
http://www.cambridge.org/9780521884730


CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

This page intentionally left blank



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Computational Complexity

A Conceptual Perspective

Complexity Theory is a central field of the theoretical foundations of computer science.
It is concerned with the general study of the intrinsic complexity of computational tasks;
that is, it addresses the question of what can be achieved within limited time (and/or with
other limited natural computational resources).

This book offers a conceptual perspective on Complexity Theory. It is intended to serve
as an introduction for advanced undergraduate and graduate students, either as a textbook
or for self-study. The book will also be useful to experts, since it provides expositions of
the various sub-areas of Complexity Theory such as hardness amplification, pseudoran-
domness, and probabilistic proof systems.

In each case, the author starts by posing the intuitive questions that are addressed by the
sub-area and then discusses the choices made in the actual formulation of these questions,
the approaches that lead to the answers, and the ideas that are embedded in these answers.

Oded Goldreich is a Professor of Computer Science at the Weizmann Institute of Science
and an Incumbent of the Meyer W. Weisgal Professorial Chair. He is an editor for the
SIAM Journal on Computing, the Journal of Cryptology, and Computational Complex-
ity and previously authored the books Modern Cryptography, Probabilistic Proofs and
Pseudorandomness, and the two-volume work Foundations of Cryptography.

i



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Computational Complexity

A Conceptual Perspective

Oded Goldreich
Weizmann Institute of Science

iii



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-88473-0

ISBN-13 978-0-511-39882-7

© Oded Goldreich 2008

2008

Information on this title: www.cambridge.org/9780521884730

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521884730


CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

to Dana

v



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

vi



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Contents

List of Figures page xiii
Preface xv
Organization and Chapter Summaries xvii
Acknowledgments xxiii

1 Introduction and Preliminaries 1

1.1 Introduction 1
1.1.1 A Brief Overview of Complexity Theory 2
1.1.2 Characteristics of Complexity Theory 6
1.1.3 Contents of This Book 8
1.1.4 Approach and Style of This Book 12
1.1.5 Standard Notations and Other Conventions 16

1.2 Computational Tasks and Models 17
1.2.1 Representation 18
1.2.2 Computational Tasks 18
1.2.3 Uniform Models (Algorithms) 20
1.2.4 Non-uniform Models (Circuits and Advice) 36
1.2.5 Complexity Classes 42

Chapter Notes 43

2 P, NP, and NP-Completeness 44

2.1 The P Versus NP Question 46
2.1.1 The Search Version: Finding Versus Checking 47
2.1.2 The Decision Version: Proving Versus Verifying 50
2.1.3 Equivalence of the Two Formulations 54
2.1.4 Two Technical Comments Regarding NP 55
2.1.5 The Traditional Definition of NP 55
2.1.6 In Support of P Different from NP 57
2.1.7 Philosophical Meditations 58

2.2 Polynomial-Time Reductions 58
2.2.1 The General Notion of a Reduction 59
2.2.2 Reducing Optimization Problems to Search Problems 61
2.2.3 Self-Reducibility of Search Problems 63
2.2.4 Digest and General Perspective 67

vii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CONTENTS

2.3 NP-Completeness 67
2.3.1 Definitions 68
2.3.2 The Existence of NP-Complete Problems 69
2.3.3 Some Natural NP-Complete Problems 71
2.3.4 NP Sets That Are Neither in P nor NP-Complete 81
2.3.5 Reflections on Complete Problems 85

2.4 Three Relatively Advanced Topics 87
2.4.1 Promise Problems 87
2.4.2 Optimal Search Algorithms for NP 92
2.4.3 The Class coNP and Its Intersection with NP 94

Chapter Notes 97
Exercises 99

3 Variations on P and NP 108

3.1 Non-uniform Polynomial Time (P/poly) 108
3.1.1 Boolean Circuits 109
3.1.2 Machines That Take Advice 111

3.2 The Polynomial-Time Hierarchy (PH) 113
3.2.1 Alternation of Quantifiers 114
3.2.2 Non-deterministic Oracle Machines 117
3.2.3 The P/poly Versus NP Question and PH 119

Chapter Notes 121
Exercises 122

4 More Resources, More Power? 127

4.1 Non-uniform Complexity Hierarchies 128
4.2 Time Hierarchies and Gaps 129

4.2.1 Time Hierarchies 129
4.2.2 Time Gaps and Speedup 136

4.3 Space Hierarchies and Gaps 139
Chapter Notes 139
Exercises 140

5 Space Complexity 143

5.1 General Preliminaries and Issues 144
5.1.1 Important Conventions 144
5.1.2 On the Minimal Amount of Useful Computation Space 145
5.1.3 Time Versus Space 146
5.1.4 Circuit Evaluation 153

5.2 Logarithmic Space 153
5.2.1 The Class L 154
5.2.2 Log-Space Reductions 154
5.2.3 Log-Space Uniformity and Stronger Notions 155
5.2.4 Undirected Connectivity 155

5.3 Non-deterministic Space Complexity 162
5.3.1 Two Models 162
5.3.2 NL and Directed Connectivity 164
5.3.3 A Retrospective Discussion 171

viii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CONTENTS

5.4 PSPACE and Games 172
Chapter Notes 175
Exercises 175

6 Randomness and Counting 184

6.1 Probabilistic Polynomial Time 185
6.1.1 Basic Modeling Issues 186
6.1.2 Two-Sided Error: The Complexity Class BPP 189
6.1.3 One-Sided Error: The Complexity Classes RP and coRP 193
6.1.4 Zero-Sided Error: The Complexity Class ZPP 199
6.1.5 Randomized Log-Space 199

6.2 Counting 202
6.2.1 Exact Counting 202
6.2.2 Approximate Counting 211
6.2.3 Searching for Unique Solutions 217
6.2.4 Uniform Generation of Solutions 220

Chapter Notes 227
Exercises 230

7 The Bright Side of Hardness 241

7.1 One-Way Functions 242
7.1.1 Generating Hard Instances and One-Way Functions 243
7.1.2 Amplification of Weak One-Way Functions 245
7.1.3 Hard-Core Predicates 250
7.1.4 Reflections on Hardness Amplification 255

7.2 Hard Problems in E 255
7.2.1 Amplification with Respect to Polynomial-Size Circuits 257
7.2.2 Amplification with Respect to Exponential-Size Circuits 270

Chapter Notes 277
Exercises 278

8 Pseudorandom Generators 284

Introduction 285
8.1 The General Paradigm 288
8.2 General-Purpose Pseudorandom Generators 290

8.2.1 The Basic Definition 291
8.2.2 The Archetypical Application 292
8.2.3 Computational Indistinguishability 295
8.2.4 Amplifying the Stretch Function 299
8.2.5 Constructions 301
8.2.6 Non-uniformly Strong Pseudorandom Generators 304
8.2.7 Stronger Notions and Conceptual Reflections 305

8.3 Derandomization of Time-Complexity Classes 307
8.3.1 Defining Canonical Derandomizers 308
8.3.2 Constructing Canonical Derandomizers 310
8.3.3 Technical Variations and Conceptual Reflections 313

8.4 Space-Bounded Distinguishers 315
8.4.1 Definitional Issues 316

ix



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CONTENTS

8.4.2 Two Constructions 318
8.5 Special-Purpose Generators 325

8.5.1 Pairwise Independence Generators 326
8.5.2 Small-Bias Generators 329
8.5.3 Random Walks on Expanders 332

Chapter Notes 334
Exercises 337

9 Probabilistic Proof Systems 349

Introduction and Preliminaries 350
9.1 Interactive Proof Systems 352

9.1.1 Motivation and Perspective 352
9.1.2 Definition 354
9.1.3 The Power of Interactive Proofs 357
9.1.4 Variants and Finer Structure: An Overview 363
9.1.5 On Computationally Bounded Provers: An Overview 366

9.2 Zero-Knowledge Proof Systems 368
9.2.1 Definitional Issues 369
9.2.2 The Power of Zero-Knowledge 372
9.2.3 Proofs of Knowledge – A Parenthetical Subsection 378

9.3 Probabilistically Checkable Proof Systems 380
9.3.1 Definition 381
9.3.2 The Power of Probabilistically Checkable Proofs 383
9.3.3 PCP and Approximation 398
9.3.4 More on PCP Itself: An Overview 401

Chapter Notes 404
Exercises 406

10 Relaxing the Requirements 416

10.1 Approximation 417
10.1.1 Search or Optimization 418
10.1.2 Decision or Property Testing 423

10.2 Average-Case Complexity 428
10.2.1 The Basic Theory 430
10.2.2 Ramifications 442

Chapter Notes 451
Exercises 453

Epilogue 461

Appendix A: Glossary of Complexity Classes 463

A.1 Preliminaries 463
A.2 Algorithm-Based Classes 464

A.2.1 Time Complexity Classes 464
A.2.2 Space Complexity Classes 467

A.3 Circuit-Based Classes 467

Appendix B: On the Quest for Lower Bounds 469

B.1 Preliminaries 469

x



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CONTENTS

B.2 Boolean Circuit Complexity 471
B.2.1 Basic Results and Questions 472
B.2.2 Monotone Circuits 473
B.2.3 Bounded-Depth Circuits 473
B.2.4 Formula Size 474

B.3 Arithmetic Circuits 475
B.3.1 Univariate Polynomials 476
B.3.2 Multivariate Polynomials 476

B.4 Proof Complexity 478
B.4.1 Logical Proof Systems 480
B.4.2 Algebraic Proof Systems 480
B.4.3 Geometric Proof Systems 481

Appendix C: On the Foundations of Modern Cryptography 482

C.1 Introduction and Preliminaries 482
C.1.1 The Underlying Principles 483
C.1.2 The Computational Model 485
C.1.3 Organization and Beyond 486

C.2 Computational Difficulty 487
C.2.1 One-Way Functions 487
C.2.2 Hard-Core Predicates 489

C.3 Pseudorandomness 490
C.3.1 Computational Indistinguishability 490
C.3.2 Pseudorandom Generators 491
C.3.3 Pseudorandom Functions 492

C.4 Zero-Knowledge 494
C.4.1 The Simulation Paradigm 494
C.4.2 The Actual Definition 494
C.4.3 A General Result and a Generic Application 495
C.4.4 Definitional Variations and Related Notions 497

C.5 Encryption Schemes 500
C.5.1 Definitions 502
C.5.2 Constructions 504
C.5.3 Beyond Eavesdropping Security 505

C.6 Signatures and Message Authentication 507
C.6.1 Definitions 508
C.6.2 Constructions 509

C.7 General Cryptographic Protocols 511
C.7.1 The Definitional Approach and Some Models 512
C.7.2 Some Known Results 517
C.7.3 Construction Paradigms and Two Simple Protocols 517
C.7.4 Concluding Remarks 522

Appendix D: Probabilistic Preliminaries and Advanced Topics in
Randomization 523

D.1 Probabilistic Preliminaries 523
D.1.1 Notational Conventions 523
D.1.2 Three Inequalities 524

xi



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CONTENTS

D.2.1 Definitions 528
D.2.2 Constructions 529
D.2.3 The Leftover Hash Lemma 529

D.3 Sampling 533
D.3.1 Formal Setting 533
D.3.2 Known Results 534
D.3.3 Hitters 535

D.4 Randomness Extractors 536
D.4.1 Definitions and Various Perspectives 537
D.4.2 Constructions 541

Appendix E: Explicit Constructions 545

E.1 Error-Correcting Codes 546
E.1.1 Basic Notions 546
E.1.2 A Few Popular Codes 547
E.1.3 Two Additional Computational Problems 551
E.1.4 A List-Decoding Bound 553

E.2 Expander Graphs 554
E.2.1 Definitions and Properties 555
E.2.2 Constructions 561

Appendix F: Some Omitted Proofs 566

F.1 Proving That PH Reduces to #P 566
F.2 Proving That IP( f ) ⊆ AM(O( f )) ⊆ AM( f ) 572

F.2.1 Emulating General Interactive Proofs by AM-Games 572
F.2.2 Linear Speedup for AM 578

Appendix G: Some Computational Problems 583

G.1 Graphs 583
G.2 Boolean Formulae 585
G.3 Finite Fields, Polynomials, and Vector Spaces 586
G.4 The Determinant and the Permanent 587
G.5 Primes and Composite Numbers 587

Bibliography 589
Index 601

xii

D.2 Hashing 528



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

List of Figures

1.1 Dependencies among the advanced chapters. page 9
1.2 A single step by a Turing machine. 23
1.3 A circuit computing f (x1, x2, x3, x4) = (x1 ⊕ x2, x1 ∧ ¬x2 ∧ x4). 38
1.4 Recursive construction of parity circuits and formulae. 42
2.1 Consecutive computation steps of a Turing machine. 74
2.2 The idea underlying the reduction of CSAT to SAT. 76
2.3 The reduction to G3C – the clause gadget and its sub-gadget. 81
2.4 The reduction to G3C – connecting the gadgets. 82
2.5 The world view under P �= coNP ∩NP �= NP . 97
3.1 Two levels of the Polynomial-time Hierarchy. 119
4.1 The Gap Theorem – determining the value of t(n). 137
5.1 Algorithmic composition for space-bounded computation. 147
5.2 The recursive procedure in NL ⊆ DSPACE(O(log2)). 167
5.3 The main step in proving NL = coNL. 170
6.1 The reduction to the Permanent – tracks connecting gadgets. 207
6.2 The reduction to the Permanent – the gadget’s effect. 207
6.3 The reduction to the Permanent – A Deus ex Machina gadget. 208
6.4 The reduction to the Permanent – a structured gadget. 209
6.5 The reduction to the Permanent – the box’s effect. 209
7.1 The hard-core of a one-way function – an illustration. 250
7.2 Proofs of hardness amplification: Organization. 258
8.1 Pseudorandom generators – an illustration. 287
8.2 Analysis of stretch amplification – the i th hybrid. 300
8.3 Derandomization of BPL – the generator. 321
8.4 An affine transformation affected by a Toeplitz matrix. 327
8.5 The LFSR small-bias generator. 330
8.6 Pseudorandom generators at a glance. 335
9.1 Arithmetization of CNF formulae. 360
9.2 Zero-knowledge proofs – an illustration. 369
9.3 The PCP model – an illustration. 380
9.4 Testing consistency of linear and quadratic forms. 387
9.5 Composition of PCP system – an illustration. 389
9.6 The amplifying reduction in the second proof of the PCP Theorem. 397

xiii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

LIST OF FIGURES

10.1 Two types of average-case completeness. 446
10.2 Worst-case versus average-case assumptions. 451
E.1 Detail of the Zig-Zag product of G ′ and G. 562
F.1 The transformation of an MA-game into an AM-game. 579
F.2 The transformation of MAMA into AMA. 581

xiv



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Preface

The quest for efficiency is ancient and universal, as time and other resources are always
in shortage. Thus, the question of which tasks can be performed efficiently is central to
the human experience.

A key step toward the systematic study of the aforementioned question is a rigorous
definition of the notion of a task and of procedures for solving tasks. These definitions
were provided by computability theory, which emerged in the 1930s. This theory focuses
on computational tasks, and considers automated procedures (i.e., computing devices and
algorithms) that may solve such tasks.

In focusing attention on computational tasks and algorithms, computability theory has
set the stage for the study of the computational resources (like time) that are required
by such algorithms. When this study focuses on the resources that are necessary for any
algorithm that solves a particular task (or a task of a particular type), the study becomes
part of the theory of Computational Complexity (also known as Complexity Theory).1

Complexity Theory is a central field of the theoretical foundations of computer science.
It is concerned with the study of the intrinsic complexity of computational tasks. That
is, a typical complexity theoretic study refers to the computational resources required to
solve a computational task (or a class of such tasks), rather than referring to a specific
algorithm or an algorithmic schema. Actually, research in Complexity Theory tends to
start with and focus on the computational resources themselves, and addresses the effect
of limiting these resources on the class of tasks that can be solved. Thus, Computational
Complexity is the general study of what can be achieved within limited time (and/or other
limited natural computational resources).

The (half-century) history of Complexity Theory has witnessed two main research
efforts (or directions). The first direction is aimed toward actually establishing concrete
lower bounds on the complexity of computational problems, via an analysis of the evolution
of the process of computation. Thus, in a sense, the heart of this direction is a “low-level”
analysis of computation. Most research in circuit complexity and in proof complexity
falls within this category. In contrast, a second research effort is aimed at exploring the
connections among computational problems and notions, without being able to provide
absolute statements regarding the individual problems or notions. This effort may be

1In contrast, when the focus is on the design and analysis of specific algorithms (rather than on the intrinsic com-
plexity of the task), the study becomes part of a related subfield that may be called Algorithmic Design and Analysis.
Furthermore, Algorithmic Design and Analysis tends to be sub-divided according to the domain of mathematics,
science, and engineering in which the computational tasks arise. In contrast, Complexity Theory typically maintains
a unity of the study of tasks solvable within certain resources (regardless of the origins of these tasks).

xv



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PREFACE

viewed as a “high-level” study of computation. The theory of NP-completeness as well
as the studies of approximation, probabilistic proof systems, pseudorandomness, and
cryptography all fall within this category.

The current book focuses on the latter effort (or direction). The main reason for our
decision to focus on the “high-level” direction is the clear conceptual significance of the
known results. That is, many known results in this direction have an extremely appealing
conceptual message, which can be appreciated also by non-experts. Furthermore, these
conceptual aspects can be explained without entering excessive technical detail. Conse-
quently, the “high-level” direction is more suitable for an exposition in a book of the
current nature.2

The last paragraph brings us to a discussion of the nature of the current book, which
is captured by the subtitle (i.e., “a conceptual perspective”). Our main thesis is that
Complexity Theory is extremely rich in conceptual content, and that this content should be
explicitly communicated in expositions and courses on the subject. The desire to provide
a corresponding textbook is indeed the motivation for writing the current book and its
main governing principle.

This book offers a conceptual perspective on Complexity Theory, and the presentation
is designed to highlight this perspective. It is intended to serve as an introduction to the
field, and can be used either as a textbook or for self-study. Indeed, the book’s primary
target audience consists of students who wish to learn Complexity Theory and educators
who intend to teach a course on Complexity Theory. Still, we hope that the book will be
useful also to experts, especially to experts in one sub-area of Complexity Theory who
seek an introduction to and/or an overview of some other sub-area.

It is also hoped that the book may help promote general interest in Complexity Theory
and make this field acccessible to general readers with adequate background (which
consists mainly of being comfortable with abstract discussions, definitions, and proofs).
However, we do expect most readers to have a basic knowledge of algorithms, or at least
be fairly comfortable with the notion of an algorithm.

The book focuses on several sub-areas of Complexity Theory (see the following or-
ganization and chapter summaries). In each case, the exposition starts from the intuitive
questions addressed by the sub-area, as embodied in the concepts that it studies. The
exposition discusses the fundamental importance of these questions, the choices made
in the actual formulation of these questions and notions, the approaches that underlie
the answers, and the ideas that are embedded in these answers. Our view is that these
(“non-technical”) aspects are the core of the field, and the presentation attempts to reflect
this view.

We note that being guided by the conceptual contents of the material leads, in some
cases, to technical simplifications. Indeed, for many of the results presented in this book,
the presentation of the proof is different (and arguably easier to understand) than the
standard presentations.

Web site for notices regarding this book. We intend to maintain a Web site listing
corrections of various types. The location of the site is

http://www.wisdom.weizmann.ac.il/∼oded/cc-book.html

2In addition, we mention a subjective reason for our decision: The “high-level” direction is within our own
expertise, while this cannot be said about the “low-level” direction.

xvi



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Organization and Chapter Summaries

This book consists of ten chapters and seven appendices. The chapters constitute the core
of this book and are written in a style adequate for a textbook, whereas the appendices
provide either relevant background or additional perspective and are written in the style
of a survey article. The relative length and ordering of the chapters (and appendices) do
not reflect their relative importance, but rather an attempt at the best logical order (i.e.,
minimizing the number of forward pointers).

Following are brief summaries of the book’s chapters and appendices. These summaries
are more novice-friendly than those provided in Section 1.1.3 but less detailed than the
summaries provided at the beginning of each chapter.

Chapter 1: Introduction and Preliminaries. The introduction provides a high-level
overview of some of the content of Complexity Theory as well as a discussion of some
of the characteristic features of this field. In addition, the introduction contains several
important comments regarding the approach and conventions of the current book. The
preliminaries provide the relevant background on computability theory, which is the setting
in which complexity theoretic questions are being studied. Most importantly, central
notions such as search and decision problems, algorithms that solve such problems, and
their complexity are defined. In addition, this part presents the basic notions underlying
non-uniform models of computation (like Boolean circuits).

Chapter 2: P, NP, and NP-Completeness. The P versus NP Question can be phrased as
asking whether or not finding solutions is harder than checking the correctness of solutions.
An alternative formulation asks whether or not discovering proofs is harder than verifying
their correctness, that is, is proving harder than verifying. It is widely believed that the
answer to the two equivalent formulations is that finding (resp., proving) is harder than
checking (resp., verifying); that is, it is believed that P is different from NP. At present,
when faced with a hard problem in NP, we can only hope to prove that it is not in P
assuming that NP is different from P. This is where the theory of NP-completeness, which
is based on the notion of a reduction, comes into the picture. In general, one computational
problem is reducible to another problem if it is possible to efficiently solve the former
when provided with an (efficient) algorithm for solving the latter. A problem (in NP) is
NP-complete if any problem in NP is reducible to it. Amazingly enough, NP-complete
problems exist, and furthermore, hundreds of natural computational problems arising in
many different areas of mathematics and science are NP-complete.

xvii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ORGANIZATION AND CHAPTER SUMMARIES

Chapter 3: Variations on P and NP. Non-uniform polynomial time (P/poly) captures
efficient computations that are carried out by devices that handle specific input lengths. The
basic formalism ignores the complexity of constructing such devices (i.e., a uniformity
condition), but a finer formalism (based on “machines that take advice”) allows us to
quantify the amount of non-uniformity. This provides a generalization of P. In contrast,
the Polynomial-time Hierarchy (PH) generalizes NP by considering statements expressed
by a quantified Boolean formula with a fixed number of alternations of existential and
universal quantifiers. It is widely believed that each quantifier alternation adds expressive
power to the class of such formulae. The two different classes are related by showing that
if NP is contained in P/poly then the Polynomial-time Hierarchy collapses to its second
level (i.e., �2).

Chapter 4: More Resources, More Power? When using “nice” functions to determine
an algorithm’s resources, it is indeed the case that more resources allow for more tasks to be
performed. However, when “ugly” functions are used for the same purpose, increasing the
resources may have no effect. By nice functions we mean functions that can be computed
without exceeding the amount of resources that they specify. Thus, we get results asserting,
for example, that there are problems that are solvable in cubic time but not in quadratic
time. In the case of non-uniform models of computation, the issue of “nicety” does not
arise, and it is easy to establish separation results.

Chapter 5: Space Complexity. This chapter is devoted to the study of the space com-
plexity of computations, while focusing on two rather extreme cases. The first case is
that of algorithms having logarithmic space complexity, which seem a proper and natural
subset of the set of polynomial-time algorithms. The second case is that of algorithms
having polynomial space complexity, which in turn can solve almost all computational
problems considered in this book. Among the many results presented in this chapter are
a log-space algorithm for exploring (undirected) graphs, and a log-space reduction of the
set of directed graphs that are not strongly connected to the set of directed graphs that are
strongly connected. These results capture fundamental properties of space complexity,
which seems to differentiate it from time complexity.

Chapter 6: Randomness and Counting. Probabilistic polynomial-time algorithms with
various types of failure give rise to complexity classes such as BPP , RP , and ZPP .
The results presented include the emulation of probabilistic choices by non-uniform
advice (i.e., BPP ⊂ P/poly) and the emulation of two-sided probabilistic error by an ∃∀-
sequence of quantifiers (i.e., BPP ⊆ �2). Turning to counting problems (i.e., counting
the number of solutions for NP-type problems), we distinguish between exact counting
and approximate counting (in the sense of relative approximation). While any problem
in PH is reducible to the exact counting class #P , approximate counting (for #P) is
(probabilistically) reducible to NP . Additional related topics include #P-completeness,
the complexity of searching for unique solutions, and the relation between approximate
counting and generating almost uniformly distributed solutions.

Chapter 7: The Bright Side of Hardness. It turns out that hard problems can be “put
to work” to our benefit, most notably in cryptography. One key issue that arises in this
context is bridging the gap between “occasional” hardness (e.g., worst-case hardness or
mild average-case hardness) and “typical” hardness (i.e., strong average-case hardness).

xviii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ORGANIZATION AND CHAPTER SUMMARIES

We consider two conjectures that are related to P �= NP . The first conjecture is that there
are problems that are solvable in exponential time but are not solvable by (non-uniform)
families of small (say, polynomial-size) circuits. We show that these types of worst-case
conjectures can be transformed into average-case hardness results that yield non-trivial
derandomizations of BPP (and even BPP = P). The second conjecture is that there are
problems in NP for which it is easy to generate (solved) instances that are hard to solve
for other people. This conjecture is captured in the notion of one-way functions, which
are functions that are easy to evaluate but hard to invert (in an average-case sense). We
show that functions that are hard to invert in a relatively mild average-case sense yield
functions that are hard to invert almost everywhere, and that the latter yield predicates
that are very hard to approximate (called hard-core predicates). The latter are useful for
the construction of general-purpose pseudorandom generators, as well as for a host of
cryptographic applications.

Chapter 8: Pseudorandom Generators. A fresh view of the question of randomness was
taken in the theory of computing: It has been postulated that a distribution is pseudorandom
if it cannot be told apart from the uniform distribution by any efficient procedure. The
paradigm, originally associating efficient procedures with polynomial-time algorithms,
has been applied also with respect to a variety of limited classes of such distinguishing
procedures. The archetypical case of pseudorandom generators refers to efficient genera-
tors that fool any feasible procedure; that is, the potential distinguisher is any probabilistic
polynomial-time algorithm, which may be more complex than the generator itself. These
generators are called general-purpose, because their output can be safely used in any
efficient application. In contrast, for purposes of derandomization, one may use pseu-
dorandom generators that are somewhat more complex than the potential distinguisher
(which represents the algorithm to be derandomized). Following this approach and using
various hardness assumptions, one may obtain corresponding derandomizations of BPP
(including a full derandomization; i.e., BPP = P). Other forms of pseudorandom gener-
ators include ones that fool space-bounded distinguishers, and even weaker ones that only
exhibit some limited random behavior (e.g., outputting a pairwise independent sequence).

Chapter 9: Probabilistic Proof Systems. Randomized and interactive verification pro-
cedures, giving rise to interactive proof systems, seem much more powerful than their
deterministic counterparts. In particular, interactive proof systems exist for any set in
PSPACE ⊇ coNP (e.g., for the set of unsatisfied propositional formulae), whereas it is
widely believed that some sets in coNP do not have NP-proof systems. Interactive proofs
allow the meaningful conceptualization of zero-knowledge proofs, which are interactive
proofs that yield nothing (to the verifier) beyond the fact that the assertion is indeed valid.
Under reasonable complexity assumptions, every set in NP has a zero-knowledge proof
system. (This result has many applications in cryptography.) A third type of probabilistic
proof system underlies the model of PCPs, which stands for probabilistically checkable
proofs. These are (redundant) NP-proofs that offer a trade-off between the number of lo-
cations (randomly) examined in the proof and the confidence in its validity. In particular,
a small constant error probability can be obtained by reading a constant number of bits
in the redundant NP-proof. The PCP Theorem asserts that NP-proofs can be efficiently
transformed into PCPs. The study of PCPs is closely related to the study of the complexity
of approximation problems.

xix



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ORGANIZATION AND CHAPTER SUMMARIES

Chapter 10: Relaxing the Requirements. In light of the apparent infeasibility of solv-
ing numerous useful computational problems, it is natural to seek relaxations of those
problems that remain useful for the original applications and yet allow for feasible solving
procedures. Two such types of relaxation are provided by adequate notions of approxima-
tion and a theory of average-case complexity. The notions of approximation refer to the
computational problems themselves; that is, for each problem instance we extend the set
of admissible solutions. In the context of search problems this means settling for solutions
that have a value that is “sufficiently close” to the value of the optimal solution, whereas
in the context of decision problems this means settling for procedures that distinguish
yes-instances from instances that are “far” from any yes-instance. Turning to average-
case complexity, we note that a systematic study of this notion requires the development
of a non-trivial conceptual framework. One major aspect of this framework is limiting the
class of distributions in a way that, on the one hand, allows for various types of natural
distributions and, on the other hand, prevents the collapse of average-case hardness to
worst-case hardness.

Appendix A: Glossary of Complexity Classes. The glossary provides self-contained
definitions of most complexity classes mentioned in the book. The glossary is partitioned
into two parts, dealing separately with complexity classes that are defined in terms of
algorithms and their resources (i.e., time and space complexity of Turing machines) and
complexity classes defined in terms of non-uniform circuits (and referring to their size
and depth). In particular, the following classes are defined: P , NP , coNP , BPP , RP ,
coRP , ZPP , #P , PH, E , EXP , NEXP , L, NL, RL, PSPACE , P/poly, NCk , and
ACk .

Appendix B: On the Quest for Lower Bounds. This brief survey describes the most
famous attempts at proving lower bounds on the complexity of natural computational
problems. The first part, devoted to Circuit Complexity, reviews lower bounds for the
size of (restricted) circuits that solve natural computational problems. This represents a
program whose long-term goal is proving that P �= NP . The second part, devoted to
Proof Complexity, reviews lower bounds on the length of (restricted) propositional proofs
of natural tautologies. This represents a program whose long-term goal is proving that
NP �= coNP .

Appendix C: On the Foundations of Modern Cryptography. This survey of the founda-
tions of cryptography focuses on the paradigms, approaches, and techniques that are used
to conceptualize, define, and provide solutions to natural security concerns. It presents
some of these conceptual tools as well as some of the fundamental results obtained using
them. The appendix augments the partial treatment of one-way functions, pseudorandom
generators, and zero-knowledge proofs (included in Chapters 7–9). Using these basic tools,
the appendix provides a treatment of basic cryptographic applications such as encryption,
signatures, and general cryptographic protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Randomization.
The probabilistic preliminaries include conventions regarding random variables as well as
three useful inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality, and Chernoff
Bound). The advanced topics include constructions and lemmas regarding families of
hashing functions, a study of the sample and randomness complexities of estimating the

xx



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ORGANIZATION AND CHAPTER SUMMARIES

average value of an arbitrary function, and the problem of randomness extraction (i.e.,
procedures for extracting almost perfect randomness from sources of weak or defected
randomness).

Appendix E: Explicit Constructions. Complexity Theory provides a clear perspective
on the intuitive notion of an explicit construction. This perspective is demonstrated with
respect to error-correcting codes and expander graphs. Starting with codes, the appendix
focuses on various computational aspects, and offers a review of several popular con-
structions as well as a construction of a binary code of constant rate and constant relative
distance. Also included are a brief review of the notions of locally testable and locally
decodable codes, and a useful upper bound on the number of codewords that are close to
any single sequence. Turning to expander graphs, the appendix contains a review of two
standard definitions of expanders, two levels of explicitness, two properties of expanders
that are related to (single-step and multi-step) random walks on them, and two explicit
constructions of expander graphs.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that were not
included in the main text (for a variety of reasons) and still are beneficial as alternatives
to the original and/or standard presentations. Included are a proof that PH is reducible to
#P via randomized Karp-reductions, and the presentation of two useful transformations
regarding interactive proof systems.

Appendix G: Some Computational Problems. This appendix includes definitions of
most of the specific computational problems that are referred to in the main text. In
particular, it contains a brief introduction to graph algorithms, Boolean formulae, and
finite fields.

xxi



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

xxii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Acknowledgments

My perspective on Complexity Theory was most influenced by Shimon Even and Leonid
Levin. In fact, it was hard not to be influenced by these two remarkable and highly
opinionated researchers (especially for somebody like me who was fortunate to spend a
lot of time with them).1

Shimon Even viewed Complexity Theory as the study of the limitations of algorithms,
a study concerned with natural computational resources and natural computational tasks.
Complexity Theory was there to guide the engineer and to address the deepest questions
that bother an intellectually curious computer scientist. I believe that this book shares
Shimon’s perspective of Complexity Theory as evolving around such questions.

Leonid Levin emphasized the general principles that underlie Complexity Theory,
rejecting any “model-dependent effects” as well as the common coupling of Complexity
Theory with the theory of automata and formal languages. In my opinion, this book is
greatly influenced by these perspectives of Leonid.

I wish to acknowledge the influence of numerous other colleagues on my professional
perspectives and attitudes. These include Shafi Goldwasser, Dick Karp, Silvio Micali, and
Avi Wigderson. Needless to say, this is but a partial list that reflects influences of which I
am most aware.

The year I spent at Radcliffe Institute for Advanced Study (of Harvard University) was
instrumental in my decision to undertake the writing of this book. I am grateful to Radcliffe
for creating such an empowering atmosphere. I also wish to thank many colleagues for
their comments and advice (or help) regarding earlier versions of this text. A partial list
includes Noga Alon, Noam Livne, Dieter van Melkebeek, Omer Reingold, Dana Ron,
Ronen Shaltiel, Amir Shpilka, Madhu Sudan, Salil Vadhan, and Avi Wigderson.

Lastly, I am grateful to Mohammad Mahmoody Ghidary and Or Meir for their careful
reading of drafts of this manuscript and for the numerous corrections and suggestions that
they have provided.

Relation to previous texts. Some of the text of this book has been adapted from previous
texts of mine. In particular, Chapters 8 and 9 were written based on my surveys [90,
Chap. 3] and [90, Chap. 2], respectively; but the exposition has been extensively revised

1Shimon Even was my graduate studies adviser (at the Technion, 1980–83), whereas I had a lot of meetings with
Leonid Levin during my postdoctoral period (at MIT, 1983–86).

xxiii



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

ACKNOWLEDGMENTS

to fit the significantly different aims of the current book. Similarly, Section 7.1 and
Appendix C were written based on my survey [90, Chap. 1] and books [91, 92]; but,
again, the previous texts are very different in many ways. In contrast, Appendix B was
adapted with relatively little modifications from an early draft of a section in an article by
Avi Wigderson and myself [107].

xxiv



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER ONE

Introduction and Preliminaries

When you set out on your journey to Ithaca,
pray that the road is long,
full of adventure, full of knowledge.

K. P. Cavafy, “Ithaca”

The current chapter consists of two parts. The first part provides a high-level introduction
to (computational) Complexity Theory. This introduction is much more detailed than the
laconic statements made in the preface, but is quite sparse when compared to the richness
of the field. In addition, the introduction contains several important comments regarding
the contents, approach, and conventions of the current book.

P

BPP RP

average-case

IP ZK
PCP

approximation

pseudorandomness

PH

NP coNP

NL
L lower  bounds

PSPACE

The second part of this chapter provides the necessary preliminaries to the rest of
the book. It includes a discussion of computational tasks and computational models, as
well as natural complexity measures associated with the latter. More specifically, this part
recalls the basic notions and results of computability theory (including the definition of
Turing machines, some undecidability results, the notion of universal machines, and the
definition of oracle machines). In addition, this part presents the basic notions underlying
non-uniform models of computation (like Boolean circuits).

1.1. Introduction

This introduction consists of two parts: The first part refers to the area itself, whereas
the second part refers to the current book. The first part provides a brief overview of
Complexity Theory (Section 1.1.1) as well as some reflections about its characteristics
(Section 1.1.2). The second part describes the contents of this book (Section 1.1.3), the

1



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

considerations underlying the choice of topics as well as the way they are presented
(Section 1.1.4), and various notations and conventions (Section 1.1.5).

1.1.1. A Brief Overview of Complexity Theory

Out of the tough came forth sweetness1

Judges, 14:14

The following brief overview is intended to give a flavor of the questions addressed by
Complexity Theory. This overview is quite vague, and is merely meant as a teaser. Most
of the topics mentioned in it will be discussed at length in the various chapters of this
book.

Complexity Theory is concerned with the study of the intrinsic complexity of compu-
tational tasks. Its “final” goals include the determination of the complexity of any well-
defined task. Additional goals include obtaining an understanding of the relations between
various computational phenomena (e.g., relating one fact regarding computational com-
plexity to another). Indeed, we may say that the former type of goal is concerned with
absolute answers regarding specific computational phenomena, whereas the latter type is
concerned with questions regarding the relation between computational phenomena.

Interestingly, so far Complexity Theory has been more successful in coping with goals
of the latter (“relative”) type. In fact, the failure to resolve questions of the “absolute”
type led to the flourishing of methods for coping with questions of the “relative” type.
Musing for a moment, let us say that, in general, the difficulty of obtaining absolute
answers may naturally lead to seeking conditional answers, which may in turn reveal
interesting relations between phenomena. Furthermore, the lack of absolute understanding
of individual phenomena seems to facilitate the development of methods for relating
different phenomena. Anyhow, this is what happened in Complexity Theory.

Putting aside for a moment the frustration caused by the failure of obtaining absolute
answers, we must admit that there is something fascinating in the success of relating
different phenomena: In some sense, relations between phenomena are more revealing
than absolute statements about individual phenomena. Indeed, the first example that comes
to mind is the theory of NP-completeness. Let us consider this theory, for a moment, from
the perspective of these two types of goals.

Complexity Theory has failed to determine the intrinsic complexity of tasks such as
finding a satisfying assignment to a given (satisfiable) propositional formula or finding
a 3-coloring of a given (3-colorable) graph. But it has succeeded in establishing that
these two seemingly different computational tasks are in some sense the same (or, more
precisely, are computationally equivalent). We find this success amazing and exciting, and
hope that the reader shares these feelings. The same feeling of wonder and excitement is
generated by many of the other discoveries of Complexity Theory. Indeed, the reader is
invited to join a fast tour of some of the other questions and answers that make up the
field of Complexity Theory.

We will indeed start with the P versus NP Question. Our daily experience is that it is
harder to solve a problem than it is to check the correctness of a solution (e.g., think of
either a puzzle or a research problem). Is this experience merely a coincidence or does it
represent a fundamental fact of life (i.e., a property of the world)? Could you imagine a

1The quote is commonly interpreted as meaning that benefit arose out of misfortune.

2



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

world in which solving any problem is not significantly harder than checking a solution to
it? Would the term “solving a problem” not lose its meaning in such a hypothetical (and
impossible, in our opinion) world? The denial of the plausibility of such a hypothetical
world (in which “solving” is not harder than “checking”) is what “P different from NP”
actually means, where P represents tasks that are efficiently solvable and NP represents
tasks for which solutions can be efficiently checked.

The mathematically (or theoretically) inclined reader may also consider the task of
proving theorems versus the task of verifying the validity of proofs. Indeed, finding proofs
is a special type of the aforementioned task of “solving a problem” (and verifying the
validity of proofs is a corresponding case of checking correctness). Again, “P different
from NP” means that there are theorems that are harder to prove than to be convinced of
their correctness when presented with a proof. This means that the notion of a “proof” is
meaningful; that is, proofs do help when one is seeking to be convinced of the correctness
of assertions. Here NP represents sets of assertions that can be efficiently verified with the
help of adequate proofs, and P represents sets of assertions that can be efficiently verified
from scratch (i.e., without proofs).

In light of the foregoing discussion it is clear that the P versus NP Question is a
fundamental scientific question of far-reaching consequences. The fact that this question
seems beyond our current reach led to the development of the theory of NP-completeness.
Loosely speaking, this theory identifies a set of computational problems that are as hard
as NP. That is, the fate of the P versus NP Question lies with each of these problems: If
any of these problems is easy to solve then so are all problems in NP. Thus, showing that
a problem is NP-complete provides evidence of its intractability (assuming, of course, “P
different than NP”). Indeed, demonstrating the NP-completeness of computational tasks
is a central tool in indicating hardness of natural computational problems, and it has
been used extensively both in computer science and in other disciplines. We note that
NP-completeness indicates not only the conjectured intractability of a problem but also its
“richness” in the sense that the problem is rich enough to “encode” any other problem in
NP. The use of the term “encoding” is justified by the exact meaning of NP-completeness,
which in turn establishes relations between different computational problems (without
referring to their “absolute” complexity).

The foregoing discussion of NP-completeness hints at the importance of representation,
since it referred to different problems that encode one another. Indeed, the importance of
representation is a central aspect of Complexity Theory. In general, Complexity Theory is
concerned with problems for which the solutions are implicit in the problem’s statement (or
rather in the instance). That is, the problem (or rather its instance) contains all necessary
information, and one merely needs to process this information in order to supply the
answer.2 Thus, Complexity Theory is concerned with manipulation of information, and
its transformation from one representation (in which the information is given) to another
representation (which is the one desired). Indeed, a solution to a computational problem
is merely a different representation of the information given, that is, a representation in
which the answer is explicit rather than implicit. For example, the answer to the question
of whether or not a given Boolean formula is satisfiable is implicit in the formula itself
(but the task is to make the answer explicit). Thus, Complexity Theory clarifies a central

2In contrast, in other disciplines, solving a problem may require gathering information that is not available in
the problem’s statement. This information may either be available from auxiliary (past) records or be obtained by
conducting new experiments.

3



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

issue regarding representation, that is, the distinction between what is explicit and what is
implicit in a representation. Furthermore, it even suggests a quantification of the level of
non-explicitness.

In general, Complexity Theory provides new viewpoints on various phenomena that
were considered also by past thinkers. Examples include the aforementioned concepts
of solutions, proofs, and representation as well as concepts like randomness, knowledge,
interaction, secrecy, and learning. We next discuss the latter concepts and the perspective
offered by Complexity Theory.

The concept of randomness has puzzled thinkers for ages. Their perspective can be
described as ontological: They asked “what is randomness” and wondered whether it
exists, at all (or is the world deterministic). The perspective of Complexity Theory is
behavioristic: It is based on defining objects as equivalent if they cannot be told apart
by any efficient procedure. That is, a coin toss is (defined to be) “random” (even if one
believes that the universe is deterministic) if it is infeasible to predict the coin’s outcome.
Likewise, a string (or a distribution of strings) is “random” if it is infeasible to distinguish
it from the uniform distribution (regardless of whether or not one can generate the latter).
Interestingly, randomness (or rather pseudorandomness) defined this way is efficiently
expandable; that is, under a reasonable complexity assumption (to be discussed next), short
pseudorandom strings can be deterministically expanded into long pseudorandom strings.
Indeed, it turns out that randomness is intimately related to intractability. Firstly, note that
the very definition of pseudorandomness refers to intractability (i.e., the infeasibility of
distinguishing a pseudorandomness object from a uniformly distributed object). Secondly,
as stated, a complexity assumption, which refers to the existence of functions that are
easy to evaluate but hard to invert (called one-way functions), implies the existence of
deterministic programs (called pseudorandom generators) that stretch short random seeds
into long pseudorandom sequences. In fact, it turns out that the existence of pseudorandom
generators is equivalent to the existence of one-way functions.

Complexity Theory offers its own perspective on the concept of knowledge (and dis-
tinguishes it from information). Specifically, Complexity Theory views knowledge as the
result of a hard computation. Thus, whatever can be efficiently done by anyone is not
considered knowledge. In particular, the result of an easy computation applied to publicly
available information is not considered knowledge. In contrast, the value of a hard-to-
compute function applied to publicly available information is knowledge, and if somebody
provides you with such a value then it has provided you with knowledge. This discussion
is related to the notion of zero-knowledge interactions, which are interactions in which no
knowledge is gained. Such interactions may still be useful, because they may convince
a party of the correctness of specific data that was provided beforehand. For example, a
zero-knowledge interactive proof may convince a party that a given graph is 3-colorable
without yielding any 3-coloring.

The foregoing paragraph has explicitly referred to interaction, viewing it as a vehicle
for gaining knowledge and/or gaining confidence. Let us highlight the latter application
by noting that it may be easier to verify an assertion when allowed to interact with a
prover rather than when reading a proof. Put differently, interaction with a good teacher
may be more beneficial than reading any book. We comment that the added power of
such interactive proofs is rooted in their being randomized (i.e., the verification proce-
dure is randomized), because if the verifier’s questions can be determined beforehand
then the prover may just provide the transcript of the interaction as a traditional written
proof.

4



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

Another concept related to knowledge is that of secrecy: Knowledge is something that
one party may have while another party does not have (and cannot feasibly obtain by
itself) – thus, in some sense knowledge is a secret. In general, Complexity Theory is
related to cryptography, where the latter is broadly defined as the study of systems that
are easy to use but hard to abuse. Typically, such systems involve secrets, randomness,
and interaction as well as a complexity gap between the ease of proper usage and the
infeasibility of causing the system to deviate from its prescribed behavior. Thus, much of
cryptography is based on complexity theoretic assumptions and its results are typically
transformations of relatively simple computational primitives (e.g., one-way functions)
into more complex cryptographic applications (e.g., secure encryption schemes).

We have already mentioned the concept of learning when referring to learning from a
teacher versus learning from a book. Recall that Complexity Theory provides evidence to
the advantage of the former. This is in the context of gaining knowledge about publicly
available information. In contrast, computational learning theory is concerned with learn-
ing objects that are only partially available to the learner (i.e., reconstructing a function
based on its value at a few random locations or even at locations chosen by the learner).
Complexity Theory sheds light on the intrinsic limitations of learning (in this sense).

Complexity Theory deals with a variety of computational tasks. We have already
mentioned two fundamental types of tasks: searching for solutions (or rather “finding
solutions”) and making decisions (e.g., regarding the validity of assertions). We have
also hinted that in some cases these two types of tasks can be related. Now we consider
two additional types of tasks: counting the number of solutions and generating random
solutions. Clearly, both the latter tasks are at least as hard as finding arbitrary solutions to
the corresponding problem, but it turns out that for some natural problems they are
not significantly harder. Specifically, under some natural conditions on the problem,
approximately counting the number of solutions and generating an approximately random
solution is not significantly harder than finding an arbitrary solution.

Having mentioned the notion of approximation, we note that the study of the com-
plexity of finding “approximate solutions” is also of natural importance. One type of
approximation problems refers to an objective function defined on the set of potential
solutions: Rather than finding a solution that attains the optimal value, the approximation
task consists of finding a solution that attains an “almost optimal” value, where the notion
of “almost optimal” may be understood in different ways giving rise to different levels
of approximation. Interestingly, in many cases, even a very relaxed level of approxima-
tion is as difficult to obtain as solving the original (exact) search problem (i.e., finding
an approximate solution is as hard as finding an optimal solution). Surprisingly, these
hardness-of-approximation results are related to the study of probabilistically checkable
proofs, which are proofs that allow for ultra-fast probabilistic verification. Amazingly,
every proof can be efficiently transformed into one that allows for probabilistic verifica-
tion based on probing a constant number of bits (in the alleged proof). Turning back to
approximation problems, we note that in other cases a reasonable level of approximation
is easier to achieve than solving the original (exact) search problem.

Approximation is a natural relaxation of various computational problems. Another
natural relaxation is the study of average-case complexity, where the “average” is taken
over some “simple” distributions (representing a model of the problem’s instances that
may occur in practice). We stress that, although it was not stated explicitly, the entire
discussion so far has referred to “worst-case” analysis of algorithms. We mention that
worst-case complexity is a more robust notion than average-case complexity. For starters,

5



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

one avoids the controversial question of which instances are “important in practice” and
correspondingly the selection of the class of distributions for which average-case ana-
lysis is to be conducted. Nevertheless, a relatively robust theory of average-case com-
plexity has been suggested, albeit it is less developed than the theory of worst-case
complexity.

In view of the central role of randomness in Complexity Theory (as evident, say, in
the study of pseudorandomness, probabilistic proof systems, and cryptography), one may
wonder as to whether the randomness needed for the various applications can be obtained
in real life. One specific question, which received a lot of attention, is the possibility of
“purifying” randomness (or “extracting good randomness from bad sources”). That is, can
we use “defected” sources of randomness in order to implement almost perfect sources
of randomness? The answer depends, of course, on the model of such defected sources.
This study turned out to be related to Complexity Theory, where the most tight connec-
tion is between some type of randomness extractors and some type of pseudorandom
generators.

So far we have focused on the time complexity of computational tasks, while relying
on the natural association of efficiency with time. However, time is not the only resource
one should care about. Another important resource is space: the amount of (temporary)
memory consumed by the computation. The study of space complexity has uncovered
several fascinating phenomena, which seem to indicate a fundamental difference between
space complexity and time complexity. For example, in the context of space complexity,
verifying proofs of validity of assertions (of any specific type) has the same complexity
as verifying proofs of invalidity for the same type of assertions.

In case the reader feels dizzy, it is no wonder. We took an ultra-fast air tour of some
mountain tops, and dizziness is to be expected. Needless to say, the rest of the book offers
a totally different touring experience. We will climb some of these mountains by foot, step
by step, and will often stop to look around and reflect.

Absolute Results (aka. Lower Bounds). As stated up-front, absolute results are not
known for many of the “big questions” of Complexity Theory (most notably the P versus
NP Question). However, several highly non-trivial absolute results have been proved. For
example, it was shown that using negation can speed up the computation of monotone
functions (which do not require negation for their mere computation). In addition, many
promising techniques were introduced and employed with the aim of providing a low-level
analysis of the progress of computation. However, as stated in the preface, the focus of
this book is elsewhere.

1.1.2. Characteristics of Complexity Theory

We are successful because we use the right level of abstraction.
Avi Wigderson (1996)

Using the “right level of abstraction” seems to be a main characteristic of the theory of
computation at large. The right level of abstraction means abstracting away second-order
details, which tend to be context dependent, while using definitions that reflect the main
issues (rather than abstracting them away, too). Indeed, using the right level of abstraction
calls for an extensive exercising of good judgment, and one indication for having chosen
the right abstractions is the result of their study.

6



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

One major choice, taken by the theory of computation at large, is the choice of a
model of computation and corresponding complexity measures and classes. The choice,
which is currently taken for granted, was to use a simple model that avoids both the
extreme of being too realistic (and thus too detailed) as well as the extreme of being too
abstract (and vague). On the one hand, the main model of computation (which is used in
Complexity Theory) does not try to mimic (or mirror) the actual operation of real-life
computers used at a specific historical time. Such a choice would have made it very hard
to develop Complexity Theory as we know it and to uncover the fundamental relations
discussed in this book: The mass of details would have obscured the view. On the other
hand, avoiding any reference to any concrete model (like in the case of recursive function
theory) does not encourage the introduction and study of natural measures of complexity.
Indeed, as we shall see in Section 1.2.3, the choice was (and is) to use a simple model of
computation (which does not mirror real-life computers), while avoiding any effects that
are specific to that model (by keeping an eye on a host of variants and alternative models).
The freedom from the specifics of the basic model is obtained by considering complexity
classes that are invariant under a change of model (as long as the alternative model is
“reasonable”).

Another major choice is the use of asymptotic analysis. Specifically, we consider the
complexity of an algorithm as a function of its input length, and study the asymptotic
behavior of this function. It turns out that structure that is hidden by concrete quantities
appears at the limit. Furthermore, depending on the case, we classify functions according
to different criteria. For example, in the case of time complexity we consider classes of
functions that are closed under multiplication, whereas in case of space complexity we
consider closure under addition. In each case, the choice is governed by the nature of the
complexity measure being considered. Indeed, one could have developed a theory without
using these conventions, but this would have resulted in a far more cumbersome theory.
For example, rather than saying that finding a satisfying assignment for a given formula is
polynomial-time reducible to deciding the satisfiability of some other formulae, one could
have stated the exact functional dependence of the complexity of the search problem on
the complexity of the decision problem.

Both the aforementioned choices are common to other branches of the theory of
computation. One aspect that makes Complexity Theory unique is its perspective on
the most basic question of the theory of computation, that is, the way it studies the
question of what can be efficiently computed. The perspective of Complexity Theory
is general in nature. This is reflected in its primary focus on the relevant notion of effi-
ciency (captured by corresponding resource bounds) rather than on specific computational
problems. In most cases, complexity theoretic studies do not refer to any specific com-
putational problems or refer to such problems merely as an illustration. Furthermore,
even when specific computational problems are studied, this study is (explicitly or at
least implicitly) aimed at understanding the computational limitations of certain resource
bounds.

The aforementioned general perspective seems linked to the significant role of con-
ceptual considerations in the field: The rigorous study of an intuitive notion of efficiency
must be initiated with an adequate choice of definitions. Since this study refers to any
possible (relevant) computation, the definitions cannot be derived by abstracting some
concrete reality (e.g., a specific algorithmic schema). Indeed, the definitions attempt to
capture any possible reality, which means that the choice of definitions is governed by
conceptual principles and not merely by empirical observations.

7



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

1.1.3. Contents of This Book

This book is intended to serve as an introduction to Computational Complexity Theory. It
consists of ten chapters and seven appendices, and can be used either as a textbook or for
self-study. The chapters constitute the core of this book and are written in a style adequate
for a textbook, whereas the appendices provide either relevant background or additional
perspective and are written in the style of a survey article.

1.1.3.1. Overall Organization of the Book
Section 1.2 and Chapter 2 are a prerequisite for the rest of the book. Technically speaking,
the notions and results that appear in these parts are extensively used in the rest of the book.
More importantly, the former parts are the conceptual framework that shapes the field and
provides a good perspective on the field’s questions and answers. Indeed, Section 1.2 and
Chapter 2 provide the very basic material that must be understood by anybody having an
interest in Complexity Theory.

In contrast, the rest of the book covers more advanced material, which means that none
of it can be claimed to be absolutely necessary for a basic understanding of Complexity
Theory. In particular, although some advanced chapters refer to material in other advanced
chapters, the relation between these chapters is not a fundamental one. Thus, one may
choose to read and/or teach an arbitrary subset of the advanced chapters and do so in
an arbitrary order, provided one is willing to follow the relevant references to some
parts of other chapters (see Figure 1.1). Needless to say, we recommend reading and/or
teaching all the advanced chapters, and doing so by following the order presented in this
book.

As illustrated by Figure 1.1, some chapters (i.e., Chapters 3, 6, and 10) lump together
topics that are usually presented separately. These decisions are related to our perspective
on the corresponding topics.

Turning to the appendices, we note that some of them (e.g., Appendix G and parts of
Appendices D and E) provide background information that is required in some of the
advanced chapters. In contrast, other appendices (e.g., Appendices B and C and other
parts of Appendices D and E) provide additional perspective that augments the advanced
chapters. (The function of Appendices A and F will be clarified in §1.1.3.2.)

1.1.3.2. Contents of the Specific Parts
The rest of this section provides a brief summary of the contents of the various chapters
and appendices. This summary is intended for the teacher and/or the expert, whereas
the student is referred to the more novice-friendly summaries that appear in the book’s
preface.

Section 1.2: Preliminaries. This section provides the relevant background on com-
putability theory, which is the basis for the rest of this book (as well as for Complexity
Theory at large). Most importantly, it contains a discussion of central notions such as
search and decision problems, algorithms that solve such problems, and their complex-
ity. In addition, this section presents non-uniform models of computation (e.g., Boolean
circuits).

Chapter 2: P, NP, and NP-completeness. This chapter presents the P-vs-NP Question
both in terms of search problems and in terms of decision problems. The second main

8



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

6.1 6.2

7.1 7.2

in E

8.2 8.3 8.4 8.5

8.1    paragidm

de-ran. space
gen.
pur.

OWF

  case

10.1.1

prop.
test.

10.1.2

9.1   IP

9.2  ZK

PCP

9.3

average

10.2

rand. count.

7.1.3

5.2
L

5.4

4.1  advice

4.3   space
3.1

PHP/poly

5.3
PSPACE

5.1   general
3.2.3

3.2
4.2  TIME

5.2.4

(of opt.)
approx.

5.3.1

NL

(RL)
6.1.5

Figure 1.1: Dependencies among the advanced chapters. Solid arrows indicate the use of specific
results that are stated in the section to which the arrow points. Dashed lines (and arrows) indicate an
important conceptual connection; the wider the line, the tighter the connection. When relations are only
between subsections, their index is indicated.

topic of this chapter is the theory of NP-completeness. The chapter also provides a
treatment of the general notion of a (polynomial time) reduction, with special emphasis
on self-reducibility. Additional topics include the existence of problems in NP that are
neither NP-complete nor in P, optimal search algorithms, the class coNP, and promise
problems.

Chapter 3: Variations on P and NP. This chapter provides a treatment of non-uniform
polynomial time (P/poly) and of the Polynomial-time Hierarchy (PH). Each of the two
classes is defined in two equivalent ways (e.g., P/poly is defined both in terms of circuits
and in terms of “machines that take advice”). In addition, it is shown that if NP is contained
in P/poly then PH collapses to its second level (i.e., �2).

Chapter 4: More Resources, More Power? The focus of this chapter is on hierarchy
theorems, which assert that typically more resources allow for solving more problems.
These results depend on using bounding functions that can be computed without exceeding
the amount of resources that they specify, and otherwise gap theorems may apply.

Chapter 5: Space Complexity. Among the results presented in this chapter are a log-
space algorithm for testing connectivity of (undirected) graphs, a proof thatNL = coNL,

9



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

and complete problems forNL andPSPACE (under log-space and poly-time reductions,
respectively).

Chapter 6: Randomness and Counting. This chapter focuses on various randomized
complexity classes (i.e., BPP , RP , and ZPP) and the counting class #P . The results
presented in this chapter include BPP ⊂ P/poly and BPP ⊆ �2, the #P-completeness
of thePermanent, the connection between approximate counting and uniform generation
of solutions, and the randomized reductions of approximate counting to NP and of NP
to solving problems with unique solutions.

Chapter 7: The Bright Side of Hardness. This chapter deals with two conjectures that
are related to P �= NP . The first conjecture is that there are problems in E that are not
solvable by (non-uniform) families of small (say, polynomial-size) circuits, whereas the
second conjecture is equivalent to the notion of one-way functions. Most of this chapter is
devoted to “hardness amplification” results that convert these conjectures into tools that
can be used for non-trivial derandomizations of BPP (resp., for a host of cryptographic
applications).

Chapter 8: Pseudorandom Generators. The pivot of this chapter is the notion of com-
putational indistinguishability and corresponding notions of pseudorandomness. The def-
inition of general-purpose pseudorandom generators (running in polynomial time and
withstanding any polynomial-time distinguisher) is presented as a special case of a gen-
eral paradigm. The chapter also contains a presentation of other instantiations of the
latter paradigm, including generators aimed at derandomizing complexity classes such as
BPP , generators withstanding space-bounded distinguishers, and some special-purpose
generators.

Chapter 9: Probabilistic Proof Systems. This chapter provides a treatment of three types
of probabilistic proof systems: interactive proofs, zero-knowledge proofs, and probabilistic
checkable proofs. The results presented include IP = PSPACE , zero-knowledge proofs
for any NP-set, and the PCP Theorem. For the latter, only overviews of the two different
known proofs are provided.

Chapter 10: Relaxing the Requirements. This chapter provides a treatment of two
types of approximation problems and a theory of average-case (or rather typical-case)
complexity. The traditional type of approximation problem refers to search problems and
consists of a relaxation of standard optimization problems. The second type is known
as “property testing” and consists of a relaxation of standard decision problems. The
theory of average-case complexity involves several non-trivial definitional choices (e.g.,
an adequate choice of the class of distributions).

Appendix A: Glossary of Complexity Classes. The glossary provides self-contained
definitions of most complexity classes mentioned in the book.

Appendix B: On the Quest for Lower Bounds. The first part, devoted to Circuit Com-
plexity, reviews lower bounds for the size of (restricted) circuits that solve natural compu-
tational problems. The second part, devoted to Proof Complexity, reviews lower bounds
on the length of (restricted) propositional proofs of natural tautologies.

10



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

Appendix C: On the Foundations of Modern Cryptography. The first part of this
appendix augments the partial treatment of one-way functions, pseudorandom generators,
and zero-knowledge proofs (included in Chapters 7–9). Using these basic tools, the
second part provides a treatment of basic cryptographic applications such as encryption,
signatures, and general cryptographic protocols.

Appendix D: Probabilistic Preliminaries and Advanced Topics in Randomization.
The probabilistic preliminaries include conventions regarding random variables and
overviews of three useful inequalities (i.e., Markov’s Inequality, Chebyshev’s Inequality,
and Chernoff Bound). The advanced topics include constructions of hashing functions
and variants of the Leftover Hashing Lemma, and overviews of samplers and extractors
(i.e., the problem of randomness extraction).

Appendix E: Explicit Constructions. This appendix focuses on various computational
aspects of error-correcting codes and expander graphs. On the topic of codes, the appendix
contains a review of the Hadamard code, Reed-Solomon codes, Reed-Muller codes, and a
construction of a binary code of constant rate and constant relative distance. Also included
are a brief review of the notions of locally testable and locally decodable codes, and a list-
decoding bound. On the topic of expander graphs, the appendix contains a review of the
standard definitions and properties as well as a presentation of the Margulis-Gabber-Galil
and the Zig-Zag constructions.

Appendix F: Some Omitted Proofs. This appendix contains some proofs that are bene-
ficial as alternatives to the original and/or standard presentations. Included are proofs that
PH is reducible to #P via randomized Karp-reductions, and that IP( f ) ⊆ AM(O( f )) ⊆
AM( f ).

Appendix G: Some Computational Problems. This appendix contains a brief introduc-
tion to graph algorithms, Boolean formulae, and finite fields.

Bibliography. As stated in §1.1.4.4, we tried to keep the bibliographic list as short as
possible (and still reached over a couple of hundred entries). As a result, many relevant
references were omitted. In general, our choice of references was biased in favor of
textbooks and survey articles. We tried, however, not to omit references to key papers in
an area.

Absent from this book. As stated in the preface, the current book does not provide a
uniform cover of the various areas of Complexity Theory. Notable omissions include the
areas of Circuit Complexity (cf. [46, 236]) and Proof Complexity (cf. [27]), which are
briefly reviewed in Appendix B. Additional topics that are commonly covered in Com-
plexity Theory courses but are omitted here include the study of branching programs
and decision trees (cf. [237]), parallel computation [141], and communication complex-
ity [148]. We mention that the forthcoming textbook of Arora and Barak [14] contains
a treatment of all these topics. Finally, we mention two areas that we consider related to
Complexity Theory, although this view is not very common. These areas are distributed
computing [17] and computational learning theory [142].

11



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

1.1.4. Approach and Style of This Book

According to a common opinion, the most important aspect of a scientific work is the
technical result that it achieves, whereas explanations and motivations are merely re-
dundancy introduced for the sake of “error correction” and/or comfort. It is further
believed that, like in a work of art, the interpretation of the work should be left with the
reader.

The author strongly disagrees with the aforementioned opinions, and argues that there
is a fundamental difference between art and science, and that this difference refers exactly
to the meaning of a piece of work. Science is concerned with meaning (and not with
form), and in its quest for truth and/or understanding, science follows philosophy (and
not art). The author holds the opinion that the most important aspects of a scientific work
are the intuitive question that it addresses, the reason that it addresses this question, the
way it phrases the question, the approach that underlies its answer, and the ideas that are
embedded in the answer. Following this view, it is important to communicate these aspects
of the work.

The foregoing issues are even more acute when it comes to Complexity Theory, firstly
because conceptual considerations seem to play an even more central role in Complexity
Theory than in other fields (cf. Section 1.1.2). Secondly (and even more importantly),
Complexity Theory is extremely rich in conceptual content. Thus, communicating this
content is of primary importance, and failing to do so misses the most important aspects
of this theory.

Unfortunately, the conceptual content of Complexity Theory is rarely communicated
(explicitly) in books and/or surveys of the area.3 The annoying (and quite amazing) con-
sequences are students who have only a vague understanding of the meaning and general
relevance of the fundamental notions and results that they were taught. The author’s
view is that these consequences are easy to avoid by taking the time to explicitly dis-
cuss the meaning of definitions and results. A closely related issue is using the “right”
definitions (i.e., those that reflect better the fundamental nature of the notion being de-
fined) and emphasizing the (conceptually) “right” results. The current book is written
accordingly.

1.1.4.1. The General Principle
In accordance with the foregoing, the focus of this book is on the conceptual aspects
of the technical material. Whenever presenting a subject, the starting point is the in-
tuitive questions being addressed. The presentation explains the importance of these
questions, the specific ways that they are phrased (i.e., the choices made in the actual
formulation), the approaches that underlie the answers, and the ideas that are embed-
ded in these answers. Thus, a significant portion of the text is devoted to motivating
discussions that refer to the concepts and ideas that underlie the actual definitions and
results.

The material is organized around conceptual themes, which reflect fundamental no-
tions and/or general questions. Specific computational problems are rarely referred to,
with exceptions that are used either for the sake of clarity or because the specific

3It is tempting to speculate on the reasons for this phenomenon. One speculation is that communicating the concep-
tual content of Complexity Theory involves making bold philosophical assertions that are technically straightforward,
whereas this combination does not fit the personality of most researchers in Complexity Theory.

12



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

problem happens to capture a general conceptual phenomenon. For example, in this
book, “complete problems” (e.g., NP-complete problems) are always secondary to the
class for which they are complete.4

1.1.4.2. On a Few Specific Choices
Our technical presentation often differs from the standard one. In many cases this is due
to conceptual considerations. At times, this leads to some technical simplifications. In this
subsection we only discuss general themes and/or choices that have a global impact on
much of the presentation. This discussion is intended mainly for the teacher and/or the
expert.

Avoiding non-deterministic machines. We try to avoid non-deterministic machines as
much as possible. As argued in several places (e.g., Section 2.1.5), we believe that these
fictitious “machines” have a negative effect both from a conceptual and technical point
of view. The conceptual damage caused by using non-deterministic machines is that it
is unclear why one should care about what such machines can do. Needless to say, the
reason to care is clear when noting that these fictitious “machines” offer a (convenient
but rather slothful) way of phrasing fundamental issues. The technical damage caused
by using non-deterministic machines is that they tend to confuse the students. Further-
more, they do not offer the best way to handle more advanced issues (e.g., counting
classes).

In contrast, we use search problems as the basis for much of the presentation. Specif-
ically, the class PC (see Definition 2.3), which consists of search problems having effi-
ciently checkable solutions, plays a central role in our presentation. Indeed, defining this
class is slightly more complicated than the standard definition of NP (which is based on
non-deterministic machines), but the technical benefits start accumulating as we proceed.
Needless to say, the class PC is a fundamental class of computational problems and this
fact is the main motivation for its presentation. (Indeed, the most conceptually appealing
phrasing of the P-vs-NP Question consists of asking whether every search problem in PC
can be solved efficiently.)

Avoiding model-dependent effects. Complexity Theory evolves around the notion of
efficient computation. Indeed, a rigorous study of this notion seems to require reference
to some concrete model of computation; however, all questions and answers consid-
ered in this book are invariant under the choice of such a concrete model, provided of
course that the model is “reasonable” (which, needless to say, is a matter of intuition).
The foregoing text reflects the tension between the need to make rigorous definitions
and the desire to be independent of technical choices, which are unavoidable when mak-
ing rigorous definitions. It also reflects the fact that, by their fundamental nature, the
questions that we address are quite model-independent (i.e., are independent of var-
ious technical choices). Note that we do not deny the existence of model-dependent

4We admit that a very natural computational problem can give rise to a class of problems that are computationally
equivalent to it, and that in such a case the class may be less interesting than the original problem. This is not the case
for any of the complexity classes presented in this book. Still, in some cases (e.g.,NP and #P), the historical evolution
actually went from a specific computational problem to a class of problems that are computationally equivalent to
it. However, in all cases presented in this book, a retrospective evaluation of the material suggests that the class is
actually more important than the original problem.

13



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

questions, but rather avoid addressing such questions and view them as less fundamental
in nature. In contrast to common beliefs, the foregoing comments refer not only to time
complexity but also to space complexity. However, in both cases, the claim of invari-
ance may not hold for marginally small resources (e.g., linear time or sub-logarithmic
space).

In contrast to the foregoing paragraph, in some cases we choose to be specific. The
most notorious case is the association of efficiency with polynomial-time complexity (see
§1.2.3.5). Indeed, all the questions and answers regarding efficient computation can be
phrased without referring to polynomial-time complexity (i.e., by stating explicit func-
tional relations between the complexities of the problems involved), but such a generalized
treatment will be painful to follow.

1.1.4.3. On the Presentation of Technical Details
In general, the more complex the technical material is, the more levels of expositions
we employ (starting from the most high-level exposition, and when necessary providing
more than one level of details). In particular, whenever a proof is not very simple, we try
to present the key ideas first, and postpone implementation details to later. We also try to
clearly indicate the passage from a high-level presentation to its implementation details
(e.g., by using phrases such as “details follow”). In some cases, especially in the case of
advanced results, only proof sketches are provided and the implication is that the reader
should be able to fill up the missing details.

Few results are stated without a proof. In some of these cases the proof idea or a proof
overview is provided, but the reader is not expected to be able to fill up the highly non-
trivial details. (In these cases, the text clearly indicates this state of affairs.) One notable
example is the proof of the PCP Theorem (9.16).

We tried to avoid the presentation of material that, in our opinion, neither is the “last
word” on the subject nor represents the “right” way of approaching the subject. Thus, we
do not always present the “best” known result.

1.1.4.4. Organizational Principles
Each of the main chapters starts with a high-level summary and ends with chapter notes
and exercises. The latter are not aimed at testing or inspiring creativity, but are rather
designed to help verify the basic understanding of the main text. In some cases, ex-
ercises (augmented by adequate guidelines) are used for presenting additional related
material.

The book contains material that ranges from topics currently taught in undergraduate
courses (on computability and basic Complexity Theory) to topics currently taught mostly
in advanced graduate courses. Although this situation may (and hopefully will) change in
the future so that undergraduates will enjoy greater exposure to Complexity Theory, we
believe that it will continue to be the case that typical readers of the advanced chapters
will be more sophisticated than typical readers of the basic chapters (i.e., Section 1.2
and Chapter 2). Accordingly, the style of presentation becomes more sophisticated as one
progresses from Chapter 2 to later chapters.

As stated in the preface, this book focuses on the high-level approach to Com-
plexity Theory, whereas the low-level approach (i.e., lower bounds) is only briefly
reviewed in Appendix B. Other appendices contain material that is closely related
to Complexity Theory but is not an integral part of it (e.g., the foundations of

14



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.1. INTRODUCTION

cryptography).5 Further details on the contents of the various chapters and appendices
are provided in Section 1.1.3.

In an attempt to keep the bibliographic list from becoming longer than an average
chapter, we omitted many relevant references. One trick used toward this end is referring
to lists of references in other texts, especially when the latter are cited anyhow. Indeed,
our choices of references were biased in favor of textbooks and survey articles, because
we believe that they provide the best way to further learn about a research direction and/or
approach. We tried, however, not to omit references to key papers in an area. In some
cases, when we needed a reference for a result of interest and could not resort to the
aforementioned trick, we also cited less central papers.

As a matter of policy, we tried to avoid references and credits in the main text. The few
exceptions are either pointers to texts that provide details that we chose to omit or usage
of terms (bearing researchers’ names) that are too popular to avoid. In general, in each
chapter, references and credits are provided in the chapter’s notes.

Teaching note: The text also includes some teaching notes, which are typeset as this one. Some
of these notes express quite opinionated recommendations and/or justify various expositional
choices made in the text.

1.1.4.5. A Call for Tolerance
This book attempts to accommodate a wide variety of readers, ranging from readers
with no prior knowledge of Complexity Theory to experts in the field. This attempt
is reflected in tailoring the presentation, in each part of the book, for the readers with
the least background who are expected to read this part. However, in a few cases, ad-
vanced comments that are mostly directed at more advanced readers could not be avoided.
Thus, readers with more background may skip some details, while readers with less
background may ignore some advanced comments. An attempt was made to facilitate
such selective reading by an adequate labeling of the text, but in many places the read-
ers are expected to exercise their own judgment (and tolerate the fact that they are
asked to invest some extra effort in order to accommodate the interests of other types of
readers).

We stress that the different parts of the book do envision different ranges of possible
readers. Specifically, while Section 1.2 and Chapter 2 are intended mainly for readers
with no background in Complexity Theory (and even no background in computability),
the subsequent chapters do assume such basic background. In addition to familiarity with
the basic material, the more advanced parts of the book also assume a higher level of
technical sophistication.

1.1.4.6. Additional Comments Regarding Motivation
The author’s guess is that the text will be criticized for lengthy discussions of technically
trivial issues. Indeed, most researchers dismiss various conceptual clarifications as being

5As further articulated in Section 7.1, we recommend not including a basic treatment of cryptography within
a course on Complexity Theory. Indeed, cryptography may be claimed to be the most appealing application of
Complexity Theory, but a superficial treatment of cryptography (from this perspective) is likely to be misleading and
cause more harm than good.

15



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

trivial and devote all their attention to the technically challenging parts of the material.
The consequence is students who master the technical material but are confused about its
meaning. In contrast, the author recommends not being embarrassed at devoting time to
conceptual clarifications, even if some students may view them as obvious.

The motivational discussions presented in the text do not necessarily represent the
original motivation of the researchers who pioneered a specific study and/or contributed
greatly to it. Instead, these discussions provide what the author considers to be a good
motivation and/or a good perspective on the corresponding concepts.

1.1.5. Standard Notations and Other Conventions

Following are some notations and conventions that are freely used in this book.

Standard asymptotic notation: When referring to integral functions, we use the standard
asymptotic notation; that is, for f, g : N→ N, we write f = O(g) (resp., f = �(g)) if
there exists a constant c > 0 such that f (n) ≤ c · g(n) (resp., f (n) ≥ c · g(n)) holds for all
n ∈ N. We usually denote by “poly” an unspecified polynomial, and write f (n) = poly(n)
instead of “there exists a polynomial p such that f (n) ≤ p(n) for all n ∈ N.” We also
use the notation f = Õ(g) that means f (n) = poly(log n) · g(n), and f = o(g) (resp.,
f = ω(g)) that means f (n) < c · g(n) (resp., f (n) > c · g(n)) for every constant c > 0
and all sufficiently large n.

Integrality issues: Typically, we ignore integrality issues. This means that we may assume
that log2 n is an integer rather than using a more cumbersome form as �log2 n�. Likewise,
we may assume that various equalities are satisfied by integers (e.g., 2n = mm), even when
this cannot possibly be the case (e.g., 2n = 3m). In all these cases, one should consider
integers that approximately satisfy the relevant equations (and deal with the problems that
emerge by such approximations, which will be ignored in the current text).

Standard combinatorial and graph theory terms and notation: For any set S, we
denote by 2S the set of all subsets of S (i.e., 2S = {S′ : S′ ⊆ S}). For a natural number
n ∈ N, we denote [n]

def= {1, . . . , n}. Many of the computational problems that we mention
refer to finite (undirected) graphs. Such a graph, denoted G = (V, E), consists of a set
of vertices, denoted V , and a set of edges, denoted E , which are unordered pairs of
vertices. By default, graphs are undirected, whereas directed graphs consist of vertices
and directed edges, where a directed edge is an order pair of vertices. We also refer to
other graph-theoretic terms such as connectivity, being acyclic (i.e., having no simple
cycles), being a tree (i.e., being connected and acyclic), k-colorability, etc. For further
background on graphs and computational problems regarding graphs, the reader is referred
to Appendix G.1.

Typographic conventions: We denote formally defined complexity classes by calli-
graphic letters (e.g., NP), but we do so only after defining these classes. Furthermore,
when we wish to maintain some ambiguity regarding the specific formulation of a class
of problems we use Roman font (e.g., NP may denote either a class of search problems
or a class of decision problems). Likewise, we denote formally defined computational
problems by typewriter font (e.g., SAT). In contrast, generic problems and algorithms will
be denoted by italic font.

16



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

1.2. Computational Tasks and Models

But, you may say, we asked you to speak about women and fiction –
what, has that got to do with a room of one’s own? I will try to explain.

Virginia Woolf, A Room of One’s Own

This section provides the necessary preliminaries for the rest of the book; that is, we dis-
cuss the notion of a computational task and present computational models (for describing
methods) for solving such tasks. We start by introducing the general framework for our
discussion of computational tasks (or problems): This framework refers to the represen-
tation of instances (as binary sequences) and focuses on two types of tasks (i.e., searching
for solutions and making decisions). In order to facilitate a study of methods for solving
such tasks, the latter are defined with respect to infinitely many possible instances (each
being a finite object).6

Once computational tasks are defined, we turn to methods for solving such tasks, which
are described in terms of some model of computation. The description of such models
is the main contents of this section. Specifically, we consider two types of models of
computation: uniform models and non-uniform models. The uniform models correspond
to the intuitive notion of an algorithm, and will provide the stage for the rest of the book
(which focuses on efficient algorithms). In contrast, non-uniform models (e.g., Boolean
circuits) facilitate a closer look at the way a computation progresses, and will be used only
sporadically in this book.

Organization of Section 1.2. Sections 1.2.1–1.2.3 correspond to the contents of a tra-
ditional computability course, except that our presentation emphasizes some aspects and
deemphasizes others. In particular, the presentation highlights the notion of a universal
machine (see §1.2.3.4), justifies the association of efficient computation with polynomial-
time algorithms (§1.2.3.5), and provides a definition of oracle machines (§1.2.3.6). This
material (with the exception of Kolmogorov Complexity) is taken for granted in the rest
of the current book. In contrast, Section 1.2.4 presents basic preliminaries regarding non-
uniform models of computation (i.e., various types of Boolean circuits), and these are
only used lightly in the rest of the book. (We also call the reader’s attention to the discus-
sion of generic complexity classes in Section 1.2.5.) Thus, whereas Sections 1.2.1–1.2.3
(and 1.2.5) are absolute prerequisites for the rest of this book, Section 1.2.4 is not.

Teaching note: The author believes that there is no real need for a semester-long course
in computability (i.e., a course that focuses on what can be computed rather than on what
can be computed efficiently). Instead, undergraduates should take a course in Computational
Complexity, which should contain the computability aspects that serve as a basis for the rest
of the course. Specifically, the former aspects should occupy at most 25% of the course, and
the focus should be on basic complexity issues (captured by P, NP, and NP-completeness)
augmented by a selection of some more advanced material. Indeed, such a course can be based
on Chapters 1 and 2 of the current book (augmented by a selection of some topics from other
chapters).

6The comparison of different methods seems to require the consideration of infinitely many possible instances;
otherwise, the choice of the language in which the methods are described may totally dominate and even distort the
discussion (cf. the discussion of Kolmogorov Complexity in §1.2.3.4).

17



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

1.2.1. Representation

In mathematics and related sciences, it is customary to discuss objects without specifying
their representation. This is not possible in the theory of computation, where the repre-
sentation of objects plays a central role. In a sense, a computation merely transforms one
representation of an object to another representation of the same object. In particular, a
computation designed to solve some problem merely transforms the problem instance to
its solution, where the latter can be thought of as a (possibly partial) representation of
the instance. Indeed, the answer to any fully specified question is implicit in the question
itself, and computation is employed to make this answer explicit.

Computational tasks refers to objects that are represented in some canonical way,
where such canonical representation provides an “explicit” and “full” (but not “overly
redundant”) description of the corresponding object. We will consider only finite objects
like numbers, sets, graphs, and functions (and keep distinguishing these types of objects
although, actually, they are all equivalent). While the representation of numbers, sets, and
functions is quite straightforward, we refer the reader to Appendix G.1 for a discussion of
the representation of graphs.

Strings. We consider finite objects, each represented by a finite binary sequence, called
a string. For a natural number n, we denote by {0, 1}n the set of all strings of length n,
hereafter referred to as n-bit (long) strings. The set of all strings is denoted {0, 1}∗; that is,
{0, 1}∗ = ∪n∈N{0, 1}n . For x ∈{0, 1}∗, we denote by |x | the length of x (i.e., x ∈{0, 1}|x |),
and often denote by xi the i th bit of x (i.e., x = x1x2 · · · x|x |). For x, y∈{0, 1}∗, we denote
by xy the string resulting from concatenation of the strings x and y.

At times, we associate {0, 1}∗×{0, 1}∗ with {0, 1}∗; the reader should merely con-
sider an adequate encoding (e.g., the pair (x1 · · · xm, y1 · · · yn) ∈ {0, 1}∗ × {0, 1}∗ may
be encoded by the string x1x1 · · · xm xm01y1 · · · yn ∈{0, 1}∗). Likewise, we may represent
sequences of strings (of fixed or varying length) as single strings. When we wish to em-
phasize that such a sequence (or some other object) is to be considered as a single object
we use the notation 〈·〉 (e.g., “the pair (x, y) is encoded as the string 〈x, y〉”).

Numbers. Unless stated differently, natural numbers will be encoded by their binary
expansion; that is, the string bn−1 · · · b1b0 ∈ {0, 1}n encodes the number

∑n−1
i=0 bi · 2i ,

where typically we assume that this representation has no leading zeros (i.e., bn−1 = 1).
Rational numbers will be represented as pairs of natural numbers. In the rare cases in
which one considers real numbers as part of the input to a computational problem, one
actually means rational approximations of these real numbers.

Special symbols. We denote the empty string by λ (i.e., λ ∈ {0, 1}∗ and |λ| = 0), and the
empty set by ∅. It will be convenient to use some special symbols that are not in {0, 1}∗.
One such symbol is ⊥, which typically denotes an indication (e.g., produced by some
algorithm) that something is wrong.

1.2.2. Computational Tasks

Two fundamental types of computational tasks are the so-called search problems and
decision problems. In both cases, the key notions are the problem’s instances and the
problem’s specification.

18



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

1.2.2.1. Search Problems
A search problem consists of a specification of a set of valid solutions (possibly an
empty one) for each possible instance. That is, given an instance, one is required to find
a corresponding solution (or to determine that no such solution exists). For example,
consider the problem in which one is given a system of equations and is asked to find
a valid solution. Needless to say, much of computer science is concerned with solving
various search problems (e.g., finding shortest paths in a graph, sorting a list of numbers,
finding an occurrence of a given pattern in a given string, etc). Furthermore, search
problems correspond to the daily notion of “solving a problem” (e.g., finding one’s way
between two locations), and thus a discussion of the possibility and complexity of solving
search problems corresponds to the natural concerns of most people.

In the following definition of solving search problems, the potential solver is a func-
tion (which may be thought of as a solving strategy), and the sets of possible solutions
associated with each of the various instances are “packed” into a single binary relation.

Definition 1.1 (solving a search problem): Let R ⊆ {0, 1}∗ × {0, 1}∗ and
R(x)

def= {y : (x, y) ∈ R} denote the set of solutions for the instance x. A func-
tion f : {0, 1}∗ → {0, 1}∗ ∪ {⊥} solves the search problem of R if for every x the
following holds: if R(x) �= ∅ then f (x) ∈ R(x) and otherwise f (x) = ⊥.

Indeed, R = {(x, y)∈{0, 1}∗ × {0, 1}∗ : y∈ R(x)}, and the solver f is required to find
a solution (i.e., given x output y ∈ R(x)) whenever one exists (i.e., the set R(x) is not
empty). It is also required that the solver f never outputs a wrong solution (i.e., if R(x) �= ∅
then f (x) ∈ R(x) and if R(x) = ∅ then f (x) = ⊥), which in turn means that f indicates
whether x has any solution.

A special case of interest is the case of search problems having a unique solution (for
each possible instance); that is, the case that |R(x)| = 1 for every x . In this case, R is
essentially a (total) function, and solving the search problem of R means computing (or
evaluating) the function R (or rather the function R′ defined by R′(x)

def= y if and only
if R(x) = {y}). Popular examples include sorting a sequence of numbers, multiplying
integers, finding the prime factorization of a composite number, etc.

1.2.2.2. Decision Problems
A decision problem consists of a specification of a subset of the possible instances. Given
an instance, one is required to determine whether the instance is in the specified set (e.g.,
the set of prime numbers, the set of connected graphs, or the set of sorted sequences).
For example, consider the problem where one is given a natural number, and is asked to
determine whether or not the number is a prime. One important case, which corresponds
to the aforementioned search problems, is the case of the set of instances having a solution;
that is, for any binary relation R ⊆ {0, 1}∗ × {0, 1}∗ we consider the set {x : R(x) �= ∅}.
Indeed, being able to determine whether or not a solution exists is a prerequisite to being
able to solve the corresponding search problem (as per Definition 1.1). In general, decision
problems refer to the natural task of making a binary decision, a task that is not uncommon
in daily life (e.g., determining whether a traffic light is red). In any case, in the following
definition of solving decision problems, the potential solver is again a function; that is, in
this case the solver is a Boolean function, which is supposed to indicate membership in a
predetermined set.

19



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

Definition 1.2 (solving a decision problem): Let S ⊆ {0, 1}∗. A function f :
{0, 1}∗ → {0, 1} solves the decision problem of S (or decides membership in S) if
for every x it holds that f (x) = 1 if and only if x ∈ S.

We often identify the decision problem of S with S itself, and identify S with its charac-
teristic function (i.e., with the function χS : {0, 1}∗ → {0, 1} defined such that χS(x) = 1
if and only if x ∈ S). Note that if f solves the search problem of R then the Boolean
function f ′ : {0, 1}∗ → {0, 1} defined by f ′(x)

def= 1 if and only if f (x) �= ⊥ solves the
decision problem of {x : R(x) �= ∅}.

Reflection. Most people would consider search problems to be more natural than decision
problems: Typically, people seek solutions more than they stop to wonder whether or not
solutions exist. Definitely, search problems are not less important than decision problems;
it is merely that their study tends to require more cumbersome formulations. This is the
main reason that most expositions choose to focus on decision problems. The current
book attempts to devote at least a significant amount of attention also to search problems.

1.2.2.3. Promise Problems (an Advanced Comment)
Many natural search and decision problems are captured more naturally by the terminology
of promise problems, in which the domain of possible instances is a subset of {0, 1}∗
rather than {0, 1}∗ itself. In particular, note that the natural formulation of many search
and decision problems refers to instances of a certain type (e.g., a system of equations, a
pair of numbers, a graph), whereas the natural representation of these objects uses only
a strict subset of {0, 1}∗. For the time being, we ignore this issue, but we shall revisit
it in Section 2.4.1. Here we just note that, in typical cases, the issue can be ignored by
postulating that every string represents some legitimate object (e.g., each string that is
not used in the natural representation of these objects is postulated as a representation of
some fixed object).

1.2.3. Uniform Models (Algorithms)

Science is One.
Laci Lovász (according to Silvio Micali, ca. 1990)

We finally reach the heart of the current section (Section 1.2), which is the definition of
uniform models of computation. We are all familiar with computers and with the ability of
computer programs to manipulate data. This familiarity seems to be rooted in the positive
side of computing; that is, we have some experience regarding some things that computers
can do. In contrast, Complexity Theory is focused at what computers cannot do, or rather
with drawing the line between what can be done and what cannot be done. Drawing
such a line requires a precise formulation of all possible computational processes; that is,
we should have a clear model of all possible computational processes (rather than some
familiarity with some computational processes).

1.2.3.1. Overview and General Principles
Before being formal, let we offer a general and abstract description, which is aimed
at capturing any artificial as well as natural process. Indeed, artificial processes will
be associated with computers, whereas by natural processes we mean (attempts to

20



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

model) the “mechanical” aspects of the natural reality (be it physical, biological, or even
social).

A computation is a process that modifies an environment via repeated applications of
a predetermined rule. The key restriction is that this rule is simple: In each application it
depends on and affects only a (small) portion of the environment, called the active zone.
We contrast the a priori bounded size of the active zone (and of the modification rule)
with the a priori unbounded size of the entire environment. We note that, although each
application of the rule has a very limited effect, the effect of many applications of the
rule may be very complex. Put in other words, a computation may modify the relevant
environment in a very complex way, although it is merely a process of repeatedly applying
a simple rule.

As hinted, the notion of computation can be used to model the “mechanical” aspects of
the natural reality, that is, the rules that determine the evolution of the reality (rather than
the specific state of the reality at a specific time). In this case, the starting point of the
study is the actual evolution process that takes place in the natural reality, and the goal of
the study is finding the (computation) rule that underlies this natural process. In a sense,
the goal of science at large can be phrased as finding (simple) rules that govern various
aspects of reality (or rather one’s abstraction of these aspects of reality).

Our focus, however, is on artificial computation rules designed by humans in order
to achieve specific desired effects on a corresponding artificial environment. Thus, our
starting point is a desired functionality, and our aim is to design computation rules that
effect it. Such a computation rule is referred to as an algorithm. Loosely speaking, an algo-
rithm corresponds to a computer program written in a high-level (abstract) programming
language. Let us elaborate.

We are interested in the transformation of the environment as affected by the compu-
tational process (or the algorithm). Throughout (most of) this book, we will assume that,
when invoked on any finite initial environment, the computation halts after a finite number
of steps. Typically, the initial environment to which the computation is applied encodes
an input string, and the end environment (i.e., at the termination of the computation)
encodes an output string. We consider the mapping from inputs to outputs induced by the
computation; that is, for each possible input x , we consider the output y obtained at the
end of a computation initiated with input x , and say that the computation maps input x to
output y. Thus, a computation rule (or an algorithm) determines a function (computed by
it): This function is exactly the aforementioned mapping of inputs to outputs.

In the rest of this book (i.e., outside the current chapter), we will also consider the
number of steps (i.e., applications of the rule) taken by the computation on each possible
input. The latter function is called the time complexity of the computational process (or
algorithm). While time complexity is defined per input, we will often consider it per input
length, taking the maximum over all inputs of the same length.

In order to define computation (and computation time) rigorously, one needs to spec-
ify some model of computation, that is, provide a concrete definition of environments
and a class of rules that may be applied to them. Such a model corresponds to an ab-
straction of a real computer (be it a PC, mainframe, or network of computers). One
simple abstract model that is commonly used is that of Turing machines (see, §1.2.3.2).
Thus, specific algorithms are typically formalized by corresponding Turing machines
(and their time complexity is represented by the time complexity of the corresponding
Turing machines). We stress, however, that most results in the theory of computation
hold regardless of the specific computational model used, as long as it is “reasonable”

21



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

(i.e., satisfies the aforementioned simplicity condition and can perform some apparently
simple computations).

What is being computed? The foregoing discussion has implicitly referred to algorithms
(i.e., computational processes) as means of computing functions. Specifically, an algorithm
A computes the function f A :{0, 1}∗→{0, 1}∗ defined by f A(x)= y if, when invoked on
input x , algorithm A halts with output y. However, algorithms can also serve as means
of “solving search problems” or “making decisions” (as in Definitions 1.1 and 1.2).
Specifically, we will say that algorithm A solves the search problem of R (resp., decides
membership in S) if f A solves the search problem of R (resp., decides membership in S). In
the rest of this exposition we associate the algorithm A with the function f A computed by
it; that is, we write A(x) instead of f A(x). For the sake of future reference, we summarize
the foregoing discussion.

Definition 1.3 (algorithms as problem solvers): We denote by A(x) the output of
algorithm A on input x. Algorithm A solves the search problem R (resp., the decision
problem S) if A, viewed as a function, solves R (resp., S).

Organization of the rest of Section 1.2.3. In §1.2.3.2 we provide a rough description of
the model of Turing machines. This is done merely for the sake of providing a concrete
model that supports the study of computation and its complexity, whereas most of the
material in this book will not depend on the specifics of this model. In §1.2.3.3 and
§1.2.3.4 we discuss two fundamental properties of any reasonable model of computation:
the existence of uncomputable functions and the existence of universal computations. The
time (and space) complexity of computation is defined in §1.2.3.5. We also discuss oracle
machines and restricted models of computation (in §1.2.3.6 and §1.2.3.7, respectively).

1.2.3.2. A Concrete Model: Turing Machines
The model of Turing machines offers a relatively simple formulation of the notion of an
algorithm. The fact that the model is very simple complicates the design of machines that
solve problems of interest, but makes the analysis of such machines simpler. Since the
focus of Complexity Theory is on the analysis of machines and not on their design, the
trade-off offered by this model is suitable for our purposes. We stress again that the model
is merely used as a concrete formulation of the intuitive notion of an algorithm, whereas
we actually care about the intuitive notion and not about its formulation. In particular, all
results mentioned in this book hold for any other “reasonable” formulation of the notion
of an algorithm.

The model of Turing machines is not meant to provide an accurate (or “tight”) model
of real-life computers, but rather to capture their inherent limitations and abilities (i.e., a
computational task can be solved by a real-life computer if and only if it can be solved by
a Turing machine). In comparison to real-life computers, the model of Turing machines
is extremely oversimplified and abstracts away many issues that are of great concern
to computer practice. However, these issues are irrelevant to the higher-level questions
addressed by Complexity Theory. Indeed, as usual, good practice requires more refined
understanding than the one provided by a good theory, but one should first provide the
latter.

Historically, the model of Turing machines was invented before modern computers were
even built, and was meant to provide a concrete model of computation and a definition

22



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

3 32 2 2 0

3 32 2 2 1 0

b

3

b

5

5

- - - - - - - -

----- - - -

Figure 1.2: A single step by a Turing machine.

of computable functions.7 Indeed, this concrete model clarified fundamental properties
of computable functions and plays a key role in defining the complexity of computable
functions.

The model of Turing machines was envisioned as an abstraction of the process of an
algebraic computation carried out by a human using a sheet of paper. In such a process, at
each time, the human looks at some location on the paper, and depending on what he/she
sees and what he/she has in mind (which is little . . .), he/she modifies the contents of this
location and shifts his/her look to an adjacent location.

The Actual Model. Following is a high-level description of the model of Turing machines;
the interested reader is referred to standard textbooks (e.g., [208]) for further details.
Recall that we need to specify the set of possible environments, the set of machines (or
computation rules), and the effect of applying such a rule on an environment.

• The main component in the environment of a Turing machine is an infinite sequence of
cells, each capable of holding a single symbol (i.e., member of a finite set � ⊃ {0, 1}).
This sequence is envisioned as starting at a leftmost cell, and extending infinitely to the
right (cf. Figure 1.2). In addition, the environment contains the current location of the
machine on this sequence, and the internal state of the machine (which is a member of
a finite set Q). The aforementioned sequence of cells is called the tape, and its contents
combined with the machine’s location and its internal state is called the instantaneous
configuration of the machine.

• The main component in the Turing machine itself is a finite rule (i.e., a finite function),
called the transition function, which is defined over the set of all possible symbol-
state pairs. Specifically, the transition function is a mapping from � × Q to � × Q ×
{−1, 0,+1}, where {−1,+1, 0} correspond to a movement instruction (which is either
“left” or “right” or “stay,” respectively). In addition, the machine’s description specifies
an initial state and a halting state, and the computation of the machine halts when the
machine enters its halting state.8

7In contrast, the abstract definition of “recursive functions” yields a class of “computable” functions without
referring to any model of computation (but rather based on the intuition that any such model should support recursive
functional composition).

8Envisioning the tape as in Figure 1.2, we also use the convention that if the machine tries to move left of the end
of the tape then it is considered to have halted.

23



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

We stress that, in contrast to the finite description of the machine, the tape
has an a priori unbounded length (and is considered, for simplicity, as being
infinite).

• A single computation step of such a Turing machine depends on its current location
on the tape, on the contents of the corresponding cell, and on the internal state of the
machine. Based on the latter two elements, the transition function determines a new
symbol-state pair as well as a movement instruction (i.e., “left” or “right” or “stay”).
The machine modifies the contents of the said cell and its internal state accordingly,
and moves as directed. That is, suppose that the machine is in state q and resides in a
cell containing the symbol σ , and suppose that the transition function maps (σ, q) to
(σ ′, q ′, D). Then, the machine modifies the contents of the said cell to σ ′, modifies its
internal state to q ′, and moves one cell in direction D. Figure 1.2 shows a single step
of a Turing machine that, when in state ‘b’ and seeing a binary symbol σ , replaces
σ with the symbol σ + 2, maintains its internal state, and moves one position to the
right.9

Formally, we define the successive configuration function that maps each instantaneous
configuration to the one resulting by letting the machine take a single step. This function
modifies its argument in a very minor manner, as described in the foregoing; that
is, the contents of at most one cell (i.e., at which the machine currently resides) is
changed, and in addition the internal state of the machine and its location may change,
too.

The initial environment (or configuration) of a Turing machine consists of the machine
residing in the first (i.e., leftmost) cell and being in its initial state. Typically, one also
mandates that, in the initial configuration, a prefix of the tape’s cells hold bit values, which
concatenated together are considered the input, and the rest of the tape’s cells hold a
special symbol (which in Figure 1.2 is denoted by ‘-’). Once the machine halts, the output
is defined as the contents of the cells that are to the left of its location (at termination
time).10 Thus, each machine defines a function mapping inputs to outputs, called the
function computed by the machine.

Multi-tape Turing machines. We comment that in most expositions, one refers to the
location of the “head of the machine” on the tape (rather than to the “location of
the machine on the tape”). The standard terminology is more intuitive when extend-
ing the basic model, which refers to a single tape, to a model that supports a constant
number of tapes. In the corresponding model of so-called multi-tape machines, the ma-
chine maintains a single head on each such tape, and each step of the machine depends on
and affects the cells that are at the machine’s head location on each tape. As we shall see
in Chapter 5 (and in §1.2.3.5), the extension of the model to multi-tape Turing machines is
crucial to the definition of space complexity. A less fundamental advantage of the model
of multi-tape Turing machines is that it facilitates the design of machines that compute
functions of interest.

9Figure 1.2 corresponds to a machine that, when in the initial state (i.e., ‘a’), replaces the symbol σ by σ + 4,
modifies its internal state to ‘b’, and moves one position to the right. Indeed, “marking” the leftmost cell (in order to
allow for recognizing it in the future) is a common practice in the design of Turing machines.

10By an alternative convention, the machine halts while residing in the leftmost cell, and the output is defined as
the maximal prefix of the tape contents that contains only bit values.

24



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

Teaching note: We strongly recommend avoiding the standard practice of teaching the student
to program with Turing machines. These exercises seem very painful and pointless. Instead,
one should prove that the Turing machine model is exactly as powerful as a model that is closer
to a real-life computer (see the following “sanity check”); that is, a function can be computed
by a Turing machine if and only if it is computable by a machine of the latter model. For
starters, one may prove that a function can be computed by a single-tape Turing machine if
and only if it is computable by a multi-tape (e.g., two-tape) Turing machine.

The Church-Turing Thesis. The entire point of the model of Turing machines is its
simplicity. That is, in comparison to more “realistic” models of computation, it is sim-
pler to formulate the model of Turing machines and to analyze machines in this model.
The Church-Turing Thesis asserts that nothing is lost by considering the Turing ma-
chine model: A function can be computed by some Turing machine if and only if it
can be computed by some machine of any other “reasonable and general” model of
computation.

This is a thesis, rather than a theorem, because it refers to an intuitive notion (i.e.,
the notion of a reasonable and general model of computation) that is left undefined
on purpose. The model should be reasonable in the sense that it should allow only
computation rules that are “simple” in some intuitive sense. For example, we should
be able to envision a mechanical implementation of these computation rules. On the
other hand, the model should allow for computation of “simple” functions that are def-
initely computable according to our intuition. At the very least the model should allow
for emulation of Turing machines (i.e., computation of the function that, given a de-
scription of a Turing machine and an instantaneous configuration, returns the successive
configuration).

A philosophical comment. The fact that a thesis is used to link an intuitive concept to a
formal definition is common practice in any science (or, more broadly, in any attempt to
reason rigorously about intuitive concepts). Any attempt to rigorously define an intuitive
concept yields a formal definition that necessarily differs from the original intuition, and
the question of correspondence between these two objects arises. This question can never
be rigorously treated, because one of the objects that it relates to is undefined. That is, the
question of correspondence between the intuition and the definition always transcends a
rigorous treatment (i.e., it always belongs to the domain of the intuition).

A sanity check: Turing machines can emulate an abstract RAM. To gain confidence in
the Church-Turing Thesis, one may attempt to define an abstract random-access machine
(RAM), and verify that it can be emulated by a Turing machine. An abstract RAM
consists of an infinite number of memory cells, each capable of holding an integer, a finite
number of similar registers, one designated as program counter, and a program consisting
of instructions selected from a finite set. The set of possible instructions includes the
following instructions:

• reset(r ), where r is an index of a register, results in setting the value of register r to
zero;

• inc(r ), where r is an index of a register, results in incrementing the content of register
r . Similarly dec(r ) causes a decrement;

25



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

• load(r1, r2), where r1 and r2 are indices of registers, results in loading to register r1

the contents of the memory location m, where m is the current contents of register r2;
• store(r1, r2), stores the contents of register r1 in the memory, analogously to load;
• cond-goto(r, �), where r is an index of a register and � does not exceed the program

length, results in setting the program counter to �− 1 if the content of register r is
non-negative.

The program counter is incremented after the execution of each instruction, and the next
instruction to be executed by the machine is the one to which the program counter points
(and the machine halts if the program counter exceeds the program’s length). The input to
the machine may be defined as the contents of the first n memory cells, where n is placed
in a special input register.

We note that, as stated, the abstract RAM model is as powerful as the Turing machine
model (see the following details). However, in order to make the RAM model closer
to real-life computers, we may augment it with additional instructions that are available
on real-life computers like the instruction add(r1, r2) (resp., mult(r1, r2)) that results in
adding (resp., multiplying) the contents of registers r1 and r2 (and placing the result in
register r1). We suggest proving that this abstract RAM can be emulated by a Turing
machine.11 (Hint: note that during the emulation, we only need to hold the input, the
contents of all registers, and the contents of the memory cells that were accessed during
the computation.)12

Reflections: Observe that the abstract RAM model is significantly more cumbersome
than the Turing machine model. Furthermore, seeking a sound choice of the instruction
set (i.e., the instructions to be allowed in the model) creates a vicious cycle (because
the sound guideline for such a choice should have been allowing only instructions that
correspond to “simple” operations, whereas the latter correspond to easily computable
functions . . .). This vicious cycle was avoided in the foregoing paragraph by trusting
the reader to include only instructions that are available in some real-life computer. (We
comment that this empirical consideration is justifiable in the current context, because our
current goal is merely linking the Turing machine model with the reader’s experience of
real-life computers.)

1.2.3.3. Uncomputable Functions
Strictly speaking, the current subsection is not necessary for the rest of this book, but we
feel that it provides a useful perspective.

In contrast to what every layman would think, we know that not all functions are
computable. Indeed, an important message to be communicated to the world is that not
every well-defined task can be solved by applying a “reasonable” automated procedure
(i.e., a procedure that has a simple description that can be applied to any instance of
the problem at hand). Furthermore, not only is it the case that there exist uncomputable

11We emphasize this direction of the equivalence of the two models, because the RAM model is introduced in
order to convince the reader that Turing machines are not too weak (as a model of general computation). The fact that
they are not too strong seems self-evident. Thus, it seems pointless to prove that the RAM model can emulate Turing
machines. Still, note that this is indeed the case, by using the RAM’s memory cells to store the contents of the cells
of the Turing machine’s tape.

12Thus, at each time, the Turning machine’s tape contains a list of the RAM’s memory cells that were accessed so
far as well as their current contents. When we emulate a RAM instruction, we first check whether the relevant RAM
cell appears on this list, and augment the list by a corresponding entry or modify this entry as needed.

26



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

functions, but it is also the case that most functions are uncomputable. In fact, only
relatively few functions are computable.

Theorem 1.4 (on the scarcity of computable functions): The set of computable
functions is countable, whereas the set of all functions (from strings to string) has
cardinality ℵ.

We stress that the theorem holds for any reasonable model of computation. In fact, it only
relies on the postulate that each machine in the model has a finite description (i.e., can be
described by a string).

Proof: Since each computable function is computable by a machine that has a
finite description, there is a 1–1 correspondence between the set of computable
functions and the set of strings (which in turn is in 1–1 correspondence to the
natural numbers). On the other hand, there is a 1–1 correspondence between the
set of Boolean functions (i.e., functions from strings to a single bit) and the set
of real number in [0, 1). This correspondence associates each real r ∈ [0, 1) to the
function f : N→ {0, 1} such that f (i) is the i th bit in the infinite binary expansion
of r .

The Halting Problem: In contrast to the discussion in §1.2.3.1, at this point we also
consider machines that may not halt on some inputs. (The functions computed by such
machines are partial functions that are defined only on inputs on which the machine
halts.) Again, we rely on the postulate that each machine in the model has a finite
description, and denote the description of machine M by 〈M〉 ∈ {0, 1}∗. The halting
function, h : {0, 1}∗ × {0, 1}∗ → {0, 1}, is defined such that h(〈M〉, x)

def= 1 if and only
if M halts on input x . The following result goes beyond Theorem 1.4 by pointing to an
explicit function (of natural interest) that is not computable.

Theorem 1.5 (undecidability of the halting problem): The halting function is not
computable.

The term undecidability means that the corresponding decision problem cannot be solved
by an algorithm. That is, Theorem 1.5 asserts that the decision problem associated with
the set h−1(1) = {(〈M〉, x) : h(〈M〉, x) = 1} is not solvable by an algorithm (i.e., there
exists no algorithm that, given a pair (〈M〉, x), decides whether or not M halts on input
x). Actually, the following proof shows that there exists no algorithm that, given 〈M〉,
decides whether or not M halts on input 〈M〉.

Proof: We will show that even the restriction of h to its “diagonal” (i.e., the function
d(〈M〉) def= h(〈M〉, 〈M〉)) is not computable. Note that the value of d(〈M〉) refers
to the question of what happens when we feed M with its own description, which
is indeed a “nasty” (but legitimate) thing to do. We will actually do something
“worse”: toward the contradiction, we will consider the value of d when eval-
uated at a (machine that is related to a) hypothetical machine that supposedly
computes d.

We start by considering a related function, d′, and showing that this function
is uncomputable. The function d′ is defined on purpose so as to foil any attempt

27



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

to compute it; that is, for every machine M , the value d′(〈M〉) is defined to differ
from M(〈M〉). Specifically, the function d′ : {0, 1}∗ → {0, 1} is defined such that
d′(〈M〉) def= 1 if and only if M halts on input 〈M〉with output 0. (That is, d′(〈M〉) = 0
if either M does not halt on input 〈M〉 or its output does not equal the value 0.)
Now, suppose, toward the contradiction, that d′ is computable by some machine,
denoted Md′ . Note that machine Md′ is supposed to halt on every input, and so
Md′ halts on input 〈Md′ 〉. But, by definition of d′, it holds that d′(〈Md′ 〉) = 1 if and
only if Md′ halts on input 〈Md′ 〉 with output 0 (i.e., if and only if Md′(〈Md′ 〉) =
0). Thus, Md′(〈Md′ 〉) �= d′(〈Md′ 〉) in contradiction to the hypothesis that Md′

computes d′.
We next prove that d is uncomputable, and thus h is uncomputable (because

d(z) = h(z, z) for every z). To prove that d is uncomputable, we show that if d is
computable then so is d′ (which we already know not to be the case). Indeed, suppose
toward the contradiction that A is an algorithm for computing d (i.e., A(〈M〉) =
d(〈M〉) for every machine M). Then we construct an algorithm for computing
d′, which given 〈M ′〉, invokes A on 〈M ′′〉, where M ′′ is defined to operate as
follows:

1. On input x , machine M ′′ emulates M ′ on input x .
2. If M ′ halts on input x with output 0 then M ′′ halts.
3. If M ′ halts on input x with an output different from 0 then M ′′ enters an infinite

loop (and thus does not halt).
4. Otherwise (i.e., M ′ does not halt on input x), then machine M ′′ does not halt

(because it just stays stuck in Step 1 forever).

Note that the mapping from 〈M ′〉 to 〈M ′′〉 is easily computable (by augmenting
M ′ with instructions to test its output and enter an infinite loop if necessary), and
that d(〈M ′′〉) = d′(〈M ′〉), because M ′′ halts on x if and only if M ′′ halts on x with
output 0. We thus derived an algorithm for computing d′ (i.e., transform the input
〈M ′〉 into 〈M ′′〉 and output A(〈M ′′〉)), which contradicts the already established fact
by which d′ is uncomputable.

Turing-reductions. The core of the second part of the proof of Theorem 1.5 is an algo-
rithm that solves one problem (i.e., computes d′) by using as a subroutine an algorithm
that solves another problem (i.e., computes d (or h)). In fact, the first algorithm is ac-
tually an algorithmic scheme that refers to a “functionally specified” subroutine rather
than to an actual (implementation of such a) subroutine, which may not exist. Such an
algorithmic scheme is called a Turing-reduction (see formulation in §1.2.3.6). Hence, we
have Turing-reduced the computation of d′ to the computation of d, which in turn Turing-
reduces to h. The “natural” (“positive”) meaning of a Turing-reduction of f ′ to f is that,
when given an algorithm for computing f , we obtain an algorithm for computing f ′.
In contrast, the proof of Theorem 1.5 uses the “unnatural” (“negative”) counter-positive:
If (as we know) there exists no algorithm for computing f ′ = d′ then there exists no
algorithm for computing f = d (which is what we wanted to prove). Jumping ahead,
we mention that resource-bounded Turing-reductions (e.g., polynomial-time reductions)
play a central role in Complexity Theory itself, and again they are used mostly in a
“negative” way. We will define such reductions and extensively use them in subsequent
chapters.

28



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

Rice’s Theorem. The undecidability of the halting problem (or rather the fact that the
function d is uncomputable) is a special case of a more general phenomenon: Every non-
trivial decision problem regarding the function computed by a given Turing machine has no
algorithmic solution. We state this fact next, clarifying the definition of the aforementioned
class of problems. (Again, we refer to Turing machines that may not halt on all inputs.)

Theorem 1.6 (Rice’s Theorem): Let F be any non-trivial subset13 of the set of all
computable partial functions, and let SF be the set of strings that describe machines
that compute functions in F . Then deciding membership in SF cannot be solved by
an algorithm.

Theorem 1.6 can be proved by a Turing-reduction from d. We do not provide a proof
because this is too remote from the main subject matter of the book. We stress that
Theorems 1.5 and 1.6 hold for any reasonable model of computation (referring both
to the potential solvers and to the machines the description of which is given as input
to these solvers). Thus, Theorem 1.6 means that no algorithm can determine any non-
trivial property of the function computed by a given computer program (written in any
programming language). For example, no algorithm can determine whether or not a given
computer program halts on each possible input. The relevance of this assertion to the
project of program verification is obvious.

The Post Correspondence Problem. We mention that undecidability arises also outside
of the domain of questions regarding computing devices (given as input). Specifically, we
consider the Post Correspondence Problem in which the input consists of two sequences
of strings, (α1, . . . , αk) and (β1, . . . , βk), and the question is whether or not there exists
a sequence of indices i1, . . . , i� ∈ {1, . . . , k} such that αi1 · · ·αi� = βi1 · · ·βi� . (We stress
that the length of this sequence is not a priori bounded.)14

Theorem 1.7: The Post Correspondence Problem is undecidable.

Again, the omitted proof is by a Turing-reduction from d (or h).15

1.2.3.4. Universal Algorithms
So far we have used the postulate that, in any reasonable model of computation, each
machine (or computation rule) has a finite description. Furthermore, we also used the fact
that such model should allow for the easy modification of such descriptions such that the
resulting machine computes an easily related function (see the proof of Theorem 1.5).
Here we go one step further and postulate that the description of machines (in this model)
is “effective” in the following natural sense: There exists an algorithm that, given a
description of a machine (resp., computation rule) and a corresponding environment,
determines the environment that results from performing a single step of this machine on

13The set S is called a non-trivial subset of U if both S and U \ S are non-empty. Clearly, if F is a trivial set of
computable functions then the corresponding decision problem can be solved by a “trivial” algorithm that outputs the
corresponding constant bit.

14In contrast, the existence of an adequate sequence of a specified length can be determined in time that is
exponential in this length.

15We mention that the reduction maps an instance (〈M〉, x) of h to a pair of sequences ((α1, . . . , αk ), (β1, . . . , βk ))
such that only α1 and β1 depend on x , whereas k as well as the other strings depend only on M .

29



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

this environment (resp., the effect of a single application of the computation rule). This
algorithm can, in turn, be implemented in the said model of computation (assuming this
model is general; see the Church-Turing Thesis). Successive applications of this algorithm
leads to the notion of a universal machine, which (for concreteness) is formulated next in
terms of Turing machines.

Definition 1.8 (universal machines): A universal Turing machine is a Turing
machine that on input a description of a machine M and an input x returns the
value of M(x) if M halts on x and otherwise does not halt.

That is, a universal Turing machine computes the partial function u on pairs (〈M〉, x)
such that M halts on input x , in which case it holds that u(〈M〉, x) = M(x). That is,
u(〈M〉, x) = M(x) if M halts on input x and u is undefined on (〈M〉, x) otherwise. We
note that if M halts on all possible inputs then u(〈M〉, x) is defined for every x .

We stress that the mere fact that we have defined something (i.e., a universal Turing
machine) does not mean that it exists. Yet, as hinted in the foregoing discussion and
obvious to anyone who has written a computer program (and thought about what he/she
was doing), universal Turing machines do exist.

Theorem 1.9: There exists a universal Turing machine.

Theorem 1.9 asserts that the partial function u is computable. In contrast, it can be shown
that any extension of u to a total function is uncomputable. That is, for any total function
û that agrees with the partial function u on all the inputs on which the latter is defined, it
holds that û is uncomputable.16

Proof: Given a pair (〈M〉, x), we just emulate the computation of machine M on
input x . This emulation is straightforward, because (by the effectiveness of the
description of M) we can iteratively determine the next instantaneous configuration
of the computation of M on input x . If the said computation halts then we will obtain
its output and can output it (and so, on input (〈M〉, x), our algorithm returns M(x)).
Otherwise, we turn out emulating an infinite computation, which means that our
algorithm does not halt on input (〈M〉, x). Thus, the foregoing emulation procedure
constitutes a universal machine (i.e., yields an algorithm for computing u).

As hinted already, the existence of universal machines is the fundamental fact underlying
the paradigm of general-purpose computers. Indeed, a specific Turing machine (or algo-
rithm) is a device that solves a specific problem. A priori, solving each problem would
have required building a new physical device, that allows for this problem to be solved
in the physical world (rather than as a thought experiment). The existence of a universal
machine asserts that it is enough to build one physical device, that is, a general purpose
computer. Any specific problem can then be solved by writing a corresponding program

16The claim is easy to prove for the total function û that extends u and assigns the special symbol ⊥ to inputs on
which u is undefined (i.e., û(〈M〉, x)

def= ⊥ if u is not defined on (〈M〉, x) and û(〈M〉, x)
def= u(〈M〉, x) otherwise). In

this case h(〈M〉, x) = 1 if and only if û(〈M〉, x) �= ⊥, and so the halting function h is Turing-reducible to û. In the
general case, we may adapt the proof of Theorem 1.5 by using the fact that, for a machine M that halts on every input,
it holds that û(〈M〉, x) = u(〈M〉, x) for every x (and in particular for x = 〈M〉).

30



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

to be executed (or emulated) by the general-purpose computer. Thus, universal machines
correspond to general-purpose computers, and provide the basis for separating hardware
from software. In other words, the existence of universal machines says that software can
be viewed as (part of the) input.

In addition to their practical importance, the existence of universal machines (and their
variants) has important consequences in the theories of computability and Computational
Complexity. To demonstrate the point, we note that Theorem 1.6 implies that many
questions about the behavior of a fixed universal machine on certain input types are
undecidable. For example, it follows that, for some fixed machines (i.e., universal ones),
there is no algorithm that determines whether or not the (fixed) machine halts on a given
input. Revisiting the proof of Theorem 1.7 (see footnote 15), it follows that the Post
Correspondence Problem remains undecidable even if the input sequences are restricted
to have a specific length (i.e., k is fixed). A more important application of universal
machines to the theory of computability follows.

A detour: Kolmogorov Complexity. The existence of universal machines, which may be
viewed as universal languages for writing effective and succinct descriptions of objects,
plays a central role in Kolmogorov Complexity. Loosely speaking, the latter theory is
concerned with the length of (effective) descriptions of objects, and views the minimum
such length as the inherent “complexity” of the object; that is, “simple” objects (or phe-
nomena) are those having short description (resp., short explanation), whereas “complex”
objects have no short description. Needless to say, these (effective) descriptions have to
refer to some fixed “language” (i.e., to a fixed machine that, given a succinct description
of an object, produces its explicit description). Fixing any machine M , a string x is called
a description of s with respect to M if M(x) = s. The complexity of s with respect to
M , denoted KM (s), is the length of the shortest description of s with respect to M . Cer-
tainly, we want to fix M such that every string has a description with respect to M , and
furthermore such that this description is not “significantly” longer than the description
with respect to a different machine M ′. The following theorem makes it natural to use a
universal machine as the “point of reference” (i.e., as the aforementioned M).

Theorem 1.10 (complexity wrt a universal machine): Let U be a universal machine.
Then, for every machine M ′, there exists a constant c such that KU (s) ≤ KM ′(s)+ c
for every string s.

The theorem follows by (setting c = O(|〈M ′〉|) and) observing that if x is a description
of s with respect to M ′ then (〈M ′〉, x) is a description of s with respect to U . Here it is
important to use an adequate encoding of pairs of strings (e.g., the pair (σ1 · · · σk, τ1 · · · τ�)
is encoded by the string σ1σ1 · · · σkσk01τ1 · · · τ�). Fixing any universal machine U , we
define the Kolmogorov Complexity of a string s as K (s)

def= KU (s). The reader may easily
verify the following facts:

1. K (s) ≤ |s| + O(1), for every s.

(Hint: Apply Theorem 1.10 to a machine that computes the identity mapping.)

2. There exist infinitely many strings s such that K (s) � |s|.
(Hint: Consider s = 1n . Alternatively, consider any machine M such that |M(x)| � |x |
for every x .)

31



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

3. Some strings of length n have complexity at least n. Furthermore, for every n and i ,

|{s ∈ {0, 1}n : K (s) ≤ n − i}| < 2n−i+1

(Hint: Different strings must have different descriptions with respect to U .)

It can be shown that the function K is uncomputable. The proof is related to the paradox
captured by the following “description” of a natural number: the largest natural
number that can be described by an English sentence of up to a
thousand letters. (The paradox amounts to observing that if the above number
is well defined then so is the integer successor of the largest natural
number that can be described by an English sentence of up to a
thousand letters.) Needless to say, the foregoing sentences presuppose that any
English sentence is a legitimate description in some adequate sense (e.g., in the sense cap-
tured by Kolmogorov Complexity). Specifically, the foregoing sentences presuppose that
we can determine the Kolmogorov Complexity of each natural number, and furthermore
that we can effectively produce the largest number that has Kolmogorov Complexity not
exceeding some threshold. Indeed, the paradox suggests a proof of the fact that the latter
task cannot be performed; that is, there exists no algorithm that given t produces the lexi-
cographically last string s such that K (s) ≤ t , because if such an algorithm A would have
existed then K (s) ≤ O(|〈A〉|)+ log t and K (s0) < K (s)+ O(1) < t in contradiction to
the definition of s.

1.2.3.5. Time and Space Complexity
Fixing a model of computation (e.g., Turing machines) and focusing on algorithms that
halt on each input, we consider the number of steps (i.e., applications of the computation
rule) taken by the algorithm on each possible input. The latter function is called the time
complexity of the algorithm (or machine); that is, tA : {0, 1}∗ → N is called the time
complexity of algorithm A if, for every x , on input x algorithm A halts after exactly tA(x)
steps.

We will be mostly interested in the dependence of the time complexity on the input
length, when taking the maximum over all inputs of the relevant length. That is, for tA as
in the foregoing, we will consider TA : N→ N defined by TA(n)

def= maxx∈{0,1}n {tA(x)}.
Abusing terminology, we sometimes refer to TA as the time complexity of A.

The time complexity of a problem. As stated in the preface and in the introduction,
typically Complexity Theory is not concerned with the (time) complexity of a specific
algorithm. It is rather concerned with the (time) complexity of a problem, assuming that
this problem is solvable at all (by some algorithm). Intuitively, the time complexity of
such a problem is defined as the time complexity of the fastest algorithm that solves this
problem (assuming that the latter term is well defined).17 Actually, we shall be interested
in upper and lower bounds on the (time) complexity of algorithms that solve the problem.
Thus, when we say that a certain problem � has complexity T , we actually mean that �

has complexity at most T . Likewise, when we say that � requires time T , we actually
mean that � has time complexity at least T .

17Advanced comment: As we shall see in Section 4.2.2 (cf. Theorem 4.8), the naive assumption that a “fastest
algorithm” for solving a problem exists is not always justified. On the other hand, the assumption is essentially justified
in some important cases (see, e.g., Theorem 2.33). But even in these cases the said algorithm is “fastest” (or “optimal”)
only up to a constant factor.

32



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

Recall that the foregoing discussion refers to some fixed model of computation. Indeed,
the complexity of a problem � may depend on the specific model of computation in which
algorithms that solve � are implemented. The following Cobham-Edmonds Thesis asserts
that the variation (in the time complexity) is not too big, and in particular is irrelevant to
much of the current focus of Complexity Theory (e.g., for the P-vs-NP Question).

The Cobham-Edmonds Thesis. As just stated, the time complexity of a problem may
depend on the model of computation. For example, deciding membership in the set
{xx : x ∈ {0, 1}∗} can be done in linear time on a two-tape Turing machine, but requires
quadratic time on a single-tape Turing machine.18 On the other hand, any problem that
has time complexity t in the model of multi-tape Turing machines has complexity O(t2)
in the model of single-tape Turing machines. The Cobham-Edmonds Thesis asserts that
the time complexities in any two “reasonable and general” models of computation are
polynomially related. That is, a problem has time complexity t in some “reasonable and
general” model of computation if and only if it has time complexity poly(t) in the model
of (single-tape) Turing machines.

Indeed, the Cobham-Edmonds Thesis strengthens the Church-Turing Thesis. It asserts
not only that the class of solvable problems is invariant as far as “reasonable and general”
models of computation are concerned, but also that the time complexity (of the solvable
problems) in such models is polynomially related.

Efficient algorithms. As hinted in the foregoing discussions, much of Complexity The-
ory is concerned with efficient algorithms. The latter are defined as polynomial-time
algorithms (i.e., algorithms that have time complexity that is upper-bounded by a poly-
nomial in the length of the input). By the Cobham-Edmonds Thesis, the definition of this
class is invariant under the choice of a “reasonable and general” model of computation.
The association of efficient algorithms with polynomial-time computation is grounded in
the following two considerations:

• Philosophical consideration: Intuitively, efficient algorithms are those that can be
implemented within a number of steps that is a moderately growing function of the
input length. To allow for reading the entire input, at least linear time should be
allowed. On the other hand, apparently slow algorithms and in particular “exhaustive
search” algorithms, which take exponential time, must be avoided. Furthermore, a
good definition of the class of efficient algorithms should be closed under natural
compositions of algorithms (as well as be robust with respect to reasonable models
of computation and with respect to simple changes in the encoding of problems’
instances).

Choosing polynomials as the set of time bounds for efficient algorithms satisfies all the
foregoing requirements: Polynomials constitute a “closed” set of moderately growing
functions, where “closure” means closure under addition, multiplication, and func-
tional composition. These closure properties guarantee the closure of the class of

18Proving the latter fact is quite non-trivial. One proof is by a “reduction” from a communication complexity
problem [148, Sec. 12.2]. Intuitively, a single-tape Turing machine that decides membership in the aforementioned
set can be viewed as a channel of communication between the two parts of the input. Focusing our attention on inputs
of the form y0n z0n , for y, z ∈ {0, 1}n , each time the machine passes from the first part to the second part it carries
O(1) bits of information (in its internal state) while making at least n steps. The proof is completed by invoking the
linear lower bound on the communication complexity of the (two-argument) identity function (i.e., id(y, z) = 1 if
y = z and id(y, z) = 0 otherwise, cf. [148, Chap. 1]).

33



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

efficient algorithms under natural compositions of algorithms (as well as its robust-
ness with respect to any reasonable and general model of computation). Furthermore,
polynomial-time algorithms can conduct computations that are apparently simple (al-
though not necessarily trivial), and on the other hand they do not include algorithms
that are apparently inefficient (like exhaustive search).

• Empirical consideration: It is clear that algorithms that are considered efficient in
practice have a running time that is bounded by a small polynomial (at least on the
inputs that occur in practice). The question is whether any polynomial time algorithm
can be considered efficient in an intuitive sense. The belief, which is supported by past
experience, is that every natural problem that can be solved in polynomial time also
has a “reasonably efficient” algorithm.

We stress that the association of efficient algorithms with polynomial-time computation
is not essential to most of the notions, results, and questions of Complexity Theory.
Any other class of algorithms that supports the aforementioned closure properties and
allows for conducting some simple computations but not overly complex ones gives rise
to a similar theory, albeit the formulation of such a theory may be more complicated.
Specifically, all results and questions treated in this book are concerned with the relation
among the complexities of different computational tasks (rather than with providing
absolute assertions about the complexity of some computational tasks). These relations
can be stated explicitly, by stating how any upper bound on the time complexity of
one task gets translated to an upper bound on the time complexity of another task.19

Such cumbersome statements will maintain the contents of the standard statements; they
will merely be much more complicated. Thus, we follow the tradition of focusing on
polynomial-time computations, while stressing that this focus both is natural and provides
the simplest way of addressing the fundamental issues underlying the nature of efficient
computation.

Universal machines, revisited. The notion of time complexity gives rise to a time-
bounded version of the universal function u (presented in §1.2.3.4). Specifically, we
define u′(〈M〉, x, t)

def= y if on input x machine M halts within t steps and outputs the
string y, and u′(〈M〉, x, t)

def= ⊥ if on input x machine M makes more than t steps. Unlike
u, the function u′ is a total function. Furthermore, unlike any extension of u to a total
function, the function u′ is computable. Moreover, u′ is computable by a machine U ′ that,
on input X = (〈M〉, x, t), halts after poly(|X |) steps. Indeed, machine U ′ is a variant of
a universal machine (i.e., on input X , machine U ′ merely emulates M for t steps rather
than emulating M till it halts (and potentially indefinitely)). Note that the number of steps
taken by U ′ depends on the specific model of computation (and that some overhead is
unavoidable because emulating each step of M requires reading the relevant portion of
the description of M).

Space complexity. Another natural measure of the “complexity” of an algorithm (or a
task) is the amount of memory consumed by the computation. We refer to the memory

19For example, the NP-completeness of SAT (cf. Theorem 2.22) implies that any algorithm solving SAT in time T
yields an algorithm that factors composite numbers in time T ′ such that T ′(n) = poly(n) · (1+ T (poly(n))). (More
generally, if the correctness of solutions for n-bit instances of some search problem R can be verified in time t(n)
then the hypothesis regarding SAT implies that solutions (for n-bit instances of R) can be found in time T ′ such that
T ′(n) = t(n) · (1+ T (O(t(n))2)).)

34



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

used for storing some intermediate results of the computation. Since much of our focus
will be on using memory that is sub-linear in the input length, it is important to use a
model in which one can differentiate memory used for computation from memory used for
storing the initial input or the final output. In the context of Turing machines, this is done
by considering multi-tape Turing machines such that the input is presented on a special
read-only tape (called the input tape), the output is written on a special write-only tape
(called the output tape), and intermediate results are stored on a work-tape. Thus, the input
and output tapes cannot be used for storing intermediate results. The space complexity
of such a machine M is defined as a function sM such that sM (x) is the number of cells
of the work-tape that are scanned by M on input x . As in the case of time complexity, we
will usually refer to SA(n)

def= maxx∈{0,1}n {sA(x)}.

1.2.3.6. Oracle Machines
The notion of Turing-reductions, which was discussed in §1.2.3.3, is captured by the
following definition of so-called oracle machines. Loosely speaking, an oracle machine is
a machine that is augmented such that it may pose questions to the outside. We consider
the case in which these questions, called queries, are answered consistently by some
function f : {0, 1}∗ → {0, 1}∗, called the oracle. That is, if the machine makes a query q
then the answer it obtains is f (q). In such a case, we say that the oracle machine is given
access to the oracle f . For an oracle machine M , a string x and a function f , we denote
by M f (x) the output of M on input x when given access to the oracle f . (Reexamining
the second part of the proof of Theorem 1.5, observe that we have actually described an
oracle machine that computes d′ when given access to the oracle d.)

The notion of an oracle machine extends the notion of a standard computing device
(machine), and thus a rigorous formulation of the former extends a formal model of
the latter. Specifically, extending the model of Turing machines, we derive the following
model of oracle Turing machines.

Definition 1.11 (using an oracle):

• An oracle machine is a Turing machine with a special additional tape, called the
oracle tape, and two special states, called oracle invocation and oracle spoke.

• The computation of the oracle machine M on input x and access to the oracle
f : {0, 1}∗ → {0, 1}∗ is defined based on the successive configuration func-
tion. For configurations with a state different from oracle invocation the next
configuration is defined as usual. Let γ be a configuration in which the ma-
chine’s state is oracle invocation and suppose that the actual contents of the
oracle tape is q (i.e., q is the contents of the maximal prefix of the tape that
holds bit values).20 Then, the configuration following γ is identical to γ , ex-
cept that the state is oracle spoke, and the actual contents of the oracle tape
is f (q). The string q is called M’s query and f (q) is called the oracle’s
reply.

• The output of the oracle machine M on input x when given oracle access to f is
denoted M f (x).

20This fits the definition of the actual initial contents of a tape of a Turing machine (cf. §1.2.3.2). A common
convention is that the oracle can be invoked only when the machine’s head resides at the leftmost cell of the oracle
tape. We comment that, in the context of space complexity, one uses two oracle tapes: a write-only tape for the query
and a read-only tape for the answer.

35



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

We stress that the running time of an oracle machine is the number of steps made during
its (own) computation, and that the oracle’s reply on each query is obtained in a single
step.

1.2.3.7. Restricted Models
We mention that restricted models of computation are often mentioned in the context of a
course on computability, but they will play no role in the current book. One such model is
the model of finite automata, which in some variant coincides with Turing machines that
have space-complexity zero (equiv., constant).

In our opinion, the most important motivation for the study of these restricted models of
computation is that they provide simple models for some natural (or artificial) phenomena.
This motivation, however, seems only remotely related to the study of the complexity
of various computational tasks, which calls for the consideration of general models of
computation and the evaluation of the complexity of computation with respect to such
models.

Teaching note: Indeed, we reject the common coupling of computability theory with the theory
of automata and formal languages. Although the historical links between these two theories (at
least in the West) cannot be denied, this fact cannot justify coupling two fundamentally different
theories (especially when such a coupling promotes a wrong perspective on computability
theory). Thus, in our opinion, the study of any of the lower levels of Chomsky’s Hierarchy [123,
Chap. 9] should be decoupled from the study of computability theory (let alone the study of
Complexity Theory).

1.2.4. Non-uniform Models (Circuits and Advice)

Camille: Like Thelma and Louise. But . . . without the guns.
Petra: Oh, well, no guns, I don’t know . . .

Patricia Rozema, When Night Is Falling, 1995

The main use of non-uniform models of computation, in this book, will be as a source of
some natural computational problems (cf. §2.3.3.1 and Theorem 5.4). In addition, these
models will be briefly studied in Sections 3.1 and 4.1.

By a non-uniform model of computation we mean a model in which for each possible
input length a different computing device is considered, while there is no “uniformity”
requirement relating devices that correspond to different input lengths. Furthermore, this
collection of devices is infinite by nature, and (in the absence of a uniformity requirement)
this collection may not even have a finite description. Nevertheless, each device in the
collection has a finite description. In fact, the relationship between the size of the device
(resp., the length of its description) and the length of the input that it handles will be of
major concern.

Non-uniform models of computation are studied either toward the development of
lower-bound techniques or as simplified limits on the ability of efficient algorithms.21

21The second case refers mainly to efficient algorithms that are given a pair of inputs (of (polynomially) related
length) such that these algorithms are analyzed with respect to fixing one input (arbitrarily) and varying the other
input (typically, at random). Typical examples include the context of derandomization (cf. Section 8.3) and the setting
of zero-knowledge (cf. Section 9.2).

36



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

In both cases, the uniformity condition is eliminated in the interest of simplicity and
with the hope (and belief) that nothing substantial is lost as far as the issues at hand
are concerned. In the context of developing lower bounds, the hope is that the finiteness
of all parameters (i.e., the input length and the device’s description) will allow for the
application of combinatorial techniques to analyze the limitations of certain settings of
parameters.

