel from the surface inward at the speed of light. In other words, the
entropy being upper bounded is the entropy you would see along these null hypersurfaces.
Doing it this way seems to solve the problems.

So what does any of this have to do with computation? You might say that if the universe
is infinite, then clearly in principle you could perform an arbitrarily long computation. You
just need enough Turing machine tape. What's the problem with that argument?

STUDENT: The tape would collapse to a black hole?
SCOTT: As I said, you could just have a one-dimensional tape, and that could be ex-

tended arbitrarily.
STUDENT: What if the tape starts receding away from you?
SCOTT: Right! Your bits are right there, then after you turn your back for just a few

tens of billions of years, they've receded beyond your cosmological horizon due to the
expansion of the universe.

The point is, it's not enough just to have all of these bits available in the universe some-
where. You have to be able to control all of them – you have to be able to set them all –
and then you need to be able to access them later while performing a computation. Bousso
formalizes this notion with what he calls a “causal diamond,” but I’d just call it a compu-
tation with an input and an output. The idea is you have some starting point P and some
endpoint Q, and then you look at the intersection of the forward light cone of P and the past
light cone of Q. That's a causal diamond.

The idea is that for any experiment we could actually perform – any computation we
could actually do – we're going to have to have some starting point of the experiment, and
some end point where you collect the data (read the output). What's relevant isn't the total
amount of entropy in the universe, but just the total amount of entropy that can be contained
in one of these causal diamonds. So now, Bousso has this other paper3 where he argues that
if you're in a de Sitter space – that is, a space with a cosmological constant, like the space
we seem to live in – then, the amount of entropy that can be contained in one of these caus-
al diamonds is at most 3π/Λ. That's why, in our universe, there's the bound of around 10122

bits. The point is that the universe is expanding at an exponential rate, and so a point that's
at the edge of our horizon now will be, after another 15 billion years or so (another age of
the universe), a constant factor as far away as it is now.

STUDENT: So where do you place P and Q to get that number?

SCOTT: You could put them anywhere. You're maximizing over all P and Q. That's
really the key point here.

STUDENT: Then where does the maximum occur?
SCOTT: Well, pick P wherever you like, then pick Q maybe a couple tens of billions

of years in its causal future. If you don't wrap your computation up after 20 billion
years or so, then the data at the other end of your memory is going to recede past your
cosmological horizon. You can't actually build a working computer whose radius is
more than 20 billion light years or whatever. It's depressing, but true.

STUDENT: Does Λ change with time?
SCOTT: The prevailing belief is that it doesn't change with time. It might, but there

are pretty strong experimental constraints on how much. Now the proportion ΩΛ of
the energy density taken up by Λ, that is changing. As the universe gets more and
more dilute, the proportion of the energy taken up byΛgets bigger and bigger, even
thoughΛitself stays the same.

STUDENT: But the radius of the universe is changing.
SCOTT: Yes. In our current epoch, we get to see a larger and larger amount of the

past as light reaches us from farther and farther away. But once Λ starts winning out
over matter, the radius of the observable universe will reach a steady state of 10 bil-
lion light years or whatever it is.

STUDENT: Why is it 10 billion light years?
SCOTT: Because that's the distance such that something that far away from you will

appear to be receding away from you at the speed of light, if there's no countervailing
influence of gravity.

STUDENT: So it's just a coincidence that that distance happens to be about the current
size of the observable universe?

SCOTT: Either a coincidence or something deeper that we don't fully understand yet!
This is fine, but I promised you that I’d talk about computational complexity. Well, if

the holographic bound combined with the cosmological constant put a finite upper bound
on the number of bits in any possible computation, then you might argue that we can only
solve problems that are solvable in constant time! And you might feel that in some sense,
this trivializes all of complexity theory. Fortunately, there's an elegant way out of that: we
say that now we're interested in asymptotics not just in n (the size of the input), but in 1/Λ.
Forget for now that Λ has a known (tiny) value, and think of it as a varying parameter –
then complexity theory comes back! Taking that point of view, let me make the following
claim: suppose the universe is (1 + 1) dimensional (that is, one space and one time dimen-
sion) and has cosmological constant Λ. Then the class of problems that we can solve is
contained in DSPACE(1/Λ): the class of problems solvable by a deterministic Turing ma-
chine using ~1/Λ tape squares. In fact it's equal to DSPACE(1/Λ), depending on what as-

sumptions you want to make about the physics. Certainly, it at least contains DSPACE(1/

).
First of all, why can't we do more than DSPACE(1/Λ)?
Well, to be more formal, let me define a model of computation that I’ll call the Cosmo-

logical Constant Turing machine. In this model, you've got an infinite Turing machine tape,
but now at every time step, between every two squares, there's an independent probability
Λ of a new square forming with a ‘*’ symbol in it. As a first pass, this seems like a reason-
able model for how Λ would affect computation. Now, if your tape head is at some square,
the squares at a distance 1/Λ will appear to be receding away from the tape head at a rate
of one square per time step on average. So, you can't hope to ever journey to those squares.
Every time you step toward them, a new square will probably be born in the intervening
space. (You can think of the speed of light in this model as one tape square per time step.)
So, the class of problems you can solve will be contained in DSPACE(1/Λ), since you can
always just record the contents of the squares that are within 1/Λ of the current position of
the tape head, and ignore the other squares.

But can we actually achieve DSPACE(1/Λ)? You might imagine a very simple algorithm
for doing so. Namely, just think of your 1/Λ bits as a herd of cattle that keep wandering
away from each other. You have to keep lassoing them together like a cosmological cow-
boy. In other words, your tape head will just keep going back and forth, compressing the
bits together as they try to spread out while simultaneously performing the computation
on them. Now, the question is, can you actually lasso the bits together in time O(1/Λ)? I
haven't written out a proof of this, but I don't think it's possible in less than ~1/Λ2 time with
a standard Turing machine head (one without, e.g., the ability to delete tape squares). On

the other hand, certainly you can lasso ~1/ bits in O(1/Λ) time. You can therefore

compute DSPACE(1/). I conjecture that this is tight.
A second interesting point is that in two or more dimensions you don't get the same pic-

ture. In two dimensions, the radius still doubles on a timescale of about 1/Λ, but even to
visit all the bits that need to be lassoed now takes on the order of 1/Λ2 time. And so we can
ask if there is something you can do on a 2-D square grid in time 1/Λ which you couldn't
do in time 1/Λ on a 1-D tape. You've got this 1/Λ2 space here, and intuitively you'd think
that you can't make use of more than 1/Λ of the tape squares in 1/Λ time, but it's not clear
if that's actually true. Of course, for added fun, you can also ask all of these questions for
quantum Turing machines.

The other thing you can ask about is query complexity in this model. For example, what
if you lost your keys and they could be anywhere in the universe? If your keys are some-
where within your cosmological horizon, and your space has one dimension, then in prin-

ciple you can find them. You can traverse the entire space within your horizon in time O(1/
Λ). But in two dimensions, the number of locations you can check before most of the ob-
servable universe has receded is only like the square root of the number of possible loca-
tions. You can pick some faraway place to go, take a journey there, and by the time you
come back the region has doubled in size.

In the quantum case, there's actually a way out: use Grover's algorithm! Recall that

Grover's algorithm lets us search a database of N items in only steps. So it would
seem that this would let us search a 2-D database of size on the order of the observable uni-
verse. But there's a problem. Think about how Grover's algorithm actually works. You've
got these query steps interleaved with the amplitude amplification steps. In order to amp-
lify amplitudes, you've got to collect all the amplitudes in one place, so that you can per-
form the Grover reflection operation. If we think about some quantum robot searching a

2-D database having dimension × , then you only need to do iterations
of Grover's algorithm, since there's only N items in the database, but each iteration takes

time, since the robot has to gather the results of all the queries. That's a problem, be-
cause we don't seem to get any benefit over the classical case. Thus, the proposed solution
for searching a database the size of the universe doesn't seem to work. It does seem to give
us some advantage in three dimensions. If you think of a 3-D hard disk, here the side length

is N1/3, so we would need Grover iterations taking N1/3 time each, giving a total time
of N5/6. At least that's somewhat better than N. As we add more dimensions, the perform-

ance would get closer to . For example, if space had 10 large dimensions, then we'd
get a performance of N12/22.

In a paper4 I wrote with Andris Ambainis years ago, what we did is we showed that you
can use a recursive variant of Grover's algorithm to search a 2-D grid using time of order

log3/2 N. For three or more dimensions, the time order is simply . I can give
some very basic intuition as to how our algorithm works. What you do is use a divide-and-
conquer strategy: that is, you divide your grid into a bunch of smaller grids. Then you can
keep dividing the subgrid into smaller subgrids, and appoint regional Grover's algorithm
commanders for each subgrid.

Even, as a first step, let's say that you search each row separately. Each row only takes

time to search, and then you could come back and collect everything together. You

can then do a Grover search of the rows, taking N1/4 time, giving a total time of N3/4.
That's the first way of solving the problem. Later, other people discovered a simpler and

better way to solve the problem, using quantum random walks. But the bottom line is that,

given a 2-D database the size of the universe, you actually can search it for a marked item
before it recedes past the cosmological horizon. You can only do one search, or at best a
constant number of searches, but at least you can find one thing you're really desperate for.

1 N. J. Cornish and J. R. Weeks, Measuring the shape of the universe. Notices of the Amer-
ican Mathematical Society (1998). http://arxiv.org/abs/astro-ph/9807311
2 R. Bousso, The holographic principle. Reviews of Modern Physics, 74 (2002), 825–874,
http://arxiv.org/abs/hep-th/0203101
3 R. Bousso, Positive vacuum energy and the N-bound. Journal of High Energy Physics,
0011:038 (2000). http://arxiv.org/abs/hep-th/0010252
4 S. Aaronson and A. Ambainis, Quantum search of spatial regions. Theory of Computing,
1 (2005), 47–79. http://www.scottaaronson.com/papers/ggtoc.pdf

http://arxiv.org/abs/astro-ph/9807311
http://arxiv.org/abs/hep-th/0203101
http://arxiv.org/abs/hep-th/0010252
http://www.scottaaronson.com/papers/ggtoc.pdf

22 Ask me anything

To remind you, this book is based on a course I taught in 2006. On the last day of class, I
followed the great tradition pioneered by Richard Feynman, in which the last class should
be one where you can ask the teacher anything. Feynman's rule was that you could ask about
anything except politics, religion, or the final exam. In my case, there was no final exam,
and I didn't even make politics or religion off-limits. This chapter collects some of the ques-
tions people asked me, together with my responses.

STUDENT: Do you often think about using computer science to limit or give us a hint
about physical theories? Do you think that we'll be able to discover physical theories
which give more powerful models than quantum computation?

SCOTT: Is BQP the end of the road, or is there more to be found? That's a fantastic
question, and I wish more people would think about it. I’m being a bit of a politician
here and not answering directly, because obviously the answer is “I don't know.” I
guess the whole idea with science is that if we don't know the answer, we don't try to
sprout one out of our butt or something. We try to base our answers on something. So,
everything we know is consistent with the idea that quantum computing is the end of
the road. Greg Kuperberg had an analogy I really liked. He said that there are people
who keep saying that we've gone from classical to quantum mechanics so what other
surprises are in store? But maybe that's like first assuming the Earth is flat, and then
on discovering that it's round, saying who knows, maybe it has the topology of a Klein
bottle. There's a surprise in a given direction, but once you've assimilated it, there may
not be any further surprise in that same direction.

