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Preface

The quest for efficiency is ancient and universal, as time and other resources are always
in shortage. Thus, the question of which tasks can be performed efficiently is central to
the human experience.

A key step toward the systematic study of the aforementioned question is a rigorous
definition of the notion of a task and of procedures for solving tasks. These definitions
were provided by computability theory, which emerged in the 1930s. This theory focuses
on computational tasks, and considers automated procedures (i.e., computing devices and
algorithms) that may solve such tasks.

In focusing attention on computational tasks and algorithms, computability theory has
set the stage for the study of the computational resources (like time) that are required
by such algorithms. When this study focuses on the resources that are necessary for any
algorithm that solves a particular task (or a task of a particular type), the study becomes
part of the theory of Computational Complexity (also known as Complexity Theory).'

Complexity Theory is a central field of the theoretical foundations of computer science.
It is concerned with the study of the intrinsic complexity of computational tasks. That
is, a typical complexity theoretic study refers to the computational resources required to
solve a computational task (or a class of such tasks), rather than referring to a specific
algorithm or an algorithmic schema. Actually, research in Complexity Theory tends to
start with and focus on the computational resources themselves, and addresses the effect
of limiting these resources on the class of tasks that can be solved. Thus, Computational
Complexity is the general study of what can be achieved within limited time (and/or other
limited natural computational resources).

The (half-century) history of Complexity Theory has witnessed two main research
efforts (or directions). The first direction is aimed toward actually establishing concrete
lower bounds on the complexity of computational problems, via an analysis of the evolution
of the process of computation. Thus, in a sense, the heart of this direction is a “low-level”
analysis of computation. Most research in circuit complexity and in proof complexity
falls within this category. In contrast, a second research effort is aimed at exploring the
connections among computational problems and notions, without being able to provide
absolute statements regarding the individual problems or notions. This effort may be

'In contrast, when the focus is on the design and analysis of specific algorithms (rather than on the intrinsic com-
plexity of the task), the study becomes part of a related subfield that may be called Algorithmic Design and Analysis.
Furthermore, Algorithmic Design and Analysis tends to be sub-divided according to the domain of mathematics,
science, and engineering in which the computational tasks arise. In contrast, Complexity Theory typically maintains
a unity of the study of tasks solvable within certain resources (regardless of the origins of these tasks).

XV



PREFACE

viewed as a “high-level” study of computation. The theory of NP-completeness as well
as the studies of approximation, probabilistic proof systems, pseudorandomness, and
cryptography all fall within this category.

The current book focuses on the latter effort (or direction). The main reason for our
decision to focus on the “high-level” direction is the clear conceptual significance of the
known results. That is, many known results in this direction have an extremely appealing
conceptual message, which can be appreciated also by non-experts. Furthermore, these
conceptual aspects can be explained without entering excessive technical detail. Conse-
quently, the “high-level” direction is more suitable for an exposition in a book of the
current nature.’

The last paragraph brings us to a discussion of the nature of the current book, which
is captured by the subtitle (i.e., “a conceptual perspective”). Our main thesis is that
Complexity Theory is extremely rich in conceptual content, and that this content should be
explicitly communicated in expositions and courses on the subject. The desire to provide
a corresponding textbook is indeed the motivation for writing the current book and its
main governing principle.

This book offers a conceptual perspective on Complexity Theory, and the presentation
is designed to highlight this perspective. It is intended to serve as an introduction to the
field, and can be used either as a textbook or for self-study. Indeed, the book’s primary
target audience consists of students who wish to learn Complexity Theory and educators
who intend to teach a course on Complexity Theory. Still, we hope that the book will be
useful also to experts, especially to experts in one sub-area of Complexity Theory who
seek an introduction to and/or an overview of some other sub-area.

It is also hoped that the book may help promote general interest in Complexity Theory
and make this field acccessible to general readers with adequate background (which
consists mainly of being comfortable with abstract discussions, definitions, and proofs).
However, we do expect most readers to have a basic knowledge of algorithms, or at least
be fairly comfortable with the notion of an algorithm.

The book focuses on several sub-areas of Complexity Theory (see the following or-
ganization and chapter summaries). In each case, the exposition starts from the intuitive
questions addressed by the sub-area, as embodied in the concepts that it studies. The
exposition discusses the fundamental importance of these questions, the choices made
in the actual formulation of these questions and notions, the approaches that underlie
the answers, and the ideas that are embedded in these answers. Our view is that these
(“non-technical’) aspects are the core of the field, and the presentation attempts to reflect
this view.

We note that being guided by the conceptual contents of the material leads, in some
cases, to technical simplifications. Indeed, for many of the results presented in this book,
the presentation of the proof is different (and arguably easier to understand) than the
standard presentations.

Web site for notices regarding this book. We intend to maintain a Web site listing
corrections of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/~oded/cc-book.html

’In addition, we mention a subjective reason for our decision: The “high-level” direction is within our own
expertise, while this cannot be said about the “low-level” direction.

xvi



Organization and Chapter Summaries

This book consists of ten chapters and seven appendices. The chapters constitute the core
of this book and are written in a style adequate for a textbook, whereas the appendices
provide either relevant background or additional perspective and are written in the style
of a survey article. The relative length and ordering of the chapters (and appendices) do
not reflect their relative importance, but rather an attempt at the best logical order (i.e.,
minimizing the number of forward pointers).

Following are brief summaries of the book’s chapters and appendices. These summaries
are more novice-friendly than those provided in Section 1.1.3 but less detailed than the
summaries provided at the beginning of each chapter.

Chapter 1: Introduction and Preliminaries. The introduction provides a high-level
overview of some of the content of Complexity Theory as well as a discussion of some
of the characteristic features of this field. In addition, the introduction contains several
important comments regarding the approach and conventions of the current book. The
preliminaries provide the relevant background on computability theory, which is the setting
in which complexity theoretic questions are being studied. Most importantly, central
notions such as search and decision problems, algorithms that solve such problems, and
their complexity are defined. In addition, this part presents the basic notions underlying
non-uniform models of computation (like Boolean circuits).

Chapter 2: P, NP, and NP-Completeness. The P versus NP Question can be phrased as
asking whether or not finding solutions is harder than checking the correctness of solutions.
An alternative formulation asks whether or not discovering proofs is harder than verifying
their correctness, that is, is proving harder than verifying. It is widely believed that the
answer to the two equivalent formulations is that finding (resp., proving) is harder than
checking (resp., verifying); that is, it is believed that P is different from NP. At present,
when faced with a hard problem in NP, we can only hope to prove that it is not in P
assuming that NP is different from P. This is where the theory of NP-completeness, which
is based on the notion of a reduction, comes into the picture. In general, one computational
problem is reducible to another problem if it is possible to efficiently solve the former
when provided with an (efficient) algorithm for solving the latter. A problem (in NP) is
NP-complete if any problem in NP is reducible to it. Amazingly enough, NP-complete
problems exist, and furthermore, hundreds of natural computational problems arising in
many different areas of mathematics and science are NP-complete.

xvii



ORGANIZATION AND CHAPTER SUMMARIES

Chapter 3: Variations on P and NP. Non-uniform polynomial time (P/poly) captures
efficient computations that are carried out by devices that handle specific input lengths. The
basic formalism ignores the complexity of constructing such devices (i.e., a uniformity
condition), but a finer formalism (based on “machines that take advice”) allows us to
quantify the amount of non-uniformity. This provides a generalization of P. In contrast,
the Polynomial-time Hierarchy (PH) generalizes NP by considering statements expressed
by a quantified Boolean formula with a fixed number of alternations of existential and
universal quantifiers. It is widely believed that each quantifier alternation adds expressive
power to the class of such formulae. The two different classes are related by showing that
if NP is contained in P/poly then the Polynomial-time Hierarchy collapses to its second
level (i.e., 7).

Chapter 4: More Resources, More Power? When using “nice” functions to determine
an algorithm’s resources, it is indeed the case that more resources allow for more tasks to be
performed. However, when “ugly” functions are used for the same purpose, increasing the
resources may have no effect. By nice functions we mean functions that can be computed
without exceeding the amount of resources that they specify. Thus, we get results asserting,
for example, that there are problems that are solvable in cubic time but not in quadratic
time. In the case of non-uniform models of computation, the issue of “nicety” does not
arise, and it is easy to establish separation results.

Chapter 5: Space Complexity. This chapter is devoted to the study of the space com-
plexity of computations, while focusing on two rather extreme cases. The first case is
that of algorithms having logarithmic space complexity, which seem a proper and natural
subset of the set of polynomial-time algorithms. The second case is that of algorithms
having polynomial space complexity, which in turn can solve almost all computational
problems considered in this book. Among the many results presented in this chapter are
a log-space algorithm for exploring (undirected) graphs, and a log-space reduction of the
set of directed graphs that are nof strongly connected to the set of directed graphs that are
strongly connected. These results capture fundamental properties of space complexity,
which seems to differentiate it from time complexity.

Chapter 6: Randomness and Counting. Probabilistic polynomial-time algorithms with
various types of failure give rise to complexity classes such as BPP, RP, and ZPP.
The results presented include the emulation of probabilistic choices by non-uniform
advice (i.e., BPP C P/poly) and the emulation of two-sided probabilistic error by an 3V-
sequence of quantifiers (i.e., BPP C X,). Turning to counting problems (i.e., counting
the number of solutions for NP-type problems), we distinguish between exact counting
and approximate counting (in the sense of relative approximation). While any problem
in PH is reducible to the exact counting class #P, approximate counting (for #P) is
(probabilistically) reducible to N'P. Additional related topics include #P-completeness,
the complexity of searching for unique solutions, and the relation between approximate
counting and generating almost uniformly distributed solutions.

Chapter 7: The Bright Side of Hardness. It turns out that hard problems can be “put
to work” to our benefit, most notably in cryptography. One key issue that arises in this
context is bridging the gap between “occasional” hardness (e.g., worst-case hardness or
mild average-case hardness) and “typical” hardness (i.e., strong average-case hardness).
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ORGANIZATION AND CHAPTER SUMMARIES

We consider two conjectures that are related to P # N'P. The first conjecture is that there
are problems that are solvable in exponential time but are not solvable by (non-uniform)
families of small (say, polynomial-size) circuits. We show that these types of worst-case
conjectures can be transformed into average-case hardness results that yield non-trivial
derandomizations of BPP (and even BPP = P). The second conjecture is that there are
problems in NP for which it is easy to generate (solved) instances that are hard to solve
for other people. This conjecture is captured in the notion of one-way functions, which
are functions that are easy to evaluate but hard to invert (in an average-case sense). We
show that functions that are hard to invert in a relatively mild average-case sense yield
functions that are hard to invert almost everywhere, and that the latter yield predicates
that are very hard to approximate (called hard-core predicates). The latter are useful for
the construction of general-purpose pseudorandom generators, as well as for a host of
cryptographic applications.

Chapter 8: Pseudorandom Generators. A fresh view of the question of randomness was
taken in the theory of computing: It has been postulated that a distribution is pseudorandom
if it cannot be told apart from the uniform distribution by any efficient procedure. The
paradigm, originally associating efficient procedures with polynomial-time algorithms,
has been applied also with respect to a variety of limited classes of such distinguishing
procedures. The archetypical case of pseudorandom generators refers to efficient genera-
tors that fool any feasible procedure; that is, the potential distinguisher is any probabilistic
polynomial-time algorithm, which may be more complex than the generator itself. These
generators are called general-purpose, because their output can be safely used in any
efficient application. In contrast, for purposes of derandomization, one may use pseu-
dorandom generators that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this approach and using
various hardness assumptions, one may obtain corresponding derandomizations of BPP
(including a full derandomization; i.e., BPP = P). Other forms of pseudorandom gener-
ators include ones that fool space-bounded distinguishers, and even weaker ones that only
exhibit some limited random behavior (e.g., outputting a pairwise independent sequence).

Chapter 9: Probabilistic Proof Systems. Randomized and interactive verification pro-
cedures, giving rise to interactive proof systems, seem much more powerful than their
deterministic counterparts. In particular, interactive proof systems exist for any set in
PSPACE 2 coNP (e.g., for the set of unsatisfied propositional formulae), whereas it is
widely believed that some sets in coAP do not have NP-proof systems. Interactive proofs
allow the meaningful conceptualization of zero-knowledge proofs, which are interactive
proofs that yield nothing (to the verifier) beyond the fact that the assertion is indeed valid.
Under reasonable complexity assumptions, every set in NP has a zero-knowledge proof
system. (This result has many applications in cryptography.) A third type of probabilistic
proof system underlies the model of PCPs, which stands for probabilistically checkable
proofs. These are (redundant) NP-proofs that offer a trade-off between the number of lo-
cations (randomly) examined in the proof and the confidence in its validity. In particular,
a small constant error probability can be obtained by reading a constant number of bits
in the redundant NP-proof. The PCP Theorem asserts that NP-proofs can be efficiently
transformed into PCPs. The study of PCPs is closely related to the study of the complexity
of approximation problems.
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Chapter 10: Relaxing the Requirements. In light of the apparent infeasibility of solv-
ing numerous useful computational problems, it is natural to seek relaxations of those
problems that remain useful for the original applications and yet allow for feasible solving
procedures. Two such types of relaxation are provided by adequate notions of approxima-
tion and a theory of average-case complexity. The notions of approximation refer to the
computational problems themselves; that is, for each problem instance we extend the set
of admissible solutions. In the context of search problems this means settling for solutions
that have a value that is “sufficiently close” to the value of the optimal solution, whereas
in the context of decision problems this means settling for procedures that distinguish
yes-instances from instances that are “far” from any yes-instance. Turning to average-
case complexity, we note that a systematic study of this notion requires the development
of a non-trivial conceptual framework. One major aspect of this framework is limiting the
class of distributions in a way that, on the one hand, allows for various types of natural
distributions and, on the other hand, prevents the collapse of average-case hardness to
worst-case hardness.

Appendix A: Glossary of Complexity Classes. The glossary provides self-contained
definitions of most complexity classes mentioned in the book. The glossary is partitioned
into two parts, dealing separately with complexity classes that are defined in terms of
algorithms and their resources (i.e., time and space complexity of Turing machines) and
complexity classes defined in terms of non-uniform circuits (and referring to their size
and depth). In particular, the following classes are defined: P, NP, coN'P, BPP, RP,
007%73, ZPP,#P, PH, E, EXP, NEXP, L, NL, RL, PSPACE, P/poly, NC*, and
AC*.

Appendix B: On the Quest for Lower Bounds. This brief survey describes the most
famous attempts at proving lower bounds on the complexity of natural computational
problems. The first part, devoted to Circuit Complexity, reviews lower bounds for the
size of (restricted) circuits that solve natural computational problems. This represents a
program whose long-term goal is proving that P # NP. The second part, devoted to
Proof Complexity, reviews lower bounds on the length of (restricted) propositional proofs
of natural tautologies. This represents a program whose long-term goal is proving that

NP # coNP.

Appendix C: On the Foundations of Modern Cryptography. This survey of the founda-
tions of cryptography focuses on the paradigms, approaches, and techniques that are used
to conceptualize, define, and provide solutions to natural security concerns. It presents
some of these conceptual tools as well as some of the fundamental results obtained using
them. The appendix augments the partial treatment of one-way functions, pseudorandom
generators, and zero-knowledge proofs (included in Chapters 7-9). Using these basic tools,
the appendix provides a treatment of basic cryptographic applications such as encryption,
signatures, and general cryptographic protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Randomization.
The probabilistic preliminaries include conventions regarding random variables as well as
three useful inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality, and Chernoff
Bound). The advanced topics include constructions and lemmas regarding families of
hashing functions, a study of the sample and randomness complexities of estimating the
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average value of an arbitrary function, and the problem of randomness extraction (i.e.,
procedures for extracting almost perfect randomness from sources of weak or defected
randomness).

Appendix E: Explicit Constructions. Complexity Theory provides a clear perspective
on the intuitive notion of an explicit construction. This perspective is demonstrated with
respect to error-correcting codes and expander graphs. Starting with codes, the appendix
focuses on various computational aspects, and offers a review of several popular con-
structions as well as a construction of a binary code of constant rate and constant relative
distance. Also included are a brief review of the notions of locally testable and locally
decodable codes, and a useful upper bound on the number of codewords that are close to
any single sequence. Turning to expander graphs, the appendix contains a review of two
standard definitions of expanders, two levels of explicitness, two properties of expanders
that are related to (single-step and multi-step) random walks on them, and two explicit
constructions of expander graphs.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that were not
included in the main text (for a variety of reasons) and still are beneficial as alternatives
to the original and/or standard presentations. Included are a proof that PH is reducible to
#P via randomized Karp-reductions, and the presentation of two useful transformations
regarding interactive proof systems.

Appendix G: Some Computational Problems. This appendix includes definitions of
most of the specific computational problems that are referred to in the main text. In
particular, it contains a brief introduction to graph algorithms, Boolean formulae, and
finite fields.
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CHAPTER ONE

Introduction and Preliminaries

When you set out on your journey to Ithaca,
pray that the road is long,
full of adventure, full of knowledge.

K. P. Cavafy, “Ithaca”

The current chapter consists of two parts. The first part provides a high-level introduction
to (computational) Complexity Theory. This introduction is much more detailed than the
laconic statements made in the preface, but is quite sparse when compared to the richness
of the field. In addition, the introduction contains several important comments regarding
the contents, approach, and conventions of the current book.

average-case approximation

pseudorandomness

rPCpP
PSPACE P ZK
PH
BPP RP
NP coNP
P NL

L

lower bounds

The second part of this chapter provides the necessary preliminaries to the rest of
the book. It includes a discussion of computational tasks and computational models, as
well as natural complexity measures associated with the latter. More specifically, this part
recalls the basic notions and results of computability theory (including the definition of
Turing machines, some undecidability results, the notion of universal machines, and the
definition of oracle machines). In addition, this part presents the basic notions underlying
non-uniform models of computation (like Boolean circuits).

1.1. Introduction

This introduction consists of two parts: The first part refers to the area itself, whereas
the second part refers to the current book. The first part provides a brief overview of
Complexity Theory (Section 1.1.1) as well as some reflections about its characteristics
(Section 1.1.2). The second part describes the contents of this book (Section 1.1.3), the
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considerations underlying the choice of topics as well as the way they are presented
(Section 1.1.4), and various notations and conventions (Section 1.1.5).

1.1.1. A Brief Overview of Complexity Theory

Out of the tough came forth sweetness'
Judges, 14:14

The following brief overview is intended to give a flavor of the questions addressed by
Complexity Theory. This overview is quite vague, and is merely meant as a teaser. Most
of the topics mentioned in it will be discussed at length in the various chapters of this
book.

Complexity Theory is concerned with the study of the intrinsic complexity of compu-
tational tasks. Its “final” goals include the determination of the complexity of any well-
defined task. Additional goals include obtaining an understanding of the relations between
various computational phenomena (e.g., relating one fact regarding computational com-
plexity to another). Indeed, we may say that the former type of goal is concerned with
absolute answers regarding specific computational phenomena, whereas the latter type is
concerned with questions regarding the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with goals
of the latter (“relative”) type. In fact, the failure to resolve questions of the “absolute”
type led to the flourishing of methods for coping with questions of the “relative” type.
Musing for a moment, let us say that, in general, the difficulty of obtaining absolute
answers may naturally lead to seeking conditional answers, which may in turn reveal
interesting relations between phenomena. Furthermore, the lack of absolute understanding
of individual phenomena seems to facilitate the development of methods for relating
different phenomena. Anyhow, this is what happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining absolute
answers, we must admit that there is something fascinating in the success of relating
different phenomena: In some sense, relations between phenomena are more revealing
than absolute statements about individual phenomena. Indeed, the first example that comes
to mind is the theory of NP-completeness. Let us consider this theory, for a moment, from
the perspective of these two types of goals.

Complexity Theory has failed to determine the intrinsic complexity of tasks such as
finding a satisfying assignment to a given (satisfiable) propositional formula or finding
a 3-coloring of a given (3-colorable) graph. But it has succeeded in establishing that
these two seemingly different computational tasks are in some sense the same (or, more
precisely, are computationally equivalent). We find this success amazing and exciting, and
hope that the reader shares these feelings. The same feeling of wonder and excitement is
generated by many of the other discoveries of Complexity Theory. Indeed, the reader is
invited to join a fast tour of some of the other questions and answers that make up the
field of Complexity Theory.

We will indeed start with the P versus NP Question. Our daily experience is that it is
harder to solve a problem than it is to check the correctness of a solution (e.g., think of
either a puzzle or a research problem). Is this experience merely a coincidence or does it
represent a fundamental fact of life (i.e., a property of the world)? Could you imagine a

"The quote is commonly interpreted as meaning that benefit arose out of misfortune.
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world in which solving any problem is not significantly harder than checking a solution to
it? Would the term “solving a problem” not lose its meaning in such a hypothetical (and
impossible, in our opinion) world? The denial of the plausibility of such a hypothetical
world (in which “solving” is not harder than “checking”) is what “P different from NP”
actually means, where P represents tasks that are efficiently solvable and NP represents
tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the task of
proving theorems versus the task of verifying the validity of proofs. Indeed, finding proofs
is a special type of the aforementioned task of “solving a problem” (and verifying the
validity of proofs is a corresponding case of checking correctness). Again, “P different
from NP” means that there are theorems that are harder to prove than to be convinced of
their correctness when presented with a proof. This means that the notion of a “proof™ is
meaningful; that is, proofs do help when one is seeking to be convinced of the correctness
of assertions. Here NP represents sets of assertions that can be efficiently verified with the
help of adequate proofs, and P represents sets of assertions that can be efficiently verified
from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P versus NP Question is a
fundamental scientific question of far-reaching consequences. The fact that this question
seems beyond our current reach led to the development of the theory of NP-completeness.
Loosely speaking, this theory identifies a set of computational problems that are as hard
as NP. That is, the fate of the P versus NP Question lies with each of these problems: If
any of these problems is easy to solve then so are all problems in NP. Thus, showing that
a problem is NP-complete provides evidence of its intractability (assuming, of course, “P
different than NP”). Indeed, demonstrating the NP-completeness of computational tasks
is a central tool in indicating hardness of natural computational problems, and it has
been used extensively both in computer science and in other disciplines. We note that
NP-completeness indicates not only the conjectured intractability of a problem but also its
“richness” in the sense that the problem is rich enough to “encode” any other problem in
NP. The use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn establishes relations between different computational problems (without
referring to their “absolute” complexity).

The foregoing discussion of NP-completeness hints at the importance of representation,
since it referred to different problems that encode one another. Indeed, the importance of
representation is a central aspect of Complexity Theory. In general, Complexity Theory is
concerned with problems for which the solutions are implicit in the problem’s statement (or
rather in the instance). That is, the problem (or rather its instance) contains all necessary
information, and one merely needs to process this information in order to supply the
answer.” Thus, Complexity Theory is concerned with manipulation of information, and
its transformation from one representation (in which the information is given) to another
representation (which is the one desired). Indeed, a solution to a computational problem
is merely a different representation of the information given, that is, a representation in
which the answer is explicit rather than implicit. For example, the answer to the question
of whether or not a given Boolean formula is satisfiable is implicit in the formula itself
(but the task is to make the answer explicit). Thus, Complexity Theory clarifies a central

’In contrast, in other disciplines, solving a problem may require gathering information that is not available in
the problem’s statement. This information may either be available from auxiliary (past) records or be obtained by
conducting new experiments.
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issue regarding representation, that is, the distinction between what is explicit and what is
implicit in a representation. Furthermore, it even suggests a quantification of the level of
non-explicitness.

In general, Complexity Theory provides new viewpoints on various phenomena that
were considered also by past thinkers. Examples include the aforementioned concepts
of solutions, proofs, and representation as well as concepts like randomness, knowledge,
interaction, secrecy, and learning. We next discuss the latter concepts and the perspective
offered by Complexity Theory.

The concept of randomness has puzzled thinkers for ages. Their perspective can be
described as ontological: They asked “what is randomness” and wondered whether it
exists, at all (or is the world deterministic). The perspective of Complexity Theory is
behavioristic: It is based on defining objects as equivalent if they cannot be told apart
by any efficient procedure. That is, a coin toss is (defined to be) “random” (even if one
believes that the universe is deterministic) if it is infeasible to predict the coin’s outcome.
Likewise, a string (or a distribution of strings) is “random” if it is infeasible to distinguish
it from the uniform distribution (regardless of whether or not one can generate the latter).
Interestingly, randomness (or rather pseudorandomness) defined this way is efficiently
expandable; that is, under a reasonable complexity assumption (to be discussed next), short
pseudorandom strings can be deterministically expanded into long pseudorandom strings.
Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that
the very definition of pseudorandomness refers to intractability (i.e., the infeasibility of
distinguishing a pseudorandomness object from a uniformly distributed object). Secondly,
as stated, a complexity assumption, which refers to the existence of functions that are
easy to evaluate but hard to invert (called one-way functions), implies the existence of
deterministic programs (called pseudorandom generators) that stretch short random seeds
into long pseudorandom sequences. In fact, it turns out that the existence of pseudorandom
generators is equivalent to the existence of one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge (and dis-
tinguishes it from information). Specifically, Complexity Theory views knowledge as the
result of a hard computation. Thus, whatever can be efficiently done by anyone is not
considered knowledge. In particular, the result of an easy computation applied to publicly
available information is not considered knowledge. In contrast, the value of a hard-to-
compute function applied to publicly available information is knowledge, and if somebody
provides you with such a value then it has provided you with knowledge. This discussion
is related to the notion of zero-knowledge interactions, which are interactions in which no
knowledge is gained. Such interactions may still be useful, because they may convince
a party of the correctness of specific data that was provided beforehand. For example, a
zero-knowledge interactive proof may convince a party that a given graph is 3-colorable
without yielding any 3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as a vehicle
for gaining knowledge and/or gaining confidence. Let us highlight the latter application
by noting that it may be easier to verify an assertion when allowed to interact with a
prover rather than when reading a proof. Put differently, interaction with a good teacher
may be more beneficial than reading any book. We comment that the added power of
such interactive proofs is rooted in their being randomized (i.e., the verification proce-
dure is randomized), because if the verifier’s questions can be determined beforehand
then the prover may just provide the transcript of the interaction as a traditional written
proof.
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Another concept related to knowledge is that of secrecy: Knowledge is something that
one party may have while another party does not have (and cannot feasibly obtain by
itself) — thus, in some sense knowledge is a secret. In general, Complexity Theory is
related to cryptography, where the latter is broadly defined as the study of systems that
are easy to use but hard to abuse. Typically, such systems involve secrets, randomness,
and interaction as well as a complexity gap between the ease of proper usage and the
infeasibility of causing the system to deviate from its prescribed behavior. Thus, much of
cryptography is based on complexity theoretic assumptions and its results are typically
transformations of relatively simple computational primitives (e.g., one-way functions)
into more complex cryptographic applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning from a
teacher versus learning from a book. Recall that Complexity Theory provides evidence to
the advantage of the former. This is in the context of gaining knowledge about publicly
available information. In contrast, computational learning theory is concerned with learn-
ing objects that are only partially available to the learner (i.e., reconstructing a function
based on its value at a few random locations or even at locations chosen by the learner).
Complexity Theory sheds light on the intrinsic limitations of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “finding
solutions”) and making decisions (e.g., regarding the validity of assertions). We have
also hinted that in some cases these two types of tasks can be related. Now we consider
two additional types of tasks: counting the number of solutions and generating random
solutions. Clearly, both the latter tasks are at least as hard as finding arbitrary solutions to
the corresponding problem, but it turns out that for some natural problems they are
not significantly harder. Specifically, under some natural conditions on the problem,
approximately counting the number of solutions and generating an approximately random
solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we note that the study of the com-
plexity of finding “approximate solutions” is also of natural importance. One type of
approximation problems refers to an objective function defined on the set of potential
solutions: Rather than finding a solution that attains the optimal value, the approximation
task consists of finding a solution that attains an “almost optimal” value, where the notion
of “almost optimal” may be understood in different ways giving rise to different levels
of approximation. Interestingly, in many cases, even a very relaxed level of approxima-
tion is as difficult to obtain as solving the original (exact) search problem (i.e., finding
an approximate solution is as hard as finding an optimal solution). Surprisingly, these
hardness-of-approximation results are related to the study of probabilistically checkable
proofs, which are proofs that allow for ultra-fast probabilistic verification. Amazingly,
every proof can be efficiently transformed into one that allows for probabilistic verifica-
tion based on probing a constant number of bits (in the alleged proof). Turning back to
approximation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. Another
natural relaxation is the study of average-case complexity, where the “average” is taken
over some “simple” distributions (representing a model of the problem’s instances that
may occur in practice). We stress that, although it was not stated explicitly, the entire
discussion so far has referred to “worst-case” analysis of algorithms. We mention that
worst-case complexity is a more robust notion than average-case complexity. For starters,
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one avoids the controversial question of which instances are “important in practice” and
correspondingly the selection of the class of distributions for which average-case ana-
lysis is to be conducted. Nevertheless, a relatively robust theory of average-case com-
plexity has been suggested, albeit it is less developed than the theory of worst-case
complexity.

In view of the central role of randomness in Complexity Theory (as evident, say, in
the study of pseudorandomness, probabilistic proof systems, and cryptography), one may
wonder as to whether the randomness needed for the various applications can be obtained
in real life. One specific question, which received a lot of attention, is the possibility of
“purifying” randomness (or “extracting good randomness from bad sources”). That is, can
we use “defected” sources of randomness in order to implement almost perfect sources
of randomness? The answer depends, of course, on the model of such defected sources.
This study turned out to be related to Complexity Theory, where the most tight connec-
tion is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while relying
on the natural association of efficiency with time. However, time is not the only resource
one should care about. Another important resource is space: the amount of (temporary)
memory consumed by the computation. The study of space complexity has uncovered
several fascinating phenomena, which seem to indicate a fundamental difference between
space complexity and time complexity. For example, in the context of space complexity,
verifying proofs of validity of assertions (of any specific type) has the same complexity
as verifying proofs of invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air tour of some
mountain tops, and dizziness is to be expected. Needless to say, the rest of the book offers
a totally different touring experience. We will climb some of these mountains by foot, step
by step, and will often stop to look around and reflect.

Absolute Results (aka. Lower Bounds). As stated up-front, absolute results are not
known for many of the “big questions” of Complexity Theory (most notably the P versus
NP Question). However, several highly non-trivial absolute results have been proved. For
example, it was shown that using negation can speed up the computation of monotone
functions (which do not require negation for their mere computation). In addition, many
promising techniques were introduced and employed with the aim of providing a low-level
analysis of the progress of computation. However, as stated in the preface, the focus of
this book is elsewhere.

1.1.2. Characteristics of Complexity Theory

We are successful because we use the right level of abstraction.
Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the theory of
computation at large. The right level of abstraction means abstracting away second-order
details, which tend to be context dependent, while using definitions that reflect the main
issues (rather than abstracting them away, too). Indeed, using the right level of abstraction
calls for an extensive exercising of good judgment, and one indication for having chosen
the right abstractions is the result of their study.

6
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One major choice, taken by the theory of computation at large, is the choice of a
model of computation and corresponding complexity measures and classes. The choice,
which is currently taken for granted, was to use a simple model that avoids both the
extreme of being too realistic (and thus too detailed) as well as the extreme of being too
abstract (and vague). On the one hand, the main model of computation (which is used in
Complexity Theory) does not try to mimic (or mirror) the actual operation of real-life
computers used at a specific historical time. Such a choice would have made it very hard
to develop Complexity Theory as we know it and to uncover the fundamental relations
discussed in this book: The mass of details would have obscured the view. On the other
hand, avoiding any reference to any concrete model (like in the case of recursive function
theory) does not encourage the introduction and study of natural measures of complexity.
Indeed, as we shall see in Section 1.2.3, the choice was (and is) to use a simple model of
computation (which does not mirror real-life computers), while avoiding any effects that
are specific to that model (by keeping an eye on a host of variants and alternative models).
The freedom from the specifics of the basic model is obtained by considering complexity
classes that are invariant under a change of model (as long as the alternative model is
“reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we consider the
complexity of an algorithm as a function of its input length, and study the asymptotic
behavior of this function. It turns out that structure that is hidden by concrete quantities
appears at the limit. Furthermore, depending on the case, we classify functions according
to different criteria. For example, in the case of time complexity we consider classes of
functions that are closed under multiplication, whereas in case of space complexity we
consider closure under addition. In each case, the choice is governed by the nature of the
complexity measure being considered. Indeed, one could have developed a theory without
using these conventions, but this would have resulted in a far more cumbersome theory.
For example, rather than saying that finding a satisfying assignment for a given formula is
polynomial-time reducible to deciding the satisfiability of some other formulae, one could
have stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes Complexity Theory unique is its perspective on
the most basic question of the theory of computation, that is, the way it studies the
question of what can be efficiently computed. The perspective of Complexity Theory
is general in nature. This is reflected in its primary focus on the relevant notion of effi-
ciency (captured by corresponding resource bounds) rather than on specific computational
problems. In most cases, complexity theoretic studies do not refer to any specific com-
putational problems or refer to such problems merely as an illustration. Furthermore,
even when specific computational problems are studied, this study is (explicitly or at
least implicitly) aimed at understanding the computational limitations of certain resource
bounds.

The aforementioned general perspective seems linked to the significant role of con-
ceptual considerations in the field: The rigorous study of an intuitive notion of efficiency
must be initiated with an adequate choice of definitions. Since this study refers to any
possible (relevant) computation, the definitions cannot be derived by abstracting some
concrete reality (e.g., a specific algorithmic schema). Indeed, the definitions attempt to
capture any possible reality, which means that the choice of definitions is governed by
conceptual principles and not merely by empirical observations.
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1.1.3. Contents of This Book

This book is intended to serve as an introduction to Computational Complexity Theory. It
consists of ten chapters and seven appendices, and can be used either as a textbook or for
self-study. The chapters constitute the core of this book and are written in a style adequate
for a textbook, whereas the appendices provide either relevant background or additional
perspective and are written in the style of a survey article.

1.1.3.1. Overall Organization of the Book

Section 1.2 and Chapter 2 are a prerequisite for the rest of the book. Technically speaking,
the notions and results that appear in these parts are extensively used in the rest of the book.
More importantly, the former parts are the conceptual framework that shapes the field and
provides a good perspective on the field’s questions and answers. Indeed, Section 1.2 and
Chapter 2 provide the very basic material that must be understood by anybody having an
interest in Complexity Theory.

In contrast, the rest of the book covers more advanced material, which means that none
of it can be claimed to be absolutely necessary for a basic understanding of Complexity
Theory. In particular, although some advanced chapters refer to material in other advanced
chapters, the relation between these chapters is not a fundamental one. Thus, one may
choose to read and/or teach an arbitrary subset of the advanced chapters and do so in
an arbitrary order, provided one is willing to follow the relevant references to some
parts of other chapters (see Figure 1.1). Needless to say, we recommend reading and/or
teaching all the advanced chapters, and doing so by following the order presented in this
book.

As illustrated by Figure 1.1, some chapters (i.e., Chapters 3, 6, and 10) lump together
topics that are usually presented separately. These decisions are related to our perspective
on the corresponding topics.

Turning to the appendices, we note that some of them (e.g., Appendix G and parts of
Appendices D and E) provide background information that is required in some of the
advanced chapters. In contrast, other appendices (e.g., Appendices B and C and other
parts of Appendices D and E) provide additional perspective that augments the advanced
chapters. (The function of Appendices A and F will be clarified in §1.1.3.2.)

1.1.3.2. Contents of the Specific Parts

The rest of this section provides a brief summary of the contents of the various chapters
and appendices. This summary is intended for the teacher and/or the expert, whereas
the student is referred to the more novice-friendly summaries that appear in the book’s
preface.

Section 1.2: Preliminaries. This section provides the relevant background on com-
putability theory, which is the basis for the rest of this book (as well as for Complexity
Theory at large). Most importantly, it contains a discussion of central notions such as
search and decision problems, algorithms that solve such problems, and their complex-
ity. In addition, this section presents non-uniform models of computation (e.g., Boolean
circuits).

Chapter 2: P, NP, and NP-completeness. This chapter presents the P-vs-NP Question
both in terms of search problems and in terms of decision problems. The second main
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Figure 1.1: Dependencies among the advanced chapters. Solid arrows indicate the use of specific
results that are stated in the section to which the arrow points. Dashed lines (and arrows) indicate an
important conceptual connection; the wider the line, the tighter the connection. When relations are only
between subsections, their index is indicated.

topic of this chapter is the theory of NP-completeness. The chapter also provides a
treatment of the general notion of a (polynomial time) reduction, with special emphasis
on self-reducibility. Additional topics include the existence of problems in NP that are
neither NP-complete nor in P, optimal search algorithms, the class coNP, and promise
problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment of non-uniform
polynomial time (P/poly) and of the Polynomial-time Hierarchy (PH). Each of the two
classes is defined in two equivalent ways (e.g., P/poly is defined both in terms of circuits
and in terms of “machines that take advice”). In addition, it is shown that if NP is contained
in P/poly then PH collapses to its second level (i.e., X5).

Chapter 4: More Resources, More Power? The focus of this chapter is on hierarchy
theorems, which assert that typically more resources allow for solving more problems.
These results depend on using bounding functions that can be computed without exceeding
the amount of resources that they specify, and otherwise gap theorems may apply.

Chapter 5: Space Complexity. Among the results presented in this chapter are a log-
space algorithm for testing connectivity of (undirected) graphs, a proofthat V'L = coN L,
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and complete problems for V'L and PSP ACE (under log-space and poly-time reductions,
respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various randomized
complexity classes (i.e., BPP, RP, and ZPP) and the counting class #P. The results
presented in this chapter include BPP C P/poly and BPP C ¥,, the #P-completeness
ofthe Permanent, the connection between approximate counting and uniform generation
of solutions, and the randomized reductions of approximate counting to A'P and of NP
to solving problems with unique solutions.

Chapter 7: The Bright Side of Hardness. This chapter deals with two conjectures that
are related to P # N'P. The first conjecture is that there are problems in & that are not
solvable by (non-uniform) families of small (say, polynomial-size) circuits, whereas the
second conjecture is equivalent to the notion of one-way functions. Most of this chapter is
devoted to “hardness amplification” results that convert these conjectures into tools that
can be used for non-trivial derandomizations of BPP (resp., for a host of cryptographic
applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the notion of com-
putational indistinguishability and corresponding notions of pseudorandomness. The def-
inition of general-purpose pseudorandom generators (running in polynomial time and
withstanding any polynomial-time distinguisher) is presented as a special case of a gen-
eral paradigm. The chapter also contains a presentation of other instantiations of the
latter paradigm, including generators aimed at derandomizing complexity classes such as
BPP, generators withstanding space-bounded distinguishers, and some special-purpose
generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment of three types
of probabilistic proof systems: interactive proofs, zero-knowledge proofs, and probabilistic
checkable proofs. The results presented include TP = PSP.ACE, zero-knowledge proofs
for any NP-set, and the PCP Theorem. For the latter, only overviews of the two different
known proofs are provided.

Chapter 10: Relaxing the Requirements. This chapter provides a treatment of two
types of approximation problems and a theory of average-case (or rather typical-case)
complexity. The traditional type of approximation problem refers to search problems and
consists of a relaxation of standard optimization problems. The second type is known
as “property testing” and consists of a relaxation of standard decision problems. The
theory of average-case complexity involves several non-trivial definitional choices (e.g.,
an adequate choice of the class of distributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-contained
definitions of most complexity classes mentioned in the book.

Appendix B: On the Quest for Lower Bounds. The first part, devoted to Circuit Com-
plexity, reviews lower bounds for the size of (restricted) circuits that solve natural compu-
tational problems. The second part, devoted to Proof Complexity, reviews lower bounds
on the length of (restricted) propositional proofs of natural tautologies.

10
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Appendix C: On the Foundations of Modern Cryptography. The first part of this
appendix augments the partial treatment of one-way functions, pseudorandom generators,
and zero-knowledge proofs (included in Chapters 7-9). Using these basic tools, the
second part provides a treatment of basic cryptographic applications such as encryption,
signatures, and general cryptographic protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Randomization.
The probabilistic preliminaries include conventions regarding random variables and
overviews of three useful inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality,
and Chernoff Bound). The advanced topics include constructions of hashing functions
and variants of the Leftover Hashing Lemma, and overviews of samplers and extractors
(i.e., the problem of randomness extraction).

Appendix E: Explicit Constructions. This appendix focuses on various computational
aspects of error-correcting codes and expander graphs. On the topic of codes, the appendix
contains a review of the Hadamard code, Reed-Solomon codes, Reed-Muller codes, and a
construction of a binary code of constant rate and constant relative distance. Also included
are a brief review of the notions of locally testable and locally decodable codes, and a list-
decoding bound. On the topic of expander graphs, the appendix contains a review of the
standard definitions and properties as well as a presentation of the Margulis-Gabber-Galil
and the Zig-Zag constructions.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that are bene-
ficial as alternatives to the original and/or standard presentations. Included are proofs that
PH is reducible to #P via randomized Karp-reductions, and that ZP( /) € AM(O(f)) C
AMC(S).

Appendix G: Some Computational Problems. This appendix contains a brief introduc-
tion to graph algorithms, Boolean formulae, and finite fields.

Bibliography. As stated in §1.1.4.4, we tried to keep the bibliographic list as short as
possible (and still reached over a couple of hundred entries). As a result, many relevant
references were omitted. In general, our choice of references was biased in favor of
textbooks and survey articles. We tried, however, not to omit references to key papers in
an area.

Absent from this book. As stated in the preface, the current book does not provide a
uniform cover of the various areas of Complexity Theory. Notable omissions include the
areas of Circuit Complexity (cf. [46, 236]) and Proof Complexity (cf. [27]), which are
briefly reviewed in Appendix B. Additional topics that are commonly covered in Com-
plexity Theory courses but are omitted here include the study of branching programs
and decision trees (cf. [237]), parallel computation [141], and communication complex-
ity [148]. We mention that the forthcoming textbook of Arora and Barak [14] contains
a treatment of all these topics. Finally, we mention two areas that we consider related to
Complexity Theory, although this view is not very common. These areas are distributed
computing [17] and computational learning theory [142].

11



INTRODUCTION AND PRELIMINARIES

1.1.4. Approach and Style of This Book

According to a common opinion, the most important aspect of a scientific work is the
technical result that it achieves, whereas explanations and motivations are merely re-
dundancy introduced for the sake of “error correction” and/or comfort. It is further
believed that, like in a work of art, the interpretation of the work should be left with the
reader.

The author strongly disagrees with the aforementioned opinions, and argues that there
is a fundamental difference between art and science, and that this difference refers exactly
to the meaning of a piece of work. Science is concerned with meaning (and not with
form), and in its quest for truth and/or understanding, science follows philosophy (and
not art). The author holds the opinion that the most important aspects of a scientific work
are the intuitive question that it addresses, the reason that it addresses this question, the
way it phrases the question, the approach that underlies its answer, and the ideas that are
embedded in the answer. Following this view, it is important to communicate these aspects
of the work.

The foregoing issues are even more acute when it comes to Complexity Theory, firstly
because conceptual considerations seem to play an even more central role in Complexity
Theory than in other fields (cf. Section 1.1.2). Secondly (and even more importantly),
Complexity Theory is extremely rich in conceptual content. Thus, communicating this
content is of primary importance, and failing to do so misses the most important aspects
of this theory.

Unfortunately, the conceptual content of Complexity Theory is rarely communicated
(explicitly) in books and/or surveys of the area.’ The annoying (and quite amazing) con-
sequences are students who have only a vague understanding of the meaning and general
relevance of the fundamental notions and results that they were taught. The author’s
view is that these consequences are easy to avoid by taking the time to explicitly dis-
cuss the meaning of definitions and results. A closely related issue is using the “right”
definitions (i.e., those that reflect better the fundamental nature of the notion being de-
fined) and emphasizing the (conceptually) “right” results. The current book is written
accordingly.

1.1.4.1. The General Principle
In accordance with the foregoing, the focus of this book is on the conceptual aspects
of the technical material. Whenever presenting a subject, the starting point is the in-
tuitive questions being addressed. The presentation explains the importance of these
questions, the specific ways that they are phrased (i.e., the choices made in the actual
formulation), the approaches that underlie the answers, and the ideas that are embed-
ded in these answers. Thus, a significant portion of the text is devoted to motivating
discussions that refer to the concepts and ideas that underlie the actual definitions and
results.

The material is organized around conceptual themes, which reflect fundamental no-
tions and/or general questions. Specific computational problems are rarely referred to,
with exceptions that are used either for the sake of clarity or because the specific

*tis tempting to speculate on the reasons for this phenomenon. One speculation is that communicating the concep-
tual content of Complexity Theory involves making bold philosophical assertions that are technically straightforward,
whereas this combination does not fit the personality of most researchers in Complexity Theory.
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problem happens to capture a general conceptual phenomenon. For example, in this
book, “complete problems” (e.g., NP-complete problems) are always secondary to the
class for which they are complete.’

1.1.4.2. On a Few Specific Choices

Our technical presentation often differs from the standard one. In many cases this is due
to conceptual considerations. At times, this leads to some technical simplifications. In this
subsection we only discuss general themes and/or choices that have a global impact on
much of the presentation. This discussion is intended mainly for the teacher and/or the
expert.

Avoiding non-deterministic machines. We try to avoid non-deterministic machines as
much as possible. As argued in several places (e.g., Section 2.1.5), we believe that these
fictitious “machines” have a negative effect both from a conceptual and technical point
of view. The conceptual damage caused by using non-deterministic machines is that it
is unclear why one should care about what such machines can do. Needless to say, the
reason to care is clear when noting that these fictitious “machines” offer a (convenient
but rather slothful) way of phrasing fundamental issues. The technical damage caused
by using non-deterministic machines is that they tend to confuse the students. Further-
more, they do not offer the best way to handle more advanced issues (e.g., counting
classes).

In contrast, we use search problems as the basis for much of the presentation. Specif-
ically, the class PC (see Definition 2.3), which consists of search problems having effi-
ciently checkable solutions, plays a central role in our presentation. Indeed, defining this
class is slightly more complicated than the standard definition of N"P (which is based on
non-deterministic machines), but the technical benefits start accumulating as we proceed.
Needless to say, the class PC is a fundamental class of computational problems and this
fact is the main motivation for its presentation. (Indeed, the most conceptually appealing
phrasing of the P-vs-NP Question consists of asking whether every search problem in PC
can be solved efficiently.)

Avoiding model-dependent effects. Complexity Theory evolves around the notion of
efficient computation. Indeed, a rigorous study of this notion seems to require reference
to some concrete model of computation; however, all questions and answers consid-
ered in this book are invariant under the choice of such a concrete model, provided of
course that the model is “reasonable” (which, needless to say, is a matter of intuition).
The foregoing text reflects the tension between the need to make rigorous definitions
and the desire to be independent of technical choices, which are unavoidable when mak-
ing rigorous definitions. It also reflects the fact that, by their fundamental nature, the
questions that we address are quite model-independent (i.e., are independent of var-
ious technical choices). Note that we do not deny the existence of model-dependent

*We admit that a very natural computational problem can give rise to a class of problems that are computationally
equivalent to it, and that in such a case the class may be less interesting than the original problem. This is not the case
for any of the complexity classes presented in this book. Still, in some cases (e.g., NP and #P), the historical evolution
actually went from a specific computational problem to a class of problems that are computationally equivalent to
it. However, in all cases presented in this book, a retrospective evaluation of the material suggests that the class is
actually more important than the original problem.
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questions, but rather avoid addressing such questions and view them as less fundamental
in nature. In contrast to common beliefs, the foregoing comments refer not only to time
complexity but also to space complexity. However, in both cases, the claim of invari-
ance may not hold for marginally small resources (e.g., linear time or sub-logarithmic
space).

In contrast to the foregoing paragraph, in some cases we choose to be specific. The
most notorious case is the association of efficiency with polynomial-time complexity (see
§1.2.3.5). Indeed, all the questions and answers regarding efficient computation can be
phrased without referring to polynomial-time complexity (i.e., by stating explicit func-
tional relations between the complexities of the problems involved), but such a generalized
treatment will be painful to follow.

1.1.4.3. On the Presentation of Technical Details

In general, the more complex the technical material is, the more levels of expositions
we employ (starting from the most high-level exposition, and when necessary providing
more than one level of details). In particular, whenever a proof is not very simple, we try
to present the key ideas first, and postpone implementation details to later. We also try to
clearly indicate the passage from a high-level presentation to its implementation details
(e.g., by using phrases such as “details follow”). In some cases, especially in the case of
advanced results, only proof sketches are provided and the implication is that the reader
should be able to fill up the missing details.

Few results are stated without a proof. In some of these cases the proof idea or a proof
overview is provided, but the reader is not expected to be able to fill up the highly non-
trivial details. (In these cases, the text clearly indicates this state of affairs.) One notable
example is the proof of the PCP Theorem (9.16).

We tried to avoid the presentation of material that, in our opinion, neither is the “last
word” on the subject nor represents the “right” way of approaching the subject. Thus, we
do not always present the “best” known result.

1.1.4.4. Organizational Principles

Each of the main chapters starts with a high-level summary and ends with chapter notes
and exercises. The latter are not aimed at testing or inspiring creativity, but are rather
designed to help verify the basic understanding of the main text. In some cases, ex-
ercises (augmented by adequate guidelines) are used for presenting additional related
material.

The book contains material that ranges from topics currently taught in undergraduate
courses (on computability and basic Complexity Theory) to topics currently taught mostly
in advanced graduate courses. Although this situation may (and hopefully will) change in
the future so that undergraduates will enjoy greater exposure to Complexity Theory, we
believe that it will continue to be the case that typical readers of the advanced chapters
will be more sophisticated than typical readers of the basic chapters (i.e., Section 1.2
and Chapter 2). Accordingly, the style of presentation becomes more sophisticated as one
progresses from Chapter 2 to later chapters.

As stated in the preface, this book focuses on the high-level approach to Com-
plexity Theory, whereas the low-level approach (i.e., lower bounds) is only briefly
reviewed in Appendix B. Other appendices contain material that is closely related
to Complexity Theory but is not an integral part of it (e.g., the foundations of
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cryptography).” Further details on the contents of the various chapters and appendices
are provided in Section 1.1.3.

In an attempt to keep the bibliographic list from becoming longer than an average
chapter, we omitted many relevant references. One trick used toward this end is referring
to lists of references in other texts, especially when the latter are cited anyhow. Indeed,
our choices of references were biased in favor of textbooks and survey articles, because
we believe that they provide the best way to further learn about a research direction and/or
approach. We tried, however, not to omit references to key papers in an area. In some
cases, when we needed a reference for a result of interest and could not resort to the
aforementioned trick, we also cited less central papers.

As a matter of policy, we tried to avoid references and credits in the main text. The few
exceptions are either pointers to texts that provide details that we chose to omit or usage
of terms (bearing researchers’ names) that are too popular to avoid. In general, in each
chapter, references and credits are provided in the chapter’s notes.

Teaching note: The text also includes some teaching notes, which are typeset as this one. Some
of these notes express quite opinionated recommendations and/or justify various expositional
choices made in the text.

1.1.4.5. A Call for Tolerance

This book attempts to accommodate a wide variety of readers, ranging from readers
with no prior knowledge of Complexity Theory to experts in the field. This attempt
is reflected in tailoring the presentation, in each part of the book, for the readers with
the least background who are expected to read this part. However, in a few cases, ad-
vanced comments that are mostly directed at more advanced readers could not be avoided.
Thus, readers with more background may skip some details, while readers with less
background may ignore some advanced comments. An attempt was made to facilitate
such selective reading by an adequate labeling of the text, but in many places the read-
ers are expected to exercise their own judgment (and tolerate the fact that they are
asked to invest some extra effort in order to accommodate the interests of other types of
readers).

We stress that the different parts of the book do envision different ranges of possible
readers. Specifically, while Section 1.2 and Chapter 2 are intended mainly for readers
with no background in Complexity Theory (and even no background in computability),
the subsequent chapters do assume such basic background. In addition to familiarity with
the basic material, the more advanced parts of the book also assume a higher level of
technical sophistication.

1.1.4.6. Additional Comments Regarding Motivation
The author’s guess is that the text will be criticized for lengthy discussions of technically
trivial issues. Indeed, most researchers dismiss various conceptual clarifications as being

> As further articulated in Section 7.1, we recommend not including a basic treatment of cryptography within
a course on Complexity Theory. Indeed, cryptography may be claimed to be the most appealing application of
Complexity Theory, but a superficial treatment of cryptography (from this perspective) is likely to be misleading and
cause more harm than good.
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trivial and devote all their attention to the technically challenging parts of the material.
The consequence is students who master the technical material but are confused about its
meaning. In contrast, the author recommends not being embarrassed at devoting time to
conceptual clarifications, even if some students may view them as obvious.

The motivational discussions presented in the text do not necessarily represent the
original motivation of the researchers who pioneered a specific study and/or contributed
greatly to it. Instead, these discussions provide what the author considers to be a good
motivation and/or a good perspective on the corresponding concepts.

1.1.5. Standard Notations and Other Conventions

Following are some notations and conventions that are freely used in this book.

Standard asymptotic notation: When referring to integral functions, we use the standard
asymptotic notation; that is, for f, g : N — N, we write f = O(g) (resp., f = Q(g)) if
there exists a constant ¢ > 0 such that f(n) < c - g(n) (resp., f(n) > ¢ - g(n)) holds for all
n € N. We usually denote by “poly” an unspecified polynomial, and write f(n) = poly(n)
instead of “there exists a polynomial p such that f(n) < p(n) for all n € N.” We also
use the notation /= O(g) that means f(n) = poly(logn) - g(n), and f = o(g) (resp.,
f = w(g)) that means f(n) < c - g(n) (resp., f(n) > c - g(n)) for every constant ¢ > 0
and all sufficiently large .