We will focus on two related models of non-uniform computing devices: Boolean
circuits (§1.2.4.1) and “machines that take advice” (§1.2.4.2). The former model is more
adequate for the study of the evolution of computation (i.e., development of lower-bound
techniques), whereas the latter is more adequate for modeling purposes (e.g., limiting the
ability of efficient algorithms).

1.2.4.1. Boolean Circuits
The most popular model of non-uniform computation is the one of Boolean circuits.
Historically, this model was introduced for the purpose of describing the “logic operation”
of real-life electronic circuits. Ironically, nowadays this model provides the stage for some
of the most practically removed studies in Complexity Theory (which aim at developing
methods that may eventually lead to an understanding of the inherent limitations of
efficient algorithms).

A Boolean circuit is a directed acyclic graph22 with labels on the vertices, to be discussed
shortly. For the sake of simplicity, we disallow isolated vertices (i.e., vertices with no
incoming or outgoing edges), and thus the graph’s vertices are of three types: sources,
sinks, and internal vertices.

1. Internal vertices are vertices having incoming and outgoing edges (i.e., they have in-
degree and out-degree at least 1). In the context of Boolean circuits, internal vertices
are called gates. Each gate is labeled by a Boolean operation, where the operations
that are typically considered are ∧, ∨, and ¬ (corresponding to and, or, and neg).
In addition, we require that gates labeled ¬ have in-degree 1. The in-degree of ∧-
gates and ∨-gates may be any number greater than zero, and the same holds for the
out-degree of any gate.

2. The graph sources (i.e., vertices with no incoming edges) are called input terminals.
Each input terminal is labeled by a natural number (which is to be thought of as the
index of an input variable). (For the sake of defining formulae (see §1.2.4.3), we allow
different input terminals to be labeled by the same number.)23

3. The graph sinks (i.e., vertices with no outgoing edges) are called output terminals,
and we require that they have in-degree 1. Each output terminal is labeled by a
natural number such that if the circuit has m output terminals then they are labeled
1, 2, . . . , m. That is, we disallow different output terminals to be labeled by the same
number, and insist that the labels of the output terminals be consecutive numbers.
(Indeed, the labels of the output terminals will correspond to the indices of locations
in the circuit’s output.)

22See Appendix G.1.
23This is not needed in the case of general circuits, because we can just feed outgoing edges of the same input

terminal to many gates. Note, however, that this is not allowed in the case of formulae, where all non-sinks are required
to have out-degree exactly 1.

37



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

1 2

1 2

0

4 3

and and

and

and

or
or

negneg neg

Figure 1.3: A circuit computing f (x1, x2, x3, x4) = (x1 ⊕ x2, x1 ∧ ¬x2 ∧ x4).

For the sake of simplicity, we also mandate that the labels of the input terminals be
consecutive numbers.24

A Boolean circuit with n different input labels and m output terminals induces (and
indeed computes) a function from {0, 1}n to {0, 1}m defined as follows. For any fixed
string x ∈ {0, 1}n , we iteratively define the value of vertices in the circuit such that the
input terminals are assigned the corresponding bits in x = x1 · · · xn and the values of other
vertices are determined in the natural manner. That is:

• An input terminal with label i ∈ {1, . . . , n} is assigned the i th bit of x (i.e., the value
xi ).

• If the children of a gate (of in-degree d) that is labeled ∧ have values v1, v2, . . . , vd ,
then the gate is assigned the value ∧d

i=1vi . The value of a gate labeled ∨ (or ¬) is
determined analogously.

Indeed, the hypothesis that the circuit is acyclic implies that the following natural
process of determining values for the circuit’s vertices is well defined: As long as
the value of some vertex is undetermined, there exists a vertex such that its value is
undetermined but the values of all its children are determined. Thus, the process can
make progress, and terminates when the values of all vertices (including the output
terminals) are determined.

The value of the circuit on input x (i.e., the output computed by the circuit on input x)
is y = y1 · · · ym , where yi is the value assigned by the foregoing process to the output
terminal labeled i . We note that there exists a polynomial-time algorithm that, given a
circuit C and a corresponding input x, outputs the value of C on input x . This algorithm
determines the values of the circuit’s vertices, going from the circuit’s input terminals to
its output terminals.

24This convention slightly complicates the construction of circuits that ignore some of the input values. Specifically,
we use artificial gadgets that have incoming edges from the corresponding input terminals, and compute an adequate
constant. To avoid having this constant as an output terminal, we feed it into an auxiliary gate such that the value of
the latter is determined by the other incoming edge (e.g., a constant 0 fed into an ∨-gate). See an example of dealing
with x3 in Figure 1.3.

38



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

We say that a family of circuits (Cn)n∈N computes a function f : {0, 1}∗ → {0, 1}∗ if
for every n the circuit Cn computes the restriction of f to strings of length n. In other
words, for every x ∈ {0, 1}∗, it must hold that C|x |(x) = f (x).

Bounded and unbounded fan-in. We will be most interested in circuits in which
each gate has at most two incoming edges. In this case, the types of (two-argument)
Boolean operations that we allow is immaterial (as long as we consider a “full basis” of
such operations, i.e., a set of operations that can implement any other two-argument
Boolean operation). Such circuits are called circuits of bounded fan-in. In contrast, other
studies are concerned with circuits of unbounded fan-in, where each gate may have an
arbitrary number of incoming edges. Needless to say, in the case of circuits of unbounded
fan-in, the choice of allowed Boolean operations is important and one focuses on opera-
tions that are “uniform” (across the number of operants, e.g., ∧ and ∨).

Circuit size as a complexity measure. The size of a circuit is the number of its edges.
When considering a family of circuits (Cn)n∈N that computes a function f : {0, 1}∗ →
{0, 1}∗, we are interested in the size of Cn as a function of n. Specifically, we say that
this family has size complexity s : N→ N if for every n the size of Cn is s(n). The
circuit complexity of a function f , denoted s f , is the infimum of the size complexity of all
families of circuits that compute f . Alternatively, for each n we may consider the size of
the smallest circuit that computes the restriction of f to n-bit strings (denoted fn), and set
s f (n) accordingly. We stress that non-uniformity is implicit in this definition, because no
conditions are made regarding the relation between the various circuits used to compute
the function on different input lengths.25

On the circuit complexity of functions. We highlight some simple facts about the circuit
complexity of functions. (These facts are in clear correspondence to facts regarding
Kolmogorov Complexity mentioned in §1.2.3.4.)

1. Most importantly, any Boolean function can be computed by some family of circuits,
and thus the circuit complexity of any function is well defined. Furthermore, each
function has at most exponential circuit complexity.

(Hint: The function fn : {0, 1}n → {0, 1} can be computed by a circuit of size O(n2n)
that implements a look-up table.)

2. Some functions have polynomial circuit complexity. In particular, any function that
has time complexity t (i.e., is computed by an algorithm of time complexity t) has
circuit complexity poly(t). Furthermore, the corresponding circuit family is uniform
(in a natural sense to be discussed in the next paragraph).

(Hint: Consider a Turing machine that computes the function, and consider its compu-
tation on a generic n-bit long input. The corresponding computation can be emulated
by a circuit that consists of t(n) layers such that each layer represents an instantaneous
configuration of the machine, and the relation between consecutive configurations is
captured by (“uniform”) local gadgets in the circuit. For further details see the proof
of Theorem 2.21, which presents a similar emulation.)

25Advanced comment: We also note that, in contrast to footnote 17, the circuit model and the (circuit size)
complexity measure support the notion of an optimal computing device: Each function f has a unique size complexity
s f (and not merely upper and lower bounds on its complexity).

39



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

3. Almost all Boolean functions have exponential circuit complexity. Specifically, the
number of functions mapping {0, 1}n to {0, 1} that can be computed by some circuit
of size s is smaller than s2s .

(Hint: The number of circuits having v vertices and s edges is at most
(
2 · (v

2

)+ v
)s

.)

Note that the first fact implies that families of circuits can compute functions that are
uncomputable by algorithms. Furthermore, this phenomenon also occurs when restricting
attention to families of polynomial size circuits. See further discussion in §1.2.4.2.

Uniform families. A family of polynomial-size circuits (Cn)n∈N is called uniform if given
n one can construct the circuit Cn in poly(n)-time. Note that if a function is computable
by a uniform family of polynomial-size circuits then it is computable by a polynomial-
time algorithm. This algorithm first constructs the adequate circuit (which can be done
in polynomial time by the uniformity hypothesis), and then evaluates this circuit on the
given input (which can be done in time that is polynomial in the size of the circuit).

Note that limitations on the computing power of arbitrary families of polynomial-
size circuits certainly hold for uniform families (of polynomial size), which in turn yield
limitations on the computing power of polynomial-time algorithms. Thus, lower bounds on
the circuit complexity of functions yield analogous lower bounds on their time complexity.
Furthermore, as is often the case in mathematics and science, disposing of an auxiliary
condition that is not well understood (i.e., uniformity) may turn out fruitful. Indeed, this
has occured in the study of classes of restricted circuits, which is reviewed in §1.2.4.3
(and Appendix B.2).

1.2.4.2. Machines That Take Advice
General (non-uniform) circuit families and uniform circuit families are two extremes
with respect to the “amounts of non-uniformity” in the computing device. Intuitively,
in the former, non-uniformity is only bounded by the size of the device, whereas in the
latter the amounts of non-uniformity is zero. Here we consider a model that allows the
decoupling of the size of the computing device from the amount of non-uniformity, which
may range from zero to the device’s size. Specifically, we consider algorithms that “take a
non-uniform advice” that depends only on the input length. The amount of non-uniformity
will be defined as equaling the length of the corresponding advice (as a function of the
input length).

Definition 1.12 (taking advice): We say that algorithm A computes the function f
using advice of length � : N→ N if there exists an infinite sequence (an)n∈N such
that

1. for every x ∈ {0, 1}∗, it holds that A(a|x |, x) = f (x).
2. for every n ∈ N, it holds that |an| = �(n).

The sequence (an)n∈N is called the advice sequence.

Note that any function having circuit complexity s can be computed using advice of length
O(s log s), where the log factor is due to the fact that a graph with v vertices and e edges
can be described by a string of length 2e log2 v. Note that the model of machines that use
advice allows for some sharper bounds than the ones stated in §1.2.4.1: Every function

40



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

1.2. COMPUTATIONAL TASKS AND MODELS

can be computed using advice of length � such that �(n) = 2n , and some uncomputable
functions can be computed using advice of length 1.

Theorem 1.13 (the power of advice): There exist functions that can be computed
using one-bit advice but cannot be computed without advice.

Proof: Starting with any uncomputable Boolean function f : N→ {0, 1}, consider
the function f ′ defined as f ′(x) = f (|x |). Note that f is Turing-reducible to f ′ (e.g.,
on input n make any n-bit query to f ′, and return the answer).26 Thus, f ′ cannot be
computed without advice. On the other hand, f ′ can be easily computed by using the
advice sequence (an)n∈N such that an = f (n); that is, the algorithm merely outputs
the advice bit (and indeed a|x | = f (|x |) = f ′(x), for every x ∈ {0, 1}∗).

1.2.4.3. Restricted Models
The model of Boolean circuits (cf. §1.2.4.1) allows for the introduction of many natural
subclasses of computing devices. Following is a laconic review of a few of these subclasses.
For further detail regarding the study of these subclasses, the interested reader is referred
to Appendix B.2. Since we shall refer to various types of Boolean formulae in the rest of
this book, we suggest not skiping the following two paragraphs.

Boolean formulae. In (general) Boolean circuits the non-sink vertices are allowed ar-
bitrary out-degree. This means that the same intermediate value can be reused without
being recomputed (and while increasing the size complexity by only one unit). Such “free”
reusage of intermediate values is disallowed in Boolean formula, which are formally de-
fined as Boolean circuits in which all non-sink vertices have out-degree 1. This means
that the underlying graph of a Boolean formula is a tree (see §G.2), and it can be written
as a Boolean expression over Boolean variables by traversing this tree (and registering the
vertices’ labels in the order traversed). Indeed, we have allowed different input terminals
to be assigned the same label in order to allow formulae in which the same variable occurs
multiple times. As in the case of general circuits, one is interested in the size of these
restricted circuits (i.e., the size of families of formulae computing various functions). We
mention that quadratic lower bounds are known for the formula size of simple functions
(e.g., parity), whereas these functions have linear circuit complexity. This discrepancy
is depicted in Figure 1.4.

Formulae in CNF and DNF. A restricted type of Boolean formula consists of formulae
that are in conjunctive normal form (CNF). Such a formula consists of a conjunction of
clauses, where each clause is a disjunction of literals each being either a variable or its
negation. That is, such formulae are represented by layered circuits of unbounded fan-in
in which the first layer consists of neg-gates that compute the negation of input variables,
the second layer consists of or-gates that compute the logical-or of subsets of inputs
and negated inputs, and the third layer consists of a single and-gate that computes the
logical-and of the values computed in the second layer. Note that each Boolean function
can be computed by a family of CNF formula of exponential size, and that the size of

26Indeed, this Turing-reduction is not efficient (i.e., it runs in exponential time in |n| = log2 n), but this is immaterial
in the current context.

41



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

1 n
of  x  .... x

1 n
of  x  .... x

1 n
of  x  .... x

2n
of  x    ...x

n+1 2n
of  x    ...x

n+12n
of  x    ...x

n+1

PARITY PARITY PARITY PARITY PARITY PARITY

and

or
or

and
and and

neg neg neg neg

Figure 1.4: Recursive construction of parity circuits and formulae.

CNF formulae may be exponentially larger than the size of ordinary formulae computing
the same function (e.g., parity). For a constant k, a formula is said to be in k-CNF if its
CNF has disjunctions of size at most k. An analogous restricted type of Boolean formula
refers to formulae that are in disjunctive normal form (DNF). Such a formula consists of
a disjunction of conjunctions of literals, and when each conjunction has at most k literals
we say that the formula is in k-DNF.

Constant-depth circuits. Circuits have a “natural structure” (i.e., their structure as
graphs). One natural parameter regarding this structure is the depth of a circuit, which
is defined as the longest directed path from any source to any sink. Of special interest
are constant-depth circuits of unbounded fan-in. We mention that sub-exponential lower
bounds are known for the size of such circuits that compute a simple function (e.g.,
parity).

Monotone circuits. The circuit model also allows for the consideration of mono-
tone computing devices: A monotone circuit is one having only monotone gates (e.g.,
gates computing ∧ and ∨, but no negation gates (i.e., ¬-gates)). Needless to say, mono-
tone circuits can only compute monotone functions, where a function f : {0, 1}n → {0, 1}
is called monotone if for any x � y it holds that f (x) ≤ f (y) (where x1 · · · xn � y1 · · · yn

if and only if for every bit position i it holds that xi ≤ yi ). One natural question is
whether, as far as monotone functions are concerned, there is a substantial loss in
using only monotone circuits. The answer is yes: There exist monotone functions
that have polynomial circuit complexity but require sub-exponential size monotone
circuits.

1.2.5. Complexity Classes

Complexity classes are sets of computational problems. Typically, such classes are defined
by fixing three parameters:

1. A type of computational problems (see Section 1.2.2). Indeed, most classes refer to
decision problems, but classes of search problems, promise problems, and other types
of problems will also be considered.

2. A model of computation, which may be either uniform (see Section 1.2.3) or non-
uniform (see Section 1.2.4).

42



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

3. A complexity measure and a limiting function (or a set of functions), which put to-
gether limit the class of computations of the previous item; that is, we refer to the
class of computations that have complexity not exceeding the specified function (or
set of functions). For example, in §1.2.3.5, we mentioned time complexity and space
complexity, which apply to any uniform model of computation. We also mentioned
polynomial-time computations, which are computations in which the time complex-
ity (as a function) does not exceed some polynomial (i.e., a member of the set of
polynomial functions).

The most common complexity classes refer to decision problems, and are sometimes
defined as classes of sets rather than classes of the corresponding decision problems.
That is, one often says that a set S ⊆ {0, 1}∗ is in the class C rather than saying that the
problem of deciding membership in S is in the class C. Likewise, one talks of classes
of relations rather than classes of the corresponding search problems (i.e., saying that
R ⊆ {0, 1}∗ × {0, 1}∗ is in the class C means that the search problem of R is in the
class C).

Chapter Notes

It is quite remarkable that the theories of uniform and non-uniform computational devices
have emerged in two single papers. We refer to Turing’s paper [225], which introduced
the model of Turing machines, and to Shannon’s paper [203], which introduced Boolean
circuits.

In addition to introducing the Turing machine model and arguing that it corresponds to
the intuitive notion of computability, Turing’s paper [225] introduces universal machines
and contains proofs of undecidability (e.g., of the Halting Problem).

The Church-Turing Thesis is attributed to the works of Church [55] and Turing [225].
In both works, this thesis is invoked for claiming that the fact that Turing machines cannot
solve some problem implies that this problem cannot be solved in any “reasonable” model
of computation. The RAM model is attributed to von Neumann’s report [234].

The association of efficient computation with polynomial-time algorithms is attributed
to the papers of Cobham [57] and Edmonds [70]. It is interesting to note that Cobham’s
starting point was his desire to present a philosophically sound concept of efficient al-
gorithms, whereas Edmonds’s starting point was his desire to articulate why certain
algorithms are “good” in practice.

Rice’s Theorem is proven in [192], and the undecidability of the Post Correspondence
Problem is proven in [181]. The formulation of machines that take advice (as well as the
equivalence to the circuit model) originates in [139].

43



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER TWO

P, NP, and NP-Completeness

For as much as many have taken in hand to set forth in order a declaration
of those things which are most surely believed among us; Even as they
delivered them unto us, who from the beginning were eyewitnesses, and
ministers of the word; It seems good to me also, having had perfect
understanding of all things from the very first, to write unto thee in
order, most excellent Theophilus; That thou mightest know the certainty
of those things, wherein thou hast been instructed.

Luke, 1:1–4

The main focus of this chapter is the P-vs-NP Question and the theory of NP-completeness.
Additional topics covered in this chapter include the general notion of a polynomial-time
reduction (with a special emphasis on self-reducibility), the existence of problems in NP
that are neither NP-complete nor in P, the class coNP, optimal search algorithms, and
promise problems.

Summary: Loosely speaking, the P-vs-NP Question refers to search
problems for which the correctness of solutions can be efficiently
checked (i.e., if there is an efficient algorithm that given a solution to a
given instance determines whether or not the solution is correct). Such
search problems correspond to the class NP, and the question is whether
or not all these search problems can be solved efficiently (i.e., if there
is an efficient algorithm that given an instance finds a correct solution).
Thus, the P-vs-NP Question can be phrased as asking whether or not
finding solutions is harder than checking the correctness of solutions.

An alternative formulation, in terms of decision problems, refers to as-
sertions that have efficiently verifiable proofs (of relatively short length).
Such sets of assertions correspond to the class NP, and the question is
whether or not proofs for such assertions can be found efficiently (i.e.,
if there is an efficient algorithm that given an assertion determines its
validity and/or finds a proof for its validity). Thus, the P-vs-NP Question
can be phrased as asking whether or not discovering proofs is harder than
verifying their correctness, that is, if proving is harder than verifying (or
if proofs are valuable at all).

Indeed, it is widely believed that the answer to the two equivalent formu-
lations is that finding (resp., discovering) is harder than checking (resp.,

44



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

verifying), that is, that P is different than NP. The fact that this natural
conjecture is unsettled seems to be one of the big sources of frustration
of Complexity Theory. The author’s opinion, however, is that this feeling
of frustration is out of place. In any case, at present, when faced with a
hard problem in NP, we cannot expect to prove that the problem is not in
P (unconditionally). The best we can expect is a conditional proof that
the said problem is not in P, based on the assumption that NP is different
from P. The contrapositive is proving that if the said problem is in P, then
so is any problem in NP (i.e., NP equals P). This is where the theory of
NP-completeness comes into the picture.

The theory of NP-completeness is based on the notion of a reduction,
which is a relation between computational problems. Loosely speaking,
one computational problem is reducible to another problem if it is pos-
sible to efficiently solve the former when provided with an (efficient)
algorithm for solving the latter. Thus, the first problem is not harder to
solve than the second one. A problem (in NP) is NP-complete if any
problem in NP is reducible to it. Thus, the fate of the entire class NP
(with respect to inclusion in P) rests with each individual NP-complete
problem. In particular, showing that a problem is NP-complete implies
that this problem is not in P unless NP equals P. Amazingly enough,
NP-complete problems exist, and furthermore, hundreds of natural com-
putational problems arising in many different areas of mathematics and
science are NP-complete.

We stress that NP-complete problems are not the only hard problems in
NP (i.e., if P is different than NP then NP contains problems that are
neither NP-complete nor in P). We also note that the P-vs-NP Question is
not about inventing sophisticated algorithms or ruling out their existence,
but rather boils down to the analysis of a single known algorithm; that
is, we will present an optimal search algorithm for any problem in NP,
while having no clue about its time complexity.

Teaching note: Indeed, we suggest presenting the P-vs-NP Question both in terms of search
problems and in terms of decision problems. Furthermore, in the latter case, we suggest
introducing NP by explicitly referring to the terminology of proof systems. As for the theory
of NP-completeness, we suggest emphasizing the mere existence of NP-complete problems.

Prerequisites. We assume familiarity with the notions of search and decision prob-
lems (see Section 1.2.2), algorithms (see Section 1.2.3), and their time complexity (see
§1.2.3.5). We will also refer to the notion of an oracle machine (see §1.2.3.6).

Organization. In Section 2.1 we present the two formulations of the P-vs-NP Question.
The general notion of a reduction is presented in Section 2.2, where we highlight its
applicability outside the domain of NP-completeness. Section 2.3 is devoted to the theory
of NP-completeness, whereas Section 2.4 treats three relatively advanced topics (i.e., the
framework of promise problems, the existence of optimal search algorithms for NP, and
the class coNP).

45



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Teaching note: This chapter has more teaching notes than any other chapter in the book. This
reflects the author’s concern regarding the way in which this fundamental material is often
taught. Specifically, it is the author’s impression that the material covered in this chapter is
often taught in wrong ways, which fail to communicate its fundamental nature.

2.1. The P Versus NP Question

Our daily experience is that it is harder to solve a problem than it is to check the correctness
of a solution. Is this experience merely a coincidence or does it represent a fundamental
fact of life (or a property of the world)? This is the essence of the P versus NP Question,
where P represents search problems that are efficiently solvable and NP represents search
problems for which solutions can be efficiently checked.

Another natural question captured by the P versus NP Question is whether proving
theorems is harder that verifying the validity of these proofs. In other words, the question is
whether deciding membership in a set is harder than being convinced of this membership
by an adequate proof. In this case, P represents decision problems that are efficiently
solvable, whereas NP represents sets that have efficiently checkable proofs of membership.

These two meanings of the P versus NP Question are rigorously presented and discussed
in Sections 2.1.1 and 2.1.2, respectively. The equivalence of the two formulations is
shown in Section 2.1.3, and the common belief that P is different from NP is further
discussed in Section 2.1.6. We start by recalling the notion of efficient computation.

Teaching note: Most students have heard of P and NP before, but we suspect that many
of them have not obtained a good explanation of what the P-vs-NP Question actually represents.
This unfortunate situation is due to using the standard technical definition of NP (which refers
to the fictitious and confusing device called a non-deterministic polynomial-time machine).
Instead, we advocate the use of the more cumbersome definitions, sketched in the foregoing
paragraphs (and elaborated in Sections 2.1.1 and 2.1.2), which clearly capture the fundamental
nature of NP.

The notion of efficient computation. Recall that we associate efficient computation with
polynomial-time algorithms.1 This association is justified by the fact that polynomials are
a class of moderately growing functions that is closed under operations that correspond to
natural composition of algorithms. Furthermore, the class of polynomial-time algorithms
is independent of the specific model of computation, as long as the latter is “reasonable”
(cf. the Cobham-Edmonds Thesis). Both issues are discussed in §1.2.3.5.

Advanced note on the representation of problem instances. As noted in §1.2.2.3, many
natural (search and decision) problems are captured more naturally by the terminology of
promise problems (cf. Section 2.4.1), where the domain of possible instances is a subset
of {0, 1}∗ rather than {0, 1}∗ itself. For example, computational problems in graph theory
presume some simple encoding of graphs as strings, but this encoding is typically not

1Advanced comment: In this chapter, we consider deterministic (polynomial-time) algorithms as the basic model
of efficient computation. A more liberal view, which also includes probabilistic (polynomial-time) algorithms, is
presented in Chapter 6. We stress that the most important facts and questions that are addressed in the current chapter
hold also with respect to probabilistic polynomial-time algorithms.

46



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

onto (i.e., not all strings encode graphs), and thus not all strings are legitimate instances.
However, in these cases, the set of legitimate instances (e.g., encodings of graphs) is
efficiently recognizable (i.e., membership in it can be decided in polynomial time). Thus,
artificially extending the set of instances to the set of all possible strings (and allowing
trivial solutions for the corresponding dummy instances) does not change the complexity
of the original problem. We further discuss this issue in Section 2.4.1.

2.1.1. The Search Version: Finding Versus Checking

Teaching note: Complexity theorists are so accustomed to focusing on decision problems
that they seem to forget that search problems are at least as natural as decision problems.
Furthermore, to many non-experts, search problems may seem even more natural than decision
problems: Typically, people seek solutions more than they pause to wonder whether or not
solutions exist. Thus, we recommend starting with a formulation of the P-vs-NP Question in
terms of search problems. Admittedly, the cost is more cumbersome formulations, but it is
more than worthwhile.

Teaching note: In order to reflect the importance of the search version as well as allow
less cumbersome formulations, we chose to introduce notations for the two search classes
corresponding to P and NP: These classes are denoted PF and PC (standing for Polynomial-
time Find and Polynomial-time Check, respectively). The teacher may prefer using notations
and terms that are more evocative of P and NP (such as P-search and NP-search), and actually
we also do so in some motivational discussions (especially in advanced chapters of this book).
(Still, in our opinion, in the long run, the students and the field may be served better by using
standard-looking notations.)

Much of computer science is concerned with solving various search problems (as in
Definition 1.1). Examples of such problems include finding a solution to a system of linear
(or polynomial) equations, finding a prime factor of a given integer, finding a spanning
tree in a graph, finding a short traveling salesman tour in a metric space, and finding a
scheduling of jobs to machines such that various constraints are satisfied. Furthermore,
search problems correspond to the daily notion of “solving problems” and thus are of
natural general interest. In the current section, we will consider the question of which
search problems can be solved efficiently.

One type of search problems that cannot be solved efficiently consists of search prob-
lems for which the solutions are too long in terms of the problem’s instances. In such a
case, merely typing the solution amounts to an activity that is deemed inefficient. Thus,
we focus our attention on search problems that are not in this class. That is, we consider
only search problems in which the length of the solution is bounded by a polynomial in the
length of the instance. Recalling that search problems are associated with binary relations
(see Definition 1.1), we focus our attention on polynomially bounded relations.

Definition 2.1 (polynomially bounded relations): We say that R ⊆ {0, 1}∗ × {0, 1}∗
is polynomially bounded if there exists a polynomial p such that for every (x, y) ∈ R
it holds that |y| ≤ p(|x |).

47



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Recall that (x, y) ∈ R means that y is a solution to the problem instance x , where R
represents the problem itself. For example, in the case of finding a prime factor of a given
integer, we refer to a relation R such that (x, y) ∈ R if the integer y is a prime factor of
the integer x .

For a polynomially bounded relation R it makes sense to ask whether or not, given a
problem instance x , one can efficiently find an adequate solution y (i.e., find y such that
(x, y) ∈ R). The polynomial bound on the length of the solution (i.e., y) guarantees that
a negative answer is not merely due to the length of the required solution.

2.1.1.1. The Class P as a Natural Class of Search Problems
Recall that we are interested in the class of search problems that can be solved efficiently,
that is, problems for which solutions (whenever they exist) can be found efficiently.
Restricting our attention to polynomially bounded relations, we identify the corresponding
fundamental class of search problem (or binary relation), denoted PF (standing for
“Polynomial-time Find”). (The relationship between PF and the standard definition of
P will be discussed in Sections 2.1.3 and 2.2.3.) The following definition refers to the
formulation of solving search problems provided in Definition 1.1.

Definition 2.2 (efficiently solvable search problems):

• The search problem of a polynomially bounded relation R ⊆ {0, 1}∗ × {0, 1}∗
is efficiently solvable if there exists a polynomial time algorithm A such that,
for every x, it holds that A(x) ∈ R(x)

def= {y : (x, y) ∈ R} if and only if R(x) is
not empty. Furthermore, if R(x) = ∅ then A(x) = ⊥, indicating that x has no
solution.

• We denote by PF the class of search problems that are efficiently solvable
(and correspond to polynomially bounded relations). That is, R ∈ PF if R is
polynomially bounded and there exists a polynomial-time algorithm that given x
finds y such that (x, y) ∈ R (or asserts that no such y exists).

Note that R(x) denotes the set of valid solutions for the problem instance x . Thus, the
solver A is required to find a valid solution (i.e., satisfy A(x) ∈ R(x)) whenever such
a solution exists (i.e., R(x) is not empty). On the other hand, if the instance x has no
solution (i.e., R(x) = ∅) then clearly A(x) �∈ R(x). The extra condition (also made in
Definition 1.1) requires that in this case A(x) = ⊥. Thus, algorithm A always outputs
a correct answer, which is a valid solution in the case that such a solution exists and
otherwise provides an indication that no solution exists.

We have defined a fundamental class of problems, and we do know of many natural
problems in this class (e.g., solving linear equations over the rationals, finding a perfect
matching in a graph, etc). However, we must admit that we do not have a good understand-
ing regarding the actual contents of this class (i.e., we are unable to characterize many
natural problems with respect to membership in this class). This situation is quite common
in Complexity Theory, and seems to be a consequence of the fact that complexity classes
are defined in terms of the “external behavior” (of potential algorithms) rather than in
terms of the “internal structure” (of the problem). Turning back to PF , we note that, while
it contains many natural search problems, there are also many natural search problems
that are not known to be in PF . A natural class containing a host of such problems is
presented next.

48



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

2.1.1.2. The Class NP as Another Natural Class of Search Problems
Natural search problems have the property that valid solutions can be efficiently recog-
nized. That is, given an instance x of the problem R and a candidate solution y, one
can efficiently determine whether or not y is a valid solution for x (with respect to the
problem R, i.e., whether or not y ∈ R(x)). The class of all such search problems is a
natural class per se, because it is not clear why one should care about a solution unless
one can recognize a valid solution once given. Furthermore, this class is a natural domain
of candidates for PF , because the ability to efficiently recognize a valid solution seems
to be a natural (albeit not absolute) prerequisite for a discussion regarding the complexity
of finding such solutions.

We restrict our attention again to polynomially bounded relations, and consider the
class of relations for which membership of pairs in the relation can be decided efficiently.
We stress that we consider deciding membership of given pairs of the form (x, y) in a
fixed relation R, and not deciding membership of x in the set SR

def= {x : R(x) �= ∅}. (The
relationship between the following definition and the standard definition of NP will be
discussed in Sections 2.1.3–2.1.5 and 2.2.3.)

Definition 2.3 (search problems with efficiently checkable solutions):

• The search problem of a polynomially bounded relation R ⊆ {0, 1}∗ × {0, 1}∗
has efficiently checkable solutions if there exists a polynomial-time algorithm A
such that, for every x and y, it holds that A(x, y) = 1 if and only if (x, y) ∈ R.

• We denote by PC (standing for “Polynomial-time Check”) the class of search
problems that correspond to polynomially bounded binary relations that have
efficiently checkable solutions. That is, R ∈ PC if the following two conditions
hold:
1. For some polynomial p, if (x, y) ∈ R then |y| ≤ p(|x |).
2. There exists a polynomial-time algorithm that given (x, y) determines whether

or not (x, y) ∈ R.

The class PC contains thousands of natural problems (e.g., finding a traveling salesman
tour of length that does not exceed a given threshold, finding the prime factorization of
a given composite, etc). In each of these natural problems, the correctness of solutions
can be checked efficiently (e.g., given a traveling salesman tour it is easy to compute its
length and check whether or not it exceeds the given threshold).2

The class PC is the natural domain for the study of which problems are in PF , because
the ability to efficiently recognize a valid solution is a natural prerequisite for a discussion
regarding the complexity of finding such solutions. We warn, however, that PF contains
(unnatural) problems that are not in PC (see Exercise 2.1).

2.1.1.3. The P Versus NP Question in Terms of Search Problems
Is it the case that every search problem in PC is in PF? That is, if one can efficiently
check the correctness of solutions with respect to some (polynomially bounded) relation
R, then is it necessarily the case that the search problem of R can be solved efficiently?
In other words, if it is easy to check whether or not a given solution for a given instance
is correct, then is it also easy to find a solution to a given instance?

2In the traveling salesman problem (TSP), the instance is a matrix of distances between cities and a threshold, and
the task is to find a tour that passes all cities and covers a total distance that does not exceed the threshold.

49



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

If PC ⊆ PF then this would mean that whenever solutions to given instances can be
efficiently checked (for correctness) it is also the case that such solutions can be efficiently
found (when given only the instance). This would mean that all reasonable search problems
(i.e., all problems in PC) are easy to solve. Needless to say, such a situation would
contradict the intuitive feeling (and the daily experience) that some reasonable search
problems are hard to solve. Furthermore, in such a case, the notion of “solving a problem”
would lose its meaning (because finding a solution will not be significantly more difficult
than checking its validity).

On the other hand, if PC \ PF �= ∅ then there exist reasonable search problems (i.e.,
some problems in PC) that are hard to solve. This conforms with our basic intuition
by which some reasonable problems are easy to solve whereas others are hard to solve.
Furthermore, it reconfirms the intuitive gap between the notions of solving and checking
(asserting that in some cases “solving” is significantly harder than “checking”).

2.1.2. The Decision Version: Proving Versus Verifying

As we shall see in the sequel, the study of search problems (e.g., the PC-vs-PF Question)
can be “reduced” to the study of decision problems. Since the latter problems have a less
cumbersome terminology, Complexity Theory tends to focus on them (and maintains its
relevance to the study of search problems via the aforementioned reduction). Thus, the
study of decision problems provides a convenient way for studying search problems. For
example, the study of the complexity of deciding the satisfiability of Boolean formulae
provides a convenient way for studying the complexity of finding satisfying assignments
for such formulae.

We wish to stress, however, that decision problems are interesting and natural
per se (i.e., beyond their role in the study of search problems). After all, some peo-
ple do care about the truth, and so determining whether certain claims are true is a natural
computational problem. Specifically, determining whether a given object (e.g., a Boolean
formula) has some predetermined property (e.g., is satisfiable) constitutes an appealing
computational problem. The P-vs-NP Question refers to the complexity of solving such
problems for a wide and natural class of properties associated with the class NP. The
latter class refers to properties that have “efficient proof systems” allowing for the veri-
fication of the claim that a given object has a predetermined property (i.e., is a member
of a predetermined set). Jumping ahead, we mention that the P-vs-NP Question refers to
the question of whether properties that have efficient proof systems can also be decided
efficiently (without proofs). Let us clarify all these notions.

Properties of objects are modeled as subsets of the set of all possible objects (i.e.,
a property is associated with the set of objects having this property). For example, the
property of being a prime is associated with the set of prime numbers, and the property
of being connected (resp., having a Hamiltonian path) is associated with the set of con-
nected (resp., Hamiltonian) graphs. Thus, we focus on deciding membership in sets (as in
Definition 1.2). The standard formulation of the P-vs-NP Question refers to the question-
able equality of two natural classes of decision problems, denoted P and NP (and defined
in §2.1.2.1 and §2.1.2.2, respectively).

2.1.2.1. The Class P as a Natural Class of Decision Problems
Needless to say, we are interested in the class of decision problems that are efficiently
solvable. This class is traditionally denoted P (standing for “Polynomial time”). The

50



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

following definition refers to the formulation of solving decision problems (provided in
Definition 1.2).

Definition 2.4 (efficiently solvable decision problems):

• A decision problem S ⊆ {0, 1}∗ is efficiently solvable if there exists a polynomial-
time algorithm A such that, for every x, it holds that A(x) = 1 if and only if
x ∈ S.

• We denote by P the class of decision problems that are efficiently solvable.

As in Definition 2.2, we have defined a fundamental class of problems, which contains
many natural problems (e.g., determining whether or not a given graph is connected), but
we do not have a good understanding regarding its actual contents (i.e., we are unable
to characterize many natural problems with respect to membership in this class). In fact,
there are many natural decision problems that are not known to reside in P , and a natural
class containing a host of such problems is presented next. This class of decision problems
is denoted NP (for reasons that will become evident in Section 2.1.5).

2.1.2.2. The Class NP and NP-proof Systems
We view NP as the class of decision problems that have efficiently verifiable proof systems.
Loosely speaking, we say that a set S has a proof system if instances in S have valid proofs
of membership (i.e., proofs accepted as valid by the system), whereas instances not in
S have no valid proofs. Indeed, proofs are defined as strings that (when accompanying
the instance) are accepted by the (efficient) verification procedure. We say that V is a
verification procedure for membership in S if it satisfies the following two conditions:

1. Completeness: True assertions have valid proofs; that is, proofs accepted as valid by
V . Bearing in mind that assertions refer to membership in S, this means that for every
x ∈ S there exists a string y such that V (x, y) = 1 (i.e., V accepts y as a valid proof
for the membership of x in S).

2. Soundness: False assertions have no valid proofs. That is, for every x �∈ S and every
string y it holds that V (x, y) = 0, which means that V rejects y as a proof for the
membership of x in S.

We note that the soundness condition captures the “security” of the verification procedure,
that is, its ability not to be fooled (by anything) into proclaiming a wrong assertion.
The completeness condition captures the “viability” of the verification procedure, that
is, its ability to be convinced of any valid assertion, when presented with an adequate
proof. (We stress that, in general, proof systems are defined in terms of their verification
procedures, which must satisfy adequate completeness and soundness conditions.) Our
focus here is on efficient verification procedures that utilize relatively short proofs (i.e.,
proofs that are of length that is polynomially bounded by the length of the corresponding
assertion).3

3Advanced comment: In a continuation of footnote 1, we note that in this chapter we consider deterministic
(polynomial-time) verification procedures, and consequently, the completeness and soundness conditions that we
state here are errorless. In contrast, in Chapter 9, we will consider various types of probabilistic (polynomial-time)
verification procedures as well as probabilistic completeness and soundness conditions. A common theme that
underlies both treatments is that efficient verification is interpreted as meaning verification by a process that runs in
time that is polynomial in the length of the assertion. In the current chapter, we use the equivalent formulation that

51



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Let us consider a couple of examples before turning to the actual definition. Starting
with the set of Hamiltonian graphs, we note that this set has a verification procedure that,
given a pair (G, π), accepts if and only if π is a Hamiltonian path in the graph G. In
this case π serves as a proof that G is Hamiltonian. Note that such proofs are relatively
short (i.e., the path is actually shorter than the description of the graph) and are easy
to verify. Needless to say, this proof system satisfies the aforementioned completeness
and soundness conditions. Turning to the case of satisfiable Boolean formulae, given a
formula φ and a truth assignment τ , the verification procedure instantiates φ (according
to τ ), and accepts if and only if simplifying the resulting Boolean expression yields the
value true. In this case τ serves as a proof that φ is satisfiable, and the alleged proofs
are indeed relatively short and easy to verify.

Definition 2.5 (efficiently verifiable proof systems):

• A decision problem S ⊆ {0, 1}∗ has an efficiently verifiable proof system if there
exists a polynomial p and a polynomial-time (verification) algorithm V such that
the following two conditions hold:
1. Completeness: For every x ∈ S, there exists y of length at most p(|x |) such

that V (x, y) = 1.

(Such a string y is called an NP-witness for x ∈ S.)

2. Soundness: For every x �∈ S and every y, it holds that V (x, y) = 0.

Thus, x ∈ S if and only if there exists y of length at most p(|x |) such that
V (x, y) = 1.

In such a case, we say that S has an NP-proof system, and refer to V as its
verification procedure (or as the proof system itself).

• We denote by NP the class of decision problems that have efficiently verifiable
proof systems.

We note that the term NP-witness is commonly used.4 In some cases, V (or the set of pairs
accepted by V ) is called a witness relation of S. We stress that the same set S may have
many different NP-proof systems (see Exercise 2.2), and that in some cases the difference
is not artificial (see Exercise 2.3).

Teaching note: Using Definition 2.5, it is typically easy to show that natural decision problems
are in NP . All that is needed is designing adequate NP-proofs of membership, which is
typically quite straightforward and natural, because natural decision problems are typically
phrased as asking about the existence of a structure (or object) that can be easily verified as
valid. For example, SAT is defined as the set of satisfiable Boolean formulae, which means
asking about the existence of satisfying assignments. Indeed, we can efficiently check whether a
given assignment satisfies a given formula, which means that we have (a verification procedure
for) an NP-proof system for SAT.

considers the running time as a function of the total length of the assertion and the proof, but require that the latter
has length that is polynomially bounded by the length of the assertion.

4In most cases this is done without explicitly defining V , which is understood from the context and/or by common
practice. In many texts, V is not called a proof system (nor a verification procedure of such a system), although this
term is most adequate.

52



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

Note that for any search problem R in PC, the set of instances that have a solution with
respect to R (i.e., the set SR

def= {x : R(x) �= ∅}) is in NP . Specifically, for any R ∈ PC,
consider the verification procedure V such that V (x, y)

def= 1 if and only if (x, y)∈ R, and
note that the latter condition can be decided in poly(|x |)-time. Thus, any search problem
in PC can be viewed as a problem of searching for (efficiently verifiable) proofs (i.e.,
NP-witnesses for membership in the set of instances having solutions). On the other hand,
any NP-proof system gives rise to a natural search problem in PC; that is, the problem of
searching for a valid proof (i.e., an NP-witness) for the given instance (i.e, the verification
procedure V yields the search problem that corresponds to R = {(x, y) : V (x, y)=1}).
Thus, S ∈ NP if and only if there exists R ∈ PC such that S = {x : R(x) �= ∅}.

Teaching note: The last paragraph suggests another easy way of showing that natural decision
problems are in NP: just thinking of the corresponding natural search problem. The point is
that natural decision problems (in NP) are phrased as referring to whether a solution exists
for the corresponding natural search problem. For example, in the case of SAT, the question is
whether there exists a satisfying assignment to a given Boolean formula, and the corresponding
search problem is finding such an assignment. But in all these cases, it is easy to check the
correctness of solutions; that is, the corresponding search problem is in PC, which implies
that the decision problem is in NP .

Observe that P ⊆ NP holds: A verification procedure for claims of membership in
a set S ∈ P may just ignore the alleged NP-witness and run the decision procedure
that is guaranteed by the hypothesis S ∈ P; that is, V (x, y) = A(x), where A is the
aforementioned decision procedure. Indeed, the latter verification procedure is quite an
abuse of the term (because it makes no use of the proof); however, it is a legitimate one.
As we shall shortly see, the P-vs-NP Question refers to the question of whether such
proof-oblivious verification procedures can be used for every set that has some efficiently
verifiable proof system. (Indeed, given that P ⊆ NP , the P-vs-NP Question is whether
NP ⊆ P .)

2.1.2.3. The P Versus NP Question in Terms of Decision Problems
Is it the case that NP-proofs are useless? That is, is it the case that for every efficiently
verifiable proof system one can easily determine the validity of assertions without looking
at the proof? If that were the case, then proofs would be meaningless, because they would
offer no fundamental advantage over directly determining the validity of the assertion.
The conjecture P �= NP asserts that proofs are useful: There exists sets in NP that
cannot be decided by a polynomial-time algorithm, and so for these sets obtaining a proof
of membership (for some instances) is useful (because we cannot efficiently determine
membership by ourselves).

In the foregoing paragraph we viewed P �= NP as asserting the advantage of obtaining
proofs over deciding the truth by ourselves. That is, P �= NP asserts that (in some cases)
verifying is easier than deciding. A slightly different perspective is that P �= NP asserts
that finding proofs is harder than verifying their validity. This is the case because, for any
set S that has an NP-proof system, the ability to efficiently find proofs of membership
with respect to this system (i.e., finding an NP-witness of membership in S for any given
x ∈ S), yields the ability to decide membership in S. Thus, for S ∈ NP \ P , it must be

53



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

harder to find proofs of membership in S than to verify the validity of such proofs (which
can be done in polynomial time).

2.1.3. Equivalence of the Two Formulations

As hinted several times, the two formulations of the P-vs-NP Questions are equiva-
lent. That is, every search problem having efficiently checkable solutions is solvable in
polynomial-time (i.e., PC ⊆ PF) if and only if membership in any set that has an NP-
proof system can be decided in polynomial-time (i.e., NP ⊆ P). Recalling that P ⊆ NP
(whereas PF is not contained in PC (Exercise 2.1)), we prove the following.

Theorem 2.6: PC ⊆ PF if and only if P = NP .

Proof: Suppose, on the one hand, that the inclusion holds for the search version (i.e.,
PC ⊆ PF). We will show that this implies the existence of an efficient algorithm for
finding NP-witnesses for any set in NP , which in turn implies that this set is in P .
Specifically, let S be an arbitrary set in NP , and V be the corresponding verification
procedure (i.e., satisfying the conditions in Definition 2.5). Then R

def= {(x, y) :
V (x, y) = 1} is a polynomially bounded relation in PC, and by the hypothesis
its search problem is solvable in polynomial-time (i.e., R ∈ PC ⊆ PF). Denoting
by A the polynomial-time algorithm solving the search problem of R, we decide
membership in S in the obvious way. That is, on input x , we output 1 if and only
if A(x) �= ⊥, where the latter event holds if and only if A(x) ∈ R(x), which in turn
occurs if and only if R(x) �= ∅ (equiv., x ∈ S). Thus, NP ⊆ P (and NP = P)
follows.

Suppose, on the other hand, that NP = P . We will show that this implies an
efficient algorithm for determining whether a given string y′ is a prefix of some
solution to a given instance x of a search problem in PC, which in turn yields an
efficient algorithm for finding solutions. Specifically, let R be an arbitrary search
problem in PC. Then the set S′R

def= {〈x, y′〉 : ∃y′′ s.t. (x, y′y′′)∈ R} is in NP (be-
cause R ∈ PC), and hence S′R is in P (by the hypothesis NP = P). This yields
a polynomial-time algorithm for solving the search problem of R, by extending a
prefix of a potential solution bit by bit (while using the decision procedure to deter-
mine whether or not the current prefix is valid). That is, on input x , we first check
whether or not (x, λ) ∈ S′R and output ⊥ (indicating R(x) = ∅) in case (x, λ) �∈ S′R .
Next, we proceed in iterations, maintaining the invariant that (x, y′) ∈ S′R . In each
iteration, we set y′ ← y′0 if (x, y′0) ∈ S′R and y′ ← y′1 if (x, y′1) ∈ S′R . If none
of these conditions hold (which happens after at most polynomially many iterations)
then the current y′ satisfies (x, y′) ∈ R. Thus, for an arbitrary R ∈ PC we obtain
that R ∈ PF , and PC ⊆ PF follows.

Reflection. The first part of the proof of Theorem 2.6 associates with each set S in NP a
natural relation R (in PC). Specifically, R consists of all pairs (x, y) such that y is an NP-
witness for membership of x in S. Thus, the search problem of R consists of finding such an
NP-witness, when given x as input. Indeed, R is called the witness relation of S, and solving
the search problem of R allows for deciding membership in S. Thus, R ∈ PC ⊆ PF
implies S ∈ P . In the second part of the proof, we associate with each R ∈ PC a set S′R

54



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

(in NP), but S′R is more “expressive” than the set SR
def= {x : ∃y s.t. (x, y)∈ R} (which

gives rise to R as its witness relation). Specifically, S′R consists of strings that encode
pairs (x, y′) such that y′ is a prefix of some string in R(x) = {y : (x, y) ∈ R}. The key
observation is that deciding membership in S′R allows for solving the search problem of
R; that is, S′R ∈ P implies R ∈ PF .

Conclusion. Theorem 2.6 justifies the traditional focus on the decision version of the
P-vs-NP Question. Indeed, given that both formulations of the question are equivalent, we
may just study the less cumbersome one.

2.1.4. Two Technical Comments Regarding NP

Recall that when defining PC (resp., NP) we have explicitly confined our attention to
search problems of polynomially bounded relations (resp., NP-witnesses of polynomial
length). An alternative formulation may allow a binary relation R to be in PC (resp.,
S ∈ NP) if membership of (x, y) in R can be decided in time that is polynomial in the
length of x (resp., the verification of a candidate NP-witness y for membership of x in
S is required to be performed in poly(|x |)-time). Indeed, this means that the validity of y
can be determined without reading all of it (which means that some substring of y can be
used as the effective y in the original definitions).

We comment that problems in PC (resp., NP) can be solved in exponential time (i.e.,
time exp(poly(|x |)) for input x). This can be done by an exhaustive search among all
possible candidate solutions (resp., all possible candidate NP-witnesses). Thus, NP ⊆
EXP , where EXP denote the class of decision problems that can be solved in exponential
time (i.e., time exp(poly(|x |)) for input x).

2.1.5. The Traditional Definition of NP

Unfortunately, Definition 2.5 is not the commonly used definition of NP . Instead, tra-
ditionally, NP is defined as the class of sets that can be decided by a fictitious device
called a non-deterministic polynomial-time machine (which explains the source of the
notation NP). The reason that this class of fictitious devices is interesting is due to
the fact that it captures (indirectly) the definition of NP-proofs. Since the reader may
come across the traditional definition of NP when studying different works, the author
feels obliged to provide the traditional definition as well as a proof of its equivalence to
Definition 2.5.

Definition 2.7 (non-deterministic polynomial-time Turing machines):

• A non-deterministic Turing machine is defined as in §1.2.3.2, except that the
transition function maps symbol-state pairs to subsets of triples (rather than to
a single triple) in � × Q × {−1, 0,+1}. Accordingly, the configuration follow-
ing a specific instantaneous configuration may be one of several possibilities,
each determined by a different possible triple. Thus, the computations of a non-
deterministic machine on a fixed input may result in different outputs.

In the context of decision problems, one typically considers the question of
whether or not there exists a computation that starting with a fixed input halts
with output 1. We say that the non-deterministic machine M accept x if there

55



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

exists a computation of M, on input x, that halts with output 1. The set accepted
by a non-deterministic machine is the set of inputs that are accepted by the
machine.

• A non-deterministic polynomial-time Turing machine is defined as one that makes
a number of steps that is polynomial in the length of the input. Traditionally, NP
is defined as the class of sets that are each accepted by some non-deterministic
polynomial-time Turing machine.

We stress that Definition 2.7 refers to a fictitious model of computation. Specifically,
Definition 2.7 makes no reference to the number (or fraction) of possible computations
of the machine (on a specific input) that yield a specific output.5 Definition 2.7 only
refers to whether or not computations leading to a certain output exist (for a specific
input). The question of what the mere existence of such possible computations means (in
terms of real life) is not addressed, because the model of a non-deterministic machine
is not meant to provide a reasonable model of a (real-life) computer. The model is
meant to capture something completely different (i.e., it is meant to provide an elegant
definition of the class NP , while relying on the fact that Definition 2.7 is equivalent to
Definition 2.5).

Teaching note: Whether or not Definition 2.7 is elegant is a matter of taste. For sure, many
students find Definition 2.7 quite confusing, possibly because they assume that it represents
some natural model of computation and consequently they allow themselves to be fooled
by their intuition regarding such models. (Needless to say, the students’ intuition regarding
computation is irrelevant when applied to a fictitious model.)

Note that, unlike other definitions in this chapter, Definition 2.7 makes explicit reference
to a specific model of computation. Still, a similar extension can be applied to other models
of computation by considering adequate non-deterministic computation rules. Also note
that, without loss of generality, we may assume that the transition function maps each
possible symbol-state pair to exactly two triples (cf. Exercise 2.4).

Theorem 2.8: Definition 2.5 is equivalent to Definition 2.7. That is, a set S has
an NP-proof system if and only if there exists a non-deterministic polynomial-time
machine that accepts S.

Proof Sketch: Suppose, on the one hand, that the set S has an NP-proof system,
and let us denote the corresponding verification procedure by V . Consider the
following non-deterministic polynomial-time machine, denoted M . On input x ,
machine M makes an adequate m = poly(|x |) number of non-deterministic steps,
producing (non-deterministically) a string y ∈ {0, 1}m , and then emulates V (x, y).
We stress that these non-deterministic steps may result in producing any m-bit string
y. Recall that x ∈ S if and only if there exists y of length at most poly(|x |) such that
V (x, y) = 1. This implies that the set accepted by M equals S.

5Advanced comment: In contrast, the definition of a probabilistic machine refers to this number (or, equivalently,
to the probability that the machine produces a specific output, when the probability is essentially taken uniformly
over all possible computations). Thus, a probabilistic machine refers to a natural model of computation that can be
realized provided we can equip the machine with a source of randomness. For details, see Section 6.1.1.

56



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.1. THE P VERSUS NP QUESTION

Suppose, on the other hand, that there exists a non-deterministic polynomial-time
machine M that accepts the set S. Consider a deterministic machine M ′ that on input
(x, y), where y has adequate length, emulates a computation of M on input x while
using y to determine the non-deterministic steps of M . That is, the i th step of M on
input x is determined by the i th bit of y (which indicates which of the two possible
moves to make at the current step). Note that x ∈ S if and only if there exists y of
length at most poly(|x |) such that M ′(x, y) = 1. Thus, M ′ gives rise to an NP-proof
system for S.

2.1.6. In Support of P Different from NP

Intuition and concepts constitute . . . the elements of all our knowledge,
so that neither concepts without an intuition in some way corresponding
to them, nor intuition without concepts, can yield knowledge.

Immanuel Kant (1724–1804)

Kant speaks of the importance of both philosophical considerations (referred to as “con-
cepts”) and empirical considerations (referred to as “intuition”) to science (referred to as
(sound) “knowledge”).

It is widely believed that P is different than NP; that is, that PC contains search
problems that are not efficiently solvable, and that there are NP-proof systems for sets that
cannot be decided efficiently. This belief is supported by both philosophical and empirical
considerations.

• Philosophical considerations: Both formulations of the P-vs-NP Question refer to
natural questions about which we have strong conceptions. The notion of solving a
(search) problem seems to presume that, at least in some cases (if not in general),
finding a solution is significantly harder than checking whether a presented solution
is correct. This translates to PC \ PF �= ∅. Likewise, the notion of a proof seems
to presume that, at least in some cases (if not in general), the proof is useful in
determining the validity of the assertion, that is, that verifying the validity of an
assertion may be made significantly easier when provided with a proof. This translates
toP �= NP , which also implies that it is significantly harder to find proofs than to verify
their correctness, which again coincides with the daily experience of researchers and
students.

• Empirical considerations: The class NP (or rather PC) contains thousands of different
problems for which no efficient solving procedure is known. Many of these problems
have arisen in vastly different disciplines, and were the subject of extensive research by
numerous different communities of scientists and engineers. These essentially indepen-
dent studies have all failed to provide efficient algorithms for solving these problems,
a failure that is extremely hard to attribute to sheer coincidence or a stroke of bad
luck.

Throughout the rest of this book, we will adopt the common belief that P is different from
NP. At some places, we will explicitly use this conjecture (or even stronger assumptions),
whereas in other places we will present results that are interesting (if and) only ifP �= NP
(e.g., the entire theory of NP-completeness becomes uninteresting if P = NP).

The P �= NP conjecture is indeed very appealing and intuitive. The fact that this
natural conjecture is unsettled seems to be one of the sources of frustration of many

57



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

complexity theorists. The author’s opinion, however, is that this feeling of frustration
is not justified. In contrast, the fact that Complexity Theory evolves around natu-
ral and simply stated questions that are so difficult to resolve makes its study very
exciting.

2.1.7. Philosophical Meditations

Whoever does not value preoccupation with thoughts, can skip this chapter.
Robert Musil, The Man Without Qualities, Chap. 28

The inherent limitations of our scientific knowledgewe were articulated by Kant, who
argued that our knowledge cannot transcend our way of understanding. The “ways of
understanding” are predetermined; they precede any knowledge acquisition and are the
precondition to such acquisition. In a sense, Wittgenstein refined the analysis, arguing
that knowledge must be formulated in a language, and the latter must be subject to a
(sound) mechanism of assigning meaning. Thus, the inherent limitations of any possible
“meaning-assigning mechanism” impose limitations on what can be (meaningfully) said.

Both philosophers spoke of the relation between the world and our thoughts. They
took for granted (or rather assumed) that, in the domain of well-formulated thoughts (e.g.,
logic), every valid conclusion can be effectively reached (i.e., every valid assertion can
be effectively proved). Indeed, this naive assumption was refuted by Gödel. In a similar
vain, Turing’s work asserts that there exist well-defined problems that cannot be solved by
well-defined methods.

The latter assertion transcends the philosophical considerations of the first paragraph:
It asserts that the limitations of our ability are not due only to the gap between the “world
as is” and our model of it. Indeed, this assertion refers to inherent limitations on any
rational process even when this process is applied to well-formulated information and
is aimed at a well-formulated goal. Indeed, in contrast to naive presumptions, not every
well-formulated problem can be (effectively) solved.

The P �= NP conjecture goes even beyond the foregoing. It limits the domain of
the discussion to “fair” problems, that is, to problems for which valid solutions can be
efficiently recognized as such. Indeed, there is something feigned in problems for which
one cannot efficiently recognize valid solutions. Avoiding such feigned and/or unfair
problems, P �= NP means that (even with this limitation) there exist problems that are
inherently unsolvable in the sense that they cannot be solved efficiently. That is, in contrast
to naive presumptions, not every problem that refers to efficiently recognizable solutions
can be solved efficiently. In fact, the gap between the complexity of recognizing solutions
and the complexity of finding them vouches for the meaningfulness of the notion of a
problem.

2.2. Polynomial-Time Reductions

We present a general notion of (polynomial-time) reductions among computational prob-
lems, and view the notion of a “Karp-reduction” as an important special case that suffices
(and is more convenient) in many cases. Reductions play a key role in the theory of
NP-completeness, which is the topic of Section 2.3. In the current section, we stress the
fundamental nature of the notion of a reduction per se and highlight two specific applica-
tions (i.e., reducing search and optimization problems to decision problems). Furthermore,

58



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.2. POLYNOMIAL-TIME REDUCTIONS

in the latter applications, it will be important to use the general notion of a reduction (i.e.,
“Cook-reduction” rather than “Karp-reduction”).

Teaching note: We assume that many students have heard of reductions, but we fear that most
have obtained a conceptually poor view of their fundamental nature. In particular, we fear that
reductions are identified with the theory of NP-completeness, while reductions have numerous
other important applications that have little to do with NP-completeness (or completeness with
respect to some other class). Furthermore, we believe that it is important to show that natural
search and optimization problems can be reduced to decision problems.

2.2.1. The General Notion of a Reduction

Reductions are procedures that use “functionally specified” subroutines. That is, the
functionality of the subroutine is specified, but its operation remains unspecified and its
running time is counted at unit cost. Analogously to algorithms, which are modeled by
Turing machines, reductions can be modeled as oracle (Turing) machines. A reduction
solves one computational problem (which may be either a search or a decision problem)
by using oracle (or subroutine) calls to another computational problem (which again may
be either a search or a decision problem).

2.2.1.1. The Actual Formulation
The notion of a general algorithmic reduction was discussed in §1.2.3.3 and §1.2.3.6.
These reductions, called Turing-reductions (cf. §1.2.3.3) and modeled by oracle machines
(cf. §1.2.3.6), made no reference to the time complexity of the main algorithm (i.e., the
oracle machine). Here, we focus on efficient (i.e., polynomial-time) reductions, which are
often called Cook-reductions. That is, we consider oracle machines (as in Definition 1.11)
that run in time polynomial in the length of their input. We stress that the running time of
an oracle machine is the number of steps made during its (own) computation, and that the
oracle’s reply on each query is obtained in a single step.

The key property of efficient reductions is that they allow for the transformation of
efficient implementations of the subroutine into efficient implementations of the task
reduced to it. That is, as we shall see, if one problem is Cook-reducible to another problem
and the latter is polynomial-time solvable then so is the former.

The most popular case is that of reducing decision problems to decision problems,
but we will also consider reducing search problems to search problems and reducing
search problems to decision problems. Note that when reducing to a decision problem, the
oracle is determined as the single valid solver of the decision problem (i.e., the function
f : {0, 1}∗ → {0, 1} solves the decision problem of membership in S if, for every x , it
holds that f (x) = 1 if x ∈ S and f (x) = 0 otherwise). In contrast, when reducing to a
search problem the oracle is not uniquely determined because there may be many different
valid solvers (i.e., the function f : {0, 1}∗ → {0, 1}∗ ∪ {⊥} solves the search problem of R
if, for every x , it holds that f (x) ∈ R(x) if x ∈ SR and f (x) = ⊥ otherwise). We capture
both cases in the following definition.

Definition 2.9 (Cook-reduction): A problem � is Cook-reducible to a problem �′ if
there exists a polynomial-time oracle machine M such that for every function f that
solves �′ it holds that M f solves �, where M f (x) denotes the output of machine
M on input x when given oracle access to f .

59



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Note that � (resp., �′) may be either a search problem or a decision problem (or even a
yet undefined type of a problem). At this point the reader should verify that if � is Cook-
reducible to �′ and �′ is solvable in polynomial time then so is �. (See Exercise 2.5 for
other properties of Cook-reductions.)

Observe that the second part of the proof of Theorem 2.6 is actually a Cook-reduction
of the search problem of any R in PC to a decision problem regarding a related set
S′R = {(x, y′) : ∃y′′ s.t. (x, y′y′′)∈ R}, which in NP . Thus, that proof establishes the
following result.

Theorem 2.10: Every search problem in PC is Cook-reducible to some decision
problem in NP .

We shall see a tighter relation between search and decision problems in Section 2.2.3; that
is, in some cases, R will be reduced to SR = {x : ∃y s.t. (x, y)∈ R} rather than to S′R .

2.2.1.2. Special Cases
A Karp-reduction is a special case of a reduction (from a decision problem to a decision
problem). Specifically, for decision problems S and S′, we say that S is Karp-reducible to
S′ if there is a reduction of S to S′ that operates as follows: On input x (an instance for S),
the reduction computes x ′, makes query x ′ to the oracle S′ (i.e., invokes the subroutine for
S′ on input x ′), and answers whatever the latter returns. This reduction is often represented
by the polynomial-time computable mapping of x to x ′; that is, the standard definition of
a Karp-reduction is actually as follows.

Definition 2.11 (Karp-reduction): A polynomial-time computable function f is
called a Karp-reduction of S to S′ if, for every x, it holds that x ∈ S if and only if
f (x) ∈ S′.

Thus, syntactically speaking, a Karp-reduction is not a Cook-reduction, but it trivially gives
rise to one (i.e., on input x , the oracle machine makes query f (x), and returns the oracle
answer). Being slightly inaccurate but essentially correct, we shall say that Karp-reductions
are special cases of Cook-reductions. Needless to say, Karp-reductions constitute a very
restricted case of Cook-reductions. Still, this restricted case suffices for many applications
(e.g., most importantly for the theory of NP-completeness (when developed for decision
problems)), but not for reducing a search problem to a decision problem. Furthermore,
whereas each decision problem is Cook-reducible to its complement, some decision
problems are not Karp-reducible to their complement (see Exercises 2.7 and 2.33).

We comment that Karp-reductions may (and should) be augmented in order to handle
reductions of search problems to search problems. Such an augmented Karp-reduction of
the search problem of R to the search problem of R′ operates as follows: On input x (an
instance for R), the reduction computes x ′, makes query x ′ to the oracle R′ (i.e., invokes
the subroutine for searching R′ on input x ′) obtaining y′ such that (x ′, y′) ∈ R′, and uses
y′ to compute a solution y to x (i.e., y ∈ R(x)). Thus, such a reduction can be represented
by two polynomial-time computable mappings, f and g, such that (x, g(x, y′)) ∈ R for
any y′ that is a solution of f (x) (i.e., for y′ that satisfies ( f (x), y′) ∈ R′). (Indeed, in
general, unlike in the case of decision problems, the reduction cannot just return y′ as an
answer to x .) This augmentation is called a Levin-reduction and, analogously to the case

60



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.2. POLYNOMIAL-TIME REDUCTIONS

of a Karp-reduction, it is often represented by the two aforementioned polynomial-time
computable mappings (i.e., of x to x ′, and of (x, y′) to y).

Definition 2.12 (Levin-reduction): A pair of polynomial-time computable func-
tions, f and g, is called a Levin-reduction of R to R′ if f is a Karp-reduction of SR =
{x : ∃y s.t. (x, y)∈ R} to SR′ = {x ′ : ∃y′ s.t. (x ′, y′)∈ R′} and for every x ∈ SR and
y′ ∈ R′( f (x)) it holds that (x, g(x, y′)) ∈ R, where R′(x ′) = {y′ : (x ′, y′)∈ R′}.

Indeed, the function f preserves the existence of solutions; that is, for any x , it holds that
R(x) �= ∅ if and only if R′( f (x)) �= ∅. As for the second function (i.e., g), it maps any
solution y′ for the reduced instance f (x) to a solution for the original instance x (where
this mapping may also depend on x). We note that it is also natural to consider a third
function that maps solutions for R to solutions for R′ (see Exercise 2.28).

2.2.1.3. Terminology and a Brief Discussion
In the sequel, whenever we neglect to mention the type of a reduction, we refer to a
Cook-reduction. Two additional terms, which will be particularly useful in the advanced
chapters, are presented next.

• We say that two problems are computationally equivalent if they are reducible to one
another. This means that the two problems are essentially as hard (or as easy). Note
that computationally equivalent problems need not reside in the same complexity
class.

For example, as we shall see in Section 2.2.3, there exist many natural R ∈ PC such
that the search problem of R and the decision problem of SR = {x : ∃y s.t. (x, y)∈ R}
are computationally equivalent, although (even syntactically) the two problems do
not belong to the same class (i.e., R ∈ PC whereas SR ∈ NP). Also, each decision
problem is computationally equivalent to its complement, although the two problems
may not belong to the same class (see, e.g., Section 2.4.3).

• We say that a class of problems, C, is reducible to a problem �′ if every problem in C is
reducible to �′. We say that the class C is reducible to the class C ′ if for every � ∈ C
there exists �′ ∈ C ′ such that � is reducible to �′.
For example, Theorem 2.10 asserts that PC is reducible to NP .

The fact that we allow Cook-reductions is essential to various important connections
between decision problems and other computational problems. For example, as will be
shown in Section 2.2.2, a natural class of optimization problems is reducible to NP . Also
recall that PC is reducible to NP (cf. Theorem 2.10). Furthermore, as will be shown
in Section 2.2.3, many natural search problems in PC are reducible to a corresponding
natural decision problem in NP (rather than merely to some problem in NP). In all of
these results, the reductions in use are (and must be) Cook-reductions.

2.2.2. Reducing Optimization Problems to Search Problems

Many search problems refer to a set of potential solutions, associated with each problem
instance, such that different solutions are assigned different “values” (resp., “costs”). In
such a case, one may be interested in finding a solution that has value exceeding some
threshold (resp., cost below some threshold). Alternatively, one may seek a solution of

61



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

maximum value (resp., minimum cost). For simplicity, let us focus on the case of a
value that we wish to maximize. Still, there are two different objectives (i.e., exceeding
a threshold and optimizing), giving rise to two different (auxiliary) search problems
related to the same relation R. Specifically, for a binary relation R and a value function
f : {0, 1}∗ × {0, 1}∗ → R, we consider two search problems.

1. Exceeding a threshold: Given a pair (x, v) the task is to find y ∈ R(x) such that
f (x, y) ≥ v, where R(x) = {y : (x, y)∈ R}. That is, we are actually referring to the
search problem of the relation

R f
def= {(〈x, v〉, y) : (x, y)∈ R ∧ f (x, y) ≥ v}, (2.1)

where 〈x, v〉 denotes a string that encodes the pair (x, v).
2. Maximization: Given x the task is to find y ∈ R(x) such that f (x, y) = vx , where vx

is the maximum value of f (x, y′) over all y′ ∈ R(x). That is, we are actually referring
to the search problem of the relation

R′f
def= {(x, y)∈ R : f (x, y) = max

y′∈R(x)
{ f (x, y′)}}. (2.2)

Examples of value functions include the size of a clique in a graph, the amount of flow in
a network (with link capacities), etc. The task may be to find a clique of size exceeding
a given threshold in a given graph or to find a maximum-size clique in a given graph.
Note that, in these examples, the “base” search problem (i.e., the relation R) is quite easy
to solve, and the difficulty arises from the auxiliary condition on the value of a solution
(presented in R f and R′f ). Indeed, one may trivialize R (i.e., let R(x) = {0, 1}poly(|x |) for
every x), and impose all necessary structure by the function f (see Exercise 2.8).

We confine ourselves to the case that f is polynomial-time computable, which in
particular means that f (x, y) can be represented by a rational number of length polynomial
in |x | + |y|. We will show next that, in this case, the two aforementioned search problems
(i.e., of R f and R′f ) are computationally equivalent.

Theorem 2.13: For any polynomial-time computable f :{0, 1}∗×{0, 1}∗→R and
a polynomially bounded binary relation R, let R f and R′f be as in Eq. (2.1) and
Eq. (2.2), respectively. Then the search problems of R f and R′f are computationally
equivalent.

Note that, for R ∈ PC and polynomial-time computable f , it holds that R f ∈ PC. Com-
bining Theorems 2.10 and 2.13, it follows that in this case both R f and R′f are reducible
to NP . We note, however, that even in this case it does not necessarily hold that R′f ∈ PC.
See further discussion following the proof.

Proof: The search problem of R f is reduced to the search problem of R′f by finding
an optimal solution (for the given instance) and comparing its value to the given
threshold value. That is, we construct an oracle machine that solves R f by making a
single query to R′f . Specifically, on input (x, v), the machine issues the query x (to a
solver for R′f ), obtaining the optimal solution y (or an indication ⊥ that R(x) = ∅),
computes f (x, y), and returns y if f (x, y) ≥ v. Otherwise (i.e., either y = ⊥ or
f (x, y) < v), the machine returns an indication that R f (x, v) = ∅.

Turning to the opposite direction, we reduce the search problem of R′f to the
search problem of R f by first finding the optimal value vx = maxy∈R(x){ f (x, y)}

62



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.2. POLYNOMIAL-TIME REDUCTIONS

(by binary search on its possible values), and next finding a solution of value vx .
In both steps, we use oracle calls to R f . For simplicity, we assume that f assigns
positive integer values, and let � = poly(|x |) be such that f (x, y) ≤ 2� − 1 for every
y ∈ R(x). Then, on input x , we first find vx = max{ f (x, y) : y∈ R(x)}, by making
oracle calls of the form 〈x, v〉. The point is that vx < v if and only if R f (〈x, v〉) = ∅,
which in turn is indicated by the oracle answer ⊥ (to the query 〈x, v〉). Making �

queries, we determine vx (see Exercise 2.9). Note that in case R(x) = ∅, all answers
will indicate that R f (〈x, v〉) = ∅, which we treat as if vx = 0. Finally, we make the
query (x, vx ), and halt returning the oracle’s answer (which is y ∈ R(x) such that
f (x, y) = vx if vx > 0 and an indication that R(x) = ∅ otherwise).

Proof’s Digest: Note that the first direction uses the hypothesis that f is polynomial-time
computable, whereas the opposite direction only used the fact that the optimal value lies
in a finite space of exponential size that can be “efficiently searched.” While the first
direction can be proved using a Levin-reduction, this seems impossible for the opposite
direction (in general).

On the complexity of R f and R′f . We focus on the natural case in which R ∈ PC and
f is polynomial-time computable. In this case, Theorem 2.13 asserts that R f and R′f are
computationally equivalent. A closer look reveals, however, that R f ∈ PC always holds,
whereas R′f ∈ PC does not necessarily hold. That is, the problem of finding a solution (for
a given instance) that exceeds a given threshold is in the class PC, whereas the problem of
finding an optimal solution is not necessarily in the class PC. For example, the problem
of finding a clique of a given size K in a given graph G is in PC, whereas the problem
of finding a maximum size clique in a given graph G is not known (and is quite unlikely)
to be in PC (although it is Cook-reducible to PC). Indeed, the class of problems that are
reducible to PC is a natural and interesting class (see further discussion at the end of
Section 3.2.1). Needless to say, for every R ∈ PC and polynomial-time computable f ,
the former class contains R′f .

2.2.3. Self-Reducibility of Search Problems

The results to be presented in this section further justify the focus on decision problems.
Loosely speaking, these results show that for many natural relations R, the question
of whether or not the search problem of R is efficiently solvable (i.e., is in PF) is
equivalent to the question of whether or not the “decision problem implicit in R” (i.e.,
SR = {x : ∃y s.t. (x, y)∈ R}) is efficiently solvable (i.e., is in P). In fact, we will show
that these two computational problems (i.e., R and SR) are computationally equivalent.
Note that the decision problem of SR is easily reducible to the search problem of R, and
so our focus is on the other direction. That is, we are interested in relations R for which
the search problem of R is reducible to the decision problem of SR . In such a case, we say
that R is self-reducible.

Teaching note: Our usage of the term self-reducibility differs from the traditional one. Tra-
ditionally, a decision problem is called (downward) self-reducible if it is Cook-reducible
to itself via a reduction that on input x only makes queries that are smaller than x (ac-
cording to some appropriate measure on the size of strings). Under some natural restrictions

63



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

(i.e., the reduction takes the disjunction of the oracle answers) such reductions yield reductions
of search to decision (as discussed in the main text). For further details, see Exercise 2.13.

Definition 2.14 (the decision implicit in a search and self-reducibility): The deci-
sion problem implicit in the search problem of R is deciding membership in the set
SR = {x : R(x) �= ∅}, where R(x) = {y : (x, y) ∈ R}. The search problem of R is
called self-reducible if it can be reduced to the decision problem of SR.

Note that the search problem of R and the problem of deciding membership in SR refer
to the same instances: The search problem requires finding an adequate solution (i.e.,
given x find y ∈ R(x)), whereas the decision problem refers to the question of whether
such solutions exist (i.e., given x determine whether or not R(x) is non-empty). Thus, SR

is really the “decision problem implicit in R,” because it is a decision problem that one
implicitly solves when solving the search problem of R. Indeed, for any R, the decision
problem of SR is easily reducible to the search problem for R (and if R is in PC then SR is
in NP).6 It follows that if a search problem R is self-reducible then it is computationally
equivalent to the decision problem SR .

Note that the general notion of a reduction (i.e., Cook-reduction) seems inherent to the
notion of self-reducibility. This is the case not only due to syntactic considerations, but
also due to the following inherent reason. An oracle to any decision problem returns a
single bit per invocation, while the intractability of a search problem in PC must be due
to lacking more than a “single bit of information” (see Exercise 2.10).

We shall see that self-reducibility is a property of many natural search problems
(including all NP-complete search problems). This justifies the relevance of decision
problems to search problems in a stronger sense than established in Section 2.1.3: Recall
that in Section 2.1.3 we showed that the fate of the search problem class PC (wrt PF) is
determined by the fate of the decision problem class NP (wrt P). Here we show that, for
many natural search problems in PC (i.e., self-reducible ones), the fate of such a problem
R (wrt PF) is determined by the fate of the decision problem SR (wrt P), where SR is
the decision problem implicit in R.

2.2.3.1. Examples
We now present a few search problems that are self-reducible. We start with SAT (see
Appendix G.2), the set of satisfiable Boolean formulae (in CNF), and consider the search
problem in which given a formula one should provide a truth assignment that satisfies
it. The corresponding relation is denoted RSAT; that is, (φ, τ ) ∈ RSAT if τ is a satisfying
assignment to the formula φ. The decision problem implicit in RSAT is indeed SAT. Note
that RSAT is in PC (i.e., it is polynomially bounded and membership of (φ, τ ) in RSAT is
easy to decide (by evaluating a Boolean expression)).

Proposition 2.15 (RSAT is self-reducible): The search problem of RSAT is reducible
to SAT.

Thus, the search problem of RSAT is computationally equivalent to deciding membership
in SAT. Hence, in studying the complexity of SAT, we also address the complexity of the
search problem of RSAT.

6For example, the reduction invokes the search oracle and answer 1 if and only if the oracle returns some string
(rather than the “no solution” symbol).

64



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.2. POLYNOMIAL-TIME REDUCTIONS

Proof: We present an oracle machine that solves the search problem of RSAT by
making oracle calls to SAT. Given a formula φ, we find a satisfying assignment to
φ (in case such an assignment exists) as follows. First, we query SAT on φ itself,
and return an indication that there is no solution if the oracle answer is 0 (indicating
φ �∈ SAT). Otherwise, we let τ , initiated to the empty string, denote a prefix of a
satisfying assignment of φ. We proceed in iterations, where in each iteration we
extend τ by one bit. This is done as follows: First we derive a formula, denoted
φ′, by setting the first |τ | + 1 variables of φ according to the values τ0. We then
query SAT on φ′ (which means that we ask whether or not τ0 is a prefix of a
satisfying assignment of φ). If the answer is positive then we set τ ← τ0; otherwise
we set τ ← τ1. This procedure relies on the fact that if τ is a prefix of a satisfying
assignment of φ and τ0 is not a prefix of a satisfying assignment of φ then τ1 must
be a prefix of a satisfying assignment of φ.

We wish to highlight a key point that has been blurred in the foregoing de-
scription. Recall that the formula φ′ is obtained by replacing some variables by
constants, which means that φ′ per se contains Boolean variables as well as Boolean
constants. However, the standard definition of SAT disallows Boolean constants in
its instances.7 Nevertheless, φ′ can be simplified such that the resulting formula
contains no Boolean constants. This simplification is performed according to the
straightforward Boolean rules: That is, the constant false can be omitted from
any clause, but if a clause contains only occurrences of the constant false then
the entire formula simplifies to false. Likewise, if the constant true appears
in a clause then the entire clause can be omitted, and if all clauses are omitted then
the entire formula simplifies to true. Needless to say, if the simplification process
yields a Boolean constant then we may skip the query, and otherwise we just use the
simplified form of φ′ as our query.

Other examples. Reductions analogous to the one used in the proof of Proposition 2.15
can also be presented for other search problems (and not only for NP-complete ones).
Two such examples are searching for a 3-coloring of a given graph and searching for
an isomorphism between a given pair of graphs (where the first problem is known to be
NP-complete and the second problem is believed not to be NP-complete). In both cases,
the reduction of the search problem to the corresponding decision problem consists of
iteratively extending a prefix of a valid solution, by making suitable queries in order to
decide which extension to use. Note, however, that in these two cases the process of
getting rid of constants (representing partial solutions) is more involved. Specifically, in
the case of Graph 3-Colorability (resp., Graph Isomorphism) we need to enforce a partial
coloring of a given graph (resp., a partial isomorphism between a given pair of graphs);
see Exercises 2.11 and 2.12, respectively.

Reflection. The proof of Proposition 2.15 (as well as the proofs of similar results) consists
of two observations.

1. For every relation R in PC, it holds that the search problem of R is re-
ducible to the decision problem of S′R = {(x, y′) : ∃y′′ s.t. (x, y′y′′)∈ R}. Such a

7While the problem seems rather technical at the current setting (as it merely amounts to whether or not the
definition of SAT allows Boolean constants in its instances), it is far from being so technical in other cases (see
Exercises 2.11 and 2.12).

65



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

reduction is explicit in the proof of Theorem 2.6 and is implicit in the proof of
Proposition 2.15.

2. For specific R ∈ PC (e.g., SSAT), deciding membership in S′R is reducible to deciding
membership in SR = {x : ∃y s.t. (x, y)∈ R}. This is where the specific structure of
SAT was used, allowing for a direct and natural transformation of instances of S′R to
instances of SR .

(We comment that if SR is NP-complete then S′R , which is always in NP , is reducible
to SR by the mere fact that SR is NP-complete; this comment is related to the following
advanced comment.)

For an arbitrary R ∈ PC, deciding membership in S′R is not necessarily reducible to
deciding membership in SR . Furthermore, deciding membership in S′R is not necessarily
reducible to the search problem of R. (See Exercises 2.14, 2.15, and 2.16.)

In general, self-reducibility is a property of the search problem and not of the decision
problem implicit in it. Furthermore, under plausible assumptions (e.g., the intractability of
factoring), there exist relations R1, R2 ∈ PC having the same implicit-decision problem
(i.e., {x : R1(x) �= ∅} = {x : R2(x) �= ∅}) such that R1 is self-reducible but R2 is not (see
Exercise 2.17). However, for many natural decision problems this phenomenon does not
arise; that is, for many natural NP-decision problems S, any NP-witness relation associated
with S (i.e., R ∈ PC such that {x : R(x) �= ∅} = S) is self-reducible. Indeed, see the other
examples following the proof of Proposition 2.15 as well as the advanced discussion in
§2.2.3.2.

2.2.3.2. Self-Reducibility of NP-Complete Problems

Teaching note: In this advanced subsection, we assume that the students have heard of NP-
completeness. Actually, we only need the students to know the definition of NP-completeness
(i.e., a set S isNP-complete if S ∈ NP and every set inNP is reducible to S). Yet, the teacher
may prefer postponing the presentation of the following advanced discussion to Section 2.3.1
(or even to a later stage).

Recall that, in general, self-reducibility is a property of the search problem R and not of
the decision problem implicit in it (i.e., SR = {x : R(x) �= ∅}). In contrast, in the special
case of NP-complete problems, self-reducibility holds for any witness relation associated
with the (NP-complete) decision problem. That is, all search problems that refer to finding
NP-witnesses for any NP-complete decision problem are self-reducible.

Theorem 2.16: For every R inPC such that SR isNP-complete, the search problem
of R is reducible to deciding membership in SR.

In many cases, as in the proof of Proposition 2.15, the reduction of the search problem
to the corresponding decision problem is quite natural. The following proof presents a
generic reduction (which may be “unnatural” in some cases).

Proof: In order to reduce the search problem of R to deciding SR , we compose the
following two reductions:

1. A reduction of the search problem of R to deciding membership in S′R = {(x, y′) :
∃y′′ s.t. (x, y′y′′)∈ R}.

66



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

As stated in the foregoing paragraph (titled “Reflection”), such a reduction is
implicit in the proof of Proposition 2.15 (as well as being explicit in the proof of
Theorem 2.6).

2. A reduction of S′R to SR .

This reduction exists by the hypothesis that SR is NP-complete and the fact that
S′R ∈ NP . (Note that we do not assume that this reduction is a Karp-reduction,
and furthermore it may be an “unnatural” reduction).

The theorem follows.

2.2.4. Digest and General Perspective

Recall that we presented (polynomial-time) reductions as (efficient) algorithms that use
functionally specified subroutines. That is, an efficient reduction of problem � to problem
�′ is an efficient algorithm that solves � while making subroutine calls to any procedure
that solves �′. This presentation fits the “natural” (“positive”) application of such a
reduction; that is, combining such a reduction with an efficient implementation of the
subroutine (solving �′), we obtain an efficient algorithm for solving �. We note that the
existence of a polynomial-time reduction of � to �′ actually means more than the latter
implication. For example, even applying such a reduction to an inefficient algorithm for
solving �′ yields something for �; that is, if �′ is solvable in time t ′ then � is solvable in
time t such that t(n) = poly(n) · t ′(poly(n)) (e.g., if t ′(n) = nlog2 n then t(n) = nO(log n)).
Thus, the existence of a polynomial-time reduction of � to �′ yields an upper bound on
the time complexity of � in terms of the time complexity of �′.

We note that tighter relations between the complexity of � and �′ can be established
whenever the reduction satisfies additional properties. For example, suppose that � is
polynomial-time reducible to �′ by a reduction that makes queries of linear length (i.e., on
input x each query has length O(|x |)). Then, if �′ is solvable in time t ′ then � is solvable
in time t such that t(n) = poly(n) · t ′(O(n)) (e.g., if t ′(n) = 2

√
n then t(n) = 2O(

√
n)).

We further note that bounding other complexity measures of the reduction (e.g., its space
complexity) allows for relating the corresponding complexities of the problems; see
Section 5.2.2.

In contrast to the foregoing “positive” applications of polynomial-time reductions,
the theory of NP-completeness (presented in Section 2.3) is famous for its “negative”
application of such reductions. Let us elaborate. The fact that � is polynomial-time
reducible to �′ means that if solving �′ is feasible then solving � is feasible. The
direct “positive” application starts with the hypothesis that �′ is feasibly solvable and
infers that so is �. In contrast, the “negative” application uses the counter-positive: it
starts with the hypothesis that solving � is infeasible and infers that the same holds
for �′.

2.3. NP-Completeness

In light of the difficulty of settling the P-vs-NP Question, when faced with a hard problem
H in NP, we cannot expect to prove that H is not in P (unconditionally). The best we
can expect is a conditional proof that H is not in P, based on the assumption that NP is
different from P. The contrapositive is proving that if H is in P, then so is any problem
in NP (i.e., NP equals P). One possible way of proving such an assertion is showing that

67



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

any problem in NP is polynomial-time reducible to H. This is the essence of the theory of
NP-completeness.

Teaching note: Some students have heard of NP-completeness before, but we suspect that
many have missed important conceptual points. Specifically, we fear that they missed the
point that the mere existence of NP-complete problems is amazing (let alone that these
problems include natural ones such as SAT). We believe that this situation is a consequence
of presenting the detailed proof of Cook’s Theorem as the very first thing right after defining
NP-completeness.

2.3.1. Definitions

The standard definition of NP-completeness refers to decision problems. In the following
we will also present a definition of NP-complete (or ratherPC-complete) search problems.
In both cases, NP-completeness of a problem � combines two conditions:

1. � is in the class (i.e., � being in NP or PC, depending on whether � is a decision
or a search problem).

2. Each problem in the class is reducible to �. This condition is called NP-hardness.

Although a perfectly good definition of NP-hardness could have allowed arbitrary
Cook-reductions, it turns out that Karp-reductions (resp., Levin-reductions) suffice for
establishing the NP-hardness of all natural NP-complete decision (resp., search) prob-
lems. Consequently, NP-completeness is usually defined using this restricted notion of a
polynomial-time reduction.

Definition 2.17 (NP-completeness of decision problems, restricted notion): A set S
is NP-complete if it is in NP and every set in NP is Karp-reducible to S.

A set is NP-hard if every set in NP is Karp-reducible to it. Indeed, there is no reason
to insist on Karp-reductions (rather than using arbitrary Cook-reductions), except that the
restricted notion suffices for all known demonstrations of NP-completeness and is easier
to work with. An analogous definition applies to search problems.

Definition 2.18 (NP-completeness of search problems, restricted notion): A binary
relation R is PC-complete if it is in PC and every relation in PC is Levin-reducible
to R.

In the sequel, we will sometimes abuse the terminology and refer to search problems as
NP-complete (rather than PC-complete). Likewise, we will say that a search problem is
NP-hard (rather than PC-hard) if every relation in PC is Levin-reducible to it.

We stress that the mere fact that we have defined a property (i.e., NP-completeness)
does not mean that there exist objects that satisfy this property. It is indeed remark-
able that NP-complete problems do exist. Such problems are “universal” in the sense
that solving them allows for solving any other (reasonable) problem (i.e., problems in
NP).

68



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

2.3.2. The Existence of NP-Complete Problems

We suggest not to confuse the mere existence of NP-complete problems, which is re-
markable by itself, with the even more remarkable existence of “natural” NP-complete
problems. The following proof delivers the first message as well as focuses on the essence
of NP-completeness, rather than on more complicated technical details. The essence of
NP-completeness is that a single computational problem may “effectively encode” a wide
class of seemingly unrelated problems.

Theorem 2.19: There exist NP-complete relations and sets.

Proof: The proof (as well as any other NP-completeness proofs) is based on the
observation that some decision problems in NP (resp., search problems in PC) are
“rich enough” to encode all decision problems in NP (resp., all search problems
in PC). This fact is most obvious for the “generic” decision and search problems,
denoted Su and Ru (and defined next), which are used to derive the simplest proof
of the current theorem.

We consider the following relation Ru and the decision problem Su implicit in
Ru (i.e., Su = {x : ∃y s.t. (x, y)∈ Ru}). Both problems refer to the same type of
instances, which in turn have the form x = 〈M, x, 1t〉, where M is a description of a
(deterministic) Turing machine, x is a string, and t is a natural number. The number
t is given in unary (rather than in binary) in order to allow various complexity
measures, which depend on the instance length, to be polynomial in t (rather than
poly-logarithmic in t).

Definition. The relation Ru consists of pairs (〈M, x, 1t〉, y) such that M accepts
the input pair (x, y) within t steps, where |y| ≤ t .8 The corresponding set Su

def= {x :
∃y s.t. (x, y) ∈ Ru} consists of triples 〈M, x, 1t〉 such that machine M accepts some
input of the form (x, ·) within t steps.

It is easy to see that Ru is in PC and that Su is in NP . Indeed, Ru is recognizable
by a universal Turing machine, which on input (〈M, x, 1t〉, y) emulates (t steps of)
the computation of M on (x, y). (The fact that Su ∈ NP follows similarly.) We
comment that u indeed stands for universal (i.e., universal machine), and the proof
extends to any reasonable model of computation (which has adequate universal
machines).

We now turn to show that Ru and Su are NP-hard in the adequate sense (i.e., Ru is
PC-hard and Su is NP-hard). We first show that any set in NP is Karp-reducible to
Su. Let S be a set inNP and let us denote its witness relation by R; that is, R is inPC
and x ∈ S if and only if there exists y such that (x, y) ∈ R. Let pR be a polynomial
bounding the length of solutions in R (i.e., |y| ≤ pR(|x |) for every (x, y) ∈ R), let
MR be a polynomial-time machine deciding membership (of alleged (x, y) pairs) in
R, and let tR be a polynomial bounding its running time. Then, the desired Karp-
reduction maps an instance x (for S) to the instance 〈MR, x, 1tR (|x |+pR (|x |))〉 (for Su);
that is,

x !→ f (x)
def= 〈MR, x, 1tR (|x |+pR (|x |))〉. (2.3)

8Instead of requiring that |y| ≤ t , one may require that M is “canonical” in the sense that it reads its entire input
before halting.

69



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Note that this mapping can be computed in polynomial time, and that x ∈ S if and
only if f (x) = 〈MR, x, 1tR (|x |+pR (|x |))〉 ∈ Su. Details follow.

First, note that the mapping f does depend (of course) on S, and so it may depend
on the fixed objects MR , pR , and TR (which depend on S). Thus, computing f on
input x calls for printing the fixed string MR , copying x , and printing a number of 1’s
that is a fixed polynomial in the length of x . Hence, f is polynomial-time computable.
Second, recall that x ∈ S if and only if there exists y such that |y| ≤ pR(|x |) and
(x, y) ∈ R. Since MR accepts (x, y) ∈ R within tR(|x | + |y|) steps, it follows that
x ∈ S if and only if there exists y such that |y| ≤ pR(|x |) and MR accepts (x, y)
within tR(|x | + |y|) steps. It follows that x ∈ S if and only if f (x) ∈ Su.

We now turn to the search version. For reducing the search problem of any
R ∈ PC to the search problem of Ru, we use essentially the same reduction. On
input an instance x (for R), we make the query 〈MR, x, 1tR (|x |+pR (|x |))〉 to the search
problem of Ru and return whatever the latter returns. Note that if x �∈ S then the
answer will be “no solution,” whereas for every x and y it holds that (x, y) ∈
R if and only if (〈MR, x, 1tR (|x |+pR (|x |))〉, y) ∈ Ru. Thus, a Levin-reduction of R
to Ru consists of the pair of functions ( f, g), where f is the foregoing Karp-
reduction and g(x, y) = y. Note that indeed, for every ( f (x), y) ∈ Ru, it holds that
(x, g(x, y)) = (x, y) ∈ R.

Advanced comment. Note that the role of 1t in the definition of Ru is to allow placing Ru

in PC. In contrast, consider the relation R′u that consists of pairs (〈M, x, t〉, y) such that
M accepts xy within t steps. Indeed, the difference is that in Ru the time bound t appears
in unary notation, whereas in R′u it appears in binary. Then, as will become obvious in
§4.2.1.2, membership in R′u cannot be decided in polynomial-time. Going even further,
we note that omitting t altogether from the problem instance yields a search problem
that is not solvable at all. That is, consider the relation RH

def= {(〈M, x〉, y) : M(xy) = 1}
(which is related to the halting problem). Indeed, the search problem of any relation
(and in particular of any relation in PC) is Karp-reducible to the search problem of RH ,
but the latter is not solvable at all (i.e., there exists no algorithm that halts on every
input and on input x = 〈M, x〉 outputs y such that (x, y) ∈ RH if and only if such a
y exists).

Bounded Halting and Non-halting
We note that the problem shown to be NP-complete in the proof of Theorem 2.19 is
related to the following two problems, called Bounded Halting and Bounded Non-
halting. Fixing any programming language, the instance to each of these problems
consists of a program π and a time bound t (presented in unary). The decision version of
Bounded Halting (resp., Bounded Non-halting) consists of determining whether
or not there exists an input (of length at most t) on which the program π halts in t steps
(resp., does not halt in t steps), whereas the search problem consists of finding such an
input.

The decision version of Bounded Non-halting refers to a fundamental computa-
tional problem in the area of program verification; specifically, the problem of determining
whether a given program halts within a given time bound on all inputs of a given length.9

9The length parameter need not equal the time bound. Indeed, a more general version of the problem refers to two
bounds, � and t , and to whether the given program halts within t steps on each possible �-bit input. It is easy to prove

70



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

We have mentioned Bounded Halting because it is often referred to in the literature,
but we believe that Bounded Non-halting is much more relevant to the project of pro-
gram verification (because one seeks programs that halt on all inputs rather than programs
that halt on some input).

It is easy to prove that both problems are NP-complete (see Exercise 2.19). Note that
the two (decision) problems are not complementary (i.e., (M, 1t ) may be a yes-instance
of both decision problems).10

The fact that Bounded Non-halting is probably intractable (i.e., is intractable
provided that P �= NP) is even more relevant to the project of program verification than
the fact that the Halting Problem is undecidable. The reason being that the latter problem
(as well as other related undecidable problems) refers to arbitrarily long computations,
whereas the former problem refers to an explicitly bounded number of computational
steps. Specifically, Bounded Non-halting is concerned with the existence of an input
that causes the program to violate a certain condition (i.e., halting) within a given time-
bound.

In light of the foregoing, the common practice of bashing Bounded (Non-)halting as
an “unnatural” problem seems very odd at an age in which computer programs play such
a central role. (Nevertheless, we will use the term “natural” in this traditionally and odd
sense in the next title, which refers to natural computational problems that seem unrelated
to computation.)

2.3.3. Some Natural NP-Complete Problems

Having established the mere existence of NP-complete problems, we now turn to prove
the existence of NP-complete problems that do not (explicitly) refer to computation in the
problem’s definition. We stress that thousands of such problems are known (and a list of
several hundreds can be found in [85]).

We will prove that deciding the satisfiability of propositional formulae is NP-complete
(i.e., Cook’s Theorem), and also present some combinatorial problems that are NP-
complete. This presentation is aimed at providing a (small) sample of natural NP-
completeness results as well as some tools toward proving NP-completeness of new
problems of interest. We start by making a comment regarding the latter issue.

The reduction presented in the proof of Theorem 2.19 is called “generic” because it
(explicitly) refers to any (generic) NP-problem. That is, we actually presented a scheme
for the design of reductions from any desired NP-problem to the single problem proved to
be NP-complete. Indeed, in doing so, we have followed the definition of NP-completeness.
However, once we know some NP-complete problems, a different route is open to us. We
may establish the NP-completeness of a new problem by reducing a known NP-complete
problem to the new problem. This alternative route is indeed a common practice, and it is
based on the following simple proposition.

that the problem remains NP-complete also in the case that the instances are restricted to having parameters � and t
such that t = p(�), for any fixed polynomial p (e.g., p(n) = n2, rather than p(n) = n as used in the main text).

10Indeed, (M, 1t ) can not be a no-instance of both decision problems, but this does not make the problems
complementary. In fact, the two decision problems yield a three-way partition of the instances (M, 1t ): (1) pairs
(M, 1t ) such that for every input x (of length at most t) the computation of M(x) halts within t steps, (2) pairs (M, 1t )
for which such halting occurs on some inputs but not on all inputs, and (3) pairs (M, 1t ) such that there exists no
input (of length at most t) on which M halts in t steps. Note that instances of type (1) are exactly the no-instances of
Bounded Non-halting, whereas instances of type (3) are exactly the no-instances of Bounded Halting.

71



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Proposition 2.20: If an NP-complete problem � is reducible to some problem �′ in
NP then �′ is NP-complete. Furthermore, reducibility via Karp-reductions (resp.,
Levin-reductions) is preserved.

Proof: The proof boils down to asserting the transitivity of reductions. Specifically,
the NP-hardness of � means that every problem in NP is reducible to �, which
in turn is reducible to �′. Thus, by transitivity of reduction (see Exercise 2.6),
every problem in NP is reducible to �′, which means that �′ is NP-hard and the
proposition follows.

2.3.3.1. Circuit and Formula Satisfiability: CSAT and SAT
We consider two related computational problems, CSAT and SAT, which refer (in the
decision version) to the satisfiability of Boolean circuits and formulae, respectively. (We
refer the reader to the definitions of Boolean circuits, formulae, and CNF formulae that
appear in §1.2.4.1.)

Teaching note: We suggest establishing the NP-completeness of SAT by a reduction from
the circuit satisfaction problem (CSAT), after establishing the NP-completeness of the latter.
Doing so allows for decoupling two important parts of the proof of the NP-completeness of
SAT: the emulation of Turing machines by circuits, and the emulation of circuits by formulae
with auxiliary variables.

CSAT. Recall that Boolean circuits are directed acyclic graphs with internal vertices,
called gates, labeled by Boolean operations (of arity either 2 or 1), and external ver-
tices called terminals that are associated with either inputs or outputs. When setting the
inputs of such a circuit, all internal nodes are assigned values in the natural way, and
this yields a value to the output(s), called an evaluation of the circuit on the given input.
The evaluation of circuit C on input z is denoted C(z). We focus on circuits with a single
output, and let CSAT denote the set of satisfiable Boolean circuits (i.e., a circuit C is in
CSAT if there exists an input z such that C(z) = 1). We also consider the related relation
RCSAT = {(C, z) : C(z) = 1}.

Theorem 2.21 (NP-completeness of CSAT): The set (resp., relation) CSAT (resp.,
RCSAT) is NP-complete (resp., PC-complete).

Proof: It is easy to see that CSAT ∈ NP (resp., RCSAT ∈ PC). Thus, we turn to
showing that these problems are NP-hard. We will focus on the decision version
(but also discuss the search version).

We will present (again, but for the last time in this book) a generic reduction,
this time of any NP-problem to CSAT. The reduction is based on the observation,
mentioned in §1.2.4.1, that the computation of polynomial-time algorithms can be
emulated by polynomial-size circuits. In the current context, we wish to emulate
the computation of a fixed machine M on input (x, y), where x is fixed and y
varies (but |y| = poly(|x |) and the total number of steps of M(x, y) is polynomial
in |x | + |y|). Thus, x will be “hard-wired” into the circuit, whereas y will serve as
the input to the circuit. The circuit itself, denoted Cx , will consists of “layers” such

72



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

that each layer will represent an instantaneous configuration of the machine M , and
the relation between consecutive configurations in a computation of this machine
will be captured by (“uniform”) local gadgets in the circuit. The number of layers
will depend on (x and on) the polynomial that upper-bounds the running time of
M , and an additional gadget will be used to detect whether the last configuration
is accepting. Thus, only the first layer of the circuit Cx (which will represent an
initial configuration with input prefixed by x) will depend on x . The punch line
is that determining whether, for a given x , there exists a y (|y| = poly(|x |)) such
that M(x, y) = 1 (in a given number of steps) will be reduced to whether there
exists a y such that Cx (y) = 1. Performing this reduction for any machine MR that
corresponds to any R ∈ PC (as in the proof of Theorem 2.19), we establish the fact
that CSAT is NP-complete. Details follow.

Recall that we wish to reduce an arbitrary set S ∈ NP to CSAT. Let R, pR , MR ,
and tR be as in the proof of Theorem 2.19 (i.e., R is the witness relation of S, whereas
pR bounds the length of the NP-witnesses, MR is the machine deciding membership
in R, and tR is its polynomial time bound). Without loss of generality (and for
simplicity), suppose that MR is a one-tape Turing machine. We will construct a
Karp-reduction that maps an instance x (for S) to a circuit, denoted f (x)

def= Cx , such
that Cx (y) = 1 if and only if MR accepts the input (x, y) within tR(|x | + pR(|x |))
steps. Thus, it will follow that x ∈ S if and only if there exists y ∈ {0, 1}pR (|x |) such
that Cx (y) = 1 (i.e., if and only if Cx ∈ CSAT). The circuit Cx will depend on x
as well as on MR, pR , and tR . (We stress that MR, pR , and tR are fixed, whereas x
varies and is thus explicit in our notation.)

Before describing the circuit Cx , let us consider a possible computation of MR

on input (x, y), where x is fixed and y represents a generic string of length at
most pR(|x |). Such a computation proceeds for t = tR(|x | + pR(|x |)) steps, and
corresponds to a sequence of t + 1 instantaneous configurations, each of length t .
Each such configuration can be encoded by t pairs of symbols, where the first symbol
in each pair indicates the contents of a cell and the second symbol indicates either a
state of the machine or the fact that the machine is not located in this cell. Thus, each
pair is a member of � × (Q ∪ {⊥}), where � is the finite “work alphabet” of MR , Q
is its finite set of internal states, and⊥ is an indication that the machine is not present
at a cell. The initial configuration includes xy as input, and the decision of MR(x, y)
can be read from (the leftmost cell of) the last configuration.11 With the exception
of the first row, the values of the entries in each row are determined by the entries of
the row just above it, where this determination reflects the transition function of MR .
Furthermore, the value of each entry in the said array is determined by the values
of (up to) three entries that reside in the row above it (see Exercise 2.20). Thus, the
aforementioned computation is represented by a (t + 1)× t array, where each entry
encodes one out of a constant number of possibilities, which in turn can be encoded
by a constant-length bit string. See Figure 2.1.

The circuit Cx has a structure that corresponds to the aforementioned array. Each
entry in the array is represented by a constant number of gates such that when Cx is
evaluated at y these gates will be assigned values that encode the contents of the said
entry (in the computation of MR(x, y)). In particular, the entries of the first row of

11We refer to the output convention presented in §1.2.3.2, by which the output is written in the leftmost cells and
the machine halts at the cell to its right.

73



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

last  configuration

initial  configuration (1,a) (1,-) (0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(0,-) (-,-) (-,-) (-,-)(-,-) (-,-)

(-,-) (-,-) (-,-)(-,-) (-,-)

(1,b)

(0,b)(1,-)

(3,-)

(3,-)

(0,-)(1,c)(3,-)

(0,-)

(0,-)

(1,-)(3,c)

(y ,-)1

(y ,-)1

(y ,-)1 (y ,-)2

(y ,-)2

(y ,-)2

(with input 110 2 y 1 ) y 

(1,-) (1,f)

Figure 2.1: An array representing ten consecutive computation steps on input 110y1y2. Blank characters
as well as the indication that the machine is not present in the cell are marked by a hyphen (-). The three
arrows represent the determination of an entry by the three entries that reside above it. The machine
underlying this example accepts the input if and only if the input contains a zero.

the array are “encoded” by hard-wiring the reduction’s input (i.e., x), and feeding the
circuit’s input (i.e., y) to the adequate input terminals. That is, the circuit has pR(|x |)
(“real”) input terminals (corresponding to y), and the hard-wiring of constants to
the other O(t − pR(|x |)) gates that represent the first row is done by simple gadgets
(as in Figure 1.3). Indeed, the additional hard-wiring in the first row corresponds to
the other fixed elements of the initial configuration (i.e., the blank symbols, and the
encoding of the initial state and of the initial location; cf. Figure 2.1). The entries
of subsequent rows will be “encoded” (or rather computed at evaluation time) by
using constant-size circuits that determine the value of an entry based on the three
relevant entries in the row above it. Recall that each entry is encoded by a constant
number of gates, and thus these constant-size circuits merely compute the constant-
size function described in Exercise 2.20. In addition, the circuit Cx has a few extra
gates that check the values of the entries of the last row in order to determine
whether or not it encodes an accepting configuration.12 Note that the circuit Cx can
be constructed in polynomial-time from the string x , because we just need to encode
x in an appropriate manner as well as generate a “highly uniform” gridlike circuit
of size O(tR(|x | + pR(|x |))2).13

Although the foregoing construction of Cx capitalizes on various specific details
of the (one-tape) Turing machine model, it can be easily adapted to other natural

12In continuation of footnote 11, we note that it suffices to check the values of the two leftmost entries of the last
row. We assumed here that the circuit propagates a halting configuration to the last row. Alternatively, we may check
for the existence of an accepting/halting configuration in the entire array, since this condition is quite simple.

13Advanced comment: A more efficient construction, which generates almost-linear sized circuits (i.e., circuits
of size Õ(tR(|x | + pR(|x |)))) is known; see [180].

74



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

models of efficient computation (by showing that in such models the transformation
from one configuration to the subsequent one can be emulated by a (polynomial-
time constructible) circuit).14 Alternatively, we recall the Cobham-Edmonds Thesis
asserting that any problem that is solvable in polynomial time (on some “reasonable”
model) can be solved in polynomial time by a (one-tape) Turing machine.

Turning back to the circuit Cx , we observe that indeed Cx (y) = 1 if and only if MR

accepts the input (x, y) while making at most t = tR(|x | + pR(|x |)) steps. Recalling
that S = {x : ∃y s.t. |y|≤ pR(|x |) ∧ (x, y)∈ R} and that MR decides membership
in R in time tR , we infer that x ∈ S if and only if f (x) = Cx ∈ CSAT. Furthermore,
(x, y) ∈ R if and only if ( f (x), y) ∈ RCSAT. It follows that f is a Karp-reduction of
S to CSAT, and, for g(x, y)

def= y, it holds that ( f, g) is a Levin-reduction of R to
RCSAT. The theorem follows.

SAT. Recall that Boolean formulae are special types of Boolean circuits (i.e., circuits
having a tree structure).15 We further restrict our attention to formulae given in conjunctive
normal form (CNF). We denote by SAT the set of satisfiable CNF formulae (i.e., a CNF
formula φ is in SAT if there exists a truth assignment τ such that φ(τ ) = 1). We also
consider the related relation RSAT = {(φ, τ ) : φ(τ ) = 1}.

Theorem 2.22 (NP-completeness of SAT): The set (resp., relation)SAT (resp., RSAT)
is NP-complete (resp., PC-complete).

Proof: Since the set of possible instances of SAT is a subset of the set of instances of
CSAT, it is clear that SAT ∈ NP (resp., RSAT ∈ PC). To prove that SAT is NP-hard,
we reduce CSAT to SAT (and use Proposition 2.20). The reduction boils down to
introducing auxiliary variables in order to “cut” the computation of an arbitrary
(“deep”) circuit into a conjunction of related computations of “shallow” circuits
(i.e., depth-2 circuits) of unbounded fan-in, which in turn may be presented as a
CNF formula. The aforementioned auxiliary variables hold the possible values of
the internal gates of the original circuit, and the clauses of the CNF formula enforce
the consistency of these values with the corresponding gate operation. For example,
if gatei and gate j feed into gatek , which is a ∧-gate, then the corresponding
auxiliary variables gi , g j , gk should satisfy the Boolean condition gk ≡ (gi ∧ g j ),
which can be written as a 3CNF with four clauses. Details follow.

We start by Karp-reducing CSAT to SAT. Given a Boolean circuit C , with n
input terminals and m gates, we first construct m constant-size formulae on n + m
variables, where the first n variables correspond to the input terminals of the circuit,
and the other m variables correspond to its gates. The i th formula will depend on
the variable that correspond to the i th gate and the 1-2 variables that correspond to
the vertices that feed into this gate (i.e., 2 vertices in case of ∧-gate or ∨-gate and a
single vertex in case of a ¬-gate, where these vertices may be either input terminals
or other gates). This (constant-size) formula will be satisfied by a truth assignment
if and only if this assignment matches the gate’s functionality (i.e., feeding this gate

14Advanced comment: Indeed, presenting such circuits is very easy in the case of all natural models (e.g., the
RAM model), where each bit in the next configuration can be expressed by a simple Boolean formula in the bits of
the previous configuration.

15For an alternative definition, see Appendix G.2.

75



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

1 2 3

or

and

and

1 2

g1

3

g2g1 g2

and

g3

eq

or

eq
eq

g4

eq

gate1

gate2

gate3
and

3

gate4 neg

neg

g3 g4
and

Figure 2.2: Using auxiliary variables (i.e., the gi ’s) to “cut” a depth-5 circuit (into a CNF). The dashed
regions will be replaced by equivalent CNF formulae. The dashed cycle representing an unbounded
fan-in and-gate is the conjunction of all constant-size circuits (which enforce the functionalities of the
original gates) and the variable that represents the gate that feeds the output terminal in the original
circuit.

with the corresponding values result in the corresponding output value). Note that
these constant-size formulae can be written as constant-size CNF formulae (in fact,
as 3CNF formulae).16 Taking the conjunction of these m formulae and the variable
associated with the gate that feeds into the output terminal, we obtain a formula φ

in CNF (see Figure 2.2, where n = 3 and m = 4).
Note that φ can be constructed in polynomial time from the circuit C ; that is, the

mapping of C to φ = f (C) is polynomial-time computable. We claim that C is in
CSAT if and only if φ is in SAT.

1. Suppose that for some string s it holds that C(s) = 1. Then, assigning to the i th

auxiliary variable the value that is assigned to the i th gate of C when evaluated
on s, we obtain (together with s) a truth assignment that satisfies φ. This is the
case because such an assignment satisfies all m constant-size CNFs as well as the
variable associated with the output of C .

2. On the other hand, if τ satisfies φ then the first n bits in τ correspond to an
input on which C evaluates to 1. This is the case because the m constant-size
CNFs guarantee that the variables of φ are assigned values that correspond to the
evaluation of C on the first n bits of τ , while the fact that the variable associated
with the output of C has value true guarantees that this evaluation of C yields
the value 1.

Note that the latter mapping (of τ to its n-bit prefix) is the second mapping
required by the definition of a Levin-reduction.

Thus, we have established that f is a Karp-reduction of CSAT to SAT, and that
augmenting f with the aforementioned second mapping yields a Levin-reduction
of RCSAT to RSAT.

16Recall that any Boolean function can be written as a CNF formula having size that is exponential in the length
of its input, which in this case is a constant (i.e., either 2 or 3). Indeed, note that the Boolean functions that we refer to
here depend on 2-3 Boolean variables (since they indicate whether or not the corresponding values respect the gate’s
functionality).

76



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

Comment. The fact that the second mapping required by the definition of a Levin-
reduction is explicit in the proof of the validity of the corresponding Karp-reduction is a
fairly common phenomenon. Actually (see Exercise 2.28), typical presentations of Karp-
reductions provide two auxiliary polynomial-time computable mappings (in addition to
the main mapping of instances from one problem (e.g., CSAT) to instances of another
problem (e.g., SAT)): The first auxiliary mapping is of solutions for the preimage instance
(e.g., of CSAT) to solutions for the image instance of the reduction (e.g., of SAT), whereas
the second mapping goes the other way around. (Note that only the main mapping and the
second auxiliary mapping are required in the definition of a Levin-reduction.) For example,
the proof of the validity of the Karp-reduction of CSAT to SAT, denoted f , specified two
additional mappings h and g such that (C, s) ∈ RCSAT implies ( f (C), h(C, s)) ∈ RSAT and
( f (C), τ ) ∈ RSAT implies (C, g(C, τ )) ∈ RCSAT. Specifically, in the proof of Theorem 2.22,
we used h(C, s) = (s, a1, . . . , am) where ai is the value assigned to the i th gate in the
evaluation of C(s), and g(C, τ ) being the n-bit prefix of τ .

3SAT. Note that the formulae resulting from the Karp-reduction presented in the proof
of Theorem 2.22 are in conjunctive normal form (CNF) with each clause referring
to at most three variables. Thus, the above reduction actually establishes the NP-
completeness of 3SAT (i.e., SAT restricted to CNF formula with up to three variables
per clause). Alternatively, one may Karp-reduce SAT (i.e., satisfiability of CNF for-
mula) to 3SAT (i.e., satisfiability of 3CNF formula), by replacing long clauses with
conjunctions of three-variable clauses (using auxiliary variables; see Exercise 2.21).
Either way, we get the following result, where the furthermore part is proved by an
additional reduction.

Proposition 2.23: 3SAT is NP-complete. Furthermore, the problem remains NP-
complete also if we restrict the instances such that each variable appears in at most
three clauses.

Proof Sketch: The furthermore part is proved by reduction from 3SAT. We just
replace each occurrence of each Boolean variable by a new copy of this variable, and
add clauses to enforce that all these copies are assigned the same value. Specifically,
replacing the variable z by copies z(1), . . . , z(m), we add the clauses z(i+1) ∨ ¬z(i) for
i = 1 . . . , m (where m + 1 is understood as 1).

Related problems. Note that instances of SAT can be viewed as systems of Boolean
conditions over Boolean variables. Such systems can be emulated by various types of
systems of arithmetic conditions, implying the NP-hardness of solving the latter types of
systems. Examples include systems of integer linear inequalities (see Exercise 2.23), and
systems of quadratic equalities (see Exercise 2.25).

2.3.3.2. Combinatorics and Graph Theory

Teaching note: The purpose of this subsection is to expose the students to a sample of NP-
completeness results and proof techniques (i.e., the design of reductions among computational
problems). The author believes that this traditional material is insightful, but one may skip it
in the context of a complexity class.

77



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

We present just a few of the many appealing combinatorial problems that are known
to be NP-complete. Throughout this section, we focus on the decision versions of the
various problems, and adopt a more informal style. Specifically, we will present a typical
decision problem as a problem of deciding whether a given instance, which belongs to a
set of relevant instances, is a “yes-instance” or a “no-instance” (rather than referring to
deciding membership of arbitrary strings in a set of yes-instances). For further discussion
of this style and its rigorous formulation, see Section 2.4.1. We will also neglect showing
that these decision problems are in NP; indeed, for natural problems in NP, showing
membership in NP is typically straightforward.

Set Cover. We start with the Set Cover problem, in which an instance consists of a
collection of finite sets S1, . . . , Sm and an integer K and the question (for decision) is
whether or not there exist (at most)17 K sets that cover

⋃m
i=1 Si (i.e., indices i1, . . . , iK

such that
⋃K

j=1 Si j =
⋃m

i=1 Si ).

Proposition 2.24: Set Cover is NP-complete.

Proof Sketch: We sketch a reduction of SAT to Set Cover. For a CNF formula φ with
m clauses and n variables, we consider the sets S1,t, S1,f, .., Sn,t, Sn,f ⊆ {1, . . . , m}
such that Si,t (resp., Si,f) is the set of the indices of the clauses (of φ) that are satisfied
by setting the i th variable to true (resp., false). That is, if the i th variable appears
unnegated (resp., negated) in the j th clause then j ∈ Si,t (resp., j ∈ Si,f). Note that
the union of these 2n sets equals {1, . . . , m}. Now, on input φ, the reduction outputs
the Set Cover instance f (φ)

def= ((S1, .., S2n), n), where S2i−1 = Si,t ∪ {m + i} and
S2i = Si,f ∪ {m + i} for i = 1, . . . , n.

Note that f is computable in polynomial time, and that if φ is satisfied by τ1 · · · τn

then the collection {S2i−τi : i = 1, . . . , n} covers {1, . . . , m + n}. Thus, φ ∈ S AT
implies that f (φ) is a yes-instance of Set Cover. On the other hand, each cover of
{m + 1, . . . , m + n} ⊂ {1, . . . , m + n} must include either S2i−1 or S2i for each i .
Thus, a cover of {1, . . . , m + n} using n of the Sj ’s must contain, for every i , either
S2i−1 or S2i but not both. Setting τi accordingly (i.e., τi = 1 if and only if S2i−1 is
in the cover) implies that {S2i−τi : i = 1, . . . , n} covers {1, . . . , m}, which in turn
implies that τ1 · · · τn satisfies φ. Thus, if f (φ) is a yes-instance of Set Cover then
φ ∈ SAT.

Exact Cover and 3XC. The Exact Cover problem is similar to the set cover problem,
except that here the sets that are used in the cover are not allowed to intersect. That is,
each element in the universe should be covered by exactly one set in the cover. Restricting
the set of instances to sequences of subsets each having exactly three elements, we
get the restricted problem called 3-Exact Cover (3XC), where it is unnecessary to
specify the number of sets to be used in the cover. The problem 3XC is rather technical, but
it is quite useful for demonstrating the NP-completeness of other problems (by reducing
3XC to them).

Proposition 2.25: 3-Exact Cover is NP-complete.

17Clearly, in the case of Set Cover, the two formulations (i.e., asking for exactly K sets or at most K sets) are
computationally equivalent.

78



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

Indeed, it follows that the Exact Cover (in which sets of arbitrary size are allowed) is
NP-complete. This follows both for the case that the number of sets in the desired cover is
unspecified and for the various cases in which this number is bounded (i.e., upper-bounded
or lower-bounded or both).

Proof Sketch: The reduction is obtained by composing three reductions. We first
reduce a restricted case of 3SAT to a restricted version of Set Cover, denoted
3SC, in which each set has at most three elements (and an instance consists, as in
the general case, of a sequence of finite sets as well as an integer K ). Specifically,
we refer to 3SAT instances that are restricted such that each variable appears in
at most three clauses, and recall that this restricted problem is NP-complete (see
Proposition 2.23). Actually, we further reduce this special case of 3SAT to one
in which each literal appears in at most two clauses.18 Now, we reduce the new
version of 3SAT to 3SC by using the (very same) reduction presented in the proof
of Proposition 2.24, and observing that the size of each set in the reduced instance
is at most three (i.e., one more than the number of occurrences of the corresponding
literal).

Next, we reduce 3SC to the following restricted case of Exact Cover, denoted
3XC’, in which each set has at most three elements, an instance consists of a sequence
of finite sets as well as an integer K , and the question is whether there exists an
exact cover with at most K sets. The reduction maps an instance ((S1, . . . , Sm), K )
of 3SC to the instance (C ′, K ) such that C ′ is a collection of all subsets of each of the
sets S1, . . . , Sm . Since each Si has size at most 3, we introduce at most 7 non-empty
subsets per each such set, and the reduction can be computed in polynomial time.
The reader may easily verify the validity of this reduction.

Finally, we reduce 3XC’ to 3XC. Consider an instance ((S1, . . . , Sm), K ) of 3XC’,
and suppose that

⋃m
i=1 Si = [n]. If n > 3K then this is definitely a no-instance,

which can be mapped to a dummy no-instance of 3XC, and so we assume that
x

def= 3K − n ≥ 0. Note that x represents the “excess” covering ability of an exact
cover having K sets, each having three elements. Thus, we augment the set system
with x new elements, denoted n + 1, . . . , 3K , and replace each Si such that |Si | <
3 by a sub-collection of 3-sets that cover Si as well as arbitrary elements from
{n + 1, . . . , 3K }. That is, in case |Si | = 2, the set Si is replaced by the sub-collection
(Si ∪ {n + 1}, . . . , Si ∪ {3K }), whereas a singleton Si is replaced by the sets Si ∪
{ j1, j2} for every j1 < j2 in {n + 1, . . . , 3K }. In addition, we add all possible 3-
subsets of {n + 1, . . . , 3K }. This completes the description of the third reduction,
the validity of which is left as an exercise.

Vertex Cover, Independent Set, and Clique. Turning to graph theoretic problems (see
Appendix G.1), we start with the Vertex Cover problem, which is a special case of
the Set Cover problem. The instances consist of pairs (G, K ), where G = (V, E) is a
simple graph and K is an integer, and the problem is whether or not there exists a set

18This can be done by observing that if all three occurrences of a variable are of the same type (i.e., they are all
negated or all non-negated) then this variable can be assigned a value that satisfies all clauses in which it appears, and
so the variable and the clauses in which it appears can be omitted from the instance. This yields a reduction of 3SAT
instances in which each variable appears in at most three clauses to 3SAT instances in which each literal appears in
at most two clauses. Actually, a closer look at the proof of Proposition 2.23 reveals the fact that the reduced instances
satisfy the latter property anyhow.

79



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

of (at most) K vertices that is incident to all graph edges (i.e., each edge in G has at
least one endpoint in this set). Indeed, this instance of Vertex Cover can be viewed
as an instance of Set Cover by considering the collection of sets (Sv)v∈V , where Sv

denotes the set of edges incident at vertex v (i.e., Sv = {e ∈ E : v ∈ e}). Thus, the NP-
hardness of Set Cover follows from the NP-hardness of Vertex Cover (but this
implication is unhelpful for us here: We already know that Set Cover is NP-hard and
we wish to prove that Vertex Cover is NP-hard). We also note that the Vertex Cover
problem is computationally equivalent to the Independent Set and Clique problems
(see Exercise 2.26), and thus it suffices to establish the NP-hardness of one of these
problems.

Proposition 2.26: The problems Vertex Cover, Independent Set and
Clique are NP-complete.

Teaching note: The following reduction is not the “standard” one (see Exercise 2.27). It is
rather adapted from the FGLSS-reduction (see Exercise 9.18), and is used here in anticipation
of the latter. Furthermore, although the following reduction tends to create a larger graph, the
author finds it clearer than the “standard” reduction.

Proof Sketch: We show a reduction from 3SAT to Independent Set. On input a
3CNF formula φ with m clauses and n variables, we construct a graph with 7m ver-
tices, denoted Gφ . The vertices are grouped in m cliques, each corresponding to one
of the clauses and containing 7 vertices that correspond to the 7 truth assignments (to
the 3 variables in the clause) that satisfy the clause. In addition to the internal edges
of these m cliques, we add an edge between each pair of vertices that correspond to
partial assignments that are mutually inconsistent. That is, if a specific (satisfying)
assignment to the variables of the i th clause is inconsistent with some (satisfying)
assignment to the variables of the j th clause then we connect the corresponding
vertices by an edge. (Note that the internal edges of the m cliques may be viewed as
a special case of the edges connecting mutually inconsistent partial assignments.)
Thus, on input φ, the reduction outputs the pair (Gφ, m).

Note that if φ is satisfiable by a truth assignment τ then there are no edges
between the m vertices that correspond to the partial satisfying assignment derived
from τ . (We stress that any truth assignment to φ yields an independent set, but only
a satisfying assignment guarantees that this independent set contains a vertex from
each of the m cliques.) Thus, φ ∈ SAT implies that Gφ has an independent set of
size m. On the other hand, an independent set of size m in Gφ must contain exactly
one vertex in each of the m cliques, and thus induces a truth assignment that satisfies
φ. (We stress that each independent set induces a consistent truth assignment to φ,
because the partial assignments selected in the various cliques must be consistent,
and that an independent set containing a vertex from a specific clique induces an
assignment that satisfies the corresponding clause.) Thus, if Gφ has an independent
set of size m then φ ∈ SAT.

Graph 3-Colorability (G3C). In this problem the instances are graphs and the question is
whether or not the graph can be colored using three colors such that neighboring vertices
are not assigned the same color.

80



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

1

2

3

x

y
M

T1

T2

T3

Figure 2.3: The clause gadget and its sub-gadget. In a generic 3-coloring of the sub-gadget it must
hold that if x = y then x = y = 1. Thus, if the three terminals of the gadget are assigned the same color,
χ, then M is also assigned the color χ.

Proposition 2.27: Graph 3-Colorability is NP-complete.

Proof Sketch: We reduce 3SAT to G3C by mapping a 3CNF formula φ to the graph
Gφ , which consists of two special (“designated”) vertices, a gadget per each variable
of φ, a gadget per each clause of φ, and edges connecting some of these components.

• The two designated vertices are called ground and false, and are connected
by an edge that ensures that they must be given different colors in any 3-coloring
of Gφ . We will refer to the color assigned to the vertex ground (resp., false)
by the name ground (resp., false). The third color will be called true.

• The gadget associated with variable x is a pair of vertices, associated with the
two literals of x (i.e., x and ¬x). These vertices are connected by an edge, and
each of them is also connected to the vertex ground. Thus, in a 3-coloring of
Gφ one of the vertices associated with the variable is colored true and the other
is colored false.

• The gadget associated with a clause C is depicted in Figure 2.3. It contains a
master vertex, denoted M, and three terminal vertices, denoted T1, T2, and T3.
The master vertex is connected by edges to the vertices ground and false, and
thus in a 3-coloring of Gφ the master vertex must be colored true. The gadget
has the property that it is possible to color the terminals with any combination
of the colors true and false, except for coloring all terminals with false.
The terminals of the gadget associated with clause C will be identified with the
vertices that are associated with the corresponding literals appearing in C . This
means that the various clause gadgets are not vertex-disjoint but may rather share
some terminals (with the variable gadgets as well as among themselves).19 See
Figure 2.4.

Verifying the validity of the reduction is left as an exercise.

2.3.4. NP Sets That Are Neither in P nor NP-Complete

As stated in Section 2.3.3, thousands of problems have been shown to be NP-complete
(cf., [85, Apdx.], which contains a list of more than three hundreds main entries).
Things have reached a situation in which people seem to expect any NP-set to be either
NP-complete or in P . This naive view is wrong: Assuming NP �= P , there exist, sets

19Alternatively, we may use disjoint gadgets and “connect” each terminal with the corresponding literal (in the
corresponding vertex gadget). Such a connection (i.e., an auxiliary gadget) should force the two endpoints to have the
same color in any 3-coloring of the graph.

81



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

variable   gadgets

clause  gadgets

GROUND FALSE
the  two  designated  verices

Figure 2.4: A single clause gadget and the relevant variables gadgets.

in NP that are neither NP-complete nor in P , where here NP-hardness allows also
Cook-reductions.

Theorem 2.28: Assuming NP �= P , there exists a set T in NP \ P such that some
sets in NP are not Cook-reducible to T .

Theorem 2.28 asserts that ifNP �= P thenNP is partitioned into three non-empty classes:
the class P , the class of problems to which NP is Cook-reducible, and the rest, denoted
NPI. We already know that the first two classes are not empty, and Theorem 2.28
establishes the non-emptiness of NPI under the condition that NP �= P , which is
actually a necessary condition (because if NP = P then every set in NP is Cook-
reducible to any other set in NP).

The following proof of Theorem 2.28 presents an unnatural decision problem in NPI.
We mention that some natural decision problems (e.g., some that are computationally
equivalent to factoring) are conjectured to be in NPI. We also mention that if NP �=
coNP , where coNP = {{0, 1}∗ \ S : S ∈ NP}, then �

def= NP ∩ coNP ⊆ P ∪NPI
holds (as a corollary to Theorem 2.35). Thus, if NP �= coNP then � \ P is a (natural)
subset of NPI, and the non-emptiness of NPI follows provided that � �= P . Recall
that Theorem 2.28 establishes the non-emptiness of NPI under the seemingly weaker
assumption that NP �= P .

Teaching note: We recommend either stating Theorem 2.28 without a proof or merely pre-
senting the proof idea.

Proof Sketch: The basic idea is modifying an arbitrary set in NP \ P so as to fail all
possible reductions (fromNP to the modified set) as well as all possible polynomial-
time decision procedures (for the modified set). Specifically, starting with
S ∈ NP \ P , we derive S′ ⊂ S such that on the one hand there is no polynomial-time

82



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

reduction of S to S′ while on the other hand S′ ∈ NP \ P . The process of modi-
fying S into S′ proceeds in iterations, alternatively failing a potential reduction (by
dropping sufficiently many strings from the rest of S) and failing a potential decision
procedure (by including sufficiently many strings from the rest of S). Specifically,
each potential reduction of S to S′ can be failed by dropping finitely many elements
from the current S′, whereas each potential decision procedure can be failed by
keeping finitely many elements of the current S′. These two assertions are based on
the following two corresponding facts:

1. Any polynomial-time reduction (of any set not in P) to any finite set (e.g., a finite
subset of S) must fail, because only sets in P are Cook-reducible to a finite set.
Thus, for any finite set F1 and any potential reduction (i.e., a polynomial-time
oracle machine), there exists an input x on which this reduction to F1 fails.

We stress that the aforementioned reduction fails while the only queries that are
answered positively are those residing in F1. Furthermore, the aforementioned
failure is due to a finite set of queries (i.e., the set of all queries made by the
reduction when invoked on an input that is smaller or equal to x). Thus, for every
finite set F1 ⊂ S′ ⊆ S, any reduction of S to S′ can be failed by dropping a finite
number of elements from S′ and without dropping elements of F1.

2. For every finite set F2, any polynomial-time decision procedure for S \ F2 must
fail, because S is Cook-reducible to S \ F2. Thus, for any potential decision
procedure (i.e., a polynomial-time algorithm), there exists an input x on which
this procedure fails.

We stress that this failure is due to a finite “prefix” of S \ F2 (i.e., the set {z ∈
S \ F2 : z ≤ x}). Thus, for every finite set F2, any polynomial-time decision
procedure for S \ F2 can be failed by keeping a finite subset of S \ F2.

As stated, the process of modifying S into S′ proceeds in iterations, alternatively
failing a potential reduction (by dropping finitely many strings from the rest of S)
and failing a potential decision procedure (by including finitely many strings from
the rest of S). This can be done efficiently because it is inessential to determine the
first possible points of alternation (in which sufficiently many strings were dropped
(resp., included) to fail the next potential reduction (resp., decision procedure)). It
suffices to guarantee that adequate points of alternation (albeit highly non-optimal
ones) can be efficiently determined. Thus, S′ is the intersection of S and some set
in P , which implies that S′ ∈ NP . Following are some comments regarding the
implementation of the foregoing idea.

The first issue is that the foregoing plan calls for an (“effective”) enumeration of
all polynomial-time oracle machines (resp., polynomial-time algorithms). However,
none of these sets can be enumerated (by an algorithm). Instead, we enumerate
all corresponding machines along with all possible polynomials, and for each pair
(M, p) we consider executions of machine M with time bound specified by the
polynomial p. That is, we use the machine Mp obtained from the pair (M, p) by
suspending the execution of M on input x after p(|x |) steps. We stress that we do
not know whether machine M runs in polynomial time, but the computations of any
polynomial-time machine is “covered” by some pair (M, p).

Next, let us clarify the process in which reductions and decision procedures are
ruled out. We present a construction of a “filter” set F in P such that the final set S′

83



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

will equal S ∩ F . Recall that we need to select F such that each polynomial-time
reduction of S to S ∩ F fails, and each polynomial-time procedure for deciding
S ∩ F fails. The key observation is that for every finite F ′ each polynomial-time
reduction of S to S ∩ F ′ fails, whereas for every co-finite F ′ (i.e., finite {0, 1}∗ \ F ′)
each polynomial-time procedure for deciding S ∩ F ′ fails. Furthermore, each of
these failures occurs on some input, and such an input can be determined by finite
portions of S and F . Thus, we alternate between failing possible reductions and
decision procedures on some inputs, while not trying to determine the “optimal”
points of alternation but rather determining points of alternation in an efficient
manner (which in turn allows for efficiently deciding membership in F). Specifically,
we let F = {x : f (|x |) ≡ 1 mod 2}, where f : N→ {0} ∪ N will be defined such
that (i) each of the first f (n)− 1 machines is failed by some input of length at most
n, and (ii) the value f (n) can be computed in time poly(n).

The value of f (n) is defined by the following process that performs exactly
n3 computation steps (where cubic time is a rather arbitrary choice). The process
proceeds in (an a priori unknown number of) iterations, where in the i + 1st iteration
we try to find an input on which the i + 1st (modified) machine fails. Specifically,
in the i + 1st iteration we scan all inputs, in lexicographic order, until we find an
input on which the i + 1st (modified) machine fails, where this machine is an oracle
machine if i + 1 is odd and a standard machine otherwise. If we detect a failure of
the i + 1st machine, then we increment i and proceed to the next iteration. When
we reach the allowed number of steps (i.e., n3 steps), we halt outputting the current
value of i (i.e., the current i is output as the value of f (n)). Needless to say, this
description is heavily based on determining whether or not the i + 1st machine fails
on specific inputs. Intuitively, these inputs will be much shorter than n, and so
performing these decisions in time n3 (or so) is not out of the question – see next
paragraph.