The Earth is still as round as it was for Eratosthenes. We talked before about the strange
property of quantum mechanics that it seems like a very brittle theory. Even general re-
lativity, you could imagine putting in torsion or other ways of playing around with it. But
quantum mechanics is very hard to fool around with without making it inconsistent. Of
course, that doesn't prove that there's nothing beyond it. To people in the 1700s, it probably
looked like you couldn't twiddle around much with Euclidean geometry without making it
inconsistent. But on the other hand, the mere fact that something is conceivable doesn't im-
ply that we ought to spend time on it. So, are there actual ideas about what could be beyond
quantum mechanics?

Well, there are these quantum gravity proposals where it looks like you don't even have
unitarity – people can't even get the probabilities to sum to unity. The positive spin on that
would be “Woohoo! We found something beyond quantum mechanics!” The negative spin
would be that these theories (as they currently stand) are just nonsense, and when quantum

gravity people finally figure out what they're doing, they'll have recovered unitarity. And
then there are phenomena that seem to change our understanding of quantum mechanics a
little bit. One of these is the black hole information loss problem:

So here's you falling into a black hole. The basic problem is that all the information about
you – if you fall into the black hole – is supposed to come out later as Hawking radiation. If
the physics outside the event horizon is unitary, that information would have to come out.
We don't know exactly how the information comes out, though. If you do a semiclassical
calculation, it seems like only completely thermal noise coming out. However, most phys-

icists (even Hawking) now believe that, if we really understood what was going on, then
we'd see that the information comes out.

The trouble is, once you're in the black hole, you're not even near the event horizon.
You're headed straight for the singularity. On the other hand, if the black hole is going to
be leaking out information, then it seems like the information should somehow be on the
event horizon or very close to it. This is especially so since we know that the amount of
information in the black hole is proportional to the surface area. But from your perspect-
ive, you're just somewhere in the interior. So it seems like the information has to be in two
places at once.

Anyway, one proposal that people like Gerard 't Hooft and Lenny Susskind have come
up with is that, yes, the information does get “duplicated.” On its face, that would seem
to violate unitarity, and specifically the No-Cloning Theorem. But on the other hand, how
would you ever see both copies of the information? If you're inside the black hole, then
you're never going to see the outside copy. You can imagine that if you're really desperate
to find out if the No-Cloning Theorem is violated – so desperate you'd sacrifice your life
to find out – you could first measure the outside copy, then jump in to the black hole to
look for the inside copy. But here's the funny thing: people actually calculated what would
happen if you tried to do this, and they found that you'd have to wait a very long time for
the information to come out as Hawking radiation, and by the time one copy comes out via
Hawking radiation, the other copy is already at the singularity. It's like there's some kind
of censorship that acts to keep you from seeing both copies at once. So from any one ob-
server's perspective, it's as if unitarity is maintained. So it's funny that there are these little
things that seem like they might cause a conflict with quantum mechanics or lead to a more
powerful model of computation, but when you really examine them, it no longer seems like
they do.

Since I first wrote this chapter in 2006, there have been very exciting further develop-
ments on the black-hole front. Among other things, there are new arguments that, contrary
to decades of doctrine, it might not be true that an observer falling into a black hole would
“see nothing special” as they passed the event horizon, and would only start seeing crazy
quantum-gravity effects in the fraction of a second before being annihilated at the singular-
ity. Instead, quantum gravity might be needed even to predict what such an observer would
see at the event horizon!

A first indication of this came from work by the string theorist Samir Mathur, on the so-
called fuzzball picture of black holes.1 Mathur was motivated by string theory's “AdS/CFT
correspondence,” which defines certain quantum theories of gravity in D spatial dimensions
by first constructing ordinary quantum field theories in D - 1 spatial dimensions, and then
arguing that D-dimensional quantum gravity is just a “dual description” of the lower-di-
mensional quantum field theory. If AdS/CFT is correct, then at least in string theory, black

holes must be describable by perfectly ordinary, unitary, reversible quantum mechanics –
which then implies that the infalling bits of information must somehow come out in the
Hawking radiation. The problem is that this abstract argument doesn't explain how the bits
make their way out – or even how it's possible for them to get out, given Hawking's semi-
classical calculation suggesting that they can't. So, Mathur set out to calculate what hap-
pens in some string-theory “model scenarios” that capture at least some aspects of physical
black holes. What he found – or claims to have found – is that the “region of quantum grav-
ity weirdness” does not remain a little Planck-sized nugget at the singularity, but instead
grows in size until it's a complicated “fuzzball,” filling the entire region inside the event
horizon. So in this picture, the reason why the bits can come out in the Hawking radiation
is fundamentally the same as the reason why the bits describing a lump of coal can come
out when you burn the coal: namely, because the bits are there on the surface!

Now, Mathur explicitly wasn't saying that a large observer falling into a black hole
would see anything special at the event horizon – indeed, he conjectures that there's an “ap-
proximate dual description,” valid for realistic-sized observers, in which those observers
would continue through the event horizon all the way to the singularity, just as predicted
by classical general relativity. This description would be valid despite the fact that, in some
sense, the “real physics” would be taking place at the surface of the fuzzball, the place we
used to call the event horizon.

Recently, however, there have been arguments2 that an observer would encounter
something special at the event horizon – that, in fact, the observer would smack into a “fire-
wall” there and burn up, long before getting anywhere close to the singularity! Or at least,
that if that isn't what would happen for “young” black holes, it is what would happen for
“old” black holes, ones that have already radiated away at least half of their bits in Hawk-
ing radiation. I can't reproduce the argument for this prediction in any detail, but it's based
on a modified version of Hawking's information loss paradox. At the time of this writing
(January 2013), the whole field seems to be in a state of confusion over the “firewall” busi-
ness, with even some of the experts changing their minds on a month-to-month basis.

Whatever the exact outcome, I confess to “relief” about the new developments, since
they support the vague, inchoate feeling I had ever since learning about the black hole in-
formation problem: namely, that there must be something “physically special” happening
at the event horizon, regardless of what classical general relativity might say to the con-
trary. I mean, consider the perspective of an observer Alice outside a black hole, who
watches what happens as her dimwitted friend Bob jumps into the hole. It's well known
that, because light takes longer and longer to escape the closer you get to the event horizon,
Alice will never actually see Bob recede past the event horizon. Instead, Bob will seem
to Alice to get closer and closer to the horizon without ever going past. According to the
modern view, the quantum information corresponding to Bob will actually get “smeared”

and “pancaked” all across the event horizon at incredible speed. Then, if she's willing to
wait 1070 years or so, Alice will see that event horizon that Bob was pancaked onto slowly
evaporate in a mist of Hawking radiation – a mist whose information content is just a con-
stant multiple of the area of the event horizon in Planck units. Again in the modern view,
if Alice collects and pieces together the Hawking radiation painstakingly enough, then she
can in principle recover the very “Bob qubits” that fell in. Now, given all this, I ask you: is
it really plausible to describe the event horizon as a perfectly ordinary place with no funky
quantum-gravity effects – to say that any new physics must be confined to a tiny singular-
ity? I say no – and physicists seem more and more to agree!

But even if we accept that, the question remains of whether there's also a “complement-
ary” perspective – namely, Bob's perspective – in which he continues past the event hori-
zon without incident, living for perhaps a few more hours (in the case of a supermassive
black hole, like the one at the center of our galaxy) before dying violently at the singularity.
Maybe there is such a perspective, maybe there isn't, maybe there is but it's only approx-
imate. Curiously, though, it's not obvious that the question of what Bob “experiences” after
passing the event horizon even belongs in the domain of science! For whatever Bob ex-
periences or doesn't experience, there's no possible way for him to communicate it to the
rest of us outside the black hole. It's true that the information about Bob will eventually
come out in subtle correlations between the photons of Hawking radiation. But the process
that produced those photons could've been just as well described by Alice's “complement-
ary” perspective – the perspective where Bob got pancaked on the event horizon and never
made it past! In that case, Alice wouldn't need to make any reference to Bob's “experien-
ces” after crossing the horizon. So, in what sense did Bob's final hours of subjective aware-
ness – the hours between crossing the event horizon and hitting the singularity – actually
“exist”? Only Bob knows!

Of course, you could argue that this is not so different from the situation that we're all
in, all the time, with regard to minds other than our own. Philosophically, Alice can't be ab-
solutely certain that there's “anything that it's like” to be Bob, even if Bob is sitting across
from her in a Cleveland apartment building rather than hurtling toward the singularity of
a black hole. I'd say that, as often the case, what physics does is simply to “take us full
circle,” forcing us to see an ancient philosophical puzzle in a new light – here, through the
possibility of two complementary descriptions, one where Bob gets squashed to a Planck-
length-thin pancake and one where he lives for a few hours more.

Setting aside Bob's subjective experience, what all the modern views on black holes
seem to agree on is that there's no need to modify quantum mechanics even a little. Yes,
black holes are a weird and wonderful laboratory for the principles of quantum mechanics,
but evidence seems to be mounting that they ultimately don't challenge those principles,
any more than any other physical object. But if so – if even these most extreme, most grav-

itational objects in the universe don't overturn quantum mechanics – then it becomes much
harder to imagine what could overturn QM. Something in cosmology? In the very early
universe? In the link between mind and brain? Well, maybe, but we might have to come to
terms to the possibility that QM is fundamentally true.

And this, finally, brings me to the point of this long digression, and the occasion for
wrapping it up. Figuratively speaking, physicists have by now journeyed to the ends of
the universe, yet failed to turn up any phenomena that would make the complexity class
encompassing our computational abilities any larger or smaller than BQP, Bounded-Error
Quantum Polynomial-Time. That's not to say this can never happen – just that BQP has
proved an extremely formidable opponent.

Anyway, looking out to physics is the “obvious” way to address the question of what
could be out there beyond BQP. But a second way to address it is to look internally, within
complexity theory. In other words, we can ask, from a purely mathematical standpoint,
what reasonable-looking complexity classes are there above BQP, which some future the-
ory of physics could plausibly give rise to.

When we ask this question, the first thing we notice is that, of the computational models
that give us more than BQP, most of them give us vastly more: they let us solve NP-com-
plete problems in polynomial time, and often even PP-complete and PSPACE-complete
problems. This is true, for example, if we add in nonlinearities, postselected measurements,
or CTCs. And, of course, these models are all logical possibilities – but to me, they seem
not merely too fantastical, but too boring! In the past, Nature has always been more wily
than this; she's always found ways to give us some of what we want but not all of it. So,
suppose we want to believe that there's something more powerful than quantum comput-
ing, but that still can't solve NP-complete problems in polynomial time. Then, how much
“room” is there for such a model? We do have some problems that seem to be easier than
NP-complete, but that are still too hard to efficiently solve with a quantum computer. Two
examples are Graph Isomorphism and approximate shortest vector. Very “close” to NP-
complete, but probably not quite there, seem to be the problems of inverting one-way func-
tions and distinguishing random from pseudorandom functions.

Years ago I came up with one example of a computational model (discussed in Chapter
12), where you get to see the entire history of a hidden variable during the course of a
quantum computation. I gave evidence that in this model you do get more than with or-
dinary quantum computing – for example, you get Graph Isomorphism and approximate
shortest vector – but still you don't get the NP-complete problems. On the other hand, my
model was admittedly rather artificial. So maybe there is one more dramatic step before
you get to NP-complete – I’m not sure.

STUDENT: How can you say “one step”? You can theoretically always contrive a
problem between any other two problems.

SCOTT: Of course, but here's the point: no one was interested in quantum computing
when Bernstein and Vazirani discovered you could solve the Recursive Fourier Samp-
ling problem. People only became interested when it was found that you could solve
problems that were previously considered to be important, like factoring. So if we
judge our hypothetical new model by the same standard, and ask what problems it can
solve that we already think are important, there are arguably not that many of them
between factoring and NP-complete. So again, there could be some new model that
gets you slightly beyond BQP – maybe it lets you solve Graph Isomorphism, or the
Hidden Subgroup Problem for a few more non-abelian groups – but, at least in our
current picture, there's only a limited amount of “room” between BQP and the NP-
complete problems.