Integrality issues: Typically, we ignore integrality issues. This means that we may assume
that log, » is an integer rather than using a more cumbersome form as |log, n|. Likewise,
we may assume that various equalities are satisfied by integers (e.g., 2" = m™), even when
this cannot possibly be the case (e.g., 2" = 3™). In all these cases, one should consider
integers that approximately satisfy the relevant equations (and deal with the problems that
emerge by such approximations, which will be ignored in the current text).

Standard combinatorial and graph theory terms and notation: For any set S, we
denote by 2° the set of all subsets of S (i.e., 25 = {§' : §'CS}). For a natural number
n € N, we denote ] &ef {1, ..., n}. Many of the computational problems that we mention
refer to finite (undirected) graphs. Such a graph, denoted G = (V, E), consists of a set
of vertices, denoted V, and a set of edges, denoted E, which are unordered pairs of
vertices. By default, graphs are undirected, whereas directed graphs consist of vertices
and directed edges, where a directed edge is an order pair of vertices. We also refer to
other graph-theoretic terms such as connectivity, being acyclic (i.e., having no simple
cycles), being a tree (i.e., being connected and acyclic), k-colorability, etc. For further
background on graphs and computational problems regarding graphs, the reader is referred
to Appendix G.1.

Typographic conventions: We denote formally defined complexity classes by calli-
graphic letters (e.g., N'P), but we do so only after defining these classes. Furthermore,
when we wish to maintain some ambiguity regarding the specific formulation of a class
of problems we use Roman font (e.g., NP may denote either a class of search problems
or a class of decision problems). Likewise, we denote formally defined computational
problems by typewriter font (e.g., SAT). In contrast, generic problems and algorithms will
be denoted by italic font.
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1.2. Computational Tasks and Models

But, you may say, we asked you to speak about women and fiction —
what, has that got to do with a room of one’s own? I will try to explain.
Virginia Woolf, 4 Room of One's Own

This section provides the necessary preliminaries for the rest of the book; that is, we dis-
cuss the notion of a computational task and present computational models (for describing
methods) for solving such tasks. We start by introducing the general framework for our
discussion of computational tasks (or problems): This framework refers to the represen-
tation of instances (as binary sequences) and focuses on two types of tasks (i.e., searching
for solutions and making decisions). In order to facilitate a study of methods for solving
such tasks, the latter are defined with respect to infinitely many possible instances (each
being a finite object).’

Once computational tasks are defined, we turn to methods for solving such tasks, which
are described in terms of some model of computation. The description of such models
is the main contents of this section. Specifically, we consider two types of models of
computation: uniform models and non-uniform models. The uniform models correspond
to the intuitive notion of an algorithm, and will provide the stage for the rest of the book
(which focuses on efficient algorithms). In contrast, non-uniform models (e.g., Boolean
circuits) facilitate a closer look at the way a computation progresses, and will be used only
sporadically in this book.

Organization of Section 1.2. Sections 1.2.1-1.2.3 correspond to the contents of a tra-
ditional computability course, except that our presentation emphasizes some aspects and
deemphasizes others. In particular, the presentation highlights the notion of a universal
machine (see §1.2.3.4), justifies the association of efficient computation with polynomial-
time algorithms (§1.2.3.5), and provides a definition of oracle machines (§1.2.3.6). This
material (with the exception of Kolmogorov Complexity) is taken for granted in the rest
of the current book. In contrast, Section 1.2.4 presents basic preliminaries regarding non-
uniform models of computation (i.e., various types of Boolean circuits), and these are
only used lightly in the rest of the book. (We also call the reader’s attention to the discus-
sion of generic complexity classes in Section 1.2.5.) Thus, whereas Sections 1.2.1-1.2.3
(and 1.2.5) are absolute prerequisites for the rest of this book, Section 1.2.4 is not.

Teaching note: The author believes that there is no real need for a semester-long course
in computability (i.e., a course that focuses on what can be computed rather than on what
can be computed efficiently). Instead, undergraduates should take a course in Computational
Complexity, which should contain the computability aspects that serve as a basis for the rest
of the course. Specifically, the former aspects should occupy at most 25% of the course, and
the focus should be on basic complexity issues (captured by P, NP, and NP-completeness)
augmented by a selection of some more advanced material. Indeed, such a course can be based
on Chapters 1 and 2 of the current book (augmented by a selection of some topics from other
chapters).

“The comparison of different methods seems to require the consideration of infinitely many possible instances;
otherwise, the choice of the language in which the methods are described may totally dominate and even distort the
discussion (cf. the discussion of Kolmogorov Complexity in §1.2.3.4).
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1.2.1. Representation

In mathematics and related sciences, it is customary to discuss objects without specifying
their representation. This is not possible in the theory of computation, where the repre-
sentation of objects plays a central role. In a sense, a computation merely transforms one
representation of an object to another representation of the same object. In particular, a
computation designed to solve some problem merely transforms the problem instance to
its solution, where the latter can be thought of as a (possibly partial) representation of
the instance. Indeed, the answer to any fully specified question is implicit in the question
itself, and computation is employed to make this answer explicit.

Computational tasks refers to objects that are represented in some canonical way,
where such canonical representation provides an “explicit” and “full” (but not “overly
redundant”) description of the corresponding object. We will consider only finite objects
like numbers, sets, graphs, and functions (and keep distinguishing these types of objects
although, actually, they are all equivalent). While the representation of numbers, sets, and
functions is quite straightforward, we refer the reader to Appendix G.1 for a discussion of
the representation of graphs.

Strings. We consider finite objects, each represented by a finite binary sequence, called
a string. For a natural number n, we denote by {0, 1}” the set of all strings of length #,
hereafter referred to as n-bit (long) strings. The set of all strings is denoted {0, 1}*; that is,
{0, 1}* = U,en{0, 1}*. For x € {0, 1}*, we denote by |x| the length of x (i.e., x € {0, 1}*1),
and often denote by x; the i bit of x (i.e., x = x1x3--- X|x). Forx, y €{0, 1}*, we denote
by xy the string resulting from concatenation of the strings x and y.

At times, we associate {0, 1}*x {0, 1}* with {0, 1}*; the reader should merely con-
sider an adequate encoding (e.g., the pair (xq---x,, ¥1 -+ - V) € {0, 1}* x {0, 1}* may
be encoded by the string x;x; - - - X, X, 01y - - - ¥, €{0, 1}*). Likewise, we may represent
sequences of strings (of fixed or varying length) as single strings. When we wish to em-
phasize that such a sequence (or some other object) is to be considered as a single object
we use the notation () (e.g., “the pair (x, y) is encoded as the string (x, y)”).

Numbers. Unless stated differently, natural numbers will be encoded by their binary
expansion; that is, the string b,_| ---b1by € {0, 1}" encodes the number Z?:_ol b; - 2%,
where typically we assume that this representation has no leading zeros (i.e., b,_; = 1).
Rational numbers will be represented as pairs of natural numbers. In the rare cases in
which one considers real numbers as part of the input to a computational problem, one
actually means rational approximations of these real numbers.

Special symbols. We denote the empty string by A (i.e., A € {0, 1}* and |1| = 0), and the
empty set by @. It will be convenient to use some special symbols that are not in {0, 1}*.
One such symbol is 1, which typically denotes an indication (e.g., produced by some
algorithm) that something is wrong.

1.2.2. Computational Tasks

Two fundamental types of computational tasks are the so-called search problems and
decision problems. In both cases, the key notions are the problem’s instances and the
problem’s specification.
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1.2.2.1. Search Problems
A search problem consists of a specification of a set of valid solutions (possibly an
empty one) for each possible instance. That is, given an instance, one is required to find
a corresponding solution (or to determine that no such solution exists). For example,
consider the problem in which one is given a system of equations and is asked to find
a valid solution. Needless to say, much of computer science is concerned with solving
various search problems (e.g., finding shortest paths in a graph, sorting a list of numbers,
finding an occurrence of a given pattern in a given string, etc). Furthermore, search
problems correspond to the daily notion of “solving a problem” (e.g., finding one’s way
between two locations), and thus a discussion of the possibility and complexity of solving
search problems corresponds to the natural concerns of most people.

In the following definition of solving search problems, the potential solver is a func-
tion (which may be thought of as a solving strategy), and the sets of possible solutions
associated with each of the various instances are “packed” into a single binary relation.

Deﬁnltlon 1.1 (solving a search problem): Letr R < {0, 1}* x {0, 1}* and
R(x) = {y (x,y) € R} denote the set of solutions for the instance x. A func-
tion f : {0, 1}* — {0, 1}* U {L} solves the search problem of R if for every x the
following holds: if R(x) # 0 then f(x) € R(x) and otherwise f(x) = L

Indeed, R = {(x, y)€{0, 1}* x {0, 1}* : y € R(x)}, and the solver f is required to find
a solution (i.e., given x output y € R(x)) whenever one exists (i.c., the set R(x) is not
empty). Itis also required that the solver f never outputs a wrong solution (i.e., if R(x) # @
then f(x) € R(x) and if R(x) = @ then f(x) = L), which in turn means that / indicates
whether x has any solution.

A special case of interest is the case of search problems having a unique solution (for
each possible instance); that is, the case that [R(x)| = 1 for every x. In this case, R is
essentially a (total) function, and solving the search problem of R means computing (or
evaluating) the function R (or rather the function R’ defined by R’(x) &ef y if and only
if R(x) = {y}). Popular examples include sorting a sequence of numbers, multiplying
integers, finding the prime factorization of a composite number, etc.

1.2.2.2. Decision Problems

A decision problem consists of a specification of a subset of the possible instances. Given
an instance, one is required to determine whether the instance is in the specified set (e.g.,
the set of prime numbers, the set of connected graphs, or the set of sorted sequences).
For example, consider the problem where one is given a natural number, and is asked to
determine whether or not the number is a prime. One important case, which corresponds
to the aforementioned search problems, is the case of the set of instances having a solution;
that is, for any binary relation R < {0, 1}* x {0, 1}* we consider the set {x : R(x) # @}.
Indeed, being able to determine whether or not a solution exists is a prerequisite to being
able to solve the corresponding search problem (as per Definition 1.1). In general, decision
problems refer to the natural task of making a binary decision, a task that is not uncommon
in daily life (e.g., determining whether a traffic light is red). In any case, in the following
definition of solving decision problems, the potential solver is again a function; that is, in
this case the solver is a Boolean function, which is supposed to indicate membership in a
predetermined set.
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Definition 1.2 (solving a decision problem): Let S C {0, 1}*. A function f :
{0, 1}* — {0, 1} solves the decision problem of S (or decides membership in S) if
Jor every x it holds that f(x) = 1 if and only ifx € S.

We often identify the decision problem of S with S itself, and identify S with its charac-
teristic function (i.e., with the function xg : {0, 1}* — {0, 1} defined such that xs(x) = 1
if and only if x € S). Note that if f solves the search problem of R then the Boolean
function /7 : {0, 1}* — {0, 1} defined by f’(x) &1 if and only if f(x) # L solves the
decision problem of {x : R(x) # #}.

Reflection. Most people would consider search problems to be more natural than decision
problems: Typically, people seek solutions more than they stop to wonder whether or not
solutions exist. Definitely, search problems are not less important than decision problems;
it is merely that their study tends to require more cumbersome formulations. This is the
main reason that most expositions choose to focus on decision problems. The current
book attempts to devote at least a significant amount of attention also to search problems.

1.2.2.3. Promise Problems (an Advanced Comment)

Many natural search and decision problems are captured more naturally by the terminology
of promise problems, in which the domain of possible instances is a subset of {0, 1}*
rather than {0, 1}* itself. In particular, note that the natural formulation of many search
and decision problems refers to instances of a certain type (e.g., a system of equations, a
pair of numbers, a graph), whereas the natural representation of these objects uses only
a strict subset of {0, 1}*. For the time being, we ignore this issue, but we shall revisit
it in Section 2.4.1. Here we just note that, in typical cases, the issue can be ignored by
postulating that every string represents some legitimate object (e.g., each string that is
not used in the natural representation of these objects is postulated as a representation of
some fixed object).

1.2.3. Uniform Models (Algorithms)

Science is One.
Laci Lovasz (according to Silvio Micali, ca. 1990)

We finally reach the heart of the current section (Section 1.2), which is the definition of
uniform models of computation. We are all familiar with computers and with the ability of
computer programs to manipulate data. This familiarity seems to be rooted in the positive
side of computing; that is, we have some experience regarding some things that computers
can do. In contrast, Complexity Theory is focused at what computers cannot do, or rather
with drawing the line between what can be done and what cannot be done. Drawing
such a line requires a precise formulation of all possible computational processes; that is,
we should have a clear model of all possible computational processes (rather than some
familiarity with some computational processes).

1.2.3.1. Overview and General Principles

Before being formal, let we offer a general and abstract description, which is aimed
at capturing any artificial as well as natural process. Indeed, artificial processes will
be associated with computers, whereas by natural processes we mean (attempts to
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model) the “mechanical” aspects of the natural reality (be it physical, biological, or even
social).

A computation is a process that modifies an environment via repeated applications of
a predetermined rule. The key restriction is that this rule is simple: In each application it
depends on and affects only a (small) portion of the environment, called the active zone.
We contrast the a priori bounded size of the active zone (and of the modification rule)
with the a priori unbounded size of the entire environment. We note that, although each
application of the rule has a very limited effect, the effect of many applications of the
rule may be very complex. Put in other words, a computation may modify the relevant
environment in a very complex way, although it is merely a process of repeatedly applying
a simple rule.

As hinted, the notion of computation can be used to model the “mechanical” aspects of
the natural reality, that is, the rules that determine the evolution of the reality (rather than
the specific state of the reality at a specific time). In this case, the starting point of the
study is the actual evolution process that takes place in the natural reality, and the goal of
the study is finding the (computation) rule that underlies this natural process. In a sense,
the goal of science at large can be phrased as finding (simple) rules that govern various
aspects of reality (or rather one’s abstraction of these aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in order
to achieve specific desired effects on a corresponding artificial environment. Thus, our
starting point is a desired functionality, and our aim is to design computation rules that
effect it. Such a computation rule is referred to as an algorithm. Loosely speaking, an algo-
rithm corresponds to a computer program written in a high-level (abstract) programming
language. Let us elaborate.

We are interested in the transformation of the environment as affected by the compu-
tational process (or the algorithm). Throughout (most of) this book, we will assume that,
when invoked on any finite initial environment, the computation halts after a finite number
of steps. Typically, the initial environment to which the computation is applied encodes
an input string, and the end environment (i.e., at the termination of the computation)
encodes an output string. We consider the mapping from inputs to outputs induced by the
computation; that is, for each possible input x, we consider the output y obtained at the
end of a computation initiated with input x, and say that the computation maps input x to
output y. Thus, a computation rule (or an algorithm) determines a function (computed by
it): This function is exactly the aforementioned mapping of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider the
number of steps (i.e., applications of the rule) taken by the computation on each possible
input. The latter function is called the time complexity of the computational process (or
algorithm). While time complexity is defined per input, we will often consider it per input
length, taking the maximum over all inputs of the same length.

In order to define computation (and computation time) rigorously, one needs to spec-
ify some model of computation, that is, provide a concrete definition of environments
and a class of rules that may be applied to them. Such a model corresponds to an ab-
straction of a real computer (be it a PC, mainframe, or network of computers). One
simple abstract model that is commonly used is that of Turing machines (see, §1.2.3.2).
Thus, specific algorithms are typically formalized by corresponding Turing machines
(and their time complexity is represented by the time complexity of the corresponding
Turing machines). We stress, however, that most results in the theory of computation
hold regardless of the specific computational model used, as long as it is “reasonable”
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(i.e., satisfies the aforementioned simplicity condition and can perform some apparently
simple computations).

What is being computed? The foregoing discussion has implicitly referred to algorithms
(i.e., computational processes) as means of computing functions. Specifically, an algorithm
A computes the function f4:{0, 1}*— {0, 1}* defined by f(x)=y if, when invoked on
input x, algorithm A halts with output y. However, algorithms can also serve as means
of “solving search problems” or “making decisions” (as in Definitions 1.1 and 1.2).
Specifically, we will say that algorithm A solves the search problem of R (resp., decides
membership in S) if f4 solves the search problem of R (resp., decides membership in S). In
the rest of this exposition we associate the algorithm A with the function f; computed by
it; that is, we write A(x) instead of f,4(x). For the sake of future reference, we summarize
the foregoing discussion.

Definition 1.3 (algorithms as problem solvers): We denote by A(x) the output of
algorithm A on input x. Algorithm A solves the search problem R (resp., the decision
problem §) if A, viewed as a function, solves R (resp., S).

Organization of the rest of Section 1.2.3. In §1.2.3.2 we provide a rough description of
the model of Turing machines. This is done merely for the sake of providing a concrete
model that supports the study of computation and its complexity, whereas most of the
material in this book will not depend on the specifics of this model. In §1.2.3.3 and
§1.2.3.4 we discuss two fundamental properties of any reasonable model of computation:
the existence of uncomputable functions and the existence of universal computations. The
time (and space) complexity of computation is defined in §1.2.3.5. We also discuss oracle
machines and restricted models of computation (in §1.2.3.6 and §1.2.3.7, respectively).

1.2.3.2. A Concrete Model: Turing Machines

The model of Turing machines offers a relatively simple formulation of the notion of an
algorithm. The fact that the model is very simple complicates the design of machines that
solve problems of interest, but makes the analysis of such machines simpler. Since the
focus of Complexity Theory is on the analysis of machines and not on their design, the
trade-off offered by this model is suitable for our purposes. We stress again that the model
is merely used as a concrete formulation of the intuitive notion of an algorithm, whereas
we actually care about the intuitive notion and not about its formulation. In particular, all
results mentioned in this book hold for any other “reasonable” formulation of the notion
of an algorithm.

The model of Turing machines is not meant to provide an accurate (or “tight”) model
of real-life computers, but rather to capture their inherent limitations and abilities (i.e., a
computational task can be solved by a real-life computer if and only if it can be solved by
a Turing machine). In comparison to real-life computers, the model of Turing machines
is extremely oversimplified and abstracts away many issues that are of great concern
to computer practice. However, these issues are irrelevant to the higher-level questions
addressed by Complexity Theory. Indeed, as usual, good practice requires more refined
understanding than the one provided by a good theory, but one should first provide the
latter.

Historically, the model of Turing machines was invented before modern computers were
even built, and was meant to provide a concrete model of computation and a definition
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Figure 1.2: A single step by a Turing machine.

of computable functions.” Indeed, this concrete model clarified fundamental properties
of computable functions and plays a key role in defining the complexity of computable
functions.

The model of Turing machines was envisioned as an abstraction of the process of an
algebraic computation carried out by a human using a sheet of paper. In such a process, at
each time, the human looks at some location on the paper, and depending on what he/she
sees and what he/she has in mind (which is little . . .), he/she modifies the contents of this
location and shifts his/her look to an adjacent location.

The Actual Model. Following is a high-level description of the model of Turing machines;
the interested reader is referred to standard textbooks (e.g., [208]) for further details.
Recall that we need to specify the set of possible environments, the set of machines (or
computation rules), and the effect of applying such a rule on an environment.

e The main component in the environment of a Turing machine is an infinite sequence of
cells, each capable of holding a single symbol (i.e., member of a finite set ¥ D {0, 1}).
This sequence is envisioned as starting at a leftmost cell, and extending infinitely to the
right (cf. Figure 1.2). In addition, the environment contains the current location of the
machine on this sequence, and the internal state of the machine (which is a member of
a finite set Q). The aforementioned sequence of cells is called the tape, and its contents
combined with the machine’s location and its internal state is called the instantaneous
configuration of the machine.

e The main component in the Turing machine itself is a finite rule (i.e., a finite function),
called the transition function, which is defined over the set of all possible symbol-
state pairs. Specifically, the transition function is a mapping from ¥ x Qto ¥ x O x
{—1, 0, 4+1}, where {—1, 41, 0} correspond to a movement instruction (which is either
“left” or “right” or “stay,” respectively). In addition, the machine’s description specifies
an initial state and a halting state, and the computation of the machine halts when the
machine enters its halting state.®

"In contrast, the abstract definition of “recursive functions™ yields a class of “computable” functions without
referring to any model of computation (but rather based on the intuition that any such model should support recursive
functional composition).

8Envisioning the tape as in Figure 1.2, we also use the convention that if the machine tries to move left of the end
of the tape then it is considered to have halted.
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We stress that, in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

o A single computation step of such a Turing machine depends on its current location

on the tape, on the contents of the corresponding cell, and on the internal state of the
machine. Based on the latter two elements, the transition function determines a new
symbol-state pair as well as a movement instruction (i.e., “left” or “right” or “stay”).
The machine modifies the contents of the said cell and its internal state accordingly,
and moves as directed. That is, suppose that the machine is in state ¢ and resides in a
cell containing the symbol o, and suppose that the transition function maps (o, ¢) to
(0’,¢q’, D). Then, the machine modifies the contents of the said cell to o, modifies its
internal state to ¢’, and moves one cell in direction D. Figure 1.2 shows a single step
of a Turing machine that, when in state ‘b’ and seeing a binary symbol o, replaces
o with the symbol o + 2, maintains its internal state, and moves one position to the
right.”
Formally, we define the successive configuration function that maps each instantaneous
configuration to the one resulting by letting the machine take a single step. This function
modifies its argument in a very minor manner, as described in the foregoing; that
is, the contents of at most one cell (i.e., at which the machine currently resides) is
changed, and in addition the internal state of the machine and its location may change,
too.

The initial environment (or configuration) of a Turing machine consists of the machine
residing in the first (i.e., leftmost) cell and being in its initial state. Typically, one also
mandates that, in the initial configuration, a prefix of the tape’s cells hold bit values, which
concatenated together are considered the input, and the rest of the tape’s cells hold a
special symbol (which in Figure 1.2 is denoted by ‘-’). Once the machine halts, the output
is defined as the contents of the cells that are to the left of its location (at termination
time).'"” Thus, each machine defines a function mapping inputs to outputs, called the
function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one refers to the
location of the “head of the machine” on the tape (rather than to the “location of
the machine on the tape”). The standard terminology is more intuitive when extend-
ing the basic model, which refers to a single tape, to a model that supports a constant
number of tapes. In the corresponding model of so-called multi-tape machines, the ma-
chine maintains a single head on each such tape, and each step of the machine depends on
and affects the cells that are at the machine’s head location on each tape. As we shall see
in Chapter 5 (and in §1.2.3.5), the extension of the model to multi-tape Turing machines is
crucial to the definition of space complexity. A less fundamental advantage of the model
of multi-tape Turing machines is that it facilitates the design of machines that compute
functions of interest.

‘)Figure 1.2 corresponds to a machine that, when in the initial state (i.e., ‘a’), replaces the symbol o by o + 4,
modifies its internal state to ‘b’, and moves one position to the right. Indeed, “marking” the leftmost cell (in order to
allow for recognizing it in the future) is a common practice in the design of Turing machines.

lOBy an alternative convention, the machine halts while residing in the leftmost cell, and the output is defined as
the maximal prefix of the tape contents that contains only bit values.
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Teaching note: We strongly recommend avoiding the standard practice of teaching the student
to program with Turing machines. These exercises seem very painful and pointless. Instead,
one should prove that the Turing machine model is exactly as powerful as a model that is closer
to a real-life computer (see the following “sanity check”); that is, a function can be computed
by a Turing machine if and only if it is computable by a machine of the latter model. For
starters, one may prove that a function can be computed by a single-tape Turing machine if
and only if it is computable by a multi-tape (e.g., two-tape) Turing machine.

The Church-Turing Thesis. The entire point of the model of Turing machines is its
simplicity. That is, in comparison to more “realistic” models of computation, it is sim-
pler to formulate the model of Turing machines and to analyze machines in this model.
The Church-Turing Thesis asserts that nothing is lost by considering the Turing ma-
chine model: 4 function can be computed by some Turing machine if and only if it
can be computed by some machine of any other “reasonable and general” model of
computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion (i.e.,
the notion of a reasonable and general model of computation) that is left undefined
on purpose. The model should be reasonable in the sense that it should allow only
computation rules that are “simple” in some intuitive sense. For example, we should
be able to envision a mechanical implementation of these computation rules. On the
other hand, the model should allow for computation of “simple” functions that are def-
initely computable according to our intuition. At the very least the model should allow
for emulation of Turing machines (i.e., computation of the function that, given a de-
scription of a Turing machine and an instantaneous configuration, returns the successive
configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive concept to a
formal definition is common practice in any science (or, more broadly, in any attempt to
reason rigorously about intuitive concepts). Any attempt to rigorously define an intuitive
concept yields a formal definition that necessarily differs from the original intuition, and
the question of correspondence between these two objects arises. This question can never
be rigorously treated, because one of the objects that it relates to is undefined. That is, the
question of correspondence between the intuition and the definition always transcends a
rigorous treatment (i.e., it always belongs to the domain of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain confidence in
the Church-Turing Thesis, one may attempt to define an abstract random-access machine
(RAM), and verify that it can be emulated by a Turing machine. An abstract RAM
consists of an infinite number of memory cells, each capable of holding an integer, a finite
number of similar registers, one designated as program counter, and a program consisting
of instructions selected from a finite set. The set of possible instructions includes the
following instructions:

e reset(r), where r is an index of a register, results in setting the value of register » to
Zero;

e inc(r), where r is an index of a register, results in incrementing the content of register
r. Similarly dec(r) causes a decrement;
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e load(r, ), where r; and r;, are indices of registers, results in loading to register r|
the contents of the memory location m, where m is the current contents of register ,;
store(r|, ), stores the contents of register | in the memory, analogously to 1oad;
cond-goto(r, £), where 7 is an index of a register and £ does not exceed the program
length, results in setting the program counter to £ — 1 if the content of register r is
non-negative.

The program counter is incremented after the execution of each instruction, and the next
instruction to be executed by the machine is the one to which the program counter points
(and the machine halts if the program counter exceeds the program’s length). The input to
the machine may be defined as the contents of the first # memory cells, where 7 is placed
in a special input register.

We note that, as stated, the abstract RAM model is as powerful as the Turing machine
model (see the following details). However, in order to make the RAM model closer
to real-life computers, we may augment it with additional instructions that are available
on real-life computers like the instruction add(r, ;) (resp., mult(ry, ;)) that results in
adding (resp., multiplying) the contents of registers »; and r, (and placing the result in
register ). We suggest proving that this abstract RAM can be emulated by a Turing
machine."" (Hint: note that during the emulation, we only need to hold the input, the
contents of all registers, and the contents of the memory cells that were accessed during
the computation. )"

Reflections: Observe that the abstract RAM model is significantly more cumbersome
than the Turing machine model. Furthermore, seeking a sound choice of the instruction
set (i.e., the instructions to be allowed in the model) creates a vicious cycle (because
the sound guideline for such a choice should have been allowing only instructions that
correspond to “simple” operations, whereas the latter correspond to easily computable
functions . . .). This vicious cycle was avoided in the foregoing paragraph by trusting
the reader to include only instructions that are available in some real-life computer. (We
comment that this empirical consideration is justifiable in the current context, because our
current goal is merely linking the Turing machine model with the reader’s experience of
real-life computers.)

1.2.3.3. Uncomputable Functions
Strictly speaking, the current subsection is not necessary for the rest of this book, but we
feel that it provides a useful perspective.

In contrast to what every layman would think, we know that not all functions are
computable. Indeed, an important message to be communicated to the world is that not
every well-defined task can be solved by applying a “reasonable” automated procedure
(i.e., a procedure that has a simple description that can be applied to any instance of
the problem at hand). Furthermore, not only is it the case that there exist uncomputable

e emphasize this direction of the equivalence of the two models, because the RAM model is introduced in
order to convince the reader that Turing machines are not too weak (as a model of general computation). The fact that
they are not too strong seems self-evident. Thus, it seems pointless to prove that the RAM model can emulate Turing
machines. Still, note that this is indeed the case, by using the RAM’s memory cells to store the contents of the cells
of the Turing machine’s tape.

Thus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells that were accessed so
far as well as their current contents. When we emulate a RAM instruction, we first check whether the relevant RAM
cell appears on this list, and augment the list by a corresponding entry or modify this entry as needed.
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functions, but it is also the case that most functions are uncomputable. In fact, only
relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to string) has
cardinality N.

We stress that the theorem holds for any reasonable model of computation. In fact, it only
relies on the postulate that each machine in the model has a finite description (i.e., can be
described by a string).

Proof: Since each computable function is computable by a machine that has a
finite description, there is a 1-1 correspondence between the set of computable
functions and the set of strings (which in turn is in 1-1 correspondence to the
natural numbers). On the other hand, there is a 1-1 correspondence between the
set of Boolean functions (i.e., functions from strings to a single bit) and the set
of real number in [0, 1). This correspondence associates each real » € [0, 1) to the
function f : N — {0, 1} such that £(i) is the i bit in the infinite binary expansion
of r. |

The Halting Problem: In contrast to the discussion in §1.2.3.1, at this point we also
consider machines that may not halt on some inputs. (The functions computed by such
machines are partial functions that are defined only on inputs on which the machine
halts.) Again, we rely on the postulate that each machine in the model has a finite
description, and denote the description of machine M by (M) € {0, 1}*. The halting
function, h : {0, 1}* x {0, 1}* — {0, 1}, is defined such that h({M), x) ' | if and only
if M halts on input x. The following result goes beyond Theorem 1.4 by pointing to an
explicit function (of natural interest) that is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is not
computable.

The term undecidability means that the corresponding decision problem cannot be solved
by an algorithm. That is, Theorem 1.5 asserts that the decision problem associated with
the set h™!(1) = {((M), x) : h((M), x) = 1} is not solvable by an algorithm (i.e., there
exists no algorithm that, given a pair ({M), x), decides whether or not M halts on input
x). Actually, the following proof shows that there exists no algorithm that, given (M),
decides whether or not M halts on input (M).

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the function
d((M)) & h({(M), (M))) is not computable. Note that the value of d({(M)) refers
to the question of what happens when we feed M with its own description, which
is indeed a “nasty” (but legitimate) thing to do. We will actually do something
“worse””: toward the contradiction, we will consider the value of d when eval-
uated at a (machine that is related to a) hypothetical machine that supposedly
computes d.

We start by considering a related function, d’, and showing that this function
is uncomputable. The function d’ is defined on purpose so as to foil any attempt
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to compute it; that is, for every machine M, the value d’'({M)) is defined to differ
from M({M)). Specifically, the function d’ : {0, 1}* — {0, 1} is defined such that
d'((M)) e if and only if M halts on input (M) with output 0. (Thatis, d'((M)) = 0
if either M does not halt on input (M) or its output does not equal the value 0.)
Now, suppose, toward the contradiction, that d’ is computable by some machine,
denoted My . Note that machine My is supposed to halt on every input, and so
My halts on input (Mg ). But, by definition of d’, it holds that d’({My)) = 1 if and
only if My halts on input (My) with output 0 (i.e., if and only if My({(My)) =
0). Thus, My({My)) # d'({Mg)) in contradiction to the hypothesis that My
computes d'.

We next prove that d is uncomputable, and thus h is uncomputable (because
d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d is
computable then so is d’ (which we already know not to be the case). Indeed, suppose
toward the contradiction that 4 is an algorithm for computing d (i.e., A((M)) =
d({M)) for every machine M). Then we construct an algorithm for computing
d’, which given (M’), invokes A on (M"), where M" is defined to operate as
follows:

1. On input x, machine M"” emulates M’ on input x.

2. If M’ halts on input x with output 0 then M” halts.

3. If M’ halts on input x with an output different from 0 then M” enters an infinite
loop (and thus does not halt).

4. Otherwise (i.e., M’ does not halt on input x), then machine M” does not halt
(because it just stays stuck in Step 1 forever).

Note that the mapping from (M’) to (M") is easily computable (by augmenting
M’ with instructions to test its output and enter an infinite loop if necessary), and
that d((M")) = d'({M")), because M"” halts on x if and only if M” halts on x with
output 0. We thus derived an algorithm for computing d’ (i.e., transform the input
(M’ into (M") and output A({M"))), which contradicts the already established fact
by which d’ is uncomputable. |

Turing-reductions. The core of the second part of the proof of Theorem 1.5 is an algo-
rithm that solves one problem (i.e., computes d’) by using as a subroutine an algorithm
that solves another problem (i.e., computes d (or h)). In fact, the first algorithm is ac-
tually an algorithmic scheme that refers to a “functionally specified” subroutine rather
than to an actual (implementation of such a) subroutine, which may not exist. Such an
algorithmic scheme is called a Turing-reduction (see formulation in §1.2.3.6). Hence, we
have Turing-reduced the computation of d’ to the computation of d, which in turn Turing-
reduces to h. The “natural” (“positive”) meaning of a Turing-reduction of f’ to f is that,
when given an algorithm for computing f, we obtain an algorithm for computing 1.
In contrast, the proof of Theorem 1.5 uses the “unnatural” (“negative”) counter-positive:
If (as we know) there exists no algorithm for computing f” = d’ then there exists no
algorithm for computing f = d (which is what we wanted to prove). Jumping ahead,
we mention that resource-bounded Turing-reductions (e.g., polynomial-time reductions)
play a central role in Complexity Theory itself, and again they are used mostly in a
“negative” way. We will define such reductions and extensively use them in subsequent
chapters.
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Rice’s Theorem. The undecidability of the halting problem (or rather the fact that the
function d is uncomputable) is a special case of a more general phenomenon: Every non-
trivial decision problem regarding the function computed by a given Turing machine has no
algorithmic solution. We state this fact next, clarifying the definition of the aforementioned
class of problems. (Again, we refer to Turing machines that may not halt on all inputs.)

Theorem 1.6 (Rice’s Theorem): Let F be any non-trivial subset” of the set of all
computable partial functions, and let Sr be the set of strings that describe machines
that compute functions in F. Then deciding membership in Sy cannot be solved by
an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide a proof
because this is too remote from the main subject matter of the book. We stress that
Theorems 1.5 and 1.6 hold for any reasonable model of computation (referring both
to the potential solvers and to the machines the description of which is given as input
to these solvers). Thus, Theorem 1.6 means that no algorithm can determine any non-
trivial property of the function computed by a given computer program (written in any
programming language). For example, no algorithm can determine whether or not a given
computer program halts on each possible input. The relevance of this assertion to the
project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises also outside
of the domain of questions regarding computing devices (given as input). Specifically, we
consider the Post Correspondence Problem in which the input consists of two sequences
of strings, (a1, ..., o) and (B1, ..., Br), and the question is whether or not there exists
a sequence of indices iy, ..., i, € {1,..., k} such that o - - - ot;, = B, - - - Bi,. (We stress
that the length of this sequence is not a priori bounded.)"

Theorem 1.7: The Post Correspondence Problem is undecidable.
Again, the omitted proof is by a Turing-reduction from d (or h)."

1.2.3.4. Universal Algorithms

So far we have used the postulate that, in any reasonable model of computation, each
machine (or computation rule) has a finite description. Furthermore, we also used the fact
that such model should allow for the easy modification of such descriptions such that the
resulting machine computes an easily related function (see the proof of Theorem 1.5).
Here we go one step further and postulate that the description of machines (in this model)
is “effective” in the following natural sense: There exists an algorithm that, given a
description of a machine (resp., computation rule) and a corresponding environment,
determines the environment that results from performing a single step of this machine on

3The set S is called a non-trivial subset of U if both S and U \ § are non-empty. Clearly, if F is a trivial set of
computable functions then the corresponding decision problem can be solved by a “trivial” algorithm that outputs the
corresponding constant bit.

"“In contrast, the existence of an adequate sequence of a specified length can be determined in time that is
exponential in this length.

!5We mention that the reduction maps an instance ({M), x) of h to a pair of sequences ((«1, ..., o), (B1, .-, Br))
such that only «; and 8; depend on x, whereas & as well as the other strings depend only on M.
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this environment (resp., the effect of a single application of the computation rule). This
algorithm can, in turn, be implemented in the said model of computation (assuming this
model is general; see the Church-Turing Thesis). Successive applications of this algorithm
leads to the notion of a universal machine, which (for concreteness) is formulated next in
terms of Turing machines.

Definition 1.8 (universal machines): 4 universal Turing machine is a Turing
machine that on input a description of a machine M and an input x returns the
value of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u on pairs ((M), x)
such that M halts on input x, in which case it holds that u((), x) = M(x). That is,
u({M), x) = M(x) if M halts on input x and u is undefined on ({M), x) otherwise. We
note that if M halts on all possible inputs then u({M), x) is defined for every x.

We stress that the mere fact that we have defined something (i.e., a universal Turing
machine) does not mean that it exists. Yet, as hinted in the foregoing discussion and
obvious to anyone who has written a computer program (and thought about what he/she
was doing), universal Turing machines do exist.

Theorem 1.9: There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can be shown
that any extension of u to a total function is uncomputable. That is, for any total function
10 that agrees with the partial function u on all the inputs on which the latter is defined, it
holds that G is uncomputable.'®

Proof: Given a pair ((M), x), we just emulate the computation of machine M on
input x. This emulation is straightforward, because (by the effectiveness of the
description of M) we can iteratively determine the next instantaneous configuration
of the computation of M on input x. If the said computation halts then we will obtain
its output and can output it (and so, on input ({M), x), our algorithm returns M (x)).
Otherwise, we turn out emulating an infinite computation, which means that our
algorithm does not halt on input ({M), x). Thus, the foregoing emulation procedure
constitutes a universal machine (i.e., yields an algorithm for computing u). |

As hinted already, the existence of universal machines is the fundamental fact underlying
the paradigm of general-purpose computers. Indeed, a specific Turing machine (or algo-
rithm) is a device that solves a specific problem. A priori, solving each problem would
have required building a new physical device, that allows for this problem to be solved
in the physical world (rather than as a thought experiment). The existence of a universal
machine asserts that it is enough to build one physical device, that is, a general purpose
computer. Any specific problem can then be solved by writing a corresponding program

"The claim is easy to prove for the total function 4 that extends u and assigns the special symbol L to inputs on
which u is undefined (i.e., a((M), x) © 1 if u is not defined on (M), x) and &((M), x) = u((M), x) otherwise). In
this case h({M), x) = 1 if and only if Q({(M), x) # L, and so the halting function h is Turing-reducible to @. In the
general case, we may adapt the proof of Theorem 1.5 by using the fact that, for a machine M that halts on every input,

it holds that 4((M), x) = u({M), x) for every x (and in particular for x = (M)).
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to be executed (or emulated) by the general-purpose computer. Thus, universal machines
correspond to general-purpose computers, and provide the basis for separating hardware
from software. In other words, the existence of universal machines says that software can
be viewed as (part of the) input.

In addition to their practical importance, the existence of universal machines (and their
variants) has important consequences in the theories of computability and Computational
Complexity. To demonstrate the point, we note that Theorem 1.6 implies that many
questions about the behavior of a fixed universal machine on certain input types are
undecidable. For example, it follows that, for some fixed machines (i.e., universal ones),
there is no algorithm that determines whether or not the (fixed) machine halts on a given
input. Revisiting the proof of Theorem 1.7 (see footnote 15), it follows that the Post
Correspondence Problem remains undecidable even if the input sequences are restricted
to have a specific length (i.e., £ is fixed). A more important application of universal
machines to the theory of computability follows.

A detour: Kolmogorov Complexity. The existence of universal machines, which may be
viewed as universal languages for writing effective and succinct descriptions of objects,
plays a central role in Kolmogorov Complexity. Loosely speaking, the latter theory is
concerned with the length of (effective) descriptions of objects, and views the minimum
such length as the inherent “complexity” of the object; that is, “simple” objects (or phe-
nomena) are those having short description (resp., short explanation), whereas “complex”
objects have no short description. Needless to say, these (effective) descriptions have to
refer to some fixed “language” (i.e., to a fixed machine that, given a succinct description
of an object, produces its explicit description). Fixing any machine M, a string x is called
a description of s with respect to M if M(x) = s. The complexity of s with respect to
M, denoted K ,(s), is the length of the shortest description of s with respect to M. Cer-
tainly, we want to fix M such that every string has a description with respect to M, and
furthermore such that this description is not “significantly” longer than the description
with respect to a different machine M’. The following theorem makes it natural to use a
universal machine as the “point of reference” (i.e., as the aforementioned M).

Theorem 1.10 (complexity wrt a universal machine): Let U be a universal machine.
Then, for every machine M’, there exists a constant ¢ such that Ky(s) < Ky (s) + ¢
for every string s.

The theorem follows by (setting ¢ = O(|{M’)]) and) observing that if x is a description
of s with respect to M’ then ({(M’), x) is a description of s with respect to U. Here it is
important to use an adequate encoding of pairs of strings (e.g., the pair (o1 - - - 0%, 71 - - - T¢)
is encoded by the string o0 - - - 030%017; - - - 7¢). Fixindg any universal machine U, we
define the Kolmogorov Complexity of a string s as K (s) = u(s). The reader may easily
verify the following facts:

1. K(s) <|s| + O(1), for every s.
(Hint: Apply Theorem 1.10 to a machine that computes the identity mapping.)

2. There exist infinitely many strings s such that K (s) < [s].

(Hint: Considers = 1”. Alternatively, consider any machine M such that | M(x)| > |x|
for every x.)
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3. Some strings of length n have complexity at least . Furthermore, for every » and i,

s € {0, 1})" : K(s) < n —i}| <2"7H!

(Hint: Different strings must have different descriptions with respect to U.)

It can be shown that the function K is uncomputable. The proof is related to the paradox
captured by the following “description” of a natural number: the largest natural
number that can be described by an English sentence of up to a
thousand letters. (The paradox amounts to observing that if the above number
is well defined then so is the integer successor of the largest natural
number that can be described by an English sentence of up to a
thousand letters.) Needless to say, the foregoing sentences presuppose that any
English sentence is a legitimate description in some adequate sense (e.g., in the sense cap-
tured by Kolmogorov Complexity). Specifically, the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number, and furthermore
that we can effectively produce the largest number that has Kolmogorov Complexity not
exceeding some threshold. Indeed, the paradox suggests a proof of the fact that the latter
task cannot be performed; that is, there exists no algorithm that given t produces the lexi-
cographically last string s such that K (s) < t, because if such an algorithm 4 would have
existed then K(s) < O(|{A4)]) + logt and K(s0) < K(s) 4+ O(1) < t in contradiction to
the definition of s.

1.2.3.5. Time and Space Complexity

Fixing a model of computation (e.g., Turing machines) and focusing on algorithms that
halt on each input, we consider the number of steps (i.e., applications of the computation
rule) taken by the algorithm on each possible input. The latter function is called the time
complexity of the algorithm (or machine); that is, 74 : {0, 1}* — N is called the time
complexity of algorithm A if, for every x, on input x algorithm A halts after exactly 74(x)
steps.

We will be mostly interested in the dependence of the time complexity on the input
length, when taking the maximum over all inputs of the relevant length. That is, for ¢ as
in the foregoing, we will consider 74 : N — N defined by 74(n) « maxye(o, 1} {4(x)}.
Abusing terminology, we sometimes refer to 74 as the time complexity of A.

The time complexity of a problem. As stated in the preface and in the introduction,
typically Complexity Theory is not concerned with the (time) complexity of a specific
algorithm. It is rather concerned with the (time) complexity of a problem, assuming that
this problem is solvable at all (by some algorithm). Intuitively, the time complexity of
such a problem is defined as the time complexity of the fastest algorithm that solves this
problem (assuming that the latter term is well defined).'” Actually, we shall be interested
in upper and lower bounds on the (time) complexity of algorithms that solve the problem.
Thus, when we say that a certain problem IT has complexity 7', we actually mean that I1
has complexity at most 7. Likewise, when we say that I1 requires time 7', we actually
mean that IT has time complexity at least 7.

17 Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assumption that a “fastest
algorithm” for solving a problem exists is not always justified. On the other hand, the assumption is essentially justified
in some important cases (see, e.g., Theorem 2.33). But even in these cases the said algorithm is “fastest” (or “optimal”)
only up to a constant factor.
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Recall that the foregoing discussion refers to some fixed model of computation. Indeed,
the complexity of a problem IT may depend on the specific model of computation in which
algorithms that solve IT are implemented. The following Cobham-Edmonds Thesis asserts
that the variation (in the time complexity) is not too big, and in particular is irrelevant to
much of the current focus of Complexity Theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a problem may
depend on the model of computation. For example, deciding membership in the set
{xx : x € {0, 1}*} can be done in linear time on a two-tape Turing machine, but requires
quadratic time on a single-tape Turing machine.'® On the other hand, any problem that
has time complexity ¢ in the model of multi-tape Turing machines has complexity O(?)
in the model of single-tape Turing machines. The Cobham-Edmonds Thesis asserts that
the time complexities in any two “reasonable and general” models of computation are
polynomially related. That is, a problem has time complexity t in some “reasonable and
general” model of computation if and only if it has time complexity poly(t) in the model
of (single-tape) Turing machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis. It asserts
not only that the class of solvable problems is invariant as far as “reasonable and general”
models of computation are concerned, but also that the time complexity (of the solvable
problems) in such models is polynomially related.

Efficient algorithms. As hinted in the foregoing discussions, much of Complexity The-
ory is concerned with efficient algorithms. The latter are defined as polynomial-time
algorithms (i.e., algorithms that have time complexity that is upper-bounded by a poly-
nomial in the length of the input). By the Cobham-Edmonds Thesis, the definition of this
class is invariant under the choice of a “reasonable and general” model of computation.
The association of efficient algorithms with polynomial-time computation is grounded in
the following two considerations:

e Philosophical consideration: Intuitively, efficient algorithms are those that can be
implemented within a number of steps that is a moderately growing function of the
input length. To allow for reading the entire input, at least linear time should be
allowed. On the other hand, apparently slow algorithms and in particular “exhaustive
search” algorithms, which take exponential time, must be avoided. Furthermore, a
good definition of the class of efficient algorithms should be closed under natural
compositions of algorithms (as well as be robust with respect to reasonable models
of computation and with respect to simple changes in the encoding of problems’
instances).

Choosing polynomials as the set of time bounds for efficient algorithms satisfies all the
foregoing requirements: Polynomials constitute a “closed” set of moderately growing
functions, where “closure” means closure under addition, multiplication, and func-
tional composition. These closure properties guarantee the closure of the class of

18Proving the latter fact is quite non-trivial. One proof is by a “reduction” from a communication complexity
problem [148, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership in the aforementioned
set can be viewed as a channel of communication between the two parts of the input. Focusing our attention on inputs
of the form y0"z0", for y, z € {0, 1}", each time the machine passes from the first part to the second part it carries
O(1) bits of information (in its internal state) while making at least n steps. The proof is completed by invoking the
linear lower bound on the communication complexity of the (two-argument) identity function (i.e., id(y,z) = 1 if
y =z and id(y, z) = 0 otherwise, cf. [148, Chap. 1]).
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efficient algorithms under natural compositions of algorithms (as well as its robust-
ness with respect to any reasonable and general model of computation). Furthermore,
polynomial-time algorithms can conduct computations that are apparently simple (al-
though not necessarily trivial), and on the other hand they do not include algorithms
that are apparently inefficient (like exhaustive search).

e FEmpirical consideration: It is clear that algorithms that are considered efficient in
practice have a running time that is bounded by a small polynomial (at least on the
inputs that occur in practice). The question is whether any polynomial time algorithm
can be considered efficient in an intuitive sense. The belief, which is supported by past
experience, is that every natural problem that can be solved in polynomial time also
has a “reasonably efficient” algorithm.

We stress that the association of efficient algorithms with polynomial-time computation
is not essential to most of the notions, results, and questions of Complexity Theory.
Any other class of algorithms that supports the aforementioned closure properties and
allows for conducting some simple computations but not overly complex ones gives rise
to a similar theory, albeit the formulation of such a theory may be more complicated.
Specifically, all results and questions treated in this book are concerned with the relation
among the complexities of different computational tasks (rather than with providing
absolute assertions about the complexity of some computational tasks). These relations
can be stated explicitly, by stating how any upper bound on the time complexity of
one task gets translated to an upper bound on the time complexity of another task."”
Such cumbersome statements will maintain the contents of the standard statements; they
will merely be much more complicated. Thus, we follow the tradition of focusing on
polynomial-time computations, while stressing that this focus both is natural and provides
the simplest way of addressing the fundamental issues underlying the nature of efficient
computation.

Universal machines, revisited. The notion of time complexity gives rise to a time-
bounded version of the universal function u (presented in §1.2.3.4). Specifically, we
define u'((M), x, t) &f y if on input x machine M halts within ¢ steps and outputs the
string y, and u'({M), x, t) &' ifon input x machine M makes more than ¢ steps. Unlike
u, the function u’ is a total function. Furthermore, unlike any extension of u to a total
function, the function u’ is computable. Moreover, u’ is computable by a machine U’ that,
on input X = ((M), x, t), halts after poly(|.X|) steps. Indeed, machine U’ is a variant of
a universal machine (i.e., on input X, machine U’ merely emulates M for ¢ steps rather
than emulating M till it halts (and potentially indefinitely)). Note that the number of steps
taken by U’ depends on the specific model of computation (and that some overhead is
unavoidable because emulating each step of M requires reading the relevant portion of
the description of M).

Space complexity. Another natural measure of the “complexity” of an algorithm (or a
task) is the amount of memory consumed by the computation. We refer to the memory

Yfor example, the NP-completeness of SAT (cf. Theorem 2.22) implies that any algorithm solving SAT in time 7'
yields an algorithm that factors composite numbers in time 7’ such that 7’(n) = poly(n) - (1 + T(poly(n))). (More
generally, if the correctness of solutions for n-bit instances of some search problem R can be verified in time #(n)
then the hypothesis regarding SAT implies that solutions (for n-bit instances of R) can be found in time 7’ such that
T'(n) = t(n) - (1 + T(O(t(n))*)).)
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used for storing some intermediate results of the computation. Since much of our focus
will be on using memory that is sub-linear in the input length, it is important to use a
model in which one can differentiate memory used for computation from memory used for
storing the initial input or the final output. In the context of Turing machines, this is done
by considering multi-tape Turing machines such that the input is presented on a special
read-only tape (called the input tape), the output is written on a special write-only tape
(called the output tape), and intermediate results are stored on a work-tape. Thus, the input
and output tapes cannot be used for storing intermediate results. The space complexity
of such a machine M is defined as a function s, such that s,,(x) is the number of cells
of the work-tape that are scanned by M on input x. As in the case of time complexity, we
will usually refer to S4(n) &ef maxXye(o, 1) {5.4(x)}.

1.2.3.6. Oracle Machines

The notion of Turing-reductions, which was discussed in §1.2.3.3, is captured by the
following definition of so-called oracle machines. Loosely speaking, an oracle machine is
a machine that is augmented such that it may pose questions to the outside. We consider
the case in which these questions, called queries, are answered consistently by some
function £ : {0, 1}* — {0, 1}*, called the oracle. That is, if the machine makes a query ¢
then the answer it obtains is f(g). In such a case, we say that the oracle machine is given
access to the oracle f. For an oracle machine M, a string x and a function f, we denote
by M/ (x) the output of M on input x when given access to the oracle f. (Reexamining
the second part of the proof of Theorem 1.5, observe that we have actually described an
oracle machine that computes d’ when given access to the oracle d.)

The notion of an oracle machine extends the notion of a standard computing device
(machine), and thus a rigorous formulation of the former extends a formal model of
the latter. Specifically, extending the model of Turing machines, we derive the following
model of oracle Turing machines.

Definition 1.11 (using an oracle):

e An oracle machine is a Turing machine with a special additional tape, called the
oracle tape, and two special states, called oracle invocation and oracle spoke.

e The computation of the oracle machine M on input x and access to the oracle
£ {0, 1} — {0, 1}* is defined based on the successive configuration func-
tion. For configurations with a state different from oracle invocation the next
configuration is defined as usual. Let y be a configuration in which the ma-
chine’s state is oracle invocation and suppose that the actual contents of the
oracle tape is q (i.e., q is the contents of the maximal prefix of the tape that
holds bit values).”® Then, the configuration following y is identical to y, ex-
cept that the state is oracle spoke, and the actual contents of the oracle tape
is f(q). The string q is called M's query and f(q) is called the oracle’s
reply.

o The output of the oracle machine M on input x when given oracle access to f is
denoted M/ (x).

2This fits the definition of the actual initial contents of a tape of a Turing machine (cf. §1.2.3.2). A common
convention is that the oracle can be invoked only when the machine’s head resides at the leftmost cell of the oracle
tape. We comment that, in the context of space complexity, one uses two oracle tapes: a write-only tape for the query
and a read-only tape for the answer.
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We stress that the running time of an oracle machine is the number of steps made during
its (own) computation, and that the oracle’s reply on each query is obtained in a single
step.

1.2.3.7. Restricted Models

We mention that restricted models of computation are often mentioned in the context of a
course on computability, but they will play no role in the current book. One such model is
the model of finite automata, which in some variant coincides with Turing machines that
have space-complexity zero (equiv., constant).

In our opinion, the most important motivation for the study of these restricted models of
computation is that they provide simple models for some natural (or artificial) phenomena.
This motivation, however, seems only remotely related to the study of the complexity
of various computational tasks, which calls for the consideration of general models of
computation and the evaluation of the complexity of computation with respect to such
models.

Teaching note: Indeed, we reject the common coupling of computability theory with the theory
of automata and formal languages. Although the historical links between these two theories (at
least in the West) cannot be denied, this fact cannot justify coupling two fundamentally different
theories (especially when such a coupling promotes a wrong perspective on computability
theory). Thus, in our opinion, the study of any of the lower levels of Chomsky’s Hierarchy [123,
Chap. 9] should be decoupled from the study of computability theory (let alone the study of
Complexity Theory).

1.2.4. Non-uniform Models (Circuits and Advice)

Camille: Like Thelma and Louise. But. . . without the guns.
Petra: Oh, well, no guns, I don’t know . . .