In order to determine whether or not a failure (of the i + 1st machine) occurs
on a particular input x , we need to emulate the computation of this machine on
input x as well as determine whether x is in the relevant set (which is either S or
S′ = S ∩ F). Recall that if i + 1 is even then we need to fail a standard machine
(which attempts to decide S′) and otherwise we need to fail an oracle machine
(which attempts to reduce S to S′). Thus, for even i + 1 we need to determine
whether x is in S′ = S ∩ F , whereas for odd i + 1 we need to determine whether
x is in S as well as whether some other strings (which appear as queries) are in S′.
Deciding membership in S ∈ NP can be done in exponential time (by using the
exhaustive search algorithm that tries all possible NP-witnesses). Indeed, this means
that when computing f (n) we may only complete the treatment of inputs that are
of logarithmic (in n) length, but anyhow in n3 steps we cannot hope to reach (in
our lexicographic scanning) strings of length greater than 3 log2 n. As for deciding
membership in F , this requires the ability to compute f on adequate integers. That
is, we may need to compute the value of f (n′) for various integers n′, but as noted
n′ will be much smaller than n (since n′ ≤ poly(|x |) ≤ poly(log n)). Thus, the value
of f (n′) is just computed recursively (while counting the recursive steps in our total
number of steps).20 The point is that, when considering an input x , we may need the

20We do not bother to present a more efficient implementation of this process. That is, we may afford to recompute
f (n′) every time we need it (rather than store it for later use).

84



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.3. NP-COMPLETENESS

values of f only on {1, . . . , pi+1(|x |)}, where pi+1 is the polynomial bounding the
running time of the i + 1st (modified) machine, and obtaining such a value takes
at most pi+1(|x |)3 steps. We conclude that the number of steps performed toward
determining whether or not a failure (of the i + 1st machine) occurs on the input x
is upper-bounded by an (exponential) function of |x |.

As hinted in the foregoing, the procedure will complete n3 steps long before
examining inputs of length greater than 3 log2 n, but this does not matter. What
matters is that f is unbounded (see Exercise 2.34). Furthermore, by construction,
f (n) is computed in poly(n) time.

Comment. The proof of Theorem 2.28 actually establishes that for every S �∈ P there
exists S′ �∈ P such that S′ is Karp-reducible to S but S is not Cook-reducible to S′.21 Thus,
if P �= NP then there exists an infinite sequence of sets S1, S2, . . . in NP \ P such that
Si+1 is Karp-reducible to Si but Si is not Cook-reducible to Si+1. That is, there exists an
infinite hierarchy of problems (albeit unnatural ones), all in NP , such that each problem
is “easier” than the previous ones (in the sense that it can be reduced to the previous
problems while these problems cannot be reduced to it).

2.3.5. Reflections on Complete Problems

This book will perhaps only be understood by those who have themselves already
thought the thoughts which are expressed in it – or similar thoughts. It is therefore
not a text-book. Its object would be attained if it afforded pleasure to one who
read it with understanding.

Ludwig Wittgenstein, Tractatus Logico-Philosophicus

Indeed, this section should be viewed as an invitation to meditate together on questions
of the type what enables the existence of complete problems? Accordingly, the style is
intentionally naive and imprecise; this entire section may be viewed as an open-ended
exercise, asking the reader to consider substantiations of the vague text.

We know that NP-complete problems exist. The question we ask here is what aspects
in our modeling of problems enables the existence of complete problems. We should, of
course, bear in mind that completeness refers to a class of problems; the complete problem
should “encode” each problem in the class and be itself in the class. Since the first aspect,
hereafter referred to as encodability of a class, is amazing enough (at least to a layman),
we start by asking what enables it. We identify two fundamental paradigms, regarding the
modeling of problems, that seem essential to the encodability of any (infinite) class of
problems:

1. Each problem refers to an infinite set of possible instances.
2. The specification of each problem uses a finite description (e.g., an algorithm that

enumerates all the possible solutions for any given instance).22

These two paradigms seem somewhat conflicting, yet put together they suggest the defini-
tion of a universal problem, that is, a problem that refers to instances of the form (D, x),

21The said Karp-reduction (of S′ to S) maps x to itself if x ∈ F and otherwise maps x to a fixed no-instance of S.
22This seems the most naive notion of a description of a problem. An alternative notion of a description refers to

an algorithm that recognizes all valid instance-solution pairs (as in the definition of NP). However, at this point, we
allow also “non-effective” descriptions (as giving rise to the Halting Problem).

85



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

where D is a description of a problem and x is an instance to that problem (and we seek a
solution to x with respect to D). Intuitively, this universal problem can encode any other
problem (provided that problems are modeled in a way that conforms with the foregoing
paradigms): Solving the universal problem allows solving any other problem.23

Note that the foregoing universal problem is actually complete with respect to the
class of all problems, but it is not complete with respect to any class that contains only
(algorithmically) solvable problems (because this universal problem is not solvable).
Turning our attention to classes of solvable problems, we seek versions of the universal
problem that are complete for these classes. One archetypical difficulty that arises is that,
given a description D (as part of the instance to the universal problem), we cannot tell
whether or not D is a description of a problem in a predetermined class C (because this
decision problem is unsolvable). This fact is relevant because24 if the universal problem
requires solving instances that refer to a problem not in C then intuitively it cannot be
itself in C.

Before turning to the resolution of the foregoing difficulty, we note that the aforemen-
tioned modeling paradigms are pivotal to the theory of computation at large. In particular,
so far we made no reference to any complexity consideration. Indeed, a complexity con-
sideration is the key to resolving the foregoing difficulty: The idea is modifying any
description D into a description D′ such that D′ is always in C, and D′ agrees with D in
the case that D is in C (i.e., in this case they described exactly the same problem). We
stress that in the case that D is not in C, the corresponding problem D′ may be arbitrary
(as long as it is in C). Such a modification is possible with respect to many complexity
theoretic classes. We consider two different types of classes, where in both cases the class
is defined in terms of the time complexity of algorithms that do something related to the
problem (e.g., recognize valid solutions, as in the definition of NP).

1. Classes defined by a single time-bound function t (e.g., t(n) = n3). In this case,
any algorithm D is modified to the algorithm D′ that, on input x , emulates (up to)
t(|x |) steps of the execution of D(x). The modified version of the universal problem
treats the instance (D, x) as (D′, x). This version can encode any problem in the said
class C.

But will this (version of the universal) problem be itself in C? The answer depends
both on the efficiency of emulation in the corresponding computational model and on
the growth rate of t . For example, for triple-exponential t , the answer will be definitely
yes, because t(|x |) steps can be emulated in poly(t(|x |)) time (in any reasonable model)
while t(|(D, x)|) > t(|x | + 1) > poly(t(|x |)). On the other hand, in most reasonable
models, the emulation of t(|x |) steps requires ω(t(|x |)) time while for any polynomial
t it holds that t(n + O(1)) < 2t(n).

2. Classes defined by a family of infinitely many functions of different growth rate (e.g.,
polynomials). We can, of course, select a function t that grows faster than any function
in the family and proceed as in the prior case, but then the resulting universal problem
will definitely not be in the class.

23Recall, however, that the universal problem is not (algorithmically) solvable. Thus, both clauses of the implication
are false. Indeed, the notion of a problem is rather vague at this stage; it certainly extends beyond the set of all solvable
problems.

24Here we ignore the possibility of using promise problems, which do enable avoiding such instances without
requiring anybody to recognize them. Indeed, using promise problems resolves this difficulty, but the issues discussed
following the next paragraph remain valid.

86



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.4. THREE RELATIVELY ADVANCED TOPICS

Note that in the current case, a complete problem will indeed be striking because, in
particular, it will be associated with one function t0 that grows more moderately than
some other functions in the family (e.g., a fixed polynomial grows more moderately
than other polynomials). Seemingly this means that the algorithm describing the
universal machine should be faster than some algorithms that describe some other
problems in the class. This impression presumes that the instances of both problems are
(approximately) of the same length, and so we intensionally violate this presumption
by artificially increasing the length of the description of the instances to the universal
problem. For example, if D is associated with the time bound tD , then the instance
(D, x) to the universal problem is presented as, say, (D, x, 1t−1

0 (tD(|x |)2)), where in the
case of NP we used t0(n) = n.

We believe that the last item explains the existence of NP-complete problems. But what
about the NP-completeness of SAT?

We first note that the NP-hardness of CSAT is an immediate consequence of the fact
that Boolean circuits can emulate algorithms.25 This fundamental fact is rooted in the
notion of an algorithm (which postulates the simplicity of a single computational step)
and holds for any reasonable model of computation. Thus, for every D and x , the problem
of finding a string y such that D(x, y) = 1 is “encoded” as finding a string y such that
CD,x (y) = 1, where CD,x is a Boolean circuit that is easily derived from (D, x). In contrast
to the fundamental fact underlying the NP-hardness of CSAT, the NP-hardness of SAT
relies on a clever trick that allows for encoding instances of CSAT as instances of SAT.

As stated, the NP-completeness of SAT is proved by encoding instances of CSAT as
instances of SAT. Similarly, the NP-completeness of other new problems is proved by
encoding instances of problems that are already known to be NP-complete. Typically,
these encodings operate in a local manner, mapping small components of the original
instance to local gadgets in the produced instance. Indeed, these problem-specific gadgets
are the core of the encoding phenomenon. Presented with such a gadget, it is typically
easy to verify that it works. Thus, one cannot be surprised by most of these gadgets, but
the fact that they exist for thousands of natural problem is definitely amazing.

2.4. Three Relatively Advanced Topics

In this section we discuss three relatively advanced topics. The first topic, which was
eluded to in previous sections, is the notion of promise problems (Section 2.4.1). Next we
present an optimal search algorithm for NP (Section 2.4.2), and discuss the class (coNP)
of sets that are complements of sets in NP.

Teaching note: These topics are typically not mentioned in a basic course on complexity.
Still, depending on time constraints, we suggest discussing them at least at a high level.

2.4.1. Promise Problems

Promise problems are a natural generalization of search and decision problems, where
one explicitly considers a set of legitimate instances (rather than considering any string as

25The fact that CSAT is in NP is a consequence of the fact that the circuit evaluation problem is solvable in
polynomial time.

87



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

a legitimate instance). As noted previously, this generalization provides a more adequate
formulation of natural computational problems (and indeed this formulation is used in all
informal discussions). For example, in §2.3.3.2 we presented such problems using phrases
like “given a graph and an integer . . .” (or “given a collection of sets . . .”). In other words,
we assumed that the input instance has a certain format (or rather we “promised the
solver” that this is the case). Indeed, we claimed that in these cases the assumption can
be removed without affecting the complexity of the problem, but we avoided providing a
formal treatment of this issue, which is done next.

Teaching note: The notion of promise problems was originally introduced in the context of
decision problems, and is typically used only in that context. However, we believe that promise
problems are as natural in the context of search problems.

2.4.1.1. Definitions
In the context of search problems, a promise problem is a relaxation in which one is
only required to find solutions to instances in a predetermined set, called the promise.
The requirement regarding efficient checkability of solutions is adapted in an analogous
manner.

Definition 2.29 (search problems with a promise): A search problem with a promise
consists of a binary relation R ⊆ {0, 1}∗ × {0, 1}∗ and a promise set P. Such a
problem is also referred to as the search problem R with promise P.

• The search problem R with promise P is solved by algorithm A if for every x ∈ P
it holds that (x, A(x)) ∈ R if x ∈ SR = {x : R(x) �= ∅} and A(x) = ⊥ otherwise,
where R(x) = {y : (x, y) ∈ R}.
The time complexity of A on inputs in P is defined as TA|P (n)

def=
maxx∈P∩{0,1}n {tA(x)}, where tA(x) is the running time of A(x) and TA|P (n) = 0 if
P ∩ {0, 1}n = ∅.

• The search problem R with promise P is in the promise problem extension of
PF if there exists a polynomial-time algorithm that solves this problem.26

• The search problem R with promise P is in the promise problem extension of PC
if there exists a polynomial T and an algorithm A such that, for every x ∈ P and
y ∈ {0, 1}∗, algorithm A makes at most T (|x |) steps and it holds that A(x, y) = 1
if and only if (x, y) ∈ R.

We stress that nothing is required of the solver in the case that the input violates the
promise (i.e., x �∈ P); in particular, in such a case the algorithm may halt with a wrong
output. (Indeed, the standard formulation of search problems is obtained by considering
the trivial promise P = {0, 1}∗.)27 In addition to the foregoing motivation for promise
problems, we mention one natural class of search problems with a promise. These are
search problem in which the promise is that the instance has a solution (i.e., in terms of

26In this case it does not matter whether the time complexity of A is defined on inputs in P or on all possible
strings. Suppose that A has (polynomial) time complexity T on inputs in P; then we can modify A to halt on any input
x after at most T (|x |) steps. This modification may only effects the output of A on inputs not in P (which is OK by
us). The modification can be implemented in polynomial time by computing t = T (|x |) and emulating the execution
of A(x) for t steps. A similar comment applies to the definition of PC, P , and NP .

27Here we refer to the formulation presented in Section 2.1.4.

88



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.4. THREE RELATIVELY ADVANCED TOPICS

the foregoing notation P = SR , where SR
def= {x : ∃y s.t. (x, y) ∈ R}). We refer to such

search problems by the name candid search problems.

Definition 2.30 (candid search problems): An algorithm A solves the candid search
problem of the binary relation R if for every x ∈ SR (i.e., for every (x, y)∈ R)
it holds that (x, A(x)) ∈ R. The time complexity of such an algorithm is defined
as TA|SR (n)

def= maxx∈P∩{0,1}n {tA(x)}, where tA(x) is the running time of A(x) and
TA|SR (n) = 0 if P ∩ {0, 1}n = ∅.

Note that nothing is required when x �∈ SR: In particular, algorithm A may either output
a wrong solution (although no solutions exist) or run for more than TA|SR (|x |) steps. The
first case can be essentially eliminated whenever R ∈ PC. Furthermore, for R ∈ PC,
if we “know” the time complexity of algorithm A (e.g., if we can compute TA|SR (n) in
poly(n)-time), then we may modify A into an algorithm A′ that solves the (general)
search problem of R (i.e., halts with a correct output on each input) in time TA′(n) =
TA|SR (n)+ poly(n). However, we do not necessarily know the running time of an algorithm
that we consider. Furthermore, as we shall see in Section 2.4.2, the naive assumption by
which we always know the running time of an algorithm that we design is not valid
either.

Decision problems with a promise. In the context of decision problems, a promise
problem is a relaxation in which one is only required to determine the status of instances
that belong to a predetermined set, called the promise. The requirement of efficient
verification is adapted in an analogous manner. In view of the standard usage of the term,
we refer to decision problems with a promise by the name promise problems. Formally,
promise problems refer to a three-way partition of the set of all strings into yes-instances,
no-instances, and instances that violate the promise. Standard decision problems are
obtained as a special case by insisting that all inputs are allowed (i.e., the promise is
trivial).

Definition 2.31 (promise problems): A promise problem consists of a pair of non-
intersecting sets of strings, denoted (Syes, Sno), and Syes ∪ Sno is called the promise.

• The promise problem (Syes, Sno) is solved by algorithm A if for every x ∈ Syes it
holds that A(x) = 1 and for every x ∈ Sno it holds that A(x) = 0. The promise
problem is in the promise problem extension ofP if there exists a polynomial-time
algorithm that solves it.

• The promise problem (Syes, Sno) is in the promise problem extension of NP if
there exists a polynomial p and a polynomial-time algorithm V such that the
following two conditions hold:
1. Completeness: For every x ∈ Syes, there exists y of length at most p(|x |) such

that V (x, y) = 1.
2. Soundness: For every x ∈ Sno and every y, it holds that V (x, y) = 0.

We stress that for algorithms of polynomial-time complexity, it does not matter whether
the time complexity is defined only on inputs that satisfy the promise or on all strings (see
footnote 26). Thus, the extended classes P and NP (like PF and PC) are invariant under
this choice.

89



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Reducibility among promise problems. The notion of a Cook-reduction extend natu-
rally to promise problems, when postulating that a query that violates the promise (of
the problem at the target of the reduction) may be answered arbitrarily.28 That is, the
oracle machine should solve the original problem no matter how queries that violate the
promise are answered. The latter requirement is consistent with the conceptual meaning
of reductions and promise problems. Recall that reductions capture procedures that make
subroutine calls to an arbitrary procedure that solves the reduced problem. But, in the case
of promise problems, such a solver may behave arbitrarily on instances that violate the
promise. We stress that the main property of a reduction is preserved (see Exercise 2.35):
If the promise problem � is Cook-reducible to a promise problem that is solvable in
polynomial time, then � is solvable in polynomial time.

We warn that the extension of a complexity class to promise problems does not neces-
sarily inherit the “structural” properties of the standard class. For example, in contrast to
Theorem 2.35, there exists promise problems in NP ∩ coNP such that every set in NP
can be Cook-reduced to them: see Exercise 2.36. Needless to say, NP = coNP does not
seem to follow from Exercise 2.36. See further discussion at the end of §2.4.1.2.

2.4.1.2. Applications
The following discussion refers both to the decision and search versions of promise
problems. Recall that promise problems offer the most direct way of formulating natu-
ral computational problems (e.g., when referring to computational problems regarding
graphs, the promise mandates that the input is a graph). In addition to the foregoing
application of promise problems, we mention their use in formulating the natural notion
of a restriction of a computational problem to a subset of the instances. Specifically, such
a restriction means that the promise set of the restricted problem is a subset of the promise
set of the unrestricted problem.

Definition 2.32 (restriction of computational problems):

• For any P ′ ⊆ P and binary relation R, we say that the search problem R with
promise P ′ is a restriction of the search problem R with promise P.

• We say that the promise problem (S′yes, S′no) is a restriction of the promise problem
(Syes, Sno) if both S′yes ⊆ Syes and S′no ⊆ Sno hold.

For example, when we say that 3SAT is a restriction of SAT, we refer to the fact that
the set of allowed instances is now restricted to 3CNF formulae (rather than to arbitrary
CNF formulae). In both cases, the computational problem is to determine satisfiability (or
to find a satisfying assignment), but the set of instances (i.e., the promise set) is further
restricted in the case of 3SAT. The fact that a restricted problem is never harder than the
original problem is captured by the fact that the restricted problem is reducible to the
original one (via the identity mapping).

Other uses and some reservations. In addition to the two aforementioned generic uses
of the notion of a promise problem, we mention that this notion provides adequate

28It follows that Karp-reductions among promise problems are not allowed to make queries that violate the
promise. Specifically, we say that the promise problem � = (�yes, �no) is Karp-reducible to the promise problem
�′ = (�′yes, �

′
no) if there exists a polynomial-time mapping f such that for every x ∈ �yes (resp., x ∈ �no) it holds

that f (x) ∈ �′yes (resp., f (x) ∈ �′no).

90



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.4. THREE RELATIVELY ADVANCED TOPICS

formulations for a variety of specific computational complexity notions and results. Ex-
amples include the notion of “unique solutions” (see Section 6.2.3) and the formulation of
“gap problems” as capturing various approximation tasks (see Section 10.1). In all these
cases, promise problems allow for discussing natural computational problems and mak-
ing statements about their inherent complexity. Thus, the complexity of promise problems
(and classes of such problems) addresses natural questions and concerns. Consequently,
demonstrating the intractability of a promise problem that belongs to some class (e.g., say-
ing that some promise problem in NP cannot be solved by a polynomial-time algorithm)
carries the same conceptual message as demonstrating the intractability of a standard prob-
lem in the corresponding class. In contrast, as indicated at the end of §2.4.1.1, structural
properties of promise problems may not hold for the corresponding classes of standard
problems (e.g., see Exercise 2.36). Indeed, we do distinguish here between the inherent
(or absolute) properties such as intractability and structural (or relative) properties such as
reducibility.

2.4.1.3. The Standard Convention of Avoiding Promise Problems
Recall that, although promise problems provide a good framework for presenting natural
computational problems, we managed to avoid this framework in previous sections. This
was done by relying on the fact that, for all the (natural) problems considered in the
previous sections, it is easy to decide whether or not a given instance satisfies the promise.
For example, given a formula it is easy to decide whether or not it is in CNF (or 3CNF).
Actually, the issue arises already when talking about formulae: What we are actually given
is a string that is supposed to encode a formula (under some predetermined encoding
scheme), and so the promise (which is easy to decide for natural encoding schemes) is
that the input string is a valid encoding of some formula. In any case, if the promise
is efficiently recognizable (i.e., membership in it can be decided in polynomial time),
then we may avoid mentioning the promise by using one of the following two “nasty”
conventions:

1. Extending the set of instances to the set of all possible strings (and allowing trivial
solutions for the corresponding dummy instances). For example, in the case of a
search problem, we may either define all instances that violate the promise to have no
solution or define them to have a trivial solution (e.g., be a solution for themselves);
that is, for a search problem R with promise P , we may consider the (standard) search
problem of R where R is modified such that R(x) = ∅ for every x �∈ P (or, say,
R(x) = {x} for every x �∈ P). In the case of a promise (decision) problem (Syes, Sno),
we may consider the problem of deciding membership in Syes, which means that
instances that violate the promise are considered as no-instances.

2. Considering every string as a valid encoding of an object that satisfies the promise.
That is, fixing any string x0 that satisfies the promise, we consider every string that
violates the promise as if it were x0. In the case of a search problem R with promise
P , this means considering the (standard) search problem of R where R is modified
such that R(x) = R(x0) for every x �∈ P . Similarly, in the case of a promise (decision)
problem (Syes, Sno), we consider the problem of deciding membership in Syes (provided
x0 ∈ Sno and otherwise we consider the problem of deciding membership in {0, 1}∗ \
Sno).

We stress that in the case that the promise is efficiently recognizable the aforementioned
conventions (or modifications) do not effect the complexity of the relevant (search or

91



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

decision) problem. That is, rather than considering the original promise problem, we
consider a (search or decision) problem (without a promise) that is computationally
equivalent to the original one. Thus, in some sense we lose nothing by studying the latter
problem rather than the original one. On the other hand, even in the case that these two
problems are computationally equivalent, it is useful to have a formulation that allows
for distinguishing between them (as we do distinguish between the different NP-complete
problems although they are all computationally equivalent). This conceptual concern
becomes of crucial importance in the case (to be discussed next) that the promise is not
efficiently recognizable.

The foregoing transformations of promise problems into computationally equivalent
standard (decision and search) problems do not necessarily preserve the complexity of
the problem in the case that the promise is not efficiently recognizable. In this case, the
terminology of promise problems is unavoidable. Consider, for example, the problem of
deciding whether a Hamiltonian graph is 3-colorable. On the face of it, such a problem
may have fundamentally different complexity than the problem of deciding whether a
given graph is both Hamiltonian and 3-colorable.

In spite of the foregoing opinions, we adopt the convention of focusing on standard
decision and search problems. That is, by default, all complexity classes discussed in
this book refer to standard decision and search problems, and the exceptions in which
we refer to promise problems are explicitly stated as such. Such exceptions appear in
Sections 2.4.2, 6.1.3, 6.2.3, and 10.1.

2.4.2. Optimal Search Algorithms for NP

We actually refer to solving the candid search problem of any relation in PC. Recall that
PC is the class of search problems that allow for efficient checking of the correctness of
candidate solutions (see Definition 2.3), and that the candid search problem is a search
problem in which the solver is promised that the given instance has a solution (see
Definition 2.30).

We claim the existence of an optimal algorithm for solving the candid search problem
of any relation in PC. Furthermore, we will explicitly present such an algorithm, and
prove that it is optimal in a very strong sense: For any algorithm solving the candid
search problem of R ∈ PC, our algorithm solves the same problem in time that is at
most a constant factor slower (ignoring a fixed additive polynomial term, which may be
disregarded in the case that the problem is not solvable in polynomial time). Needless to
say, we do not know the time complexity of the aforementioned optimal algorithm (indeed
if we knew it then we would have resolved the P-vs-NP Question). In fact, the P-vs-NP
Question boils down to determining the time complexity of a single explicitly presented
algorithm (i.e., the optimal algorithm claimed in Theorem 2.33).

Theorem 2.33: For every binary relation R ∈ PC there exists an algorithm A that
satisfies the following:

1. A solves the candid search problem of R.
2. There exists a polynomial p such that for every algorithm A′ that solves the

candid search problem of R and for every x ∈ SR (i.e., for every (x, y)∈ R) it
holds that tA(x) = O(tA′(x)+ p(|x |)), where tA(x) (resp., tA′(x)) denotes the
number of steps taken by A (resp., A′) on input x.

92



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.4. THREE RELATIVELY ADVANCED TOPICS

Interestingly, we establish the optimality of A without knowing what its (optimal) running
time is. Furthermore, the optimality claim is “pointwise” (i.e., it refers to any input) rather
than “global” (i.e., referring to the (worst-case) time complexity as a function of the input
length).

We stress that the hidden constant in the O-notation depends only on A′, but in the
following proof this dependence is exponential in the length of the description of algorithm
A′ (and it is not known whether a better dependence can be achieved). Indeed, this
dependence as well as the idea underlying it constitute one negative aspect of this otherwise
amazing result. Another negative aspect is that the optimality of algorithm A refers only
to inputs that have a solution (i.e., inputs in SR). Finally, we note that the theorem as
stated refers only to models of computation that have machines that can emulate a given
number of steps of other machines with a constant overhead. We mention that in most
natural models the overhead of such emulation is at most poly-logarithmic in the number
of steps, in which case it holds that tA(x) = Õ(tA′(x)+ p(|x |)).

Proof Sketch: Fixing R, we let M be a polynomial-time algorithm that decides
membership in R, and let p be a polynomial bounding the running time of M
(as a function of the length of the first element in the input pair). Using M , we
present an algorithm A that solves the candid search problem of R as follows. On
input x , algorithm A emulates all possible search algorithms “in parallel” (on input
x), checks the result provided by each of them (using M), and halts whenever it
recognizes a correct solution. Indeed, most of the emulated algorithms are totally
irrelevant to the search, but using M we can screen the bad solutions offered by
them and output a good solution once obtained.

Since there are infinitely many possible algorithms, it may not be clear what
we mean by the expression “emulating all possible algorithms in parallel.” What
we mean is emulating them at different “rates” such that the infinite sum of these
rates converges to 1 (or to any other constant). Specifically, we will emulate the
i th possible algorithm at rate 1/(i + 1)2, which means emulating a single step of
this algorithm per (i + 1)2 emulation steps (performed for all algorithms). Note that
a straightforward implementation of this idea may create a significant overhead,
involved in switching frequently from the emulation of one machine to the emula-
tion of another. Instead, we present an alternative implementation that proceeds in
iterations.

In the j th iteration, for i = 1, . . . , 2 j/2 − 1, algorithm A emulates 2 j/(i + 1)2

steps of the i th machine (where the machines are ordered according to the lexico-
graphic order of their descriptions). Each of these emulations is conducted in one
chunk, and thus the overhead of switching between the various emulations is in-
significant (in comparison to the total number of steps being emulated). In the case
that one or more of these emulations (on input x) halt with output y, algorithm A
invokes M on input (x, y) and output y if and only if M(x, y) = 1. Furthermore,
the verification of a solution provided by a candidate algorithm is also emulated at
the expense of its step count. (Put in other words, we augment each algorithm with
a canonical procedure (i.e., M) that checks the validity of the solution offered by
the algorithm.)

By its construction, whenever A(x) outputs a string y (i.e., y �= ⊥) it must hold
that (x, y) ∈ R. To show the optimality of A, we consider an arbitrary algorithm
A′ that solves the candid search problem of R. Our aim is to show that A is

93



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

not much slower than A′. Intuitively, this is the case because the overhead of A
results from emulating other algorithms (in addition to A′), but the total number
of emulation steps wasted (due to these algorithms) is inversely proportional to
the rate of algorithm A′, which in turn is exponentially related to the length of the
description of A′. The punch line is that since A′ is fixed, the length of its description
is a constant. Details follow.

For every x , let us denote by t ′(x) the number of steps taken by A′ on input x , where
t ′(x) also accounts for the running time of M(x, ·); that is, t ′(x) = tA′(x)+ p(|x |),
where tA′(x) is the number of steps taken by A′(x) itself. Then, the emulation
of t ′(x) steps of A′ on input x is “covered” by the j th iteration of A, provided
that 2 j/(2|A

′|+1)2 ≥ t ′(x) where |A′| denotes the length of the description of A′.
(Indeed, we use the fact that the algorithms are emulated in lexicographic order, and
note that there are at most 2|A

′|+1 − 2 algorithms that precede A′ in lexicographic
order.) Thus, on input x , algorithm A halts after at most jA′(x) iterations, where
jA′(x) = 2(|A′| + 1)+ log2(tA′(x)+ p(|x |)), after emulating a total number of steps
that is at most

t(x)
def=

jA′ (x)∑
j=1

2 j/2−1∑
i=1

2 j

(i + 1)2
< 2 jA′ (x)+1 = 22|A′|+3 · (tA′(x)+ p(|x |)).

The question of how much time is required for emulating these many steps depends
on the specific model of computation. In many models of computation, the emulation
of t steps of one machine by another machine requires Õ(t) steps of the emulating
machines, and in some models this emulation can even be performed with constant
overhead. The theorem follows.

Comment. By construction, the foregoing algorithm A does not halt on input x �∈ SR .
This can be easily rectified by letting A emulate a straightforward exhaustive search for a
solution, and halt with output ⊥ if and only if this exhaustive search indicates that there
is no solution to the current input. This extra emulation can be performed in parallel to
all other emulations (e.g., at a rate of one step for the extra emulation per each step of
everything else).

2.4.3. The Class coNP and Its Intersection with NP

By prepending the name of a complexity class (of decision problems) with the prefix “co”
we mean the class of complement sets; that is,

coC def= {{0, 1}∗ \ S : S ∈ C}. (2.4)

Specifically, coNP = {{0, 1}∗ \ S : S ∈ NP} is the class of sets that are complements of
sets in NP .

Recalling that sets in NP are characterized by their witness relations such that x ∈ S
if and only if there exists an adequate NP-witness, it follows that their complement
sets consist of all instances for which there are no NP-witnesses (i.e., x ∈ {0, 1}∗ \ S
if there is no NP-witness for x being in S). For example, SAT ∈ NP implies that the
set of unsatisfiable CNF formulae is in coNP . Likewise, the set of graphs that are not
3-colorable is in coNP . (Jumping ahead, we mention that it is widely believed that these
sets are not in NP .)

94



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

2.4. THREE RELATIVELY ADVANCED TOPICS

Another perspective on coNP is obtained by considering the search problems in
PC. Recall that for such R ∈ PC, the set of instances having a solution (i.e., SR = {x :
∃y s.t. (x, y)∈ R}) is in NP . It follows that the set of instances having no solution (i.e.,
{0, 1}∗ \ SR = {x : ∀y (x, y) �∈ R}) is in coNP .

It is widely believed that NP �= coNP (which means that NP is not closed under
complementation). Indeed, this conjecture implies P �= NP (because P is closed under
complementation). The conjecture NP �= coNP means that some sets in coNP do not
have NP-proof systems (because NP is the class of sets having NP-proof systems). As
we will show next, under this conjecture, the complements of NP-complete sets do not
have NP-proof systems; for example, there exists no NP-proof system for proving that a
given CNF formula is not satisfiable. We first establish this fact for NP-completeness in
the standard sense (i.e., under Karp-reductions, as in Definition 2.17).

Proposition 2.34: Suppose that NP �= coNP and let S ∈ NP such that every set
in NP is Karp-reducible to S. Then S

def= {0, 1}∗ \ S is not in NP .

Proof Sketch: We first observe that the fact that every set in NP is Karp-reducible
to S implies that every set in coNP is Karp-reducible to S. We next claim that if
S′ is in NP then every set that is Karp-reducible to S′ is also in NP . Applying the
claim to S′ = S, we conclude that S ∈ NP implies coNP ⊆ NP , which in turn
implies NP = coNP in contradiction to the main hypothesis.

We now turn to prove the foregoing claim; that is, we prove that if S′ has an NP-
proof system and S′′ is Karp-reducible to S′ then S′′ has an NP-proof system. Let
V ′ be the verification procedure associated with S′, and let f be a Karp-reduction
of S′′ to S′. Then, we define the verification procedure V ′′ (for membership in S′′)
by V ′′(x, y) = V ′( f (x), y). That is, any NP-witness that f (x) ∈ S′ serves as an
NP-witness for x ∈ S′′ (and these are the only NP-witnesses for x ∈ S′′). This may
not be a “natural” proof system (for S′′), but it is definitely an NP-proof system
for S′′.

Assuming that NP �= coNP , Proposition 2.34 implies that sets in NP ∩ coNP can-
not be NP-complete with respect to Karp-reductions. In light of other limitations
of Karp-reductions (see, e.g., Exercise 2.7), one may wonder whether or not the ex-
clusion of NP-complete sets from the class NP ∩ coNP is due to the use of a restricted
notion of reductions (i.e., Karp-reductions). The following theorem asserts that this is not
the case: Some sets in NP cannot be reduced to sets in the intersection NP ∩ coNP
even under general reductions (i.e., Cook-reductions).

Theorem 2.35: If every set inNP can be Cook-reduced to some set inNP ∩ coNP
then NP = coNP .

In particular, assuming NP �= coNP , no set in NP ∩ coNP can be NP-complete, even
when NP-completeness is defined with respect to Cook-reductions. Since NP ∩ coNP
is conjectured to be a proper superset of P , it follows (assuming NP �= coNP) that there
are decision problems in NP that are neither in P nor NP-hard (i.e., specifically, the
decision problems in (NP ∩ coNP) \ P). We stress that Theorem 2.35 refers to standard
decision problems and not to promise problems (see Section 2.4.1 and Exercise 2.36).

95



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Proof: Analogously to the proof of Proposition 2.34 , the current proof boils down to
proving that if S is Cook-reducible to a set in NP ∩ coNP then S ∈ NP ∩ coNP .
Using this claim, the theorem’s hypothesis implies that NP ⊆ NP ∩ coNP , which
in turn implies NP ⊆ coNP and NP = coNP (see Exercise 2.37).

Fixing any S and S′ ∈ NP ∩ coNP such that S is Cook-reducible to S′, we
prove that S ∈ NP (and the proof that S ∈ coNP is similar).29 Let us denote by M
the oracle machine reducing S to S′. That is, on input x , machine M makes queries
and decides whether or not to accept x , and its decision is correct provided that all
queries are answered according to S′. To show that S ∈ NP , we will present an NP-
proof system for S. This proof system (or rather its verification procedure), denoted
V , accepts a pair of the form (x, ((z1, σ1, w1), . . . , (zt , σt , wt )) if the following two
conditions hold:

1. On input x , machine M accepts after making the queries z1, . . . , zt , and obtaining
the corresponding answers σ1, . . . , σt .

That is, V checks that, on input x , after obtaining the answers σ1, . . . , σi−1 to
the first i − 1 queries, the i th query made by M equals zi . In addition, V checks
that, on input x and after receiving the answers σ1, . . . , σt , machine M halts with
output 1 (indicating acceptance).

Note that V does not have oracle access to S′. The procedure V rather em-
ulates the computation of M(x) by answering, for each i , the i th query of
M(x) by using the bit σi (provided to V as part of its input). The correct-
ness of these answers will be verified (by V ) separately (i.e., see the next
item).

2. For every i , it holds that if σi = 1 then wi is an NP-witness for zi ∈ S′, whereas
if σi = 0 then wi is an NP-witness for zi ∈ {0, 1}∗ \ S′.
Thus, if this condition holds then it is the case that each σi indicates the correct
status of zi with respect to S′ (i.e., σi = 1 if and only if zi ∈ S′).

We stress that we use the fact that both S′ and S
′ def= {0, 1}∗ \ S have NP-proof

systems, and refer to the corresponding NP-witnesses.
Note that V is indeed an NP-proof system for S. Firstly, the length of the cor-

responding witnesses is bounded by the running time of the reduction (and the
length of the NP-witnesses supplied for the various queries). Next note that V
runs in polynomial-time (i.e., verifying the first condition requires an emulation
of the polynomial-time execution of M on input x when using the σi ’s to emulate
the oracle, whereas verifying the second condition is done by invoking the rele-
vant NP-proof systems). Finally, observe that x ∈ S if and only if there exists a
sequence y

def= ((z1, σ1, w1), . . . , (zt , σt , wt )) such that V (x, y) = 1. In particular,
V (x, y) = 1 holds only if y contains a valid sequence of queries and answers as
made in a computation of M on input x and oracle access to S′, and M accepts
based on that sequence.

The world view – a digest. Recall that on top of the P �= NP conjecture, we mentioned
two other conjectures (which clearly imply P �= NP):

29Alternatively, we show that S ∈ coNP by applying the following argument to S
def= {0, 1}∗ \ S and noting that

S is Cook-reducible to S′ (via S, or alternatively that S is Cook-reducible to {0, 1}∗ \ S′ ∈ NP ∩ coNP).

96



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

P

NPC

coNP

NP

coNPC

Figure 2.5: The world view under P �= coNP ∩NP �= NP .

1. The conjecture that NP �= coNP (equivalently, NP ∩ coNP �= NP).

This conjecture is equivalent to the conjecture that CNF formulae have no short proofs
of unsatisfiability (i.e., the set {0, 1}∗ \ SAT has no NP-proof system).

2. The conjecture that NP ∩ coNP �= P .

Notable candidates for the class NP ∩ coNP �= P include decision problems that
are computationally equivalent to the integer factorization problem (i.e., the search
problem (in PC) in which, given a composite number, the task is to find its prime
factors).

Combining these conjectures, we get the world view depicted in Figure 2.5, which also
shows the class of coNP-complete sets (defined next).

Definition 2.36: A set S is called coNP-hard if every set in coNP is Karp-reducible
to S. A set is called coNP-complete if it is both in coNP and coNP-hard.

Indeed, insisting on Karp-reductions is essential for a distinction between NP-hardness
and coNP-hardness.

Chapter Notes

Many sources provide historical accounts of the developments that led to the formulation
of the P-vs-NP Problem and to the discovery of the theory of NP-completeness (see,
e.g., [85, Sec. 1.5] and [221]). Still, we feel that we should not refrain from offering our
own impressions, which are based on the texts of the original papers.

Nowadays, the theory of NP-completeness is commonly attributed to Cook [58],
Karp [138], and Levin [152]. It seems that Cook’s starting point was his interest in
theorem-proving procedures for propositional calculus [58, p. 151]. Trying to provide
evidence of the difficulty of deciding whether or not a given formula is a tautology, he
identified NP as a class containing “many apparently difficult problems” (cf, e.g., [58,
p. 151]), and showed that any problem in NP is reducible to deciding membership in the
set of 3DNF tautologies. In particular, Cook emphasized the importance of the concept
of polynomial-time reductions and the complexity class NP (both explicitly defined for

97



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

the first time in his paper). He also showed that CLIQUE is computationally equivalent to
SAT, and envisioned a class of problems of the same nature.

Karp’s paper [138] can be viewed as fulfilling Cook’s prophecy: Stimulated by Cook’s
work, Karp demonstrated that a “large number of classic difficult computational prob-
lems, arising in fields such as mathematical programming, graph theory, combinatorics,
computational logic and switching theory, are [NP-]complete (and thus equivalent)” [138,
p. 86]. Specifically, his list of twenty-one NP-complete problems includes Integer Lin-
ear Programming, Hamilton Circuit, Chromatic Number, Exact Set Cover, Steiner Tree,
Knapsack, Job Scheduling, and Max Cut. Interestingly, Karp defined NP in terms of
verification procedures (i.e., Definition 2.5), pointed to its relation to “backtrack search
of polynomial bounded depth” [138, p. 86], and viewed NP as the residence of a “wide
range of important computational problems” (which are not in P).

Independently of these developments, while being in the USSR, Levin proved the ex-
istence of “universal search problems” (where universality meant NP-completeness). The
starting point of Levin’s work [152] was his interest in the “perebor” conjecture asserting
the inherent need for brute force in some search problems that have efficiently checkable
solutions (i.e., problems in PC). Levin emphasized the implication of polynomial-time
reductions on the relation between the time complexity of the related problems (for
any growth rate of the time complexity), asserted the NP-completeness of six “classical
search problems,” and claimed that the underlying method “provides a mean for readily
obtaining” similar results for “many other important search problems.”

It is interesting to note that although the works of Cook [58], Karp [138], and
Levin [152] were received with different levels of enthusiasm, none of the contempo-
raries realized the depth of the discovery and the difficulty of the question posed (i.e., the
P-vs-NP Question). This fact is evident in every account from the early 1970s, and may
explain the frustration of the corresponding generation of researchers, which expected the
P-vs-NP Question to be resolved in their lifetime (if not in a matter of years). Needless to
say, the author’s opinion is that there was absolutely no justification for these expectations,
and that one should have actually expected quite the opposite.

We mention that the three “founding papers” of the theory of NP-completeness (i.e.,
Cook [58], Karp [138], and Levin [152]) use the three different types of reductions used in
this chapter. Specifically, Cook uses the general notion of polynomial-time reduction [58],
often referred to as Cook-reductions (Definition 2.9). The notion of Karp-reductions
(Definition 2.11) originates from Karp’s paper [138], whereas its augmentation to search
problems (i.e., Definition 2.12) originates from Levin’s paper [152]. It is worth stressing
that Levin’s work is stated in terms of search problems, unlike Cook’s and Karp’s works,
which treat decision problems.

The reductions presented in §2.3.3.2 are not necessarily the original ones. Most no-
tably, the reduction establishing the NP-hardness of the Independent Set problem (i.e.,
Proposition 2.26) is adapted from [74] (see also Exercise 9.18). In contrast, the reductions
presented in §2.3.3.1 are merely a reinterpretation of the original reduction as presented
in [58]. The equivalence of the two definitions of NP (i.e., Theorem 2.8) was proved
in [138].

The existence of NP-sets that are neither in P nor NP-complete (i.e., Theorem 2.28) was
proven by Ladner [149], Theorem 2.35 was proven by Selman [198], and the existence of
optimal search algorithms for NP-relations (i.e., Theorem 2.33) was proven by Levin [152].
(Interestingly, the latter result was proven in the same paper in which Levin presented
the discovery of NP-completeness, independently of Cook and Karp.) Promise problems

98



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

were explicitly introduced by Even, Selman, and Yacobi [72]; see [94] for a survey of
their numerous applications.

We mention that the standard reductions used to establish natural NP-completeness
results have several additional properties or can be modified to have such properties. These
properties include an efficient transformation of solutions in the direction of the reduction
(see Exercise 2.28), the preservation of the number of solutions (see Exercise 2.29),
the computability by a log-space algorithm (see Section 5.2.2), and the invertibility in
polynomial-time (see Exercise 2.30). We also mention the fact that all known NP-complete
sets are (effectively) isomorphic (see Exercise 2.31).

Exercises

Exercise 2.1 (PF contains problems that are not in PC): Show that PF contains some
(unnatural) problems that are not in PC.

Guideline: Consider the relation R = {(x, 1) : x ∈ {0, 1}∗} ∪ {(x, 0) : x ∈ S}, where
S is some undecidable set. Note that R is the disjoint union of two binary relations,
denoted R1 and R2, where R1 is in PF whereas R2 is not in PC. Furthermore, for
every x it holds that R1(x) �= ∅.

Exercise 2.2: Show that any S ∈ NP has many different NP-proof systems (i.e., verifi-
cation procedures V1, V2, . . . such that Vi (x, y) = 1 does not imply Vj (x, y) = 1 for
i �= j).

Guideline: For V and p as in Definition 2.5, define Vi (x, y) = 1 if |y| = p(|x |)+ i
and there exists a prefix y′ of y such that V (x, y′) = 1.

Exercise 2.3: Relying on the fact that primality is decidable in polynomial time and
assuming that there is no polynomial-time factorization algorithm, present two “natural
but fundamentally different” NP-proof systems for the set of composite numbers.

Guideline: Consider the following verification procedures V1 and V2 for the set of
composite numbers. Let V1(n, y) = 1 if and only if y = n and n is not a prime, and
V2(n, m) = 1 if and only if m is a non-trivial divisor of n. Show that valid proofs with
respect to V1 are easy to find, whereas valid proofs with respect to V2 are hard to find.

Exercise 2.4: Regarding Definition 2.7, show that if S is accepted by some non-
deterministic machine of time complexity t then it is accepted by a non-deterministic
machine of time complexity O(t) that has a transition function that maps each possible
symbol-state pair to exactly two triples.

Exercise 2.5: Verify the following properties of Cook-reductions:

1. If � is Cook-reducible to �′ and �′ is solvable in polynomial time then so is �.
2. Cook-reductions are transitive (i.e., if � is Cook-reducible to �′ and �′ is Cook-

reducible to �′′ then � is Cook-reducible to �′′).
3. If � is solvable in polynomial time then it is Cook-reducible to any problem �′.

In continuation of the last item, show that a problem � is solvable in polynomial time
if and only if it is Cook-reducible to a trivial problem (e.g., deciding membership in
the empty set).

Exercise 2.6: Show that Karp-reductions (and Levin-reductions) are transitive.

99



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Exercise 2.7: Show that some decision problems are not Karp-reducible to their comple-
ment (e.g., the empty set is not Karp-reducible to {0, 1}∗).

A popular exercise of dubious nature is showing that any decision problem in P
is Karp-reducible to any non-trivial decision problem, where the decision problem
regarding a set S is called non-trivial if S �= ∅ and S �= {0, 1}∗. It follows that every
non-trivial set in P is Karp-reducible to its complement.

Exercise 2.8 (reducing search problems to optimization problems): For every polyno-
mially bounded relation R (resp., R ∈ PC), present a function f (resp., a polynomial-
time computable function f ) such that the search problem of R is computationally
equivalent to the search problem in which given (x, v) one has to find a y ∈ {0, 1}poly(|x |)

such that f (x, y) ≥ v.

(Hint: Use a Boolean function.)

Exercise 2.9 (binary search): Show that using � binary queries of the form “is z < v” it
is possible to determine the value of an integer z that is a priori known to reside in the
interval [0, 2� − 1].

Guideline: Consider a process that iteratively halves the interval in which z is known
to reside.

Exercise 2.10: Show that if R ∈ PC \ PF is self-reducible then the relevant Cook-
reduction makes more than a logarithmic number of queries to SR . More generally, show
that if R ∈ PC \ PF is Cook-reducible to any decision problem, then this reduction
makes more than a logarithmic number of queries.

Guideline: Note that the oracle answers can be emulated by trying all possibilities,
and that the correctness of the output of the oracle machine can be efficiently tested.

Exercise 2.11: Show that the standard search problem of Graph 3-Colorability is self-
reducible, where this search problem consists of finding a 3-coloring for a given input
graph.

Guideline: Iteratively extend the current prefix of a 3-coloring of the graph by making
adequate oracle calls to the decision problem of Graph 3-Colorability. (Specifically,
encode the question of whether or not (χ1, . . . , χt ) ∈ {1, 2, 3}t is a prefix of a 3-
coloring of the graph G as a query regarding the 3-colorability of an auxiliary graph
G ′.)30

Exercise 2.12: Show that the standard search problem of Graph Isomorphism is self-
reducible, where this search problem consists of finding an isomorphism between a
given pair of graphs.

Guideline: Iteratively extend the current prefix of an isomorphism between the two
N -vertex graphs by making adequate oracle calls to the decision problem of Graph
Isomorphism. (Specifically, encode the question of whether or not (π1, . . . , πt ) ∈ [N ]t

30Note that we merely need to check whether G has a 3-coloring in which the equalities and inequalities induced
by (χ1, . . . , χt ) hold. This can be done by adequate gadgets (e.g., inequality is enforced by an edge between the
corresponding vertices, whereas equality is enforced by an adequate subgraph that includes the relevant vertices as
well as auxiliary vertices). For Part 1 of Exercise 2.13, equality is better enforced by combining the two vertices.

100



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

is a prefix of an isomorphism between G1 = ([N ], E1) and G2 = ([N ], E2) as a query
regarding isomorphism between two auxiliary graphs G ′1 and G ′2.)31

Exercise 2.13 (downward self-reducibility): We say that a set S is downward self-
reducible if there exists a Cook-reduction of S to itself that only makes queries that are
each shorter than the reduction’s input (i.e., if on input x the reduction makes the query
q then |q| < |x |).32

1. Show that SAT is downward self-reducible with respect to a natural encoding of
CNF formulae. Note that this encoding should have the property that instantiating a
variable in a formula results in a shorter formula.

A harder exercise consists of showing that Graph 3-Colorability is downward self-
reducible with respect to some reasonable encoding of graphs. Note that this encod-
ing has to be selected carefully (if it is to work for a process analogous to the one
used in Exercise 2.11).

2. Suppose that S is downward self-reducible by a reduction that outputs the disjunction
of the oracle answers. (Note that this is the case for SAT.) Show that in this case,
S is characterized by a witness relation R ∈ PC (i.e., S = {x : R(x) �= ∅}) that is
self-reducible (i.e., the search problem of R is Cook-reducible to S). Needless to
say, it follows that S ∈ NP .

Guideline: Include (x0, 〈x1, . . . , xt 〉) in R if xt ∈ S ∩ {0, 1}O(1) and, for every i ∈
{0, 1, . . . , t − 1}, on input xi the self-reduction makes a set of queries that contains
xi+1. Prove that, indeed, R ∈ PC and S = {x : R(x) �= ∅}.

Note that the notion of downward self-reducibility may be generalized in some natural
ways. For example, we may say that S is downward self-reducible also in case it is
computationally equivalent via Karp-reductions to some set that is downward self-
reducible (in the foregoing strict sense). Note that Part 2 still holds.

Exercise 2.14 (NP problems that are not self-reducible):

1. Assuming that P �= NP ∩ coNP , show that there exists a search problem that is
in PC but is not self-reducible.

Guideline: Given S ∈ NP ∩ coNP \ P , present relations R1, R2 ∈ PC such that S = {x :
R1(x) �= ∅} = {x : R2(x) = ∅}. Then, consider the relation R = {(x, 1y) : (x, y) ∈ R1} ∪
{(x, 0y) : (x, y) ∈ R2}, and prove that R �∈ PF but SR = {0, 1}∗.

2. Prove that if a search problem R is not self-reducible then (1) R �∈ PF and
(2) the set S′R = {(x, y′) : ∃y′′ s.t. (x, y′y′′)∈ R} is not Cook-reducible to SR =
{x : ∃y s.t. (x, y)∈ R}.

Exercise 2.15 (extending any prefix of any solution versus PC and PF): Assuming
that P �= NP , present a search problem R in PC ∩ PF such that deciding S′R is not
reducible to the search problem of R.

31This can be done by attaching adequate gadgets to pairs of vertices that we wish to be mapped to one another (by
the isomorphism). For example, we may connect the vertices in the i th pair to an auxiliary star consisting of (N + i)
vertices.

32Note that on some instances the reduction may make no queries at all. (This prevents a possible non-viability of
the definition due to very short instances.)

101



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Guideline: Consider the relation R = {(x, 0x) : x ∈ {0, 1}∗} ∪ {(x, 1y) : (x, y) ∈ R′},
where R′ is an arbitrary relation in PC \ PF , and prove that R ∈ PF but S′R �∈ P .

Exercise 2.16: In continuation of Exercise 2.14, present a natural search problem R in
PC such that if factoring integers is intractable then the search problem R (and so also
S′R) is not reducible to SR .

Guideline: Consider the relation R such that (N , Q) ∈ R if the integer Q is a non-
trivial divisor of the integer N . Use the fact that the set of prime numbers is in P .

Exercise 2.17: In continuation of Exercises 2.14 and 2.16, show that under suitable as-
sumptions, there exist relations R1, R2 ∈ PC having the same implicit decision problem
(i.e., {x : R1(x) �= ∅} = {x : R2(x) �= ∅}) such that R1 is self-reducible but R2 is not.

Exercise 2.18: Provide an alternative proof of Theorem 2.16 without referring to the set
S′R = {(x, y′) : ∃y′′ s.t. (x, y′y′′)∈ R}.

(Hint: Use Proposition 2.15.)

Guideline: Reduce the search problem of R to the search problem of RSAT, next reduce
RSAT to SAT, and finally reduce SAT to SR . Justify the existence of each of these three
reductions.

Exercise 2.19: Prove that Bounded Halting and Bounded Non-halting are NP-
complete, where the problems are defined as follows. The instance consists of a pair
(M, 1t ), where M is a Turing machine and t is an integer. The decision version
of Bounded Halting (resp., Bounded Non-halting) consists of determining
whether or not there exists an input (of length at most t) on which M halts (resp., does
not halt) in t steps, whereas the search problem consists of finding such an input.

Guideline: Either modify the proof of Theorem 2.19 or present a reduction of (say)
the search problem of Ru to the search problem of Bounded (Non-)Halting. (Indeed,
the exercise is more straightforward in the case of Bounded Halting.)

Exercise 2.20: In the proof of Theorem 2.21, we claimed that the value of each entry
in the “array of configurations” of a machine M is determined by the values of the
three entries that reside in the row above it (as in Figure 2.1). Present a function
fM : �3 → �, where � = � × (Q ∪ {⊥}), that substantiates this claim.

Guideline: For example, for every σ1, σ2, σ3 ∈ �, it holds that fM ((σ1,⊥), (σ2,⊥),
(σ3,⊥)) = (σ2,⊥). More interestingly, if the transition function of M maps (σ, q) to
(τ, p,+1) then, for every σ1, σ2, σ3 ∈ Q, it holds that fM ((σ, q), (σ2,⊥), (σ3,⊥)) =
(σ2, p) and fM ((σ1,⊥), (σ, q), (σ3,⊥)) = (τ,⊥).

Exercise 2.21: Present and analyze a reduction of SAT to 3SAT.

Guideline: For a clause C , consider auxiliary variables such that the i th variable
indicates whether one of the first i literals is satisfied, and replace C by a 3CNF that
uses the original variables of C as well as the auxiliary variables. For example, the
clause ∨t

i=1xi is replaced by the conjunction of 3CNFs that are logically equivalent to
the formulae (y2 ≡ (x1 ∨ x2)), (yi ≡ (yi−1 ∨ xi )) for i = 3, . . . , t , and yt . We comment
that this is not the standard reduction, but we find it conceptually more appealing.33

33The standard reduction replaces the clause ∨t
i=1xi by the conjunction of the 3CNFs (x1 ∨ x2 ∨ z2), ((¬zi−1) ∨

xi ∨ zi ) for i = 3, . . . , t , and ¬zt .

102



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 2.22 (efficient solvability of 2SAT): In contrast to Exercise 2.21, prove that
2SAT (i.e., the satisfiability of 2CNF formulae) is in P .

Guideline: Consider the following “forcing process” for CNF formulae. If the formula
contains a singleton clause (i.e., a clause having a single literal), then the corresponding
variable is assigned the only value that satisfies the clause, and the formula is simplified
accordingly (possibly yielding a constant formula, which is eithertrue orfalse). The
process is repeated until the formula is either a constant or contains only non-singleton
clauses. Note that a formula φ is satisfiable if and only if the formula obtained from φ

by the forcing process is satisfiable. Consider the following algorithm for solving the
search problem associated with 2SAT.

1. Choose an arbitrary variable in φ. For each σ ∈ {0, 1}, denote by φσ the formula
obtained from φ by assigning this variable the value σ .

2. If, for some σ ∈ {0, 1}, applying the forcing process to φσ yields a (non-constant)
2CNF formula φ′, then set φ ← φ′ and goto Step 1. (The case that this happens
for both σ ∈ {0, 1} is treated as the case that this happens for a single σ ; that is, in
such a case we proceed with an arbitrary choice of σ .)

3. If one of these assignments yields (via the application of the forcing process) the
constant true then we halt with a satisfying assignment for the original formula.
Otherwise (i.e., both assignments yield the constant false), we halt asserting that
the original formula is unsatisfiable.

Proving the correctness of this algorithm boils down to observing that the arbitrary
choice made in Step 2 is immaterial. Indeed, this observation relies on the fact that we
refer to 2CNF formulae.

Exercise 2.23 (Integer Linear Programming): Prove that the following problem is NP-
complete. An instance of the problem is a systems of linear inequalities (say with
integer constants), and the problem is to determine whether the system has an integer
solution. A typical instance of this decision problem follows.

x + 2y − z ≥ 3

−3x − z ≥ −5

x ≥ 0

−x ≥ −1

Guideline: Reduce from SAT. Specifically, consider an arithmetization of the input
CNF by replacing ∨ with addition and ¬x by 1− x . Thus, each clause gives rise to
an inequality (e.g., the clause x ∨ ¬y is replaced by the inequality x + (1− y) ≥ 1,
which simplifies to x − y ≥ 2). Enforce a 0-1 solution by introducing inequalities of
the form x ≥ 0 and −x ≥ −1, for every variable x .

Exercise 2.24 (Maximum Satisfiability of Linear Systems over GF(2)): Prove that the
following problem is NP-complete. An instance of the problem consists of a systems of
linear equations over GF(2) and an integer k, and the problem is to determine whether
there exists an assignment that satisfies at least k equations. (Note that the problem
of determining whether there exists an assignment that satisfies all the equations is
in P .)

Guideline: Reduce from 3SAT, using the following arithmetization. Replace each
clause that contains t ≤ 3 literals by 2t − 1 linear GF(2) equations that correspond to

103



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

the different non-empty subsets of these literals, and assert that their sum (modulo 2)
equals one; for example, the clause x ∨ ¬y is replaced by the equations x + (1− y) =
1, x = 1, and 1− y = 1. Identifying {false, true}with {0, 1}, prove that if the original
clause is satisfied by a Boolean assignment v then exactly 2t−1 of the corresponding
equations are satisfied by v, whereas if the original clause is unsatisfied by v then none
of the corresponding equations is satisfied by v.

Exercise 2.25 (Satisfiability of Quadratic Systems over GF(2)): Prove that the fol-
lowing problem is NP-complete. An instance of the problem consists of a system of
quadratic equations over GF(2), and the problem is to determine whether there exists an
assignment that satisfies all the equations. Note that the result holds also for systems of
quadratic equations over the reals (by adding conditions that enforce a value in {0, 1}).

Guideline: Start by showing that the corresponding problem for cubic equations is NP-
complete, by a reduction from 3SAT that maps the clause x ∨ ¬y ∨ z to the equation
(1− x) · y · (1− z) = 0. Reduce the problem for cubic equations to the problem for
quadratic equations by introducing auxiliary variables; that is, given an instance with
variables x1, . . . , xn , introduce the auxiliary variables xi, j ’s and add equations of the
form xi, j = xi · x j .

Exercise 2.26 (Clique and Independent Set): An instance of the Independent Set
problem consists of a pair (G, K ), where G is a graph and K is an integer, and the
question is whether or not the graph G contains an independent set (i.e., a set with no
edges between its members) of size (at least) K . The Clique problem is analogous.
Prove that both problems are computationally equivalent via Karp-reductions to the
Vertex Cover problem.

Exercise 2.27 (an alternative proof of Proposition 2.26): Consider the following sketch
of a reduction of 3SAT to Independent Set. On input a 3CNF formula φ with m
clauses and n variables, we construct a graph Gφ consisting of m triangles (correspond-
ing to the m clauses) augmented with edges that link conflicting literals. That is, if x
appears as the i th

1 literal of the j th
1 clause and ¬x appears as the i th

2 literal of the j th
2

clause, then we draw an edge between the i th
1 vertex of the j th

1 triangle and the i th
2 vertex

of the j th
2 triangle. Prove that φ ∈ 3SAT if and only if Gφ has an independent set of

size m.

Exercise 2.28 (additional properties of standard reductions): In continuation of the
discussion in the main text, consider the following augmented form of Karp-reductions.
Such a reduction of R to R′ consists of three polynomial-time mappings ( f, h, g) such
that f is a Karp-reduction of SR to SR′ and the following two conditions hold:

1. For every (x, y) ∈ R it holds that ( f (x), h(x, y)) ∈ R′.
2. For every ( f (x), y′) ∈ R′ it holds that (x, g(x, y′)) ∈ R.

(We note that this definition is actually the one used by Levin in [152], except that he
restricted h and g to depend only on their second argument.)

Prove that such a reduction implies both a Karp-reduction and a Levin-reduction, and
show that all reductions presented in this chapter satisfy this augmented requirement.
Furthermore, prove that in all these cases the main mapping (i.e., f ) is 1-1 and
polynomial-time invertible.

104



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 2.29 (parsimonious reductions): Let R, R′ ∈ PC and let f be a Karp-
reduction of SR = {x : R(x) �=∅} to SR′ = {x : R′(x) �=∅}. We say that f is
parsimonious (with respect to R and R′) if for every x it holds that |R(x)| = |R′( f (x))|.
For each of the reductions presented in this chapter, check whether or not it is parsi-
monious. For the reductions that are not parsimonious, find alternative reductions that
are parsimonious (cf. [85, Sec. 7.3]).

Exercise 2.30 (on polynomial-time invertible reductions (following [37])): We say
that a set S is markable if there exists a polynomial-time (marking) algorithm M such
that

1. For every x, α ∈ {0, 1}∗ it holds that
(a) M(x, α) ∈ S if and only if x ∈ S.
(b) |M(x, α)| > |x |.

2. There exists a polynomial-time (de-marking) algorithm D such that, for every
x, α ∈ {0, 1}∗, it holds that D(M(x, α)) = α.

Note that all natural NP-sets (e.g., those considered in this chapter) are markable (e.g.,
for SAT, one may mark a formula by augmenting it with additional satisfiable clauses
that use specially designated auxiliary variables). Prove that if S′ is Karp-reducible to
S and S is markable then S′ is Karp-reducible to S by a length-increasing, one-to-
one, and polynomial-time invertible mapping.34 Infer that for any natural NP-complete
problem S, any set in NP is Karp-reducible to S by a length-increasing, one-to-one,
and polynomial-time invertible mapping.

Guideline: Let f be a Karp-reduction of S′ to S, and let M be the guaranteed marking
algorithm. Consider the reduction that maps x to M( f (x), x).

Exercise 2.31 (on the isomorphism of NP-complete sets (following [37])): Suppose
that S and T are Karp-reducible to one another by length-increasing, one-to-one,
and polynomial-time invertible mappings, denoted f and g, respectively. Using the
following guidelines, prove that S and T are “effectively” isomorphic; that is, present
a polynomial-time computable and invertible one-to-one mapping φ such that T =
φ(S)

def= {φ(x) : x ∈ S}.
1. Let F

def= { f (x) : x ∈{0, 1}∗} and G
def= {g(x) : x ∈{0, 1}∗}. Using the length-

preserving condition of f (resp., g), prove that F (resp., G) is a proper subset
of {0, 1}∗. Prove that for every y ∈ {0, 1}∗ there exists a unique triple ( j, x, i) ∈
{1, 2} × {0, 1}∗ × ({0} ∪ N) that satisfies one of the following two conditions:
(a) j = 1, x ∈ G

def= {0, 1}∗ \ G, and y = (g ◦ f )i (x);
(b) j = 2, x ∈ F

def= {0, 1}∗ \ F , and y = (g ◦ f )i (g(x)).

(In both cases h0(z) = z, hi (z) = h(hi−1(z)), and (g ◦ f )(z) = g( f (z)). Hint: con-
sider the maximal sequence of inverse operations g−1, f −1, g−1, ... that can be
applied to y, and note that each inverse shrinks the current string.)

2. Let U1
def= {(g ◦ f )i (x) : x ∈G ∧ i≥0} and U2

def= {(g ◦ f )i (g(x)) : x ∈F ∧ i≥0}.
Prove that (U1, U2) is a partition of {0, 1}∗. Using the fact that f and g are length-
increasing and polynomial-time invertible, present a polynomial-time procedure for
deciding membership in the set U1.

34When given a string that is not in the image of the mapping, the inverting algorithm returns a special symbol.

105



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

P, NP, AND NP-COMPLETENESS

Prove the same for the sets V1 = {( f ◦ g)i (x) : x ∈F ∧ i≥0} and V2 = {( f ◦
g)i ( f (x)) : x ∈G ∧ i≥0}.

3. Note that U2 ⊆ G, and define φ(x)
def= f (x) if x ∈ U1 and φ(x)

def= g−1(x) otherwise.
(a) Prove that φ is a Karp-reduction of S to T .
(b) Note that φ maps U1 to f (U1) = { f (x) : x ∈U1} = V2 and U2 to g−1(U2) =
{g−1(x) : x ∈U2} = V1. Prove that φ is one-to-one and onto.

Observe that φ−1(x) = f −1(x) if x ∈ f (U1) and φ−1(x) = g(x) otherwise. Prove
that φ−1 is a Karp-reduction of T to S. Infer that φ(S) = T .

Using Exercise 2.30, infer that all natural NP-complete sets are isomorphic.

Exercise 2.32: Prove that a set S is Karp-reducible to some set in NP if and only if S is
in NP .

Guideline: For the non-trivial direction, see the proof of Proposition 2.34.

Exercise 2.33: Recall that the empty set is not Karp-reducible to {0, 1}∗, whereas any set
is Cook-reducible to its complement. Thus, our focus here is on the Karp-reducibility
of non-trivial sets to their complements, where a set is non-trivial if it is neither empty
nor contains all strings. Furthermore, since any non-trivial set in P is Karp-reducible
to its complement (see Exercise 2.7), we assume that P �= NP and focus on sets in
NP \ P .

1. Prove that NP = coNP implies that some sets in NP \ P are Karp-reducible to
their complements.

2. Prove that NP �= coNP implies that some sets in NP \ P are not Karp-reducible
to their complements.

Guideline: Use NP-complete sets in both parts, and Exercise 2.32 in the second part.

Exercise 2.34: Referring to the proof of Theorem 2.28, prove that the function f is
unbounded (i.e., for every i there exists an n such that n3 steps of the process defined
in the proof allow for failing the i + 1st machine).

Guideline: Note that f is monotonically non-decreasing (because more steps allow
for failing at least as many machines). Assume toward the contradiction that f is
bounded. Let i = supn∈N{ f (n)} and n′ be the smallest integer such that f (n′) = i .
If i is odd then the set F determined by f is co-finite (because F = {x : f (|x |)≡1
(mod 2)} ⊇ {x : |x |≥n′}). In this case, the i + 1st machine tries to decide S ∩ F
(which differs from S on finitely many strings), and must fail on some x . Derive a
contradiction by showing that the number of steps taken till reaching and considering
this x is at most exp(poly(|x |)), which is smaller than n3 for some sufficiently large
n. A similar argument applies to the case that i is even, where we use the fact that
F ⊆ {x : |x |<n′} is finite and so the relevant reduction of S to S ∩ F must fail on
some input x .

Exercise 2.35: Prove that if the promise problem � is Cook-reducible to a promise
problem that is solvable in polynomial time, then � is solvable in polynomial time.
Note that the solver may not halt on inputs that violate the promise.

Guideline: Any polynomial-time algorithm solving any promise problem can be mod-
ified such that it halts on all inputs.

106



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 2.36 (NP-complete promise problems in coNP (following [72])): Consider
the promise problem xSAT having instances that are pairs of CNF formulae. The yes-
instances consists of pairs (φ1, φ2) such that φ1 is satisfiable and φ2 is unsatisfiable,
whereas the no-instances consists of pairs such that φ1 is unsatisfiable and φ2 is
satisfiable.

1. Show that xSAT is in the intersection of (the promise problem classes that are
analogous to) NP and coNP .

2. Prove that any promise problem in NP is Cook-reducible to xSAT. In designing the
reduction, recall that queries that violate the promise may be answered arbitrarily.

Guideline: Note that the promise problem version of NP is reducible to SAT, and show a
reduction of SAT to xSAT. Specifically, show that the search problem associated with SAT

is Cook-reducible to xSAT, by adapting the ideas of the proof of Proposition 2.15. That is,
suppose that we know (or assume) that τ is a prefix of a satisfying assignment to φ, and we
wish to extend τ by one bit. Then, for each σ ∈ {0, 1}, we construct a formula, denoted φ′σ ,
by setting the first |τ | + 1 variables of φ according to the values τσ . We query the oracle
about the pair (φ′1, φ

′
0), and extend τ accordingly (i.e., we extend τ by the value 1 if and only

if the answer is positive). Note that if both φ′1 and φ′0 are satisfiable then it does not matter
which bit we use in the extension, whereas if exactly one formula is satisfiable then the oracle
answer is reliable.

3. Pinpoint the source of failure of the proof of Theorem 2.35 when applied to the
reduction provided in the previous item.

Exercise 2.37: For any class C, prove that C ⊆ coC if and only if C = coC.

107



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER THREE

Variations on P and NP

Cast a cold eye
On life, on death.
Horseman, pass by!

W. B. Yeats, “Under Ben Bulben”

In this chapter we consider variations on the complexity classes P and NP. We refer
specifically to the non-uniform version of P, and to the Polynomial-time Hierarchy (which
extends NP). These variations are motivated by relatively technical considerations; still,
the resulting classes are referred to quite frequently in the literature.

Summary: Non-uniform polynomial-time (P/poly) captures efficient
computations that are carried out by devices that can each handle only
inputs of a specific length. The basic formalism ignores the complexity
of constructing such devices (i.e., a uniformity condition). A finer for-
malism that allows for quantifying the amount of non-uniformity refers
to so-called “machines that take advice.”

The Polynomial-time Hierarchy (PH) generalizes NP by considering
statements expressed by quantified Boolean formulae with a fixed num-
ber of alternations of existential and universal quantifiers. It is widely
believed that each quantifier alternation adds expressive power to the
class of such formulae.

An interesting result that refers to both classes asserts that if NP is
contained in P/poly then the Polynomial-time Hierarchy collapses to
its second level. This result is commonly interpreted as supporting the
common belief that non-uniformity is irrelevant to the P-vs-NP Question;
that is, although P/poly extends beyond the class P, it is believed that
P/poly does not contain NP.

Except for the latter result, which is presented in Section 3.2.3, the treatments of P/poly
(in Section 3.1) and of the Polynomial-time Hierarchy (in Section 3.2) are independent of
one another.

3.1. Non-uniform Polynomial Time (P/poly)

In this section we consider two formulations of the notion of non-uniform polyno-
mial time, based on the two models of non-uniform computing devices that were

108



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.1 NON-UNIFORM POLYNOMIAL TIME

presented in Section 1.2.4. That is, we specialize the treatment of non-uniform computing
devices, provided in Section 1.2.4, to the case of polynomially bounded complexities. It
turns out that both (polynomially bounded) formulations allow for solving the same class
of computational problems, which is a strict superset of the class of problems solvable by
polynomial-time algorithms.

The two models of non-uniform computing devices are Boolean circuits and “machines
that take advice” (cf. §1.2.4.1 and §1.2.4.2, respectively). We will focus on the restric-
tion of both models to the case of polynomial complexities, considering (non-uniform)
polynomial-size circuits and polynomial-time algorithms that take (non-uniform) advice
of polynomially bounded length.

The main motivation for considering non-uniform polynomial-size circuits is that their
computational limitations imply analogous limitations on polynomial-time algorithms.
The hope is that, as is often the case in mathematics and science, disposing of an auxiliary
condition (i.e., uniformity) that seems secondary1 and is not well understood may turn
out to be fruitful. In particular, the (non-uniform) circuit model facilitates a low-level
analysis of the evolution of a computation, and allows for the application of combinatorial
techniques. The benefit of this approach has been demonstrated in the study of restricted
classes of circuits (see Appendix B.2.2 and B.2.3).

The main motivation for considering polynomial-time algorithms that take polynomi-
ally bounded advice is that such devices are useful in modeling auxiliary information
that is available to possible efficient strategies that are of interest to us. We mention two
such settings. In cryptography (see Appendix C), the advice is used for accounting for
auxiliary information that is available to an adversary. In the context of derandomization
(see Section 8.3), the advice is used for accounting for the main input to the randomized
algorithm. In addition, the model of polynomial-time algorithms that take advice allows
for a quantitative study of the amount of non-uniformity, ranging from zero to polynomial.

3.1.1. Boolean Circuits

We refer the reader to §1.2.4.1 for a definition of (families of) Boolean circuits and the
functions computed by them. For concreteness and simplicity, we assume throughout this
section that all circuits have bounded fan-in. We highlight the following result stated in
§1.2.4.1:

Theorem 3.1 (circuit evaluation): There exists a polynomial-time algorithm that,
given a circuit C : {0, 1}n → {0, 1}m and an n-bit long string x, returns C(x).

Recall that the algorithm works by performing the “value-determination” process that
underlies the definition of the computation of the circuit on a given input. This process
assigns values to each of the circuit vertices based on the values of its children (or the
values of the corresponding bit of the input, in the case of an input-terminal vertex).

Circuit size as a complexity measure. We recall the definitions of circuit complex-
ity presented in §1.2.4.1: The size of a circuit is defined as the number of edges, and
the length of its description is almost linear in the latter; that is, a circuit of size s is

1The common belief is that the issue of non-uniformity is irrelevant to the P-vs-NP Question, that is, that resolving
the latter question by proving that P �= NP is not easier than proving that NP does not have polynomial-size circuits.
For further discussion see Appendix B.2 and Section 3.2.3.

109



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

commonly described by the list of its edges and the labels of its vertices, which means
that its description length is O(s log s). We are interested in families of circuits that solve
computational problems, and thus we say that the circuit family (Cn)n∈N computes the
function f : {0, 1}∗ → {0, 1}∗ if for every x ∈ {0, 1}∗ it holds that C|x |(x) = f (x). The
size complexity of this family is the function s : N→ N such that s(n) is the size of Cn .
The circuit complexity of a function f , denoted s f , is the size complexity of the smallest
family of circuits that computes f . An equivalent formulation follows.

Definition 3.2 (circuit complexity): The circuit complexity of f : {0, 1}∗ → {0, 1}∗
is the function s f : N→ N such that s f (n) is the size of the smallest circuit that
computes the restriction of f to n-bit strings.

We stress that non-uniformity is implicit in this definition, because no conditions are made
regarding the relation between the various circuits that are used to compute the function
value on different input lengths.

An interesting feature of Definition 3.2 is that, unlike in the case of uniform model of
computations, it allows for considering the actual complexity of the function rather than
an upper bound on its complexity (cf. §1.2.3.5 and Section 4.2.1). This is a consequence
of the fact that the circuit model has no “free parameters” (such as various parameters of
the possible algorithm that are used in the uniform model).2

We will be interested in the class of problems that are solvable by families of
polynomial-size circuits. That is, a problem is solvable by polynomial-size circuits if
it can be solved by a function f that has polynomial circuit complexity (i.e., there exists
a polynomial p such that s f (n) ≤ p(n), for every n ∈ N).

A detour: Uniform families. A family of polynomial-size circuits (Cn)n∈N is called
uniform if given n one can construct the circuit Cn in poly(n)-time. More generally:

Definition 3.3 (uniformity): A family of circuits (Cn)n∈N is called uniform if there
exists an algorithm that on input n outputs Cn within a number of steps that is
polynomial in the size of Cn.

We note that stronger notions of uniformity have been considered. For example, one may
require the existence of a polynomial-time algorithm that on input n and v, returns the
label of vertex v as well as the list of its children (or an indication that v is not a vertex
in Cn). For further discussion see Section 5.2.3. Turning back to Definition 3.3, we note
that indeed the computation of a uniform family of circuits can be emulated by a uniform
computing device.

Proposition 3.4: If a problem is solvable by a uniform family of polynomial-size
circuits then it is solvable by a polynomial-time algorithm.

As was hinted in §1.2.4.1, the converse holds as well. The latter fact follows easily from
the proof of Theorem 2.21 (see also the proof of Theorem 3.6).

2Advanced comment: The “free parameters” in the uniform model include the length of the description of the
finite algorithm and its alphabet size. Note that these “free parameters” underlie linear speed-up results such as
Exercise 4.4, which in turn prevent the specification of the exact (uniform) complexities of functions.

110



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.1 NON-UNIFORM POLYNOMIAL TIME

Proof: On input x , the algorithm operates in two stages. In the first stage, it
invokes the algorithm guaranteed by the uniformity condition, on input n

def= |x |, and
obtains the circuit Cn . Next, it invokes the circuit evaluation algorithm (asserted in
Theorem 3.1) on input Cn and x , and obtains Cn(x). Since the size of Cn (as well as
its description length) is polynomial in n, it follows that each stage of our algorithm
runs in polynomial time (i.e., polynomial in n = |x |). Thus, the algorithm emulates
the computation of C|x |(x), and does so in time polynomial in the length of its own
input (i.e., x).

3.1.2. Machines That Take Advice

General (i.e., possibly non-uniform) families of polynomial-size circuits and uniform
families of polynomial-size circuits are two extremes with respect to the “amounts of non-
uniformity” in the computing device. Intuitively, in the former, non-uniformity is only
bounded by the size of the device, whereas in the latter the amounts of non-uniformity is
zero. Here we consider a model that allows for decoupling the size of the computing device
from the amount of non-uniformity, which may indeed range from zero to the device’s
size. Specifically, we consider algorithms that “take a non-uniform advice” that depends
only on the input length. The amount of non-uniformity will be defined to equal the
length of the corresponding advice (as a function of the input length). Thus, we specialize
Definition 1.12 to the case of polynomial-time algorithms.

Definition 3.5 (non-uniform polynomial-time and P/poly): We say that a function
f is computed in polynomial time with advice of length � : N→ N if these exists a
polynomial-time algorithm A and an infinite advice sequence (an)n∈N such that

1. For every x ∈ {0, 1}∗, it holds that A(a|x |, x) = f (x).
2. For every n ∈ N, it holds that |an| = �(n).

We say that a computational problem can be solved in polynomial time with advice
of length � if a function solving this problem can be computed within these resources.
We denote by P/� the class of decision problems that can be solved in polynomial
time with advice of length �, and by P/poly the union of P/p taken over all
polynomials p.

Clearly, P/0 = P . But allowing some (non-empty) advice increases the power of the
class (see Theorem 3.7), and allowing advice of length comparable to the time complexity
yields a formulation equivalent to circuit complexity (see Theorem 3.6). We highlight
the greater flexibility available by the formalism of machines that take advice, which
allows for separate specification of time complexity and advice length. (Indeed, this
comes at the expense of a more cumbersome formulation; thus, we shall prefer the
circuit formulation whenever we consider the case that both complexity measures are
polynomial.)

Relation to families of polynomial-size circuits. As hinted before, the class of problems
solvable by polynomial-time algorithms with polynomially bounded advice equals the
class of problems solvable by families of polynomial-size circuits. For concreteness, we
state this fact for decision problems.

111



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

Theorem 3.6: A decision problem is in P/poly if and only if it can be solved by a
family of polynomial-size circuits.

More generally, for any function t , the following proof establishes the equivalence of the
power of polynomial-time machines that take advice of length t and families of circuits
of size polynomially related to t .

Proof Sketch: Suppose that a problem can be solved by a polynomial-time algorithm
A using the polynomially bounded advice sequence (an)n∈N. We obtain a family of
polynomial-size circuits that solves the same problem by adapting the proof of
Theorem 2.21. Specifically, we observe that the computation of A(a|x |, x) can be
emulated by a circuit of poly(|x |)-size, which incorporates a|x | and is given x as
input. That is, we construct a circuit Cn such that Cn(x) = A(an, x) holds for every
x ∈ {0, 1}n (analogously to the way Cx was constructed in the proof of Theorem 2.21,
where it holds that Cx (y) = MR(x, y) for every y of adequate length).3

On the other hand, given a family of polynomial-size circuits, we obtain a
polynomial-time advice-taking machine that emulates this family when using advice
that provides the description of the relevant circuits. Specifically, we transform the
evaluation algorithm asserted in Theorem 3.1 into a machine that, given advice α

and input x , treats α as a description of a circuit C and evaluates C(x). Indeed, we
use the fact that a circuit of size s can be described by a string of length O(s log s),
where the log factor is due to the fact that a graph with v vertices and e edges can
be described by a string of length 2e log2 v.

Another perspective. A set S is called sparse if there exists a polynomial p such that
for every n it holds that |S ∩ {0, 1}n| ≤ p(n). We note that P/poly equals the class of sets
that are Cook-reducible to a sparse set (see Exercise 3.2). Thus, SAT is Cook-reducible to
a sparse set if and only if NP ⊂ P/poly. In contrast, SAT is Karp-reducible to a sparse
set if and only if NP = P (see Exercise 3.12).

The power of P/poly. In continuation of Theorem 1.13 (which focuses on advice and
ignores the time complexity of the machine that takes this advice), we prove the following
(stronger) result.

Theorem 3.7 (the power of advice, revisited): The class P/1 ⊆ P/poly contains
P as well as some undecidable problems.

Actually, P/1 ⊂ P/poly. Furthermore, by using a counting argument, one can show that
for any two polynomially bounded functions �1, �2 : N→ N such that �2 − �1 > 0 is
unbounded, it holds that P/�1 is strictly contained in P/�2; see Exercise 3.3.

Proof: Clearly,P = P/0 ⊆ P/1 ⊆ P/poly. To prove thatP/1 contains some unde-
cidable problems, we review the proof of Theorem 1.13. The latter proof established
the existence of an uncomputable Boolean function that only depends on its input
length. That is, there exists an undecidable set S ⊂ {0, 1}∗ such that for every pair

3Advanced comment: Note that an is the only “non-uniform” part in the circuit Cn . Thus, if algorithm A takes
no advice (i.e., an = λ for every n) then we obtain a uniform family of circuits.

112



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.2 THE POLYNOMIAL-TIME HIERARCHY

(x, y) of equal length strings it holds that x ∈ S if and only if y ∈ S. In other words,
for every x ∈ {0, 1}∗ it holds that x ∈ S if and only if 1|x | ∈ S. But such a set is
easily decidable in polynomial time by a machine that takes one bit of advice; that is,
consider the algorithm A that satisfies A(a, x) = a (for a ∈ {0, 1} and x ∈ {0, 1}∗)
and the advice sequence (an)n∈N such that an = 1 if and only if 1n ∈ S. Note that,
indeed, A(a|x |, x) = 1 if and only if x ∈ S.

3.2. The Polynomial-Time Hierarchy (PH)

The Polynomial-time Hierarchy is a rather natural generalization of NP . Interestingly,
this generalization collapses to P if and only if NP = P , and furthermore it is the largest
natural generalization of NP that is known to have this feature. We start with an informal
motivating discussion, which will be made formal in Section 3.2.1.

Sets in NP can be viewed as sets of valid assertions that can be expressed as quantified
Boolean formulae using only existential quantifiers. That is, a set S is in NP if there is a
Karp-reduction of S to the problem of deciding whether or not an existentially quantified
Boolean formula is valid (i.e., an instance x is mapped by this reduction to a formula of
the form ∃y1 · · · ∃ym(x)φx (y1, . . . , ym(x))).

The conjectured intractability of NP seems due to the long sequence of existential
quantifiers. Of course, if somebody else (i.e., a “prover”) were to provide us with an
adequate assignment (to the yi ’s) whenever such an assignment exists then we would be in
good shape. That is, we can efficiently verify proofs of validity of existentially quantified
Boolean formulae.

But what if we want to verify the validity of universally quantified Boolean formulae
(i.e., formulae of the form ∀y1 · · · ∀ymφ(y1, . . . , ym)). Here we seem to need the help of a
totally different entity: We need a “refuter” that is guaranteed to provide us with a refutation
whenever such exists, and we need to believe that if we were not presented with such a
refutation then it is the case that no refutation exists (and hence the universally quantified
formula is valid). Indeed, this new setting (of a “refutation system”) is fundamentally
different from the setting of a proof system: In a proof system we are only convinced
by proofs (to assertions) that we have verified by ourselves, whereas in the “refutation
system” we trust the “refuter” to provide evidence against false assertions.4 Furthermore,
there seems to be no way of converting one setting (e.g., the proof system) into another
(resp., the refutation system).

Taking an additional step, we may consider a more complicated system in which we
use two agents: a “supporter” that tries to provide evidence in favor of an assertion and an
“objector” that tries to refute it. These two agents conduct a debate (or an argument) in our
presence, exchanging messages with the goal of making us (the referee) rule their way. The
assertions that can be proven in this system take the form of general quantified formulae
with alternating sequences of quantifiers, where the number of alternating sequences
equals the number of rounds of interaction in the said system. We stress that the exact
length of each sequence of quantifiers of the same type does not matter; what matters is
the number of alternating sequences, denoted k.

4More formally, in proof systems the soundness condition relies only on the actions of the verifier, whereas
completeness also relies on the prover’s action (i.e., its using an adequate strategy). In contrast, in a “refutation
system” the soundness condition relies on the proper actions of the refuter, whereas completeness does not depend
on the refuter’s actions.

113



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

The aforementioned system of alternations can be viewed as a two-party game, and
we may ask ourselves which of the two parties has a k-move winning strategy. In general,
we may consider any (0-1 zero-sum) two-party game, in which the game’s position can
be efficiently updated (by any given move) and efficiently evaluated. For such a fixed
game, given an initial position, we may ask whether the first party has a (k-move) winning
strategy. It seems that answering this type of question for some fixed k does not necessarily
allow answering it for k + 1. We now turn to formalizing the foregoing discussion.

3.2.1. Alternation of Quantifiers

In the following definition, the aforementioned propositional formula φx is replaced by
the input x itself. (Correspondingly, the combination of the Karp-reduction and a formula-
evaluation algorithm is replaced by the verification algorithm V (see Exercise 3.7).) This
is done in order to make the comparison to the definition of NP more transparent (as well
as to fit the standard presentations). We also replace a sequence of Boolean quantifiers of
the same type by a single corresponding quantifier that quantifies over all strings of the
corresponding length.

Definition 3.8 (the class �k): For a natural number k, a decision problem S ⊆
{0, 1}∗ is in �k if there exists a polynomial p and a polynomial-time algorithm V
such that x ∈ S if and only if

∃y1∈{0, 1}p(|x |)∀y2∈{0, 1}p(|x |)∃y3∈{0, 1}p(|x |) · · · Qk yk ∈{0, 1}p(|x |)

s.t. V (x, y1, . . . , yk) = 1

where Qk is an existential quantifier if k is odd and is a universal quantifier
otherwise.

Note that �1 = NP and �0 = P . The Polynomial-time Hierarchy, denoted PH, is the
union of all the aforementioned classes (i.e., PH = ∪k�k), and �k is often referred to
as the k th level of PH. The levels of the Polynomial-time Hierarchy can also be defined
inductively, by defining �k+1 based on �k

def= co�k , where co�k
def= {{0, 1}∗ \ S : S ∈ �k}

(cf. Eq. (2.4)).

Proposition 3.9: For every k ≥ 0, a set S is in �k+1 if and only if there exists a
polynomial p and a set S′ ∈ �k such that S = {x : ∃y∈{0, 1}p(|x |) s.t. (x, y)∈ S′}.

Proof: Suppose that S is in �k+1 and let p and V be as in Definition 3.8. Then define
S′ as the set of pairs (x, y) such that |y| = p(|x |) and

∀z1∈{0, 1}p(|x |)∃z2∈{0, 1}p(|x |) · · · Qk zk ∈{0, 1}p(|x |) s.t. V (x, y, z1, . . . , zk) = 1 .

Note that x ∈ S if and only if there exists y ∈ {0, 1}p(|x |) such that (x, y) ∈ S′, and
that S′ ∈ �k (see Exercise 3.6).

On the other hand, suppose that for some polynomial p and a set S′ ∈ �k it holds
that S = {x : ∃y∈{0, 1}p(|x |) s.t. (x, y)∈ S′}. Then, for some p′ and V ′, it holds that
(x, y) ∈ S′ if and only if |y| = p(|x |) and

∀z1∈{0, 1}p′(|x |)∃z2∈{0, 1}p′(|x |) · · · Qk zk ∈{0, 1}p′(|x |) s.t. V ′((x, y), z1, . . . , zk)=1

114



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.2. THE POLYNOMIAL-TIME HIERARCHY

(see Exercise 3.6 again). By using a suitable encoding of y and the zi ’s (as strings
of length max(p(|x |), p′(|x |))) and a trivial modification of V ′, we conclude that
S ∈ �k+1.

Determining the winner in k-move games. Definition 3.8 can be interpreted as capturing
the complexity of determining the winner in certain efficient two-party games. Specifically,
we refer to two-party games that satisfy the following three conditions:

1. The parties alternate in taking moves that affect the game’s (global) position, where
each move has a description length that is bounded by a polynomial in the length of
the current position.

2. The current position can be updated in polynomial time based on the previous position
and the current party’s move.5

3. The winner in each position can be determined in polynomial time.

Note that the set of initial positions for which the first party has a k-move winning strategy
with respect to the foregoing game is in �k . Specifically, denoting this set by G, note
that an initial position x is in G if there exists a move y1 for the first party, such that for
every response move y2 of the second party, there exists a move y3 for the first party, etc.,
such that after k moves the parties reach a position in which the first party wins, where
the final position is determined according to the foregoing Item 2 and the winner in it
is determined according to Item 3.6 Thus, G ∈ �k . On the other hand, note that any set
S ∈ �k can be viewed as the set of initial positions (in a suitable game) for which the first
party has a k-move winning strategy. Specifically, x ∈ S if starting at the initial position
x , there exists a move y1 for the first party, such that for every response move y2 of the
second party, there exists a move y3 for the first party, etc., such that after k moves the
parties reach a position in which the first party wins, where the final position is defined as
(x, y1, . . . , yk) and the winner is determined by the predicate V (as in Definition 3.8).

PH and the P Versus NP Question. We highlight the fact that PH = P if and only if
P = NP . Indeed, the fact thatPH = P impliesP = NP is purely syntactic, whereas the
opposite implication follows from Proposition 3.9 (see also the second part of the proof
of Proposition 3.10).7 The fact that P = NP implies PH = P suggests that P �= NP
can be proved by proving that PH �= P . Thus, a separation between two classes (i.e.,
P �= NP) can be shown by separating the smaller class (i.e., P) from a class (i.e., PH)
that is believed to be a superset of the other class (i.e., NP).

5Note that, since we consider a constant number of moves, the length of all possible final positions is bounded by
a polynomial in the length of the initial position, and thus all items have an equivalent form in which one refers to the
complexity as a function of the length of the initial position. The latter form allows for a smooth generalization to
games with a polynomial number of moves (as in Section 5.4), where it is essential to state all complexities in terms
of the length of the initial position.

6Let U be the update algorithm of Item 2 and W be the algorithm that decides the winner as in Item 3. Then the final
position is given by computing xi ← U (xi−1, yi ), for i = 1, . . . , k (where x0 = x), and the winner is W (xk ). Note that,
by Item 1, there exists a polynomial p such that |yi | ≤ p(|xi |), for every i ∈ [k], and it follows that |yi | ≤ poly(|x |).
Using a suitable encoding, we obtain a polynomial-time algorithm V such that V (x, y1, . . . , yk ) = W (xk ), where
xk = U (· · ·U (U (U (x, y1), y2), y3) . . . , yk ).

7Advanced comment: We stress that the latter implication is not due to a Cook-reduction of PH to NP ; in fact,
such Cook-reductions exist only for a subclass of PH (which is contained in �2 ∩�2).

115



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

The collapsing effect of other equalities. Extending the intuition that underlies the
NP �= coNP conjecture, it is commonly conjectured that �k �= �k for every k ∈ N.
The failure of this conjecture causes the collapse of the Polynomial-time Hierarchy to the
corresponding level.

Proposition 3.10: For every k ≥ 1, if �k = �k then �k+1 = �k , which in turn
implies PH = �k .

The converse also holds (i.e., PH = �k implies �k+1 = �k and �k = �k). Needless to
say, the first part of Proposition 3.10 (i.e., �k = �k implies �k+1 = �k) does not seem
to hold for k = 0, but indeed the second part holds also for k = 0 (i.e., �1 = �0 implies
PH = �0).

Proof: Assuming that �k = �k , we first show that �k+1 = �k . For any set S in
�k+1, by Proposition 3.9, there exists a polynomial p and a set S′ ∈ �k such
that S = {x : ∃y∈{0, 1}p(|x |) s.t. (x, y)∈ S′}. Using the hypothesis, we infer that
S′ ∈ �k , and so (using Proposition 3.9 and k ≥ 1) there exists a polynomial p′ and a
set S′′ ∈ �k−1 such that S′ = {x ′ : ∃y′ ∈{0, 1}p′(|x ′|) s.t. (x ′, y′)∈ S′′}. It follows that

S = {x : ∃y∈{0, 1}p(|x |)∃z∈{0, 1}p′(|(x,y)|) s.t. ((x, y), z)∈ S′′}.
By collapsing the two adjacent existential quantifiers (and using Proposition 3.9 yet
again), we conclude that S ∈ �k . This proves the first part of the proposition.

Turning to the second part, we note that �k+1 = �k (or, equivalently, �k+1 = �k)
implies �k+2 = �k+1 (again by using Proposition 3.9), and similarly � j+2 = � j+1

for any j ≥ k. Thus, �k+1 = �k implies PH = �k .

Decision problems that are Cook-reductions to NP. The Polynomial-time Hierarchy
contains all decision problems that are Cook-reductions to NP (see Exercise 3.4). As
shown next, the latter class contains many natural problems. Recall that in Section 2.2.2 we
defined two types of optimization problems and showed that under some natural conditions
these two types are computationally equivalent (under Cook-reductions). Specifically, one
type of problems referred to finding solutions that have a value exceeding some given
threshold, whereas the second type called for finding optimal solutions. In Section 2.3
we presented several problems of the first type, and proved that they are NP-complete.
We note that corresponding versions of the second type are believed not to be in NP.
For example, we discussed the problem of deciding whether or not a given graph G
has a clique of a given size K , and showed that it is NP-complete. In contract, the
problem of deciding whether or not K is the maximum clique size of the graph G is not
known (and quite unlikely) to be in NP , although it is Cook-reducible to NP . Thus,
the class of decision problems that are Cook-reducible to NP contains many natural
problems that are unlikely to be in NP . The Polynomial-time Hierarchy contains all these
problems.

Complete problems and a relation to AC0. We note that quantified Boolean formulae
with a bounded number of quantifier alternations provide complete problems for the
various levels of the Polynomial-time Hierarchy (see Exercise 3.7). We also note the
correspondence between these formulae and (highly uniform) constant-depth circuits

116



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.2. THE POLYNOMIAL-TIME HIERARCHY

of unbounded fan-in that get as input the truth table of the underlying (quantifier-free)
formula (see Exercise 3.8).

3.2.2. Non-deterministic Oracle Machines

The Polynomial-time Hierarchy is commonly defined in terms of non-deterministic
polynomial-time (oracle) machines that are given oracle access to a set in the lower
level of the same hierarchy. Such machines are defined by combining the definitions of
non-deterministic (polynomial-time) machines (cf. Definition 2.7) and oracle machines
(cf. Definition 1.11). Specifically, for an oracle f : {0, 1}∗ → {0, 1}∗, a non-deterministic
oracle machine M , and a string x , one considers the question of whether or not there
exists an accepting (non-deterministic) computation of M on input x and access to
the oracle f . The class of sets that can be accepted by non-deterministic polynomial-
time (oracle) machines with access to f is denoted NP f . (We note that this notation
makes sense because we can associate the class NP with a collection of machines
that lends itself to being extended to oracle machines.) For any class of decision prob-
lems C, we denote by NPC the union of NP f taken over all decision problems f
in C. The following result provides an alternative definition of the Polynomial-time
Hierarchy.

Proposition 3.11: For every k ≥ 1, it holds that �k+1 = NP�k .

Needless to say, �1 = NP�0 , but this fact is due to simple considerations (i.e., �1 =
NP = NPP = NP�0 , where only NP = NPP is non-syntactic).

Proof: Containment in one direction (i.e., �k+1 ⊆ NP�k ) is almost straightforward:
For any S ∈ �k+1, let S′ ∈ �k and p be as in Proposition 3.9; that is, S = {x : ∃y∈
{0, 1}p(|x |) s.t. (x, y)∈ S′}. Consider the non-deterministic oracle machine that, on
input x , non-deterministically generates y ∈ {0, 1}p(|x |) and accepts if and only if
(the oracle indicates that) (x, y) ∈ S′. This machine demonstrates that S ∈ NP�k =
NP�k , where the equality holds by letting the oracle machine flip each (binary)
answer that is provided by the oracle.8

For the opposite containment (i.e., NP�k ⊆ �k+1), we generalize the main idea
underlying the proof of Theorem 2.35 (which referred to PNP∩coNP ). Specifically,
consider any S ∈ NP�k , and let M be a non-deterministic polynomial-time oracle
machine that accepts S when given oracle access to S′ ∈ �k . Note that machine
M may issue several queries to S′, and these queries may be determined based on
previous oracle answers.9 To simplify the argument, we assume, without loss of
generality, that at the very beginning of its execution machine M guesses (non-
deterministically) all oracle answers and accepts only if the actual answers match
its guesses. Thus, M’s queries to the oracle are determined by its input, denoted
x , and its non-deterministic choices, denoted y. We denote by q (i)(x, y) the i th

query made by M (on input x and non-deterministic choices y), and by a(i)(x, y)

8Do not get confused by the fact that the class of oracles may not be closed under complementation. From the
point of view of the oracle machine, the oracle is merely a function, and the machine may do with its answer whatever
it pleases (and in particular negate it).

9Indeed, this is unlike the specific machine used toward proving that �k+1 ⊆ NP�k .

117



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

the corresponding (a priori) guessed answer (which is a bit in y). Thus, x ∈ S if
and only if there exists y ∈ {0, 1}poly(|x |) such that the following two conditions
hold:

1. Machine M accepts when it is invoked on input x , makes non-deterministic
choices y, and is given a(i)(x, y) as the answer to its i th oracle query. We denote the
corresponding (“acceptance”) predicate, which is polynomial-time computable,
by A(x, y).

We stress that we do not assume here that the a(i)(x, y)’s are consistent with
answers that would have been given by the oracle S′; this will be the subject of
the next condition. The current condition refers only to the decision of M on a
specific input, when M makes a specific sequence of non-deterministic choices,
and is provided with specific answers.

2. Each bit a(i)(x, y) is consistent with S′; that is, for every i , it holds that a(i)(x, y)=
1 if and only if q (i)(x, y)∈ S′.

Denoting the number of queries made by M (on input x and non-deterministic
choices y) by q(x, y) ≤ poly(|x |), it follows that x ∈ S if and only if

∃y

A(x, y) ∧
q(x,y)∧

i=1

((
a(i)(x, y) = 1

)⇔ (
q (i)(x, y)∈ S′

))
.

(3.1)

Denoting the verification algorithm of S′ by V ′, Eq. (3.1) equals

∃y

(
A(x, y) ∧

q(x,y)∧
i=1

((
a(i)(x, y) = 1

)
⇔ ∃y(i)

1 ∀y(i)
2 · · · Qk y(i)

k V ′
(
q (i)(x, y), y(i)

1 , . . . , y(i)
k

)=1
))

.

The proof is completed by observing that the foregoing expression can be rearranged
to fit the definition of �k+1. Details follow.

Starting with the foregoing expression, we first replace the sub-expression
E1 ⇔ E2 by (E1 ∧ E2) ∨ (¬E1 ∧ ¬E2), and then pull all quantifiers outside.10 This
way we obtain a quantified expression with k + 1 alternating quantifiers, starting
with an existential quantifier. (Note that we get k + 1 alternating quantifiers rather
than k, because the case of ¬a(i)(x, y)=1 introduces an expression of the form
¬∃y(i)

1 ∀y(i)
2 · · · Qk y(i)

k V ′(q (i)(x, y), y(i)
1 , . . . , y(i)

k )=1, which in turn is equivalent to
the expression ∀y(i)

1 ∃y(i)
2 · · · Qk y(i)

k ¬V ′(q (i)(x, y), y(i)
1 , . . . , y(i)

k )=1.) Once this is
done, we may incorporate the computation of all the q (i)(x, y)’s (and a(i)(x, y)’s) as
well as the polynomial number of invocations of V ′ (and other logical operations)
into the new verification algorithm V . It follows that S ∈ �k+1.

A general perspective – what does CC2
1 mean? By the foregoing discussion it should be

clear that the class CC2
1 can be defined for two complexity classes C1 and C2, provided that

10For example, note that for predicates P1 and P2, the expression ∃y (P1(y) ⇔ ∃z P2(y, z)) is equiva-
lent to the expression ∃y ((P1(y) ∧ ∃z P2(y, z)) ∨ (¬P1(y) ∧ ¬∃z P2(y, z))), which in turn is equivalent to the
expression ∃y∃z′∀z′′ ((P1(y) ∧ P2(y, z′)) ∨ (¬P1(y) ∧ ¬P2(y, z′′))). Note that pulling the quantifiers outside in
∧t

i=1∃y(i)∀z(i) P(y(i), z(i)) yields an expression of the type ∃y(1), . . . , y(t)∀z(1), . . . , z(t) ∧t
i=1 P(y(i), z(i)).

118



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

3.2. THE POLYNOMIAL-TIME HIERARCHY

Σk

Σk

Σk+1

Π

Π

k
P

k+1

Figure 3.1: Two levels of the Polynomial-time Hierarchy.

C1 is associated with a class of standard machines that generalizes naturally to a class of
oracle machines. Actually, the class CC2

1 is not defined based on the class C1 but rather by
analogy to it. Specifically, suppose that C1 is the class of sets that are recognizable (or rather
accepted) by machines of a certain type (e.g., deterministic or non-deterministic) with
certain resource bounds (e.g., time and/or space bounds). Then, we consider analogous
oracle machines (i.e., of the same type and with the same resource bounds), and say that
S ∈ CC2

1 if there exists an adequate oracle machine M1 (i.e., of this type and resource
bounds) and a set S2 ∈ C2 such that M S2

1 accepts the set S.

Decision problems that are Cook-reductions to NP, revisited. Using the foregoing
notation, the class of decision problems that are Cook-reductions to NP is denoted PNP ,
and thus is a subset of NPNP = �2 (see Exercise 3.9). In contrast, recall that the class
of decision problems that are Karp-reductions to NP equals NP .

The world view. Using the foregoing notation and relying on Exercise 3.9, we note that
for every k ≥ 1 it holds that �k ∪�k ⊆ P�k ⊆ �k+1 ∩�k+1. See Figure 3.1 that depicts
the situation, assuming that all the containments are strict.

3.2.3. The P/poly Versus NP Question and PH

As stated in Section 3.1, a main motivation for the definition of P/poly is the hope that it
can serve to separate P from NP (by showing that NP is not even contained in P/poly,
which is a (strict) superset of P). In light of the fact that P/poly extends far beyond P (and
in particular contains undecidable problems), one may wonder if this approach does not
run the risk of asking too much (because it may be thatNP is inP/poly even ifP �= NP).
The common feeling is that the added power of non-uniformity is irrelevant with respect
to the P-vs-NP Question. Ideally, we would like to know that NP ⊂ P/poly may occur
only if P = NP , which may be phrased as saying that the Polynomial-time Hierarchy
collapses to its zero level. The following result seems to get close to such an implication,
showing that NP ⊂ P/poly may occur only if the Polynomial-time Hierarchy collapses
to its second level.

119



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

Theorem 3.12: If NP ⊂ P/poly then �2 = �2.

Recall that �2 = �2 implies PH = �2 (see Proposition 3.10). Thus, an unexpected
behavior of the non-uniform complexity class P/poly implies an unexpected behavior in
the world of uniform complexity (which is the habitat of PH).

Proof: Using the hypothesis (i.e., NP ⊂ P/poly) and starting with an arbitrary set
S ∈ �2, we shall show that S ∈ �2. Let us describe, first, our high-level approach.

Loosely speaking, S ∈ �2 means that x ∈ S if and only if for all y there exists
a z such that some (fixed) polynomial-time verifiable condition regarding (x, y, z)
holds. Note that the residual condition regarding (x, y) is of the NP-type, and thus
(by the hypothesis) it can be verified by a polynomial-size circuit. This suggests
saying that x ∈ S if and only if there exists an adequate circuit C such that for all
y it holds that C(x, y) = 1. Thus, we managed to switch the order of the universal
and existential quantifiers. Specifically, the resulting assertion is of the desired �2-
type provided that we can either verify the adequacy condition in coNP (or even
in �2) or keep out of trouble even in the case that x �∈ S and C is inadequate. In
the following proof we implement the latter option by observing that the hypoth-
esis yields small circuits for NP-search problems (and not only for NP-decision
problems). Specifically, we obtain (small) circuits that, given (x, y), find an NP-
witness for (x, y) (whenever such a witness exists), and rely on the fact that we can
efficiently verify the correctness of NP-witnesses. (The alternative approach of pro-
viding a coNP-type procedure for verifying the adequacy of the circuit is pursued in
Exercise 3.11.)

We now turn to a detailed implementation of the foregoing approach. Let S be
an arbitrary set in �2. Then, by Proposition 3.9, there exists a polynomial p and
a set S′ ∈ NP such that S = {x : ∀y∈{0, 1}p(|x |) (x, y)∈ S′}. Let R′ ∈ PC be the
witness relation corresponding to S′; that is, there exists a polynomial p′, such that
x ′ = 〈x, y〉 ∈ S′ if and only if there exists z∈{0, 1}p′(|x ′|) such that (x ′, z) ∈ R′. It
follows that

S = {x : ∀y∈{0, 1}p(|x |)∃z∈{0, 1}p′(|〈x,y〉|) (〈x, y〉, z) ∈ R′}. (3.2)

Our argument proceeds essentially as follows. By the reduction of PC to NP (see
Theorem 2.10), the theorem’s hypothesis (i.e., NP ⊆ P/poly) implies the existence
of polynomial-size circuits for solving the search problem of R′. Using the existence
of these circuits, it follows that for any x ∈ S there exists a small circuit C ′ such
that for every y it holds that C ′(x, y) ∈ R′(x, y) (because 〈x, y〉 ∈ S′ and hence
R′(x, y) �= ∅). On the other hand, for any x �∈ S there exists a y such that 〈x, y〉 �∈ S′,
and hence for any circuit C ′ it holds that C ′(x, y) �∈ R′(x, y) (for the trivial reason
that R′(x, y) = ∅). Thus, x ∈ S if and only if there exists a poly(|x | + p(|x |))-size
circuit C ′ such that for all y∈{0, 1}p(|x |) it holds that (〈x, y〉, C ′(x, y)) ∈ R′. Letting
V (x, C ′, y) = 1 if and only if (〈x, y〉, C ′(x, y)) ∈ R′, we infer that S ∈ �2. Details
follow.

Let us first spell out what we mean by polynomial-size circuits for solving a
search problem and further justify their existence for the search problem of R′.
In Section 3.1, we have focused on polynomial-size circuits that solve decision
problems. However, the definition sketched in Section 3.1.1 also applies to solving
search problems, provided that an appropriate convention is used for encoding

120



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

solutions of possibly varying lengths (for instances of fixed length) as strings of
fixed length. Next, observe that combining the Cook-reduction of PC to NP with
the hypothesis NP ⊆ P/poly implies that PC is Cook-reducible to P/poly. In
particular, this implies that any search problem in PC can be solved by a family
of polynomial-size circuits. Note that the resulting circuit that solves n-bit long
instances of such a problem may incorporate polynomially (in n) many circuits,
each solving a decision problem for m-bit long instances, where m ∈ [poly(n)].
Needless to say, the size of the resulting circuit that solves the search problem
of the aforementioned R′ ∈ PC (for instances of length n) is upper-bounded by
poly(n) ·∑poly(n)

m=1 poly(m).
We next (revisit and) establish the claim that x ∈ S if and only if there exists

a poly(|x | + p(|x |))-size circuit C ′ such that for all y∈{0, 1}p(|x |) it holds that
(〈x, y〉, C ′(x, y)) ∈ R′. Recall that x ∈ S if and only if for every y∈{0, 1}p(|x |)

it holds that (x, y) ∈ S′, which means that there exists z∈{0, 1}p′(|x |) such
that (〈x, y〉, z) ∈ R′. Also recall that (by the foregoing discussion) there ex-
ist polynomial-size circuits for solving the search problem of R′. Thus, in the
case that x ∈ S, we just use the corresponding circuit C ′ that solves the search
problem of R′ on inputs of length |x | + p(|x |). Indeed, this circuit C ′ only depends
on n′ = |x | + p(|x |), which in turn is determined by |x |, and for every x ′ ∈ {0, 1}n′
it holds that (x ′, C ′(x ′)) ∈ R′ if and only if x ′ ∈ S′. Thus, for x ∈ S, there exists
a poly(|x | + p(|x |))-size circuit C ′ such that for every y∈{0, 1}p(|x |) it holds that
(〈x, y〉, C ′(x, y)) ∈ R′. On the other hand, if x �∈ S then there exists a y such that
for all z it holds that (〈x, y〉, z) �∈ R′. It follows that, in this case, for every C ′

there exists a y such that (〈x, y〉, C ′(x, y)) �∈ R′. We conclude that x ∈ S if and
only if

∃C ′ ∈{0, 1}poly(|x |+p(|x |))∀y∈{0, 1}p(|x |) (〈x, y〉, C ′(x, y)) ∈ R′. (3.3)

The key observation regarding the condition stated in Equation (3.3) is that it
is of the desired form (of a �2 statement). Specifically, consider the polynomial-
time verification procedure V that given x, y and the description of the circuit C ′,
first computes z ← C ′(x, y) and accepts if and only if (〈x, y〉, z) ∈ R′, where the
latter condition can be verified in polynomial time (because R′ ∈ PC). Denoting
the description of a potential circuit by 〈C ′〉, the aforementioned (polynomial-
time) computation of V is denoted V (x, 〈C ′〉, y), and indeed x ∈ S if and
only if

∃〈C ′〉∈{0, 1}poly(|x |+p(|x |))∀y∈{0, 1}p(|x |) V (x, 〈C ′〉, y) = 1.

Having established that S ∈ �2 for an arbitrary S ∈ �2, we conclude that �2 ⊆ �2.
The theorem follows (by applying Exercise 3.9.4).

Chapter Notes

The classP/poly was defined by Karp and Lipton [139] as part of a general formulation of
“machines that take advice” [139]. They also noted the equivalence to the traditional for-
mulation of polynomial-size circuits as well as the effect of uniformity (Proposition 3.4).

The Polynomial-Time Hierarchy (PH) was introduced by Stockmeyer [213]. A third
equivalent formulation of PH (via so-called alternating machines) can be found in [52].

121



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

The implication of the failure of the conjecture that NP is not contained in P/poly on
the Polynomial-time Hierarchy (i.e., Theorem 3.12) was discovered by Karp and Lipton
[139]. This interesting connection between non-uniform and uniform complexity provides
the main motivation for presenting P/poly and PH in the same chapter.

Exercises

Exercise 3.1 (a small variation on the definitions ofP/poly): Using an adequate encod-
ing of strings of length smaller than n as n-bit strings (e.g., x ∈ ∪i<n{0, 1}i is encoded
as x01n−|x |−1), define circuits (resp., machines that take advice) as devices that can
handle inputs of various lengths up to a given bound (rather than as devices that can
handle inputs of a fixed length). Show that the class P/poly remains invariant under
this change (and Theorem 3.6 remains valid).

Exercise 3.2 (sparse sets): A set S ⊂ {0, 1}∗ is called sparse if there exists a polynomial
p such that |S ∩ {0, 1}n| ≤ p(n) for every n.

1. Prove that any sparse set is in P/poly. Note that a sparse set may be undecidable.
2. Prove that a set is in P/poly if and only if it is Cook-reducible to some sparse set.

Guideline: For the forward direction of Part 2, encode the advice sequence (an)n∈N

as a sparse set {(1n, i, σn,i ) : n∈N , i ≤ |an|}, where σn,i is the i th bit of an . For the
opposite direction, note that the emulation of a Cook-reduction to a set S, on input x ,
only requires knowledge of S ∩ ∪poly(|x |)

i=1 {0, 1}i .
Exercise 3.3 (advice hierarchy): Prove that for any two functions �, δ : N→ N such that

�(n) < 2n−1 and δ is unbounded, it holds that P/� is strictly contained in P/(�+ δ).

Guideline: For every sequence a = (an)n∈N such that |an| = �(n)+ δ(n) ≤ 2n , con-
sider the set Sa that encodes a such that x ∈ Sa ∩ {0, 1}n if and only if the idx(x)th bit
in an equals 1 (and idx(x) ≤ |an|), where idx(x) denotes the index of x in {0, 1}n . For
more details see Section 4.1.

Exercise 3.4: Prove that �2 contains all sets that are Cook-reducible to NP .

Guideline: This is quite obvious when using the definition of �2 as presented in
Section 3.2.2; see Exercise 3.9. Alternatively, the fact can be proved by using some of
the ideas that underlie the proof of Theorem 2.35, while noting that a conjunction of
NP and coNP assertions forms an assertion of type �2 (see also the second part of the
proof of Proposition 3.11).

Exercise 3.5: Let � = NP ∩ coNP . Prove that � equals the class of decision problems
that are Cook-reducible to � (i.e., � = P�).

Guideline: See proof of Theorem 2.35.

Exercise 3.6 (the class �k): Recall that �k is defined to equal co�k , which in turn is
defined to equal {{0, 1}∗ \ S : S ∈ �k}. Prove that for any natural number k, a decision
problem S ⊆ {0, 1}∗ is in �k if there exists a polynomial p and a polynomial-time
algorithm V such that x ∈ S if and only if

∀y1∈{0, 1}p(|x |)∃y2∈{0, 1}p(|x |)∀y3∈{0, 1}p(|x |) · · · Qk yk ∈{0, 1}p(|x |)

s.t. V (x, y1, . . . , yk) = 1

122



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

where Qk is a universal quantifier if k is odd and is an existential quantifier
otherwise.

Exercise 3.7 (complete problems for the various levels of PH): A k-alternating quanti-
fied Boolean formula is a quantified Boolean formula with up to k alternating sequences
of existential and universal quantifiers, starting with an existential quantifier. For ex-
ample, ∃z1∃z2∀z3φ(z1, z2, z3) (where the zi ’s are Boolean variables) is a 2-alternating
quantified Boolean formula. Prove that, for every k ≥ 1, the problem of deciding
whether or not a k-alternating quantified Boolean formula is valid is �k-complete
under Karp-reductions. That is, denoting the aforementioned problem by kQBF, prove
that kQBF is in �k and that every problem in �k is Karp-reducible to kQBF.

Guideline: Start with the case of odd k. This allows for incorporating the existential
quantification of the auxiliary variables (introduced by the reduction) in the last se-
quence of quantifiers. For even k > 1, consider first an analogous complete problem
for �k , and then consider its complement.

Exercise 3.8 (on the relation between PH and AC0): Note that there is an obvious anal-
ogy between PH and constant-depth circuits of unbounded fan-in, where existential
(resp., universal) quantifiers are represented by “large”

∨
(resp.,

∧
) gates. To articulate

this relationship, consider the following definitions.

• A family of circuits {CN } is called highly uniform if there exists a polynomial-
time algorithm that answers local queries regarding the structure of the relevant
circuit. Specifically, on input (N , u, v), the algorithm determines the type of gates
represented by the vertices u and v in CN as well as whether there exists a directed
edge from u to v. If the vertex represents a terminal then the algorithm also indicates
the index of the corresponding input-bit (or output-bit). Note that this algorithm
operates in time that is polylogarithmic in the size of CN .

We focus on the family of polynomial-size circuits, meaning that the size of CN is
polynomial in N , which in turn represents the number of inputs to CN .

• Fixing a polynomial p, a p-succinctly represented input Z ∈ {0, 1}N is a circuit cZ

of size at most p(log2 N ) such that for every i ∈ [N ] it holds that cZ (i) equals the
i th bit of Z .

• For a fixed family of highly uniform circuits {CN } and a fixed polynomial p,
the problem of evaluating a succinctly represented input is defined as follows.
Given p-succinct representation of an input Z ∈ {0, 1}N , determine whether or not
CN (Z ) = 1.

Prove the following relationship betweenPH and the problem of evaluating a succinctly
represented input with respect to some families of highly uniform circuits of bounded
depth.

1. For every k and every S ∈ �k , show that there exists a family of highly uniform
unbounded fan-in circuits of depth k and polynomial size such that S is Karp-
reducible to evaluating a succinctly represented input (with respect to that family of
circuits). That is, the reduction should map an instance x ∈ {0, 1}n to a p-succinct
representation of some Z ∈ {0, 1}N such that x ∈ S if and only if CN (Z ) = 1. (Note

123



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

that Z is represented by a circuit cZ such that log2 N ≤ |cZ | ≤ poly(n), and thus
N ≤ exp(poly(n)).)11

Guideline: Let S ∈ �k and let V be the corresponding verification algorithm as in Defi-
nition 3.8. That is, x ∈ S if and only if ∃y1∀y2 · · · Qk yk , where each yi ∈{0, 1}poly(|x |) such
that V (x, y1, . . . , yk) = 1. Then, for m = poly(|x |) and N = 2k·m , consider the fixed circuit
CN (Z ) = ∨

i1∈[2m ]

∧
i2∈[2m ] · · · Q′ik∈[2m ] Zi1,i2,...,ik , and the problem of evaluating CN at an in-

put consisting of the truth table of V (x, · · ·) (i.e., when setting Zi1,i2,...,ik = V (x, i1, . . . , ik),
where [2m] ≡ {0, 1}m , which means that Z is essentially represented by x).12 Note that the
size of CN is O(N ).

2. For every k and every fixed family of highly uniform unbounded fan-in circuits of
depth k and polynomial size, show that the corresponding problem of evaluating a
succinctly represented input is either in �k or in �k .

Guideline: Given a succinct representation of Z , the value of CN (Z ) can be captured
by a quantified Boolean formula with k alternating quantifier sequences. This formula
quantifies on certain paths from the output of CN to its input terminals; for example,
an ∨-gate (resp., ∧-gate) evaluates to 1 if and only if one (resp., all) of its children
evaluates to 1. The children of a vertex as well as the corresponding input-bits can be
efficiently recognized based on the uniformity condition regarding CN . The value of
the input-bit itself can be efficiently computed from the succinct representation of Z .

Exercise 3.9: Verify the following facts:

1. For every k ≥ 0, it holds that �k ⊆ P�k ⊆ �k+1.

(Recall that, for any complexity class C, the class PC denotes the class of sets that
are Cook-reducible to some set in C. In particular, PP = P .)

2. For every k ≥ 0, �k ⊆ P�k ⊆ �k+1.

(Hint: For any complexity class C, it holds that PC = PcoC and PC = coPC .)

3. For every k ≥ 0, it holds that �k ⊆ �k+1 and �k ⊆ �k+1. Thus, PH = ∪k�k .

4. For every k ≥ 0, if �k ⊆ �k (resp., �k ⊆ �k) then �k = �k .

(Hint: See Exercise 2.37.)

Exercise 3.10: In continuation of Exercise 3.7, prove the following claims:

1. SAT is computationally equivalent (under Karp-reductions) to 1QBF.
2. For every k ≥ 1, it holds that P�k = PkQBF and �k+1 = NPkQBF.

Guideline: Prove that if S is C-complete then PC = P S . Note that PC ⊆ P S uses the
polynomial-time reductions of C to S, whereas P S ⊆ PC uses S ∈ C.

11Assuming P �= NP , it cannot be that N ≤ poly(n) (because circuit evaluation can be performed in time
polynomial in the size of the circuit).

12Advanced comment: Note that the computational limitations of AC0 circuits (see, e.g., [83, 115]) imply
limitations on the functions of a generic input Z that the aforementioned circuits CN can compute. More importantly,
these limitations apply also to Z = h(Z ′), where Z ′ ∈ {0, 1}N�(1)

is generic and each bit of Z equals either some fixed
bit in Z ′ or its negation. Unfortunately, these computational limitations do not seem to provide useful information
on the limitations of functions of inputs Z that have succinct representation (as obtained by setting Zi1,i2,...,ik =
V (x, i1, . . . , ik ), where V is a fixed polynomial-time algorithm and only x ∈ {0, 1}poly(log N ) varies). This fundamental
problem is “resolved” in the context of “relativization” by providing V with oracle access to an arbitrary input of
length N�(1) (or so); cf. [83].

124



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 3.11 (an alternative proof of Theorem 3.12): In continuation of the discussion
in the proof of Theorem 3.12, use the following guidelines to provide an alternative
proof of Theorem 3.12.

1. First, prove that if T is downward self-reducible (as defined in Exercise 2.13) then the
correctness of circuits deciding T can be decided in coNP . Specifically, denoting
by χ the characteristic function of T , show that the set

cktχ
def= {(1n, 〈C〉) : ∀w ∈ {0, 1}n C(w) = χ(w)}

is in coNP . Note that you may assume nothing about T , except for the hypothesis
that T is downward self-reducible.

Guideline: Using the more flexible formulation suggested in Exercise 3.1, it suffices to
verify that, for every i < n and every i-bit string w, the value C(w) equals the output of the
downward self-reduction on input w when obtaining answers according to C . Thus, for every
i < n, the correctness of C on inputs of length i follows from its correctness on inputs of
length less than i . Needless to say, the correctness of C on the empty string (or on all inputs
of some constant length) can be verified by comparison to the fixed value of χ on the empty
string (resp., the values of χ on a constant number of strings).

2. Recalling that SAT is downward self-reducible and that NP is Karp-reducible to
SAT, derive Theorem 3.12 as a corollary of Part 1.

Guideline: Let S ∈ �2 and S′ ∈ NP be as in the proof of Theorem 3.12. Letting f
denote a Karp-reduction of S′ to SAT, note that S = {x : ∀y∈{0, 1}p(|x |) f (x, y)∈SAT}.
Using the hypothesis that SAT has polynomial-size circuits, note that x ∈ S if and only
if there exists a poly(|x |)-size circuit C such that (1) C decides SAT correctly on
every input of length at most poly(|x |), and (2) for every y∈{0, 1}p(|x |) it holds that
C( f (x, y)) = 1. Infer that S ∈ �2.

Exercise 3.12: In continuation of Part 2 of Exercise 3.2, we consider the class of sets that
are Karp-reducible to a sparse set. It can be proven that this class contains SAT if and
only if P = NP (see [81]). Here, we consider only the special case in which the sparse
set is contained in a polynomial-time decidable set that is itself sparse (e.g., the latter
set may be {1}∗, in which case the former set may be an arbitrary unary set). Actually,
prove the following seemingly stronger claim:

If SAT is Karp-reducible to a set S ⊆ G such that G ∈ P and G \ S is
sparse then SAT ∈ P .

Using the hypothesis, we outline a polynomial-time procedure for solving the search
problem of SAT, and leave the task of providing the details as an exercise. The pro-
cedure conducts a DFS on the tree of all possible partial truth assignments to the
input formula,13 while truncating the search at nodes that correspond to partial truth
assignments that were already demonstrated to be useless.

Guideline: The key observation is that each internal node (which yields a formula
derived from the initial formulae by instantiating the corresponding partial truth as-
signment) is mapped by the Karp-reduction either to a string not in G (in which case
we conclude that the sub-tree contains no satisfying assignments and backtrack from

13For an n-variable formulae, the leaves of the tree correspond to all possible n-bit long strings, and an internal
node corresponding to τ is the parent of the nodes corresponding to τ0 and τ1.

125



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

VARIATIONS ON P AND NP

this node) or to a string in G. In the latter case, unless we already know that this string
is not in S, we start a scan of the sub-tree rooted at this node. However, once we
backtrack from this internal node, we know that the corresponding element of G is not
in S, and we will never scan again a sub-tree rooted at a node that is mapped to this
element. Also note that once we reach a leaf, we can check by ourselves whether or
not it corresponds to a satisfying assignment to the initial formula.

(Hint: When analyzing the foregoing procedure, note that on input an n-variable
formulae φ the number of times we start to scan a sub-tree is at most n · | ∪poly(|φ|)

i=1

{0, 1}i ∩ (G \ S)|.)

126



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER FOUR

More Resources, More Power?

More electricity, less toil.
The Israeli Electricity Company, 1960s

Is it indeed the case that the more resources one has, the more one can achieve? The
answer may seem obvious, but the obvious answer (of yes) actually presumes that the
worker knows what resources are at his/her disposal. In this case, when allocated more
resources, the worker (or computation) can indeed achieve more. But otherwise, nothing
may be gained by adding resources.

In the context of Computational Complexity, an algorithm knows the amount of re-
sources that it is allocated if it can determine this amount without exceeding the cor-
responding resources. This condition is satisfied in all “reasonable” cases, but it may
not hold in general. The latter fact should not be that surprising: We already know that
some functions are not computable, and if these functions are used to determine resources
then the algorithm may be in trouble. Needless to say, this discussion requires some
formalization, which is provided in the current chapter.

Summary: When using “nice” functions to determine an algorithm’s
resources, it is indeed the case that more resources allow for more tasks
to be performed. However, when “ugly” functions are used for the same
purpose, increasing the resources may have no effect. By nice functions
we mean functions that can be computed without exceeding the amount
of resources that they specify (e.g., t(n) = n2 or t(n) = 2n). Naturally,
“ugly” functions do not allow for presenting themselves in such nice
forms.

The foregoing discussion refers to uniform models of computation and
to (natural) resources such as time and space complexities. Thus, we get
results asserting, for example, that there are problems that are solvable
in cubic time but not in quadratic time. In case of non-uniform models
of computation, the issue of “nicety” does not arise, and it is easy to
establish separations between levels of circuit complexity that differ by
any unbounded amount.

Results that separate the class of problems solvable within one resource
bound from the class of problems solvable within a larger resource bound
are called hierarchy theorems. Results that indicate the nonexistence of

127



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

such separations, hence indicating a “gap” in the growth of computing
power (or a “gap” in the existence of algorithms that utilize the added
resources), are called gap theorems. A somewhat related phenomenon,
called speed-up theorems, refers to the inability to define the complexity
of some problems.

Caveat. Uniform complexity classes based on specific resource bounds (e.g., cubic time)
are model dependent. Furthermore, the tightness of separation results (i.e., how much
“more time” is required for solving some additional computational problems) is also
model dependent. Still, the existence of such separations is a phenomenon common to all
reasonable and general models of computation (as referred to in the Cobham-Edmonds
Thesis). In the following presentation, we will explicitly differentiate model-specific
effects from generic ones.

Organization. We will first demonstrate the “more resources yield more power” phe-
nomenon in the context of non-uniform complexity. In this case, the issue of “knowing”
the amount of resources allocated to the computing device does not arise, because each
device is tailored to the amount of resources allowed for the input length that it handles
(see Section 4.1). We then turn to the time complexity of uniform algorithms; indeed, hier-
archy and gap theorems for time complexity, presented in Section 4.2, constitute the main
part of the current chapter. We end by mentioning analogous results for space complexity
(see Section 4.3, which may also be read after Section 5.1).

4.1. Non-uniform Complexity Hierarchies

The model of machines that use advice (cf. §1.2.4.2 and Section 3.1.2) offers a very
convenient setting for separation results. We refer specifically to classes of the form P/�,
where � : N→ N is an arbitrary function (see Definition 3.5). Recall that every Boolean
function is in P/2n , by virtue of a trivial algorithm that is given, as advice, the truth table
of the function (restricted to the relevant input length). An analogous algorithm underlies
the following separation result.

Theorem 4.1: For any two functions �′, δ : N→ N such that �′(n)+ δ(n) ≤ 2n and
δ is unbounded, it holds that P/�′ is strictly contained in P/(�′ + δ).

Proof: Let �
def= �′ + δ, and consider the following advice-taking algorithm A: Given

advice an ∈ {0, 1}�(n) and input i ∈ {1, . . . , 2n} (viewed as an n-bit long string),
algorithm A outputs the i th bit of an if i ≤ |an| and zero otherwise. Clearly, for any
a = (an)n∈N such that |an| = �(n), it holds that the function fa(x)

def= A(a|x |, x) is in
P/�. Furthermore, different sequences a yield different functions fa . We claim that
some of these functions fa are not in P/�′, thus obtaining a separation.

The claim is proved by considering all possible (polynomial-time) algorithms A′

and all possible sequences a′ = (a′n)n∈N such that |a′n| = �′(n). Fixing any algorithm
A′, we consider the number of n-bit long functions that are correctly computed by
A′(a′n, ·). Clearly, the number of these functions is at most 2�′(n), and thus A′ may
account for at most 2−δ(n) fraction of the functions fa (even when restricted to n-bit
strings). Essentially, this consideration holds for every n and every possible A′, and

128



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

4.2. TIME HIERARCHIES AND GAPS

thus the measure of the set of functions that are computable by algorithms that take
advice of length �′ is zero.

Formally, for every n, we consider all advice-taking algorithms that have a de-
scription of length shorter than δ(n)− 2. (This guarantees that every advice-taking
algorithm will be considered.) Coupled with all possible advice sequences of length
�′, these algorithms can compute at most 2(δ(n)−2)+�′(n) different functions of n-bit
long inputs. The latter number falls short of the 2�(n) corresponding functions (of
n-bit long inputs) that are computable by A with advice of length �(n).

A somewhat less tight bound can be obtained by using the model of Boolean circuits. In
this case, some slackness is needed in order to account for the gap between the upper and
lower bounds regarding the number of Boolean functions over {0, 1}n that are computed
by Boolean circuits of size s < 2n . Specifically (see Exercise 4.1), an obvious lower bound
on this number is 2s/O(log s) whereas an obvious upper bound is s2s = 22s log2 s . Compare
these bounds to the lower-bound 2�′(n) and the upper-bound 2�′(n)+(δ(n)/2) (on the number
of functions computable with advice of length �′(n)), which were used in the proof of
Theorem 4.1.

4.2. Time Hierarchies and Gaps

In this section we show that in “reasonable cases,” increasing the time complexity allows
for more problems to be solved, whereas in “pathological cases,” it may happen that
even a dramatic increase in the time complexity provides no additional computing power.
As hinted in the introductory comments to the current chapter, the “reasonable cases”
correspond to time bounds that can be determined by the algorithm itself within the
specified time complexity.

We stress that also in the aforementioned “reasonable cases,” the added power does
not necessarily refer to natural computational problems. That is, like in the case of non-
uniform complexity (i.e., Theorem 4.1), the hierarchy theorems are proven by introducing
artificial computational problems. Needless to say, we do not know of natural problems
in P that are unsolvable in cubic (or some other fixed polynomial) time (on, say, a two-
tape Turing machine). Thus, although P contains an infinite hierarchy of computational
problems, with each level requiring significantly more time than the previous level, we
know of no such hierarchy of natural computational problems. In contrast, so far it has
been the case that any natural problem that was shown to be solvable in polynomial time
was eventually followed by algorithms having running time that is bounded by a moderate
polynomial.

4.2.1. Time Hierarchies

Note that the non-uniform computing devices, considered in Section 4.1, were explicitly
given the relevant resource bounds (e.g., the length of advice). Actually, they were given
the resources themselves (e.g., the advice itself) and did not need to monitor their usage
of these resources. In contrast, when designing algorithms of arbitrary time complexity
t : N→ N, we need to make sure that the algorithm does not exceed the time bound.
Furthermore, when invoked on input x , the algorithm is not given the time bound t(|x |)
explicitly, and a reasonable design methodology is to have the algorithm compute this
bound (i.e., t(|x |)) before doing anything else. This, in turn, requires the algorithm to

129



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

read the entire input (see Exercise 4.3) as well as to compute t(n) in O(t(n)) steps (as
otherwise this preliminary stage already consumes too much time). The latter requirement
motivates the following definition (which is related to the standard definition of “fully
time constructibility” (cf. [123, Sec. 12.3])).

Definition 4.2 (time constructible functions): A function t : N→ N is called time
constructible if there exists an algorithm that on input n outputs t(n) using at most
t(n) steps.

Equivalently, we may require that the mapping 1n !→ t(n) be computable within time
complexity t . We warn that the foregoing definition is model dependent; however, typically
nice functions are computable even faster (e.g., in poly(log t(n)) steps), in which case
the model dependency is irrelevant (for reasonable and general models of computation,
as referred to in the Cobham-Edmonds Thesis). For example, in any reasonable and
general model, functions like t1(n) = n2, t2(n) = 2n , and t3(n) = 22n

are computable in
poly(log ti (n)) steps.