STUDENT: Where would you ever get an oracle?
SCOTT: You just define it. Let A be an oracle...
STUDENT: That's a bit of an issue.
SCOTT: It is, it is. It's strange to me that only computer scientists get this kind of flak

for using the techniques that they have to answer questions. Like physicists say that
they're going to do some calculation in the perturbative regime. “Oh! Of course, what
else would you do? These are deep and difficult problems.” Of course, you're going to

do what works. Computer scientists say that we can't yet prove that P NP, but
we'll study it in the relativized world. “That's cheating!” It just seems obvious that you
just start with the kind of results that you can prove and work from there. One objec-
tion that could be made against oracle results in the past would be that some of them
were just trivial. Some of them essentially just amounted to restatements of the ques-
tion. But these days, we've got some very nontrivial oracle separations. I mean, I can
tell you in very concrete terms what an oracle result's good for. About every month
or so, I see another paper on the arXiv solving NP-complete problems in polynomial
time on a quantum computer. This must be the easiest problem in the world. Often
these papers are very long and complicated. But if you know about oracle results, you
don't have to read the papers. That's a very useful application. You can say if this proof
works, then it also works relative to oracles, but that can't be the case, because we
know of an oracle where it's false. Of course, that probably won't convince the author,
but it will at least convince you.

As another example, I gave this oracle relative to which SZK (Statistical Zero-Know-
ledge) is not in BQP. In other words, finding collisions is hard for a quantum computer.
Sure enough, as the years go by, I see these papers that talk about how to find collisions
with a constant number of queries on a quantum computer, and without reading the paper
I can say no, this has to fail, because it's not doing anything nonrelativizing. So, oracles

are there to tell you what approaches not to try. They direct you toward the nonrelativizing
techniques that we know we're eventually going to need.

STUDENT: What complexity class are you?
SCOTT: I’m not even all of P. I’m not even LOGSPACE! Especially if I haven't had

much sleep.
STUDENT: What's the complexity class for creativity?
SCOTT: That's an excellent question. I was thinking about it just this morning.

Someone asked me if humans have an oracle in their head for NP. Well, maybe Gauss
or Wiles did. But for most of us, finding proofs is a very hit-or-miss business. You can
change your perspective and it seems pathetic that after three billion years of natural
selection and after this time building up civilizations, all the wars and everything else,
we can solve a few instances of SAT – but if you switch to the Riemann Hypothesis or
Goldbach's Conjecture instances, suddenly we can't solve those.

When it comes to proving theorems, you're dealing with a very special case of an NP-
complete problem. You aren't just taking some arbitrary formula of size polynomial in n,
you're taking some fixed question of fixed size and asking, does this have a proof of size
n? So you're uniformly generating these instances for whatever length proof you're looking
for. But even for this sort of problem, the evidence is not good that we have some sort of
general algorithm for solving them. A few people decided to forsake their social lives and
spend their whole lives in this monastic existence, thinking about math problems. Finally,
they've managed to succeed on a few problems and sometimes even win Fields Medals for
that. But there's still this huge universe of problems that everyone knows about and no one
can solve. So I would say that, before reaching for Penrose-style speculations about human
mathematical creativity transcending computation, we should first make sure the data actu-
ally supports the hypothesis that humans are good at finding proofs. I’m not convinced that
it does.

Now, it's clear, that in certain cases, we are very good at finding patterns or taking a
problem that looks to be hard and decomposing it into easier subproblems. In many cases,
we're much better at that than any computer. We can ask, “why is that?” That's a very big
question, but I think part of the answer is we've got a billion-year head start. We've got the
advantage of a billion years of natural selection giving us a very good toolbox of heurist-
ics for solving certain kinds of search problem. Not all of them and not all the time, but
in some cases, we can do really well. Like I said, I believe that NP-complete problems
are not efficiently solvable in the physical universe, so I believe that there can never be a
machine that can just prove any theorem efficiently, but there could certainly be machines
that would take advantage of the same kind of creative insight that human mathematicians
have. They don't have to beat God, they just have to beat Andrew Wiles. That could be an
easier problem, but it takes us outside of the scope of complexity theory and into AI.

STUDENT: So even if there's no way to solve NP-complete problems in polynomial
time, human mathematicians could still be rendered obsolete?

SCOTT: Sure. And after the computers take over from us, maybe they'll worry that
they'll be out of a job once some NP oracle comes along.

STUDENT: Bell inequalities seem to be an important tool in studying the limitations
of quantum mechanics. We know what happens if we have completely nonlocal boxes,
but what happens (say, to computational complexity) if we allow correlations just
above what, say, quantum entanglement gives?

SCOTT: That's a good question, and there are people who have been thinking about
it.

To provide a bit of context, there's this important result called Tsirelson's inequality,3

which you can think of as “the quantum version of the Bell inequality.” The Bell inequality
says that Alice and Bob can win a certain game, called the CHSH game, at most 75% of the
time in a classical universe, but can win ~85% of the time if they share entangled qubits.
Now, Tsirelson's inequality says that, even with entangled qubits, there's still a limit to what
Alice and Bob can do: they can't win the CHSH game more than ~85% of the time, despite
the fact that even winning 100% of the time still wouldn't let them send signals faster than
light. So one might say the limits imposed by quantum mechanics are a bit stronger than
they “had to be” – in particular, stronger than the limits imposed by the no-signalling prin-
ciple.

Now, around a decade ago, a trend started of studying hypothetical “superquantum” the-
ories, which would violate Tsirelson's inequality, but which still wouldn't allow any faster-
than-light communication. The simplest way to do that is just to postulate the existence of
so-called “nonlocal boxes”: magical devices that let Alice and Bob win the CHSH game,
say, 95% of the time instead of just 85%. You can then study how other issues are affec-
ted by these boxes. For example, Brassard et al.4 (building on an earlier result of Wim van
Dam5) showed that, if you have a good enough nonlocal box (if the error is small enough),
then it makes communication complexity trivial (i.e., all communication problems can be
solved with just a single bit).

The fundamental problem is that you can imagine Tsirelson's bound is violated – that is,
you can imagine that there are these nonlocal correlations stronger than anything allowed
by quantum mechanics – but saying that still doesn't give us a model of computation. I
mean, what are the allowed operations? What's the space of possible states, that gives rise
to the possibility of nonlocal boxes? If we had answers to those questions, then we could
begin to think about computational complexity in these hypothetical worlds.

STUDENT: Do you see there being a bit more clearing up of the complexity classes?
We just keep getting more and more.

SCOTT: To me, that's like asking a chemist if she sees a clearing up of the Periodic
Table. Is nitrogen going to collapse with helium? In our case, it's a little bit better than
for the chemist, since we can expect a collapse of some classes. For example, we hope
and expect that P, RP, ZPP, and BPP are going to collapse. We hope and expect that
NP, AM, and MA are going to collapse. IP and PSPACE already collapsed. So yeah,
there are collapses, but we also know that there are other pairs of classes that can't col-
lapse. We know, for example, that P is different from EXP, which immediately tells
you that either P has to be different from PSPACE or PSPACE has to be different
from EXP, or both. So not everything can collapse. That shouldn't really be surpris-
ing.

Now, maybe complexity theory took a wrong turn when it gave everything this string of
random-looking capital letters as its name – I appreciate how they can look to people like
codenames or inside jokes. But really, we're just talking about different notions of compu-
tation. Time, space, randomness, quantumness, having a prover around. There are as many
complexity classes as there are different notions of computation. So, the richness of the
complexity zoo just seems like an inevitable reflection of the richness of the computational
world.

STUDENT: Do you think that BPP will collapse with P?
SCOTT: Oh, yeah. Absolutely. We have not just one but several reasonable-looking

circuit lower bound conjectures where we know that, if they're true, then P = BPP.
I mean, there were people who realized even in the 1980s that P should equal BPP.
Even then, Yao pointed out that, if you had good enough cryptographic pseudoran-
dom number generators, then you could use them to derandomize any probabilistic
algorithm, hence P = BPP. Now, what people managed to do in the 1990s is to get the
same conclusion with weaker and weaker assumptions.

Besides that, there's also an “empirical” case, in that two of the most spectacular results
in complexity theory in the last decade were the AKS primality test showing that primality
testing is in P, and Reingold's result that searching an undirected graph is in determinist-
ic logspace. So, this program of taking specific randomized algorithms and derandomizing
them has had considerable success. It sort of increases one's confidence that, if we were
smart enough or knew enough, then this would probably work for other BPP problems as
well. You can also look at a specific case, like derandomizing polynomial identity testing,
and maybe this is a good example to illustrate the point.

The question is, if you've got some polynomial like x2 - y2 - (x + y)(x - y), is it identically
zero? In this case, the answer is yes. But you could have some very complicated polyno-
mial identity involving variables raised to very high powers, and then it's not obvious how
you would check it efficiently even with a computer. If you tried to expand everything out,
you'd get an exponential number of terms.

Now, we do know of a fast randomized algorithm for this problem: namely, just plug
in some random values (over some random finite field) and see whether the identity holds
or not. The question is whether this algorithm can be derandomized. That is, is there an
efficient deterministic algorithm to check whether a polynomial is identically zero? If you
bang your head against this problem, you quickly get into some very deep questions in al-
gebraic geometry. For example, can you come up with some small list of numbers, such
that, given any polynomial p(x) described by a small arithmetic formula, all you have to
do is plug in the numbers in that list, and if p(x) = 0 for every x in the list, then it's zero
everywhere? That seems like it should be true, because all you should have to do is pick
some “generic” set of numbers to test which is much larger than the size of the formula for
p. For example, if you find that p(1) = 0, p(2) = 0,..., p(k) = 0, then either p must be zero, or
else it must be evenly divisible by the polynomial (x - 1)...(x - k). But is there any nonzero
multiple of (x - 1)...(x - k) that can be represented by an arithmetic formula of size much
smaller than k? That's really the crucial question. If you can prove that no such polynomial
exists, then you'll give a way to derandomize polynomial identity testing (a major step to-
wards proving P = BPP).

STUDENT: What do you think the chances are that three Indian mathematicians will
come up with an elementary proof?

SCOTT: I think it's gonna take at least four Indian mathematicians! We know today
that if you prove good enough circuit lower bounds, then you can prove P = BPP.
But Impagliazzo and Kabanets also proved a result in the other direction: if you want
to derandomize, you're going to have to prove circuit lower bounds. To me that gives
some explanation as to why people haven't succeeded yet in proving that P = BPP. It's
all because we don't know how to prove circuit lower bounds. The two problems are
almost – though not quite – the same.

STUDENT: Does P = BPP imply that NP = MA?
SCOTT: Almost. If you derandomize PromiseBPP, then you derandomize MA. No

one has any idea of how to derandomize BPP that wouldn't also derandomize Prom-
iseBPP.

STUDENT: How would you answer an intelligent design advocate? Without getting
shot?

SCOTT: You know, I’m genuinely not sure. It's one of those cases where there might
be anthropic selection going on. If someone could be persuaded by evidence on this
question, then wouldn't he or she already have been? I think we have to concede that
there are people for whom the most important thing about a belief isn't whether it's
true, but rather some other properties of the belief, such as its role in a community. So
they're playing a different game where beliefs are judged by a different standard. It's
like you're a basketball player on a football field.

STUDENT: Is complexity theory relevant to the evolution versus intelligent design
controversy?