Patricia Rozema, When Night Is Falling, 1995

The main use of non-uniform models of computation, in this book, will be as a source of
some natural computational problems (cf. §2.3.3.1 and Theorem 5.4). In addition, these
models will be briefly studied in Sections 3.1 and 4.1.

By a non-uniform model of computation we mean a model in which for each possible
input length a different computing device is considered, while there is no “uniformity”
requirement relating devices that correspond to different input lengths. Furthermore, this
collection of devices is infinite by nature, and (in the absence of a uniformity requirement)
this collection may not even have a finite description. Nevertheless, each device in the
collection has a finite description. In fact, the relationship between the size of the device
(resp., the length of its description) and the length of the input that it handles will be of
major concern.

Non-uniform models of computation are studied either toward the development of
lower-bound techniques or as simplified limits on the ability of efficient algorithms.”

I The second case refers mainly to efficient algorithms that are given a pair of inputs (of (polynomially) related
length) such that these algorithms are analyzed with respect to fixing one input (arbitrarily) and varying the other
input (typically, at random). Typical examples include the context of derandomization (cf. Section 8.3) and the setting
of zero-knowledge (cf. Section 9.2).
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In both cases, the uniformity condition is eliminated in the interest of simplicity and
with the hope (and belief) that nothing substantial is lost as far as the issues at hand
are concerned. In the context of developing lower bounds, the hope is that the finiteness
of all parameters (i.e., the input length and the device’s description) will allow for the
application of combinatorial techniques to analyze the limitations of certain settings of
parameters.

We will focus on two related models of non-uniform computing devices: Boolean
circuits (§1.2.4.1) and “machines that take advice” (§1.2.4.2). The former model is more
adequate for the study of the evolution of computation (i.e., development of lower-bound
techniques), whereas the latter is more adequate for modeling purposes (e.g., limiting the
ability of efficient algorithms).

1.2.4.1. Boolean Circuits

The most popular model of non-uniform computation is the one of Boolean circuits.
Historically, this model was introduced for the purpose of describing the “logic operation”
of real-life electronic circuits. Ironically, nowadays this model provides the stage for some
of the most practically removed studies in Complexity Theory (which aim at developing
methods that may eventually lead to an understanding of the inherent limitations of
efficient algorithms).

A Boolean circuit is a directed acyclic graph® with labels on the vertices, to be discussed
shortly. For the sake of simplicity, we disallow isolated vertices (i.e., vertices with no
incoming or outgoing edges), and thus the graph’s vertices are of three types: sources,
sinks, and internal vertices.

1. Internal vertices are vertices having incoming and outgoing edges (i.e., they have in-
degree and out-degree at least 1). In the context of Boolean circuits, internal vertices
are called gates. Each gate is labeled by a Boolean operation, where the operations
that are typically considered are A, Vv, and — (corresponding to and, or, and neg).
In addition, we require that gates labeled — have in-degree 1. The in-degree of A-
gates and V-gates may be any number greater than zero, and the same holds for the
out-degree of any gate.

2. The graph sources (i.e., vertices with no incoming edges) are called input terminals.
Each input terminal is labeled by a natural number (which is to be thought of as the
index of an input variable). (For the sake of defining formulae (see §1.2.4.3), we allow
different input terminals to be labeled by the same number.)”

3. The graph sinks (i.e., vertices with no outgoing edges) are called output terminals,
and we require that they have in-degree 1. Each output terminal is labeled by a
natural number such that if the circuit has m output terminals then they are labeled
1,2, ..., m. That is, we disallow different output terminals to be labeled by the same
number, and insist that the labels of the output terminals be consecutive numbers.
(Indeed, the labels of the output terminals will correspond to the indices of locations
in the circuit’s output.)

2gee Appendix G.1.

BThis is not needed in the case of general circuits, because we can just feed outgoing edges of the same input
terminal to many gates. Note, however, that this is not allowed in the case of formulae, where all non-sinks are required
to have out-degree exactly 1.
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For the sake of simplicity, we also mandate that the labels of the input terminals be
consecutive numbers.”*

A Boolean circuit with » different input labels and m output terminals induces (and
indeed computes) a function from {0, 1}" to {0, 1} defined as follows. For any fixed
string x € {0, 1}", we iteratively define the value of vertices in the circuit such that the
input terminals are assigned the corresponding bits in x = x| - - - x,, and the values of other
vertices are determined in the natural manner. That is:

e An input terminal with label i € {1, ..., n} is assigned the i bit of x (i.e., the value
xi).
e If the children of a gate (of in-degree d) that is labeled A have values vy, vy, ..., vy,

then the gate is assigned the value AY_ v;. The value of a gate labeled Vv (or =) is
determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the following natural
process of determining values for the circuit’s vertices is well defined: As long as
the value of some vertex is undetermined, there exists a vertex such that its value is
undetermined but the values of all its children are determined. Thus, the process can
make progress, and terminates when the values of all vertices (including the output
terminals) are determined.

The value of the circuit on input x (i.e., the output computed by the circuit on input x)
1S Yy = y1---¥m, where y; is the value assigned by the foregoing process to the output
terminal labeled i. We note that there exists a polynomial-time algorithm that, given a
circuit C and a corresponding input x, outputs the value of C on input x. This algorithm
determines the values of the circuit’s vertices, going from the circuit’s input terminals to
its output terminals.

24This convention slightly complicates the construction of circuits that ignore some of the input values. Specifically,
we use artificial gadgets that have incoming edges from the corresponding input terminals, and compute an adequate
constant. To avoid having this constant as an output terminal, we feed it into an auxiliary gate such that the value of
the latter is determined by the other incoming edge (e.g., a constant 0 fed into an V-gate). See an example of dealing
with x3 in Figure 1.3.
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We say that a family of circuits (C,),en computes a function f : {0, 1}* — {0, 1}* if
for every n the circuit C, computes the restriction of f to strings of length n. In other
words, for every x e {0, 1}*, it must hold that C|(x) = f(x).

Bounded and unbounded fan-in. We will be most interested in circuits in which
each gate has at most two incoming edges. In this case, the types of (two-argument)
Boolean operations that we allow is immaterial (as long as we consider a “full basis” of
such operations, i.e., a set of operations that can implement any other two-argument
Boolean operation). Such circuits are called circuits of bounded fan-in. In contrast, other
studies are concerned with circuits of unbounded fan-in, where each gate may have an
arbitrary number of incoming edges. Needless to say, in the case of circuits of unbounded
fan-in, the choice of allowed Boolean operations is important and one focuses on opera-
tions that are “uniform” (across the number of operants, e.g., A and V).

Circuit size as a complexity measure. The size of a circuit is the number of its edges.
When considering a family of circuits (C,),en that computes a function f : {0, 1}* —
{0, 1}*, we are interested in the size of C, as a function of n. Specifically, we say that
this family has size complexity s : N — N if for every n the size of C, is s(n). The
circuit complexity of a function f, denoted s, is the infimum of the size complexity of all
families of circuits that compute f. Alternatively, for each » we may consider the size of
the smallest circuit that computes the restriction of f to n-bit strings (denoted f;,), and set
s 7(n) accordingly. We stress that non-uniformity is implicit in this definition, because no
conditions are made regarding the relation between the various circuits used to compute
the function on different input lengths.”

On the circuit complexity of functions. We highlight some simple facts about the circuit
complexity of functions. (These facts are in clear correspondence to facts regarding
Kolmogorov Complexity mentioned in §1.2.3.4.)

1. Most importantly, any Boolean function can be computed by some family of circuits,
and thus the circuit complexity of any function is well defined. Furthermore, each
function has at most exponential circuit complexity.

(Hint: The function f, : {0, 1} — {0, 1} can be computed by a circuit of size O(n2")
that implements a look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any function that
has time complexity ¢ (i.e., is computed by an algorithm of time complexity ¢) has
circuit complexity poly(#). Furthermore, the corresponding circuit family is uniform
(in a natural sense to be discussed in the next paragraph).

(Hint: Consider a Turing machine that computes the function, and consider its compu-
tation on a generic n-bit long input. The corresponding computation can be emulated
by a circuit that consists of #(n) layers such that each layer represents an instantaneous
configuration of the machine, and the relation between consecutive configurations is
captured by (“uniform”) local gadgets in the circuit. For further details see the proof
of Theorem 2.21, which presents a similar emulation.)

25 Advanced comment: We also note that, in contrast to footnote 17, the circuit model and the (circuit size)
complexity measure support the notion of an optimal computing device: Each function f has a unique size complexity
sy (and not merely upper and lower bounds on its complexity).
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3. Almost all Boolean functions have exponential circuit complexity. Specifically, the
number of functions mapping {0, 1}" to {0, 1} that can be computed by some circuit
of size s is smaller than s%.

(Hint: The number of circuits having v vertices and s edges is at most (2 . (;) + v)s.)

Note that the first fact implies that families of circuits can compute functions that are
uncomputable by algorithms. Furthermore, this phenomenon also occurs when restricting
attention to families of polynomial size circuits. See further discussion in §1.2.4.2.

Uniform families. A family of polynomial-size circuits (C, ),y is called uniform if given
n one can construct the circuit C,, in poly(n)-time. Note that if a function is computable
by a uniform family of polynomial-size circuits then it is computable by a polynomial-
time algorithm. This algorithm first constructs the adequate circuit (which can be done
in polynomial time by the uniformity hypothesis), and then evaluates this circuit on the
given input (which can be done in time that is polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-
size circuits certainly hold for uniform families (of polynomial size), which in turn yield
limitations on the computing power of polynomial-time algorithms. Thus, lower bounds on
the circuit complexity of functions yield analogous lower bounds on their time complexity.
Furthermore, as is often the case in mathematics and science, disposing of an auxiliary
condition that is not well understood (i.e., uniformity) may turn out fruitful. Indeed, this
has occured in the study of classes of restricted circuits, which is reviewed in §1.2.4.3
(and Appendix B.2).

1.2.4.2. Machines That Take Advice

General (non-uniform) circuit families and uniform circuit families are two extremes
with respect to the “amounts of non-uniformity” in the computing device. Intuitively,
in the former, non-uniformity is only bounded by the size of the device, whereas in the
latter the amounts of non-uniformity is zero. Here we consider a model that allows the
decoupling of the size of the computing device from the amount of non-uniformity, which
may range from zero to the device’s size. Specifically, we consider algorithms that “take a
non-uniform advice” that depends only on the input length. The amount of non-uniformity
will be defined as equaling the length of the corresponding advice (as a function of the
input length).

Definition 1.12 (taking advice): We say that algorithm A computes the function f
using advice of length £ : N — N if'there exists an infinite sequence (a,)nen such
that

1. foreveryx € {0, 1}*, it holds that A(ay|, x) = f(x).
2. foreveryn €N, it holds that |a,| = £(n).

The sequence (a,)qen is called the advice sequence.

Note that any function having circuit complexity s can be computed using advice of length
O(s logs), where the log factor is due to the fact that a graph with v vertices and e edges
can be described by a string of length 2e log, v. Note that the model of machines that use
advice allows for some sharper bounds than the ones stated in §1.2.4.1: Every function
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can be computed using advice of length £ such that ¢(n) = 2", and some uncomputable
functions can be computed using advice of length 1.

Theorem 1.13 (the power of advice): There exist functions that can be computed
using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N — {0, 1}, consider
the function f” defined as f”(x) = f(|x|). Note that f is Turing-reducible to f” (e.g.,
on input #» make any n-bit query to f’, and return the answer).”* Thus, f” cannot be
computed without advice. On the other hand, f” can be easily computed by using the
advice sequence (a,),cn such that a, = f(n); that is, the algorithm merely outputs
the advice bit (and indeed a|,; = f(|x|) = f'(x), for every x € {0, 1}*). ]

1.2.4.3. Restricted Models

The model of Boolean circuits (cf. §1.2.4.1) allows for the introduction of many natural
subclasses of computing devices. Following is a laconic review of a few of these subclasses.
For further detail regarding the study of these subclasses, the interested reader is referred
to Appendix B.2. Since we shall refer to various types of Boolean formulae in the rest of
this book, we suggest not skiping the following two paragraphs.

Boolean formulae. In (general) Boolean circuits the non-sink vertices are allowed ar-
bitrary out-degree. This means that the same intermediate value can be reused without
being recomputed (and while increasing the size complexity by only one unit). Such “free”
reusage of intermediate values is disallowed in Boolean formula, which are formally de-
fined as Boolean circuits in which all non-sink vertices have out-degree 1. This means
that the underlying graph of a Boolean formula is a tree (see §G.2), and it can be written
as a Boolean expression over Boolean variables by traversing this tree (and registering the
vertices’ labels in the order traversed). Indeed, we have allowed different input terminals
to be assigned the same label in order to allow formulae in which the same variable occurs
multiple times. As in the case of general circuits, one is interested in the size of these
restricted circuits (i.e., the size of families of formulae computing various functions). We
mention that quadratic lower bounds are known for the formula size of simple functions
(e.g., parity), whereas these functions have linear circuit complexity. This discrepancy
is depicted in Figure 1.4.

Formulae in CNF and DNF. A restricted type of Boolean formula consists of formulae
that are in conjunctive normal form (CNF). Such a formula consists of a conjunction of
clauses, where each clause is a disjunction of literals each being either a variable or its
negation. That is, such formulae are represented by layered circuits of unbounded fan-in
in which the first layer consists of neg-gates that compute the negation of input variables,
the second layer consists of or-gates that compute the logical-or of subsets of inputs
and negated inputs, and the third layer consists of a single and-gate that computes the
logical-and of the values computed in the second layer. Note that each Boolean function
can be computed by a family of CNF formula of exponential size, and that the size of

26Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |#| = log, n), but this is immaterial
in the current context.
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Figure 1.4: Recursive construction of parity circuits and formulae.

CNF formulae may be exponentially larger than the size of ordinary formulae computing
the same function (e.g., parity). For a constant &, a formula is said to be in k-CNF if its
CNF has disjunctions of size at most k. An analogous restricted type of Boolean formula
refers to formulae that are in disjunctive normal form (DNF). Such a formula consists of
a disjunction of conjunctions of literals, and when each conjunction has at most & literals
we say that the formula is in £-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their structure as
graphs). One natural parameter regarding this structure is the depth of a circuit, which
is defined as the longest directed path from any source to any sink. Of special interest
are constant-depth circuits of unbounded fan-in. We mention that sub-exponential lower
bounds are known for the size of such circuits that compute a simple function (e.g.,

parity).

Monotone circuits. The circuit model also allows for the consideration of mono-
tone computing devices: A monotone circuit is one having only monotone gates (e.g.,
gates computing A and Vv, but no negation gates (i.e., —-gates)). Needless to say, mono-
tone circuits can only compute monotone functions, where a function f : {0, 1}* — {0, 1}
is called monotone if for any x < y itholds that f(x) < f(y) (wherex;---x, <y - -y
if and only if for every bit position 7 it holds that x; < y;). One natural question is
whether, as far as monotone functions are concerned, there is a substantial loss in
using only monotone circuits. The answer is yes: There exist monotone functions
that have polynomial circuit complexity but require sub-exponential size monotone
circuits.

1.2.5. Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes are defined
by fixing three parameters:

1. A type of computational problems (see Section 1.2.2). Indeed, most classes refer to
decision problems, but classes of search problems, promise problems, and other types
of problems will also be considered.

2. A model of computation, which may be either uniform (see Section 1.2.3) or non-
uniform (see Section 1.2.4).
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3. A complexity measure and a limiting function (or a set of functions), which put to-
gether limit the class of computations of the previous item; that is, we refer to the
class of computations that have complexity not exceeding the specified function (or
set of functions). For example, in §1.2.3.5, we mentioned time complexity and space
complexity, which apply to any uniform model of computation. We also mentioned
polynomial-time computations, which are computations in which the time complex-
ity (as a function) does not exceed some polynomial (i.e., a member of the set of
polynomial functions).

The most common complexity classes refer to decision problems, and are sometimes
defined as classes of sets rather than classes of the corresponding decision problems.
That is, one often says that a set S € {0, 1}* is in the class C rather than saying that the
problem of deciding membership in S is in the class C. Likewise, one talks of classes
of relations rather than classes of the corresponding search problems (i.e., saying that
R C {0, 1}* x {0, 1}* is in the class C means that the search problem of R is in the
class C).

Chapter Notes

It is quite remarkable that the theories of uniform and non-uniform computational devices
have emerged in two single papers. We refer to Turing’s paper [225], which introduced
the model of Turing machines, and to Shannon’s paper [203], which introduced Boolean
circuits.

In addition to introducing the Turing machine model and arguing that it corresponds to
the intuitive notion of computability, Turing’s paper [225] introduces universal machines
and contains proofs of undecidability (e.g., of the Halting Problem).

The Church-Turing Thesis is attributed to the works of Church [55] and Turing [225].
In both works, this thesis is invoked for claiming that the fact that Turing machines cannot
solve some problem implies that this problem cannot be solved in any “reasonable’” model
of computation. The RAM model is attributed to von Neumann’s report [234].

The association of efficient computation with polynomial-time algorithms is attributed
to the papers of Cobham [57] and Edmonds [70]. It is interesting to note that Cobham’s
starting point was his desire to present a philosophically sound concept of efficient al-
gorithms, whereas Edmonds’s starting point was his desire to articulate why certain
algorithms are “good” in practice.

Rice’s Theorem is proven in [192], and the undecidability of the Post Correspondence
Problem is proven in [181]. The formulation of machines that take advice (as well as the
equivalence to the circuit model) originates in [139].
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CHAPTER TWO

P, NP, and NP-Completeness

For as much as many have taken in hand to set forth in order a declaration
of those things which are most surely believed among us; Even as they
delivered them unto us, who from the beginning were eyewitnesses, and
ministers of the word; It seems good to me also, having had perfect
understanding of all things from the very first, to write unto thee in
order, most excellent Theophilus; That thou mightest know the certainty
of those things, wherein thou hast been instructed.

Luke, 1:1-4

The main focus of this chapter is the P-vs-NP Question and the theory of NP-completeness.
Additional topics covered in this chapter include the general notion of a polynomial-time
reduction (with a special emphasis on self-reducibility), the existence of problems in NP
that are neither NP-complete nor in P, the class coNP, optimal search algorithms, and
promise problems.

Summary: Loosely speaking, the P-vs-NP Question refers to search
problems for which the correctness of solutions can be efficiently
checked (i.e., if there is an efficient algorithm that given a solution to a
given instance determines whether or not the solution is correct). Such
search problems correspond to the class NP, and the question is whether
or not all these search problems can be solved efficiently (i.c., if there
is an efficient algorithm that given an instance finds a correct solution).
Thus, the P-vs-NP Question can be phrased as asking whether or not
finding solutions is harder than checking the correctness of solutions.

An alternative formulation, in terms of decision problems, refers to as-
sertions that have efficiently verifiable proofs (of relatively short length).
Such sets of assertions correspond to the class NP, and the question is
whether or not proofs for such assertions can be found efficiently (i.e.,
if there is an efficient algorithm that given an assertion determines its
validity and/or finds a proof for its validity). Thus, the P-vs-NP Question
can be phrased as asking whether or not discovering proofs is harder than
verifying their correctness, that is, if proving is harder than verifying (or
if proofs are valuable at all).

Indeed, it is widely believed that the answer to the two equivalent formu-
lations is that finding (resp., discovering) is harder than checking (resp.,
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verifying), that is, that P is different than NP. The fact that this natural
conjecture is unsettled seems to be one of the big sources of frustration
of Complexity Theory. The author’s opinion, however, is that this feeling
of frustration is out of place. In any case, at present, when faced with a
hard problem in NP, we cannot expect to prove that the problem is not in
P (unconditionally). The best we can expect is a conditional proof that
the said problem is not in P, based on the assumption that NP is different
from P. The contrapositive is proving that if the said problem is in P, then
so is any problem in NP (i.e., NP equals P). This is where the theory of
NP-completeness comes into the picture.

The theory of NP-completeness is based on the notion of a reduction,
which is a relation between computational problems. Loosely speaking,
one computational problem is reducible to another problem if it is pos-
sible to efficiently solve the former when provided with an (efficient)
algorithm for solving the latter. Thus, the first problem is not harder to
solve than the second one. A problem (in NP) is NP-complete if any
problem in NP is reducible to it. Thus, the fate of the entire class NP
(with respect to inclusion in P) rests with each individual NP-complete
problem. In particular, showing that a problem is NP-complete implies
that this problem is not in P unless NP equals P. Amazingly enough,
NP-complete problems exist, and furthermore, hundreds of natural com-
putational problems arising in many different areas of mathematics and
science are NP-complete.

We stress that NP-complete problems are not the only hard problems in
NP (i.e., if P is different than NP then NP contains problems that are
neither NP-complete nor in P). We also note that the P-vs-NP Question is
not about inventing sophisticated algorithms or ruling out their existence,
but rather boils down to the analysis of a single known algorithm; that
is, we will present an optimal search algorithm for any problem in NP,
while having no clue about its time complexity.

Teaching note: Indeed, we suggest presenting the P-vs-NP Question both in terms of search
problems and in terms of decision problems. Furthermore, in the latter case, we suggest
introducing NP by explicitly referring to the terminology of proof systems. As for the theory
of NP-completeness, we suggest emphasizing the mere existence of NP-complete problems.

Prerequisites. We assume familiarity with the notions of search and decision prob-
lems (see Section 1.2.2), algorithms (see Section 1.2.3), and their time complexity (see

§1.2.3.5). We will also refer to the notion of an oracle machine (see §1.2.3.6).

Organization. In Section 2.1 we present the two formulations of the P-vs-NP Question.
The general notion of a reduction is presented in Section 2.2, where we highlight its
applicability outside the domain of NP-completeness. Section 2.3 is devoted to the theory
of NP-completeness, whereas Section 2.4 treats three relatively advanced topics (i.e., the
framework of promise problems, the existence of optimal search algorithms for NP, and

the class coNP).
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Teaching note: This chapter has more teaching notes than any other chapter in the book. This
reflects the author’s concern regarding the way in which this fundamental material is often
taught. Specifically, it is the author’s impression that the material covered in this chapter is
often taught in wrong ways, which fail to communicate its fundamental nature.

2.1. The P Versus NP Question

Our daily experience is that it is harder to solve a problem than it is to check the correctness
of a solution. Is this experience merely a coincidence or does it represent a fundamental
fact of life (or a property of the world)? This is the essence of the P versus NP Question,
where P represents search problems that are efficiently solvable and NP represents search
problems for which solutions can be efficiently checked.

Another natural question captured by the P versus NP Question is whether proving
theorems is harder that verifying the validity of these proofs. In other words, the question is
whether deciding membership in a set is harder than being convinced of this membership
by an adequate proof. In this case, P represents decision problems that are efficiently
solvable, whereas NP represents sets that have efficiently checkable proofs of membership.

These two meanings of the P versus NP Question are rigorously presented and discussed
in Sections 2.1.1 and 2.1.2, respectively. The equivalence of the two formulations is
shown in Section 2.1.3, and the common belief that P is different from NP is further
discussed in Section 2.1.6. We start by recalling the notion of efficient computation.

Teaching note: Most students have heard of P and NP before, but we suspect that many
ofthem have not obtained a good explanation of what the P-vs-NP Question actually represents.
This unfortunate situation is due to using the standard technical definition of NP (which refers
to the fictitious and confusing device called a non-deterministic polynomial-time machine).
Instead, we advocate the use of the more cumbersome definitions, sketched in the foregoing
paragraphs (and elaborated in Sections 2.1.1 and 2.1.2), which clearly capture the fundamental
nature of NP.

The notion of efficient computation. Recall that we associate efficient computation with
polynomial-time algorithms.' This association is justified by the fact that polynomials are
a class of moderately growing functions that is closed under operations that correspond to
natural composition of algorithms. Furthermore, the class of polynomial-time algorithms
is independent of the specific model of computation, as long as the latter is “reasonable”
(cf. the Cobham-Edmonds Thesis). Both issues are discussed in §1.2.3.5.

Advanced note on the representation of problem instances. Asnotedin §1.2.2.3, many
natural (search and decision) problems are captured more naturally by the terminology of
promise problems (cf. Section 2.4.1), where the domain of possible instances is a subset
of {0, 1}* rather than {0, 1}* itself. For example, computational problems in graph theory
presume some simple encoding of graphs as strings, but this encoding is typically not

! Advanced comment: In this chapter, we consider deterministic (polynomial-time) algorithms as the basic model
of efficient computation. A more liberal view, which also includes probabilistic (polynomial-time) algorithms, is
presented in Chapter 6. We stress that the most important facts and questions that are addressed in the current chapter
hold also with respect to probabilistic polynomial-time algorithms.
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onto (i.e., not all strings encode graphs), and thus not all strings are legitimate instances.
However, in these cases, the set of legitimate instances (e.g., encodings of graphs) is
efficiently recognizable (i.e., membership in it can be decided in polynomial time). Thus,
artificially extending the set of instances to the set of all possible strings (and allowing
trivial solutions for the corresponding dummy instances) does not change the complexity
of the original problem. We further discuss this issue in Section 2.4.1.

2.1.1. The Search Version: Finding Versus Checking

Teaching note: Complexity theorists are so accustomed to focusing on decision problems
that they seem to forget that search problems are at least as natural as decision problems.
Furthermore, to many non-experts, search problems may seem even more natural than decision
problems: Typically, people seek solutions more than they pause to wonder whether or not
solutions exist. Thus, we recommend starting with a formulation of the P-vs-NP Question in
terms of search problems. Admittedly, the cost is more cumbersome formulations, but it is
more than worthwhile.

Teaching note: In order to reflect the importance of the search version as well as allow
less cumbersome formulations, we chose to introduce notations for the two search classes
corresponding to P and NP: These classes are denoted PF and PC (standing for Polynomial-
time Find and Polynomial-time Check, respectively). The teacher may prefer using notations
and terms that are more evocative of P and NP (such as P-search and NP-search), and actually
we also do so in some motivational discussions (especially in advanced chapters of this book).
(Still, in our opinion, in the long run, the students and the field may be served better by using
standard-looking notations.)

Much of computer science is concerned with solving various search problems (as in
Definition 1.1). Examples of such problems include finding a solution to a system of linear
(or polynomial) equations, finding a prime factor of a given integer, finding a spanning
tree in a graph, finding a short traveling salesman tour in a metric space, and finding a
scheduling of jobs to machines such that various constraints are satisfied. Furthermore,
search problems correspond to the daily notion of “solving problems” and thus are of
natural general interest. In the current section, we will consider the question of which
search problems can be solved efficiently.

One type of search problems that cannot be solved efficiently consists of search prob-
lems for which the solutions are too long in terms of the problem’s instances. In such a
case, merely typing the solution amounts to an activity that is deemed inefficient. Thus,
we focus our attention on search problems that are not in this class. That is, we consider
only search problems in which the length of the solution is bounded by a polynomial in the
length of the instance. Recalling that search problems are associated with binary relations
(see Definition 1.1), we focus our attention on polynomially bounded relations.

Definition 2.1 (polynomially bounded relations): We say that R C {0, 1}* x {0, 1}*
is polynomially bounded if there exists a polynomial p such that for every (x, y) € R
it holds that |y| < p(|x]).
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Recall that (x, y) € R means that y is a solution to the problem instance x, where R
represents the problem itself. For example, in the case of finding a prime factor of a given
integer, we refer to a relation R such that (x, y) € R if the integer y is a prime factor of
the integer x.

For a polynomially bounded relation R it makes sense to ask whether or not, given a
problem instance x, one can efficiently find an adequate solution y (i.e., find y such that
(x, ¥) € R). The polynomial bound on the length of the solution (i.e., y) guarantees that
a negative answer is not merely due to the length of the required solution.

2.1.1.1. The Class P as a Natural Class of Search Problems

Recall that we are interested in the class of search problems that can be solved efficiently,
that is, problems for which solutions (whenever they exist) can be found efficiently.
Restricting our attention to polynomially bounded relations, we identify the corresponding
fundamental class of search problem (or binary relation), denoted PF (standing for
“Polynomial-time Find”). (The relationship between PF and the standard definition of
P will be discussed in Sections 2.1.3 and 2.2.3.) The following definition refers to the
formulation of solving search problems provided in Definition 1.1.

Definition 2.2 (efficiently solvable search problems):

o The search problem of a polynomially bounded relation R C {0, 1}* x {0, 1}*
is efficiently solvable if there exists a polynomial time algorithm A such that,
for every x, it holds that A(x) € R(x) & {y : (x,y) € R} if and only if R(x) is
not empty. Furthermore, if R(x) = 0 then A(x) = L, indicating that x has no
solution.

o We denote by PF the class of search problems that are efficiently solvable
(and correspond to polynomially bounded relations). That is, R € PF if R is
polynomially bounded and there exists a polynomial-time algorithm that given x
finds y such that (x, y) € R (or asserts that no such y exists).

Note that R(x) denotes the set of valid solutions for the problem instance x. Thus, the
solver A is required to find a valid solution (i.e., satisfy A(x) € R(x)) whenever such
a solution exists (i.e., R(x) is not empty). On the other hand, if the instance x has no
solution (i.e., R(x) = ) then clearly A(x) ¢ R(x). The extra condition (also made in
Definition 1.1) requires that in this case 4(x) = L. Thus, algorithm A4 always outputs
a correct answer, which is a valid solution in the case that such a solution exists and
otherwise provides an indication that no solution exists.

We have defined a fundamental class of problems, and we do know of many natural
problems in this class (e.g., solving linear equations over the rationals, finding a perfect
matching in a graph, etc). However, we must admit that we do not have a good understand-
ing regarding the actual contents of this class (i.e., we are unable to characterize many
natural problems with respect to membership in this class). This situation is quite common
in Complexity Theory, and seems to be a consequence of the fact that complexity classes
are defined in terms of the “external behavior” (of potential algorithms) rather than in
terms of the “internal structure” (of the problem). Turning back to PF, we note that, while
it contains many natural search problems, there are also many natural search problems
that are not known to be in PF. A natural class containing a host of such problems is
presented next.
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2.1.1.2. The Class NP as Another Natural Class of Search Problems

Natural search problems have the property that valid solutions can be efficiently recog-
nized. That is, given an instance x of the problem R and a candidate solution y, one
can efficiently determine whether or not y is a valid solution for x (with respect to the
problem R, i.e., whether or not y € R(x)). The class of all such search problems is a
natural class per se, because it is not clear why one should care about a solution unless
one can recognize a valid solution once given. Furthermore, this class is a natural domain
of candidates for P.F, because the ability to efficiently recognize a valid solution seems
to be a natural (albeit not absolute) prerequisite for a discussion regarding the complexity
of finding such solutions.

We restrict our attention again to polynomially bounded relations, and consider the
class of relations for which membership of pairs in the relation can be decided efficiently.
We stress that we consider deciding membership of given pairs of the form (x, y) in a
fixed relation R, and not deciding membership of x in the set Sy &t {x : R(x) # @}. (The
relationship between the following definition and the standard definition of NP will be
discussed in Sections 2.1.3-2.1.5 and 2.2.3.)

Definition 2.3 (search problems with efficiently checkable solutions):

o The search problem of a polynomially bounded relation R C {0, 1}* x {0, 1}*
has efficiently checkable solutions if there exists a polynomial-time algorithm A
such that, for every x and y, it holds that A(x, y) = 1 if and only if (x, y) € R.

e e denote by PC (standing for “Polynomial-time Check™) the class of search
problems that correspond to polynomially bounded binary relations that have
efficiently checkable solutions. That is, R € PC if the following two conditions
hold:

1. For some polynomial p, if (x, y) € R then |y| < p(|x]).
2. There exists a polynomial-time algorithm that given (x, y) determines whether
ornot (x,y) € R.

The class PC contains thousands of natural problems (e.g., finding a traveling salesman
tour of length that does not exceed a given threshold, finding the prime factorization of
a given composite, etc). In each of these natural problems, the correctness of solutions
can be checked efficiently (e.g., given a traveling salesman tour it is easy to compute its
length and check whether or not it exceeds the given threshold).”

The class PC is the natural domain for the study of which problems are in P.F, because
the ability to efficiently recognize a valid solution is a natural prerequisite for a discussion
regarding the complexity of finding such solutions. We warn, however, that PF contains
(unnatural) problems that are not in PC (see Exercise 2.1).

2.1.1.3. The P Versus NP Question in Terms of Search Problems

Is it the case that every search problem in PC is in PF? That is, if one can efficiently
check the correctness of solutions with respect to some (polynomially bounded) relation
R, then is it necessarily the case that the search problem of R can be solved efficiently?
In other words, if it is easy to check whether or not a given solution for a given instance
is correct, then is it also easy to find a solution to a given instance?

’In the traveling salesman problem (TSP), the instance is a matrix of distances between cities and a threshold, and
the task is to find a tour that passes all cities and covers a total distance that does not exceed the threshold.
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If PC C PF then this would mean that whenever solutions to given instances can be
efficiently checked (for correctness) it is also the case that such solutions can be efficiently
found (when given only the instance). This would mean that all reasonable search problems
(i.e., all problems in PC) are easy to solve. Needless to say, such a situation would
contradict the intuitive feeling (and the daily experience) that some reasonable search
problems are hard to solve. Furthermore, in such a case, the notion of “solving a problem”
would lose its meaning (because finding a solution will not be significantly more difficult
than checking its validity).

On the other hand, if PC \ PF # (J then there exist reasonable search problems (i.e.,
some problems in PC) that are hard to solve. This conforms with our basic intuition
by which some reasonable problems are easy to solve whereas others are hard to solve.
Furthermore, it reconfirms the intuitive gap between the notions of solving and checking
(asserting that in some cases “solving” is significantly harder than “checking”).

2.1.2. The Decision Version: Proving Versus Verifying

As we shall see in the sequel, the study of search problems (e.g., the PC-vs-PF Question)
can be “reduced” to the study of decision problems. Since the latter problems have a less
cumbersome terminology, Complexity Theory tends to focus on them (and maintains its
relevance to the study of search problems via the aforementioned reduction). Thus, the
study of decision problems provides a convenient way for studying search problems. For
example, the study of the complexity of deciding the satisfiability of Boolean formulae
provides a convenient way for studying the complexity of finding satisfying assignments
for such formulae.

We wish to stress, however, that decision problems are interesting and natural
per se (i.e., beyond their role in the study of search problems). After all, some peo-
ple do care about the truth, and so determining whether certain claims are true is a natural
computational problem. Specifically, determining whether a given object (e.g., a Boolean
formula) has some predetermined property (e.g., is satisfiable) constitutes an appealing
computational problem. The P-vs-NP Question refers to the complexity of solving such
problems for a wide and natural class of properties associated with the class NP. The
latter class refers to properties that have “efficient proof systems” allowing for the veri-
fication of the claim that a given object has a predetermined property (i.e., is a member
of a predetermined set). Jumping ahead, we mention that the P-vs-NP Question refers to
the question of whether properties that have efficient proof systems can also be decided
efficiently (without proofs). Let us clarify all these notions.

Properties of objects are modeled as subsets of the set of all possible objects (i.e.,
a property is associated with the set of objects having this property). For example, the
property of being a prime is associated with the set of prime numbers, and the property
of being connected (resp., having a Hamiltonian path) is associated with the set of con-
nected (resp., Hamiltonian) graphs. Thus, we focus on deciding membership in sets (as in
Definition 1.2). The standard formulation of the P-vs-NP Question refers to the question-
able equality of two natural classes of decision problems, denoted P and NP (and defined
in §2.1.2.1 and §2.1.2.2, respectively).

2.1.2.1. The Class P as a Natural Class of Decision Problems
Needless to say, we are interested in the class of decision problems that are efficiently
solvable. This class is traditionally denoted P (standing for “Polynomial time”). The
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following definition refers to the formulation of solving decision problems (provided in
Definition 1.2).

Definition 2.4 (efficiently solvable decision problems):

e A decision problem S C {0, 1}* is efficiently solvable if there exists a polynomial-
time algorithm A such that, for every x, it holds that A(x) = 1 if and only if
xes.

o e denote by P the class of decision problems that are efficiently solvable.

As in Definition 2.2, we have defined a fundamental class of problems, which contains
many natural problems (e.g., determining whether or not a given graph is connected), but
we do not have a good understanding regarding its actual contents (i.e., we are unable
to characterize many natural problems with respect to membership in this class). In fact,
there are many natural decision problems that are not known to reside in P, and a natural
class containing a host of such problems is presented next. This class of decision problems
is denoted NP (for reasons that will become evident in Section 2.1.5).

2.1.2.2. The Class NP and NP-proof Systems

We view NP as the class of decision problems that have efficiently verifiable proof systems.
Loosely speaking, we say that a set S has a proof system if instances in S have valid proofs
of membership (i.e., proofs accepted as valid by the system), whereas instances not in
S have no valid proofs. Indeed, proofs are defined as strings that (when accompanying
the instance) are accepted by the (efficient) verification procedure. We say that V' is a
verification procedure for membership in S if it satisfies the following two conditions:

1. Completeness: True assertions have valid proofs; that is, proofs accepted as valid by
V. Bearing in mind that assertions refer to membership in S, this means that for every
x € S there exists a string y such that V' (x, y) = 1 (i.e., V accepts y as a valid proof
for the membership of x in S).

2. Soundness: False assertions have no valid proofs. That is, for every x ¢ S and every
string y it holds that V' (x, y) = 0, which means that V' rejects y as a proof for the
membership of x in S.

We note that the soundness condition captures the “security” of the verification procedure,
that is, its ability not to be fooled (by anything) into proclaiming a wrong assertion.
The completeness condition captures the “viability” of the verification procedure, that
is, its ability to be convinced of any valid assertion, when presented with an adequate
proof. (We stress that, in general, proof systems are defined in terms of their verification
procedures, which must satisfy adequate completeness and soundness conditions.) Our
focus here is on efficient verification procedures that utilize relatively short proofs (i.e.,
proofs that are of length that is polynomially bounded by the length of the corresponding
assertion).’

3Advanced comment: In a continuation of footnote 1, we note that in this chapter we consider deterministic
(polynomial-time) verification procedures, and consequently, the completeness and soundness conditions that we
state here are errorless. In contrast, in Chapter 9, we will consider various types of probabilistic (polynomial-time)
verification procedures as well as probabilistic completeness and soundness conditions. A common theme that
underlies both treatments is that efficient verification is interpreted as meaning verification by a process that runs in
time that is polynomial in the length of the assertion. In the current chapter, we use the equivalent formulation that
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Let us consider a couple of examples before turning to the actual definition. Starting
with the set of Hamiltonian graphs, we note that this set has a verification procedure that,
given a pair (G, ), accepts if and only if 7w is a Hamiltonian path in the graph G. In
this case 7 serves as a proof that G is Hamiltonian. Note that such proofs are relatively
short (i.e., the path is actually shorter than the description of the graph) and are easy
to verify. Needless to say, this proof system satisfies the aforementioned completeness
and soundness conditions. Turning to the case of satisfiable Boolean formulae, given a
formula ¢ and a truth assignment 7, the verification procedure instantiates ¢ (according
to t), and accepts if and only if simplifying the resulting Boolean expression yields the
value true. In this case T serves as a proof that ¢ is satisfiable, and the alleged proofs
are indeed relatively short and easy to verify.

Definition 2.5 (efficiently verifiable proof systems):

e A decision problem S C {0, 1}* has an efficiently verifiable proof system if there
exists a polynomial p and a polynomial-time (verification) algorithm V such that
the following two conditions hold:

1. Completeness: For every x € S, there exists y of length at most p(|x|) such
that V(x,y)=1.
(Such a string y is called an NP-witness for x € S.)

2. Soundness: For every x & S and every y, it holds that V (x, y) = 0.

Thus, x € S if and only if there exists y of length at most p(|x|) such that
Vix,y)=1

In such a case, we say that S has an NP-proof system, and refer to V as its
verification procedure (or as the proof system itself).

e We denote by N'P the class of decision problems that have efficiently verifiable
proof systems.

We note that the term NP-witness is commonly used.’ In some cases, V (or the set of pairs
accepted by V) is called a witness relation of S. We stress that the same set S may have
many different NP-proof systems (see Exercise 2.2), and that in some cases the difference
is not artificial (see Exercise 2.3).

Teaching note: Using Definition 2.5, it is typically easy to show that natural decision problems
are in A'P. All that is needed is designing adequate NP-proofs of membership, which is
typically quite straightforward and natural, because natural decision problems are typically
phrased as asking about the existence of a structure (or object) that can be easily verified as
valid. For example, SAT is defined as the set of satisfiable Boolean formulae, which means
asking about the existence of satisfying assignments. Indeed, we can efficiently check whether a
given assignment satisfies a given formula, which means that we have (a verification procedure
for) an NP-proof system for SAT.

considers the running time as a function of the total length of the assertion and the proof, but require that the latter
has length that is polynomially bounded by the length of the assertion.

*In most cases this is done without explicitly defining V', which is understood from the context and/or by common
practice. In many texts, V" is not called a proof system (nor a verification procedure of such a system), although this
term is most adequate.
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Note that for any search problem R in PC, the set of instances that have a solution with
respect to R (i.e., the set Sg &ef {x : R(x) # @}) is in N'P. Specifically, for any R € PC,
consider the verification procedure V" such that V' (x, ») &' ifand only if (x, y) € R, and
note that the latter condition can be decided in poly(|x|)-time. Thus, any search problem
in PC can be viewed as a problem of searching for (efficiently verifiable) proofs (i.e.,
NP-witnesses for membership in the set of instances having solutions). On the other hand,
any NP-proof system gives rise to a natural search problem in PC; that is, the problem of
searching for a valid proof (i.e., an NP-witness) for the given instance (i.e, the verification
procedure V' yields the search problem that corresponds to R = {(x, y) : V(x, y)=1}).
Thus, S € N'P if and only if there exists R € PC such that S = {x : R(x) # #}.

Teaching note: The last paragraph suggests another easy way of showing that natural decision
problems are in A/P: just thinking of the corresponding natural search problem. The point is
that natural decision problems (in NP) are phrased as referring to whether a solution exists
for the corresponding natural search problem. For example, in the case of SAT, the question is
whether there exists a satisfying assignment to a given Boolean formula, and the corresponding
search problem is finding such an assignment. But in all these cases, it is easy to check the
correctness of solutions; that is, the corresponding search problem is in PC, which implies
that the decision problem is in N/'P.

Observe that P € NP holds: A verification procedure for claims of membership in
a set S € P may just ignore the alleged NP-witness and run the decision procedure
that is guaranteed by the hypothesis S € P; that is, V(x, y) = A(x), where A4 is the
aforementioned decision procedure. Indeed, the latter verification procedure is quite an
abuse of the term (because it makes no use of the proof); however, it is a legitimate one.
As we shall shortly see, the P-vs-NP Question refers to the question of whether such
proof-oblivious verification procedures can be used for every set that has some efficiently
verifiable proof system. (Indeed, given that P C NP, the P-vs-NP Question is whether
NP CP)

2.1.2.3. The P Versus NP Question in Terms of Decision Problems

Is it the case that NP-proofs are useless? That is, is it the case that for every efficiently
verifiable proof system one can easily determine the validity of assertions without looking
at the proof? If that were the case, then proofs would be meaningless, because they would
offer no fundamental advantage over directly determining the validity of the assertion.
The conjecture P # NP asserts that proofs are useful: There exists sets in NP that
cannot be decided by a polynomial-time algorithm, and so for these sets obtaining a proof
of membership (for some instances) is useful (because we cannot efficiently determine
membership by ourselves).

In the foregoing paragraph we viewed P # AP as asserting the advantage of obtaining
proofs over deciding the truth by ourselves. That is, P # NP asserts that (in some cases)
verifying is easier than deciding. A slightly different perspective is that P # NP asserts
that finding proofs is harder than verifying their validity. This is the case because, for any
set S that has an NP-proof system, the ability to efficiently find proofs of membership
with respect to this system (i.e., finding an NP-witness of membership in S for any given
x € S), yields the ability to decide membership in S. Thus, for § € NP \ P, it must be
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harder to find proofs of membership in S than to verify the validity of such proofs (which
can be done in polynomial time).

2.1.3. Equivalence of the Two Formulations

As hinted several times, the two formulations of the P-vs-NP Questions are equiva-
lent. That is, every search problem having efficiently checkable solutions is solvable in
polynomial-time (i.e., PC € PJF) if and only if membership in any set that has an NP-
proof system can be decided in polynomial-time (i.e., NP C P). Recalling that P C N'P
(whereas PF is not contained in PC (Exercise 2.1)), we prove the following.

Theorem 2.6: PC C PF if and only if P = N'P.

Proof: Suppose, on the one hand, that the inclusion holds for the search version (i.e.,
PC € PJF). We will show that this implies the existence of an efficient algorithm for
finding NP-witnesses for any set in /P, which in turn implies that this set is in P.
Specifically, let S be an arbitrary set in AP, and V be the corresponding verification
procedure (i.e., satisfying the conditions in Definition 2.5). Then R &t {(x,y):
V(x,y) =1} is a polynomially bounded relation in PC, and by the hypothesis
its search problem is solvable in polynomial-time (i.e., R € PC € PF). Denoting
by 4 the polynomial-time algorithm solving the search problem of R, we decide
membership in S in the obvious way. That is, on input x, we output 1 if and only
if A(x) # L, where the latter event holds if and only if A(x) € R(x), which in turn
occurs if and only if R(x) # ¥ (equiv., x € S). Thus, NP € P (and NP = P)
follows.

Suppose, on the other hand, that NP = P. We will show that this implies an
efficient algorithm for determining whether a given string )’ is a prefix of some
solution to a given instance x of a search problem in PC, which in turn yields an
efficient algorithm for finding solutions. Specifically, let R be an arbitrary search
problem in PC. Then the set S} L ix, ') 13y st (x, y'y")e R} is in N'P (be-
cause R € PC), and hence S} is in P (by the hypothesis NP = P). This yields
a polynomial-time algorithm for solving the search problem of R, by extending a
prefix of a potential solution bit by bit (while using the decision procedure to deter-
mine whether or not the current prefix is valid). That is, on input x, we first check
whether or not (x, A) € S and output L (indicating R(x) = §) in case (x, A) & Sk.
Next, we proceed in iterations, maintaining the invariant that (x, y’) € S%. In each
iteration, we set ' < 3’0 if (x, y'0) € Sy and y’ < y'l if (x, y'1) € S%. If none
of these conditions hold (which happens after at most polynomially many iterations)
then the current )’ satisfies (x, y’) € R. Thus, for an arbitrary R € PC we obtain
that R € PF, and PC C PF follows. [ |

Reflection. The first part of the proof of Theorem 2.6 associates with each set S in NP a
natural relation R (in PC). Specifically, R consists of all pairs (x, y) such that y is an NP-
witness for membership of x in S. Thus, the search problem of R consists of finding such an
NP-witness, when given x as input. Indeed, R is called the witness relation of S, and solving
the search problem of R allows for deciding membership in S. Thus, R € PC C PF
implies S € P. In the second part of the proof, we associate with each R € PC a set S}
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(in N'P), but Sy is more “expressive” than the set Sk & {x : 3y s.t. (x, y)€ R} (which

gives rise to R as its witness relation). Specifically, S, consists of strings that encode
pairs (x, y’) such that y’ is a prefix of some string in R(x) = {y : (x, y) € R}. The key
observation is that deciding membership in S allows for solving the search problem of
R; thatis, S € P implies R € PF.

Conclusion. Theorem 2.6 justifies the traditional focus on the decision version of the
P-vs-NP Question. Indeed, given that both formulations of the question are equivalent, we
may just study the less cumbersome one.

2.1.4. Two Technical Comments Regarding NP

Recall that when defining PC (resp., N'P) we have explicitly confined our attention to
search problems of polynomially bounded relations (resp., NP-witnesses of polynomial
length). An alternative formulation may allow a binary relation R to be in PC (resp.,
S € N'P) if membership of (x, y) in R can be decided in time that is polynomial in the
length of x (resp., the verification of a candidate NP-witness y for membership of x in
S is required to be performed in poly(|x|)-time). Indeed, this means that the validity of y
can be determined without reading all of it (which means that some substring of y can be
used as the effective y in the original definitions).

We comment that problems in PC (resp., NP) can be solved in exponential time (i.e.,
time exp(poly(]x|)) for input x). This can be done by an exhaustive search among all
possible candidate solutions (resp., all possible candidate NP-witnesses). Thus, NP C
EXP, where EXP denote the class of decision problems that can be solved in exponential
time (i.e., time exp(poly(|x|)) for input x).

2.1.5. The Traditional Definition of NP

Unfortunately, Definition 2.5 is not the commonly used definition of N'P. Instead, tra-
ditionally, NP is defined as the class of sets that can be decided by a fictitious device
called a non-deterministic polynomial-time machine (which explains the source of the
notation NP). The reason that this class of fictitious devices is interesting is due to
the fact that it captures (indirectly) the definition of NP-proofs. Since the reader may
come across the traditional definition of NP when studying different works, the author
feels obliged to provide the traditional definition as well as a proof of its equivalence to
Definition 2.5.

Definition 2.7 (non-deterministic polynomial-time Turing machines):

e A non-deterministic Turing machine is defined as in §1.2.3.2, except that the
transition function maps symbol-state pairs to subsets of triples (rather than to
a single triple) in ¥ x O x {—1, 0, +1}. Accordingly, the configuration follow-
ing a specific instantaneous configuration may be one of several possibilities,
each determined by a different possible triple. Thus, the computations of a non-
deterministic machine on a fixed input may result in different outputs.

In the context of decision problems, one typically considers the question of
whether or not there exists a computation that starting with a fixed input halts
with output 1. We say that the non-deterministic machine M accept x if there
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exists a computation of M, on input x, that halts with output 1. The set accepted
by a non-deterministic machine is the set of inputs that are accepted by the
machine.

e A non-deterministic polynomial-time Turing machine is defined as one that makes
a number of steps that is polynomial in the length of the input. Traditionally, N'P
is defined as the class of sets that are each accepted by some non-deterministic
polynomial-time Turing machine.

We stress that Definition 2.7 refers to a fictitious model of computation. Specifically,
Definition 2.7 makes no reference to the number (or fraction) of possible computations
of the machine (on a specific input) that yield a specific output.” Definition 2.7 only
refers to whether or not computations leading to a certain output exist (for a specific
input). The question of what the mere existence of such possible computations means (in
terms of real life) is not addressed, because the model of a non-deterministic machine
is not meant to provide a reasonable model of a (real-life) computer. The model is
meant to capture something completely different (i.e., it is meant to provide an elegant
definition of the class NP, while relying on the fact that Definition 2.7 is equivalent to
Definition 2.5).

Teaching note: Whether or not Definition 2.7 is elegant is a matter of taste. For sure, many
students find Definition 2.7 quite confusing, possibly because they assume that it represents
some natural model of computation and consequently they allow themselves to be fooled
by their intuition regarding such models. (Needless to say, the students’ intuition regarding
computation is irrelevant when applied to a fictitious model.)

Note that, unlike other definitions in this chapter, Definition 2.7 makes explicit reference
to a specific model of computation. Still, a similar extension can be applied to other models
of computation by considering adequate non-deterministic computation rules. Also note
that, without loss of generality, we may assume that the transition function maps each
possible symbol-state pair to exactly two triples (cf. Exercise 2.4).

Theorem 2.8: Definition 2.5 is equivalent to Definition 2.7. That is, a set S has
an NP-proof system if and only if there exists a non-deterministic polynomial-time
machine that accepts S.

Proof Sketch: Suppose, on the one hand, that the set S has an NP-proof system,
and let us denote the corresponding verification procedure by V. Consider the
following non-deterministic polynomial-time machine, denoted M. On input x,
machine M makes an adequate m = poly(]x|) number of non-deterministic steps,
producing (non-deterministically) a string y € {0, 1}, and then emulates V' (x, y).
We stress that these non-deterministic steps may result in producing any m-bit string
v. Recall that x € § if and only if there exists y of length at most poly(|x|) such that
V(x,y) = 1. This implies that the set accepted by M equals S.

5Advanced comment: In contrast, the definition of a probabilistic machine refers to this number (or, equivalently,
to the probability that the machine produces a specific output, when the probability is essentially taken uniformly
over all possible computations). Thus, a probabilistic machine refers to a natural model of computation that can be
realized provided we can equip the machine with a source of randomness. For details, see Section 6.1.1.
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Suppose, on the other hand, that there exists a non-deterministic polynomial-time
machine M that accepts the set S. Consider a deterministic machine M’ that on input
(x, ), where y has adequate length, emulates a computation of M on input x while
using y to determine the non-deterministic steps of M. That is, the i step of M on
input x is determined by the i™ bit of y (which indicates which of the two possible
moves to make at the current step). Note that x € S if and only if there exists y of
length at most poly(|x|) such that M’(x, y) = 1. Thus, M’ gives rise to an NP-proof
system for S. O

2.1.6. In Support of P Different from NP

Intuition and concepts constitute . . . the elements of all our knowledge,
so that neither concepts without an intuition in some way corresponding
to them, nor intuition without concepts, can yield knowledge.

Immanuel Kant (1724—-1804)

Kant speaks of the importance of hoth philosophical considerations (referred to as “con-
cepts”) and empirical considerations (referred to as “intuition”) to science (referred to as
(sound) “knowledge”).

It is widely believed that P is different than NP; that is, that PC contains search
problems that are not efficiently solvable, and that there are NP-proof systems for sets that
cannot be decided efficiently. This belief is supported by both philosophical and empirical
considerations.

e Philosophical considerations: Both formulations of the P-vs-NP Question refer to
natural questions about which we have strong conceptions. The notion of solving a
(search) problem seems to presume that, at least in some cases (if not in general),
finding a solution is significantly harder than checking whether a presented solution
is correct. This translates to PC \ PF # (. Likewise, the notion of a proof seems
to presume that, at least in some cases (if not in general), the proof is useful in
determining the validity of the assertion, that is, that verifying the validity of an
assertion may be made significantly easier when provided with a proof. This translates
to P # NP, which also implies that it is significantly harder to find proofs than to verify
their correctness, which again coincides with the daily experience of researchers and
students.

o Empirical considerations: The class NP (or rather PC) contains thousands of different
problems for which no efficient solving procedure is known. Many of these problems
have arisen in vastly different disciplines, and were the subject of extensive research by
numerous different communities of scientists and engineers. These essentially indepen-
dent studies have all failed to provide efficient algorithms for solving these problems,
a failure that is extremely hard to attribute to sheer coincidence or a stroke of bad
luck.