Likewise, for a fixed model of computation (to be understood from the context) and
for any function t : N→ N, we denote by DTIME(t) the class of decision problems that
are solvable in time complexity t . We call the reader’s attention to Exercise 4.4 that asserts
that in many cases DTIME(t) = DTIME(t/2).

4.2.1.1. The Time Hierarchy Theorem
In the following theorem (which separates DTIME(t1) from DTIME(t2)), we refer to the
model of two-tape Turing machines. In this case we obtain quite a tight hierarchy in terms
of the relation between t1 and t2. We stress that, using the Cobham-Edmonds Thesis, this
result yields (possibly less tight) hierarchy theorems for any reasonable and general model
of computation.

Teaching note: The standard statement of Theorem 4.3 asserts that for any time-constructible
function t2 and every function t1 such that t2 = ω(t1 log t1) and t1(n) > n it holds that DTIME(t1)
is strictly contained in DTIME(t2). The current version is only slightly weaker, but it allows a
somewhat simpler and more intuitive proof. We comment on the proof of the standard version
of Theorem 4.3 in a teaching note following the proof of the current version.

Theorem 4.3 (time hierarchy for two-tape Turing machines): For any time-
constructible function t1 and every function t2 such that t2(n) ≥ (log t1(n))2 · t1(n)
and t1(n) > n it holds that DTIME(t1) is strictly contained in DTIME(t2).

As will become clear from the proof, an analogous result holds for any model in which
a universal machine can emulate t steps of another machine in O(t log t) time, where the
constant in the O-notation depends on the emulated machine. Before proving Theorem 4.3,
we derive the following corollary.

Corollary 4.4 (time hierarchy for any reasonable and general model): For any
reasonable and general model of computation there exists a positive polynomial
p such that for any time-computable function t1 and every function t2 such that
t2 > p(t1) and t1(n) > n it holds that DTIME(t1) is strictly contained in DTIME(t2).

130



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

4.2. TIME HIERARCHIES AND GAPS

It follows that, for every such model and every polynomial t (such that t(n) > n), there
exist problems in P that are not in DTIME(t). It also follows that P is a strict subset of
E and even of “quasi-polynomial time” (i.e., DTIME(q), where q(n) = exp(poly(log n)));
moreover, P is a strict subset of DTIME(q), for any super-polynomial function q (i.e.,
q(n) = nω(1)).

We comment that Corollary 4.4 can be proven directly (rather than by invoking The-
orem 4.3). This can be done by implementing the ideas that underlie the proof of Theo-
rem 4.3 directly to the model of computation at hand (see Exercise 4.5). In fact, such a
direct implementation, which is allowed “polynomial slackness” (i.e., t2 > p(t1)), is less
cumbersome than the implementation presented in the proof of Theorem 4.3 where only
a polylogarithmic factor is allowed in the slackness (i.e., t2 ≥ Õ(t1)). We also note that
the separation result in Corollary 4.4 can be tightened – for details see Exercise 4.6.

Proof of Corollary 4.4: The underlying fact is that separation results regarding
any reasonable and general model of computation can be “translated” to analogous
results regarding any other such model. Such a translation may affect the time bounds
as demonstrated next. Letting DTIME2 denote the classes that correspond to two-tape
Turing machines (and recalling that DTIME denotes the classes that correspond
to the alternative model), we note that DTIME(t1) ⊆ DTIME2(t ′1) and DTIME2(t ′2) ⊆
DTIME(t2), where t ′1 = poly(t1) and t ′2 is defined such that t2(n) = poly(t ′2(n)). The
latter unspecified polynomials, hereafter denoted p1 and p2, respectively, are the
ones guaranteed by the Cobham-Edmonds Thesis. Also, the hypothesis that t1 is
time-constructible implies that t ′1 = p1(t1) is time-constructible with respect to the
two-tape Turing machine model. Thus, for a suitable choice of the polynomial p
(i.e., p(p−1

1 (m)) ≥ p2(m2)), it holds that

t ′2(n) = p−1
2 (t2(n)) > p−1

2 (p(t1(n))) = p−1
2

(
p
(

p−1
1 (t ′1(n))

)) ≥ t ′1(n)2 ,

where the first inequality holds by the corollary’s hypothesis (i.e., t2 > p(t1)) and
the last inequality holds by the choice of p. Invoking Theorem 4.3 (while noting that
t ′2(n) > t ′1(n)2), we obtain the strict inclusion DTIME2(t ′1) ⊂ DTIME2(t ′2). Combining
the latter with DTIME(t1) ⊆ DTIME2(t ′1) and DTIME2(t ′2) ⊆ DTIME(t2), the corollary
follows.

Proof of Theorem 4.3: The idea is constructing a Boolean function f such that all
machines having time complexity t1 fail to compute f . This is done by associating
with each possible machine M a different input xM (e.g., xM = 〈M〉) and making
sure that f (xM ) �= M ′(xM ), where M ′(x) denotes an emulation of M(x) that is
suspended after t1(|x |) steps. For example, we may define f (xM ) = 1− M ′(xM ).
We note that M ′ is used instead of M in order to allow for computing f in time that
is related to t1. The point is that M may be an arbitrary machine that is associated
with the input xM , and so M does not necessarily run in time t1 (but, by construction,
the corresponding M ′ does run in time t1).

Implementing the foregoing idea calls for an efficient association of machines
to inputs as well as for a relatively efficient emulation of t1 steps of an arbitrary
machine. As shown next, both requirements can be met easily. Actually, we are going
to use a mapping µ of inputs to machines (i.e., µ will map the aforementioned xM

to M) such that each machine is in the range of µ and µ is very easy to compute

131



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

(e.g., indeed, for starters, assume that µ is the identity mapping). Thus, by con-
struction, f �∈ DTIME(t1). The issue is presenting a relatively efficient algorithm for
computing f , that is, showing that f ∈ DTIME(t2).

The algorithm for computing f as well as the definition of f (sketched in
the first paragraph) are straightforward: On input x , the algorithm computes t =
t1(|x |), determines the machine M = µ(x) that corresponds to x (outputting a default
value if no such machine exists), emulates M(x) for t steps, and returns the value
1− M ′(x). Recall that M ′(x) denotes the time-truncated emulation of M(x) (i.e.,
the emulation of M(x) suspended after t steps); that is, if M(x) halts within t
steps then M ′(x) = M(x), and otherwise M ′(x) may be defined arbitrarily. Thus,
f (x) = 1− M ′(x) if M = µ(x) and (say) f (x) = 0 otherwise.

In order to show that f �∈ DTIME(t1), we show that each machine of time com-
plexity t1 fails to compute f . Fixing any such machine, M , we consider an input xM

such that M = µ(xM ), where such an input exists because µ is onto. Now, on the
one hand, M ′(xM ) = M(xM ) (because M has time complexity t1), while on the other
hand, f (xM ) = 1− M ′(xM ) (by the definition of f ). It follows that M(x) �= f (x).

We now turn to upper-bounding the time complexity of f by analyzing the time
complexity of the foregoing algorithm that computes f . Using the time constructibil-
ity of t1 and ignoring the easy computation of µ, we focus on the question of how
much time is required for emulating t steps of machine M (on input x). We should
bear in mind that the time complexity of our algorithm needs to be analyzed in the
two-tape Turing machine model, whereas M itself is a two-tape Turing machine.
We start by implementing our algorithm on a three-tape Turing machine, and next
emulate this machine on a two-tape Turing machine.

The obvious implementation of our algorithm on a three-tape Turing machine
uses two tapes for the emulation itself and designates the third tape for the actions
of the emulation procedure (e.g., storing the code of the emulated machine and
maintaining a step-counter). Thus, each step of the two-tape machine M is emulated
using O(|〈M〉|) steps on the three-tape machine.1 This also includes the amortized
complexity of maintaining a step counter for the emulation (see Exercise 4.7).

Next, we need to emulate the foregoing three-tape machine on a two-tape machine.
This is done by using the fact (cf., e.g., [123, Thm. 12.6]) that t ′ steps of a three-tape
machine can be emulated on a two-tape machine in O(t ′ log t ′) steps. Thus, the com-
plexity of computing f on input x is upper-bounded by O(Tµ(x)(|x |) log Tµ(x)(|x |)),
where TM (n) = O(|〈M〉| · t1(n)) represents the cost of emulating t1(n) steps of the
two-tape machine M on a three-tape machine (as in the foregoing discussion).

It turns out that the quality of the separation result that we obtain depends on
the choice of the mapping µ (of inputs to machines). Using the naive (identity)
mapping (i.e., µ(x) = x) we can only establish the theorem for t2(n) = Õ(n · t1(n))
rather than t2(n) = Õ(t1(n)), because in this case Tµ(x)(|x |) = O(|x | · t1(|x |)). (Note
that, in this case, xM = 〈M〉 is a description of µ(xM ) = M .) The theorem follows
by associating the machine M with the input xM = 〈M〉01m , where m = 2|〈M〉|; that
is, we may use the mapping µ such that µ(x) = M if x = 〈M〉012|〈M〉| and µ(x)
equals some fixed machine otherwise. In this case |µ(x)| < log2 |x | < log t1(|x |)
and so Tµ(x)(|x |) = O((log t1(|x |)) · t1(|x |)). The theorem follows.

1This overhead accounts both for searching the code of M for the adequate action and for the effecting of this
action (which may refer to a larger alphabet than the one used by the emulator).

132



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

4.2. TIME HIERARCHIES AND GAPS

Teaching note: Proving the standard version of Theorem 4.3 cannot be done by associating a
sufficiently long input xM with each machine M , because this does not allow for geting rid of
the additional unbounded factor in Tµ(x)(|x |) (i.e., the |µ(x)| factor that multiplies t1(|x |)). Note
that the latter factor needs to be computable (at the very least) and thus cannot be accounted for
by the generic ω-notation that appears in the standard version (cf. [123, Thm. 12.9]). Instead,
a different approach is taken (see footnote 2).

Technical comments. The proof of Theorem 4.3 associates with each potential machine
M some input xM and defines the computational problem such that machine M errs on
input xM . The association of machines with inputs is rather flexible: We can use any onto
mapping of inputs to machines that is efficiently computable and sufficiently shrinking.
Specifically, in the proof, we used the mapping µ such that µ(x) = M if x = 〈M〉012|〈M〉|

and µ(x) equals some fixed machine otherwise. We comment that each machine can be
made to err on infinitely many inputs by redefining µ such that µ(x) = M if 〈M〉012|〈M〉|

is a suffix of x (and µ(x) equals some fixed machine otherwise). We also comment that,
in contrast to the proof of Theorem 4.3, the proof of Theorem 1.5 utilizes a rigid mapping
of inputs to machines (i.e., there µ(x) = M if x = 〈M〉).

Digest: Diagonalization. The last comment highlights the fact that the proof of Theo-
rem 4.3 is merely a sophisticated version of the proof of Theorem 1.5. Both proofs refer
to versions of the universal function, which in the case of the proof of Theorem 4.3 is
(implicitly) defined such that its value at (〈M〉, x) equals M ′(x), where M ′(x) denotes an
emulation of M(x) that is suspended after t1(|x |) steps.3 Actually, both proofs refers to the
“diagonal” of the aforementioned function, which in the case of the proof of Theorem 4.3
is only defined implicitly. That is, the value of the diagonal function at x , denoted d(x),
equals the value of the universal function at (〈µ(x)〉, x). This is actually a definitional
schema, as the choice of the function µ remains unspecified. Indeed, setting µ(x) = x
corresponds to a “real” diagonal in the matrix depicting the universal function, but any
other choice of a 1-1 mappings µ also yields a “kind of diagonal” of the universal function.
Either way, the function f is defined such that for every x it holds that f (x) �= d(x). This
guarantees that no machine of time complexity t1 can compute f , and the focus is on
presenting an algorithm that computes f (which, needless to say, has time complexity
greater than t1). Part of the proof of Theorem 4.3 is devoted to selecting µ in a way that
minimizes the time complexity of computing f , whereas in the proof of Theorem 1.5 we
merely need to guarantee that f is computable.

4.2.1.2. Impossibility of Speedup for Universal Computation
The time hierarchy theorem (Theorem 4.3) implies that the computation of a universal
machine cannot be significantly sped up. That is, consider the functionu′(〈M〉, x, t)

def= y if

2In the standard proof the function f is not defined with reference to t1(|xM |) steps of M(xM ), but rather with
reference to the result of emulating M(xM ) while using a total of t2(|xM |) steps in the emulation process (i.e., in the
algorithm used to compute f ). This guarantees that f is in DTIME(t2), and “pushes the problem” to showing that f
is not in DTIME(t1). It also explains why t2 (rather than t1) is assumed to be time-constructible. As for the foregoing
problem, it is resolved by observing that for each relevant machine (i.e., having time complexity t1) the executions
on any sufficiently long input will be fully emulated. Thus, we merely need to associate with each M a disjoint set of
infinitely many inputs and make sure that M errs on each of these inputs.

3Needless to say, in the proof of Theorem 1.5, M ′ = M .

133



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

on input x machine M halts within t steps and outputs the string y, and u′(〈M〉, x, t)
def= ⊥

if on input x machine M makes more than t steps. Recall that the value of u′(〈M〉, x, t)
can be computed in Õ(|x | + |〈M〉| · t) steps. As shown next, Theorem 4.3 implies that
this value (i.e., u′(〈M〉, x, t)) cannot be computed within significantly fewer steps.

Theorem 4.5: There exists no two-tape Turing machine that, on input 〈M〉, x and
t, computes u′(〈M〉, x, t) in o((t + |x |) · f (M)/ log2(t + |x |)) steps, where f is an
arbitrary function.

A similar result holds for any reasonable and general model of computation (cf.,
Corollary 4.4). In particular, it follows that u′ is not computable in polynomial time
(because the input t is presented in binary). In fact, one can show that there exists no
polynomial-time algorithm for deciding whether or not M halts on input x in t steps (i.e.,
the set {(〈M〉, x, t) : u′(〈M〉, x, t) �= ⊥} is not in P); see Exercise 4.8.

Proof: Suppose (toward the contradiction) that, for every fixed M , given x and
t > |x |, the value of u′(〈M〉, x, t) can be computed in o(t/ log2 t) steps, where the o-
notation hides a constant that may depend on M . We shall show that this hypothesis
implies that for any time-constructible t1 and t2(n) = t1(n) · log2 t1(n) it holds that
DTIME(t2) = DTIME(t1), which (strongly) contradicts Theorem 4.3.

Consider an arbitrary time-constructible t1 (s.t. t1(n) > n) and an arbitrary set S ∈
DTIME(t2), where t2(n) = t1(n) · log2 t1(n). Let M be a machine of time complexity
t2 that decides membership in S, and consider the following algorithm: On input x ,
the algorithm first computes t = t1(|x |), and then computes (and outputs) the value
u′(〈M〉, x, t log2 t). By the time constructibility of t1, the first computation can be
implemented in t steps, and by the contradiction hypothesis the same holds for the
second computation. Thus, S can be decided in DTIME(2t1) = DTIME(t1), implying
that DTIME(t2) = DTIME(t1), which in turn contradicts Theorem 4.3. We conclude
that the contradiction hypothesis is wrong, and the theorem follows.

4.2.1.3. Hierarchy Theorem for Non-deterministic Time
Analogously to DTIME, for a fixed model of computation (to be understood from the
context) and for any function t : N→ N, we denote by NTIME(t) the class of sets that are
accepted by some non-deterministic machine of time complexity t . Indeed, this definition
extends the traditional formulation of NP (as presented in Definition 2.7). Alternatively,
analogously to our preferred definition of NP (i.e., Definition 2.5), a set S ⊆ {0, 1}∗ is in
NTIME(t) if there exists a linear-time algorithm V such that the two conditions hold:

1. For every x ∈ S there exists y ∈ {0, 1}t(|x |) such that V (x, y) = 1.
2. For every x �∈ S and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

We warn that the two formulations are not identical, but in sufficiently strong models (e.g.,
two-tape Turing machines) they are related up to logarithmic factors (see Exercise 4.10).
The hierarchy theorem itself is similar to the one for deterministic time, except that here
we require that t2(n) ≥ (log t1(n + 1))2 · t1(n + 1) (rather than t2(n) ≥ (log t1(n))2 · t1(n)).
That is:

134



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

4.2. TIME HIERARCHIES AND GAPS

Theorem 4.6 (non-deterministic time hierarchy for two-tape Turing machines): For
any time-constructible and monotonically non-decreasing function t1 and every
function t2 such that t2(n) ≥ (log t1(n + 1))2 · t1(n + 1) and t1(n) > n it holds that
NTIME(t1) is strictly contained in NTIME(t2).

Proof: We cannot just apply the proof of Theorem 4.3, because the Boolean function
f defined there requires the ability to determine whether there exists a computation
of M that accepts the input xM in t1(|xM |) steps. In the current context, M is a non-
deterministic machine and so the only way we know how to determine this question
(both for a “yes” and “no” answers) is to try all the (2t1(|xM |)) relevant executions.4

But this would put f in DTIME(2t1 ), rather than in NTIME(Õ(t1)), and so a different
approach is needed.

We associate with each (non-deterministic) machine M a large interval of strings
(viewed as integers), denoted IM = [αM , βM ], such that the various intervals do not
intersect and such that it is easy to determine for each string x in which interval it
resides. For each x ∈ [αM , βM − 1], we define f (x) = 1 if and only if there exists a
non-deterministic computation of M that accepts the input x ′ def= x + 1 in t1(|x ′|) ≤
t1(|x | + 1) steps. Thus, if M has time complexity t1 and (non-deterministically)
accepts {x : f (x)=1}, then either M (non-deterministically) accepts each string in
the interval IM or M (non-deterministically) accepts no string in IM , because M
must non-deterministically accept x if and only if it non-deterministically accepts
x ′ = x + 1. So, it is left to deal with the case that M is invariant on IM , which is
where the definition of the value of f (βM ) comes into play: We define f (βM ) to equal
zero if and only if there exists a non-deterministic computation of M that accepts the
input αM in t1(|αM |) steps. We shall select βM to be large enough relative to αM such
that we can afford to try all possible computations of M on input αM . Details follow.

Let us first recapitulate the definition of f : {0, 1}∗→{0, 1}, focusing on the case
that the input is in some interval IM . We define a Boolean function AM such that
AM (z) = 1 if and only if there exists a non-deterministic computation of M that
accepts the input z in t1(|z|) steps. Then, for x ∈ IM we have

f (x) =
{

AM (x + 1) if x ∈ [αM , βM − 1]
1− AM (αM ) if x = βM

Next, we present the following non-deterministic machine for accepting the set
{x : f (x) = 1}. We assume that, on input x , it is easy to determine the machine M
that corresponds to the interval [αM , βM ] in which x resides.5 We distinguish two
cases:

1. On input x ∈ [αM , βM − 1], our non-deterministic machine emulates t1(|x ′|)
steps of a (single) non-deterministic computation of M on input x ′ = x + 1,
and decides accordingly (i.e., our machine accepts if and only if the said emula-
tion has accepted). Indeed (as in the proof of Theorem 4.3), this emulation can
be performed in time (log t1(|x + 1|))2 · t1(|x + 1|) ≤ t2(|x |).

4Indeed, we can non-deterministically recognize “yes” answers in Õ(t1(|xM |)) steps, but we cannot do so for “no”
answers.

5For example, we may partition the strings to consecutive intervals such that the i th interval, denoted [αi , βi ],
corresponds to the i th machine and for T1(m) = 22t1(m) it holds that βi = 1T1(|αi |) and αi+1 = 0T1(|αi |)+1. Note that
|βi | = T1(|αi |), and thus t1(|βi |) > t1(|αi |) · 2t1(|αi |).

135



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

2. On input x = βM , our machine just tries all 2t1(|αM |) executions of M on input αM

and decides in a suitable manner; that is, our machine emulates t1(|αM |) steps in
each of the 2t1(|αM |) possible executions of M(αM ) and accepts βM if and only if
none of the emulated executions ended accepting αM . Note that this part of our
machine is deterministic, and it amounts to emulating TM

def= 2t1(|αM |) · t1(|αM |)
steps of M . By a suitable choice of the interval [αM , βM ] (e.g., |βM | > TM ),
this number of steps (i.e., TM ) is smaller than |βM | ≤ t1(|βM |), and it follows
that these TM steps of M can be emulated in time (log2 t1(|βM |))2 · t1(|βM |) ≤
t2(|βM |).

Thus, our non-deterministic machine has time complexity t2, and it follows that f
is in NTIME(t2). It remains to show that f is not in NTIME(t1).

Suppose, on the contrary, that some non-deterministic machine M of time
complexity t1 accepts the set {x : f (x) = 1}; that is, for every x it holds that
AM (x) = f (x), where AM is as defined in the foregoing (i.e., AM (x) = 1 if and only
if there exists a non-deterministic computation of M that accepts the input x in t1(|x |)
steps). Focusing on the interval [αM , βM ], we have AM (x) = f (x) for every x ∈
[αM , βM ], which (combined with the definition of f ) implies that AM (x) = f (x) =
AM (x + 1) for every x ∈ [αM , βM − 1] and AM (βM ) = f (βM ) = 1− AM (αM ).
Thus, we reached a contraction (because we got AM (αM ) = · · · = AM (βM ) =
1− AM (αM )).

4.2.2. Time Gaps and Speedup

In contrast to Theorem 4.3, there exists functions t : N→ N such that DTIME(t) =
DTIME(t2) (or even DTIME(t) = DTIME(2t )). Needless to say, these functions are not time-
constructible (and thus the aforementioned fact does not contradict Theorem 4.3). The
reason for this phenomenon is that, for such functions t , there exist no algorithms that
have time complexity above t but below t2 (resp., 2t ).

Theorem 4.7 (the time gap theorem): For every non-decreasing computable func-
tion g : N→ N there exists a non-decreasing computable function t : N→ N such
that DTIME(t) = DTIME(g(t)).

The foregoing examples referred to g(m) = m2 and g(m) = 2m . Since we are mainly
interested in dramatic gaps (i.e., super-polynomial functions g), the model of computation
does not matter here (as long as it is reasonable and general).

Proof: Consider an enumeration of all possible algorithms (or machines), which also
includes machines that do not halt on some inputs. (Recall that we cannot enumerate
the set of all machines that halt on every input.) Let ti denote the time complexity
of the i th algorithm; that is, ti (n) = ∞ if the i th machine does not halt on some
n-bit long input and otherwise ti (n) = maxx∈{0,1}n {Ti (x)}, where Ti (x) denotes the
number of steps taken by the i th machine on input x .

The basic idea is to define t such that no ti is “sandwiched” between t and g(t),
and thus no algorithm will have time complexity between t and g(t). Intuitively, if
ti (n) is finite, then we may define t such that t(n) > ti (n) and thus guarantee that
ti (n) �∈ [t(n), g(t(n))], whereas if ti (n) = ∞ then any finite value of t(n) will do

136



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

4.2. TIME HIERARCHIES AND GAPS

v
t (n)i

t (n)j

t(n-1)

v
current  v

g(v)

t (n)k

0

Figure 4.1: The Gap Theorem – determining the value of t(n).

(because then ti (n) > g(t(n))). Thus, for every m and n, we can define t(n) such that
ti (n) �∈ [t(n), g(t(n))] for every i ∈ [m] (e.g., t(n) = maxi∈[m]:ti (n) �=∞{ti (n)} + 1).6

This yields a weaker version of the theorem in which the function t is neither
computable nor non-decreasing. It is easy to modify t such that it is non-decreasing
(e.g., t(n) = max(t(n − 1), maxi∈[m]:ti (n) �=∞{ti (n)})+ 1) and so the real challenge is
to make t computable.

The problem is that we want t to be computable, whereas given n we cannot
tell whether or not ti (n) is finite. However, we do not really need to make the latter
decision: For each candidate value v of t(n), we should just determine whether
or not ti (n) ∈ [v, g(v)], which can be decided by running the i th machine for at
most g(v)+ 1 steps (on each n-bit long string). That is, as far as the i th machine is
concerned, we should just find a value v such that either v > ti (n) or g(v) < ti (n)
(which includes the case ti (n) = ∞). This can be done by starting with v = v0

(where, say, v0 = t(n − 1)+ 1), and increasing v until either v > ti (n) or g(v) <

ti (n). The point is that if ti (n) is infinite then we may output v = v0 after emulating
2n · (g(v0)+ 1) steps, and otherwise we reach a safe value v > ti (n) after performing
at most

∑ti (n)
j=v0

2n · j emulation steps. Bearing in mind that we should deal with all
possible machines, we obtain the following procedure for setting t(n).

Let µ : N→ N be any unbounded and computable function (e.g., µ(n) = n
will do). Starting with v = t(n − 1)+ 1, we keep incrementing v until v satisfies,
for every i ∈ {1, . . . , µ(n)}, either ti (n) < v or ti (n) > g(v). This condition can be
verified by computing µ(n) and g(v), and emulating the execution of each of the first
µ(n) machines on each of the n-bit long strings for g(v)+ 1 steps. The procedure
sets t(n) to equal the first value v satisfying the aforementioned condition, and halts.
(Figure 4.1 depicts the search for a good value v for t(n).)

6We may assume, without loss of generality, that t1(n) = 1 for every n, e.g., by letting the machine that always
halts after a single step be the first machine in our enumeration.

137



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

To show that the foregoing procedure halts on every n, consider the set Hn ⊆
{1, . . . , µ(n)} of the indices of the (relevant) machines that halt on all inputs of length
n. Then, the procedure definitely halts before reaching the value v = max(Tn, t(n −
1))+ 2, where Tn = maxi∈Hn {ti (n)}. (Indeed, the procedure may halt with a value
v ≤ Tn , but this will happen only if g(v) < Tn .)

Finally, for the foregoing function t , we prove that DTIME(t) = DTIME(g(t)) holds.
Indeed, consider an arbitrary S ∈ DTIME(g(t)), and suppose that the i th algorithm
decides S in time at most g(t); that is, for every n, it holds that ti (n) ≤ g(t(n)). Then
(by the construction of t), for every n satisfying µ(n) ≥ i , it holds that ti (n) < t(n).
It follows that the i th algorithm decides S in time at most t on all but finitely many
inputs. Combining this algorithm with a “look-up table” machine that handles the
exceptional inputs, we conclude that S ∈ DTIME(t). The theorem follows.

Comment. The function t defined by the foregoing proof is computable in time that
exceeds g(t). Specifically, the presented procedure computes t(n) (as well as g( f (n)))
in time Õ(2n · g(t(n))+ Tg(t(n))), where Tg(m) denotes the number of steps required to
compute g(m) on input m.

Speedup theorems. Theorem 4.7 can be viewed as asserting that some time complexity
classes (i.e., DTIME(g(t)) in the theorem) collapse to lower classes (i.e., to DTIME(t)). A
conceptually related phenomenon is of problems that have no optimal algorithm (not even
in a very mild sense); that is, every algorithm for these (“pathological”) problems can be
drastically sped up. It follows that the complexity of these problems cannot be defined
(i.e., as the complexity of the best algorithm solving this problem). The following drastic
speed-up theorem should not be confused with the linear speed-up that is an artifact of
the definition of a Turing machine (see Exercise 4.4).7

Theorem 4.8 (the time speed-up theorem): For every computable (and super-linear)
function g there exists a decidable set S such that if S ∈ DTIME(t) then S ∈ DTIME(t ′)
for t ′ satisfying g(t ′(n)) < t(n).

Taking g(n) = n2 (or g(n) = 2n), the theorem asserts that, for every t , if S ∈ DTIME(t)
then S ∈ DTIME(

√
t) (resp., S ∈ DTIME(log t)). Note that Theorem 4.8 can be applied any

(constant) number of times, which means that we cannot give a reasonable estimate to the
complexity of deciding membership in S. In contrast, recall that in some important cases,
optimal algorithms for solving computational problems do exist. Specifically, algorithms
solving (candid) search problems in NP cannot be sped up (see Theorem 2.33), nor can
the computation of a universal machine (see Theorem 4.5).

We refrain from presenting a proof of Theorem 4.8, but comment on the complexity
of the sets involved in this proof. The proof (presented in [123, Sec. 12.6]) provides
a construction of a set S in DTIME(t ′) \ DTIME(t ′′) for t ′(n) = h(n − O(1)) and t ′′(n) =
h(n − ω(1)), where h(n) denoted g iterated n times on 2 (i.e., h(n) = g(n)(2), where
g(i+1)(m) = g(g(i)(m)) and g(1) = g). The set S is constructed such that for every i > 0

7Advanced comment: We note that the linear speed-up phenomenon was implicitly addressed in the proof of
Theorem 4.3, by allowing an emulation overhead that depends on the length of the description of the emulated
machine.

138



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

there exists a j > i and an algorithm that decides S in time ti but not in time t j , where
tk(n) = h(n − k).

4.3. Space Hierarchies and Gaps

Hierarchy and gap theorems analogous to Theorem 4.3 and Theorem 4.7, respectively, are
known for space complexity. In fact, since space-efficient emulation of space-bounded
machines is simpler than time-efficient emulations of time-bounded machines, the results
tend to be sharper (and their proofs tend to be simpler). This is most conspicuous in the
case of the separation result (stated next), which is optimal (in light of the corresponding
linear speed-up result; see Exercise 4.12).

Before stating the separation result, we need a few preliminaries. We refer the reader
to §1.2.3.5 for a definition of space complexity (and to Chapter 5 for further discussion).
As in the case of time complexity, we consider a specific model of computation, but
the results hold for any other reasonable and general model. Specifically, we consider
three-tape Turing machines, because we designate two special tapes for input and output.
For any function s : N→ N, we denote by DSPACE(s) the class of decision problems that
are solvable in space complexity s. Analogously to Definition 4.2, we call a function
s : N→ N space-constructible if there exists an algorithm that on input n outputs s(n)
while using at most s(n) cells of the work-tape. Actually, functions like s1(n) = log n,
s2(n) = (log n)2, and s3(n) = 2n are computable using O(log si (n)) space.

Theorem 4.9 (space hierarchy for three-tape Turing machines): For any space-
constructible function s2 and every function s1 such that s2 = ω(s1) and s1(n) > log n
it holds that DSPACE(s1) is strictly contained in DSPACE(s2).

Theorem 4.9 is analogous to the traditional version of Theorem 4.3 (rather than to the one
we presented), and is proven using the alternative approach sketched in footnote 2. The
details are left as an exercise (see Exercise 4.13).

Chapter Notes

The material presented in this chapter predates the theory of NP-completeness and the
dominant stature of the P-vs-NP Question. In these early days, the field (to be known as
Complexity Theory) had not yet developed an independent identity and its perspectives
were dominated by two classical theories: the theory of computability (and recursive
function) and the theory of formal languages. Nevertheless, we believe that the results
presented in this chapter are interesting for two reasons. Firstly, as stated up front, these
results address the natural question of under what conditions it is the case that more
computational resources help. Secondly, these results demonstrate the type of results that
one can get with respect to “generic” questions regarding Computational Complexity; that
is, questions that refer to arbitrary resource bounds (e.g., the relation between DTIME(t1)
and DTIME(t2) for arbitrary t1 and t2).

We note that, in contrast to the “generic” questions considered in this chapter, the
P-vs-NP Question as well as the related questions that will be addressed in the rest
of this book are not “generic” since they refer to specific classes (which capture natural
computational issues). Furthermore, whereas time and space complexity behave in similar

139



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

manner with respect to hierarchies and gaps, they behave quite differently with respect to
other questions. The interested reader is referred to Sections 5.1 and 5.3.

Getting back to the concrete contents of the current chapter, let us briefly mention the
most relevant credits. The hierarchy theorems (e.g., Theorem 4.3) were proven by Hart-
manis and Stearns [114]. Gap theorems (e.g., Theorem 4.7) were proven by Borodin [47]
(and are often referred to as Borodin’s Gap Theorem). An axiomatic treatment of com-
plexity measures was developed by Blum [38], who also proved corresponding speed-up
theorems (e.g., Theorem 4.8, which is often referred to as Blum’s Speed-up Theorem). A
traditional presentation of all the aforementioned topics is provided in [123, Chap. 12],
which also presents related techniques (e.g., “translation lemmas”).

Exercises

Exercise 4.1: Let Fn(s) denote the number of different Boolean functions over {0, 1}n
that are computed by Boolean circuits of size s. Prove that, for any s < 2n , it holds that
Fn(s) ≥ 2s/O(log s) and Fn(s) ≤ s2s .

Guideline: Any Boolean function f : {0, 1}� → {0, 1} can be computed by a circuit
of size s� = O(� · 2�). Thus, for every � ≤ n, it holds that Fn(s�) ≥ 22�

> 2s�/O(log s�).

On the other hand, the number of circuits of size s is less than 2s · (s2

s

)
, where the

second factor represents the number of possible choices of pairs of gates that feed any
gate in the circuit.

Exercise 4.2 (advice can speed up computation): For every time-constructible function
t , show that there exists a set S in DTIME(t2) \ DTIME(t) that can be decided in linear
time using an advice of linear length (i.e., S ∈ DTIME(�)/� where �(n) = O(n)).

Guideline: Starting with a set S′ ∈ DTIME(T 2) \ DTIME(T ), where T (m) = t(2m),
consider the set S = {x02|x |−|x | : x ∈ S′}.

Exercise 4.3: Referring to any reasonable model of computation (and assuming that the
input length is not given explicitly (unlike as in, e.g., Definition 10.10)), prove that any
algorithm that has sub-linear time complexity actually has constant time complexity.

Guideline: Consider the question of whether or not there exists an infinite set of strings
S such that when invoked on any input x ∈ S the algorithm reads all of x . Note that if
S is infinite then the algorithm cannot have sub-linear time complexity, and prove that
if S is finite then the algorithm has constant time complexity.

Exercise 4.4 (linear speed-up of Turing machine): Prove that any problem that can be
solved by a two-tape Turing machine that has time complexity t can be solved by another
two-tape Turing machine having time complexity t ′, where t ′(n) = O(n)+ (t(n)/2).

Guideline: Consider a machine that uses a larger alphabet, capable of encoding a
constant (denoted c) number of symbols of the original machine, and thus capable of
emulating c steps of the original machine in O(1) steps, where the constant in the O-
notation is a universal constant (independent of c). Note that the O(n) term accounts
for a preprocessing that converts the binary input to the work alphabet of the new
machine (which encodes c input bits in one alphabet symbol). Thus, a similar result
for a one-tape Turing machine seems to require an additive O(n2) term.

140



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 4.5 (a direct proof of Corollary 4.4): Present a direct proof of Corollary 4.4
by using the ideas that underlie the proof of Theorem 4.3. Furthermore, prove that if t
steps of machine M (in the model at hand) can be emulated by g(|M |, t) steps of a cor-
responding universal machine, then Corollary 4.4 holds for any t2(n) ≥ g(log n, t1(n)).

Guideline: The function f �∈ DTIME(t1) is defined exactly as in the proof of The-
orem 4.3, where here DTIME denotes the time-complexity classes of the model at
hand. When upper-bounding the time complexity of f in this model, let TM (n) de-
note the number of steps used in emulating t1(n) steps of machine M , and note that
TM (n) = g(|M |, t1(n)) and that f ∈ DTIME(T ′), where T ′(n) = maxx∈{0,1}n {Tµ(x)(n)}.

Exercise 4.6 (tightening Corollary 4.4): Prove that, for any reasonable and general
model of computation, any constant ε > 0 and any “nice” function t (e.g., either
t(n) = nc for any constant c ≥ 1 or t(n) = 2c′n for any constant c′ > 0), it holds that
DTIME(t) is strictly contained in DTIME(t1+ε).

Guideline: Assuming toward the contradiction that DTIME(t) = DTIME( f ◦ t), for
f (k) = k1+ε, derive a contradiction to Corollary 4.4 by proving that for every constant
i it holds that DTIME(t) = DTIME( f i ◦ t), where f i denotes i iterative applications of
f . Note that proving that DTIME(t) = DTIME( f ◦ t) implies that DTIME( f i−1 ◦ t) =
DTIME( f i ◦ t) (for every constant i) requires a “padding argument” (i.e., n-bit long
inputs are encoded as m-bit long inputs such that t(m) = ( f i−1 ◦ t)(n), and indeed
n !→ m = (t−1 ◦ f i−1 ◦ t)(n) should be computable in time t(m)).

Exercise 4.7 (constant amortized-time step-counter): A step-counter is an algorithm
that runs for a number of steps that is specified in its input. Actually, such an algorithm
may run for a somewhat larger number of steps but halt after issuing a number of
“signals” as specified in its input, where these signals are defined as entering (and
leaving) a designated state (of the algorithm). A step-counter may be run in parallel to
another procedure in order to suspend the execution after a predetermined number of
steps (of the other procedure) have elapsed. Show that there exists a simple deterministic
machine that, on input n, halts after issuing n signals while making O(n) steps.

Guideline: A slightly careful implementation of the straightforward algorithm will do,
when coupled with an “amortized” time-complexity analysis.

Exercise 4.8 (a natural set in E \ P): In continuation of the proof of Theorem 4.5, prove
that the set {(〈M〉, x, t) : u′(〈M〉, x, t) �= ⊥} is in E \ P , where E def= ∪c DTIME(ec) and
ec(n) = 2cn .

Exercise 4.9 (EXP-completeness): In continuation of Exercise 4.8, prove that every set
in EXP is Karp-reducible to the set {(〈M〉, x, t) : u′(〈M〉, x, t) �= ⊥}.

Exercise 4.10: Prove that the two definitions of NTIME, presented in §4.2.1.3, are related
up to logarithmic factors. Note the importance of the condition that V has linear (rather
than polynomial) time complexity.

Guideline: When emulating a non-deterministic machine by the verification procedure
V , encode the non-deterministic choices in a “witness” string y such that |y| is slightly
larger than the number of steps taken by the original machine. Specifically, having
|y| = O(t log t), where t denotes the number of steps taken by the original machine,
allows for emulating the latter computation in linear time (i.e., linear in |y|).

141



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

MORE RESOURCES, MORE POWER?

Exercise 4.11: In continuation of Theorem 4.7, prove that for every computable function
t ′ : N→ N and every non-decreasing computable function g : N→ N there exists
a non-decreasing computable function t : N→ N such that t > t ′ and DTIME(t) =
DTIME(g(t)).

Exercise 4.12: In continuation of Exercise 4.4, state and prove a linear speed-up result for
space complexity, when using the standard definition of space as recalled in Section 4.3.
(Note that this result does not hold with respect to “binary space complexity” as defined
in Section 5.1.1.)

Exercise 4.13: Prove Theorem 4.9. As a warm-up, prove first a space-complexity version
of Theorem 4.3.

Guideline: Note that providing a space-efficient emulation of one machine by another
machine is easier than providing an analogous time-efficient emulation.

Exercise 4.14 (space gap theorem): In continuation of Theorem 4.7, state and prove a
gap theorem for space complexity.

142



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER FIVE

Space Complexity

Open are the double doors of the horizon; unlocked are its bolts.
Philip Glass, Akhnaten, Prelude

Whereas the number of steps taken during a computation is the primary measure of its
efficiency, the amount of temporary storage used by the computation is also a major
concern. Furthermore, in some settings, space is even more scarce than time.

In addition to the intrinsic interest in space complexity, its study provides an interesting
perspective on the study of time complexity. For example, in contrast to the common
conjecture by which NP �= coNP , we shall see that analogous space-complexity classes
(e.g., NL) are closed under complementation (e.g., NL = coNL).

Summary: This chapter is devoted to the study of the space complex-
ity of computations, while focusing on two rather extreme cases. The
first case is that of algorithms having logarithmic space complexity.
We view such algorithms as utilizing the naturally minimal amount of
temporary storage, where the term “minimal” is used here in an intu-
itive (but somewhat inaccurate) sense, and note that logarithmic space
complexity seems a more stringent requirement than polynomial time.
The second case is that of algorithms having polynomial space com-
plexity, which seems a strictly more liberal restriction than polynomial
time complexity. Indeed, algorithms utilizing polynomial space can per-
form almost all the computational tasks considered in this book (e.g., the
classPSPACE contains almost all complexity classes considered in this
book).

We first consider algorithms of logarithmic space complexity. Such al-
gorithms may be used for solving various natural search and decision
problems, for providing reductions among such problems, and for yield-
ing a strong notion of uniformity for Boolean circuits. The climax of this
part is a log-space algorithm for exploring (undirected) graphs.

We then turn to non-deterministic computations, focusing on the com-
plexity class NL that is captured by the problem of deciding directed
connectivity of (directed) graphs. The climax of this part is a proof that
NL = coNL, which may be paraphrased as a log-space reduction of
directed unconnectivity to directed connectivity.

143



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

We conclude with a short discussion of the class PSPACE , proving that
the set of satisfiable quantified Boolean formulae is PSPACE-complete
(under polynomial-time reductions). We mention the similarity between
this proof and the proof that NSPACE(s) ⊆ DSPACE(O(s2)).

We stress that, as in the case of time complexity, the main results presented in this chapter
hold for any reasonable model of computation.1 In fact, when properly defined, space
complexity is even more robust than time complexity. Still, for the sake of clarity, we
often refer to the specific model of Turing machines.

Organization. Space complexity seems to behave quite differently from time complexity,
and seems to require a different mind-set as well as auxiliary conventions. Some of the
relevant issues are discussed in Section 5.1. We then turn to the study of logarithmic
space complexity (see Section 5.2) and the corresponding non-deterministic version (see
Section 5.3). Finally, we consider polynomial space complexity (see Section 5.4).

5.1. General Preliminaries and Issues

We start by discussing several very important conventions regarding space complexity
(see Section 5.1.1). Needless to say, reading Section 5.1.1 is essential for the understand-
ing of the rest of this chapter. (In contrast, the rather parenthetical Section 5.1.2 can be
skipped with no significant loss.) We then discuss a variety of issues, highlighting the
differences between space complexity and time complexity (see Section 5.1.3). In par-
ticular, we call the reader’s attention to the composition lemmas (§5.1.3.1) and related
reductions (§5.1.3.3) as well as to the obvious simulation result presented in §5.1.3.2
(i.e., DSPACE(s) ⊆ DTIME(2O(s))). Lastly, in Section 5.1.4 we relate circuit size to space
complexity by considering the space complexity of circuit evaluation.

5.1.1. Important Conventions

Space complexity is meant to measure the amount of temporary storage (i.e., computer’s
memory) used when performing a computational task. Since much of our focus will be
on using an amount of memory that is sub-linear in the input length, it is important to use
a model in which one can differentiate memory used for computation from memory used
for storing the initial input and/or the final output. That is, we do not want to count the
input and output themselves within the space of computation, and thus formulate that they
are delivered on special devices that are not considered memory. On the other hand, we
have to make sure that the input and output devices cannot be abused for providing work
space (which is unaccounted for). This leads to the convention by which the input device
(e.g., a designated input-tape of a multi-tape Turing machine) is read-only, whereas the
output device (e.g., a designated output-tape of a such machine) is write-only. With this
convention in place, we define space complexity as accounting only for the use of space
on the other (storage) devices (e.g., the work-tapes of a multi-tape Turing machine).

Fixing a concrete model of computation (e.g., multi-tape Turing machines), we denote
by DSPACE(s) the class of decision problems that are solvable in space complexity s. The

1The only exceptions appear in Exercises 5.4 and 5.18, which refer to the notion of a crossing sequence. The use
of this notion in these proofs presumes that the machine scans its storage devices in a serial manner. In contrast, we
stress that the various notions of an instantaneous configuration do not assume such a machine model.

144



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.1. GENERAL PRELIMINARIES AND ISSUES

space complexity of search problems is defined analogously. Specifically, the standard
definition of space complexity (see §1.2.3.5) refers to the number of cells of the work-tape
scanned by the machine on each input. We prefer, however, an alternative definition,
which provides a more accurate account of the actual storage. Specifically, the binary
space complexity of a computation refers to the number of bits that can be stored in these
cells, thus multiplying the number of cells by the logarithm of the finite set of work-tape
symbols of the machine.2

The difference between the two aforementioned definitions is mostly immaterial be-
cause it amounts to a constant factor and we will usually discard such factors. Neverthe-
less, aside from being conceptually right, using the definition of binary space complexity
facilitates some technical details (because the number of possible “instantaneous con-
figurations” is explicitly upper-bounded in terms of binary space complexity, whereas
its relation to the standard definition depends on the machine in question). Toward such
applications, we also count the finite state of the machine in its space complexity. Further-
more, for the sake of simplicity, we also assume that the machine does not scan the input
tape beyond the boundaries of the input, which are indicated by special symbols.3

We stress that individual locations of the (read-only) input-tape (or device) may be
read several times. This is essential for many algorithms that use a sub-linear amount of
space (because such algorithms may need to scan their input more than once while they
cannot afford copying their input to their storage device). In contrast, rewriting on (the
same location of) the write-only output-tape is inessential, and in fact can be eliminated
at a relatively small cost (see Exercise 5.2).

Summary. Let us compile a list of the foregoing conventions. As stated, the first two
items on the list are of crucial importance, while the rest are of technical nature (but do
facilitate our exposition).

1. Space complexity discards the use of the input and output devices.
2. The input device is read-only and the output device is write-only.
3. We will usually refer to the binary space complexity of algorithms, where the binary

space complexity of a machine M that uses the alphabet �, finite state set Q, and has
standard space complexity SM is defined as (log2 |Q|)+ (log2 |�|) · SM . (Recall that
SM measures the number of cells of the temporary storage device that are used by M
during the computation.)

4. We will assume that the machine does not scan the input device beyond the boundaries
of the input.

5. We will assume that the machine does not rewrite to locations of its output device
(i.e., it writes to each cell of the output device at most once).

5.1.2. On the Minimal Amount of Useful Computation Space

Bearing in mind that one of our main objectives is identifying natural subclasses of P , we
consider the question of what is the minimal amount of space that allows for meaningful
computations. We note that regular sets [123, Chap. 2] are decidable by constant-space

2We note that, unlike in the context of time complexity, linear speedup (as in Exercise 4.12) does not seem to
represent an actual saving in space resources. Indeed, time can be sped up by using stronger hardware (i.e., a Turing
machine with a bigger work alphabet), but the actual space is not really affected by partitioning it into bigger chunks
(i.e., using bigger cells). This fact is demonstrated when considering the binary space complexity of the two machines.

3As indicated by Exercise 5.1, little is lost by this natural assumption.

145



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Turing machines and that this is all that the latter can decide (see, e.g., [123, Sec. 2.6]). It
is tempting to say that sub-logarithmic space machines are not more useful than constant-
space machines, because it seems impossible to allocate a sub-logarithmic amount of
space. This wrong intuition is based on the presumption that the allocation of a non-
constant amount of space requires explicitly computing the length of the input, which in
turn requires logarithmic space. However, this presumption is wrong: The input itself (in
case it is of a proper form) can be used to determine its length (and/or the allowed amount
of space).4 In fact, for �(n) = log log n, the class DSPACE(O(�)) is a proper superset of
DSPACE(O(1)); see Exercise 5.3. On the other hand, it turns out that double-logarithmic
space is indeed the smallest amount of space that is more useful than constant space (see
Exercise 5.4); that is, for �(n) = log log n, it holds that DSPACE(o(�)) = DSPACE(O(1)).

In spite of the fact that some non-trivial things can be done in sub-logarithmic space
complexity, the lowest space-complexity class that we shall study in depth is logarithmic
space (see Section 5.2). As we shall see, this class is the natural habitat of several
fundamental computational phenomena.

A parenthetical comment (or a side lesson). Before proceeding, let us highlight the fact
that a naive presumption about arbitrary algorithms (i.e., that the use of a non-constant
amount of space requires explicitly computing the length of the input) could have led us
to a wrong conclusion. This demonstrates the danger in making “reasonable looking” (but
unjustified) presumptions about arbitrary algorithms. We need to be fully aware of this
danger whenever we seek impossibility results and/or complexity lower bounds.

5.1.3. Time Versus Space

Space complexity behaves very different from time complexity and indeed different
paradigms are used in studying it. One notable example is provided by the context of
algorithmic composition, discussed next.

5.1.3.1. Two Composition Lemmas
Unlike time, space can be reused; but, on the other hand, intermediate results of a com-
putation cannot be recorded for free. These two conflicting aspects are captured in the
following composition lemma.

Lemma 5.1 (naive composition): Let f1 : {0, 1}∗ → {0, 1}∗ and f2 : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ be computable in space s1 and s2, respectively.5 Then f defined
by f (x)

def= f2(x, f1(x)) is computable in space s such that

s(n) = max(s1(n), s2(n + �(n)))+ �(n)+ δ(n),

4Indeed, for this approach to work, we should be able to detect the case that the input is not of the proper form
(and do so within sub-logarithmic space).

5Here (and throughout the chapter) we assume, for simplicity, that all complexity bounds are monotonically non-
decreasing. Another minor inaccuracy (in the text) is that we stated the complexity of the algorithm that computes f2

in a somewhat non-standard way. Recall that by the standard convention, the complexity of an algorithm should be
stated in terms of the length of its input, which in this case is a pair (x, y) that may be encoded as a string of length
|x | + |y| + 2 log2 |x | (but not as a string of length |x | + |y|). An alternative convention is to state the complexity of
such computations in terms of the length of both parts of the input (i.e., have s : N× N→ N rather than s : N→ N),
but we did not do this either.

146



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.1. GENERAL PRELIMINARIES AND ISSUES

x

A2

f(x)

A1

x

A2

f(x)

A1

x

A2

f(x)

A1

f (x)1 f (x)1 f (x)1

counters

Figure 5.1: Three composition methods for space-bounded computation. The leftmost figure shows
the trivial composition (which just invokes A1 and A2 without attempting to economize storage), the
middle figure shows the naive composition (of Lemma 5.1), and the rightmost figure shows the emulative
composition (of Lemma 5.2). In all figures the filled rectangles represent designated storage spaces. The
dotted rectangle represents a virtual storage device.

where �(n) = maxx∈{0,1}n {| f1(x)|} and δ(n) = O(log(�(n) + s2(n + �(n)))) =
o(s(n)).

Lemma 5.1 is useful when � is relatively small, but in many cases �� max(s1, s2). In
these cases, the following composition lemma is more useful.

Proof: Indeed, f (x) is computed by first computing and storing f1(x), and then
reusing the space (used in the first computation) when computing f2(x, f1(x)).
This explains the dominant terms in s(n); that is, the term max(s1(n), s2(n + �(n)))
accounts for the computations themselves (which reuse the same space), whereas
the term �(n) accounts for storing the intermediate result (i.e., f1(x)). The extra term
is due to implementation details. Specifically, the same storage device is used both
for storing f1(x) and for providing work-space for the computation of f2, which
means that we need to maintain our location on each of these two parts (i.e., the
location of the algorithm (that computes f2) on f1(x) and its location on its own
work space). (See further discussion at end of the proof of Lemma 5.2.) The extra
O(1) term accounts for the overhead involved in emulating two algorithms.

Lemma 5.2 (emulative composition): Let f1, f2, s1, s2, � and f be as in Lemma 5.1.
Then f is computable in space s such that

s(n) = s1(n)+ s2(n + �(n))+ O(log(n + �(n)))+ δ(n),

where δ(n) = O(log(s1(n)+ s2(n + �(n)))) = o(s(n)).

The alternative compositions are depicted in Figure 5.1 (which also shows the most
straightforward composition that makes no attempt to economize space).

Proof: The idea is avoiding the storage of the temporary value of f1(x) by computing
each of its bits (“on the fly”) whenever this bit is needed for the computation of

147



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

f2. That is, we do not start by computing f1(x), but rather start by computing
f2(x, f1(x)) although we do not have some of the bits of the relevant input (i.e., the
bits of f1(x)). The missing bits will be computed (and recomputed) whenever we
need them in the computation of f2(x, f1(x)). Details follow.

Let A1 and A2 be the algorithms (for computing f1 and f2, respectively) guar-
anteed in the hypothesis.6 Then, on input x ∈ {0, 1}n , we invoke algorithm A2 (for
computing f2). Algorithm A2 is invoked on a virtual input, and so when emulating
each of its steps we should provide it with the relevant bit. Thus, we should also
keep track of the location of A2 on the imaginary (virtual) input-tape. Whenever A2

seeks to read the i th bit of its input, where i ∈ [n + �(n)], we provide A2 with this bit
by reading it from x if i ≤ n and invoke A1(x) otherwise. When invoking A1(x) we
provide it with a virtual output-tape, which means that we get the bits of its output
one by one and do not record them anywhere. Instead, we count until reaching the
(i − n)th output-bit, which we then pass to A2 (as the i th bit of 〈x, f1(x)〉).

Note that while invoking A1(x), we suspend the execution of A2 but keep its
current configuration such that we can resume the execution (of A2) once we get
the desired bit. Thus, we need to allocate separate space for the computation of A2

and for the computation of A1. In addition, we need to allocate separate storage for
maintaining the aforementioned counters (i.e., we use log2(n + �(n)) bits to hold the
location of the input-bit currently read by A2, and log2 �(n) bits to hold the index of
the output-bit currently produced in the current invocation of A1).

A final (and tedious) issue is that our description of the composed algorithm
refers to two storage devices, one for emulating the computation of A1 and the other
for emulating the computation of A2. The issue is not the fact that the storage (of
the composed algorithm) is partitioned between two devices, but rather that our
algorithm uses two pointers (one per each of the two storage devices). In contrast,
a (“fair”) composition result should yield an algorithm (like A1 and A2) that uses a
single storage device with a single pointer to locations on this device. Indeed, such
an algorithm can be obtained by holding the two original pointers in memory; the
additional δ(n) term accounts for this additional storage.

Reflection. The algorithm presented in the proof of Lemma 5.2 is wasteful in terms of
time: it recomputes f1(x) again and again (i.e., once per each access of A2 to the second
part of its input). Indeed, our aim was economizing on space and not on time (and the two
goals may be conflicting (see, e.g., [59, Sec. 4.3])).

5.1.3.2. An Obvious Bound
The time complexity of an algorithm is essentially upper bounded by an exponential
function in its space complexity. This is due to an upper bound on the number of pos-
sible instantaneous “configurations” of the algorithm (as formulated in the proof of
Theorem 5.3), and to the fact that if the computation passes through the same
configuration twice then it must loop forever.

Theorem 5.3: If an algorithm A has binary space complexity s and halts on every
input then it has time complexity t such that t(n) ≤ n · 2s(n)+log2 s(n).

6We assume, for simplicity, that algorithm A1 never rewrites on (the same location of) its write-only output-tape.
As shown in Exercise 5.2, this assumption can be justified at an additive cost of O(log �(n)). Alternatively, the idea
presented in Exercise 5.2 can be incorporated directly in the current proof.

148



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.1. GENERAL PRELIMINARIES AND ISSUES

Note that for s(n) = �(log n), the factor of n can be absorbed by 2O(s(n)), and so we
may just write t(n) = 2O(s(n)). Indeed, throughout this chapter (as in most of this book),
we will consider only algorithms that halt on every input (see Exercise 5.5 for further
discussion).

Proof: The proof refers to the notion of an instantaneous configuration (in a com-
putation). Before starting, we warn the reader that this notion may be given different
definitions, each tailored to the application at hand. All these definitions share the
desire to specify variable information that together with some fixed information
determines the next step of the computation being analyzed. In the current proof,
we fix an algorithm A and an input x , and consider as variable the contents of the
storage device (e.g., work-tape of a Turing machine as well as its finite state) and the
machine’s location on the input device and on the storage device. Thus, an instanta-
neous configuration of A(x) consists of the latter three objects (i.e., the contents of
the storage device and a pair of locations), and can be encoded by a binary string of
length �(|x |) = s(|x |)+ log2 |x | + log2 s(|x |).7

The key observation is that the computation A(x) cannot pass through the same
instantaneous configuration twice, because otherwise the computation A(x) passes
through this configuration infinitely many times, which means that this computation
does not halt. This observation is justified by noting that the instantaneous configu-
ration, together with the fixed information (i.e., A and x), determines the next step
of the computation. Thus, whatever happens (i steps) after the first time that the
computation A(x) passes through configuration γ will also happen (i steps) after
the second time that the computation A(x) passes through γ .

By the foregoing observation, we infer that the number of steps taken by A
on input x is at most 2�(|x |), because otherwise the same configuration will appear
twice in the computation (which contradicts the halting hypothesis). The theorem
follows.

5.1.3.3. Subtleties Regarding Space-Bounded Reductions
Lemmas 5.1 and 5.2 suffice for the analysis of the effect of many-to-one reductions in the
context of space-bounded computations. (By a many-to-one reduction of the function f to
the function g, we mean a mapping π such that for every x it holds that f (x) = g(π(x)).)8

1. (In the spirit of Lemma 5.1:) If f is reducible to g via a many-to-one reduction that
can be computed in space s1, and g is computable in space s2, then f is computable in
space s such that s(n) = max(s1(n), s2(�(n)))+ �(n)+ δ(n), where �(n) denotes the
maximum length of the image of the reduction when applied to some n-bit string and
δ(n) = O(log(�(n)+ s2(�(n)))) = o(s(n)).

2. (In the spirit of Lemma 5.2:) For f and g as in Item 1, it follows that f is com-
putable in space s such that s(n) = s1(n)+ s2(�(n))+ O(log �(n))+ δ(n), where
δ(n) = O(log(s1(n)+ s2(�(n)))) = o(s(n)).

7Here we rely on the fact that s is the binary space complexity (and not the standard space complexity); see
summary item 3 in Section 5.1.1.

8This is indeed a special case of the setting of Lemmas 5.1 and 5.2 (obtained by letting f1 = π and f2(x, y) = g(y)).
However, the results claimed for this special case are better than those obtained by invoking the corresponding lemma
(i.e., s2 is applied to �(n) rather than to n + �(n)).

149



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Note that by Theorem 5.3, it holds that �(n) ≤ 2s1(n)+log2 s1(n) · n. We stress the fact that �

is not upper-bounded by s1 itself (as in the analogous case of time-bounded computation),
but rather by exp(s1).

Things get much more complicated when we turn to general (space-bounded) reduc-
tions, especially when referring to general reductions that make a non-constant number of
queries. A preliminary issue is defining the space complexity of general reductions (i.e.,
of oracle machines). In the standard definition, the length of the queries and answers is
not counted in the space complexity, but the queries of the reduction (resp., answers given
to it) are written on (resp., read from) a special device that is write-only (resp., read-only)
for the reduction (and read-only (resp., write-only) for the invoked oracle). Note that these
convention are analogous to the conventions regarding input and output (as well as fit the
definitions of space-bounded many-to-one reductions that were outlined in the foregoing
items).

The foregoing conventions suffice for defining general space-bounded reductions. They
also suffice for obtaining appealing composition results in some cases (e.g., for reductions
that make a single query or, more generally, for the case of non-adaptive queries). But
more difficulties arise when seeking composition results for general reductions, which may
make several adaptive queries (i.e., queries that depend on the answers to prior queries).
As we shall show next, in this case it is essential to upper-bound the length of every query
and/or every answer in terms of the length of the initial input.

Teaching note: The rest of the discussion is quite advanced and laconic (but is inessential to
the rest of the chapter).

Recall that the complexity of the algorithm resulting from the composition of an oracle
machine and an actual algorithm (which implements the oracle) depends on the length
of the queries made by the oracle machine. For example, the space complexity of the
foregoing compositions, which referred to single-query reductions, had an s2(�(n)) term
(where �(n) represents the length of the query). In general, the length of the first query is
upper-bounded by an exponential function in the space complexity of the oracle machine,
but the same does not necessarily hold for subsequent queries, unless some conventions
are added to enforce it. For example, consider a reduction that, on input x and access to
an oracle f such that | f (z)| = 2|z|, invokes the oracle |x | times, where each time it uses
as a query the answer obtained to the previous query. This reduction uses constant space,
but produces queries that are exponentially longer than the input, whereas the first query
of any constant-space reduction has length that is linear in its input. This problem can
be resolved by placing explicit bounds on the length of the queries that space-bounded
reductions are allowed to make; for example, we may bound the length of all queries by
the obvious bound that holds for the length of the first query (i.e., a reduction of space
complexity s is allowed to make queries of length at most 2s(n)+log2 s(n) · n).

With the aforementioned convention (or restriction) in place, let us consider the com-
position of general space-bounded reductions with a space-bounded implementation of
the oracle. Specifically, we say that a reduction is (�, �′)-restricted if, on input x , all oracle
queries are of length at most �(|x |) and the corresponding oracle answers are of length
at most �′(|x |). It turns out that naive composition (in the spirit of Lemma 5.1) remains
useful, whereas the emulative composition of Lemma 5.2 breaks down (in the sense that
it yields very weak results).

150



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.1. GENERAL PRELIMINARIES AND ISSUES

1. Following Lemma 5.1, we claim that if � can be solved in space s1 when given
(�, �′)-restricted oracle access to �′ and �′ is solvable is space s2, then � is
solvable in space s such that s(n) = s1(n)+ s2(�(n))+ �(n)+ �′(n)+ δ(n), where
δ(n) = O(log(�(n)+ �′(n)+ s1(n)+ s2(�(n)))) = o(s(n)). This claim is proved by
using a naive emulation that allocates separate space for the reduction (i.e., oracle
machine) itself, for the emulation of its query and answer devices, and for the algo-
rithm solving �′. Note, however, that here we cannot reuse the space of the reduction
when running the algorithm that solves �′, because the reduction’s computation con-
tinues after the oracle answer is obtained. The additional δ(n) term accounts for the
various pointers of the oracle machine, which need to be stored when the algorithm
that solves �′ is invoked (cf. last paragraph in the proof of Lemma 5.2).

A related composition result is presented in Exercise 5.7. This composition refrains
from storing the current oracle query (but does store the corresponding answer).
It yields s(n) = O(s1(n)+ s2(�(n))+ �′(n)+ log �(n)), which for �(n) < 2O(s1(n))

means s(n) = O(s1(n)+ s2(�(n))+ �′(n)).

2. Turning to the approach underlying the proof of Lemma 5.2, we get into more
serious trouble. Specifically, note that recomputing the answer to the i th query requires
recomputing the query itself, which unlike in Lemma 5.2 is not the input to the
reduction but rather depends on the answers to prior queries, which need to be
recomputed as well. Thus, the space required for such an emulation is at least linear
in the number of queries.

We note that one should not expect a general composition result (i.e., in the spirit of
the foregoing Item 1) in which s(n) = F(s1(n), s2(�(n)))+ o(min(�(n), �′(n))), where
F is any function. One demonstration of this fact is implied by the observation that any
computation of space complexity s can be emulated by a constant-space (2s, 2s)-restricted
reduction to a problem that is solvable in constant space (see Exercise 5.9).

Non-adaptive reductions. Composition is much easier in the special case of non-adaptive
reductions. Loosely speaking, the queries made by such reductions do not depend on the
answers obtained to previous queries. Formulating this notion is not straightforward in
the context of space-bounded computation. In the context of time-bounded computations,
non-adaptive reductions are viewed as consisting of two algorithms: a query-generating
algorithm, which generates a sequence of queries, and an evaluation algorithm, which
given the input and a sequence of answers (obtained from the oracle) produces the actual
output. The reduction is then viewed as invoking the query-generating algorithm (and
recording the sequence of generated queries), making the designated queries (and record-
ing the answers obtained), and finally invoking the evaluation algorithm on the sequence
of answers. Using such a formulation raises the question of how to describe non-adaptive
reductions of small space complexity. This question is resolved by designated special stor-
age devices for the aforementioned sequences (of queries and answers) and postulating
that these devices can be used only as described. For details, see Exercise 5.8. Note that
non-adaptivity resolves most of the difficulties discussed in the foregoing. In particular,
the length of each query made by a non-adaptive reduction is upper-bounded by an ex-
ponential in the space complexity of the reduction (just as in the case of single-query
reductions). Furthermore, composing such reductions with an algorithm that implements
the oracle is not more involved than doing the same for single-query reductions. Thus,
as shown in Exercise 5.8, if � is reducible to �′ via a non-adaptive reduction of space

151



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

complexity s1 that makes queries of length at most � and �′ is solvable is space s2, then
� is solvable in space s such that s(n) = O(s1(n)+ s2(�(n))). (Indeed �(n) < 2O(s1(n)) · n
always hold.)

Reductions to decision problems. Composition in the case of reductions to decision
problems is also easier, because also in this case the length of each query made by the
reduction is upper-bounded by an exponential in the space complexity of the reduction
(see Exercise 5.10). Thus, applying the semi-naive composition result of Exercise 5.7
(mentioned in the foregoing Item 1) is very appealing. It follows that if � can be solved
in space s1 when given oracle access to a decision problem that is solvable is space s2,
then � is solvable in space s such that s(n) = O(s1(n)+ s2(2s1(n)+log(n·s1(n)))). Indeed,
if the length of each query in such a reduction is upper-bounded by �, then we may
use s(n) = O(s1(n)+ s2(�(n))). These results, however, are of limited interest, because
it seems difficult to construct small-space reductions of search problems to decision
problems (see §5.1.3.4).

We mention that an alternative notion of space-bounded reductions is discussed in
§5.2.4.2. This notion is more cumbersome and more restricted, but in some cases it
allows recursive composition with a smaller overhead than offered by the aforementioned
composition results.

5.1.3.4. Search Versus Decision
Recall that in the setting of time complexity we allowed ourselves to focus on decision
problems, since search problems could be efficiently reduced to decision problems. Unfor-
tunately, these reductions (e.g., the ones underlying Theorem 2.10 and Proposition 2.15)
are not adequate for the study of (small) space complexity. Recall that these reductions
extend the currently stored prefix of a solution by making a query to an adequate decision
problem. Thus, these reductions have space complexity that is lower-bounded by the length
of the solution, which makes them irrelevant for the study of small-space complexity.

In light of the foregoing, the study of the space complexity of search problems cannot
be “reduced” to the study of the space complexity of decision problems. Thus, while
much of our exposition will focus on decision problems, we will keep an eye on the
corresponding search problems. Indeed, in many cases, the ideas developed in the study
of the decision problems can be adapted to the study of the corresponding search problems
(see, e.g., Exercise 5.17).

5.1.3.5. Complexity Hierarchies and Gaps
Recall that more space allows for more computation (see Theorem 4.9), provided that
the space-bounding function is “nice” in an adequate sense. Actually, the proofs of
space-complexity hierarchies and gaps are simpler than the analogous proofs for time
complexity, because emulations are easier in the context of space-bounded algorithms (cf.
Section 4.3).

5.1.3.6. Simultaneous Time-Space Complexity
Recall that, for space complexity that is at least logarithmic, the time of a computa-
tion is always upper-bounded by an exponential function in the space complexity (see
Theorem 5.3). Thus, polylogarithmic space complexity may extend beyond polynomial
time, and it make sense to define a class that consists of all decision problems that may be
solved by a polynomial-time algorithm of polylogarithmic space complexity. This class,

152



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.2. LOGARITHMIC SPACE

denoted SC, is indeed a natural subclass of P (and contains the class L, which is defined
in Section 5.2.1).9

In general, one may define DTISP(t, s) as the class of decision problems solvable by
an algorithm that has time complexity t and space complexity s. Note that DTISP(t, s) ⊆
DTIME(t) ∩ DSPACE(s) and that a strict containment may hold. We mention that DTISP(·, ·)
provides the arena for the only known absolute (and highly non-trivial) lower bound
regarding NP; see [79]. We also note that lower bounds on time-space trade-offs (see,
e.g., [59, Sec. 4.3]) may be stated as referring to the classes DTISP(·, ·).

5.1.4. Circuit Evaluation

Recall that Theorem 3.1 asserts the existence of a polynomial-time algorithm that, given
a circuit C : {0, 1}n → {0, 1}m and an n-bit long string x , returns C(x). For circuits of
bounded fan-in, the space complexity of such an algorithm can be made linear in the depth
of the circuit (which may be logarithmic in its size). This is obtained by the following
DFS-type algorithm.

The algorithm (recursively) determines the value of a gate in the circuit by first de-
termining the value of its first incoming edge and next determining the value of the
second incoming edge. Thus, the recursive procedure, started at each output terminal of
the circuit, needs only store the path that leads to the currently processed vertex as well
as the temporary values computed for each ancestor. Note that this path is determined by
indicating, for each vertex on the path, whether we currently process its first or second
incoming edge. In the case that we currently process the vertex’s second incoming edge,
we need also store the value computed for its first incoming edge.

The temporary storage used by the foregoing algorithm, on input (C, x), is thus 2dC +
O(log |x | + log |C(x)|), where dC denotes the depth of C . The first term in the space
bound accounts for the core activity of the algorithm (i.e., the recursion), whereas the
other terms account for the overhead involved in manipulating the initial input and final
output (i.e., assigning the bits of x to the corresponding input terminals of C and scanning
all output terminals of C).

Note. Further connections between circuit complexity and space complexity are men-
tioned in Section 5.2.3 and §5.3.2.2.

5.2. Logarithmic Space

Although Exercise 5.3 asserts that “there is life below log-space,” logarithmic space seems
to be the smallest amount of space that supports interesting computational phenomena. In
particular, logarithmic space is required for merely maintaining an auxiliary counter that
holds a position in the input, which seems required in many computations. On the other
hand, logarithmic space suffices for solving many natural computational problems, for
establishing reductions among many natural computational problems, and for a stringent
notion of uniformity (of families of Boolean circuits). Indeed, an important feature of
logarithmic space computations is that they are a natural subclass of the polynomial-time
computations (see Theorem 5.3).

9We also mention that BPL ⊆ SC, where BPL is defined in §6.1.5.1 and the result is proved in Section 8.4 (see
Theorem 8.23).

153



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

5.2.1. The Class L

Focusing on decision problems, we denote by L the class of decision problems that
are solvable by algorithms of logarithmic space complexity; that is, L = ∪cDSPACE(�c),
where �c(n)

def= c log2 n. Note that, by Theorem 5.3, L ⊆ P . As hinted, many natural
computational problems are in L (see Exercises 5.6 and 5.12 as well as Section 5.2.4). On
the other hand, it is widely believed that L �= P .

5.2.2. Log-Space Reductions

Another class of important log-space computations is the class of logarithmic space
reductions. In light of the subtleties discussed in §5.1.3.3, we focus on the case
of many-to-one reductions. Analogously to the definition of Karp-reductions (Defini-
tion 2.11), we say that f is a log-space (many-to-one) reduction of S to S′ if f is
log-space computable and, for every x , it holds that x ∈ S if and only if f (x) ∈ S′.
By Lemma 5.2 (and Theorem 5.3), if S is log-space reducible to some set in L
then S ∈ L. Similarly, one can define a log-space variant of Levin-reductions (Def-
inition 2.12). Both types of reductions are transitive (see Exercise 5.11). Note that
Theorem 5.3 applies in this context and implies that these reductions run in polyno-
mial time. Thus, the notion of a log-space many-to-one reduction is a special case of a
Karp-reduction.

We observe that all known Karp-reductions establishing NP-completeness results are
actually log-space reductions. This is easily verifiable in the case of the reductions pre-
sented in Section 2.3.3 (as well as in Section 2.3.2). For example, consider the generic re-
duction to CSAT presented in the proof of Theorem 2.21: The constructed circuit is “highly
uniform” and can be easily constructed in logarithmic space (see also Section 5.2.3). A
degeneration of this reduction suffices for proving that every problem in P is log-space
reducible to the problem of evaluating a given circuit on a given input. Recall that
the latter problem is in P , and thus we may say that it is P-complete under log-space
reductions.

Theorem 5.4 (The complexity of Circuit Evaluation): Let CEVL denote the set of
pairs (C, α) such that C is a Boolean circuit and C(α) = 1. Then CEVL is in P and
every problem in P is log-space Karp-reducible to CEVL.

Proof Sketch: Recall that the observation underlying the proof of Theorem 2.21 (as
well as the proof of Theorem 3.6) is that the computation of a Turing machine can be
emulated by a (“highly uniform”) family of circuits. In the proof of Theorem 2.21,
we hard-wired the input to the reduction (denoted x) into the circuit (denoted Cx )
and introduced input terminals corresponding to the bits of the NP-witness (denoted
y). In the current context we leave x as an input to the circuit, while noting that
the auxiliary NP-witness does not exist (or has length zero). Thus, the reduction
from S ∈ P to CEVL maps the instance x (for S) to the pair (C|x |, x), where C|x |
is a circuit that emulates the computation of the machine that decides membership
in S (on any |x |-bit long input). For the sake of future use (in Section 5.2.3), we
highlight the fact that C|x | can be constructed by a log-space machine that is given the
input 1|x |.

154



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.2. LOGARITHMIC SPACE

The impact of P-completeness under log-space reductions. Indeed, Theorem 5.4 im-
plies that L �= P if and only if CEVL �∈ L. Other natural problems were proved to have the
same property (i.e., being P-complete under log-space reductions; cf. [60]).

Log-space reductions are used to define completeness with respect to other classes
that are assumed to extend beyond L. This restriction of the power of the reduction is
definitely needed when the class of interest is contained in P (e.g.,NL; see Section 5.3.2).
In general, we say that a problem � is C-complete under log-space reductions if � is in
C and every problem in C is log-space (many-to-one) reducible to �. In such a case, if
� ∈ L then C ⊆ L.

As in the case of polynomial-time reductions, we wish to stress that the relevance of
log-space reductions extends beyond being a tool for defining complete problems.

5.2.3. Log-Space Uniformity and Stronger Notions

Recall that a basic notion of uniformity of a family of circuits (Cn)n∈N, introduced in
Definition 3.3, requires the existence of an algorithm that on input n outputs the description
of Cn , while using time that is polynomial in the size of Cn . Strengthening Definition 3.3,
we say that a family of circuits (Cn)n∈N is log-space uniform if there exists an algorithm
that on input n outputs Cn while using space that is logarithmic in the size of Cn . As implied
by the following Theorem 5.5 (and implicitly proved in the foregoing Theorem 5.4), the
computation of any polynomial-time algorithm can be emulated by a log-space uniform
family of (bounded fan-in) polynomial-size circuits. On the other hand, in continuation of
Section 5.1.4, we note that log-space uniform circuits of bounded fan-in and logarithmic
depth can be emulated by an algorithm of logarithmic space complexity (i.e., “log-space
uniform NC1” is in L; see Exercise 5.12).

As mentioned in Section 3.1.1, stronger notions of uniformity have also been consid-
ered. Specifically, in an analogy to the discussion in §E.2.1.2, we say that (Cn)n∈N has a
strongly explicit construction if there exists an algorithm that runs in polynomial time and
linear space such that, on input n and v, the algorithm returns the label of vertex v in Cn

as well as the list of its children (or an indication that v is not a vertex in Cn). Note that
if (Cn)n∈N has a strongly explicit construction then it is log-space uniform, because the
length of the description of a vertex in Cn is logarithmic in the size of Cn . The proof of
Theorem 5.4 actually establishes the following.

Theorem 5.5 (strongly uniform circuits emulating P): For every polynomial-time
algorithm A there exists a strongly explicit construction of a family of polynomial-
size circuits (Cn)n∈N such that for every x it holds that C|x |(x) = A(x).

Proof Sketch: As noted already, the circuits (C|x |)|x | (considered in the proof of
Theorem 5.4) are highly uniform. In particular, the underlying (directed) graph
consists of constant-size gadgets that are arranged in an array and are only connected
to adjacent gadgets (see the proof of Theorem 2.21).

5.2.4. Undirected Connectivity

Exploring a graph (e.g., toward determining its connectivity) is one of the most basic
and ubiquitous computational tasks regarding graphs. The standard graph-exploration

155



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

algorithms (e.g., BFS and DFS) require temporary storage that is linear in the number
of vertices. In contrast, the algorithm presented in this section uses temporary storage
that is only logarithmic in the number of vertices. In addition to demonstrating the power
of log-space computation, this algorithm (or rather its actual implementation) provides a
taste of the type of issues arising in the design of sophisticated log-space algorithms.

The intuitive task of “exploring a graph” is captured by the task of deciding whether a
given graph is connected.10 In addition to the intrinsic interest in this natural computational
problem, we mention that it is computationally equivalent (under log-space reductions)
to numerous other computational problems (see, e.g., Exercise 5.16). We note that some
related computational problems seem actually harder; for example, determining directed
connectivity (in directed graphs) captures the essence of the class NL (see Section 5.3.2).
In view of this state of affairs, we emphasize the fact that the computational problem
considered here refers to undirected graphs by calling it undirected connectivity.

Theorem 5.6: Deciding undirected connectivity (UCONN) is in L

The algorithm is based on the fact that UCONN is easy in the special case that the graph
consists of a collection of constant degree expanders.11 In particular, if the graph has
constant degree and logarithmic diameter then it can be explored using a logarithmic
amount of space (which is used for determining a generic path from a fixed starting
vertex).12

Needless to say, the input graph does not necessarily consist of a collection of constant
degree expanders. The main idea is then to transform the input graph into one that
does satisfy the aforementioned condition, while preserving the number of connected
components of the graph. Furthermore, the key point is performing such a transformation
in logarithmic space. The rest of this section is devoted to the description of such a
transformation. We first present the basic approach and next turn to the highly non-trivial
implementation details.

Teaching note: We recommend leaving the actual proof of Theorem 5.6 (i.e., the rest of this
section) for advanced reading. The main reason is its heavy dependence on technical material
that is beyond the scope of a course in Complexity Theory.

Getting started. We first note that it is easy to transform the input graph G0 = (V0, E0)
into a constant-degree graph G1 that preserves the number of connected components
in G0. Specifically, each vertex v ∈ V having degree d(v) (in G0) is represented by a
cycle Cv of d(v) vertices (in G1), and each edge {u, v} ∈ E0 is replaced by an edge
having one end-point on the cycle Cv and the other end-point on the cycle Cu such that
each vertex in G1 has degree three (i.e., has two cycle edges and a single intra-cycle
edge). This transformation can be performed using logarithmic space, and thus (relying
on Lemma 5.2) we assume that the input graph has degree three.

10See Appendix G.1 for basic terminology.
11At this point, the reader may think that expanders are merely graphs of logarithmic diameter. At a later stage,

we will rely on a basic familiarity with a specific definition of expanders as well as with a specific technique for
constructing them. The relevant material is contained in Appendix E.2.

12Indeed, this is analogous to the circuit-evaluation algorithm of Section 5.1.4, where the circuit depth corresponds
to the diameter and the bounded fan-in corresponds to the constant degree. For further details, see Exercise 5.13.

156



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.2. LOGARITHMIC SPACE

Our goal is to transform this graph into a collection of expanders, while maintaining
the number of connected components. In fact, we shall describe the transformation while
pretending that the graph is connected, while noting that otherwise the transformation
acts separately on each connected component.

A couple of technicalities. For a constant integer d > 2 determined so as to satisfy some
additional condition, we may assume that the input graph is actually d2-regular (albeit
is not necessarily simple). Furthermore, we shall assume that this graph is not bipartite.
Both assumptions can be justified by augmenting the aforementioned construction of a
3-regular graph by adding d2 − 3 self-loops to each vertex.

Prerequisites. Evidently, the notion of an expander graph plays a key role in the afore-
mentioned transformation. For a brief review of this notion, the reader is referred to
Appendix E.2. In particular, we assume familiarity with the algebraic definition of ex-
panders (as presented in §E.2.1.1). Furthermore, the transformation relies heavily on the
Zig-Zag product, defined in §E.2.2.2, and the following exposition assumes familiarity
with this definition.

5.2.4.1. The Basic Approach
Recall that our goal is to transform G1 into an expander. The transformation is grad-
ual and consists of logarithmically many iterations, where in each iteration an adequate
expansion parameter doubles while the graph becomes a constant factor larger and main-
tains the degree bound. The (expansion) parameter of interest is the relative eigenvalue
gap (see §E.2.1.1).13 A constant value of this parameter indicates that the graph is an
expander. Initially, this parameter is lower-bounded by �(n−2), where n is the size of the
graph. Since this parameter doubles in each iteration, after logarithmically many itera-
tions this parameter is lower-bounded by a constant (and hence the current graph is an
expander).

The crux of the aforementioned gradual transformation is the transformation that takes
place in each single iteration. This transformation is supposed to double the expansion
parameter while maintaining the graph’s degree and increasing the number of vertices
by a constant factor. The transformation combines the (standard) graph-powering oper-
ation and the Zig-Zag product presented in §E.2.2.2. Specifically, for adequate positive
integers d and c, we start with the d2-regular graph G1 = (V1, E1), and go through a
logarithmic number of iterations letting Gi+1 = Gc

i©z G for i = 1, . . . , t − 1, where G
is a fixed d-regular graph with d2c vertices. That is, in each iteration, we raise the cur-
rent graph (i.e., Gi ) to the power c and combine the resulting graph (d2c-regular) with
the fixed (d2c-vertex) graph G using the Zig-Zag product. Thus, Gi+1 is a d2-regular
graph with di ·2c · |V1| vertices, where this invariant is preserved by definition of the
Zig-Zag product (i.e., the Zig-Zag product of a d2c-regular graph G ′ = (V ′, E ′) with
the d-regular graph G (which has d2c vertices) yields a d2-regular graph with d2c · |V ′|
vertices).

The analysis of the improvement in the expansion parameter (i.e., the relative eigen-
value gap), denoted δ(·) def= 1− λ̄(·), relies on Eq. (E.11). Recall that Eq. (E.11) implies

13Recall that the eigenvalue gap of a regular graph is the difference between the graph’s degree (i.e., the graph’s
largest eigenvalue) and the absolute value of each of the other eigenvalues. The relative eigenvalue bound, denoted λ̄,
is the eigenvalue bound divided by the graph’s degree.

157



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

that if λ̄(G) < 1/2 then 1− λ̄(G ′©z G) > (1− λ̄(G ′))/3. Thus, the fixed graph G is se-
lected such that λ̄(G) < 1/2, which requires a sufficiently large constant d. Thus, we
have

δ(Gi+1) = 1− λ̄(Gc
i©z G) >

1− λ̄(Gc
i )

3
= 1− λ̄(Gi )c

3

whereas, for a sufficiently large constant integer c > 0, it holds that 1− λ̄(Gi )c >

min(6 · (1− λ̄(Gi )), 1/2).14 It follows that δ(Gi+1) > min(2δ(Gi ), 1/6). Thus, setting
t = O(log |V1|) and using δ(G1) = 1− λ̄(G1) = �(|V1|−2), we obtain δ(Gt ) > 1/6 as
desired.

Needless to say, a “detail” of crucial importance is the ability to transform G1 into Gt

via a log-space computation. Indeed, the transformation of Gi to Gi+1 can be performed
in logarithmic space (see Exercise 5.14), but we need to compose a logarithmic number of
such transformations. Unfortunately, the standard composition lemmas for space-bounded
algorithms involve overhead that we cannot afford.15 Still, taking a closer look at the
transformation of Gi to Gi+1, one may note that it is highly structured, and in some
sense it can be implemented in constant space and supports a stronger composition result
that incurs only a constant amount of storage per iteration. The resulting implementation
(of the iterative transformation of G1 to Gt ) and the underlying formalism will be the
subject of §5.2.4.2. (An alternative implementation, provided in [190], can be obtained
by unraveling the composition.)

5.2.4.2. The Actual Implementation
The space-efficient implementation of the iterative transformation outlined in §5.2.4.1 is
based on the observation that we do not need to explicitly construct the various graphs but
merely provide “oracle access” to them. This observation is crucial when applied to the
intermediate graphs; that is, rather than constructing Gi+1, when given Gi as input, we
show how to provide oracle access to Gi+1 (i.e., answer “neighborhood queries” regarding
Gi+1) when given oracle access to Gi (i.e., an oracle that answers neighborhood queries
regarding Gi ). This means that we view Gi and Gi+1 (or rather their incidence lists) as
functions (to be evaluated) rather than as strings (to be printed), and show how to reduce
the task of finding neighbors in Gi+1 (i.e., evaluating the “incidence function” at a given
vertex) to the task of finding neighbors in Gi .

A clarifying discussion. Note that here we are referring to oracle machines that access
a finite oracle, which represents a finite variable object (which, in turn, is an instance of
some computational problem). Such a machine provides access to a complex object by
using its access to a more basic object, which is represented by the oracle. Specifically,
such a machine gets an input, which is a “query” regarding the complex object (i.e,
the object that the machine tries to emulate), and produces an output (which is the
answer to the query). Analogously, these machines make queries, which are queries

14Consider the following two cases: In the case that λ̄(Gi ) < (1− (1/c)), show that 1− λ̄(Gi )c > 1/2. Otherwise,
let ε

def= 1− λ̄(Gi ), and using ε ≤ 1/c show that 1− λ̄(Gi )c > cε/2.
15We cannot afford the naive composition (of Lemma 5.1), because it causes an overhead linear in the size of

the intermediate result. As for the emulative composition (of Lemma 5.2), it sums up the space complexities of the
composed algorithms (not to mention adding another logarithmic term), which would result in a log-squared bound
on the space complexity.

158



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.2. LOGARITHMIC SPACE

regarding another object (i.e., the one represented in the oracle), and obtain corresponding
answers.16

Like in §5.1.3.3, queries are made via a special write-only device and the answers are
read from a corresponding read-only device, where the use of these devices is not charged
in the space complexity. With these conventions in place, we claim that neighborhoods
in the d2-regular graph Gi+1 can be computed by a constant-space oracle machine that is
given oracle access to the d2-regular graph Gi . That is, letting gi : Vi × [d2] → Vi × [d2]
(resp., gi+1 : Vi+1 × [d2] → Vi+1 × [d2]) denote the edge-rotation function17 of Gi (resp.,
Gi+1), we have:

Claim 5.7: There exists a constant-space oracle machine that evaluates gi+1 when
given oracle access to gi , where the state of the machine is counted in the space
complexity.

Proof Sketch: We first show that the two basic operations that underly the definition
of Gi+1 (i.e., powering and Zig-Zag product with a constant graph) can be performed
in constant space.

The edge-rotation function of G2
i (i.e., the square of the graph Gi ) can be evaluated

at any desired pair, by evaluating the edge-rotation function of Gi twice, and using a
constant amount of space. Specifically, given v ∈ Vi and j1, j2 ∈ [d2], we compute
gi (gi (v, j1), j2), which is the edge rotation of (v, 〈 j1, j2〉) in G2

i , as follows. First,
making the query (v, j1), we obtain the edge rotation of (v, j1), denoted (u, k1). Next,
making the query (u, j2), we obtain (w, k2), and finally we output (w, 〈k2, k1〉). We
stress that we only use the temporary storage to record k1, whereas u is directly
copied from the oracle answer device to the oracle query device. Accounting also
for a constant number of states needed for the various stages of the foregoing activity,
we conclude that graph squaring can be performed in constant space. The argument
extends to the task of raising the graph to any constant power.

Turning to the Zig-Zag product (of an arbitrary regular graph G ′ with a fixed
graph G), we note that the corresponding edge-rotation function can be evaluated
in constant space (given oracle access to the edge-rotation function of G ′). This
follows directly from Eq. (E.9), noting that the latter calls for a single evaluation
of the edge-rotation function of G ′ and two simple modifications that only depend
on the constant-size graph G (and affect a constant number of bits of the relevant
strings). Again, using the fact that it suffices to copy vertex names from the input to
the oracle query device (or from the oracle answer device to the output), we conclude
that the aforementioned activity can be performed using constant space.

The argument extends to a sequential composition of a constant number of
operations of the aforementioned type (i.e., graph squaring and Zig-Zag product
with a constant graph).

16Indeed, the current setting (in which the oracle represents a finite variable object, which in turn is an instance of
some computational problem) is different from the standard setting, where the oracle represents a fixed computational
problem. Still the mechanism (and/or operations) of these two types of oracle machines is the same: They both get an
input (which here is a “query” regarding a variable object rather than an instance of a fixed computational problem) and
produce an output (which here is the answer to the query rather than a “solution” for the given instance). Analogously,
these machines make queries (which here are queries regarding another variable object rather than queries regarding
another fixed computational problem) and obtain corresponding answers.

17Recall that the edge-rotation function of a graph maps the pair (v, j) to the pair (u, k) if vertex u is the j th

neighbor of vertex v and v is the kth neighbor of u (see §E.2.2.2).

159



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Recursive composition. Using Claim 5.7, we wish to obtain a O(t)-space oracle machine
that evaluates gt by making oracle calls to g1, where t = O(log |V1|). Such an oracle
machine will yield a log-space transformation of G1 to Gt (by evaluating gt at all possible
values). It is tempting to hope that an adequate composition lemma, when applied to
Claim 5.7, will yield the desired O(t)-space oracle machine (reducing the evaluation of
gt to g1). This is indeed the case, except that the adequate composition lemma is still to
be developed (as we do next).

We first note that applying a naive composition (as in Lemma 5.1) amounts to an ad-
ditive overhead of O(log |V1|) per each composition. But we cannot afford more than an
amortized constant additive overhead per composition. Applying the emulative composi-
tion (as in Lemma 5.2) causes a multiplicative overhead per each composition, which is
certainly unaffordable. The composition developed next is a variant of the naive composi-
tion, which is beneficial in the context of recursive calls. The basic idea is deviating from
the paradigm that allocates separate input/output and query devices to each level in the
recursion, and combining all these devices in a single (“global”) device that will be used
by all levels of the recursion. That is, rather than following the “structured programming”
methodology of using locally designated space for passing information to the subroutine,
we use the “bad programming” methodology of passing information through global vari-
ables. (As usual, this notion is formulated by referring to the model of multi-tape Turing
machine, but it can be formulated in any other reasonable model of computation.)

Definition 5.8 (global-tape oracle machines): A global-tape oracle machine is de-
fined as an oracle machine (cf. Definition 1.11), except that the input-, output-, and
oracle tapes are replaced by a single global-tape. In addition, the machine has a
constant number of work-tapes, called the local-tapes. The machine obtains its input
from the global-tape, writes each query on this very tape, obtains the corresponding
answer from this tape, and writes its final output on this tape. (We stress that, as a
result of invoking the oracle f , the contents of the global-tape changes from q to
f (q).)18 The space complexity of such a machine is stated when referring separately
to its use of the global-tape and to its use of the local-tapes.

Clearly, any ordinary oracle machine can be converted into an equivalent global-tape
oracle machine. The resulting machine uses a global-tape of length at most n + �+ m,
where n denotes the length of the input, � denote the length of the longest query or
oracle answer, and m denotes the length of the output. However, combining these three
different tapes into one global-tape seems to require holding separate pointers for each
of the original tapes, which means that the local-tape has to store three corresponding
counters (in addition to storing the original work-tape). Thus, the resulting machine uses a
local-tape of length w + log2 n + log2 �+ log2 m, where w denotes the space complexity
of the original machine and the additional logarithmic terms (which are logarithmic in the
length of the global-tape) account for the aforementioned counters.

Fortunately, the aforementioned counters can be avoided in the case that the original
oracle machine can be described as an iterative sequence of transformations (i.e., the input
is transformed to the first query, and the i th answer is transformed to the i + 1st query or

18This means that the prior contents of the global-tape (i.e., the query q) is lost (i.e., it is replaced by the answer
f (q)). Thus, if we wish to keep such prior contents then we need to copy it to a local-tape. We also stress that,
according to the standard oracle invocation conventions, the head location after the oracle responds is at the leftmost
cell of the global-tape.

160



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.2. LOGARITHMIC SPACE

to the output, all while maintaining auxiliary information on the work-tape). Indeed, the
machine presented in the proof of Claim 5.7 has this form, and thus it can be implemented
by a global-tape oracle machine that uses a global-tape not longer than its input and a
local-tape of constant length (rather than a local-tape of length that is logarithmic in the
length of the global-tape).

Claim 5.9 (Claim 5.7, revisited): There exists a global-tape oracle machine that
evaluates gi+1 when given oracle access to gi , while using global-tape of length
log2(d2 · |Vi+1|) and a local-tape of constant length.

Proof Sketch: Following the proof of Claim 5.7, we merely indicate the exact use of
the two tapes. For example, recall that the edge-rotation function of the square of Gi

is evaluated at (v, 〈 j1, j2〉) by evaluating the edge-rotation function of the original
graph first at (v, j1) and then at (u, j2), where (u, k1) = gi (v, j1). This means the
global-tape machine first reads (v, 〈 j1, j2〉) from the global-tape and replaces it by
the query (v, j1), while storing j2 on the local-tape. Thus, the machine merely deletes
a constant number of bits from the global-tape (and leaves its prefix intact). After
invoking the oracle, the machine copies k1 from the global-tape (which currently
holds (u, k1)) to its local-tape, and copies j2 from its local-tape to the global-
tape (such that it contains (u, j2)). After invoking the oracle for the second time,
the global-tape contains (w, k2) = gi (u, j2), and the machine merely modifies it to
(w, 〈k2, k1〉), which is the desired output.

Similarly, note that the edge-rotation function of the Zig-Zag product of the
variable graph G ′ with the fixed graph G is evaluated at (〈u, i〉, 〈α, β〉) by querying
G ′ at (u, Eα(i)) and outputting (〈v, Eβ( j ′)〉, 〈β, α〉), where (v, j ′) denotes the oracle
answer (see Eq. (E.9)). This means that the global-tape oracle machine first copies
α, β from the global-tape to the local-tape, transforms the contents of the global-tape
from (〈u, i〉, 〈α, β〉) to (u, Eα(i)), and makes an analogous transformation after the
oracle is invoked.

Composing global-tape oracle machines. In the proof of Claim 5.9, we implicitly used
sequential composition of computations conducted by global-tape oracle machines.19

In general, when sequentially composing such computations the length of the global-
tape (resp., local-tape) is the maximum among all composed computations; that is, the
current formalism offers a tight bound on naive sequential composition (as opposed to
Lemma 5.1). Furthermore, global-tape oracle machines are beneficial in the context of
recursive composition, as indicated by Lemma 5.10 (which relies on this model in a crucial
way). The key observation is that all levels in the recursive composition may reuse the
same global storage, and only the local storage gets added. Consequently, we have the
following composition lemma.

Lemma 5.10 (recursive composition in the global-tape model): Suppose that there
exists a global-tape oracle machine that, for every i = 1, . . . , t − 1, computes fi+1

by making oracle calls to fi while using a global-tape of length L and a local-
tape of length li , which also accounts for the machine’s state. Then ft can be

19A similar composition took place in the proof of Claim 5.7, but in Claim 5.9 we asserted a stronger feature of
this specific computation.

161



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

computed by a standard oracle machine that makes calls to f1 and uses space
L +∑t−1

i=1(li + log2 li ).

We shall apply this lemma with fi = gi and t = O(log |V1|) = O(log |Vt |), using the
bounds L = log2(d2 · |Vt |) and li = O(1) (as guaranteed by Claim 5.9). Indeed, in this
application L equals the length of the input to ft = gt .

Proof Sketch: We compute ft by allocating space for the emulation of the global-
tape and the local-tapes of each level in the recursion. We emulate the recursive
computation by capitalizing on the fact that all recursive levels use the same
global-tape (for making queries and receiving answers). Recall that in the actual
recursion, each level may use the global-tape arbitrarily so long as when it re-
turns control to the invoking machine the global-tape contains the right answer.
Thus, the emulation may do the same, and emulate each recursive call by using the
space allocated for the global-tape as well as the space designated for the local-
tape of this level. The emulation should also store the locations of the other levels
of the recursion on the corresponding local-tapes, but the space needed for this
(i.e.,

∑t−1
i=1 log2 li ) is clearly smaller than the length of the various local-tapes (i.e.,∑t−1

i=1 li ).

Conclusion. Combining Claim 5.9 and Lemma 5.10, we conclude that the evaluation of
gO(log |V1|) can be reduced to the evaluation of g1 in space O(log |V1|); that is, gO(log |V1|)
can be computed by a standard oracle machine that makes calls to g1 and uses space
O(log |V1|). Recalling that G1 can be constructed in log-space (based on the input graph
G0), we infer that G ′ = G O(log |V1|) can be constructed in log-space. Theorem 5.6 follows
by recalling that G ′ (which has constant degree and logarithmic diameter) can be tested
for connectivity in log-space (see Exercise 5.13). Using a similar argument, we can test
whether a given pair of vertices are connected in the input graph (see Exercise 5.15).
Furthermore, a corresponding path can be found within the same complexity (see
Exercise 5.17).

5.3. Non-deterministic Space Complexity

The difference between space complexity and time complexity is quite striking in the
context of non-deterministic computations. One phenomenon is the huge gap between
the power of two formulation of non-deterministic space complexity (see Section 5.3.1),
which stands in contrast to the fact that the analogous formulations are equivalent in
the context of time complexity. We also highlight the contrast between various results
regarding (the standard model of) non-deterministic space-bounded computation (see
Section 5.3.2) and the analogous questions in the context of time complexity; one good
example is the “question of complementation” (cf. §5.3.2.3).

5.3.1. Two Models

Recall that non-deterministic time-bounded computations were defined via two equivalent
models. In the off-line model (underlying the definition of NP as a proof system (see
Definition 2.5)), non-determinism is captured by reference to the existential choice of
an auxiliary (“non-deterministic”) input. Thus, in this model, non-determinism refers

162



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.3. NON-DETERMINISTIC SPACE COMPLEXITY

to choices that are transcendental to the machine itself (i.e., choices that are performed
“off-line”). In contrast, in the on-line model (underlying the traditional definition of NP
(see Definition 2.7)) non-determinism is captured by reference to the non-deterministic
choices of the machine itself. In the context of time complexity, these models are equivalent
because the latter on-line choices can be recorded (almost) for free (see the proof of
Theorem 2.8). However, such a recording is not free of charge in the context of space
complexity.

Let us take a closer look at the relation between the off-line and on-line models. The
issue at hand is the cost of emulating off-line choices by on-line choices and vice versa.
We stress the fact that in the off-line model the non-deterministic choices are recorded “for
free” on an adequate auxiliary input device, whereas such a free record is not available
in the on-line model. The fact that the on-line model can be efficiently emulated by the
off-line model is almost generic; that is, it holds for any natural notion of complexity,
because on-line non-deterministic choices can be emulated by using consecutive bits
of the (off-line) non-deterministic input (and without significantly affecting any natural
complexity measure). In contrast, the efficient emulation of the off-line model by the on-
line model relies on the ability to efficiently maintain (in the on-line model) a record of non-
deterministic choices, which eliminates the advantage of the off-line non-deterministic
input (which is recorded for free in the off-line model). This efficient emulation is possible
in the context of time complexity, because in that context a machine may store a sequence of
non-deterministic choices (performed on-line) and retrieve bits of it without significantly
affecting the running-time (i.e., almost “free of charge”). This naive emulation of the
off-line choices by on-line choices is not free of charge in the context of space-bounded
computation, because (in the on-line model) each on-line choice that we record (i.e., store)
is charged in the space complexity. Furthermore, typically the number of non-deterministic
choices is much larger than the space bound, and thus the naive emulation is not possible
in the context of space complexity (because it is prohibitively expensive in terms of space
complexity).

Let us recapitulate the two models and consider the relation between them in the context
of space complexity. In the standard model, called the on-line model, the machine makes
non-deterministic choices “on the fly” (as in Definition 2.7).20 Thus, if the machine may
need to refer to such a non-deterministic choice at a latter stage in its computation, then
it must store this choice on its storage device (and be charged for it). In contrast, in the
so-called off-line model the non-deterministic choices are provided from the outside as
the bits of a special non-deterministic input. This non-deterministic input is presented on
a special read-only device (or tape) that can be scanned in both directions like the main
input.

We denote by NSPACEon-line(s) (resp., NSPACEoff-line(s)) the class of sets that are accept-
able by an on-line (resp., off-line) non-deterministic machine having space complexity
s. We stress that, as in Definition 2.7, the set accepted by a non-deterministic machine
M is the set of strings x such that there exists a computation of M on input x that is
accepting. (In the case of an on-line model this existential statement refers to possible
non-deterministic choices of the machine itself, whereas in the case of an off-line model
we refer to a possible choice of a corresponding non-deterministic input.)

20An alternative but equivalent definition is obtained by considering machines that read a non-deterministic input
from a special read-only tape that can be read only in one direction. This stands in contrast to the off-line model,
where the non-deterministic input is presented on a read-only tape that can be scanned freely.

163



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

The relationship between these two types of classes is not obvious. Indeed,
NSPACEon-line(s) ⊆ NSPACEoff-line(s), but (in general) containment does not hold in
the opposite direction. In fact, for s that is at least logarithmic, not only that
NSPACEon-line(s) �= NSPACEoff-line(s) but rather NSPACEon-line(s) ⊆ NSPACEoff-line(s ′), where
s ′(n) = O(log s(n)) = o(s(n)). Furthermore, for s that is at least linear, it holds that
NSPACEon-line(s) = NSPACEoff-line(�(log s)); see Exercise 5.18.

Before proceeding any further, let us justify the focus on the on-line model in the
rest of this section. Indeed, the off-line model fits better the motivations to NP (as pre-
sented in Section 2.1.2), but the on-line model seems more adequate for the study of
non-determinism in the context of space complexity. One reason is that an off-line non-
deterministic input can be used to code computations (see Exercise 5.18), and in a sense
allows for “cheating” with respect to the “actual” space complexity of the computation.
This is reflected in the fact that the off-line model can emulate the on-line model while
using space that is logarithmic in the space used by the on-line model. A related phe-
nomenon is that NSPACEoff-line(s) is only known to be contained in DTIME(22s

), whereas
NSPACEon-line(s) ⊆ DTIME(2s). This fact motivates the study of NL = NSPACEon-line(log),
as a study of a (natural) subclass of P . Indeed, the various results regarding NL justify
its study in retrospect.

In light of the foregoing, we adopt the standard conventions and let NSPACE(s) =
NSPACEon-line(s). Our main focus will be the study of NL = NSPACE(log). After studying
this class in Section 5.3.2, we shall return to the “question of modeling” in Section 5.3.3.

5.3.2. NL and Directed Connectivity

This section is devoted to the study of NL, which we view as the non-deterministic
analogue of L. Specifically, NL = ∪cNSPACE(�c), where �c(n) = c log2 n. (We refer the
reader to the definitional issues pertaining to NSPACE = NSPACEon-line, which are discussed
in Section 5.3.1.)

We first note that the proof of Theorem 5.3 can be easily extended to the (on-line)
non-deterministic context. The reason is that moving from the deterministic model to
the current model does not affect the number of instantaneous configurations (as defined
in the proof of Theorem 5.3), whereas this number bounds the time complexity. Thus,
NL ⊆ P .

The following problem, called directed connectivity (st-CONN), captures the essence
of non-deterministic log-space computations (and, in particular, is complete for NL under
log-space reductions). The input to st-CONN consists of a directed graph G = (V, E)
and a pair of vertices (s, t), and the task is to determine whether there exists a directed
path from s to t (in G).21 Indeed, the study of NL is often conducted via st-CONN. For
example, note that NL ⊆ P follows easily from the fact that st-CONN is in P (and the
fact that NL is log-space reducible to st-CONN).

5.3.2.1. Completeness and Beyond
Clearly, st-CONN is in NL (see Exercise 5.19). As shown next, the NL-completeness of
st-CONN under log-space reductions follows by noting that the computation of any
non-deterministic space-bounded machine yields a directed graph in which vertices

21See Appendix G.1 for basic graph theoretic terminology. We note that, here (and in the sequel), s stands for
start and t stands for terminate.

164



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.3. NON-DETERMINISTIC SPACE COMPLEXITY

correspond to possible configurations and edges represent the “successive” relation of
the computation. In particular, for log-space computations the graph has polynomial size,
but in general the relevant graph is strongly explicit (in a natural sense; see Exercise 5.21).

Theorem 5.11: Every problem in NL is log-space reducible to st-CONN (via a
many-to-one reduction).

Proof Sketch: Fixing a non-deterministic machine M and an input x , we consider
the following directed graph Gx = (Vx , Ex ). The vertices of Vx are possible instan-
taneous configurations of M(x), where each configuration consists of the contents
of the work-tape (and the machine’s finite state), the machine’s location on it, and
the machine’s location on the input. The directed edges represent single possible
moves in such a computation. We stress that such a move depends on the machine
M as well as on the (single) bit of x that resides in the location specified by the first
configuration (i.e., the configuration corresponding to the start point of the potential
edge).22 Note that (for a fixed machine M), given x , the graph Gx can be constructed
in log-space (by scanning all pairs of vertices and outputting only the pairs that are
valid edges (which, in turn, can be tested in constant space)).

By definition, the graph Gx represents the possible computations of M on input
x . In particular, there exists an accepting computation of M on input x if and only
if there exists a directed path, in Gx , starting at the vertex s that corresponds to
the initial configuration and ending at the vertex t that corresponds to a canonical
accepting configuration. Thus, x ∈ S if and only if (Gx , s, t) is a yes-instance of
st-CONN.

Reflection. We believe that the proof of Theorem 5.11 (see also Exercise 5.21) justifies
saying that st-CONN captures the essence of non-deterministic space-bounded computa-
tions. Note that this (intuitive and informal) statement goes beyond saying that st-CONN
is NL-complete under log-space reductions.

We note the discrepancy between the space-complexity of undirected connectivity
(see Theorem 5.6 and Exercise 5.15) and directed connectivity (see Theorem 5.11 and
Exercise 5.23). In this context it is worthwhile to note that determining the existence of
relatively short paths (rather than arbitrary paths) in undirected (or directed) graphs is also
NL-complete under log-space reductions; see Exercise 5.24.

On the search version of stCONN. We mention that the search problem corresponding
to st-CONN is log-space reducible to NL (by a Cook-reduction); see Exercise 5.20.
Also note that accepting computations of any log-space non-deterministic machine can be
found by finding directed paths in directed graphs; indeed, this is a simple demonstration
of the thesis that st-CONN captures non-deterministic log-space computations.

5.3.2.2. Relating NSPACE to DSPACE
Recall that in the context of time complexity, the only known conversion of non-
deterministic computation to deterministic computation comes at the cost of an

22Thus, the actual input x only affects the set of edges of Gx (whereas the set of vertices is only affected by |x |).
A related construction is obtained by incorporating in the configuration also the (single) bit of x that resides in the
machine’s location on the input. In the latter case, x itself affects Vx (but not Ex , except for Ex ⊆ Vx×Vx ).

165



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

exponential blowup in the complexity. In contrast, space complexity allows such a con-
version at the cost of a polynomial blowup in the complexity.

Theorem 5.12 (Non-deterministic versus deterministic space): For any space-
constructible s : N→ N that is at least logarithmic, it holds that NSPACE(s) ⊆
DSPACE(O(s2)).

In particular, non-deterministic polynomial space is contained in deterministic polynomial
space (and non-deterministic poly-logarithmic space is contained in deterministic poly-
logarithmic space).

Proof Sketch: We focus on the special case ofNL and the argument extends easily to
the general case. Alternatively, the general statement can be derived from the special
case by using a suitable upward-translation lemma (see, e.g., [123, Sec. 12.5]). The
special case boils down to presenting an algorithm for deciding directed connectivity
that has log-square space complexity.

The basic idea is that checking whether or not there is a path of length at
most 2� from u to v in G reduces (in log-space) to checking whether there is an
intermediate vertex w such that there is a path of length at most � from u to w

and a path of length at most � from w to v. That is, let φG(u, v, �)
def= 1 if there is

a path of length at most � from u to v in G, and φG(u, v, �)
def= 0 otherwise. Then

φG(u, v, 2�) can be computed by scanning all vertices w in G, and checking for
each w whether both φG(u, w, �) = 1 and φG(w, v, �) = 1 hold.23 Hence, we can
compute φG(u, v, 2�) by a log-space algorithm that makes oracle calls to φG(·, ·, �),
which in turn can be computed recursively in the same manner. Note that the original
computational problem (i.e., st-CONN) can be cast as computing φG(s, t, |V |) (or
φG(s, t, 2&log2 |V |')) for a given directed graph G = (V, E) and a given pair of vertices
(s, t). Thus, the foregoing recursive procedure yields the theorem’s claim, provided
that we use adequate composition results. We take a technically different approach
by directly analyzing the recursive procedure at hand.

Recall that given a directed graph G = (V, E) and a pair of vertices (s, t), we
should merely compute φG(s, t, 2&log2 |V |'). This is done by invoking a recursive
procedure that computes φG(u, v, 2�) by scanning all vertices in G, and computing
for each vertex w the values of φG(u, w, �) and φG(w, v, �). The punch line is
that all these computations may reuse the same space, while we need only store
one additional bit representing the results of all prior computations. We return
the value 1 if and only if for some w it holds that φG(u, w, �) = φG(w, v, �) = 1
(see Figure 5.2). Needless to say, φG(u, v, 1) can be decided easily in logarithmic
space.

We consider an implementation of the foregoing procedure (of Figure 5.2) in
which each level of the recursion uses a designated portion of the entire storage for
maintaining the local variables (i.e., w and σ ). The amount of space taken by each
level of the recursion is essentially log2 |V | (for storing the current value of w), and
the number of levels is log2 |V |. We stress that when computing φG(u, v, 2�), we
make many recursive calls, but all these calls reuse the same work space (i.e., the
portion that is designated to that level). That is, when we compute φG(u, w, �) we

23Similarly, φG (u, v, 2�+ 1) can be computed by scanning all vertices w in G, and checking for each w whether
both φG (u, w, �+ 1) = 1 and φG (w, v, �) = 1 hold.

166



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.3. NON-DETERMINISTIC SPACE COMPLEXITY

Recursive computation of φG(u, v, 2�), for � ≥ 1.

For w = 1, . . . , |V | do begin (storing the vertex name)
Compute σ ← φG(u, w, �) (by a recursive call)
Compute σ ← σ ∧ φG(w, v, �) (by a second recursive call)
If σ = 1 then return 1. (success: an intermediate vertex was found)

End (of scan).
return 0. (reached only if the scan was completed without success).

Figure 5.2: The recursive procedure in NL ⊆ DSPACE(O(log2)).

reuse the space that was used for computing φG(u, w′, �) for the previous w′, and we
reuse the same space when we compute φG(w, v, �). Thus, the space complexity of
our algorithm is merely the sum of the amount of space used by all recursion levels.
It follows that st-CONN has log-square (deterministic) space complexity, and the
same follows for all of NL (either by noting that st-CONN actually represents any
NL computation or by using the log-space reductions of NL to st-CONN).

Digest. The proof of Theorem 5.12 relies on two main observations. The first observation
is that a conjunction (resp., disjunction) of two Boolean conditions can be verified using
space s + O(1), where s is the space complexity of verifying a single condition. This
follows by applying naive composition (i.e., Lemma 5.1). Actually, the second observation
is merely a generalization of the first observation: It asserts that an existential claim (resp., a
universally quantified claim) can be verified by scanning all possible values in the relevant
domain (and testing the claim for each value), which in terms of space complexity has an
additive cost that is logarithmic in the size of the domain.

The proof of Theorem 5.12 is facilitated by the fact that we may consider a concrete
and simple computational problem such as st-CONN. Nevertheless, the same ideas can
be applied directly to NL (or any NSPACE class).

Placing NL in NC2. The simple formulation of st-CONN facilitates placing NL in
complexity classes such as NC2 (i.e., decidability by uniform families of circuits of
log-square depth and bounded fan-in). All that is needed is observing that st-CONN
can be solved by raising the adequate matrix (i.e., the adjacency matrix of the graph
augmented with 1-entries on the diagonal) to the adequate power (i.e., its dimension).
Squaring a matrix can be done by a uniform family circuits of logarithmic depth and
bounded fan-in (i.e., in NC1), and by repeated squaring the nth power of an n-by-n
matrix can be computed by a uniform family of bounded fan-in circuits of polynomial
size and depth O(log2 n); thus, st-CONN ∈ NC2. Indeed, NL ⊆ NC2 follows by noting
that st-CONN actually represents any NL computation (or by noting that any log-space
reduction can be computed by a uniform family of logarithmic depth and bounded fan-in
circuits).

5.3.2.3. Complementation or NL = coNL
Recall that (reasonable) non-deterministic time-complexity classes are not known
to be closed under complementation. Furthermore, it is widely believed that
NP �= coNP . In contrast, (reasonable) non-deterministic space-complexity classes

167



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

are closed under complementation, as captured by the result NL = coNL, where
coNL def= {{0, 1}∗ \ S : S ∈ NL}.

Before proving that NL = coNL, we note that proving this result is equivalent to
presenting a log-space Karp-reduction of st-CONN to its complement (or, equivalently,
a reduction in the opposite direction; see Exercise 5.26). Our proof utilizes a different
perspective on the NL-vs-coNL question, by rephrasing this question as referring to the re-
lation between NL and NL ∩ coNL (see Exercise 2.37), and by offering an “operational
interpretation” of the class NL ∩ coNL.

Recall that a set S is inNL if there exists a non-deterministic log-space machine M that
accepts S, and that the acceptance condition of non-deterministic machines is asymmetric
in nature. That is, x ∈ S implies the existence of an accepting computation of M on input
x , whereas x �∈ S implies that all computations of M on input x are non-accepting. Thus,
the existence of an accepting computation of M on input x is an absolute indication for
x ∈ S, but the existence of a rejecting computation of M on input x is not an absolute
indication for x �∈ S. In contrast, for S ∈ NL ∩ coNL, there exist absolute indications
both for x ∈ S and for x �∈ S (or, equivalently for x ∈ S

def= {0, 1}∗ \ S), where each of the
two types of indication is provided by a different non-deterministic machine (i.e., either
the one accepting S or the one accepting S). Combining both machines, we obtain a single
non-deterministic machine that, for every input, sometimes outputs the correct answer
and always outputs either the correct answer or a special (“don’t know”) symbol. This
yields the following definition, which refers to Boolean functions as a special case.

Definition 5.13 (non-deterministic computation of functions): We say that a non-
deterministic machine M computes the function f : {0, 1}∗ → {0, 1}∗ if for every
x ∈ {0, 1}∗ the following two conditions hold.

1. Every computation of M on input x yields an output in { f (x),⊥}, where ⊥ �∈
{0, 1}∗ is a special symbol (indicating “don’t know”).

2. There exists a computation of M on input x that yields the output f (x).

Note that S ∈ NL ∩ coNL if and only if there exists a non-deterministic log-space
machine that computes the characteristic function of S (see Exercise 5.25). Recall that
the characteristic function of S, denoted χS , is the Boolean function satisfying χS(x) = 1
if x ∈ S and χS(x) = 0 otherwise. It follows that NL = coNL if and only if for every
S ∈ NL there exists a non-deterministic log-space machine that computes χS .

Theorem 5.14 (NL = coNL): For every S ∈ NL there exists a non-deterministic
log-space machine that computes χS.

As in the case of Theorem 5.12, the result extends to any space-constructible s : N→ N

that is at least logarithmic; that is, for such s and every S ∈ NSPACE(s), it holds that
S ∈ NSPACE(O(s)). This extension can be proved either by generalizing the following
proof or by using an adequate upward-translation lemma.

Proof Sketch: As in the proof of Theorem 5.12, it suffices to present a non-
deterministic log-space machine that computes the characteristic function of st-
CONN, denoted χ (i.e., χ(G, s, t) = 1 if there is a directed path from s to t in G and
χ(G, s, t) = 0 otherwise).

168



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.3. NON-DETERMINISTIC SPACE COMPLEXITY

We first show that the computation of χ is log-space reducible to determining
the number of vertices that are reachable (via a directed path) from a given vertex
in a given graph. On input (G, s, t), the reduction computes the number of vertices
that are reachable from s in the graph G and compares this number to the number
of vertices reachable from s in the graph G ′ obtained by omitting t from G. Clearly,
these two numbers are different if and only if vertex t is reachable from vertex
v (in the graph G). An alternative reduction that uses a single query is presented
in Exercise 5.28. Combining either of these reductions with a non-deterministic
log-space machine that computes the number of reachable vertices, we obtain a non-
deterministic log-space machine that computes χ . This can be shown by relying
either on the non-adaptivity of these reductions or on the fact that the solutions
for the target problem have logarithmic length; see Exercise 5.29. Thus, we focus
on providing a non-deterministic log-space machine for computing the number of
vertices that are reachable from a given vertex in a given graph.

Fixing an n-vertex graph G = (V, E) and a vertex v, we consider the set of
vertices that are reachable from v by a path of length at most i . We denote this set
by Ri , and observe that R0 = {v} and that for every i = 1, 2, . . . , it holds that

Ri = Ri−1 ∪ {u : ∃w ∈ Ri−1 s.t. (w, u) ∈ E} (5.1)

Our aim is to (non-deterministically) compute |Rn| in log-space. This will be done
in n iterations such that at the i th iteration we compute |Ri |. When computing |Ri |
we rely on the fact that |Ri−1| is known to us, which means that we shall store |Ri−1|
in memory. We stress that we discard |Ri−1| from memory as soon as we complete
the computation of |Ri |, which we store instead. Thus, at each iteration i , our record
of past iterations only contains |Ri−1|.

Computing |Ri |. Given |Ri−1|, we non-deterministically compute |Ri | by making a
guess (for |Ri |), denoted g, and verifying its correctness as follows:

1. We verify that |Ri | ≥ g in a straightforward manner. That is, scanning V in some
canonical order, we verify for g vertices that they are each in Ri . That is, during
the scan, we select non-deterministically g vertices, and for each selected vertex
w we verify that w is reachable from v by a path of length at most i , where this
verification is performed by just guessing and verifying an adequate path (see
Exercise 5.19).

We use log2 n bits to store the number of vertices that were already verified to
be in Ri , another log2 n bits to store the currently scanned vertex (i.e., w), and
another O(log n) bits for implementing the verification of the existence of a path
of length at most i from v to w.

2. The verification of the condition |Ri | ≤ g (equivalently, |V \ Ri | ≥ n − g) is the
interesting part of the procedure. Indeed, as we saw, demonstrating membership
in Ri is easy, but here we wish to demonstrate non-membership in Ri . We do so
by relying on the fact that we know |Ri−1|, which allows for a non-deterministic
enumeration of Ri−1 itself, which in turn allows for proofs of non-membership
in Ri (via the use of Eq. (5.1)). Details follows (and an even more structured
description is provided in Figure 5.3).

Scanning V (again), we verify for n − g (guessed) vertices that they are not in Ri

(i.e., are not reachable from v by paths of length at most i). By Eq. (5.1), verifying

169



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Given |Ri−1| and a guess g, the claim g ≥ |Ri | is verified as follows.

Set c ← 0. (initializing the main counter)
For u = 1, . . . , n do begin (the main scan)

Guess whether or not u ∈ Ri .
For a negative guess (i.e., u �∈ Ri ), do begin
(Verify that u �∈ Ri via Eq. (5.1).)

Set c′ ← 0. (initializing a secondary counter)
For w = 1, . . . , n do begin (the secondary scan)

Guess whether or not w ∈ Ri−1.
For a positive guess (i.e., w ∈ Ri−1), do begin

Verify that w ∈ Ri−1 (as in Step 1).
Verify that u �= w and (w, u) �∈ E .
If some verification failed
then halt with output ⊥ otherwise increment c′.

End (of handling a positive guess for w ∈ Ri−1).
End (of secondary scan). (c′ vertices in Ri−1 were checked)
If c′ < |Ri−1| then halt with output ⊥.
Otherwise (c′ = |Ri−1|), increment c. (u verified to be outside of Ri )

End (of handling a negative guess for u �∈ Ri ).
End (of main scan). (c vertices were shown outside of Ri )
If c < n − g then halt with output ⊥.
Otherwise g ≥ |Ri | is verified (since n − |Ri | ≥ c ≥ n − g).

Figure 5.3: The main step in proving NL = coNL.

that u �∈ Ri amounts to proving that for every w ∈ Ri−1, it holds that u �= w and
(w, u) �∈ E . As hinted, the knowledge of |Ri−1| allows for the enumeration of
Ri−1, and thus we merely check the aforementioned condition on each vertex in
Ri−1. Thus, verifying that u �∈ Ri is done as follows.

(a) We scan V guessing |Ri−1| vertices that are in Ri−1, and verify each such
guess in the straightforward manner (i.e., as in Step 1).24

(b) For each w ∈ Ri−1 that was guessed and verified in Step 2a, we verify that
both u �= w and (w, u) �∈ E .

By Eq. (5.1), if u passes the foregoing verification then indeed u �∈ Ri .

We use log2 n bits to store the number of vertices that were already verified to
be in V \ Ri , another log2 n bits to store the current vertex u, another log2 n bits
to count the number of vertices that are currently verified to be in Ri−1, another
log2 n bits to store such a vertex w, and another O(log n) bits for verifying that
w ∈ Ri−1 (as in Step 1).

If any of the foregoing verifications fails, then the procedure halts outputting the
“don’t know” symbol ⊥. Otherwise, it outputs g.

Clearly, the foregoing non-deterministic procedure uses a logarithmic amount of
space. It can be verified that, when given the correct value of |Ri−1|, this procedure
non-deterministically computes the value of |Ri |. That is, if all verifications are

24Note that implicit in Step 2a is a non-deterministic procedure that computes the mapping (G, v, i, |Ri−1|) →
Ri−1, where Ri−1 denotes the set of vertices that are reachable in G by a path of length at most i from v.

170



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.3. NON-DETERMINISTIC SPACE COMPLEXITY

satisfied then it must hold that g = |Ri |, and if g = |Ri | then there exist adequate
non-deterministic choices that satisfy all verifications.

Recall that Rn is computed iteratively, starting with |R0| = 1 and computing
|Ri | based on |Ri−1|. Each iteration i = 1, . . . , n is non-deterministic, and is ei-
ther completed with the correct value of |Ri | (at which point |Ri−1| is discarded)
or halts in failure (in which case we halt the entire process and output ⊥). This
yields a non-deterministic log-space machine for computing |Rn|, and the theorem
follows.

Digest. Step 2 is the heart of the proof (of Theorem 5.14). In this step a non-deterministic
procedure is used to verify non-membership in an NL-type set. Indeed, verifying mem-
bership in NL-type sets is the archetypical task of non-deterministic procedures (i.e.,
they are defined so as to fit these tasks), and thus Step 1 is straightforward. In contrast,
non-deterministic verification of non-membership is not a common phenomenon, and
thus Step 2 is not straightforward at all. Nevertheless, in the current context (of Step 2),
the verification of non-membership is performed by an iterative (non-deterministic) pro-
cess that consumes an admissible amount of resources (i.e., a logarithmic amount of
space).

5.3.3. A Retrospective Discussion

The current section may be viewed as a study of the “power of non-determinism in compu-
tation” (which is a somewhat contradictory term). Recall that we view non-deterministic
processes as fictitious abstractions aimed at capturing fundamental phenomena such as
the verification of proofs (cf. Section 2.1.5). Since these fictitious abstractions are funda-
mental in the context of time complexity, we may hope to gain some understanding by a
comparative study, specifically, a study of non-determinism in the context of space com-
plexity. Furthermore, we may discover that non-deterministic space-bounded machines
give rise to interesting computational phenomena.

The aforementioned hopes seem to come true in the current section. For example, the
fact that NL = coNL, while the common conjecture is that NP �= coNP , indicates
that the latter conjecture is less generic than sometimes stated. It is not that an existential
quantifier cannot be “feasibly replaced” by a universal quantifier, but it is rather the case
that the feasibility of such a replacement depends very much on the specific notion of
feasibility used. Turning to the other type of benefits, we learned that st-CONN can be
Karp-reduced in log-space to st-unCONN (i.e., the set of graphs in which there is no
directed path between the two designated vertices; see Exercise 5.26).

Still, one may ask what does the class NL actually represent (beyond st-CONN, which
seems actually more than merely a complete problem for this class; see §5.3.2.1). Turning
back to Section 5.3.1, we recall that the class NSPACEoff-line captures the straightforward
notion of space-bounded verification. In this model (called the off-line model), the alleged
proof is written on a special device (similarly to the assertion being established by it), and
this device is being read freely. In contrast, underlying the alternative class NSPACEon-line

is a notion of proofs that are verified by reading them sequentially (rather than scanning
them back and forth). In this case, if the verification procedure may need to reexamine
the currently read part of the proof (in the future), then it must store the relevant part
(and be charged for this storage). Thus, the on-line model underlying NSPACEon-line refers
to the standard process of reading proofs in a sequential manner and taking notes for

171



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

future verification, rather than repeatedly scanning the proof back and forth. The on-line
model reflects the true space complexity of taking such notes and hence of sequential
verification of proofs. Indeed (as stated in Section 5.3.1), our feeling is that the off-line
model allows for an unfair accounting of temporary space as well as for unintendedly long
proofs.

5.4. PSPACE and Games

As stated in Section 5.2, we rarely encounter computational problems that require less
than logarithmic space. On the other hand, we will rarely treat computational problems
that require more than polynomial space. The class of decision problems that are solvable
in polynomial space is denoted PSPACE def= ∪c DSPACE(pc), where pc(n) = nc.

To get a sense of the power of PSPACE , we observe that PH ⊆ PSPACE ; for exam-
ple, a polynomial-space algorithm can easily verify the quantified condition underlying
Definition 3.8. In fact, such an algorithm can handle an unbounded number of alternat-
ing quantifiers (see the following Theorem 5.15). On the other hand, by Theorem 5.3,
PSPACE ⊆ EXP , where EXP = ∪cDTIME(2pc ) for pc(n) = nc.

The class PSPACE can be interpreted as capturing the complexity of determining
the winner in certain efficient two-party games; specifically, the very games considered
in Section 3.2.1 (modulo footnote 5 there). Recall that we refer to two-party games that
satisfy the following three conditions:

1. The parties alternate in taking moves that effect the game’s (global) position, where
each move has a description length that is bounded by a polynomial in the length of
the initial position.

2. The current position is updated based on the previous position and the current party’s
move. This updating can be performed in time that is polynomial in the length of the
initial position. (Equivalently, we may require a polynomial-time updating procedure
and postulate that the length of the current position be bounded by a polynomial in
the length of the initial position.)

3. The winner in each position can be determined in polynomial time.

Recall that, for every fixed k, we showed (in Section 3.2.1) a correspondence between
�k and the problem of determining the existence of a k-move winning strategy (for the
first party) in games of the foregoing type. The same correspondence exists between
PSPACE and the problem of determining the existence of a winning strategy with
polynomially many moves (in games of the foregoing type). That is, on the one hand, the
set of initial positions x for which the first party has a poly(x |)-move winning strategy
with respect to the foregoing game is in PSPACE . On the other hand, by the following
Theorem 5.15, every set in PSPACE can be viewed as the set of initial positions (in a
suitable game) for which the first party has a winning strategy consisting of a polynomial
number of moves. Actually, the correspondence is between determining the existence of
such winning strategies and deciding the satisfiability of quantified Boolean formulae
(QBF); see Exercise 5.30.

QBF and PSPACE. A quantified Boolean formula is a Boolean formula (as in SAT)
augmented with quantifiers that refer to each variable appearing in the formula. (Note
that, unlike in Exercise 3.7, we make no restrictions regarding the number of al-
ternations between existential and universal quantifiers. For further discussion, see

172



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

5.4. PSPACE AND GAMES

Appendix G.2.) As noted before, deciding the satisfiability of quantified Boolean formulae
(QBF) in inPSPACE . We next show that every problem inPSPACE is Karp-reducible to
QBF.

Theorem 5.15: QBF is complete for PSPACE under polynomial-time many-to-one
reductions.

Proof: As noted before, QBF is solvable by a polynomial-space algorithm that
just evaluates the quantified formula. Specifically, consider a recursive procedure
that eliminates a Boolean quantifier by evaluating the value of the two residual
formulae, and note that the space used in the first (recursive) evaluation can be
reused in the second evaluation. (Alternatively, consider a DFS-type procedure as
in Section 5.1.4.) Note that the space used is linear in the depth of the recursion,
which in turn is linear in the length of the input formula.

We now turn to show that any set S ∈ PSPACE is many-to-one reducible to
QBF. The proof is similar to the proof of Theorem 5.12 (which establishes NL ⊆
DSPACE(log2)), except that here we work with an implicit graph (see Exercise 5.21,
rather than with an explicitly given graph). Specifically, we refer to the directed
graph of instantaneous configurations (of the algorithm A deciding membership in
S), where here we use a different notion of a configuration that includes also the
entire input. That is, in the rest of this proof, a configuration consists of the contents
of all storage devices of the algorithm (including the input device) as well as the
location of the algorithm on each device. Thus, on input x (to the reduction), we shall
consider the directed graph G = Gx,A = (Vx , E A), where Vx represents all possible
configurations with input x and E A represents the transition function of algorithm
A (i.e., the effect of a single computation step of A).

As in the proof of Theorem 5.12, for a graph G, we defined φG(u, v, �) = 1 if
there is a path of length at most � from u to v in G (and φG(u, v, �) = 0 otherwise).
We need to determine φG(s, t, 2m) for s that encodes the initial configuration of
A(x) and t that encodes the canonical accepting configuration, where G depends
on the algorithm A and m = poly(|x |) is such that A(x) uses at most m space
and runs for at most 2m steps. By the specific definition of a configuration (which
contains all relevant information including the input x), the value of φG(u, v, 1) can
be determined easily based solely on the fixed algorithm A (i.e., either u = v or v is
a configuration following u). Recall that φG(u, v, 2�) = 1 if and only if there exists
a configuration w such that both φG(u, w, �) = 1 and φG(w, v, �) = 1 hold. Thus,
we obtain the recursion

φG(u, v, 2�) = ∃w ∈ {0, 1}m φG(u, w, �) ∧ φG(w, v, �), (5.2)

where the bottom of the recursion (i.e., φG(u, v, 1)) is a simple propositional formula
(see the foregoing comment). The problem with Eq. (5.2) is that the expression for
φG(·, ·, 2�) involves two occurrences of φG(·, ·, �), which doubles the length of the
recursively constructed formula (yielding an exponential blowup).

Our aim is to express φG(·, ·, 2�) while using φG(·, ·, �) only once. This extra
restriction, which prevents an exponential blowup, corresponds to the reusing of
space in the two evaluations of φG(·, ·, �) that take place in the computation of
φG(u, v, 2�). The main idea is replacing the condition φG(u, w, �) ∧ φG(w, v, �)
by the condition “∀(u′v′)∈{(u, w), (w, v)}φG(u′, v′, �)” (where we quantify over a

173



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

two-element set that is not the Boolean set {0, 1}). Next, we reformulate the non-
standard quantifier (which ranges over a specific pair of strings) by using additional
quantifiers as well as some simple Boolean conditions. That is, the non-standard
quantifier ∀(u′v′) ∈ {(u, w), (w, v)} is replaced by the standard quantifiers ∀σ ∈
{0, 1}∃u′, v′ ∈ {0, 1}m and the auxiliary condition

[(σ =0) ⇒ (u′ =u ∧ v′ =w)] ∧ [(σ =1) ⇒ (u′ =w ∧ v′ =v)]. (5.3)

Thus, φG(u, v, 2�) holds if and only if there exist w such that for every σ there exists
(u′, v′) such that both Eq. (5.3) and φG(u′, v′, �) hold. Note that the length of this
expression for φG(·, ·, 2�) equals the length of φG(·, ·, �) plus an additive overhead
term of O(m). Thus, using a recursive construction, the length of the formula grows
only linearly in the number of recursion steps.

The reduction itself maps an instance x (of S) to the quantified Boolean for-
mula �(sx , t, 2m), where sx denotes the initial configuration of A(x), (t and
m = poly(|x |) are as in the foregoing discussion), and � is recursively defined as
follows

�(u, v, 2�)
def=
∃w∈{0, 1}m ∀σ ∈{0, 1}∃u′, v′ ∈{0, 1}m

[(σ =0) ⇒ (u′ =u ∧ v′ =w)]
∧ [(σ =1) ⇒ (u′ =w ∧ v′ =v)]
∧ �(u′, v′, �)

(5.4)

with �(u, v, 1) = 1 if and only if either u = v or there is an edge from u to v.
Note that �(u, v, 1) is a (fixed) propositional formula with Boolean variables rep-
resenting the bits of the variables u and v such that �(u, v, 1) is satisfied if and
only if either u = v or v is a configuration that follows the configuration u in a
computation of A. On the other hand, note that �(sx , t, 2m) is a quantified formula
in which sx , t and m are fixed and the quantified variables are not shown in the
notation.