SCOTT: To the extent that you need complexity theory, it's all sort of trivial complex-
ity theory. For example, just because we believe that NP is exponentially hard doesn't
mean that we believe that every particular instance (say, evolving a working brain or
a retina) has to be hard.

STUDENT: When Steven Weinberg came to talk at the Perimeter Institute, the ques-
tion was asked, “where does God fit into all of this?” His answer was to just dismiss
religion as an artifact of our evolution that now has no value, and that we'd eventually
grow out of it. Do you agree with him?

SCOTT: So I think that there are several questions here.
STUDENT: You're being a politician.
SCOTT: Look, this is a hot topic, with books like Richard Dawkins's The God Delu-

sion6...
STUDENT: Was it a good book?
SCOTT: Yes. Dawkins is always amusing, and he's at his absolute best when he's rip-

ping into bad arguments like a Rottweiler. Anyway, one way to think about it is that
the world would clearly be a better place if there were no wars, or for that matter if
there were no lawyers and no one sued anyone else. And there are those who want to
turn that idea into an actual political program. I’m not talking about people who op-
pose specific wars like the one in Iraq for specific reasons, but absolute pacifists. And
the obvious problem with their position is a game-theoretic one. Yes, the world would
be a better place with no armies, but the other guys have an army.

It's clear that religion fills some sort of role for people; otherwise, it wouldn't have been
so ubiquitous for thousands of years or resisted very significant efforts to stamp it out. For
example, maybe people who believe God is on their side are braver in battle. Or maybe re-
ligion is one of the factors (besides more obvious factors) that induces men and women to
get married and have lots of babies, and is therefore adaptive just from a Darwinian point
of view. Years ago I was struck by an irony: in contemporary America, you've got these
stereotypical coastal elites who believe in Darwinism and often live by themselves well in-
to their thirties or forties, and then you've got these stereotypical heartland folks who reject
Darwinism but marry young and have 7 kids, 49 grandkids and 343 great-grandkids. So
then it's not really a contest between “Darwinists” and “anti-Darwinists”; it's just a contest
between Darwinian theorists and Darwinian practitioners!

If this idea is right – that is, if religion has played this role throughout history of helping
inspire people to win wars, have more babies, etc. – then the question arises, how are you
ever going to counter religion except with a competing religion?

STUDENT: I’m sure that's what people are thinking about when they decide whether
or not to believe in a religion.

SCOTT: I’m not saying it's conscious, or that people are thinking it through in these
terms. Maybe a few are, but the point is they don't have to in order for it to describe
their behavior.

STUDENT: We can have lots of kids without accepting a religion if we want to.
SCOTT: Sure, we can, but do we on average? I don't know the numbers offhand, but

it does tend to be true in modern society that religious people have more children on
average.

Now, there's another key factor, which is that sometimes irrationality can be supremely
rational, because it's the only way of proving to someone else that you're committed to
something. Like if someone shows up at your doorstep and asks for $100, you're much
more likely to give it to him if his eyes are bloodshot and he looks really irrational – you
don't know what he's going to do! The only way that this is actually effective is if the show
of irrationality is convincing. The person can't just feign, or you'll see through it. He has to
be really, really irrational and show that he's ready to get revenge on you no matter what.
If you believe that the person's going to defend his honor to the death, you're probably not
going to mess with him.

So the theory is that religion is a way of committing yourself. Someone might say that
he believes in a certain moral code, but others might figure talk is cheap and not trust him.
On the other hand, if he has a long beard and prays every day and really seems to believe
that he'll have an eternity in hellfire if he breaks the code, then he's making this very ex-
pensive commitment to his belief. It becomes much more plausible that he means it. So in
this theory, religion functions as a way of publicly advertising a commitment to a certain
set of rules. Of course, the rules might be good or they might be terrible. Nevertheless, this
sort of public commitment to obeying a set of rules, backed up with supernatural rewards
and punishments, seems like an important element of how societies organized themselves
for thousands of years. It's why rulers trusted their subjects not to rebel, men trusted their
wives to stay faithful, wives trusted their husbands not to abandon them, etc., etc.

So, I feel like these are the sorts of game-theoretic forces that Dawkins and Hitchens
and the other antireligion crusaders are up against, and that they maybe don't sufficiently
acknowledge in their writing. What makes it easier for them, of course, is that their oppon-
ents can't just come out and say, “yes, of course it's all a load of hooey, but here are the
important social functions it serves!” Instead, religious apologists often resort to arguments
that are easily demolished (at least since the days of Hume and Darwin) – since their real
case, though considerably stronger, is one that's hard for them to make openly!

In summary, maybe it's true that humans (if we survive long enough) will eventually
outgrow religion, now that we have something better to fill religion's explanatory role. But
before that will happen, I think that at the least we'll need to better understand the social

functions that religion played for most of history and still plays in most of the world, and
maybe come up with alternative social mechanisms to solve the same sorts of problem.

STUDENT: I was just thinking of if there's another case where irrationality might be
preferred over rationality.

SCOTT: Where to begin?
STUDENT: Especially if you have incomplete information. Like if you have a politi-

cian who's committed and won't change his ideals later on, you can feel more assured
that he'll do what he said he would.

SCOTT: Because he has conviction. He believes in what he says. To most voters, that
matters more than the actual content of the beliefs.

STUDENT: I’m not sure that's best for the public interest.
SCOTT: Right, that's the problem! But how do you defeat people who have mastered

the mechanisms of rational irrationality? By saying, “no, look here, you've got your
facts wrong”? Which game are you playing?

Or take another example: a singles bar. The ones who succeed are the ones best able to
convince themselves (at least temporarily) of certain falsehoods: “I’m the hottest guy/girl
here.” This is a very clear case where irrationality seems to be rational in some sense.

STUDENT: The standard example is if you're playing Chicken with someone, it's ad-
vantageous to you if you break your steering wheel so it can't turn.

SCOTT: Exactly.
STUDENT: Why is computer science not a branch of physics departments?
SCOTT: The answer to that isn't philosophical, it's historical. Computer scientists

back in the day were either mathematicians or electrical engineers. People who would
have been computer scientists when there wasn't such a department went into either
math or electrical engineering. Physics had its plate full with other things, and to get
into physics you had to learn this enormous amount of other stuff which maybe wasn't
directly relevant if you just wanted to hack around and write programs, or if you
wanted to think theoretically about computation. Paul Graham has said that computer
science is not so much a unified discipline as a collection of people thrown together by
accident of history, like Yugoslavia.7 You've got the “mathematicians,” the “hackers,”
and the “experimentalists,” and we just throw them all together in the same depart-
ment and hope they sometimes talk to each other. But I do think (and this is a clichéd
thing to say) that the boundaries between CS, math, physics, and so on are going to
look less and less relevant, more and more like a formality. It's clear that there's a ter-
rain, but it's not clear where to draw the boundaries.

1 See, for example, S. D. Mathur, The fuzzball proposal for black holes: an elementary
review. Fortschritte der Physik, 53 (2005), 793–827. http://arxiv.org/abs/hep-th/0502050,
http://arxiv.org/abs/1208.2005, http://www.physics.ohio-state.edu/~mathur/faq2.pdf
2 See, for example, A. Almheiri, D. Marolf, J. Polchinski, and J. Sully, Black Holes:
Complementarity or Firewalls? http://arxiv.org/abs/1207.3123 and ht-
tp://blogs.discovermagazine.com/cosmicvariance/2012/09/27/guest-post-joe-
polchinskion-black-holes-complementarity-and-firewalls/
3 See http://en.wikipedia.org/wiki/Tsirelson's_bound
4 G. Brassard, H. Buhrman, N. Linden, A. A. Methot, A. Tapp, and F. Unger, A limit
on nonlocality in any world in which communication complexity is not trivial. Physical
Review Letters 96 (2006), 250401. http://arxiv.org/abs/quant-ph/0508042
5 W. Dam, Implausible consequences of superstrong nonlocality. (2005). http://arxiv.org/
abs/quant-ph/0501159
6 Mariner Books, 2008 (reprint edition)
7 P. Graham, Hackers and painters. http://www.paulgraham.com/hp.html

http://arxiv.org/abs/hep-th/0502050
http://arxiv.org/abs/1208.2005
http://www.physics.ohio-state.edu/~mathur/faq2.pdf
http://arxiv.org/abs/1207.3123
http://blogs.discovermagazine.com/cosmicvariance/2012/09/27/guest-post-joe-polchinskion-black-holes-complementarity-and-firewalls/
http://blogs.discovermagazine.com/cosmicvariance/2012/09/27/guest-post-joe-polchinskion-black-holes-complementarity-and-firewalls/
http://blogs.discovermagazine.com/cosmicvariance/2012/09/27/guest-post-joe-polchinskion-black-holes-complementarity-and-firewalls/
http://en.wikipedia.org/wiki/Tsirelson's_bound
http://arxiv.org/abs/quant-ph/0508042
http://arxiv.org/abs/quant-ph/0501159
http://arxiv.org/abs/quant-ph/0501159
http://www.paulgraham.com/hp.html

Index

P (complexity class) 253–257, 260, 286, 288
1-norm 112–113, 117–119, 146
2-norm 112–113, 117–119, 146
2SAT 70
3-coloring 191
3SAT 59–61, 63, 70, 194, 203–204, 219, 250, 289

AC0 (complexity class) 259–261
ACC0 (complexity class) 260–261
Adleman, Leonard 87, 88, 91, 103, 139, 283
AdS/CFT 346
advice 83–90, 202, 211–214
Agrawal, Manindra 77, 88
Aharonov, Dorit 223
Aharonov, Yakir 211
Ahn, Luis von 36
Ajtai, Miklos 100, 106, 258–259
algebrization 258, 260
Alice 70, 126–128, 130–131, 176–178, 209–210, 303–305, 348–349, 354
ALL (complexity class) 212–213
Allen, Woody 330
Alon, Noga 239
AM (complexity class) 245, 249, 265, 355
Amazon 102
Ambainis, Andris 210, 239, 341
amplitudes 28, 71, 109, 115, 116, 119–123, 131, 139, 146, 148, 160, 179, 201, 217,

220, 223, 283, 285, 341
analog computer 217, 222, 224
Anderson, Pamela 164
anthropic principle i, viii, 169, 230, 266, 276–279, 282, 286, 289, 331, 358

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos738026
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos761146
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835390
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos840469
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos354138
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos368094
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos452714
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos354521
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos368181
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos452669
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242328
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos568535
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos210964
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos221644
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242230
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos577887
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602390
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos645764
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726476
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842944
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos756942
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos762351
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287597
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos291188
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298863
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos329975
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos432019
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825458
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos993352
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos275456
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos598164
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos625127
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261604
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292374
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655042
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos639847
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos148028
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos322637
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337681
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos756627
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos754147
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos761744
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos241562
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos394286
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos529941
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos619093
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos879788
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos997315
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1014103
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos625849
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos955492
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos698506
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos713935
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos724467
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774359
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017297
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos328600
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos621699
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos698641
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos982521
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos127097
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos347528
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos361704
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos365091
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos372847
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos408108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos433224
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos453267
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos457456
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos491469
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos536817
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595894
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos643130
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos648479
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655543
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825784
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos831799
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos980888
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos643295
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos654927
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos657733
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos500960
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_000.html#filepos1009
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_004.html#filepos7402
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos512276
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674373
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos782659
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos808833
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos822410
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos834497
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842659
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos957617
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1024530

anyon 226
Appel, Kenneth 37, 187
Aristotle 1, 2
arithmetization 250, 258
Arkhipov, Alex 287–288
Arora, Sanjeev 51
Arthur 188, 253–255, 257, 265
Axiom of Choice 15–16, 26–28