Throughout the rest of this book, we will adopt the common belief that P is different from
NP. At some places, we will explicitly use this conjecture (or even stronger assumptions),
whereas in other places we will present results that are interesting (if and) only if P # NP
(e.g., the entire theory of NP-completeness becomes uninteresting if P = NP).

The P # NP conjecture is indeed very appealing and intuitive. The fact that this
natural conjecture is unsettled seems to be one of the sources of frustration of many
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complexity theorists. The author’s opinion, however, is that this feeling of frustration
is not justified. In contrast, the fact that Complexity Theory evolves around natu-
ral and simply stated questions that are so difficult to resolve makes its study very
exciting.

2.1.7. Philosophical Meditations

Whoever does not value preoccupation with thoughts, can skip this chapter.
Robert Musil, The Man Without Qualities, Chap. 28

The inherent limitations of our scientific knowledgewe were articulated by Kant, who
argued that our knowledge cannot transcend our way of understanding. The “ways of
understanding” are predetermined; they precede any knowledge acquisition and are the
precondition to such acquisition. In a sense, Wittgenstein refined the analysis, arguing
that knowledge must be formulated in a language, and the latter must be subject to a
(sound) mechanism of assigning meaning. Thus, the inherent limitations of any possible
“meaning-assigning mechanism” impose limitations on what can be (meaningfully) said.

Both philosophers spoke of the relation between the world and our thoughts. They
took for granted (or rather assumed) that, in the domain of well-formulated thoughts (e.g.,
logic), every valid conclusion can be effectively reached (i.e., every valid assertion can
be effectively proved). Indeed, this naive assumption was refuted by Godel. In a similar
vain, Turing’s work asserts that there exist well-defined problems that cannot be solved by
well-defined methods.

The latter assertion transcends the philosophical considerations of the first paragraph:
It asserts that the limitations of our ability are not due only to the gap between the “world
as is” and our model of it. Indeed, this assertion refers to inherent limitations on any
rational process even when this process is applied to well-formulated information and
is aimed at a well-formulated goal. Indeed, in contrast to naive presumptions, not every
well-formulated problem can be (effectively) solved.

The P # NP conjecture goes even beyond the foregoing. It limits the domain of
the discussion to “fair” problems, that is, to problems for which valid solutions can be
efficiently recognized as such. Indeed, there is something feigned in problems for which
one cannot efficiently recognize valid solutions. Avoiding such feigned and/or unfair
problems, P # NP means that (even with this limitation) there exist problems that are
inherently unsolvable in the sense that they cannot be solved efficiently. That is, in contrast
to naive presumptions, not every problem that refers to efficiently recognizable solutions
can be solved efficiently. In fact, the gap between the complexity of recognizing solutions
and the complexity of finding them vouches for the meaningfulness of the notion of a
problem.

2.2. Polynomial-Time Reductions

We present a general notion of (polynomial-time) reductions among computational prob-
lems, and view the notion of a “Karp-reduction” as an important special case that suffices
(and is more convenient) in many cases. Reductions play a key role in the theory of
NP-completeness, which is the topic of Section 2.3. In the current section, we stress the
fundamental nature of the notion of a reduction per se and highlight two specific applica-
tions (i.e., reducing search and optimization problems to decision problems). Furthermore,
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in the latter applications, it will be important to use the general notion of a reduction (i.e.,
“Cook-reduction” rather than “Karp-reduction”).

Teaching note: We assume that many students have heard of reductions, but we fear that most
have obtained a conceptually poor view of their fundamental nature. In particular, we fear that
reductions are identified with the theory of NP-completeness, while reductions have numerous
other important applications that have little to do with NP-completeness (or completeness with
respect to some other class). Furthermore, we believe that it is important to show that natural
search and optimization problems can be reduced to decision problems.

2.2.1. The General Notion of a Reduction

Reductions are procedures that use “functionally specified” subroutines. That is, the
functionality of the subroutine is specified, but its operation remains unspecified and its
running time is counted at unit cost. Analogously to algorithms, which are modeled by
Turing machines, reductions can be modeled as oracle (Turing) machines. A reduction
solves one computational problem (which may be either a search or a decision problem)
by using oracle (or subroutine) calls to another computational problem (which again may
be either a search or a decision problem).

2.2.1.1. The Actual Formulation

The notion of a general algorithmic reduction was discussed in §1.2.3.3 and §1.2.3.6.
These reductions, called Turing-reductions (cf. §1.2.3.3) and modeled by oracle machines
(cf. §1.2.3.6), made no reference to the time complexity of the main algorithm (i.e., the
oracle machine). Here, we focus on efficient (i.e., polynomial-time) reductions, which are
often called Cook-reductions. That is, we consider oracle machines (as in Definition 1.11)
that run in time polynomial in the length of their input. We stress that the running time of
an oracle machine is the number of steps made during its (own) computation, and that the
oracle’s reply on each query is obtained in a single step.

The key property of efficient reductions is that they allow for the transformation of
efficient implementations of the subroutine into efficient implementations of the task
reduced to it. That is, as we shall see, if one problem is Cook-reducible to another problem
and the latter is polynomial-time solvable then so is the former.

The most popular case is that of reducing decision problems to decision problems,
but we will also consider reducing search problems to search problems and reducing
search problems to decision problems. Note that when reducing to a decision problem, the
oracle is determined as the single valid solver of the decision problem (i.e., the function
f {0, 1}* — {0, 1} solves the decision problem of membership in § if, for every x, it
holds that f(x) =1 if x € § and f(x) = 0 otherwise). In contrast, when reducing to a
search problem the oracle is not uniquely determined because there may be many different
valid solvers (i.e., the function f : {0, 1}* — {0, 1}* U {_L} solves the search problem of R
if, for every x, it holds that f(x) € R(x) if x € Sk and f(x) = L otherwise). We capture
both cases in the following definition.

Definition 2.9 (Cook-reduction): A problem I is Cook-reducible fo a problem 1" if
there exists a polynomial-time oracle machine M such that for every function f that
solves T1' it holds that M/ solves T1, where M/ (x) denotes the output of machine
M on input x when given oracle access to f.
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Note that IT (resp., 1) may be either a search problem or a decision problem (or even a
yet undefined type of a problem). At this point the reader should verify that if IT is Cook-
reducible to IT" and IT’ is solvable in polynomial time then so is I1. (See Exercise 2.5 for
other properties of Cook-reductions.)

Observe that the second part of the proof of Theorem 2.6 is actually a Cook-reduction
of the search problem of any R in PC to a decision problem regarding a related set
Sk ={(x,»"): 3y s.t. (x,y'y")e R}, which in N'P. Thus, that proof establishes the
following result.

Theorem 2.10: Every search problem in PC is Cook-reducible to some decision
problem in N'P.

We shall see a tighter relation between search and decision problems in Section 2.2.3; that
is, in some cases, R will be reduced to Sg = {x : Iy s.t. (x, y) € R} rather than to S}.

2.2.1.2. Special Cases

A Karp-reduction is a special case of a reduction (from a decision problem to a decision
problem). Specifically, for decision problems S and ', we say that S is Karp-reducible to
S’ if there is a reduction of S'to S’ that operates as follows: On input x (an instance for S),
the reduction computes x’, makes query x’ to the oracle S’ (i.e., invokes the subroutine for
S’ on input x”), and answers whatever the latter returns. This reduction is often represented
by the polynomial-time computable mapping of x to x’; that is, the standard definition of
a Karp-reduction is actually as follows.

Definition 2.11 (Karp-reduction): 4 polynomial-time computable function f is
called a Karp-reduction of S to S’ if, for every x, it holds that x € S if and only if

fx)es.

Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but it trivially gives
rise to one (i.e., on input x, the oracle machine makes query f(x), and returns the oracle
answer). Being slightly inaccurate but essentially correct, we shall say that Karp-reductions
are special cases of Cook-reductions. Needless to say, Karp-reductions constitute a very
restricted case of Cook-reductions. Still, this restricted case suffices for many applications
(e.g., most importantly for the theory of NP-completeness (when developed for decision
problems)), but not for reducing a search problem to a decision problem. Furthermore,
whereas each decision problem is Cook-reducible to its complement, some decision
problems are not Karp-reducible to their complement (see Exercises 2.7 and 2.33).

We comment that Karp-reductions may (and should) be augmented in order to handle
reductions of search problems to search problems. Such an augmented Karp-reduction of
the search problem of R to the search problem of R’ operates as follows: On input x (an
instance for R), the reduction computes x’, makes query x’ to the oracle R’ (i.e., invokes
the subroutine for searching R’ on input x”) obtaining )’ such that (x’, y') € R’, and uses
y' to compute a solution y to x (i.e., y € R(x)). Thus, such a reduction can be represented
by two polynomial-time computable mappings, f and g, such that (x, g(x, »')) € R for
any )’ that is a solution of f(x) (i.e., for y’ that satisfies (f(x), y’) € R’). (Indeed, in
general, unlike in the case of decision problems, the reduction cannot just return )’ as an
answer to x.) This augmentation is called a Levin-reduction and, analogously to the case
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of a Karp-reduction, it is often represented by the two aforementioned polynomial-time
computable mappings (i.e., of x to x’, and of (x, y’) to y).

Definition 2.12 (Levin-reduction): 4 pair of polynomial-time computable func-
tions, f and g, is called a Levin-reduction of R to R’ if f is a Karp-reduction of Sg =
{x :3y st. (x,y)eR}to Sgp = {x': Ty s.t. (x', y')€ R’} and for every x € Sg and
v € R'(f(x)) it holds that (x, g(x, ")) € R, where R'(x") = {)' : (x’, y')€R'}.

Indeed, the function f preserves the existence of solutions; that is, for any x, it holds that
R(x) # @ if and only if R'(f(x)) # @. As for the second function (i.e., g), it maps any
solution y’ for the reduced instance f(x) to a solution for the original instance x (where
this mapping may also depend on x). We note that it is also natural to consider a third
function that maps solutions for R to solutions for R’ (see Exercise 2.28).

2.2.1.3. Terminology and a Brief Discussion

In the sequel, whenever we neglect to mention the type of a reduction, we refer to a
Cook-reduction. Two additional terms, which will be particularly useful in the advanced
chapters, are presented next.

e We say that two problems are computationally equivalent if they are reducible to one
another. This means that the two problems are essentially as hard (or as easy). Note
that computationally equivalent problems need not reside in the same complexity
class.

For example, as we shall see in Section 2.2.3, there exist many natural R € PC such
that the search problem of R and the decision problem of S = {x : Iy s.t. (x, y) € R}
are computationally equivalent, although (even syntactically) the two problems do
not belong to the same class (i.e., R € PC whereas Sz € N'P). Also, each decision
problem is computationally equivalent to its complement, although the two problems
may not belong to the same class (see, e.g., Section 2.4.3).

e We say that a class of problems, C, is reducible to a problem T1' if every problem in C is
reducible to T1'. We say that the class C is reducible to the class C’ if for every IT € C
there exists IT" € C’ such that IT is reducible to IT'.

For example, Theorem 2.10 asserts that PC is reducible to N'P.

The fact that we allow Cook-reductions is essential to various important connections
between decision problems and other computational problems. For example, as will be
shown in Section 2.2.2, a natural class of optimization problems is reducible to A/P. Also
recall that PC is reducible to NP (cf. Theorem 2.10). Furthermore, as will be shown
in Section 2.2.3, many natural search problems in PC are reducible to a corresponding
natural decision problem in A'P (rather than merely to some problem in N'P). In all of
these results, the reductions in use are (and must be) Cook-reductions.

2.2.2. Reducing Optimization Problems to Search Problems

Many search problems refer to a set of potential solutions, associated with each problem
instance, such that different solutions are assigned different “values” (resp., “costs”). In
such a case, one may be interested in finding a solution that has value exceeding some
threshold (resp., cost below some threshold). Alternatively, one may seek a solution of
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maximum value (resp., minimum cost). For simplicity, let us focus on the case of a
value that we wish to maximize. Still, there are two different objectives (i.e., exceeding
a threshold and optimizing), giving rise to two different (auxiliary) search problems
related to the same relation R. Specifically, for a binary relation R and a value function
f {0, 1}* x {0, 1}* — R, we consider two search problems.

1. Exceeding a threshold: Given a pair (x, v) the task is to find y € R(x) such that
f(x,y) = v, where R(x) = {y : (x, y)€ R}. That is, we are actually referring to the
search problem of the relation

def
Ry = {((x,0),9) 1 (x, »)ER A f(x,y) = v}, 2.1)
where (x, v) denotes a string that encodes the pair (x, v).

2.  Maximization: Given x the task is to find y € R(x) such that f(x, y) = v,, where v,
is the maximum value of f(x, y') over all ' € R(x). That is, we are actually referring
to the search problem of the relation

R, € {(x,y)eR: f(x,y) = max (£ (x, ). (22)

Examples of value functions include the size of a clique in a graph, the amount of flow in
a network (with link capacities), etc. The task may be to find a clique of size exceeding
a given threshold in a given graph or to find a maximum-size clique in a given graph.
Note that, in these examples, the “base” search problem (i.e., the relation R) is quite easy
to solve, and the difficulty arises from the auxiliary condition on the value of a solution
(presented in Ry and R';). Indeed, one may trivialize R (i.e., let R(x) = {0, 1}P°¥D for
every x), and impose all necessary structure by the function f (see Exercise 2.8).

We confine ourselves to the case that f is polynomial-time computable, which in
particular means that f(x, y) can be represented by a rational number of length polynomial
in x| + |y|. We will show next that, in this case, the two aforementioned search problems
(i.e., of Ry and R') are computationally equivalent.

Theorem 2.13: For any polynomial-time computable f:{0, 1}* x{0, 1}* > R and
a polynomially bounded binary relation R, let Ry and R'; be as in Eq. (2.1) and
Eq. (2.2), respectively. Then the search problems of R y and R/f are computationally
equivalent.

Note that, for R € PC and polynomial-time computable f, it holds that Ry € PC. Com-
bining Theorems 2.10 and 2.13, it follows that in this case both R ; and R} are reducible
to N'P. We note, however, that even in this case it does not necessarily hold that R_’f- e PC.
See further discussion following the proof.

Proof: The search problem of R is reduced to the search problem of R}- by finding
an optimal solution (for the given instance) and comparing its value to the given
threshold value. That is, we construct an oracle machine that solves R ; by making a
single query to R';. Specifically, on input (x, v), the machine issues the query x (to a
solver for R';), obtaining the optimal solution y (or an indication L that R(x) = ¥),
computes f(x, y), and returns y if f(x, y) > v. Otherwise (i.e., either y = L or
f(x,y) < v), the machine returns an indication that R /(x, v) = @.

Turning to the opposite direction, we reduce the search problem of R’ to the
search problem of R, by first finding the optimal value vy = maxyecr{f(x, y)}
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(by binary search on its possible values), and next finding a solution of value v,.
In both steps, we use oracle calls to R . For simplicity, we assume that f assigns
positive integer values, and let £ = poly(]x|) be such that f(x, y) < 2° — 1 for every
y € R(x). Then, on input x, we first find v, = max{ f(x, y) : y € R(x)}, by making
oracle calls of the form (x, v). The point is that v, < vifandonlyif R /((x, v)) =¥
which in turn is indicated by the oracle answer L (to the query (x, v)). Making ¢
queries, we determine v, (see Exercise 2.9). Note that in case R(x) = @, all answers
will indicate that R /({x, v)) = ¥, which we treat as if v, = 0. Finally, we make the
query (x, vy), and halt returning the oracle’s answer (which is y € R(x) such that
f(x,y) = vy if v, > 0 and an indication that R(x) = J otherwise). ]

Proof’s Digest: Note that the first direction uses the hypothesis that f is polynomial-time
computable, whereas the opposite direction only used the fact that the optimal value lies
in a finite space of exponential size that can be “efficiently searched.” While the first
direction can be proved using a Levin-reduction, this seems impossible for the opposite
direction (in general).

On the complexity of R, and R’,. We focus on the natural case in which R € PC and
f is polynomial-time computable. In this case, Theorem 2.13 asserts that R and R’ are
computationally equivalent. A closer look reveals, however, that R, € PC always holds,

whereas R, € PC does not necessarily hold. That is, the problem of finding a solution (for
a given 1nstance) that exceeds a given threshold is in the class PC, whereas the problem of
finding an optimal solution is not necessarily in the class PC. For example, the problem
of finding a clique of a given size K in a given graph G is in PC, whereas the problem
of finding a maximum size clique in a given graph G is not known (and is quite unlikely)
to be in PC (although it is Cook-reducible to PC). Indeed, the class of problems that are
reducible to PC is a natural and interesting class (see further discussion at the end of
Section 3.2.1). Needless to say, for every R € PC and polynomial-time computable f,
the former class contains R/;.

2.2.3. Self-Reducibility of Search Problems

The results to be presented in this section further justify the focus on decision problems.
Loosely speaking, these results show that for many natural relations R, the question
of whether or not the search problem of R is efficiently solvable (i.e., is in PF) is
equivalent to the question of whether or not the “decision problem implicit in R” (i.e.,
Sg = {x : 3y s.t. (x, y)€ R}) is efficiently solvable (i.e., is in P). In fact, we will show
that these two computational problems (i.e., R and Sg) are computationally equivalent.
Note that the decision problem of Sy is easily reducible to the search problem of R, and
so our focus is on the other direction. That is, we are interested in relations R for which
the search problem of R is reducible to the decision problem of Sg. In such a case, we say
that R is self-reducible.

Teaching note: Our usage of the term self-reducibility differs from the traditional one. Tra-
ditionally, a decision problem is called (downward) self-reducible if it is Cook-reducible
to itself via a reduction that on input x only makes queries that are smaller than x (ac-
cording to some appropriate measure on the size of strings). Under some natural restrictions
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(i.e., the reduction takes the disjunction of the oracle answers) such reductions yield reductions
of search to decision (as discussed in the main text). For further details, see Exercise 2.13.

Definition 2.14 (the decision implicit in a search and self-reducibility): The deci-
sion problem implicit in the search problem of R is deciding membership in the set
Sk = {x : R(x) # @}, where R(x) ={y : (x,y) € R}. The search problem of R is
called self-reducible if it can be reduced to the decision problem of Sg.

Note that the search problem of R and the problem of deciding membership in Sy refer
to the same instances: The search problem requires finding an adequate solution (i.e.,
given x find y € R(x)), whereas the decision problem refers to the question of whether
such solutions exist (i.e., given x determine whether or not R(x) is non-empty). Thus, Sg
is really the “decision problem implicit in R,” because it is a decision problem that one
implicitly solves when solving the search problem of R. Indeed, for any R, the decision
problem of Sy is easily reducible to the search problem for R (and if R is in PC then Sy is
in N'P).° It follows that if'a search problem R is self-reducible then it is computationally
equivalent to the decision problem Sp.

Note that the general notion of a reduction (i.e., Cook-reduction) seems inherent to the
notion of self-reducibility. This is the case not only due to syntactic considerations, but
also due to the following inherent reason. An oracle to any decision problem returns a
single bit per invocation, while the intractability of a search problem in PC must be due
to lacking more than a “single bit of information” (see Exercise 2.10).

We shall see that self-reducibility is a property of many natural search problems
(including all NP-complete search problems). This justifies the relevance of decision
problems to search problems in a stronger sense than established in Section 2.1.3: Recall
that in Section 2.1.3 we showed that the fate of the search problem class PC (wrt PF) is
determined by the fate of the decision problem class NP (wrt P). Here we show that, for
many natural search problems in PC (i.e., self-reducible ones), the fate of such a problem
R (wrt PJF) is determined by the fate of the decision problem Sk (wrt P), where Sg is
the decision problem implicit in R.

2.2.3.1. Examples

We now present a few search problems that are self-reducible. We start with SAT (see
Appendix G.2), the set of satisfiable Boolean formulae (in CNF), and consider the search
problem in which given a formula one should provide a truth assignment that satisfies
it. The corresponding relation is denoted Rgr; that is, (¢, T) € Rg,r if T is a satisfying
assignment to the formula ¢. The decision problem implicit in Rg,r is indeed SAT. Note
that Rgyr is in PC (i.e., it is polynomially bounded and membership of (¢, 7) in Rgyr is
easy to decide (by evaluating a Boolean expression)).

Proposition 2.15 (Rg,r is self-reducible): The search problem of Rsyr is reducible
to SAT.

Thus, the search problem of Rgyr is computationally equivalent to deciding membership
in SAT. Hence, in studying the complexity of SAT, we also address the complexity of the
search problem of Rgyr.

®For example, the reduction invokes the search oracle and answer 1 if and only if the oracle returns some string
(rather than the “no solution” symbol).
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Proof: We present an oracle machine that solves the search problem of Rgyr by
making oracle calls to SAT. Given a formula ¢, we find a satisfying assignment to
¢ (in case such an assignment exists) as follows. First, we query SAT on ¢ itself,
and return an indication that there is no solution if the oracle answer is 0 (indicating
¢ & SAT). Otherwise, we let 7, initiated to the empty string, denote a prefix of a
satisfying assignment of ¢. We proceed in iterations, where in each iteration we
extend t by one bit. This is done as follows: First we derive a formula, denoted
¢’, by setting the first |t| + 1 variables of ¢ according to the values t0. We then
query SAT on ¢’ (which means that we ask whether or not 70 is a prefix of a
satisfying assignment of ¢). If the answer is positive then we set T <— 70; otherwise
we set T <— t1. This procedure relies on the fact that if 7 is a prefix of a satisfying
assignment of ¢ and 70 is not a prefix of a satisfying assignment of ¢ then 1 must
be a prefix of a satisfying assignment of ¢.

We wish to highlight a key point that has been blurred in the foregoing de-
scription. Recall that the formula ¢’ is obtained by replacing some variables by
constants, which means that ¢’ per se contains Boolean variables as well as Boolean
constants. However, the standard definition of SAT disallows Boolean constants in
its instances.” Nevertheless, ¢’ can be simplified such that the resulting formula
contains no Boolean constants. This simplification is performed according to the
straightforward Boolean rules: That is, the constant false can be omitted from
any clause, but if a clause contains only occurrences of the constant false then
the entire formula simplifies to false. Likewise, if the constant true appears
in a clause then the entire clause can be omitted, and if all clauses are omitted then
the entire formula simplifies to true. Needless to say, if the simplification process
yields a Boolean constant then we may skip the query, and otherwise we just use the
simplified form of ¢’ as our query. ]

Other examples. Reductions analogous to the one used in the proof of Proposition 2.15
can also be presented for other search problems (and not only for NP-complete ones).
Two such examples are searching for a 3-coloring of a given graph and searching for
an isomorphism between a given pair of graphs (where the first problem is known to be
NP-complete and the second problem is believed not to be NP-complete). In both cases,
the reduction of the search problem to the corresponding decision problem consists of
iteratively extending a prefix of a valid solution, by making suitable queries in order to
decide which extension to use. Note, however, that in these two cases the process of
getting rid of constants (representing partial solutions) is more involved. Specifically, in
the case of Graph 3-Colorability (resp., Graph Isomorphism) we need to enforce a partial
coloring of a given graph (resp., a partial isomorphism between a given pair of graphs);
see Exercises 2.11 and 2.12, respectively.

Reflection. The proof of Proposition 2.15 (as well as the proofs of similar results) consists
of two observations.

1. For every relation R in PC, it holds that the search problem of R is re-
ducible to the decision problem of S%, = {(x, ') : Iy” s.t. (x, y'y")€R}. Such a

"While the problem seems rather technical at the current setting (as it merely amounts to whether or not the
definition of SAT allows Boolean constants in its instances), it is far from being so technical in other cases (see
Exercises 2.11 and 2.12).
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reduction is explicit in the proof of Theorem 2.6 and is implicit in the proof of
Proposition 2.15.

2. For specific R € PC (e.g., Ssar), deciding membership in S} is reducible to deciding
membership in Sg = {x : Iy s.t. (x, y)€ R}. This is where the specific structure of
SAT was used, allowing for a direct and natural transformation of instances of S} to
instances of Sk.

(We comment that if Sk is NP-complete then S%, which is always in NP, is reducible
to Sk by the mere fact that Sk is NP-complete; this comment is related to the following
advanced comment.)

For an arbitrary R € PC, deciding membership in S% is not necessarily reducible to
deciding membership in Sg. Furthermore, deciding membership in S}, is not necessarily
reducible to the search problem of R. (See Exercises 2.14, 2.15, and 2.16.)

In general, self-reducibility is a property of the search problem and not of the decision
problem implicit in it. Furthermore, under plausible assumptions (e.g., the intractability of
factoring), there exist relations R, R, € PC having the same implicit-decision problem
(ie., {x : Ri(x) #£ ¥} = {x : Ry(x) # @}) such that R, is self-reducible but R, is not (see
Exercise 2.17). However, for many natural decision problems this phenomenon does not
arise; that is, for many natural NP-decision problems S, any NP-witness relation associated
with S (i.e., R € PC such that {x : R(x) # @} = S) is self-reducible. Indeed, see the other
examples following the proof of Proposition 2.15 as well as the advanced discussion in
§2.2.3.2.

2.2.3.2. Self-Reducibility of NP-Complete Problems

Teaching note: In this advanced subsection, we assume that the students have heard of NP-
completeness. Actually, we only need the students to know the definition of NP-completeness
(i.e.,aset S is N'P-complete if S € AP and every set in NP is reducible to S). Yet, the teacher
may prefer postponing the presentation of the following advanced discussion to Section 2.3.1
(or even to a later stage).

Recall that, in general, self-reducibility is a property of the search problem R and not of
the decision problem implicit in it (i.e., Sg = {x : R(x) # @}). In contrast, in the special
case of NP-complete problems, self-reducibility holds for any witness relation associated
with the (NP-complete) decision problem. That is, all search problems that refer to finding
NP-witnesses for any NP-complete decision problem are self-reducible.

Theorem 2.16: For every R in PC such that Sg is N'P-complete, the search problem
of R is reducible to deciding membership in Sg.

In many cases, as in the proof of Proposition 2.15, the reduction of the search problem
to the corresponding decision problem is quite natural. The following proof presents a
generic reduction (which may be “unnatural” in some cases).

Proof: In order to reduce the search problem of R to deciding Sk, we compose the
following two reductions:

1. Areduction of the search problem of R to deciding membership in S = {(x, »') :
Ay” st (x,y'y")ER]).
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As stated in the foregoing paragraph (titled “Reflection”), such a reduction is
implicit in the proof of Proposition 2.15 (as well as being explicit in the proof of
Theorem 2.6).

2. A reduction of S to Sg.

This reduction exists by the hypothesis that S is N'P-complete and the fact that
Sk € N'P. (Note that we do not assume that this reduction is a Karp-reduction,
and furthermore it may be an “unnatural” reduction).

The theorem follows. [ |

2.2.4. Digest and General Perspective

Recall that we presented (polynomial-time) reductions as (efficient) algorithms that use
functionally specified subroutines. That is, an efficient reduction of problem IT to problem
[T’ is an efficient algorithm that solves T while making subroutine calls to any procedure
that solves IT'. This presentation fits the “natural” (“positive”) application of such a
reduction; that is, combining such a reduction with an efficient implementation of the
subroutine (solving IT"), we obtain an efficient algorithm for solving IT. We note that the
existence of a polynomial-time reduction of IT to IT" actually means more than the latter
implication. For example, even applying such a reduction to an inefficient algorithm for
solving IT" yields something for IT; that is, if IT’ is solvable in time ¢’ then IT is solvable in
time ¢ such that #(n) = poly(n) - '(poly(n)) (e.g., if #'(n) = n'°2" then t(n) = nOUoem),
Thus, the existence of a polynomial-time reduction of IT to IT" yields an upper bound on
the time complexity of IT in terms of the time complexity of IT'.

We note that tighter relations between the complexity of IT and IT’ can be established
whenever the reduction satisfies additional properties. For example, suppose that IT is
polynomial-time reducible to I’ by a reduction that makes queries of linear length (i.e., on
input x each query has length O(|x|)). Then, if IT’ is solvable in time ¢’ then IT is solvable
in time ¢ such that #(n) = poly(n) - £'(O(n)) (e.g., if ¢'(n) = 2¥V" then t(n) = 2°0/M),
We further note that bounding other complexity measures of the reduction (e.g., its space
complexity) allows for relating the corresponding complexities of the problems; see
Section 5.2.2.

In contrast to the foregoing “positive” applications of polynomial-time reductions,
the theory of NP-completeness (presented in Section 2.3) is famous for its “negative”
application of such reductions. Let us elaborate. The fact that IT is polynomial-time
reducible to 1" means that if solving T1' is feasible then solving Tl is feasible. The
direct “positive” application starts with the hypothesis that 1" is feasibly solvable and
infers that so is I1. In contrast, the “negative” application uses the counter-positive: it
starts with the hypothesis that solving IT is infeasible and infers that the same holds
for IT'.

2.3. NP-Completeness

In light of the difficulty of settling the P-vs-NP Question, when faced with a hard problem
H in NP, we cannot expect to prove that H is not in P (unconditionally). The best we
can expect is a conditional proof that H is not in P, based on the assumption that NP is
different from P. The contrapositive is proving that if H is in P, then so is any problem
in NP (i.e., NP equals P). One possible way of proving such an assertion is showing that
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any problem in NP is polynomial-time reducible to H. This is the essence of the theory of
NP-completeness.

Teaching note: Some students have heard of NP-completeness before, but we suspect that
many have missed important conceptual points. Specifically, we fear that they missed the
point that the mere existence of NP-complete problems is amazing (let alone that these
problems include natural ones such as SAT). We believe that this situation is a consequence
of presenting the detailed proof of Cook’s Theorem as the very first thing right after defining
NP-completeness.

2.3.1. Definitions

The standard definition of NP-completeness refers to decision problems. In the following
we will also present a definition of NP-complete (or rather PC-complete) search problems.
In both cases, NP-completeness of a problem IT combines two conditions:

1. Il is in the class (i.e., IT being in NP or PC, depending on whether I1 is a decision
or a search problem).
2. Each problem in the class is reducible to I1. This condition is called NP-hardness.

Although a perfectly good definition of NP-hardness could have allowed arbitrary
Cook-reductions, it turns out that Karp-reductions (resp., Levin-reductions) suffice for
establishing the NP-hardness of all natural NP-complete decision (resp., search) prob-
lems. Consequently, NP-completeness is usually defined using this restricted notion of a
polynomial-time reduction.

Definition 2.17 (NP-completeness of decision problems, restricted notion): A4 set S
is N'P-complete if it is in N'P and every set in NP is Karp-reducible to S.

A set is N'P-hard if every set in NP is Karp-reducible to it. Indeed, there is no reason
to insist on Karp-reductions (rather than using arbitrary Cook-reductions), except that the
restricted notion suffices for all known demonstrations of NP-completeness and is easier
to work with. An analogous definition applies to search problems.

Definition 2.18 (NP-completeness of search problems, restricted notion): A binary
relation R is PC-complete if it is in PC and every relation in PC is Levin-reducible
to R.

In the sequel, we will sometimes abuse the terminology and refer to search problems as
NP-complete (rather than PC-complete). Likewise, we will say that a search problem is
NP-hard (rather than PC-hard) if every relation in PC is Levin-reducible to it.

We stress that the mere fact that we have defined a property (i.e., NP-completeness)
does not mean that there exist objects that satisfy this property. /¢ is indeed remark-
able that NP-complete problems do exist. Such problems are “universal” in the sense
that solving them allows for solving any other (reasonable) problem (i.e., problems in
NP).
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2.3.2. The Existence of NP-Complete Problems

We suggest not to confuse the mere existence of NP-complete problems, which is re-
markable by itself, with the even more remarkable existence of “natural” NP-complete
problems. The following proof delivers the first message as well as focuses on the essence
of NP-completeness, rather than on more complicated technical details. The essence of
NP-completeness is that a single computational problem may “effectively encode” a wide
class of seemingly unrelated problems.

Theorem 2.19: There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proofs) is based on the
observation that some decision problems in A/P (resp., search problems in PC) are
“rich enough” to encode all decision problems in NP (resp., all search problems
in PC). This fact is most obvious for the “generic” decision and search problems,
denoted S, and R, (and defined next), which are used to derive the simplest proof
of the current theorem.

We consider the following relation R, and the decision problem S, implicit in
R, (ie., Sy, ={x : 3y s.t. (X, y) € R,}). Both problems refer to the same type of
instances, which in turn have the form X = (M, x, 1%}, where M is a description of a
(deterministic) Turing machine, x is a string, and ¢ is a natural number. The number
t is given in unary (rather than in binary) in order to allow various complexity
measures, which depend on the instance length, to be polynomial in ¢ (rather than
poly-logarithmic in ¢).

Definition. The relation R, consists of pairs ({(M, x, 1"}, y) such that M accepts

. . 7. 3 . def
the input pair (x, y) within t steps, where |y| < t.” The corresponding set S, = {¥ :
3y s.t. (X, y) € Ry} consists of triples (M, x, 1’} such that machine M accepts some
input of the form (x, -) within # steps.

It is easy to see that R, is in PC and that S, is in N'P. Indeed, R, is recognizable
by a universal Turing machine, which on input ({(M, x, 17), y) emulates (¢ steps of)
the computation of M on (x, y). (The fact that S, € NP follows similarly.) We
comment that u indeed stands for universal (i.e., universal machine), and the proof
extends to any reasonable model of computation (which has adequate universal
machines).

We now turn to show that R, and S, are NP-hard in the adequate sense (i.e., R, is
PC-hard and S, is N'P-hard). We first show that any set in NP is Karp-reducible to
S,. Let S'be a set in NP and let us denote its witness relation by R; that is, R is in PC
and x € S if and only if there exists y such that (x, y) € R. Let py be a polynomial
bounding the length of solutions in R (i.e., |y| < pr(|x|) for every (x, y) € R), let
Mp, be a polynomial-time machine deciding membership (of alleged (x, y) pairs) in
R, and let ¢ be a polynomial bounding its running time. Then, the desired Karp-
reduction maps an instance x (for S) to the instance (My, x, 1’£(x1+Pr(xD)y (for S,);
that is,

x> f(0) S (M, x, 1pr(D)y 2.3)

8Instead of requiring that |y| < ¢, one may require that M is “canonical” in the sense that it reads its entire input
before halting.
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Note that this mapping can be computed in polynomial time, and that x € S if and
only if f(x) = (Mg, x, 1’°x1+Pr(xD)y ¢ § Details follow.

First, note that the mapping f does depend (of course) on S, and so it may depend
on the fixed objects My, pg, and Tk (which depend on §). Thus, computing f on
input x calls for printing the fixed string My, copying x, and printing a number of 1’s
that is a fixed polynomial in the length of x. Hence, f is polynomial-time computable.
Second, recall that x € § if and only if there exists y such that |y| < pr(]x|) and
(x,y) € R. Since My accepts (x, y) € R within tg(]x| + |y|) steps, it follows that
x € § if and only if there exists y such that |y| < pr(]x|) and My accepts (x, y)
within zz(|x| 4 |y|) steps. It follows that x € S if and only if f(x) € S,.

We now turn to the search version. For reducing the search problem of any
R € PC to the search problem of R,, we use essentially the same reduction. On
input an instance x (for R), we make the query (Mp, x, 1%:(xI+Pr(XD)y to the search
problem of R, and return whatever the latter returns. Note that if x ¢ S then the
answer will be “no solution,” whereas for every x and y it holds that (x, y) €
R if and only if ((Mg, x, 1'=0xI+re(xD)y '3y ¢ R .. Thus, a Levin-reduction of R
to R, consists of the pair of functions (f, g), where f is the foregoing Karp-
reduction and g(x, y) = y. Note that indeed, for every (f(x), y) € Ry, it holds that

(x,8(x,y))=(x,y) € R. [ ]

Advanced comment. Note that the role of 17 in the definition of R, is to allow placing R,
in PC. In contrast, consider the relation R, that consists of pairs ({(M, x, t), ) such that
M accepts xy within ¢ steps. Indeed, the difference is that in R, the time bound ¢ appears
in unary notation, whereas in R/ it appears in binary. Then, as will become obvious in
§4.2.1.2, membership in R] cannot be decided in polynomial-time. Going even further,
we note that omitting ¢ altogether from the problem instance yields a search problem
that is not solvable at all. That is, consider the relation Ry &ef {(M,x),y): M(xy) =1}
(which is related to the halting problem). Indeed, the search problem of any relation
(and in particular of any relation in PC) is Karp-reducible to the search problem of Ry,
but the latter is not solvable at all (i.e., there exists no algorithm that halts on every
input and on input X = (M, x) outputs y such that (x, y) € Ry if and only if such a
y exists).

Bounded Halting and Non-halting
We note that the problem shown to be NP-complete in the proof of Theorem 2.19 is
related to the following two problems, called Bounded Halting and Bounded Non-
halting. Fixing any programming language, the instance to each of these problems
consists of a program 7 and a time bound ¢ (presented in unary). The decision version of
Bounded Halting (resp., Bounded Non-halting) consists of determining whether
or not there exists an input (of length at most t) on which the program m halts in t steps
(resp., does not halt in ¢ steps), whereas the search problem consists of finding such an
input.

The decision version of Bounded Non-halting refers to a fundamental computa-
tional problem in the area of program verification; specifically, the problem of determining
whether a given program halts within a given time bound on all inputs of a given length.’

The length parameter need not equal the time bound. Indeed, a more general version of the problem refers to two
bounds, ¢ and 7, and to whether the given program halts within # steps on each possible £-bit input. It is easy to prove
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We have mentioned Bounded Halting because it is often referred to in the literature,
but we believe that Bounded Non-haltingis much more relevant to the project of pro-
gram verification (because one seeks programs that halt on all inputs rather than programs
that halt on some input).

It is easy to prove that both problems are NP-complete (see Exercise 2.19). Note that
the two (decision) problems are not complementary (i.e., (M, 1) may be a yes-instance
of both decision problems)."

The fact that Bounded Non-halting is probably intractable (i.e., is intractable
provided that P # NP) is even more relevant to the project of program verification than
the fact that the Halting Problem is undecidable. The reason being that the latter problem
(as well as other related undecidable problems) refers to arbitrarily long computations,
whereas the former problem refers to an explicitly bounded number of computational
steps. Specifically, Bounded Non-halting is concerned with the existence of an input
that causes the program to violate a certain condition (i.e., halting) within a given time-
bound.

In light of the foregoing, the common practice of bashing Bounded (Non-)halting as
an “unnatural” problem seems very odd at an age in which computer programs play such
a central role. (Nevertheless, we will use the term “natural” in this traditionally and odd
sense in the next title, which refers to natural computational problems that seem unrelated
to computation.)

2.3.3. Some Natural NP-Complete Problems

Having established the mere existence of NP-complete problems, we now turn to prove
the existence of NP-complete problems that do not (explicitly) refer to computation in the
problem’s definition. We stress that thousands of such problems are known (and a list of
several hundreds can be found in [85]).

We will prove that deciding the satisfiability of propositional formulae is NP-complete
(i.e., Cook’s Theorem), and also present some combinatorial problems that are NP-
complete. This presentation is aimed at providing a (small) sample of natural NP-
completeness results as well as some tools toward proving NP-completeness of new
problems of interest. We start by making a comment regarding the latter issue.

The reduction presented in the proof of Theorem 2.19 is called “generic” because it
(explicitly) refers to any (generic) NP-problem. That is, we actually presented a scheme
for the design of reductions from any desired NP-problem to the single problem proved to
be NP-complete. Indeed, in doing so, we have followed the definition of NP-completeness.
However, once we know some NP-complete problems, a different route is open to us. We
may establish the NP-completeness of a new problem by reducing a known NP-complete
problem to the new problem. This alternative route is indeed a common practice, and it is
based on the following simple proposition.

that the problem remains NP-complete also in the case that the instances are restricted to having parameters £ and ¢
such that 7 = p(£), for any fixed polynomial p (e.g., p(n) = n?, rather than p(n) = n as used in the main text).
10Indeed, (M, 1") can not be a no-instance of both decision problems, but this does not make the problems
complementary. In fact, the two decision problems yield a three-way partition of the instances (M, 17): (1) pairs
(M, 1") such that for every input x (of length at most ¢) the computation of M(x) halts within ¢ steps, (2) pairs (M, 1")
for which such halting occurs on some inputs but not on all inputs, and (3) pairs (M, 17) such that there exists no
input (of length at most #) on which M halts in ¢ steps. Note that instances of type (1) are exactly the no-instances of
Bounded Non-halting, whereas instances of type (3) are exactly the no-instances of Bounded Halting.
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Proposition 2.20: If an NP-complete problem 11 is reducible to some problem T1' in
NP then T1' is NP-complete. Furthermore, reducibility via Karp-reductions (resp.,
Levin-reductions) is preserved.

Proof: The proof boils down to asserting the transitivity of reductions. Specifically,
the NP-hardness of I1 means that every problem in NP is reducible to I1, which
in turn is reducible to IT'. Thus, by transitivity of reduction (see Exercise 2.6),
every problem in NP is reducible to IT’, which means that IT" is NP-hard and the
proposition follows. n

2.3.3.1. Circuit and Formula Satisfiability: CSAT and SAT

We consider two related computational problems, CSAT and SAT, which refer (in the
decision version) to the satisfiability of Boolean circuits and formulae, respectively. (We
refer the reader to the definitions of Boolean circuits, formulae, and CNF formulae that
appearin §1.2.4.1.)

Teaching note: We suggest establishing the NP-completeness of SAT by a reduction from
the circuit satisfaction problem (CSAT), after establishing the NP-completeness of the latter.
Doing so allows for decoupling two important parts of the proof of the NP-completeness of
SAT: the emulation of Turing machines by circuits, and the emulation of circuits by formulae
with auxiliary variables.

CSAT. Recall that Boolean circuits are directed acyclic graphs with internal vertices,
called gates, labeled by Boolean operations (of arity either 2 or 1), and external ver-
tices called terminals that are associated with either inputs or outputs. When setting the
inputs of such a circuit, all internal nodes are assigned values in the natural way, and
this yields a value to the output(s), called an evaluation of the circuit on the given input.
The evaluation of circuit C on input z is denoted C(z). We focus on circuits with a single
output, and let CSAT denote the set of satisfiable Boolean circuits (i.e., a circuit C is in
CSAT if there exists an input z such that C(z) = 1). We also consider the related relation
Resar = {(C,2) : C(z) = 1}.

Theorem 2.21 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp.,
Resar) is N'P-complete (resp., PC-complete).

Proof: 1t is easy to see that CSAT € NP (resp., Resar € PC). Thus, we turn to
showing that these problems are NP-hard. We will focus on the decision version
(but also discuss the search version).

We will present (again, but for the last time in this book) a generic reduction,
this time of any NP-problem to CSAT. The reduction is based on the observation,
mentioned in §1.2.4.1, that the computation of polynomial-time algorithms can be
emulated by polynomial-size circuits. In the current context, we wish to emulate
the computation of a fixed machine M on input (x, y), where x is fixed and y
varies (but |y| = poly(|x|) and the total number of steps of M(x, y) is polynomial
in |x| 4 |y]). Thus, x will be “hard-wired” into the circuit, whereas y will serve as
the input to the circuit. The circuit itself, denoted C,, will consists of “layers” such

72



2.3. NP-COMPLETENESS

that each layer will represent an instantaneous configuration of the machine M, and
the relation between consecutive configurations in a computation of this machine
will be captured by (“uniform”) local gadgets in the circuit. The number of layers
will depend on (x and on) the polynomial that upper-bounds the running time of
M, and an additional gadget will be used to detect whether the last configuration
is accepting. Thus, only the first layer of the circuit C, (which will represent an
initial configuration with input prefixed by x) will depend on x. The punch line
is that determining whether, for a given x, there exists a y (|y| = poly(|x|)) such
that M(x, y) =1 (in a given number of steps) will be reduced to whether there
exists a y such that C,(y) = 1. Performing this reduction for any machine My that
corresponds to any R € PC (as in the proof of Theorem 2.19), we establish the fact
that CSAT is NP-complete. Details follow.

Recall that we wish to reduce an arbitrary set S € N'P to CSAT. Let R, pr, Mg,
and 75 be as in the proof of Theorem 2.19 (i.e., R is the witness relation of S, whereas
pr bounds the length of the NP-witnesses, My is the machine deciding membership
in R, and tp is its polynomial time bound). Without loss of generality (and for
simplicity), suppose that My is a one-tape Turing machine. We will construct a
Karp-reduction that maps an instance x (for S) to a circuit, denoted f'(x) 2] C,,such
that C(y) = 1 if and only if My accepts the input (x, y) within z(|x| + pr(|x]))
steps. Thus, it will follow that x € S if and only if there exists y € {0, 1}72(*D sych
that C,(v) =1 (i.e., if and only if C, € CSAT). The circuit C, will depend on x
as well as on My, pgr, and tg. (We stress that Mg, pg, and tg are fixed, whereas x
varies and is thus explicit in our notation.)

Before describing the circuit Cy, let us consider a possible computation of Mg
on input (x, y), where x is fixed and y represents a generic string of length at
most pr(|x]). Such a computation proceeds for ¢ = tz(|x| + pr(|x])) steps, and
corresponds to a sequence of # + 1 instantaneous configurations, each of length ¢.
Each such configuration can be encoded by ¢ pairs of symbols, where the first symbol
in each pair indicates the contents of a cell and the second symbol indicates either a
state of the machine or the fact that the machine is not located in this cell. Thus, each
pair is amember of ¥ x (Q U {_L}), where X is the finite “work alphabet” of Mz, O
is its finite set of internal states, and L is an indication that the machine is not present
at a cell. The initial configuration includes xy as input, and the decision of Mz(x, )
can be read from (the leftmost cell of) the last configuration.'' With the exception
of the first row, the values of the entries in each row are determined by the entries of
the row just above it, where this determination reflects the transition function of Mp.
Furthermore, the value of each entry in the said array is determined by the values
of (up to) three entries that reside in the row above it (see Exercise 2.20). Thus, the
aforementioned computation is represented by a (¢ 4 1) x ¢ array, where each entry
encodes one out of a constant number of possibilities, which in turn can be encoded
by a constant-length bit string. See Figure 2.1.

The circuit C, has a structure that corresponds to the aforementioned array. Each
entry in the array is represented by a constant number of gates such that when C, is
evaluated at y these gates will be assigned values that encode the contents of the said
entry (in the computation of Mz(x, y)). In particular, the entries of the first row of

"'We refer to the output convention presented in §1.2.3.2, by which the output is written in the leftmost cells and
the machine halts at the cell to its right.
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(La) | (1) 102 | 3 | () [ ) () | (59)

() [ initial configuration
(with input 110y,y, )

(35 | (D) [ (0) | (v7) | (o) | (=)

(B [ (L) [OD) [ () | () | ) [ ) |G |G | (59)

(3.-) | (Le) | (0) |

(3.0) | (1,-) |(0)

(1) [ (LD | (0,)

last configuration

Figure 2.1: An array representing ten consecutive computation steps on input 110y, y,. Blank characters
as well as the indication that the machine is not present in the cell are marked by a hyphen (-). The three
arrows represent the determination of an entry by the three entries that reside above it. The machine
underlying this example accepts the input if and only if the input contains a zero.

the array are “encoded” by hard-wiring the reduction’s input (i.e., x ), and feeding the
circuit’s input (i.e., y) to the adequate input terminals. That is, the circuit has pg(|x|)
“real”) input terminals (corresponding to y), and the hard-wiring of constants to
the other O(¢ — pr(|x|)) gates that represent the first row is done by simple gadgets
(as in Figure 1.3). Indeed, the additional hard-wiring in the first row corresponds to
the other fixed elements of the initial configuration (i.e., the blank symbols, and the
encoding of the initial state and of the initial location; cf. Figure 2.1). The entries
of subsequent rows will be “encoded” (or rather computed at evaluation time) by
using constant-size circuits that determine the value of an entry based on the three
relevant entries in the row above it. Recall that each entry is encoded by a constant
number of gates, and thus these constant-size circuits merely compute the constant-
size function described in Exercise 2.20. In addition, the circuit C has a few extra
gates that check the values of the entries of the last row in order to determine
whether or not it encodes an accepting configuration.'” Note that the circuit C, can
be constructed in polynomial-time from the string x, because we just need to encode
x in an appropriate manner as well as generate a “highly uniform” gridlike circuit
of size O(tr(|x| + pr(]x])?)."
Although the foregoing construction of C, capitalizes on various specific details
of the (one-tape) Turing machine model, it can be easily adapted to other natural

I continuation of footnote 11 , we note that it suffices to check the values of the two leftmost entries of the last
row. We assumed here that the circuit propagates a halting configuration to the last row. Alternatively, we may check
for the existence of an accepting/halting configuration in the entire array, since this condition is quite simple.

13 Advanced comment: A more efficient construction, which generates almost-linear sized circuits (i.e., circuits
of size O(tr(|x| + pr(|x)))) is known; see [180].
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models of efficient computation (by showing that in such models the transformation
from one configuration to the subsequent one can be emulated by a (polynomial-
time constructible) circuit).'* Alternatively, we recall the Cobham-Edmonds Thesis
asserting that any problem that is solvable in polynomial time (on some “reasonable”
model) can be solved in polynomial time by a (one-tape) Turing machine.

Turning back to the circuit C,, we observe thatindeed C(y) = 1 ifand only if My
accepts the input (x, y) while making at most ¢ = 7x(|x| + pr(]x|)) steps. Recalling
that S = {x : Jy s.t. [y|<pr(x]|) A (x,y)e R} and that My decides membership
in R in time ¢, we infer that x € S if and only if f(x) = C, € CSAT. Furthermore,
(x,y) € Rifand only if (f(x), ¥) € Rcsar-. It follows that f is a Karp-reduction of
S to CSAT, and, for g(x, y) & v, it holds that (f, g) is a Levin-reduction of R to
Resar. The theorem follows. [ |

SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e., circuits
having a tree structure).'” We further restrict our attention to formulae given in conjunctive
normal form (CNF). We denote by SAT the set of satisfiable CNF formulae (i.e., a CNF
formula ¢ is in SAT if there exists a truth assignment t such that ¢(7) = 1). We also
consider the related relation Rgyr = {(¢p, 7) : ¢(7) = 1}.

Theorem 2.22 (NP-completeness of SAT): The set (resp., relation) SAT (resp., Rsar)
is N'P-complete (resp., PC-complete).

Proof: Since the set of possible instances of SAT is a subset of the set of instances of
CSAT, it is clear that SAT € NP (resp., Rsyr € PC). To prove that SAT is NP-hard,
we reduce CSAT to SAT (and use Proposition 2.20). The reduction boils down to
introducing auxiliary variables in order to “cut” the computation of an arbitrary
(“deep”) circuit into a conjunction of related computations of “shallow” circuits
(i.e., depth-2 circuits) of unbounded fan-in, which in turn may be presented as a
CNF formula. The aforementioned auxiliary variables hold the possible values of
the internal gates of the original circuit, and the clauses of the CNF formula enforce
the consistency of these values with the corresponding gate operation. For example,
if gate; and gate; feed into gate,, which is a A-gate, then the corresponding
auxiliary variables g;, g;, gr should satisfy the Boolean condition g; = (g; A g;),
which can be written as a 3CNF with four clauses. Details follow.

We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C, with n
input terminals and m gates, we first construct m constant-size formulae on n + m
variables, where the first n variables correspond to the input terminals of the circuit,
and the other m variables correspond to its gates. The i formula will depend on
the variable that correspond to the i™ gate and the 1-2 variables that correspond to
the vertices that feed into this gate (i.e., 2 vertices in case of A-gate or V-gate and a
single vertex in case of a —-gate, where these vertices may be either input terminals
or other gates). This (constant-size) formula will be satisfied by a truth assignment
if and only if this assignment matches the gate’s functionality (i.e., feeding this gate

14Advanced comment: Indeed, presenting such circuits is very easy in the case of all natural models (e.g., the
RAM model), where each bit in the next configuration can be expressed by a simple Boolean formula in the bits of
the previous configuration.

5For an alternative definition, see Appendix G.2.
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gate3
gated Gf
O

Figure 2.2: Using auxiliary variables (i.e., the g;’s) to “cut” a depth-5 circuit (into a CNF). The dashed
regions will be replaced by equivalent CNF formulae. The dashed cycle representing an unbounded
fan-in and-gate is the conjunction of all constant-size circuits (which enforce the functionalities of the
original gates) and the variable that represents the gate that feeds the output terminal in the original
circuit.

with the corresponding values result in the corresponding output value). Note that
these constant-size formulae can be written as constant-size CNF formulae (in fact,
as 3CNF formulae).'® Taking the conjunction of these m formulae and the variable
associated with the gate that feeds into the output terminal, we obtain a formula ¢
in CNF (see Figure 2.2, where n = 3 and m = 4).

Note that ¢ can be constructed in polynomial time from the circuit C; that is, the
mapping of C to ¢ = f(C) is polynomial-time computable. We claim that C is in
CSAT if and only if ¢ is in SAT.

1. Suppose that for some string s it holds that C(s) = 1. Then, assigning to the i
auxiliary variable the value that is assigned to the i gate of C when evaluated
on s, we obtain (together with s) a truth assignment that satisfies ¢. This is the
case because such an assignment satisfies all m constant-size CNFs as well as the
variable associated with the output of C.