We stress that the mapping of x to �(sx , t, 2m) can be computed in polynomial
time. Firstly, note that the propositional formula �(u, v, 1), having Boolean variables
representing the bits of u and v, expresses extremely simple conditions and can
certainly be constructed in polynomial time (i.e., polynomial in the number of
Boolean variables, which in turn equals 2m). Next note that, given �(u, v, �), which
(for � > 1) contains quantified variables that are not shown in the notation, we can
construct �(u, v, 2�) by merely replacing variables names and adding quantifiers
and Boolean conditions as in the recursive definition of Eq. (5.4). This is certainly
doable in polynomial time. Lastly, note that the construction of �(sx , t, 2m) depends
mainly on the length of x , where x itself only affects sx (and does so in a trivial
manner). Recalling that m = poly(|x |), it follows that everything is computable in
time polynomial in |x |. Thus, given x , the formula �(sx , t, 2m) can be constructed
in polynomial time.

Finally, note that x ∈ S if and only if the formula �(sx , t, 2m) is satisfiable. The
theorem follows.

Other PSPACE-complete problems. As stated in the beginning of this section, there
is a close relationship between PSPACE and determining winning strategies in various
games. This relationship was established by considering the generic game that corresponds
to the satisfiability of general QBF (see Exercise 5.30). The connection betweenPSPACE

174



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

and determining winning strategies in games is closer than indicated by this generic
game: Determining winning strategies in several (generalizations of) natural games is
also PSPACE-complete (see [208, Sec. 8.3]). This further justifies the title of the current
section.

Chapter Notes

The material presented in the current chapter is based on a mix of “classical” results
(proven in the 1970s if not earlier) and “modern” results (proven in the late 1980s and
even later). We wish to emphasize the time gap between the formulation of some questions
and their resolution. Details follow.

We first mention the “classical” results. These include the NL-completeness of st-
CONN, the emulation of non-deterministic space-bounded machines by deterministic
space-bounded machines (i.e., Theorem 5.12 due to Savitch [197]), the PSPACE-
completeness of QBF, and the connections between circuit depth and space complexity
(see Section 5.1.4 and Exercise 5.12 due to Borodin [48]).

Before turning to the “modern” results, we mention that some researchers tend to
be discouraged by the impression that “decades of research have failed to answer any
of the famous open problems of Complexity Theory.” In our opinion this impression
is fundamentally mistaken. Specifically, in addition to the fact that substantial progress
toward the understanding of many fundamental issues has been achieved, these researchers
tend to forget that some famous open problems were actually resolved. Two such examples
were presented in this chapter.

The question of whether NL = coNL was a famous open problem for almost two
decades. Furthermore, this question is related to an even older open problem dating to
the early days of research in the area of formal languages (i.e., to the 1950s).25 This
open problem was resolved in 1988 by Immerman [125] and Szelepcsenyi [219], who
(independently) proved Theorem 5.14 (i.e., NL = coNL).

For more than two decades, undirected connectivity (UCONN) was one of the most
appealing examples of the computational power of randomness. Recall that the classi-
cal linear-time (deterministic) algorithms (e.g., BFS and DFS) require an extensive use
of temporary storage (i.e., linear in the size of the graph). On the other hand, it was
known (since 1979, see §6.1.5.2) that, with high probability, a random walk of poly-
nomial length visits all vertices (in the corresponding connected component). Thus, the
resulting randomized algorithm for UCONN uses a minimal amount of temporary storage
(i.e., logarithmic in the size of the graph). In the early 1990s, this algorithm (as well as
the entire class BPL (see Definition 6.11)) was derandomized in polynomial time and
poly-logarithmic space (see Theorem 8.23), but despite more than a decade of research
attempts, a significant gap remained between the space complexity of randomized and de-
terministic polynomial-time algorithms for this natural and ubiquitous problem. This gap
was closed by Reingold [190], who established Theorem 5.6 in 2004.26 Our presentation
(in Section 5.2.4) follows Reingold’s ideas, but the specific formulation in §5.2.4.2 does
not appear in [190].

25Specifically, the class of sets recognized by linear-space non-deterministic machines equals the class of context-
sensitive languages (see, e.g., [123, Sec. 9.3]), and thus Theorem 5.14 resolves the question of whether the latter class
is closed under complementation.

26We mention that an almost-logarithmic space algorithm was discovered independently and concurrently by
Trifonov [224], using a very different approach.

175



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Exercises

Exercise 5.1 (scanning the input-tape beyond the input): Let A be an arbitrary algo-
rithm of space complexity s. Show that there exists a functionally equivalent algorithm
A′ that has space complexity s ′(n) = O(s(n)+ log n) and does not scan the input-tape
beyond the boundaries of the input.

Guideline: Prove that on input x , algorithm A does not scan the input-tape beyond
distance 2O(s(|x |)) from the input.

(Extra hint: Consider instantaneous configurations of A(x) that refer to the case that A reads a generic

location on the input-tape that is not part of the input.)

Exercise 5.2 (rewriting on the write-only output-tape): Let A be an arbitrary algorithm
of space complexity s. Show that there exists a functionally equivalent algorithm A′

that never rewrites on (the same location of) its output device and has space complexity
s ′ such that s ′(n) = s(n)+ O(log �(n)), where �(n) = maxx∈{0,1}n |A(x)|.

Guideline: Algorithm A′ proceeds in iterations, where in the i th iteration it outputs
the i th bit of A(x) by emulating the computation of A on input x . The i th emulation of
A avoids printing A(x), but rather keeps a record of the i th location of A(x)’s output-
tape (and terminates by outputting the final value of this bit). Indeed, this emulation
requires maintaining the current value of i as well as the current location of the
emulated machine (i.e., A) on its output-tape.

Exercise 5.3 (on the power of double-logarithmic space): For any k ∈ N, let wk denote
the concatenation of all k-bit long strings (in lexicographic order) separated by ∗’s (i.e.,
wk = 0k−200 ∗ 0k−201 ∗ 0k−210 ∗ 0k−211 ∗ · · · ∗ 1k). Show that the set S

def= {wk : k ∈
N} ⊂ {0, 1, ∗} is not regular and yet is decidable in double-logarithmic space.

Guideline: The non-regularity of S can be shown using standard techniques. Toward
developing an algorithm, note that |wk | > 2k , and thus O(log k) = O(log log |wk |).
Membership of x in S is determined by iteratively checking whether x = wi , for
i = 1, 2, . . ., while stopping when detecting an obvious case (i.e., either verifying that
x = wi or detecting evidence that x �= wk for every k ≥ i). By taking advantage of
the ∗’s (in wi ), the i th iteration can be implemented in space O(log i). Furthermore, on
input x �∈ S, we halt and reject after at most log |x | iterations. Actually, it is slightly
simpler to handle the related set {w1 ∗ ∗w2 ∗ ∗ · · · ∗ ∗wk : k ∈ N}; moreover, in this
case the ∗’s can be omitted from the wi ’s (as well as from between them).

Exercise 5.4 (on the weakness of less than double logarithmic space): Prove that for
�(n) = log log n, it holds that DSPACE(o(�)) = DSPACE(O(1)).

Guideline: Let s denote the machine’s (binary) space complexity. Show that if s is
unbounded then it must hold that s(n) = �(log log n) infinitely often. Specifically, for
every integer m, consider a shortest string x such that on input x the machine uses
space at least m. Consider, for each location on the input, the sequence of the residual
configurations of the machine (i.e., the contents of its temporary storage)27 such that
the i th element in the sequence represents the residual configuration of the machine
at the i th time that the machine crosses (or rather passes through) this input location.

27Note that, unlike in the proof of Theorem 5.3, the machine’s location on the input is not part of the notion of a
configuration used here. On the other hand, although not stated explicitly, the configuration also encodes the machine’s
location on the storage tape.

176



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

For starters, note that the length of this “crossing sequence” is upper-bounded by the
number of possible residual configurations, which is at most t

def= 2s(|x |) · s(|x |). Thus,
the number of such crossing sequences is upper-bounded by t t . Now, if t t < |x |/2
then there exist three input locations that have the same crossing sequence, and two of
them hold the same bit value. Contracting the string at these two locations, we get a
shorter input on which the machine behaves in exactly the same manner, contradicting
the hypothesis that x is the shortest input on which the machine uses space at least m.
We conclude that t t ≥ |x |/2 must hold, and s(|x |) = �(log log |x |) holds for infinitely
many x’s.

Exercise 5.5 (space complexity and halting): In continuation of Theorem 5.3, prove
that for every algorithm A of (binary) space complexity s there exists an algorithm
A′ of space complexity s ′(n) = O(s(n)+ log n) that halts on every input such that for
every x on which A halts it holds that A′(x) = A(x).

Guideline: On input x , algorithm A′ emulates the execution of A(x) for at most
t(|x |)+ 1 steps, where t(n) = n · 2s(n)+log2 s(n).

Exercise 5.6 (some log-space algorithms): Present log-space algorithms for the follow-
ing computational problems.

1. Addition and multiplication of a given pair of integers.

Guideline: Relying on Lemma 5.2, first transform the input to a more convenient for-
mat, then perform the operation, and finally transform the result to the adequate format.
For example, when adding x =∑n−1

i=0 xi 2i and y =∑n−1
i=0 yi 2i , a convenient format is

((x0, y0), . . . , (xn−1, yn−1)).

2. Deciding whether two given strings are identical.
3. Finding occurrences of a given pattern p ∈ {0, 1}∗ in a given string s ∈ {0, 1}∗.
4. Transforming the adjacency matrix representation of a graph to its incidence list

representation, and vice versa.
5. Deciding whether the input graph is acyclic (i.e., has no simple cycles).

Guideline: Consider a scanning of the graph that proceeds as follows. Upon entering a vertex
v via the i th edge incident at it, we exit this vertex using its i + 1st edge if v has degree at
least i + 1 and exit via the first edge otherwise. Note that when started at any vertex of any
tree, this scanning performs a DFS. On the other hand, for every cyclic graph there exists
a vertex v and an edge e incident to v such that if this scanning is started by traversing the
edge e from v then it returns to v via an edge different from e.

6. Deciding whether the input graph is a tree.

Guideline: Use the fact that a graph G = (V, E) is a tree if and only if it is acyclic and
|E | = |V | − 1.

Exercise 5.7 (another composition result): In continuation of the discussion in §5.1.3.3,
prove that if � can be solved in space s1 when given an (�, �′)-restricted oracle
access to �′ and �′ is solvable is space s2, then � is solvable in space s such that
s(n) = 2s1(n)+ s2(�(n))+ 2�′(n)+ δ(n), where δ(n) = O(log(�(n)+ �′(n)+ s1(n)+
s2(�(n)))). In particular, if s1, s2 and �′ are at most logarithmic, then s(n) = O(log n),
because (by Exercise 5.10) in this case � is at most polynomial.

177



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Guideline: View the oracle-aided computation of � as consisting of iterations such
that in the i th iteration the i th query (denoted qi ) is determined based on the initial input
(denoted x), the i − 1st oracle answer (denoted ai−1), and the contents of the work-tape
at the time that the i − 1st answer was given (denoted wi−1). Note that the mapping
(x, ai−1, wi−1) → (qi , wi ) can be computed using s1(|x |)+ δ(|x |) bits of temporary
storage, because the oracle machine effects this mapping (when x, ai−1 and wi−1 reside
on different devices). Composing each iteration with the computation of �′ (using
a variant of Lemma 5.2), we conclude that the mapping (x, ai−1, wi−1) → (ai , wi )
can be computed (without storing the intermediate qi ) in space s1(n)+ s2(�(n))+
O(log(�(n)+ s1(n)+ s2(�(n)))). Thus, we can emulate the entire computation using
space s(n), where the extra space of s1(n)+ 2�′(n) bits is used for storing the work-tape
of the oracle machine and the i − 1st and i th oracle answers.

Exercise 5.8 (non-adaptive reductions): In continuation of the discussion in §5.1.3.3,
we define non-adaptive space-bounded reductions as follows. First, for any problem �′,
we define the (“direct product”) problem �

′
such that the instances of �

′
are sequences

of instances of �′. The sequence y = (y1, . . . , yt ) is a valid solution (with respect to
the problem �

′
) to the instance x = (x1, . . . , xt ) if and only if for every i ∈ [t] it holds

that yi is a valid solution to xi (with respect to the problem �′). Now, a non-adaptive
reduction of � to �′ is defined as a single-query reduction of � to �

′
.

1. Note that this definition allows the oracle machine to freely scan the sequence of
answers (i.e., it can move freely between the blocks that correspond to different
answers). Still, prove that this does not add much power to the machine (in com-
parison to a machine that reads the oracle-answer device in a “semi-unidirectional”
manner (i.e., it never reads bits of some answer after reading any bit of any later
answer)). That is, prove that a general non-adaptive reduction of space complexity
s can be emulated by a non-adaptive reduction of space complexity O(s) that when
obtaining the oracle answer (y1, . . . , yt ) may read bits of yi only before reading any
bit of yi+1, . . . , yt .

Guideline: Replace the query sequence x = (x1, . . . , xt ) by the query sequence (x, x, . . . , x)
where the number of repetitions is 2O(s).

2. Prove that if � is reducible to �′ via a non-adaptive reduction of space complexity
s1 that makes queries of length at most � and �′ is solvable in space s2, then � is
solvable in space s such that s(n) = O(s1(n)+ s2(�(n))). As a warm-up, consider
first the case of a general single-query reduction (of � to �′).

Guideline: The composed computation, on input x , can be written as E(x, A(G(x))), where
G represents the query generation phase, A represents the application of the �′-solver to
each string in the sequence of queries, and E represents the evaluation phase. Analyze the
space complexity of this computation by using (variants of) Lemma 5.2.

Exercise 5.9: Referring to the discussion in §5.1.3.3, prove that, for any s, any prob-
lem having space complexity s can be solved by a constant-space (2s, 2s)-restricted
reduction to a problem that is solvable in constant space.

Guideline: The reduction is to the “next configuration function” associated with the
said algorithm (of space complexity s), where here the configuration contains also
the single bit of the input that the machine currently examines (i.e., the value of the
bit at the machine’s location on the input device). To facilitate the computation of

178



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

this function, choose a suitable representation of such configurations. Note that the
bulk of the operation of the oracle machine consists of iteratively copying (with minor
modification) the contents of the oracle-answer tape to the oracle-query tape.

Exercise 5.10: In continuation of §5.1.3.3, we say that a reduction is (·, �′)-restricted
if there exists some function � such that the reduction is (�, �′)-restricted; that is,
in this definition only the length of the oracle answers is restricted. Prove that any
reduction of space complexity s that is (·, �′)-restricted is (�, �′)-restricted for �(n) =
2O(s(n)+�′(n)+log n). Actually, prove that this reduction has time complexity �.

Guideline: Consider an adequate notion of instantaneous configuration; specifically,
such a configuration consists of the contents of both the work-tape and the oracle-
answer tape as well as the machine’s location on these tapes (and on the input tape).

Exercise 5.11 (transitivity of log-space reductions): Prove that log-space Karp-
reductions are transitive. Define log-space Levin-reductions and prove that they are
transitive.

Guideline: Use Lemma 5.2, noting that such reductions are merely log-space com-
putable functions.

Exercise 5.12 (log-space uniform NC1 is in L): Suppose that a problem � is solvable
by a family of log-space uniform circuits of bounded fan-in and depth d such that
d(n) ≥ log n. Prove that � is solvable by an algorithm having space complexity O(d).

Guideline: Combine the algorithm outlined in Section 5.1.4 with the definition of
log-space uniformity (using Lemma 5.2).

Exercise 5.13 (UCONN in constant degree graphs of logarithmic diameter): Present
a log-space algorithm for deciding the following promise problem, which is parame-
terized by constants c and d. The input graph satisfies the promise if each vertex has
degree at most d and every pair of vertices that reside in the same connected compo-
nent is connected by a path of length at most c log2 n, where n denotes the number of
vertices in the input graph. The task is to decide whether the input graph is connected.

Guideline: For every pair of vertices in the graph, we check whether these vertices
are connected in the graph. (Alternatively, we may just check whether each vertex is
connected to the first vertex.) Relying on the promise, it suffices to inspect all paths of
length at most �

def= c log2 n, and these paths can be enumerated using � · &log2 d' bits
of storage.

Exercise 5.14 (warm-up toward §5.2.4.2): In continuation of §5.2.4.1, present a log-
space transformation of Gi to Gi+1.

Guideline: Given the graph Gi as input, we may construct Gi+1 by first constructing
G ′ = Gc

i and then constructing G ′©z G. To construct G ′, we scan all vertices of Gi

(holding the current vertex in temporary storage), and, for each such vertex, construct
its “distance c neighborhood” in G ′ (by using O(c) space for enumerating all possible
“distance c neighbors”). Similarly, we can construct the vertex neighborhoods in
G ′©z G (by storing the current vertex name and using a constant amount of space for
indicating incident edges in G).

179



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

Exercise 5.15 (st-UCONN): In continuation of Section 5.2.4, prove that the following
computational problem is in L: Given an undirected graph G = (V, E) and two desig-
nated vertices, s and t , determine whether there is a path from s to t in G.

Guideline: Note that the transformation described in Section 5.2.4 can be easily
extended such that it maps vertices in G0 to vertices in G O(log |V |) while preserving
the connectivity relation (i.e., u and v are connected in G0 if and only if their images
under the map are connected in G O(log |V |)).

Exercise 5.16 (bipartiteness): Prove that the problem of determining whether or not the
input graph is bipartite (i.e., 2-colorable) is computationally equivalent under log-space
reductions to st-UCONN (as defined in Exercise 5.15).

Guideline: Both reductions use the mapping of a graph G = (V, E) to a bipartite graph
G ′ = (V ′, E ′) such that V ′ = {v(1), v(2) : v∈V } and E ′ = {{u(1), v(2)}, {u(2), v(1)} :
{u, v}∈E}. When reducing to st-UCONN note that a vertex v resides on an odd
cycle in G if and only if v(1) and v(2) are connected in G ′. When reducing from st-

UCONN note that s and t are connected in G by a path of even (resp., odd) length if and
only if the graph G ′ ceases to be bipartite when augmented with the edge {s(1), t (1)}
(resp., with the edges {s(1), x} and {x, t (2)}, where x �∈ V ′ is an auxiliary vertex).

Exercise 5.17 (finding paths in undirected graphs): In continuation of Exercise 5.15,
present a log-space algorithm that given an undirected graph G = (V, E) and two
designated vertices, s and t , finds a path from s to t in G (in case such a path exists).

Guideline: In continuation of Exercise 5.15, we may find and (implicitly) store a
logarithmically long path in G O(log |V |) that connects a representative of s and a repre-
sentative of t . Focusing on the task of finding a path in G0 that corresponds to an edge
in G O(log |V |), we note that such a path can be found by using the reduction underlying
the combination of Claim 5.9 and Lemma 5.10. (An alternative description appears
in [190].)

Exercise 5.18 (relating the two models of NSPACE): Referring to the definitions in
Section 5.3.1, prove that for every function s such that log s is space-constructible and
at least logarithmic, it holds that NSPACEon-line(s) = NSPACEoff-line(�(log s)). Note that
NSPACEon-line(s) ⊆ NSPACEoff-line(O(log s)) holds also for s that is at least logarithmic.

Guideline (for NSPACEon-line(s) ⊆ NSPACEoff-line(O(log s))): Use the non-deter-
ministic input of the off-line machine for encoding an accepting computation of the
on-line machine; that is, this input should contain a sequence of consecutive configu-
rations leading from the initial configuration to an accepting configuration, where each
configuration contains the contents of the work-tape as well as the machine’s state and
its locations on the work tape and on the input-tape. The emulating off-line machine
(which verifies the correctness of the sequence of configurations recorded on its non-
deterministic input tape) needs only store its location within the current pair of consec-
utive configurations that it examines, which requires space logarithmic in the length of
a single configuration (which in turn equals s(n)+ log2 s(n)+ log2 n + O(1)). (Note
that this verification relies on a two-directional access to the non-deterministic input.)

Guideline (for NSPACEoff-line(s ′) ⊆ NSPACEon-line(exp(s ′))): Here we refer to the
notion of a crossing sequence. Specifically, for each location on the off-line
non-deterministic input, consider the sequence of the residual configurations of the
machine, where such a residual configuration consists of the bit residing in this

180



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

non-deterministic tape location, the contents of the machine’s temporary storage, and
the machine’s locations on the input and storage tapes (but not its location on the non-
deterministic tape). Show that the length of such a crossing sequence is exponential in
the space complexity of the off-line machine, and that the time complexity of the off-
line machine is at most double-exponential in its space complexity (see Exercise 5.4).
The on-line machine merely generates a sequence of crossing sequences (“on the fly”)
and checks that each consecutive pair of crossing sequences is consistent. This requires
holding two crossing sequences in storage, which require space linear in the length of
such sequences (which, in turn, is exponential in the space complexity of the off-line
machine).

Exercise 5.19 (st-CONN and variants of it are in NL): Prove that the following compu-
tational problem is inNL. The instances have the form (G, v, w, �), where G = (V, E)
is a directed graph, v, w ∈ V , and � is an integer, and the question is whether G contains
a path of length at most � from v to w.

Guideline: Consider a non-deterministic machine that generates and verifiers an ade-
quate path on the fly. That is, starting at v0 = v, the machine proceeds in iterations, such
that in the i th iteration it non-deterministically generates vi , verifies that (vi−1, vi ) ∈ E ,
and checks whether i ≤ � and vi = w. Note that this machine need only store the last
two vertices on the path (i.e., vi−1 and vi ) as well as the number of edges traversed so
far (i.e., i). (Actually, using a careful implementation, it suffices to store only one of
these two vertices (as well as the current i).)

Exercise 5.20 (finding directed paths in directed graphs): Present a log-space oracle
machine that finds (shortest) directed paths in directed graphs by using an oracle to
NL. Conclude that NL = L if and only if such paths can be found by a (standard)
log-space algorithm.

Guideline: Use a reduction to the decision problem presented in Exercise 5.19, and
derive a standard algorithm by using the composition result of Exercise 5.7.

Exercise 5.21 (NSPACE and directed connectivity): Our aim is to establish a relation
between general non-deterministic space-bounded computation and directed connec-
tivity in “strongly constructible” graphs that have size exponential in the space bound.
Let s be space-constructible and at least logarithmic. For every S ∈ NSPACE(s), present
a linear-time oracle machine (somewhat as in §5.2.4.2) that given oracle access to x
provides oracle access to a directed graph Gx of size exp(s(|x |)) such that x ∈ S if and
only if there is a directed path between the first and last vertices of Gx . That is, on input
a pair (u, v) and oracle access to x , the oracle machine decides whether or not (u, v) is
a directed edge in Gx .

Guideline: Follow the proof of Theorem 5.11.

Exercise 5.22 (an alternative presentation of the proof of Theorem 5.12): We refer to
directed graphs in which each vertex has a self-loop.

1. Viewing the adjacency matrices of directed graphs as oracles (cf. Exercise 5.21),
present a linear-space oracle machine that determines whether a given pair of vertices
is connected by a directed path of length two in the input graph. Note that this oracle
machine computes the adjacency relation of the square of the graph represented in
the oracle.

181



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

SPACE COMPLEXITY

2. Using naive composition (as in Lemma 5.1), present a quadratic-space oracle ma-
chine that determines whether a given pair of vertices is connected by a directed
path in the graph represented in the oracle.

Note that the machine in item 2 implies that st-CONN can be decided in log-square
space. In particular, justify the self-loop assumption made up front.

Exercise 5.23 (deciding strong connectivity): A directed graph is called strongly con-
nected if there exists a directed path between every ordered pair of vertices in the graph
(or, equivalently, a directed cycle passing through every two vertices). Prove that the
problem of deciding whether a directed graph is strongly connected is NL-complete
under (many-to-one) log-space reductions.

Guideline (for NL-hardness): Reduce from st-CONN. Note that, for any graph
G= (V, E), it holds that (G, s, t) is a yes-instance of st-CONN if and only if the graph
G ′ = (V, E ∪ {(v, s) : v∈V } ∪ {(t, v) : v∈V }) is strongly connected.

Exercise 5.24 (determining distances in undirected graphs): Prove that the following
computational problem is NL-complete under (many-to-one) log-space reductions:
Given an undirected graph G = (V, E), two designated vertices, s and t , and an integer
K , determine whether there is a path of length at most (resp., exactly) K from s to t in
G.

Guideline (for NL-hardness): Reduce from st-CONN. Specifically, given a di-
rected graph G = (V, E) and vertices s, t , consider a (“layered”) graph G ′ = (V ′, E ′)
such that V ′ = ∪|V |−1

i=0 {〈i, v〉 : v∈V } and E ′ = ∪|V |−2
i=0 {{〈i, u〉, 〈i + 1, v〉} : (u, v)∈

E ∨ u = v}. Note that there exists a directed path from s to t in G if and only
if there exists a path of length at most (resp., exactly) |V | − 1 between 〈0, s〉 and
〈|V | − 1, t〉 in G ′.

Guideline (for the exact version being in NL): Use NL = coNL.

Exercise 5.25 (an operational interpretation ofNL ∩ coNL,NP ∩ coNP , etc.): Re-
ferring to Definition 5.13, prove that S ∈ NL ∩ coNL if and only if there exists a
non-deterministic log-space machine that computes χS , where χS(x) = 1 if x ∈ S and
χS(x) = 0 otherwise. State and prove an analogous result for NP ∩ coNP .

Guideline: A non-deterministic machine computing any function f yields, for each
value v, a non-deterministic machine of similar complexity that accept {x : f (x) = v}.
(Extra hint: Invoke the machine M that computes f and accept if and only if M outputs v.)

On the other hand, for any function f of finite range, combining non-deterministic
machines that accept the various sets Sv

def= {x : f (x) = v}, we obtain a non-
deterministic machine of similar complexity that computes f .

(Extra hint: On input x , the combined machine invokes each of the aforementioned machines on

input x and outputs the value v if and only if the machine accepting Sv has accepted. In the case that

none of the machines accepts, the combined machine outputs ⊥.)

Exercise 5.26 (a graph algorithmic interpretation of NL = coNL): Show that there
exists a log-space computable function f such that for every (G, s, t) it holds that
(G, s, t) is a yes-instance of st-CONN if and only if (G ′, s ′, t ′) = f (G, s, t) is a no-
instance of st-CONN.

182



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 5.27: Referring to Definition 5.13, prove that there exists a non-deterministic
log-space machine that computes the distance between two given vertices in a given
undirected graph.

Guideline: Relate this computational problem to the (exact version of the) decision
problem considered in Exercise 5.24.

Exercise 5.28: As an alternative to the two-query reduction presented in the proof of
Theorem 5.14, show that (computing the characteristic function of) st-CONN is log-
space reducible via a single query to the problem of determining the number of vertices
that are reachable from a given vertex in a given graph.

(Hint: On input (G, s, t), where G = ([N ], E), consider the number of vertices reach-
able from s in the graph G ′ = ([2N ], E ∪ {(t, N + i) : i = 1, . . . , N }).)

Exercise 5.29 (reductions and non-deterministic computations): Suppose that com-
puting f is log-space reducible to computing some function g and that it is either the case
that the reduction is non-adaptive or that for every x it holds that |g(x)| = O(log |x |).
Referring to non-deterministic computations as in Definition 5.13, prove that if there
exists a non-deterministic log-space machine that computes g then there exists a non-
deterministic log-space machine that computes f .

Guideline: The point is adapting a composition result that refers to deterministic
algorithms (for computing g) into one that applies to non-deterministic computations.
Specifically, in the first case we adapt the result of Exercise 5.8, whereas in the second
case we adapt the result Exercise 5.7. The idea is running the same procedure as in the
deterministic case, and handling the possible failure of the non-deterministic machine
that computes g in the natural manner; that is, if any such computation returns the value
⊥ then we just halt outputting ⊥, and otherwise we proceed as in the deterministic
case (using the non-⊥ values obtained).

Exercise 5.30 (the QBF game): Consider the following two-party game that is initiated
with a quantified Boolean formula. The game features an existential player (which tries
to prove that the formula is valid) versus a universal player (which tries to invalidate
it). The game consists of the parties scanning the formula from left to right such that
when a quantifier is encountered, the corresponding party takes a move that consists
of instantiating the corresponding Boolean variable. At the final position, when all
variables were instantiated, the existential party is declared the winner if and only if
the corresponding Boolean expression evaluates to true.

1. Show that, modulo some technical conventions, the foregoing QBF game fits the
framework of efficient two-party games (described at the beginning of Section 5.4).

2. Prove that any efficient two-party game can be cast as a QBF game.

Guideline: For part 1 define the universal player as winning in any non-final position
(i.e., a position in which not all variables are instantiated). For part 2, see footnote 6 in
Chapter 3.

183



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER SIX

Randomness and Counting

I owe this almost atrocious variety to an institution which other republics
do not know or which operates in them in an imperfect and secret manner:
the lottery.

Jorge Luis Borges, “The Lottery in Babylon”

So far, our approach to computing devices was somewhat conservative: We thought
of them as executing a deterministic rule. A more liberal and quite realistic approach,
which is pursued in this chapter, considers computing devices that use a probabilistic
rule. This relaxation has an immediate impact on the notion of efficient computation,
which is consequently associated with probabilistic polynomial-time computations rather
than with deterministic (polynomial-time) ones. We stress that the association of efficient
computation with probabilistic polynomial-time computation makes sense provided that
the failure probability of the latter is negligible (which means that it may be safely
ignored).

The quantitative nature of the failure probability of probabilistic algorithms provides
one connection between probabilistic algorithms and counting problems. The latter are
indeed a new type of computational problems, and our focus is on counting efficiently
recognizable objects (e.g., NP-witnesses for a given instance of set in NP). Randomized
procedures turn out to play an important role in the study of such counting problems.

Summary: Focusing on probabilistic polynomial-time algorithms, we
consider various types of probabilistic failure of such algorithms (e.g.,
actual error versus failure to produce output). This leads to the formu-
lation of complexity classes such as BPP , RP , and ZPP . The results
presented include the existence of (non-uniform) families of polynomial-
size circuits that emulate probabilistic polynomial-time algorithms (i.e.,
BPP ⊂ P/poly) and the fact that BPP resides in the (second level of
the) Polynomial-time Hierarchy (i.e., BPP ⊆ �2).

We then turn to counting problems: specifically, counting the number of
solutions for an instance of a search problem in PC (or, equivalently,
counting the number of NP-witnesses for an instance of a decision prob-
lem in NP). We distinguish between exact counting and approximate
counting (in the sense of relative approximation). In particular, while any
problem in PH is reducible to the exact counting class #P , approximate
counting (for #P) is (probabilistically) reducible to NP .

184



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

In general, counting problems exhibit a “richer structure” than the cor-
responding search (and decision) problems, even when considering only
natural problems. For example, some counting problems are hard in the
exact version (e.g., are #P-complete) but easy to approximate, while
others are NP-hard to approximate. In some cases #P-completeness is
due to the very same reduction that establishes the NP-completeness of
the corresponding decision problem, whereas in other cases new reduc-
tions are required (often because the corresponding decision problem is
not NP-complete but is rather in P).

We also consider two other types of computational problems that are
related to approximate counting. The first type refers to promise prob-
lems, called unique solution problems, in which the solver is guaran-
teed that the instance has at most one solution. Many NP-complete
problems are randomly reducible to the corresponding unique solution
problems. Lastly, we consider the problem of generating almost uni-
formly distributed solutions, and show that in many cases this problem
is computationally equivalent to approximately counting the number of
solutions.

Prerequisites. We assume basic familiarity with elementary probability theory (see
Appendix D.1). In Section 6.2 we will rely extensively on formulations presented in
Section 2.1 (i.e., the “NP search problem” class PC as well as the sets R(x)

def= {y :
(x, y)∈ R}, and SR

def= {x : R(x) �= ∅} defined for every R ∈ PC). In Sections 6.2.2–6.2.4
we shall extensively use various hashing functions and their properties, as presented in
Appendix D.2.

6.1. Probabilistic Polynomial Time

Considering algorithms that utilize random choices, we extend our notion of efficient
algorithms from deterministic polynomial-time algorithms to probabilistic polynomial-
time algorithms. Two conflicting questions that arise are whether it is reasonable to allow
randomized computational steps and whether adding such steps buys us anything.

We first note that random events are an important part of our modeling of the world.
We stress that this does not necessarily mean that we assert that the world per se includes
genuine random choices, but rather that it is beneficial to model the world as including
random choices (i.e., some phenomena appear to us as if they are random in some sense).
Furthermore, it seems feasible to generate random-looking events (e.g., the outcome of
a toss coin).1 Thus, postulating that seemingly random choices can be generated by a
computer is quite natural (and is in fact common practice). At the very least, this postulate
yields an intuitive model of computation and the study of such a model is of natural
concern.

This leads to the question of whether augmenting the computational model with the
ability to make random choices buys us anything. Although randomization is known to

1Different perspectives on the question of the feasibility of randomized computation are offered in Chapter 8
and Appendix D.4. The pivot of Chapter 8 is the distinction between being actually random and looking random (to
computationally restricted observers). In contrast, Appendix D.4 refers to various notions of randomness and to the
feasibility of transforming weak forms of randomness into almost perfect forms.

185



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

be essential in several computational settings (e.g., cryptography (cf. Appendix C) and
sampling (cf. Appendix D.3)), the question is whether randomization is useful in the
context of solving decision (and search) problems. This is indeed a very good question,
which is further discussed in §6.1.2.1. In fact, one of the main goals of the current section
is putting this question forward. To demonstrate the potential benefit of randomized
algorithms, we provide a few examples (cf. §6.1.2.2, §6.1.3.1, and §6.1.5.2).

6.1.1. Basic Modeling Issues

Rigorous models of probabilistic (or randomized) algorithms are defined by natural ex-
tensions of the basic machine model. We will exemplify this approach by describing the
model of probabilistic Turing machines, but we stress that (again) the specific choice of
the model is immaterial (as long as it is “reasonable”). A probabilistic Turing machine
is defined exactly as a non-deterministic machine (see the first item of Definition 2.7),
but the definition of its computation is fundamentally different. Specifically, whereas
Definition 2.7 refers to the question of whether or not there exists a computation of the
machine that (started on a specific input) reaches a certain configuration, in the case of
probabilistic Turing machines we refer to the probability that this event occurs, when at
each step a choice is selected uniformly among the relevant possible choices available at
this step. That is, if the transition function of the machine maps the current state-symbol
pair to several possible triples, then in the corresponding probabilistic computation one
of these triples is selected at random (with equal probability) and the next configuration
is determined accordingly. These random choices may be viewed as the internal coin
tosses of the machine. (Indeed, as in the case of non-deterministic machines, we may
assume without loss of generality that the transition function of the machine maps each
state-symbol pair to exactly two possible triples; see Exercise 2.4.)

We stress the fundamental difference between the fictitious model of a non-deterministic
machine and the realistic model of a probabilistic machine. In the case of a non-
deterministic machine we consider the existence of an adequate sequence of choices
(leading to a desired outcome), and ignore the question of how these choices are actually
made. In fact, the selection of such a sequence of choices is merely a mental experiment.
In contrast, in the case of a probabilistic machine, at each step a real random choice is
actually made (uniformly among a set of predetermined possibilities), and we consider
the probability of reaching a desired outcome.

In view of the foregoing, we consider the output distribution of such a probabilistic
machine on fixed inputs; that is, for a probabilistic machine M and string x ∈ {0, 1}∗,
we denote by M(x) the output distribution of M when invoked on input x , where the
probability is taken uniformly over the machine’s internal coin tosses. Needless to say, we
will consider the probability that M(x) is a “correct” answer; that is, in the case of a search
problem (resp., decision problem) we will be interested in the probability that M(x) is a
valid solution for the instance x (resp., represents the correct decision regarding x).

The foregoing description views the internal coin tosses of the machine as taking place
on the fly; that is, these coin tosses are performed on-line by the machine itself. An
alternative model is one in which the sequence of coin tosses is provided by an external
device, on a special “random input” tape. In such a case, we view these coin tosses as
performed off-line. Specifically, we denote by M ′(x, r ) the (uniquely defined) output of
the residual deterministic machine M ′, when given the (primary) input x and random
input r . Indeed, M ′ is a deterministic machine that takes two inputs (the first representing

186



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

the actual input and the second representing the “random input”), but we consider the
random variable M(x)

def= M ′(x, U�(|x |)), where �(|x |) denotes the number of coin tosses
“expected” by M ′(x, ·).

These two perspectives on probabilistic algorithms are closely related: Clearly, the
aforementioned residual deterministic machine M ′ yields a randomized machine M that
on input x selects at random a string r of adequate length, and invokes M ′(x, r ). On the
other hand, the computation of any randomized machine M is captured by the residual
machine M ′ that emulates the actions of M(x) based on an auxiliary input r (obtained
by M ′ and representing a possible outcome of the internal coin tosses of M). (Indeed,
there is no harm in supplying more coin tosses than are actually used by M , and so the
length of the aforementioned auxiliary input may be set to equal the time complexity of
M .) For sake of clarity and future reference, we summarize the foregoing discussion in
the following definition.

Definition 6.1 (on-line and off-line formulations of probabilistic polynomial time):

• We say that M is an on-line probabilistic polynomial-time machine if there exists
a polynomial p such that when invoked on any input x ∈ {0, 1}∗, machine M
always halts within at most p(|x |) steps (regardless of the outcome of its internal
coin tosses). In such a case M(x) is a random variable.

• We say that M ′ is an off-line probabilistic polynomial-time machine if there exists
a polynomial p such that, for every x ∈ {0, 1}∗ and r ∈ {0, 1}p(|x |), when invoked
on the primary input x and the random-input sequence r , machine M ′ halts
within at most p(|x |) steps. In such a case, we will consider the random variable
M ′(x, Up(|x |)), where Um denotes a random variable uniformly distributed over
{0, 1}m.

Clearly, in the context of time complexity, the on-line and off-line formulations are
equivalent (i.e., given an on-line probabilistic polynomial-time machine we can derive a
functionally equivalent off-line (probabilistic polynomial-time) machine, and vice versa).
Thus, in the sequel, we will freely use whichever is more convenient.

We stress that the output of a randomized algorithm is no longer a function of its input,
but is rather a random variable that depends on the input. Thus, the formulations of solving
search and decision problems (see Definitions 1.1 and 1.2, respectively) will be extended
to account for the new situation. One major aspect of this extension is that the output may
assume values that are not necessarily correct. Needless to say, we would like the output
to be correct with very high probability (but not necessarily with probability 1).

Failure probability. Indeed, a major aspect of randomized algorithms (probabilistic ma-
chines) is that they may fail (see Exercise 6.1). That is, with some specified (“failure”)
probability, these algorithms may fail to produce the desired output. We discuss two
aspects of this failure: its type and its magnitude.

1. The type of failure is a qualitative notion. One aspect of this type is whether, in case of
failure, the algorithm produces a wrong answer or merely an indication that it failed
to find a correct answer. Another aspect is whether failure may occur on all instances
or merely on certain types of instances. Let us clarify these aspects by considering
three natural types of failure, giving rise to three different types of algorithms.

187



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

(a) The most liberal notion of failure is the one of two-sided error. This term originates
from the setting of decision problems, where it means that (in case of failure)
the algorithm may err in both directions (i.e., it may rule that a yes-instance is
a no-instance, and vice versa). In the case of search problems two-sided error
means that, when failing, the algorithm may output a wrong answer on any input.
That is, the algorithm may falsely rule that the input has no solution and it may
also output a wrong solution (both in case the input has a solution and in case it
has no solution).

(b) An intermediate notion of failure is the one of one-sided error. Again, the term
originates from the setting of decision problems, where it means that the algorithm
may err only in one direction (i.e., either on yes-instances or on no-instances).
Indeed, there are two natural cases depending on whether the algorithm errs on
yes-instances but not on no-instances, or the other way around. Analogous cases
occur also in the setting of search problems. In one case the algorithm never
outputs a wrong solution but may falsely rule that the input has no solution. In
the other case the indication that an input has no solution is never wrong, but the
algorithm may output a wrong solution.

(c) The most conservative notion of failure is the one of zero-sided error. In this
case, the algorithm’s failure amounts to indicating its failure to find an answer
(by outputting a special don’t know symbol). We stress that in this case the
algorithm never provides a wrong answer.

Indeed, the foregoing discussion ignores the probability of failure, which is the subject
of the next item.

2. The magnitude of failure is a quantitative notion. It refers to the probability that the
algorithm fails, where the type of failure is fixed (e.g., as in the foregoing discussion).

When actually using a randomized algorithm we typically wish its failure probability
to be negligible, which intuitively means that the failure event is so rare that it can be
ignored in practice. Formally, we say that a quantity is negligible if, as a function of
the relevant parameter (e.g., the input length), this quantity vanishes faster than the
reciprocal of any positive polynomial.

For ease of presentation, we sometimes consider alternative upper bounds on the
probability of failure. These bounds are selected in a way that allows (and in fact fa-
cilitates) “error reduction” (i.e., converting a probabilistic polynomial-time algorithm
that satisfies such an upper bound into one in which the failure probability is negli-
gible). For example, in the case of two-sided error we need to be able to distinguish
the correct answer from wrong answers by sampling, and in the other types of failure
“hitting” a correct answer suffices.

In the following three sections (i.e., Sections 6.1.2–6.1.4), we will discuss complexity
classes corresponding to the aforementioned three types of failure. For the sake of sim-
plicity, the failure probability itself will be set to a constant that allows error reduction.

Randomized reductions. Before turning to the more detailed discussion, we mention
that randomized reductions play an important role in Complexity Theory. Such reductions
can be defined analogously to the standard Cook-reductions (resp., Karp-reductions), and
again a discussion of the type and magnitude of the failure probability is in place. For
clarity, we spell out the two-sided error versions.

188



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

• In analogy to Definition 2.9, we say that a problem � is probabilistic polynomial-time
reducible to a problem �′ if there exists a probabilistic polynomial-time oracle machine
M such that, for every function f that solves �′ and for every x , with probability at
least 1− µ(|x |), the output M f (x) is a correct solution to the instance x , where µ is a
negligible function.

• In analogy to Definition 2.11, we say that a decision problem S is reducible to a
decision problem S′ via a randomized Karp-reduction if there exists a probabilistic
polynomial-time algorithm A such that, for every x , it holds that Pr[χS′(A(x)) =
χS(x)] ≥ 1− µ(|x |), where χS (resp., χS′) is the characteristic function of S (resp., S′)
and µ is a negligible function.

These reductions preserve efficient solvability and are transitive: See Exercise 6.2.

6.1.2. Two-Sided Error: The Complexity Class BPP

In this section we consider the most liberal notion of probabilistic polynomial-time
algorithms that is still meaningful. We allow the algorithm to err on each input, but
require the error probability to be negligible. The latter requirement guarantees the
usefulness of such algorithms, because in reality we may ignore the negligible error
probability.

Before focusing on the decision problem setting, let us say a few words on the search
problem setting (see §1.2.2.1). Following the previous paragraph, we say that a probabilis-
tic (polynomial-time) algorithm A solves the search problem of the relation R if for every
x ∈ SR (i.e., R(x)

def= {y : (x, y)∈ R} �= ∅) it holds that Pr[A(x)∈ R(x)] > 1− µ(|x |) and
for every x �∈ SR it holds that Pr[A(x)=⊥] > 1− µ(|x |), where µ is a negligible func-
tion. Note that we did not require that, when invoked on input x that has a solution (i.e.,
R(x) �= ∅), the algorithm always outputs the same solution. Indeed, a stronger require-
ment is that for every such x there exists y ∈ R(x) such that Pr[A(x) = y] > 1− µ(|x |).
The latter version and quantitative relaxations of it allow for error reduction (see
Exercise 6.3).

Turning to decision problems, we consider probabilistic polynomial-time algorithms
that err with negligible probability. That is, we say that a probabilistic (polynomial-time)
algorithm A decides membership in S if for every x it holds that Pr[A(x) = χS(x)] >

1− µ(|x |), where χS is the characteristic function of S (i.e., χS(x) = 1 if x ∈ S and
χS(x) = 0 otherwise) and µ is a negligible function. The class of decision problems that
are solvable by probabilistic polynomial-time algorithms is denoted BPP , standing for
Bounded-error Probabilistic Polynomial time. Actually, the standard definition refers to
machines that err with probability at most 1/3.

Definition 6.2 (the class BPP): A decision problem S is in BPP if there exists a
probabilistic polynomial-time algorithm A such that for every x ∈ S it holds that
Pr[A(x) = 1] ≥ 2/3 and for every x �∈ S it holds that Pr[A(x) = 0] ≥ 2/3.

The choice of the constant 2/3 is immaterial, and any other constant greater than 1/2
will do (and yields the very same class). Similarly, the complementary constant 1/3 can
be replaced by various negligible functions (while preserving the class). Both facts are
special cases of the robustness of the class, discussed next, which is established using the
process of error reduction.

189



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Error reduction (or confidence amplification). For ε : N→ (0, 0.5), let BPPε denote
the class of decision problems that can be solved in probabilistic polynomial time with
error probability upper-bounded by ε; that is, S ∈ BPPε if there exists a probabilistic
polynomial-time algorithm A such that for every x it holds that Pr[A(x) �= χS(x)] ≤
ε(|x |). By definition, BPP = BPP1/3. However, a wide range of other classes also equal
BPP . In particular, we mention two extreme cases:

1. For every positive polynomial p and ε(n) = (1/2)− (1/p(n)), the class BPPε equals
BPP . That is, any error that is (“noticeably”) bounded away from 1/2 (i.e., error
(1/2)− (1/poly(n))) can be reduced to an error of 1/3.

2. For every positive polynomial p and ε(n) = 2−p(n), the class BPPε equals BPP .
That is, an error of 1/3 can be further reduced to an exponentially vanishing error.

Both facts are proved by invoking the weaker algorithm (i.e., the one having a larger error
probability bound) for an adequate number of times, and ruling by majority. We stress
that invoking a randomized machine several times means that the random choices made
in the various invocations are independent of one another. The success probability of such
a process is analyzed by applying an adequate Law of Large Numbers (see Exercise 6.4).

6.1.2.1. On the Power of Randomization
Let us turn back to the natural question raised at the beginning of Section 6.1; that is,
was anything gained by extending the definition of efficient computation to include also
probabilistic polynomial-time ones.

This phrasing seems too generic. We certainly gained the ability to toss coins (and
generate various distributions). More concretely, randomized algorithms are essential in
many settings (see, e.g., Chapter 9, Section 10.1.2, Appendix C, and Appendix D.3) and
seem essential in others (see, e.g., Sections 6.2.2–6.2.4). What we mean to ask here is
whether allowing randomization increases the power of polynomial-time algorithms also
in the restricted context of solving decision and search problems.

The question is whether BPP extends beyond P (where clearly P ⊆ BPP). It is
commonly conjectured that the answer is negative. Specifically, under some reasonable
assumptions, it holds that BPP = P (see Part 1 of Theorem 8.19). We note, however,
that a polynomial slow down occurs in the proof of the latter result; that is, randomized
algorithms that run in time t(·) are emulated by deterministic algorithms that run in time
poly(t(·)). This slow down seems inherent to the aforementioned approach (see §8.3.3.2).
Furthermore, for some concrete problems (most notably primality testing (cf. §6.1.2.2)),
the known probabilistic polynomial-time algorithm is significantly faster (and conceptu-
ally simpler) than the known deterministic polynomial-time algorithm. Thus, we believe
that even in the context of decision problems, the notion of probabilistic polynomial-time
algorithms is advantageous.

We note that the fundamental nature of BPP will remain intact even in the (rather
unlikely) case that it turns out that randomization offers no computational advantage
(i.e., even if every problem that can be decided in probabilistic polynomial time can be
decided by a deterministic algorithm of essentially the same complexity). Such a result
would address a fundamental question regarding the power of randomness.2 We now turn

2By analogy, establishing that IP = PSPACE (cf. Theorem 9.4) does not diminish the importance of any of
these classes, because each class models something fundamentally different.

190



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

from the foregoing philosophical (and partially hypothetical) discussion to a concrete
discussion of what is known about BPP .

BPP is in the Polynomial-time Hierarchy. While it may be that BPP = P , it is not
known whether or not BPP is contained in NP . The source of trouble is the two-
sided error probability of BPP , which is incompatible with the absolute rejection of no-
instances required in the definition of NP (see Exercise 6.8). In view of this ignorance,
it is interesting to note that BPP resides in the second level of the Polynomial-time
Hierarchy (i.e., BPP ⊆ �2). This is a corollary of Theorem 6.9.

Trivial derandomization. A straightforward way of eliminating randomness from an
algorithm is trying all possible outcomes of its internal coin tosses, collecting the relevant
statistics, and deciding accordingly. This yields BPP ⊆ PSPACE ⊆ EXP , which is
considered the trivial derandomization of BPP . In Section 8.3 we will consider vari-
ous non-trivial derandomizations of BPP , which are known under various intractability
assumptions. The interested reader, who may be puzzled by the connection between
derandomization and computational difficulty, is referred to Chapter 8.

Non-uniform derandomization. In many settings (and specifically in the context of
solving search and decision problems), the power of randomization is superseded by the
power of non-uniform advice. Intuitively, the non-uniform advice may specify a sequence
of coin tosses that is good for all (primary) inputs of a specific length. In the context of
solving search and decision problems, such an advice must be good for each of these
inputs,3 and thus its existence is guaranteed only if the error probability is low enough (so
as to support a union bound). The latter condition can be guaranteed by error reduction,
and thus we get the following result.

Theorem 6.3: BPP is (strictly) contained in P/poly.

Proof: Recall that P/poly contains undecidable problems (Theorem 3.7), which
are certainly not in BPP . Thus, we focus on showing that BPP ⊆ P/poly. By
the discussion regarding error reduction, for every S ∈ BPP there exists a (de-
terministic) polynomial-time algorithm A and a polynomial p such that for ev-
ery x it holds that Pr[A(x, Up(|x |)) �= χS(x)] < 2−|x |. Using a union bound, it fol-
lows that Prr∈{0,1}p(n) [∃x ∈{0, 1}n s.t. A(x, r ) �= χS(x)] < 1. Thus, for every n ∈ N,
there exists a string rn ∈ {0, 1}p(n) such that for every x ∈ {0, 1}n it holds that
A(x, rn) = χS(x). Using such a sequence of rn’s as advice, we obtain the desired
non-uniform machine (establishing S ∈ P/poly).

Digest. The proof of Theorem 6.3 combines error reduction with a simple application
of the Probabilistic Method (cf. [11]), where the latter refers to proving the existence
of an object by analyzing the probability that a random object is adequate. In this case,
we sought a non-uniform advice, and proved it existence by analyzing the probability
that a random advice is good. The latter event was analyzed by identifying the space of
possible advice with the set of possible sequences of internal coin tosses of a randomized
algorithm.

3In other contexts (see, e.g., Chapters 7 and 8), it suffices to have an advice that is good on the average, where the
average is taken over all relevant (primary) inputs.

191



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

6.1.2.2. A Probabilistic Polynomial-Time Primality Test

Teaching note: Although primality has been recently shown to be in P , we believe that the
following example provides a nice illustration to the power of randomized algorithms.

We present a simple probabilistic polynomial-time algorithm for deciding whether or not
a given number is a prime. The only number-theoretic facts that we use are

Fact 1: For every prime p > 2, each quadratic residue mod p has exactly two square
roots mod p (and they sum up to p).4

Fact 2: For every (odd and non-integer-power) composite number N , each quadratic
residue mod N has at least four square roots mod N .

Our algorithm uses as a black-box an algorithm, denoted sqrt, that given a prime p
and a quadratic residue mod p, denoted s, returns the smallest among the two modular
square roots of s. There is no guarantee as to what the output is in the case that the input
is not of the aforementioned form (and in particular in the case that p is not a prime).
Thus, we actually present a probabilistic polynomial-time reduction of testing primality
to extracting square roots modulo a prime (which is a search problem with a promise; see
Section 2.4.1).

Construction 6.4 (the reduction): On input a natural number N > 2 do

1. If N is either even or an integer power5 then reject.
2. Uniformly select r ∈ {1, . . . , N − 1}, and set s ← r2 mod N.
3. Let r ′ ← sqrt(s, N ). If r ′ ≡ ±r (mod N ) then accept else reject.

Indeed, in the case that N is composite, the reduction invokes sqrt on an illegitimate
input (i.e., it makes a query that violates the promise of the problem at the target of the
reduction). In such a case, there is no guarantee as to what sqrt answers, but actually
a bluntly wrong answer only plays in our favor. In general, we will show that if N is
composite, then the reduction rejects with probability at least 1/2, regardless of how
sqrt answers. We mention that there exists a probabilistic polynomial-time algorithm for
implementing sqrt (see Exercise 6.16).

Proposition 6.5: Construction 6.4 constitutes a probabilistic polynomial-time re-
duction of testing primality to extracting square roots module a prime. Furthermore,
if the input is a prime then the reduction always accepts, and otherwise it rejects
with probability at least 1/2.

We stress that Proposition 6.5 refers to the reduction itself; that is, sqrt is viewed as
a (“perfect”) oracle that, for every prime P and quadratic residue s (mod P), returns
r < s/2 such that r2 ≡ s (mod P). Combining Proposition 6.5 with a probabilistic

4That is, for every r ∈ {1, . . . , p − 1}, the equation x2 ≡ r2 (mod p) has two solutions modulo p (i.e., r and
p − r ).

5This can be checked by scanning all possible powers e ∈ {2, . . . , log2 N }, and (approximately) solving the
equation xe = N for each value of e (i.e., finding the smallest integer i such that i e ≥ N ). Such a solution can be
found by binary search.

192



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

polynomial-time algorithm that computes sqrt with negligible error probability, we
obtain that testing primality is in BPP .

Proof: By Fact 1, on input a prime number N , Construction 6.4 always accepts
(because in this case, for every r ∈ {1, . . . , N − 1}, it holds that sqrt(r2 mod
N , N ) ∈ {r, N − r}). On the other hand, suppose that N is an odd composite that
is not an integer power. Then, by Fact 2, each quadratic residue s has at least four
square roots, and each of these square roots is equally likely to be chosen at Step 2
(in other words, s yields no information regarding which of its modular square roots
was selected in Step 2). Thus, for every such s, the probability that either sqrt(s, N )
or N − sqrt(s, N ) equal the root chosen in Step 2 is at most 2/4. It follows that, on
input a composite number, the reduction rejects with probability at least 1/2.

Reflection. Construction 6.4 illustrates an interesting aspect of randomized algorithms (or
rather reductions), that is, their ability to take advantage of information that is unknown
to the invoked subroutine. Specifically, Construction 6.4 generates a problem instance
(N , s), which hides crucial information (regarding how s was generated). Any subroutine
that answers correctly in the case that N is prime provides probabilistic evidence that N
is a prime, where the probability space refers to the missing information (regarding how
s was generated in the case that N is composite).

Comment. Testing primality is actually in P . However, the deterministic algorithm
demonstrating this fact is more complex than Construction 6.4 (and its analysis is even
more complicated).

6.1.3. One-Sided Error: The Complexity Classes RP and coRP

In this section we consider notions of probabilistic polynomial-time algorithms having
one-sided error. The notion of one-sided error refers to a natural partition of the set of
instances, that is, yes-instances versus no-instances in the case of decision problems,
and instances having solution versus instances having no solution in the case of search
problems. We focus on decision problems, and comment that an analogous treatment can
be provided for search problems (see Exercise 6.3).

Definition 6.6 (the class RP):6 A decision problem S is in RP if there exists a
probabilistic polynomial-time algorithm A such that for every x ∈ S it holds that
Pr[A(x)=1] ≥ 1/2 and for every x �∈ S it holds that Pr[A(x)=0] = 1.

The choice of the constant 1/2 is immaterial, and any other constant greater than zero will
do (and yields the very same class). Similarly, this constant can be replaced by 1− µ(|x |)
for various negligible functions µ (while preserving the class). Both facts are special cases
of the robustness of the class (see Exercise 6.5).

Observe that RP ⊆ NP (see Exercise 6.8) and that RP ⊆ BPP (by the afore-
mentioned error reduction). Defining coRP = {{0, 1}∗ \ S : S ∈ RP}, note that coRP

6The initials RP stands for Random Polynomial time, which fails to convey the restricted type of error allowed in
this class. The only nice feature of this notation is that it is reminiscent of NP, thus reflecting the fact that RP is a
randomized polynomial-time class that is contained in NP .

193



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

corresponds to the opposite direction of one-sided error probability. That is, a decision
problem S is in coRP if there exists a probabilistic polynomial-time algorithm A such
that for every x ∈ S it holds that Pr[A(x)=1] = 1 and for every x �∈ S it holds that
Pr[A(x)=0] ≥ 1/2.

6.1.3.1. Testing Polynomial Identity
An appealing example of a one-sided error randomized algorithm refers to the problem
of determining whether two polynomials are identical. For simplicity, we assume that
we are given an oracle for the evaluation of each of the two polynomials. An alternative
presentation that refers to polynomials that are represented by arithmetic circuits (cf.
Appendix B.3) yields a standard decision problem in coRP (see Exercise 6.17). Either
way, we refer to multivariate polynomials and to the question of whether they are identical
over any field (or, equivalently, whether they are identical over a sufficiently large finite
field). Note that it suffices to consider finite fields that are larger than the degree of the
two polynomials.

Construction 6.7 (Polynomial-Identity Test): Let n be an integer and F be a finite
field. Given black-box access to p, q : Fn → F, uniformly select r1, . . . , rn ∈ F, and
accept if and only if p(r1, . . . , rn) = q(r1, . . . , rn).

Clearly, if p ≡ q then Construction 6.7 always accepts. The following lemma implies that
if p and q are different polynomials, each of total degree at most d over the finite field F,
then Construction 6.7 accepts with probability at most d/|F|.

Lemma 6.8: Let p : Fn → F be a non-zero polynomial of total degree d over the
finite field F. Then

Prr1,...,rn∈F[p(r1, . . . , rn) = 0] ≤ d

|F| .
Proof: The lemma is proven by induction on n. The base case of n = 1 follows
immediately by the Fundamental Theorem of Algebra (i.e., any non-zero univariate
polynomial of degree d has at most d distinct roots). In the induction step, we write
p as a polynomial in its first variable with coefficients that are polynomials in the
other variables. That is,

p(x1, x2, . . . , xn) =
d∑

i=0

pi (x2, . . . , xn) · xi
1

where pi is a polynomial of total degree at most d − i . Let i be the largest integer for
which pi is not identically zero. Dismissing the case i = 0 and using the induction
hypothesis, we have

Prr1,r2,...,rn [p(r1, r2, . . . , rn) = 0]

≤ Prr2,...,rn [pi (r2, . . . , rn) = 0]

+Prr1,r2,...,rn [p(r1, r2, . . . , rn) = 0 | pi (r2, . . . , rn) �= 0]

≤ d − i

|F| +
i

|F|

194



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

where the second term is bounded by fixing any sequence r2, . . . , rn for
which pi (r2, . . . ., rn) �= 0 and considering the univariate polynomial p′(x)

def=
p(x, r2, . . . , rn) (which by hypothesis is a non-zero polynomial of degree i).

Reflection. Lemma 6.8 may be viewed as asserting that for every non-zero polynomial
of degree d over F at least a 1− (d/|F|) fraction of its domain does not evaluate to zero.
Thus, if d � |F| then most of the evaluation points constitute a witness for the fact that
the polynomial is non-zero. We know of no efficient deterministic algorithm that, given
a representation of the polynomial via an arithmetic circuit, finds such a witness. Indeed,
Construction 6.7 attempts to find a witness by merely selecting it at random.

6.1.3.2. Relating BPP to RP
A natural question regarding probabilistic polynomial-time algorithms refers to the rela-
tion between two-sided and one-sided error probability. For example, is BPP contained
in RP? Loosely speaking, we show that BPP is reducible to coRP by one-sided error
randomized Karp-reductions, where the actual statement refers to the promise problem
versions of both classes (briefly defined in the following paragraph). Note that BPP is
trivially reducible to coRP by two-sided error randomized Karp-reductions, whereas a
deterministic Karp-reduction of BPP to coRP would imply BPP = coRP = RP (see
Exercise 6.9).

First, we refer the reader to the general discussion of promise problems in Section 2.4.1.
Analogously to Definition 2.31, we say that the promise problem � = (Syes, Sno) is in
(the promise problem extension of) BPP if there exists a probabilistic polynomial-time
algorithm A such that for every x ∈ Syes it holds that Pr[A(x) = 1] ≥ 2/3 and for every
x ∈ Sno it holds that Pr[A(x)=0] ≥ 2/3. Similarly, � is in coRP if for every x ∈ Syes

it holds that Pr[A(x)=1] = 1 and for every x ∈ Sno it holds that Pr[A(x)=0] ≥ 1/2.
Probabilistic reductions among promise problems are defined by adapting the conventions
of Section 2.4.1; specifically, queries that violate the promise at the target of the reduction
may be answered arbitrarily.

Theorem 6.9: Any problem in BPP is reducible by a one-sided error randomized
Karp-reduction to coRP , where coRP (and possibly also BPP) denotes the cor-
responding class of promise problems. Specifically, the reduction always maps a
no-instance to a no-instance.

It follows that BPP is reducible by a one-sided error randomized Cook-reduction to
RP . Thus, using the conventions of Section 3.2.2 and referring to classes of promise
problems, we may write BPP ⊆ RPRP . In fact, since RPRP ⊆ BPPBPP = BPP , we
have BPP = RPRP . Theorem 6.9 may be paraphrased as saying that the combination
of the one-sided error probability of the reduction and the one-sided error probability
of coRP can account for the two-sided error probability of BPP . We warn that this
statement is not a triviality like 1+ 1 = 2, and in particular we do not know whether it
holds for classes of standard decision problems (rather than for the classes of promise
problems considered in Theorem 6.9).

Proof: Recall that we can easily reduce the error probability of BPP-algorithms, and
derive probabilistic polynomial-time algorithms of exponentially vanishing error

195



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

probability. But this does not eliminate the error altogether (not even on “one side”).
In general, there seems to be no hope of eliminating the error, unless we (either do
something earthshaking or) change the setting as done when allowing a one-sided
error randomized reduction to a problem in coRP . The latter setting can be viewed
as a two-move randomized game (i.e., a random move by the reduction followed by
a random move by the decision procedure of coRP), and it enables the application
of different quantifiers to the two moves (i.e., allowing error in one direction in the
first quantifier and error in the other direction in the second quantifier). In the next
paragraph, which is inessential to the actual proof, we illustrate the potential power
of this setting.

Teaching note: The following illustration represents an alternative way of proving
Theorem 6.9. This way seems conceptually simpler but it requires a starting point (or
rather an assumption) that is much harder to establish, where both comparisons are with
respect to the actual proof of Theorem 6.9 (which follows the illustration).

An illustration. Suppose that for some set S ∈ BPP there exists a polyno-
mial p′ and an off-line BPP-algorithm A′ such that for every x it holds that
Prr∈{0,1}2p′(|x |) [A′(x, r ) �= χS(x)] < 2−(p′(|x |)+1); that is, the algorithm uses 2p′(|x |)
bits of randomness and has error probability smaller than 2−p′(|x |)/2. Note that such
an algorithm cannot be obtained by standard error reduction (see Exercise 6.10).
Anyhow, such a small error probability allows a partition of the string r such that one
part accounts for the entire error probability on yes-instances while the other part
accounts for the error probability on no-instances. Specifically, for every x ∈ S, it
holds that Prr ′∈{0,1}p′(|x |) [(∀r ′′ ∈{0, 1}p′(|x |)) A′(x, r ′r ′′)=1] > 1/2, whereas for every
x �∈ S and every r ′ ∈ {0, 1}p′(|x |) it holds that Prr ′′∈{0,1}p′(|x |) [A′(x, r ′r ′′)=1] < 1/2.
Thus, the error on yes-instances is “pushed” to the selection of r ′, whereas the
error on no-instances is pushed to the selection of r ′′. This yields a one-sided error
randomized Karp-reduction that maps x to (x, r ′), where r ′ is uniformly selected
in {0, 1}p′(|x |), such that deciding S is reduced to the coRP problem (regarding
pairs (x, r ′)) that is decided by the (on-line) randomized algorithm A′′ defined by
A′′(x, r ′) def= A′(x, r ′Up′(|x |)). For details, see Exercise 6.11. The actual proof, which
avoids the aforementioned hypothesis, follows.

The actual starting point. Consider any BPP-problem with a characteristic function
χ (which, in case of a promise problem, is a partial function, defined only over the
promise). By standard error reduction, there exists a probabilistic polynomial-time
algorithm A such that for every x on which χ is defined it holds that Pr[A(x) �=
χ(x)] < µ(|x |), where µ is a negligible function. Looking at the corresponding
residual (off-line) algorithm A′ and denoting by p the polynomial that bounds the
running time of A, we have

Prr∈{0,1}p(|x |) [A′(x, r ) �= χ(x)] < µ(|x |) <
1

2p(|x |) (6.1)

for all sufficiently long x’s on which χ is defined. We show a randomized one-sided
error Karp-reduction of χ to a promise problem in coRP .

196



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

Teaching note: Some readers may prefer skipping the following two paragraphs and
proceeding directly to the formal description of the randomized mapping (which follows).
To such readers, we recommend returning to the two skipped paragraphs after reading
the formal analysis.

The main idea. As in the illustrating paragraph, the basic idea is “pushing” the
error probability on yes-instances (of χ) to the reduction, while pushing the error
probability on no-instances to the coRP-problem. Focusing on the case that χ(x) =
1, this is achieved by augmenting the input x with a random sequence of “modifiers”
that act on the random-input of algorithm A′ such that for a good choice of modifiers
it holds that for every r ∈ {0, 1}p(|x |) there exists a modifier in this sequence that
when applied to r yields r ′ that satisfies A′(x, r ′) = 1. Indeed, not all sequences
of modifiers are good, but a random sequence will be good with high probability
and bad sequences will be accounted for in the error probability of the reduction.
On the other hand, using only modifiers that are permutations guarantees that the
error probability on no-instances only increase by a factor that equals the number of
modifiers that we use, and this error probability will be accounted for by the error
probability of the coRP-problem. Details follow.

The aforementioned modifiers are implemented by shifts (of the set of all
strings by fixed offsets). Thus, we augment the input x with a random se-
quence of shifts, denoted s1, . . . , sm ∈ {0, 1}p(|x |), such that for a good choice of
(s1, . . . , sm) it holds that for every r ∈ {0, 1}p(|x |) there exists an i ∈ [m] such that
A′(x, r ⊕ si ) = 1. We will show that, for any yes-instance x and a suitable choice
of m, with very high probability, a random sequence of shifts is good. Thus, for
A′′(〈x, s1, . . . , sm〉, r )

def= ∨m
i=1 A′(x, r ⊕ si ), it holds that, with very high proba-

bility over the choice of s1, . . . , sm , a yes-instance x is mapped to an augmented
input 〈x, s1, . . . , sm〉 that is accepted by A′′ with probability 1. On the other hand,
the acceptance probability of augmented no-instances (for any choice of shifts)
only increases by a factor of m. In further detailing the foregoing idea, we start
by explicitly stating the simple randomized mapping (to be used as a randomized
Karp-reduction), and next define the target promise problem.

The randomized mapping. On input x ∈ {0, 1}n , we set m = p(|x |), uniformly select
s1, . . . , sm ∈ {0, 1}m , and output the pair (x, s), where s = (s1, . . . , sm). Note that
this mapping, denoted M , is easily computable by a probabilistic polynomial-time
algorithm.

The promise problem. We define the following promise problem, denoted � =
(�yes, �no), having instances of the form (x, s) such that |s| = p(|x |)2.

• The yes-instances are pairs (x, s), where s = (s1, . . . , sm) and m = p(|x |), such
that for every r ∈ {0, 1}m there exists an i satisfying A′(x, r ⊕ si ) = 1.

• The no-instances are pairs (x, s), where again s = (s1, . . . , sm) and m = p(|x |),
such that for at least half of the possible r ∈ {0, 1}m , for every i it holds that
A′(x, r ⊕ si ) = 0.

To see that � is indeed a coRP promise problem, we consider the following random-
ized algorithm. On input (x, (s1, . . . , sm)), where m = p(|x |) = |s1| = · · · = |sm |,

197



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

the algorithm uniformly selects r ∈ {0, 1}m , and accepts if and only if A′(x, r ⊕ si ) =
1 for some i ∈ {1, . . . , m}. Indeed, yes-instances of � are accepted with probabil-
ity 1, whereas no-instances of � are rejected with probability at least 1/2.

Analyzing the reduction: We claim that the randomized mapping M reduces χ to �

with one-sided error. Specifically, we will prove two claims.

Claim 1: If x is a yes-instance (i.e., χ(x) = 1) then Pr[M(x) ∈ �yes] > 1/2.
Claim 2: If x is a no-instance (i.e., χ(x) = 0) then Pr[M(x) ∈ �no] = 1.

We start with Claim 2, which is easier to establish. Recall that M(x) =
(x, (s1, . . . , sm)), where s1, . . . , sm are uniformly and independently distributed
in {0, 1}m . We note that (by Eq. (6.1) and χ(x) = 0), for every possible choice
of s1, . . . , sm ∈ {0, 1}m and every i ∈ {1, . . . , m}, the fraction of r ’s that satisfy
A′(x, r ⊕ si ) = 1 is at most 1

2m . Thus, for every possible choice of s1, . . . , sm ∈
{0, 1}m , for at most half of the possible r ∈ {0, 1}m there exists an i such that
A′(x, r ⊕ si ) = 1 holds. Hence, the reduction M always maps the no-instance x
(i.e., χ(x) = 0) to a no-instance of � (i.e., an element of �no).

Turning to Claim 1 (which refers to χ(x) = 1), we will show shortly that in this
case, with very high probability, the reduction M maps x to a yes-instance of �. We
upper-bound the probability that the reduction fails (in case χ(x) = 1) as follows:

Pr[M(x) �∈ �yes] = Prs1,...,sm [∃r ∈ {0, 1}m s.t. (∀i) A′(x, r ⊕ si ) = 0]

≤
∑

r∈{0,1}m
Prs1,...,sm [(∀i) A′(x, r ⊕ si ) = 0]

=
∑

r∈{0,1}m

m∏
i=1

Prsi [A′(x, r ⊕ si ) = 0]

< 2m ·
(

1

2m

)m

where the last inequality is due to Eq. (6.1). It follows that if χ(x) = 1 then
Pr[M(x) ∈ �yes] � 1/2.

Combining both claims, it follows that the randomized mapping M reduces χ to
�, with one-sided error on yes-instances. Recalling that � ∈ coRP , the theorem
follows.

BPP is in PH. The traditional presentation of the ideas underlying the proof of
Theorem 6.9 uses them for showing that BPP is in the Polynomial-time Hierar-
chy (where both classes refer to standard decision problems). Specifically, to prove
that BPP ⊆ �2 (see Definition 3.8), define the polynomial-time computable predicate
ϕ(x, s, r )

def= ∨m
i=1(A′(x, si ⊕ r ) = 1), and observe that

χ(x) = 1 ⇒ ∃s ∀r ϕ(x, s, r ) (6.2)

χ(x) = 0 ⇒ ∀s ∃r ¬ϕ(x, s, r ) (6.3)

(where Eq. (6.3) is equivalent to ¬∃s ∀r ϕ(x, s, r )). Note that Claim 1 (in the proof of
Theorem 6.9) establishes that most sequences s satisfy ∀r ϕ(x, s, r ), whereas Eq. (6.2)
only requires the existence of at least one such s. Similarly, Claim 2 establishes that for

198



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

every s most choices of r violate ϕ(x, s, r ), whereas Eq. (6.3) only requires that for every
s there exists at least one such r . We comment that the same proof idea yields a variety
of similar statements (e.g., BPP ⊆MA, where MA is a randomized version of NP
defined in Section 9.1).7

6.1.4. Zero-Sided Error: The Complexity Class ZPP

We now consider probabilistic polynomial-time algorithms that never err, but may fail
to provide an answer. Focusing on decision problems, the corresponding class is denoted
ZPP (standing for Zero-error Probabilistic Polynomial time). The standard definition
of ZPP is in terms of machines that output ⊥ (indicating failure) with probability at
most 1/2. That is, S ∈ ZPP if there exists a probabilistic polynomial-time algorithm A
such that for every x ∈ {0, 1}∗ it holds that Pr[A(x) ∈ {χS(x),⊥}] = 1 and Pr[A(x) =
χS(x)] ≥ 1/2, where χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. Again, the choice of
the constant (i.e., 1/2) is immaterial, and “error reduction” can be performed showing that
algorithms that yield a meaningful answer with noticeable probability can be amplified to
algorithms that fail with negligible probability (see Exercise 6.6).

Theorem 6.10: ZPP = RP ∩ coRP .

Proof Sketch: The fact that ZPP ⊆ RP (as well as ZPP ⊆ coRP) follows by a
trivial transformation of the ZPP-algorithm, that is, replacing the failure indicator⊥
by a “no” verdict (resp., “yes” verdict). Note that the choice of what to say in case
the ZPP-algorithm fails is determined by the type of error that we are allowed.

In order to prove that RP ∩ coRP ⊆ ZPP we combine the two algorithms
guaranteed for a set in RP ∩ coRP . The point is that we can trust the RP-algorithm
(resp., coNP-algorithm) in the case that it says “yes” (resp., “no”), but not in the
case that it says “no” (resp., “yes”). Thus, we invoke both algorithms, and output a
definite answer only if we obtain an answer that we can trust (which happens with
high probability). Otherwise, we output ⊥.

Expected polynomial time. In some sources ZPP is defined in terms of randomized
algorithms that run in expected polynomial time and always output the correct answer.
This definition is equivalent to the one we used (see Exercise 6.7).

6.1.5. Randomized Log-Space

In this section we discuss probabilistic polynomial-time algorithms that are further re-
stricted such that they are allowed to use only a logarithmic amount of space.

Prerequisites. Technically speaking, the current section is self-contained. Neverthe-
less, the interested reader may obtain a wider perspective on space complexity from
Chapter 5.

7Specifically, the classMA is defined by allowing the verification algorithm V in Definition 2.5 to be probabilistic
and err on no-instances; that is, for every x ∈ S there exists y ∈ {0, 1}poly(|x |) such that Pr[V (x, y)=1] = 1, whereas
for every x �∈ S and every y it holds that Pr[V (x, y)=0] ≥ 1/2. We note that MA can be viewed as a hybrid of the
two aforementioned pairs of conditions; specifically, each problem in MA satisfies the conjunction of Eq. (6.2) and
Claim 2. Other randomized versions of NP (i.e., variants of MA) are considered in Exercise 6.12.

199



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

6.1.5.1. Definitional Issues
When defining space-bounded randomized algorithms, we face a problem analogous to
the one discussed in the context of non-deterministic space-bounded computation (see
Section 5.3). Specifically, the on-line and the off-line versions (formulated in Defini-
tion 6.1) are no longer equivalent, unless we restrict the “off-line machine” to access
its random-input tape in a uni-directional manner. The issue is that, in the context of
space-bounded computation (and unlike in the case that we only care about time bounds),
the outcome of the internal coin tosses (in the on-line model) cannot be recorded for free.
Bearing in mind that, in the current context, we wish to model real algorithms (rather than
present a fictitious model that captures a fundamental phenomenon as in Section 5.3), it
is clear that using the on-line version is the natural choice.

An additional issue that arises is the need to explicitly bound the running time of
space-bounded randomized algorithms. Recall that, without loss of generality, the num-
ber of steps taken by a space-bounded non-deterministic machine is at most exponential
in its space complexity, because the shortest path between two configurations in the (di-
rected) graph of possible configurations is upper-bounded by its size (which in turn is
exponential in the space bound). This reasoning fails in the case of randomized algo-
rithms, because the shortest path between two configurations does not bound the expected
number of random steps required for going from the first configuration to the second
one. In fact, as we shall shortly see, failing to upper-bound the running time of log-space
randomized algorithms seems to allow them too much power; that is, such (unrestricted)
log-space randomized algorithms can emulate non-deterministic log-space computations
(in exponential time). The emulation consists of repeatedly invoking the NL-machine,
while using random choices in the role of the non-deterministic moves. If the input is a
yes-instance then, in each attempt, with probability at least 2−t , we “hit” an accepting
t-step (non-deterministic) computation, where t is polynomial in the input length. Thus,
the randomized machine accepts such a yes-instance after an expected number of 2t tri-
als. To allow for the rejection of no-instances (rather than looping infinitely in vain), we
wish to implement a counter that counts till 2t (or so) and reject the input if 2t trials
were made and have all failed (to hit an accepting computation of the NL-machine). We
need to implement such a counter within space O(log t) rather than t (which is easy).
In fact, it suffices to have a “randomized counter” that, with high probability, counts to
approximately 2t . The implementation of such a counter is left to Exercise 6.18, and
using it we may obtain a randomized algorithm that halts with high probability (on every
input), always rejects a no-instance, and accepts each yes-instance with probability at
least 1/2.

In light of the foregoing discussion, when defining randomized log-space algorithms we
explicitly require that the algorithms halt in polynomial time. Modulo this convention, the
relation between classes RL (resp., BPL) and NL is analogous to the relation between
RP (resp., BPP) and NP . Specifically, the probabilistic acceptance condition of RL
(resp., BPL) is as in the case of RP (resp., BPP).

Definition 6.11 (the classes RL and BPL): We say that a randomized log-space
algorithm is admissible if it always halts in a polynomial number of steps.

• A decision problem S is in RL if there exists an admissible (on-line) randomized
log-space algorithm A such that for every x ∈ S it holds that Pr[A(x) = 1] ≥ 1/2
and for every x �∈ S it holds that Pr[A(x) = 0] = 1.

200



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.1. PROBABILISTIC POLYNOMIAL TIME

• A decision problem S is inBPL if there exists an admissible (on-line) randomized
log-space algorithm A such that for every x ∈ S it holds that Pr[A(x) = 1] ≥ 2/3
and for every x �∈ S it holds that Pr[A(x) = 0] ≥ 2/3.

Clearly, RL ⊆ NL ⊆ P and BPL ⊆ P . Note that the classes RL and BPL remain
unchanged even if we allow the algorithms to run for expected polynomial time and have
non-halting computations. Such algorithms can be easily transformed into admissible
algorithms by truncating long computations, while using a (standard) counter (which can
be implemented in logarithmic space). Also note that error reduction is applicable in the
current setting (while essentially preserving both the time and space bounds).

6.1.5.2. The Accidental Tourist Sees It All
An appealing example of a randomized log-space algorithm is presented next. It refers
to the problem of deciding undirected connectivity, and demonstrates that this problem
is in RL. (Recall that in Section 5.2.4 we proved that this problem is actually in L, but
the algorithm and its analysis were more complicated.) In contrast, recall that directed
connectivity is complete for NL (under log-space reductions).

For the sake of simplicity, we consider the following computational problem: Given
an undirected graph G and a pair of vertices (s, t), determine whether or not s and t are
connected in G. Note that deciding undirected connectivity (of a given undirected graph)
is log-space reducible to the foregoing problem (e.g., just check the connectivity of all
pairs of vertices).

Construction 6.12: On input (G, s, t), the randomized algorithm starts a poly(|G|)-
long random walk at vertex s, and accepts the triple if and only if the walk passed
through the vertex t . By a random walk we mean that at each step the algorithm
selects uniformly one of the neighbors of the current vertex and moves to it.

Observe that the algorithm can be implemented in logarithmic space (because we only
need to store the current vertex as well as the number of steps taken so far). Obviously, if s
and t are not connected in G then the algorithm always rejects (G, s, t). Proposition 6.13
implies that if s and t are connected (in G) then the algorithm accepts with probability at
least 1/2. It follows that undirected connectivity is in RL.

Proposition 6.13: With probability at least 1/2, a random walk of length O(|V | ·
|E |) starting at any vertex of the graph G = (V, E) passes through all the vertices
that reside in the same connected component as the start vertex.

Thus, such a random walk may be used to explore the relevant connected component
(in any graph). Following this walk one is likely to see all that there is to see in that
component.

Proof Sketch: We will actually show that if G is connected then, with probability
at least 1/2, a random walk starting at s visits all the vertices of G. For any pair of
vertices (u, v), let Xu,v be a random variable representing the number of steps taken
in a random walk starting at u until v is first encountered. The reader may verify that
for every edge {u, v} ∈ E it holds that E[Xu,v] ≤ 2|E |; see Exercise 6.19. Next, we
let cover(G) denote the expected number of steps in a random walk starting at s and

201



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

ending when the last of the vertices of V is encountered. Our goal is to upper-bound
cover(G). Toward this end, we consider an arbitrary directed cyclic-tour C that visits
all vertices in G, and note that

cover(G) ≤
∑

(u,v)∈C

E[Xu,v] ≤ |C | · 2|E |.

In particular, selecting C as a traversal of some spanning tree of G, we conclude
that cover(G) < 4 · |V | · |E |. Thus, with probability at least 1/2, a random walk of
length 8 · |V | · |E | starting at s visits all vertices of G.

6.2. Counting

We now turn to a new type of computational problems, which vastly generalize decision
problems of the NP-type. We refer to counting problems, and more specifically to counting
objects that can be efficiently recognized. The search and decision versions of NP provide
suitable definitions of efficiently recognized objects, which in turn yield corresponding
counting problems:

1. For each search problem having efficiently checkable solutions (i.e., a relation R ⊆
{0, 1}∗ × {0, 1}∗ in PC (see Definition 2.3)), we consider the problem of counting the
number of solutions for a given instance. That is, on input x , we are required to output
|{y : (x, y)∈ R}|.

2. For each decision problem S in NP , and each corresponding verification procedure
V (as in Definition 2.5), we consider the problem of counting the number of NP-
witnesses for a given instance. That is, on input x , we are required to output |{y :
V (x, y)=1}|.

We shall consider these types of counting problems as well as relaxations (of these
counting problems) that refer to approximating the said quantities (see Sections 6.2.1
and 6.2.2, respectively). Other related topics include “problems with unique solutions”
(see Section 6.2.3) and “uniform generation of solutions” (see Section 6.2.4). Interestingly,
randomized procedures will play an important role in many of the results regarding the
aforementioned types of problems.

6.2.1. Exact Counting

In continuation of the foregoing discussion, we define the class of problems con-
cerned with counting efficiently recognized objects. (Recall that PC denotes the class
of search problems having polynomially long solutions that are efficiently checkable; see
Definition 2.3.)

Definition 6.14 (counting efficiently recognized objects – #P): The class #P con-
sists of all functions that count solutions to a search problem in PC. That is,
f : {0, 1}∗ → N is in #P if there exists R ∈ PC such that, for every x, it holds
that f (x) = |R(x)|, where R(x) = {y : (x, y)∈ R}. In this case we say that f is the
counting problem associated with R, and denote the latter by #R (i.e., #R = f ).

Every decision problem in NP is Cook-reducible to #P , because every such problem
can be cast as deciding membership in SR = {x : |R(x)| > 0} for some R ∈ PC (see

202



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

Section 2.1.2). It also holds that BPP is Cook-reducible to #P (see Exercise 6.20). The
class #P is sometimes defined in terms of decision problems, as is implicit in the following
proposition.

Proposition 6.15 (a decisional version of #P): For any f ∈ #P , deciding member-
ship in S f

def= {(x, N ) : f (x)≥N } is computationally equivalent to computing f .

Actually, the claim holds for any function f : {0, 1}∗ → N for which there exists a poly-
nomial p such that for every x ∈ {0, 1}∗ it holds that f (x) ≤ 2p(|x |).

Proof: Since the relation R vouching for f ∈ #P (i.e., f (x) = |R(x)|) is polyno-
mially bounded, there exists a polynomial p such that for every x it holds that
f (x) ≤ 2p(|x |). Deciding membership in S f is easily reduced to computing f (i.e.,
we accept the input (x, N ) if and only if f (x) ≥ N ). Computing f is reducible to
deciding S f by using a binary search (see Exercise 2.9). This relies on the fact that,
on input x and oracle access to S f , we can determine whether or not f (x) ≥ N by
making the query (x, N ). Note that we know a priori that f (x) ∈ [0, 2p(|x |)].

The counting class #P is also related to the problem of enumerating all possible solutions
to a given instance (see Exercise 6.21).

6.2.1.1. On the Power of #P
As indicated, NP ∪ BPP is (easily) reducible to #P . Furthermore, as stated in The-
orem 6.16, the entire Polynomial-time Hierarchy (as defined in Section 3.2) is Cook-
reducible to #P (i.e., PH ⊆ P#P ). On the other hand, any problem in #P is solvable in
polynomial space, and so P#P ⊆ PSPACE .

Theorem 6.16: Every set in PH is Cook-reducible to #P .

We do not present a proof of Theorem 6.16 here, because the known proofs are rather
technical. Furthermore, one main idea underlying these proofs appears in a more clear
form in the proof of Theorem 6.29. Nevertheless, in Appendix F.1 we present a proof of a
related result, which implies that PH is reducible to #P via randomized Karp-reductions.

6.2.1.2. Completeness in #P
The definition of #P-completeness is analogous to the definition of NP-completeness.
That is, a counting problem f is #P-complete if f ∈ #P and every problem in #P is
Cook-reducible to f .

We claim that the counting problems associated with the NP-complete problems pre-
sented in Section 2.3.3 are all #P-complete. We warn that this fact is not due to the mere
NP-completeness of these problems, but rather to an additional property of the reductions
establishing their NP-completeness. Specifically, the Karp-reductions that were used (or
variants of them) have the extra property of preserving the number of NP-witnesses (as
captured by the following definition).

Definition 6.17 (parsimonious reductions): Let R, R′ ∈ PC and let g be a Karp-
reduction of SR = {x : R(x) �= ∅} to SR′ = {x : R′(x) �= ∅}, where R(x) = {y :
(x, y)∈ R} and R′(x) = {y : (x, y)∈ R′}. We say that g is parsimonious (with

203



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

respect to R and R′) if for every x it holds that |R(x)| = |R′(g(x))|. In such a
case we say that g is a parsimonious reduction of R to R′.

We stress that the condition of being parsimonious refers to the two underlying relations R
and R′ (and not merely to the sets SR and SR′). The requirement that g is a Karp-reduction
is partially redundant, because if g is polynomial-time computable and for every x it holds
that |R(x)| = |R′(g(x))|, then g constitutes a Karp-reduction of SR to SR′ . Specifically,
|R(x)| = |R′(g(x))| implies that |R(x)| > 0 (i.e., x ∈ SR) if and only if |R′(g(x))| > 0
(i.e., g(x) ∈ SR′). The reader may easily verify that the Karp-reduction underlying the
proof of Theorem 2.19 as well as many of the reductions used in Section 2.3.3 are
parsimonious (see Exercise 2.29).

Theorem 6.18: Let R ∈ PC and suppose that every search problem in PC is par-
simoniously reducible to R. Then the counting problem associated with R is #P-
complete.

Proof: Clearly, the counting problem associated with R, denoted #R, is in #P .
To show that every f ′ ∈ #P is reducible to f , we consider the relation R′ ∈ PC
that is counted by f ′; that is, #R′ = f ′. Then, by the hypothesis, there exists a
parsimonious reduction g of R′ to R. This reduction also reduces #R′ to #R;
specifically, #R′(x) = #R(g(x)) for every x .

Corollaries. As an immediate corollary of Theorem 6.18, we get that counting the num-
ber of satisfying assignments to a given CNF formula is #P-complete (because RSAT

is PC-complete via parsimonious reductions). Similar statements hold for all the other
NP-complete problems mentioned in Section 2.3.3 and in fact for all NP-complete prob-
lems listed in [85]. These corollaries follow from the fact that all known reductions
among natural NP-complete problems are either parsimonious or can be easily modified to
be so.

We conclude that many counting problems associated with NP-complete search prob-
lems are #P-complete. It turns out that also counting problems associated with efficiently
solvable search problems may be #P-complete.

Theorem 6.19: There exist #P-complete counting problems that are associated
with efficiently solvable search problems. That is, there exists R ∈ PF (see Defini-
tion 2.2) such that #R is #P-complete.

Theorem 6.19 can be established by presenting artificial #P-complete problems (see
Exercise 6.22). The following proof uses a natural counting problem.

Proof: Consider the relation Rdnf consisting of pairs (φ, τ ) such that φ is a DNF
formula and τ is an assignment satisfying it. Note that the search problem of Rdnf

is easy to solve (e.g., by picking an arbitrary truth assignment that satisfies the
first term in the input formula). To see that #Rdnf is #P-complete consider the
following reduction from #RSAT (which is #P-complete by Theorem 6.18). Given
a CNF formula φ, transform ¬φ into a DNF formula φ′ by applying de-Morgan’s

204



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

Law, query #Rdnf on φ′, and return 2n − #Rdnf(φ′), where n denotes the number of
variables in φ (resp., φ′).

Reflections. We note that Theorem 6.19 is not established by a parsimonious reduction.
This fact should not come as a surprise because a parsimonious reduction of #R′ to #R
implies that SR′ = {x : ∃y s.t. (x, y)∈ R′} is reducible to SR = {x : ∃y s.t. (x, y)∈ R},
where in our case SR′ is NP-complete while SR ∈ P (since R ∈ PF). Nevertheless, the
proof of Theorem 6.19 is related to the hardness of some underlying decision problem
(i.e., the problem of deciding whether a given DNF formula is a tautology (i.e., whether
#Rdnf(φ′) = 2n)). But does there exist a #P-complete problem that is “not based on
some underlying NP-complete decision problem”? Amazingly enough, the answer is
positive.

Theorem 6.20: Counting the number of perfect matchings in a bipartite graph is
#P-complete.8

Equivalently (see Exercise 6.23), the problem of computing the permanent of matrices
with 0/1-entries is #P-complete. Recall that the permanent of an n-by-n matrix M =
(mi, j ), denoted perm(M), equals the sum over all permutations π of [n] of the products∏n

i=1 mi,π(i). Theorem 6.20 is proven by composing the following two (many-to-one)
reductions (asserted in Propositions 6.21 and 6.22, respectively) and using the fact that
#R3SAT is #P-complete (see Theorem 6.18 and Exercise 2.29). Needless to say, the resulting
reduction is not parsimonious.

Proposition 6.21: The counting problem of 3SAT (i.e., #R3SAT) is reducible to
computing the permanent of integer matrices. Furthermore, there exists an even
integer c > 0 and a finite set of integers I such that, on input a 3CNF for-
mula φ, the reduction produces an integer matrix Mφ with entries in I such that
perm(Mφ) = cm · #R3SAT(φ) where m denotes the number of clauses in φ.

The original proof of Proposition 6.21 uses c = 210 and I = {−1, 0, 1, 2, 3}. It can be
shown (see Exercise 6.24 (which relies on Theorem 6.29)) that, for every integer n > 1 that
is relatively prime to c, computing the permanent modulo n is NP-hard (under randomized
reductions). Thus, using the case of c = 210, this means that computing the permanent
modulo n is NP-hard for any odd n > 1. In contrast, computing the permanent modulo 2
(which is equivalent to computing the determinant modulo 2) is easy (i.e., can be done in
polynomial time and even in NC). Thus, assuming NP �⊆ BPP , Proposition 6.21 cannot
hold for an odd c (because by Exercise 6.24 it would follow that computing the permanent
modulo 2 is NP-hard). We also note that, assuming P �= NP , Proposition 6.21 cannot
possibly hold for a set I containing only non-negative integers (see Exercise 6.25).

Proposition 6.22: Computing the permanent of integer matrices is reducible to
computing the permanent of 0/1-matrices. Furthermore, the reduction maps any
integer matrix A into a 0/1-matrix A′′ such that the permanent of A can be easily
computed from A and the permanent of A′′.

8See Appendix G.1 for basic terminology regarding graphs.

205



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Teaching note: We do not recommend presenting the proofs of Propositions 6.21 and 6.22
in class. The high-level structure of the proof of Proposition 6.21 has the flavor of some
sophisticated reductions among NP-problems, but the crucial point is the existence of adequate
gadgets. We do not know of a high-level argument establishing the existence of such gadgets
nor of any intuition as to why such gadgets exist.9 Instead, the existence of such gadgets is
proved by a design that is both highly non-trivial and ad hoc in nature. Thus, the proof of
Proposition 6.21 boils down to a complicated design problem that is solved in a way that has
little pedagogical value. In contrast, the proof of Proposition 6.22 uses two simple ideas that
can be useful in other settings. With suitable hints, this proof can be used as a good exercise.

Proof of Proposition 6.21: We will use the correspondence between the permanent
of a matrix A and the sum of the weights of the cycle covers of the weighted directed
graph represented by the matrix A. A cycle cover of a graph is a collection of
simple10 vertex-disjoint directed cycles that covers all the graph’s vertices, and its
weight is the product of the weights of the corresponding edges. The SWCC of a
weighted directed graph is the sum of the weights of all its cycle covers.

Given a 3CNF formula φ, we construct a directed weighted graph Gφ such that
the SWCC of Gφ equals equals cm · #R3SAT(φ), where c is a universal constant and
m denotes the number of clauses in φ. We may assume, without loss of generality,
that each clause of φ has exactly three literals (which are not necessarily distinct).

We start with a high-level description (of the construction) that refers to (clause)
gadgets, each containing some internal vertices and internal (weighted) edges, which
are unspecified at this point. In addition, each gadget has three pairs of designated
vertices, one pair per each literal appearing in the clause, where one vertex in the
pair is designated as an entry vertex and the other as an exit vertex. The graph Gφ

consists of m such gadgets, one per each clause (of φ), and n auxiliary vertices, one
per each variable (of φ), as well as some additional directed edges, each having
weight 1. Specifically, for each variable, we introduce two tracks, one per each of
the possible literals of this variable. The track associated with a literal consists of
directed edges (each having weight 1) that form a simple “cycle” passing through
the corresponding (auxiliary) vertex as well as through the designated vertices that
correspond to the occurrences of this literal in the various clauses. Specifically, for
each such occurrence, the track enters the corresponding clause gadget at the entry
vertex corresponding to this literal and exits at the corresponding exit vertex. (If
a literal does not appear in φ then the corresponding track is a self-loop on the
corresponding variable.) See Figure 6.1 showing the two tracks of a variable x that
occurs positively in three clauses and negatively in one clause. The entry vertices
(resp., exit vertices) are drawn on the top (resp., bottom) part of each gadget.

For the purpose of stating the desired properties of the clause gadget, we augment
the gadget by nine external edges (of weight 1), one per each pair of (not necessarily
matching) entry and exit vertices such that the edge goes from the exit vertex to the
entry vertex (see Figure 6.2). (We stress that this is an auxiliary construction that
differs from and yet is related to the use of gadgets in the foregoing construction of
Gφ .) The three edges that link the designated pairs of vertices that correspond to the

9Indeed, the conjecture that such gadgets exist can only be attributed to ingenuity.
10Here, a simple cycle is a strongly connected directed graph in which each vertex has a single incoming (resp.,

outgoing) edge. In particular, self-loops are allowed.

206



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

x

+x

+x+x

-x

Figure 6.1: Tracks connecting clause gadgets in the reduction to cycle cover.

three literals are called nice. We say that a collection of edges C (e.g., a collection of
cycles in the augmented gadget) uses the external edges S if the intersection of C
with the set of the (nine) external edges equals S. We postulate the following three
properties of the clause gadget.

1. The sum of the weights of all cycle covers (of the gadget) that do not use any
external edge (i.e., use the empty set of external edges) equals zero.

2. Let V (S) denote the set of vertices incident to S, and say that S is nice if it is
non-empty and the vertices in V (S) can be perfectly matched using nice edges.11

Then, there exists a constant c (indeed the one postulated in the proposition’s
claim) such that, for any nice set S, the sum of the weights of all cycle covers that
use the external edges S equals c.

Figure 6.2: External edges for the analysis of the effect of a clause gadget. On the left is a gadget with
the track edges adjacent to it (as in the real construction). On the right is a gadget and four out of the
nine external edges (two of which are nice) used in the analysis.

11Clearly, any non-empty set of nice edges is a nice set. Thus, a singleton set is nice if and only if the corresponding
edge is nice. On the other hand, any set S of three (vertex-disjoint) external edges is nice, because V (S) has a perfect
matching using all three nice edges. Thus, the notion of nice sets is “non-trivial” only for sets of two edges. Such a
set S is nice if and only if V (S) consists of two pairs of corresponding designated vertices.

207



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

The gadget uses eight vertices, where the first six are the designated (entry
and exit) vertices. The entry vertex (resp., exit vertex) associated with the
i th literal is numbered i (resp., i + 3). The corresponding adjacency matrix
follows. 

1 0 0 2 0 0 0 0
0 1 0 0 3 0 0 0
0 0 0 0 0 1 0 0
0 0 −1 1 −1 0 1 1
0 0 −1 −1 2 0 1 1
0 0 0 −1 −1 0 1 1
0 0 1 1 1 0 2 −1
0 0 1 1 1 0 0 1


Note that the edge 3→6 can be contracted, but the resulting 7-vertex graph
will not be consistent with our (inessentially stringent) definition of a gadget
by which the six designated vertices should be distinct.

Figure 6.3: A Deus ex Machina clause gadget for the reduction to cycle cover.

3. For any non-nice set S �= ∅ of external edges, the sum of the weights of all cycle
covers that use the external edges S equals zero.

Note that the foregoing three cases exhaust all the possible ones. Also note that the
set of external edges used by a cycle cover (of the augmented gadget) must be a
matching (i.e., these edges must be vertex disjoint).

Intuitively, there is a correspondence between nice sets of external edges (of an
augmented gadget) and the pairs of edges on tracks that pass through the (unaug-
mented) gadget. Indeed, we now turn back to Gφ , which uses unaugmented gadgets.
Using the foregoing properties of the (augmented) gadgets, it can be shown that
each satisfying assignment of φ contributes exactly cm to the SWCC of Gφ (see
Exercise 6.26). It follows that the SWCC of Gφ equals cm · #R3SAT(φ).

Having established the validity of the abstract reduction, we turn to the imple-
mentation of the clause gadget. The first implementation is a Deus ex Machina,
with a corresponding adjacency matrix depicted in Figure 6.3. Its validity (for the
value c = 12) can be verified by computing the permanent of the corresponding
sub-matrices (see analogous analysis in Exercise 6.28).

A more structured implementation of the clause gadget is depicted in Figure 6.4,
which refers to a (hexagon) box to be implemented later. The box contains several
vertices and weighted edges, but only two of these vertices, called terminals, are
connected to the outside (and are shown in Figure 6.4). The clause gadget consists
of five copies of this box, where three copies are designated for the three literals
of the clause (and are marked LB1, LB2, and LB3), as well as additional vertices
and edges shown in Figure 6.4. In particular, the clause gadget contains the six
aforementioned designated vertices (i.e., a pair of entry and exit vertices per each
literal), two additional vertices (shown at the two extremes of the figure), and some
edges (all having weight 1). Each designated vertex has a self-loop, and is incident
to a single additional edge that is outgoing (resp., incoming) in case the vertex is an
entry vertex (resp., exit vertex) of the gadget. The two terminals of each box that is
associated with some literal are connected to the corresponding pair of designated

208



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

entry1 entry2 entry3

exit1 exit2 exit3

LB1 LB2 LB3

Figure 6.4: A structured clause gadget for the reduction to cycle cover.

vertices (e.g., the outgoing edge of entry1 is incident at the right terminal of the
box LB1). Note that the five boxes reside on a directed path (going from left to
right), and the only edges going in the opposite direction are those drawn below
this path.

In continuation of the foregoing, we wish to state the desired properties of the
box. Again, we do so by considering the augmentation of the box by external edges
(of weight 1) incident at the specified vertices. In this case (see Figure 6.5), we have
a pair of anti-parallel edges connecting the two terminals of the box as well as two
self-loops (one on each terminal). We postulate the following three properties of the
box.

1. The sum of the weights of all cycle covers (of the box) that do not use any external
edge equals zero.

2. There exists a constant b (in our case b = 4) such that, for each of the two anti-
parallel edges, the sum of the weights of all cycle covers that use this edge equals
b.

3. For any (non-empty) set S of the self-loops, the sum of the weights of all cycle
covers (of the box) that use S equals zero.

Figure 6.5: External edges for the analysis of the effect of a box. On the left is a box with potential edges
adjacent to it (as in the gadget construction). On the right is a box and the four external edges used in
the analysis.

209



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Note that the foregoing three cases exhaust all the possible ones. It can be shown that
the conditions regarding the box imply that the construction presented in Figure 6.4
satisfies the conditions that were postulated for the clause gadget (see Exercise 6.27).
Specifically, we have c = b5. As for box itself, a smaller Deus ex Machina is provided
by the following 4-by-4 adjacency matrix

0 1 −1 −1
1 −1 1 1
0 1 1 2
0 1 3 0

 (6.4)

where the two terminals correspond to the first and the fourth vertices. Its validity (for
the value b = 4) can be verified by computing the permanent of the corresponding
sub-matrices (see Exercise 6.28).

Proof of Proposition 6.22: The proof proceeds in two steps. In the first step we
show that computing the permanent of integer matrices is reducible to computing
the permanent of non-negative matrices. This reduction proceeds as follows. For an
n-by-n integer matrix A = (ai, j )i, j∈[n], let ‖A‖∞ = maxi, j (|ai, j |) and Q A = 2(n!) ·
‖A‖n

∞ + 1. We note that, given A, the value Q A can be computed in polynomial
time, and in particular log2 Q A < n2 log ‖A‖∞. Given the matrix A, the reduction
constructs the non-negative matrix A′ = (ai, j mod Q A)i, j∈[n] (i.e., the entries of
A′ are in {0, 1, . . . , Q A − 1}), queries the oracle for the permanent of A′, and
outputs v

def= perm(A′) mod Q A if v < Q A/2 and −(Q A − v) otherwise. The key
observation is that

perm(A) ≡ perm(A′) (mod Q A), while |perm(A)| ≤ (n!) · ‖A‖n
∞ < Q A/2.

Thus, perm(A′) mod Q A (which is in {0, 1, . . . , Q A − 1}) determines perm(A). We
note that perm(A′) is likely to be much larger than Q A > |perm(A)|; it is merely
that perm(A′) and perm(A) are equivalent modulo Q A.

In the second step we show that computing the permanent of non-negative ma-
trices is reducible to computing the permanent of 0/1-matrices. In this reduction,
we view the computation of the permanent as the computation of the sum of the
weights of all the cycle covers (SWCC) of the corresponding weighted directed
graph (see proof of Proposition 6.21). Thus, we reduce the computation of the
SWCC of directed graphs with non-negative weights to the computation of the
SWCC of unweighted directed graphs with no parallel edges (which correspond to
0/1-matrices). The reduction is via local replacements that preserve the value of
the SWCC. These local replacements combine the following two local replacements
(which preserve the SWCC):

1. Replacing an edge of weight w = ∏t
i=1 wi by a path of length t (i.e., t − 1 internal

nodes) with the corresponding weights w1, . . . , wt , and self-loops (with weight
1) on all internal nodes.

Note that a cycle cover that uses the original edge corresponds to a cycle cover
that uses the entire path, whereas a cycle cover that does not use the original edge
corresponds to a cycle cover that uses all the self-loops.

2. Replacing an edge of weight w =∑t
i=1 wi by t parallel 2-edge paths such that

the first edge on the i th path has weight wi , the second edge has weight 1, and the

210



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

intermediate node has a self-loop (with weight 1). (Paths of length two are used
because parallel edges are not allowed.)

Note that a cycle cover that uses the original edge corresponds to a collection
of cycle covers that use one out of the t paths (and the self-loops of all other
intermediate nodes), whereas a cycle cover that does not use the original edge
corresponds to a cycle cover that uses all the self-loops.

In particular, we may write each positive edge weight w, having binary expansion
σ|w|−1 · · · σ0, as

∑
i :σi=1(1+ 1)i , and apply the adequate replacements (i.e., first

apply the additive replacement to the outer sum (over {i : σi=1}), next apply the
product replacement to each power 2i , and finally apply the additive replacement
to each 1+ 1). Applying this process to the matrix A′ obtained in the first step, we
efficiently obtain a matrix A′′ with 0/1-entries such that perm(A′) = perm(A′′).
(In particular, the dimension of A′′ is polynomial in the length of the bi-
nary representation of A′, which in turn is polynomial in the length of the bi-
nary representation of A.) Combining the two reductions (steps), the proposition
follows.

6.2.2. Approximate Counting

Having seen that exact counting (for relations in PC) seems even harder than solving
the corresponding search problems, we turn to relaxations of the counting problem.
Before focusing on relative approximation, we briefly consider approximation with (large)
additive deviation.

Let us consider the counting problem associated with an arbitrary R ∈ PC. Without
loss of generality, we assume that all solutions to n-bit instances have the same length �(n),
where indeed � is a polynomial. We first note that, while it may be hard to compute #R,
given x it is easy to approximate #R(x) up to an additive error of 0.01 · 2�(|x |) (by randomly
sampling potential solutions for x). Indeed, such an approximation is very rough, but it
is not trivial (and in fact we do not know how to obtain it deterministically). In general,
we can efficiently produce at random an estimate of #R(x) that, with high probability,
deviates from the correct value by at most an additive term that is related to the absolute
upper bound on the number of solutions (i.e., 2�(|x |)).

Proposition 6.23 (approximation with large additive deviation): Let R ∈ PC and �

be a polynomial such that R ⊆ ∪n∈N{0, 1}n × {0, 1}�(n). Then, for every polynomial
p, there exists a probabilistic polynomial-time algorithm A such that for every
x ∈ {0, 1}∗ and δ ∈ (0, 1) it holds that

Pr[|A(x, δ)− #R(x)| > (1/p(|x |)) · 2�(|x |)] < δ. (6.5)

As usual, δ is presented to A in binary, and hence the running time of A(x, δ) is
upper-bounded by poly(|x | · log(1/δ)).

Proof Sketch: On input x and δ, algorithm A sets t = �(p(|x |)2 · log(1/δ)), selects
uniformly y1, . . . , yt and outputs 2�(|x |) · |{i : (x, yi ) ∈ R}|/t .

211



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Discussion. Proposition 6.23 is meaningful in the case that #R(x) > (1/p(|x |)) · 2�(|x |)

holds for some x’s. But otherwise, a trivial approximation (i.e., outputting the constant
value zero) meets the bound of Eq. (6.5). In contrast to this notion of additive approxima-
tion, a relative factor approximation is typically more meaningful. Specifically, we will
be interested in approximating #R(x) up to a constant factor (or some other reasonable
factor). In §6.2.2.1, we consider a natural #P-complete problem for which such a relative
approximation can be obtained in probabilistic polynomial time. We do not expect this to
happen for every counting problem in #P , because a relative approximation allows
for distinguishing instances having no solution from instances that do have solutions
(i.e., deciding membership in SR is reducible to a relative approximation of #R). Thus,
relative approximation for all #P is at least as hard as deciding all problems in NP .
However, in §6.2.2.2 we show that the former is not harder than the latter; that is, relative
approximation for any problem in #P can be obtained by a randomized Cook-reduction
to NP . Before turning to these results, let us state the underlying definition (and actually
strengthen it by requiring approximation to within a factor of 1± ε, for ε ∈ (0, 1)).12

Definition 6.24 (approximation with relative deviation): Let f : {0, 1}∗ → N and
ε, δ : N→ [0, 1]. A randomized process � is called an (ε, δ)-approximator of f if
for every x it holds that

Pr [|�(x)− f (x)| > ε(|x |) · f (x)] < δ(|x |). (6.6)

We say that f is efficiently (1− ε)-approximable (or just (1− ε)-approximable) if
there exists a probabilistic polynomial-time algorithm A that constitutes an (ε, 1/3)-
approximator of f .

The error probability of the latter algorithm A (which has error probability 1/3) can be
reduced to δ by O(log(1/δ)) repetitions (see Exercise 6.29). Typically, the running time
of A will be polynomial in 1/ε, and ε is called the deviation parameter.

We comment that the computational problem undelying Definition 6.24 is the
search problem of (1− ε)-approximating a function f (i.e., solving the search problem
R f,ε

def= {(x, v) : |v − f (x)| ≤ ε(|x |) · f (x)}). Typically (see Exercise 6.30 for details),
this search problem is computationally equivalent to the promise (“gap”) problem of dis-
tinguishing elements of the set {(x, v) : v < (1− ε(|x |)) · f (x)} and elements of the set
{(x, v) : v > (1+ ε(|x |)) · f (x)}.

6.2.2.1. Relative Approximation for #Rdnf

In this subsection we present a natural #P-complete problem for which constant factor
approximation can be found in probabilistic polynomial time. Stronger results regarding
unnatural #P-complete problems appear in Exercise 6.31.

Consider the relation Rdnf consisting of pairs (φ, τ ) such that φ is a DNF formula and τ

is an assignment satisfying it. Recall that the search problem of Rdnf is easy to solve and that
the proof of Theorem 6.19 establishes that #Rdnf is #P-complete (via a non-parsimonious

12We refrain from formally defining an F-factor approximation, for an arbitrary F , although we shall refer to this
notion in several informal discussions. There are several ways of defining the aforementioned term (and they are all
equivalent when applied to our informal discussions). For example, an F-factor approximation of #R may mean that,
with high probability, the output A(x) satisfies #R(x)/F(|x |) ≤ A(x) ≤ F(|x |) · #R(x). Alternatively, we may require
that #R(x) ≤ A(x) ≤ F(|x |) · #R(x) (or, alternatively, that #R(x)/F(|x |) ≤ A(x) ≤ #R(x).

212



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

reduction). Still, as we shall see, there exists a probabilistic polynomial-time algorithm that
provides a constant factor approximation of #Rdnf. We warn that the fact that #Rdnf is #P-
complete via a non-parsimonious reduction means that the constant factor approximation
for #Rdnf does not seem to imply a similar approximation for all problems in #P . In
fact, we should not expect each problem in #P to have a (probabilistic) polynomial-time
constant-factor approximation algorithm because this would imply NP ⊆ BPP (since a
constant factor approximation allows for distinguishing the case in which the instance has
no solution from the case in which the instance has a solution).

The approximation algorithm for #Rdnf is obtained by a deterministic reduction of
the task of (ε, 1/3)-approximating #Rdnf to an (additive deviation) approximation of
the type provided in Proposition 6.23. Consider a DNF formula φ = ∨m

i=1 Ci , where
each Ci : {0, 1}n → {0, 1} is a conjunction. Our task is to approximate the number of
assignments that satisfy at least one of the conjunctions. Actually, we will deal with the
more general problem in which we are (implicitly) given m subsets S1, . . . , Sm ⊆ {0, 1}n
and wish to approximate |⋃i Si |. In our case, each Si is the set of assignments that satisfy
the conjunction Ci . In general, we make two computational assumptions regarding these
sets (while letting “efficient” mean implementable in time polynomial in n · m):

1. Given i ∈ [m], one can efficiently determine |Si |.
2. Given i ∈ [m] and J ⊆ [m], one can efficiently approximate Prs∈Si [s ∈

⋃
j∈J S j ] up

to an additive deviation of 1/poly(n + m).

These assumptions are satisfied in our setting (where Si = C−1
i (1); see Exercise 6.32).

Now, the key observation toward approximating |⋃m
i=1 Si | is that∣∣∣∣∣

m⋃
i=1

Si

∣∣∣∣∣ =
m∑

i=1

∣∣∣∣∣∣Si \
⋃
j<i

S j

∣∣∣∣∣∣ =
m∑

i=1

Prs∈Si

s �∈
⋃
j<i

S j

 · |Si | (6.7)

and that the probabilities in Eq. (6.7) can be approximated by the second assumption.
This leads to the following algorithm, where ε denotes the desired deviation parameter
(i.e., we wish to obtain (1± ε) · |⋃m

i=1 Si |).

Construction 6.25: Let ε′ = ε/m. For i = 1 to m do

1. Using the first assumption, compute |Si |.
2. Using the second assumption, obtain an approximation p̃i = pi ± ε′, where

pi
def= Prs∈Si [s �∈

⋃
j<i S j ]. Set ai

def= p̃i · |Si |.
Output the sum of the ai ’s.

Let Ni = pi · |Si |, and note that by Eq. (6.7) it holds that |⋃i Si | =
∑

i Ni . We are
interested in the quality of the approximation to

∑
i Ni provided by

∑
i ai . Using ai =

(pi ± ε′) · |Si | = Ni ± ε′ · |Si | (for each i), we have
∑

i ai =
∑

i Ni ± ε′ ·∑i |Si |. Using∑
i |Si | ≤ m · |⋃i Si | = m ·∑i Ni (and ε = mε′), we get

∑
i ai = (1± ε) ·∑i Ni . Thus,

we obtain the following result (see Exercise 6.32).

Proposition 6.26: For every positive polynomial p, the counting problem of Rdnf is
efficiently (1− (1/p))-approximable.

213



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Using the reduction presented in the proof of Theorem 6.19, we conclude that the
number of unsatisfying assignments to a given CNF formula is efficiently (1− (1/p))-
approximable. We warn, however, that the number of satisfying assignments to such a
formula is not efficiently approximable. This concurs with the general phenomenon by
which relative approximation may be possible for one quantity, but not for the comple-
mentary quantity. Needless to say, such a phenomenon does not occur in the context of
additive-deviation approximation.

6.2.2.2. Relative Approximation for #P
Recall that we cannot expect to efficiently approximate every #P problem, where through-
out the rest of this section “approximation” is used as a shorthand for “relative approxima-
tion” (as in Definition 6.24). Specifically, efficiently approximating #R yields an efficient
algorithm for deciding membership in SR = {x : R(x) �= ∅}. Thus, at best we can hope
that approximating #R is not harder than deciding SR (i.e., that approximating #R is re-
ducible in polynomial time to SR). This is indeed the case for every NP-complete problem
(i.e., if SR is NP-complete). More generally, we show that approximating any problem in
#P is reducible in probabilistic polynomial time to NP .

Theorem 6.27: For every R ∈ PC and every positive polynomial p, there exists
a probabilistic polynomial-time oracle machine that when given oracle access to
NP constitutes a (1/p, µ)-approximator of #R, where µ is a negligible function
(e.g., µ(n) = 2−n).

Recall that it suffices to provide a (1/p, δ)-approximator of #R, for any constant δ < 0.5,
because error reduction is applicable in this context (see Exercise 6.29). Furthermore, it
suffices to provide a (1/2, δ)-approximator for every problem in #P (see Exercise 6.33).

Teaching note: The following proof relies on the notion of hashing functions, presented
in Appendix D.2. Specifically, we shall assume familiarity with the basic definition (see
Appendix D.2.1), at least one construction (see Appendix D.2.2), and Lemma D.4 (of Ap-
pendix D.2.3). The more advanced material of Appendix D.2.3 (which follows Lemma D.4)
will not be used in the current section (but part of it will be used in §6.2.4.2).

Proof: Given x , we show how to approximate |R(x)| to within some constant factor.
The desired (1− (1/p))-approximation can be obtained as in Exercise 6.33. We
may also assume that R(x) �= ∅, by starting with the query “is x in SR” and halting
(with output 0) if the answer is negative. Without loss of generality, we assume that
R(x) ⊆ {0, 1}�, where � = poly(|x |). We focus on finding some i ∈ {1, . . . , �} such
that 2i−4 ≤ |R(x)| ≤ 2i+4.

We proceed in iterations. For i = 1, . . . , �+ 1, we find out whether or not
|R(x)| < 2i . If the answer is positive then we halt with output 2i , and otherwise
we proceed to the next iteration. (Indeed, if we were able to obtain correct answers
to all these queries then the output 2i would satisfy 2i−1 ≤ |R(x)| < 2i .)

Needless to say, the key issue is how to check whether |R(x)| < 2i . The main idea
is to use a “random sieve” on the set R(x) such that each element passes the sieve
with probability 2−i . Thus, we expect |R(x)|/2i elements of R(x) to pass the sieve.
Assuming that the number of elements in R(x) that pass the random sieve is indeed

214



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

�|R(x)|/2i�, it holds that |R(x)| ≥ 2i if and only if some element of R(x) passes
the sieve. Assuming that the sieve can be implemented efficiently, the question of
whether or not some element in R(x) passed the sieve is of an “NP-type” (and thus
can be referred to our NP-oracle). Combining both assumptions, we may implement
the foregoing process by proceeding to the next iteration as long as some element of
R(x) passes the sieve. Furthermore, this implementation will provide a reasonably
good approximation even if the number of elements in R(x) that pass the random
sieve is only approximately equal to |R(x)|/2i . In fact, the level of approximation
that this implementation provides is closely related to the level of approximation
that is provided by the random sieve. Details follow.

Implementing a random sieve. The random sieve is implemented by using a family
of hashing functions (see Appendix D.2). Specifically, in the i th iteration we use
a family Hi

� such that each h ∈ Hi
� has a poly(�)-bit long description and maps

�-bit long strings to i-bit long strings. Furthermore, the family is accompanied with
an efficient evaluation algorithm (i.e., mapping adequate pairs (h, x) to h(x)) and
satisfies (for every S ⊆ {0, 1}�)

Prh∈Hi
�
[|{y ∈ S : h(y) = 0i }| �∈ (1− ε, 1+ ε) · 2−i |S|] <

2i

ε2|S| (6.8)

(see Lemma D.4). The random sieve will let y pass if and only if h(y) = 0i . Indeed,
this random sieve is not as perfect as we assumed in the foregoing discussion,
but Eq. (6.8) suggests that in some sense this sieve is good enough. In particular,
Eq. (6.8) implies that if i ≤ log2 |S| − O(1) then some string in S is likely to pass
the sieve, whereas if i ≥ log2 |S| + O(1) then no string in S is likely to pass the
sieve.

Implementing the queries. Recall that for some x , i and h ∈ Hi
� , we need to determine

whether {y∈ R(x) : h(y)=0i } = ∅. This type of question can be cast as membership
in the set

SR,H
def= {(x, i, h) : ∃y s.t. (x, y)∈ R ∧ h(y)=0i }. (6.9)

Using the hypotheses that R ∈ PC and that the family of hashing functions has an
efficient evaluation algorithm, it follows that SR,H is in NP .

The actual procedure. On input x ∈ SR and oracle access to SR,H , we proceed in
iterations, starting with i = 1 and halting at i = � (if not before), where � denotes
the length of the potential solutions for x . In the i th iteration (where i < �), we
uniformly select h ∈ Hi

� and query the oracle on whether or not (x, i, h) ∈ SR,H . If
the answer is negative then we halt with output 2i , and otherwise we proceed to the
next iteration (using i ← i + 1). Needless to say, if we reach the last iteration (i.e.,
i = �) then we just halt with output 2�.

Indeed, we have ignored the case that x �∈ SR , which can be easily handled by
a minor modification of the foregoing procedure. Specifically, on input x , we first
query SR on x and halt with output 0 if the answer is negative. Otherwise we proceed
as in the foregoing procedure.

215



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

The analysis. We upper-bound separately the probability that the procedure outputs
a value that is too small and the probability that it outputs a value that is too
big. In light of the foregoing discussion, we may assume that |R(x)| > 0, and let
ix = �log2 |R(x)|� ≥ 0. Intuitively, at any iteration i < ix , we expect (at least) 2ix−i

elements of R(x) to pass the sieve and thus we are unlikely to halt before iteration
ix − O(1). Similarly, we are unlikely to reach iteration ix + O(1) because at this
stage we expect no elements of R(x) to pass the sieve (since the actual expectation
is 2−O(1)). A more rigorous analysis (of both cases) follows.

1. The probability that the procedure halts in a specific iteration i < ix equals
Prh∈Hi

�
[|{y ∈ R(x) : h(y) = 0i }| = 0], which in turn is upper-bounded by

2i/|R(x)| (using Eq. (6.8) with ε = 1).13 Thus, the probability that the procedure
halts before iteration ix − 3 is upper-bounded by

∑ix−4
i=0 2i/|R(x)|, which in turn

is less than 1/8 (because ix ≤ log2 |R(x)|). It follows that, with probability at least
7/8, the output is at least 2ix−3 > |R(x)|/16 (because ix > (log2 |R(x)|)− 1).

2. The probability that the procedure does not halt in iteration i > ix equals
Prh∈Hi

�
[|{y ∈ R(x) : h(y) = 0i }| ≥ 1], which in turn is upper-bounded by

α/(α − 1)2, where α = 2i/|R(x)| > 1 (using Eq. (6.8) with ε = α − 1).14

Thus, the probability that the procedure does not halt by iteration ix + 4
is upper-bounded by 8/49 < 1/6 (because ix > (log2 |R(x)|)− 1). Thus, with
probability at least 5/6, the output is at most 2ix+4 ≤ 16 · |R(x)| (because
ix ≤ log2 |R(x)|).

Thus, with probability at least (7/8)− (1/6) > 2/3, the foregoing procedure outputs
a value v such that v/16 ≤ |R(x)| < 16v. Reducing the deviation by using the ideas
presented in Exercise 6.33 (and reducing the error probability as in Exercise 6.29),
the theorem follows.

Digest. The key observation underlying the proof of Theorem 6.27 is that, while (even
with the help of an NP-oracle) we cannot directly test whether the number of solutions
is greater than a given number, we can test (with the help of an NP-oracle) whether
the number of solutions that “survive a random sieve” is greater than zero. Since the
number of solutions that survive a random sieve reflects the total number of solutions
(normalized by the sieve’s density), this offers a way of approximating the total number of
solutions.

We mention that one can also test whether the number of solutions that “survive a
random sieve” is greater than a small number, where small means polynomial in the
length of the input (see Exercise 6.35). Specifically, the complexity of this test is linear
in the size of the threshold, and not in the length of its binary description. Indeed, in
many settings it is more advantageous to use a threshold that is polynomial in some effi-
ciency parameter (rather than using the threshold zero); examples appear in §6.2.4.2 and
in [106].

13Note that 0 does not reside in the open interval (0, 2ρ), where ρ = |R(x)|/2i > 0.
14Here we use the fact that 1 �∈ (2α−1 − 1, 1). A better bound can be obtained by using the hypothesis that,

for every y, when h is uniformly selected in Hi
�
, the value of h(y) is uniformly distributed in {0, 1}i . In this case,

Prh∈Hi
�
[|{y ∈ R(x) : h(y) = 0i }| ≥ 1] is upper-bounded by Eh∈Hi

�
[|{y ∈ R(x) : h(y) = 0i }|] = |R(x)|/2i .

216



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

6.2.3. Searching for Unique Solutions

A natural computational problem (regarding search problems), which arises when dis-
cussing the number of solutions, is the problem of distinguishing instances having a
single solution from instances having no solution (or finding the unique solution when-
ever such exists). We mention that instances having a single solution facilitate numerous
arguments (see, for example, Exercise 6.24 and §10.2.2.1). Formally, searching for and
deciding the existence of unique solutions are defined within the framework of promise
problems (see Section 2.4.1).

Definition 6.28 (search and decision problems for unique solution instances): The
set of instances having unique solutions with respect to the binary relation R is
defined as USR

def= {x : |R(x)| = 1}, where R(x)
def= {y : (x, y)∈ R}. As usual, we

denote SR = {x : |R(x)| ≥ 1}, and SR
def= {0, 1}∗ \ SR = {x : |R(x)| = 0}.

• The problem of finding unique solutions for R is defined as the search problem R
with promise USR ∪ SR (see Definition 2.29).

In continuation of Definition 2.30, candid searching for unique solutions for R is
defined as the search problem R with promise USR.

• The problem of deciding unique solutions for R is defined as the promise problem
(USR, SR) (see Definition 2.31).

Interestingly, in many natural cases, the promise does not make any of these problems
any easier than the original problem. That is, for all known NP-complete problems, the
original problem is reducible in probabilistic polynomial time to the corresponding unique
instances problem.

Theorem 6.29: Let R ∈ PC and suppose that every search problem in PC is par-
simoniously reducible to R. Then solving the search problem of R (resp., deciding
membership in SR) is reducible in probabilistic polynomial time to finding unique
solutions for R (resp., to the promise problem (USR, SR)). Furthermore, there ex-
ists a probabilistic polynomial-time computable mapping M such that for every
x ∈ SR it holds that Pr[M(x)∈ SR] = 1, whereas for every x ∈ SR it holds that
Pr[M(x)∈USR] ≥ 1/poly(|x |).

We highlight the fact that the hypothesis asserts that R is PC-complete via parsimonious
reductions; this hypothesis is crucial to Theorem 6.29 (see Exercise 6.36). The large
(but bounded-away from 1) error probability of the randomized Karp-reduction M can
be reduced by repetitions, yielding a randomized Cook-reduction with exponentially
vanishing error probability. Note that the resulting reduction may make many queries that
violate the promise, and still yield the correct answer (with high probability) by relying
on queries that satisfy the promise. (Specifically, in the case of search problems, we
avoid wrong solutions by checking each solution obtained, while in the case of decision
problems we rely on the fact that for every x ∈ SR it always holds that M(x) ∈ SR .)

Proof: We focus on establishing the furthermore clause (and the main claim follows).
The proof uses many of the ideas of the proof of Theorem 6.27, and we refer to the
latter for motivation. We shall again make essential use of hashing functions, and
rely on the material presented in Appendix D.2.1–D.2.2.

217



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

As in the proof of Theorem 6.27, the idea is to apply a “random sieve” on R(x),
this time with the hope that a single element survives. Specifically, if we let each
element pass the sieve with probability approximately 1/|R(x)| then with constant
probability a single element survives. In such a case, we shall obtain an instance
with a unique solution (i.e., an instance of SR,H having a single NP-witness), which
will (essentially) fulfill our quest. Sieving will be performed by a random function
selected in an adequate hashing family (see Appendix D.2). A couple of questions
arise:

1. How do we get an approximation to |R(x)|? Note that we need such an approx-
imation in order to determine the adequate hashing family. Note that invoking
Theorem 6.27 will not do, because the said oracle machine uses an oracle to
NP (which puts us back to square one, let alone that the said reduction makes
many queries).15 Instead, we just select m ∈ {0, . . . , poly(|x |)} uniformly and
note that (if |R(x)| > 0 then) Pr[m = &log2 |R(x)|'] = 1/poly(|x |). Next, we ran-
domly map x to (x, m, h), where h is uniformly selected in an adequate hashing
family.

2. How does the question of whether a single element of R(x) pass the random sieve
translate to an instance of the unique-solution problem for R? Recall that in the
proof of Theorem 6.27 the non-emptiness of the set of elements of R(x) that pass
the sieve (defined by h) was determined by checking membership (of (x, m, h))
in SR,H ∈ NP (defined in Eq. (6.9)). Furthermore, the number of NP-witnesses
for (x, m, h) ∈ SR,H equals the number of elements of R(x) that pass the sieve.
Thus, a single element of R(x) passes the sieve (defined by h) if and only if
(x, m, h) ∈ SR,H has a single NP-witness. Using the parsimonious reduction of
SR,H to SR (which is guaranteed by the theorem’s hypothesis), we obtained the
desired instance.

Note that in case R(x) = ∅ the aforementioned mapping always generates a no-
instance (of SR,H and thus of SR). Details follow.

Implementation (i.e., the mapping M ). As in the proof of Theorem 6.27, we as-
sume, without loss of generality, that R(x) ⊆ {0, 1}�, where � = poly(|x |). We start
by uniformly selecting m ∈ {1, . . . , �+ 1} and h ∈ H m

� , where H m
� is a family

of efficiently computable and pairwise-independent hashing functions (see Defini-
tion D.1) mapping �-bit long strings to m-bit long strings. Thus, we obtain an instance
(x, m, h) of SR,H ∈ NP such that the set of valid solutions for (x, m, h) equals
{y∈ R(x) : h(y) = 0m}. Using the parsimonious reduction g of the NP-witness rela-
tion of SR,H to R (i.e., the NP-witness relation of SR), we map (x, m, h) to g(x, m, h),
and it holds that |{y∈ R(x) : h(y) = 0m}| equals |R(g(x, m, h))|. To summarize, on
input x the randomized mapping M outputs the instance M(x)

def= g(x, m, h), where
m ∈ {1, . . . , �+ 1} and h ∈ H m

� are uniformly selected.

The analysis. Note that for any x ∈ SR it holds that Pr[M(x) ∈ SR] = 1. Assuming
that x ∈ SR , with probability exactly 1/(�+ 1) it holds that m = mx , where mx

def=
&log2 |R(x)|' + 1. Focusing on the case that m = mx , for a uniformly selected

15Needless to say, both problems can be resolved by using a reduction to unique-solution instances, but we still
do not have such a reduction – we are currently designing it.

218



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

h ∈ H m
� , we shall lower-bound the probability that the set Rh(x)

def= {y∈ R(x) :
h(y) = 0m} is a singleton. First, using the Inclusion-Exclusion Principle, we lower-
bound Prh∈H mx

�
[|Rh(x)| > 0] by∑

y∈R(x)

Prh∈H mx
�

[h(y) = 0mx ] −
∑

y1<y2∈R(x)

Prh∈H mx
�

[h(y1) = h(y2) = 0mx ].

Next, we upper-bound Prh∈H mx
�

[|Rh(x)| > 1] by∑
y1<y2∈R(x)

Prh∈H mx
�

[h(y1) = h(y2) = 0mx ].

Combining these two bounds, we get

Prh∈H mx
�

[|Rh(x)| = 1]

= Prh∈H mx
�

[|Rh(x)| > 0] − Prh∈H mx
�

[|Rh(x)| > 1]

≥
∑

y∈R(x)

Prh∈H mx
�

[h(y) = 0mx ] − 2 ·
∑

y1<y2∈R(x)

Prh∈H mx
�

[h(y1) = h(y2) = 0mx ]

= |R(x)| · 2−mx − 2 ·
(
|R(x)|

2

)
· 2−2mx

where the last equality is due to the pairwise independence property. Using 2mx−2 <

|R(x)| ≤ 2mx−1, it follows that

Prh∈H mx
�

[|Rh(x)| = 1] ≥ min
1/4<ρ≤1/2

{ρ − ρ2} >
1

8 .

Thus, Pr[M(x) ∈ USR] ≥ 1/(8(�+ 1)), and the theorem follows.

Comment. Theorem 6.29 is sometimes stated as referring to the unique solution problem
of SAT. In this case and when using a specific family of pairwise independent hash-
ing functions, the use of the parsimonious reduction can be avoided. For details see
Exercise 6.38.

Digest. The proof of Theorem 6.29 combines two reduction steps, which refer to the NP-
witness relation of SR,H , herein denoted R′. The main step is a many-to-one randomized
reduction of the search problem of R (resp., of SR) to the problem of finding unique
solutions for R′ (resp., to (USR′, SR′)). The second step is a deterministic many-to-one
reduction of the latter problem to the problem of finding unique solutions for R. Indeed,
the proof of Theorem 6.29 focuses on the first step, while the second step is provided by
the parsimonious reduction of R′ to R (which is guaranteed by the hypothesis). As stated
in the previous comment, in the case of SAT there is a direct way of performing the second
step.

An alternative proof of Theorem 6.29. Note that the analysis of the (approximate
counting) procedure that is presented in the proof of Theorem 6.27 implies that, for
every x ∈ SR , there exists an integer i ∈ [�] such that, with constant probability (over
the choice of h ∈ Hi

� ), the set {y∈ R(x) : h(x) = 0i } is non-empty and has constant size
(i.e., it contains at most 100 elements). Thus, the randomized mapping x !→ (x, i, h),

219



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

where i ∈ [�] and h ∈ Hi
� are selected uniformly, yields a reduction of SR to SR,H such

that any yes-instance is mapped with noticeable probability to a yes-instance that has
few (i.e., at most 100) solutions. Using an additional randomized reduction (e.g., as in
Construction 6.32), one may reduce such instances (which have few solutions) to instances
that have a unique solution. (For details, see Exercise 6.39.)

6.2.4. Uniform Generation of Solutions

Recall that approximately counting the number of solutions for a relation R is a straining
of the decision problem SR (which asks for distinguishing the case that some solutions
exist from the case that no solutions exist). We now turn to a new type of computational
problems, which may be viewed as a straining of search problems. We refer to the task of
generating a uniformly distributed solution for a given instance, rather than merely finding
an adequate solution. Nevertheless, as we shall see, for many natural problems (and all
NP-complete ones) generating a uniformly distributed solution is randomly reducible to
finding a solution.