Babai, Lazslo 188, 206
Babbage, Charles 33
Baez, John 276
Banach–Tarski paradox 15
Barak, Boaz 51
Bayes's Theorem 228, 232, 266–268, 274, 276
Bayesianism 229, 232
Bayesians 232–233, 267, 271, 289
BB84 127–128
Beame, Paul 319
beamsplitter 287
Beigel–Reingold–Spielman Theorem 285
Bekenstein, Jakob 32, 333–334
Bell inequality 6, 109, 171, 172, 176, 302–304, 354
Bell, John 162, 171, 176, 198
Bennett, Charles 127, 130, 137, 145–146, 149, 320–321
Bernstein, Ethan 139, 142–143, 145, 149, 224, 351
Bierce, Ambrose 291
Big Bang 85, 184, 212, 325, 328–330
Big Crunch 325–326
birthday paradox 196–197
black box 29, 141–142, 146, 153, 205, 248
black hole 32, 221–222, 307, 308, 333, 336, 344–349
black-box group 205
block universe 301
Blum Speedup Theorem 49, 82, 85
Blum, Lenore 98
Blum, Manuel 98
Blum–Blum–Shub generator 98
Bob; see Alice

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos664148
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos150679
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558657
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos63030
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos65616
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos754692
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos837953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos561939
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos737645
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos753637
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos95742
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos122513
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos561864
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos608681
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos140357
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos808796
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos95276
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos670124
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos681223
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos783541
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos802776
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos808026
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos673324
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos680935
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos681052
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos784900
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos795903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos843825
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos395406
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos925979
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos838371
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos833349
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos137971
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos963395
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos74899
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos348073
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515817
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos519977
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos529039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos878861
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013253
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos496062
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515795
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos529231
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588319
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos394556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos428421
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos450481
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458550
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos927180
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431822
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos442388
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos447729
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458464
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos658897
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1005462
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos851512
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos281794
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos550207
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos626199
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos945074
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos949848
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos945117
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos582757
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos130412
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos437790
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos450985
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos471030
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos606076
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos722036
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos137398
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos652044
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892364
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos895302
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos962982
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos970363
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos989333
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos605996
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos876941
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos183962
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos274260
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos280702
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos316851
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos319217
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos318545

Bohm, David 183–185
Bohmian mechanics 5, 183, 201
Bohr, Niels 5, 202, 216
Boltzmann, Ludwig 167, 334
Boltzmann's constant 334
Boolean formula 29, 63, 70, 79, 86, 138, 212, 247, 250, 255, 312
Boolean function 84, 133, 143, 213, 231, 239, 241, 250, 256, 284
BosonSampling 287–288
Bostrom, Nick 267, 272–274, 288
Bousso, Raphael 32, 332, 336–337
BPP (complexity class) 79, 80–82, 84, 86–91, 132, 135, 138, 140, 142, 144, 147, 188,

219, 246–247, 258, 279–282, 286, 291, 355–358
BPPpath (complexity class) 279–282, 286
BQP (complexity class) 82, 88, 91, 132, 136–140, 142, 144–146, 149, 198, 219,

244–245, 283, 286, 343, 350–352
BQP/poly (complexity class) 214
BQP/qpoly (complexity class) 211–214, 217, 320
BQPCTC (complexity class) 317–318, 320, 322
Brassard, Gilles 127, 130, 145, 196–197, 355
Bremner, Michael 287
Buhrman, Harry 214
Busy Beaver 28, 42–43

Caesar cipher 94
Cantor, Georg 12
CAPTCHAs 36
cardinality 11–12, 14, 16, 18
Carmichael numbers 77
Carter, Brandon 273
causal consistency 311, 320, 325
causal diamond 337
cellular automaton 99
Chaitin, Gregory 213
Chalmers, David 42
Chernoff bound 73–74, 80
chess 38, 254
Chinese Room 38–39
Chiribella, Giulio 131
Choice, Axiom of 14–15

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos548591
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos72830
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos547875
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595515
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos72512
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos597477
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos637633
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos506845
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos964700
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos964469
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos130766
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos223841
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos243773
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos264751
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos285644
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431032
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos626718
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos719992
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726320
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos744087
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos906199
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos279234
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos416634
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos443191
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos629418
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos676385
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos697963
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703797
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726411
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos749462
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos827881
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos847994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos786281
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos797206
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos841138
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos137994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960862
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos968984
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos266987
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos267864
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos280374
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos283566
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos414256
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos422505
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos429395
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos436289
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos441691
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos446972
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos455806
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos560966
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646284
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos715739
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos755608
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos815656
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836207
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos852774
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017172
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos815576
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835113
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos273154
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos290995
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298154
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos414080
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos423810
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos441816
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos447014
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458449
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588686
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646284
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos712005
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825326
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836309
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos986731
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1002259
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos633110
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos625183
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos641802
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos929073
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos928994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos934277
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos394556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos450509
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos583380
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1015378
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836864
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos631687
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos128006
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos162865
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos307227
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos86543
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos148111
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos86294
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos92711
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos100014
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos105026
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos260674
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos800851
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos903052
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos927054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos943940
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos971246
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos320300
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos629840
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos161375
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos250731
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos268338
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos151624
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos742772
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos152924
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos405432
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos94815

Christiano, Paul 129
CHSH game 354
Chuang, Isaac 149
Church, Alonzo 31
Church–Turing Thesis 31–33
ciphertext 94–97, 107
circuit 54, 59–61, 135–136, 145, 156, 241, 243, 247, 248, 255–256, 259–262, 312,

314, 317–319, 322, 356, 357
CircuitSAT 59–61
Clique 62
closed timelike curve 308–313, 315, 317–320, 322–325, 328, 350
Cohen, Paul 26
Colbeck, Roger 305
collision problem 196–197
Completeness Theorem 18, 24–25
computable 19, 21, 28, 30–31, 42–43, 66, 84, 140, 259, 307
computational complexity 39, 44, 71, 94, 132, 186, 199, 202, 240, 248, 287, 304, 310,

313, 339, 354
computational learning theory 229, 232–233, 236, 238
concept class 231, 233–236, 239–240
coNP (complexity class) 63–67, 88, 247, 249, 253, 263
consciousness 40–41, 53, 151, 155–157, 276
consistency 23–26, 152, 248, 322, 324
constant-depth circuit 242, 259–260
contextuality 71, 171, 175
continuum 2, 16, 26–27
Continuum Hypothesis 14, 16, 26, 28
controlled-NOT gate 135, 283
Conway, John 302, 304
Cook, Stephen 58–59, 203, 319
Cook–Levin Theorem 61, 203
Copenhagen interpretation 5, 201
Coppersmith, Don 49
coRP (complexity class) 81, 88
correlation 71, 172
cosmological constant 325–327, 330–332, 337, 339
cosmological horizon 331, 337, 338, 340, 342
cosmology 325, 349
countable 12, 16, 18, 23

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos399547
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1014150
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458464
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos135318
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos135248
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos307340
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos340477
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos199231
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos212795
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos421051
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos448888
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos478889
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos701970
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos707924
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos718852
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos721229
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos757316
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos904043
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos909927
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918523
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos934593
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1018885
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023185
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos212607
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos218976
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos895531
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos913742
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos916606
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos933296
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos950777
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003466
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos123275
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos885379
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos582278
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103742
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos117631
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos105680
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos112502
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos128369
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos132353
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos163152
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos232289
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos277865
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos434310
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos758760
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos893042
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos156019
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos168744
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244943
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos307011
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos413877
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos556295
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos589750
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos597684
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos700494
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos720996
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos847459
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos882762
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos898743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos908721
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos975438
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013474
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos672852
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos681313
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos689123
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos693956
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos676881
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos681741
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos697873
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos223243
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos291996
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos720387
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos725208
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos736735
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos770786
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos157361
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos194152
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos467309
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos475960
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos806981
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos114903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos468290
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos722563
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos935405
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos939146
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos704916
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos756890
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245580
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos516300
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos527027
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos65224
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos98018
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos122645
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos94481
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos99854
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos122553
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos127313
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos421123
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos826937
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos878580
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos882000
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208031
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602174
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos926001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos216977
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos601939
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos71661
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos594547
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos182691
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos270163
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292223
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245667
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos519017
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos945563
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos955270
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos972415
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos975542
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos957779
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos970793
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos973697
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos979833
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos983985
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos944671
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1001650
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos87513
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos99119
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos105001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos115799

Cramér's Conjecture 76
creationists 163, 358–359
Crépeau, Claude 130
Crick, Francis 52
cryptography 74, 89, 93–95, 97, 100, 107–108, 241, 244, 248
Csanky's algorithm 319
CZK (complexity class) 193

Dam, Wim van 355
Darrow, Clarence 290–291
Darwin, Charles 361
Davies, Paul 221
Dawkins, Richard 358–359, 361
decoherence 160, 163, 165–170, 218, 224–225
Deep Blue 37
Democritus 1–4, 147
density matrix 316
dequantization 91
derandomization 84, 88–91, 193, 247, 282, 356–358
Deutsch, David 5, 147–148, 201, 245, 311–313, 317, 320–322, 324
diagonalization 84, 256, 260–261
digital commitment 192
Doomsday Argument 272–276, 288–289
double-slit experiment 184
DQP (complexity class) 195, 198–199
Dr. Evil paradox 306
Drucker, Andrew 214
Dwork, Cynthia 100, 106

eigenvalue 121, 208, 237
eigenvector 208, 318
Einstein, Albert 122, 160, 171, 175, 304
Elga, Adam 306
ELIZA 35
entanglement 71, 159, 163, 177, 220, 264, 301, 354
entropy 32, 90, 166–169, 185, 236, 333–337
EPR 171
EPR (Einstein–Podolsky–Rosen) pair 262
Eratosthenes 343

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos258725
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos496812
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023795
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos191344
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos253569
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos294897
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos303728
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos316396
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos344028
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos339932
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702663
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos711355
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos721512
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos924906
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos573323
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1015585
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos850084
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1031674
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos650387
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1026111
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1031149
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos491669
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos497454
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos501851
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos643550
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos659662
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149644
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos62059
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos454619
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos915278
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298543
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos280347
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292612
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574587
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos718951
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos822334
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019304
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos73117
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos454912
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595241
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos712391
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos902145
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos917412
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos927022
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos938416
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos278852
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos747906
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos760951
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos570386
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos798930
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos840994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos549719
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos579937
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos887274
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos632576
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos322659
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337706
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos376848
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos616353
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos690664
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos616306
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos921884
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos381230
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos490915
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515712
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos527552
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos882174
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos886991
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos144907
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245624
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos485494
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos498513
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos532273
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos647712
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos773619
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos876041
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos137936
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos295312
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos505099
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos551848
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos687893
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos961748
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515759
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767414
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos987914

Euclid 64, 104
event horizon 221–222, 333, 345–348
evolution (biological),: 34, 38, 111, 358–359

; see also natural selection
Evolutionary Principle 324
EXP (complexity class) 55, 70, 138, 139, 262, 307, 317, 355
expectation 72
exponential time 54–55, 64, 70, 89, 138, 240, 260, 263
EXPSPACE (complexity class) 317
Extended Church–Turing Thesis 31, 217, 219

factoring 57, 64–65, 77, 91, 98–100, 105, 140, 146, 147, 157, 192, 218, 219, 244, 286,
351

fat-shattering dimension 240
fault-tolerance 165, 218, 223, 225–226
Fermat's Last Theorem 18
Fermat's Little Theorem 77
Feynman path integral 283
Feynman, Richard 56, 139, 140, 283, 343
Fields Medal 26, 353
finite field 205, 250, 253, 255, 258, 357
firewall 347
first-order logic 8–10, 18
fixed point 312, 317, 321–323, 328
fMRI 159, 299
FOCS (Foundations of Computer Science) 62
Fortnow, Lance 248–249, 254
Four-Color Theorem 37, 40–41, 62, 187
Fourier Checking 145
Franzén, Torkel 28
Fredkin, Ed 244
free will 290–291, 293, 296–299, 301–303, 307
Free Will Theorem 302–304
Frege, Gottlob 8, 52, 187
Friedberg, Richard 30–31
Fuchs, Chris 131, 202, 305
Fundamental Theorem of Algebra 252
fuzzball 346–347