2. On the other hand, if t satisfies ¢ then the first » bits in 7 correspond to an
input on which C evaluates to 1. This is the case because the m constant-size
CNFs guarantee that the variables of ¢ are assigned values that correspond to the
evaluation of C on the first n bits of 7, while the fact that the variable associated
with the output of C has value true guarantees that this evaluation of C yields
the value 1.

Note that the latter mapping (of t to its n-bit prefix) is the second mapping
required by the definition of a Levin-reduction.

Thus, we have established that f is a Karp-reduction of CSAT to SAT, and that
augmenting f with the aforementioned second mapping yields a Levin-reduction
of RCSAT to RSAT- [ |

16Recall that any Boolean function can be written as a CNF formula having size that is exponential in the length
of its input, which in this case is a constant (i.e., either 2 or 3). Indeed, note that the Boolean functions that we refer to
here depend on 2-3 Boolean variables (since they indicate whether or not the corresponding values respect the gate’s
functionality).
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Comment. The fact that the second mapping required by the definition of a Levin-
reduction is explicit in the proof of the validity of the corresponding Karp-reduction is a
fairly common phenomenon. Actually (see Exercise 2.28), typical presentations of Karp-
reductions provide two auxiliary polynomial-time computable mappings (in addition to
the main mapping of instances from one problem (e.g., CSAT) to instances of another
problem (e.g., SAT)): The first auxiliary mapping is of solutions for the preimage instance
(e.g., of CSAT) to solutions for the image instance of the reduction (e.g., of SAT), whereas
the second mapping goes the other way around. (Note that only the main mapping and the
second auxiliary mapping are required in the definition of a Levin-reduction.) For example,
the proof of the validity of the Karp-reduction of CSAT to SAT, denoted f, specified two
additional mappings / and g such that (C, s) € Resar implies (f(C), h(C, s)) € Rsyr and
(f(C), 1) € Rgyr implies (C, g(C, 7)) € Resar- Specifically, in the proof of Theorem 2.22,
we used A(C,s) = (s, ay, ..., ay,) where a; is the value assigned to the jth gate in the
evaluation of C(s), and g(C, 7) being the n-bit prefix of 7.

3SAT. Note that the formulae resulting from the Karp-reduction presented in the proof
of Theorem 2.22 are in conjunctive normal form (CNF) with each clause referring
to at most three variables. Thus, the above reduction actually establishes the NP-
completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three variables
per clause). Alternatively, one may Karp-reduce SAT (i.e., satisfiability of CNF for-
mula) to 3SAT (i.e., satisfiability of 3CNF formula), by replacing long clauses with
conjunctions of three-variable clauses (using auxiliary variables; see Exercise 2.21).
Either way, we get the following result, where the furthermore part is proved by an
additional reduction.

Proposition 2.23: 3SAT is NP-complete. Furthermore, the problem remains NP-
complete also if we restrict the instances such that each variable appears in at most
three clauses.

Proof Sketch: The furthermore part is proved by reduction from 3SAT. We just
replace each occurrence of each Boolean variable by a new copy of this variable, and
add clauses to enforce that all these copies are assigned the same value. Specifically,
replacing the variable z by copies z(1), . .., 2™, we add the clauses z*!D v =z for
i =1...,m (where m + 1 is understood as 1). O

Related problems. Note that instances of SAT can be viewed as systems of Boolean
conditions over Boolean variables. Such systems can be emulated by various types of
systems of arithmetic conditions, implying the NP-hardness of solving the latter types of
systems. Examples include systems of integer linear inequalities (see Exercise 2.23), and
systems of quadratic equalities (see Exercise 2.25).

2.3.3.2. Combinatorics and Graph Theory

Teaching note: The purpose of this subsection is to expose the students to a sample of NP-
completeness results and proof techniques (i.e., the design of reductions among computational
problems). The author believes that this traditional material is insightful, but one may skip it
in the context of a complexity class.
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We present just a few of the many appealing combinatorial problems that are known
to be NP-complete. Throughout this section, we focus on the decision versions of the
various problems, and adopt a more informal style. Specifically, we will present a typical
decision problem as a problem of deciding whether a given instance, which belongs to a
set of relevant instances, is a “yes-instance” or a ‘“no-instance” (rather than referring to
deciding membership of arbitrary strings in a set of yes-instances). For further discussion
of this style and its rigorous formulation, see Section 2.4.1. We will also neglect showing
that these decision problems are in NP; indeed, for natural problems in NP, showing
membership in NP is typically straightforward.

Set Cover. We start with the Set Cover problem, in which an instance consists of a
collection of finite sets Sy, ..., S, and an integer K and the question (for decision) is
whether or not there exist (at most)'” K sets that cover | J;_, S; (i.e., indices i, ..., ig
such that Ule Si, = Ui, S)).

Proposition 2.24: Set Cover is NP-complete.

Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula ¢ with
m clauses and n variables, we consider the sets S} +, S1.¢, .., Spt, Spe S {1, ..., m}
such that S; ; (resp., S; 1) is the set of the indices of the clauses (of ¢) that are satisfied
by setting the i variable to t rue (resp., false). That is, if the i™ variable appears
unnegated (resp., negated) in the j™ clause then j € S; ., (resp., j € S;¢). Note that
the union of these 2x sets equals {1, . .., m}. Now, on input ¢, the reduction outputs
the Set Cover instance f(¢) &ef ((S1, .., Son), n), where Sy, = S; v U {m + i} and
Sz,‘ :S[,fU{m +z}forz = 1,...,1’1.

Note that f is computable in polynomial time, and that if ¢ is satisfied by 7; - - - 7,
then the collection {Sy;_,, :i =1, ...,n} covers {1,...,m + n}. Thus, ¢ € SAT
implies that f(¢) is a yes-instance of Set Cover. On the other hand, each cover of
m+1,....,m+n}C{l,...,m+ n} must include either S,;_; or S,; for each i.
Thus, a cover of {1, ..., m + n} using n of the §;’s must contain, for every i, either
Syi—1 or Sy; but not both. Setting 7; accordingly (i.e., 7; = 1 if and only if Sy;_; is
in the cover) implies that {Sy;_,, :i = 1,...,n} covers {1, ..., m}, which in turn
implies that 7, - - - 7, satisfies ¢. Thus, if f(¢) is a yes-instance of Set Cover then
¢ € SAT. O

Exact Cover and 3XC. The Exact Cover problem is similar to the set cover problem,
except that here the sets that are used in the cover are not allowed to intersect. That is,
each element in the universe should be covered by exactly one set in the cover. Restricting
the set of instances to sequences of subsets each having exactly three elements, we
get the restricted problem called 3-Exact Cover (3XC), where it is unnecessary to
specify the number of sets to be used in the cover. The problem 3XC is rather technical, but
it is quite useful for demonstrating the NP-completeness of other problems (by reducing
3XC to them).

Proposition 2.25: 3-Exact Cover is NP-complete.

l7Clearly, in the case of Set Cover, the two formulations (i.e., asking for exactly K sets or at most K sets) are
computationally equivalent.
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Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed) is
NP-complete. This follows both for the case that the number of sets in the desired cover is
unspecified and for the various cases in which this number is bounded (i.e., upper-bounded
or lower-bounded or both).

Proof Sketch: The reduction is obtained by composing three reductions. We first
reduce a restricted case of 3SAT to a restricted version of Set Cover, denoted
3¢, in which each set has at most three elements (and an instance consists, as in
the general case, of a sequence of finite sets as well as an integer K). Specifically,
we refer to 3SAT instances that are restricted such that each variable appears in
at most three clauses, and recall that this restricted problem is NP-complete (see
Proposition 2.23). Actually, we further reduce this special case of 3SAT to one
in which each literal appears in at most two clauses.'® Now, we reduce the new
version of 3SAT to 3SC by using the (very same) reduction presented in the proof
of Proposition 2.24, and observing that the size of each set in the reduced instance
is at most three (i.e., one more than the number of occurrences of the corresponding
literal).

Next, we reduce 3SC to the following restricted case of Exact Cover, denoted
3XC’, in which each set has at most three elements, an instance consists of a sequence
of finite sets as well as an integer K, and the question is whether there exists an
exact cover with at most K sets. The reduction maps an instance ((Si, ..., Sp), K)
of 33Cto the instance (C’, K) such that C’ is a collection of all subsets of each of the
sets Sy, ..., Sp. Since each S; has size at most 3, we introduce at most 7 non-empty
subsets per each such set, and the reduction can be computed in polynomial time.
The reader may easily verify the validity of this reduction.

Finally, we reduce 3XC’ to 3XC. Consider an instance ((S1, ..., Su), K) of 3XC’,
and suppose that (J{L, S; = [n]. If n > 3K then this is definitely a no-instance,
which can be mapped to a dummy no-instance of 3XC, and so we assume that
x 3K —n > 0. Note that x represents the “excess” covering ability of an exact
cover having K sets, each having three elements. Thus, we augment the set system
with x new elements, denoted » + 1, ..., 3K, and replace each S; such that |S;| <
3 by a sub-collection of 3-sets that cover S; as well as arbitrary elements from
{n+1,...,3K}.Thatis,incase |S;| = 2, the set S; is replaced by the sub-collection
(S;U{n+1},...,8 U{3K}), whereas a singleton S; is replaced by the sets S; U
{j1, jo} for every j; < j, in {n 4+ 1,...,3K}. In addition, we add all possible 3-
subsets of {n + 1, ..., 3K}. This completes the description of the third reduction,
the validity of which is left as an exercise. (|

Vertex Cover, Independent Set, and Clique. Turning to graph theoretic problems (see
Appendix G.1), we start with the Vertex Cover problem, which is a special case of
the Set Cover problem. The instances consist of pairs (G, K), where G = (V, E) is a
simple graph and K is an integer, and the problem is whether or not there exists a set

3 This can be done by observing that if all three occurrences of a variable are of the same type (i.e., they are all
negated or all non-negated) then this variable can be assigned a value that satisfies all clauses in which it appears, and
so the variable and the clauses in which it appears can be omitted from the instance. This yields a reduction of 3SAT
instances in which each variable appears in at most three clauses to 3SAT instances in which each literal appears in
at most two clauses. Actually, a closer look at the proof of Proposition 2.23 reveals the fact that the reduced instances
satisfy the latter property anyhow.
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of (at most) K vertices that is incident to all graph edges (i.e., each edge in G has at
least one endpoint in this set). Indeed, this instance of Vertex Cover can be viewed
as an instance of Set Cover by considering the collection of sets (S,),ecy, where S,
denotes the set of edges incident at vertex v (i.e., S, = {e € E : v € e}). Thus, the NP-
hardness of Set Cover follows from the NP-hardness of Vertex Cover (but this
implication is unhelpful for us here: We already know that Set Cover is NP-hard and
we wish to prove that Vertex Cover is NP-hard). We also note that the Vertex Cover
problem is computationally equivalent to the Independent Set and Cligue problems
(see Exercise 2.26), and thus it suffices to establish the NP-hardness of one of these
problems.

Proposition 2.26: The problems Vertex Cover, Independent Set and
Clique are NP-complete.

Teaching note: The following reduction is not the “standard” one (see Exercise 2.27). It is
rather adapted from the FGLSS-reduction (see Exercise 9.18), and is used here in anticipation
of the latter. Furthermore, although the following reduction tends to create a larger graph, the
author finds it clearer than the “standard” reduction.

Proof Sketch: We show a reduction from 3SAT to Independent Set.Oninputa
3CNF formula ¢ with m clauses and » variables, we construct a graph with 7m ver-
tices, denoted G4. The vertices are grouped in m cliques, each corresponding to one
ofthe clauses and containing 7 vertices that correspond to the 7 truth assignments (to
the 3 variables in the clause) that satisfy the clause. In addition to the internal edges
of these m cliques, we add an edge between each pair of vertices that correspond to
partial assignments that are mutually inconsistent. That is, if a specific (satisfying)
assignment to the variables of the i clause is inconsistent with some (satisfying)
assignment to the variables of the j™ clause then we connect the corresponding
vertices by an edge. (Note that the internal edges of the m cliques may be viewed as
a special case of the edges connecting mutually inconsistent partial assignments.)
Thus, on input ¢, the reduction outputs the pair (G4, m).

Note that if ¢ is satisfiable by a truth assignment 7 then there are no edges
between the m vertices that correspond to the partial satisfying assignment derived
from 7. (We stress that any truth assignment to ¢ yields an independent set, but only
a satisfying assignment guarantees that this independent set contains a vertex from
each of the m cliques.) Thus, ¢ € SAT implies that G4 has an independent set of
size m. On the other hand, an independent set of size m in G must contain exactly
one vertex in each of the m cliques, and thus induces a truth assignment that satisfies
¢. (We stress that each independent set induces a consistent truth assignment to ¢,
because the partial assignments selected in the various cliques must be consistent,
and that an independent set containing a vertex from a specific clique induces an
assignment that satisfies the corresponding clause.) Thus, if G4 has an independent
set of size m then ¢ € SAT. O

Graph 3-Colorability (G3C). In this problem the instances are graphs and the question is
whether or not the graph can be colored using three colors such that neighboring vertices
are not assigned the same color.
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Figure 2.3: The clause gadget and its sub-gadget. In a generic 3-coloring of the sub-gadget it must
hold that if x = y then x = ¥ = 1. Thus, if the three terminals of the gadget are assigned the same color,
X, then M is also assigned the color x.

Proposition 2.27: Graph 3-Colorability is NP-complete.

Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula ¢ to the graph
G, which consists of two special (“designated”) vertices, a gadget per each variable
of ¢, a gadget per each clause of ¢, and edges connecting some of these components.

e The two designated vertices are called ground and false, and are connected
by an edge that ensures that they must be given different colors in any 3-coloring
of G4. We will refer to the color assigned to the vertex ground (resp., false)
by the name ground (resp., £alse). The third color will be called true.

e The gadget associated with variable x is a pair of vertices, associated with the
two literals of x (i.e., x and —x). These vertices are connected by an edge, and
each of them is also connected to the vertex ground. Thus, in a 3-coloring of
G4 one of the vertices associated with the variable is colored t rue and the other
is colored false.

e The gadget associated with a clause C is depicted in Figure 2.3. It contains a
master vertex, denoted M, and three terminal vertices, denoted T1, T2, and T3.
The master vertex is connected by edges to the vertices ground and false, and
thus in a 3-coloring of G, the master vertex must be colored true. The gadget
has the property that it is possible to color the terminals with any combination
of the colors true and false, except for coloring all terminals with false.
The terminals of the gadget associated with clause C will be identified with the
vertices that are associated with the corresponding literals appearing in C. This
means that the various clause gadgets are not vertex-disjoint but may rather share
some terminals (with the variable gadgets as well as among themselves)."” See
Figure 2.4.

Verifying the validity of the reduction is left as an exercise. O

2.3.4. NP Sets That Are Neither in P nor NP-Complete

As stated in Section 2.3.3, thousands of problems have been shown to be NP-complete
(cf., [85, Apdx.], which contains a list of more than three hundreds main entries).
Things have reached a situation in which people seem to expect any NP-set to be either
NP-complete or in P. This naive view is wrong: Assuming N'P # P, there exist, sets

19Alternatively, we may use disjoint gadgets and “connect” each terminal with the corresponding literal (in the

corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget) should force the two endpoints to have the
same color in any 3-coloring of the graph.
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the two designated verices

variable gadgets

clause gadgets

Figure 2.4: A single clause gadget and the relevant variables gadgets.

in N'P that are neither NP-complete nor in P, where here NP-hardness allows also
Cook-reductions.

Theorem 2.28: Assuming N'P # P, there exists aset T in N'P \ P such that some
sets in N'P are not Cook-reducible to T.

Theorem 2.28 asserts that if VP # P then NP is partitioned into three non-empty classes:
the class P, the class of problems to which /P is Cook-reducible, and the rest, denoted
NPI. We already know that the first two classes are not empty, and Theorem 2.28
establishes the non-emptiness of NPZ under the condition that NP # P, which is
actually a necessary condition (because if NP = P then every set in NP is Cook-
reducible to any other set in A/P).

The following proof of Theorem 2.28 presents an unnatural decision problem in N'PZ.
We mention that some natural decision problems (e.g., some that are computationally
equivalent to factoring) are conjectured to be in A/PZ. We also mention that if NP #
coNP, where coNP = {{0, 1}*\ S : S € NP}, then A NP NcoNP C PUNPT
holds (as a corollary to Theorem 2.35). Thus, if NP # coNP then A \ P is a (natural)
subset of A"PZ, and the non-emptiness of N'PZ follows provided that A # P. Recall
that Theorem 2.28 establishes the non-emptiness of NPZ under the seemingly weaker
assumption that NP # P.

Teaching note: We recommend either stating Theorem 2.28 without a proof or merely pre-
senting the proof idea.

Proof Sketch: The basic idea is modifying an arbitrary set in NP \ P so as to fail all
possible reductions (from /P to the modified set) as well as all possible polynomial-
time decision procedures (for the modified set). Specifically, starting with
S € NP\ P,wederive S’ C S such that on the one hand there is no polynomial-time
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reduction of S to S while on the other hand S’ € NP \ P. The process of modi-
fying S into S’ proceeds in iterations, alternatively failing a potential reduction (by
dropping sufficiently many strings from the rest of §) and failing a potential decision
procedure (by including sufficiently many strings from the rest of .S). Specifically,
each potential reduction of S to S’ can be failed by dropping finitely many elements
from the current S’, whereas each potential decision procedure can be failed by
keeping finitely many elements of the current S’. These two assertions are based on
the following two corresponding facts:

1. Any polynomial-time reduction (of any set not in P) to any finite set (e.g., a finite
subset of S) must fail, because only sets in P are Cook-reducible to a finite set.
Thus, for any finite set F| and any potential reduction (i.e., a polynomial-time
oracle machine), there exists an input x on which this reduction to F; fails.

We stress that the aforementioned reduction fails while the only queries that are
answered positively are those residing in F). Furthermore, the aforementioned
failure is due to a finite set of queries (i.e., the set of all queries made by the
reduction when invoked on an input that is smaller or equal to x). Thus, for every
finite set F; C §’ C S, any reduction of S to S’ can be failed by dropping a finite
number of elements from S and without dropping elements of F}.

2. For every finite set F,, any polynomial-time decision procedure for S\ F, must
fail, because S is Cook-reducible to S\ F,. Thus, for any potential decision
procedure (i.e., a polynomial-time algorithm), there exists an input x on which
this procedure fails.

We stress that this failure is due to a finite “prefix” of S\ F; (i.e., the set {z
S\ F, :z <x}). Thus, for every finite set F;, any polynomial-time decision
procedure for S \ F, can be failed by keeping a finite subset of S \ F>.

As stated, the process of modifying S into S’ proceeds in iterations, alternatively
failing a potential reduction (by dropping finitely many strings from the rest of §)
and failing a potential decision procedure (by including finitely many strings from
the rest of .S). This can be done efficiently because it is inessential to determine the
first possible points of alternation (in which sufficiently many strings were dropped
(resp., included) to fail the next potential reduction (resp., decision procedure)). It
suffices to guarantee that adequate points of alternation (albeit highly non-optimal
ones) can be efficiently determined. Thus, $’ is the intersection of .S and some set
in P, which implies that S" € N'P. Following are some comments regarding the
implementation of the foregoing idea.

The first issue is that the foregoing plan calls for an (“effective”) enumeration of
all polynomial-time oracle machines (resp., polynomial-time algorithms). However,
none of these sets can be enumerated (by an algorithm). Instead, we enumerate
all corresponding machines along with all possible polynomials, and for each pair
(M, p) we consider executions of machine M with time bound specified by the
polynomial p. That is, we use the machine M, obtained from the pair (M, p) by
suspending the execution of M on input x after p(|x|) steps. We stress that we do
not know whether machine M runs in polynomial time, but the computations of any
polynomial-time machine is “covered” by some pair (M, p).

Next, let us clarify the process in which reductions and decision procedures are
ruled out. We present a construction of a “filter” set F' in P such that the final set S’
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will equal S N F. Recall that we need to select ' such that each polynomial-time
reduction of S to SN F fails, and each polynomial-time procedure for deciding
S N F fails. The key observation is that for every finite F’ each polynomial-time
reduction of S'to S N F” fails, whereas for every co-finite F” (i.e., finite {0, 1}* \ F’)
each polynomial-time procedure for deciding S N F’ fails. Furthermore, each of
these failures occurs on some input, and such an input can be determined by finite
portions of S and F. Thus, we alternate between failing possible reductions and
decision procedures on some inputs, while not trying to determine the “optimal”
points of alternation but rather determining points of alternation in an efficient
manner (which in turn allows for efficiently deciding membership in F'). Specifically,
we let F = {x : f(|x]) =1 mod 2}, where f : N — {0} UN will be defined such
that (i) each of the first f(n) — 1 machines is failed by some input of length at most
n, and (ii) the value f(n) can be computed in time poly(#n).

The value of f(n) is defined by the following process that performs exactly
n3 computation steps (where cubic time is a rather arbitrary choice). The process
proceeds in (an a priori unknown number of) iterations, where in the i + 1% iteration
we try to find an input on which the i 4+ 1% (modified) machine fails. Specifically,
in the i + 1% iteration we scan all inputs, in lexicographic order, until we find an
input on which the i + 1% (modified) machine fails, where this machine is an oracle
machine if i 4+ 1 is odd and a standard machine otherwise. If we detect a failure of
the i + 1% machine, then we increment i and proceed to the next iteration. When
we reach the allowed number of steps (i.e., n° steps), we halt outputting the current
value of i (i.e., the current i is output as the value of f(n)). Needless to say, this
description is heavily based on determining whether or not the i + 1% machine fails
on specific inputs. Intuitively, these inputs will be much shorter than n, and so
performing these decisions in time #n*® (or so0) is not out of the question — see next
paragraph.

In order to determine whether or not a failure (of the i + 1% machine) occurs
on a particular input x, we need to emulate the computation of this machine on
input x as well as determine whether x is in the relevant set (which is either S or
S’ = SN F). Recall that if i 4+ 1 is even then we need to fail a standard machine
(which attempts to decide S’) and otherwise we need to fail an oracle machine
(which attempts to reduce S to S’). Thus, for even i + 1 we need to determine
whether x is in 8" = SN F, whereas for odd i + 1 we need to determine whether
x is in S as well as whether some other strings (which appear as queries) are in .S'.
Deciding membership in S € NP can be done in exponential time (by using the
exhaustive search algorithm that tries all possible NP-witnesses). Indeed, this means
that when computing f(n) we may only complete the treatment of inputs that are
of logarithmic (in 7) length, but anyhow in n3 steps we cannot hope to reach (in
our lexicographic scanning) strings of length greater than 3 log, n. As for deciding
membership in F, this requires the ability to compute f on adequate integers. That
is, we may need to compute the value of f(n’) for various integers »’, but as noted
n’ will be much smaller than n (since n’ < poly(|x|) < poly(logr)). Thus, the value
of f(n’) is just computed recursively (while counting the recursive steps in our total
number of steps).”’ The point is that, when considering an input x, we may need the

2We do not bother to present a more efficient implementation of this process. That is, we may afford to recompute
f(n') every time we need it (rather than store it for later use).
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values of f only on {1, ..., p;y+1(]x])}, where p;,; is the polynomial bounding the
running time of the i + 1% (modified) machine, and obtaining such a value takes
at most p;11(|x|)* steps. We conclude that the number of steps performed toward
determining whether or not a failure (of the i 4+ 1% machine) occurs on the input x
is upper-bounded by an (exponential) function of |x]|.

As hinted in the foregoing, the procedure will complete n3 steps long before
examining inputs of length greater than 3 log, n, but this does not matter. What
matters is that f is unbounded (see Exercise 2.34). Furthermore, by construction,
f(n) is computed in poly(n) time. O

Comment. The proof of Theorem 2.28 actually establishes that for every S & P there
exists S' & P such that S’ is Karp-reducible to S but S is not Cook-reducible to S'.”' Thus,
if P £ NP then there exists an infinite sequence of sets Sy, Sy, ... in NP \ P such that
Si+1 1s Karp-reducible to S; but S; is not Cook-reducible to S;, ;. That is, there exists an
infinite hierarchy of problems (albeit unnatural ones), all in NP, such that each problem
is “easier” than the previous ones (in the sense that it can be reduced to the previous
problems while these problems cannot be reduced to it).

2.3.5. Reflections on Complete Problems

This book will perhaps only be understood by those who have themselves already
thought the thoughts which are expressed in it — or similar thoughts. It is therefore
not a text-book. Its object would be attained if it afforded pleasure to one who
read it with understanding.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Indeed, this section should be viewed as an invitation to meditate together on questions
of the type what enables the existence of complete problems? Accordingly, the style is
intentionally naive and imprecise; this entire section may be viewed as an open-ended
exercise, asking the reader to consider substantiations of the vague text.

We know that NP-complete problems exist. The question we ask here is what aspects
in our modeling of problems enables the existence of complete problems. We should, of
course, bear in mind that completeness refers to a class of problems; the complete problem
should “encode” each problem in the class and be itself in the class. Since the first aspect,
hereafter referred to as encodability of a class, is amazing enough (at least to a layman),
we start by asking what enables it. We identify two fundamental paradigms, regarding the
modeling of problems, that seem essential to the encodability of any (infinite) class of
problems:

1. Each problem refers to an infinite set of possible instances.
2. The specification of each problem uses a finite description (e.g., an algorithm that
enumerates all the possible solutions for any given instance).”

These two paradigms seem somewhat conflicting, yet put together they suggest the defini-
tion of a universal problem, that is, a problem that refers to instances of the form (D, x),

2 The said Karp-reduction (of S’ to S) maps x to itself if x € F and otherwise maps x to a fixed no-instance of S.

22This seems the most naive notion of a description of a problem. An alternative notion of a description refers to
an algorithm that recognizes all valid instance-solution pairs (as in the definition of NP). However, at this point, we
allow also “non-effective” descriptions (as giving rise to the Halting Problem).
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where D is a description of a problem and x is an instance to that problem (and we seek a
solution to x with respect to D). Intuitively, this universal problem can encode any other
problem (provided that problems are modeled in a way that conforms with the foregoing
paradigms): Solving the universal problem allows solving any other problem.”

Note that the foregoing universal problem is actually complete with respect to the
class of all problems, but it is not complete with respect to any class that contains only
(algorithmically) solvable problems (because this universal problem is not solvable).
Turning our attention to classes of solvable problems, we seek versions of the universal
problem that are complete for these classes. One archetypical difficulty that arises is that,
given a description D (as part of the instance to the universal problem), we cannot tell
whether or not D is a description of a problem in a predetermined class C (because this
decision problem is unsolvable). This fact is relevant because™ if the universal problem
requires solving instances that refer to a problem not in C then intuitively it cannot be
itself in C.

Before turning to the resolution of the foregoing difficulty, we note that the aforemen-
tioned modeling paradigms are pivotal to the theory of computation at large. In particular,
so far we made no reference to any complexity consideration. Indeed, a complexity con-
sideration is the key to resolving the foregoing difficulty: The idea is modifying any
description D into a description D’ such that D’ is always in C, and D’ agrees with D in
the case that D is in C (i.e., in this case they described exactly the same problem). We
stress that in the case that D is not in C, the corresponding problem D’ may be arbitrary
(as long as it is in C). Such a modification is possible with respect to many complexity
theoretic classes. We consider two different types of classes, where in both cases the class
is defined in terms of the time complexity of algorithms that do something related to the
problem (e.g., recognize valid solutions, as in the definition of NP).

1. Classes defined by a single time-bound function t (e.g., t(n) = n®). In this case,
any algorithm D is modified to the algorithm D’ that, on input x, emulates (up to)
t(]x]) steps of the execution of D(x). The modified version of the universal problem
treats the instance (D, x) as (D’, x). This version can encode any problem in the said
class C.

But will this (version of the universal) problem be itself in C? The answer depends
both on the efficiency of emulation in the corresponding computational model and on
the growth rate of 7. For example, for triple-exponential ¢, the answer will be definitely
yes, because #(|x|) steps can be emulated in poly(#(]x|)) time (in any reasonable model)
while #(|(D, x)|) > t(|x| + 1) > poly(¢(|x])). On the other hand, in most reasonable
models, the emulation of #(|x|) steps requires w(#(]x|)) time while for any polynomial
t it holds that #(n + O(1)) < 2¢(n).

2. Classes defined by a family of infinitely many functions of different growth rate (e.g.,
polynomials). We can, of course, select a function # that grows faster than any function
in the family and proceed as in the prior case, but then the resulting universal problem
will definitely not be in the class.

23Recall, however, that the universal problem is not (algorithmically) solvable. Thus, both clauses of the implication
are false. Indeed, the notion of a problem is rather vague at this stage; it certainly extends beyond the set of all solvable
problems.

*Here we ignore the possibility of using promise problems, which do enable avoiding such instances without
requiring anybody to recognize them. Indeed, using promise problems resolves this difficulty, but the issues discussed
following the next paragraph remain valid.
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Note that in the current case, a complete problem will indeed be striking because, in
particular, it will be associated with one function #, that grows more moderately than
some other functions in the family (e.g., a fixed polynomial grows more moderately
than other polynomials). Seemingly this means that the algorithm describing the
universal machine should be faster than some algorithms that describe some other
problems in the class. This impression presumes that the instances of both problems are
(approximately) of the same length, and so we intensionally violate this presumption
by artificially increasing the length of the description of the instances to the universal
problem. For example, if D is associated with the time bound 7p, then the instance
(D, x) to the universal problem is presented as, say, (D, x, 1% (x)")) where in the
case of NP we used #y(n) = n.

We believe that the last item explains the existence of NP-complete problems. But what
about the NP-completeness of SAT?

We first note that the NP-hardness of CSAT is an immediate consequence of the fact
that Boolean circuits can emulate algorithms.” This fundamental fact is rooted in the
notion of an algorithm (which postulates the simplicity of a single computational step)
and holds for any reasonable model of computation. Thus, for every D and x, the problem
of finding a string y such that D(x, y) = 1 is “encoded” as finding a string y such that
Cp.x(y) = 1, where Cp , is a Boolean circuit that is easily derived from (D, x). In contrast
to the fundamental fact underlying the NP-hardness of CSAT, the NP-hardness of SAT
relies on a clever trick that allows for encoding instances of CSAT as instances of SAT.

As stated, the NP-completeness of SAT is proved by encoding instances of CSAT as
instances of SAT. Similarly, the NP-completeness of other new problems is proved by
encoding instances of problems that are already known to be NP-complete. Typically,
these encodings operate in a local manner, mapping small components of the original
instance to local gadgets in the produced instance. Indeed, these problem-specific gadgets
are the core of the encoding phenomenon. Presented with such a gadget, it is typically
easy to verify that it works. Thus, one cannot be surprised by most of these gadgets, but
the fact that they exist for thousands of natural problem is definitely amazing.

2.4. Three Relatively Advanced Topics

In this section we discuss three relatively advanced topics. The first topic, which was
eluded to in previous sections, is the notion of promise problems (Section 2.4.1). Next we
present an optimal search algorithm for NP (Section 2.4.2), and discuss the class (coNP)
of sets that are complements of sets in NP.

Teaching note: These topics are typically not mentioned in a basic course on complexity.
Still, depending on time constraints, we suggest discussing them at least at a high level.

2.4.1. Promise Problems

Promise problems are a natural generalization of search and decision problems, where
one explicitly considers a set of legitimate instances (rather than considering any string as

ZThe fact that CSAT is in NP is a consequence of the fact that the circuit evaluation problem is solvable in
polynomial time.
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a legitimate instance). As noted previously, this generalization provides a more adequate
formulation of natural computational problems (and indeed this formulation is used in all
informal discussions). For example, in §2.3.3.2 we presented such problems using phrases
like “given a graph and an integer . . .” (or “given a collection of sets . . .”). In other words,
we assumed that the input instance has a certain format (or rather we “promised the
solver” that this is the case). Indeed, we claimed that in these cases the assumption can
be removed without affecting the complexity of the problem, but we avoided providing a
formal treatment of this issue, which is done next.

Teaching note: The notion of promise problems was originally introduced in the context of
decision problems, and is typically used only in that context. However, we believe that promise
problems are as natural in the context of search problems.

2.4.1.1. Definitions

In the context of search problems, a promise problem is a relaxation in which one is
only required to find solutions to instances in a predetermined set, called the promise.
The requirement regarding efficient checkability of solutions is adapted in an analogous
manner.

Definition 2.29 (search problems with a promise): A search problem with a promise
consists of a binary relation R C {0, 1}* x {0, 1}* and a promise set P. Such a
problem is also referred to as the search problem R with promise P.

o The search problem R with promise P is solved by algorithm A4 if for everyx € P
it holds that (x, A(x)) € Rifx € Sgp = {x : R(x) # 0} and A(x) = L otherwise,
where R(x) ={y : (x,y) € R}.

The time complexity of A4 on inputs in P is defined as T4 p(n) &t
maxXyepnio, 1y {£4(x)}, where t4(x) is the running time of A(x) and T4 p(n) = 0 if
PN{0,1}" =0.

e The search problem R with promise P is in the promise problem extension of

PF if there exists a polynomial-time algorithm that solves this problem.”

e The search problem R with promise P is in the promise problem extension of PC
if there exists a polynomial T and an algorithm A such that, for every x € P and
v € {0, 1}*, algorithm A makes at most T (|x|) steps and it holds that A(x, y) = 1
if and only if (x, y) € R.

We stress that nothing is required of the solver in the case that the input violates the
promise (i.e., x ¢ P); in particular, in such a case the algorithm may halt with a wrong
output. (Indeed, the standard formulation of search problems is obtained by considering
the trivial promise P = {0, 1}*.)”’ In addition to the foregoing motivation for promise
problems, we mention one natural class of search problems with a promise. These are
search problem in which the promise is that the instance has a solution (i.e., in terms of

2%1n this case it does not matter whether the time complexity of A is defined on inputs in P or on all possible
strings. Suppose that 4 has (polynomial) time complexity 7" on inputs in P; then we can modify 4 to halt on any input
x after at most 7'(|x|) steps. This modification may only effects the output of 4 on inputs not in P (which is OK by
us). The modification can be implemented in polynomial time by computing = 7'(|x|) and emulating the execution
of A(x) for ¢ steps. A similar comment applies to the definition of PC, P, and N'P.

*"Here we refer to the formulation presented in Section 2.1.4.
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the foregoing notation P = Sk, where Sg &ef {x : 3y s.t. (x, y) € R}). We refer to such
search problems by the name candid search problems.

Definition 2.30 (candid search problems): An algorithm A solves the candid search
problem of the binary relation R if for every x € Sp (i.e., for every (x, y)e R)
it holds that &x, A(x)) € R. The time complexity of such an algorithm is defined
as Ty s,(n) e maXyepnio, 1y {t4(x)}, where t4(x) is the running time of A(x) and
Tys(n) = 0if PN {0, 1)" =

Note that nothing is required when x & S: In particular, algorithm 4 may either output
a wrong solution (although no solutions exist) or run for more than 7 s,(|x|) steps. The
first case can be essentially eliminated whenever R € PC. Furthermore, for R € PC,
if we “know” the time complexity of algorithm A (e.g., if we can compute 7y4s,(n) in
poly(n)-time), then we may modify A into an algorithm A’ that solves the (general)
search problem of R (i.e., halts with a correct output on each input) in time 74 (n) =
T4, (n) + poly(n). However, we do not necessarily know the running time of an algorithm
that we consider. Furthermore, as we shall see in Section 2.4.2, the naive assumption by
which we always know the running time of an algorithm that we design is not valid
either.

Decision problems with a promise. In the context of decision problems, a promise
problem is a relaxation in which one is only required to determine the status of instances
that belong to a predetermined set, called the promise. The requirement of efficient
verification is adapted in an analogous manner. In view of the standard usage of the term,
we refer to decision problems with a promise by the name promise problems. Formally,
promise problems refer to a three-way partition of the set of all strings into yes-instances,
no-instances, and instances that violate the promise. Standard decision problems are
obtained as a special case by insisting that all inputs are allowed (i.e., the promise is
trivial).

Definition 2.31 (promise problems): 4 promise problem consists of a pair of non-
intersecting sets of strings, denoted (Syes, Sno), and Syes U Sy is called the promise.

o The promise problem (Syes, Sno) is solved by algorithm A if for every x € Sy it
holds that A(x) = 1 and for every x € Sy, it holds that A(x) = 0. The promise
problem is in the promise problem extension of P if there exists a polynomial-time
algorithm that solves it.

e The promise problem (Syes, Sno) is in the promise problem extension of NP if
there exists a polynomial p and a polynomial-time algorithm V such that the
Jfollowing two conditions hold:

1. Completeness: For every x € Sy, there exists y of length at most p(|x|) such
that V(x,y) = L
2. Soundness: For every x € Sy, and every y, it holds that V(x, y) = 0.

We stress that for algorithms of polynomial-time complexity, it does not matter whether
the time complexity is defined only on inputs that satisfy the promise or on all strings (see
footnote 26). Thus, the extended classes P and NP (like PF and PC) are invariant under
this choice.
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Reducibility among promise problems. The notion of a Cook-reduction extend natu-
rally to promise problems, when postulating that a query that violates the promise (of
the problem at the target of the reduction) may be answered arbitrarily.”® That is, the
oracle machine should solve the original problem no matter how queries that violate the
promise are answered. The latter requirement is consistent with the conceptual meaning
of reductions and promise problems. Recall that reductions capture procedures that make
subroutine calls to an arbitrary procedure that solves the reduced problem. But, in the case
of promise problems, such a solver may behave arbitrarily on instances that violate the
promise. We stress that the main property of a reduction is preserved (see Exercise 2.35):
If the promise problem 1 is Cook-reducible to a promise problem that is solvable in
polynomial time, then 11 is solvable in polynomial time.

We warn that the extension of a complexity class to promise problems does not neces-
sarily inherit the “structural” properties of the standard class. For example, in contrast to
Theorem 2.35, there exists promise problems in NP N coN P such that every set in NP
can be Cook-reduced to them: see Exercise 2.36. Needless to say, NP = coN P does not
seem to follow from Exercise 2.36. See further discussion at the end of §2.4.1.2.

2.4.1.2. Applications

The following discussion refers both to the decision and search versions of promise
problems. Recall that promise problems offer the most direct way of formulating natu-
ral computational problems (e.g., when referring to computational problems regarding
graphs, the promise mandates that the input is a graph). In addition to the foregoing
application of promise problems, we mention their use in formulating the natural notion
of a restriction of a computational problem to a subset of the instances. Specifically, such
a restriction means that the promise set of the restricted problem is a subset of the promise
set of the unrestricted problem.

Definition 2.32 (restriction of computational problems):

e [or any P’ C P and binary relation R, we say that the search problem R with
promise P’ is a restriction of the search problem R with promise P.

e We say that the promise problem (S, S,,) is a restriction of the promise problem
(Syes, Sno) if both S;es C Syes and S, S Syo hold.

For example, when we say that 3SAT is a restriction of SAT, we refer to the fact that
the set of allowed instances is now restricted to 3CNF formulae (rather than to arbitrary
CNF formulae). In both cases, the computational problem is to determine satisfiability (or
to find a satisfying assignment), but the set of instances (i.e., the promise set) is further
restricted in the case of 3SAT. The fact that a restricted problem is never harder than the
original problem is captured by the fact that the restricted problem is reducible to the
original one (via the identity mapping).

Other uses and some reservations. In addition to the two aforementioned generic uses
of the notion of a promise problem, we mention that this notion provides adequate

21t follows that Karp-reductions among promise problems are not allowed to make queries that violate the
promise. Specifically, we say that the promise problem IT = (Iyes, ITno) is Karp-reducible to the promise problem
" = (I, IT,,) if there exists a polynomial-time mapping /" such that for every x € Iy, (resp., x € ITno) it holds

that f(x) € Mj (resp., f(x) € Iy,).
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formulations for a variety of specific computational complexity notions and results. Ex-
amples include the notion of “unique solutions” (see Section 6.2.3) and the formulation of
“gap problems” as capturing various approximation tasks (see Section 10.1). In all these
cases, promise problems allow for discussing natural computational problems and mak-
ing statements about their inherent complexity. Thus, the complexity of promise problems
(and classes of such problems) addresses natural questions and concerns. Consequently,
demonstrating the intractability of a promise problem that belongs to some class (e.g., say-
ing that some promise problem in NP cannot be solved by a polynomial-time algorithm)
carries the same conceptual message as demonstrating the intractability of a standard prob-
lem in the corresponding class. In contrast, as indicated at the end of §2.4.1.1, structural
properties of promise problems may not hold for the corresponding classes of standard
problems (e.g., see Exercise 2.36). Indeed, we do distinguish here between the inherent
(or absolute) properties such as intractability and structural (or relative) properties such as
reducibility.

2.4.1.3. The Standard Convention of Avoiding Promise Problems

Recall that, although promise problems provide a good framework for presenting natural
computational problems, we managed to avoid this framework in previous sections. This
was done by relying on the fact that, for all the (natural) problems considered in the
previous sections, it is easy to decide whether or not a given instance satisfies the promise.
For example, given a formula it is easy to decide whether or not it is in CNF (or 3CNF).
Actually, the issue arises already when talking about formulae: What we are actually given
is a string that is supposed to encode a formula (under some predetermined encoding
scheme), and so the promise (which is easy to decide for natural encoding schemes) is
that the input string is a valid encoding of some formula. In any case, if the promise
is efficiently recognizable (i.e., membership in it can be decided in polynomial time),
then we may avoid mentioning the promise by using one of the following two “nasty”
conventions:

1. Extending the set of instances to the set of all possible strings (and allowing trivial
solutions for the corresponding dummy instances). For example, in the case of a
search problem, we may either define all instances that violate the promise to have no
solution or define them to have a trivial solution (e.g., be a solution for themselves);
that is, for a search problem R with promise P, we may consider the (standard) search
problem of R where R is modified such that R(x) = @ for every x & P (or, say,
R(x) = {x} for every x ¢ P). In the case of a promise (decision) problem (Sycs, Sno),
we may consider the problem of deciding membership in Syes, which means that
instances that violate the promise are considered as no-instances.

2. Considering every string as a valid encoding of an object that satisfies the promise.
That is, fixing any string x, that satisfies the promise, we consider every string that
violates the promise as if it were x¢. In the case of a search problem R with promise
P, this means considering the (standard) search problem of R where R is modified
such that R(x) = R(x¢) for every x ¢ P. Similarly, in the case of a promise (decision)
problem (Syes, Sno), we consider the problem of deciding membership in Sye (provided
Xo € Spo and otherwise we consider the problem of deciding membership in {0, 1}* \
Sno)-

We stress that in the case that the promise is efficiently recognizable the aforementioned
conventions (or modifications) do not effect the complexity of the relevant (search or
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decision) problem. That is, rather than considering the original promise problem, we
consider a (search or decision) problem (without a promise) that is computationally
equivalent to the original one. Thus, in some sense we lose nothing by studying the latter
problem rather than the original one. On the other hand, even in the case that these two
problems are computationally equivalent, it is useful to have a formulation that allows
for distinguishing between them (as we do distinguish between the different NP-complete
problems although they are all computationally equivalent). This conceptual concern
becomes of crucial importance in the case (to be discussed next) that the promise is not
efficiently recognizable.

The foregoing transformations of promise problems into computationally equivalent
standard (decision and search) problems do not necessarily preserve the complexity of
the problem in the case that the promise is not efficiently recognizable. In this case, the
terminology of promise problems is unavoidable. Consider, for example, the problem of
deciding whether a Hamiltonian graph is 3-colorable. On the face of it, such a problem
may have fundamentally different complexity than the problem of deciding whether a
given graph is both Hamiltonian and 3-colorable.

In spite of the foregoing opinions, we adopt the convention of focusing on standard
decision and search problems. That is, by default, all complexity classes discussed in
this book refer to standard decision and search problems, and the exceptions in which
we refer to promise problems are explicitly stated as such. Such exceptions appear in
Sections 2.4.2, 6.1.3, 6.2.3, and 10.1.

2.4.2. Optimal Search Algorithms for NP

We actually refer to solving the candid search problem of any relation in PC. Recall that
PC is the class of search problems that allow for efficient checking of the correctness of
candidate solutions (see Definition 2.3), and that the candid search problem is a search
problem in which the solver is promised that the given instance has a solution (see
Definition 2.30).

We claim the existence of an optimal algorithm for solving the candid search problem
of any relation in PC. Furthermore, we will explicitly present such an algorithm, and
prove that it is optimal in a very strong sense: For any algorithm solving the candid
search problem of R € PC, our algorithm solves the same problem in time that is at
most a constant factor slower (ignoring a fixed additive polynomial term, which may be
disregarded in the case that the problem is not solvable in polynomial time). Needless to
say, we do not know the time complexity of the aforementioned optimal algorithm (indeed
if we knew it then we would have resolved the P-vs-NP Question). In fact, the P-vs-NP
Question boils down to determining the time complexity of a single explicitly presented
algorithm (i.e., the optimal algorithm claimed in Theorem 2.33).

Theorem 2.33: For every binary relation R € PC there exists an algorithm A that
satisfies the following:

1. A solves the candid search problem of R.

2. There exists a polynomial p such that for every algorithm A’ that solves the
candid search problem of R and for every x € Sy (i.e., for every (x, y)€ R) it
holds that t4(x) = O(ty(x) + p(|x|)), where t4(x) (resp., t4(x)) denotes the
number of steps taken by A (resp., A') on input x.
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Interestingly, we establish the optimality of 4 without knowing what its (optimal) running
time is. Furthermore, the optimality claim is “pointwise” (i.e., it refers to any input) rather
than “global” (i.e., referring to the (worst-case) time complexity as a function of the input
length).

We stress that the hidden constant in the O-notation depends only on A4’, but in the
following proofthis dependence is exponential in the length of the description of algorithm
A’ (and it is not known whether a better dependence can be achieved). Indeed, this
dependence as well as the idea underlying it constitute one negative aspect of this otherwise
amazing result. Another negative aspect is that the optimality of algorithm A refers only
to inputs that have a solution (i.e., inputs in Sg). Finally, we note that the theorem as
stated refers only to models of computation that have machines that can emulate a given
number of steps of other machines with a constant overhead. We mention that in most
natural models the overhead of such emulation is at most poly-logarithmic in the number
of steps, in which case it holds that 74(x) = O(t4(x) + p(|x])).

Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decides
membership in R, and let p be a polynomial bounding the running time of M
(as a function of the length of the first element in the input pair). Using M, we
present an algorithm A that solves the candid search problem of R as follows. On
input x, algorithm A emulates all possible search algorithms “in parallel” (on input
x), checks the result provided by each of them (using M), and halts whenever it
recognizes a correct solution. Indeed, most of the emulated algorithms are totally
irrelevant to the search, but using M we can screen the bad solutions offered by
them and output a good solution once obtained.

Since there are infinitely many possible algorithms, it may not be clear what
we mean by the expression “emulating all possible algorithms in parallel.” What
we mean is emulating them at different “rates” such that the infinite sum of these
rates converges to 1 (or to any other constant). Specifically, we will emulate the
i possible algorithm at rate 1/(i + 1)?, which means emulating a single step of
this algorithm per (i + 1)? emulation steps (performed for all algorithms). Note that
a straightforward implementation of this idea may create a significant overhead,
involved in switching frequently from the emulation of one machine to the emula-
tion of another. Instead, we present an alternative implementation that proceeds in
iterations.

In the ;" iteration, for i = 1, ...,2//2 — 1, algorithm A emulates 2/ /(i + 1)?
steps of the i™ machine (where the machines are ordered according to the lexico-
graphic order of their descriptions). Each of these emulations is conducted in one
chunk, and thus the overhead of switching between the various emulations is in-
significant (in comparison to the total number of steps being emulated). In the case
that one or more of these emulations (on input x) halt with output y, algorithm 4
invokes M on input (x, y) and output y if and only if M(x, y) = 1. Furthermore,
the verification of a solution provided by a candidate algorithm is also emulated at
the expense of its step count. (Put in other words, we augment each algorithm with
a canonical procedure (i.e., M) that checks the validity of the solution offered by
the algorithm.)

By its construction, whenever A(x) outputs a string y (i.e., y # L) it must hold
that (x, y) € R. To show the optimality of 4, we consider an arbitrary algorithm
A’ that solves the candid search problem of R. Our aim is to show that 4 is

93



P, NP, AND NP-COMPLETENESS

not much slower than A’. Intuitively, this is the case because the overhead of 4
results from emulating other algorithms (in addition to 4’), but the total number
of emulation steps wasted (due to these algorithms) is inversely proportional to
the rate of algorithm A’, which in turn is exponentially related to the length of the
description of A". The punch line is that since 4’ is fixed, the length of its description
is a constant. Details follow.

For every x, let us denote by ¢'(x ) the number of steps taken by A’ on input x, where
t'(x) also accounts for the running time of M(x, -); that is, #'(x) = t4(x) + p(|x]),
where 74 (x) is the number of steps taken by A’(x) itself. Then, the emulation
of t'(x) steps of A’ on input x is “covered” by the ;™ iteration of 4, provided
that 2/ /(2/4#1)2 > ¢'(x) where |4'| denotes the length of the description of A’.
(Indeed, we use the fact that the algorithms are emulated in lexicographic order, and
note that there are at most 2/4'*! — 2 algorithms that precede 4’ in lexicographic
order.) Thus, on input x, algorithm A halts after at most j(x) iterations, where
Ja(x) =2(14"] + 1) 4+ log,(t4(x) + p(|x])), after emulating a total number of steps
that is at most

() 221 )
Jar(x) 9J

1) & Z Z T <P =2 ) + (),

The question of how much time is required for emulating these many steps depends
on the specific model of computation. In many models of computation, the emulation
of ¢ steps of one machine by another machine requires O(t) steps of the emulating
machines, and in some models this emulation can even be performed with constant
overhead. The theorem follows. O

Comment. By construction, the foregoing algorithm A4 does not halt on input x & Si.
This can be easily rectified by letting 4 emulate a straightforward exhaustive search for a
solution, and halt with output _L if and only if this exhaustive search indicates that there
is no solution to the current input. This extra emulation can be performed in parallel to
all other emulations (e.g., at a rate of one step for the extra emulation per each step of
everything else).

2.4.3. The Class coNP and Its Intersection with NP

By prepending the name of a complexity class (of decision problems) with the prefix “co
we mean the class of complement sets; that is,

coC & ({0, 1)*\ S: S ec). (2.4)
Specifically, coNP = {{0, 1}* \ S : § € NP} is the class of sets that are complements of
sets in N'P.

Recalling that sets in NP are characterized by their witness relations such that x € S
if and only if there exists an adequate NP-witness, it follows that their complement
sets consist of all instances for which there are no NP-witnesses (i.e., x € {0, 1}*\ S
if there is no NP-witness for x being in S). For example, SAT € AN'P implies that the
set of unsatisfiable CNF formulae is in coNP. Likewise, the set of graphs that are not
3-colorable is in co/NP. (Jumping ahead, we mention that it is widely believed that these
sets are not in N'P.)
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Another perspective on coNP is obtained by considering the search problems in
PC. Recall that for such R € PC, the set of instances having a solution (i.e., Sg = {x :
Jy s.t. (x, y)€ R}) is in N'P. It follows that the set of instances having no solution (i.e.,
{0, 1Y\ Sg = {x : Vy (x, )€ R}) is in coNP.

It is widely believed that NP # coNP (which means that NP is not closed under
complementation). Indeed, this conjecture implies P # NP (because P is closed under
complementation). The conjecture NP # co/NP means that some sets in coNP do not
have NP-proof systems (because NP is the class of sets having NP-proof systems). As
we will show next, under this conjecture, the complements of NP-complete sets do not
have NP-proof systems; for example, there exists no NP-proof system for proving that a
given CNF formula is not satisfiable. We first establish this fact for NP-completeness in
the standard sense (i.e., under Karp-reductions, as in Definition 2.17).

Proposition 2.34: Suppose that N'P # coN'P and let S € NP such that every set
in N'P is Karp-reducible to S. Then S &ef {0, 1}*\ S is not in N'P.

Proof Sketch: We first observe that the fact that every set in AP is Karp-reducible
to S implies that every set in coNP is Karp-reducible to S. We next claim that if
S is in N'P then every set that is Karp-reducible to S’ is also in N'P. Applying the
claim to S’ = S, we conclude that S € NP implies coN'P € NP, which in turn
implies NP = co/N'P in contradiction to the main hypothesis.

We now turn to prove the foregoing claim; that is, we prove that if S" has an NP-
proof system and S” is Karp-reducible to S’ then S” has an NP-proof system. Let
7’ be the verification procedure associated with S, and let f be a Karp-reduction
of §” to §’. Then, we define the verification procedure V" (for membership in S”)
by V"(x,y) = V'(f(x), y). That is, any NP-witness that f(x) € S’ serves as an
NP-witness for x € S” (and these are the only NP-witnesses for x € S”). This may
not be a “natural” proof system (for S”), but it is definitely an NP-proof system
for S”. O

Assuming that A'P # co/N'P, Proposition 2.34 implies that sets in NP N coN P can-
not be NP-complete with respect to Karp-reductions. In light of other limitations
of Karp-reductions (see, e.g., Exercise 2.7), one may wonder whether or not the ex-
clusion of NP-complete sets from the class NP N coN P is due to the use of a restricted
notion of reductions (i.e., Karp-reductions). The following theorem asserts that this is not
the case: Some sets in N'P cannot be reduced to sets in the intersection N'P N coNP
even under general reductions (i.e., Cook-reductions).

Theorem 2.35: [fevery setin N'P can be Cook-reduced to some set in N'P N coN'P
then N'P = coN'P.