Needless to say, by definition, algorithms solving this (“uniform generation”) task
must be randomized. Focusing on relations in PC we consider two versions of the
problem, which differ by the level of approximation provided for the desired (uniform)
distribution.16

Definition 6.30 (uniform generation): Let R ∈ PC and SR = {x : |R(x)| ≥ 1}, and
let � be a probabilistic process.

1. We say that � solves the uniform generation problem of R if, on input x ∈
SR, the process � outputs either an element of R(x) or a special symbol,
denoted ⊥, such that Pr[�(x)∈ R(x)] ≥ 1/2 and for every y ∈ R(x) it holds
that Pr[�(x) = y |�(x)∈ R(x)] = 1/|R(x)|.

2. For ε : N→ [0, 1], we say that � solves the (1− ε)-approximate uniform
generation problem of R if, on input x ∈ SR, the distribution �(x) is ε(|x |)-
close17 to the uniform distribution on R(x).

In both cases, without loss of generality, we may require that if x �∈ SR then
Pr[�(x) = ⊥] = 1. More generally, we may require that � never outputs a string
not in R(x).

Note that the error probability of uniform generation (as in Item 1) can be made exponen-
tially vanishing (in |x |) by employing error reduction. In contrast, we are not aware of any
general way of reducing the deviation of an approximate uniform generation procedure
(as in Item 2).18

In §6.2.4.1 we show that, for many search problems, approximate uniform generation
is computationally equivalent to approximate counting. In §6.2.4.2 we present a direct

16Note that a probabilistic algorithm running in strict polynomial time is not able to output a perfectly uniform
distribution on sets of certain sizes. Specifically, referring to the standard model that allows only for uniformly selected
binary values, such algorithms cannot output a perfectly uniform distribution on sets having cardinality that is not a
power of two.

17See Appendix D.1.1.
18We note that in some cases, the deviation of an approximate uniform generation procedure can be reduced. See

discussion following Theorem 6.31.

220



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

approach for solving the uniform generation problem of any search problem inPC by using
an oracle to NP . Thus, the uniform generation problem of any NP-complete problem is
randomly reducible to the problem itself (either in its search or decision version).

6.2.4.1. Relation to Approximate Counting
We show that, for many natural search problems in PC, the approximate counting
problem associated with R is computationally equivalent to approximate uniform gen-
eration with respect to R. Specifically, we refer to search problems R ∈ PC such
that R′(x ; y′) def= {y′′ : (x, y′y′′) ∈ R} is strongly parsimoniously reducible to R, where
a strongly parsimonious reduction of R′ to R is a parsimonious reduction g that is
coupled with an efficiently computable 1-1 mapping of pairs (g(x), y) ∈ R to pairs
(x, h(x, y)) ∈ R′ (i.e., h is efficiently computable and h(x, ·) is a 1-1 mapping of R(g(x))
to R′(x)). For technical reasons, we also assume that |g(x)| ≥ |x | for every x .19 Note that,
for many natural search problems R, the corresponding R′ is strongly parsimoniously
reducible to R, where the additional technical condition may be enforced by adequate
padding (cf. Exercise 2.30). This holds, in particular, for the search problems of SAT and
Perfect Matching (see, e.g., Exercise 6.40). We stress that the following result holds
also for problems that are not NP-complete (and, in fact, is more interesting for such
problems).

Recalling that both types of approximation problems are parameterized by the level of
precision, we obtain the following quantitative form of the aforementioned equivalence.

Theorem 6.31: Let R ∈ PC and let � be a polynomial such that for every (x, y)∈ R
it holds that |y| ≤ �(|x |). Suppose that R′ is strongly parsimoniously reducible to
R, where R′(x ; y′) def= {y′′ : (x, y′y′′) ∈ R}.
1. From approximate counting to approximate uniform generation: Let ε(n) =

1/5�(n) and let µ :N→ (0, 1) be a function satisfying µ(n) ≥ exp(−poly(n)).
Then, (1− µ)-approximate uniform generation for R is reducible in probabilis-
tic polynomial time to a (1− ε)-approximating #R.

2. From approximate uniform generation to approximate counting: For every non-
increasing and noticeable ε :N→ (0, 1) (i.e., ε(n) ≥ 1/poly(n) for every n), the
problem of (1− ε)-approximating #R is reducible in probabilistic polynomial
time to a (1− ε′)-approximate uniform generation problem of R, where ε′(n) =
ε(n)/7�(n).

In fact, Part 1 also holds in case R′ is just parsimoniously reducible to R.

Note that the quality of the approximate uniform generation asserted in Part 1 (i.e., µ)
is independent of the quality of the approximate counting procedure (i.e., ε) to which
the former is reduced, provided that the approximate counter performs better than some
threshold. On the other hand, the quality of the approximate counting asserted in Part 2
(i.e., ε) does depend on the quality of the approximate uniform generation (i.e., ε′), but
cannot reach beyond a certain bound (i.e., noticeable relative deviation). Recall that for
problems that are NP-complete under parsimonious reductions the quality of approximate
counting procedures can be improved (see Exercise 6.34). However, Theorem 6.31 is most

19This technical condition allows us to replace deviation bounds expressed in terms of |g(x)| by bounds expressed
in terms of |x |, while relying on the fact that ε(|g(x)|) ≤ ε(|x |) holds for any non-increasing ε :N→ (0, 1).

221



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

useful when applied to problems that are not NP-complete,20 because for problems that are
NP-complete both approximate counting and uniform generation are randomly reducible
to the corresponding search problem (see Exercise 6.42).

Proof: Throughout the proof, we assume for simplicity (and in fact without loss of
generality) that R(x) �= ∅ and R(x) ⊆ {0, 1}�(|x |).

Toward Part 1, let us first reduce the uniform generation problem of R to
#R (rather than to approximating #R). On input x ∈ SR , we shall generate a
uniformly distributed y ∈ R(x) by randomly generating its bits one after the
other. We proceed in iterations, entering the i th iteration with an (i − 1)-bit long
string y′ such that R′(x ; y′) def= {y′′ : (x, y′y′′) ∈ R} is not empty. With probability
|R′(x ; y′1)|/|R′(x ; y′)|we set the i th bit to equal 1, and otherwise we set it to equal 0.
We obtain both |R′(x ; y′1)| and |R′(x ; y′)| by using a parsimonious reduction g of
R′ = {((x ; y′), y′′) : (x, y′y′′) ∈ R} ∈ PC to R. That is, we obtain |R′(x ; y′)| by
querying for the value of |R(g(x ; y′))|. Ignoring integrality issues, all this works
perfectly (i.e., we generate an �(n)-bit string uniformly distributed in R(x)) as long
as we have oracle access to #R. Since we only have oracle access to an approximation
of #R, a careful implementation of the foregoing idea is in place.

Let us denote the approximation oracle by A. Firstly, by adequate error reduction,
we may assume that, for every z, it holds that Pr[A(z) ∈ (1± ε(n)) · #R(z)] >

1− µ′(|z|), where µ′(n) = µ(n)/�(n). In the rest of the analysis we ignore the
probability that the estimate of #R(z) provided by the randomized oracle A (on query
z) deviates from the aforementioned interval. (We note that these rare events are the
only source of the possible deviation of the output distribution from the uniform
distribution on R(x).)21 Next, let us assume for a moment that A is deterministic and
that for every x and y′ it holds that

A(g(x ; y′0))+ A(g(x ; y′1)) ≤ A(g(x ; y′)). (6.10)

We also assume that the approximation is correct at the “trivial level” (where one
may just check whether or not (x, y) is in R); that is, for every y ∈ {0, 1}�(|x |), it
holds that

A(g(x ; y)) = 1 if (x, y) ∈ R and A(g(x ; y)) = 0 otherwise. (6.11)

We modify the i th iteration of the foregoing procedure such that, when entering
with the (i − 1)-bit long prefix y′, we set the i th bit to σ ∈ {0, 1} with proba-
bility A(g(x ; y′σ ))/A(g(x ; y′)) and halt (with output ⊥) with the residual prob-
ability (i.e., 1− (A(g(x ; y′0))/A(g(x ; y′)))− (A(g(x ; y′1))/A(g(x ; y′)))). Indeed,
Eq. (6.10) guarantees that the latter instruction is sound, since the two main prob-
abilities sum up to at most 1. If we completed the last (i.e., �(|x |)th) iteration, then
we output the �(|x |)-bit long string that was generated. Thus, as long as Eq. (6.10)
holds (but regardless of other aspects of the quality of the approximation), every

20In fact, many approximate counting algorithms rely explicitly or implicitly on Theorem 6.31 (see, e.g., [168,
Sec. 11.3.1] and [131]).

21Note that the (negligible) effect of these rare events may not be easy to correct. For starters, we do not necessarily
get an indication when these rare events occur. Furthermore, these rare events may occur with different probability in
the different invocations of algorithm A (i.e., on different queries).

222



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

y = σ1 · · · σ�(|x |) ∈ R(x) is output with probability

A(g(x ; σ1))

A(g(x ; λ))
· A(g(x ; σ1σ2))

A(g(x ; σ1))
· · · A(g(x ; σ1σ2 · · · σ�(|x |)))

A(g(x ; σ1σ2 · · · σ�(|x |)−1))
(6.12)

which, by Eq. (6.11), equals 1/A(g(x ; λ)). Thus, the procedure outputs each element
of R(x) with equal probability, and never outputs a non-⊥ value that is outside R(x).
It follows that the quality of approximation only affects the probability that the
procedure outputs a non-⊥ value (which in turn equals |R(x)|/A(g(x ; λ))). The key
point is that, as long as Eq. (6.11) holds, the specific approximate values obtained
by the procedure are immaterial – with the exception of A(g(x ; λ)), all these values
“cancel out.”

We now turn to enforcing Eq. (6.10) and Eq. (6.11). We may enforce Eq. (6.11)
by performing the straightforward check (of whether or not (x, y) ∈ R) rather
than invoking A(g(x, y)).22 As for Eq. (6.10), we enforce it artificially by us-
ing A′(x, y′) def= (1+ ε(|x |))3(�(|x |)−|y′|) · A(g(x ; y′)) instead of A(g(x ; y′)). Recalling
that A(g(x ; y′)) = (1± ε(|x |)) · |R′(x ; y′)|, we have

A′(x, y′) > (1+ ε(|x |))3(�(|x |)−|y′|) · (1− ε(|x |)) · |R′(x ; y′)|
A′(x, y′σ ) < (1+ ε(|x |))3(�(|x |)−|y′|−1) · (1+ ε(|x |)) · |R′(x ; y′σ )|

and the claim (that Eq. (6.10) holds) follows by using (1− ε(|x |)) · (1+ ε(|x |))3 >

(1+ ε(|x |)). Note that the foregoing modification only affects the probabil-
ity of outputting a non-⊥ value; this good event now occurs with probability
|R′(x ; λ)|/A′(x, λ), which is lower-bounded by (1+ ε(|x |))−(3�(|x |)+1) > 1/2, where
the inequality is due to the setting of ε (i.e., ε(n) = 1/5�(n)). Finally, we refer to
our assumption that A is deterministic. This assumption was only used in order to
identify the value of A(g(x, y′)) obtained and used in the (|y′| − 1)st iteration with
the value of A(g(x, y′)) obtained and used in the |y′|th iteration. The same effect
can be obtained by just reusing the former value (in the |y′|th iteration) rather than
reinvoking A in order to obtain it. Part 1 follows.

Toward Part 2, let use first reduce the task of approximating #R to the task of
(exact) uniform generation for R. On input x ∈ SR , the reduction uses the tree of
possible prefixes of elements of R(x) in a somewhat different manner. Again, we
proceed in iterations, entering the i th iteration with an (i − 1)-bit long string y′ such
that R′(x ; y′) def= {y′′ : (x, y′y′′) ∈ R} is not empty. At the i th iteration we estimate the
bigger among the two fractions |R′(x ; y′0)|/|R′(x ; y′)| and |R′(x ; y′1)|/|R′(x ; y′)|,
by uniformly sampling the uniform distribution over R′(x ; y′). That is, taking
poly(|x |/ε′(|x |)) uniformly distributed samples in R′(x ; y′), we obtain with over-
whelmingly high probability an approximation of these fractions up to an additive
deviation of at most ε′(|x |). This means that we obtain a relative approximation up
to a factor of 1± 3ε′(|x |) for the fraction (or fractions) that is (resp., are) bigger than
1/3. Indeed, we may not be able to obtain such a good relative approximation of
the other fraction (in the case that the other fraction is very small), but this does not
matter. It also does not matter that we cannot tell which is the bigger fraction among
the two; it only matter that we use an approximation that indicates a quantity that is,

22Alternatively, we note that since A is a (1− ε)-approximator for ε < 1 it must hold that #R′(z) = 0 implies
A(z) = 0. Also, since ε < 1/3, if #R′(z) = 1 then A(z) ∈ (2/3, 4/3), which may be rounded to 1.

223



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

say, bigger than 1/3. We proceed to the next iteration by augmenting y′ using the bit
that corresponds to such a quantity. Specifically, suppose that we obtained the ap-
proximations a0(y′) ≈ |R′(x ; y′0)|/|R′(x ; y′)| and a1(y′) ≈ |R′(x ; y′1)|/|R′(x ; y′)|.
Then we extend y′ by the bit 1 if a1(y′) > a0(y′) and extend y′ by the bit 0 otherwise.
Finally, when we reach y = σ1 · · · σ�(|x |) such that (x, y) ∈ R, we output

aσ1 (λ)−1 · aσ2 (σ1)−1 · · · aσ�(|x |) (σ1σ2 · · · σ�(|x |)−1)−1 (6.13)

where for each i it holds that aσi (σ1σ2 · · · σi−1) is (1± 3ε′(|x |)) · |R′(x ;σ1σ2···σi )|
|R′(x ;σ1σ2···σi−1)| .

As in Part 1, actions regarding R′ (in this case uniform generation in R′) are
conducted via the parsimonious reduction g to R. That is, whenever we need to
sample uniformly in the set R′(x ; y′), we sample the set R(g(x ; y′)) and recover the
corresponding element of R′(x ; y′) by using the mapping guaranteed by the hypoth-
esis that g is strongly parsimonious. Finally, note that so far we assumed a uniform
generation procedure for R, but using an (1− ε′)-approximate uniform generation
merely means that all our approximations deviate by another additive term of ε′.
Thus, with overwhelmingly high probability, for each i it holds that aσi (σ1σ2 · · · σi−1)
is (1± 6ε′(|x |)) · |R′(x ; σ1σ2 · · · σi )|/|R′(x ; σ1σ2 · · · σi−1)|. It follows that, on input
x , when using an oracle that provides a (1− ε′)-approximate uniform generation for
R, with overwhelmingly high probability, the output (as defined in Eq. (6.13)) is in

�(|x |)∏
i=1

(
(1± 6ε′(|x |))−1 · |R

′(x ; σ1 · · · σi−1)|
|R′(x ; σ1 · · · σi )|

)
(6.14)

where the error probability is due to the unlikely case that in one of the iterations our
approximation deviates from the correct value by more than an additive deviation
term of 2ε′(n). Noting that Eq. (6.14) equals (1± 6ε′(|x |))−�(|x |) · |R(x)| and using
(1± 6ε′(|x |))−�(|x |) ⊂ (1± ε(|x |)) (which holds for ε′ = ε/7�), Part 2 follows.

6.2.4.2. A Direct Procedure for Uniform Generation
We conclude the current chapter by presenting a direct procedure for solving the uniform
generation problem of any R ∈ PC. This procedure uses an oracle to NP (or to SR itself
in case it is NP-complete), which is unavoidable because solving the uniform generation
problem of R implies solving the corresponding search problem (which in turn implies
deciding membership in SR). One advantage of this procedure, over the reduction presented
in §6.2.4.1, is that it solves the uniform generation problem rather than the approximate
uniform generation problem.

We are going to use hashing again, but this time we use a family of hashing functions
having a stronger “uniformity property” (see Appendix D.2.3). Specifically, we will use
a family of �-wise independent hashing functions mapping �-bit strings to m-bit strings,
where � bounds the length of solutions in R, and rely on the fact that such a family satisfies
Lemma D.6. Intuitively, such functions partition {0, 1}� into 2m cells and Lemma D.6
asserts that these partitions “uniformly shatter” all sufficiently large sets. That is, for
every set S ⊆ {0, 1}� of size �(� · 2m), the partition induced by almost every function
in this family is such that each cell contains approximately |S|/2m elements of S. In
particular, if |S| = �(� · 2m) then each cell contains �(�) elements of S. We denote this
family of functions by H m

� , and rely on the fact that its elements have succinct and effective
representation (as defined in Appendix D.2.1).

224



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

6.2. COUNTING

Loosely speaking, the following procedure (for uniform generation) first selects a
random hashing function and tests whether it “uniformly shatters” the target set S = R(x).
If this condition holds then the procedure selects a cell at random and retrieves all the
elements of S residing in the chosen cell. Finally, the procedure either outputs one of the
retrieved elements or halts with no output, where each retrieved element is output with
a fixed probability p (which is independent of the actual number of elements of S that
reside in the chosen cell). This guarantees that each element e ∈ S is output with the same
probability (i.e., 2−m · p), regardless of the number of elements of S that reside with e in
the same cell.

In the following construction, we assume that on input x we also obtain a good approx-
imation to the size of R(x). This assumption can be enforced by using an approximate
counting procedure as a preprocessing stage. Alternatively, the ideas presented in the
following construction yield such an approximate counting procedure.

Construction 6.32 (uniform generation): On input x and m ′x ∈ {mx , mx + 1},
where mx

def= �log2 |R(x)|� and R(x) ⊆ {0, 1}�, the oracle machine proceeds as
follows.

1. Selecting a partition that “uniformly shatters” R(x). The machine sets m =
max(0, m ′x − log2 40�) and selects uniformly h ∈ H m

� . Such a function defines
a partition of {0, 1}� into 2m cells,23 and the hope is that each cell contains
approximately the same number of elements of R(x). Next, the machine checks
that this is indeed the case or rather than no cell contains more than 120�

elements of R(x) (i.e., more than twice the expected number). This is done by
checking whether or not (x, h, 1120�+1) is in the set S(1)

R,H defined as follows

S(1)
R,H

def= {(x ′, h′, 1t ) : ∃v s.t. |{y : (x ′, y)∈ R ∧ h′(y) = v}| ≥ t} (6.15)

= {(x ′, h′, 1t ) : ∃v, y1, . . . , yt s.t. ψ (1)(x ′, h′, v, y1, . . . , yt )},
where ψ (1)(x ′, h′, v, y1, . . . , yt ) holds if and only if y1 < y2 · · ·< yt and for every
j ∈ [t] it holds that (x ′, y j )∈ R ∧ h′(y j ) = v. Note that S(1)

R,H ∈ NP .

If the answer is positive (i.e., there exists a cell that contains more than 120�

elements of R(x)) then the machine halts with output⊥. Otherwise, the machine
continues with this choice of h. In this case, no cell contains more than 120�

elements of R(x) (i.e., for every v ∈ {0, 1}m , it holds that |{y : (x, y)∈ R ∧
h(y) = v}| ≤ 120�). We stress that this is an absolute guarantee that follows
from (x, h, 1120�+1) �∈ S(1)

R,H .

2. Selecting a cell and determining the number of elements of R(x) that are
contained in it. The machine selects uniformly v ∈ {0, 1}m and determines
sv

def= |{y : (x, y)∈ R ∧ h(y) = v}| by making queries to the following NP-set

S(2)
R,H

def= {(x ′, h′, v′, 1t ) : ∃y1, . . . , yt s.t. ψ (1)(x ′, h′, v′, y1, . . . , yt )}. (6.16)

Specifically, for i = 1, . . . , 120�, it checks whether (x, h, v, 1i ) is in S(2)
R,H , and

sets sv to be the largest value of i for which the answer is positive.

23For sake of uniformity, we also allow the case of m = 0, which is rather artificial. In this case all hashing
functions in H0

�
map {0, 1}� to the empty string, which is viewed as 00, and thus define a trivial partition of {0, 1}�

(i.e., into a single cell).

225



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

3. Obtaining all the elements of R(x) that are contained in the selected cell, and
outputting one of them at random. Using sv , the procedure reconstructs the set
Sv

def= {y : (x, y)∈ R ∧ h(y) = v}, by making queries to the following NP-set

S(3)
R,H

def= {(x ′, h′, v′, 1t , j) : ∃y1, . . . , yt s.t. ψ (3)(x ′, h′, v′, y1, . . . , yt , j)},
(6.17)

where ψ (3)(x ′, h′, v′, y1, . . . , yt , j) holds if and only if ψ (1)(x ′, h′, v′, y1, . . . , yt )
holds and the j th bit of y1 · · · yt equals 1. Specifically, for j1 = 1, . . . , sv and
j2 = 1, . . . , �, we make the query (x, h, v, 1sv , ( j1 − 1) · �+ j2) in order to
determine the j th

2 bit of y j1 . Finally, having recovered Sv , the procedure out-
puts each y ∈ Sv with probability 1/120�, and outputs ⊥ otherwise (i.e., with
probability 1− (sv/120�)).

Recall that for |R(x)| = �(�) and m = m ′x − log2 40�, Lemma D.6 implies that, with
overwhelmingly high probability (over the choice of h ∈ H m

� ), each set {y : (x, y)∈ R ∧
h(y) = v} has cardinality (1± 0.5)|R(x)|/2m . Thus, ignoring the case of |R(x)| = O(�),
Step 1 can be easily adapted to yield an approximate counting procedure for #R; see
Exercise 6.41, which also handles the case of |R(x)| = O(�) by using ideas as in Step 2.
However, our aim is to establish the following result.

Proposition 6.33: Construction 6.32 solves the uniform generation problem of R.

Proof: Intuitively, by Lemma D.6 (and the setting of m), with overwhelm-
ingly high probability, a uniformly selected h ∈ H m

� partitions R(x) into 2m

cells, each containing at most 120� elements. Following is the tedious proof
of this fact. Since m = max(0, m ′x − log2 40�), we may focus on the case
that m ′x > log2 40� (as in the other case |R(x)| ≤ 2m ′x+1 ≤ 80�). In this case,
by Lemma D.6 (using ε = 0.5 and m = m ′x − log2 40� ≤ log2 |R(x)| − log2 20�

(which implies m ≤ log2 |R(x)| − log2(5�/ε2))), with overwhelmingly high proba-
bility, each set {y : (x, y)∈ R ∧ h(y) = v} has cardinality (1± 0.5)|R(x)|/2m . Using
m ′x > (log2 |R(x)|)− 1 (and m = m ′x − log2 40�), it follows that |R(x)|/2m < 80�

and hence each cell contains at most 120� elements of R(x). We also note that,
using m ′x ≤ (log2 |R(x)|)+ 1, it follows that |R(x)|/2m ≥ 20� and hence each cell
contains at least 10� elements of R(x).

The key observation, stated in Step 1, is that if the procedure does not halt
in Step 1 then it is indeed the case that h induces a partition in which each cell
contains at most 120� elements of R(x). The fact that these cells may contain a
different number of elements is immaterial, because each element is output with
the same probability (i.e., 1/120�). What matters is that the average number of
elements in the various cells is sufficiently large, because this average number
determines the probability that the procedure outputs an element of R(x) (rather
than ⊥). Specifically, conditioned on not halting in Step 1, the probability that
Step 3 outputs some element of R(x) equals the average number of elements per cell
(i.e., |R(x)|/2m) divided by 120�. Recalling that for m > 0 (resp., m = 0) it holds
that |R(x)|/2m ≥ 20� (resp., |R(x)| ≥ 1), we conclude that in this case some element
of R(x) is output with probability at least 1/6 (resp., |R(x)|/120�). Recalling that
Step 1 halts with negligible probability, it follows that the procedure outputs some
element of R(x) with probability at least 0.99 ·min((|R(x)|/120�), (1/6)).

226



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

Comments. We can easily improve the performance of Construction 6.32 by dealing
separately with the case m = 0. In such a case, Step 3 can be simplified and improved
by uniformly selecting and outputting an element of Sλ (which equals R(x)). Under this
modification, the procedure outputs some element of R(x) with probability at least 1/6.
In any case, recall that the probability that a uniform generation procedure outputs ⊥ can
be deceased by repeated invocations.

Digest. Construction 6.32 is the culmination of the “hashing paradigm” that is aimed at
allowing various manipulations of arbitrary sets. In particular, as seen in Construction 6.32,
hashing can be used in order to partition a large set into an adequate number of small
subsets that are of approximately the same size. We stress that hashing is performed by
randomly selecting a function in an adequate family. Indeed, the use of randomization for
such purposes (i.e., allowing manipulation of large sets) seems indispensable.

Chapter Notes

One key aspect of randomized procedures is their success probability, which is obvi-
ously a quantitative notion. This aspect provides a clear connection between probabilistic
polynomial-time algorithms considered in Section 6.1 and the counting problems con-
sidered in Section 6.2 (see also Exercise 6.20). More appealing connections between
randomized procedures and counting problems (e.g., the application of randomization
in approximate counting) are presented in Section 6.2. These connections justify the
presentation of these two topics in the same chapter.

Randomized Algorithms

Making people take an unconventional step requires compelling reasons, and indeed the
study of randomized algorithms was motivated by a few compelling examples. Ironically,
the appeal of the two most famous examples (discussed next) has been somewhat di-
minished due to subsequent findings, but the fundamental questions that emerged remain
fascinating regardless of the status of these two examples. These questions refer to the
power of randomization in various computational settings, and in particular in the context
of decision and search problems. We shall return to these questions after briefly reviewing
the story of the aforementioned examples.

The first example: primality testing. For more than two decades, primality testing was
the archetypical example of the usefulness of randomization in the context of efficient
algorithms. The celebrated algorithms of Solovay and Strassen [211] and of Rabin [184],
proposed in the late 1970s, established that deciding primality is in coRP (i.e., these tests
always correctly recognize prime numbers, but they may err on composite inputs). (The
approach of Construction 6.4, which only establishes that deciding primality is in BPP ,
is commonly attributed to M. Blum.) In the late 1980s, Adleman and Huang [2] proved
that deciding primality is in RP (and thus in ZPP). In the early 2000s, Agrawal, Kayal,
and Saxena [3] showed that deciding primality is actually in P . One should note, however,
that strong evidence of the fact that deciding primality is in P was actually available from
the start: We refer to Miller’s deterministic algorithm [166], which relies on the Extended
Riemann Hypothesis.

227



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

The second example: undirected connectivity. Another celebrated example of the power
of randomization, specifically in the context of log-space computations, was provided
by testing undirected connectivity. The random-walk algorithm presented in Construc-
tion 6.12 is due to Aleliunas, Karp, Lipton, Lovász, and Rackoff [5]. Recall that a
deterministic log-space algorithm was found twenty-five years later (see Section 5.2.4
or [190]).

Another famous example: polynomial identity testing. A third famous example, which
dates back to about the same period, is the polynomial identity tester of [65, 199, 243].
This tester, presented in §6.1.3.1, has found many applications in Complexity Theory
(some are implicit in subsequent chapters). Needless to say, in the abstract setting of
Construction 6.7, randomization is indispensable. Interestingly, the computational version
mentioned in Exercise 6.17 has so far resisted de-randomization attempts (cf. [134]).

Other randomized algorithms. In addition to the three foregoing examples, several other
appealing randomized algorithms are known. Confining ourselves to the context of search
and decision problems, we mention the algorithms for finding perfect matchings and
minimum cuts in graphs (see, e.g., [90, Apdx. B.1] or [168, Sec. 12.4 and Sec. 10.2]), and
note the prominent role of randomization in computational number theory (see, e.g., [24]
or [168, Chap. 14]). We mention that randomized algorithms are more abundant in the
context of approximation problems, and, in particular, for approximate counting problems
(cf., e.g., [168, Chap. 11]). For a general textbook on randomized algorithms, we refer the
interested reader to [168].

While it can be shown that randomization is essential in several important computa-
tional settings (cf., e.g., Chapter 9, Section 10.1.2, Appendix C, and Appendix D.3), a
fundamental question is whether randomization is essential in the context of search and
decision problems. The prevailing conjecture is that randomization is of limited help in the
context of time-bounded and space-bounded algorithms. For example, it is conjectured
that BPP = P and BPL = L. Note that such conjectures do not rule out the possibility
that randomization is also helpful in these contexts; they merely says that this help is
limited. For example, it may be the case that any quadratic-time randomized algorithm
can be emulated by a cubic-time deterministic algorithm, but not by a quadratic-time
deterministic algorithm.

On the study of BPP . The conjecture BPP = P is referred to as a full derandomization
of BPP , and can be shown to hold under some reasonable intractability assumptions. This
result (and related ones) will be presented in Section 8.3. In the current chapter, we only
presented unconditional results regarding BPP like BPP ⊂ P/poly and BPP ⊆ PH.
Our presentation of Theorem 6.9 follows the proof idea of Lautemann [150]. A different
proof technique, which yields a weaker result but found more applications (see, e.g.,
Theorems 6.27 and F.2), was presented (independently) by Sipser [207].

On the role of promise problems. In addition to their use in the formulation of
Theorem 6.9, promise problems allow for establishing complete problems and hierar-
chy theorems for randomized computation (see Exercises 6.14 and 6.15, respectively). We
mention that such results are not known for the corresponding classes of standard deci-
sion problems. The technical difficulty is that we do not know how to enumerate and/or
recognize probabilistic machines that utilize a non-trivial probabilistic decision rule.

228



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

On the feasibility of randomized computation. Different perspectives on this question
are offered by Chapter 8 and Appendix D.4. Specifically, as advocated in Chapter 8,
generating uniformly distributed bit sequences is not really necessary for implementing
randomized algorithms; it suffices to generate sequences that look (to their user) as if
they are uniformly distributed. In many cases this leads to reducing the number of coin
tosses in such implementations, and at times even to a full (efficient) derandomization
(see Sections 8.3 and 8.4). A less radical approach is presented in Appendix D.4, which
deals with the task of extracting almost uniformly distributed bit sequences from sources
of weak randomness. Needless to say, these two approaches are complementary and can
be combined.

Counting Problems

The counting class #P was introduced by Valiant [230], who proved that computing
the permanent of 0/1-matrices is #P-complete (i.e., Theorem 6.20). Interestingly, like
in the case of Cook’s introduction of NP-completeness [58], Valiant’s motivation was
determining the complexity of a specific problem (i.e., the permanent).

Our presentation of Theorem 6.20 is based both on Valiant’s paper [230] and on sub-
sequent studies (most notably [31]). Specifically, the high-level structure of the reduction
presented in Proposition 6.21 as well as the “structured” design of the clause gadget is
taken from [230], whereas the Deus Ex Machina gadget presented in Figure 6.3 is based
on [31]. The proof of Proposition 6.22 is also based on [31] (with some variants). Turn-
ing back to the design of clause gadgets, we regret not being able to cite and/or use a
systematic study of this design problem.

As noted in the main text, we decided not to present a proof of Toda’s Theorem [220],
which asserts that every set in PH is Cook-reducible to #P (i.e., Theorem 6.16). Ap-
pendix F.1 contains a proof of a related result, which implies that PH is reducible
to #P via probabilistic polynomial-time reductions. Alternative proofs can be found
in [136, 212, 220].

Approximate counting and related problems. The approximation procedure for #P is
due to Stockmeyer [214], following an idea of Sipser [207]. Our exposition, however,
follows further developments in the area. The randomized reduction of NP to problems
of unique solutions was discovered by Valiant and Vazirani [233]. Again, our exposition
is a bit different.

The connection between approximate counting and uniform generation (presented in
§6.2.4.1) was discovered by Jerrum, Valiant, and Vazirani [132], and turned out to be
very useful in the design of algorithms (e.g., in the “Markov Chain approach” (see [168,
Sec. 11.3.1])). The direct procedure for uniform generation (presented in §6.2.4.2) is taken
from [28].

In continuation of §6.2.2.1, which is based on [140], we refer the interested reader
to [131], which presents a probabilistic polynomial-time algorithm for approximating
the permanent of non-negative matrices. This fascinating algorithm is based on the fact
that knowing (approximately) certain parameters of a non-negative matrix M allows
for approximating the same parameters for a matrix M ′, provided that M and M ′ are
sufficiently similar. Specifically, M and M ′ may differ only on a single entry, and the
ratio of the corresponding values must be sufficiently close to one. Needless to say, the
actual observation (is not generic but rather) refers to specific parameters of the matrix,
which include its permanent. Thus, given a matrix M for which we need to approximate

229



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

the permanent, we consider a sequence of matrices M0, . . . , Mt ≈ M such that M0 is
the all 1’s matrix (for which it is easy to evaluate the said parameters), and each Mi+1 is
obtained from Mi by reducing some adequate entry by a factor sufficiently close to one.
This process of (polynomially many) gradual changes allows for transforming the dummy
matrix M0 into a matrix Mt that is very close to M (and hence has a permanent that is
very close to the permanent of M). Thus, approximately obtaining the parameters of Mt

allows for approximating the permanent of M .
Finally, we mention that Section 10.1.1 provides a treatment of a different type of

approximation problems. Specifically, when given an instance x (for a search problem R),
rather than seeking an approximation of the number of solutions (i.e., #R(x)), one seeks
an approximation of the value of the best solution (i.e., best y ∈ R(x)), where the value
of a solution is defined by an auxiliary function.

Exercises

Exercise 6.1: Show that if a search (resp., decision) problem can be solved by a prob-
abilistic polynomial-time algorithm having zero failure probability, then the problem
can be solve by a deterministic polynomial-time algorithm.

(Hint: Replace the internal coin tosses by a fixed outcome that is easy to generate
deterministically (e.g., the all-zero sequence).)

Exercise 6.2 (randomized reductions): In continuation of the definitions presented in
Section 6.1.1, prove the following:

1. If a problem � is probabilistic polynomial-time reducible to a problem that is solv-
able in probabilistic polynomial time then � is solvable in probabilistic polynomial
time, where by solving we mean solving correctly except with negligible probability.

Warning: Recall that in the case that �′ is a search problem, we required that on
input x the solver provides a correct solution with probability at least 1− µ(|x |),
but we did not require that it always returns the same solution.

(Hint: without loss of generality, the reduction does not make the same query twice.)

2. Prove that probabilistic polynomial-time reductions are transitive.

3. Prove that randomized Karp-reductions are transitive and that they yield a special
case of probabilistic polynomial-time reductions.

Define one-sided error and zero-sided error randomized (Karp- and Cook-) reductions,
and consider the foregoing items when applied to them. Note that the implications for
the case of one-sided error are somewhat subtle.

Exercise 6.3 (on the definition of probabilistically solving a search problem): In
continuation of the discussion at the beginning of Section 6.1.2, suppose that for
some probabilistic polynomial-time algorithm A and a positive polynomial p the
following holds: For every x ∈ SR

def= {z : R(z) �= ∅} there exists y ∈ R(x) such that
Pr[A(x) = y] > 0.5+ (1/p(|x |)), whereas for every x �∈ SR it holds that Pr[A(x) =
⊥] > 0.5+ (1/p(|x |)).
1. Show that there exists a probabilistic polynomial-time algorithm that solves the

search problem of R with negligible error probability.

(Hint: See Exercise 6.4 for a related procedure.)

230



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

2. Reflect on the need to require that one (correct) solution occurs with probability
greater than 0.5+ (1/p(|x |)). Specifically, what can we do if it is only guaranteed
that for every x ∈ SR it holds that Pr[A(x) ∈ R(x)] > 0.5+ (1/p(|x |)) (and for
every x �∈ SR it holds that Pr[A(x) = ⊥] > 0.5+ (1/p(|x |)))?

Note that R is not necessarily in PC. Indeed, in the case that R ∈ PC we can eliminate
the error probability for every x �∈ SR , and perform error reduction for x ∈ SR as in
the case of RP .

Exercise 6.4 (error reduction for BPP): For ε : N→ [0, 1], let BPPε denote the class
of decision problems that can be solved in probabilistic polynomial time with error
probability upper-bounded by ε. Prove the following two claims:

1. For every positive polynomial p and ε(n) = (1/2)− (1/p(n)), the class BPPε

equals BPP .
2. For every positive polynomial p and ε(n) = 2−p(n), the class BPP equals BPPε.

Formulate a corresponding version for the setting of search problems. Specifically, for
every input that has a solution, consider the probability that a specific solution is output.

Guideline: Given an algorithm A for the syntactically weaker class, consider an
algorithm A′ that on input x invokes A on x for t(|x |) times, and rules by majority.
For Part 1 set t(n) = O(p(n)2) and apply Chebyshev’s Inequality. For Part 2 set t(n) =
O(p(n)) and apply the Chernoff Bound.

Exercise 6.5 (error reduction for RP): For ρ : N→ [0, 1], we define the class of deci-
sion problemRPρ such that it contains S if there exists a probabilistic polynomial-time
algorithm A such that for every x ∈ S it holds that Pr[A(x) = 1] ≥ ρ(|x |) and for every
x �∈ S it holds that Pr[A(x) = 0] = 1. Prove the following two claims:

1. For every positive polynomial p, the class RP1/p equals RP .
2. For every positive polynomial p, the class RP equals RPρ , where ρ(n) = 1−

2−p(n).

(Hint: The one-sided error allows for using an “or-rule” (rather than a “majority-rule”)
for the decision.)

Exercise 6.6 (error reduction for ZPP): For ρ : N→ [0, 1], we define the class of de-
cision problem ZPPρ such that it contains S if there exists a probabilistic polynomial-
time algorithm A such that for every x it holds that Pr[A(x) = χS(x)] ≥ ρ(|x |) and
Pr[A(x) ∈ {χS(x),⊥}] = 1, where χS(x) = 1 if x ∈ S and χS(x) = 0 otherwise. Prove
the following two claims:

1. For every positive polynomial p, the class ZPP1/p equals ZPP .
2. For every positive polynomial p, the class ZPP equals ZPPρ , where ρ(n) =

1− 2−p(n).

Exercise 6.7 (an alternative definition of ZPP): We say that the decision problem
S is solvable in expected probabilistic polynomial time if there exists a randomized
algorithm A and a polynomial p such that for every x ∈ {0, 1}∗ it holds that Pr[A(x) =
χS(x)] = 1 and the expected number of steps taken by A(x) is at most p(|x |). Prove
that S ∈ ZPP if and only if S is solvable in expected probabilistic polynomial time.

231



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Guideline: Repeatedly invoking a ZPP algorithm until it yields an output other than⊥
yields an expected probabilistic polynomial-time solver. On the other hand, truncating
runs of an expected probabilistic polynomial-time algorithm once they exceed twice the
expected number of steps (and outputting⊥ on such runs), we obtain a ZPP-algorithm.

Exercise 6.8: Prove that for every S ∈ NP there exists a probabilistic polynomial-time
algorithm A such that for every x ∈ S it holds that Pr[A(x) = 1] > 0 and for ev-
ery x �∈ S it holds that Pr[A(x) = 0] = 1. That is, A has error probability at most
1− exp(−poly(|x |)) on yes-instances but never errs on no-instances. Thus, NP may
be fictitiously viewed as having a huge one-sided error probability.

Exercise 6.9: Let BPP and coRP be classes of promise problems (as in Theorem 6.9).

1. Prove that every problem in BPP is reducible to the set {1} ∈ P by a two-sided
error randomized Karp-reduction.

2. Prove that if a set S is Karp-reducible to RP (resp., coRP) via a deterministic
reduction then S ∈ RP (resp., S ∈ coRP).

Exercise 6.10 (randomness-efficient error reductions): Note that standard error re-
duction (as in Exercise 6.4) yields error probability δ at the cost of increasing the
randomness complexity by a factor of O(log(1/δ)). Using the randomness-efficient
error reductions outlined in §D.4.1.3, show that error probability δ can be obtained at
the cost of increasing the randomness complexity from r to O(r )+ 1.5 log2(1/δ). Note
that this allows for satisfying the hypothesis made in the illustrative paragraph of the
proof of Theorem 6.9.

Exercise 6.11: In continuation of the illustrative paragraph in the proof of Theorem 6.9,
consider the promise problem �′ = (�′

yes, �
′
no) such that �′

yes = {(x, r ′) : |r ′| =
p′(|x |) ∧ (∀r ′′ ∈ {0, 1}|r ′|) A′(x, r ′r ′′) = 1} and �′

no = {(x, r ′) : x �∈ S}. Recall that for
every x it holds that Prr∈{0,1}2p′(|x |) [A′(x, r ) �= χS(x)] < 2−(p′(|x |)+1).

1. Show that mapping x to (x, r ′), where r ′ is uniformly distributed in {0, 1}p′(|x |),
constitutes a one-sided error randomized Karp-reduction of S to �′.

2. Show that �′ is in the promise problem class coRP .

Exercise 6.12 (randomized versions of NP): In continuation of footnote 7, consider
the following two variants of MA (which we consider the main randomized version
of NP).

1. S ∈MA(1) if there exists a probabilistic polynomial-time algorithm V such that for
every x ∈ S there exists y ∈ {0, 1}poly(|x |) such that Pr[V (x, y) = 1] ≥ 1/2, whereas
for every x �∈ S and every y it holds that Pr[V (x, y) = 0] = 1.

2. S ∈MA(2) if there exists a probabilistic polynomial-time algorithm V such that for
every x ∈ S there exists y ∈ {0, 1}poly(|x |) such that Pr[V (x, y) = 1] ≥ 2/3, whereas
for every x �∈ S and every y it holds that Pr[V (x, y) = 0] ≥ 2/3.

Prove that MA(1) = NP whereas MA(2) =MA.

Guideline: For the first part, note that a sequence of internal coin tosses that makes
V accept (x, y) can be incorporated into y itself (yielding a standard NP-witness). For
the second part, apply the ideas underlying the proof of Theorem 6.9, and note that
an adequate sequence of shifts (to be used by the verifier) can be incorporated in the
single message sent by the prover.

232



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 6.13 (BPP ⊆ ZPPNP ): In continuation of the proof of Theorem 6.9, present
a zero-error randomized reduction of BPP to NP , where all classes are the standard
classes of decision problems.

Guideline: On input x , the ZPP-machine uniformly selects s = (s1, . . . , sm), and for
each σ ∈ {0, 1} makes the query (x, σ, s), which is answered positively by the (coNP)
oracle if for every r it holds that ∨i (A(x, r ⊕ si ) = σ ). The machine outputs σ if and
only if the query (x, σ, s) was answered positively, and outputs ⊥ otherwise (i.e., both
queries were answered negatively).

Exercise 6.14 (completeness for promise problem versions of BPP): Referring to the
promise problem version of BPP , present a promise problem that is complete for this
class under (deterministic log-space) Karp-reductions.

Guideline: The promise problem consists of yes-instances that are Boolean circuits that
accept at least a 2/3 fraction of their possible inputs and no-instances that are Boolean
circuits that reject at least a 2/3 fraction of their possible inputs. The reduction is
essentially the one provided in the proof of Theorem 2.21, and the promise is used in
an essential way in order to provide a BPP-algorithm.

Exercise 6.15 (hierarchy theorems for promise problem versions of BPTIME): Fixing
a model of computation, let BPTIME(t) denote the class of promise problems that are
solvable by a randomized algorithm of time complexity t that has a two-sided error
probability at most 1/3. (The standard definition refers only to decision problems.)
Formulate and prove results analogous to Theorem 4.3 and Corollary 4.4.

Guideline (by Dieter van Melkebeek): Apply the “delayed diagonalization” method
used to prove Theorem 4.6 rather than the simple diagonalization used in The-
orem 4.3. Analogously to the proof of Theorem 4.6, for every σ ∈ {0, 1}, de-
fine AM (x) = σ if Pr[M ′(x) = σ ] ≥ 2/3 and define AM (x) = ⊥ otherwise (i.e., if
1/3 < Pr[M ′(x) = 1] < 2/3), where M ′(x) denotes the computation of M(x) trun-
cated after t1(|x |) steps. For x ∈ [αM , βM − 1], define f (x) = AM (x + 1), where
f (x) = ⊥ means that x violates the promise. Define f (βM ) = 1 if AM (αM ) = 0
and f (βM ) = 0 otherwise (i.e., if AM (αM ) ∈ {1,⊥}). Note that f (x) is computable
in randomized time Õ(t1(|x | + 1)) by emulating a single computation of M ′(x) if
x ∈ [αM , βM − 1] and emulating all computations of M ′(αM ) if x = βM . Prove that
the promise problem f cannot be solved in randomized time t1, by noting that βM

satisfies the promise and that for every x ∈ [αM + 1, βM ] that satisfies the promise
(i.e., f (x) ∈ {0, 1}) it holds that if AM (x) = f (x) then f (x − 1) = AM (x) ∈ {0, 1}.

Exercise 6.16 (extracting square roots modulo a prime): Using the following guide-
lines, present a probabilistic polynomial-time algorithm that, on input a prime P and a
quadratic residue s (mod P), returns r such that r2 ≡ s (mod P).

1. Prove that if P ≡ 3 (mod 4) then s(P+1)/4 mod P is a square root of the quadratic
residue s (mod P).

2. Note that the procedure suggested in Item 1 relies on the ability to find an odd
integer e such that se ≡ 1 (mod P). Indeed, once such an e is found, we may
output s(e+1)/2 mod P . (In Item 1, we used e = (P − 1)/2, which is odd since
P ≡ 3 (mod 4).)

Show that it suffices to find an odd integer e together with a residue t and an even
integer e′ such that sete′ ≡ 1 (mod P), because s ≡ se+1t e′ ≡ (s(e+1)/2t e′/2)2.

233



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

3. Given a prime P ≡ 1 (mod 4), a quadratic residue s, and any quadratic non-
residue t (i.e., residue t such that t (P−1)/2 ≡ −1 (mod P)), show that e and e′ as
in Item 2 can be efficiently found.24

4. Prove that, for a prime P , with probability 1/2 a uniformly chosen t ∈ {1, . . . , P}
satisfies t (P−1)/2 ≡ −1 (mod P).

Note that randomization is used only in the last item, which in turn is used only for
P ≡ 1 (mod 4).

Exercise 6.17: Referring to the definition of arithmetic circuits (cf. Appendix B.3), show
that the following decision problem is in coRP: Given a pair of circuits (C1, C2) of
depth d over a field that has more than 2d+1 elements, determine whether the circuits
compute the same polynomial.

Guideline: Note that each of these circuits computes a polynomial of degree at
most 2d .

Exercise 6.18 (small-space randomized step-counter): As defined in Exercise 4.7, a
step-counter is an algorithm that halts after issuing a number of “signals” as specified
in its input, where these signals are defined as entering (and leaving) a designated state
(of the algorithm). Recall that a step-counter may be run in parallel to another procedure
in order to suspend the execution after a predetermined number of steps (of the other
procedure) have elapsed. Note that there exists a simple deterministic machine that,
on input n, halts after issuing n signals while using O(1)+ log2 n space (and Õ(n)
time). The goal of this exercise is presenting a (randomized) step-counter that allows
for many more signals while using the same amount of space. Specifically, present a
(randomized) algorithm that, on input n, uses O(1)+ log2 n space (and Õ(2n) time)
and halts after issuing an expected number of 2n signals. Furthermore, prove that, with
probability at least 1− 2−k+1, this step-counter halts after issuing a number of signals
that is between 2n−k and 2n+k .

Guideline: Repeat the following experiment till reaching success. Each trial consists
of uniformly selecting n bits (i.e., tossing n unbiased coins), and is deemed successful
if all bits turn out to equal the value 1 (i.e., all outcomes equal HEAD). Note that such
a trial can be implemented by using space O(1)+ log2 n (mainly for implementing
a standard counter for determining the number of bits). Thus, each trial is successful
with probability 2−n , and the expected number of trials is 2n .

Exercise 6.19 (analysis of random walks on arbitrary undirected graphs): In order
to complete the proof of Proposition 6.13, prove that if {u, v} is an edge of the graph
G = (V, E) then E[Xu,v] ≤ 2|E |. Recall that, for a fixed graph, Xu,v is a random
variable representing the number of steps taken in a random walk that starts at the
vertex u until the vertex v is first encountered.

Guideline: Let Zu,v(n) be a random variable counting the number of minimal paths
from u to v that appear along a random walk of length n, where the walk starts at the

24Write (P − 1)/2 = (2 j0 + 1) · 2i0 , and note that s(2 j0+1)·2i0 ≡ 1 (mod P), which may be written as
s(2 j0+1)·2i0 t (2 j0+1)·2i0+1 ≡ 1 (mod P). Given that for some i ′ > i > 0 and j ′ it holds that s(2 j0+1)·2i

t (2 j ′+1)·2i ′ ≡ 1
(mod P), show how to find i ′′ > i − 1 and j ′′ such that s(2 j0+1)·2i−1

t (2 j ′′+1)·2i ′′ ≡ 1 (mod P). (Extra hint:

s(2 j0+1)·2i−1
t (2 j ′+1)·2i ′−1 ≡ ±1 (mod P) and t (2 j0+1)·2i0 ≡ −1 (mod P).) Applying this reasoning for i0 times,

we get what we need.

234



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

stationary vertex distribution (which is well defined assuming the graph is not bipartite,
which in turn may be enforced by adding a self-loop). On one hand, E[Xu,v + Xv,u] =
limn→∞(n/E[Zu,v(n)]), due to the memoryless property of the walk. On the other hand,
letting χv,u(i)

def= 1 if the edge {u, v} was traversed from v to u in the i th step of such
a random walk and χv,u(i)

def= 0 otherwise, we have
∑n

i=1 χv,u(i) ≤ Zu,v(n)+ 1 and
E[χv,u(i)] = 1/2|E | (because, in each step, each directed edge appears on the walk
with equal probability). It follows that E[Xu,v] < 2|E |.

Exercise 6.20 (the class PP ⊇ BPP and its relation to #P): In contrast to BPP ,
which refers to useful probabilistic polynomial-time algorithms, the class PP does not
capture such algorithms but is rather closely related to #P . A decision problem S is in
PP if there exists a probabilistic polynomial-time algorithm A such that, for every x ,
it holds that x ∈ S if and only if Pr[A(x) = 1] > 1/2. Note that BPP ⊆ PP . Prove
that PP is Cook-reducible to #P and vice versa.

Guideline: For S ∈ PP (by virtue of the algorithm A), consider the relation R such
that (x, r ) ∈ R if and only if A accepts the input x when using the random-input
r ∈ {0, 1}p(|x |), where p is a suitable polynomial. Thus, x ∈ S if and only if |R(x)| >
2p(|x |)−1, which in turn can de determined by querying the counting function of R.
To reduce f ∈ #P to PP , consider the relation R ∈ PC that is counted by f (i.e.,
f (x) = |R(x)|) and the decision problem S f as defined in Proposition 6.15. Let p be
the polynomial specifying the length of solutions for R (i.e., (x, y) ∈ R implies |y| =
p(|x |)), and consider the following algorithm A′: On input (x, N ), with probability 1/2,
algorithm A′ uniformly selects y ∈ {0, 1}p(|x |) and accepts if and only if (x, y) ∈ R, and
otherwise (i.e., with the remaining probability of 1/2) algorithm A′ accepts with proba-
bility exactly 2p(|x |)−N+0.5

2p(|x |) . Prove that (x, N ) ∈ S f if and only if Pr[A′(x) = 1] > 1/2.

Exercise 6.21 (enumeration problems): For any binary relation R, define the enumer-
ation problem of R as a function fR : {0, 1}∗ × N→ {0, 1}∗ ∪ {⊥} such that fR(x, i)
equals the i th element in |R(x)| if |R(x)| ≥ i and fR(x, i) = ⊥ otherwise. The above
definition refers to the standard lexicographic order on strings, but any other efficient
order of strings will do.25

1. Prove that, for any polynomially bounded R, computing #R is reducible to computing
fR .

2. Prove that, for any R ∈ PC, computing fR is reducible to some problem in #P .

Guideline: Consider the binary relation R′ = {(〈x, b〉, y) : (x, y)∈ R ∧ y ≤ b}, and show
that fR is reducible to #R′.

(Extra hint: Note that fR(x, i) = y if and only if |R′(〈x, y〉)| = i and for every y′ < y it holds that

|R′(〈x, y′〉)| < i .)

Exercise 6.22 (artificial #P-complete problems): Show that there exists a relation
R ∈ PC such that #R is #P-complete and SR = {0, 1}∗. Furthermore, prove that
for every R′ ∈ PC there exists R ∈ PF ∩ PC such that for every x it holds that
#R(x) = #R′(x)+ 1. Note that Theorem 6.19 follows by starting with any relation
R′ ∈ PC such that #R′ is #P-complete.

25An order of strings is a 1-1 and onto mapping µ from the natural numbers to the set of all strings. Such order is
called efficient if both µ and its inverse are efficiently computable. The standard lexicographic order satisfies µ(i) = y
if the string 1y is the (compact) binary expansion of the integer i ; that is µ(1) = λ, µ(2) = 0, µ(3) = 1, µ(4) = 00,
etc.

235



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Exercise 6.23 (computing the permanent of integer matrices): Prove that computing
the permanent of matrices with 0/1-entries is computationally equivalent to computing
the number of perfect matchings in bipartite graphs.

Guideline: Given a bipartite graph G = ((X, Y ), E), consider the matrix M represent-
ing the edges between X and Y (i.e., the (i, j)-entry in M is 1 if the i th vertex of X is
connected to the j th entry of Y ), and note that only perfect matchings in G contribute
to the permanent of M .

Exercise 6.24 (computing the permanent modulo 3): Combining Proposition 6.21 and
Theorem 6.29, prove that for every fixed n > 1 that does not divide any power of c,
computing the permanent modulo n is NP-hard under randomized reductions. Since
Proposition 6.21 holds for c = 210, hardness holds for every integer n > 1 that is not
a power of 2. (We mention that, on the other hand, for any fixed n = 2e, the permanent
modulo n can be computed in polynomial time [230, Thm. 3].)

Guideline: Apply the reduction of Proposition 6.21 to the promise problem of deciding
whether a 3CNF formula has a unique satisfiable assignment or is unsatisfiable. Note
that for any m it holds that cm �≡ 0 (mod n).

Exercise 6.25 (negative values in Proposition 6.21): Assuming P �= NP , prove that
Proposition 6.21 cannot hold for a set I containing only non-negative integers. Note
that the claim holds even if the set I is not finite (and even if I is the set of all
non-negative integers).

Guideline: A reduction as in Proposition 6.21 yields a Karp-reduction of 3SAT to
deciding whether the permanent of a matrix with entries in I is non-zero. Note that
the permanent of a non-negative matrix is non-zero if and only if the corresponding
bipartite graph has a perfect matching.

Exercise 6.26 (high-level analysis of the permanent reduction): Establish the correct-
ness of the high-level reduction presented in the proof of Proposition 6.21. That is, show
that if the clause gadget satisfies the three conditions postulated in the said proof, then
each satisfying assignment of φ contributes exactly cm to the SWCC of Gφ whereas
unsatisfying assignments have no contribution.

Guideline: Cluster the cycle covers of Gφ according to the set of track edges that
they use (i.e., the edges of the cycle cover that belong to the various tracks). (Note the
correspondence between these edges and the external edges used in the definition of
the gadget’s properties.) Using the postulated conditions (regarding the clause gadget)
prove that, for each such set T of track edges, if the sum of the weights of all cycle
covers that use the track edges T is non-zero then the following hold:

1. The intersection of T with the set of track edges incident at each specific clause
gadget is non-empty. Furthermore, if this set contains an incoming edge (resp.,
outgoing edge) of some entry vertex (resp., exit vertex) then it also contains an
outgoing edge (resp., incoming edge) of the corresponding exit vertex (resp., entry
vertex).

2. If T contains an edge that belongs to some track then it contains all edges of this
track. It follows that, for each variable x , the set T contains the edges of a single
track associated with x .

236



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

3. The tracks “picked” by T correspond to a single truth assignment to the variables
of φ, and this assignment satisfies φ (because, for each clause, T contains an
external edge that corresponds to a literal that satisfies this clause).

Note that different sets of the aforementioned type yield different satisfying assign-
ments, and that each satisfying assignment is obtained from some set of the aforemen-
tioned type.

Exercise 6.27 (analysis of the implementation of the clause gadget): Establish the
correctness of the implementation of the clause gadget presented in the proof of
Proposition 6.21. That is, show that if the box satisfies the three conditions postulated
in the said proof, then the clause gadget of Figure 6.4 satisfies the conditions postulated
for it.

Guideline: Cluster the cycle covers of a gadget according to the set of non-box edges
that they use, where non-box edges are the edges shown in Figure 6.4. Using the
postulated conditions (regarding the box) prove that, for each set S of non-box edges,
if the sum of the weights of all cycle covers that use the non-box edges S is non-zero
then the following hold:

1. The intersection of S with the set of edges incident at each box must contain two
(non-self-loop) edges, one incident at each of the box’s terminals. Needless to
say, one edge is incoming and the other outgoing. Referring to the six edges that
connects one of the six designated vertices (of the gadget) with the corresponding
box terminals as connectives, note that if S contains a connective incident at the
terminal of some box then it must also contain the connective incident at the other
terminal. In such a case, we say that this box is picked by S.

2. Each of the three (literal-designated) boxes that is not picked by S is “traversed”
from left to right (i.e., the cycle cover contains an incoming edge of the left
terminal and an outgoing edge of the right terminal). Thus, the set S must contain
a connective, because otherwise no directed cycle may cover the leftmost vertex
shown in Figure 6.4. That is, S must pick some box.

3. The set S is fully determined by the non-empty set of boxes that it picks.

The postulated properties of the clause gadget follow, with c = b5.

Exercise 6.28 (analysis of the design of a box for the clause gadget): Prove that the
4-by-4 matrix presented in Eq. (6.4) satisfies the properties postulated for the “box”
used in the second part of the proof of Proposition 6.21. In particular:

1. Show a correspondence between the conditions required of the box and conditions
regarding the value of the permanent of certain sub-matrices of the adjacency matrix
of the graph.

(Hint: For example, show that the first condition corresponds to requiring that the value of
the permanent of the entire matrix equals zero. The second condition refers to sub-matrices
obtained by omitting either the first row and fourth column or the fourth row and first column.)

2. Verify that the matrix in Eq. (6.4) satisfies the aforementioned conditions (regarding
the value of the permanent of certain sub-matrices).

Prove that no 3-by-3 matrix (and thus also no 2-by-2 matrix) can satisfy the aforemen-
tioned conditions.

237



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Exercise 6.29 (error reduction for approximate counting): Show that the error proba-
bility δ in Definition 6.24 can be reduced from 1/3 (or even (1/2)+ (1/poly(|x |)) to
exp(−poly(|x |)).

Guideline: Invoke the weaker procedure for an adequate number of times and take the
median value among the values obtained in these invocations.

Exercise 6.30 (approximation and gap problems): Let f : {0, 1}∗ → N be a polyno-
mially bounded function (i.e., | f (x)| = poly(|x |)) and ε : N→ [0, 1] be a noticeable
function that is polynomial-time computable. Prove that the search problem associ-
ated with the relation R f,ε

def= {(x, v) : |v − f (x)| ≤ ε(|x |) · f (x)} is computationally
equivalent to the promise (“gap”) problem of distinguishing elements of the set {(x, v) :
v < (1− ε(|x |)) · f (x)} and elements of the set {(x, v) : v > (1+ ε(|x |)) · f (x)}.

Exercise 6.31 (strong approximation for some #P-complete problems): Show that
there exists #P-complete problems (albeit unnatural ones) for which an (ε, 0)-
approximation can be found by a (deterministic) polynomial-time algorithm. Further-
more, the running time depends polynomially on 1/ε.

Guideline: Combine any #P-complete problem referring to some R1 ∈ PC with a
trivial counting problem (e.g., the counting problem associated with the trivial relation
R2 = ∪n∈N{(x, y) : x, y ∈ {0, 1}n}). Show that, without loss of generality, it holds
that #R1(x) ≤ 2|x |/2. Prove that the counting problem of R = {(x, 1y) : (x, y) ∈ R1} ∪
{(x, 0y) : (x, y) ∈ R2} is #P-complete (by reducing from #R1). Present a deterministic
algorithm that, on input x and ε > 0, outputs an (ε, 0)-approximation of #R(x) in time
poly(|x |/ε).

(Extra hint: distinguish between ε ≥ 2−|x |/2 and ε < 2−|x |/2.)

Exercise 6.32 (relative approximation for DNF satisfaction): Referring to the text of
§6.2.2.1, prove the following claims.

1. Both assumptions regarding the general setting hold in case Si = C−1
i (1), where

C−1
i (1) denotes the set of truth assignments that satisfy the conjunction Ci .

Guideline: In establishing the second assumption note that it reduces to the conjunction of
the following two assumptions:

(a) Given i , one can efficiently generate a uniformly distributed element of Si . Actually,
generating a distribution that is almost uniform over Si suffices.

(b) Given i and x , one can efficiently determine whether x ∈ Si .

2. Prove Proposition 6.26, relating to details such as the error probability in an imple-
mentation of Construction 6.25.

3. Note that Construction 6.25 does not require exact computation of |Si |. Analyze the
output distribution in the case that we can only approximate |Si | up to a factor of
1± ε′.

Exercise 6.33 (reducing the relative deviation in approximate counting): Prove that,
for any R ∈ PC and every polynomial p and constant δ < 0.5, there exists R′ ∈ PC
such that (1/p, δ)-approximation for #R is reducible to (1/2, δ)-approximation for #R′.
Furthermore, for any F(n) = exp(poly(n)), prove that there exists R′′ ∈ PC such that
(1/p, δ)-approximation for #R is reducible to approximating #R′′ to within a factor of
F with error probability δ.

238



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Guideline (for the main part): For t(n) = �(p(n)), define R′ such that
(y1, . . . , yt(|x |)) ∈ R′(x) if and only if (∀i) yi ∈ R(x). Note that |R(x)| = |R′(x)|1/t(|x |),
and thus if a = (1± (1/2)) · |R′(x)| then a1/t(|x |) = (1± (1/2))1/t(|x |) · |R(x)|.

Exercise 6.34 (deviation reduction in approximate counting, cont.): In continuation of
Exercise 6.33, prove that if R is NP-complete via parsimonious reductions then, for ev-
ery positive polynomial p and constant δ < 0.5, the problem of (1/p, δ)-approximation
for #R is reducible to (1/2, δ)-approximation for #R.

(Hint: Compose the reduction (to the problem of (1/2, δ)-approximation for #R′)
provided in Exercise 6.33 with the parsimonious reduction of #R′ to #R.)

Prove that, for every function F ′ such that F ′(n) = exp(no(1)), we can also reduce the
aforementioned problems to the problem of approximating #R to within a factor of F ′

with error probability δ.

Guideline: Using R′′ as in Exercise 6.33, we encounter a technical difficulty. The
issue is that the composition of the (“amplifying”) reduction of #R to #R′′ with the
parsimonious reduction of #R′′ to #R may increase the length of the instance. Indeed,
the length of the new instance is polynomial in the length of the original instance, but
this polynomial may depend on R′′, which in turn depends on F ′. Thus, we cannot use
F ′(n) = exp(n1/O(1)) but F ′(n) = exp(no(1)) is fine.

Exercise 6.35: Referring to the procedure in the proof Theorem 6.27, show how to use an
NP-oracle in order to determine whether the number of solutions that “pass a random
sieve” is greater than t . You are allowed queries of length polynomial in the length of
x, h and in the size of t .

Guideline: Consider the set S′R,H
def= {(x, i, h, 1t ) : ∃y1, . . . , yt s.t. ψ ′(x, h, y1, . . . ,

yt )}, where ψ ′(x, h, y1, . . . , yt ) holds if and only if the y j are different and for every
j it holds that (x, y j )∈ R ∧ h(y j ) = 0i .

Exercise 6.36 (parsimonious reductions and Theorem 6.29): Demonstrate the im-
portance of parsimonious reductions in Theorem 6.29 by proving that there exists
a search problem R ∈ PC such that every problem in PC is reducible to R (by a non-
parsimonious reduction) and still the the promise problem (USR, SR) is decidable in
polynomial time.

Guideline: Consider the following artificial witness relation R for SAT in which
(φ, στ ) ∈ R if σ ∈ {0, 1} and τ satisfies φ. Note that the standard witness relation of
SAT is reducible to R, but this reduction is not parsimonious. Also note that USR = ∅
and thus (USR, SR) is trivial.

Exercise 6.37: In continuation of Exercise 6.36, prove that there exists a search problem
R ∈ PC such that #R is #P-complete and still the promise problem (USR, SR) is
decidable in polynomial time. Provide one proof for the case that R is PC-complete
and another proof for R ∈ PF .

Guideline: For the first case, the relation R suggested in the guideline to Exercise 6.36
will do. For the second case, rely on Theorem 6.20 and on the fact that it is easy to
decide (USR, SR) when R is the corresponding perfect matching relation (by computing
the determinant).

Exercise 6.38: Prove that SAT is randomly reducible to deciding unique solutions for
SAT, without using the fact that SAT is NP-complete via parsimonious reductions.

239



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RANDOMNESS AND COUNTING

Guideline: Follow the proof of Theorem 6.29, while using the family of pairwise
independent hashing functions provided in Construction D.3. Note that, in this case,
the condition (τ ∈ RSAT(φ)) ∧ (h(τ ) = 0i ) can be directly encoded as a CNF formula.
That is, consider the formula φh such that φh(z)

def= φ(z) ∧ (h(z) = 0i ), and note that
h(z) = 0i can be written as the conjunction of i conditions, where each condition is
a CNF that is logically equivalent to the parity of some of the bits of z (where the
identity of these bits is determined by h).

Exercise 6.39 (search problems with few solutions): For any R ∈ PC and any polyno-
mial p, consider the promise problem (FewSR,p, SR), where FewSR,p

def= {x : |R(x)| ≤
p(|x |)}.
1. Show that, for every R ∈ PC, the (approximate counting) procedure that is pre-

sented in the proof of Theorem 6.27 implies a randomized reduction of SR to
(FewSR′,100, SR′), where R′(x, i, h) = {y∈ R(x) : h(x) = 0i }.

2. For any R′ ∈ PC and any polynomial p′, present a randomized reduction of
(FewSR′,p′, SR′) to (USR′′, SR′′), where R′′(x ′, m) = {y1 < y2 < · · · < ym : (∀ j) y j ∈
R′(x ′)}.
Guideline: Map x ′ to (x ′, m), where m is uniformly selected in [p′(|x ′|)].

Exercise 6.40: Show that the search problem associated with Perfect Matching
satisfies the hypothesis of Theorem 6.31.

Guideline: For a given graph G = (V, E), encode each matching as an |E |-bit long
string such that the i th is set to 1 if and only if the i th edge is in the matching.

Exercise 6.41 (an alternative procedure for approximate counting): Adapt Step 1 of
Construction 6.32 so as to obtain an approximate counting procedure for #R.

Guideline: For m = 0, 1, . . . �, the procedure invokes Step 1 of Construction 6.32
until a negative answer is obtained, and outputs 120� · 2m for the current value of m.
For |R(x)| > 80�, this yields a constant factor approximation of |R(x)|. In fact, we can
obtain a better estimate by making additional queries at iteration m (i.e., queries of the
form (x, h, 1i ) for i = 10�, . . . , 120�). The case |R(x)| ≤ 80� can be treated by using
Step 2 of Construction 6.32, in which case we obtain an exact count.

Exercise 6.42: Let R be an arbitraryPC-complete search problem. Show that approximate
counting and uniform generation for R can be randomly reduced to deciding member-
ship in SR , where by approximate counting we mean a (1− (1/p)-approximation for
any polynomial p.

Guideline: Note that Construction 6.32 yields such procedures (see also Exer-
cise 6.41), except that they make oracle calls to some other set in NP . Using the
NP-completeness of SR , we are done.

Exercise 6.43: Present a probabilistic polynomial-time algorithm that solves the uniform
generation problem of Rdnf, where (φ, τ ) ∈ Rdnf if φ is a DNF formula and τ is an
assignment satisfying it.

Guideline: Consider the set {(i, e) : i ∈ [m] ∧ e∈ Si }, where the Si ’s are as in §6.2.2.1.

240



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER SEVEN

The Bright Side of Hardness

So saying she donned her beautiful, glittering golden–Ambrosial san-
dals, which carry her flying like the wind over the vast land and sea;
she grasped the redoubtable bronze-shod spear, so stout and sturdy and
strong, wherewith she quells the ranks of heroes who have displeased
her, the [bright-eyed] daughter of her mighty father.

Homer, Odyssey, 1:96–101

The existence of natural computational problems that are (or seem to be) infeasible to
solve is usually perceived as bad news, because it means that we cannot do things we wish
to do. But this bad news has a positive side, because hard problems can be “put to work”
to our benefit, most notably in cryptography.

It seems that utilizing hard problems requires the ability to efficiently generate hard
instances, which is not guaranteed by the notion of worst-case hardness. In other words, we
refer to the gap between “occasional” hardness (e.g., worst-case hardness or mild average-
case hardness) and “typical” hardness (with respect to some tractable distribution). Much
of the current chapter is devoted to bridging this gap, which is known by the term hardness
amplification. The actual applications of typical hardness are presented in Chapter 8 and
Appendix C.

Summary: We consider two conjectures that are related to P �= NP .
The first conjecture is that there are problems that are solvable in expo-
nential time (i.e., in E) but are not solvable by (non-uniform) families
of small (say, polynomial-size) circuits. We show that this worst-case
conjecture can be transformed into an average-case hardness result;
specifically, we obtain predicates that are strongly “inapproximable”
by small circuits. Such predicates are used toward derandomizing BPP
in a non-trivial manner (see Section 8.3).

The second conjecture is that there are problems in NP (i.e., search
problems in PC) for which it is easy to generate (solved) instances
that are typically hard to solve (for a party that did not generate these
instances). This conjecture is captured in the formulation of one-way
functions, which are functions that are easy to evaluate but hard to
invert (in an average-case sense). We show that functions that are hard
to invert in a relatively mild average-case sense yield functions that
are hard to invert in a strong average-case sense, and that the latter

241



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

yield predicates that are very hard to approximate (called hard-core
predicates). Such predicates are useful for the construction of general-
purpose pseudorandom generators (see Section 8.2) as well as for a host
of cryptographic applications (see Appendix C).

In the rest of this chapter, the actual order of presentation of the two aforementioned
conjectures and their consequences is reversed: We start (in Section 7.1) with the study of
one-way functions, and only later (in Section 7.2) turn to the study of problems in E that
are hard for small circuits.

Teaching note: We list several reasons for preferring the aforementioned order of presentation.
First, we mention the great conceptual appeal of one-way functions and the fact that they
have very practical applications. Second, hardness amplification in the context of one-way
functions is technically simpler than the amplification of hardness in the context of E . (In fact,
Section 7.2 is the most technical text in this book.) Third, some of the techniques that are
shared by both treatments seem easier to understand first in the context of one-way functions.
Last, the current order facilitates the possibility of teaching hardness amplification only in
one incarnation, where the context of one-way functions is recommended as the incarnation
of choice (for the aforementioned reasons).

If you wish to teach hardness amplification and pseudorandomness in the two aforemen-
tioned incarnations, then we suggest following the order of the current text. That is, first teach
hardness amplification in its two incarnations, and only next teach pseudorandomness in the
corresponding incarnations.

Prerequisites. We assume a basic familiarity with elementary probability theory (see
Appendix D.1) and randomized algorithms (see Section 6.1). In particular, standard con-
ventions regarding random variables (presented in Appendix D.1.1) and various “laws of
large numbers” (presented in Appendix D.1.2) will be extensively used.

7.1. One-Way Functions

Loosely speaking, one-way functions are functions that are easy to evaluate but hard (on
the average) to invert. Thus, in assuming that one-way functions exist, we are postulating
the existence of efficient processes (i.e., the computation of the function in the forward
direction) that are hard to reverse. Analogous phenomena in daily life are known to us
in abundance (e.g., the lighting of a match). Thus, the assumption that one-way functions
exist is a complexity theoretic analogue of our daily experience.

One-way functions can also be thought of as efficient ways for generating “puzzles”
that are infeasible to solve; that is, the puzzle is a random image of the function and
a solution is a corresponding preimage. Furthermore, the person generating the puzzle
knows a solution to it and can efficiently verify the validity of (possibly other) solutions
to the puzzle. In fact, as explained in Section 7.1.1, every mechanism for generating such
puzzles can be converted to a one-way function.

The reader may note that when presented in terms of generating hard puzzles, one-
way functions have a clear cryptographic flavor. Indeed, one-way functions are central
to cryptography, but we shall not explore this aspect here (and rather refer the reader
to Appendix C). Similarly, one-way functions are closely related to (general-purpose)

242



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

pseudorandom generators, but this connection will be explored in Section 8.2. Instead, in
the current section, we will focus on one-way functions per se.

Teaching note: While we recommend including a basic treatment of pseudorandomness within
a course on Complexity Theory, we do not recommend doing so with respect to cryptography.
The reason is that cryptography is far more complex than pseudorandomness (e.g., compare
the definition of secure encryption to the definition of pseudorandom generators). The extra
complexity is due to conceptual richness, which is something good, except that some of these
conceptual issues are central to cryptography but not to Complexity Theory. Thus, teaching
cryptography in the context of a course on Complexity Theory is likely to either overload
the course with material that is not central to Complexity Theory or cause a superficial and
misleading treatment of cryptography. We are not sure as to which of these two possibilities
is worse. Still, for the benefit of the interested reader, we have included an overview of the
foundations of cryptography as an appendix to the main text (see Appendix C).

7.1.1. Generating Hard Instances and One-Way Functions

Let us start by examining the prophecy, made in the preface to this chapter, by which
intractable problems can be used to our benefit. The basic idea is that intractable problems
offer a way of generating an obstacle that stands in the way of our opponents and thus
protects our interests. These opponents may be either real (e.g., in the context of cryptog-
raphy) or imaginary (e.g., in the context of derandomization), but in both cases we wish
to prevent them from seeing something or doing something. Hard obstacles seem useful
toward this goal.

Let us assume that P �= NP or even that NP is not contained in BPP . Can we
use this assumption to our benefit? Not really: The NP �⊆ BPP assumption refers to
the worst-case complexity of problems, while benefiting from hard problems seems to
require the ability to generate hard instances. In particular, the generated instances should
be typically hard and not merely occasionally hard; that is, we seek average-case hardness
and not merely worst-case hardness.

Taking a short digression, we mention that in Section 7.2 we shall see that worst-
case hardness (of NP or even E) can be transformed into average-case hardness of E .
Such a transformation is not known for NP itself, and in some applications (e.g., in
cryptography) we do need the hard-on-the-average problem to be in NP . In this case, we
currently need to assume that, for some problem in NP , it is the case that hard instances
are easy to generate (and not merely exist). That is, we assume that NP is “hard on the
average” with respect to a distribution that is efficiently samplable. This assumption will
be further discussed in Section 10.2.

However, for the aforementioned applications (e.g., in cryptography) this assumption
does not seem to suffice either: We know how to utilize such “hard on the average”
problems only when we can efficiently generate hard instances coupled with adequate
solutions.1 That is, we assume that, for some search problem in PC (resp., decision
problem in NP), we can efficiently generate instance-solution pairs (resp., yes-instances
coupled with corresponding NP-witnesses) such that the instance is hard to solve (resp.,

1We wish to stress the difference between the two gaps discussed here. Our feeling is that the non-usefulness
of worst-case hardness (per se) is far more intuitive than the non-usefulness of average-case hardness that does not
correspond to an efficient generation of “solved” instances.

243



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

hard to verify as belonging to the set). Needless to say, the hardness assumption refers to
a person who does not get the solution (resp., witness). Thus, we can efficiently generate
hard “puzzles” coupled with solutions, and so we may present to others hard puzzles for
which we know a solution.

Let us formulate the foregoing discussion. Referring to Definition 2.3, we consider a
relation R in PC (i.e., R is polynomially bounded and membership in R can be deter-
mined in polynomial time), and assume that there exists a probabilistic polynomial-time
algorithm G that satisfies the following two conditions:

1. On input 1n , algorithm G always generates a pair in R such that the first element has
length n. That is, Pr[G(1n) ∈ R ∩ ({0, 1}n × {0, 1}∗)] = 1.

2. It is typically infeasible to find solutions to instances that are generated by G; that is,
when only given the first element of G(1n), it is infeasible to find an adequate solution.
Formally, denoting the first element of G(1n) by G1(1n), for every probabilistic
polynomial-time (solver) algorithm S, it holds that Pr[(G1(1n), S(G1(1n))) ∈ R] =
µ(n), where µ vanishes faster than any polynomial fraction (i.e., for every positive
polynomial p and all sufficiently large n it is the case that µ(n) < 1/p(n)).

We call G a generator of solved intractable instances for R. We will show that such
a generator exists if and only if one-way functions exist, where one-way functions are
functions that are easy to evaluate but hard (on the average) to invert. That is, a function
f :{0, 1}∗→{0, 1}∗ is called one-way if there is an efficient algorithm that on input x
outputs f (x), whereas any feasible algorithm that tries to find a preimage of f (x) under
f may succeed only with negligible probability (where the probability is taken uniformly
over the choices of x and the algorithm’s coin tosses). Associating feasible computations
with probabilistic polynomial-time algorithms and negligible functions with functions
that vanish faster than any polynomial fraction, we obtain the following definition.

Definition 7.1 (one-way functions): A function f :{0, 1}∗→{0, 1}∗ is called one-
way if the following two conditions hold:

1. Easy to evaluate: There exists a polynomial-time algorithm A such that A(x) =
f (x) for every x ∈ {0, 1}∗.

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every
polynomial p, and all sufficiently large n,

Prx∈{0,1}n [A′( f (x), 1n) ∈ f −1( f (x))] <
1

p(n)
(7.1)

where the probability is taken uniformly over all the possible choices of x ∈
{0, 1}n and all the possible outcomes of the internal coin tosses of algorithm A′.

Algorithm A′ is given the auxiliary input 1n so as to allow it to run in time polynomial in
the length of x , which is important in case f drastically shrinks its input (e.g., | f (x)| =
O(log |x |)). Typically (and, in fact, without loss of generality, see Exercise 7.1), f is length
preserving, in which case the auxiliary input 1n is redundant. Note that A′ is not required
to output a specific preimage of f (x); any preimage (i.e., element in the set f −1( f (x)))
will do. (Indeed, in case f is 1-1, the string x is the only preimage of f (x) under f ; but
in general there may be other preimages.) It is required that algorithm A′ fails (to find
a preimage) with overwhelming probability, when the probability is also taken over the

244



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

input distribution. That is, f is “typically” hard to invert, not merely hard to invert in
some (“rare”) cases.

Proposition 7.2: The following two conditions are equivalent:

1. There exists a generator of solved intractable instances for some R ∈ NP .
2. There exist one-way functions.

Proof Sketch: Suppose that G is such a generator of solved intractable instances for
some R ∈ NP , and suppose that on input 1n it tosses �(n) coins. For simplicity, we
assume that �(n) = n, and consider the function g(r ) = G1(1|r |, r ), where G(1n, r )
denotes the output of G on input 1n when using coins r (and G1 is as in the foregoing
discussion). Then g must be one-way, because an algorithm that inverts g on input
x = g(r ) obtains r ′ such that G1(1n, r ′) = x and G(1n, r ′) must be in R (which
means that the second element of G(1n, r ′) is a solution to x). In case �(n) �= n
(and assuming without loss of generality that �(n) ≥ n), we define g(r ) = G1(1n, s)
where n is the largest integer such that �(n) ≤ |r | and s is the �(n)-bit long prefix
of r .

Suppose, on the other hand, that f is a one-way function (and that f is length
preserving). Consider G(1n) that uniformly selects r ∈ {0, 1}n and outputs ( f (r ), r ),
and let R

def= {( f (x), x) : x ∈ {0, 1}∗}. Then R is inPC and G is a generator of solved
intractable instances for R, because any solver of R (on instances generated by G)
is effectively inverting f on f (Un).

Comments. Several candidates for one-way functions and variation on the basic defi-
nition appear in Appendix C.2.1. Here, for the sake of future discussions, we define a
stronger version of one-way functions, which refers to the infeasibility of inverting the
function by non-uniform circuits of polynomial size. We seize the opportunity and use
an alternative technical formulation, which is based on the probabilistic conventions in
Appendix D.1.1.2

Definition 7.3 (one-way functions, non-uniformly hard): A one-way function f :
{0, 1}∗→{0, 1}∗ is said to be non-uniformly hard to invert if for every family of
polynomial-size circuits {Cn}, every polynomial p, and all sufficiently large n,

Pr[Cn( f (Un), 1n) ∈ f −1( f (Un))] <
1

p(n)

We note that if a function is infeasible to invert by polynomial-size circuits then it is hard
to invert by probabilistic polynomial-time algorithms; that is, non-uniformity (more than)
compensates for lack of randomness. See Exercise 7.2.

7.1.2. Amplification of Weak One-Way Functions

In the foregoing discussion we have interpreted “hardness on the average” in a very strong
sense. Specifically, we required that any feasible algorithm fails to solve the problem

2Specifically, letting Un denote a random variable uniformly distributed in {0, 1}n , we may write Eq. (7.1) as
Pr[A′( f (Un), 1n) ∈ f −1( f (Un))] < 1/p(n), recalling that both occurrences of Un refer to the same sample.

245



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

(e.g., invert the one-way function) almost always (i.e., except with negligible probability).
This interpretation is indeed the one that is suitable for various applications. Still, a
weaker interpretation of hardness on the average, which is also appealing, only requires
that any feasible algorithm fails to solve the problem often enough (i.e., with noticeable
probability). The main thrust of the current section is showing that the mild form of
hardness on the average can be transformed into the strong form discussed in Section 7.1.1.
Let us first define the mild form of hardness on the average, using the framework of one-
way functions. Specifically, we define weak one-way functions.

Definition 7.4 (weak one-way functions): A function f :{0, 1}∗→{0, 1}∗ is called
weakly one-way if the following two conditions hold:

1. Easy to evaluate: As in Definition 7.1.
2. Weakly hard to invert: There exist a positive polynomial p such that for every

probabilistic polynomial-time algorithm A′ and all sufficiently large n,

Prx∈{0,1}n [A′( f (x), 1n) �∈ f −1( f (x))] >
1

p(n)
(7.2)

where the probability is taken uniformly over all the possible choices of x ∈
{0, 1}n and all the possible outcomes of the internal coin tosses of algorithm A′.
In such a case, we say that f is 1/p-one-way.

Here we require that algorithm A′ fails (to find an f -preimage for a random f -image)
with noticeable probability, rather than with overwhelmingly high probability (as in Defi-
nition 7.1). For clarity, we will occasionally refer to one-way functions as in Definition 7.1
by the term strong one-way functions.

We note that, assuming that one-way functions exist at all, there exist weak one-way
functions that are not strongly one-way (see Exercise 7.3). Still, any weak one-way function
can be transformed into a strong one-way function. This is indeed the main result of the
current section.

Theorem 7.5 (amplification of one-way functions): The existence of weak one-way
functions implies the existence of strong one-way functions.

Proof Sketch: The construction itself is straightforward. We just parse the argument
to the new function into sufficiently many blocks, and apply the weak one-way
function on the individual blocks. That is, suppose that f is 1/p-one-way, for some
polynomial p, and consider the following function

F(x1, . . . , xt ) = ( f (x1), . . . , f (xt )) (7.3)

where t
def= n · p(n) and x1, . . . , xt ∈ {0, 1}n .

(Indeed F should be extended to strings of length outside {n2 · p(n) : n ∈ N} and
this extension must be hard to invert on all preimage lengths.)3

We warn that the hardness of inverting the resulting function F is not established
by mere “combinatorics” (i.e., considering, for any S ⊂ {0, 1}n , the relative volume

3One simple extension is defining F(x) to equal ( f (x1), . . . , f (xn·p(n))), where n is the largest integer satisfying
n2 p(n) ≤ |x | and xi is the i th consecutive n-bit long string in x (i.e., x = x1 · · · xn·p(n)x ′, where x1, . . . , xn·p(n) ∈
{0, 1}n).

246



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

of St in ({0, 1}n)t , where S represents the set of f -preimages that are mapped
by f to an image that is “easy to invert”). Specifically, one may not assume that
the potential inverting algorithm works independently on each block. Indeed, this
assumption seems reasonable, but we do not know if nothing is lost by this restriction.
(In fact, proving that nothing is lost by this restriction is a formidable research
project.) In general, we should not make assumptions regarding the class of all
efficient algorithms (as underlying the definition of one-way functions), unless we
can actually prove that nothing is lost by such assumptions.

The hardness of inverting the resulting function F is proved via a so-called
reducibility argument (which is used to prove all conditional results in the area).
By a reducibility argument we actually mean a reduction, but one that is analyzed
with respect to average-case complexity. Specifically, we show that any algorithm
that inverts the resulting function F with non-negligible success probability can
be used to construct an algorithm that inverts the original function f with success
probability that violates the hypothesis (regarding f ). In other words, we reduce the
task of “strongly inverting” f (i.e., violating its weak one-wayness) to the task of
“weakly inverting” F (i.e., violating its strong one-wayness). In particular, on input
y = f (x), the reduction invokes the F-inverter (polynomially) many times, each
time feeding it with a sequence of random f -images that contains y at a random
location. (Indeed, such a sequence corresponds to a random image of F .) Details
follow.

Suppose toward the contradiction that F is not strongly one-way; that is, there
exists a probabilistic polynomial-time algorithm B ′ and a polynomial q(·) so that
for infinitely many m’s

Pr[B ′(F(Um))∈F−1(F(Um))] >
1

q(m)
(7.4)

Focusing on such a generic m and assuming (see footnote 3) that m = n2 p(n), we
present the following probabilistic polynomial-time algorithm, A′, for inverting f .
On input y and 1n (where supposedly y = f (x) for some x ∈ {0, 1}n), algorithm A′

proceeds by applying the following probabilistic procedure, denoted I , on input y
for t ′(n) times, where t ′(·) is a polynomial that depends on the polynomials p and q
(specifically, we set t ′(n)

def= 2n2 · p(n) · q(n2 p(n))).

Procedure I (on input y and 1n ):

For i = 1 to t(n)
def= n · p(n) do begin

(1) Select uniformly and independently a sequence of strings x1, . . . , xt(n) ∈ {0, 1}n .

(2) Compute (z1, . . . , zt(n)) ← B ′( f (x1), . . . , f (xi−1), y, f (xi+1), . . . , f (xt(n))).

(Note that y is placed in the i th position instead of f (xi ).)

(3) If f (zi ) = y then halt and output zi .

(This is considered a success.)
end

Using Eq. (7.4), we now present a lower bound on the success probability of algo-
rithm A′, deriving a contradiction to the theorem’s hypothesis. To this end we define
a set, denoted Sn , that contains all n-bit strings on which the procedure I succeeds
with probability greater than n/t ′(n). (The probability is taken only over the coin

247



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

tosses of procedure I ). Namely,

Sn
def=

{
x ∈{0, 1}n : Pr[I ( f (x))∈ f −1( f (x))] >

n

t ′(n)

}
In the next two claims we shall show that Sn contains all but at most a 1/2p(n)
fraction of the strings of length n, and that for each string x ∈ Sn algorithm A′

inverts f on f (x) with probability exponentially close to 1. It will follow that A′

inverts f on f (Un) with probability greater than 1− (1/p(n)), in contradiction to
the theorem’s hypothesis.

Claim 7.5.1: For every x ∈ Sn

Pr[A′( f (x))∈ f −1( f (x))] > 1− 2−n

This claim follows directly from the definitions of Sn and A′.

Claim 7.5.2:

|Sn| >
(

1− 1

2p(n)

)
· 2n

The rest of the proof is devoted to establishing this claim, and indeed combining
Claims 7.5.1 and 7.5.2, the theorem follows.

The key observation is that, for every i ∈ [t(n)] and every xi ∈ {0, 1}n \ Sn , it
holds that

Pr
[
B ′(F(Un2 p(n)))∈F−1(F(Un2 p(n)))

∣∣U (i)
n = xi

]
≤ Pr[I ( f (xi )) ∈ f −1( f (xi ))] ≤ n

t ′(n)

where U (1)
n , . . . , U (n·p(n))

n denote the n-bit long blocks in the random variable Un2 p(n).
It follows that

ξ
def= Pr

[
B ′(F(Un2 p(n)))∈F−1(F(Un2 p(n))) ∧

(∃i s.t. U (i)
n ∈{0, 1}n \ Sn

)]
≤

t(n)∑
i=1

Pr
[
B ′(F(Un2 p(n)))∈F−1(F(Un2 p(n))) ∧ U (i)

n ∈{0, 1}n \ Sn
]

≤ t(n) · n

t ′(n)
= 1

2q(n2 p(n))

where the equality is due to t ′(n) = 2n2 · p(n) · q(n2 p(n)) and t(n) = n · p(n). On
the other hand, using Eq. (7.4), we have

ξ ≥ Pr
[
B ′(F(Un2 p(n)))∈F−1(F(Un2 p(n)))

]− Pr
[
(∀i) U (i)

n ∈ Sn
]

≥ 1

q(n2 p(n))
− Pr[Un ∈ Sn]t(n)

.

Using t(n) = n · p(n), we get Pr[Un ∈ Sn] > (1/2q(n2 p(n)))1/(n·p(n)), which implies
Pr[Un ∈ Sn] > 1− (1/2p(n)) for sufficiently large n. Claim 7.5.2 follows, and so
does the theorem.

248



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

Digest. Let us recall the structure of the proof of Theorem 7.5. Given a weak one-
way function f , we first constructed a polynomial-time computable function F with the
intention of later proving that F is strongly one-way. To prove that F is strongly one-
way, we used a reducibility argument. The argument transforms efficient algorithms that
supposedly contradict the strong one-wayness of F into efficient algorithms that contradict
the hypothesis that f is weakly one-way. Hence, F must be strongly one-way. We stress
that our algorithmic transformation, which is in fact a randomized Cook-reduction, makes
no implicit or explicit assumptions about the structure of the prospective algorithms for
inverting F . Such assumptions (e.g., the “natural” assumption that the inverter of F
works independently on each block) cannot be justified (at least not at our current state of
understanding of the nature of efficient computations).

We use the term a reducibility argument, rather than just saying a reduction, so as
to emphasize that we do not refer here to standard (worst-case complexity) reductions.
Let us clarify the distinction: In both cases we refer to reducing the task of solving
one problem to the task of solving another problem; that is, we use a procedure solving
the second task in order to construct a procedure that solves the first task. However, in
standard reductions one assumes that the second task has a perfect procedure solving it
on all instances (i.e., on the worst case), and constructs such a procedure for the first
task. Thus, the reduction may invoke the given procedure (for the second task) on very
“non-typical” instances. This cannot be allowed in our reducibility arguments. Here, we
are given a procedure that solves the second task with certain probability with respect
to a certain distribution. Thus, in employing a reducibility argument, we cannot invoke
this procedure on any instance. Instead, we must consider the probability distribution, on
instances of the second task, induced by our reduction. In our case (as in many cases) the
latter distribution equals the distribution to which the hypothesis (regarding solvability
of the second task) refers, but in general these distributions need only be “sufficiently
close” in an adequate sense (which depends on the analysis). In any case, a careful
consideration of the distribution induced by the reducibility argument is due. (Indeed, the
same issue arises in the context of reductions among “distributional problems” considered
in Section 10.2.)

An information-theoretic analogue. Theorem 7.5 (or rather its proof) has a natural
information-theoretic (or “probabilistic”) analogue that refers to the amplification of the
success probability by repeated experiments: If some event occurs with probability p in
a single experiment, then the event will occur with very high probability (i.e., 1− e−n)
when the experiment is repeated n/p times. The analogy is to evaluating the function F
at a random-input, where each block of this input may be viewed as an attempt to hit the
noticeable “hard region” of f . The reader is probably convinced at this stage that the proof
of Theorem 7.5 is much more complex than the proof of the information-theoretic ana-
logue. In the information-theoretic context the repeated experiments are independent by
definition, whereas in the computational context no such independence can be guaranteed.
(Indeed, the independence assumption corresponds to the naive argument discussed at the
beginning of the proof of Theorem 7.5.) Another indication of the difference between the
two settings follows. In the information-theoretic setting, the probability that the event did
not occur in any of the repeated trials decreases exponentially with the number of repeti-
tions. In contrast, in the computational setting we can only reach an unspecified negligible
bound on the inverting probabilities of polynomial-time algorithms. Furthermore, for all
we know, it may be the case that F can be efficiently inverted on F(Un2 p(n)) with success

249



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

f(x)

x

b(x)
Figure 7.1: The hard-core of a one-way function. The solid arrows depict easily computable transfor-
mation while the dashed arrows depict infeasible transformations.

probability that is sub-exponentially decreasing (e.g., with probability 2−(log2 n)3
), whereas

the analogous information-theoretic bound is exponentially decreasing (i.e., e−n).

7.1.3. Hard-Core Predicates

One-way functions per se suffice for one central application: the construction of secure
signature schemes (see Appendix C.6). For other applications, one relies not merely on
the infeasibility of fully recovering the preimage of a one-way function, but rather on the
infeasibility of meaningfully guessing bits in the preimage. The latter notion is captured
by the definition of a hard-core predicate.

Recall that saying that a function f is one-way means that given a typical y (in the
range of f ) it is infeasible to find a preimage of y under f . This does not mean that it is
infeasible to find partial information about the preimage(s) of y under f . Specifically, it
may be easy to retrieve half of the bits of the preimage (e.g., given a one-way function
f consider the function f ′ defined by f ′(x, r )

def= ( f (x), r ), for every |x |=|r |). We note
that hiding partial information (about the function’s preimage) plays an important role in
more advanced constructs (e.g., pseudorandom generators and secure encryption). With
this motivation in mind, we will show that essentially any one-way function hides specific
partial information about its preimage, where this partial information is easy to compute
from the preimage itself. This partial information can be considered as a “hard-core” of
the difficulty of inverting f . Loosely speaking, a polynomial-time computable (Boolean)
predicate b is called a hard-core of a function f if no feasible algorithm, given f (x), can
guess b(x) with success probability that is non-negligibly better than one half.

Definition 7.6 (hard-core predicates): A polynomial-time computable predicate b :
{0, 1}∗ → {0, 1} is called a hard-core of a function f if for every probabilistic
polynomial-time algorithm A′, every positive polynomial p(·), and all sufficiently
large n’s

Pr
[
A′( f (x)) = b(x)

]
<

1

2
+ 1

p(n)

where the probability is taken uniformly over all the possible choices of x ∈ {0, 1}n
and all the possible outcomes of the internal coin tosses of algorithm A′.

250



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

Note that for every b : {0, 1}∗ → {0, 1} and f : {0, 1}∗ → {0, 1}∗, there exist obvious
algorithms that guess b(x) from f (x) with success probability at least one half (e.g., the
algorithm that, obliviously of its input, outputs a uniformly chosen bit). Also, if b is a
hard-core predicate (of any function) then it follows that b is almost unbiased (i.e., for
a uniformly chosen x , the difference |Pr[b(x)=0]− Pr[b(x)=1]| must be a negligible
function in n).

Since b itself is polynomial-time computable, the failure of efficient algorithms to
approximate b(x) from f (x) (with success probability that is non-negligibly higher than
one half) must be due either to an information loss of f (i.e., f not being one-to-one) or
to the difficulty of inverting f . For example, for σ ∈{0, 1} and x ′ ∈{0, 1}∗, the predicate
b(σ x ′) = σ is a hard-core of the function f (σ x ′) def= 0x ′. Hence, in this case the fact that b
is a hard-core of the function f is due to the fact that f loses information (specifically, the
first bit: σ ). On the other hand, in the case that f loses no information (i.e., f is one-to-
one) a hard-core for f may exist only if f is hard to invert. In general, the interesting case
is when being a hard-core is a computational phenomenon rather than an information-
theoretic one (which is due to “information loss” of f ). It turns out that any one-way
function has a modified version that possesses a hard-core predicate.

Theorem 7.7 (a generic hard-core predicate): For any one-way function f , the
inner-product mod 2 of x and r, denoted b(x, r ), is a hard-core of f ′(x, r ) =
( f (x), r ).

In other words, Theorem 7.7 asserts that, given f (x) and a random subset S ⊆ [|x |],
it is infeasible to guess ⊕i∈Sxi significantly better than with probability 1/2, where
x = x1 · · · xn is uniformly distributed in {0, 1}n .

Proof Sketch: The proof is by a so-called reducibility argument (see Section 7.1.2).
Specifically, we reduce the task of inverting f to the task of predicting the hard-core
of f ′, while making sure that the reduction (when applied to input distributed as in
the inverting task) generates a distribution as in the definition of the predicting task.
Thus, a contradiction to the claim that b is a hard-core of f ′ yields a contradiction to
the hypothesis that f is hard to invert. We stress that this argument is far more com-
plex than analyzing the corresponding “probabilistic” situation (i.e., the distribution
of (r, b(X, r )), where r ∈ {0, 1}n is uniformly distributed and X is a random variable
with super-logarithmic min-entropy (which represents the “effective” knowledge of
x , when given f (x))).4

Our starting point is a probabilistic polynomial-time algorithm B that satisfies,
for some polynomial p and infinitely many n’s, Pr[B( f (Xn), Un) = b(Xn, Un)] >

(1/2)+ (1/p(n)), where Xn and Un are uniformly and independently distributed over
{0, 1}n . Using a simple averaging argument, we focus on a ε

def= 1/2p(n) fraction
of the x’s for which Pr[B( f (x), Un) = b(x, Un)] > (1/2)+ ε holds. We will show
how to use B in order to invert f , on input f (x), provided that x is in this good set
(which has density ε).

As a warm-up, suppose for a moment that, for the aforementioned x’s, algorithm
B succeeds with probability p such that p > 3

4 + 1/poly(|x |) rather than p > 1
2 +

1/poly(|x |). In this case, retrieving x from f (x) is quite easy: To retrieve the i th bit of

4The min-entropy of X is defined as minv{log2(1/Pr[X = v])}; that is, if X has min-entropy m then maxv{Pr[X =
v]} = 2−m . The Leftover Hashing Lemma (see Appendix D.2) implies that, in this case, Pr[b(X, Un) = 1|Un] =
1
2 ± 2−�(m), where Un denotes the uniform distribution over {0, 1}n .

251



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

x , denoted xi , we randomly select r ∈ {0, 1}|x |, and obtain B( f (x), r ) and B( f (x),
r⊕ei ), where ei = 0i−110|x |−i and v ⊕ u denotes the addition mod 2 of the bi-
nary vectors v and u. A key observation underlying the foregoing scheme as
well as the rest of the proof is that b(x, r⊕s) = b(x, r )⊕ b(x, s), which can
be readily verified by writing b(x, y) =∑n

i=1 xi yi mod 2 and noting that ad-
dition modulo 2 of bits corresponds to their XOR. Now, note that if both
B( f (x), r ) = b(x, r ) and B( f (x), r⊕ei ) = b(x, r⊕ei ) hold, then B( f (x), r )⊕
B( f (x), r⊕ei ) equals b(x, r )⊕ b(x, r⊕ei ) = b(x, ei ) = xi . The probability that
both B( f (x), r ) = b(x, r ) and B( f (x), r⊕ei ) = b(x, r⊕ei ) hold, for a random r ,
is at least 1− 2 · (1− p) > 1

2 + 1
poly(|x |) . Hence, repeating the foregoing procedure

sufficiently many times (using independent random choices of such r ’s) and ruling
by majority, we retrieve xi with very high probability. Similarly, we can retrieve all
the bits of x , and hence invert f on f (x). However, the entire analysis was con-
ducted under (the unjustifiable) assumption that p > 3

4+ 1
poly(|x |) , whereas we only

know that p > 1
2+ε for ε = 1/poly(|x |).

The problem with the foregoing procedure is that it doubles the original error
probability of algorithm B on inputs of the form ( f (x), ·). Under the unrealistic
(foregoing) assumption that B’s average error on such inputs is non-negligibly
smaller than 1

4 , the “error-doubling” phenomenon raises no problems. However, in
general (and even in the special case where B’s error is exactly 1

4 ) the foregoing
procedure is unlikely to invert f . Note that the average error probability of B (for
a fixed f (x), when the average is taken over a random r ) cannot be decreased by
repeating B several times (e.g., for every x , it may be that B always answers correctly
on three-quarters of the pairs ( f (x), r ), and always errs on the remaining quarter).
What is required is an alternative way of using the algorithm B, a way that does not
double the original error probability of B.

The key idea is generating the r ’s in a way that allows for applying algorithm
B only once per each r (and i), instead of twice. Specifically, we will invoke B
on ( f (x), r⊕ei ) in order to obtain a “guess” for b(x, r⊕ei ), and obtain b(x, r ) in
a different way (which does not involve using B). The good news is that the error
probability is no longer doubled, since we only use B to get a “guess” of b(x, r⊕ei ).
The bad news is that we still need to know b(x, r ), and it is not clear how we can know
b(x, r ) without applying B. The answer is that we can guess b(x, r ) by ourselves.
This is fine if we only need to guess b(x, r ) for one r (or logarithmically in |x |many
r ’s), but the problem is that we need to know (and hence guess) the value of b(x, r )
for polynomially many r ’s. The obvious way of guessing these b(x, r )’s yields an
exponentially small success probability. Instead, we generate these polynomially
many r ’s such that, on the one hand, they are “sufficiently random” whereas, on
the other hand, we can guess all the b(x, r )’s with noticeable success probability.5

Specifically, generating the r ’s in a specific pairwise independent manner will satisfy
both these (conflicting) requirements. We stress that in case we are successful (in
our guesses for all the b(x, r )’s), we can retrieve x with high probability. Hence, we
retrieve x with noticeable probability.

A word about the way in which the pairwise independent r ’s are generated
(and the corresponding b(x, r )’s are guessed) is indeed in place. To generate

5Alternatively, we can try all polynomially many possible guesses. In such a case, we shall output a list of
candidates that, with high probability, contains x . (See Exercise 7.6.)

252



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.1. ONE-WAY FUNCTIONS

m = poly(|x |) many r ’s, we uniformly (and independently) select �
def= log2(m + 1)

strings in {0, 1}|x |. Let us denote these strings by s1, . . . , s�. We then guess b(x, s1)
through b(x, s�). Let us denote these guesses, which are uniformly (and indepen-
dently) chosen in {0, 1}, by σ 1 through σ �. Hence, the probability that all our guesses
for the b(x, si )’s are correct is 2−� = 1

poly(|x |) . The different r ’s correspond to the dif-
ferent non-empty subsets of {1, 2, . . . , �}. Specifically, for every such subset J , we
let r J def= ⊕ j∈J s j . The reader can easily verify that the r J ’s are pairwise independent
and each is uniformly distributed in {0, 1}|x |; see Exercise 7.5. The key observation
is that b(x, r J ) = b(x,⊕ j∈J s j ) = ⊕ j∈J b(x, s j ). Hence, our guess for b(x, r J ) is
⊕ j∈J σ

j , and with noticeable probability all our guesses are correct. Wrapping up
everything, we obtain the following procedure, where ε = 1/poly(n) represents a
lower bound on the advantage of B in guessing b(x, ·) for an ε fraction of the x’s
(i.e., for these good x’s it holds that Pr[B( f (x), Un) = b(x, Un)] > 1

2 + ε).

Inverting procedure (on input y = f (x) and parameters n and ε):
Set � = log2(n/ε2)+ O(1).

(1) Select uniformly and independently s1, . . . , s� ∈ {0, 1}n .

Select uniformly and independently σ 1, . . . , σ � ∈ {0, 1}.
(2) For every non-empty J ⊆ [�], compute r J = ⊕ j∈J s j and ρ J = ⊕ j∈J σ

j .

(3) For i = 1, . . . , n determine the bit zi according to the majority vote of the
(2� − 1)-long sequence of bits (ρ J⊕B( f (x), r J⊕ei ))∅�=J⊆[�].

(4) Output z1 · · · zn .

Note that the “voting scheme” employed in Step 3 uses pairwise independent sam-
ples (i.e., the r J ’s), but works essentially as well as it would have worked with
independent samples (i.e., the independent r ’s).6 That is, for every i and J , it holds
that Prs1,...,s�[B( f (x), r J⊕ei ) = b(x, r J⊕ei )] > (1/2)+ ε, where r J = ⊕ j∈J s j ,
and (for every fixed i) the events corresponding to different J ’s are pairwise in-
dependent. It follows that if for every j ∈ [�] it holds that σ j = b(x, s j ), then for
every i and J we have

Prs1,...,s�[ρ J ⊕ B( f (x), r J⊕ei ) = b(x, ei )] (7.5)

= Prs1,...,s�[B( f (x), r J⊕ei ) = b(x, r J⊕ei )] >
1

2
+ ε

where the equality is due to ρ J = ⊕ j∈J σ
j = b(x, r J ) = b(x, r J⊕ei )⊕ b(x, ei ).

Note that Eq. (7.5) refers to the correctness of a single vote for b(x, ei ). Using m =
2� − 1 = O(n/ε2) and noting that these (Boolean) votes are pairwise independent,
we infer that the probability that the majority of these votes is wrong is upper-
bounded by 1/2n. Using a union bound on all i’s, we infer that with probability
at least 1/2, all majority votes are correct and thus x is retrieved correctly. Recall

6Our focus here is on the accuracy of the approximation obtained by the sample, and not so much on the error
probability. We wish to approximate Pr[b(x, r )⊕ B( f (x), r⊕ei ) = 1] up to an additive term of ε, because such an
approximation allows for correctly determining b(x, ei ). A pairwise independent sample of O(t/ε2) points allows for
an approximation of a value in [0, 1] up to an additive term of ε with error probability 1/t , whereas a totally random
sample of the same size yields error probability exp(−t). Since we can afford setting t = poly(n) and having error
probability 1/2n, the difference in the error probability between the two approximation schemes is not important here.
For a wider perspective, see Appendix D.1.2 and D.3.

253



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

that the foregoing is conditioned on σ j = b(x, s j ) for every j ∈ [�], which in
turn holds with probability 2−� = (m + 1)−1 = �(ε2/n) = 1/poly(n). Thus, x is
retrieved correctly with probability 1/poly(n), and the theorem follows.

Digest. Looking at the proof of Theorem 7.7, we note that it actually refers to an arbitrary
black-box Bx (·) that approximates b(x, ·); specifically, in the case of Theorem 7.7 we used
Bx (r )

def= B( f (x), r ). In particular, the proof does not use the fact that we can verify the
correctness of the preimage recovered by the described process. Thus, the proof actually
establishes the existence of a poly(n/ε)-time oracle machine that, for every x ∈ {0, 1}n,
given oracle access to any Bx : {0, 1}n → {0, 1} satisfying

Prr∈{0,1}n [Bx (r ) = b(x, r )] ≥ 1

2
+ ε (7.6)

outputs x with probability at least poly(ε/n). Specifically, x is output with probability at
least p

def= �(ε2/n). Noting that x is merely a string for which Eq. (7.6) holds, it follows
that the number of strings that satisfy Eq. (7.6) is at most 1/p. Furthermore, by iterating the
foregoing procedure for Õ(1/p) times we can obtain all these strings (see Exercise 7.7).

Theorem 7.8 (Theorem 7.7, revisited): There exists a probabilistic oracle machine
that, given parameters n, ε and oracle access to any function B : {0, 1}n → {0, 1},
halts after poly(n/ε) steps and with probability at least 1/2 outputs a list of all
strings x ∈ {0, 1}n that satisfy

Prr∈{0,1}n [B(r ) = b(x, r )] ≥ 1

2
+ ε, (7.7)

where b(x, r ) denotes the inner-product mod 2 of x and r.

This machine can be modified such that, with high probability, its output list does not
include any string x such that Prr∈{0,1}n [B(r ) = b(x, r )] < 1

2 + ε
2 .

Theorem 7.8 means that if given some information about x it is hard to recover x , then
given the same information and a random r it is hard to predict b(x, r ). This assertion is
proved by the counter-positive (see Exercise 7.14).7 Indeed, the foregoing statement is in
the spirit of Theorem 7.7 itself, except that it refers to any “information about x” (rather
than to the value f (x)). To demonstrate the point, let us rephrase the foregoing statement
as follows: For every randomized process �, if given s it is hard to obtain �(s) then given
s and a uniformly distributed r ∈ {0, 1}|�(s)| it is hard to predict b(�(s), r ).8

A coding theory perspective. Theorem 7.8 can be viewed as a “list decoding” procedure
for the Hadamard code, where the Hadamard encoding of a string x ∈ {0, 1}n is the
2n-bit long string containing b(x, r ) for every r ∈ {0, 1}n . Specifically, the function B :
{0, 1}n → {0, 1} is viewed as a string of length 2n , and each x ∈ {0, 1}n that satisfies
Eq. (7.7) corresponds to a codeword (i.e., the Hadamard encoding of x) that is at distance
at most (0.5− ε) · 2n from B. Theorem 7.8 asserts that the list of all such x’s can be
(probabilistic) recovered in poly(n/ε)-time, when given direct access to the bits of B (and
in particular without reading all of B). This yields a very strong list-decoding result for
the Hadamard code, where in list decoding the task is recovering all strings that have an

7The information available about x is represented in Exercise 7.14 by Xn , while x itself is represented by h(Xn).
8Indeed, s is distributed arbitrarily (as Xn in Exercise 7.14). Note that Theorem 7.7 is obtained as a special case

by letting �(s) be uniformly distributed in f −1(s).

254



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

encoding that is within a specified distance from the given string, in contrast to standard
decoding in which the task is recovering the unique information that is encoded in the
codeword that is closest to the given string. We mention that list decoding is applicable and
valuable in the case that the specified distance does not allow for unique decoding (i.e.,
the specified distance is greater than half the distance of the code). (Note that a very fast
unique-decoding procedure for the Hadamard code is implicit in the warm-up discussion
at the beginning of the proof of Theorem 7.7.)

Applications of hard-core predicates. Turning back to hard-core predicates, we men-
tion that they play a central role in the construction of general-purpose pseudoran-
dom generators (see Section 8.2), commitment schemes and zero-knowledge proofs (see
Sections 9.2.2 and C.4.3), and encryption schemes (see Appendix C.5).

7.1.4. Reflections on Hardness Amplification

Let us take notice that something truly amazing happens in Theorems 7.5 and 7.7. We are
not talking merely of using an assumption to derive some conclusion; this is common prac-
tice in mathematics and science (and was indeed done several times in previous chapters,
starting with Theorem 2.28). The thing that is special about Theorems 7.5 and 7.7 (and we
shall see more of this in Section 7.2 as well as in Sections 8.2 and 8.3) is that a relatively
mild intractability assumption is shown to imply a stronger intractability result.

This strengthening of an intractability phenomenon (aka hardness amplification) takes
place while we admit that we do not understand the intractability phenomenon (because
we do not understand the nature of efficient computation). Nevertheless, hardness am-
plification is enabled by the use of the counter-positive, which in this case is called a
reducibility argument. At this point things look less miraculous: A reducibility argument
calls for the design of a procedure (i.e., a reduction) and a probabilistic analysis of its
behavior. The design and analysis of such procedures may not be easy, but it is certainly
within the standard expertise of computer science. The fact that hardness amplification is
achieved via this counter-positive is best represented in the statement of Theorem 7.8.

7.2. Hard Problems in E

As in Section 7.1, we start with the assumption P �= NP and seek to use it to our benefit.
Again, we shall actually use a seemingly stronger assumption; here, the strengthening is in
requiring worst-case hardness with respect to non-uniform models of computation (rather
than average-case hardness with respect to the standard uniform model). Specifically, we
shall assume that NP cannot be solved by (non-uniform) families of polynomial-size
circuits; that is, NP is not contained in P/poly (even not infinitely often).

Our goal is to transform this worst-case assumption into an average-case condition,
which is useful for our applications. Since the transformation will not yield a problem in
NP but rather one in E , we might as well take the seemingly weaker assumption by which
E is not contained in P/poly (see Exercise 7.9). That is, our starting point is actually
that there exists an exponential-time solvable decision problem such that any family of
polynomial-size circuits fails to solve it correctly on all but finitely many input lengths.9

9Note that our starting point is actually stronger than assuming the existence of a function f in E \P/poly. Such
an assumption would mean that any family of polynomial-size circuits fails to compute f correctly on infinitely many
input lengths, whereas our starting point postulates failures on all but finitely many lengths.

255



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

A different perspective on our assumption is provided by the fact that E contains
problems that cannot be solved in polynomial time (cf.. Section 4.2.1). The current
assumption goes beyond this fact by postulating the failure of non-uniform polynomial-
time machines rather than the failure of (uniform) polynomial-time machines.

Recall that our goal is to obtain a predicate (i.e., a decision problem) that is computable
in exponential time but is inapproximable by polynomial-size circuits. For the sake of
later developments, we formulate a general notion of inapproximability.

Definition 7.9 (inapproximability, a general formulation): We say that f :
{0, 1}∗ → {0, 1} is (S, ρ)-inapproximable if for every family of S-size circuits
{Cn}n∈N and all sufficiently large n it holds that

Pr[Cn(Un) �= f (Un)] ≥ ρ(n)

2
(7.8)

We say that f is T -inapproximable if it is (T, 1− (1/T ))-inapproximable.

We chose the specific form of Eq. (7.8) such that the “level of inapproximability” repre-
sented by the parameter ρ will range in (0, 1) and increase with the value of ρ. Specifically,
(almost-everywhere) worst-case hardness for circuits of size S is represented by (S, ρ)-
inapproximability with ρ(n) = 2−n+1 (i.e., in this case Pr[C(Un) �= f (Un)] ≥ 2−n for ev-
ery circuit Cn of size S(n)). On the other hand, no predicate can be (S, ρ)-inapproximable
for ρ(n) = 1− 2−n even with S(n) = O(n) (i.e., Pr[C(Un) = f (Un)] ≥ 0.5+ 2−n−1

holds for some linear-size circuit; see Exercise 7.10).
We note that Eq. (7.8) can be interpreted as an upper bound on the correlation of each

adequate circuit with f (i.e., Eq. (7.8) is equivalent to E[χ(C(Un), f (Un))] ≤ 1− ρ(n),
where χ(σ, τ ) = 1 if σ = τ and χ(σ, τ ) = −1 otherwise).10 Thus, T -inapproximability
means that no family of size T circuits can correlate f better than 1/T .

We note that the existence of a non-uniformly hard one-way function (as in Def-
inition 7.3) implies the existence of an exponential-time computable predicate that
is T -inapproximable for every polynomial T . (For details see Exercise 7.24.) How-
ever, our goal in this section is to establish this conclusion under a seemingly weaker
assumption.

On almost-everywhere hardness. We highlight the fact that both our assumptions
and conclusions refer to almost-everywhere hardness. For example, our starting point
is not merely that E is not contained in P/poly (or in other circuit-size classes to
be discussed), but rather that this is the case almost everywhere. Note that by say-
ing that f has circuit complexity exceeding S, we merely mean that there are in-
finitely many n’s such that no circuit of size S(n) can compute f correctly on all
inputs of length n. In contrast, by saying that f has circuit complexity exceeding S
almost everywhere, we mean that for all but finite many n’s no circuit of size S(n)
can compute f correctly on all inputs of length n. (Indeed, it is not known whether
an “infinitely often” type of hardness implies a corresponding “almost-everywhere”
hardness.)

10Indeed, E[χ (X, Y )] = Pr[X=Y ]− Pr[X �=Y ] = 1− 2Pr[X �=Y ].

256



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

The class E . Recall that E denotes the class of exponential-time solvable decision
problems (equivalently, exponential-time computable Boolean predicates); that is, E =
∪εDTIME(tε), where tε(n)

def= 2εn .

The rest of this section. We start (in Section 7.2.1) with a treatment of assumptions and
hardness amplification regarding polynomial-size circuits, which suffice for non-trivial
derandomization of BPP . We then turn (in Section 7.2.2) to assumptions and hardness
amplification regarding exponential-size circuits, which yield a “full” derandomization of
BPP (i.e., BPP = P). In fact, both sections contain material that is applicable to various
other circuit-size bounds, but the motivational focus is as stated.

Teaching note: Section 7.2.2 is advanced material, which is best left for independent reading.
Furthermore, for one of the central results (i.e., Lemma 7.23) only an outline is provided and
the interested reader is referred to the original paper [128].

7.2.1. Amplification with Respect to Polynomial-Size Circuits

Our goal here is to prove the following result.

Theorem 7.10: Suppose that for every polynomial p there exists a problem in E
having circuit complexity that is almost-everywhere greater than p. Then there exist
polynomial-inapproximable Boolean functions in E; that is, for every polynomial p
there exists a p-inapproximable Boolean function in E .

Theorem 7.10 is used toward deriving a meaningful derandomization of BPP under
the aforementioned assumption (see Part 2 of Theorem 8.19). We present two proofs of
Theorem 7.10. The first proof proceeds in two steps:

1. Starting from the worst-case hypothesis, we first establish some mild level of average-
case hardness (i.e., a mild level of inapproximability). Specifically, we show that for
every polynomial p there exists a problem in E that is (p, ε)-inapproximable for
ε(n) = 1/n3.

2. Using the foregoing mild level of inapproximability, we obtain the desired strong level
of inapproximability (i.e., p′-inapproximability for every polynomial p′). Specif-
ically, for every two polynomials p1 and p2, we prove that if the function f is
(p1, 1/p2)-inapproximable, then the function F(x1, . . . , xt(n)) = ⊕t(n)

i=1 f (xi ), where
t(n) = n · p2(n) and x1, . . . , xt(n) ∈ {0, 1}n, is p′-inapproximable for p′(t(n) · n) =
p1(n)�(1)/poly(t(n)). This claim is known as Yao’s XOR Lemma and its proof is far
more complex than the proof of its information-theoretic analogue (discussed at the
beginning of §7.2.1.2).

The second proof of Theorem 7.10 consists of showing that the construction employed in
the first step, when composed with Theorem 7.8, actually yields the desired end result. This
proof will uncover a connection between hardness amplification and coding theory. Our
presentation will thus proceed in three corresponding steps (presented in §7.2.1.1–7.2.1.3,
and schematically depicted in Figure 7.2).

257



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

worst-case
HARDNESS HARDNESS

average-case
mild

via list decoding  (7.2.1.3)

7.2.1.1 7.2.1.2

Yao’s  XOR

derandomized
Yao’s  XOR  (7.2.2)

inapprox.

Figure 7.2: Proofs of hardness amplification: Organization.

7.2.1.1. From Worst-Case Hardness to Mild Average-Case Hardness
The transformation of worst-case hardness into average-case hardness (even in a mild
sense) is indeed remarkable. Note that worst-case hardness may be due to a relatively
small number of instances, whereas even mild forms of average-case hardness refer to
a very large number of possible instances.11 In other words, we should transform hard-
ness that may occur on a negligible fraction of the instances into hardness that occurs
on a noticeable fraction of the instances. Intuitively, we should “spread” the hardness
of few instances (of the original problem) over all (or most) instances (of the trans-
formed problem). The counter-positive view is that computing the value of typical in-
stances of the transformed problem should enable solving the original problem on every
instance.

The aforementioned transformation is based on the self-correction paradigm, to be
reviewed first. The paradigm refers to functions g that can be evaluated at any desired
point by using the value of g at a few random points, where each of these points is
uniformly distributed in the function’s domain (but indeed the points are not independently
distributed). The key observation is that if g(x) can be reconstructed based on the value
of g at t such random points, then such a reconstruction can tolerate a 1/3t fraction of
errors (regarding the values of g). Thus, if we can correctly obtain the value of g on
all but at most a 1/3t fraction of its domain, then we can probabilistically recover the
correct value of g at any point with very high probability. It follows that if no probabilistic
polynomial-time algorithm can correctly compute g in the worst-case sense, then every
probabilistic polynomial-time algorithm must fail to correctly compute g on more than a
1/3t fraction of its domain.

The archetypical example of a self-correctable function is any m-variate polynomial
of individual degree d over a finite field F such that |F | > dm + 1. The value of such a
polynomial at any desired point x can be recovered based on the values of dm + 1 points
(other than x) that reside on a random line that passes through x . Note that each of these
points is uniformly distributed in Fm , which is the function’s domain. (For details, see
Exercise 7.11.)

Recall that we are given an arbitrary function f ∈ E that is hard to compute in the worst
case. Needless to say, this function is not necessarily self-correctable (based on relatively

11Indeed, worst-case hardness with respect to polynomial-size circuits cannot be due to a polynomial number of
instances, because a polynomial number of instances can be hard-wired into such circuits. Still, for all we know, worst-
case hardness may be due to a small super-polynomial number of instances (e.g., nlog2 n instances). In contrast, even
mild forms of average-case hardness must be due to an exponential number of instances (i.e., 2n/poly(n) instances).

258



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

few points), but it can be extended into such a function. Specifically, we extend f : [N ] →
{0, 1} (viewed as f : [N 1/m]m → {0, 1}) to an m-variate polynomial of individual degree
d over a finite field F such that |F | > dm + 1 and (d + 1)m = N . Intuitively, in terms of
worst-case complexity, the extended function is at least as hard as f , which means that it
is hard (in the worst case). The point is that the extended function is self-correctable and
thus its worst-case hardness implies that it must be at least mildly hard in the average-case.
Details follow.

Construction 7.11 (multivariate extension):12 For any function fn : {0, 1}n →
{0, 1}, a finite field F, a set H ⊂ F, and an integer m such that |H |m = 2n and
|F | > (|H | − 1)m + 1, we consider the function f̂ n : Fm → F defined as the m-
variate polynomial of individual degree |H | − 1 that extends fn : H m → {0, 1}.
That is, we identify {0, 1}n with H m, and define f̂ n as the unique m-variate poly-
nomial of individual degree |H | − 1 that satisfies f̂ n(x) = fn(x) for every x ∈ H m,
where we view {0, 1} as a subset of F.

Note that f̂ n can be evaluated at any desired point, by evaluating fn on its entire domain,
and determining the unique m-variate polynomial of individual degree |H | − 1 that agrees
with fn on H m (see Exercise 7.12). Thus, for f : {0, 1}∗ → {0, 1} in E , the corresponding
f̂ (defined by separately extending the restriction of f to each input length) is also in E .
For the sake of preserving various complexity measures, we wish to have |Fm | = poly(2n),
which leads to setting m = n/ log2 n (yielding |H | = n and |F | = poly(n)). In particular,
in this case f̂ n is defined over strings of length O(n). The mild average-case hardness of
f̂ follows by the foregoing discussion. In fact, we state and prove a more general result.

Theorem 7.12: Suppose that there exists a Boolean function f in E having cir-
cuit complexity that is almost-everywhere greater than S. Then, there exists an
exponential-time computable function f̂ : {0, 1}∗ → {0, 1}∗ such that | f̂ (x)| ≤ |x |
and for every family of circuit {C ′n′ }n′∈N of size S′(n′) = S(n′/O(1))/poly(n′) it holds
that Pr[C ′n′(Un′) �= f̂ (Un′)] > (1/n′)2. Furthermore, f̂ does not depend on S.

Theorem 7.12 seems to complete the first step of the proof of Theorem 7.10, except that
we desire a Boolean function rather than a function that merely does not stretch its input.
The extra step of obtaining a Boolean function that is (poly(n), n−3)-inapproximable is
taken in Exercise 7.13.13 Essentially, if f̂ is hard to compute on a noticeable fraction of its
inputs then the Boolean predicate that on input (x, i) returns the i th bit of f̂ (x) must be
mildly inapproximable.

Proof Sketch: Given f as in the hypothesis and for every n ∈ N, we consider the
restriction of f to {0, 1}n , denoted fn , and apply Construction 7.11 to it, while
using m = n/ log n, |H | = n and n2 < |F | = poly(n). Recall that the resulting
function f̂ n maps strings of length n′ = log2 |Fm | = O(n) to strings of length

12The algebraic fact underlying this construction is that for any function f : Hm → F there exists a unique m-
variate polynomial f̂ : Fm → F of individual degree |H | − 1 such that for every x ∈ Hm it holds that f̂ (x) = f (x).
This polynomial is called a multivariate polynomial extension of f , and it can be found in poly(|H |m log |F |)-time.
For details, see Exercise 7.12.

13A quantitatively stronger bound can be obtained by noting that the proof of Theorem 7.12 actually establishes
an error lower bound of �((log n′)/(n′)2) and that | f̂ (x)| = O(log |x |).

259



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

log2 |F | = O(log n). Following the foregoing discussion, we shall show that cir-
cuits that approximate f̂ n too well yield circuits that compute fn correctly on each
input. Using the hypothesis regarding the size of the latter, we shall derive a lower
bound on the size of the former. The actual (reducibility) argument proceeds as
follows. We fix an arbitrary circuit C ′n′ that satisfies

Pr[C ′n′(Un′) = f̂ n(Un′)] ≥ 1− (1/n′)2 > 1− (1/3t), (7.9)

where t
def= (|H | − 1)m + 1 = o(n2) exceeds the total degree of f̂ n . Using the self-

correction feature of f̂ n , we observe that by making t oracle calls to C ′n′ we can
probabilistically recover the value of ( f̂ n and thus of) fn on each input, with proba-
bility at least 2/3. Using error reduction and (non-uniform) derandomization as in
the proof of Theorem 6.3,14 we obtain a circuit of size n3 · |C ′n′ | that computes fn .
By the hypothesis n3 · |C ′n′ | > S(n), and so |C ′n′ | > S(n′/O(1))/poly(n′). Recalling
that C ′n′ is an arbitrary circuit that satisfies Eq. (7.9), the theorem follows.

Digest. The proof of Theorem 7.12 is actually a worst-case to average-case reduction.
That is, the proof consists of a self-correction procedure that allows for the evaluation of f
at any desired n-bit long point, using oracle calls to any circuit that computes f̂ correctly
on a 1− (1/n′)2 fraction of the n′-bit long inputs. We recall that if f ∈ E then f̂ ∈ E ,
but we do not know how to preserve the complexity of f in case it is in NP . (Various
indications to the difficulty of a worst-case to average-case reduction for NP are known;
see, e.g., [43].)

We mention that the ideas underlying the proof of Theorem 7.12 have been applied in
a large variety of settings. For example, we shall see applications of the self-correction
paradigm in §9.3.2.1 and in §9.3.2.2. Furthermore, in §9.3.2.2 we shall reencounter the
very same multivariate extension used in the proof of Theorem 7.12.

7.2.1.2. Yao’s XOR Lemma
Having obtained a mildly inapproximable predicate, we wish to obtain a strongly inapprox-
imable one. The information-theoretic context provides an appealing suggestion: Suppose
that X is a Boolean random variable (representing the mild inapproximability of the afore-
mentioned predicate) that equals 1 with probability ε. Then XORing the outcome of n/ε

independent samples of X yields a bit that equals 1 with probability 0.5± exp(−�(n)).
It is tempting to think that the same should happen in the computational setting. That is,
if f is hard to approximate correctly with probability exceeding 1− ε then XORing the
output of f on n/ε non-overlapping parts of the input should yield a predicate that is
hard to approximate correctly with probability that is non-negligibly higher than 1/2. The
latter assertion turns out to be correct, but (even more than in Section 7.1.2) the proof
of the computational phenomenon is considerably more complex than the analysis of the
information-theoretic analogue.

Theorem 7.13 (Yao’s XOR Lemma): There exists a universal constant c > 0 such
that the following holds. If, for some polynomials p1 and p2, the Boolean function f is

14First, we apply the foregoing probabilistic procedure O(n) times and take a majority vote. This yields a
probabilistic procedure that, on input x ∈ {0, 1}n , invokes C ′n′ for o(n3) times and computes fn(x) correctly with
probability greater than 1− 2−n . Finally, we just fix a sequence of random choices that is good for all 2n possible
inputs, and obtain a circuit of size n3 · |C ′n′ | that computes fn correctly on every n-bit input.

260



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

(p1, 1/p2)-inapproximable, then the function F(x1, . . . , xt(n)) = ⊕t(n)
i=1 f (xi ), where

t(n) = n · p2(n) and x1, . . . , xt(n) ∈ {0, 1}n, is p′-inapproximable for p′(t(n) · n) =
p1(n)c/t(n)1/c. Furthermore, the claim also holds if the polynomials p1 and p2 are
replaced by any integer functions.

Combining Theorem 7.12 (and Exercise 7.13), and Theorem 7.13, we obtain a proof of
Theorem 7.10. (Recall that an alternative proof is presented in §7.2.1.3.)

We note that proving Theorem 7.13 seems more difficult than proving Theorem 7.5 (i.e.,
the amplification of one-way functions), due to two issues. Firstly, unlike in Theorem 7.5,
the computational problems are not in PC and thus we cannot efficiently recognize
correct solutions to them. Secondly, unlike in Theorem 7.5, solutions to instances of the
transformed problem do not correspond to the concatenation of solutions for the original
instances, but are rather a function of the latter that loses almost all the information
about the latter. The proof of Theorem 7.13 presented next deals with each of these two
difficulties separately.

Several different proofs of Theorem 7.13 are known. As just stated, the proof that
we present is conceptually appealing because it deals separately with two unrelated dif-
ficulties. Furthermore, this proof benefits most from the material already presented in
Section 7.1. The proof proceeds in two steps:

1. First we prove that the corresponding “direct product” function P(x1, . . . , xt(n)) =
( f (x1), . . . , f (xt(n))) is difficult to compute in a strong average-case sense.

2. Next we establish the desired result by an application of Theorem 7.8.

Thus, given Theorem 7.8, our main focus is on the first step, which is of independent
interest (and is thus generalized from Boolean functions to arbitrary ones).

Theorem 7.14 (the Direct Product Lemma): Let p1 and p2 be two polynomials,
and suppose that f : {0, 1}∗ → {0, 1}∗ is such that for every family of p1-size cir-
cuits, {Cn}n∈N, and all sufficiently large n ∈ N, it holds that Pr[Cn(Un) �= f (Un)] >

1/p2(n). Let P(x1, . . . , xt(n)) = ( f (x1), . . . , f (xt(n))), where x1, . . . , xt(n) ∈ {0, 1}n
and t(n) = n · p2(n). Then, for any ε′ : N→ (0, 1], setting p′ such that p′(t(n) ·
n) = p1(n)/poly(t(n)/ε′(t(n) · n)), it holds that every family of p′-size circuits,
{C ′m}m∈N, satisfies Pr[C ′m(Um) = P(Um)] < ε′(m). Furthermore, the claim also
holds if the polynomials p1 and p2 are replaced by any integer functions.

In particular, for an adequate constant c > 0, selecting ε′(t(n) · n) = p1(n)−c, we obtain
p′(t(n) · n) = p1(n)c/t(n)1/c, and so ε′(m) ≤ 1/p′(m).

Deriving Theorem 7.13 from Theorem 7.14. Theorem 7.13 follows from Theorem 7.14
by considering the function P ′(x1, . . . , xt(n), r ) = b( f (x1) · · · f (xt(n)), r ), where f is a
Boolean function, r ∈ {0, 1}t(n), and b(y, r ) is the inner-product modulo 2 of the t(n)-bit
long strings y and r . Note that, for the corresponding P , we have P ′(x1, . . . , xt(n), r ) ≡
b(P(x1, . . . , xt(n)), r ), whereas F(x1, . . . , xt(n)) = P ′(x1, . . . , xt(n), 1t(n)). Intuitively, the
inapproximability of P ′ should follow from the strong average-case hardness of P (via
Theorem 7.8), whereas it should be possible to reduce the approximation of P ′ to the
approximation of F (and thus derive the desired inapproximability of F). Indeed, this

261



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

intuition does not fail, but detailing the argument seems a bit cumbersome (and so
we only provide the clues here). Assuming that f is (p1, 1/p2)-inapproximable, we
first apply Theorem 7.14 (with ε′(t(n) · n) = p1(n)−c) and then apply Theorem 7.8 (see
Exercise 7.14), inferring that P ′ is p′-inapproximable for p′(t(n) · n) =
p1(n)�(1)/poly(t(n)). The less obvious part of the argument is reducing the approximation
of P ′ to the approximation of F . The key observation is that

P ′(x1, . . . , xt(n), r ) = F(z1, . . . , zt(n))⊕
⊕

i :ri=0

f (zi ) (7.10)

where zi = xi if ri = 1 and is an arbitrary n-bit long string otherwise. Now, if somebody
provides us with samples of the distribution (Un, f (Un)), then we can use these samples
in the role of the pairs (zi , f (zi )) for the indices i that satisfy ri = 0. Considering a best
choice of such samples (i.e., one for which we obtain the best approximation of P ′), we
obtain a circuit that approximates P ′ (by using a circuit that approximates F and the said
choices of samples). (The details are left for Exercise 7.17.) Theorem 7.13 follows.