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos226972
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos334546
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos652244
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos963125
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos989783
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos142535
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos152204
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos351971
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1025104
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos938620
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos200409
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242505
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos430155
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431708
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos768209
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892965
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918877
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017677
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos248764
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos198195
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos224043
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242597
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos293939
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos430333
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos700966
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos762480
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos782256
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918318
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos136292
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos643034
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646032
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos205443
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos225225
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos259108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298463
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos319537
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos335781
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos436619
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos452213
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos455452
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos481144
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos570509
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos644375
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646685
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos712119
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836426
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1005749
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos700130
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos502011
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos643595
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos656203
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos662102
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos104168
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos259421
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825692
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos204643
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos433427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos435908
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825886
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos985996
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos123417
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1011121
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos607123
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726860
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos736665
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743101
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos755159
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1021147
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos996109
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos78114
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103665
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos904536
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos916977
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos929780
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos949680
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos487237
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos870229
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos218071
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos722794
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos739524
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos150753
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos158717
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos218829
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558759
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos448509
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos126987
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos711716
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos848540
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos856743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos862646
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos877077
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos891638
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos878649
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos78016
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos192595
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558177
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos133706
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos407763
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos597288
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos886312
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos734332
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos993147

garbage 206
Gauss, Carl Friedrich 157, 301, 352
gavagai 228
general relativity 110, 221–222, 277, 308–309, 344, 347–348
geodesic 336
Geometric Complexity Theory (GCT) 261
Gill, John 78–79
GMW (Goldreich–Micali–Wigderson) protocol 190
God's Coin Toss 265, 267, 273–274
Gödel, Kurt,: 18–19, 21, 26, 150–152, 156, 187, 308, 329

; see also Completeness Theorem; Incompleteness Theorem
Goldbach's Conjecture 21, 213, 352
Goldilocks Principle 277
Goldreich, Oded 97, 190, 217, 241
Goldwasser, Shafi 241
Google 37, 230
Gott, Richard 273
Gottesman, Daniel 135, 227
Graham, Paul 362
Grandfather Paradox 311–313, 321
Graph Isomorphism 186, 189, 195, 198, 219, 350–351
Graph Nonisomorphism 193–194
graviton 225
Grochow, Joshua 261
group non-membership problem 204, 208, 212
Grover's algorithm 109, 146, 197, 199, 287, 341
grue 228

Hadamard gate 133, 135, 138, 198, 207, 264, 284
Haken, Wolfgang 37, 187
halting problem 21–22, 30–31, 42, 45, 47, 84, 136, 154, 156, 213
Hamiltonian 220, 287
hard on average 99–100
Hartmanis, Juris 47
Håstad, Johan 101, 241
hat problem 91–93
Hawking radiation 222, 345–349
Hawking, Stephen 345
Heisenberg, Werner 216

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos609798
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos481580
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos875674
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1009743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos670946
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos349838
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos649965
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos810918
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos896203
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos988097
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos995532
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos969164
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos765072
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos263429
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567996
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774109
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos786454
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos799953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103494
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos112327
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos122803
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos465445
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos478635
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558201
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos896146
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos954456
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos111051
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos630530
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1010196
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos809870
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos314066
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567915
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos642157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703441
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703467
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos151156
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos675625
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos800959
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos420866
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos665438
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1034584
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos901375
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos932715
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos556949
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos565734
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos580974
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588739
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos647074
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1004199
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos575556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos662157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos781303
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602909
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos614811
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos627396
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos348169
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos451638
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos583826
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos589605
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836841
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos980428
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos670648
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos417976
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos420485
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos429744
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos586554
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos611418
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos773108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos829059
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos150699
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558691
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos110555
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos132036
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos163888
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos171498
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos178021
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos277968
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos424272
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos473496
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos479930
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos629699
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos647666
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos837804
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos321228
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos177387
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos327355
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702942
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos300605
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos652884
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos989724
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos990066
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos637657

Hempel, Carl 242
Hidden Subgroup Problem 351
hidden variables 160, 169–170, 174, 183, 195
hidden-variable theories 170–179, 181, 293, 303
Hilbert space 27, 169, 184–185, 210, 317
Hilbert, David 14
Hitchens, Christopher 361
Holevo's Theorem 209–210, 221
holographic bound 221–222, 332–336, 339
Hooft, Gerard, ’t 345
Høyer, Peter 196–197
Hume, David 228, 361
hypercomputation 31

Immirzi parameter 333
Impagliazzo, Russell 87, 89, 91, 101, 241, 247, 357
Incompleteness Theorem 18–19, 21, 23–25, 41, 150–151
independent (random variables) 73
indeterminism 160
information-theoretically secure 94–96
intelligent design 358–359
interactive proof 186, 190, 244, 246–255, 257–258, 260, 262–265
interference 114–115, 143, 148–149, 160, 164, 168, 207, 220
International Obfuscated C Code Contest 51
ion trap 204
IP (complexity class) 193, 249, 253–254, 258, 262–263, 265, 355
irrationality 360–362

Jennings, Ken 37
Jeopardy! 37
Jozsa, Richard 130, 287

Kabanets, Valentine 91, 357
Kahn, David 94
Kant, Immanuel 218
Karloff, Howard 249
Karp, Richard 58–59, 83, 86
Karp–Lipton Theorem 86–88
Kasparov, Garry 37–38

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos705232
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1006172
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos491746
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos512407
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos524004
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos548676
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos578872
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos514625
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos543436
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos855896
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos880671
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos126752
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos510899
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos550783
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos620453
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918723
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos94141
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1031176
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos619032
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos651091
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos650755
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960412
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos975490
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos990896
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos583405
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos669836
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1031650
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos136932
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos962644
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287672
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos293687
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298891
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos327379
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702966
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos718336
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023294
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos105530
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos112427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos115008
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos160777
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos465491
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos249862
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos490409
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos308181
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1024356
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos556526
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos566468
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos711179
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos717533
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos752165
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos761663
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos766403
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos359959
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos445855
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos457400
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos491423
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos499266
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos508836
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos611748
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos649569
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189634
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos603868
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574254
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos724232
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos736735
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos754791
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767169
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774599
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017401
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1029267
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149301
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149739
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836888
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos299024
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023325
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos306173
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos645684
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos725910
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208052
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos275079
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos283719
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos284307
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149619

Kayal, Neeraj 77, 88
Kearns, Michael 230
Kempe, Julia 204
Kitaev, Alexei 134, 204, 262–263
Kochen, Simon 171–172, 174–175, 302, 304
Kochen–Specker Theorem 171–172, 174–175
Kolmogorov, Andrei 71
Kripke, Saul 52–53
Kuperberg, Greg 207, 209, 214, 343
Kurzweil, Ray 158

Ladner's Theorem 63, 66
large cardinals 23
lattice 99, 105–107
Laughlin, Robert 223
Leibniz, Gottfried 33, 187
Leslie, John 270
Leucippus 1
Leung, Debbie 320
Levin, Leonid 56, 58–59, 101, 203, 217, 220, 227, 241
Libet, Benjamin 298
linear programming 54
linearity 73, 123, 220, 223–224, 320
linearity of expectation 73
linear-optical quantum computer 287
Lipton, Richard 83, 86
Lloyd, Seth 124, 321–322
Löb's Theorem 26
Loebner, Hugh 36
LOGSPACE (complexity class) 352, 356
loop quantum gravity 332–333
Lovelace, Ada 33
Löwenheim–Skolem Theorem 18
Luby, Michael 101, 241
Lund, Carsten 249, 255
Lutomirski, Andy 209

MA (complexity class) 188, 249, 255–256, 265, 281, 355, 358
Maldacena, Juan 221

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261628
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292398
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674006
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602909
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos419433
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos604674
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767932
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515844
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos525063
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos878606
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos882000
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515917
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos525086
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos246141
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos192961
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos614141
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos618446
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos633682
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos987323
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos483317
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos221153
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos230517
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos116738
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos321904
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655063
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos140330
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos558151
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos793030
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos62386
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos941905
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos204609
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208073
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos327407
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602198
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos642127
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos648569
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos665499
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos869136
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos199010
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos249298
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos384965
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos649798
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos657475
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos928139
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos249335
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos838163
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos275103
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos283743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos386028
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos929966
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos122293
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos147200
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1009350
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960603
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos140385
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos104894
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos327433
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703020
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos725880
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos745012
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos618535
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos561643
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos724425
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos745538
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774317
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos821642
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017340
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos651769

Many-Worlds Interpretation 201, 300
Map Colorability 62
Markov chain 311
Markov, A. A. 73
Markov's inequality 73–74
Mathur, Samir 346–347
matrix multiplication 49
Maudlin, Tim 322
Max-Flow/Min-Cut Theorem 180–181
maximally mixed state 164, 167, 214–215, 317, 319
measurement 4
Merlin; see Arthur
Mertens, Stephan 51
metamathematics 10
metaphysics 269, 298
Micali, Silvio 190, 241
Miller, Gary 77
mixed state 115–117, 121, 122, 131, 167, 215, 236, 238, 316–318
model (logic) 9, 18, 23–25
modus ponens 9
Monte Carlo simulation 74
Moore, Christopher 51
Moshkovitz, Dana 194
Muchnik, A. A. 30–31
Mulmuley, Ketan 261
multiverse 147–149, 167–169, 179

Nagasawa, Masao 182
Naor, Moni 260
natural proofs 259
natural selection,: 352–353

; see also evolution
Nayak, Ashwin 210, 239
Neal, Radford 296
negligible 97
Neumann, John von 33, 52, 74, 93, 167, 223
Newcomb's Paradox i, 294, 298
NEXP (complexity class) 70, 258, 260
Nielsen, Michael 149

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos874462
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos218334
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos902769
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos249953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos249977
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos993101
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos182359
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos934404
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos538190
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos498916
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos507352
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos631419
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos917816
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos924387
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos69481
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos82196
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos791839
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos867359
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567940
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703498
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261092
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos362602
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos376290
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos381411
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos407182
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos506963
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos634794
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos689621
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos695096
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos915131
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos79960
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos104969
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos116374
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos79127
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos252745
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos575725
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos133766
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos765022
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos455651
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos508126
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos536246
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos544111
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos759963
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos758412
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1009956
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos621724
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos698786
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos862001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos314135
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos140427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos191344
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos252530
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos304233
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos507012
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos656410
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_000.html#filepos971
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos858017
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos868302
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242658
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos755648
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos762408
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458464

Nisan, Noam 87, 249
Nobel Prize 140, 225, 283, 289
No-Cloning Theorem 125–128, 131, 158, 345
nondeterminism 292
nonlocal boxes 354–355
nonlocality 171
nonrelativizing 208, 246–247, 255–257, 352
nonuniformity 82–83, 87–90
Nozick, Robert 295
NP (complexity class) 45, 54–67, 70, 79, 82, 85–86, 88, 91, 98–100, 124, 137,

145–146, 154, 156, 188, 194, 203–204, 212, 241, 245–246, 248, 250, 253, 255, 257, 261,
281–282, 291, 307, 312, 317–318, 321, 351–352, 354–355, 358