In particular, assuming NP # co/N P, no set in NP N co/NP can be NP-complete, even
when NP-completeness is defined with respect to Cook-reductions. Since NP N coN'P
is conjectured to be a proper superset of P, it follows (assuming NP # co/NP) that there
are decision problems in NP that are neither in P nor NP-hard (i.e., specifically, the
decision problems in (VP N coNP) \ P). We stress that Theorem 2.35 refers to standard
decision problems and not to promise problems (see Section 2.4.1 and Exercise 2.36).
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Proof: Analogously to the proof of Proposition 2.34 , the current proof boils down to
proving that if' S is Cook-reducible to a set in N'P N\ coN'P then S € NP N coNP.
Using this claim, the theorem’s hypothesis implies that NP € NP N coNP, which
in turn implies NP C coN'P and N'P = coN'P (see Exercise 2.37).

Fixing any S and §" € NP N coNP such that S is Cook-reducible to S, we
prove that S € N'P (and the proof that S € coNP is similar).”” Let us denote by M
the oracle machine reducing S to §’. That is, on input x, machine M makes queries
and decides whether or not to accept x, and its decision is correct provided that all
queries are answered according to S’. To show that S € AP, we will present an NP-
proof system for S. This proof system (or rather its verification procedure), denoted
V', accepts a pair of the form (x, ((z1, o1, wy), ..., (2, 07, wy)) if the following two
conditions hold:

1. Oninput x, machine M accepts after making the queries zy, . . ., z;, and obtaining
the corresponding answers oy, ..., 0;.

That is, V' checks that, on input x, after obtaining the answers oy, ..., 0;_; to
the first i — 1 queries, the i™ query made by M equals z;. In addition, ¥ checks
that, on input x and after receiving the answers o1, . . ., g;, machine M halts with
output 1 (indicating acceptance).

Note that 7 does not have oracle access to §’. The procedure V rather em-
ulates the computation of M(x) by answering, for each i, the i™ query of
M(x) by using the bit o; (provided to V' as part of its input). The correct-
ness of these answers will be verified (by V') separately (i.e., see the next
item).

2. For every i, it holds that if o; = 1 then w; is an NP-witness for z; € §’, whereas
if o; = 0 then w; is an NP-witness for z; € {0, 1}*\ §'.
Thus, if this condition holds then it is the case that each o; indicates the correct
status of z; with respect to S’ (i.e., 0; = 1 if and only if z; € ).

We stress that we use the fact that both S’ and S def {0, 1}* \ S have NP-proof

systems, and refer to the corresponding NP-witnesses.

Note that V' is indeed an NP-proof system for S. Firstly, the length of the cor-
responding witnesses is bounded by the running time of the reduction (and the
length of the NP-witnesses supplied for the various queries). Next note that
runs in polynomial-time (i.e., verifying the first condition requires an emulation
of the polynomial-time execution of M on input x when using the o;’s to emulate
the oracle, whereas verifying the second condition is done by invoking the rele-
vant NP-prod(;{ systems). Finally, observe that x € § if and only if there exists a
sequence y = ((z1, o1, wy), .. ., (27, 07, wy)) such that V(x, y) = 1. In particular,
V(x,y) =1 holds only if y contains a valid sequence of queries and answers as
made in a computation of M on input x and oracle access to S’, and M accepts
based on that sequence. |

The world view — a digest. Recall that on top of the P # NP conjecture, we mentioned
two other conjectures (which clearly imply P # N'P):

2()Alternatively, we show that S € coNP by applying the following argument to S «f {0, 1}* \ S and noting that
S is Cook-reducible to S’ (via S, or alternatively that S is Cook-reducible to {0, 1}* \ &' € NP N coNP).
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<---coNP

Figure 2.5: The world view under P # coN'P N NP # NP.

1. The conjecture that NP # coN P (equivalently, NP N coN'P # NP).

This conjecture is equivalent to the conjecture that CNF formulae have no short proofs
of unsatisfiability (i.e., the set {0, 1}* \ SAT has no NP-proof system).

2. The conjecture that NP N coN'P # P.

Notable candidates for the class NP N coN'P # P include decision problems that
are computationally equivalent to the integer factorization problem (i.e., the search
problem (in PC) in which, given a composite number, the task is to find its prime
factors).

Combining these conjectures, we get the world view depicted in Figure 2.5, which also
shows the class of coNP-complete sets (defined next).

Definition 2.36: A set S is called coN P-hard if every set in coN P is Karp-reducible
to S. A set is called coNP-complete if it is both in coN'P and coN P-hard.

Indeed, insisting on Karp-reductions is essential for a distinction between A/ P-hardness
and co/NP-hardness.

Chapter Notes

Many sources provide historical accounts of the developments that led to the formulation
of the P-vs-NP Problem and to the discovery of the theory of NP-completeness (see,
e.g., [85, Sec. 1.5] and [221]). Still, we feel that we should not refrain from offering our
own impressions, which are based on the texts of the original papers.

Nowadays, the theory of NP-completeness is commonly attributed to Cook [58],
Karp [138], and Levin [152]. It seems that Cook’s starting point was his interest in
theorem-proving procedures for propositional calculus [58, p. 151]. Trying to provide
evidence of the difficulty of deciding whether or not a given formula is a tautology, he
identified NP as a class containing “many apparently difficult problems™ (cf, e.g., [58,
p. 151]), and showed that any problem in A/P is reducible to deciding membership in the
set of 3DNF tautologies. In particular, Cook emphasized the importance of the concept
of polynomial-time reductions and the complexity class NP (both explicitly defined for
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the first time in his paper). He also showed that CLIQUE is computationally equivalent to
SAT, and envisioned a class of problems of the same nature.

Karp’s paper [138] can be viewed as fulfilling Cook’s prophecy: Stimulated by Cook’s
work, Karp demonstrated that a “large number of classic difficult computational prob-
lems, arising in fields such as mathematical programming, graph theory, combinatorics,
computational logic and switching theory, are [NP-]complete (and thus equivalent)” [138,
p. 86]. Specifically, his list of twenty-one NP-complete problems includes Integer Lin-
ear Programming, Hamilton Circuit, Chromatic Number, Exact Set Cover, Steiner Tree,
Knapsack, Job Scheduling, and Max Cut. Interestingly, Karp defined NP in terms of
verification procedures (i.e., Definition 2.5), pointed to its relation to “backtrack search
of polynomial bounded depth” [138, p. 86], and viewed NP as the residence of a “wide
range of important computational problems” (which are not in P).

Independently of these developments, while being in the USSR, Levin proved the ex-
istence of “universal search problems” (where universality meant NP-completeness). The
starting point of Levin’s work [152] was his interest in the “perebor” conjecture asserting
the inherent need for brute force in some search problems that have efficiently checkable
solutions (i.e., problems in PC). Levin emphasized the implication of polynomial-time
reductions on the relation between the time complexity of the related problems (for
any growth rate of the time complexity), asserted the NP-completeness of six “classical
search problems,” and claimed that the underlying method “provides a mean for readily
obtaining” similar results for “many other important search problems.”

It is interesting to note that although the works of Cook [58], Karp [138], and
Levin [152] were received with different levels of enthusiasm, none of the contempo-
raries realized the depth of the discovery and the difficulty of the question posed (i.e., the
P-vs-NP Question). This fact is evident in every account from the early 1970s, and may
explain the frustration of the corresponding generation of researchers, which expected the
P-vs-NP Question to be resolved in their lifetime (if not in a matter of years). Needless to
say, the author’s opinion is that there was absolutely no justification for these expectations,
and that one should have actually expected quite the opposite.

We mention that the three “founding papers” of the theory of NP-completeness (i.e.,
Cook [58], Karp [138], and Levin [152]) use the three different types of reductions used in
this chapter. Specifically, Cook uses the general notion of polynomial-time reduction [58],
often referred to as Cook-reductions (Definition 2.9). The notion of Karp-reductions
(Definition 2.11) originates from Karp’s paper [138], whereas its augmentation to search
problems (i.e., Definition 2.12) originates from Levin’s paper [152]. It is worth stressing
that Levin’s work is stated in terms of search problems, unlike Cook’s and Karp’s works,
which treat decision problems.

The reductions presented in §2.3.3.2 are not necessarily the original ones. Most no-
tably, the reduction establishing the NP-hardness of the Independent Set problem (i.e.,
Proposition 2.26) is adapted from [74] (see also Exercise 9.18). In contrast, the reductions
presented in §2.3.3.1 are merely a reinterpretation of the original reduction as presented
in [58]. The equivalence of the two definitions of AP (i.e., Theorem 2.8) was proved
in [138].

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 2.28) was
proven by Ladner [149], Theorem 2.35 was proven by Selman [198], and the existence of
optimal search algorithms for NP-relations (i.e., Theorem 2.33) was proven by Levin [152].
(Interestingly, the latter result was proven in the same paper in which Levin presented
the discovery of NP-completeness, independently of Cook and Karp.) Promise problems
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were explicitly introduced by Even, Selman, and Yacobi [72]; see [94] for a survey of
their numerous applications.

We mention that the standard reductions used to establish natural NP-completeness
results have several additional properties or can be modified to have such properties. These
properties include an efficient transformation of solutions in the direction of the reduction
(see Exercise 2.28), the preservation of the number of solutions (see Exercise 2.29),
the computability by a log-space algorithm (see Section 5.2.2), and the invertibility in
polynomial-time (see Exercise 2.30). We also mention the fact that all known NP-complete
sets are (effectively) isomorphic (see Exercise 2.31).

Exercises

Exercise 2.1 (PF contains problems that are notin PC): Show that P contains some
(unnatural) problems that are not in PC.

Guideline: Consider the relation R = {(x, 1) : x € {0, 1}*} U {(x,0) : x € S}, where
S is some undecidable set. Note that R is the disjoint union of two binary relations,
denoted R; and R,, where R, is in PJF whereas R, is not in PC. Furthermore, for
every x it holds that R;(x) # @.

Exercise 2.2: Show that any S € NP has many different NP-proof systems (i.e., verifi-
cation procedures Vi, V2, ... such that V;(x, y) = 1 does not imply V;(x, y) =1 for
L)

Guideline: For V" and p as in Definition 2.5, define V;(x, y) = 1 if |y| = p(|x]) +i
and there exists a prefix )’ of y such that V'(x, y') = 1.

Exercise 2.3: Relying on the fact that primality is decidable in polynomial time and
assuming that there is no polynomial-time factorization algorithm, present two “natural
but fundamentally different” NP-proof systems for the set of composite numbers.

Guideline: Consider the following verification procedures ¥} and V; for the set of
composite numbers. Let Vi(n, y) = 1 if and only if y = »n and # is not a prime, and
V(n, m) = 1 if and only if m is a non-trivial divisor of #n. Show that valid proofs with
respect to V7 are easy to find, whereas valid proofs with respect to ¥, are hard to find.

Exercise 2.4: Regarding Definition 2.7, show that if S is accepted by some non-
deterministic machine of time complexity ¢ then it is accepted by a non-deterministic
machine of time complexity O(¢) that has a transition function that maps each possible
symbol-state pair to exactly two triples.

Exercise 2.5: Verify the following properties of Cook-reductions:

1. If T is Cook-reducible to 1" and IT’ is solvable in polynomial time then so is IT.

2. Cook-reductions are transitive (i.e., if IT is Cook-reducible to IT" and IT" is Cook-
reducible to I1” then IT is Cook-reducible to I1”).

3. If IT is solvable in polynomial time then it is Cook-reducible to any problem IT'.

In continuation of the last item, show that a problem IT is solvable in polynomial time
if and only if it is Cook-reducible to a trivial problem (e.g., deciding membership in
the empty set).

Exercise 2.6: Show that Karp-reductions (and Levin-reductions) are transitive.
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Exercise 2.7: Show that some decision problems are not Karp-reducible to their comple-
ment (e.g., the empty set is not Karp-reducible to {0, 1}*).

A popular exercise of dubious nature is showing that any decision problem in P
is Karp-reducible to any non-trivial decision problem, where the decision problem
regarding a set S is called non-trivial if S # ¢ and S # {0, 1}*. It follows that every
non-trivial set in P is Karp-reducible to its complement.

Exercise 2.8 (reducing search problems to optimization problems): For every polyno-
mially bounded relation R (resp., R € PC), present a function f (resp., a polynomial-
time computable function f) such that the search problem of R is computationally
equivalent to the search problem in which given (x, v) one has to finda y € {0, 1}Pb(xD
such that f(x, y) > v.

(Hint: Use a Boolean function.)

Exercise 2.9 (binary search): Show that using ¢ binary queries of the form “is z < v” it
is possible to determine the value of an integer z that is a priori known to reside in the
interval [0, 2¢ — 1].

Guideline: Consider a process that iteratively halves the interval in which z is known
to reside.

Exercise 2.10: Show that if R € PC \ PF is self-reducible then the relevant Cook-
reduction makes more than a logarithmic number of queries to Sg. More generally, show
that if R € PC \ PF is Cook-reducible to any decision problem, then this reduction
makes more than a logarithmic number of queries.

Guideline: Note that the oracle answers can be emulated by trying all possibilities,
and that the correctness of the output of the oracle machine can be efficiently tested.

Exercise 2.11: Show that the standard search problem of Graph 3-Colorability is self-
reducible, where this search problem consists of finding a 3-coloring for a given input
graph.

Guideline: Iteratively extend the current prefix of a 3-coloring of the graph by making
adequate oracle calls to the decision problem of Graph 3-Colorability. (Specifically,

encode the question of whether or not (xi,..., x;) € {1, 2,3} is a prefix of a 3-
coloring of the graph G as a query regarding the 3-colorability of an auxiliary graph
G/.)S()

Exercise 2.12: Show that the standard search problem of Graph Isomorphism is self-
reducible, where this search problem consists of finding an isomorphism between a
given pair of graphs.

Guideline: Iteratively extend the current prefix of an isomorphism between the two
N-vertex graphs by making adequate oracle calls to the decision problem of Graph
Isomorphism. (Specifically, encode the question of whether or not (1, ..., ;) € [N]’

3'Note that we merely need to check whether G has a 3-coloring in which the equalities and inequalities induced
by (x1, ..., x¢) hold. This can be done by adequate gadgets (e.g., inequality is enforced by an edge between the
corresponding vertices, whereas equality is enforced by an adequate subgraph that includes the relevant vertices as
well as auxiliary vertices). For Part 1 of Exercise 2.13, equality is better enforced by combining the two vertices.
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is a prefix of an isomorphism between G| = ([N], E) and G, = ([N], E,) as a query
regarding isomorphism between two auxiliary graphs G| and G5.)"'

Exercise 2.13 (downward self-reducibility): We say that a set S is downward self-
reducible if there exists a Cook-reduction of S to itself that only makes queries that are
each shorter than the reduction’s input (i.e., if on input x the reduction makes the query
q then |g| < |x]).”

1.

Show that SAT is downward self-reducible with respect to a natural encoding of
CNF formulae. Note that this encoding should have the property that instantiating a
variable in a formula results in a shorter formula.

A harder exercise consists of showing that Graph 3-Colorability is downward self-
reducible with respect to some reasonable encoding of graphs. Note that this encod-
ing has to be selected carefully (if it is to work for a process analogous to the one
used in Exercise 2.11).

. Suppose that S is downward self-reducible by a reduction that outputs the disjunction

of the oracle answers. (Note that this is the case for SAT.) Show that in this case,
S is characterized by a witness relation R € PC (i.e.,, S = {x : R(x) # (}) that is
self-reducible (i.e., the search problem of R is Cook-reducible to ). Needless to
say, it follows that S € N'P.

Guideline: Include (xg, (x,...,x;)) in R if x, € SN {0, 1}°M and, for every i €
{0,1,...,¢t— 1}, on input x; the self-reduction makes a set of queries that contains
Xi+1. Prove that, indeed, R € PC and S = {x : R(x) # 0}.

Note that the notion of downward self-reducibility may be generalized in some natural
ways. For example, we may say that S is downward self-reducible also in case it is
computationally equivalent via Karp-reductions to some set that is downward self-
reducible (in the foregoing strict sense). Note that Part 2 still holds.

Exercise 2.14 (NP problems that are not self-reducible):

1.

Assuming that P # NP N coN'P, show that there exists a search problem that is
in PC but is not self-reducible.

Guideline: Given S € NP N coNP \ P, present relations R, R, € PC such that § = {x :
Ri(x) # @} = {x : Ry(x) = #}. Then, consider the relation R = {(x, ly): (x,y) € Rj} U
{(x,0y) : (x, y) € Ry}, and prove that R ¢ PF but S = {0, 1}*.

2. Prove that if a search problem R is not self-reducible then (1) R ¢ PF and

(2) the set S = {(x,»") : 3Iy" s.t. (x,»'y")e R} is not Cook-reducible to Sp =
{x : 3y s.t. (x,y)eR}.

Exercise 2.15 (extending any prefix of any solution versus PC and PF): Assuming
that P # NP, present a search problem R in PC N PF such that deciding S} is not
reducible to the search problem of R.

3! This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mapped to one another (by
the isomorphism). For example, we may connect the vertices in the i pair to an auxiliary star consisting of (N + i)
vertices.

32Note that on some instances the reduction may make no queries at all. (This prevents a possible non-viability of
the definition due to very short instances.)
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Guideline: Consider the relation R = {(x, 0x) : x € {0, 1}*} U {(x, 1y) : (x, y) € R},
where R’ is an arbitrary relation in PC \ PF, and prove that R € PF but S}, & P.

Exercise 2.16: In continuation of Exercise 2.14, present a natural search problem R in
‘PC such that if factoring integers is intractable then the search problem R (and so also
2) 1s not reducible to Sg.

Guideline: Consider the relation R such that (N, Q) € R if the integer O is a non-
trivial divisor of the integer N. Use the fact that the set of prime numbers is in P.

Exercise 2.17: In continuation of Exercises 2.14 and 2.16, show that under suitable as-
sumptions, there exist relations R, R, € PC having the same implicit decision problem
(i.e., {x : Ri(x) # 0} = {x : Ry(x) # ¥}) such that R, is self-reducible but R; is not.

Exercise 2.18: Provide an alternative proof of Theorem 2.16 without referring to the set
m={(x,»): " st (x,y'y")eR}.
(Hint: Use Proposition 2.15.)

Guideline: Reduce the search problem of R to the search problem of Rgsar, next reduce
Rspr to SAT, and finally reduce SAT to Sk. Justify the existence of each of these three
reductions.

Exercise 2.19: Prove that Bounded Halting and Bounded Non-halting are NP-
complete, where the problems are defined as follows. The instance consists of a pair
(M, 1"), where M is a Turing machine and ¢ is an integer. The decision version
of Bounded Halting (resp., Bounded Non-halting) consists of determining
whether or not there exists an input (of length at most #) on which M halts (resp., does
not halt) in ¢ steps, whereas the search problem consists of finding such an input.

Guideline: Either modify the proof of Theorem 2.19 or present a reduction of (say)
the search problem of R, to the search problem of Bounded (Non-)Halting. (Indeed,
the exercise is more straightforward in the case of Bounded Halting.)

Exercise 2.20: In the proof of Theorem 2.21, we claimed that the value of each entry
in the “array of configurations” of a machine M is determined by the values of the
three entries that reside in the row above it (as in Figure 2.1). Present a function
fu T2 = ', whereI' = ¥ x (Q U {L}), that substantiates this claim.

Guideline: For example, for every oy, 03, 03 € X, it holds that fj,((o1, 1), (02, L),
(03, 1)) = (02, L). More interestingly, if the transition function of M maps (o, ¢) to
(z, p, +1) then, for every o1, 02, 03 € Q, it holds that fy,((o, ¢), (02, L), (03, L)) =
(02, p) and fu((o1, 1), (0, ), (03, L)) = (7, L).

Exercise 2.21: Present and analyze a reduction of SAT to 3SAT.

Guideline: For a clause C, consider auxiliary variables such that the i variable
indicates whether one of the first i literals is satisfied, and replace C by a 3CNF that
uses the original variables of C as well as the auxiliary variables. For example, the
clause Vi_,x; is replaced by the conjunction of 3CNFs that are logically equivalent to
the formulae (1, = (x; V x2)), (i = (yi—1 V x;)) fori =3, ..., t,and y,. We comment
that this is not the standard reduction, but we find it conceptually more appealing.™

33The standard reduction replaces the clause \/;=1xi by the conjunction of the 3CNFs (x1 V x2 V z23), (—zi—1) V
x;i Vzy)fori =3,...,¢t,and —z,.
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Exercise 2.22 (efficient solvability of 2SAT): In contrast to Exercise 2.21, prove that
28AT (i.e., the satisfiability of 2CNF formulae) is in P.

Guideline: Consider the following “forcing process” for CNF formulae. If the formula
contains a singleton clause (i.e., a clause having a single literal), then the corresponding
variable is assigned the only value that satisfies the clause, and the formula is simplified
accordingly (possibly yielding a constant formula, which is either t rue or false). The
process is repeated until the formula is either a constant or contains only non-singleton
clauses. Note that a formula ¢ is satisfiable if and only if the formula obtained from ¢
by the forcing process is satisfiable. Consider the following algorithm for solving the
search problem associated with 2SAT.

1. Choose an arbitrary variable in ¢. For each o € {0, 1}, denote by ¢, the formula
obtained from ¢ by assigning this variable the value o.

2. If, for some o € {0, 1}, applying the forcing process to ¢, yields a (non-constant)
2CNF formula ¢, then set ¢ < ¢’ and goto Step 1. (The case that this happens
for both o € {0, 1} is treated as the case that this happens for a single o; that is, in
such a case we proceed with an arbitrary choice of ¢.)

3. If one of these assignments yields (via the application of the forcing process) the
constant true then we halt with a satisfying assignment for the original formula.
Otherwise (i.e., both assignments yield the constant false), we halt asserting that
the original formula is unsatisfiable.

Proving the correctness of this algorithm boils down to observing that the arbitrary
choice made in Step 2 is immaterial. Indeed, this observation relies on the fact that we
refer to 2CNF formulae.

Exercise 2.23 (Integer Linear Programming): Prove that the following problem is NP-
complete. An instance of the problem is a systems of linear inequalities (say with
integer constants), and the problem is to determine whether the system has an integer
solution. A typical instance of this decision problem follows.

x+2y—z>3
—3x—z>-5
x>0
—x > —1

Guideline: Reduce from SAT. Specifically, consider an arithmetization of the input
CNF by replacing v with addition and —x by 1 — x. Thus, each clause gives rise to
an inequality (e.g., the clause x v —y is replaced by the inequality x + (1 — y) > 1,
which simplifies to x — y > 2). Enforce a 0-1 solution by introducing inequalities of
the form x > 0 and —x > —1, for every variable x.

Exercise 2.24 (Maximum Satisfiability of Linear Systems over GF(2)): Prove that the
following problem is NP-complete. An instance of the problem consists of a systems of
linear equations over GF(2) and an integer k, and the problem is to determine whether
there exists an assignment that satisfies at least & equations. (Note that the problem
of determining whether there exists an assignment that satisfies all the equations is
inP.)

Guideline: Reduce from 3SAT, using the following arithmetization. Replace each
clause that contains ¢ < 3 literals by 2’ — 1 linear GF(2) equations that correspond to
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the different non-empty subsets of these literals, and assert that their sum (modulo 2)
equals one; for example, the clause x Vv —y is replaced by the equations x + (1 — y) =
l,x = l,and | — y = 1.Identifying {false, true} with {0, 1}, prove thatif the original
clause is satisfied by a Boolean assignment v then exactly 2/~! of the corresponding
equations are satisfied by v, whereas if the original clause is unsatisfied by v then none
of the corresponding equations is satisfied by v.

Exercise 2.25 (Satisfiability of Quadratic Systems over GF(2)): Prove that the fol-
lowing problem is NP-complete. An instance of the problem consists of a system of
quadratic equations over GF(2), and the problem is to determine whether there exists an
assignment that satisfies all the equations. Note that the result holds also for systems of
quadratic equations over the reals (by adding conditions that enforce a value in {0, 1}).

Guideline: Start by showing that the corresponding problem for cubic equations is NP-
complete, by a reduction from 3SAT that maps the clause x v —y V z to the equation
(1 =x)-y-(1 —z)=0. Reduce the problem for cubic equations to the problem for
quadratic equations by introducing auxiliary variables; that is, given an instance with
variables xi, ..., x,, introduce the auxiliary variables x; ;’s and add equations of the
form Xij = Xi *Xj.

Exercise 2.26 (Clique and Independent Set): An instance of the Independent Set
problem consists of a pair (G, K), where G is a graph and K is an integer, and the
question is whether or not the graph G contains an independent set (i.e., a set with no
edges between its members) of size (at least) K. The C1igue problem is analogous.
Prove that both problems are computationally equivalent via Karp-reductions to the
Vertex Cover problem.

Exercise 2.27 (an alternative proof of Proposition 2.26): Consider the following sketch
of a reduction of 3SAT to Independent Set. On input a 3CNF formula ¢ with m
clauses and n variables, we construct a graph G4 consisting of m triangles (correspond-
ing to the m clauses) augmented with edges that link conflicting literals. That is, if x
appears as the " literal of the j{' clause and —x appears as the ii" literal of the ji!
clause, then we draw an edge between the i{" vertex of the ;! triangle and the il vertex
of the j2th triangle. Prove that ¢ € 3SAT if and only if G, has an independent set of
size m.

Exercise 2.28 (additional properties of standard reductions): In continuation of the
discussion in the main text, consider the following augmented form of Karp-reductions.
Such a reduction of R to R’ consists of three polynomial-time mappings (£, /, g) such
that f is a Karp-reduction of Sg to Sg and the following two conditions hold:

1. For every (x, y) € R it holds that ( f(x), k(x, y)) € R’.
2. For every (f(x), y") € R’ it holds that (x, g(x, ")) € R.

(We note that this definition is actually the one used by Levin in [152], except that he
restricted /# and g to depend only on their second argument.)

Prove that such a reduction implies both a Karp-reduction and a Levin-reduction, and
show that all reductions presented in this chapter satisfy this augmented requirement.
Furthermore, prove that in all these cases the main mapping (i.e., f) is 1-1 and
polynomial-time invertible.
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Exercise 2.29 (parsimonious reductions): Let R, R’ € PC and let f be a Karp-
reduction of Sgp = {x: R(x)#0} to Sp ={x:R'(x)#0}. We say that f is
parsimonious (with respect to R and R’) if for every x it holds that | R(x)| = |R'(f(x))|.
For each of the reductions presented in this chapter, check whether or not it is parsi-
monious. For the reductions that are not parsimonious, find alternative reductions that
are parsimonious (cf. [85, Sec. 7.3]).

Exercise 2.30 (on polynomial-time invertible reductions (following [37])): We say
that a set S is markable if there exists a polynomial-time (marking) algorithm M such
that

1. For every x, o € {0, 1}* it holds that
(a) M(x,a) e Sifandonlyifx € S.
(b) [M(x, )] > |x].

2. There exists a polynomial-time (de-marking) algorithm D such that, for every
x,a € {0, 1}*, it holds that D(M(x, @)) = «.

Note that all natural NP-sets (e.g., those considered in this chapter) are markable (e.g.,
for SAT, one may mark a formula by augmenting it with additional satisfiable clauses
that use specially designated auxiliary variables). Prove that if'S” is Karp-reducible to
S and S is markable then S’ is Karp-reducible to S by a length-increasing, one-to-
one, and polynomial-time invertible mapping.’ Infer that for any natural NP-complete
problem S, any set in AP is Karp-reducible to S by a length-increasing, one-to-one,
and polynomial-time invertible mapping.

Guideline: Let f be a Karp-reduction of S’ to S, and let M be the guaranteed marking
algorithm. Consider the reduction that maps x to M( f(x), x).

Exercise 2.31 (on the isomorphism of NP-complete sets (following [37])): Suppose
that S and 7 are Karp-reducible to one another by length-increasing, one-to-one,
and polynomial-time invertible mappings, denoted f and g, respectively. Using the
following guidelines, prove that S and 7T are “effectively” isomorphic; that is, present
a polynomial-time computable and invertible one-to-one mapping ¢ such that 7 =
$(S) = {p(x) : xS},

1. Let FE[f(x):xe{0,1}} and G {g(x):x€{0, 1}*}. Using the length-

preserving condition of f (resp., g), prove that F' (resp., G) is a proper subset
of {0, 1}*. Prove that for every y € {0, 1}* there exists a unique triple (j, x,7) €
{1,2} x {0, 1}* x g{f()} U N) that satisfies one of the following two conditions:

(@ j=1xeG={0,1)"\G,andy = (go f)(x);

(®) j=2xeF {0, 1)*\ F,andy = (g0 /) (gx)).

(In both cases h%(z) = z, h'(z) = h(h'~'(2)), and (g o f)(z) = g(f(z)). Hint: con-
sider the maximal sequence of inverse operations g~', f~!, g~!, ... that can be

applied to y, and note that each inverse shrinks the current string.)

2. Let Uy ¥ {(go f)(x):xeGAi>0} and U ¥ {(go f)(g(x)): xeF Ai>0}.

Prove that (U, U,) is a partition of {0, 1}*. Using the fact that f and g are length-
increasing and polynomial-time invertible, present a polynomial-time procedure for
deciding membership in the set U].

3*When given a string that is not in the image of the mapping, the inverting algorithm returns a special symbol.
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Prove the same for the sets V; ={(fog)(x):xeF Ai>0} and V, ={(f o
2 (f(x)):xeG Ai=>0}.

. Note that U, C G, and define ¢(x) &ef f(x)ifx € U, and ¢(x) &ef g~ !(x) otherwise.

(a) Prove that ¢ is a Karp-reduction of Sto 7.

(b) Note that ¢ maps U; to f(U;) = {f(x):xeU,} =V, and U, to g7 '(U,) =
{g7'(x) : x eU,} = Vj. Prove that ¢ is one-to-one and onto.

Observe that ¢~ '(x) = f~!(x) if x € f(U;) and ¢~ !(x) = g(x) otherwise. Prove

that ¢! is a Karp-reduction of T to S. Infer that ¢(S) = T.

Using Exercise 2.30, infer that all natural NP-complete sets are isomorphic.

Exercise 2.32: Prove that a set S is Karp-reducible to some set in NP if and only if S is
in N'P.

Guideline: For the non-trivial direction, see the proof of Proposition 2.34.

Exercise 2.33: Recall that the empty set is not Karp-reducible to {0, 1}*, whereas any set
is Cook-reducible to its complement. Thus, our focus here is on the Karp-reducibility
of non-trivial sets to their complements, where a set is non-trivial if it is neither empty
nor contains all strings. Furthermore, since any non-trivial set in P is Karp-reducible
to its complement (see Exercise 2.7), we assume that P % AP and focus on sets in

NP\ P.

1.

2.

Prove that NP = coN'P implies that some sets in NP \ P are Karp-reducible to
their complements.

Prove that N"P % co/NP implies that some sets in NP \ P are not Karp-reducible
to their complements.

Guideline: Use NP-complete sets in both parts, and Exercise 2.32 in the second part.

Exercise 2.34: Referring to the proof of Theorem 2.28, prove that the function f is
unbounded (i.e., for every i there exists an n such that n> steps of the process defined
in the proof allow for failing the i + 1% machine).

Guideline: Note that f* is monotonically non-decreasing (because more steps allow
for failing at least as many machines). Assume toward the contradiction that f is
bounded. Let i = sup,n{f(n)} and »n’ be the smallest integer such that f(n") =i.
If i is odd then the set F' determined by f is co-finite (because F = {x : f(|x|)=1
(mod 2)} 2 {x : |x|>n’}). In this case, the i + 1% machine tries to decide SN F
(which differs from S on finitely many strings), and must fail on some x. Derive a
contradiction by showing that the number of steps taken till reaching and considering
this x is at most exp(poly(|x|)), which is smaller than »> for some sufficiently large
n. A similar argument applies to the case that i is even, where we use the fact that
F C {x :|x| <n'} is finite and so the relevant reduction of S to S N F must fail on
some input x.

Exercise 2.35: Prove that if the promise problem IT is Cook-reducible to a promise
problem that is solvable in polynomial time, then IT is solvable in polynomial time.
Note that the solver may not halt on inputs that violate the promise.

Guideline: Any polynomial-time algorithm solving any promise problem can be mod-
ified such that it halts on all inputs.
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Exercise 2.36 (NP-complete promise problems in coNP (following [72])): Consider
the promise problem xSAT having instances that are pairs of CNF formulae. The yes-
instances consists of pairs (¢;, ¢,) such that ¢; is satisfiable and ¢, is unsatisfiable,
whereas the no-instances consists of pairs such that ¢; is unsatisfiable and ¢, is
satisfiable.

1. Show that xSAT is in the intersection of (the promise problem classes that are
analogous to) NP and coNP.

2. Prove that any promise problem in NP is Cook-reducible to xSAT. In designing the
reduction, recall that queries that violate the promise may be answered arbitrarily.

Guideline: Note that the promise problem version of NP is reducible to SAT, and show a
reduction of SAT to xSAT. Specifically, show that the search problem associated with SAT
is Cook-reducible to xSAT, by adapting the ideas of the proof of Proposition 2.15. That is,
suppose that we know (or assume) that 7 is a prefix of a satisfying assignment to ¢, and we
wish to extend = by one bit. Then, for each o € {0, 1}, we construct a formula, denoted ¢_,
by setting the first |[t| + 1 variables of ¢ according to the values To. We query the oracle
about the pair (¢1, ¢;), and extend t accordingly (i.e., we extend 7 by the value 1 if and only
if the answer is positive). Note that if both ¢| and ¢; are satisfiable then it does not matter
which bit we use in the extension, whereas if exactly one formula is satisfiable then the oracle
answer is reliable.

3. Pinpoint the source of failure of the proof of Theorem 2.35 when applied to the
reduction provided in the previous item.

Exercise 2.37: For any class C, prove that C C coC if and only if C = coC.
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CHAPTER THREE

Variations on P and NP

Cast a cold eye
On life, on death.
Horseman, pass by!

W. B. Yeats, “Under Ben Bulben”

In this chapter we consider variations on the complexity classes P and NP. We refer
specifically to the non-uniform version of P, and to the Polynomial-time Hierarchy (which
extends NP). These variations are motivated by relatively technical considerations; still,
the resulting classes are referred to quite frequently in the literature.

Summary: Non-uniform polynomial-time (P/poly) captures efficient
computations that are carried out by devices that can each handle only
inputs of a specific length. The basic formalism ignores the complexity
of constructing such devices (i.e., a uniformity condition). A finer for-
malism that allows for quantifying the amount of non-uniformity refers
to so-called “machines that take advice.”

The Polynomial-time Hierarchy (PH) generalizes NP by considering
statements expressed by quantified Boolean formulae with a fixed num-
ber of alternations of existential and universal quantifiers. It is widely
believed that each quantifier alternation adds expressive power to the
class of such formulae.

An interesting result that refers to both classes asserts that if NP is
contained in P/poly then the Polynomial-time Hierarchy collapses to
its second level. This result is commonly interpreted as supporting the
common belief that non-uniformity is irrelevant to the P-vs-NP Question;
that is, although P/poly extends beyond the class P, it is believed that
P/poly does not contain NP.

Except for the latter result, which is presented in Section 3.2.3, the treatments of P/poly
(in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) are independent of
one another.

3.1. Non-uniform Polynomial Time (P/poly)

In this section we consider two formulations of the notion of non-uniform polyno-
mial time, based on the two models of non-uniform computing devices that were

108



3.1 NON-UNIFORM POLYNOMIAL TIME

presented in Section 1.2.4. That is, we specialize the treatment of non-uniform computing
devices, provided in Section 1.2.4, to the case of polynomially bounded complexities. It
turns out that both (polynomially bounded) formulations allow for solving the same class
of computational problems, which is a strict superset of the class of problems solvable by
polynomial-time algorithms.

The two models of non-uniform computing devices are Boolean circuits and “machines
that take advice” (cf. §1.2.4.1 and §1.2.4.2, respectively). We will focus on the restric-
tion of both models to the case of polynomial complexities, considering (non-uniform)
polynomial-size circuits and polynomial-time algorithms that take (non-uniform) advice
of polynomially bounded length.

The main motivation for considering non-uniform polynomial-size circuits is that their
computational limitations imply analogous limitations on polynomial-time algorithms.
The hope is that, as is often the case in mathematics and science, disposing of an auxiliary
condition (i.e., uniformity) that seems secondary' and is not well understood may turn
out to be fruitful. In particular, the (non-uniform) circuit model facilitates a low-level
analysis of the evolution of a computation, and allows for the application of combinatorial
techniques. The benefit of this approach has been demonstrated in the study of restricted
classes of circuits (see Appendix B.2.2 and B.2.3).

The main motivation for considering polynomial-time algorithms that take polynomi-
ally bounded advice is that such devices are useful in modeling auxiliary information
that is available to possible efficient strategies that are of interest to us. We mention two
such settings. In cryptography (see Appendix C), the advice is used for accounting for
auxiliary information that is available to an adversary. In the context of derandomization
(see Section 8.3), the advice is used for accounting for the main input to the randomized
algorithm. In addition, the model of polynomial-time algorithms that take advice allows
for a quantitative study of the amount of non-uniformity, ranging from zero to polynomial.

3.1.1. Boolean Circuits

We refer the reader to §1.2.4.1 for a definition of (families of) Boolean circuits and the
functions computed by them. For concreteness and simplicity, we assume throughout this
section that all circuits have bounded fan-in. We highlight the following result stated in
§1.2.4.1:

Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that,
given a circuit C : {0, 1}" — {0, 1} and an n-bit long string x, returns C(x).

Recall that the algorithm works by performing the “value-determination” process that
underlies the definition of the computation of the circuit on a given input. This process
assigns values to each of the circuit vertices based on the values of its children (or the
values of the corresponding bit of the input, in the case of an input-terminal vertex).

Circuit size as a complexity measure. We recall the definitions of circuit complex-
ity presented in §1.2.4.1: The size of a circuit is defined as the number of edges, and
the length of its description is almost linear in the latter; that is, a circuit of size s is

!The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question, that is, that resolving
the latter question by proving that P # AP is not easier than proving that NP does not have polynomial-size circuits.
For further discussion see Appendix B.2 and Section 3.2.3.
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commonly described by the list of its edges and the labels of its vertices, which means
that its description length is O(s logs). We are interested in families of circuits that solve
computational problems, and thus we say that the circuit family (C,),en computes the
function 1 : {0, 1}* — {0, 1}* if for every x € {0, 1}* it holds that Cj;|(x) = f(x). The
size complexity of this family is the function s : N — N such that s(n) is the size of C,.
The circuit complexity of a function f', denoted s, is the size complexity of the smallest
family of circuits that computes f. An equivalent formulation follows.

Definition 3.2 (circuit complexity): The circuit complexity of f : {0, 1}* — {0, 1}*
is the function sy : N — N such that s ;(n) is the size of the smallest circuit that
computes the restriction of f to n-bit strings.

We stress that non-uniformity is implicit in this definition, because no conditions are made
regarding the relation between the various circuits that are used to compute the function
value on different input lengths.

An interesting feature of Definition 3.2 is that, unlike in the case of uniform model of
computations, it allows for considering the actual complexity of the function rather than
an upper bound on its complexity (cf. §1.2.3.5 and Section 4.2.1). This is a consequence
of the fact that the circuit model has no “free parameters” (such as various parameters of
the possible algorithm that are used in the uniform model).”

We will be interested in the class of problems that are solvable by families of
polynomial-size circuits. That is, a problem is solvable by polynomial-size circuits if
it can be solved by a function f that has polynomial circuit complexity (i.e., there exists
a polynomial p such that s /(n) < p(n), for every n € N).

A detour: Uniform families. A family of polynomial-size circuits (C,),cn is called
uniform if given n one can construct the circuit C, in poly(n)-time. More generally:

Definition 3.3 (uniformity): A family of circuits (Cy),en is called uniform if there
exists an algorithm that on input n outputs C, within a number of steps that is
polynomial in the size of C,,.

We note that stronger notions of uniformity have been considered. For example, one may
require the existence of a polynomial-time algorithm that on input #» and v, returns the
label of vertex v as well as the list of its children (or an indication that v is not a vertex
in C,). For further discussion see Section 5.2.3. Turning back to Definition 3.3, we note
that indeed the computation of a uniform family of circuits can be emulated by a uniform
computing device.

Proposition 3.4: If a problem is solvable by a uniform family of polynomial-size
circuits then it is solvable by a polynomial-time algorithm.

As was hinted in §1.2.4.1, the converse holds as well. The latter fact follows easily from
the proof of Theorem 2.21 (see also the proof of Theorem 3.6).

2Advanced comment: The “free parameters” in the uniform model include the length of the description of the

finite algorithm and its alphabet size. Note that these “free parameters” underlie linear speed-up results such as
Exercise 4.4, which in turn prevent the specification of the exact (uniform) complexities of functions.
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Proof: On input x, the algorithm operates in two stages. In the first stage, it
invokes the algorithm guaranteed by the uniformity condition, on input &ef |x], and
obtains the circuit C,. Next, it invokes the circuit evaluation algorithm (asserted in
Theorem 3.1) on input C,, and x, and obtains C,(x). Since the size of C, (as well as
its description length) is polynomial in 7, it follows that each stage of our algorithm
runs in polynomial time (i.e., polynomial in # = |x|). Thus, the algorithm emulates
the computation of C|,|(x), and does so in time polynomial in the length of its own
input (i.e., x). |

3.1.2. Machines That Take Advice

General (i.e., possibly non-uniform) families of polynomial-size circuits and uniform
families of polynomial-size circuits are two extremes with respect to the “amounts of non-
uniformity” in the computing device. Intuitively, in the former, non-uniformity is only
bounded by the size of the device, whereas in the latter the amounts of non-uniformity is
zero. Here we consider a model that allows for decoupling the size of the computing device
from the amount of non-uniformity, which may indeed range from zero to the device’s
size. Specifically, we consider algorithms that “take a non-uniform advice” that depends
only on the input length. The amount of non-uniformity will be defined to equal the
length of the corresponding advice (as a function of the input length). Thus, we specialize
Definition 1.12 to the case of polynomial-time algorithms.

Definition 3.5 (non-uniform polynomial-time and P /poly): We say that a function
f is computed in polynomial time with advice of length ¢ : N — N if these exists a
polynomial-time algorithm A and an infinite advice sequence (@, ),cn Such that

1. Forevery x € {0, 1}*, it holds that A(ay|, x) = f(x).
2. Foreveryn € N, it holds that |a,| = £(n).

We say that a computational problem can be solved in polynomial time with advice
of length ¢ if a function solving this problem can be computed within these resources.
We denote by P /L the class of decision problems that can be solved in polynomial
time with advice of length £, and by P/poly the union of P/p taken over all
polynomials p.

Clearly, P/0 = P. But allowing some (non-empty) advice increases the power of the
class (see Theorem 3.7), and allowing advice of length comparable to the time complexity
yields a formulation equivalent to circuit complexity (see Theorem 3.6). We highlight
the greater flexibility available by the formalism of machines that take advice, which
allows for separate specification of time complexity and advice length. (Indeed, this
comes at the expense of a more cumbersome formulation; thus, we shall prefer the
circuit formulation whenever we consider the case that both complexity measures are
polynomial.)

Relation to families of polynomial-size circuits. As hinted before, the class of problems
solvable by polynomial-time algorithms with polynomially bounded advice equals the
class of problems solvable by families of polynomial-size circuits. For concreteness, we
state this fact for decision problems.
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Theorem 3.6: A decision problem is in P /poly if and only if it can be solved by a
family of polynomial-size circuits.

More generally, for any function 7, the following proof establishes the equivalence of the
power of polynomial-time machines that take advice of length ¢ and families of circuits
of size polynomially related to 7.

Proof Sketch: Suppose that a problem can be solved by a polynomial-time algorithm
A using the polynomially bounded advice sequence (a,),cn. We obtain a family of
polynomial-size circuits that solves the same problem by adapting the proof of
Theorem 2.21. Specifically, we observe that the computation of A(ay|, x) can be
emulated by a circuit of poly(|x|)-size, which incorporates a.| and is given x as
input. That is, we construct a circuit C,, such that C,,(x) = A(a,, x) holds for every
x € {0, 1}" (analogously to the way C, was constructed in the proof of Theorem 2.21,
where it holds that C,(y) = Mz(x, y) for every y of adequate length).’

On the other hand, given a family of polynomial-size circuits, we obtain a
polynomial-time advice-taking machine that emulates this family when using advice
that provides the description of the relevant circuits. Specifically, we transform the
evaluation algorithm asserted in Theorem 3.1 into a machine that, given advice «
and input x, treats o as a description of a circuit C and evaluates C(x). Indeed, we
use the fact that a circuit of size s can be described by a string of length O(s logs),
where the log factor is due to the fact that a graph with v vertices and e edges can
be described by a string of length 2e log, v. (|

Another perspective. A set S is called sparse if there exists a polynomial p such that
for every n it holds that |S N {0, 1}"| < p(n). We note that P /poly equals the class of sets
that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SAT is Cook-reducible to
a sparse set if and only if AP C P/poly. In contrast, SAT is Karp-reducible to a sparse
set if and only if NP = P (see Exercise 3.12).

The power of P /poly. In continuation of Theorem .13 (which focuses on advice and
ignores the time complexity of the machine that takes this advice), we prove the following
(stronger) result.

Theorem 3.7 (the power of advice, revisited): The class P/1 C P /poly contains
P as well as some undecidable problems.

Actually, P/1 C P/poly. Furthermore, by using a counting argument, one can show that
for any two polynomially bounded functions £, £, : N — N such that ¢, — £; > 0 is
unbounded, it holds that P /¢, is strictly contained in P/¢,; see Exercise 3.3.

Proof: Clearly, P = P/0 € P/1 € P /poly. To prove that P/1 contains some unde-
cidable problems, we review the proof of Theorem 1.13. The latter proof established
the existence of an uncomputable Boolean function that only depends on its input
length. That is, there exists an undecidable set S C {0, 1}* such that for every pair

3Advanced comment: Note that ay is the only “non-uniform” part in the circuit C,,. Thus, if algorithm 4 takes
no advice (i.e., @, = A for every n) then we obtain a uniform family of circuits.
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(x, y) of equal length strings it holds that x € Sifand only if y € S. In other words,
for every x € {0, 1}* it holds that x € S if and only if 1 € S. But such a set is
easily decidable in polynomial time by a machine that takes one bit of advice; that is,
consider the algorithm A that satisfies 4(a, x) = a (fora € {0, 1} and x € {0, 1}*)
and the advice sequence (a,),en such that a, = 1 if and only if 1”7 € S. Note that,
indeed, A(ajy|, x) = l ifand only if x € §. ]

3.2. The Polynomial-Time Hierarchy (PH)

The Polynomial-time Hierarchy is a rather natural generalization of A/P. Interestingly,
this generalization collapses to P if and only if NP = P, and furthermore it is the largest
natural generalization of A/P that is known to have this feature. We start with an informal
motivating discussion, which will be made formal in Section 3.2.1.

Sets in A/'P can be viewed as sets of valid assertions that can be expressed as quantified
Boolean formulae using only existential quantifiers. That is, a set S is in NP if there is a
Karp-reduction of S to the problem of deciding whether or not an existentially quantified
Boolean formula is valid (i.e., an instance x is mapped by this reduction to a formula of
the form 3y; - ) dx V1 - -5 Ym)))-

The conjectured intractability of AP seems due to the long sequence of existential
quantifiers. Of course, if somebody else (i.e., a “prover”) were to provide us with an
adequate assignment (to the y;’s) whenever such an assignment exists then we would be in
good shape. That is, we can efficiently verify proofs of validity of existentially quantified
Boolean formulae.

But what if we want to verify the validity of universally quantified Boolean formulae
(i.e., formulae of the form Vy; - - - Vy,, ()1, . . ., yin)). Here we seem to need the help of a
totally different entity: We need a “refuter” that is guaranteed to provide us with a refutation
whenever such exists, and we need to believe that if we were not presented with such a
refutation then it is the case that no refutation exists (and hence the universally quantified
formula is valid). Indeed, this new setting (of a “refutation system”) is fundamentally
different from the setting of a proof system: In a proof system we are only convinced
by proofs (to assertions) that we have verified by ourselves, whereas in the “refutation
system” we trust the “refuter” to provide evidence against false assertions.’ Furthermore,
there seems to be no way of converting one setting (e.g., the proof system) into another
(resp., the refutation system).

Taking an additional step, we may consider a more complicated system in which we
use two agents: a “supporter” that tries to provide evidence in favor of an assertion and an
“objector” that tries to refute it. These two agents conduct a debate (or an argument) in our
presence, exchanging messages with the goal of making us (the referee) rule their way. The
assertions that can be proven in this system take the form of general quantified formulae
with alternating sequences of quantifiers, where the number of alternating sequences
equals the number of rounds of interaction in the said system. We stress that the exact
length of each sequence of quantifiers of the same type does not matter; what matters is
the number of alternating sequences, denoted £.

“More formally, in proof systems the soundness condition relies only on the actions of the verifier, whereas
completeness also relies on the prover’s action (i.e., its using an adequate strategy). In contrast, in a “refutation
system” the soundness condition relies on the proper actions of the refuter, whereas completeness does not depend
on the refuter’s actions.
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The aforementioned system of alternations can be viewed as a two-party game, and
we may ask ourselves which of the two parties has a k-move winning strategy. In general,
we may consider any (0-1 zero-sum) two-party game, in which the game’s position can
be efficiently updated (by any given move) and efficiently evaluated. For such a fixed
game, given an initial position, we may ask whether the first party has a (k-move) winning
strategy. It seems that answering this type of question for some fixed k& does not necessarily
allow answering it for £ + 1. We now turn to formalizing the foregoing discussion.

3.2.1. Alternation of Quantifiers

In the following definition, the aforementioned propositional formula ¢, is replaced by
the input x itself. (Correspondingly, the combination of the Karp-reduction and a formula-
evaluation algorithm is replaced by the verification algorithm V' (see Exercise 3.7).) This
is done in order to make the comparison to the definition of NP more transparent (as well
as to fit the standard presentations). We also replace a sequence of Boolean quantifiers of
the same type by a single corresponding quantifier that quantifies over all strings of the
corresponding length.

Definition 3.8 (the class X;): For a natural number k, a decision problem S C
{0, 1}* is in Xy if there exists a polynomial p and a polynomial-time algorithm V
such that x € S if and only if

3y, €10, 1}7 vy, €{0, 1}7D3ps e {0, 1}7FD ... Opy e {0, 137D
st. Vix,y1,..., ) =1

where Qy is an existential quantifier if k is odd and is a universal quantifier
otherwise.

Note that £; = NP and X = P. The Polynomial-time Hierarchy, denoted PH, is the
union of all the aforementioned classes (i.e., PH = U; %), and X is often referred to
as the k™ level of PH. The levels of the Polynomial-time Hierarchy can also be defined
inductively, by defining ¥, | based on I &f coXy, where coX; def {{0, 1}*\ S : S e &}
(cf. Eq. (2.4)).

Proposition 3.9: For every k > 0, a set S is in Xy if and only if there exists a
polynomial p and a set S’ € TIy such that S = {x : 3y €{0, 1}’™D st (x, y)e S}

Proof: Suppose that Sisin X;,| and let p and V' be as in Definition 3.8. Then define
S’ as the set of pairs (x, y) such that |y| = p(]x|) and

vz {0, 17003z, € {0, 137D ... 0pze €40, 11P0D st Vix, y, 21y . zi) = 1.

Note that x € S if and only if there exists y € {0, 1}?(*D such that (x, y) € S’, and
that S’ € I (see Exercise 3.6).

On the other hand, suppose that for some polynomial p and a set S’ € I, it holds
that S = {x : Iy {0, 1}7*D st (x, y)€S'}. Then, for some p’ and V", it holds that
(x,y) € § ifand only if |y| = p(|x|) and

Vz; €10, 137003z, € {0, 137D ... Opz {0, 37D st V' (x, p), 21, ..., zi) =1
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(see Exercise 3.6 again). By using a suitable encoding of y and the z;’s (as strings
of length max(p(|x|]), p’(|x]))) and a trivial modification of V’, we conclude that
S € 2k+1' .

Determining the winner in k.-move games. Definition 3.8 can be interpreted as capturing
the complexity of determining the winner in certain efficient two-party games. Specifically,
we refer to two-party games that satisfy the following three conditions:

1. The parties alternate in taking moves that affect the game’s (global) position, where
each move has a description length that is bounded by a polynomial in the length of
the current position.

2. The current position can be updated in polynomial time based on the previous position
and the current party’s move.’

3. The winner in each position can be determined in polynomial time.

Note that the set of initial positions for which the first party has a k-move winning strategy
with respect to the foregoing game is in X;. Specifically, denoting this set by G, note
that an initial position x is in G if there exists a move y; for the first party, such that for
every response move y, of the second party, there exists a move y3 for the first party, etc.,
such that after £ moves the parties reach a position in which the first party wins, where
the final position is determined according to the foregoing Item 2 and the winner in it
is determined according to Item 3.° Thus, G € Z;. On the other hand, note that any set
S € X can be viewed as the set of initial positions (in a suitable game) for which the first
party has a k-move winning strategy. Specifically, x € S if starting at the initial position
x, there exists a move y; for the first party, such that for every response move y, of the
second party, there exists a move y3 for the first party, etc., such that after £ moves the
parties reach a position in which the first party wins, where the final position is defined as
(x, ¥1, ..., yr) and the winner is determined by the predicate V' (as in Definition 3.8).

PH and the P Versus NP Question. We highlight the fact that PH = P if and only if
P = N'P.Indeed, the fact that PH = P implies P = AP is purely syntactic, whereas the
opposite implication follows from Proposition 3.9 (see also the second part of the proof
of Proposition 3.10).” The fact that P = AP implies PH = P suggests that P # NP
can be proved by proving that PH # P. Thus, a separation between two classes (i.e.,
P # N'P) can be shown by separating the smaller class (i.e., P) from a class (i.e., PH)
that is believed to be a superset of the other class (i.e., N'P).