Proving Theorem 7.14. Note that Theorem 7.14 is closely related to Theorem 7.5; see
Exercise 7.20 for details. This suggests employing an analogous proof strategy, that is,
converting circuits that violate the theorem’s conclusion into circuits that violate the
theorem’s hypothesis. We note, however, that things were much simpler in the context of
Theorem 7.5: There we could (efficiently) check whether or not a value contained in the
output of the circuit that solves the direct-product problem constitutes a correct answer
for the corresponding instance of the basic problem. Lacking such an ability in the current
context, we shall have to use such values more carefully. Loosely speaking, we shall take a
weighted majority vote among various answers, where the weights reflect our confidence
in the correctness of the various answers.

We establish Theorem 7.14 by applying the following lemma that provides quantitative
bounds on the feasibility of computing the direct product of two functions. In this lemma,
{Ym}m∈N and {Zm}m∈N are independent probability ensembles such that Ym, Zm ∈ {0, 1}m ,
and Xn = (Y�(n), Zn−�(n)) for some function � :N→N. The lemma refers to the suc-
cess probability of computing the direct product function F :{0, 1}∗→{0, 1}∗ defined by
F(yz) = (F1(y), F2(z)), where |y| = �(|yz|), when given bounds on the success probabil-
ity of computing F1 and F2 (separately). Needless to say, these probability bounds refer
to circuits of certain sizes. (The slackness parameter ε represents a deviation from an
idealized result in which the probability of correctly computing F is upper-bounded by
the product of the probabilities of correctly computing F1 and F2, where tightening this
slackness (i.e., decreasing ε) comes at the cost of decreasing the size of the circuit for
which the success probability bound holds.) We stress that the lemma is not symmetric with
respect to the two functions: It guarantees a stronger (and in fact lossless) preservation
of circuit sizes for one of the functions (which is arbitrarily chosen to be F1).

Lemma 7.15 (Direct Product, a quantitative two-argument version): For {Ym},
{Zm}, F1, F2, �, {Xn} and F as in the foregoing, let ρ1(·) be an upper bound
on the success probability of s1(·)-size circuits in computing F1 over {Ym}. That is,
for every such circuit family {Cm}

Pr[Cm(Ym)=F1(Ym)] ≤ ρ1(m).

262



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

Likewise, suppose that ρ2(·) is an upper bound on the probability that s2(·)-size
circuits compute F2 over {Zm}. Then, for every function ε :N→R, the function ρ

defined as

ρ(n)
def= ρ1(�(n)) · ρ2(n − �(n))+ ε(n)

is an upper bound on the probability that families of s(·)-size circuits correctly
compute F over {Xn}, where

s(n)
def= min

{
s1(�(n)),

s2(n − �(n))

poly(n/ε(n))

}
.

Theorem 7.14 is derived from Lemma 7.15 by using a careful induction, which capitalizes
on the highly quantitative form of Lemma 7.15 and in particular on the fact that no loss is
incurred for one of the two functions that are used. We first detail this argument, and next
establish Lemma 7.15 itself.

Deriving Theorem 7.14 from Lemma 7.15. We write P(x1, x2, . . . , xt(n)) as
P (t(n))(x1, x2, . . . , xt(n)), where P (i)(x1, . . . , xi ) = ( f (x1), . . . , f (xi )) and P (i)(x1, . . . ,

xi ) ≡ (P (i−1)(x1, . . . , xi−1), f (xi )). For any function ε, we shall prove by induction on
i that circuits of size s(n) = p1(n)/poly(t(n)/ε(n)) cannot compute P (i)(Ui ·n) with suc-
cess probability greater than (1− (1/p2(n)))i + (i − 1) · ε(n), where p1 and p2 are as in
Theorem 7.14. Thus, no s(n)-size circuit can compute P (t(n))(Ut(n)·n) with success prob-
ability greater than (1− (1/p2(n))t(n) + (t(n)− 1) · ε(n) = exp(−n)+ (t(n)− 1) · ε(n).
Recalling that this is established for any function ε, Theorem 7.14 follows (by us-
ing ε(n) = ε′(t(n) · n)/t(n), and observing that the setting s(n) = p′(t(n) · n) satisfies
s(n) = p1(n)/poly(t(n)/ε(n))).

Turning to the induction itself, we first note that its basis (i.e., i = 1) is guaranteed by
the theorem’s hypothesis (i.e., the hypothesis of Theorem 7.14 regarding f ). The induction
step (i.e., from i to i + 1) will be proved by using Lemma 7.15 with F1 = P (i) and F2 = f ,
along with the parameter setting ρ

(i)
1 (i · n) = (1− (1/p2(n))i + (i − 1) · ε(n), s(i)

1 (i · n) =
s(n), ρ

(i)
2 (n) = 1− (1/p2(n)) and s(i)

2 (n) = poly(n/ε(n)) · s(n) = p1(n). Details follow.
Note that the induction hypothesis (regarding P (i)) implies that F1 satisfies the hypoth-

esis of Lemma 7.15 (wrt size s(i)
1 and success rate ρ

(i)
1 ), whereas the theorem’s hypothesis

regarding f implies that F2 satisfies the hypothesis of Lemma 7.15 (wrt size s(i)
2 and suc-

cess rate ρ
(i)
2 ). Thus, F = P (i+1) satisfies the lemma’s conclusion with respect to circuits of

size min(s(i)
1 (i · n), s(i)

2 (n)/poly(n/ε(n))) = s(n) and success rate ρ
(i)
1 (i · n) · ρ(i)

2 (n)+ ε(n)
which is upper-bounded by (1− (1/p2(n)))i+1 + i · ε(n). This completes the induction
step.

We stress the fact that we used induction for a non-constant number of steps, and that
this was enabled by the highly quantitative form of the inductive claim and the small loss
incurred by the inductive step. Specifically, the size bound did not decrease during the
induction (although we could afford a small additive loss in each step, but not a constant
factor loss).15 Likewise, the success rate suffered an additive increase of ε(n) in each

15Note that if we had s(n) = min{s1(�(n)), s2(n − �(n))}/2 (in Lemma 7.15) then the foregoing argument would
yield that P (i+1) is hard for circuits of size s(i+1)

1 such that s(i+1)
1 ((i + 1) · n) = min{s(i)

1 (i · n), s2(n)}/2, which
would yield a meaningless result for P = P (t(n)) (since s(t(n))

1 (t(n) · n) = min{p1(n), p2(n)}/2t(n), where t(n) � n
and pi (n) < 2n).

263



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

step, which was accommodated by the inductive claim. Thus, assuming the correctness
of Lemma 7.15, we have established Theorem 7.14.

Proof of Lemma 7.15: Proceeding (as usual) by the contra-positive, we consider
a family of s(·)-size circuits {Cn}n∈N that violates the lemma’s conclusion; that is,
Pr[Cn(Xn) = F(Xn)] > ρ(n). We will show how to use such circuits in order to
obtain either circuits that violate the lemma’s hypothesis regarding F1 or circuits
that violate the lemma’s hypothesis regarding F2. Toward this end, it is instructive
to write the success probability of Cn in a conditional form, while denoting the i th

output of Cn(x) by Cn(x)i (i.e., Cn(x) = (Cn(x)1, Cn(x)2)):

Pr[Cn(Y�(n), Zn−�(n))=F(Y�(n), Zn−�(n))]

= Pr[Cn(Y�(n), Zn−�(n))1=F1(Y�(n))]

· Pr[Cn(Y�(n), Zn−�(n))2=F2(Zn−�(n)) |Cn(Y�(n), Zn−�(n))1=F1(Y�(n))].

The basic idea is that if the first factor is greater than ρ1(�(n)) then we immediately
derive a circuit (i.e., C ′n(y) = Cn(y, Zn−�(n))1) contradicting the lemma’s hypothesis
regarding F1, whereas if the second factor is significantly greater than ρ2(n − �(n))
then we can obtain a circuit contradicting the lemma’s hypothesis regarding F2. The
treatment of the latter case is indeed not obvious. The idea is that a sufficiently
large sample of (Y�(n), F1(Y�(n))), which may be hard-wired into the circuit, allows
for using the conditional probability space (in such a circuit) toward an attempt
to approximate F2. That is, on input z, we select uniformly a string y satisfying
Cn(y, z)1 = F1(y) (from the aforementioned sample), and output Cn(y, z)2. For a
fixed z, sampling of the conditional space (i.e., y’s satisfying Cn(y, z)1 = F1(y)) is
possible provided that Pr[Cn(Y�(n), z)1=F1(Y�(n))] holds with noticeable probability.
The last caveat motivates a separate treatment of z’s having a noticeable value of
Pr[Cn(Y�(n), z)1=F1(Y�(n))] and of the rest of z’s (which are essentially ignored).
Details follow.

Let us first simplify the notations by fixing a generic n and using the abbreviations
C = Cn , ε = ε(n), � = �(n), Y = Y�, and Z = Yn−�. We call z good if Pr[C(Y, z)1=
F1(Y )] ≥ ε/2 and let G be the set of good z’s. Next, rather than considering the event
C(Y, Z )=F(Y, Z ), we consider the combined event C(Y, Z )=F(Y, Z ) ∧ Z ∈G,
which occurs with almost the same probability (up to an additive error term of ε/2).
This is the case because, for any z �∈ G, it holds that

Pr[C(Y, z)=F(Y, z)] ≤ Pr[C(Y, z)1=F1(Y )] < ε/2

and thus z’s that are not good do not contribute much to Pr[C(Y, Z )=F(Y, Z )]; that
is, Pr[C(Y, Z )=F(Y, Z ) ∧ Z ∈G] is lower-bounded by Pr[C(Y, Z )=F(Y, Z )]−
ε/2. Using Pr[C(Y, z)=F(Y, z)] > ρ(n) = ρ1(�) · ρ2(n − �)+ ε, we have

Pr[C(Y, Z )=F(Y, Z ) ∧ Z ∈G] > ρ1(�) · ρ2(n − �)+ ε

2 .
(7.11)

We proceed according to the foregoing outline, first showing that if Pr[C(Y, Z )1=
F1(Y )] > ρ1(�) then we immediately derive circuits violating the hypothesis con-
cerning F1. Actually, we prove something stronger (which we will need for the other
case).

Claim 7.15.1: For every z, it holds that Pr[C(Y, z)1=F1(Y )] ≤ ρ1(�).

264



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

Proof: Otherwise, using any z ∈ {0, 1}n−� that satisfies Pr[C(Y, z)1=F1(Y )] >

ρ1(�), we obtain a circuit C ′(y)
def= C(y, z)1 that contradicts the lemma’s hypoth-

esis concerning F1. �

Using Claim 7.15.1, we show how to obtain a circuit that violates the lemma’s
hypothesis concerning F2, and in doing so we complete the proof of the lemma.

Claim 7.15.2: There exists a circuit C ′′ of size s2(n − �) such that

Pr[C ′′(Z )=F2(Z )] ≥ Pr[C(Y, Z )=F(Y, Z ) ∧ Z ∈G]

ρ1(�)
− ε

2

> ρ2(n − �)

Proof: The second inequality is due to Eq. (7.11), and thus we focus on establishing
the first inequality. We construct the circuit C ′′ as suggested in the foregoing outline.
Specifically, we take a poly(n/ε)-large sample, denoted S, from the distribution
(Y, F1(Y )) and let C ′′(z)

def= C(y, z)2, where (y, v) is uniformly selected among the
elements of S for which C(y, z)1 = v holds. Details follow.

Let m be a sufficiently large number that is upper-bounded by a polynomial
in n/ε, and consider a random sequence of m pairs, generated by taking m in-
dependent samples from the distribution (Y, F1(Y )). We stress that we do not as-
sume here that such a sample, denoted S, can be produced by an efficient (uni-
form) algorithm (but, jumping ahead, we remark that such a sequence can be
fixed non-uniformly). For each z ∈ G ⊆ {0, 1}n−�, we denote by Sz the set of
pairs (y, v) ∈ S for which C(y, z)1 = v. Note that Sz is a random sample of the
residual probability space defined by (Y, F1(Y )) conditioned on C(Y, z)1 = F1(Y ).
Also, with overwhelmingly high probability, |Sz| = �(n/ε2), because z ∈ G implies
Pr[C(Y, z)1=F1(Y )] ≥ ε/2 and m = �(n/ε3).16 Thus, for each z ∈ G, with over-
whelming probability (taken over the choices of S), the sample Sz provides a good
approximation of the conditional probability space.17 In particular, with probability
greater than 1− 2−n , it holds that

|{(y, v) ∈ Sz : C(y, z)2=F2(z)}|
|Sz| ≥ Pr[C(Y, z)2=F2(z) |C(Y, z)1=F1(Y )]− ε

2
.

(7.12)

Thus, with positive probability, Eq. (7.12) holds for all z ∈ G ⊆ {0, 1}n−�. The
circuit C ′′ computing F2 is now defined as follows. The circuit will contain a set
S = {(yi , vi ) : i = 1, . . . , m} (i.e., S is “hard-wired” into the circuit C ′′) such that
the following two conditions hold:

1. For every i ∈ [m] it holds that vi = F1(yi ).
2. For each good z the set Sz = {(y, v)∈ S : C(y, z)1=v} satisfies Eq. (7.12).

(In particular, Sz is not empty for any good z.)

16Note that the expected size of Sz is m · ε/2 = �(n/ε2). Using the Chernoff Bound, we get PrS[|Sz | < mε/4] =
exp(−�(n/ε2)) < 2−n .

17For Tz = {y : C(y, z)1=F1(y)}, we are interested in a sample S′ of Tz such that |{y ∈ S′ : C(y, z)2=F2(z)}|/|S′|
approximates Pr[C(Y, z)2=F2(z) |Y ∈ Tz] up to an additive term of ε/2. Using the Chernoff Bound again, we note
that a random S′ ⊂ Tz of size �(n/ε2) provides such an approximation with probability greater than 1− 2−n .

265



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

On input z, the circuit C ′′ first determines the set Sz , by running C for m times and
checking, for each i = 1, . . . , m, whether or not C(yi , z) = vi . In case Sz is empty,
the circuit returns an arbitrary value. Otherwise, the circuit selects uniformly a pair
(y, v) ∈ Sz and outputs C(y, z)2. (The latter random choice can be eliminated by an
averaging argument; see Exercise 7.16.) Using the definition of C ′′ and Eq. (7.12),
we have:

Pr[C ′′(Z )=F2(Z )] ≥
∑
z∈G

Pr[Z= z] · Pr[C ′′(z)=F2(z)]

=
∑
z∈G

Pr[Z= z] · |{(y, v) ∈ Sz : C(y, z)2=F2(z)}|
|Sz|

≥
∑
z∈G

Pr[Z= z] ·
(
Pr[C(Y, z)2=F2(z) |C(Y, z)1=F1(Y )] − ε

2

)
=

∑
z∈G

Pr[Z= z] ·
(

Pr[C(Y, z)2=F2(z) ∧ C(Y, z)1=F1(Y )]

Pr[C(Y, z)1=F1(Y )]
− ε

2

)
Next, using Claim 7.15.1, we have:

Pr[C ′′(Z )=F2(Z )] ≥
(∑

z∈G

Pr[Z= z] · Pr[C(Y, z)=F(Y, z)]

ρ1(�)

)
− ε

2

= Pr[C(Y, Z )=F(Y, Z ) ∧ Z ∈G]

ρ1(�)
− ε

2

Finally, using Eq. (7.11), the claim follows. �

This completes the proof of the lemma. �

Comments. Firstly, we wish to call attention to the care with which an inductive argu-
ment needs to be carried out in the computational setting, especially when a non-constant
number of inductive steps is concerned. Indeed, our inductive proof of Theorem 7.14
involves invoking a quantitative lemma (i.e., Lemma 7.15) that allows for keeping track
of the relevant quantities (e.g., success probability and circuit size) throughout the induc-
tion process. Secondly, we mention that Lemma 7.15 (as well as Theorem 7.14) has a
uniform complexity version that assumes that one can efficiently sample the distribution
(Y�(n), F1(Y�(n))) (resp., (Un, f (Un))). For details see [102]. Indeed, a good lesson from
the proof of Lemma 7.15 is that non-uniform circuits can “effectively sample” any distri-
bution. Lastly, we mention that Theorem 7.5 (the amplification of one-way functions) and
Theorem 7.13 (Yao’s XOR Lemma) also have (tight) quantitative versions (see, e.g., [91,
Sec. 2.3.2] and [102, Sec. 3], respectively).

7.2.1.3. List Decoding and Hardness Amplification
Recall that Theorem 7.10 was proved in §7.2.1.1–7.2.1.2, by first constructing a mildly
inapproximable predicate via Construction 7.11, and then amplifying its hardness via Yao’s
XOR Lemma. In this subsection we show that the construction used in the first step (i.e.,
Construction 7.11) actually yields a strongly inapproximable predicate. Thus, we provide
an alternative proof of Theorem 7.10. Specifically, we show that a strongly inapproximable
predicate (as asserted in Theorem 7.10) can be obtained by combining Construction 7.11

266



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

(with a suitable choice of parameters) and the inner-product construction (of Theorem 7.8).
The main ingredient of this argument is captured by the following result.

Proposition 7.16: Suppose that there exists a Boolean function f in E having cir-
cuit complexity that is almost-everywhere greater than S, and let ε : N→ [0, 1]
satisfying ε(n) > 2−n. Let fn be the restriction of f to {0, 1}n, and let f̂ n be the
function obtained from fn when applying Construction 7.1118 with |H | = n/ε(n) and
|F | = |H |3. Then, the function f̂ : {0, 1}∗ → {0, 1}∗, defined by f̂ (x) = f̂ |x |/3(x),
is computable in exponential time and for every family of circuit {C ′n′ }n′∈N

of size S′(n′) = poly(ε(n′/3)/n′) · S(n′/3) it holds that Pr[C ′n′(Un′) = f̂ (Un′)] <

ε′(n′) def= ε(n′/3).

Before turning to the proof of Proposition 7.16, let us describe how it yields an alternative
proof of Theorem 7.10. Firstly, for some γ > 0, Proposition 7.16 yields an exponential-
time computable function f̂ such that | f̂ (x)| ≤ |x | and for every family of circuit {C ′n′ }n′∈N

of size S′(n′) = S(n′/3)γ /poly(n′) it holds that Pr[C ′n′(Un′) = f̂ (Un′)] < 1/S′(n′). Com-
bining this with Theorem 7.8 (cf. Exercise 7.14), we infer that P(x, r ) = b( f̂ (x), r ), where
|r | = | f̂ (x)| ≤ |x |, is S′′-inapproximable for S′′(n′′) = S′(n′′/2)�(1)/poly(n′′). In particu-
lar, for every polynomial p, we obtain a p-inapproximable predicate in E by applying the
foregoing with S(n) = poly(n, p(n)). Thus, Theorem 7.10 follows.

Teaching note: The following material is very advanced and is best left for independent
reading. Furthermore, its understanding requires being comfortable with basic notions of
error-correcting codes (as presented in Appendix E.1.1).

Proposition 7.16 is proved by observing that the transformation of fn to f̂ n constitutes
a “strong” code and that any such code provides a worst-case to (strongly) average-
case reduction. For starters, we note that the mapping fn !→ f̂ n is closely related to the
Reed-Muller code (see §E.1.2.4), whereas we already saw a connection between “hardness
amplification” and coding theory (see discussion at the end of Section 7.1.3). In the current
context (of reducing the worst-case computation of fn to an average-case computation of
f̂ n), we seek a relatively small circuit that computes fn (correctly on each input) when
given oracle access to any function f ′ that agrees with f̂ n on a sufficiently large fraction of
the domain. Actually, we may relax the requirement by (switching the order of quantifiers
and) allowing the small (oracle-aided) circuit to depend on f ′ (as well as on fn), because f ′

represents some small circuit that violates the average-case complexity requirement with
respect to f̂ n (and so the combined circuit will violate the worst-case hypothesis regarding
fn). Furthermore, wanting fn ∈ E to imply f̂ n ∈ E , we wish the mapping fn !→ f̂ n to
be computable in time 2O(n) = poly(| fn|). These considerations lead to the following
definition of a class of codes, which contain the encoding that underlies the foregoing
mapping fn !→ f̂ n .

18Recall that in Construction 7.11 we have |H |m = 2n , which may yield a non-integer m if we insist on |H | =
n/ε(n). This problem was avoided in the proof of Theorem 7.12 (where |H | = n was used), but is more acute in
the current context because of ε (e.g., we may have ε(n) = 2−2n/7). Thus, we should either relax the requirement
|H |m = 2n (e.g., allow 2n ≤ |H |m < 22n) or relax the requirement |H | = n/ε(n). However, for the sake of simplicity,
we ignore this issue in the presentation.

267



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

Definition 7.17 (efficient codes supporting implicit decoding): For fixed functions
q, � : N→ N and α : N→ (0, 1], the mapping � : {0, 1}∗ → {0, 1}∗ is said to be
efficient and supports implicit decoding with parameters q, �, α if it satisfies the
following two conditions:

1. Encoding (or efficiency): The mapping � is polynomial-time computable.

It is instructive to view � as mapping N-bit long strings to sequences of length
�(N ) over [q(N )], and to view each (codeword) �(x) ∈ [q(|x |)]�(|x |) as a map-
ping from [�(|x |)] to [q(|x |)].

2. Decoding (in implicit form): There exists a polynomial p such that the fol-
lowing holds. For every w : [�(N )]→ [q(N )] and every x ∈{0, 1}N such that
�(x) is (1− α(N ))-close to w, there exists an oracle-aided19 circuit C of size
p((log N )/α(N )) such that, for every i ∈ [N ], it holds that Cw(i) equals the i th

bit of x.

The encoding condition implies that � is polynomially bounded. The decoding condition
refers to any �-codeword that agrees with the oracle w : [�(N )] → [q(N )] on an α(N )
fraction of the �(N ) coordinates, where α(N ) may be very small. We highlight the non-
triviality of the decoding condition: There are N bits of information in x , while the circuit
C may “encode” only p((log N )/α(N )) bits of information about x . Thus, x is (implicitly)
recovered by C based mainly on a highly corrupted version of �(x). Furthermore, each
desired bit of x is recovered (by C) by making at most p((log N )/α(N )) queries to this
corrupted version of �(x). We mention that the foregoing decoding condition is related
to list decoding (as defined in Appendix E.1.1).20

Let us now relate the transformation of fn to f̂ n , which underlies Proposition 7.16, to
Definition 7.17. We view fn as a binary string of length N = 2n (representing the truth table
of fn : H m→{0, 1}) and analogously view f̂ n : Fm→F as an element of F |F |

m = F N 3
(or

as a mapping from [N 3] to [|F |]).21 Recall that the transformation of fn to f̂ n is efficient.
We mention that this transformation also supports implicit decoding with parameters
q, �, α such that �(N ) = N 3, α(N ) = ε(n), and q(N ) = (n/ε(n))3, where N = 2n . The
latter fact is highly non-trivial, but establishing it is beyond the scope of the current text
(and the interested reader is referred to [218]).

We mention that the transformation of fn to f̂ n enjoys additional features, which
are not required in Definition 7.17 and will not be used in the current context. For ex-
ample, there are at most O(1/α(2n)2) codewords (i.e., f̂ n’s) that are (1− α(2n))-close
to any fixed w : [�(2n)] → [q(2n)], and the corresponding oracle-aided circuits can

19Oracle-aided circuits are defined analogously to oracle Turing machines. Alternatively, we may consider here
oracle machines that take advice such that both the advice length and the machine’s running time are upper-bounded
by p((log N )/α(N )). The relevant oracles may be viewed either as blocks of binary strings that encode sequences over
[q(N )] or as sequences over [q(N )]. Indeed, in the latter case we consider non-binary oracles, which return elements
in [q(N )].

20Recall that, on input w ∈ [q(N )]�(N ), a list-decoding algorithm for � : {0, 1}N → [q(N )]�(N ) is required to
output the list Lw containing every string x ∈ {0, 1}N such that �(x) agrees with w on α(N ) fraction of the locations.
Turning to the foregoing decoding condition (of Definition 7.17), note that it requires outputting (bits of) one specific
string x ∈ Lw . This can be obtained by hard-wiring (in the list-decoding circuit) the index of x in Lw , while taking
advantage of the fact that the circuit may depend on x and w. Note, however, that the circuit obtained in this way may
not satisfy the stringent decoding condition of Definition 7.17, which requires a circuit of p((log N )/α(N ))-size. On
the other hand, the decoding condition does not refer to the complexity of obtaining the aforementioned oracle-aided
circuits (and, in particular, may not yield a list-decoding algorithm).

21Recall that N = 2n = |H |m and |F | = |H |3. Hence, |F |m = N 3.

268



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

be constructed in probabilistic p(n/α(2n))-time.22 These results are termed “list
decoding with implicit representations” (and we refer the interested reader again
to [218]).

Our focus is on showing that efficient codes that supports implicit decoding suffice
for worst-case to (strongly) average-case reductions. We state and prove a general result,
noting that in the special case of Proposition 7.16 gn = f̂ n (and �(2n) = 23n).

Theorem 7.18: Suppose that there exists a Boolean function f in E having circuit
complexity that is almost-everywhere greater than S, and let ε : N→ (0, 1]. Con-
sider a polynomial � : N→ N such that n !→ log2 �(2n) is a 1-1 map of the integers,
and let m(n) = log2 �(2n); e.g., if �(N ) = N 3 then m(n) = 3n. Suppose that the
mapping � : {0, 1}∗ → {0, 1}∗ is efficient and supports implicit decoding with pa-
rameters q, �, α such that α(N ) = ε(�log2 N�). Define gn : [�(2n)] → [q(2n)] such
that gn(i) equals the i th element of �(〈 fn〉) ∈ [q(2n)]�(2n), where 〈 fn〉 denotes the 2n-
bit long description of the truth table of fn. Then, the function g : {0, 1}∗ → {0, 1}∗,
defined by g(z) = gm−1(|z|)(z), is computable in exponential time and for every fam-
ily of circuit {C ′n′ }n′∈N of size S′(n′) = poly(ε(m−1(n′))/n′) · S(m−1(n′)) it holds that
Pr[C ′n′(Un′) = g(Un′)] < ε′(n′) def= ε(m−1(n′)).

Proof Sketch: First note that we can generate the truth table of fn in exponential time,
and by the encoding condition of � it follows that gn can be evaluated in exponential
time. The average-case hardness of g is established via a reducibility argument as
follows. We consider a circuit C ′ = C ′n′ of size S′ such that Pr[C ′n′(Un′) = g(Un′)] <

ε′(n′), let n = m−1(n′), and recall that ε′(n′) = ε(n) = α(2n). Then, C ′ : {0, 1}n′ →
{0, 1} (viewed as a function) is (1− α(2n))-close to the function gn , which in turn
equals �(〈 fn〉). The decoding condition of � asserts that we can recover each bit of
〈 fn〉 (i.e., evaluate fn) by an oracle-aided circuit D of size p(n/α(2n)) that uses (the
function) C ′ as an oracle. Combining (the circuit C ′) with the oracle-aided circuit
D, we obtain a (standard) circuit of size p(n/α(2n)) · S′(n′) < S(n) that computes
fn . The theorem follows (i.e., the violation of the conclusion regarding g implies
the violation of the hypothesis regarding f ).

Advanced comment. For simplicity, we formulated Definition 7.17 in a crude manner
that suffices for proving Proposition 7.16, where q(N ) = ((log2 N )/α(N ))3. The issue is
the existence of codes that satisfy Definition 7.17: In general, such codes may exist only
when using a more careful formulation of the decoding condition that refers to codewords
that are (1− ((1/q(N ))+ α(N )))-close to the oracle w : [�(N )]→ [q(N )] rather than being
(1− α(N ))-close to it.23 Needless to say, the difference is insignificant in the case that

22The construction may yield also oracle-aided circuits that compute the decoding of codewords that are almost
(1− α(2n))-close to w. That is, there exists a probabilistic p(n/α(2n))-time algorithm that outputs a list of circuits that,
with high probability, contains an oracle-aided circuit for the decoding of each codeword that is (1− α(2n))-close to w.
Furthermore, with high probability, the list contains only circuits that decode codewords that are (1− α(2n)/2)-close
to w.

23Note that this is the “right” formulation, because in the case that α(N ) < 1/q(N ) it seems impossible to
satisfy the decoding condition (as stated in Definition 7.17). Specifically, a random �(N )-sequence over [q(N )] is
expected to be (1− (1/q(N )))-close to any fixed codeword, and with overwhelmingly high probability it will be
(1− ((1− o(1))/q(N )))-close to almost all the codewords, provided �(N ) � q(N )2. But in case N > poly(q(N )),

269



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

α(N ) � 1/q(N ) (as in Proposition 7.16), but it is significant in case we care about binary
codes (i.e., q(N ) = 2, or codes over other small alphabets). We mention that Theorem 7.18
can be adapted to this context (of q(N ) = 2), and directly yields strongly inapproximable
predicates. For details, see Exercise 7.21.

7.2.2. Amplification with Respect to Exponential-Size Circuits

For the purpose of stronger derandomization of BPP , we start with a stronger assumption
regarding the worst-case circuit complexity of E and turn it to a stronger inapproximability
result.

Theorem 7.19: Suppose that there exists a Boolean function f in E having almost-
everywhere exponential circuit complexity; that is, there exists a constant b > 0
such that, for all but finitely many n’s, any circuit that correctly computes f on
{0, 1}n has size at least 2b·n. Then, for some constant c > 0 and T (n)

def= 2c·n, there
exists a T -inapproximable Boolean function in E .

Theorem 7.19 can be used for deriving a full derandomization of BPP (i.e., BPP = P)
under the aforementioned assumption (see Part 1 of Theorem 8.19).

Theorem 7.19 follows as a special case of Proposition 7.16 (combined with Theo-
rem 7.8; see Exercise 7.22). An alternative proof, which uses different ideas that are of
independent interest, will be briefly reviewed next. The starting point of the latter proof is
a mildly inapproximable predicate, as provided by Theorem 7.12. However, here we can-
not afford to apply Yao’s XOR Lemma (i.e., Theorem 7.13), because the latter relates the
size of circuits that strongly fail to approximate a predicate defined over poly(n)-bit long
strings to the size of circuits that fail to mildly approximate a predicate defined over n-bit
long strings. That is, Yao’s XOR Lemma asserts that if f : {0, 1}n → {0, 1} is mildly inap-
proximable by S f -size circuits then F : {0, 1}poly(n) → {0, 1} is strongly inapproximable
by SF -size circuits, where SF (poly(n)) is polynomially related to S f (n). In particular,
SF (poly(n)) < S f (n) seems inherent in this reasoning. For the case of polynomial lower
bounds, this is good enough (i.e., if S f can be an arbitrarily large polynomial then so can
SF ), but for S f (n) = exp(�(n)) we cannot obtain SF (m) = exp(�(m)) (but rather only
obtain SF (m) = exp(m�(1))).

The source of trouble is that amplification of inapproximability was achieved by taking a
polynomial number of independent instances. Indeed, we cannot hope to amplify hardness
without applying f on many instances, but these instances need not be independent. Thus,
the idea is to define F(r ) = ⊕poly(n)

i=1 f (xi ), where x1, . . . , xpoly(n) ∈ {0, 1}n are generated
from r and still |r | = O(n). That is, we seek a “derandomized” version of Yao’s XOR
Lemma. In other words, we seek a “pseudorandom generator” of a type appropriate for
expanding r to dependent xi ’s such that the XOR of the f (xi )’s is as inapproximable as it
would have been for independent xi ’s.24

we cannot hope to recover almost all N -bit long strings based on poly(q(N ) log N ) bits of advice (per each of
them).

24Indeed, this falls within the general paradigm discussed in Section 8.1. Furthermore, this suggestion provides
another perspective on the connection between randomness and computational difficulty, which is the focus of much
discussion in Chapter 8 (see, e.g., §8.2.7.2).

270



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

Teaching note: In continuation of footnote 24, we note that there is a strong connection
between the rest of this section and Chapter 8. On top of the aforementioned conceptual
aspect, we will use technical tools from Chapter 8 toward establishing the derandomized
version of the XOR Lemma. These tools include pairwise independence generators (see
Section 8.5.1), random walks on expanders (see Section 8.5.3), and the Nisan-Wigderson
Construction (Construction 8.17). Indeed, recall that Section 7.2.2 is advanced material, which
is best left for independent reading.

The pivot of the proof is the notion of a hard region of a Boolean function. Loosely
speaking, S is a hard region of a Boolean function f if f is strongly inapproximable
on a random input in S; that is, for every (relatively) small circuit Cn , it holds that
Pr[Cn(Un) = f (Un)|Un ∈ S] ≈ 1/2. By definition, {0, 1}∗ is a hard region of any strongly
inapproximable predicate. As we shall see, any mildly inapproximable predicate has a hard
region of density related to its inapproximability parameter. Loosely speaking, hardness
amplification will proceed via methods for generating related instances that hit the hard
region with sufficiently high probability. But, first let us study the notion of a hard region.

7.2.2.1. Hard Regions
We actually generalize the notion of hard regions to arbitrary distributions. The important
special case of uniform distributions (on n-bit long strings) is obtained from Defini-
tion 7.20 by letting Xn equal Un (i.e., the uniform distribution over {0, 1}n). In general,
we only assume that Xn ∈ {0, 1}n .

Definition 7.20 (hard region relative to arbitrary distribution): Let f :{0, 1}∗→
{0, 1} be a Boolean predicate, {Xn}n∈N be a probability ensemble, s :N→N and
ε :N→ [0, 1].

• We say that a set S is a hard region of f relative to {Xn}n∈N with respect to
s(·)-size circuits and advantage ε(·) if for every n and every circuit Cn of size at
most s(n), it holds that

Pr[Cn(Xn)= f (Xn)|Xn ∈ S] ≤ 1

2
+ ε(n).

• We say that f has a hard region of density ρ(·) relative to {Xn}n∈N (with respect
to s(·)-size circuits and advantage ε(·)) if there exists a set S that is a hard region
of f relative to {Xn}n∈N (with respect to the foregoing parameters) such that
Pr[Xn ∈ Sn] ≥ ρ(n).

Note that a Boolean function f is (s, 1− 2ε)-inapproximable if and only if {0, 1}∗ is a
hard region of f relative to {Un}n∈N with respect to s(·)-size circuits and advantage ε(·).
Thus, strongly inapproximable predicates (e.g., S-inapproximable predicates for super-
polynomial S) have a hard region of density 1 (with respect to a negligible advantage).25

But this trivial observation does not provide hard regions (with respect to a small (i.e., close
to zero) advantage) for mildly inapproximable predicates. Providing such hard regions is
the contents of the following theorem.

25Likewise, mildly inapproximable predicates have a hard region of density 1 with respect to an advantage that is
noticeably smaller than 1/2.

271



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

Theorem 7.21 (hard regions for mildly inapproximable predicates): Let f :
{0, 1}∗→{0, 1} be a Boolean predicate, {Xn}n∈N be a probability ensemble,
s :N→N, and ρ :N→ [0, 1] such that ρ(n) > 1/poly(n). Suppose that, for ev-
ery circuit Cn of size at most s(n), it holds that Pr[Cn(Xn)= f (Xn)] ≤ 1− ρ(n).
Then, for every ε :N→ (0, 1], the function f has a hard region of density ρ ′(·)
relative to {Xn}n∈N with respect to s ′(·)-size circuits and advantage ε(·), where
ρ ′(n)

def= (1− o(1)) · ρ(n) and s ′(n)
def= s(n)/poly(n/ε(n)).

In particular, if f is (s, 2ρ)-inapproximable then f has a hard region of density ρ ′(·) ≈ ρ(·)
relative to the uniform distribution (with respect to s ′(·)-size circuits and advantage ε(·)).

Proof Sketch:26 The proof proceeds by first establishing that {Xn} is “related” to
(or rather “dominates”) an ensemble {Yn} such that f is strongly inapproximable on
{Yn}, and next showing that this implies the claimed hard region. Indeed, this notion
of “related ensembles” plays a central role in the proof.

For ρ :N→ [0, 1], we say that {Xn} ρ-dominates {Yn} if for every x it holds that
Pr[Xn= x] ≥ ρ(n) · Pr[Yn= x]. In this case we also say that {Yn} is ρ-dominated
by {Xn}. We say that {Yn} is critically ρ-dominated by {Xn} if for every x either
Pr[Yn= x] = (1/ρ(n)) · Pr[Xn= x] or Pr[Yn= x] = 0.27

The notions of domination and critical domination play a central role in the
proof, which consists of two parts. In the first part (Claim 7.21.1), we prove that, for
{Xn} and ρ as in the theorem’s hypothesis, there exists an ensemble {Yn} that is ρ-
dominated by {Xn} such that f is strongly inapproximable on {Yn}. In the second part
(Claim 7.21.2), we prove that the existence of such a dominated ensemble implies
the existence of an ensemble {Zn} that is critically ρ ′-dominated by {Xn} such that f
is strongly inapproximable on {Zn}. Finally, we note that such a critically dominated
ensemble yields a hard region of f relative to {Xn}, and the theorem follows.

Claim 7.21.1: Under the hypothesis of the theorem it holds that there exists a prob-
ability ensemble {Yn} that is ρ-dominated by {Xn} such that, for every s ′(n)-size
circuit Cn , it holds that

Pr[Cn(Yn)= f (Yn)] ≤ 1

2
+ ε(n)

2 .
(7.13)

Proof: We start by assuming, toward the contradiction, that for every distribution Yn

that is ρ-dominated by Xn there exists a s ′(n)-size circuit Cn such that Pr[Cn(Yn) =
f (Yn)] > 0.5+ ε′(n), where ε′(n) = ε(n)/2. One key observation is that there is a
correspondence between the set of all distributions that are each ρ-dominated by
Xn and the set of all the convex combination of critically ρ-dominated (by Xn)
distributions; that is, each ρ-dominated distribution is a convex combination of
critically ρ-dominated distributions and vice versa (cf., a special case in §D.4.1.1).
Thus, considering an enumeration Y (1)

n , . . . , Y (t)
n of the critically ρ-dominated (by

Xn) distributions, we conclude that for every distribution π on [t] there exists a

26See details in [102, Apdx. A].
27Actually, we should allow one point of exception, that is, relax the requirement by saying that for at most one

string x ∈ {0, 1}n it holds that 0 < Pr[Yn= x] < Pr[Xn= x]/ρ(n). This point has little effect on the proof, and is
ignored in our presentation.

272



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

s ′(n)-size circuit Cn such that
t∑

i=1

π(i) · Pr
[
Cn

(
Y (i)

n

) = f
(
Y (i)

n

)]
> 0.5+ ε′(n). (7.14)

Now, consider a finite game between two players, where the first player selects a
critically ρ-dominated (by Xn) distribution, and the second player selects a s ′(n)-size
circuit and obtains a payoff as determined by the corresponding success probability;
that is, if the first player selects the i th critically dominated distribution and the second
player selects the circuit C then the payoff equals Pr[C(Y (i)

n ) = f (Y (i)
n )]. Eq. (7.14)

may be interpreted as saying that for any randomized strategy for the first player
there exists a deterministic strategy for the second player yielding average payoff
greater than 0.5+ ε′(n). The Min-Max Principle (cf. von Neumann [235]) asserts
that in such a case there exists a randomized strategy for the second player that yields
average payoff greater than 0.5+ ε′(n) no matter what strategy is employed by the
first player. This means that there exists a distribution, denoted Dn , on s ′(n)-size
circuits such that for every i it holds that

Pr
[
Dn

(
Y (i)

n

) = f
(
Y (i)

n

)]
> 0.5+ ε′(n), (7.15)

where the probability refers both to the choice of the circuit Dn and to the ran-
dom variable Yn . Let Bn = {x :Pr[Dn(x)= f (x)] ≤ 0.5+ ε′(n)}. Then, Pr[Xn ∈
Bn] < ρ(n), because otherwise we reach a contradiction to Eq. (7.15) by defining
Yn such that Pr[Yn= x] = Pr[Xn= x]/Pr[Xn ∈ Bn] if x ∈ Bn and Pr[Yn= x] = 0
otherwise.28 By employing standard amplification to Dn , we obtain a distribution
D′n over poly(n/ε′(n)) · s ′(n)-size circuits such that for every x ∈ {0, 1}n \ Bn it
holds that Pr[D′n(x) = f (x)] > 1− 2−n . It follows that there exists a s(n)-sized
circuit Cn such that Cn(x) = f (x) for every x ∈ {0, 1}n \ Bn , which implies that
Pr[Cn(Xn) = f (Xn)] ≥ Pr[Xn ∈ {0, 1}n \ Bn] > 1− ρ(n), in contradiction to the
theorem’s hypothesis. The claim follows. �

We next show that the conclusion of Claim 7.21.1 (which was stated for ensembles
that are ρ-dominated by {Xn}) essentially holds also when allowing only critically
ρ-dominated (by {Xn}) ensembles. The following precise statement involves some
loss in the domination parameter ρ (as well as in the advantage ε).

Claim 7.21.2: If there exists a probability ensemble {Yn} that is ρ-dominated by
{Xn} such that for every s ′(n)-size circuit Cn it holds that Pr[Cn(Yn) = f (Yn)] ≤
0.5+ (ε(n)/2), then there exists a probability ensemble {Zn} that is critically ρ ′-
dominated by {Xn} such that for every s ′(n)-size circuit Cn it holds that Pr[Cn(Zn) =
f (Zn)] ≤ 0.5+ ε(n).

In other words, Claim 7.21.2 asserts that the function f has a hard region of density
ρ ′(·) relative to {Xn} with respect to s ′(·)-size circuits and advantage ε(·), thus
establishing the theorem. The proof of Claim 7.21.2 uses the Probabilistic Method
(cf. [11]). Specifically, we select a set Sn at random by including each n-bit long
string x with probability

p(x)
def= ρ(n) · Pr[Yn= x]

Pr[Xn= x]
≤ 1 (7.16)

28Note that Yn is ρ-dominated by Xn , whereas by the hypothesis Pr[Dn(Yn) = f (Yn)] ≤ 0.5+ ε′(n). Using the
fact that any ρ-dominated distribution is a convex combination of critically ρ-dominated distributions, it follows that
Pr[Dn(Y (i)

n ) = f (Y (i)
n )] ≤ 0.5+ ε′(n) holds for some critically ρ-dominated Y (i)

n .

273



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

independently of the choice of all other strings. It can be shown that, with
high probability over the choice of Sn , it holds that Pr[Xn ∈ Sn] ≈ ρ(n) and that
Pr[Cn(Xn)= f (Xn)|Xn ∈ Sn] < 0.5+ ε(n) for every circuit Cn of size s ′(n). The
latter assertion is proved by a union bound on all relevant circuits, while showing
that for each such circuit Cn , with probability 1− exp(−s ′(n)2) over the choice of
Sn , it holds that |Pr[Cn(Xn)= f (Xn)|Xn ∈ Sn]− Pr[Cn(Yn)= f (Yn)]| < ε(n)/2. For
details, see [102, Apdx. A]. (This completes the proof of the theorem.)

7.2.2.2. Hardness Amplification via Hard Regions
Before showing how to use the notion of a hard region in order to prove a derandomized
version of Yao’s XOR Lemma, we show how to use it in order to prove the original version
of Yao’s XOR Lemma (i.e., Theorem 7.13).

An alternative proof of Yao’s XOR Lemma. Let f , p1, and p2 be as in Theorem 7.13.
Then, by Theorem 7.21, for ρ ′(n) = 1/3p2(n) and s ′(n) = p1(n)�(1)/poly(n), the function
f has a hard region S of density ρ ′ (relative to {Un}) with respect to s ′(·)-size circuits and
advantage 1/s ′(·). Thus, for t(n) = n · p2(n) and F as in Theorem 7.13, with probability
at least 1− (1− ρ ′(n))t(n) = 1− exp(−�(n)), one of the t(n) random (n-bit long) blocks
of F resides in S (i.e., the hard region of f ). Intuitively, this suffices for establishing
the strong inapproximability of F . Indeed, suppose toward the contradiction that a small
(i.e., p′(t(n) · n)-size) circuit Cn can approximate F (over Ut(n)·n) with advantage ε(n)+
exp(−�(n)), where ε(n) > 1/s ′(n). Then, the ε(n) term must be due to t(n) · n-bit long
inputs that contain a block in S. Using an averaging argument, we can first fix the index
of this block and then the contents of the other blocks, and infer the following: For some
i ∈ [t(n)] and x1, . . . , xt(n) ∈ {0, 1}n it holds that

Pr[Cn(x ′, Un, x ′′) = F(x ′, Un, x ′′) |Un ∈ S] ≥ 1

2
+ ε(n)

where x ′ = (x1, . . . , xi−1) ∈ {0, 1}(i−1)·n and x ′′ = (xi+1, . . . , xt(n)) ∈ {0, 1}(t(n)−i)·n .
Hard-wiring i ∈ [t(n)], x ′ = (x1, . . . , xi−1) and x ′′ = (xi+1, . . . , xt(n)) as well as
σ

def= ⊕ j �=i f (x j ) in Cn , we obtain a contradiction to the (established) fact that S is a
hard region of f (by using the circuit C ′n(z) = Cn(x ′, z, x ′′)⊕ σ ). Thus, Theorem 7.13
follows (for any p′(t(n) · n) ≤ s ′(n)− 1).

Derandomized versions of Yao’s XOR Lemma. We first show how to use the notion
of a hard region in order to amplify very mild inapproximability to a constant level of
inapproximability. Recall that our goal is to obtain such an amplification while applying the
given function on many (related) instances, where each instance has length that is linearly
related to the length of the input of the resulting function. Indeed, these related instances
are produced by applying an adequate “pseudorandom generator” (see Chapter 8). The
following amplification utilizes a pairwise independence generator (see Section 8.5.1),
denoted G, that stretches 2n-bit long seeds to sequences of n strings, each of length n.

Lemma 7.22 (derandomized XOR Lemma up to constant inapproximability): Sup-
pose that f : {0, 1}∗ → {0, 1} is (T, ρ)-inapproximable, for ρ(n) > 1/poly(n),
and assume for simplicity that ρ(n) ≤ 1/n. Let b denote the inner-product
mod 2 predicate, and G be the aforementioned pairwise independence generator.
Then F1(s, r ) = b( f (x1) · · · f (xn), r ), where |r | = n = |s|/2 and (x1, . . . , xn) =

274



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

7.2. HARD PROBLEMS IN E

G(s), is (T ′, ρ ′)-inapproximable for T ′(n′) = T (n′/3)/poly(n′) and ρ ′(n′) = �(n′ ·
ρ(n′/3)).

Needless to say, if f ∈ E then F1 ∈ E . By applying Lemma 7.22 for a constant number
of times, we may transform a (T, 1/poly)-inapproximable predicate into a (T ′′, �(1))-
inapproximable one, where T ′′(n′′) = T (n′′/O(1))/poly(n′′).

Proof Sketch: As in the foregoing proof (of the original version of Yao’s XOR
Lemma), we first apply Theorem 7.21. This time we set the parameters so as to infer
that, for α(n) = ρ(n)/3 and t ′(n) = T (n)/poly(n), the function f has a hard region
S of density α (relative to {Un}) with respect to t ′(·)-size circuits and advantage 0.01.
Next, as in §7.2.1.2, we shall consider the corresponding (derandomized) direct prod-
uct problem; that is, the function P1(s) = ( f (x1), . . . , f (xn)), where |s| = 2n and
(x1, . . . , xn) = G(s). We will first show that P1 is hard to compute on an �(n · α(n))
fraction of the domain, and the quantified inapproximality of F1 will follow.

One key observation is that, by Exercise 7.23, with probability at least β(n)
def= n ·

α(n)/2, at least one of the n strings output by G(U2n) resides in S. Intuitively, we
expect every t ′(n)-sized circuit to fail in computing P1(U2n) with probability at
least 0.49β(n), because with probability β(n) the sequence G(U2n) contains an
element in the hard region of f (and in this case the value can be guessed correctly
with probability at most 0.51). The actual proof relies on a reducibility argument,
which is less straightforward than the argument used in the non-derandomized
case.

For technical reasons,29 we use the condition α(n) < 1/2n (which is guaranteed
by the hypothesis that ρ(n) ≤ 1/n and our setting of α(n) = ρ(n)/3). In this case
Exercise 7.23 implies that, with probability at least β(n)

def= 0.75 · n · α(n), at least
one of the n strings output by G(U2n) resides in S. We shall show that every
(t ′(n)− poly(n))-sized circuit fails in computing P1 with probability at least γ (n) =
0.3β(n). As usual, the claim is proved by a reducibility argument. Let G(s)i denote
the i th string in the sequence G(s) (i.e., G(s) = (G(s)1, . . . , G(s)n)), and note that
given i and x we can efficiently sample G−1

i (x)
def= {s∈{0, 1}2n : G(s)i= x}. Given

a circuit Cn that computes P1(U2n) correctly with probability 1− γ (n), we consider
the circuit C ′n that, on input x , uniformly selects i ∈ [n] and s ∈ G−1

i (x), and outputs
the i th bit in Cn(s). Then, by the construction (of C ′n) and the hypothesis regarding
Cn , it holds that

Pr[C ′n(Un)= f (Un)|Un ∈ S] ≥
n∑

i=1

1

n
· Pr[Cn(U2n)= P1(U2n)|G(U2n)i ∈ S]

≥ Pr[Cn(U2n)= P1(U2n) ∧ ∃i Gi (U2n)i ∈ S]

n ·maxi {Pr[G(U2n)i ∈ S]}

≥ (1− γ (n))− (1− β(n))

n · α(n)

= 0.7β(n)

n · α(n)
> 0.52 .

29The following argument will rely on the fact that β(n)− γ (n) > 0.51n · α(n), where γ (n) = �(β(n)).

275



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

This contradicts the fact that S is a hard region of f with respect to t ′(·)-size circuits
and advantage 0.01. Thus, we have established that every (t ′(n)− poly(n))-sized
circuit fails in computing P1 with probability at least γ (n) = 0.3β(n).

Having established the hardness of P1, we now infer the mild inapproximabil-
ity of F1, where F1(s, r ) = b(P1(s), r ). It suffices to employ the simple (warm-
up) case discussed at the beginning of the proof of Theorem 7.7 (where the
predictor errs with probability less than 1/4, rather than the full-fledged result
that refers to a prediction error that is only smaller than 1/2). Denoting by
ηC (s) = Prr∈{0,1}n [C(s, r ) �=b(P1(s), r )] the prediction error of the circuit C , we
recall that if ηC (s) ≤ 0.24 then C can be used to recover P1(s). Thus, for circuits
C of size T ′(3n) = t ′(n)/poly(n) it must hold that Prs[ηC (s)>0.24] ≥ γ (n). It fol-
lows that Es[ηC (s)] > 0.24γ (n), which means that every T ′(3n)-sized circuits fails
to compute (s, r ) !→ b(P1(s), r ) with probability at least δ(|s| + |r |) def= 0.24 · γ (|r |).
This means that F1 is (T ′, 2δ)-inapproximable, and the lemma follows (when noting
that δ(n′) = �(n′ · α(n′/3))).

The next lemma offers an amplification of constant inapproximability to strong inapprox-
imability. Indeed, combining Theorem 7.12 with Lemmas 7.22 and 7.23 yields Theo-
rem 7.19 (as a special case).

Lemma 7.23 (derandomized XOR Lemma starting with constant inapproxima-
bility): Suppose that f : {0, 1}∗ → {0, 1} is (T, ρ)-inapproximable, for some
constant ρ, and let b denote the inner-product mod 2 predicate. Then
there exists an exponential-time computable function G such that F2(s, r ) =
b( f (x1) · · · f (xn), r ), where (x1, . . . , xn) = G(s) and n = �(|s|) = |r | = |x1| =
· · · = |xn|, is T ′-inapproximable for T ′(n′) = T (n′/O(1))�(1)/poly(n′).

Again, if f ∈ E then F2 ∈ E .

Proof Outline:30 As in the proof of Lemma 7.22, we start by establishing a hard
region of density ρ/3 for f (this time with respect to circuits of size T (n)�(1)/

poly(n) and advantage T (n)−�(1)), and focus on the analysis of the (derandom-
ized) direct product problem corresponding to computing the function P2(s) =
( f (x1), . . . , f (xn)), where |s| = O(n) and (x1, . . . , xn) = G(s). The “generator”
G is defined such that G(s ′s ′′) = G1(s ′)⊕ G2(s ′′), where |s ′| = |s ′′|, |G1(s ′)| =
|G2(s ′′)|, and the following conditions hold:

1. G1 is the Expander Random Walk Generator discussed in Section 8.5.3. It can
be shown that G1(UO(n)) outputs a sequence of n strings such that for any set S
of density ρ, with probability 1− exp(−�(ρn)), at least �(ρn) of the strings hit
S. Note that this property is inherited by G, provided |G1(s ′)| = |G2(s ′′)| for any
|s ′| = |s ′′|. It follows that, with probability 1− exp(−�(ρn)), a constant fraction
of the xi ’s in the definition of P2 hit the hard region of f .
It is tempting to say that small circuits cannot compute P2 better than with
probability exp(−�(ρn)), but this is clear only in the case that the xi ’s that hit the
hard region are distributed independently (and uniformly) in it, which is hardly
the case here. Indeed, G2 is used to handle this problem.

30For details, see [128].

276



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

2. G2 is the “set projection” system underlying Construction 8.17; specifically,
G2(s) = (sS1, . . . , sSn ), where each Si is an n-subset of [|s|] and the Si ’s have
pairwise intersections of size at most n/O(1).31 An analysis as in the proof of
Theorem 8.18 can be employed for showing that the dependency among the xi ’s
does not help for computing a particular f (xi ) when given xi as well as all the
other f (x j )’s. (Note that this property of G2 is inherited by G.)

The actual analysis of the construction (via a guessing game presented in [128,
Sec. 3]), links the success probability of computing P2 to the advantage of guessing
f on its hard region. The interested reader is referred to [128].

Digest. Both Lemmas 7.22 and 7.23 are proved by first establishing corresponding de-
randomized versions of the “direct product” lemma (Theorem 7.14); in fact, the core
of these proofs is proving adequate derandomized “direct product” lemmas. We call the
reader’s attention to the seemingly crucial role of this step (especially in the proof of
Lemma 7.23): We cannot treat the values f (x1), ... f (xn) as if they were independent (at
least not for the generator G as postulated in these lemmas), and so we seek to avoid
analyzing the probability of correctly computing the XOR of all these values. In contrast,
we have established that it is very hard to correctly compute all n values, and thus XORing
a random subset of these values yields a strongly inapproximable predicate. (Note that the
argument used in Exercise 7.17 fails here, because the xi ’s are not independent, which is
the reason that we XOR a random subset of these values rather than all of them.)

Chapter Notes

The notion of a one-way function was suggested by Diffie and Hellman [66]. The no-
tion of weak one-way functions as well as the amplification of one-way functions (i.e.,
Theorem 7.5) were suggested by Yao [239]. A proof of Theorem 7.5 has first appeared
in [87].

The concept of hard-core predicates was suggested by Blum and Micali [41]. They
also proved that a particular predicate constitutes a hard-core for the “DLP function”
(i.e., exponentiation in a finite field), provided that the latter function is one-way. The
generic hard-core predicate (of Theorem 7.7) was suggested by Levin, and proven as such
by Goldreich and Levin [99]. The proof presented here was suggested by Rackoff. We
comment that the original proof has its own merits (cf., e.g., [105]).

The construction of canonical derandomizers (see Section 8.3) and, specifically, the
Nisan-Wigderson framework (i.e., Construction 8.17) has been the driving force behind
the study of inapproximable predicates in E . Theorem 7.10 is due to [22], whereas
Theorem 7.19 is due to [128]. Both results rely heavily on variants of Yao’s XOR Lemma,
to be reviewed next.

Like several other fundamental insights32 attributed to Yao’s paper [239], Yao’s XOR
Lemma (i.e., Theorem 7.13) is not even stated in [239] but is rather due to Yao’s oral
presentations of his work. The first published proof of Yao’s XOR Lemma was given by
Levin (see [102, Sec. 3]). The proof presented in §7.2.1.2 is due to Goldreich, Nisan, and

31Recall that sS denotes the projection of s on coordinates S ⊆ [|s|]; that is, for s = σ1 · · · σk and S = {i j : j =
1, . . . , n}, we have sS = σi1 · · · σin .

32Most notably, the equivalence of pseudorandomness and unpredictability (see Section 8.2.5).

277



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

Wigderson [102, Sec. 5]. For a recent (but brief) review of other proofs of Yao’s XOR
Lemma (as well as variants of it), the interested reader is referred to [223].

The notion of a hard region and its applications to proving the original version of
Yao’s XOR Lemma are due to Impagliazzo [126] (see also [102, Sec. 4]). The first
derandomization of Yao’s XOR Lemma (i.e., Lemma 7.22) also originates in [126], while
the second derandomization (i.e., Lemma 7.23) as well as Theorem 7.19 are due to
Impagliazzo and Wigderson [128].

The worst-case to average-case reduction (i.e., §7.2.1.1, yielding Theorem 7.12) is
due to [22]. This reduction follows the self-correction paradigm of Blum, Luby, and
Rubinfeld [40], which was first employed in the context of a (strict)33 worst-case to
average-case reduction by Lipton [157].34

The connection between list decoding and hardness amplification (i.e., §7.2.1.3), yield-
ing alternative proofs of Theorems 7.10 and 7.19, is due to Sudan, Trevisan, and Vad-
han [218].

Hardness amplification for NP has been the subject of recent attention: An ampli-
fication of mild inapproximability to strong inapproximability is provided in [121], and
an indication of the impossibility of a worst-case to average-case reductions (at least
non-adaptive ones) is provided in [43].

Exercises

Exercise 7.1: Prove that if one way-functions exist then there exist one-way functions
that are length preserving (i.e., | f (x)| = |x | for every x ∈ {0, 1}n).

Guideline: Clearly, for some polynomial p, it holds that | f (x)| < p(|x |) for all x .
Assume, without loss of generality, that n !→ p(n) is 1-1 and increasing, and let
p−1(m) = n if p(n) ≤ m < p(n + 1). Define f ′(z) = f (x)01|z|−| f (x)|−1, where x is
the p−1(|z|)-bit long prefix of z.

Exercise 7.2: Prove that if a function f is hard to invert in the sense of Definition 7.3
then it is hard to invert in the sense of Definition 7.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability
in Eq. (7.1).

Exercise 7.3: Assuming the existence of one-way functions, prove that there exists a weak
one-way function that is not strongly one-way.

33Earlier uses of the self-correction paradigm referred to “two argument problems” and consisted of fixing one
argument and randomizing the other (see, e.g., [108]); consider, for example, the decision problem in which given
(N , r ) the task is to determine whether x2 ≡ r (mod N ) has an integer solution, and the randomized process
mapping (N , r ) to (N , r ′), where r ′ = r · ω2 mod N and ω is uniformly distibuted in [N ]. Loosely speaking, such a
process yields a reduction from worst-case complexity to “mixed worst/average-case” complexity (or from “mixed
average/worst-case” to pure average-case).

34An earlier use of the self-correction paradigm for a strict worst-case to average-case reduction appears in [19],
but it refers to very low complexity classes. Specifically, this reduction refers to the parity function and is
computable in AC0 (implying that parity cannot be approximated in AC0, since it cannot be computed in that class
(see [83, 240, 115])). The reduction (randomly) maps x ∈ {0, 1}n , viewed as a sequence (x1, x2, x3, . . . , xn), to the
sequence x ′ = (x1 ⊕ r1, r1 ⊕ x2 ⊕ r2, r2 ⊕ x3 ⊕ r3, . . . , rn−1 ⊕ xn ⊕ rn), where r1, . . . , rn ∈ {0, 1} are uniformly
and independently distributed. Note that x ′ is uniformly distributed in {0, 1}n and thatparity(x) = parity(x ′)⊕ rn .

278



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 7.4 (a universal one-way function (by L. Levin)): Using the notion of a uni-
versal machine, present a polynomial-time computable function that is hard to invert
(in the sense of Definition 7.1) if and only if there exist one-way functions.

Guideline: Consider the function F that parses its input into a pair (M, x) and emulates
|x |3 steps of M on input x . Note that if there exists a one-way function that can be
evaluated in cubic time then F is a weak one-way function. Using padding, prove that
there exists a one-way function that can be evaluated in cubic time if and only if there
exist one-way functions.

Exercise 7.5: For � > 1, prove that the following 2� − 1 samples are pairwise independent
and uniformly distributed in {0, 1}n . The samples are generated by uniformly and inde-
pendently selecting � strings in {0, 1}n . Denoting these strings by s1, . . . , s�, we generate
2� − 1 samples corresponding to the different non-empty subsets of {1, 2, . . . , �} such
that for subset J we let r J def= ⊕ j∈J s j .

Guideline: For J �= J ′, it holds that r J ⊕ r J ′ = ⊕ j∈K s j , where K denotes the sym-
metric difference of J and J ′. See related material in Section 8.5.1.

Exercise 7.6 (a variant on the proof of Theorem 7.7): Provide a detailed presentation of
the alternative procedure outlined in footnote 5. That is, prove that for every x ∈ {0, 1}n ,
given oracle access to any Bx : {0, 1}n → {0, 1} that satisfies Eq. (7.6), this procedure
makes poly(n/ε) steps and outputs a list of strings that, with probability at least 1/2,
contains x .

Exercise 7.7 (proving Theorem 7.8): Recall that the proof of Theorem 7.7 estab-
lishes the existence of a poly(n/ε)-time oracle machine M such that, for every
B : {0, 1}n → {0, 1} and every x ∈ {0, 1}n that satisfy Prr [B(r ) = b(x, r )] ≥ 1

2 + ε,
it holds that Pr[M B(n, ε) = x] = �(ε2/n). Show that this implies Theorem 7.8. (In-
deed, an alternative proof can be derived by adapting Exercise 7.6.)

Guideline: Apply a “coupon collector” argument.

Exercise 7.8: A polynomial-time computable predicate b :{0, 1}∗→{0, 1} is called a
universal hard-core predicate if for every one-way function f , the predicate b is a
hard-core of f . Note that the predicate presented in Theorem 7.7 is “almost universal”
(i.e., for every one-way function f , that predicate is a hard-core of f ′(x, r ) = ( f (x), r ),
where |x | = |r |). Prove that there exists no universal hard-core predicate.

Guideline: Let b be a candidate universal hard-core predicate, and let f be an arbitrary
one-way function. Then consider the function f ′(x) = ( f (x), b(x)).

Exercise 7.9: Prove that if NP is not contained in P/poly then neither is E . Furthermore,
for every S : N→ N, if some problem in NP does not have circuits of size S then for
some constant ε > 0 there exists a problem in E that does not have circuits of size S′,
where S′(n) = S(nε). Repeat the exercise for the “almost-everywhere” case.

Guideline: Although NP is not known to be in E , it is the case that SAT is in E , which
implies that NP is reducible to a problem in E . For the “almost-everywhere” case,
address the fact that the said reduction may not preserve the length of the input.

Exercise 7.10: For every function f : {0, 1}n → {0, 1}, present a linear-size circuit Cn

such that Pr[C(Un) = f (Un)] ≥ 0.5+ 2−n . Furthermore, for every t ≤ 2n−1, present

279



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

a circuit Cn of size O(t · n) such that Pr[C(Un) = f (Un)] ≥ 0.5+ t · 2−n . Warning:
You may not assume that Pr[ f (Un) = 1] = 0.5.

Exercise 7.11 (self-correction of low-degree polynomials): Let d, m be integers, and F
be a finite field of cardinality greater than t

def= dm + 1. Let p : Fm → F be a poly-
nomial of individual degree d, and α1, . . . , αt be t distinct non-zero elements of F .

1. Show that, for every x, y ∈ Fm , the value of p(x) can be efficiently computed from
the values of p(x + α1 y), . . . , p(x + αt y), where x and y are viewed as m-ary
vectors over F .

2. Show that, for every x ∈ Fm and α ∈ F \ {0}, if we uniformly select r ∈ Fm then
the point x + αr is uniformly distributed in Fm .

Conclude that p(x) can be recovered based on t random points, where each point is
uniformly distributed in Fm .

Exercise 7.12 (low degree extension): Prove that for any H ⊂ F and every function
f : H m → F there exists an m-variate polynomial f̂ : Fm → F of individual degree
|H | − 1 such that for every x ∈ H m it holds that f̂ (x) = f (x).

Guideline: Define f̂ (x) =∑
a∈H m δa(x) · f (a), where δa is an m-variate of individ-

ual degree |H | − 1 such that δa(a) = 1 whereas δa(x) = 0 for every x ∈ H m \ {a}.
Specifically, δa1,...,am (x1, . . . , xm) =∏m

i=1

∏
b∈H\{ai }((xi − b)/(ai − b)).

Exercise 7.13: Suppose that f̂ and S′ are as in the conclusion of Theorem 7.12. Prove
that there exists a Boolean function g in E that is (S′′, ε)-inapproximable for S′′(n′ +
O(log n′)) = S′(n′)/n′ and ε(m) = 1/m3.

Guideline: Consider the function g defined such that g(x, i) equals the i th bit of f̂ (x).

Exercise 7.14 (a generic application of Theorem 7.8): For any � : N→N, let h :
{0, 1}∗ → {0, 1}∗ be an arbitrary function (or even a randomized mapping) such that
|h(x)| = �(|x |) for every x ∈ {0, 1}∗, and {Xn}n∈N be a probability ensemble. Sup-
pose that, for some s : N→ N and ε : N→ (0, 1], for every family of s-size circuits
{Cn}n∈N and all sufficiently large n it holds that Pr[Cn(Xn) = h(Xn)] ≤ ε(n). Suppose
that s ′ : N→ N and ε′ : N→ (0, 1] satisfy s ′(n + �(n)) ≤ s(n)/poly(n/ε′(n + �(n)))
and ε′(n + �(n)) = �(n) · ε(n)�(1). Show that Theorem 7.8 implies that for every family
of s ′-size circuits {C ′n′ }n′∈N and all sufficiently large n′ = n + �(n) it holds that

Pr[C ′n+�(n)(Xn, U�(n)) = b(h(Xn), U�(n))] ≤ 1

2
+ ε′(n + �(n)),

where b(y, r ) denotes the inner-product mod 2 of y and r . Note that if Xn is uniform
over {0, 1}n then the predicate h′(x, r ) = b(h(x), r ), where |r | = |h(x)|, is (s ′, 1−
2ε′)-inapproximable. Conclude that, in this case, if ε(n) = 1/s(n) and s ′(n + �(n)) =
s(n)�(1)/poly(n), then h′ is s ′-inapproximable.

Exercise 7.15 (reversing Exercise 7.14 (by Viola and Wigderson)): Let � : N→N,
h : {0, 1}∗ → {0, 1}∗, {Xn}n∈N, and b be as in Exercise 7.14. Let H (x, r ) = b(h(x), r )
and recall that in Exercise 7.14 we reduced guessing h to approximating H . Present a
reduction in the opposite direction. That is, show that if H is (s, 1− ε)-inapproximable
(over {Xn}n∈N) then every s ′-size circuit succeeds in computing h (over {Xn}n∈N) with
probability at most ε, where s ′(n) = s(n)− O(�(n)).

280



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Guideline: As usual, start by assuming the existence of a s ′-size circuit that computes
h with success probability exceeding ε. Consider two correlated random variables X
and Y , each distributed over {0, 1}�(n), where X represents the value of h(Un) and
Y represents the circuit’s guess for this value. Prove that, for a uniformly distributed
r ∈ {0, 1}�(n), it holds that Pr[b(X, r ) = b(Y, r )] = (1+ p)/2, where p

def= Pr[X = Y ].

Exercise 7.16 (derandomization via averaging arguments): Let C : {0, 1}n ×
{0, 1}m → {0, 1}� be a circuit, which may represent a “probabilistic circuit” that pro-
cesses the first input using a sequence of choices that are given as a second input. Let
X and Z be two independent random variables distributed over {0, 1}n and {0, 1}m ,
respectively, and let χ be a Boolean predicate (which may represent a success event
regarding the behavior of C). Prove that there exists a string z ∈ {0, 1}m such that for
Cz(x)

def= C(x, z) it holds that Pr[χ(X, Cz(X ))=1] ≥ Pr[χ(X, C(X, Z ))=1].

Exercise 7.17 (reducing “selective XOR” to “standard XOR”): Let f be a Boolean
function, and b(y, r ) denote the inner-product modulo 2 of the equal-length strings y and
r . Suppose that F ′(x1, . . . , xt(n), r )

def= b( f (x1) · · · f (xt(n)), r ), where x1, . . . , xt(n) ∈
{0, 1}n and r ∈ {0, 1}t(n), is T ′-inapproximable. Assuming that n !→ t(n) · n is 1-1,
prove that F(x)

def= F ′(x, 1t ′(|x |)), where t ′(t(n) · n) = t(n), is T -inapproximable for
T (m) = T ′(m + t ′(m))− O(m).

Guideline: Reduce the approximation of F ′ to the approximation of F . An important
observation is that for any x = (x1, . . . , xt(n)), x ′ = (x ′1, . . . , x ′t(n)), and r = r1 · · · rt(n)

such that x ′i = xi if ri = 1, it holds that F ′(x, r ) = F(x ′)⊕⊕i :ri=0 f (x ′i ). This suggests
a non-uniform reduction of F ′ to F , which uses “adequate” z1, . . . , zt(n) ∈ {0, 1}n as
well as the corresponding values f (zi )’s as advice. On input x1, . . . , xt(n), r1 · · · rt(n),
the reduction sets x ′i = xi if ri = 1 and x ′i = zi otherwise, makes the query x ′ =
(x ′1, . . . , x ′t(n)) to F , and returns F(x ′)⊕i :ri=0 f (zi ). Analyze this reduction in the case
that z1, . . . , zt(n) ∈ {0, 1}n are uniformly distributed, and infer that they can be set to
some fixed values (see Exercise 7.16).35

Exercise 7.18 (reducing “standard XOR” to “selective XOR”): In continuation of
Exercise 7.17, show a reduction in the opposite direction. That is, for F and F ′ as in
Exercise 7.17, show that if F is T -inapproximable then F ′ is T ′-inapproximable, where
T ′(m + t ′(m)) = min(T (m)− O(m), exp(t ′(m)/O(1)))1/3.

Guideline: Reduce the approximation of F to the approximation of F ′, using the fact
that for any x = (x1, . . . , xt(n)) and r = r1 · · · rt(n) it holds that⊕i∈Sr f (xi ) = F ′(x, r ),
where Sr = {i ∈ [t(n)] : ri=1}. Note that, with probability 1− exp(−�(t(n)), the set
Sr contains at least t(n)/3 indices. Thus, the XOR of t(n)/3 values of f can be
reduced to the selective XOR of t(n) such values (by using some of the ideas used
in Exercise 7.17 for handling the case that |Sr | > t(n)/3). The XOR of t(n) values
can be obtained by three XORs (of t(n)/3 values each), at the cost of decreasing the
advantage by raising it to a power of three.

Exercise 7.19 (reducing “selective XOR” to direct product): Recall that, in §7.2.1.2,
the approximation of the “selective XOR” predicate P ′ was reduced to the guessing

35That is, assume first that the reduction is given t(n) samples of the distribution (Un, f (Un)), and analyze
its success probability on a uniformly distributed input (x, r ) = (x1, . . . , xt(n), r1 · · · rt(n)). Next, apply Exercise 7.16
when X represents the distribution of the actual input (x, r ), and Z represents the distribution of the auxiliary sequence
of samples.

281



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

THE BRIGHT SIDE OF HARDNESS

of the value of the direct product function P . Present a reduction in the opposite
direction. That is, for P and P ′ as in §7.2.1.2, show that if P ′ is T ′-inapproximable
then every T -size circuit succeeds in computing P with probability at most 1/T , where
T = �(T ′).

Guideline: Use Exercise 7.15.

Exercise 7.20 (Theorem 7.14 versus Theorem 7.5): Consider a generalization of The-
orem 7.14 in which f and P are functions from strings to sets of strings such that
P(x1, . . . , xt ) = f (x1)× · · · × f (xt ).

1. Prove that if for every family of p1-size circuits, {Cn}n∈N, and all sufficiently large
n ∈ N, it holds that Pr[Cn(Un) �∈ f (Un)] > 1/p2(n) then for every family of p′-size
circuits, {C ′m}m∈N, it holds that Pr[C ′m(Um) ∈ P(Um)] < ε′(m), where ε′ and p′ are
as in Theorem 7.14. Further generalize the claim by replacing {Un}n∈N with an
arbitrary distribution ensemble {Xn}n∈N, and replacing Um by a t(n)-fold Cartesian
product of Xn (where m = t(n) · n).

2. Show that the foregoing generalizes both Theorem 7.14 and a non-uniform com-
plexity version of Theorem 7.5.

Exercise 7.21 (refinement of the main theme of §7.2.1.3): Consider the following mod-
ification of Definition 7.17, in which the decoding condition refers to an agreement
threshold of (1/q(N ))+ α(N ) rather than to a threshold of α(N ). The modified defi-
nition reads as follows (where p is a fixed polynomial): For every w : [�(N )]→ [q(N )]
and x ∈{0, 1}N such that �(x) is (1− ((1/q(N ))+ α(N )))-close to w, there exists an
oracle-aided circuit C of size p((log N )/α(N )) such that Cw(i) yields the i th bit of x
for every i ∈ [N ].

1. Formulate and prove a version of Theorem 7.18 that refers to the modified definition
(rather than to the original one).

Guideline: The modified version should refer to computing g(Um(n)) with success probability
greater than (1/q(n))+ ε(n) (rather than greater than ε(n)).

2. Prove that, when applied to binary codes (i.e., q ≡ 2), the version in Item 1 yields
S′′-inapproximable predicates, for S′′(n′) = S(m−1(n′))�(1)/poly(n′).

3. Prove that the Hadamard code allows implicit decoding under the modified definition
(but not according to the original one).36

Guideline: This is the actual contents of Theorem 7.8.

Show that if � : {0, 1}N → [q(N )]�(N ) is a (non-binary) code that allows implicit
decoding then encoding its symbols by the Hadamard code yields a binary code
({0, 1}N → {0, 1}�(N )·2&log2 q(N )'

) that allows implicit decoding. Note that efficient en-
coding is preserved only if q(N ) ≤ poly(N ).

Exercise 7.22 (using Proposition 7.16 to prove Theorem 7.19): Prove Theorem 7.19
by combining Proposition 7.16 and Theorem 7.8.

Guideline: Note that, for some γ > 0, Proposition 7.16 yields an exponential-time
computable function f̂ such that | f̂ (x)| ≤ |x | and for every family of circuit {C ′n′ }n′∈N

36Needless to say, the Hadamard code is not efficient (for the trivial reason that its codewords have exponential
length).

282



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

of size S′(n′) = S(n′/3)γ /poly(n′) it holds that Pr[C ′n′ (Un′ ) = f̂ (Un′ )] < 1/S′(n′).
Combining this with Theorem 7.8, infer that P(x, r ) = b( f̂ (x), r ), where |r | =
| f̂ (x)| ≤ |x |, is S′′-inapproximable for S′′(n′′) = S(n′′/2)�(1)/poly(n′′). Note that if
S(n) = 2�(n) then S′′(n′′) = 2�(n′′).

Exercise 7.23: Let G be a pairwise independent generator (i.e., as in Lemma 7.22),
S ⊂ {0, 1}n and α

def= |S|/2n . Prove that, with probability at least min(n · α, 1)/2, at
least one of the n strings output by G(U2n) resides in S. Furthermore, if α ≤ 1/2n then
this probability is at least 0.75 · n · α.

Guideline: Using the pairwise independence property and employing the Inclusion-
Exclusion formula, we lower-bound the aforementioned probability by n · α − (

n
2

) · α2.
If α ≤ 1/n then the claim follows; otherwise we employ the same reasoning to the
first 1/α elements in the output of G(U2n).

Exercise 7.24 (one-way functions versus inapproximable predicates): Prove that the
existence of a non-uniformly hard one-way function (as in Definition 7.3) implies the
existence of an exponential-time computable predicate that is T -inapproximable (as
per Definition 7.9), for every polynomial T .

Guideline: Suppose first that the one-way function f is length preserving and 1-1.
Consider the hard-core predicate b guaranteed by Theorem 7.7 for g(x, r ) = ( f (x), r ),
define the Boolean function h such that h(z) = b(g−1(z)), and show that h is T -
inapproximable for every polynomial T . For the general case a different approach
seems needed. Specifically, given a (length-preserving) one-way function f , consider
the Boolean function h defined as h(z, i, σ ) = 1 if and only if the i th bit of the
lexicographically first element in f −1(z) = {x : f (x) = z} equals σ . (In particular,
if f −1(z) = ∅ then h(z, i, σ ) = 0 for every i and σ .)37 Note that h is computable
in exponential time, but is not (worst-case) computable by polynomial-size circuits.
Applying Theorem 7.10, we are done.

37Thus, h may be easy to compute in the average-case sense (e.g., if f (x) = 0|x | f ′(x) for some one-way
function f ′).

283



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER EIGHT

Pseudorandom Generators

Indistinguishable things are identical.1

G. W. Leibniz (1646–1714)

A fresh view at the question of randomness has been taken by Complexity Theory: It has
been postulated that a distribution is random (or rather pseudorandom) if it cannot be told
apart from the uniform distribution by any efficient procedure. Thus, (pseudo)randomness
is not an inherent property of an object, but is rather subjective to the observer.

At the extreme, this approach says that the question of whether the world is deterministic
or allows for some free choice (which may be viewed as sources of randomness) is
irrelevant. What matters is how the world looks to us and to various computationally
bounded devices. That is, if some phenomenon looks random, then we may just treat it as
if it were random. Likewise, if we can generate sequences that cannot be told apart from
the uniform distribution by any efficient procedure, then we can use these sequences in
any efficient randomized application instead of the ideal coin tosses that are postulated in
the design of this application.

The pivot of the foregoing approach is the notion of computational indistinguishabil-
ity, which refers to pairs of distributions that cannot be told apart by efficient procedures.
The most fundamental incarnation of this notion associates efficient procedures with
polynomial-time algorithms, but other incarnations that restrict attention to other classes
of distinguishing procedures also lead to important insights. Likewise, the effective gener-
ation of pseudorandom objects, which is of major concern, is actually a general paradigm
with numerous useful incarnations (which differ in the Computational Complexity limi-
tations imposed on the generation process).

Summary: Pseudorandom generators are efficient deterministic pro-
cedures that stretch short random seeds into longer pseudorandom se-
quences. Thus, a generic formulation of pseudorandom generators con-
sists of specifying three fundamental aspects – the stretch measure of the
generators; the class of distinguishers that the generators are supposed
to fool (i.e., the algorithms with respect to which the computational in-
distinguishability requirement should hold); and the resources that the
generators are allowed to use (i.e., their own computational complexity).

1This is Leibniz’s Principle of Identity of Indiscernibles. Leibniz admits that counterexamples to this principle are
conceivable but will not occur in real life because God is much too benevolent. We thus believe that he would have
agreed to the theme of this chapter, which asserts that indistinguishable things should be considered as if they were
identical.

284



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION

The archetypical case of pseudorandom generators refers to efficient
generators that fool any feasible procedure; that is, the potential distin-
guisher is any probabilistic polynomial-time algorithm, which may be
more complex than the generator itself (which, in turn, has time com-
plexity bounded by a fixed polynomial). These generators are called
general-purpose, because their output can be safely used in any efficient
application. Such (general-purpose) pseudorandom generators exist if
and only if one-way functions exist.

In contrast to such (general-purpose) pseudorandom generators, for the
purpose of derandomization a relaxed definition of pseudorandom gen-
erators suffices. In particular, for such a purpose, one may use pseudo-
random generators that are somewhat more complex than the potential
distinguisher (which represents a randomized algorithm to be derandom-
ized). Following this approach, adequate pseudorandom generators yield
a full derandomization of BPP (i.e., BPP = P), and such generators
can be constructed based on the assumption that some problems in E
have no sub-exponential-size circuits.

It is also beneficial to consider pseudorandom generators that fool space-
bounded distinguishers and generators that exhibit some limited random
behavior (e.g., outputting a pairwise independent or a small-bias se-
quence). Such (special-purpose) pseudorandom generators can be con-
structed without relying on any computational complexity assumption.

Introduction

The “question of randomness” has been puzzling thinkers for ages. Aspects of this question
range from philosophical doubts regarding the existence of randomness (in the world) and
reflections on the meaning of randomness (in our thinking) to technical questions regarding
the measuring of randomness. Among many other things, the second half of the twentieth
century has witnessed the development of three theories of randomness, which address
different aspects of the foregoing question.

The first theory (cf., [63]), initiated by Shannon [204], views randomness as repre-
senting lack of information, which in turn is modeled by a probability distribution on the
possible values of the missing data. Indeed, Shannon’s Information Theory is rooted in
probability theory. Information Theory is focused at distributions that are not perfectly
random (i.e., encode information in a redundant manner), and characterizes perfect ran-
domness as the extreme case in which the information contents is maximized (i.e., in this
case there is no redundancy at all). Thus, perfect randomness is associated with a unique
distribution – the uniform one. In particular, by definition, one cannot (deterministically)
generate such perfect random strings from shorter random seeds.

The second theory (cf., [153, 156]), initiated by Solomonoff [210], Kolmogorov [147],
and Chaitin [51], views randomness as representing lack of structure, which in turn
is reflected in the length of the most succinct and effective description of the object.
The notion of a succinct and effective description refers to a process that transforms
the succinct description to an explicit one. Indeed, this theory of randomness is rooted
in computability theory and specifically in the notion of a universal language (equiv.,
universal machine or computing device; see §1.2.3.4). It measures the randomness (or

285



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

complexity) of objects in terms of the shortest program (for a fixed universal machine)
that generates the object.2 Like Shannon’s theory, Kolmogorov Complexity is quantitative
and perfect random objects appear as an extreme case. However, following Kolmogorov’s
approach one may say that a single object, rather than a distribution over objects, is
perfectly random. Still, by definition, one cannot (deterministically) generate strings of
high Kolmogorov Complexity from short random seeds.

The third theory, which is the focus of the current chapter, views randomness as an
effect on an observer and thus as being relative to the observer’s abilities (of analysis).
The observer’s abilities are captured by its computational abilities (i.e., the complexity
of the processes that the observer may apply), and hence, this theory of randomness is
rooted in Complexity Theory. This theory of randomness is explicitly aimed at providing
a notion of randomness that, unlike the previous two notions, allows for an efficient (and
deterministic) generation of random strings from shorter random seeds. The heart of this
theory is the suggestion to view objects as equal if they cannot be told apart by any
efficient procedure. Consequently, a distribution that cannot be efficiently distinguished
from the uniform distribution will be considered random (or rather called pseudorandom).
Thus, randomness is not an “inherent” property of objects (or distributions), but is rather
relative to an observer (and its computational abilities). To illustrate this approach, let us
consider the following mental experiment.

Alice and Bob play “head or tail” in one of the following four ways. In
each of them, Alice flips an unbiased coin and Bob is asked to guess its
outcome before the coin hits the floor. The alternative ways differ by the
knowledge Bob has before making his guess.

In the first alternative, Bob has to announce his guess before Alice flips
the coin. Clearly, in this case Bob wins with probability 1/2.

In the second alternative, Bob has to announce his guess while the coin
is spinning in the air. Although the outcome is determined in principle
by the motion of the coin, Bob does not have accurate information on the
motion. Thus we believe that, also in this case, Bob wins with probability
1/2.

The third alternative is similar to the second, except that Bob has at
his disposal sophisticated equipment capable of providing accurate in-
formation on the coin’s motion as well as on the environment affecting
the outcome. However, Bob cannot process this information in time to
improve his guess.

In the fourth alternative, Bob’s recording equipment is directly connected
to a powerful computer programmed to solve the motion equations and
output a prediction. It is conceivable that in such a case, Bob can improve
substantially his guess of the outcome of the coin.

We conclude that the randomness of an event is relative to the information and computing
resources at our disposal. At the extreme, even events that are fully determined by public
information may be perceived as random events by an observer that lacks the relevant
information and/or the ability to process it. Our focus will be on the lack of sufficient
processing power, and not on the lack of sufficient information. The lack of sufficient

2We mention that Kolmogorov’s approach is inherently intractable (i.e., Kolmogorov Complexity is uncomputable).

286



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION

Gen
seed output  sequence

a  truly random  sequence
?

Figure 8.1: Pseudorandom generators – an illustration.

processing power may be due either to the formidable amount of computation required
(for analyzing the event in question) or to the fact that the observer happens to be very
limited.

A natural notion of pseudorandomness arises – a distribution is pseudorandom if no
efficient procedure can distinguish it from the uniform distribution, where efficient proce-
dures are associated with (probabilistic) polynomial-time algorithms. This specific notion
of pseudorandomness is indeed the most fundamental one, and much of this chapter is
focused on it. Weaker notions of pseudorandomness arise as well – they refer to indis-
tinguishability by weaker procedures such as space-bounded algorithms, constant-depth
circuits, and so on. Stretching this approach even further, one may consider algorithms
that are designed on purpose so as not to distinguish even weaker forms of “pseudoran-
dom” sequences from random ones (where such algorithms arise naturally when trying to
convert some natural randomized algorithms into deterministic ones; see Section 8.5).

The foregoing discussion has focused on one aspect of the pseudorandomness ques-
tion – the resources or type of the observer (or potential distinguisher). Another important
aspect is whether such pseudorandom sequences can be generated from much shorter
ones, and at what cost (or complexity). A natural approach requires the generation pro-
cess to be efficient, and furthermore to be fixed before the specific observer is determined.
Coupled with the aforementioned strong notion of pseudorandomness, this yields the
archetypical notion of pseudorandom generators – those operating in (fixed) polyno-
mial time and producing sequences that are indistinguishable from uniform ones by any
polynomial-time observer. In particular, this means that the distinguisher is allowed more
resources than the generator. Such (general-purpose) pseudorandom generators (dis-
cussed in Section 8.2) allow for decreasing the randomness complexity of any efficient
application, and are thus of great relevance to randomized algorithms and cryptogra-
phy. The term general-purpose is meant to emphasize the fact that the same generator is
good for all efficient applications, including those that consume more resources than the
generator itself.

Although general-purpose pseudorandom generators are very appealing, there are im-
portant reasons for also considering the opposite relation between the complexities of
the generation and distinguishing tasks; that is, allowing the pseudorandom generator to
use more resources (e.g., time or space) than the observer it tries to fool. This alternative
is natural in the context of derandomization (i.e., converting randomized algorithms to
deterministic ones), where the crucial step is replacing the random input of an algorithm
by a pseudorandom input, which in turn can be generated based on a much shorter random
seed. In particular, when derandomizing a probabilistic polynomial-time algorithm, the
observer (to be fooled by the generator) is a fixed algorithm. In this case, employing a

287



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

more complex generator merely means that the complexity of the derived deterministic
algorithm is dominated by the complexity of the generator (rather than by the complexity
of the original randomized algorithm). Needless to say, allowing the generator to use more
resources than the observer that it tries to fool makes the task of designing pseudoran-
dom generators potentially easier, and enables derandomization results that are not known
when using general-purpose pseudorandom generators. The usefulness of this approach
is demonstrated in Sections 8.3 through 8.5.

We note that the goal of all types of pseudorandom generators is to allow the gen-
eration of “sufficiently random” sequences based on much shorter random seeds. Thus,
pseudorandom generators offer significant saving in the randomness complexity of vari-
ous applications (and in some cases eliminating randomness altogether). Saving on ran-
domness is valuable because many applications are severely limited in their ability to
generate or obtain truly random bits. Furthermore, typically, generating truly random bits
is significantly more expensive than standard computation steps. Thus, randomness is a
computational resource that should be considered on top of time complexity (analogously
to the consideration of space complexity).

Organization. In Section 8.1 we present the general paradigm underlying the various
notions of pseudorandom generators. The archetypical case of general-purpose pseudo-
random generators is presented in Section 8.2. We then turn to alternative notions of
pseudorandom generators: Generators that suffice for the derandomization of complexity
classes such as BPP are discussed in Section 8.3; pseudorandom generators in the do-
main of space-bounded computations are discussed in Section 8.4; and special-purpose
generators are discussed in Section 8.5.

Teaching note: If you can afford teaching only one of the alternative notions of pseudorandom
generators, then we suggest teaching the notion of general-purpose pseudorandom generators
(presented in Section 8.2). This notion is more relevant to computer science at large and the
technical material is relatively simpler. The chapter is organized to facilitate this option.

Prerequisites. We assume a basic familiarity with elementary probability theory (see
Appendix D.1) and randomized algorithms (see Section 6.1). In particular, standard con-
ventions regarding random variables (presented in Appendix D.1.1) will be extensively
used. We shall also apply a couple of results from Chapter 7, but these applications will
be self-contained.

8.1. The General Paradigm

Teaching note: We advocate a unified view of various notions of pseudorandom generators.
That is, we view these notions as incarnations of a general abstract paradigm, to be presented
in this section. A teacher who wishes to focus on one of these incarnations may still use this
section as a general motivation toward the specific definitions used later. On the other hand,
some students may prefer reading this section after studying one of the specific incarnations.

A generic formulation of pseudorandom generators consists of specifying three funda-
mental aspects – the stretch measure of the generators; the class of distinguishers that the

288



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.1. THE GENERAL PARADIGM

generators are supposed to fool (i.e., the algorithms with respect to which the computa-
tional indistinguishability requirement should hold); and the resources that the generators
are allowed to use (i.e., their own computational complexity). Let us elaborate.

Stretch function. A necessary requirement of any notion of a pseudorandom generator is
that the generator is a deterministic algorithm that stretches short strings, called seeds, into
longer output sequences.3 Specifically, this algorithm stretches k-bit long seeds into �(k)-
bit long outputs, where �(k) > k. The function � :N→N is called the stretch measure
(or stretch function) of the generator. In some settings the specific stretch measure is
immaterial (e.g., see Section 8.2.4).

Computational Indistinguishability. A necessary requirement of any notion of a pseu-
dorandom generator is that the generator “fools” some non-trivial algorithms. That is, it
is required that any algorithm taken from a predetermined class of interest cannot distin-
guish the output produced by the generator (when the generator is fed with a uniformly
chosen seed) from a uniformly chosen sequence. Thus, we consider a class D of dis-
tinguishers (e.g., probabilistic polynomial-time algorithms) and a class F of (threshold)
functions (e.g., reciprocals of positive polynomials), and require that the generator G sat-
isfies the following: For any D ∈ D, any f ∈ F , and for all sufficiently large k’s it holds
that

|Pr[D(G(Uk)) = 1]− Pr[D(U�(k)) = 1] | < f (k) , (8.1)

where Un denotes the uniform distribution over {0, 1}n , and the probability is taken over
Uk (resp., U�(k)) as well as over the coin tosses of algorithm D in case it is probabilistic.
The reader may think of such a distinguisher, D, as of an observer that tries to tell whether
the “tested string” is a random output of the generator (i.e., distributed as G(Uk)) or is a
truly random string (i.e., distributed as U�(k)). The condition in Eq. (8.1) requires that D
cannot make a meaningful decision; that is, ignoring a negligible difference (represented
by f (k)), D’s verdict is the same in both cases.4 The archetypical choice is that D is the
set of all probabilistic polynomial-time algorithms, and F is the set of all functions that
are the reciprocal of some positive polynomial.

Complexity of Generation. The archetypical choice is that the generator has to work in
polynomial time (in length of its input – the seed). Other choices will be discussed as well.
We note that placing no computational requirements on the generator (or, alternatively,
putting very mild requirements such as upper-bounding the running time by a double-
exponential function), yields “generators” that can fool any sub-exponential-size circuit
family (see Exercise 8.1).

3Indeed, the seed represents the randomness that is used in the generation of the output sequences; that is, the
randomized generation process is decoupled into a deterministic algorithm and a random seed. This decoupling
facilitates the study of such processes.

4The class of threshold functions F should be viewed as determining the class of noticeable probabilities (as a
function of k). Thus, we require certain functions (i.e., those presented at the l.h.s of Eq. (8.1)) to be smaller than any
noticeable function on all but finitely many integers. We call the former functions negligible. Note that a function may
be neither noticeable nor negligible (e.g., it may be smaller than any noticeable function on infinitely many values and
yet larger than some noticeable function on infinitely many other values).

289



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

Notational conventions. We will consistently use k for denoting the length of the seed of
a pseudorandom generator, and �(k) for denoting the length of the corresponding output.
In some cases, this makes our presentation a little more cumbersome (since a more natural
presentation may specify some other parameters and let the seed-length be a function of
the latter). However, our choice has the advantage of focusing attention on the fundamental
parameter of the pseudorandom generation process – the length of the random seed. We
note that whenever a pseudorandom generator is used to “derandomize” an algorithm, n
will denote the length of the input to this algorithm, and k will be selected as a function
of n.

Some instantiations of the general paradigm. Two important instantiations of the notion
of pseudorandom generators relate to polynomial-time distinguishers.

1. General-purpose pseudorandom generators correspond to the case that the generator
itself runs in polynomial time and needs to withstand any probabilistic polynomial-
time distinguisher, including distinguishers that run for more time than the generator.
Thus, the same generator may be used safely in any efficient application. (This notion
is treated in Section 8.2.)

2. In contrast, pseudorandom generators intended for derandomization may run more
time than the distinguisher, which is viewed as a fixed circuit having size that is
upper-bounded by a fixed polynomial. (This notion is treated in Section 8.3.)

In addition, the general paradigm may be instantiated by focusing on the space complexity
of the potential distinguishers (and the generator), rather than on their time complexity.
Furthermore, one may also consider distinguishers that merely reflect probabilistic prop-
erties such as pairwise independence, small-bias, and hitting frequency.

8.2. General-Purpose Pseudorandom Generators

Randomness is playing an increasingly important role in computation: It is frequently
used in the design of sequential, parallel, and distributed algorithms, and it is of course
central to cryptography. Whereas it is convenient to design such algorithms making free
use of randomness, it is also desirable to minimize the usage of randomness in real
implementations. Thus, general-purpose pseudorandom generators (as defined next) are
a key ingredient in an “algorithmic toolbox” – they provide an automatic compiler of
programs written with free usage of randomness into programs that make an economical
use of randomness.

Organization of this section. Since this is a relatively long section, a short road map
seems in place. In Section 8.2.1 we provide the basic definition of general-purpose pseudo-
random generators, and in Section 8.2.2 we describe their archetypical application (which
was eluded to in the former paragraph). In Section 8.2.3 we provide a wider perspective
on the notion of computational indistinguishability that underlies the basic definition,
and in Section 8.2.4 we justify the little concern (shown in Section 8.2.1) regarding the
specific stretch function. In Section 8.2.5 we address the existence of general-purpose
pseudorandom generators. In Section 8.2.6 we motivate and discuss a non-uniform ver-
sion of computational indistinguishability. We conclude in Section 8.2.7 by reviewing
other variants and reflecting on various conceptual aspects of the notions discussed in this
section.

290



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

8.2.1. The Basic Definition

Loosely speaking, general-purpose pseudorandom generators are efficient determinis-
tic programs that expand short, randomly selected seeds into longer pseudorandom bit
sequences, where the latter are defined as computationally indistinguishable from truly
random sequences by any efficient algorithm. Identifying efficiency with polynomial-time
operation, this means that the generator (being a fixed algorithm) works within some fixed
polynomial time, whereas the distinguisher may be any algorithm that runs in polynomial
time. Thus, the distinguisher is potentially more complex than the generator; for exam-
ple, the distinguisher may run in time that is cubic in the running time of the generator.
Furthermore, to facilitate the development of this theory, we allow the distinguisher to
be probabilistic (whereas the generator remains deterministic as stated previously). We
require that such distinguishers cannot tell the output of the generator from a truly random
string of similar length, or rather that the difference that such distinguishers may detect
(or “sense”) is negligible. Here, a negligible function is a function that vanishes faster than
the reciprocal of any positive polynomial.5

Definition 8.1 (general-purpose pseudorandom generator): A deterministic
polynomial-time algorithm G is called a pseudorandom generator if there exists a
stretch function, � :N→N (satisfying �(k) > k for all k), such that for any prob-
abilistic polynomial-time algorithm D, for any positive polynomial p, and for all
sufficiently large k’s it holds that

|Pr[D(G(Uk)) = 1] − Pr[D(U�(k)) = 1] | < 1

p(k)
(8.2)

where Un denotes the uniform distribution over {0, 1}n and the probability is taken
over Uk (resp., U�(k)) as well as over the internal coin tosses of D.

Thus, Definition 8.1 is derived from the generic framework (presented in Section 8.1)
by taking the class of distinguishers to be the set of all probabilistic polynomial-time
algorithms, and taking the class of (noticeable) threshold functions to be the set of all
functions that are the reciprocals of some positive polynomial.6 Indeed, the principles
underlying Definition 8.1 were discussed in Section 8.1 (and will be further discussed in
Section 8.2.3).

We note that Definition 8.1 does not make any requirement regarding the stretch
function � :N→N, except for the generic requirement that �(k) > k for all k. Needless
to say, the larger � is, the more useful the pseudorandom generator is. Of course, �

is upper-bounded by the running time of the generator (and hence by a polynomial). In
Section 8.2.4 we show that any pseudorandom generator (even one having minimal stretch
�(k) = k + 1) can be used for constructing a pseudorandom generator having any desired
(polynomial) stretch function. But before doing so, we rigorously discuss the “saving in

5Definition 8.1 requires that the functions representing the distinguishing gap of certain algorithms should be
smaller than the reciprocal of any positive polynomial for all but finitely many k’s. The former functions are called
negligible (cf. footnote 4, when identifying noticeable functions with the reciprocals of any positive polynomial). The
notion of negligible probability is robust in the sense that any event that occurs with negligible probability will also
occur with negligible probability when the experiment is repeated a “feasible” (i.e., polynomial) number of times.

6The latter choice is naturally coupled with the association of efficient computation with polynomial-time algo-
rithms: An event that occurs with noticeable probability occurs almost always when the experiment is repeated a
“feasible” (i.e., polynomial) number of times.

291



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

randomness” offered by pseudorandom generators, and provide a wider perspective on
the notion of computational indistinguishability that underlies Definition 8.1.

8.2.2. The Archetypical Application

We note that “pseudo-random number generators” appeared with the first computers,
and have been used ever since for generating random choices (or samples) for various
applications. However, typical implementations use generators that are not pseudorandom
according to Definition 8.1. Instead, at best, these generators are shown to pass some ad hoc
statistical test (cf. [146]). We warn that the fact that a “pseudo-random number generator”
passes some statistical tests does not mean that it will pass a new test and that it will be
good for a future (untested) application. Needless to say, the approach of subjecting the
generator to some ad hoc tests fails to provide general results of the form “for all practical
purposes using the output of the generator is as good as using truly unbiased coin tosses.”
In contrast, the approach encompassed in Definition 8.1 aims at such generality, and
in fact is tailored to obtain it: The notion of computational indistinguishability, which
underlines Definition 8.1, covers all possible efficient applications and guarantees that
for all of them pseudorandom sequences are as good as truly random ones. Indeed, any
efficient randomized algorithm maintains its performance when its internal coin tosses
are substituted by a sequence generated by a pseudorandom generator. This substitution
is spelled out next.

Construction 8.2 (typical application of pseudorandom generators): Let G be a
pseudorandom generator with stretch function � :N→N. Let A be a probabilistic
polynomial-time algorithm, and ρ :N→N denote its randomness complexity. Denote
by A(x, r ) the output of A on input x and coin tosses sequence r ∈ {0, 1}ρ(|x |).
Consider the following randomized algorithm, denoted AG:

On input x, set k = k(|x |) to be the smallest integer such that �(k) ≥
ρ(|x |), uniformly select s ∈ {0, 1}k , and output A(x, r ), where r is the
ρ(|x |)-bit long prefix of G(s).

That is, AG(x, s) = A(x, G ′(s)), for |s| = k(|x |) = argmini {�(i) ≥ ρ(|x |)}, where
G ′(s) is the ρ(|x |)-bit long prefix of G(s).

Thus, using AG instead of A, the randomness complexity is reduced from ρ to �−1 ◦ ρ,
while (as we show next) it is infeasible to find inputs (i.e., x’s) on which the noticeable
behavior of AG is different from the one of A. For example, if �(k) = k2, then the
randomness complexity is reduced from ρ to

√
ρ. We stress that the pseudorandom

generator G is universal; that is, it can be applied to reduce the randomness complexity
of any probabilistic polynomial-time algorithm A.

Proposition 8.3: Let A, ρ and G be as in Construction 8.2, and suppose that
ρ : N→ N is 1-1. Then, for every pair of probabilistic polynomial-time algorithms,
a finder F and a tester T , every positive polynomial p and all sufficiently long n’s∑

x∈{0,1}n
Pr[F(1n) = x] · |�A,T (x) | < 1

p(n)
(8.3)

292



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

where �A,T (x)
def= Pr[T (x, A(x, Uρ(|x |))) = 1]− Pr[T (x, AG(x, Uk(|x |))) = 1], and

the probabilities are taken over the Um’s as well as over the internal coin tosses of
the algorithms F and T .

Algorithm F represents a potential attempt to find an input x on which the output of
AG is distinguishable from the output of A. This “attempt” may be benign as in the case
that a user employs algorithm AG on inputs that are generated by some probabilistic
polynomial-time application. However, the attempt may also be adversarial as in the case
that a user employs algorithm AG on inputs that are provided by a potentially malicious
party. The potential tester, denoted T , represents the potential use of the output of algorithm
AG , and captures the requirement that this output be as good as a corresponding output
produced by A. Thus, T is given x as well as the corresponding output produced either by
AG(x)

def= A(x, Uk(|x |)) or by A(x) = A(x, Uρ(|x |)), and it is required that T cannot tell the
difference. In the case that A is a probabilistic polynomial-time decision procedure, this
means that it is infeasible to find an x on which AG decides incorrectly (i.e., differently
than A). In the case that A is a search procedure for some NP-relation, it is infeasible to
find an x on which AG outputs a wrong solution. For details, see Exercise 8.2.

Proof: The proposition is proven by showing that any triple (A, F, T ) violating the
claim can be converted into an algorithm D that distinguishes the output of G from
the uniform distribution, in contradiction to the hypothesis. The key observation is
that for every x ∈ {0, 1}n it holds that

�A,T (x) = Pr[T (x, A(x, Uρ(n)))=1]− Pr[T (x, A(x, G ′(Uk(n))))=1], (8.4)

where G ′(s) is the ρ(n)-bit long prefix of G(s). Thus, a method for finding a string
x such that |�A,T (x)| is large yields a way of distinguishing U�(k(n)) from G(Uk(n));
that is, given a sample r ∈ {0, 1}�(k(n)) and using such a string x ∈ {0, 1}n , the
distinguisher outputs T (x, A(x, r ′)), where r ′ is the ρ(n)-bit long prefix of r . Indeed,
we shall show that the violation of Eq. (8.3), which refers to Ex←F(1n )[|�A,T (x)|],
yields a violation of the hypothesis that G is a pseudorandom generator (by finding
an adequate string x and using it). This intuitive argument requires a slightly careful
implementation, which is provided next.

As a warm-up, consider the following algorithm D. On input r (taken from either
U�(k(n)) or G(Uk(n))), algorithm D first obtains x ← F(1n), where n can be obtained
easily from |r | (because ρ is 1-1 and 1n !→ ρ(n) is computable via A). Next, D
obtains y = A(x, r ′), where r ′ is the ρ(|x |)-bit long prefix of r . Finally D outputs
T (x, y). Note that D is implementable in probabilistic polynomial time, and that

D(U�(k(n))) ≡ T (Xn, A(Xn, Uρ(n))) , where Xn
def= F(1n)

D(G(Uk(n))) ≡ T (Xn, A(Xn, G ′(Uk(n)))) , where Xn
def= F(1n).

Using Eq. (8.4), it follows that Pr[D(U�(k(n)))=1] − Pr[D(G(Uk(n)))=1] equals
E[�A,T (F(1n))], which implies that E[�A,T (F(1n))] must be negligible (because
otherwise we derive a contradiction to the hypothesis that G is a pseudorandom gen-
erator). This yields a weaker version of the proposition asserting that E[�A,T (F(1n))]
is negligible (rather than that E[|�A,T (F(1n))|] is negligible).

293



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

In order to prove that E[|�A,T (F(1n))|] (rather than E[�A,T (F(1n))]) is negli-
gible, we need to modify D a little. Note that the source of trouble is that �A,T (·)
may be positive on some x’s and negative on others, and thus it may be the case that
E[�A,T (F(1n))] is small (due to cancelations) even if E[|�A,T (F(1n))|] is large.
This difficulty can be overcome by determining the sign of �A,T (·) on x = F(1n)
and changing the outcome of D accordingly; that is, the modified D will output
T (x, A(x, r ′)) if �A,T (x) > 0 and 1− T (x, A(x, r ′)) otherwise. Thus, in each case,
the contribution of x to the distinguishing gap of the modified D will be |�A,T (x)|.
We further note that if |�A,T (x)| is small then it does not matter much whether we
act as in the case of �A,T (x) > 0 or in the case of �A,T (x) ≤ 0. Thus, it suffices to
correctly determine the sign of �A,T (x) in the case that |�A,T (x)| is large, which is
certainly a feasible (approximation) task. Details follow.

We start by assuming, toward the contradiction, that E[|�A,T (F(1n))|] > ε(n) for
some non-negligible function ε. On input r (taken from either U�(k(n)) or G(Uk(n))),
the modified algorithm D first obtains x ← F(1n), just as the basic version. Next, us-
ing a sample of size poly(n/ε(n)), it approximates pU (x)

def= Pr[T (x, A(x, Uρ(n)))=
1] and pG(x)

def= Pr[T (x, A(x, G ′(Uk(n))))=1] such that each probability is approxi-
mated to within a deviation of ε(n)/8 with negligible error probability (say, exp(−n)).
(Note that, so far, the actions of D only depend on the length of its input r , which
determines n.)7 If these approximations indicate that pU (x) ≥ pG(x) (equiv., that
�A,T (x) ≥ 0) then D outputs T (x, A(x, r ′)) else it outputs 1− T (x, A(x, r ′)), where
r ′ is the ρ(|x |)-bit long prefix of r and we assume without loss of generality that the
output of T is in {0, 1}.

The analysis of the modified distinguisher D is based on the fact that if the
approximations yield a correct decision regarding the relation between pU (x) and
pG(x), then the contribution of x to the distinguishing gap of D is |pU (x)− pG(x)|.8

We also note that if |pU (x)− pG(x)| > ε(n)/4, then with overwhelmingly high
probability (i.e., 1− exp(−n)), the approximation of pU (x)− pG(x) maintains the
sign of pU (x)− pG(x) (because each of the two quantities is approximated to within
an additive error of ε(n)/8). Finally, we note that if |pU (x)− pG(x)| ≤ ε(n)/4 then
we may often err regarding the sign of pU (x)− pG(x), but the damage caused (to
the distinguishing gap of D) by this error is at most 2|pU (x)− pG(x)| ≤ ε(n)/2.
Combining all these observations, we get

Pr[D(U�(k(n))) = 1|F(1n) = x]− Pr[D(G(Uk(n))) = 1|F(1n) = x]

≥ |pU (x)− pG(x)| − η(x), (8.5)

where η(x) = ε(n)/2 if |pU (x)− pG(x)| ≤ ε(n)/4 and η(x) = exp(−n) otherwise.
(Indeed, η(x) represents the expected damage due to an error in determining the
sign of pU (x)− pG(x), where ε(n)/2 upper-bounds the damage caused (by a wrong
decision) in the case that |pU (x)− pG(x)| ≤ ε(n)/4 and exp(−n) upper-bounds the
probability of a wrong decision in the case that |pU (x)− pG(x)| > ε(n)/4.) Thus,

7Specifically, the approximation to pU (x) (resp., pG (x)) is obtained by generating a sample of Uρ(n) (resp.,
G ′(Uk(n))) and invoking the algorithms A and T ; that is, given a sample r1, . . . , rt of Uρ(n) (resp., G ′(Uk(n))), where
t = O(n/ε(n)2), we approximate pU (x) (resp., pG (x)) by |{i ∈ [t] : T (x, A(x, ri ))=1}|/t .

8Indeed, if pU (x) ≥ pG (x) then the contribution is pU (x)− pG (x) = |pU (x)− pG (x)|, whereas if pU (x) <

pG (x) then the contribution is (1− pU (x))− (1− pG (x)) = −(pU (x)− pG (x)), which also equals |pU (x)− pG (x)|.

294



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

Pr[D(U�(k(n)))=1] − Pr[D(G(Uk(n)))=1] is lower-bounded by the expectation of
Eq. (8.5), which equals E[|�A,T (F(1n))|]− E[η(F(1n))]. Combining the hypothesis
that E[|�A,T (F(1n))|] > ε(n) and the fact that maxx∈{0,1}n {η(x)} ≤ ε(n)/2, we infer
that Pr[D(U�(k(n)))=1] − Pr[D(G(Uk(n)))=1] > ε(n)/2. Recalling that D runs in
time poly(n/ε(n)), this contradicts the pseudorandomness of G. The proposition
follows.

Conclusion. Although the foregoing refers to standard probabilistic polynomial-time
algorithms, a similar construction and analysis applies to any efficient randomized process
(i.e., any efficient multi-party computation). Any such process preserves its behavior when
replacing its perfect source of randomness (postulated in its analysis) by a pseudorandom
sequence (which may be used in the implementation). Thus, given a pseudorandom
generator with a large stretch function, one can considerably reduce the randomness
complexity of any efficient application.

8.2.3. Computational Indistinguishability

In this section we spell out (and study) the definition of computational indistinguishability
that underlies Definition 8.1.

8.2.3.1. The General Formulation
The (general formulation of the) definition of computational indistinguishability refers
to arbitrary probability ensembles. Here, a probability ensemble is an infinite sequence
of random variables {Zn}n∈N such that each Zn ranges over strings of length that is
polynomially related to n (i.e., there exists a polynomial p such that for every n it holds
that |Zn| ≤ p(n) and p(|Zn|) ≥ n). We say that {Xn}n∈N and {Yn}n∈N are computationally
indistinguishable if for every feasible algorithm A the difference dA(n)

def= |Pr[A(Xn) =
1]− Pr[A(Yn) = 1]| is a negligible function in n. That is:

Definition 8.4 (computational indistinguishability): The probability ensembles
{Xn}n∈N and {Yn}n∈N are computationally indistinguishable if for every probabilis-
tic polynomial-time algorithm D, every positive polynomial p, and all sufficiently
large n,

|Pr[D(Xn)=1]− Pr[D(Yn)=1]| < 1

p(n)
(8.6)

where the probabilities are taken over the relevant distribution (i.e., either Xn or
Yn) and over the internal coin tosses of algorithm D. The l.h.s. of Eq. (8.6), when
viewed as a function of n, is often called the distinguishing gap of D, where {Xn}n∈N

and {Yn}n∈N are understood from the context.

We can think of D as representing somebody who wishes to distinguish two distributions
(based on a given sample drawn from one of the distributions), and think of the output “1”
as representing D’s verdict that the sample was drawn according to the first distribution.
Saying that the two distributions are computationally indistinguishable means that if D
is a feasible procedure then its verdict is not really meaningful (because the verdict is
almost as often 1 when the sample is drawn from the first distribution as when the sample

295



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

is drawn from the second distribution). We comment that the absolute value in Eq. (8.6)
can be omitted without affecting the definition (see Exercise 8.3), and we will often do so
without warning.

In Definition 8.1, we required that the probability ensembles {G(Uk)}k∈N and {U�(k)}k∈N

be computationally indistinguishable. Indeed, an important special case of Definition 8.4
is when one ensemble is uniform, and in such a case we call the other ensemble pseudo-
random.

8.2.3.2. Relation to Statistical Closeness
Two probability ensembles, {Xn}n∈N and {Yn}n∈N, are said to be statistically close (or sta-
tistically indistinguishable) if for every positive polynomial p and all sufficient large n the
variation distance between Xn and Yn (i.e., 1

2

∑
z |Pr[Xn = z]− Pr[Yn = z]|) is bounded

above by 1/p(n). Clearly, any two probability ensembles that are statistically close are
computationally indistinguishable. Needless to say, this is a trivial case of computational
indistinguishability, which is due to information-theoretic reasons. In contrast, we shall be
interested in non-trivial cases (of computational indistinguishability), which correspond
to probability ensembles that are statistically far apart.

Indeed, as noted in Section 8.1, there exist probability ensembles that are statisti-
cally far apart and yet are computationally indistinguishable (see Exercise 8.1). However,
at least one of the probability ensembles in Exercise 8.1 is not polynomial-time con-
structible.9 We shall be much more interested in non-trivial cases of computational indis-
tinguishability in which both ensembles are polynomial-time constructible. An important
example is provided by the definition of pseudorandom generators (see Exercise 8.7). As
we shall see (in Theorem 8.11), the existence of one-way functions implies the existence
of pseudorandom generators, which in turn implies the existence of polynomial-time
constructible probability ensembles that are statistically far apart and yet are computa-
tionally indistinguishable. We mention that this sufficient condition is also necessary (see
Exercise 8.9).

8.2.3.3. Indistinguishability by Multiple Samples
The definition of computational indistinguishability (i.e., Definition 8.4) refers to distin-
guishers that obtain a single sample from one of the two relevant probability ensembles
(i.e., {Xn}n∈N and {Yn}n∈N). A very natural generalization of Definition 8.4 refers to
distinguishers that obtain several independent samples from such an ensemble.

Definition 8.5 (indistinguishability by multiple samples): Let s :N→N be poly-
nomially bounded. Two probability ensembles, {Xn}n∈N and {Yn}n∈N, are
computationally indistinguishable by s(·) samples if for every probabilistic
polynomial-time algorithm D, every positive polynomial p(·), and all sufficiently
large n’s∣∣Pr

[
D
(

X (1)
n , . . . , X (s(n))

n

) = 1
]− Pr

[
D
(
Y (1)

n , . . . , Y (s(n))
n

) = 1
]∣∣ <

1

p(n)

where X (1)
n through X (s(n))

n and Y (1)
n through Y (s(n))

n are independent random variables
such that each X (i)

n is identical to Xn and each Y (i)
n is identical to Yn.

9We say that {Zn}n∈N is polynomial-time constructible if there exists a polynomial-time algorithm S such that
S(1n) and Zn are identically distributed.

296



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

It turns out that in the most interesting cases, computational indistinguishability by a
single sample implies computational indistinguishability by any polynomial number of
samples. One such case is the case of polynomial-time constructible ensembles. We say
that the ensemble {Zn}n∈N is polynomial-time constructible if there exists a polynomial-
time algorithm S such that S(1n) and Zn are identically distributed.

Proposition 8.6: Suppose that X
def= {Xn}n∈N and Y

def= {Yn}n∈N are both
polynomial-time constructible, and s be a polynomial. Then, X and Y are computa-
tionally indistinguishable by a single sample if and only if they are computationally
indistinguishable by s(·) samples.

Clearly, for every polynomial s, computational indistinguishability by s(·) samples implies
computational indistinguishability by a single sample (see Exercise 8.5). We now prove
that, for efficiently constructible ensembles, indistinguishability by a single sample implies
indistinguishability by multiple samples.10 The proof provides a simple demonstration of
a central proof technique, known as the hybrid technique.

Proof Sketch:11 Again, the proof uses the counter-positive, which in such settings is
called a reducibility argument (see Section 7.1.2 onward). Specifically, we show that
the existence of an efficient algorithm that distinguishes the ensembles X and Y using
several samples implies the existence of an efficient algorithm that distinguishes the
ensembles X and Y using a single sample. The implication is proven using the
following argument, which will be later called a “hybrid argument”.

To prove that a sequence of s(n) samples drawn independently from Xn is in-
distinguishable from a sequence of s(n) samples drawn independently from Yn ,
we consider hybrid sequences such that the i th hybrid consists of i samples of
Xn followed by s(n)− i samples of Yn . The “homogeneous” sequences (which we
wish to prove to be computational indistinguishable) are the extreme hybrids (i.e.,
the first and last hybrids). The key observation is that distinguishing the extreme
hybrids (toward the contradiction hypothesis) implies distinguishing neighboring
hybrids, which in turn yields a procedure for distinguishing single samples of the
two original distributions (contradicting the hypothesis that these two distributions
are indistinguishable by a single sample). Details follow.

Suppose, toward the contradiction, that D distinguishes s(n) samples of Xn from
s(n) samples of Yn , with a distinguishing gap of δ(n). Denoting the i th hybrid by Hi

n
(i.e., Hi

n = (X (1)
n , . . . , X (i)

n , Y (i+1)
n , . . . , Y (s(n))

n )), this means that D distinguishes the
extreme hybrids (i.e., H 0

n and H s(n)
n ) with gap δ(n). It follows that D distinguishes

a random pair of neighboring hybrids (i.e., D distinguishes Hi
n from Hi+1

n , for a
randomly selected i) with gap at least δ(n)/s(n): the reason being that

Ei∈{0,...,s(n)−1}
[
Pr

[
D
(

Hi
n

) = 1
]− Pr

[
D
(

Hi+1
n

) = 1
]]

= 1

s(n)
·

s(n)−1∑
i=0

(
Pr

[
D
(

Hi
n

) = 1
]− Pr

[
D
(

Hi+1
n

) = 1
])

(8.7)

= 1

s(n)
·
(
Pr

[
D
(

H 0
n

) = 1
]− Pr

[
D
(

H s(n)
n

) = 1
]) = δ(n)

s(n)
.

10The requirement that both ensembles are polynomial-time constructible is essential; see Exercise 8.10.
11For more details see [91, Sec. 3.2.3].

297



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

The key step in the argument is transforming the distinguishability of neighboring
hybrids into distinguishability of single samples of the original ensembles (thus
deriving a contradiction). Indeed, using D, we obtain a distinguisher D′ of single
samples: Given a single sample, algorithm D′ selects i ∈ {0, . . . , s(n)− 1} at ran-
dom, generates i samples from the first distribution and s(n)− i − 1 samples from
the second distribution, invokes D with the s(n)-samples sequence obtained when
placing the input sample in location i + 1, and answers whatever D does. That is,
on input z and when selecting the index i , algorithm D′ invokes D on a sample
from the distribution (X (1)

n , . . . , X (i)
n , z, Y (i+2)

n , . . . , Y (s(n))
n ). Thus, the construction

of D′ relies on the hypothesis that both probability ensembles are polynomial-time
constructible. The analysis of D′ is based on the following two facts:

1. When invoked on an input that is distributed according to Xn and selecting
the index i ∈ {0, . . . , s(n)− 1}, algorithm D′ behaves like D(Hi+1

n ), because
(X (1)

n , . . . , X (i)
n , Xn, Y (i+2)

n , . . . , Y (s(n))
n ) ≡ Hi+1

n .
2. When invoked on an input that is distributed according to Yn and selecting

the index i ∈ {0, . . . , s(n)− 1}, algorithm D′ behaves like D(Hi
n), because

(X (1)
n , . . . , X (i)

n , Yn, Y (i+2)
n , . . . , Y (s(n))

n ) ≡ Hi
n .

Thus, the distinguishing gap of D′ (between Yn and Xn) is captured by Eq. (8.7),
and the claim follows (because assuming toward the contradiction that the propo-
sition’s conclusion does not hold leads to a contradiction of the proposition’s
hypothesis).

The hybrid technique – a digest. The hybrid technique constitutes a special type of
a “reducibility argument” in which the computational indistinguishability of complex
ensembles is proved using the computational indistinguishability of basic ensembles. The
actual reduction is in the other direction: Efficiently distinguishing the basic ensembles is
reduced to efficiently distinguishing the complex ensembles, and hybrid distributions are
used in the reduction in an essential way. The following three properties of the construction
of the hybrids play an important role in the argument:

1. The complex ensembles collide with the extreme hybrids. This property is essential
because our aim is proving something that relates to the complex ensembles (i.e.,
their indistinguishability), while the argument itself refers to the extreme hybrids.

In the proof of Proposition 8.6 the extreme hybrids (i.e., H s(n)
n and H 0

n ) collide with
the complex ensembles that represent s(n)-ary sequences of samples of one of the
basic ensembles.

2. The basic ensembles are efficiently mapped to neighboring hybrids. This property is
essential because our starting hypothesis relates to the basic ensembles (i.e., their in-
distinguishability), while the argument itself refers directly to the neighboring hybrids.
Thus, we need to translate our knowledge (i.e., computational indistinguishability)
of the basic ensembles to knowledge (i.e., computational indistinguishability) of any
pair of neighboring hybrids. Typically, this is done by efficiently transforming strings
in the range of a basic distribution into strings in the range of a hybrid such that the
transformation maps the first basic distribution to one hybrid and the second basic
distribution to the neighboring hybrid.

298



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

In the proof of Proposition 8.6 the basic ensembles (i.e., Xn and Yn) were efficiently
transformed into neighboring hybrids (i.e., Hi+1

n and Hi
n , respectively). Recall that,

in this case, the efficiency of this transformation relied on the hypothesis that both
the basic ensembles are polynomial-time constructible.

3. The number of hybrids is small (i.e., polynomial). This property is essential in or-
der to deduce the computational indistinguishability of extreme hybrids from the
computational indistinguishability of each pair of neighboring hybrids. Typically, the
“distinguishability gap” established in the argument loses a factor that is proportional
to the number of hybrids. This is due to the fact that the gap between the extreme
hybrids is upper-bounded by the sum of the gaps between neighboring hybrids.

In the proof of Proposition 8.6 the number of hybrids equals s(n) and the aforemen-
tioned loss is reflected in Eq. (8.7).

We remark that in the course of a hybrid argument, a distinguishing algorithm referring
to the complex ensembles is being analyzed and even invoked on arbitrary hybrids. The
reader may be annoyed by the fact that the algorithm “was not designed to work on such
hybrids” (but rather only on the extreme hybrids). However, an algorithm is an algorithm:
Once it exists we can invoke it on inputs of our choice, and analyze its performance on
arbitrary input distributions.

8.2.4. Amplifying the Stretch Function

Recall that the definition of pseudorandom generators (i.e., Definition 8.1) makes a min-
imal requirement regarding their stretch; that is, it is only required that the length of
the output of such generators be longer than their input. Needless to say, we seek pseu-
dorandom generators with a much more significant stretch, firstly because the stretch
determines the saving in randomness obtained via Construction 8.2. It turns out (see Con-
struction 8.7) that pseudorandom generators of any stretch function (and in particular of
minimal stretch �1(k)

def= k + 1) can be easily converted into pseudorandom generators of
any desired (polynomially bounded) stretch function, �. (On the other hand, since pseudo-
random generators are required (in Definition 8.1) to run in polynomial time, their stretch
must be polynomially bounded.)

Construction 8.7: Let G1 be a pseudorandom generator with stretch func-
tion �1(k) = k + 1, and � be any polynomially bounded stretch function that is
polynomial-time computable. Let

G(s)
def= σ1σ2 · · · σ�(|s|) (8.8)

where x0 = s and xiσi = G1(xi−1), for i = 1, . . . , �(|s|). (That is, σi is the last bit
of G1(xi−1) and xi is the |s|-bit long prefix of G1(xi−1).)

Needless to say, G is polynomial-time computable and has stretch �. An alternative
construction is considered in Exercise 8.11.

Proposition 8.8: Let G1 and G be as in Construction 8.7. Then G constitutes a
pseudorandom generator.

Proof Sketch:12 The proposition is proven using the hybrid technique, presented
and discussed in Section 8.2.3. Here (for i = 0, . . . , �(k)), we consider the hybrid

12For more details, see [91, Sec. 3.3.3].

299



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

σ
i

Hk
i

σ

σ

x

σ

σ

x

i+1

l

l

l
.  .  .

. . .

σ σ
1 i-1
.  .  .

Gi

σ

x

i

G11 i+1

i+1

Figure 8.2: Analysis of stretch amplification – the i th hybrid.

distributions Hi
k , depicted in Figure 8.2 and defined by

Hi
k

def= U (1)
i · g�(k)−i

(
U (2)

k

)
,

where · denotes the concatenation of strings, g j (x) denotes the j-bit long prefix

of G(x), and U (1)
i and U (2)

k are independent uniform distributions (over {0, 1}i and
{0, 1}k , respectively). The extreme hybrids (i.e., H 0

k and H k
k ) correspond to G(Uk)

and U�(k), whereas distinguishability of neighboring hybrids can be worked into
distinguishability of G1(Uk) and Uk+1. Details follow.

We shall focus on proving the indistinguishability of neighboring hybrids.13 Sup-
pose, toward the contradiction, that algorithm D distinguishes Hi

k from Hi+1
k .

We first take a closer look at these hybrids. Note that, for j ≥ 1, it holds that
g j (s) ≡ (σ, g j−1(x)), where xσ = G1(s). Denoting the first |x | − 1 bits of x by F(x)
and the last bit of x by L(x), we may write g j (s) ≡ (L(G1(s)), g j−1(F(G1(s)))) and

(U (1)
1 , U (2)

k ) ≡ (L(Uk+1), F(Uk+1)). It follows that

Hi
k = U (1)

i · g�(k)−i
(
U (2)

k

)
≡ (

U (1)
i , L

(
G1

(
U (2)

k

))
, g(�(k)−i)−1

(
F
(
G1

(
U (2)

k

))))
Hi+1

k = U (1′)
i+1 · g�(k)−i−1

(
U (2)

k

)
≡ (

U (1)
i , L

(
U (2′)

k+1

)
, g(�(k)−i)−1

(
F(U (2′)

k+1

)))
.

Now, combining the generation of U (1)
i and the evaluation of g�(k)−i−1 with the dis-

tinguisher D, we distinguish the distribution (F(G1(U (2)
k )), L(G1(U (2)

k ))) ≡ G1(Uk)

from the distribution (F(U (2′)
k+1), L(U (2′)

k+1)) ≡ Uk+1, in contradiction to the pseudoran-
domness of G1. Specifically, on input x ∈ {0, 1}k+1, we uniformly select r ∈ {0, 1}i
and output D(r · L(x) · g�(k)−i−1(F(x))). The analysis of the resulting distinguisher
is based on the following two facts:

13As usual (when the hybrid technique is used), the distinguishability of the extreme hybrids (which collide with
G(Uk ) and U�(k), respectively) implies the distinguishability of a random pair of neighboring hybrids. Thus, the
following analysis will be applied to a random i (in {0, . . . , k − 1}), and the full analysis will refer to an expression
analogous to Eq. (8.7).

300



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

1. When given an input that is distributed according to G1(Uk), we invoke algorithm
D on input (U ′

i , L(G1(Uk)), g�(k)−i−1(F(G1(Uk)))) ≡ Hi
k .

2. When given an input that is distributed according to Uk+1, we invoke algorithm
D on input (U ′

i , L(Uk+1), g�(k)−i−1(F(Uk+1))) ≡ Hi+1
k .

Thus, the probability that we output 1 on input G1(Uk) (resp., Uk+1) equals
Pr[D(Hi

k ) = 1] (resp., Pr[D(Hi+1
k ) = 1]). Hence, the distinguishability of neigh-

boring hybrids implies the distinguishability of G1(Uk) and Uk+1.

Conclusion. In view of the foregoing, when talking about the mere existence of pseu-
dorandom generators, in the sense of Definition 8.1, we may ignore the specific stretch
function.

8.2.5. Constructions

The constructions surveyed in this section “transform” computational difficulty, in
the form of one-way functions, into generators of pseudorandomness. Recall that a
polynomial-time computable function is called one-way if any efficient algorithm can
invert it only with negligible success probability (see Definition 7.1 and Section 7.1 for
further discussion). We will actually use hard-core predicates of such functions, and refer
the reader to their treatment in Section 7.1.3. Loosely speaking, a polynomial-time com-
putable predicate b is called a hard-core of a function f if any efficient algorithm, given
f (x), can guess b(x) with success probability that is only negligibly higher than half.
Recall that (by Theorem 7.7), for any one-way function f , the inner-product mod 2 of x
and r is a hard-core of f ′(x, r ) = ( f (x), r ).

8.2.5.1. A Simple Construction
Intuitively, the definition of a hard-core predicate implies a potentially interesting case
of computational indistinguishability. Specifically, as will be shown implicitly in Propo-
sition 8.9 and explicitly in Exercise 8.8, if b is a hard-core of the function f , then
the ensemble { f (Un) · b(Un)}n∈N is computationally indistinguishable from the ensemble
{ f (Un) ·U ′

1}n∈N. Furthermore, if f is 1-1 then the foregoing ensembles are statistically
far apart, and thus constitute a non-trivial case of computational indistinguishability. If f
is also polynomial-time computable and length-preserving, then this yields a construction
of a pseudorandom generator.

Proposition 8.9 (A simple construction of pseudorandom generators): Let b be a
hard-core predicate of a polynomial-time computable 1-1 and length-preserving
function f . Then, G(s)

def= f (s) · b(s) is a pseudorandom generator.

Proof Sketch:14 Considering a uniformly distributed s ∈ {0, 1}n , we first note that
the n-bit long prefix of G(s) is uniformly distributed in {0, 1}n , because f induces
a permutation on the set {0, 1}n . Hence, the proof boils down to showing that
distinguishing f (s) · b(s) from f (s) · σ , where σ is a random bit, yields contradiction
to the hypothesis that b is a hard-core of f (i.e., that b(s) is unpredictable from f (s)).
Intuitively, the reason is that such a hypothetical distinguisher also distinguishes

14For more details, see [91, Sec. 3.3.4].

301



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

f (s) · b(s) from f (s) · b(s), where σ = 1− σ , whereas distinguishing f (s) · b(s)
from f (s) · b(s) yields an algorithm for predicting b(s) based on f (s). Details follow.
We start with any potential distinguisher D, and let

δ(k)
def= Pr[D(G(Uk)) = 1]− Pr[D(Uk+1) = 1].

We may assume, without loss of generality, that δ(k) is non-negative (for infinitely
many k’s). Observing that G(Uk) = f (Uk) · b(Uk) and that Uk+1 is distributed
identically to a random variable that equals f (Uk)b(Uk) with probability 1/2 and
f (Uk)b(Uk) otherwise, we have

Pr[D( f (Uk)b(Uk)) = 1]− Pr[D( f (Uk)b(Uk)) = 1] = 2δ(k).

The key observation is that D effectively distinguishes (with gap 2δ(k)) the case that
the last bit is b(Uk) from the case that the last bit is b(Uk). This distinguishing ability
can be transformed to predicting the value of b(Uk), when given the value f (Uk).
Indeed, consider an algorithm A that, on input y, uniformly selects σ ∈ {0, 1},
invokes D(yσ ), and outputs σ if D(yσ ) = 1 and σ otherwise. Then

Pr[A( f (Uk)) = b(Uk)]

= Pr[D( f (Uk) · σ ) = 1 ∧ σ = b(Uk)] + Pr[D( f (Uk) · σ ) = 0 ∧ σ = b(Uk)]

= 1

2
· (Pr[D( f (Uk) · b(Uk)) = 1] + (

1 − Pr[D( f (Uk) · b(Uk)) = 1]
))

which equals (1+ 2δ(k))/2. This contradicts the hypothesis that b is a hard-core of
f , and the proposition follows.

Combining Theorem 7.7, Proposition 8.9, and Construction 8.7, we obtain the following
corollary.

Theorem 8.10 (A sufficient condition for the existence of pseudorandom genera-
tors): If there exists 1-1 and length-preserving one-way function then, for every
polynomially bounded stretch function �, there exists a pseudorandom generator of
stretch �.

Digest. The main part of the proof of Proposition 8.9 is showing that the (next bit)
unpredictability of G(Uk) implies the pseudorandomness of G(Uk). The fact that (next
bit) unpredictability and pseudorandomness are equivalent, in general, is proven explicitly
in the alternative proof of Theorem 8.10 provided next.