NP coNP (complexity class) 64–66, 193
NP-complete 58–59, 61–66, 70, 79, 85–88, 100, 190–191, 198, 203, 212, 219, 227,

241, 279, 289, 307, 310, 312–314, 324, 325, 350–354
NP-completeness 29, 42, 45, 58, 194, 298
NP-hard 58
NP-intermediate 219
NSA (National Security Agency) 95, 102
NUMB3RS 59
Number Field Sieve 65, 105, 107

Obama, Barack 246
observable universe 156, 326, 338, 341
Occam, William of 230
Occam's Razor 230, 235–236
one-time pad 94–97
one-way function 101, 241
oracle 29, 30, 58–59, 67, 82, 137, 142, 144–145, 154, 156, 198, 208–209, 245–249,

254, 255, 257–258, 281, 298, 351–352, 354
ordinal numbers 13–14
Otter (computer program) 37

P (complexity class) 45, 54–57, 62–64, 66–67, 70, 83–85, 88–91, 98–100, 131, 140,
145, 156, 241, 244–248, 255, 257–258, 261, 286, 288, 305, 312, 328, 351–352, 355–358

P versus NP question 56, 57, 91, 258, 298
P/poly (complexity class) 83–88, 255, 258, 260
PAC learning 230, 235

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287700
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos725938
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos435943
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos661449
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos825923
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842171
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos388315
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos405610
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos484745
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos991144
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos853162
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1015141
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos516270
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos617723
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos717979
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743462
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1008957
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos273868
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287289
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos859916
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos170700
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197248
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242857
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos266703
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos271956
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos282090
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos289857
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos299908
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos317426
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos386328
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos427079
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos449171
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos473007
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos479225
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos561305
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos577481
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos601863
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos627043
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702261
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos714388
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos721666
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos726519
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos739343
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743606
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos753014
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos764093
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos821113
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos852712
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892844
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos905877
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos919074
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos931536
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1007212
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013134
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1023913
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos225006
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574665
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos209496
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos217053
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242280
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos265085
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos282015
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos323215
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567822
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588892
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602027
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos625988
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646715
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos665956
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702470
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos814360
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842883
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892493
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos900507
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos906049
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos938790
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos944413
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003162
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos130671
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos161597
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos170752
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos207970
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos577945
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos867795
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208186
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646989
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos310808
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos329606
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos211074
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos227400
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos335977
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos341765
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos715292
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos478350
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos946816
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos974659
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos980124
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674181
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674113
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos687727
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos306915
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos325182
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702848
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos130312
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos132788
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208364
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos234521
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos272601
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos426811
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos441902
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos446938
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos473457
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos479898
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos588980
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos615516
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos714781
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos740033
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos744938
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos752318
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos821875
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos866967
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1006467
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013172
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos90145
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149992
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos170634
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197222
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos219678
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos230389
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242900
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos275293
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos289754
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos317326
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos412778
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos435410
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos449985
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos479181
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos702261
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos712061
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743527
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos752885
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos764056
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835625
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos840307
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos890219
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos905004
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos950405
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1007112
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017051
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos202817
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos206719
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos300043
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos755519
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos867906
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos276841
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos745257
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos755692
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos759642
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674961
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos686639

Packing 62
Papadimitriou, Christos 51
PCP (Probabilistically Checkable Proof) 193
PCP Theorem 194
PCTC (complexity class) 312, 314–315, 318
Peano Arithmetic 23
Peano axioms 9
Penrose, Roger 33, 41, 150–156, 158, 187, 301, 353
Peres, Asher 130
permanent (matrix) 288
perturbation theory 248
PH:; see polynomial hierarchy
Pinker, Steven 244
plaintext 94–97, 105, 107
Planck area 221, 332
Planck scale 2, 32, 185
Planck time 330
Plato 2
Platonism 152, 186–187, 200
Poincaré Conjecture 18
polynomial hierarchy 66–67, 82, 86, 88, 144–145, 193, 245, 254, 282–283, 286–288
polynomial identity testing 356
polynomial time 54–55, 58–59, 63, 65–68, 70, 81–84, 88–90, 96–98, 102, 104, 106,

124, 138, 140, 154, 188, 192–193, 206, 219, 279, 280–282, 287, 307, 312, 319, 321,
324–325, 350, 352, 354

polynomials 250–252, 254, 286
Post, Emil 30
PostBPP (complexity class) 280–283, 286–288
PostBQP (complexity class) 214, 282–283, 286–288, 321
postselection 214, 280–284, 286, 321–322
POVM (positive operator-valued measurement) 236–237
PP (complexity class) 78–79, 138–140, 189, 212, 254–257, 262, 282–286, 321, 325,

350
Pratt, Vaughan 88
Preskill, John 165, 223, 305
Presumptuous Philosophers 288–289
primality testing 54, 57, 77–78, 88, 356
Prime Number Theorem 76
primes 21, 64, 75–77, 250

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos219273
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189001
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574839
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos577334
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos904822
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos909588
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos919635
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos115982
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos79333
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos141901
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos160633
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos463832
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos482867
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos559767
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos875598
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1011298
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos840116
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos722449
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos709999
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos307287
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos336473
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos340449
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos651510
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960998
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos64740
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos138791
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos552457
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos956643
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos65594
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos469556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos557539
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos592988
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos104206
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos231964
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos272673
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos283946
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos290701
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos447441
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574543
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos714019
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos740811
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos822300
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835198
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1020715
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos198159
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208501
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos221420
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos227981
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos242445
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos271086
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos290039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos312789
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos327924
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos332150
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337373
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos386379
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos430248
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos434354
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos473077
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos561425
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos572523
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos608471
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646148
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos815757
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos817592
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos837142
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892563
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos906119
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos925068
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos931180
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos940159
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003232
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1007914
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1012891
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos727157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos743022
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos834632
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos133627
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos817406
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835068
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos632119
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos823400
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos833814
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos931087
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos633859
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos817479
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos834522
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos930824
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos689882
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos263590
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos430730
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos563224
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos628055
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos740252
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos766671
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos822736
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos931331
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos944515
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003268
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos503556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655042
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos886114
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos841193
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos199044
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos207008
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos259166
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos291758
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019731
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos257075
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos111295
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos225263
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos255653
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos727908

Principle of Deferred Measurement 283
prior probability distribution 267
private-key cryptosystem 102
probabilities 4, 7, 28, 71–72, 109–113, 115, 121, 123, 146, 174, 182–183, 201, 220,

238, 266, 275–276, 281, 295, 322, 344
Problem of Induction 228
promise problem 196, 203
PromiseMA (complexity class) 257
pseudorandom function 241, 350
pseudorandom generator 89, 90, 96–101, 241, 247, 356
PSPACE (complexity class) 55, 139, 193, 214, 245, 253–254, 258, 262–263, 265,

307, 312, 314–315, 317–319, 321–324, 328, 350, 355
public-key cryptography 102

QAM (complexity class) 265
QCMA (complexity class) 207–209
QIP (complexity class) 262–265
QIP[2] (complexity class) 265
QMA (complexity class) 202–204, 207–209, 212, 214, 265
QMA-complete 203
QMAM (complexity class) 265
qualia 34
quantifier 9
quantitative epistemology 200
quantum advice 214–215, 217, 320
quantum advice state 211, 215
quantum computer 19, 64, 99, 159, 165, 244, 315, 352
quantum computing 3, 6, 8, 27, 31–32, 64, 71, 140, 145, 147–149, 157, 163, 195, 200,

202–203, 217–220, 225–227, 237, 244, 284, 286–287, 320, 343, 350–351
Quantum Cook–Levin Theorem 203
quantum fault-tolerance theorem,: 165; see Threshold Theorem
quantum gravity 32, 150, 222, 301, 308–309, 323, 332–333, 344, 346
quantum interactive proof 262
quantum key distribution 126–128, 159
quantum mechanics 3–6, 27, 44, 71, 108–112, 115–119, 121, 123–124, 131–133,

146–148, 150, 156–157, 160–164, 168–170, 172, 178, 180, 182, 184, 201–202, 220,
223–225, 236–238, 286, 293, 302, 304, 309, 311, 320–321, 343–344, 346, 349, 354–355

quantum money 128–129
quantum oracle 208

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos826708
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos785181
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos328450
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos69257
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos76157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos127065
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245524
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos347427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos361612
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos376501
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos384858
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos453357
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos524832
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos543844
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos596028
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos649499
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos695349
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos784665
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos805384
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos820636
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos861014
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos933519
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos988853
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos669866
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos581280
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602502
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos753567
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703731
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1004387
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos294831
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos295463
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos313036
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos703233
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos718764
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019250
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos200170
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431651
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos574320
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos632294
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos713413
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos737047
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos754843
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767717
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774651
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos892910
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos905730
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos909655
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos918170
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos931600
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos950466
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003319
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017443
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos329028
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774788
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos613975
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767081
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774972
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos596973
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos613936
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos628016
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos632777
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774724
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602441
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos774813
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos142696
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos79142
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos593118
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos633784
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos641873
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos928775
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos625335
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos634379
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos107640
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos225594
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos319920
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos486076
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos501618
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos711594
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos913700
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1008690
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos66302
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos74297
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos77108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos126425
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos136230
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos224893
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245329
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos434652
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos449624
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos454969
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos481473
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos496668
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos579178
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos594055
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos597603
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos641591
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos661819
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos692295
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos711443
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos828566
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835023
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos926973
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos987249
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1003849
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602112
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos502148
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos138110
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos465697
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos653174
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos875541
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos894629
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos937258
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960521
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos988732
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos992776
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos766153
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos394215
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos486218
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos66712
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos125182
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos169382
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos245743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos342375
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos361844
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos377552
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos385429
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos406656
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos452624
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos464725
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos480205
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos490045
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos510121
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos518092
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos533045
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos538478
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos543879
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos550560
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos594785
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos648053
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos656888
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos689746
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos834753
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos855308
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos879186
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos882891
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos896876
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos902340
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos928162
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos987467
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos992233
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1001145
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013349
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos397956
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos615324

quantum robot 341
quantum teleportation:; see teleportation
quantum state 5, 115, 117, 123, 148, 163–164, 171–172, 176, 200–203, 206–210,

214–215, 217, 221, 236–239, 241, 265, 282, 300–301, 303, 320
quantum state tomography 237–238
qubit 114, 121–122, 125, 127–130, 132–139, 143, 159, 163–165, 167, 198, 202–204,

207–213, 220–221, 223, 225–227, 237–240, 264, 283–284, 287, 301, 316–318, 321–322,
348, 354

query complexity 197, 340

Rabin, Michael 77, 88, 105
random walk 206–207, 342
randomized algorithm 74, 77–78, 80–81, 89, 143, 188, 247, 357
randomness 71, 74–75, 77–78, 82, 87–90, 98, 166, 247, 295, 302, 305, 312, 356
rational numbers 12, 16, 119
Razborov, A. A. 259–260
Recursive Fourier Sampling 142–145, 351
reduction 42, 58, 63, 97, 100–101, 106
Regev, Oded 100, 106–107, 204
Reingold, Omer 260, 285, 356
relativize 30, 246, 257–258
reliability of memory 162, 168
religion 343, 358–361
Riemann Hypothesis 25, 76, 124, 213, 352
Robbins Conjecture 37
Romney, Mitt 246
RP (complexity class) 80–81, 355
RSA 103, 105, 107, 124
Rudich, Steven 259–260
Rule 110 99
Russell, Bertrand 8, 15, 52

Sagan, Carl 307
Sahai, Amit 196
sample distribution 233
sample space 230–232, 234
Santhanam, Rahul 257–258
Saxena, Nitin 77, 88
Schöning, Uwe 254