SNote that, since we consider a constant number of moves, the length of all possible final positions is bounded by
a polynomial in the length of the initial position, and thus all items have an equivalent form in which one refers to the
complexity as a function of the length of the initial position. The latter form allows for a smooth generalization to
games with a polynomial number of moves (as in Section 5.4), where it is essential to state all complexities in terms
of the length of the initial position.

®Let U be the update algorithm of Item 2 and ¥ be the algorithm that decides the winner as in Item 3. Then the final
position is given by computing x; < U(x;_1, y;),fori =1,..., k (where xo = x), and the winner is # (xj). Note that,
by Item 1, there exists a polynomial p such that |y;| < p(|x;|), for every i € [k], and it follows that |y;| < poly(|x]).
Using a suitable encoding, we obtain a polynomial-time algorithm ¥ such that V(x, y1, ..., yx) = W(xy), where
xp =U(C--UUWUx, y1), 2): ¥3) -5 Vi)

" Advanced comment: We stress that the latter implication is not due to a Cook-reduction of PH to N/P; in fact,
such Cook-reductions exist only for a subclass of PH (which is contained in X, N ITy).

115



VARIATIONS ON P AND NP

The collapsing effect of other equalities. Extending the intuition that underlies the
NP # coNP conjecture, it is commonly conjectured that X # I for every k € N.
The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the
corresponding level.

Proposition 3.10: For every k > 1, if ¥y = [y then Ly = Xy, which in turn
implies PH = %.

The converse also holds (i.e., PH = X implies X3 = ¥; and ¥; = I1j). Needless to
say, the first part of Proposition 3.10 (i.e., ¥; = I1; implies Xz, = X;) does not seem
to hold for £ = 0, but indeed the second part holds also for £ = 0 (i.e., £; = X, implies
PH = Zp).

Proof: Assuming that X; = I, we first show that ¥;,; = X;. For any set S in
Si+1, by Proposition 3.9, there exists a polynomial p and a set S’ € IT; such
that S = {x : Iy {0, 1}?*D st (x, y)eS'}. Using the hypothesis, we infer that
S’ € X, and so (using Proposition 3.9 and k£ > 1) there exists a polynomial p’ and a
set S” € I;_; suchthat §' = {x" : 3y’ €{0, 1}P¥'D st (x’, y') € S"}. It follows that

S ={x:3ye{0, 1}PFD3z (0, 1}PIEID st ((x, ), 2)€S").

By collapsing the two adjacent existential quantifiers (and using Proposition 3.9 yet
again), we conclude that S € 3. This proves the first part of the proposition.
Turning to the second part, we note that ¥;, | = X; (or, equivalently, [Tz, = IT;)
implies Xj1> = X4 (again by using Proposition 3.9), and similarly X, = X,
for any j > k. Thus, X;.1 = X implies PH = ;. [ ]

Decision problems that are Cook-reductions to NP. The Polynomial-time Hierarchy
contains all decision problems that are Cook-reductions to AP (see Exercise 3.4). As
shown next, the latter class contains many natural problems. Recall that in Section 2.2.2 we
defined two types of optimization problems and showed that under some natural conditions
these two types are computationally equivalent (under Cook-reductions). Specifically, one
type of problems referred to finding solutions that have a value exceeding some given
threshold, whereas the second type called for finding optimal solutions. In Section 2.3
we presented several problems of the first type, and proved that they are NP-complete.
We note that corresponding versions of the second type are believed not to be in NP.
For example, we discussed the problem of deciding whether or not a given graph G
has a clique of a given size K, and showed that it is NP-complete. In contract, the
problem of deciding whether or not K is the maximum clique size of the graph G is not
known (and quite unlikely) to be in AP, although it is Cook-reducible to A'P. Thus,
the class of decision problems that are Cook-reducible to NP contains many natural
problems that are unlikely to be in A/P. The Polynomial-time Hierarchy contains all these
problems.

Complete problems and a relation to AC0. We note that quantified Boolean formulae
with a bounded number of quantifier alternations provide complete problems for the
various levels of the Polynomial-time Hierarchy (see Exercise 3.7). We also note the
correspondence between these formulae and (highly uniform) constant-depth circuits
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of unbounded fan-in that get as input the truth table of the underlying (quantifier-free)
formula (see Exercise 3.8).

3.2.2. Non-deterministic Oracle Machines

The Polynomial-time Hierarchy is commonly defined in terms of non-deterministic
polynomial-time (oracle) machines that are given oracle access to a set in the lower
level of the same hierarchy. Such machines are defined by combining the definitions of
non-deterministic (polynomial-time) machines (cf. Definition 2.7) and oracle machines
(cf. Definition 1.11). Specifically, for an oracle f : {0, 1}* — {0, 1}*, a non-deterministic
oracle machine M, and a string x, one considers the question of whether or not there
exists an accepting (non-deterministic) computation of M on input x and access to
the oracle f. The class of sets that can be accepted by non-deterministic polynomial-
time (oracle) machines with access to f is denoted N P/. (We note that this notation
makes sense because we can associate the class NP with a collection of machines
that lends itself to being extended to oracle machines.) For any class of decision prob-
lems C, we denote by ANPC the union of NP/ taken over all decision problems f
in C. The following result provides an alternative definition of the Polynomial-time
Hierarchy.

Proposition 3.11: For every k > 1, it holds that j.1 = NP*.

Needless to say, X1 = N P but this fact is due to simple considerations (i.e., X| =
NP = NPP = NP, where only NP = N'P” is non-syntactic).

Proof: Containment in one direction (i.e., X5; € N'P>)is almost straightforward:
Forany S € X4, let S’ € I1; and p be as in Proposition 3.9; thatis, S = {x : Ay €
{0, 135D s t. (x, y)€ §'}. Consider the non-deterministic oracle machine that, on
input x, non-deterministically generates y € {0, 1}?(*D and accepts if and only if
(the oracle indicates that) (x, y) € S’. This machine demonstrates that § € NP =
NP, where the equality holds by letting the oracle machine flip each (binary)
answer that is provided by the oracle.”

For the opposite containment (i.e., NP> C %, ), we generalize the main idea
underlying the proof of Theorem 2.35 (which referred to PNPNP) Specifically,
consider any S € N"P¥, and let M be a non-deterministic polynomial-time oracle
machine that accepts S when given oracle access to S’ € X;. Note that machine
M may issue several queries to ', and these queries may be determined based on
previous oracle answers.” To simplify the argument, we assume, without loss of
generality, that at the very beginning of its execution machine M guesses (non-
deterministically) all oracle answers and accepts only if the actual answers match
its guesses. Thus, M’s queries to the oracle are determined by its input, denoted
x, and its non-deterministic choices, denoted y. We denote by ¢@(x, y) the i
query made by M (on input x and non-deterministic choices y), and by a‘)(x, y)

Do not get confused by the fact that the class of oracles may not be closed under complementation. From the
point of view of the oracle machine, the oracle is merely a function, and the machine may do with its answer whatever
it pleases (and in particular negate it).

9Indeed, this is unlike the specific machine used toward proving that S| € NP,

117



VARIATIONS ON P AND NP

the corresponding (a priori) guessed answer (which is a bit in y). Thus, x € S if
and only if there exists y € {0, 1}P°M(*D such that the following two conditions
hold:

1. Machine M accepts when it is invoked on input x, makes non-deterministic

choices y, and is given a”)(x, y) as the answer to its " oracle query. We denote the
corresponding (“acceptance”) predicate, which is polynomial-time computable,
by A(x, y).
We stress that we do not assume here that the a)(x, y)’s are consistent with
answers that would have been given by the oracle '; this will be the subject of
the next condition. The current condition refers only to the decision of M on a
specific input, when M makes a specific sequence of non-deterministic choices,
and is provided with specific answers.

2. Eachbita®(x, y)is consistent with §'; that is, for every i, it holds that a(x, y)=
1 if and only if g@(x, y)e S'.

Denoting the number of queries made by M (on input x and non-deterministic
choices y) by ¢q(x, y) < poly(|x]), it follows that x € S if and only if

q(x.y)
3[4 A A (@00 =1) & (49 nes)) 3.1)

i=1
Denoting the verification algorithm of §” by 7, Eq. (3.1) equals

q(x.y)

ay(A(x,w AN (@) =1)

i=1
& PV 00 V(gD ) = 1))

The proofis completed by observing that the foregoing expression can be rearranged
to fit the definition of X, . Details follow.

Starting with the foregoing expression, we first replace the sub-expression
E| & E, by (E| A Ey) V (—E| A —E5), and then pull all quantifiers outside."’ This
way we obtain a quantified expression with £ + 1 alternating quantifiers, starting
with an existential quantifier. (Note that we get k£ + 1 alternating quantifiers rather
than k, because the case of —a®)(x, y)=1 introduces an expression of the form
ﬁEIygi)Vyéi) e Qky,(fi) V' (gD(x, y), yii), . ,y,Ei))z 1, which in turn is equivalent to
the expression ¥y'3pl" .. 0y =1 (¢D(x, y), ¥\, ..., y»?)=1.) Once this is
done, we may incorporate the computation of all the ¢®(x, )’s (and a'(x, y)’) as
well as the polynomial number of invocations of ¥’ (and other logical operations)
into the new verification algorithm V. It follows that S € ;. [ |

A general perspective — what does sz mean? By the foregoing discussion it should be
clear that the class CIC2 can be defined for two complexity classes C; and C,, provided that

OFor example, note that for predicates P, and P, the expression Iy (Pi(y) < 3z Pr(y,z)) is equiva-

lent to the expression Iy ((P1(¥) A 3z Pr(y, 2)) V (—Pi(y) A =3z P2(y, z))), which in turn is equivalent to the
expression Jy3z'Vz" (P1(y) A P2(y,2)) vV (=P (y) A —P2(y,2"))). Note that pulling the quantifiers outside in

Ay 3y Oz p(y® 2y yields an expression of the type 3y, ..., YOz z() Aty P(y®, 2y,
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Figure 3.1: Two levels of the Polynomial-time Hierarchy.

Cy is associated with a class of standard machines that generalizes naturally to a class of
oracle machines. Actually, the class CIC2 is not defined based on the class Cy but rather by
analogy to it. Specifically, suppose that C is the class of sets that are recognizable (or rather
accepted) by machines of a certain type (e.g., deterministic or non-deterministic) with
certain resource bounds (e.g., time and/or space bounds). Then, we consider analogous
oracle machines (i.e., of the same type and with the same resource bounds), and say that
Se sz if there exists an adequate oracle machine M, (i.e., of this type and resource
bounds) and a set S; € C; such that Mfz accepts the set S.

Decision problems that are Cook-reductions to NP, revisited. Using the foregoing
notation, the class of decision problems that are Cook-reductions to NP is denoted PV7,
and thus is a subset of NPV? = %, (see Exercise 3.9). In contrast, recall that the class
of decision problems that are Karp-reductions to NP equals NP.

The world view. Using the foregoing notation and relying on Exercise 3.9, we note that
for every k > 1 it holds that X; U IT; € P¥ C ¥, N I;,. See Figure 3.1 that depicts
the situation, assuming that all the containments are strict.

3.2.3. The P/poly Versus NP Question and PH

As stated in Section 3.1, a main motivation for the definition of P /poly is the hope that it
can serve to separate P from AP (by showing that NP is not even contained in P /poly,
which is a (strict) superset of P). In light of the fact that P /poly extends far beyond P (and
in particular contains undecidable problems), one may wonder if this approach does not
run the risk of asking too much (because it may be that NP is in P /poly even if P £ NP).
The common feeling is that the added power of non-uniformity is irrelevant with respect
to the P-vs-NP Question. Ideally, we would like to know that NP C P/poly may occur
only if P = NP, which may be phrased as saying that the Polynomial-time Hierarchy
collapses to its zero level. The following result seems to get close to such an implication,
showing that NP C P /poly may occur only if the Polynomial-time Hierarchy collapses
to its second level.
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Theorem 3.12: [f NP C P/poly then ¥, = I,.

Recall that ¥, = I, implies PH = ¥, (see Proposition 3.10). Thus, an unexpected
behavior of the non-uniform complexity class P /poly implies an unexpected behavior in
the world of uniform complexity (which is the habitat of PH).

Proof: Using the hypothesis (i.e., NP C P/poly) and starting with an arbitrary set
S e I1,, we shall show that S € %,. Let us describe, first, our high-level approach.

Loosely speaking, S € I1, means that x € S if and only if for all y there exists
a z such that some (fixed) polynomial-time verifiable condition regarding (x, y, z)
holds. Note that the residual condition regarding (x, y) is of the NP-type, and thus
(by the hypothesis) it can be verified by a polynomial-size circuit. This suggests
saying that x € S if and only if there exists an adequate circuit C such that for all
y it holds that C(x, y) = 1. Thus, we managed to switch the order of the universal
and existential quantifiers. Specifically, the resulting assertion is of the desired X;-
type provided that we can either verify the adequacy condition in coNP (or even
in X;) or keep out of trouble even in the case that x ¢ S and C is inadequate. In
the following proof we implement the latter option by observing that the hypoth-
esis yields small circuits for NP-search problems (and not only for NP-decision
problems). Specifically, we obtain (small) circuits that, given (x, y), find an NP-
witness for (x, y) (whenever such a witness exists), and rely on the fact that we can
efficiently verify the correctness of NP-witnesses. (The alternative approach of pro-
viding a coNP-type procedure for verifying the adequacy of the circuit is pursued in
Exercise 3.11.)

We now turn to a detailed implementation of the foregoing approach. Let S be
an arbitrary set in IT,. Then, by Proposition 3.9, there exists a polynomial p and
a set S’ € N'P such that § = {x : Vye{0, 1}?*D (x, y)e §'}. Let R’ € PC be the
witness relation corresponding to S’; that is, there exists a polynomial p’, such that
x' = (x,y) € § if and only if there exists z € {0, 1}7'*'D such that (x', z) € R'. It
follows that

S = {x : Vye{0, 1}?D3z 40, 1}7 159D ((x, y), z) € R'}. (3.2)

Our argument proceeds essentially as follows. By the reduction of PC to NP (see
Theorem 2.10), the theorem’s hypothesis (i.e., NP C P /poly) implies the existence
of polynomial-size circuits for solving the search problem of R’. Using the existence
of these circuits, it follows that for any x € S there exists a small circuit C’ such
that for every y it holds that C'(x, y) € R'(x, y) (because (x, y) € S’ and hence
R'(x, y) # @). On the other hand, for any x & S there exists a y such that (x, y) € S,
and hence for any circuit C’ it holds that C'(x, y) € R'(x, y) (for the trivial reason
that R'(x, y) = ). Thus, x € S if and only if there exists a poly(|x| + p(|x|))-size
circuit C’ such that for all y € {0, 1}*(*D it holds that ((x, y), C'(x, y)) € R’. Letting
V(x,C’,y) = 1ifand only if ((x, y), C'(x, y)) € R’, we infer that S € X;. Details
follow.

Let us first spell out what we mean by polynomial-size circuits for solving a
search problem and further justify their existence for the search problem of R’.
In Section 3.1, we have focused on polynomial-size circuits that solve decision
problems. However, the definition sketched in Section 3.1.1 also applies to solving
search problems, provided that an appropriate convention is used for encoding
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solutions of possibly varying lengths (for instances of fixed length) as strings of
fixed length. Next, observe that combining the Cook-reduction of PC to NP with
the hypothesis NP C P/poly implies that PC is Cook-reducible to P /poly. In
particular, this implies that any search problem in PC can be solved by a family
of polynomial-size circuits. Note that the resulting circuit that solves n-bit long
instances of such a problem may incorporate polynomially (in #) many circuits,
each solving a decision problem for m-bit long instances, where m € [poly(n)].
Needless to say, the size of the resulting circuit that solves the search problem
of the aforementioned R’ € PC (for instances of length n) is upper-bounded by
poly(n) - 2" poly(m).

We next (revisit and) establish the claim that x € S if and only if there exists
a poly(lx| + p(|x|))-size circuit C' such that for all y {0, 1}?""D it holds that
({(x,y),C'(x,y)) € R. Recall that x € S if and only if for every ye{0, 1}7(~D
it holds that (x,y) e S, which means that there exists ze{0, 1}?(* such
that ({x, y),z) € R’. Also recall that (by the foregoing discussion) there ex-
ist polynomial-size circuits for solving the search problem of R’. Thus, in the
case that x € S, we just use the corresponding circuit C’ that solves the search
problem of R’ on inputs of length |x| + p(|x|). Indeed, this circuit C’ only depends
onn’ = |x| + p(|x|), which in turn is determined by |x|, and for every x" € {0, 1}
it holds that (x’, C'(x")) € R’ if and only if x’ € §’. Thus, for x € S, there exists
a poly(|x| + p(|x|))-size circuit C’ such that for every y € {0, 1}?(*D it holds that
({x,»), C'(x, y)) € R'. On the other hand, if x & S then there exists a y such that
for all z it holds that ((x, y),z) & R’. Tt follows that, in this case, for every C’
there exists a y such that ((x, y), C'(x, y)) € R’. We conclude that x € S if and
only if

3C’ €0, 1Py HPIDyy, e (0, 137D ((x, y), C'(x, y)) € R'. (3.3)

The key observation regarding the condition stated in Equation (3.3) is that it
is of the desired form (of a X, statement). Specifically, consider the polynomial-
time verification procedure V' that given x, y and the description of the circuit C’,
first computes z < C’(x, y) and accepts if and only if ({(x, y), z) € R’, where the
latter condition can be verified in polynomial time (because R’ € PC). Denoting
the description of a potential circuit by (C’), the aforementioned (polynomial-
time) computation of V7 is denoted V(x, (C’),y), and indeed x € S if and
only if

3(C’) {0, 1PV IHPIDYy, e {0, 117D (x, (C'), y) = 1.

Having established that S € ¥, for an arbitrary S € I1,, we conclude that [T, C X,.
The theorem follows (by applying Exercise 3.9.4). |

Chapter Notes

The class P /poly was defined by Karp and Lipton [ 139] as part of a general formulation of
“machines that take advice” [139]. They also noted the equivalence to the traditional for-
mulation of polynomial-size circuits as well as the effect of uniformity (Proposition 3.4).
The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [213]. A third
equivalent formulation of PH (via so-called alternating machines) can be found in [52].
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The implication of the failure of the conjecture that AP is not contained in P /poly on
the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered by Karp and Lipton
[139]. This interesting connection between non-uniform and uniform complexity provides
the main motivation for presenting P /poly and PH in the same chapter.

Exercises

Exercise 3.1 (a small variation on the definitions of P /poly): Using an adequate encod-
ing of strings of length smaller than 7 as n-bit strings (e.g., x € U;,{0, 1}’ is encoded
as x01"~¥1=1) " define circuits (resp., machines that take advice) as devices that can
handle inputs of various lengths up to a given bound (rather than as devices that can
handle inputs of a fixed length). Show that the class P/poly remains invariant under
this change (and Theorem 3.6 remains valid).

Exercise 3.2 (sparse sets): A setS C {0, 1}* is called sparse if there exists a polynomial
p such that |S N {0, 1}"| < p(n) for every n.

1. Prove that any sparse set is in P /poly. Note that a sparse set may be undecidable.
2. Prove that a set is in P /poly if and only if it is Cook-reducible to some sparse set.

Guideline: For the forward direction of Part 2, encode the advice sequence (a,),en
as a sparse set {(1",7,0,,;) : neN, i <|a,|}, where o, ; is the i™ bit of a,,. For the
opposite direction, note that the emulation of a Cook-reduction to a set S, on input x,
only requires knowledge of § N UPY (0, 1),

Exercise 3.3 (advice hierarchy): Prove that for any two functions ¢, § : N — N such that
£(n) < 2" ! and § is unbounded, it holds that P/ is strictly contained in P /(£ + §).

Guideline: For every sequence a@ = (a,),en such that |a,| = €(n) + §(n) < 2", con-
sider the set Sy that encodes @ such that x € Sz N {0, 1}" if and only if the idx(x)™ bit
in a, equals 1 (and idx(x) < |a,|), where idx(x) denotes the index of x in {0, 1}". For
more details see Section 4.1.

Exercise 3.4: Prove that ¥, contains all sets that are Cook-reducible to N'P.

Guideline: This is quite obvious when using the definition of X, as presented in
Section 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of
the ideas that underlie the proof of Theorem 2.35, while noting that a conjunction of
NP and coNP assertions forms an assertion of type ¥, (see also the second part of the
proof of Proposition 3.11).

Exercise 3.5: Let A = NP N coN'P. Prove that A equals the class of decision problems
that are Cook-reducible to A (i.e., A = P»).

Guideline: See proof of Theorem 2.35.

Exercise 3.6 (the class I1;): Recall that I1; is defined to equal coXy, which in turn is
defined to equal {{0, 1}* \ S : § € X;}. Prove that for any natural number £, a decision
problem S C {0, 1}* is in ITj if there exists a polynomial p and a polynomial-time
algorithm ¥ such that x € S if and only if

V1 €10, l}p(lxl)ﬂyz €10, l}p(IXI)\?/y3 €0, l}P(IX\) - Qi ed0, I}P(IXI)
st. Vix,yi, ..., ) =1
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where @ is a universal quantifier if & is odd and is an existential quantifier
otherwise.

Exercise 3.7 (complete problems for the various levels of PH): A k-alternating quanti-
fied Boolean formula is a quantified Boolean formula with up to & alternating sequences
of existential and universal quantifiers, starting with an existential quantifier. For ex-
ample, 3z,3z,VYz3¢(z1, 22, z3) (Where the z;’s are Boolean variables) is a 2-alternating
quantified Boolean formula. Prove that, for every k& > 1, the problem of deciding
whether or not a k-alternating quantified Boolean formula is valid is ¥j;-complete
under Karp-reductions. That is, denoting the aforementioned problem by kQBF, prove
that kQBF is in X; and that every problem in X is Karp-reducible to kQBF.

Guideline: Start with the case of odd k. This allows for incorporating the existential
quantification of the auxiliary variables (introduced by the reduction) in the last se-
quence of quantifiers. For even k£ > 1, consider first an analogous complete problem
for Iy, and then consider its complement.

Exercise 3.8 (on the relation between P and AC’): Note that there is an obvious anal-
ogy between PH and constant-depth circuits of unbounded fan-in, where existential
(resp., universal) quantifiers are represented by “large” \/ (resp., A\) gates. To articulate
this relationship, consider the following definitions.

e A family of circuits {Cy} is called highly uniform if there exists a polynomial-
time algorithm that answers local queries regarding the structure of the relevant
circuit. Specifically, on input (N, u, v), the algorithm determines the type of gates
represented by the vertices u and v in Cy as well as whether there exists a directed
edge from u to v. If the vertex represents a terminal then the algorithm also indicates
the index of the corresponding input-bit (or output-bit). Note that this algorithm
operates in time that is polylogarithmic in the size of Cy.

We focus on the family of polynomial-size circuits, meaning that the size of Cy is
polynomial in N, which in turn represents the number of inputs to Cy.

¢ Fixing a polynomial p, a p-succinctly represented input Z € {0, 1}" is a circuit ¢z
of size at most p(log, N) such that for every i € [N] it holds that cz(i) equals the
i" bit of Z.

e For a fixed family of highly uniform circuits {Cy} and a fixed polynomial p,
the problem of evaluating a succinctly represented input is defined as follows.
Given p-succinct representation of an input Z € {0, 1}V, determine whether or not
Cy(2)=1.

Prove the following relationship between P’H and the problem of evaluating a succinctly
represented input with respect to some families of highly uniform circuits of bounded
depth.

1. For every k and every S € X, show that there exists a family of highly uniform
unbounded fan-in circuits of depth £ and polynomial size such that S is Karp-
reducible to evaluating a succinctly represented input (with respect to that family of
circuits). That is, the reduction should map an instance x € {0, 1}" to a p-succinct
representation of some Z € {0, 1} such that x € Sifand only if Cy(Z) = 1. (Note
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that Z is represented by a circuit ¢z such that log, N < |cz| < poly(n), and thus
N < exp(poly(n)).)"

Guideline: Let S € ¥; and let V' be the corresponding verification algorithm as in Defi-
nition 3.8. That is, x € § if and only if Ay;Vy;, - - - Qx i, where each y; € {0, 1}PYI*D such

that ¥'(x, y1, ..., yx) = L. Then, for m = poly(|x|) and N = 2", consider the fixed circuit
Cy(Z) = Vi|€[2'”] /\ize[z'"] -+ Qe Ziy.in.....ix» and the problem of evaluating Cy at an in-
put consisting of the truth table of V' (x, - - -) (i.e., when setting Z; ,, ;. = V(x,i1, ..., i),

where [2"] = {0, 1}, which means that Z is essentially represented by x).'* Note that the
size of Cy is O(N).

. For every k and every fixed family of highly uniform unbounded fan-in circuits of
depth & and polynomial size, show that the corresponding problem of evaluating a

succinctly represented input is either in ¥; or in I1;.

Guideline: Given a succinct representation of Z, the value of Cy(Z) can be captured
by a quantified Boolean formula with & alternating quantifier sequences. This formula
quantifies on certain paths from the output of Cy to its input terminals; for example,
an V-gate (resp., A-gate) evaluates to 1 if and only if one (resp., all) of its children
evaluates to 1. The children of a vertex as well as the corresponding input-bits can be
efficiently recognized based on the uniformity condition regarding Cy. The value of
the input-bit itself can be efficiently computed from the succinct representation of Z.

Exercise 3.9: Verify the following facts:
1. For every k > 0, it holds that X; € P* C X;4.

(Recall that, for any complexity class C, the class ¢ denotes the class of sets that

are Cook-reducible to some set in C. In particular, P¥ = P.)
2. Forevery k > 0, IT; € P™ C I, ;.

(Hint: For any complexity class C, it holds that P¢ = P¢C and P¢ = coPC.)
3. For every k > 0, it holds that ¥; C Il and I1; € X . Thus, PH = U;I1;.
4. For every k > 0, if ¥} C I (resp., [1; € ) then X = I1i.

(Hint: See Exercise 2.37.)

Exercise 3.10: In continuation of Exercise 3.7, prove the following claims:

1. SAT is computationally equivalent (under Karp-reductions) to 1QBF.
2. For every k > 1, it holds that P¥* = P*®F and ¥, | = N'PEF,

Guideline: Prove that if S is C-complete then P¢ = PS5. Note that P¢ < PS5 uses the

polynomial-time reductions of C to S, whereas PS5 € PC uses S € C.

11Assuming P # NP, it cannot be that N < poly(n) (because circuit evaluation can be performed in time

polynomial in the size of the circuit).

12 Advanced comment: Note that the computational limitations of AC circuits (see, e.g., [83, 115]) imply
limitations on the functions of a generic input Z that the aforementioned circuits Cy can compute. More importantly,
these limitations apply also to Z = #(Z’), where Z’ € {0, 1 }NQ(]) is generic and each bit of Z equals either some fixed
bit in Z’ or its negation. Unfortunately, these computational limitations do not seem to provide useful information
on the limitations of functions of inputs Z that have succinct representation (as obtained by setting Z;, ;,....i, =
V(x,i1,...,ir), where V is a fixed polynomial-time algorithm and only x € {0, 1}P°¥(°¢ ™) yaries). This fundamental
problem is “resolved” in the context of “relativization” by providing ¥ with oracle access to an arbitrary input of

length N¥M (or s0); cf. [83].
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Exercise 3.11 (an alternative proof of Theorem 3.12): In continuation of the discussion
in the proof of Theorem 3.12, use the following guidelines to provide an alternative
proof of Theorem 3.12.

1. First, prove that if T is downward self-reducible (as defined in Exercise 2.13) then the
correctness of circuits deciding T can be decided in coN"P. Specifically, denoting
by x the characteristic function of 7', show that the set

ckt, = {(1", (C)) : Vo € {0, 1}" C(w) = x(w)}
is in coNP. Note that you may assume nothing about T, except for the hypothesis
that T is downward self-reducible.

Guideline: Using the more flexible formulation suggested in Exercise 3.1, it suffices to
verify that, for every i < n and every i-bit string w, the value C(w) equals the output of the
downward self-reduction on input w when obtaining answers according to C. Thus, for every
i < n, the correctness of C on inputs of length i follows from its correctness on inputs of
length less than i. Needless to say, the correctness of C on the empty string (or on all inputs
of some constant length) can be verified by comparison to the fixed value of x on the empty
string (resp., the values of y on a constant number of strings).

2. Recalling that SAT is downward self-reducible and that NP is Karp-reducible to
SAT, derive Theorem 3.12 as a corollary of Part 1.

Guideline: Let S € T, and S’ € NP be as in the proof of Theorem 3.12. Letting f
denote a Karp-reduction of §’ to SAT, note that S = {x : Vy € {0, 1}?*D f(x, y) e SAT).
Using the hypothesis that SAT has polynomial-size circuits, note that x € S if and only
if there exists a poly(|x|)-size circuit C such that (1) C decides SAT correctly on
every input of length at most poly(|x|), and (2) for every y € {0, 1}?(*D it holds that
C(f(x,y)) = L. Infer that S € X,.

Exercise 3.12: In continuation of Part 2 of Exercise 3.2, we consider the class of sets that
are Karp-reducible to a sparse set. It can be proven that this class contains SAT if and
only if P = NP (see [81]). Here, we consider only the special case in which the sparse
set is contained in a polynomial-time decidable set that is itself sparse (e.g., the latter
set may be {1}*, in which case the former set may be an arbitrary unary set). Actually,
prove the following seemingly stronger claim:

If SAT is Karp-reducible to a set S C G such that G € P and G\ S is
sparse then SAT € P.

Using the hypothesis, we outline a polynomial-time procedure for solving the search
problem of SAT, and leave the task of providing the details as an exercise. The pro-
cedure conducts a DFS on the tree of all possible partial truth assignments to the
input formula,” while truncating the search at nodes that correspond to partial truth
assignments that were already demonstrated to be useless.

Guideline: The key observation is that each internal node (which yields a formula
derived from the initial formulae by instantiating the corresponding partial truth as-
signment) is mapped by the Karp-reduction either to a string not in G (in which case
we conclude that the sub-tree contains no satisfying assignments and backtrack from

BFor an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings, and an internal
node corresponding to 7 is the parent of the nodes corresponding to 70 and 7 1.
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this node) or to a string in G. In the latter case, unless we already know that this string
is not in S, we start a scan of the sub-tree rooted at this node. However, once we
backtrack from this internal node, we know that the corresponding element of G is not
in S, and we will never scan again a sub-tree rooted at a node that is mapped to this
element. Also note that once we reach a leaf, we can check by ourselves whether or
not it corresponds to a satisfying assignment to the initial formula.

(Hint: When analyzing the foregoing procedure, note that on input an n-variable
formulae ¢ the number of times we start to scan a sub-tree is at most # - | Ufil"ly(w")
{0, ' NG\ S)I)
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CHAPTER FOUR

More Resources, More Power?

More electricity, less toil.
The Israeli Electricity Company, 1960s

Is it indeed the case that the more resources one has, the more one can achieve? The
answer may seem obvious, but the obvious answer (of yes) actually presumes that the
worker knows what resources are at his/her disposal. In this case, when allocated more
resources, the worker (or computation) can indeed achieve more. But otherwise, nothing
may be gained by adding resources.

In the context of Computational Complexity, an algorithm knows the amount of re-
sources that it is allocated if it can determine this amount without exceeding the cor-
responding resources. This condition is satisfied in all “reasonable” cases, but it may
not hold in general. The latter fact should not be that surprising: We already know that
some functions are not computable, and if these functions are used to determine resources
then the algorithm may be in trouble. Needless to say, this discussion requires some
formalization, which is provided in the current chapter.

Summary: When using “nice” functions to determine an algorithm’s
resources, it is indeed the case that more resources allow for more tasks
to be performed. However, when “ugly” functions are used for the same
purpose, increasing the resources may have no effect. By nice functions
we mean functions that can be computed without exceeding the amount
of resources that they specify (e.g., #(n) = n? or t(n) = 2"). Naturally,
“ugly” functions do not allow for presenting themselves in such nice
forms.

The foregoing discussion refers to uniform models of computation and
to (natural) resources such as time and space complexities. Thus, we get
results asserting, for example, that there are problems that are solvable
in cubic time but not in quadratic time. In case of non-uniform models
of computation, the issue of “nicety” does not arise, and it is easy to
establish separations between levels of circuit complexity that differ by
any unbounded amount.

Results that separate the class of problems solvable within one resource
bound from the class of problems solvable within a larger resource bound
are called hierarchy theorems. Results that indicate the nonexistence of
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such separations, hence indicating a “gap” in the growth of computing
power (or a “gap” in the existence of algorithms that utilize the added
resources), are called gap theorems. A somewhat related phenomenon,
called speed-up theorems, refers to the inability to define the complexity
of some problems.

Caveat. Uniform complexity classes based on specific resource bounds (e.g., cubic time)
are model dependent. Furthermore, the tightness of separation results (i.e., how much
“more time” is required for solving some additional computational problems) is also
model dependent. Still, the existence of such separations is a phenomenon common to all
reasonable and general models of computation (as referred to in the Cobham-Edmonds
Thesis). In the following presentation, we will explicitly differentiate model-specific
effects from generic ones.

Organization. We will first demonstrate the “more resources yield more power” phe-
nomenon in the context of non-uniform complexity. In this case, the issue of “knowing”
the amount of resources allocated to the computing device does not arise, because each
device is tailored to the amount of resources allowed for the input length that it handles
(see Section 4.1). We then turn to the time complexity of uniform algorithms; indeed, hier-
archy and gap theorems for time complexity, presented in Section 4.2, constitute the main
part of the current chapter. We end by mentioning analogous results for space complexity
(see Section 4.3, which may also be read after Section 5.1).

4.1. Non-uniform Complexity Hierarchies

The model of machines that use advice (cf. §1.2.4.2 and Section 3.1.2) offers a very
convenient setting for separation results. We refer specifically to classes of the form P /¢,
where £ : N — N is an arbitrary function (see Definition 3.5). Recall that every Boolean
function is in P /2", by virtue of a trivial algorithm that is given, as advice, the truth table
of the function (restricted to the relevant input length). An analogous algorithm underlies
the following separation result.

Theorem 4.1: For any two functions €', § : N — N such that £'(n) + §(n) < 2" and
3 is unbounded, it holds that P /€' is strictly contained in P /(£ + ).

Proof: Let (¢ Ly + 8, and consider the following advice-taking algorithm 4: Given
advice a, € {0, 1}*™ and input i € {1,...,2"} (viewed as an n-bit long string),
algorithm A outputs the i bit of a, if i < |a,| and zero otherwise. Clearly, for any
@ = (a)nen such that |a,| = £(n), it holds that the function f3(x) & A(ay,, x) isin
‘P /L. Furthermore, different sequences a yield different functions f7. We claim that
some of these functions f7 are not in P/£’, thus obtaining a separation.

The claim is proved by considering all possible (polynomial-time) algorithms 4’
and all possible sequences @’ = (a,,),en such that |a,| = £/(n). Fixing any algorithm
A’, we consider the number of n-bit long functions that are correctly computed by
A'(a), -). Clearly, the number of these functions is at most 2¢, and thus 4’ may
account for at most 279" fraction of the functions f; (even when restricted to n-bit
strings). Essentially, this consideration holds for every n and every possible 4’, and
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thus the measure of the set of functions that are computable by algorithms that take
advice of length £’ is zero.

Formally, for every n, we consider all advice-taking algorithms that have a de-
scription of length shorter than §(n) — 2. (This guarantees that every advice-taking
algorithm will be considered.) Coupled with all possible advice sequences of length
¢, these algorithms can compute at most 2=+ different functions of n-bit
long inputs. The latter number falls short of the 2 corresponding functions (of
n-bit long inputs) that are computable by 4 with advice of length £(n). |

A somewhat less tight bound can be obtained by using the model of Boolean circuits. In
this case, some slackness is needed in order to account for the gap between the upper and
lower bounds regarding the number of Boolean functions over {0, 1}" that are computed
by Boolean circuits of size s < 2”. Specifically (see Exercise 4.1), an obvious lower bound
on this number is 2°/91°¢%) whereas an obvious upper bound is s> = 221°225 Compare
these bounds to the lower-bound 2¢™ and the upper-bound 2¢+@/2) (on the number
of functions computable with advice of length ¢'(n)), which were used in the proof of
Theorem 4.1.

4.2. Time Hierarchies and Gaps

In this section we show that in “reasonable cases,” increasing the time complexity allows
for more problems to be solved, whereas in “pathological cases,” it may happen that
even a dramatic increase in the time complexity provides no additional computing power.
As hinted in the introductory comments to the current chapter, the “reasonable cases”
correspond to time bounds that can be determined by the algorithm itself within the
specified time complexity.

We stress that also in the aforementioned “reasonable cases,” the added power does
not necessarily refer to natural computational problems. That is, like in the case of non-
uniform complexity (i.e., Theorem 4.1), the hierarchy theorems are proven by introducing
artificial computational problems. Needless to say, we do not know of natural problems
in P that are unsolvable in cubic (or some other fixed polynomial) time (on, say, a two-
tape Turing machine). Thus, although P contains an infinite hierarchy of computational
problems, with each level requiring significantly more time than the previous level, we
know of no such hierarchy of natural computational problems. In contrast, so far it has
been the case that any natural problem that was shown to be solvable in polynomial time
was eventually followed by algorithms having running time that is bounded by a moderate
polynomial.

4.2.1. Time Hierarchies

Note that the non-uniform computing devices, considered in Section 4.1, were explicitly
given the relevant resource bounds (e.g., the length of advice). Actually, they were given
the resources themselves (e.g., the advice itself) and did not need to monitor their usage
of these resources. In contrast, when designing algorithms of arbitrary time complexity
t : N — N, we need to make sure that the algorithm does not exceed the time bound.
Furthermore, when invoked on input x, the algorithm is not given the time bound #(|x|)
explicitly, and a reasonable design methodology is to have the algorithm compute this
bound (i.e., #(Jx|)) before doing anything else. This, in turn, requires the algorithm to
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read the entire input (see Exercise 4.3) as well as to compute #(n) in O(¢(n)) steps (as
otherwise this preliminary stage already consumes too much time). The latter requirement
motivates the following definition (which is related to the standard definition of “fully
time constructibility” (cf. [123, Sec. 12.3])).

Definition 4.2 (time constructible functions): A4 function t : N — N is called time
constructible if there exists an algorithm that on input n outputs t(n) using at most
t(n) steps.

Equivalently, we may require that the mapping 1” — #(n) be computable within time
complexity 7. We warn that the foregoing definition is model dependent; however, typically
nice functions are computable even faster (e.g., in poly(log#(n)) steps), in which case
the model dependency is irrelevant (for reasonable and general models of computation,
as referred to in the Cobham-Edmonds Thesis). For example, in any reasonable and
general model, functions like #,(n) = n?, t,(n) = 2", and t3(n) = 2" are computable in
poly(log #;(n)) steps.

Likewise, for a fixed model of computation (to be understood from the context) and
for any function ¢ : N — N, we denote by DTIME(t) the class of decision problems that
are solvable in time complexity t. We call the reader’s attention to Exercise 4.4 that asserts
that in many cases DTIME(¢) = DTIME(?/2).

4.2.1.1. The Time Hierarchy Theorem

In the following theorem (which separates DTIME(?;) from DTIME(#,)), we refer to the
model of two-tape Turing machines. In this case we obtain quite a tight hierarchy in terms
of the relation between ¢, and #,. We stress that, using the Cobham-Edmonds Thesis, this
result yields (possibly less tight) hierarchy theorems for any reasonable and general model
of computation.

Teaching note: The standard statement of Theorem 4.3 asserts that for any time-constructible
function ty and every function t| such that t, = w(t) logt,) and t;(n) > n it holds that DTIME(¢,)
is strictly contained in DTIME(f;). The current version is only slightly weaker, but it allows a
somewhat simpler and more intuitive proof. We comment on the proof of the standard version
of Theorem 4.3 in a teaching note following the proof of the current version.

Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time-
constructible function t; and every function t, such that ty(n) > (log t;(n))* - t,(n)
and t\(n) > n it holds that DTIME(t, ) is strictly contained in DTIME(t,).

As will become clear from the proof, an analogous result holds for any model in which
a universal machine can emulate ¢ steps of another machine in O(¢ log t) time, where the
constant in the O-notation depends on the emulated machine. Before proving Theorem 4.3,
we derive the following corollary.

Corollary 4.4 (time hierarchy for any reasonable and general model): For any
reasonable and general model of computation there exists a positive polynomial
p such that for any time-computable function t| and every function t, such that
ty > p(t)) and t\(n) > n it holds that DTIME(t, ) is strictly contained in DTIME(t,).
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It follows that, for every such model and every polynomial ¢ (such that #(n) > n), there
exist problems in P that are not in DTIME(?). It also follows that P is a strict subset of
£ and even of “quasi-polynomial time” (i.e., DTIME(g), where ¢(n) = exp(poly(log n)));
moreover, P is a strict subset of DTIME(g), for any super-polynomial function ¢ (i.e.,
q(n) = n°D).

We comment that Corollary 4.4 can be proven directly (rather than by invoking The-
orem 4.3). This can be done by implementing the ideas that underlie the proof of Theo-
rem 4.3 directly to the model of computation at hand (see Exercise 4.5). In fact, such a
direct implementation, which is allowed “polynomial slackness” (i.e., &, > p(t1)), is less
cumbersome than the implementation presented in the proof of Theorem 4.3 where only
a polylogarithmic factor is allowed in the slackness (i.e., #, > O(#;)). We also note that
the separation result in Corollary 4.4 can be tightened — for details see Exercise 4.6.

Proof of Corollary 4.4: The underlying fact is that separation results regarding
any reasonable and general model of computation can be “translated” to analogous
results regarding any other such model. Such a translation may affect the time bounds
as demonstrated next. Letting DTIME, denote the classes that correspond to two-tape
Turing machines (and recalling that DTIME denotes the classes that correspond
to the alternative model), we note that DTIME(#;) € DTIMEy(¢]) and DTIME»(2)) €
DrTIME(t,), where #; = poly(#)) and ¢} is defined such that #,(n) = poly(#;(n)). The
latter unspecified polynomials, hereafter denoted p; and p,, respectively, are the
ones guaranteed by the Cobham-Edmonds Thesis. Also, the hypothesis that ¢, is
time-constructible implies that #;{ = p;(#;) is time-constructible with respect to the
two-tape Turing machine model. Thus, for a suitable choice of the polynomial p
(i.e., p(py'(m)) = pa(m?)), it holds that

t(n) = py ((n) > py ' (p(ti(n)) = py ' (p(py (1)) = £i(n)?,

where the first inequality holds by the corollary’s hypothesis (i.e., #, > p(#;)) and
the last inequality holds by the choice of p. Invoking Theorem 4.3 (while noting that
th(n) > t{(n)?), we obtain the strict inclusion DTIME,(¢]) C DTIME,(#}). Combining
the latter with DTIME(#;) € DTIME,(#{) and DTIME,(¢;) € DTIME(#,), the corollary
follows. |

Proof of Theorem 4.3: The idea is constructing a Boolean function f such that all
machines having time complexity #, fail to compute f. This is done by associating
with each possible machine M a different input x,, (e.g., x3r = (M)) and making
sure that f(xa) # M'(xy), where M'(x) denotes an emulation of M(x) that is
suspended after t,(|x|) steps. For example, we may define f(xy) =1 — M'(xy).
We note that M’ is used instead of M in order to allow for computing f in time that
is related to #;. The point is that M may be an arbitrary machine that is associated
with the input x,,, and so M does not necessarily run in time ¢, (but, by construction,
the corresponding M’ does run in time #;).

Implementing the foregoing idea calls for an efficient association of machines
to inputs as well as for a relatively efficient emulation of #; steps of an arbitrary
machine. As shown next, both requirements can be met easily. Actually, we are going
to use a mapping u of inputs to machines (i.e., u will map the aforementioned x,,
to M) such that each machine is in the range of p and p is very easy to compute
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(e.g., indeed, for starters, assume that p is the identity mapping). Thus, by con-
struction, f* & DTIME(¢;). The issue is presenting a relatively efficient algorithm for
computing f, that is, showing that / € DTIME(#,).

The algorithm for computing f as well as the definition of f (sketched in
the first paragraph) are straightforward: On input x, the algorithm computes ¢ =
t1(|x]), determines the machine M = u(x) that corresponds to x (outputting a default
value if no such machine exists), emulates M(x) for t steps, and returns the value
1 — M'(x). Recall that M'(x) denotes the time-truncated emulation of M(x) (i.e.,
the emulation of M(x) suspended after ¢ steps); that is, if M(x) halts within ¢
steps then M’(x) = M(x), and otherwise M’(x) may be defined arbitrarily. Thus,
f(x)=1— M(x)if M = u(x) and (say) f(x) = 0 otherwise.

In order to show that f* & DTIME(¢;), we show that each machine of time com-
plexity ¢#; fails to compute f. Fixing any such machine, M, we consider an input x ,
such that M = pu(x,,), where such an input exists because w is onto. Now, on the
one hand, M'(x;) = M(xy) (because M has time complexity ¢,), while on the other
hand, f(xy) = 1 — M'(xy,) (by the definition of f). It follows that M(x) # f(x).

We now turn to upper-bounding the time complexity of f by analyzing the time
complexity of the foregoing algorithm that computes f. Using the time constructibil-
ity of #; and ignoring the easy computation of x, we focus on the question of how
much time is required for emulating ¢ steps of machine M (on input x). We should
bear in mind that the time complexity of our algorithm needs to be analyzed in the
two-tape Turing machine model, whereas M itself is a two-tape Turing machine.
We start by implementing our algorithm on a three-tape Turing machine, and next
emulate this machine on a two-tape Turing machine.

The obvious implementation of our algorithm on a three-tape Turing machine
uses two tapes for the emulation itself and designates the third tape for the actions
of the emulation procedure (e.g., storing the code of the emulated machine and
maintaining a step-counter). Thus, each step of the two-tape machine M is emulated
using O(|{M)|) steps on the three-tape machine.' This also includes the amortized
complexity of maintaining a step counter for the emulation (see Exercise 4.7).

Next, we need to emulate the foregoing three-tape machine on a two-tape machine.
This is done by using the fact (cf., e.g., [123, Thm. 12.6]) that ¢’ steps of a three-tape
machine can be emulated on a two-tape machine in O(¢' log t') steps. Thus, the com-
plexity of computing f on input x is upper-bounded by O(7},)(Ix1)10g T,.ix)(Ix1])),
where Ty (n) = O(J{(M)| - t;(n)) represents the cost of emulating #,(n) steps of the
two-tape machine M on a three-tape machine (as in the foregoing discussion).

It turns out that the quality of the separation result that we obtain depends on
the choice of the mapping u (of inputs to machines). Using the naive (identity)
mapping (i.e., i(x) = x) we can only establish the theorem for 1,(n) = O(n - 11(n))
rather than #,(n) = O(#1(n)), because in this case 7;,)(Ix|) = O(Ix| - t:1(]x])). (Note
that, in this case, x,; = (M) is a description of u(x;;) = M.) The theorem follows
by associating the machine M with the input x,; = (M)01”, where m = 2!™)I; that
is, we may use the mapping p such that u(x) = M if x = (M)OIZWH and u(x)
equals some fixed machine otherwise. In this case |u(x)| < log, |x| < log#(|x|)
and so Tj,(Ix]) = O((log t1(|x)) - t1(Ix[)). The theorem follows. |

"This overhead accounts both for searching the code of M for the adequate action and for the effecting of this
action (which may refer to a larger alphabet than the one used by the emulator).
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Teaching note: Proving the standard version of Theorem 4.3 cannot be done by associating a
sufficiently long input x,; with each machine M, because this does not allow for geting rid of
the additional unbounded factor in 7},(,)(|x|) (i.e., the |(x)| factor that multiplies #,(]x|)). Note
that the latter factor needs to be computable (at the very least) and thus cannot be accounted for
by the generic w-notation that appears in the standard version (cf. [123, Thm. 12.9]). Instead,
a different approach is taken (see footnote 2).

Technical comments. The proof of Theorem 4.3 associates with each potential machine
M some input x;, and defines the computational problem such that machine M errs on
input x,,. The association of machines with inputs is rather flexible: We can use any onto
mapping of inputs to machines that is efficiently computable and sufficiently shrinking.
Specifically, in the proof, we used the mapping u such that u(x) = M if x = (M )OleMH
and wu(x) equals some fixed machine otherwise. We comment that each machine can be
made to err on infinitely many inputs by redefining u such that u(x) = M if (M 012"
is a suffix of x (and w(x) equals some fixed machine otherwise). We also comment that,
in contrast to the proof of Theorem 4.3, the proof of Theorem 1.5 utilizes a rigid mapping
of inputs to machines (i.e., there u(x) = M if x = (M)).

Digest: Diagonalization. The last comment highlights the fact that the proof of Theo-
rem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Both proofs refer
to versions of the universal function, which in the case of the proof of Theorem 4.3 is
(implicitly) defined such that its value at ({(M), x) equals M’(x), where M’'(x) denotes an
emulation of M(x) that is suspended after #,(|x|) steps.’ Actually, both proofs refers to the
“diagonal” of the aforementioned function, which in the case of the proof of Theorem 4.3
is only defined implicitly. That is, the value of the diagonal function at x, denoted d(x),
equals the value of the universal function at ({(x)), x). This is actually a definitional
schema, as the choice of the function u remains unspecified. Indeed, setting wu(x) = x
corresponds to a “real” diagonal in the matrix depicting the universal function, but any
other choice of a 1-1 mappings u also yields a “kind of diagonal” of the universal function.
Either way, the function f is defined such that for every x it holds that f(x) # d(x). This
guarantees that no machine of time complexity #; can compute f, and the focus is on
presenting an algorithm that computes f (which, needless to say, has time complexity
greater than #;). Part of the proof of Theorem 4.3 is devoted to selecting p in a way that
minimizes the time complexity of computing f, whereas in the proof of Theorem 1.5 we
merely need to guarantee that f is computable.

4.2.1.2. Impossibility of Speedup for Universal Computation

The time hierarchy theorem (Theorem 4.3) implies that the computation of a universal
machine cannot be significantly sped up. That is, consider the function u'({M), x, t) &ef yif

’In the standard proof the function f is not defined with reference to #;(|xy|) steps of M(x,s), but rather with
reference to the result of emulating M (x,,) while using a total of #,(|x/|) steps in the emulation process (i.e., in the
algorithm used to compute f). This guarantees that f is in DTIME(%,), and “pushes the problem” to showing that f’
is not in DTIME(#}). It also explains why #, (rather than #;) is assumed to be time-constructible. As for the foregoing
problem, it is resolved by observing that for each relevant machine (i.e., having time complexity #;) the executions
on any sufficiently long input will be fully emulated. Thus, we merely need to associate with each M a disjoint set of
infinitely many inputs and make sure that M errs on each of these inputs.

*Needless to say, in the proof of Theorem 1.5, M’ = M.
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on input x machine M halts within ¢ steps and outputs the string y, and v'({M), x, t) =
if on input x machine M makes more than ¢ steps. Recall that the value of u'({M), x, t)
can be computed in O(|x| + |{M)] - t) steps. As shown next, Theorem 4.3 implies that
this value (i.e., u'({M), x, t)) cannot be computed within significantly fewer steps.

Theorem 4.5: There exists no two-tape Turing machine that, on input (M), x and
t, computes W (M), x, t) in o((t + |x|) - f(M)/log?(t + |x|)) steps, where f is an
arbitrary function.

A similar result holds for any reasonable and general model of computation (cf.,
Corollary 4.4). In particular, it follows that u’ is not computable in polynomial time
(because the input ¢ is presented in binary). In fact, one can show that there exists no
polynomial-time algorithm for deciding whether or not M halts on input x in t steps (i.e.,
the set {((M), x, t) : W'({(M), x, t) # L} is not in P); see Exercise 4.8.

Proof: Suppose (toward the contradiction) that, for every fixed M, given x and
t > |x|, the value of u'({M), x, ) can be computed in o(¢/ log? ¢) steps, where the o-
notation hides a constant that may depend on M. We shall show that this hypothesis
implies that for any time-constructible t| and ty(n) = t(n) - log2 t1(n) it holds that
DtiME(%,) = DTIME(?), which (strongly) contradicts Theorem 4.3.

Consider an arbitrary time-constructible ¢, (s.t. 1;(n) > n) and an arbitrary set S €
DTIME(f,), where t2(n) = t;(n) - log? t(n). Let M be a machine of time complexity
t, that decides membership in S, and consider the following algorithm: On input x,
the algorithm first computes ¢ = #,(]x|), and then computes (and outputs) the value
u'((M), x, t log® t). By the time constructibility of 7, the first computation can be
implemented in ¢ steps, and by the contradiction hypothesis the same holds for the
second computation. Thus, S can be decided in DTIME(2¢,) = DTIME(?;), implying
that DTIME(#;) = DTIME(#;), which in turn contradicts Theorem 4.3. We conclude
that the contradiction hypothesis is wrong, and the theorem follows. |

4.2.1.3. Hierarchy Theorem for Non-deterministic Time

Analogously to DTIME, for a fixed model of computation (to be understood from the
context) and for any function ¢ : N — N, we denote by NTIME(¢) the class of sets that are
accepted by some non-deterministic machine of time complexity t. Indeed, this definition
extends the traditional formulation of NP (as presented in Definition 2.7). Alternatively,
analogously to our preferred definition of NP (i.e., Definition 2.5), a set S C {0, 1}* is in
NTIME(?) if there exists a linear-time algorithm ¥ such that the two conditions hold:

1. Forevery x € S there exists y € {0, 1}'*D such that V(x, y) = 1.
2. Foreveryx ¢ S and every y € {0, 1}* it holds that V' (x, y) = 0.