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos981058
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos72142
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos362328
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos366854
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos383904
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos457054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos497979
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos516828
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos527789
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos592384
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos609433
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos631540
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos642804
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos650637
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos689584
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos704433
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos775137
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos824256
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos873743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos879598
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos941993
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos691389
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos358770
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos377861
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos389168
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos396039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos415213
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos444600
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos486271
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos498209
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos507315
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos586589
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos598346
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos611470
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos648634
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655981
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos660903
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos691592
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos773067
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos826994
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos837909
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos875871
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos913975
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos932175
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos998369
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1014300
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos584499
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos979630
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261118
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292186
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos336399
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos609871
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos983802
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos253975
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261441
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos267460
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292950
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos445346
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos562342
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos719597
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1021039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos244813
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos252408
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos259286
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos273779
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287341
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos318061
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos505034
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos719326
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos861563
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos879090
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos884715
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos905068
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1018361
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos87299
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos98370
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos408803
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos757635
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos442579
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1005564
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos161613
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos208573
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos222518
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos316451
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos324108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos338282
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos322795
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337733
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos602909
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos759983
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos846580
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019815
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos133385
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos717258
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos751772
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos495586
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos509837
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos986168
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1025721
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos121377
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos258364
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos387218
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos630569
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1010156
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos150092
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos715292
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos268899
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017089
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos330020
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos334905
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos340865
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos387097
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos758137
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos320264
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos78038
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos95623
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos192620
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos891884
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos581184
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos681778
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos675959
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos684136
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos753344
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos261654
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292424
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos739524

Schrödinger, Erwin 3, 131, 181–182, 225
Schwarzschild bound 334
Searle, John 33, 38–39, 155
Second Law of Thermodynamics 124, 166–167, 333–334
self-checking programs 255
Self-Indication Assumption 274, 289
self-printing program 51
Self-Sampling Assumption 274, 289
semidefinite programming 262
set theory 11, 18, 23, 25–27, 29, 63, 151–152
sets 8, 11–12, 14–15
Shamir, Adi 254
Shannon, Claude 74, 95–96, 166
shattering 234
Shepherd, Dan 287
Shi, Yaoyun 134, 197
Shor's algorithm 64–65, 105, 140–142, 147, 201, 245, 287
Shortest Vector Problem 99–100, 105
Sipser, Michael 82, 91, 248–249, 258
Smith, Graeme 320
Smolensky, Roman 259
Smolin, John A. 320
Solovay, Robert 88, 134, 258
Space Hierarchy Theorem 49
SPACE(f(n)) 47, 54
special relativity 178, 303, 308
Specker, Ernst 171, 174
Stable Marriage Problem 68
Standard Model 102, 323
Star Trek 313
stationary distribution 311, 313–315
statistical zero knowledge 186, 193, 195
Stearns, Richard 47
Stern–Gerlach apparatus 176
STOC (Symposium on Theory of Computing) 62, 78
stochastic matrix 168, 172
Stothers, Andrew 49
Strassen, Volker 49, 88
string theory 332

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos66092
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos407345
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos543182
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos660688
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos965901
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos141877
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos152883
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos476275
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos386901
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos504613
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos963653
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos746075
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos802981
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842321
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos189446
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos802570
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos842386
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767895
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos82578
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos104338
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos116224
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos121480
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos131936
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos220733
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos466919
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos76840
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos82710
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos93492
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos742307
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos252502
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos311037
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos506501
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos685110
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos836914
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos418800
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos584721
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos225440
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos336746
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos436567
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos455415
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595382
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos712493
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos838601
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos321854
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos337158
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos272722
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298820
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos722821
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos756470
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos941946
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos757778
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos942008
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292133
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos419411
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos754272
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos181548
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos176273
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197816
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos533971
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos879743
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos893932
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos515870
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos525275
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos236953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos329340
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos937228
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos907894
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos903458
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos907126
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos556870
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos573535
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos580592
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos177416
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos529482
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos218046
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos263018
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos510621
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos518439
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos182853
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos182464
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292157
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos960561

strong AI 33, 38, 41
superoperator 316–318, 321
superposition 3–6, 133, 137, 141, 161–162, 165, 206–208, 212, 263–264
Susskind, Leonard 345
Szemerédi, Endre 206
SZK (complexity class) 193, 195–196, 352

Tapp, Alain 196–197
Tarski, Alfred 15, 37, 45–46
TC0 (complexity class) 260
teleportation 129–131, 158–159, 299–300, 321
thermal equilibrium 169
Thorne, Kip 309
Threshold Theorem 165, 223–226
time dilation 308
Time Hierarchy Theorem 47, 49
time travel 307–308, 310, 313–314, 321, 323
TIME(f(n)) 47, 49, 54
time-constructibility 48
Toda's Theorem 254, 286
transistor 223
transition probabilities 162, 181–183
Tsirelson's inequality 354–355
Turing Award 47
Turing degree 30–31
Turing equivalent 29
Turing machine 20, 28, 30–31, 42–43, 47, 55, 58, 60–61, 78, 83–84, 87, 136, 200,

219, 281, 336, 339–340
Turing reducible 29
Turing Test 33, 35–38
Turing, Alan 18, 20–22, 29–36, 38, 47, 74, 94, 138, 151–156

union bound 72–73, 87, 141, 233
unitarity 222, 344–345
unitary matrix 168, 171, 208, 316–317
universal programmable computers 20

vacuum energy 169, 332
Vadhan, Salil 196

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos141946
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos153585
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos160679
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos914275
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos929696
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_007.html#filepos67213
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos416048
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos428121
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos439943
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos493272
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos502960
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos609480
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos627669
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos771031
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos990927
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos608706
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos573762
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos580518
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1008515
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos583432
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos95242
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos150121
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos171953
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos760197
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos400880
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos482952
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos871512
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos942697
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos511531
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos896322
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos501408
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos655702
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos894528
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos177343
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos181482
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos891813
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos899205
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos908497
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos942682
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos935881
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos175501
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos181254
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos197651
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos180471
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos740668
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos835510
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos656518
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos494822
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos543090
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1013842
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos177489
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos132123
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos131752
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos107921
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos128106
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos132908
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos162974
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos175865
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos199749
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos210097
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_012.html#filepos214803
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos264107
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos275560
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos286746
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos424407
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos593738
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos646189
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_024.html#filepos819833
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos970205
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos976424
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos131493
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos140848
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos146659
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos103524
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos108180
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos131012
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos152023
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos177989
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos252479
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos306496
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431252
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_017.html#filepos465963
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos248004
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos288919
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos439510
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos683380
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos652705
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos988797
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos510565
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos516727
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos615801
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos914434
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos110085
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos511717
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_027.html#filepos958788
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos581209

Valiant, Leslie 230, 232–233, 253
Vassilevska Williams, Virginia 49
Vazirani, Umesh 139, 142–143, 145, 149, 210, 224, 230, 238, 305, 351
VC dimension 234–236, 239–240
Vidick, Thomas 128, 305
Vinodchandran, N. V. 256–257
von Neumann trick 93
von Neumann, John:; see Neumann, John von

Watrous, John 128, 204, 206–207, 212, 262–263, 318, 323
Watson (Jeopardy computer) 37
Watson, James 52
wavefunction 160, 164, 167, 183, 185, 201, 301
weak measurement 211
Weinberg, Steven 123, 358
Weizenbaum, Joseph 35
well ordered 13–15
Wiesner, Stephen 127–128
Wigderson, Avi 87, 89, 91, 190, 247, 258
Wiles, Andrew 109, 352–353
Williams, Ryan 260
Winograd, Shmuel 49
Witten, Edward 221
Wittgenstein, Ludwig 169, 295–296
Wolfram, Stephen 99, 303
Wootters, William 123, 130
worst-case/average-case equivalence 99–100

Yahoo 37
Yao, Andrew 90, 102, 356
you-complete 296–297

Zeilinger, Anton 225
Zermelo–Fraenkel axioms 11, 14, 23
zero-knowledge proof 189, 190, 196
ZPP (complexity class) 81, 88, 355

Ω (constant) 213

C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674778
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos679196
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos738180
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos183000
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos431850
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos442415
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos447757
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_016.html#filepos458464
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos620427
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos658926
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos674006
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos694020
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos885556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1005491
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos685790
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_022.html#filepos697832
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos397039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos885584
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos746547
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos304256
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos397039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos605379
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos609343
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos627271
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos767958
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos919384
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_026.html#filepos938097
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149831
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos191344
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos491301
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos499464
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos508207
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos549108
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos552098
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos595338
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos874566
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos639921
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos385240
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1025558
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos144957
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos91627
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos394556
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos287726
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos293724
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos298920
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567968
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos718367
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos753898
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos348211
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1009767
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_023.html#filepos762098
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_011.html#filepos182722
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos651740
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_018.html#filepos513015
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos860407
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos320350
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos881374
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos383145
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_015.html#filepos402054
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos322362
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_010.html#filepos149354
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos295849
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_014.html#filepos328134
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1019156
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_025.html#filepos864282
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_021.html#filepos660565
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos86039
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_008.html#filepos94752
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_009.html#filepos116194
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos565439
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos567303
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_019.html#filepos581726
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos270462
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_013.html#filepos292317
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_028.html#filepos1017128
C:\Users\John\AppData\Local\Temp\donC4A3\CR!5V7G2FYK315H7FC4YA4N9P8TRRSN_split_020.html#filepos629803

	Quantum Computing since Democritus
	Quantum Computing since Democritus
	Contents
	Preface
	A Critical Review of Scott Aaronson's Quantum Computing since Democritus by Scott Aaronson
	Now for the actual preface
	What's new

	Acknowledgments
	1 Atoms and the void
	2 Sets
	Rules of first-order logic
	Peano axioms for the nonnegative integers
	Axioms of set theory

	3 Gödel, Turing, and friends
	Turing machines
	Bonus addendum
	Exercise
	Further reading

	4 Minds and machines
	Puzzles
	Answers to exercise from last chapter

	5 Paleocomplexity
	Further reading
	Puzzle 1 from last chapter
	Puzzle 2 from last chapter

	6 P, NP, and friends
	Petting zoo
	Problem set

	7 Randomness
	Puzzles

	8 Crypto
	Answers to puzzles from Chapter 7
	Crypto
	Pseudorandom generators
	One-way functions
	Public-key cryptography

	9 Quantum
	A less than 0% chance?
	Mixed states
	The squaring rule
	Real versus complex numbers
	Linearity
	Further reading

	10 Quantum computing
	Uncomputing
	Relation to classical complexity classes
	Feynman path integral!!!
	Quantum computing and NP-complete problems
	Quantum computing and many-worlds
	Further reading

	11 Penrose
	Opening the black box
	At risk of stating the obvious
	All aboard the holistic quantum gravy train

	12 Decoherence and hidden variables
	Into the abyss
	Story 1. Decoherence
	Decoherence and the Second Law
	Story 2. Hidden variables
	No-go theorems galore
	Examples of hidden-variable theories
	The flow theory
	The Schrödinger theory
	Bohmian mechanics

	13 Proofs
	What is a proof?
	Probabilistic proofs
	Zero-knowledge proofs
	PCP
	Complexity of simulating hidden-variable theories

	14 How big are quantum states?
	15 Skepticism of quantum computing
	16 Learning
	Puzzle

	17 Interactive proofs, circuit lower bounds, and more
	Interactive proofs
	New developments
	Quantum interactive proofs

	18 Fun with the Anthropic Principle1
	19 Free will
	Newcomb's Paradox

	20 Time travel
	21 Cosmology and complexity
	22 Ask me anything
	Index