We warn that the two formulations are not identical, but in sufficiently strong models (e.g.,
two-tape Turing machines) they are related up to logarithmic factors (see Exercise 4.10).
The hierarchy theorem itself is similar to the one for deterministic time, except that here
we require that #,(n) > (logt;(n + 1))? - t;(n + 1) (rather than 1,(n) > (log t,(n))? - t(n)).
That is:
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Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines): For
any time-constructible and monotonically non-decreasing function t; and every
function t; such that ty(n) > (logt;(n + 1))? - ty(n + 1) and t,(n) > n it holds that
NTIME(?) is strictly contained in NTIME(?,).

Proof: We cannot just apply the proof of Theorem 4.3, because the Boolean function
f defined there requires the ability to determine whether there exists a computation
of M that accepts the input x;, in #;(]x,|) steps. In the current context, M is a non-
deterministic machine and so the only way we know how to determine this question
(both for a “yes” and “no” answers) is to try all the (21("4D) relevant executions.’
But this would put f in DTIME(2"), rather than in NTIME(O(#,)), and so a different
approach is needed.

We associate with each (non-deterministic) machine M a large interval of strings
(viewed as integers), denoted I, = [&)s, Bas], such that the various intervals do not
intersect and such that it is easy to determine for each string x in which interval it
resides. For each x € [oys, Bar — 1], we define f(x) = 1 if and only if there exists a
non-deterministic computation of M that accepts the input x’ Yy +lin t(x’]) <
ti(|x| + 1) steps. Thus, if M has time complexity #; and (non-deterministically)
accepts {x : f(x)=1}, then either M (non-deterministically) accepts each string in
the interval I, or M (non-deterministically) accepts no string in /,;, because M
must non-deterministically accept x if and only if it non-deterministically accepts
x' = x + 1. So, it is left to deal with the case that A is invariant on [,,, which is
where the definition of the value of f(8,,) comes into play: We define f(8,,) to equal
zero if and only if there exists a non-deterministic computation of M that accepts the
input oty in 71 (Jorys|) steps. We shall select 8 to be large enough relative to o), such
that we can afford to try all possible computations of M on input «,. Details follow.

Let us first recapitulate the definition of f : {0, 1}* — {0, 1}, focusing on the case
that the input is in some interval /),. We define a Boolean function A4, such that
Ay(z) =1 if and only if there exists a non-deterministic computation of M that
accepts the input z in #,(|z|) steps. Then, for x € 1), we have

Ay +1) ifx € [ay, By — 1]
/0 = {lﬂfAM(aM) ifx =By

Next, we present the following non-deterministic machine for accepting the set
{x : f(x) = 1}. We assume that, on input x, it is easy to determine the machine M
that corresponds to the interval [o, Bi/] in which x resides.” We distinguish two
cases:

1. On input x € [ay, By — 1], our non-deterministic machine emulates #;(]x’|)
steps of a (single) non-deterministic computation of M on input x’ = x + 1,
and decides accordingly (i.e., our machine accepts if and only if the said emula-
tion has accepted). Indeed (as in the proof of Theorem 4.3), this emulation can
be performed in time (log ¢;(|x + 11))* - ty(]x + 1)) < t2(]x]).

4Indeed, we can non-deterministically recognize “yes” answers in 5([1 (]xa])) steps, but we cannot do so for “no”
answers.

>For example, we may partition the strings to consecutive intervals such that the i interval, denoted [a;, 8i],
corresponds to the i™" machine and for 7} (m) = 2240n) it holds that g; = 171(%D and oy = 071D+l Note that
|Bil = Ti(Jes]), and thus 11 (1B;]) > 11(jey ) - 210,
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2. Oninputx = B, our machine just tries all 2/(“»D executions of M on input ay,
and decides in a suitable manner; that is, our machine emulates #;(|oys|) steps in
each of the 2/1(“mD) possible executions of M(cry/) and accepts By if and only if
none of the emulated executions ended accepting «y,. Note that this part of our
machine is deterministic, and it amounts to emulating 7y, &l pnlanl) . t(laal)
steps of M. By a suitable choice of the interval [ays, By] (e.8., |Bu| > Tu),
this number of steps (i.e., Tjs) is smaller than |B8y,| < t1(|Bx]), and it follows
that these T), steps of M can be emulated in time (log, #1(|8x1))* - t1(|1Bum]) <

H(1Buml)-

Thus, our non-deterministic machine has time complexity #,, and it follows that f
is in NTIME(%,). It remains to show that f is not in NTIME(?, ).

Suppose, on the contrary, that some non-deterministic machine M of time
complexity #; accepts the set {x : f(x) = 1}; that is, for every x it holds that
Ay(x) = f(x), where 4y, is as defined in the foregoing (i.e., 4/(x) = 1 ifand only
if there exists a non-deterministic computation of M that accepts the input x in ¢, (|x|)
steps). Focusing on the interval [oys, Bar], we have Ay (x) = f(x) for every x €
[aar, Bar], which (combined with the definition of ) implies that 4y,(x) = f(x) =
AM(X + 1) for EVery x € [OlM, ,BM — 1] and AM(,BM) = f(,BM) =1- AM(O{M)
Thus, we reached a contraction (because we got Ay(ay) == Ay(By) =
1 — Ay(am)). u

4.2.2. Time Gaps and Speedup

In contrast to Theorem 4.3, there exists functions ¢ : N — N such that DTIME(?) =
DTIME(#?) (or even DTIME(7) = DTIME(2")). Needless to say, these functions are not time-
constructible (and thus the aforementioned fact does not contradict Theorem 4.3). The
reason for this phenomenon is that, for such functions 7, there exist no algorithms that
have time complexity above ¢ but below ¢ (resp., 2°).

Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-
tion g : N — N there exists a non-decreasing computable function t : N — N such
that DTIME(?) = DTIME(g(2)).

The foregoing examples referred to g(m) = m? and g(m) = 2™. Since we are mainly
interested in dramatic gaps (i.e., super-polynomial functions g), the model of computation
does not matter here (as long as it is reasonable and general).

Proof: Consider an enumeration of all possible algorithms (or machines), which also
includes machines that do not halt on some inputs. (Recall that we cannot enumerate
the set of all machines that halt on every input.) Let # denote the time complexity
of the i™ algorithm; that is, #;(n) = oo if the i machine does not halt on some
n-bit long input and otherwise #;(n) = maxye(o,1}»{7;(x)}, where T;(x) denotes the
number of steps taken by the i machine on input x.

The basic idea is to define ¢ such that no # is “sandwiched” between ¢ and g(z),
and thus no algorithm will have time complexity between ¢ and g(z). Intuitively, if
t;(n) is finite, then we may define ¢ such that #(n) > #;(n) and thus guarantee that
t;(n) & [t(n), g(t(n))], whereas if #;(n) = oo then any finite value of #(n) will do
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g(v) T

current v

Figure 4.1: The Gap Theorem — determining the value of (n).

(because then t;(n) > g(¢(n))). Thus, for every m and n, we can define #(n) such that
ti(n) & [t(n), g(t(n))] for every i € [m] (e.g., t(n) = MaX;e[m,(mzooiti(n)} + 1).°
This yields a weaker version of the theorem in which the function 7 is neither
computable nor non-decreasing. It is easy to modify ¢ such that it is non-decreasing
(e.g., t(n) = max(¢(n — 1), max;epn]m)£ooiti(n)}) + 1) and so the real challenge is
to make ¢ computable.

The problem is that we want ¢ to be computable, whereas given n we cannot
tell whether or not #;(n) is finite. However, we do not really need to make the latter
decision: For each candidate value v of #(n), we should just determine whether
or not #(n) € [v, g(v)], which can be decided by running the i machine for at
most g(v) + 1 steps (on each n-bit long string). That is, as far as the i machine is
concerned, we should just find a value v such that either v > #;(n) or g(v) < #;(n)
(which includes the case #;(n) = oo). This can be done by starting with v = vy
(where, say, vg = t(n — 1) + 1), and increasing v until either v > £;(n) or g(v) <
t;(n). The point is that if #;(n) is infinite then we may output v = v, after emulating
2" - (g(vo) + 1) steps, and otherwise we reach a safe value v > #;(n) after performing
at most ng , 2" - j emulation steps. Bearing in mind that we should deal with all
possible machines, we obtain the following procedure for setting #(n).

Let u : N — N be any unbounded and computable function (e.g., u(n) =n
will do). Starting with v = ¢#(n — 1) + 1, we keep incrementing v until v satisfies,
foreveryi € {1, ..., u(n)}, either #;(n) < v or t;(n) > g(v). This condition can be
verified by computing u(n) and g(v), and emulating the execution of each of the first
u(n) machines on each of the n-bit long strings for g(v) + 1 steps. The procedure
sets #(n) to equal the first value v satisfying the aforementioned condition, and halts.
(Figure 4.1 depicts the search for a good value v for #(n).)

we may assume, without loss of generality, that #;(n) = 1 for every n, e.g., by letting the machine that always
halts after a single step be the first machine in our enumeration.
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To show that the foregoing procedure halts on every n, consider the set H, C
{1, ..., u(n)} ofthe indices of the (relevant) machines that halt on all inputs of length
n. Then, the procedure definitely halts before reaching the value v = max(7,,, t(n —
1)) + 2, where T, = max;cp, {t;(n)}. (Indeed, the procedure may halt with a value
v < T, but this will happen only if g(v) < T;,.)

Finally, for the foregoing function ¢, we prove that DTIME(¢) = DTIME(g(#)) holds.
Indeed, consider an arbitrary S € DTIME(g(¢)), and suppose that the i algorithm
decides S in time at most g(¢); that is, for every n, it holds that #;(n) < g(¢(n)). Then
(by the construction of ¢), for every n satisfying p(n) > i, it holds that ¢;(n) < t(n).
It follows that the i algorithm decides S in time at most # on all but finitely many
inputs. Combining this algorithm with a “look-up table” machine that handles the
exceptional inputs, we conclude that S € DTIME(¢). The theorem follows. ]

Comment. The function ¢ defined by the foregoing proof is computable in time that
exceeds g(¢). Specifically, the presented procedure computes #(n) (as well as g(f(n)))
in time O(2" - g(t(n)) + T4(t(n))), where T,(m) denotes the number of steps required to
compute g(m) on input m.

Speedup theorems. Theorem 4.7 can be viewed as asserting that some time complexity
classes (i.e., DTIME(g(?)) in the theorem) collapse to lower classes (i.e., to DTIME(?)). A
conceptually related phenomenon is of problems that have no optimal algorithm (not even
in a very mild sense); that is, every algorithm for these (“pathological’’) problems can be
drastically sped up. It follows that the complexity of these problems cannot be defined
(i.e., as the complexity of the best algorithm solving this problem). The following drastic
speed-up theorem should not be confused with the linear speed-up that is an artifact of
the definition of a Turing machine (see Exercise 4.4).

Theorem 4.8 (the time speed-up theorem): For every computable (and super-linear)
function g there exists a decidable set S such that if S € DTIME(t) then S € DTIME(t')

Jfor t' satisfying g(t'(n)) < t(n).

Taking g(n) = n? (or g(n) = 2"), the theorem asserts that, for every ¢, if S € DTIME(¢)
then S € DTIME(+/?) (resp., S € DTiME(log ¢)). Note that Theorem 4.8 can be applied any
(constant) number of times, which means that we cannot give a reasonable estimate to the
complexity of deciding membership in S. In contrast, recall that in some important cases,
optimal algorithms for solving computational problems do exist. Specifically, algorithms
solving (candid) search problems in NP cannot be sped up (see Theorem 2.33), nor can
the computation of a universal machine (see Theorem 4.5).

We refrain from presenting a proof of Theorem 4.8, but comment on the complexity
of the sets involved in this proof. The proof (presented in [123, Sec. 12.6]) provides
a construction of a set S in DTIME(¢') \ DTIME(¢") for ¢'(n) = h(n — O(1)) and t"(n) =
h(n — w(1)), where h(n) denoted g iterated n times on 2 (i.e., #(n) = g (2), where
gD (m) = g(g”(m)) and gV = g). The set S is constructed such that for every i > 0

"Advanced comment: We note that the linear speed-up phenomenon was implicitly addressed in the proof of
Theorem 4.3, by allowing an emulation overhead that depends on the length of the description of the emulated
machine.
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there exists a j > i and an algorithm that decides § in time # but not in time ¢;, where
te(n) = h(n — k).

4.3. Space Hierarchies and Gaps

Hierarchy and gap theorems analogous to Theorem 4.3 and Theorem 4.7, respectively, are
known for space complexity. In fact, since space-efficient emulation of space-bounded
machines is simpler than time-efficient emulations of time-bounded machines, the results
tend to be sharper (and their proofs tend to be simpler). This is most conspicuous in the
case of the separation result (stated next), which is optimal (in light of the corresponding
linear speed-up result; see Exercise 4.12).

Before stating the separation result, we need a few preliminaries. We refer the reader
to §1.2.3.5 for a definition of space complexity (and to Chapter 5 for further discussion).
As in the case of time complexity, we consider a specific model of computation, but
the results hold for any other reasonable and general model. Specifically, we consider
three-tape Turing machines, because we designate two special tapes for input and output.
For any function s : N — N, we denote by DSPACE(s) the class of decision problems that
are solvable in space complexity s. Analogously to Definition 4.2, we call a function
s : N — N space-constructible if there exists an algorithm that on input » outputs s(n)
while using at most s(n) cells of the work-tape. Actually, functions like s(n) = logn,
s2(n) = (logn)?, and s3(n) = 2" are computable using O(logs;(n)) space.

Theorem 4.9 (space hierarchy for three-tape Turing machines): For any space-
constructible function s, and every function s| such that s, = w(sy) andsy(n) > logn
it holds that DSPACE(s) ) is strictly contained in DSPACE(s7).

Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather than to the one
we presented), and is proven using the alternative approach sketched in footnote 2. The
details are left as an exercise (see Exercise 4.13).

Chapter Notes

The material presented in this chapter predates the theory of NP-completeness and the
dominant stature of the P-vs-NP Question. In these early days, the field (to be known as
Complexity Theory) had not yet developed an independent identity and its perspectives
were dominated by two classical theories: the theory of computability (and recursive
function) and the theory of formal languages. Nevertheless, we believe that the results
presented in this chapter are interesting for two reasons. Firstly, as stated up front, these
results address the natural question of under what conditions it is the case that more
computational resources help. Secondly, these results demonstrate the type of results that
one can get with respect to “generic” questions regarding Computational Complexity; that
is, questions that refer to arbitrary resource bounds (e.g., the relation between DTIME(?, )
and DTIME(?,) for arbitrary #; and 1,).

We note that, in contrast to the “generic” questions considered in this chapter, the
P-vs-NP Question as well as the related questions that will be addressed in the rest
of this book are not “generic” since they refer to specific classes (which capture natural
computational issues). Furthermore, whereas time and space complexity behave in similar
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manner with respect to hierarchies and gaps, they behave quite differently with respect to
other questions. The interested reader is referred to Sections 5.1 and 5.3.

Getting back to the concrete contents of the current chapter, let us briefly mention the
most relevant credits. The hierarchy theorems (e.g., Theorem 4.3) were proven by Hart-
manis and Stearns [114]. Gap theorems (e.g., Theorem 4.7) were proven by Borodin [47]
(and are often referred to as Borodin’s Gap Theorem). An axiomatic treatment of com-
plexity measures was developed by Blum [38], who also proved corresponding speed-up
theorems (e.g., Theorem 4.8, which is often referred to as Blum’s Speed-up Theorem). A
traditional presentation of all the aforementioned topics is provided in [123, Chap. 12],
which also presents related techniques (e.g., “translation lemmas”).

Exercises

Exercise 4.1: Let F,(s) denote the number of different Boolean functions over {0, 1}"
that are computed by Boolean circuits of size s. Prove that, for any s < 2”, it holds that
Fo(s) = 25/0008s) and F,(s) < s%.

Guideline: Any Boolean function f : {0, 1} — {0, 1} can be computed by a circuit
of size sy = O(£ - 2%). Thus, for every £ < n, it holds that F,(s;) > 2% > 25¢/0(ogse),
On the other hand, the number of circuits of size s is less than 2°* - (f), where the
second factor represents the number of possible choices of pairs of gates that feed any
gate in the circuit.

Exercise 4.2 (advice can speed up computation): For every time-constructible function
t, show that there exists a set S in DTIME(#?) \ DTIME(¢) that can be decided in linear
time using an advice of linear length (i.e., S € DTIME(£)/£ where £(n) = O(n)).

Guideline: Starting with a set ' € DTIME(7?) \ DTiME(T'), where T(m) = t(2™),
consider the set S = {x02" I : x e 5}

Exercise 4.3: Referring to any reasonable model of computation (and assuming that the
input length is not given explicitly (unlike as in, e.g., Definition 10.10)), prove that any
algorithm that has sub-linear time complexity actually has constant time complexity.

Guideline: Consider the question of whether or not there exists an infinite set of strings
S such that when invoked on any input x € S the algorithm reads all of x. Note that if
S is infinite then the algorithm cannot have sub-linear time complexity, and prove that
if S is finite then the algorithm has constant time complexity.

Exercise 4.4 (linear speed-up of Turing machine): Prove that any problem that can be
solved by a two-tape Turing machine that has time complexity ¢ can be solved by another
two-tape Turing machine having time complexity ¢/, where t'(n) = O(n) + (¢(n)/2).

Guideline: Consider a machine that uses a larger alphabet, capable of encoding a
constant (denoted ¢) number of symbols of the original machine, and thus capable of
emulating ¢ steps of the original machine in O(1) steps, where the constant in the O-
notation is a universal constant (independent of ¢). Note that the O(n) term accounts
for a preprocessing that converts the binary input to the work alphabet of the new
machine (which encodes c¢ input bits in one alphabet symbol). Thus, a similar result
for a one-tape Turing machine seems to require an additive O(n?) term.
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Exercise 4.5 (a direct proof of Corollary 4.4): Present a direct proof of Corollary 4.4
by using the ideas that underlie the proof of Theorem 4.3. Furthermore, prove that if ¢
steps of machine M (in the model at hand) can be emulated by g(|M|, t) steps of a cor-
responding universal machine, then Corollary 4.4 holds for any t,(n) > g(logn, t;(n)).

Guideline: The function f & DTIME(?)) is defined exactly as in the proof of The-
orem 4.3, where here DTIME denotes the time-complexity classes of the model at
hand. When upper-bounding the time complexity of f in this model, let T/(n) de-
note the number of steps used in emulating #,(n) steps of machine M, and note that
Ty(n) = g(|M], t;(n)) and that /' € DTIME(T"), where T'(n) = maXye(o, 1} { Tpur) (1)}

Exercise 4.6 (tightening Corollary 4.4): Prove that, for any reasonable and general
model of computation, any constant ¢ > 0 and any “nice” function t (e.g., either
t(n) = n° for any constant ¢ > 1 or ¢(n) = 2°” for any constant ¢’ > 0), it holds that
DTIME(?) is strictly contained in DTIME(¢'+#).

Guideline: Assuming toward the contradiction that DTIME(#) = DTIME(f o ¢), for
f(k) = k'*®, derive a contradiction to Corollary 4.4 by proving that for every constant
i it holds that DTIME(z) = DTIME( /7 o ¢), where f7 denotes i iterative applications of
f. Note that proving that DTIME(f) = DTIME( f o ¢) implies that DTIME( /"~ o ¢) =
D1iME(f7 o t) (for every constant i) requires a “padding argument” (i.e., n-bit long
inputs are encoded as m-bit long inputs such that ¢(m) = (f"~! o t)(n), and indeed
ni—m= ("o fi~! ot)(n) should be computable in time #(m)).

Exercise 4.7 (constant amortized-time step-counter): A step-counter is an algorithm
that runs for a number of steps that is specified in its input. Actually, such an algorithm
may run for a somewhat larger number of steps but halt after issuing a number of
“signals” as specified in its input, where these signals are defined as entering (and
leaving) a designated state (of the algorithm). A step-counter may be run in parallel to
another procedure in order to suspend the execution after a predetermined number of
steps (of the other procedure) have elapsed. Show that there exists a simple deterministic
machine that, on input #, halts after issuing » signals while making O(n) steps.

Guideline: A slightly careful implementation of the straightforward algorithm will do,
when coupled with an “amortized” time-complexity analysis.

Exercise 4.8 (a natural setin £ \ P): In continuation of the proof of Theorem 4.5, prove
that the set {((M), x, t) : W'((M), x,t) # L}isin & \ P, where £ & U, DTIME(e,) and
e.(n) =2,

Exercise 4.9 (EXP-completeness): In continuation of Exercise 4.8, prove that every set
in EXP is Karp-reducible to the set {({(M), x, t) : W'((M), x,t) # L}.

Exercise 4.10: Prove that the two definitions of NTIME, presented in §4.2.1.3, are related
up to logarithmic factors. Note the importance of the condition that } has linear (rather
than polynomial) time complexity.

Guideline: When emulating a non-deterministic machine by the verification procedure
V', encode the non-deterministic choices in a “witness” string y such that | y| is slightly
larger than the number of steps taken by the original machine. Specifically, having
|¥| = O(tlogt), where ¢t denotes the number of steps taken by the original machine,
allows for emulating the latter computation in linear time (i.e., linear in |y|).
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Exercise 4.11: In continuation of Theorem 4.7, prove that for every computable function
t': N — N and every non-decreasing computable function g : N — N there exists
a non-decreasing computable function t : N — N such that t > t' and DTIME(t) =
DtiME(g(?)).

Exercise 4.12: In continuation of Exercise 4.4, state and prove a linear speed-up result for
space complexity, when using the standard definition of space as recalled in Section 4.3.
(Note that this result does not hold with respect to “binary space complexity” as defined
in Section 5.1.1.)

Exercise 4.13: Prove Theorem 4.9. As a warm-up, prove first a space-complexity version
of Theorem 4.3.

Guideline: Note that providing a space-efficient emulation of one machine by another
machine is easier than providing an analogous time-efficient emulation.

Exercise 4.14 (space gap theorem): In continuation of Theorem 4.7, state and prove a
gap theorem for space complexity.
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CHAPTER FIVE

Space Complexity

Open are the double doors of the horizon; unlocked are its bolts.
Philip Glass, Akhnaten, Prelude

Whereas the number of steps taken during a computation is the primary measure of its
efficiency, the amount of temporary storage used by the computation is also a major
concern. Furthermore, in some settings, space is even more scarce than time.

In addition to the intrinsic interest in space complexity, its study provides an interesting
perspective on the study of time complexity. For example, in contrast to the common
conjecture by which NP # coA P, we shall see that analogous space-complexity classes
(e.g., N'L) are closed under complementation (e.g., N'L = coN L).

Summary: This chapter is devoted to the study of the space complex-
ity of computations, while focusing on two rather extreme cases. The
first case is that of algorithms having logarithmic space complexity.
We view such algorithms as utilizing the naturally minimal amount of
temporary storage, where the term “minimal” is used here in an intu-
itive (but somewhat inaccurate) sense, and note that logarithmic space
complexity seems a more stringent requirement than polynomial time.
The second case is that of algorithms having polynomial space com-
plexity, which seems a strictly more liberal restriction than polynomial
time complexity. Indeed, algorithms utilizing polynomial space can per-
form almost all the computational tasks considered in this book (e.g., the
class PSP ACE contains almost all complexity classes considered in this
book).

We first consider algorithms of logarithmic space complexity. Such al-
gorithms may be used for solving various natural search and decision
problems, for providing reductions among such problems, and for yield-
ing a strong notion of uniformity for Boolean circuits. The climax of this
part is a log-space algorithm for exploring (undirected) graphs.

We then turn to non-deterministic computations, focusing on the com-
plexity class AL that is captured by the problem of deciding directed
connectivity of (directed) graphs. The climax of this part is a proof that
NL = coN L, which may be paraphrased as a log-space reduction of
directed unconnectivity to directed connectivity.
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We conclude with a short discussion of the class PSP.ACE, proving that
the set of satisfiable quantified Boolean formulae is PSP.ACE-complete
(under polynomial-time reductions). We mention the similarity between
this proof and the proof that NSPACE(s) € DSPACE( O(s?)).

We stress that, as in the case of time complexity, the main results presented in this chapter
hold for any reasonable model of computation.' In fact, when properly defined, space
complexity is even more robust than time complexity. Still, for the sake of clarity, we
often refer to the specific model of Turing machines.

Organization. Space complexity seems to behave quite differently from time complexity,
and seems to require a different mind-set as well as auxiliary conventions. Some of the
relevant issues are discussed in Section 5.1. We then turn to the study of logarithmic
space complexity (see Section 5.2) and the corresponding non-deterministic version (see
Section 5.3). Finally, we consider polynomial space complexity (see Section 5.4).

5.1. General Preliminaries and Issues

We start by discussing several very important conventions regarding space complexity
(see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential for the understand-
ing of the rest of this chapter. (In contrast, the rather parenthetical Section 5.1.2 can be
skipped with no significant loss.) We then discuss a variety of issues, highlighting the
differences between space complexity and time complexity (see Section 5.1.3). In par-
ticular, we call the reader’s attention to the composition lemmas (§5.1.3.1) and related
reductions (§5.1.3.3) as well as to the obvious simulation result presented in §5.1.3.2
(i.e., DSPACE(s) € DTIME(29®))). Lastly, in Section 5.1.4 we relate circuit size to space
complexity by considering the space complexity of circuit evaluation.

5.1.1. Important Conventions

Space complexity is meant to measure the amount of temporary storage (i.e., computer’s
memory) used when performing a computational task. Since much of our focus will be
on using an amount of memory that is sub-linear in the input length, it is important to use
a model in which one can differentiate memory used for computation from memory used
for storing the initial input and/or the final output. That is, we do not want to count the
input and output themselves within the space of computation, and thus formulate that they
are delivered on special devices that are not considered memory. On the other hand, we
have to make sure that the input and output devices cannot be abused for providing work
space (which is unaccounted for). This leads to the convention by which the input device
(e.g., a designated input-tape of a multi-tape Turing machine) is read-only, whereas the
output device (e.g., a designated output-tape of a such machine) is write-only. With this
convention in place, we define space complexity as accounting only for the use of space
on the other (storage) devices (e.g., the work-tapes of a multi-tape Turing machine).
Fixing a concrete model of computation (e.g., multi-tape Turing machines), we denote
by DSPACE(s) the class of decision problems that are solvable in space complexity s. The

"The only exceptions appear in Exercises 5.4 and 5.18, which refer to the notion of a crossing sequence. The use
of this notion in these proofs presumes that the machine scans its storage devices in a serial manner. In contrast, we
stress that the various notions of an instantaneous configuration do not assume such a machine model.
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space complexity of search problems is defined analogously. Specifically, the standard
definition of space complexity (see §1.2.3.5) refers to the number of cells of the work-tape
scanned by the machine on each input. We prefer, however, an alternative definition,
which provides a more accurate account of the actual storage. Specifically, the binary
space complexity of a computation refers to the number of bits that can be stored in these
cells, thus multiplying the number of cells by the logarithm of the finite set of work-tape
symbols of the machine.’

The difference between the two aforementioned definitions is mostly immaterial be-
cause it amounts to a constant factor and we will usually discard such factors. Neverthe-
less, aside from being conceptually right, using the definition of binary space complexity
facilitates some technical details (because the number of possible “instantaneous con-
figurations” is explicitly upper-bounded in terms of binary space complexity, whereas
its relation to the standard definition depends on the machine in question). Toward such
applications, we also count the finite state of the machine in its space complexity. Further-
more, for the sake of simplicity, we also assume that the machine does not scan the input
tape beyond the boundaries of the input, which are indicated by special symbols.’

We stress that individual locations of the (read-only) input-tape (or device) may be
read several times. This is essential for many algorithms that use a sub-linear amount of
space (because such algorithms may need to scan their input more than once while they
cannot afford copying their input to their storage device). In contrast, rewriting on (the
same location of) the write-only output-tape is inessential, and in fact can be eliminated
at a relatively small cost (see Exercise 5.2).

Summary. Let us compile a list of the foregoing conventions. As stated, the first two
items on the list are of crucial importance, while the rest are of technical nature (but do
facilitate our exposition).

1. Space complexity discards the use of the input and output devices.

2. The input device is read-only and the output device is write-only.

3. We will usually refer to the binary space complexity of algorithms, where the binary
space complexity of a machine M that uses the alphabet ¥, finite state set O, and has
standard space complexity Sy, is defined as (log, |Q|) + (log, |Z|) - Sar. (Recall that
Sy measures the number of cells of the temporary storage device that are used by M
during the computation.)

4. We will assume that the machine does not scan the input device beyond the boundaries
of the input.

5. We will assume that the machine does not rewrite to locations of its output device
(i.e., it writes to each cell of the output device at most once).

5.1.2. On the Minimal Amount of Useful Computation Space

Bearing in mind that one of our main objectives is identifying natural subclasses of P, we
consider the question of what is the minimal amount of space that allows for meaningful
computations. We note that regular sets [123, Chap. 2] are decidable by constant-space

2We note that, unlike in the context of time complexity, linear speedup (as in Exercise 4.12) does not seem to
represent an actual saving in space resources. Indeed, time can be sped up by using stronger hardware (i.e., a Turing
machine with a bigger work alphabet), but the actual space is not really affected by partitioning it into bigger chunks
(i.e., using bigger cells). This fact is demonstrated when considering the binary space complexity of the two machines.
3As indicated by Exercise 5.1, little is lost by this natural assumption.
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Turing machines and that this is all that the latter can decide (see, e.g., [123, Sec. 2.6]). It
is tempting to say that sub-logarithmic space machines are not more useful than constant-
space machines, because it seems impossible to allocate a sub-logarithmic amount of
space. This wrong intuition is based on the presumption that the allocation of a non-
constant amount of space requires explicitly computing the length of the input, which in
turn requires logarithmic space. However, this presumption is wrong: The input itself (in
case it is of a proper form) can be used to determine its length (and/or the allowed amount
of space).’ In fact, for £(n) = loglogn, the class DSPACE(O(X)) is a proper superset of
Dspace(O(1)); see Exercise 5.3. On the other hand, it turns out that double-logarithmic
space is indeed the smallest amount of space that is more useful than constant space (see
Exercise 5.4); that is, for £(n) = loglogn, it holds that DSPACE(0(£)) = DSPACE(O(1)).

In spite of the fact that some non-trivial things can be done in sub-logarithmic space
complexity, the lowest space-complexity class that we shall study in depth is logarithmic
space (see Section 5.2). As we shall see, this class is the natural habitat of several
fundamental computational phenomena.

A parenthetical comment (or a side lesson). Before proceeding, let us highlight the fact
that a naive presumption about arbitrary algorithms (i.e., that the use of a non-constant
amount of space requires explicitly computing the length of the input) could have led us
to a wrong conclusion. This demonstrates the danger in making “reasonable looking” (but
unjustified) presumptions about arbitrary algorithms. We need to be fully aware of this
danger whenever we seek impossibility results and/or complexity lower bounds.

5.1.3. Time Versus Space

Space complexity behaves very different from time complexity and indeed different
paradigms are used in studying it. One notable example is provided by the context of
algorithmic composition, discussed next.

5.1.3.1. Two Composition Lemmas

Unlike time, space can be reused; but, on the other hand, intermediate results of a com-
putation cannot be recorded for free. These two conflicting aspects are captured in the
following composition lemma.

Lemma 5.1 (naive composition): Let fi : {0, 1}* — {0, 1}* and f>: {0, 1}* x
{0, 1}* — {0, 1}* be computable in space s\ and sy, respectively.” Then [ defined
by f(x) &t fr(x, f1(x)) is computable in space s such that

s(n) = max(sy(n), s2(n + £(n))) + £(n) 4 8(n),

4Indeed, for this approach to work, we should be able to detect the case that the input is not of the proper form
(and do so within sub-logarithmic space).

>Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds are monotonically non-
decreasing. Another minor inaccuracy (in the text) is that we stated the complexity of the algorithm that computes f>
in a somewhat non-standard way. Recall that by the standard convention, the complexity of an algorithm should be
stated in terms of the length of its input, which in this case is a pair (x, y) that may be encoded as a string of length
[x| + |y + 2log, |x| (but not as a string of length |x| + |y|). An alternative convention is to state the complexity of
such computations in terms of the length of both parts of the input (i.e., have s : N x N — Nrather thans : N — N),
but we did not do this either.
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X X

A . A =

f.(x) f;(x)
I I

Ay - A

f(x) f(x) f(x)

Figure 5.1: Three composition methods for space-bounded computation. The leftmost figure shows
the trivial composition (which just invokes A; and A, without attempting to economize storage), the
middle figure shows the naive composition (of Lemma 5.1), and the rightmost figure shows the emulative
composition (of Lemma 5.2). In all figures the filled rectangles represent designated storage spaces. The
dotted rectangle represents a virtual storage device.

where £(n) = max;e,1p{|/1(x)I} and 8(n) = O(log(£(n) + s:(n + £(n)))) =
o(s(n)).

Lemma 5.1 is useful when £ is relatively small, but in many cases £ > max(sy, 7). In
these cases, the following composition lemma is more useful.

Proof: Indeed, f(x) is computed by first computing and storing f1(x), and then
reusing the space (used in the first computation) when computing f>(x, f1(x)).
This explains the dominant terms in s(#); that is, the term max(s;(n), s2(n + £(n)))
accounts for the computations themselves (which reuse the same space), whereas
the term £(n) accounts for storing the intermediate result (i.e., f1(x)). The extra term
is due to implementation details. Specifically, the same storage device is used both
for storing f1(x) and for providing work-space for the computation of f;, which
means that we need to maintain our location on each of these two parts (i.e., the
location of the algorithm (that computes f;) on fi(x) and its location on its own
work space). (See further discussion at end of the proof of Lemma 5.2.) The extra
O(1) term accounts for the overhead involved in emulating two algorithms. |

Lemma 5.2 (emulative composition): Let f, f2, s1, 52, £ and f beasin Lemma 5. 1.
Then f is computable in space s such that

s(n) = s1(n) + s2(n + £(n)) + O(log(n + £(n))) + &(n),
where §(n) = O(log(sy(n) + s2(n + £(n)))) = o(s(n)).

The alternative compositions are depicted in Figure 5.1 (which also shows the most
straightforward composition that makes no attempt to economize space).

Proof: The idea is avoiding the storage of the temporary value of f|(x) by computing
each of its bits (“on the fly”) whenever this bit is needed for the computation of
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f>. That is, we do not start by computing fj(x), but rather start by computing
fo(x, fi(x)) although we do not have some of the bits of the relevant input (i.e., the
bits of f1(x)). The missing bits will be computed (and recomputed) whenever we
need them in the computation of f;(x, fi(x)). Details follow.

Let A, and A, be the algorithms (for computing f| and f5, respectively) guar-
anteed in the hypothesis.® Then, on input x € {0, 1}", we invoke algorithm A, (for
computing f;). Algorithm A, is invoked on a virtual input, and so when emulating
each of its steps we should provide it with the relevant bit. Thus, we should also
keep track of the location of A, on the imaginary (virtual) input-tape. Whenever 4,
seeks to read the i bit of its input, where i € [n + £(n)], we provide 4, with this bit
by reading it from x if i < n and invoke A (x) otherwise. When invoking A4(x) we
provide it with a virtual output-tape, which means that we get the bits of its output
one by one and do not record them anywhere. Instead, we count until reaching the
(i — n)™ output-bit, which we then pass to 45 (as the i bit of (x, fi(x))).

Note that while invoking A4(x), we suspend the execution of 4, but keep its
current configuration such that we can resume the execution (of 4,) once we get
the desired bit. Thus, we need to allocate separate space for the computation of A,
and for the computation of A;. In addition, we need to allocate separate storage for
maintaining the aforementioned counters (i.e., we use log,(n + £(n)) bits to hold the
location of the input-bit currently read by A, and log, £(n) bits to hold the index of
the output-bit currently produced in the current invocation of 4,).

A final (and tedious) issue is that our description of the composed algorithm
refers to two storage devices, one for emulating the computation of A4 and the other
for emulating the computation of 4,. The issue is not the fact that the storage (of
the composed algorithm) is partitioned between two devices, but rather that our
algorithm uses two pointers (one per each of the two storage devices). In contrast,
a (“fair”) composition result should yield an algorithm (like 4 and A,) that uses a
single storage device with a single pointer to locations on this device. Indeed, such
an algorithm can be obtained by holding the two original pointers in memory; the
additional 6(n) term accounts for this additional storage. ]

Reflection. The algorithm presented in the proof of Lemma 5.2 is wasteful in terms of
time: it recomputes f}(x) again and again (i.e., once per each access of 4, to the second
part of its input). Indeed, our aim was economizing on space and not on time (and the two
goals may be conflicting (see, e.g., [59, Sec. 4.3])).

5.1.3.2. An Obvious Bound

The time complexity of an algorithm is essentially upper bounded by an exponential
function in its space complexity. This is due to an upper bound on the number of pos-
sible instantaneous “configurations” of the algorithm (as formulated in the proof of
Theorem 5.3), and to the fact that if the computation passes through the same
configuration twice then it must loop forever.

Theorem 5.3: [f an algorithm A has binary space complexity s and halts on every
input then it has time complexity t such that t(n) < n - 25(W+log s,

We assume, for simplicity, that algorithm 4 never rewrites on (the same location of) its write-only output-tape.
As shown in Exercise 5.2, this assumption can be justified at an additive cost of O(log £(n)). Alternatively, the idea
presented in Exercise 5.2 can be incorporated directly in the current proof.
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Note that for s(n) = Q(logn), the factor of n can be absorbed by 2°¢™) and so we
may just write ¢(n) = 296" Indeed, throughout this chapter (as in most of this book),
we will consider only algorithms that halt on every input (see Exercise 5.5 for further
discussion).

Proof: The proof refers to the notion of an instantaneous configuration (in a com-
putation). Before starting, we warn the reader that this notion may be given different
definitions, each tailored to the application at hand. All these definitions share the
desire to specify variable information that together with some fixed information
determines the next step of the computation being analyzed. In the current proof,
we fix an algorithm A and an input x, and consider as variable the contents of the
storage device (e.g., work-tape of a Turing machine as well as its finite state) and the
machine’s location on the input device and on the storage device. Thus, an instanta-
neous configuration of A(x) consists of the latter three objects (i.e., the contents of
the storage device and a pair of locations), and can be encoded by a binary string of
length £(Jx|) = s(lx]) + log, x| + log, s(lx]).

The key observation is that the computation A(x) cannot pass through the same
instantaneous configuration twice, because otherwise the computation A(x) passes
through this configuration infinitely many times, which means that this computation
does not halt. This observation is justified by noting that the instantaneous configu-
ration, together with the fixed information (i.e., 4 and x), determines the next step
of the computation. Thus, whatever happens (i steps) after the first time that the
computation A4(x) passes through configuration y will also happen (i steps) after
the second time that the computation A(x) passes through y .

By the foregoing observation, we infer that the number of steps taken by A
on input x is at most 2D because otherwise the same configuration will appear
twice in the computation (which contradicts the halting hypothesis). The theorem
follows. |

5.1.3.3. Subtleties Regarding Space-Bounded Reductions

Lemmas 5.1 and 5.2 suffice for the analysis of the effect of many-to-one reductions in the
context of space-bounded computations. (By a many-to-one reduction of the function f to
the function g, we mean a mapping 7 such that for every x it holds that f(x) = g((x)).)*

1. (In the spirit of Lemma 5.1:) If f is reducible to g via a many-to-one reduction that
can be computed in space s;, and g is computable in space s;, then f is computable in
space s such that s(rn) = max(s;(n), s2(€(n))) + £(n) + §(n), where £(n) denotes the
maximum length of the image of the reduction when applied to some n-bit string and
8(n) = O(log(£(n) + s2(€(n)))) = o(s(n)).

2. (In the spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f is com-
putable in space s such that s(n) = s1(n) + s2(€(n)) + O(log £(n)) + §(n), where
8(n) = O(log(s1(n) + 52(£(n)))) = o(s(n)).

"Here we rely on the fact that s is the binary space complexity (and not the standard space complexity); see
summary item 3 in Section 5.1.1.

¥ Thisisindeeda special case of the setting of Lemmas 5.1 and 5.2 (obtained by letting f1 = w and f>(x, y) = g(»)).
However, the results claimed for this special case are better than those obtained by invoking the corresponding lemma
(i.e., s is applied to £(n) rather than to n + £(n)).
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Note that by Theorem 5.3, it holds that £(r) < 2510 +e&51) . We stress the fact that £
is not upper-bounded by s, itself (as in the analogous case of time-bounded computation),
but rather by exp(sy).

Things get much more complicated when we turn to general (space-bounded) reduc-
tions, especially when referring to general reductions that make a non-constant number of
queries. A preliminary issue is defining the space complexity of general reductions (i.e.,
of oracle machines). In the standard definition, the length of the queries and answers is
not counted in the space complexity, but the queries of the reduction (resp., answers given
to it) are written on (resp., read from) a special device that is write-only (resp., read-only)
for the reduction (and read-only (resp., write-only) for the invoked oracle). Note that these
convention are analogous to the conventions regarding input and output (as well as fit the
definitions of space-bounded many-to-one reductions that were outlined in the foregoing
items).

The foregoing conventions suffice for defining general space-bounded reductions. They
also suffice for obtaining appealing composition results in some cases (e.g., for reductions
that make a single query or, more generally, for the case of non-adaptive queries). But
more difficulties arise when seeking composition results for general reductions, which may
make several adaptive queries (i.e., queries that depend on the answers to prior queries).
As we shall show next, in this case it is essential to upper-bound the length of every query
and/or every answer in terms of the length of the initial input.

Teaching note: The rest of the discussion is quite advanced and laconic (but is inessential to
the rest of the chapter).

Recall that the complexity of the algorithm resulting from the composition of an oracle
machine and an actual algorithm (which implements the oracle) depends on the length
of the queries made by the oracle machine. For example, the space complexity of the
foregoing compositions, which referred to single-query reductions, had an s,(£(n)) term
(where £(n) represents the length of the query). In general, the length of the first query is
upper-bounded by an exponential function in the space complexity of the oracle machine,
but the same does not necessarily hold for subsequent queries, unless some conventions
are added to enforce it. For example, consider a reduction that, on input x and access to
an oracle f such that | f(z)| = 2|z|, invokes the oracle |x| times, where each time it uses
as a query the answer obtained to the previous query. This reduction uses constant space,
but produces queries that are exponentially longer than the input, whereas the first query
of any constant-space reduction has length that is linear in its input. This problem can
be resolved by placing explicit bounds on the length of the queries that space-bounded
reductions are allowed to make; for example, we may bound the length of all queries by
the obvious bound that holds for the length of the first query (i.e., a reduction of space
complexity s is allowed to make queries of length at most 25D +1og () . 3,

With the aforementioned convention (or restriction) in place, let us consider the com-
position of general space-bounded reductions with a space-bounded implementation of
the oracle. Specifically, we say that a reduction is (£, £')-restricted if, on input x, all oracle
queries are of length at most £(|x|) and the corresponding oracle answers are of length
at most £/(|x|). It turns out that naive composition (in the spirit of Lemma 5.1) remains
useful, whereas the emulative composition of Lemma 5.2 breaks down (in the sense that
it yields very weak results).
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1. Following Lemma 5.1, we claim that if I1 can be solved in space s; when given
(€, £')-restricted oracle access to TI' and T1' is solvable is space s,, then T1 is
solvable in space s such that s(n) = s1(n) + s2(£(n)) + £(n) + €' (n) + 8(n), where
8(n) = O(log(£(n) + €'(n) + s1(n) + s2(£(n)))) = o(s(n)). This claim is proved by
using a naive emulation that allocates separate space for the reduction (i.e., oracle
machine) itself, for the emulation of its query and answer devices, and for the algo-
rithm solving IT". Note, however, that here we cannot reuse the space of the reduction
when running the algorithm that solves IT’, because the reduction’s computation con-
tinues after the oracle answer is obtained. The additional §(n) term accounts for the
various pointers of the oracle machine, which need to be stored when the algorithm
that solves IT’ is invoked (cf. last paragraph in the proof of Lemma 5.2).

A related composition result is presented in Exercise 5.7. This composition refrains
from storing the current oracle query (but does store the corresponding answer).
It yields s(n) = O(s1(n) + s2(£(n)) + €'(n) + log £(n)), which for £(n) < 201
means s(n) = O(s1(n) + s2(£(n)) + €'(n)).

2. Turning to the approach underlying the proof of Lemma 5.2, we get into more
serious trouble. Specifically, note that recomputing the answer to the i query requires
recomputing the query itself, which unlike in Lemma 5.2 is not the input to the
reduction but rather depends on the answers to prior queries, which need to be
recomputed as well. Thus, the space required for such an emulation is at least linear
in the number of queries.

We note that one should not expect a general composition result (i.e., in the spirit of
the foregoing Item 1) in which s(n) = F(s1(n), s2(£(n))) + o(min(€(n), £'(n))), where
F is any function. One demonstration of this fact is implied by the observation that any
computation of space complexity s can be emulated by a constant-space (2s, 2s)-restricted
reduction to a problem that is solvable in constant space (see Exercise 5.9).

Non-adaptive reductions. Composition is much easier in the special case of non-adaptive
reductions. Loosely speaking, the queries made by such reductions do not depend on the
answers obtained to previous queries. Formulating this notion is not straightforward in
the context of space-bounded computation. In the context of time-bounded computations,
non-adaptive reductions are viewed as consisting of two algorithms: a query-generating
algorithm, which generates a sequence of queries, and an evaluation algorithm, which
given the input and a sequence of answers (obtained from the oracle) produces the actual
output. The reduction is then viewed as invoking the query-generating algorithm (and
recording the sequence of generated queries), making the designated queries (and record-
ing the answers obtained), and finally invoking the evaluation algorithm on the sequence
of answers. Using such a formulation raises the question of how to describe non-adaptive
reductions of small space complexity. This question is resolved by designated special stor-
age devices for the aforementioned sequences (of queries and answers) and postulating
that these devices can be used only as described. For details, see Exercise 5.8. Note that
non-adaptivity resolves most of the difficulties discussed in the foregoing. In particular,
the length of each query made by a non-adaptive reduction is upper-bounded by an ex-
ponential in the space complexity of the reduction (just as in the case of single-query
reductions). Furthermore, composing such reductions with an algorithm that implements
the oracle is not more involved than doing the same for single-query reductions. Thus,
as shown in Exercise 5.8, if I1 is reducible to T1' via a non-adaptive reduction of space
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complexity s\ that makes queries of length at most £ and T1' is solvable is space s,, then
I1 is solvable in space s such that s(n) = O(s1(n) + s2(£(n))). (Indeed £(n) < 20610 . p
always hold.)

Reductions to decision problems. Composition in the case of reductions to decision
problems is also easier, because also in this case the length of each query made by the
reduction is upper-bounded by an exponential in the space complexity of the reduction
(see Exercise 5.10). Thus, applying the semi-naive composition result of Exercise 5.7
(mentioned in the foregoing Item 1) is very appealing. It follows that if T1 can be solved
in space s| when given oracle access to a decision problem that is solvable is space s,
then T1 is solvable in space s such that s(n) = O(s(n) + so(25WFlogrs1M))) Indeed,
if the length of each query in such a reduction is upper-bounded by ¢, then we may
use s(n) = O(s1(n) + s2(£(n))). These results, however, are of limited interest, because
it seems difficult to construct small-space reductions of search problems to decision
problems (see §5.1.3.4).

We mention that an alternative notion of space-bounded reductions is discussed in
§5.2.4.2. This notion is more cumbersome and more restricted, but in some cases it
allows recursive composition with a smaller overhead than offered by the aforementioned
composition results.

5.1.3.4. Search Versus Decision

Recall that in the setting of time complexity we allowed ourselves to focus on decision
problems, since search problems could be efficiently reduced to decision problems. Unfor-
tunately, these reductions (e.g., the ones underlying Theorem 2.10 and Proposition 2.15)
are not adequate for the study of (small) space complexity. Recall that these reductions
extend the currently stored prefix of a solution by making a query to an adequate decision
problem. Thus, these reductions have space complexity that is lower-bounded by the length
of the solution, which makes them irrelevant for the study of small-space complexity.

In light of the foregoing, the study of the space complexity of search problems cannot
be “reduced” to the study of the space complexity of decision problems. Thus, while
much of our exposition will focus on decision problems, we will keep an eye on the
corresponding search problems. Indeed, in many cases, the ideas developed in the study
of the decision problems can be adapted to the study of the corresponding search problems
(see, e.g., Exercise 5.17).

5.1.3.5. Complexity Hierarchies and Gaps

Recall that more space allows for more computation (see Theorem 4.9), provided that
the space-bounding function is “nice” in an adequate sense. Actually, the proofs of
space-complexity hierarchies and gaps are simpler than the analogous proofs for time
complexity, because emulations are easier in the context of space-bounded algorithms (cf.
Section 4.3).

5.1.3.6. Simultaneous Time-Space Complexity

Recall that, for space complexity that is at least logarithmic, the time of a computa-
tion is always upper-bounded by an exponential function in the space complexity (see
Theorem 5.3). Thus, polylogarithmic space complexity may extend beyond polynomial
time, and it make sense to define a class that consists of all decision problems that may be
solved by a polynomial-time algorithm of polylogarithmic space complexity. This class,
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denoted SC, is indeed a natural subclass of P (and contains the class £, which is defined
in Section 5.2.1).°

In general, one may define DTiSp(¢, s) as the class of decision problems solvable by
an algorithm that has time complexity ¢ and space complexity s. Note that DTISp(z, s) €
DT1IME(?) N DSPACE(s) and that a strict containment may hold. We mention that DTISp(-, -)
provides the arena for the only known absolute (and highly non-trivial) lower bound
regarding N'P; see [79]. We also note that lower bounds on time-space trade-offs (see,
e.g., [59, Sec. 4.3]) may be stated as referring to the classes DTISp(, ).

5.1.4. Circuit Evaluation

Recall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that, given
a circuit C : {0, 1}" — {0, 1} and an n-bit long string x, returns C(x). For circuits of
bounded fan-in, the space complexity of such an algorithm can be made linear in the depth
of the circuit (which may be logarithmic in its size). This is obtained by the following
DFS-type algorithm.

The algorithm (recursively) determines the value of a gate in the circuit by first de-
termining the value of its first incoming edge and next determining the value of the
second incoming edge. Thus, the recursive procedure, started at each output terminal of
the circuit, needs only store the path that leads to the currently processed vertex as well
as the temporary values computed for each ancestor. Note that this path is determined by
indicating, for each vertex on the path, whether we currently process its first or second
incoming edge. In the case that we currently process the vertex’s second incoming edge,
we need also store the value computed for its first incoming edge.

The temporary storage used by the foregoing algorithm, on input (C, x), is thus 2d¢ +
O(log |x| + log |C(x)|), where d¢ denotes the depth of C. The first term in the space
bound accounts for the core activity of the algorithm (i.e., the recursion), whereas the
other terms account for the overhead involved in manipulating the initial input and final
output (i.e., assigning the bits of x to the corresponding input terminals of C and scanning
all output terminals of C).

Note. Further connections between circuit complexity and space complexity are men-
tioned in Section 5.2.3 and §5.3.2.2.

5.2. Logarithmic Space

Although Exercise 5.3 asserts that “there is life below log-space,” logarithmic space seems
to be the smallest amount of space that supports interesting computational phenomena. In
particular, logarithmic space is required for merely maintaining an auxiliary counter that
holds a position in the input, which seems required in many computations. On the other
hand, logarithmic space suffices for solving many natural computational problems, for
establishing reductions among many natural computational problems, and for a stringent
notion of uniformity (of families of Boolean circuits). Indeed, an important feature of
logarithmic space computations is that they are a natural subclass of the polynomial-time
computations (see Theorem 5.3).

We also mention that BPL C SC, where BPL is defined in §6.1.5.1 and the result is proved in Section 8.4 (see
Theorem 8.23).
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5.2.1. The Class L

Focusing on decision problems, we denote by L the class of decision problems that
are solvable by algorithms of logarithmic space complexity; that is, £ = U.DSPACE(,.),
where £.(n) & clog, n. Note that, by Theorem 5.3, £ C P. As hinted, many natural
computational problems are in £ (see Exercises 5.6 and 5.12 as well as Section 5.2.4). On
the other hand, it is widely believed that L # P.

5.2.2. Log-Space Reductions

Another class of important log-space computations is the class of logarithmic space
reductions. In light of the subtleties discussed in §5.1.3.3, we focus on the case
of many-to-one reductions. Analogously to the definition of Karp-reductions (Defini-
tion 2.11), we say that f is a log-space (many-to-one) reduction of S to S’ if f is
log-space computable and, for every x, it holds that x € S if and only if f(x) € S’
By Lemma 5.2 (and Theorem 5.3), if S is log-space reducible to some set in L
then S € L. Similarly, one can define a log-space variant of Levin-reductions (Def-
inition 2.12). Both types of reductions are transitive (see Exercise 5.11). Note that
Theorem 5.3 applies in this context and implies that these reductions run in polyno-
mial time. Thus, the notion of a log-space many-to-one reduction is a special case of a
Karp-reduction.

We observe that all known Karp-reductions establishing NP-completeness results are
actually log-space reductions. This is easily verifiable in the case of the reductions pre-
sented in Section 2.3.3 (as well as in Section 2.3.2). For example, consider the generic re-
duction to CSAT presented in the proof of Theorem 2.2 1: The constructed circuit is “highly
uniform” and can be easily constructed in logarithmic space (see also Section 5.2.3). A
degeneration of this reduction suffices for proving that every problem in P is log-space
reducible to the problem of evaluating a given circuit on a given input. Recall that
the latter problem is in P, and thus we may say that it is P-complete under log-space
reductions.

Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set of
pairs (C, o) such that C is a Boolean circuit and C(«) = 1. Then CEVL is in P and
every problem in P is log-space Karp-reducible to CEVL.

Proof Sketch: Recall that the observation underlying the proof of Theorem 2.21 (as
well as the proof of Theorem 3.6) is that the computation of a Turing machine can be
emulated by