8.2.5.2. An Alternative Presentation
Let us take a closer look at the pseudorandom generators obtained by combining Con-
struction 8.7 and Proposition 8.9. For a stretch function � :N→N, a 1-1 one-way function
f with a hard-core b, we obtain

G(s)
def= σ1σ2 · · · σ�(|s|) , (8.9)

where x0 = s and xiσi = f (xi−1)b(xi−1) for i = 1, . . . , �(|s|). Denoting by f i (x) the
value of f iterated i times on x (i.e., f i (x) = f i−1( f (x)) and f 0(x) = x), we rewrite
Eq. (8.9) as follows

G(s)
def= b(s) · b( f (s)) · · · b( f �(|s|)−1(s)) . (8.10)

302



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

The pseudorandomness of G is established in two steps, using the notion of (next
bit) unpredictability. An ensemble {Zk}k∈N is called unpredictable if any probabilistic
polynomial-time machine obtaining a (random)15 prefix of Zk fails to predict the next
bit of Zk with probability non-negligibly higher than 1/2. Specifically, we establish the
following two results.

1. A general result asserting that an ensemble is pseudorandom if and only if it is
unpredictable. Recall that an ensemble is pseudorandom if it is computationally
indistinguishable from a uniform distribution (over bit strings of adequate length).

Clearly, pseudorandomness implies polynomial-time unpredictability, but here we
actually need the other direction, which is less obvious. Still, using a hybrid argument,
one can show that (next-bit) unpredictability implies indistinguishability from the
uniform ensemble. For details, see Exercise 8.12.

2. A specific result asserting that the ensemble {G(Uk)}k∈N is unpredictable from right
to left. Equivalently, G ′(Un) is polynomial-time unpredictable (from left to right (as
usual)), where G ′(s) = b( f �(|s|)−1(s)) · · · b( f (s)) · b(s) is the reverse of G(s).

Using the fact that f induces a permutation over {0, 1}n , observe that the ( j + 1)-
bit long prefix of G ′(Uk) is distributed identically to b( f j (Uk)) · · · b( f (Uk)) · b(Uk).
Thus, an algorithm that predicts the j + 1st bit of G ′(Un) based on the j-bit long
prefix of G ′(Un) yields an algorithm that guesses b(Un) based on f (Un). For details,
see Exercise 8.14.

Needless to say, G is a pseudorandom generator if and only if G ′ is a pseudorandom
generator (see Exercise 8.13). We mention that Eq. (8.10) is often referred to as the
Blum-Micali Construction.16

8.2.5.3. A General Condition for the Existence of Pseudorandom Generators
Recall that given any one-way 1-1 length-preserving function, we can easily construct a
pseudorandom generator. Actually, the 1-1 (and length-preserving) requirement may be
dropped, but the currently known construction – for the general case – is quite complex.

Theorem 8.11 (On the existence of pseudorandom generators): Pseudorandom
generators exist if and only if one-way functions exist.

To show that the existence of pseudorandom generators implies the existence of one-
way functions, consider a pseudorandom generator G with stretch function �(k) = 2k.
For x, y ∈ {0, 1}k , define f (x, y)

def= G(x), and so f is polynomial-time computable (and
length-preserving). It must be that f is one-way, or else one can distinguish G(Uk) from
U2k by trying to invert and checking the result: Inverting f on the distribution f (U2k)
corresponds to operating on the distribution G(Uk), whereas the probability that U2k has
inverse under f is negligible.

The interesting direction of the proof of Theorem 8.11 is the construction of pseudoran-
dom generators based on any one-way function. Since the known proof is quite complex,

15For simplicity, we define unpredictability as referring to prefixes of a random length (distributed uniformly in
{0, . . . , |Zk | − 1}). A more general definition allows the predictor to determine the length of the prefix that it reads
on the fly. This seemingly stronger notion of unpredictability is actually equivalent to the one we use, because both
notions are equivalent to pseudorandomness.

16Given the popularity of the term, we deviate from our convention of not specifying credits in the main text.
Indeed, this construction originates in [41].

303



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

we only provide a very rough overview of some of the ideas involved. We mention that
these ideas make extensive use of adequate hashing functions (e.g., pairwise independent
hashing functions; see Appendix D.2).

We first note that, in general (when f may not be 1-1), the ensemble f (Uk) may not be
pseudorandom, and so Construction 8.9 (i.e., G(s) = f (s)b(s), where b is a hard-core of f )
cannot be used directly. One idea underlying the known construction is hashing f (Uk) to an
almost uniform string of length related to its entropy, using adequate hashing functions.17

But “hashing f (Uk) down to length comparable to the entropy” means shrinking the
length of the output to, say, k ′ < k. This foils the entire point of stretching the k-bit seed.
Thus, a second idea underlying the construction is compensating for the loss of k − k ′

bits by extracting these many bits from the seed Uk itself. This is done by hashing Uk ,
and the point is that the (k − k ′)-bit long hash value does not make the inverting task any
easier. Implementing these ideas turns out to be more difficult than it seems, and indeed
an alternative construction would be most appreciated.

8.2.6. Non-uniformly Strong Pseudorandom Generators

Recall that we said that truly random sequences can be replaced by pseudorandom se-
quences without affecting any efficient computation that uses these sequences. The spe-
cific formulation of this assertion, presented in Proposition 8.3, refers to randomized
algorithms that take a “primary input” and use a secondary “random-input” in their com-
putation. Proposition 8.3 asserts that it is infeasible to find a primary input for which
the replacement of a truly random secondary input by a pseudorandom one affects the
final output of the algorithm in a noticeable way. This, however, does not mean that such
primary inputs do not exist (but rather that they are hard to find). Consequently, Proposi-
tion 8.3 falls short of yielding a (worst-case)18 “derandomization” of a complexity class
such as BPP . To obtain such results, we need a stronger notion of pseudorandom gen-
erators, presented next. Specifically, we need pseudorandom generators that can fool all
polynomial-size circuits (cf. §1.2.4.1), and not merely all probabilistic polynomial-time
algorithms.19

Definition 8.12 (strong pseudorandom generator – fooling circuits): A determinis-
tic polynomial-time algorithm G is called a non-uniformly strong pseudorandom
generator if there exists a stretch function, � :N→N, such that for any family {Ck}k∈N

17This is done after guaranteeing that the logarithm of the probability mass of a value of f (Uk ) is typically
close to the entropy of f (Uk ). Specifically, given an arbitrary one-way function f ′, one first constructs f by
taking a “direct product” of sufficiently many copies of f ′. For example, for x1, . . . , xk2/3 ∈ {0, 1}k1/3

, we let
f (x1, . . . , xk2/3 )

def= f ′(x1), . . . , f ′(xk2/3 ).
18Indeed, Proposition 8.3 yields an average-case derandomization of BPP . In particular, for every polynomial-

time constructible ensemble {Xn}n∈N, every Boolean function f ∈ BPP , and every ε > 0, there exists a randomized
algorithm A′ of randomness complexity rε(n) = nε such that the probability that A′(Xn) �= f (Xn) is negligible. A
corresponding deterministic (exp(rε)-time) algorithm A′′ can be obtained, as in the proof of Theorem 8.13, and again
the probability that A′′(Xn) �= f (Xn) is negligible, where here the probability is taken only over the distribution
of the primary input (represented by Xn). In contrast, worst-case derandomization, as captured by the assertion
BPP ⊆ DTIME(2rε ), requires that the probability that A′′(Xn) �= f (Xn) is zero.

19Needless to say, strong pseudorandom generators in the sense of Definition 8.12 satisfy the basic definition
of a pseudorandom generator (i.e., Definition 8.1); see Exercise 8.15. We comment that the underlying notion of
computational indistinguishability (by circuits) is strictly stronger than Definition 8.4, and that it is invariant under
multiple samples (regardless of the constructibility of the underlying ensembles); for details, see Exercise 8.16.

304



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.2. GENERAL-PURPOSE PSEUDORANDOM GENERATORS

of polynomial-size circuits, for any positive polynomial p, and for all sufficiently
large k’s

|Pr[Ck(G(Uk)) = 1] − Pr[Ck(U�(k)) = 1] | < 1

p(k)

An alternative formulation is obtained by referring to polynomial-time machines that
take advice (Section 3.1.2). Using such pseudorandom generators, we can “derandomize”
BPP .

Theorem 8.13 (derandomization of BPP): If there exists non-uniformly strong
pseudorandom generators then BPP is contained in ∩ε>0DTIME(tε), where
tε(n)

def= 2nε

.

Proof Sketch: For any S ∈ BPP and any ε > 0, we let A denote the decision
procedure for S and G denote a non-uniformly strong pseudorandom generator
stretching nε-bit long seeds into poly(n)-long sequences (to be used by A as sec-
ondary input when processing a primary input of length n). Combining A and G,
we obtain an algorithm A′ = AG (as in Construction 8.2). We claim that A and A′

may significantly differ in their (expected probabilistic) decision on at most finitely
many inputs, because otherwise we can use these inputs (together with A) to derive
a (non-uniform) family of polynomial-size circuits that distinguishes G(Unε ) and
Upoly(n), contradicting the the hypothesis regarding G. Specifically, an input x on
which A and A′ differ significantly yields a circuit Cx that distinguishes G(U|x |ε )
and Upoly(|x |), by letting Cx (r ) = A(x, r ).20 Incorporating the finitely many “bad”
inputs into A′, we derive a probabilistic polynomial-time algorithm that decides S
while using randomness complexity nε.

Finally, emulating A′ on each of the 2nε

possible random sequences (i.e., seeds
to G) and ruling by majority, we obtain a deterministic algorithm A′′ as required.
That is, let A′(x, r ) denote the output of algorithm A′ on input x when using coins
r ∈ {0, 1}nε

. Then A′′(x) invokes A′(x, r ) on every r ∈ {0, 1}nε

, and outputs 1 if and
only if the majority of these 2nε

invocations have returned 1.

We comment that stronger results regarding derandomization of BPP are presented in
Section 8.3.

On constructing non-uniformly strong pseudorandom generators. Non-uniformly
strong pseudorandom generators (as in Definition 8.12) can be constructed using any
one-way function that is hard to invert by any non-uniform family of polynomial-size
circuits (as in Definition 7.3), rather than by probabilistic polynomial-time machines. In
fact, the construction in this case is simpler than the one employed in the uniform case
(i.e., the construction underlying the proof of Theorem 8.11).

8.2.7. Stronger Notions and Conceptual Reflections

We first mention two stronger variants on the definition of pseudorandom generators, and
conclude this section by highlighting various conceptual issues.

20Indeed, in terms of the proof of Proposition 8.3, the finder F consists of a non-uniform family of polynomial-size
circuits that print the “problematic” primary inputs that are hard-wired in them, and the corresponding distinguisher
D is thus also non-uniform.

305



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

8.2.7.1. Stronger (Uniform-Complexity) Notions
The following two notions represent a strengthening of the standard definition of pseudo-
random generators (as presented in Definition 8.1). Non-uniform versions of these notions
(strengthening Definition 8.12) are also of interest.

Fooling stronger distinguishers. One strengthening of Definition 8.1 amounts to ex-
plicitly quantifying the resources (and success gaps) of distinguishers. We choose to
bound these quantities as a function of the length of the seed (i.e., k), rather than as
a function of the length of the string that is being examined (i.e., �(k)). For a class of
time bounds T (e.g., T = {t(k)

def= 2c
√

k}c∈N) and a class of noticeable functions (e.g.,
F = { f (k)

def= 1/t(k) : t ∈ T }), we say that a pseudorandom generator, G, is (T ,F)-
strong if for any probabilistic algorithm D having running time bounded by a function
in T (applied to k)21 for any function f in F , and for all sufficiently large k’s, it holds
that

|Pr[D(G(Uk)) = 1]− Pr[D(U�(k)) = 1] | < f (k).

An analogous strengthening may be applied to the definition of one-way functions. Doing
so reveals the weakness of the known construction that underlies the proof of Theo-
rem 8.11: It only implies that for some ε > 0 (ε = 1/8 will do), for any T and F ,
the existence of “(T ,F)-strong one-way functions” implies the existence of (T ′,F ′)-
strong pseudorandom generators, where T ′ = {t ′(k)

def= t(kε)/poly(k) : t ∈ T } and
F ′ = { f ′(k)

def= poly(k) · f (kε) : f ∈ F}. What we would like to have is an analogous re-
sult with T ′ = {t ′(k)

def= t(�(k))/poly(k) : t ∈ T } and F ′ = { f ′(k)
def= poly(k) · f (�(k)) :

f ∈ F}.

Pseudorandom Functions. Recall that pseudorandom generators allow for efficiently
generating long pseudorandom sequences from short random seeds. Pseudorandom func-
tions (defined in Appendix C.3.3) are even more powerful: They allow efficient direct
access to a huge pseudorandom sequence, which is not even feasible to scan bit by bit.
Specifically, based on a (random) k-bit long seed, they allow direct access to a sequence of
length 2k . Put in other words, pseudorandom functions are deterministic polynomial-time
algorithms that map a k-bit long seed s and a k-bit long argument x to a value fs(x)
such that, for a uniformly distributed s ∈ {0, 1}k , the function fs looks random to any
poly(k)-time observer that may query fs at arguments of its choice. Thus, pseudoran-
dom functions can replace truly random functions in any efficient application (e.g., most
notably in cryptography). We mention that pseudorandom functions can be constructed
from any pseudorandom generator (see Theorem C.8), and that they have found many
applications in cryptography (see Appendices C.3.3, C.5.2, and C.6.2). Pseudorandom
functions were also used to derive negative results in computational learning theory [232]
and in the study of circuit complexity (cf. Natural Proofs [189]).

8.2.7.2. Conceptual Reflections
We highlight several conceptual aspects of the foregoing computational approach to
randomness. Some of these aspects are common to other instantiations of the general
paradigm (esp., the one presented in Section 8.3).

21That is, when examining a sequence of length �(k), algorithm D makes at most t(k) steps, where t ∈ T .

306



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES

Behavioristic versus ontological. The behavioristic nature of the computational approach
to randomness is best demonstrated by confronting this approach with the Kolmogorov-
Chaitin approach to randomness. Loosely speaking, a string is Kolmogorov-random if
its length equals the length of the shortest program producing it. This shortest program
may be considered the “true explanation” to the phenomenon described by the string. A
Kolmogorov-random string is thus a string that does not have a substantially simpler (i.e.,
shorter) explanation than itself. Considering the simplest explanation of a phenomenon
may be viewed as an ontological approach. In contrast, considering the effect of phenomena
on certain devices (or observations), as underlying the definition of pseudorandomness,
is a behavioristic approach. Furthermore, there exist probability distributions that are not
uniform (and are not even statistically close to a uniform distribution) and nevertheless are
indistinguishable from a uniform distribution (by any efficient device). Thus, distributions
that are ontologically very different are considered equivalent by the behavioristic point
of view taken in the definition of computational indistinguishability.

A relativistic view of randomness. We have defined pseudorandomness in terms of its
observer. Specifically, we have considered the class of efficient (i.e., polynomial-time)
observers and defined as pseudorandom objects that look random to any observer in that
class. In subsequent sections, we shall consider restricted classes of such observers (e.g.,
space-bounded polynomial-time observers and even very restricted observers that merely
apply specific tests such as linear tests or hitting tests). Each such class of observers
gives rise to a different notion of pseudorandomness. Furthermore, the general paradigm
(of pseudorandomness) explicitly aims at distributions that are not uniform and yet are
considered as such from the point of view of certain observers. Thus, our entire approach
to pseudorandomness is relativistic and subjective (i.e., depending on the abilities of the
observer).

Randomness and Computational Difficulty. Pseudorandomness and computational dif-
ficulty play dual roles: The general paradigm of pseudorandomness relies on the fact that
placing computational restrictions on the observer gives rise to distributions that are not
uniform and still cannot be distinguished from uniform distributions. Thus, the pivot of the
entire approach is the computational difficulty of distinguishing pseudorandom distribu-
tions from truly random ones. Furthermore, many of the constructions of pseudorandom
generators rely either on conjectures or on facts regarding computational difficulty (i.e.,
that certain computations are hard for certain classes). For example, one-way functions
were used to construct general-purpose pseudorandom generators (i.e., those working in
polynomial time and fooling all polynomial-time observers). Analogously, as we shall see
in §8.3.3.1, the fact that parity function is hard for polynomial-size constant-depth circuits
can be used to generate (highly non-uniform) sequences that fool such circuits.

Randomness and Predictability. The connection between pseudorandomness and un-
predictability (by efficient procedures) plays an important role in the analysis of several
constructions (cf. Sections 8.2.5 and 8.3.2). We wish to highlight the intuitive appeal of
this connection.

8.3. Derandomization of Time-Complexity Classes

Let us take a second look at the process of derandomization that underlies the proof
of Theorem 8.13. First, a pseudorandom generator was used to shrink the randomness

307



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

complexity of a BPP-algorithm, and then derandomization was achieved by scanning all
possible seeds to this generator. A key observation regarding this process is that there is
no point in insisting that the pseudorandom generator runs in time that is polynomial in its
seed length. Instead, it suffices to require that the generator run in time that is exponential
in its seed length, because we are incurring such an overhead anyhow due to the scanning
of all possible seeds. Furthermore, in this context, the running time of the generator may
be larger than the running time of the algorithm, which means that the generator need only
fool distinguishers that take fewer steps than the generator. These considerations motivate
the following definition of canonical derandomizers.

8.3.1. Defining Canonical Derandomizers

Recall that in order to “derandomize” a probabilistic polynomial-time algorithm A, we
first obtain a functionally equivalent algorithm AG (as in Construction 8.2) that has
(significantly) smaller randomness complexity. Algorithm AG has to maintain A’s input-
output behavior on all (but finitely many) inputs. Thus, the set of the relevant distinguishers
(considered in the proof of Theorem 8.13) is the set of all possible circuits obtained from
A by hard-wiring any of the possible inputs. Such a circuit, denoted Cx , emulates the
execution of algorithm A on input x , when using the circuit’s input as the algorithm’s
internal coin tosses (i.e., Cx (r ) = A(x, r )). Furthermore, the size of Cx is quadratic in the
running time of A on input x , and the length of the input to Cx equals the running time
of A (on input x).22 Thus, the size of Cx is quadratic in the length of its own input, and
the pseudorandom generator in use (i.e., G) needs to fool each such circuit. Recalling that
we may allow the generator to run in exponential time (i.e., time that is exponential in the
length of its own input (i.e., the seed)),23 we arrive at the following definition.

Definition 8.14 (pseudorandom generator for derandomizing BPTIME(·)):24 Let � :
N→N be a monotonically increasing function. A canonical derandomizer of stretch
� is a deterministic algorithm G that satisfies the following two conditions.

1. On input a k-bit long seed, G makes at most poly(2k · �(k)) steps and outputs a
string of length �(k).

2. For every circuit Dk of size �(k)2 it holds that

|Pr[Dk(G(Uk)) = 1]− Pr[Dk(U�(k)) = 1] | < 1

6
. (8.11)

22Indeed, we assume that algorithm A is represented as a Turing machine and refer to the standard emulation of
Turing machines by circuits (as underlying the proof of Theorem 2.21). Thus, the aforementioned circuit Cx has size
that is at most quadratic in the running time of A on input x , which in turn means that Cx has size that is at most
quadratic in the length of its own input. (In fact, the circuit size can be made almost linear in the running time of A,
by using a better emulation [180].) We note that many sources use the fictitious convention by which the circuit size
equals the length of its input; this fictitious convention can be justified by considering a (suitably) padded input.

23Actually, in Definition 8.14 we allow the generator to run in time poly(2k�(k)), rather than in time poly(2k ).
This is done in order not to trivially rule out generators of super-exponential stretch (i.e., �(k) = 2ω(k)). However (see
Exercise 8.18), the condition in Eq. (8.11) does not allow for super-exponential stretch (or even for �(k) = ω(2k )).
Thus, in retrospect, the two formulations are equivalent (because poly(2k�(k)) = poly(2k ) for �(k) = 2O(k)).

24Fixing a model of computation, we denote by BPTIME(t) the class of decision problems that are solvable by a
randomized algorithm of time complexity t that has two-sided error 1/3. Using 1/6 as the “threshold distinguishing gap”
(in Eq. (8.11)) guarantees that if Pr[Dk (U�(k)) = 1] ≥ 2/3 (resp., Pr[Dk (U�(k)) = 1] ≤ 1/3) then Pr[Dk (G(Uk )) =
1] > 1/2 (resp., Pr[Dk (G(Uk )) = 1] < 1/2). As we shall see, this suffices for a derandomization of BPTIME(t) in
time T , where T (n) = poly(2�−1(t(n)) · t(n)) (and we use a seed of length k = �−1(t(n))).

308



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES

The circuit Dk represents a potential distinguisher, which is given an �(k)-bit long string
(sampled either from G(Uk) or from U�(k)). When seeking to derandomize an algorithm
A of time complexity t , the aforementioned �(k)-bit long string represents a possible
sequence of coin tosses of A, when invoked on a generic (primary) input of length
n = t−1(�(k)). Thus, for any x ∈ {0, 1}n , considering the circuit Dk(r ) = A(x, r ), where
|r | = t(n) = �(k), we note that Eq. (8.11) implies that AG(x) = A(x, G(Uk)) maintains the
majority vote of A(x) = A(x, U�(k)). On the other hand, the time complexity of G implies
that the straightforward deterministic emulation of AG(x) takes time 2k · (poly(2k · �(k))+
t(n)), which is upper-bounded by poly(2k · �(k)) = poly(2�−1(t(n)) · t(n)). This yields the
following (conditional) derandomization result.

Proposition 8.15: Let �, t :N→N be monotonically increasing functions and let
�−1(t(n)) denote the smallest integer k such that �(k) ≥ t(n). If there exists a canon-
ical derandomizer of stretch � then, for every time-constructible t ::N→N, it holds
that BPTIME(t) ⊆ DTIME(T ), where T (n) = poly(2�−1(t(n)) · t(n)).

Proof Sketch: Just mimic the proof of Theorem 8.13, which in turn uses Construc-
tion 8.2. (Recall that given any randomized algorithm A and generator G, Construc-
tion 8.2 yields an algorithm AG of randomness complexity �−1 ◦ t and time com-
plexity poly(2�−1◦t )+ t .)25 Observe that the complexity of the resulting deterministic
procedure is dominated by the 2k = 2�−1(t(|x |)) invocations of AG(x, s) = A(x, G(s)),
where s ∈ {0, 1}k , and each of these invocations takes time poly(2�−1(t(|x |)))+ t(|x |).
Thus, on input an n-bit long string, the deterministic procedure runs in time
poly(2�−1(t(n)) · t(n)). The correctness of this procedure (which takes a majority vote
among the 2k invocations of AG) follows by combining Eq. (8.11) with the hypoth-
esis that Pr[A(x)=1] is bounded-away from 1/2. Specifically, using the hypothesis
|Pr[A(x)=1]− (1/2)| ≥ 1/6, it follows that the majority vote of (AG(x, s))s∈{0,1}k
equals 1 (equiv., Pr[A(x, G(Uk))=1] > 1/2) if and only if Pr[A(x)=1] > 1/2
(equiv., Pr[A(x, U�(k))=1] > 1/2). Indeed, the implication is due to Eq. (8.11),
when applied to the circuit Cx (r ) = A(x, r ) (which has size at most |r |2).

The goal. In light of Proposition 8.15, we seek canonical derandomizers with stretch that
is as large as possible. The stretch cannot be super-exponential (i.e., it must hold that
�(k) = O(2k)), because there exists a circuit of size O(2k · �(k)) that violates Eq. (8.11)
(see Exercise 8.18), whereas for �(k) = ω(2k) it holds that O(2k · �(k)) < �(k)2. Thus, our
goal is to construct a canonical derandomizer with stretch �(k) = 2�(k). Such a canonical
derandomizer will allow for a “full derandomization of BPP”:

Theorem 8.16: If there exists a canonical derandomizer of stretch �(k) = 2�(k),
then BPP = P .

Proof: Using Proposition 8.15, we get BPTIME(t) ⊆ DTIME(T ), where T (n) =
poly(2�−1(t(n)) · t(n)) = poly(t(n)).

25Actually, given any randomized algorithm A and generator G, Construction 8.2 yields an algorithm AG that
is defined such that AG (x, s) = A(x, G ′(s)), where |s| = �−1(t(|x |)) and G ′(s) denotes the t(|x |)-bit long prefix of
G(s). For simplicity, we shall assume here that �(|s|) = t(|x |), and thus use G rather than G ′. Note that given n we
can find k = �−1(t(n)) by invoking G(1i ) for i = 1, . . . , k (using the fact that � :N→N is monotonically increasing).
Also note that �(k) = O(2k ) must hold (see footnote 23), and thus we may replace poly(2k · �(k)) by poly(2k ).

309



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

Reflections. Recall that a canonical derandomizer G was defined in a way that allows
it to have time complexity tG that is larger than the size of the circuits that it fools (i.e.,
tG(k) > �(k)2 is allowed). Furthermore, tG(k) > 2k was also allowed. Thus, if indeed
tG(k) = 2�(k) (as is the case in Section 8.3.2), then G(Uk) can be distinguished from
U�(k) in time 2k · tG(k) = poly(tG(k)) by trying all possible seeds.26 We stress that the
latter distinguisher is a uniform algorithm (and it works by invoking G on all possible
seeds). In contrast, for a general-purpose pseudorandom generator G (as discussed in
Section 8.2), it holds that tG(k) = poly(k), while for every polynomial p it holds that
G(Uk) is indistinguishable from U�(k) in time p(tG(k)).

8.3.2. Constructing Canonical Derandomizers

The fact that canonical derandomizers are allowed to be more complex than the corre-
sponding distinguisher makes some of the techniques of Section 8.2 inapplicable in the
current context. For example, the stretch function cannot be amplified as in Section 8.2.4
(see Exercise 8.17). On the other hand, the techniques developed in the current section
are inapplicable to Section 8.2. For example, the pseudorandomness of some canonical
derandomizers (i.e., the generators of Construction 8.17) holds even when the potential
distinguisher is given the seed itself. This amazing phenomenon capitalizes on the fact
that the distinguisher’s time complexity does not allow for running the generator on the
given seed.

8.3.2.1. The Construction and Its Consequences
As in Section 8.2.5, the construction presented next transforms computational difficulty
into pseudorandomness, except that here, both computational difficulty and pseudoran-
domness are of a somewhat different form than in Section 8.2.5. Specifically, here we
use Boolean predicates that are computable in exponential time but are T -inapproximable
for some exponential function T (see Definition 7.9 recapitulated next). That is, we
assume the existence of a Boolean predicate and constants c, ε > 0 such that for all
but finitely many m, the (residual) predicate f : {0, 1}m → {0, 1} is computable in time
2cm, but for any circuit C of size 2εm it holds that Pr[C(Um) = f (Um)] < 1

2 + 2−εm .
(Needless to say, ε < c.) Recall that such predicates exist under the assumption that E
has (almost-everywhere) exponential circuit complexity (see Theorem 7.19). With these
preliminaries, we turn to the construction of canonical derandomizers with exponential
stretch.

Construction 8.17 (The Nisan-Wigderson Construction): 27 Let f :{0, 1}m→{0, 1}
and S1, . . . , S� be a sequence of m-subsets of {1, . . . , k}. Then, for s ∈ {0, 1}k , we
let

G(s)
def= f (sS1 ) · · · f (sS�

) (8.12)

where sS denotes the projection of s on the bit locations in S ⊆ {1, . . . , |s|}; that is,
for s = σ1 · · · σk and S = {i1, . . . , im}, we have sS = σi1 · · · σim .

26We note that this distinguisher does not contradict the hypothesis that G is a canonical derandomizer, because
tG (k) > �(k) definitely holds whereas �(k) ≤ 2k typically holds (and so 2k · tG (k) > �(k)2).

27Given the popularity of the term, we deviate from our convention of not specifying credits in the main text. This
construction originates in [173, 176].

310



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES

Letting k vary and �, m :N→N be functions of k, we wish G to be a canonical deran-
domizer and �(k) = 2�(k). One (obvious) necessary condition for this to happen is that
the sets must be distinct, and hence m(k) = �(k); consequently, f must be computable
in exponential time. Furthermore, the sequence of sets S1, . . . , S�(k) must be constructible
in poly(2k) time. Intuitively, the function f should be strongly inapproximable (i.e., T -
inapproximable for some exponential function T ), and furthermore it seems desirable to
use a set system with small pairwise intersections (because this restricts the overlap among
the various inputs to which f is applied). Interestingly, these conditions are essentially
sufficient.

Theorem 8.18 (analysis of Construction 8.17): Let α, β, γ, ε > 0 be constants
satisfying ε > (2α/β)+ γ , and consider the functions �, m, T : N→N such that
�(k) = 2αk , m(k) = βk, and T (n) = 2εn. Suppose that the following two conditions
hold:

1. There exists an exponential-time computable function f : {0, 1}∗ →{0, 1} that
is T -inapproximable. (See Definition 7.9.)

2. There exists an exponential-time computable function S : N×N→2N such that
(a) For every k and i ∈ [�(k)], it holds that S(k, i) ⊆ [k] and |S(k, i)| = m(k).
(b) For every k and i �= j , it holds that |S(k, i) ∩ S(k, j)| ≤ γ · m(k).

Then G as defined in Construction 8.17, with Si = S(k, i), constitutes a canonical
derandomizer with stretch �.

Before proving Theorem 8.18 we note that, for any γ > 0, a function S as in Condition 2
does exist with some m(k) = �(k) and �(k) = 2�(k); see Exercise 8.19. Combining such
a function S with Theorems 7.19 and 8.18, we obtain a canonical derandomizer with
exponential stretch based on the assumption that E has (almost-everywhere) exponential
circuit complexity.28 Combining this with Theorem 8.16, we get the first part of the
following theorem.

Theorem 8.19 (de-randomization of BPP, revisited):

1. Suppose that E contains a decision problem that has almost-everywhere expo-
nential circuit complexity (i.e., there exists a constant ε0 > 0 such that, for all
but finitely many m’s, any circuit that correctly decides this problem on {0, 1}m
has size at least 2ε0m). Then, BPP = P .

2. Suppose that, for every polynomial p, the class E contains a decision problem
that has circuit complexity that is almost-everywhere greater than p. ThenBPP
is contained in ∩ε>0DTIME(tε), where tε(n)

def= 2nε

.

Part 2 is proved (in Exercise 8.23) by using a generalization of Theorem 8.18, which
in turn is provided in Exercise 8.22. We note that Part 2 of Theorem 8.19 supersedes
Theorem 8.13 (see Exercise 7.24). As in the case of general-purpose pseudorandom

28Specifically, starting with a function having circuit complexity at least exp(ε0m), we apply Theorem 7.19 and
obtain a T -inapproximable predicate for T (m) = 2εm , where the constant ε ∈ (0, ε0) depends on the constant ε0.
Next, we set γ = ε/2 and invoke Exercise 8.19, which determines α, β > 0 such that �(k) = 2αk and m(k) = βk.
Note that (by possibly decreasing α) we get (2α/β)+ γ < ε.

311



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

generators, the hardness hypothesis made in each part of Theorem 8.19 is necessary for
the existence of a corresponding canonical derandomizer (see Exercise 8.24).

The two parts of Theorem 8.19 exhibit two extreme cases: Part 1 (often referred to as
the “high end”) assumes an extremely strong circuit lower bound and yields “full deran-
domization” (i.e., BPP = P), whereas Part 2 (often referred to as the “low end”) assumes
an extremely weak circuit lower bound and yields weak but meaningful derandomization.
Intermediate results (relying on intermediate lower-bound assumptions) can be obtained
analogously to Exercise 8.23, but tight trade-offs are obtained differently (cf., [226]).

8.3.2.2. Analyzing the Construction (i.e., Proof of Theorem 8.18)
Using the time-complexity upper bounds on f and S, it follows that G can be computed
in exponential time. Thus, our focus is on showing that {G(Uk)} cannot be distinguished
from {U�(k)} by circuits of size �(k)2, specifically, that G satisfies Eq. (8.11). In fact, we
will prove that this holds for G ′(s) = s · G(s); that is, G fools such circuits even if they
are given the seed as auxiliary input. (Indeed, these circuits are smaller than the running
time of G, and so they cannot just evaluate G on the given seed.)

We start by presenting the intuition underlying the proof. As a warm-up, suppose that
the sets (i.e., S(k, i)’s) used in the construction are disjoint. In such a case (which is indeed
impossible because k < �(k) · m(k)), the pseudorandomness of G(Uk) would follow easily
from the inapproximability of f , because in this case G consists of applying f to non-
overlapping parts of the seed (see Exercise 8.21). In the actual construction being analyzed
here, the sets (i.e., S(k, i)’s) are not disjoint but have relatively small pairwise intersection,
which means that G applies f on parts of the seed that have relatively small overlap.
Intuitively, such small overlaps guarantee that the values of f on the corresponding inputs
are “computationally independent” (i.e., having the value of f at some inputs x1, . . . , xi

does not help in approximating the value of f at another input xi+1). This intuition will be
backed up by showing that, when fixing all bits that do not appear in the target input (i.e.,
in xi+1), the former values (i.e., f (x1), . . . , f (xi )) can be computed at a relatively small
computational cost. Thus, the values f (x1), . . . , f (xi ) do not (significantly) facilitate the
task of approximating f (xi+1). With the foregoing intuition in mind, we now turn to the
actual proof.

As usual, the actual proof employs a reducibility argument; that is, assuming toward
the contradiction that G ′ does not fool some circuit of size �(k)2, we derive a contradiction
to the hypothesis that the predicate f is T -inapproximable. The argument utilizes the
relation between pseudorandomness and unpredictability (cf. Section 8.2.5). Specifically,
as detailed in Exercise 8.20, any circuit that distinguishes G ′(Uk) from U�(k)+k with gap
1/6 yields a next-bit predictor of similar size that succeeds in predicting the next bit
with probability at least 1

2 + 1
6�′(k) > 1

2 + 1
7�(k) , where the factor of �′(k) = �(k)+ k <

(1+ o(1)) · �(k) is introduced by the hybrid technique (cf. Eq. (8.7)). Furthermore, given
the non-uniform setting of the current proof, we may fix a bit location i + 1 for prediction,
rather than analyzing the prediction at a random bit location. Indeed, i ≥ k must hold,
because the first k bits of G ′(Uk) are uniformly distributed. In the rest of the proof, we
transform the foregoing predictor into a circuit that approximates f better than allowed
by the hypothesis (regarding the inapproximability of f ).

Assuming that a small circuit C ′ can predict the i + 1st bit of G ′(Uk), when given the
previous i bits, we construct a small circuit C for approximating f (Um(k)) on input Um(k).
The point is that the i + 1st bit of G ′(s) equals f (sS(k, j+1)), where j = i − k ≥ 0, and
so C ′ approximates f (sS(k, j+1)) based on s, f (sS(k,1)), . . . , f (sS(k, j)), where s ∈ {0, 1}k is

312



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.3. DERANDOMIZATION OF TIME-COMPLEXITY CLASSES

uniformly distributed. Note that this is the type of thing that we are after, except that the
circuit we seek may only get sS(k, j+1) as input.

The first observation is that C ′ maintains its advantage when we fix the best choice for
the bits of s that are not at bit locations Sj+1 = S(k, j + 1) (i.e., the bits s[k]\Sj+1 ). That is,
by an averaging argument, it holds that

max
s ′∈{0,1}k−m(k)

{Prs∈{0,1}k [C ′(s, f (sS1 ), . . . , f (sSj )) = f (sSj+1 ) | s[k]\Sj+1 = s ′]}

≥ p′ def= Prs∈{0,1}k [C ′(s, f (sS1 ), . . . , f (sSj )) = f (sSj+1 )].

Recall that by the hypothesis p′ > 1
2 + 1

7�(k) . Hard-wiring the fixed string s ′ into C ′, and
letting π(x) denote the (unique) string s satisfying sSj+1 = x and s[k]\Sj+1 = s ′, we obtain
a circuit C ′′ that satisfies

Prx∈{0,1}m(k) [C ′′(x, f (π(x)S1 ), . . . , f (π(x)Sj )) = f (x)] ≥ p′.

The circuit C ′′ is almost what we seek. The only problem is that C ′′ gets as input not only
x but also f (π(x)S1 ), . . . , f (π(x)Sj ), whereas we seek an approximator of f (x) that only
gets x .

The key observation is that each of the “missing” values f (π(x)S1 ), . . . , f (π(x)Sj )
depend only on a relatively small number of the bits of x . This fact is due to the hypothesis
that |St ∩ Sj+1| ≤ γ · m(k) for t = 1, . . . , j , which means that π(x)St is an m(k)-bit long
string in which mt

def= |St ∩ Sj+1| bits are projected from x and the rest are projected from
the fixed string s ′. Thus, given x , the value f (π(x)St ) can be computed by a (trivial) circuit
of size Õ(2mt ), that is, by a circuit implementing a look-up table on mt bits. Using all
these circuits (together with C ′′), we will obtain the desired approximator of f . Details
follow.

We obtain the desired circuit, denoted C , that T -approximates f as follows. The
circuit C depends on the index j and the string s ′ that are fixed as in the forego-
ing analysis. Recall that C incorporates (Õ(2γ ·|x |)-size) circuits for computing x !→
f (π(x)St ), for t = 1, . . . , j . On input x ∈ {0, 1}m(k), the circuit C computes the val-
ues f (π(x)S1 ), . . . , f (π(x)Sj ), invokes C ′′ on input x and these values, and outputs the
answer as a guess for f (x). That is,

C(x) = C ′′(x, f (π(x)S1 ), . . . , f (π(x)Sj )) = C ′(π(x), f (π(x)S1 ), . . . , f (π(x)Sj )).

By the foregoing analysis, Prx [C(x) = f (x)] ≥ p′ > 1
2 + 1

7�(k) , which is lower-bounded

by 1
2 + 1

T (m(k)) , because T (m(k)) = 2εm(k) = 2εβk � 22αk � 7�(k), where the first in-

equality is due to ε > 2α/β and the second inequality is due to �(k) = 2αk .
The size of C is upper-bounded by �(k)2 + �(k) · Õ(2γ ·m(k)) � Õ(�(k)2 · 2γ ·m(k)) =
Õ(22α·(m(k)/β)+γ ·m(k)) � T (m(k)), where the last inequality is due to T (m(k)) = 2εm(k) �
Õ(2(2α/β)·m(k)+γ ·m(k)) (which in turn uses ε > (2α/β)+ γ ). Thus, we derived a con-
tradiction to the hypothesis that f is T -inapproximable. This completes the proof of
Theorem 8.18.

8.3.3. Technical Variations and Conceptual Reflections

We start this section by discussing a general framework that emerges from Construc-
tion 8.17, and end this section with a conceptual discussion regarding derandomization.

313



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

8.3.3.1. Construction 8.17 as a General Framework
The Nisan–Wigderson Construction (i.e., Construction 8.17) is actually a general frame-
work that can be instantiated in various ways. Some of these instantiations, which are
based on an abstraction of the construction as well as of its analysis, are briefly reviewed
next,

We first note that the generator described in Construction 8.17 consists of a generic
algorithmic scheme that can be instantiated with any predicate f . Furthermore, this
algorithmic scheme, denoted G, is actually an oracle machine that makes (non-adaptive)
queries to the function f , and thus the combination may be written as G f . Likewise,
the proof of pseudorandomness of G f (i.e., the bulk of the proof of Theorem 8.18) is
actually a general scheme that, for every f , yields a (non-uniform) oracle-aided circuit
C that approximates f by using an oracle call to any distinguisher for G f (i.e., C uses
the distinguisher as a black-box). The circuit C does depends on f (but in a restricted
way). Specifically, C contains look-up tables for computing functions obtained from f
by fixing some of the input bits (i.e., look-up tables for the functions f (π(·)St )’s). The
foregoing abstractions facilitate the presentation of the following instantiations of the
general framework underlying Construction 8.17.

Derandomization of constant-depth circuits. In this case we instantiate Construc-
tion 8.17 using the parity function in the role of the inapproximable predicate f ,
noting that parity is indeed inapproximable by “small” constant-depth circuits. With
an adequate setting of parameters we obtain pseudorandom generators with stretch
�(k) = exp(k1/O(1)) that fool “small” constant-depth circuits (see [173]). The analysis
of this construction proceeds very much like the proof of Theorem 8.18. One important
observation is that incorporating the (straightforward) circuits that compute f (π(x)St ) into
the distinguishing circuit only increases its depth by two levels. Specifically, the circuit C
uses depth-two circuits that compute the values f (π(x)St )’s, and then obtains a prediction
of f (x) by using these values in its (single) invocation of the (given) distinguisher.

The resulting pseudorandom generator, which uses a seed of polylogarithmic length
(equiv., �(k) = exp(k1/O(1))), can be used for derandomizing RAC0 (i.e., random AC0),
analogously to Theorem 8.16. Thus, we can deterministically approximate, in quasi-
polynomial time and up to an additive error, the fraction of inputs that satisfy a given
(constant-depth) circuit. Specifically, for any constant d, given a depth-d circuit C , we
can deterministically approximate the fraction of the inputs that satisfy C (i.e., cause C to
evaluate to 1) to within any additive constant error29 in time exp((log |C |)O(d)). Providing
a deterministic polynomial-time approximation, even in the case d = 2 (i.e., CNF/DNF
formulae) is an open problem.

Derandomization of probabilistic proof systems. A different (and more surprising)
instantiation of Construction 8.17 utilizes predicates that are inapproximable by small
circuits having oracle access to NP . The result is a pseudorandom generator robust
against two-move public-coin interactive proofs (which are as powerful as constant-
round interactive proofs (see §9.1.4.1)). The key observation is that the analysis of

29We mention that in the special case of approximating the number of satisfying assignments of a DNF formula,
relative error approximations can be obtained by employing a deterministic reduction to the case of additive constant
error (see §6.2.2.1). Thus, using a pseudorandom generator that fools DNF formulae, we can deterministically
obtain a relative (rather than additive) error approximation to the number of satisfying assignments in a given DNF
formula.

314



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.4. SPACE-BOUNDED DISTINGUISHERS

Construction 8.17 provides a black-box procedure for approximating the underlying pred-
icate when given oracle access to a distinguisher (and this procedure is valid also in case
the distinguisher is a non-deterministic machine). Thus, under suitably strong (and yet
plausible) assumptions, constant-round interactive proofs collapse to NP . We note that
a stronger result, which deviates from the foregoing framework, has been subsequently
obtained (cf. [167]).

Construction of randomness extractors. An even more radical instantiation of Con-
struction 8.17 was used to obtain explicit constructions of randomness extractors (see
Appendix D.4). In this case, the predicate f is viewed as (an error correcting encoding
of) a somewhat random function, and the construction makes sense because it refers to
f in a black-box manner. In the analysis we rely on the fact that f can be approximated
by combining relatively little information (regarding f ) with (black-box access to) a
distinguisher for G f . For further details, see §D.4.2.2.

8.3.3.2. Reflections Regarding Derandomization
Part 1 of Theorem 8.19 is often summarized by saying that (under some reasonable
assumptions) randomness is useless. We believe that this interpretation is wrong even
within the restricted context of traditional complexity classes, and is bluntly wrong if
taken outside of the latter context. Let us elaborate.

Taking a closer look at the proof of Theorem 8.16 (which underlies Theorem 8.19), we
note that a randomized algorithm A of time complexity t is emulated by a deterministic
algorithm A′ of time complexity t ′ = poly(t). Further noting that A′ = AG invokes A
(as well as the canonical derandomizer G) for �(t) times (because �(k) = O(2k) implies
2k = �(t)), we infer that t ′ = �(t2) must hold. Thus, derandomization via (Part 1 of)
Theorem 8.19 is not really for free.

More importantly, we note that derandomization is not possible in various distributed
settings, when both parties may protect their conflicting interests by employing random-
ization. Notable examples include most cryptographic primitives (e.g., encryption) as
well as most types of probabilistic proof systems (e.g., PCP). For further discussion, see
Chapter 9 and Appendix C. Additional settings where randomness makes a difference
(either between impossibility and possibility or between formidable and affordable cost)
include distributed computing (see [17]), communication complexity (see [148]), par-
allel architectures (see [151]), sampling (see Appendix D.3), and property testing (see
Section 10.1.2).

8.4. Space-Bounded Distinguishers

In the previous two sections we have considered generators that output sequences that look
random to any efficient procedures, where the latter were modeled by time-bounded com-
putations. Specifically, in Section 8.2 we considered indistinguishability by polynomial-
time procedures. A finer classification of time-bounded procedures is obtained by con-
sidering their space complexity, that is, restricting the space complexity of time-bounded
computations. This restriction, which is the focus of Chapter 5, leads to the notion of pseu-
dorandom generators that fool space-bounded distinguishers. Interestingly, in contrast to
the notions of pseudorandom generators that were considered in Sections 8.2 and 8.3,
the existence of pseudorandom generators that fool space-bounded distinguishers can be
established without relying on computational assumptions.

315



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

Prerequisites. Technically speaking, the current section is self-contained, but various def-
initional choices are justified by reference to §6.1.5.1. Thus, we recommend Section 6.1.5
as general background for the current section.

8.4.1. Definitional Issues

Our main motivation for considering space-bounded distinguishers is to develop a notion
of pseudorandomness that is adeqaute for space-bounded randomized algorithms. That is,
such algorithms should essentially maintain their behavior when their source of internal
coin tosses is replaced by a source of pseudorandom bits (which may be generated based on
a much shorter random seed). We thus start by recalling and reviewing the natural notion of
space-bounded randomized algorithms. Unfortunately, natural notions of space-bounded
computations are quite subtle, especially when non-determinism or randomization is con-
cerned (see Sections 5.3 and 6.1.5, respectively). Two major definitional issues regarding
randomized space-bounded computations are the need for imposing explicit time bounds
and the type of access to the random-tape.

1. Time bounds: The question is whether or not the space-bounded machines are re-
stricted to time complexity that is at most exponential in their space complexity.30

Recall that such an upper bound follows automatically in the deterministic case (The-
orem 5.3), and can be assumed without loss of generality in the non-deterministic
case (see Section 5.3.2), but it does not necessarily hold in the randomized case (see
§6.1.5.1). Furthermore, failing to restrict the time complexity of randomized space-
bounded machines makes them unnatural and unintentionally too strong (see §6.1.5.1
again).

As in Section 6.1.5, seeking a natural model of randomized space-bounded algorithms,
we postulate that their time complexity must be at most exponential in their space
complexity.

2. Access to the random-tape: Recall that randomized algorithms may be modeled as
machines that are provided with the necessary randomness via a special random-
tape. The question is whether the space-bounded machine has uni-directional or
bi-directional (i.e., unrestricted) access to its random-tape. (Allowing bi-directional
access means that the randomness is recorded “for free,” that is, without being ac-
counted for in the space bound (see discussions in Sections 5.3 and 6.1.5).)

Recall that uni-directional access to the random-tape corresponds to the natural model
of an on-line randomized machine, which determines its moves based on its inter-
nal coin tosses (and thus cannot store its past coin tosses “for free”). Thus, as in
Section 6.1.5, we consider uni-directional access.31

Hence, we focus on randomized space-bounded computations that have time complexity
that is at most exponential in their space complexity and access their random-tape in a
uni-directional manner.

30Alternatively, one can ask whether these machines must always halt or only halt with probability approaching 1.
It can be shown that the only way to ensure “absolute halting” is to have time complexity that is at most exponential
in the space complexity. (In the current discussion as well as throughout this section, we assume that the space
complexity is at least logarithmic.)

31We note that the fact that we restrict our attention to uni-directional access is instrumental in obtaining space-
robust generators without making intractability assumptions. Analogous generators for bi-directional space-bounded
computations would imply hardness results of a breakthrough nature in the area.

316



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.4. SPACE-BOUNDED DISTINGUISHERS

When seeking a notion of pseudornadomness that is adequate for the foregoing notion
of randomized space-bounded computations, we note that the corresponding distinguisher
is obtained by fixing the main input of the computation and viewing the contents of the
random-tape of the computation as the only input of the distinguisher. Thus, in accordance
with the foregoing notion of randomized space-bounded computation, we consider space-
bounded distinguishers that have a uni-directional access to the input sequence that they
examine. Let us consider the type of algorithms that arise.

We consider space-bounded algorithms that have a uni-directional access to their
input. At each step, based on the contents of its temporary storage, such an algorithm
may either read the next input bit or stay at the current location on the input, where in
either case the algorithm may modify its temporary storage. To simplify our analysis of
such algorithms, we consider a corresponding non-uniform model in which, at each step,
the algorithm reads the next input bit and updates its temporary storage according to an
arbitrary function applied to the previous contents of that storage (and to the new bit). Note
that we have strengthened the model by allowing arbitrary (updating) functions, which
can be implemented by (non-uniform) circuits having size that is exponential in the space
bound, rather than using (updating) functions that can be (uniformly) computed in time
that is exponential in the space bound. This strengthening is motivated by the fact that
the known constructions of pseudorandom generators remain valid also when the space-
bounded distinguishers are non-uniform and by the fact that non-uniform distinguishers
arise anyhow in derandomization.

The computation of the foregoing non-uniform space-bounded algorithms (or au-
tomata)32 can be represented by directed layered graphs, where the vertices in each layer
correspond to possible contents of the temporary storage and the transition between neigh-
boring layers corresponds to a step of the computation. Foreseeing the application of this
model for the description of potential distinguishers, we parameterize these layered graphs
based on the index, denoted k, of the relevant ensembles (e.g., {G(Uk)}k∈N and {U�(k)}k∈N).
That is, we present both the input length, denoted � = �(k), and the space bound, denoted
s(k), as functions of the parameter k. Thus, we define a non-uniform automaton of space
s :N→N as a family, {Dk}k∈N, of directed layered graphs with labeled edges such that the
following conditions hold:

• The digraph Dk consists of �(k)+ 1 layers, each containing at most 2s(k) vertices. The
first layer contains a single vertex, which is the digraph’s (single) source (i.e., a vertex
with no incoming edges), and the last layer contains all the digraph’s sinks (i.e., vertices
with no outgoing edges).

• The only directed edges in Dk are between adjacent layers, going from layer i to layer
i + 1, for i ≤ �(k). These edges are labeled such that each (non-sink) vertex of Dk has
two (possibly parallel) outgoing directed edges, one labeled 0 and the other labeled 1.

The result of the computation of such an automaton, on an input of adequate length (i.e.,
length � where Dk has �+ 1 layers), is defined as the vertex (in last layer) reached when

32We use the term automaton (rather than algorithm or machine) in order to remind the reader that this computing
device reads its input in a uni-directional manner. Alternative terms that may be used are “real-time” or “on-line”
machines. We prefer not using the term “on-line” machine in order to keep a clear distinction from randomized
(on-line) algorithms that have free access to their input (and on-line access to a source of randomness). Indeed, the
automata consider here arise from the latter algorithms by fixing their primary input and considering the random
source as their (only) input. We also note that the automata considered here are a special case of Ordered Binary
Decision Diagrams (OBDDs; see [237]).

317



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

following the sequence of edges that are labeled by the corresponding bits of the input.
That is, on input x = x1 · · · x�, in the i th step (for i = 1, . . . , �) we move from the current
vertex (which resides in the i th layer) to one of its neighbors (which resides in the i + 1st

layer) by following the outgoing edge labeled xi . Using a fixed partition of the vertices
of the last layer, this defines a natural notion of a decision (by Dk); that is, we write
Dk(x) = 1 if on input x the automaton Dk reached a vertex that belongs to the first part
of the aforementioned partition.

Definition 8.20 (Indistinguishability by space-bounded automata):

• For a non-uniform automaton, {Dk}k∈N, and two probability ensembles, {Xk}k∈N

and {Yk}k∈N, the function d :N→ [0, 1] defined as

d(k)
def= |Pr[Dk(Xk) = 1]− Pr[Dk(Yk) = 1]|

is called the distinguishability-gap of {Dk} between the two ensembles.
• Let s : N→N and ε : N→ [0, 1]. A probability ensemble, {Xk}k∈N, is called

(s, ε)-pseudorandom if for any non-uniform automaton of space s(·), the
distinguishability-gap of the automaton between {Xk}k∈N and the correspond-
ing uniform ensemble (i.e., {U|Xk |}k∈N) is at most ε(·).

• A deterministic algorithm G of stretch function � is called an (s, ε)-
pseudorandom generator if the ensemble {G(Uk)}k∈N is (s, ε)-pseudorandom.
That is, every non-uniform automaton of space s(·) has a distinguishing-gap of
at most ε(·) between {G(Uk)}k∈N and {U�(k)}k∈N.

Thus, when using a random seed of length k, an (s, ε)-pseudorandom generator outputs
a sequence of length �(k) that looks random to observers having space s(k). Note that
s(k) ≤ k is a necessary condition for the existence of (s, 0.5)-pseudorandom generators,
because a non-uniform automaton of space s(k) > k can recognize the image of a generator
(which contains at most 2k strings of length �(k) > k). More generally, there is a trade-
off between s(k)− k and the stretch of (s, ε)-pseudorandom generators; for details, see
Exercises 8.25 and 8.26.

Note. Recall that we stated the space bound of the potential distinguisher (as well as
the stretch function) in terms of the seed length, denoted k, of the generator. In contrast,
other sources present a parameterization in terms of the space bound of the potential
distinguisher, denoted m. The translation is obtained by using m = s(k), and we shall
provide it following the main statements of Theorems 8.21 and 8.22.

8.4.2. Two Constructions

In contrast to the case of pseudorandom generators that fool time-bounded distinguish-
ers, pseudorandom generators that fool space-bounded distinguishers can be constructed
without relying on any computational assumption. The following two theorems exhibit
two rather extreme cases of a general trade-off between the space bound of the potential
distinguisher and the stretch function of the generator.33 We stress that both theorems fall

33These two results have been “interpolated” in [12]: There exists a parameterized family of “space fooling”
pseudorandom generators that includes both results as extreme special cases.

318



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.4. SPACE-BOUNDED DISTINGUISHERS

short of providing parameters as in Exercise 8.26, but they refer to relatively efficient
constructions. We start with an attempt to maximize the stretch.

Theorem 8.21 (stretch exponential in the space bound for s(k) = √k): For every
space-constructible function s :N→N, there exists an (s, 2−s)-pseudorandom gen-
erator of stretch function �(k) = min(2k/O(s(k)), 2s(k)). Furthermore, the generator
works in space that is linear in the length of the seed, and in time that is linear in
the stretch function.

In other words, for every t ≤ m, we have a generator that takes a random seed of length
k = O(t · m) and produces a sequence of length 2t that looks random to any (non-uniform)
automaton of space m (up to a distinguishability-gap of 2−m). In particular, using a random
seed of length k = O(m2), one can produce a sequence of length 2m that looks random
to any (non-uniform) automaton of space m. Thus, one may replace random sequences
used by any space-bounded computation, by sequences that are efficiently generated from
random seeds of length quadratic in the space bound. The common instantiation of the
latter assertion is for log-space algorithms. In §8.4.2.2, we apply Theorem 8.21 (and its
underlying ideas) for the derandomization of space-complexity classes such as BPL (i.e.,
the log-space analogue of BPP). Theorem 8.21 itself is proved in §8.4.2.1.

We now turn to the case where one wishes to maximize the space bound of po-
tential distinguishers. We warn that Theorem 8.22 only guarantees a sub-exponential
distinguishability gap (rather than the exponential distinguishability gap guaranteed in
Theorem 8.21). This warning is voiced because failing to recall this limitation has led to
errors in the past.

Theorem 8.22 (polynomial stretch and linear space bound): For any polynomial p
and for some s(k) = k/O(1), there exists an (s, 2−

√
s)-pseudorandom generator of

stretch function p. Furthermore, the generator works in linear space and polynomial
time (both stated in terms of the length of the seed).

In other words, we have a generator that takes a random seed of length k = O(m) and
produces a sequence of length poly(m) that looks random to any (non-uniform) automaton
of space m. Thus, one may convert any randomized computation utilizing polynomial time
and linear space into a functionally equivalent randomized computation of similar time
and space complexities that uses only a linear number of coin tosses.

8.4.2.1. Sketches of the Proofs of Theorems 8.21 and 8.22
In both cases, we start the proof by considering a generic space-bounded distinguisher and
show that the input distribution that this distinguisher examines can be modified (from the
uniform distribution into a pseudorandom one) without having the distinguisher notice the
difference. This modification (or rather a sequence of modifications) yields a construction
of a pseudorandom generator, which is only spelled out at the end of the argument.

Sketch of the proof of Theorem 8.21.34 The main technical tool used in this proof is
the “mixing property” of pairwise independent hash functions (see Appendix D.2).
A family of functions Hn , which maps {0, 1}n to itself, is called mixing if for every

34A detailed proof appears in [174].

319



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

pair of subsets A, B ⊆ {0, 1}n for all but very few (i.e., exp(−�(n)) fraction) of the
functions h ∈ Hn , it holds that

Pr[Un ∈ A ∧ h(Un) ∈ B] ≈ |A|
2n
· |B|

2n
(8.13)

where the approximation is up to an additive term of exp(−�(n)). (See the general-
ization of Lemma D.4, which implies that exp(−�(n)) can be set to 2−n/3.)

We may assume, without loss of generality, that s(k) = �(
√

k), and thus
�(k) ≤ 2s(k) holds. For any s(k)-space distinguisher Dk as in Definition 8.20, we
consider an auxiliary “distinguisher” D′k that is obtained by “contracting” every
block of n

def= �(s(k)) consecutive layers in Dk , yielding a directed layered graph
with �′ def= �(k)/n < 2s(k) layers (and 2s(k) vertices in each layer). Specifically,

• each vertex in D′k has 2n (possibly parallel) directed edges going to various
vertices of the next level; and

• each such edge is labeled by an n-bit long string such that the directed edge (u, v)
labeled σ1σ2 · · · σn in D′k replaces the n-edge directed path between u and v in
Dk that consists of edges labeled σ1, σ2, . . . , σn .

The graph D′k simulates Dk in the obvious manner; that is, the computation of D′k
on an input of length �(k) = �′ · n is defined by breaking the input into consecutive
substrings of length n and following the path of edges that are labeled by the
corresponding n-bit long substrings.

The key observation is that D′k cannot distinguish between a random �′ · n-bit
long input (i.e., U�′·n ≡ U (1)

n U (2)
n · · ·U (�′)

n ) and a “pseudorandom” input of the form
U (1)

n h(U (1)
n )U (2)

n h(U (2)
n ) · · ·U (�′/2)

n h(U (�′/2)
n ), where h ∈ Hn is a (suitably fixed) hash

function. To prove this claim, we consider an arbitrary pair of neighboring vertices,
u and v (in layers i and i + 1, respectively), and denote by Lu,v ⊆ {0, 1}n the set of
the labels of the edges going from u to v. Similarly, for a vertex w at layer i + 2, we
let L ′v,w denote the set of the labels of the edges going from v to w. By Eq. (8.13),
for all but very few of the functions h ∈ Hn , it holds that

Pr[Un ∈ Lu,v ∧ h(Un) ∈ L ′v,w] ≈ Pr[Un ∈ Lu,v] · Pr[Un ∈ L ′v,w], (8.14)

where “very few” and ≈ are as in Eq. (8.13). Thus, for all but exp(−�(n)) fraction
of the choices of h ∈ Hn , replacing the coins in the second transition (i.e., the
transition from layer i + 1 to layer i + 2) with the value of h applied to the outcomes
of the coins used in the first transition (i.e., the transition from layer i to i + 1),
approximately maintains the probability that D′k moves from u to w via v. Using a
union bound (on all triples (u, v, w) as in the foregoing), we note that, for all but
23s(k) · �′ · exp(−�(n)) fraction of the choices of h ∈ Hn , the foregoing replacement
approximately maintains the probability that D′k moves through any specific two-
edge path of D′k .

Using �′ < 2s(k) and a suitable choice of n = �(s(k)), it holds that 23s(k) · �′ ·
exp(−�(n)) < exp(−�(n)), and thus all but a “few” functions h ∈ Hn are good for
approximating all these transition probabilities. (We stress that the same h can be
used in all these approximations.) Thus, at the cost of extra |h| random bits, we can
reduce the number of true random coins used in transitions on D′k by a factor of two,
without significantly affecting the final decision of D′k (where again we use the fact
that �′ · exp(−�(n)) < exp(−�(n)), which implies that the approximation errors do

320



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.4. SPACE-BOUNDED DISTINGUISHERS

0 1

0 1 0 1

0 0 0 0 1111

α

α0 α1

α10α00 α
01

α11

000
α

001
α 010

α
011

α α100 α
101

α110 α111

application(possible)

h
(3)

(2)
hof

application
(possible)

(1)
hof

 

(possible)  application of   

Figure 8.3: The first generator that “fools” space-bounded automata (for i = 3). The output of the
generator (on seed α, h(1), . . . , h(t)) consists of the concatenation of the strings denoted α0t , . . . , α1t ,
appearing in the leaves of the tree. For every x ∈ {0, 1}∗ it holds that αx0 = αx and αx1 = h(t−|x|)(αx). In
particular, for t = 3, we have α011 = h(1)(α01), which equals h(1)(h(2)(α0)) = h(1)(h(2)(α)), where α = αλ.

not accumulate to too much). In other words, at the cost of extra |h| random bits,
we can effectively contract the distinguisher to half its length while approximately
maintaining the probability that the distinguisher accepts a random input. That is,
fixing a good h (i.e., one that provides a good approximation to the transition
probability over all 23s(k) · �′ two-edge paths), we can replace the two-edge paths
in D′k by edges in a new distinguisher D′′k (which depends on h) such that an edge
(u, w) labeled r ∈ {0, 1}n appears in D′′k if and only if, for some v, the path (u, v, w)
appears in D′k with the first edge (i.e., (u, v)) labeled r and the second edge (i.e.,
(v, w)) labeled h(r ). Needless to say, the crucial point is that Pr[D′′k (U(�′/2)·n)=1]
approximates Pr[D′k(U�′·n)=1].

The foregoing process can be applied to D′′k resulting in a distinguisher D′′′k of
half the length, and so on. Each time we contract the current distinguisher by a factor
of two, and do so by randomly selecting (and fixing) a new hash function. Thus,
repeating the process for a logarithmic (in the depth of D′k) number of times, we
obtain a distinguisher that only examines n bits, at which point we stop. In total, we
have used t

def= log2(�′/n) < log2 �(k) random hash functions, denoted h(1), . . . , h(t).
This means that we can generate a (pseudorandom) sequence that fools the original
Dk by using a seed of length n + t · log2 |Hn| (see Figure 8.3 and Exercise 8.28).
Using n = �(s(k)) and an adequate family Hn (e.g., Construction D.3), we obtain
the desired (s, 2−s)-pseudorandom generator, which indeed uses a seed of length
O(s(k) · log2 �(k)) = k.

Rough sketch of the proof of Theorem 8.22.35 The main technical tool used in this
proof is a suitable randomness extractor (as defined in §D.4.1.1), which is indeed
a much more powerful tool than hashing functions. The basic idea is that when
the distinguisher Dk is at some “distant” layer, say at layer t = �(s(k)), it typically
“knows” little about the random choices that led it there. That is, Dk has only s(k)
bits of memory, which leaves out t − s(k) bits of “uncertainty” (or randomness)

35A detailed proof appears in [177].

321



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

regarding the previous moves. Thus, much of the randomness that led Dk to its
current state may be “reused” (or “recycled”). To reuse these bits we need to extract
almost uniform distribution on strings of sufficient length out of the aforementioned
distribution over {0, 1}t that has entropy36 at least t − s(k). Furthermore, such an
extraction requires some additional truly random bits, yet relatively few such bits. In
particular, using k ′ = �(log t) bits toward this end, the extracted bits are exp(−�(k ′))
away from uniform.

The gain from the aforementioned recycling is significant if recycling is repeated
sufficiently many times. Toward this end, we break the k-bit long seed into two
parts, denoted r ′ ∈ {0, 1}k/2 and (r1, . . . , r3

√
k), where |ri | =

√
k/6, and set n = k/3.

Intuitively, r ′ will be used for determining the first n steps, and it will be reused
(or recycled) together with ri for determining the steps i · n + 1 through (i + 1) · n.
Looking at layer i · n, we consider the information regarding r ′ that is “known” to Dk

(when reaching a specific vertex at layer i · n). Typically, the conditional distribution
of r ′, given that we reached a specific vertex at layer i · n, has (min-)entropy greater
than 0.99 · ((k/2)− s(k)). Using ri (as a seed of an extractor applied to r ′), we
can extract 0.9 · ((k/2)− s(k)− o(k)) > k/3 = n bits that are almost-random (i.e.,
2−�(

√
k)-close to Un) with respect to Dk , and use these bits for determining the next

n steps. Hence, using k random bits, we produce a sequence of length (1+ 3
√

k) ·
n > k3/2 that fools automata of space bound, say, s(k) = k/10. Specifically, using
an extractor of the form Ext : {0, 1}

√
k/6 × {0, 1}k/2 → {0, 1}k/3, we map the seed

(r ′, r1, . . . , r3
√

k) to the output sequence (r ′, Ext(r1, r ′), . . . , Ext(r3
√

k, r ′)). Thus, we

obtain an (s, 2−�(
√

s))-pseudorandom generator of stretch function �(k) = k3/2.
In order to obtain an arbitrary polynomial stretch rather than a specific poly-

nomial stretch (i.e., �(k) = k3/2), we repeatedly apply an adequate composition, to
be outlined next. Suppose that G1 is an (s1, ε1)-pseudorandom generator of stretch
function �1, and similarly for G2 with respect to (s1, ε1) and �2. Then, we consider
the following construction of a generator G:

1. On input s ∈ {0, 1}k , compute G1(s), and parse it into consecutive blocks, each
of length k ′ = s1(k)/2, denoted r1, . . . , rt , where t = �1(k)/k ′.

2. Compute and output the t · �2(k ′)-bit long sequence G2(r1) · · ·G2(rt ).

Note that |G(s)| = �1(k) · �2(k ′)/k ′, where k ′ = s1(k)/2 and k = |s|. For s1(k) =
�(k), we have |G(s)| = �1(k) · �2(�(k))/O(k), which for polynomials �1 and
�2 yields |G(s)| = �1(|s|) · �2(|s|)/O(|s|). We claim that G is an (s, ε)-
pseudorandom generator, for s(k) = min(s1(k)/2, s2(�(s1(k))) and ε(k) = ε1(k)+
�1(k) · ε2(�(s1(k))). The proof uses a hybrid argument, which refers to the natu-
ral distributions G(Uk) and Ut ·�2(k ′) ≡ U (1)

�2(k ′) · · ·U (t)
�2(k ′) as well as to the interme-

diate hybrid distribution Ik
def= G2(U (1)

k ′ ) · · ·G2(U (t)
k ′ ). The fact that Ik and Ut ·�2(k ′)

are (s2(k ′), t · ε2(k ′))-indistinguishable (i.e., indistinguishable by automata of space
s2(k ′) with respect to distinguishability-gap t · ε1(k ′)) follows by a general result
regarding “indistinguishability by multiple samples” (see Exercise 8.27). It remains
to show that Ik is indistinguishable from G(Uk) by automata of space s1(k)/2 with

36Actually, a stronger technical condition needs and can be imposed on the latter distribution. Specifically, with
overwhelmingly high probability, at layer t , automaton Dk is at a vertex that can be reached in more than 20.99·(t−s(k))

different ways. In this case, the distribution representing a random walk that reaches this vertex has min-entropy
greater than 0.99 · (t − s(k)). The reader is referred to §D.4.1.1 for definitions of min-entropy and extractors.

322



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.4. SPACE-BOUNDED DISTINGUISHERS

respect to distinguishability-gap ε1(k). This can be proved by converting a potential
distinguisher (of Ik and G(Uk)) into a distinguisher of U�1(k) ≡ Ut ·k ′ and G1(Uk),
where the new distinguisher parses the �1(k)-bit long input into t blocks (each
of length k ′), invokes G2 on the corresponding k ′-bit long blocks, and feeds the
resulting sequence of �1(k ′)-bit long blocks to the original distinguisher.37

8.4.2.2. Derandomization of Space-Complexity Classes
As a direct application of Theorem 8.21, we obtain that BPL ⊆ DSPACE(log2), where
BPL denotes the log-space analogue of BPP (see Definition 6.11). (Recall that
NL ⊆ DSPACE(log2), but it is not known whether or not BPL ⊆ NL.)38 A strongerd
erandomization result can be obtained by a finer analysis of the proof of Theorem 8.21.

Theorem 8.23: BPL ⊆ SC, where SC denotes the class of decision problems
that can be solved by a deterministic algorithm that runs in polynomial time and
polylogarithmic space.

Thus, BPL (and in particular RL ⊆ BPL) is placed in a class not known to contain NL.
Another such result was subsequently obtained in [196]: Randomized log-space can be
simulated in deterministic space o(log2), specifically, in space log3/2. We mention that the
archetypical problem of RL has been recently proved to be in L (see Section 5.2).

Sketch of the proof of Theorem 8.23.39 We are going to use the generator construc-
tion provided in the proof of Theorem 8.21, but show that the main part of the seed
(i.e., the sequence of hash functions) can be fixed (depending on the distinguisher at
hand). Furthermore, this fixing can be performed in poly-logarithmic space and poly-
nomial time. Specifically, wishing to derandomize a specific log-space computation
(which refers to a specific input), we first obtain the corresponding distinguisher,
denoted D′k , that represents this computation (as a function of the outcomes of the
internal coin tosses of the log-space algorithm). The key observation is that the
question of whether or not a specific hash function h ∈ Hn is good for a specific D′k
can be determined in space that is linear in n = |h|/2 and logarithmic in the size
of D′k . Indeed, the time complexity of this decision procedure is exponential in its
space complexity. It follows that we can find a good h ∈ Hn , for a given D′k , within
these complexities (by scanning through all possible h ∈ Hn). Once a good h is
found, we can also construct the corresponding graph D′′k (in which edges represent
two-edge paths in D′k), again within the same complexity. Actually, it will be more
instructive to note that we can determine a step (i.e., an edge-traversal) in D′′k by
making two steps (edge-traversals) in D′k . This will allow for fixing a hash function
for D′′k , and so on. Details follow.

The main claim is that the entire process of finding a sequence of
t

def= log2 �′(k) good hash functions can be performed in space t · O(n + log |Dk |) =
O(n + log |Dk |)2 and time poly(2n · |Dk |); that is, the time complexity is

37The new distinguisher maintains the state of the original distinguisher, while reading k′-bit long blocks of its
own input (into its own state). Once a block s′ ∈ {0, 1}k′ is read, the new distinguisher updates the state of the original
distinguisher by a transition that corresponds to the effect of the input-block G2(s′) on the original distinguisher.
Thus, a distinguisher of space s1(k)/2 is converted into a distinguisher of space (s1(k)/2)+ k′ = s1(k).

38Indeed, the log-space analogue of RP , denoted RL, is contained in NL ⊆ DSPACE(log2), and thus the fact that
Theorem 8.21 implies RL ⊆ DSPACE(log2) is of no interest.

39A detailed proof appears in [175].

323



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

sub-exponential in the space complexity (i.e., the time complexity is significantly
smaller than the generic bound of exp(O(n + log |Dk |)2)). Starting with D(1)

k = D′k ,

we find a good (for D(1)
k ) hashing function h(1) ∈ Hn , which defines D(2)

k = D′′k . Hav-

ing found (and stored) h(1), . . . , h(i) ∈ Hn , which determine D(i+1)
k , we find a good

hashing function h(i+1) ∈ Hn for D(i+1)
k by emulating pairs of edge-traversals on

D(i+1)
k . Indeed, a key point is that we do not construct the sequence of graphs

D(2)
k , . . . , D(i+1)

k , but rather emulate an edge-traversal in D(i+1)
k by making 2i

edge-traversals in D′k , using h(1), . . . , h(i): The (edge-traversal) move α ∈ {0, 1}n
starting at vertex v of D(i+1)

k translates to a sequence of 2i moves starting at
vertex v of D′k , where the moves are determined by the 2i -long sequence (of n-bit
strings)

h
(0i )

(α), h
(0i−201)

(α), h
(0i−210)

(α), h
(0i−211)

(α), . . . , h
(1i )

(α),

where h
(σi ···σ1)

is the function obtained by the composition of a subsequence of the

functions h(i), . . . , h(1) determined by σi · · · σ1. Specifically, h
(σi ···σ1)

equals h(it ′ ) ◦
· · · ◦ h(i2) ◦ h(i1), where i1 < i2 < · · · < it ′ and {i j : j=1, . . . , t ′} = { j : σ j=1}.

Recall that the ability to perform edge-traversals on D(i+1)
k allows for determining

whether a specific function h ∈ Hn is good for D(i+1)
k . This is done by considering all

the relevant triples (u, v, w) in D(i+1)
k , computing for each such (u, v, w) the three

quantities (i.e., probabilities) appearing in Eq. (8.14), and deciding accordingly.
Trying all possible h ∈ Hn , we find a function (to be denoted h(i+1)) that is good
for D(i+1)

k . This is done while using an additional storage of s ′ = O(n + log |D′k |)
(on top of the storage used to record h(1), . . . , h(i)), and in time that is exponential
in s ′. Thus, given D′k , we find a good sequence of hash functions, h(1), . . . , h(t),
in time exponential in s ′ and while using space s ′ + t · log2 |Hn| = O(t · s ′). Such
a sequence of functions allows us to emulate edge-traversals on D(t+1)

k , which in
turn allows for (deterministically) approximating the probability that D′k accepts
a random input (i.e., the probability that, starting at the single source vertex of
the first layer, automaton D′k reaches some accepting vertex at the last layer). This

approximation is obtained by computing the corresponding probability in D(t+1)
k by

traversing all 2n edges.
To summarize, given D′k , we can (deterministically) approximate the probabil-

ity that D′k accepts a random input in O(t · s ′)-space and exp(O(s ′ + n))-time,
where s ′ = O(n + log |D′k |) and t < log2 |D′k |. For n = �(log |D′k |), this means
O(log |D′k |)2-space and poly(|D′k |)-time. We comment that the approximation can
be made accurate up to an additive term of 1/poly(|D′k |), but an additive term of
1/6 suffices here.

We conclude the proof by recalling the connection between such an approxima-
tion and the derandomization of BPL (indeed, note the analogy to the proof of
Theorem 8.13). The computation of a log-space probabilistic machine M on input
x can be represented by a directed layer graph G M,x of size poly(|x |). Specifically,
the vertices of each layer represent possible configurations of the computation of
M(x), and the edges between the i th layer and the i + 1st layer represent the i th move
of such a computation, which depends on the i th bit of the random-tape of M (or,

324



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.5. SPECIAL-PURPOSE GENERATORS

equivalently, on the i th internal coin toss of M).40 Thus, the probability that M ac-
cepts x equals the probability that a random walk starting at the single vertex of the
first layer of G M,x reaches some vertex in the last layer that represents an accepting
configuration. Setting k = �(log |x |) and n = �(k), the graph G M,x coincides with
the graph Dk referred to at the beginning of the proof of Theorem 8.21, and D′k is
obtained from Dk by an “n-layer contraction” (see ibid.). Furthermore, Dk and D′k
can be constructed (from x) in logarithmic space (and by using the emulative com-
position of Lemma 5.2 we may just proceed as if D′k is given as input). Combining
this with the foregoing analysis, we conclude that the probability that M accepts x
can be deterministically approximated in O(log |x |)2-space and poly(|x |)-time. The
theorem follows.

8.5. Special-Purpose Generators

The pseudorandom generators considered so far were aimed at decreasing the amount of
randomness utilized by any algorithm of certain time and/or space complexity (or even
fully derandomizing the corresponding complexity class). For example, we considered
the derandomization of classes such as BPP and BPL. In the current section our goal
is less ambitious. We only seek to derandomize (or decrease the randomness of) specific
algorithms, or rather classes of algorithms that use their random bits in certain (restricted)
ways. For example, the algorithm’s correctness may only require that its sequence of coin
tosses (or “blocks” in such a sequence) are pairwise-independent. Indeed, the restrictions
that we shall consider here have a concrete and “structural” form, rather than the abstract
complexity-theoretic forms considered in previous sections.

The aforementioned restrictions induce corresponding classes of very restricted distin-
guishers, which in particular are much weaker than the classes of distinguishers considered
in previous sections. These very restricted types of distinguishers induce correspondingly
weak types of pseudorandom generators (which produce sequences that fool these distin-
guishers). Still, such generators have many applications in Complexity Theory (and in the
design of algorithms, as hinted in the foregoing paragraph). (These applications will only
be mentioned briefly.)

We start with the simplest of these generators: the pairwise-independence generator,
and its generalization to t-wise independence for any t≥2. Such generators perfectly
fool any distinguisher that only observe t locations in the output sequence. This leads
naturally to almost pairwise (or t-wise) independence generators, which also fool such
distinguishers (albeit non-perfectly). The latter generators are implied by a stronger class
of generators, which is of independent interest: the small-bias generators. Small-bias
generators fool any linear test (i.e., any distinguisher that merely considers the XOR of
some fixed locations in the input sequence). We then turn to the Expander Random
Walk Generator: This generator produces a sequence of strings that hit any dense sub-
set of strings with probability that is close to the hitting probability of a truly random
sequence. Related notions such as samplers, dispersers, and extractors are treated in
Appendix D.

40Note that G M,x is a “layered version” of the graph that was considered (and denoted Gx ) in the proof of
Theorem 5.11. Furthermore, while in the proof of Theorem 5.11 we cared about the existence of certain paths, here
we care about their quantity (or rather the probability of traversing one of them).

325



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

Teaching note: Unlike the constructions presented in previous sections, the constructions
presented in this section do not utilize any insight into the nature of (time- or space-bounded)
computation. Instead, they are based on various purely mathematical facts, and their analysis
is deferred to exercises.

Comment regarding our parameterization. To maintain consistency with prior sec-
tions, we continue to present the generators in terms of the seed-length, denoted k. Since
this is not the common presentation for most results presented in the sequel, we provide (in
footnotes) the common presentation in which the seed-length is determined as a function
of other parameters.

8.5.1. Pairwise Independence Generators

Pairwise (resp., t-wise) independence generators fool tests that inspect only two (resp.,
t) elements in the output sequence of the generator. Such local tests are indeed very
restricted, yet they arise naturally in many settings. For example, such a test corresponds
to a probabilistic analysis (of a procedure) that only relies on the pairwise independence
of certain choices made by the procedure. We also mention that, in some natural range of
parameters, pairwise independent sampling is as good as sampling by totally independent
sample points; see Appendices D.1.2 and D.3.

A t-wise independence generator of block-length b :N→N (and stretch function �) is
a relatively efficient deterministic algorithm (e.g., one that works in time polynomial in the
output length) that expands a k-bit long random seed into a sequence of �(k)/b(k) blocks,
each of length b(k), such that any t blocks are uniformly and independently distributed in
{0, 1}t ·b(k). That is, denoting the i th block of the generator’s output (on seed s) by G(s)i ,
we require that for every i1 < i2 < · · · < it (in [�(k)/b(k)]) it holds that

G(Uk)i1, G(Uk)i2, . . . , G(Uk)it ≡ Ut ·b(k). (8.15)

We note that this condition holds even if the inspected t blocks are selected adaptively
(see Exercise 8.29). In case t = 2, we call the generator pairwise independent.

8.5.1.1. Constructions
In the first construction, we refer to GF(2b(k)), the finite field of 2b(k) elements, and associate
its elements with {0, 1}b(k).

Proposition 8.24 (t-wise independence generator): 41 Let t be a fixed integer and
b, �, �′ :N→N such that b(k) = k/t , �′(k) = �(k)/b(k) > t and �′(k) ≤ 2b(k). Let
α1, . . . , α�′(k) be fixed distinct elements of the field GF(2b(k)). For s0, s1, . . . , st−1 ∈
{0, 1}b(k), let

G(s0, s1, . . . , st−1)
def=

 t−1∑
j=0

s jα
j
1 ,

t−1∑
j=0

s jα
j
2 , . . . ,

t−1∑
j=0

s jα
j
�′(k)

 (8.16)

where the arithmetic is that of GF(2b(k)). Then, G is a t-wise independence generator
of block-length b and stretch �.

41In the common presentation of this t-wise independence generator, the length of the seed is determined as a
function of the desired block-length and stretch. That is, given the parameters b and �′ ≤ 2b , the seed-length is set to
t · b.

326



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.5. SPECIAL-PURPOSE GENERATORS

+ =

m(k)

b(k)

Figure 8.4: An affine transformation affected by a Toeplitz matrix.

That is, given a seed that consists of t elements of GF(2b(k)), the generator outputs a
sequence of �′(k) such elements. The proof of Proposition 8.24 is left as an exercise
(see Exercise 8.30). It is based on the observation that, for any fixed v0, v1, . . . , vt−1, the
condition {G(s0, s1, . . . , st−1)i j = v j }tj=1 constitutes a system of t linear equations over
GF(2b(k)) (in the variables s0, s1, . . . , st−1) such that the equations are linearly independent.
(Thus, linear independence of certain expressions yields statistical independence of the
corresponding random variables.)

A somewhat tedious comment. We warn that Eq. (8.16) does not provide a fully explicit
construction (of a generator). What is missing is an explicit representation of GF(2b(k)),
which requires an irreducible polynomial of degree b(k) over GF(2). For specific values of
b(k), a good representation does exist: for example, for d

def= b(k) = 2 · 3e (with e being
an integer), the polynomial xd + xd/2 + 1 is irreducible over GF(2). For further detail, see
Appendix G.3.

We note that a construction analogous to Eq. (8.16) works for every finite field (e.g., a
finite field of any prime cardinality), but the problem of providing an explicit representation
of such a field remains non-trivial also in other cases (e.g., consider the problem of finding
a prime number of size approximately 2b(k)). The latter fact is the main motivation for
considering the following alternative construction for the case of t = 2.

The following construction uses (random) affine transformations (as possible seeds). In
fact, better performance (i.e., shorter seed-length) is obtained by using affine transforma-
tions affected by Toeplitz matrices. A Toeplitz matrix is a matrix with all diagonals being
homogeneous (see Figure 8.4); that is, T = (ti, j ) is a Toeplitz matrix if ti, j = ti+1, j+1 for
all i, j . Note that a Toeplitz matrix is determined by its first row and first column (i.e., the
values of t1, j ’s and ti,1’s).

Proposition 8.25 (alternative pairwise independence generator; see Figure 8.4): 42

Let b, �, �′, m :N→N such that �′(k) = �(k)/b(k) and m(k) = &log2 �′(k)' = k −
2b(k)+ 1. Associate {0, 1}n with the n-dimensional vector space over GF(2), and
let v1, . . . , v�′(k) be fixed distinct vectors in the m(k)-dimensional vector space over

42In the common presentation of this pairwise independence generator, the length of the seed is determined as
a function of the desired block-length and stretch. That is, given the parameters b and �′, the seed-length is set to
2b + &log2 �′' − 1.

327



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

GF(2). For s ∈ {0, 1}b(k)+m(k)−1 and r ∈ {0, 1}b(k), let

G(s, r )
def= (Tsv1 + r , Tsv2 + r , . . . , Tsv�′(k) + r ) (8.17)

where Ts is an b(k)-by-m(k) Toeplitz matrix specified by the string s. Then G is a
pairwise independence generator of block-length b and stretch �.

That is, given a seed that represents an affine transformation defined by an b(k)-by-
m(k) Toeplitz matrix and a b(k)-dimensional vector, the generator outputs a sequence
of �′(k) ≤ 2m(k) strings, each of length b(k). Note that k = 2b(k)+ m(k)− 1, and that
the stretching property requires �′(k) > k/b(k). The proof of Proposition 8.25 is left as
an exercise (see Exercise 8.31). This proof is also based on the observation that linear
independence of certain expressions yields statistical independence of the corresponding
random variables: Here {G(s, r )i j = v j }2j=1 is a system of 2b(k) linear equations over
GF(2) (in Boolean variables representing the bits of s and r ) such that the equations are
linearly independent. We mention that a construction analogous to Eq. (8.17) works for
every finite field.

A stronger notion of efficient generation. Ignoring the issue of finding a representation
for a large finite field, both the foregoing constructions are efficient in the sense that the
generator’s output can be produced in time that is polynomial in its length. Actually, the
aforementioned constructions satisfy a stronger notion of efficient generation, which is
useful in several applications. Specifically, there exists a polynomial-time algorithm that
given a seed, s ∈ {0, 1}k , and a block location i ∈ [�′(k)] (in binary), outputs the i th block
of the corresponding output (i.e., the i th block of G(s)). Note that, in the case of the first
construction (captured by Eq. (8.16)), this stronger notion depends on the ability to find
a representation of GF(2b(k)) in poly(k)-time.43 Recall that this is possible in the case that
b(k) is of the form 2 · 3e.

8.5.1.2. Applications (a Brief Review)
Pairwise independence generators do suffice for a variety of applications (cf., [238, 161]).
Many of these applications are based on the fact that “Laws of Large Numbers” hold
for sequences of trials that are pairwise independent (rather than totally independent).
This fact is captured in Chebyshev’s Inequality (see, e.g., §D.1.2.2), and is the basis of
the (rather generic) application to sampling discussed in Appendix D.3. As a concrete
example, we mention the derandomization of a fast parallel algorithm for the Maximal
Independent Set problem (as presented in [168, Sec. 12.3]).44 In general, whenever the
analysis of a randomized algorithm only relies on the hypothesis that some objects are
distributed in a pairwise independent manner, we may replace its random choices by
a sequence of choices that is generated by a pairwise independence generator. Thus,
pairwise independence generators suffice for fooling distinguishers that are derived from
some natural and interesting randomized algorithms.

Referring to Eq. (8.16), we remark that, for any constant t ≥ 2, the cost of deran-
domization (i.e., going over all 2k possible seeds) is exponential in the block-length

43For the basic notion of efficiency, it suffices to find a representation of GF(2b(k)) in poly(�(k))-time, which can
be done by an exhaustive search in the case that b(k) = O(log �(k)).

44The core of this algorithm is picking each vertex with probability that is inversely proportional to the vertex’s
degree. The analysis only requires that these choices be pairwise independent. Furthermore, these choices can be
(approximately) implemented by uniformly selecting values in a sufficiently large set.

328



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.5. SPECIAL-PURPOSE GENERATORS

(because b(k) = k/t). On the other hand, the number of blocks is at most exponential in
the block-length (because �′(k) ≤ 2b(k)), and so if a larger number of blocks is needed,
then we can artificially increase the block-length in order to accommodate this (i.e., set
b(k) = log2 �′(k)). Thus, the cost of derandomization is polynomial in max(�′(k), 2b′(k)),
where �′(k) denotes the desired number of blocks and b′(k) the desired block-length. (In
other words, �′(k) denotes the desired number of random choices, and 2b′(k) represents
the size of the domain of each of these choices.) It follows that whenever the analysis
of a randomized algorithm can be based on a constant amount of independence between
feasibly many random choices, each taken within a domain of feasible size, then a feasible
derandomization is possible.

8.5.2. Small-Bias Generators

As stated in §8.5.1.2, O(1)-wise independence generators allow for the efficient deran-
domization of any efficient randomized algorithm the analysis of which is only based on
a constant amount of independence between the bits of its random-tape. This restriction
is due to the fact that t-wise independence generators of stretch � require a seed of length
�(t · log �). Trying to go beyond constant independence in such derandomizations (while
using seeds of length that is logarithmic in the length of the pseudorandom sequence)
was the original motivation of the notion of small-bias generators. Specifically, as we
shall see in §8.5.2.2, small-bias generators yield meaningful approximations of t-wise
independence sequences (based on logarithmic-length seeds).

While the aforementioned type of derandomizations remains an important application
of small-bias generators, the latter are of independent interest and have found numerous
other applications. In particular, small-bias generators fool “global tests” that examine
the entire output sequence and not merely a fixed number of positions in it (as in the
case of limited independence generators). Specifically, a small-bias generator produces
a sequence of bits that fools any linear test (i.e., a test that computes a fixed linear
combination of the bits).

For ε :N→ [0, 1], an ε-bias generator with stretch function � is a relatively efficient
deterministic algorithm (e.g., working in poly(�(k)) time) that expands a k-bit long random
seed into a sequence of �(k) bits such that, for any fixed non-empty set S ⊆ {1, . . . , �(k)},
the bias of the output sequence over S is at most ε(k). The bias of a sequence of
n (possibly dependent) Boolean random variables ζ1, . . . , ζn ∈ {0, 1} over a set S ⊆
{1, .., n} is defined as

2 ·
∣∣∣∣Pr[⊕i∈Sζi = 1]− 1

2

∣∣∣∣ = |Pr[⊕i∈Sζi = 1]− Pr[⊕i∈Sζi = 0]|. (8.18)

The factor of 2 was introduced so as to make these biases correspond to the Fourier
coefficients of the distribution (viewed as a function from {0, 1}n to the reals). To see the
correspondence, replace {0, 1} by {±1}, and substitute XOR by multiplication. The bias
with respect to a set S is thus written as∣∣∣∣∣Pr

[∏
i∈S

ζi = +1

]
− Pr

[∏
i∈S

ζi = −1

]∣∣∣∣∣ =
∣∣∣∣∣E

[∏
i∈S

ζi

]∣∣∣∣∣
,

(8.19)

which is merely the (absolute value of the) Fourier coefficient corresponding to S.

329



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

r rr ri-ti-t-1 r ri-1 iri-t+1

f
0

f f
1 t-1

Σ

0 1

Figure 8.5: The LFSR small-bias generator (for t = k/2).

8.5.2.1. Constructions
Relatively efficient small-bias generators with exponential stretch and exponentially van-
ishing bias are known.

Theorem 8.26 (small-bias generators):45 For some universal constant c > 0, let
� :N→N and ε :N→ [0, 1] such that �(k) ≤ ε(k) · exp(k/c). Then, there exists an
ε-bias generator with stretch function � operating in time that is polynomial in the
length of its output.

In particular, we may have �(k) = exp(k/2c) and ε(k) = exp(−k/2c). Three simple con-
structions of small-bias generators that satisfy Theorem 8.26 are known (see [10]). One of
these constructions is based on Linear Feedback Shift Registers (LFSRs), where the seed
of the generator is used to determine both the “feedback rule” and the “start sequence”
of the LFSR. Specifically, a feedback rule of a t-long LFSR is an irreducible polyno-
mial of degree t over GF(2), denoted f (x) = xt +∑t−1

j=0 f j x j where f0 = 1, and the
(�-bit long) sequence produced by the corresponding LFSR based on the start sequence
s0s1 · · · st−1 ∈ {0, 1}t is defined as r0r1 · · · r�−1, where

ri =
{

si if i ∈ {0, 1, . . . , t − 1}∑t−1
j=0 f j · ri−t+ j if i ∈ {t, t + 1, . . . , �− 1} (8.20)

(see Figure 8.5). As stated previously, in the corresponding small-bias generator the
k-bit long seed is used for selecting an almost uniformly distributed feedback rule f
(i.e., a random irreducible polynomial of degree t = k/2) and a uniformly distributed
start sequence s (i.e., a random t-bit string).46 The corresponding �(k)-bit long output
r = r0r1 · · · r�(k)−1 is computed as in Eq. (8.20).

A stronger notion of efficient generation. As in Section 8.5.1.1, we note that the
aforementioned constructions satisfy a stronger notion of efficient generation, which is

45In the common presentation of this generator, the length of the seed is determined as a function of the desired
bias and stretch. That is, given the parameters ε and �, the seed-length is set to c · log(�/ε). We comment that using [10]
the constant c is merely 2 (i.e., k ≈ 2 log2(�/ε)), whereas using [170] k ≈ log2 �+ 4 log2(1/ε).

46Note that an implementation of this generator requires an algorithm for selecting an almost-random irreducible
polynomial of degree t = �(k). A simple algorithm proceeds by enumerating all irreducible polynomials of degree t ,
and selecting one of them at random. This algorithm can be implemented (using t random bits) in exp(t)-time, which
is poly(�(k)) if �(k) = exp(�(k)). A poly(t)-time algorithm that uses O(t) random bits is described in [10, Sec. 8].

330



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.5. SPECIAL-PURPOSE GENERATORS

useful in several applications. That is, there exists a polynomial-time algorithm that given
a k-bit long seed and a bit location i ∈ [�(k)] (in binary), outputs the i th bit of the
corresponding output. Specifically, in the case of the LFSR construction, given a seed
f0, . . . , f(k/2)−1, s0, . . . , s(k/2)−1 and a bit location i ∈ [�(k)] (in binary), the algorithm
outputs the i th bit of the corresponding output (i.e., ri ).47

8.5.2.2. Applications (a Brief Review)
An archetypical application of small-bias generators is their use for producing short
and random “fingerprints” (or “digests”) of strings such that equality/inequality among
strings is (probabilistically) reflected in equality/inequality between their corresponding
fingerprints. The key observation is that checking whether or not x = y is probabilistically
reducible to checking whether the inner product modulo 2 of x and r equals the inner
product modulo 2 of y and r , where r is produced by a small-bias generator G. Thus,
the pair (s, v), where s is a random seed to G and v equals the inner product modulo 2
of z and G(s), serves as the randomized fingerprint of the string z. One advantage of this
reduction is that only few bits (i.e., the seed of the generator and the result of the inner
product) needs to be “communicated between x and y” in order to enable the checking (see
Exercise 8.33). A related advantage is the low randomness complexity of this reduction,
which uses |s| rather than |G(s)| random bits, where |s| may be O(log |G(s)|). This
low (i.e., logarithmic) randomness complexity underlies the application of small-bias
generators to the construction of PCP systems (see, e.g., §9.3.2.2) and to the design of
gap-amplifying reductions for problems regarding the satisfiability of systems of equations
(see Section 9.3.3 and Exercise 10.6).

Small-bias generators have been used in a variety of areas (e.g., inapproximation,
structural complexity, and applied cryptography; see references in [90, Sec 3.6.2]). In
addition, as shown next, small-bias generators seem an important tool in the design of
various types of “pseudorandom” objects.

Approximate independence generators. As hinted at the beginning of this section,
small-bias is related to approximate versions of limited independence.48 Actually, as
implied by Exercise 8.34, even a restricted type of ε-bias (in which only subsets of
size t(k) are required to have bias upper-bounded by ε) implies that any t(k) bits in
the said sequence are 2t(k)/2 · ε(k)-close to Ut(k), where here we refer to the variation
distance (i.e., Norm-1 distance) between the two distributions. (The max-norm of the
difference is bounded by ε(k).)49 Combining Theorem 8.26 and the foregoing upper
bound, we obtain generators with exponential stretch (i.e., �(k) = exp(�(k))) that produce
sequences that are approximately �(k)-wise independent in the sense that any t(k) = �(k)

47The assertion is based on the fact that
ri−t+1

ri−t+2

...
ri−1

ri

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
f0 f1 f2 · · · ft−1




ri−t

ri−t+1

...
ri−2

ri−1

 =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
... · · ·

...
0 0 0 · · · 1
f0 f1 f2 · · · ft−1


i−t+1 

s0

s1

...
st−2

st−1


48We warn that, unlike in the case of perfect independence, here we refer only to the distribution on fixed bit

locations. See Exercise 8.32 for further discussion.
49Both bounds are derived from the Norm-2 bound on the difference vector (i.e., the difference between the two

probability vectors). For details, see Exercise 8.34.

331



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

bits in them are 2−�(k)-close to Ut(k). Furthermore, as shown in Exercise 8.40, rely-
ing on the linearity of the construction presented in Proposition 8.24, we can obtain
generators with double-exponential stretch (i.e., �(k) = exp(2�(k))) that are approxi-
mately t(k)-independent (in the foregoing sense). That is, we may obtain generators
with stretch �(k) = 22�(k)

producing bit sequences in which any t(k) = �(k) positions
have variation distance at most ε(k) = 2−�(k) from uniform; in other words, such genera-
tors may have seed-length k = O(t(k)+ log(1/ε(k))+ log log �(k)). In the corresponding
result for the max-norm distance, it suffices to have k = O(log(t(k)/ε(k))+ log log �(k)).
Thus, whenever the analysis of a randomized algorithm can be based on a logarith-
mic amount of (almost) independence between feasibly many binary random choices,
a feasible derandomization is possible (by using an adequate generator of logarithmic
seed-length).

Extensions to non-binary choices were considered in various works (see references
in [90, Sec 3.6.2]). Some of these works also consider the related problem of constructing
small “discrepancy sets” for geometric and combinatorial rectangles.

t-universal set generators. Using the aforementioned upper bound on the max-norm (of
the deviation from uniform of any t locations), any ε-bias generator yields a t-universal
set generator, provided that ε < 2−t . The latter generator outputs sequences such that in
every subsequence of length t all possible 2t patterns occur (i.e., each for at least one
possible seed). Such generators have many applications.

8.5.2.3. Generalization
In this subsection, we outline a generalization of the treatment of small-bias gener-
ators to the generation of sequences over an arbitrary finite field. Focusing on the
case of a field of prime characteristic, denoted GF(p), we first define an adequate no-
tion of bias. Generalizing Eq. (8.19), we define the bias of a sequence of n (possi-
bly dependent) random variables ζ1, . . . , ζn ∈ GF(p) with respect to the linear combi-

nation (c1, . . . , cn) ∈ GF(p)n as
∥∥∥E [

ω
∑n

i=1
ci ζi

]∥∥∥, where ω denotes the pth (complex)

root of unity (i.e., ω = −1 if p = 2). Referring to Exercise 8.42, we note that upper
bounds on the biases of ζ1, . . . , ζn (with respect to any non-zero linear combinations)
yield upper bounds on the distance of

∑n
i=1 ciζi from the uniform distribution over

GF(p).
We say that S ⊆ GF(p)n is an ε-bias probability space if a uniformly selected sequence

in S has bias at most ε with respect to any non-zero linear combination over GF(p).
(Whenever such a space is efficiently constructible, it yields a corresponding ε-biased
generator.) We mention that the LFSR construction, outlined in §8.5.2.1 and analyzed
in Exercise 8.36, generalizes to GF(p) and yields an ε-bias probability space of size (at
most) p2e, where e = &logp(n/ε)'. Such constructions can be used in applications that
generalize those in §8.5.2.2.

8.5.3. Random Walks on Expanders

In this section we review generators that produce a sequence of values by taking a random
walk on a large graph that has a small degree but an adequate “mixing” property. Such a
graph is called an expander, and by taking a random walk on it we may generate a sequence
of �′ values over its vertex set, while using a random seed of length b + (�′ − 1) · log2 d,

332



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

8.5. SPECIAL-PURPOSE GENERATORS

where 2b denotes the number of vertices in the graph and d denotes its degree. This
seed-length should be compared against the �′ · b random bits required for generating a
sequence of �′ independent samples from {0, 1}b (or taking a random walk on a clique of
size 2b). Interestingly, as we shall see, the pseudorandom sequence (generated by the said
random walk on an expander) behaves similarly to a truly random sequence with respect
to hitting any fixed subset of {0, 1}b. Let us start by defining this property (or rather by
defining the corresponding hitting problem).

Definition 8.27 (the hitting problem): A sequence of (possibly dependent) random
variables, denoted (X1, . . . , X�′), over {0, 1}b is (ε, δ)-hitting if for any (target) set
T ⊆ {0, 1}b of cardinality at least ε · 2b, with probability at least 1− δ, at least one
of these variables hits T ; that is, Pr[∃i s.t. Xi ∈T ] ≥ 1− δ.

Clearly, a truly random sequence of length �′ over {0, 1}b is (ε, δ)-hitting for δ =
(1− ε)�

′
. The aforementioned “Expander Random Walk Generator” (to be described

next) achieves similar behavior. Specifically, for arbitrary small c > 0 (which depends
on the degree and the mixing property of the expander), the generator’s output is
(ε, δ)-hitting for δ = (1− (1− c) · ε)�

′
. To describe this generator, we need to discuss

expanders.

Expanders. By expander graphs (or expanders) of degree d and eigenvalue bound λ < d,
we actually mean an infinite family of d-regular graphs, {G N }N∈S (S ⊆ N), such that G N

is a d-regular graph over N vertices and the absolute value of all eigenvalues, save the
biggest one, of the adjacency matrix of G N is upper-bounded by λ. For simplicity, we
shall assume that the vertex set of G N is [N ] (although in some constructions a somewhat
more redundant representation is more convenient). We will refer to such a family as
to a (d, λ)-expander (for S). This technical definition is related to the aforementioned
notion of “mixing” (which refers to the rate at which a random walk starting at a fixed
vertex reaches uniform distribution over the graph’s vertices). For further detail, see
Appendix E.2.1.

We are interested in explicit constructions of such graphs, by which we mean that there
exists a polynomial-time algorithm that on input N (in binary), a vertex v in G N and
an index i ∈ {1, . . . , d}, returns the i th neighbor of v. (We also require that the set S for
which G N ’s exist is sufficiently “tractable” – say, that given any n ∈ N one may efficiently
find an s∈S such that n ≤ s < 2n.) Several explicit constructions of expanders are known
(see Appendix E.2.2). Below, we rely on the fact that for every λ > 0, there exist d and
an explicit construction of a (d, λ · d)-expander over {2b : b ∈ N}.50 The relevant (to us)
fact about expanders is stated next.

Theorem 8.28 (Expander Random Walk Theorem): Let G = (V, E) be an ex-
pander graph of degree d and eigenvalue bound λ. Let W be a subset of V and
ρ

def= |W |/|V |, and consider walks on G that start from a uniformly chosen vertex
and take �′ − 1 additional random steps, where in each such step one uniformly
selects one out of the d edges incident at the current vertex and traverses it. Then

50This can be obtained with d = poly(1/λ). In fact d = O(1/λ
2
), which is optimal, can be obtained, too, albeit

with graphs of sizes that are only approximately powers of two.

333



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

the probability that such a random walk stays in W is at most

ρ ·
(

ρ + (1− ρ) · λ

d

)�′−1

(8.21)

Thus, a random walk on an expander is “pseudorandom” with respect to the hitting
property (i.e., when we consider hitting the set V \W and use ε = 1− ρ); that is, a set
of density ε is hit with probability 1− δ, where δ = (1− ε) · (1− ε + (λ/d) · ε)�

′−1 <

(1− (1− (λ/d)) · ε)�
′
. A proof of Theorem 8.28 is given in [135], while a proof of an upper

bound that is weaker than Eq. (8.21) is outlined in Exercise 8.43. Using Theorem 8.28
and an explicit (2t , λ · 2t )-expander, we obtain a generator that produces sequences that
are (ε, δ)-hitting for δ that is almost optimal.

Proposition 8.29 (The Expander Random Walk Generator):51

• For every constant λ > 0, consider an explicit construction of (2t , λ · 2t )-
expanders for {2n : n∈N}, where t ∈N is a sufficiently large constant. For
v ∈ [2n] ≡ {0, 1}n and i ∈ [2t ] ≡ {0, 1}t , denote by �i (v) the vertex of the cor-
responding 2n-vertex graph that is reached from vertex v when following its i th

edge.
• For b, �′ :N→N such that k = b(k)+ (�′(k)− 1) · t < �′(k) · b(k), and for v0 ∈
{0, 1}b(k) and i1, . . . , i�′(k)−1 ∈ [2t ], let

G(v0, i1, ...., i�′(k)−1)
def= (v0, v1, ...., v�′(k)−1), (8.22)

where v j = �i j (v j−1).

Then G has stretch �(k) = �′(k) · b(k), and G(Uk) is (ε, δ)-hitting for any ε > 0 and
δ = (1− (1− λ) · ε)�

′(k).

The stretch of G is maximized at b(k) ≈ k/2 (and �′(k) = k/2t), but maximizing the
stretch is not necessarily the goal in all applications. In many applications, the parameters
n, ε, and δ are given, and the goal is to derive a generator that produces (ε, δ)-hitting
sequences over {0, 1}n while minimizing both the length of the sequence and the amount
of randomness used by the generator (i.e., the seed length). Indeed, Proposition 8.29
suggests using sequences of length �′ ≈ ε−1 log2(1/δ) that are generated based on a
random seed of length n + O(�′).

Expander Random Walk Generators have been used in a variety of areas (e.g., PCP and
inapproximability (see [29, Sec. 11.1]), cryptography (see [91, Sec. 2.6]), and the design
of various types of “pseudorandom” objects (see, in particular, Appendix D.3)).

Chapter Notes

Figure 8.6 depicts some of the notions of pseudorandom generators discussed in this
chapter. We highlight a key distinction between the case of general-purpose pseudorandom
generators (treated in Section 8.2) and the other cases (cf. Sections 8.3 and 8.4): In
the former case the distinguisher is more complex than the generator, whereas in the
latter cases the generator is more complex than the distinguisher. Specifically, in the

51In the common presentation of this generator, the length of the seed is determined as a function of the desired
block-length and stretch. That is, given the parameters b and �′, the seed length is set to b + O(�′ − 1).

334



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

distinguisher’s generator’s stretch comments
TYPE resources resources (i.e., �(k))

gen.-purpose p(k)-time, ∀ poly. p poly(k)-time poly(k) Assumes OW

canon. derandom. 2k/O(1)-time 2O(k)-time 2k/O(1) Assumes EvEC

space-bounded s(k)-space, s(k) < k O(k)-space 2k/O(s(k)) runs in time
robustness k/O(1)-space O(k)-space poly(k) poly(k) · �(k)

t-wise independ. inspect t positions poly(k) · �(k)-time 2k/O(t) (e.g., pairwise)
small-bias linear tests poly(k) · �(k)-time 2k/O(1) · ε(k)
expander “hitting” poly(k) · �(k)-time �′(k) · b(k)
random walk (0.5, 2−�′(k)/O(1))-hitting for {0, 1}b(k), with �′(k) = ((k − b(k))/O(1))+ 1.

Figure 8.6: Pseudorandom generators at a glance. By OW we denote the assumption that one-way
functions exist. By EvEC we denote the assumption that the class E has (almost-everywhere) exponential
circuit complexity.

general-purpose case the generator runs in (some fixed) polynomial time and needs to
withstand any probabilistic polynomial-time distinguisher. In fact, some of the proofs
presented in Section 8.2 utilize the fact that the distinguisher can invoke the generator on
seeds of its choice. In contrast, the Nisan-Wigderson Generator, analyzed in Theorem 8.18
(of Section 8.3), runs more time than the distinguishers that it tries to fool, and the
proof relies on this fact in an essential manner. Similarly, the space complexity of the
space resilient generators presented in Section 8.4 is higher than the space bound of
the distinguishers that they fool.

The general paradigm of pseudorandom generators. Our presentation, which views
vastly different notions of pseudorandom generators as incarnations of a general paradigm,
has emerged mostly in retrospect. We note that, while the historical study of the various
notions was mostly unrelated at a technical level, the case of general-purpose pseudoran-
dom generators served as a source of inspiration to most of the other cases. In particular,
the concept of computational indistinguishability, the connection between hardness and
pseudorandomness, and the equivalence between pseudorandomness and unpredictability
appeared first in the context of general-purpose pseudorandom generators (and inspired
the development of “generators for derandomization” and “generators for space-bounded
machines”). Indeed, the study of the special-purpose generators (see Section 8.5) was
unrelated to all of these.

General-purpose pseudorandom generators. The concept of computational indistin-
guishability, which underlies the entire computational approach to randomness, was sug-
gested by Goldwasser and Micali [108] in the context of defining secure encryption
schemes. Indeed, computational indistinguishability plays a key role in cryptography (see
Appendix C). The general formulation of computational indistinguishability is due to
Yao [239]. Using the hybrid technique of [108], Yao also observed that defining pseu-
dorandom generators as producing sequences that are computationally indistinguishable
from the corresponding uniform distribution is equivalent to defining such generators as
producing unpredictable sequences. The latter definition originates in the earlier work of
Blum and Micali [41].

Blum and Micali [41] pioneered the rigorous study of pseudorandom generators and, in
particular, the construction of pseudorandom generators based on some simple intractabil-
ity assumption. In particular, they constructed pseudorandom generators assuming the

335



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

intractability of the Discrete Logarithm problem over prime fields. Their work also intro-
duces basic paradigms that were used in all subsequent improvements (cf., e.g., [239, 118]).
We refer to the transformation of computational difficulty into pseudorandomness, the use
of hard-core predicates (also defined in [41]), and the iteration paradigm (cf. Eq. (8.10)).

Theorem 8.11 (by which pseudorandom generators exist if and only if one-way func-
tions exist) is due to Håstad, Impagliazzo, Levin, and Luby [118], building on the hard-core
predicate of [99] (see Theorem 7.7). Unfortunately, the current proof of Theorem 8.11 is
very complicated and unfit for presentation in a book of the current nature. Presenting a
simpler and tighter (cf. §8.2.7.1) proof is indeed an important research project.

Pseudorandom functions (further discussed in Appendix C.3.3) were defined and first
constructed by Goldreich, Goldwasser, and Micali [95]. We also mention (and advocate)
the study of a general theory of pseudorandom objects initiated in [96]. Finally, we mention
that a more detailed treatment of general-purpose pseudorandom generators is provided
in [91, Chap. 3].

Derandomization of time-complexity classes. As observed by Yao [239], a non-
uniformly strong notion of pseudorandom generators yields improved derandomization
of time-complexity classes. A key observation of Nisan [173, 176] is that whenever a
pseudorandom generator is used in this way, it suffices to require that the generator run
in time that is exponential in its seed-length, and so the generator may have running
time greater than the distinguisher (representing the algorithm to be derandomized). This
observation motivates the definition of canonical derandomizers as well as the construc-
tion of Nisan and Wigderson [173, 176], which is the basis for further improvements
culminating in [128]. Part 1 of Theorem 8.19 (i.e., the “high end” derandomization of
BPP) is due to Impagliazzo and Wigderson [128], whereas Part 2 (i.e., the “low end”) is
from [176].

The Nisan–Wigderson Generator [176] was subsequently used in several ways tran-
scending its original presentation. We mention its application toward fooling non-
deterministic machines (and thus derandomizing constant-round interactive proof sys-
tems) and to the construction of randomness extractors [222] (see overview in
§D.4.2.2).

In contrast to the aforementioned derandomization results, which place BPP in some
worst-case deterministic complexity class based on some non-uniform (worst-case) as-
sumption, we now mention a result that places BPP in an average-case deterministic
complexity class (cf. Section 10.2) based on a uniform-complexity (worst-case) assump-
tion. We refer specifically to a theorem, which is due to Impagliazzo and Wigderson [129]
(but is not presented in the main text), that asserts the following: If BPP is not con-
tained in EXP (almost everywhere), then BPP has deterministic sub-exponential-time
algorithms that are correct on all typical cases (i.e., with respect to any polynomial-time
samplable distribution).

Pseudorandomness with respect to space-bounded distinguishers. As stated in the
first paper on the subject of “space-resilient pseudorandom generators” [4],52 this re-
search direction was inspired by the derandomization result obtained via the use of
general-purpose pseudorandom generators. The latter result (necessarily) depends on in-
tractability assumptions, and so the objective was identifying natural classes of algorithms

52This paper is more frequently cited for the Expander Random Walk technique, which it has introduced.

336



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

for which derandomization is possible without relying on intractability assumptions (but
rather by relying on intractability results that are known for the corresponding classes of
distinguishers). This objective was achieved before for the case of constant-depth (ran-
domized) circuits, but space-bounded (randomized) algorithms offer a more appealing
class that refers to natural algorithms. Fundamentally different constructions of space-
resilient pseudorandom generators were given in several works, but are superseded by
the two incomparable results mentioned in Section 8.4.2: Theorem 8.21 (aka Nisan’s
Generator [174]) and Theorem 8.22 (aka the Nisan–Zuckerman Generator [177]). These
two results have been “interpolated” in [12]. Theorem 8.23 (BPL ⊆ SC) was proved by
Nisan [175].

Special-purpose generators. The various generators presented in Section 8.5 were not
inspired by any of the other types of pseudorandom generator (nor even by the generic
notion of pseudorandomness). Pairwise independence generators were explicitly sug-
gested in [54] (and are implicit in [50]). The generalization to t-wise independence (for
t ≥ 2) is due to [6]. Small-bias generators were first defined and constructed by Naor
and Naor [170], and three simple constructions were subsequently given in [10]. The
Expander Random Walk Generator was suggested by Ajtai, Komlos, and Szemerédi [4],
who discovered that random walks on expander graphs provide a good approximation
to repeated independent attempts with respect to hitting any fixed subset of sufficient
density (within the vertex set). The analysis of the hitting property of such walks was
subsequently improved, culminating in the bound cited in Theorem 8.28, which is taken
from [135, Cor. 6.1].

(The foregoing historical notes do not mention several technical contributions that played
an important role in the development of the area. For further details, the reader is referred
to [90, Chap. 3]. In fact, the current chapter is a revision of [90, Chap. 3], providing
significantly more details for the main topics, and omitting relatively secondary material
(a revision of which appears in Appendices D.3 and D.4.)

We mention that an alternative treatment of pseudorandomness, which puts more
emphasis on the relation between various techniques, is provided in [229]. In particular,
the latter text highlights the connections between information-theoretic and computational
phenomena (e.g., randomness extractors and canonical derandomizers), while the current
text tends to decouple the two (see, e.g., Section 8.3 and Appendix D.4).

Exercises

Exercise 8.1: Show that placing no computational requirements on the generator enables
unconditional results regarding “generators” that fool any family of sub-exponential-
size circuits. That is, making no computational assumptions, prove that there ex-
ist functions G : {0, 1}∗ → {0, 1}∗ such that {G(Uk)}k∈N is (strongly) pseudorandom,
while |G(s)| = 2|s| for every s ∈ {0, 1}∗. Furthermore, show that G can be computed
in double-exponential time.

Guideline: Use the Probabilistic Method (cf. [11]). First, for any fixed circuit C :
{0, 1}n → {0, 1}, upper-bound the probability that for a random set S ⊂ {0, 1}n of size
2n/2 the absolute value of Pr[C(Un) = 1]− (|{x ∈ S : C(x) = 1}|/|S|) is larger than
2−n/8. Next, using a union bound, prove the existence of a set S ⊂ {0, 1}n of size 2n/2

such that no circuit of size 2n/5 can distinguish a uniformly distributed element of S

337



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

from a uniformly distributed element of {0, 1}n , where distinguishing means with a
probability gap of at least 2−n/8.

Exercise 8.2: Prove the following corollaries to Proposition 8.3.

1. Let A be a probabilistic polynomial-time algorithm solving a decision problem
χ : {0, 1}∗ → {0, 1} (in BPP), and let AG be as in Construction 8.2. Prove that it is
infeasible to find an x on which AG errs with probability that is significantly higher
than the error probability of A; that is, prove that on input 1n it is infeasible to find
an x ∈ {0, 1}n such that Pr[AG(x) �=χ(x)] < Pr[A(x)=χ(x)]+ 0.01.

2. Let A be a probabilistic polynomial-time algorithm solving the search associated
with the NP-relation R, and let AG be as in Construction 8.2. Prove that it is infeasible
to find an x on which AG outputs a wrong solution; that is, assuming for simplicity
that A has error probability 1/3, prove that on input 1n it is infeasible to find an x ∈
{0, 1}n ∩ SR such that Pr[(x, AG(x)) �∈ R] > 0.4, where SR

def= {x : ∃y (x, y)∈ R}.
Likewise, it is infeasible to find an x ∈ {0, 1}n \ SR such that Pr[AG(x) �= ⊥] > 0.4.

Exercise 8.3: Prove that omitting the absolute value in Eq. (8.6) keeps Definition 8.4
intact.

(Hint: Consider D′(z)
def= 1− D(z).)

Exercise 8.4: Prove that computational indistinguishability is an equivalence relation
(defined over pairs of probability ensembles). Specifically, prove that this relation is
transitive (i.e., X ≡ Y and Y ≡ Z implies X ≡ Z ).

Exercise 8.5: Prove that if {Xn}n∈N and {Yn}n∈N are computationally indistinguishable
and A is a probabilistic polynomial-time algorithm, then {A(Xn)}n∈N and {A(Yn)}n∈N

are computationally indistinguishable.

Guideline: If D distinguishes the latter ensembles, then D′ such that D′(z)
def= D(A(z))

distinguishes the former.

Exercise 8.6: In contrast to Exercise 8.5, show that the conclusion may not hold in case
A is not computationally bounded. That is, show that there exists computationally
indistinguishable ensembles, {Xn}n∈N and {Yn}n∈N, and an exponential-time algorithm
A such that {A(Xn)}n∈N and {A(Yn)}n∈N are not computationally indistinguishable.

Guideline: For any pair of ensembles {Xn}n∈N and {Yn}n∈N, consider the Boolean
function f such that f (z) = 1 if and only if Pr[Xn = z] > Pr[Yn = z]. Show that
|Pr[ f (Xn) = 1]− Pr[ f (Yn) = 1]| equals the statistical difference between Xn and Yn .
Consider an adequate (approximate) implementation of f (e.g., approximate Pr[Xn =
z] and Pr[Yn = z] up to ±2−2|z|).

Exercise 8.7: Show that the existence of pseudorandom generators implies the existence
of polynomial time constructible probability ensembles that are statistically far apart
and yet are computationally indistinguishable.

Guideline: Lower-bound the statistical distance between G(Uk) and U�(k), where G is
a pseudorandom generator with stretch �.

Exercise 8.8: Relying on Theorem 7.7, provide a self-contained proof of the fact that
the existence of one-way 1-1 functions implies the existence of polynomial-time

338



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

constructible probability ensembles that are statistically far apart and yet are com-
putationally indistinguishable.

Guideline: Assuming that b is a hard-core of the function f , consider the ensembles
{ f (Un) · b(Un)}n∈N and { f (Un) ·U ′

1}n∈N. Prove that these ensembles are computation-
ally indistinguishable by using the main ideas of the proof of Proposition 8.9. Show
that if f is 1-1 then these ensembles are statistically far apart.

Exercise 8.9 (following [88]): Prove that the sufficient condition in Exercise 8.7 is in
fact necessary. Recall that {Xn}n∈N and {Yn}n∈N are said to be statistically far apart
if, for some positive polynomial p and all sufficiently large n, the variation dis-
tance between Xn and Yn is greater than 1/p(n). Using the following three steps,
prove that the existence of polynomial-time constructible probability ensembles that
are statistically far apart and yet are computationally indistinguishable implies the
existence of pseudorandom generators.

1. Show that, without loss of generality, we may assume that the variation distance
between Xn and Yn is greater than 1− exp(−n).

Guideline: For Xn and Yn as in the forgoing, consider Xn = (X (1)
n , . . . , X (t(n))

n ) and Y n =
(Y (1)

n , . . . , Y (t(n))
n ), where the X (i)

n ’s (resp., Y (i)
n ’s) are independent copies of Xn (resp., Yn), and

t(n) = O(n · p(n)2). To lower-bound the statistical difference between Xn and Y n , consider
the set Sn

def= {z : Pr[Xn= z] > Pr[Yn= z]} and the random variable representing the number
of copies in Xn (resp., Y n) that reside in Sn .

2. Using {Xn}n∈N and {Yn}n∈N as in Step 1, prove the existence of a false entropy
generator, where a false entropy generator is a deterministic polynomial-time al-
gorithm G such that G(Uk) has entropy e(k) but {G(Uk)}k∈N is computationally
indistinguishable from a polynomial-time constructible ensemble that has entropy
greater than e(·)+ (1/2).

Guideline: Let S0 and S1 be sampling algorithms such that Xn ≡ S0(Upoly(n)) and Yn ≡
S1(Upoly(n)). Consider the generator G(σ, r ) = (σ, Sσ (r )), and the distribution Zn that equals
(U1, Xn) with probability 1/2 and (U1, Yn) otherwise. Note that in G(U1, Upoly(n)) the first
bit is almost determined by the rest, whereas in Zn the first bit is statistically independent of
the rest.

3. Using a false entropy generator, obtain one in which the excess entropy is
√

k, and
using the latter construct a pseudorandom generator.

Guideline: Use the ideas presented in §8.2.5.3 (i.e., the discussion of the interesting direction
of the proof of Theorem 8.11).

Exercise 8.10 (multiple samples vs single sample, a separation): In contrast to Propo-
sition 8.6, prove that there exist two probability ensembles that are computational
indistinguishable by a single sample, but are efficiently distinguishable by two sam-
ples. Furthermore, one of these ensembles is the uniform ensemble and the other has
a sparse support (i.e., only poly(n) many strings are assigned a non-zero probability
weight by the second distribution). Indeed, the second ensemble is not polynomial-time
constructible.

Guideline: Prove that, for every function d : {0, 1}n → [0, 1], there exist two
strings, xn and yn (in {0, 1}n), and a number p ∈ [0, 1] such that Pr[d(Un)=1] =

339



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

p · Pr[d(xn)=1]+ (1− p) · Pr[d(yn)=1]. Generalize this claim to m functions, us-
ing m + 1 strings and a convex combination of the corresponding probabilities.53

Conclude that there exists a distribution Zn with a support of size at most m + 1 such
that for each of the first (in lexicographic order) m (randomized) algorithms A it holds
that Pr[A(Un)=1] = Pr[A(Zn)=1]. Note that with probability at least 1/(m + 1), two
independent samples of Zn are assigned the same value, yielding a simple two-sample
distinguisher of Un from Zn .

Exercise 8.11 (amplifying the stretch function, an alternative construction): For G1

and � as in Construction 8.7, consider G(s)
def= G�(|s|)−|s|

1 (s), where Gi
1(x) denotes G1

iterated i times on x (i.e., Gi
1(x) = Gi−1

1 (G1(x)) and G0
1(x) = x). Prove that G is a

pseudorandom generator of stretch �. Reflect on the advantages of Construction 8.7
over the current construction (e.g., consider generation time).

Guideline: Use a hybrid argument, with the i th hybrid being Gi
1(U�(k)−i ), for i =

0, . . . , �(k)− k. Note that Gi+1
1 (U�(k)−(i+1)) = Gi

1(G1(U�(k)−i−1)) and Gi
1(U�(k)−i ) =

Gi
1(U|G1(U�(k)−i−1)|), and use Exercise 8.5.

Exercise 8.12 (pseudorandom versus unpredictability): Prove that a probability en-
semble {Zk}k∈N is pseudorandom if and only if it is unpredictable. For simplicity,
we say that {Zk}k∈N is (next-bit) unpredictable if for every probabilistic polynomial-
time algorithm A it holds that Pri [A(Fi (Zk))= Bi+1(Zk)]− (1/2) is negligible, where
i ∈ {0, . . . , |Zk | − 1} is uniformly distributed, and Fi (z) (resp., Bi+1(z)) denotes the
i-bit prefix (resp., i + 1st bit) of z.

Guideline: Show that pseudorandomness implies polynomial-time unpredictability;
that is, polynomial-time predictability violates pseudorandomness (because the uni-
form ensemble is unpredictable regardless of computing power). Use a hybrid argument
to prove that unpredictability implies pseudorandomness. Specifically, the i th hybrid
consists of the i-bit long prefix of Zk followed by |Zk | − i uniformly distributed bits.
Thus, distinguishing the extreme hybrids (which correspond to Zk and U|Zk |) implies
distinguishing a random pair of neighboring hybrids, which in turn implies next-bit
predictability. For the last step, use an argument as in the proof of Proposition 8.9.

Exercise 8.13: Prove that a probability ensemble is unpredictable (from left to right) if
and only if it is unpredictable from right to left (or in any other canonical order).

Guideline: Use Exercise 8.12, and note that an ensemble is pseudorandom if and only
if its reverse is pseudorandom.

Exercise 8.14: Let f be 1-1 and length-preserving, and b be a hard-core predicate of
f . For any polynomial �, letting G ′(s)

def= b( f �(|s|)−1(s)) · · · b( f (s)) · b(s), prove that
{G ′(Uk)} is unpredictable (in the sense of Exercise 8.12).

Guideline: Suppose toward the contradiction that, for a uniformly distributed
j ∈ {0, . . . , �(k)− 1}, given the j-bit long prefix of G ′(Uk) an algorithm A′ can
predict the j + 1st bit of G ′(Uk). That is, given b( f �(k)−1(s)) · · · b( f �(k)− j (s)), al-
gorithm A′ predicts b( f �(k)−( j+1)(s)), where s is uniformly distributed in {0, 1}k .
Consider an algorithm A that given y = f (x) approximates b(x) by invoking A′

53That is, prove that for every m functions d1, . . . , dm : {0, 1}n → [0, 1] there exist m + 1 strings z(1)
n , . . . , z(m+1)

n

and m + 1 non-negative numbers p1, . . . , pm+1 that sum up to 1 such that for every i ∈ [m] it holds that Pr[di (Un) =
1] =

∑
j

p j · Pr[di (z
( j)
n ) = 1].

340



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

on input b( f j−1(y)) · · · b(y), where j is uniformly selected in {0, . . . , �(k)− 1}.
Analyze the success probability of A using the fact that f induces a permuta-
tion over {0, 1}n , and thus b( f j (Uk)) · · · b( f (Uk)) · b(Uk) is distributed identically
to b( f �(k)−1(Uk)) · · · b( f �(k)− j (Uk)) · b( f �(k)−( j+1)(Uk)).

Exercise 8.15: Prove that if G is a strong pseudorandom generator in the sense of
Definition 8.12, then it a pseudorandom generator in the sense of Definition 8.1.

Guideline: Consider a sequence of internal coin tosses that maximizes the probability
in Eq. (8.2).

Exercise 8.16 (strong computational indistinguishability): Provide a definition of the
notion of computational indistinguishability that underlies Definition 8.12 (i.e., in-
distinguishability with respect to (non-uniform) polynomial-size circuits). Prove the
following two claims:

1. Computational indistinguishability with respect to (non-uniform) polynomial-size
circuits is strictly stronger than Definition 8.4.

2. Computational indistinguishability with respect to (non-uniform) polynomial-size
circuits is invariant under (polynomially many) multiple samples, even if the under-
lying ensembles are not polynomial-time constructible.

Guideline: For Part 1, see the solution to Exercise 8.10. For Part 2 note that samples
as generated in the proof of Proposition 8.6 can be hard-wired into the distinguishing
circuit.

Exercise 8.17: Show that Construction 8.7 may fail in the context of canonical deran-
domizers. Specifically, prove that it fails for the canonical derandomizer G ′ that is
presented in the proof of Theorem 8.18.

Exercise 8.18: In relation to Definition 8.14 (and assuming �(k) > k), show that there
exists a circuit of size O(2k · �(k)) that violates Eq. (8.11).

Guideline: The circuit may incorporate all values in the range of G and decide by
comparing its input to these values.

Exercise 8.19 (constructing a set system for Theorem 8.18): For every γ > 0, show a
construction of a set system S as in Condition 2 of Theorem 8.18, with m(k) = �(k)
and �(k) = 2�(k).

Guideline: We assume, without loss of generality, that γ < 1, and set m(k) = (γ /2) · k
and �(k) = 2γ m(k)/6. We construct the set system S1, . . . , S�(k) in iterations, selecting
Si as the first m(k)-subset of [k] that has sufficiently small intersections with each of
the previous sets S1, . . . , Si−1. The existence of such a set Si can be proved using the
Probabilistic Method (cf. [11]). Specifically, for a fixed m(k)-subset S′, the probability
that a random m(k)-subset has intersection greater than γ m(k) with S′ is smaller
than 2−γ m(k)/6, because the expected intersection size is (γ /2) · m(k). Thus, with
positive probability a random m(k)-subset has intersection at most γ m(k) with each
of the previous i − 1 < �(k) = 2γ m(k)/6 subsets. Note that we construct Si in time(

k
m(k)

) · (i − 1) · m(k) < 2k · �(k) · k, and thus S is computable in time k2k · �(k)2 <

22k .

Exercise 8.20 (pseudorandom versus unpredictability, by circuits): In continuation of
Exercise 8.12, show that if there exists a circuit of size s that distinguishes Zn from U�

341



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

with gap δ, then there exists an i < � = |Zn| and a circuit of size s + O(1) that given
an i-bit long prefix of Zn guesses the i + 1st bit with success probability at least 1

2 + δ
�
.

Guideline: Defining hybrids as in Exercise 8.12, note that, for some i , the given circuit
distinguishes the i th hybrid from the i + 1st hybrid with gap at least δ/�.

Exercise 8.21: Suppose that the sets Si ’s in Construction 8.17 are disjoint and that f :
{0, 1}m → {0, 1} is T -inapproximable. Prove that for every circuit C of size T − O(1)
it holds that |Pr[C(G(Uk)) = 1]− Pr[C(U�) = 1]| < �/T .

Guideline: Prove the contrapositive using Exercise 8.20. Note that the value of the
i + 1st bit of G(Uk) is statistically independent of the values of the first i bits of G(Uk),
and thus predicting it yields an approximator for f . Indeed, such an approximator can
be obtained by fixing the the first i bits of G(Uk) via an averaging argument.

Exercise 8.22 (Theorem 8.18, generalized): Let �, m, m ′, T :N→N satisfy �(k)2 +
Õ(�(k)2m ′(k)) < T (m(k)). Suppose that the following two conditions hold:

1. There exists an exponential-time computable function f :{0, 1}∗→{0, 1} that is
T -inapproximable.

2. There exists an exponential-time computable function S :N× N→2N such that for
every k and i = 1, . . . , �(k) it holds that S(k, i) ⊆ [k] and |S(k, i)| = m(k), and
|S(k, i) ∩ S(k, j)| ≤ m ′(k) for every k and i �= j .

Prove that using G as defined in Construction 8.17, with Si = S(k, i), yields a canonical
derandomizer with stretch �.

Guideline: Following the proof of Theorem 8.18, just note that the circuit constructed
for approximating f (Um(k)) has size �(k)2 + �(k) · Õ(2m ′(k)) and success probability at
least (1/2)+ (1/7�(k)).

Exercise 8.23 (Part 2 of Theorem 8.19): Prove that if for every polynomial T there exists
a T -inapproximable predicate in E then BPP ⊆ ∩ε>0DTIME(tε), where tε(n)

def= 2nε

.

Guideline: Using Proposition 8.15, it suffices to present, for every polynomial p
and every constant ε > 0, a canonical derandomizer of stretch �(k) = p(k1/ε). Such a
derandomizer can be presented by applying Exercise 8.22 using m(k) = √k, m ′(k) =
O(log k), and T (m(k)) = �(k)2 + Õ(�(k)2m ′(k)). Note that T is a polynomial, revisit
Exercise 8.19 in order to obtain a set system as required in Exercise 8.22 (for these
parameters), and use Theorem 7.10.

Exercise 8.24 (canonical derandomizers imply hard problems): Prove that the hard-
ness hypothesis made in each part of Theorem 8.19 is essential for the existence of a
corresponding canonical derandomizer. More generally, prove that the existence of a
canonical derandomizer with stretch � implies the existence of a predicate in E that is
T -inapproximable for T (n) = �(n)1/O(1).

Guideline: We focus on obtaining a predicate in E that cannot be computed by circuits
of size �, and note that the claim follows by applying the techniques in §7.2.1.3.
Given a canonical derandomizer G : {0, 1}k → {0, 1}�(k), we consider the predicate
f : {0, 1}k+1 → {0, 1} that satisfies f (x) = 1 if and only if there exists s ∈ {0, 1}|x |−1

such that x is a prefix of G(s). Note that f is in E and that an algorithm computing f
yields a distinguisher of G(Uk) and U�(k).

342



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 8.25 (limitations on the stretch of (s, ε)-pseudorandom generators): Re-
ferring to Definition 8.20, establish the following upper bounds on the stretch � of
(s, ε)-pseudorandom generators.

1. If s(k) ≥ 2 and ε(k) ≤ 1/2 then �(k) < ε(k) · (k + 2) · 2k+2−s(k).
2. For every s(k) ≥ 1 and ε(k) < 1 it holds that �(k) < 2k .

Guideline: Part 2 follows by combining Exercises 8.37 and 8.38. For Part 1, consider
toward the contradiction a generator of stretch �(k) = ε(k) · (k + 2) · 2k+2−s(k) and an
enumeration, α(1), . . . , α(2k ) ∈ {0, 1}�(k), of all 2k outputs of the generator (on k-bit
long seeds). Construct a non-uniform automaton of space s that accepts x1 · · · x�(k) ∈
{0, 1}�(k) if for some i ∈ [�(k)/(k + 2)] it holds that x(i−1)·(k+2)+1 · · · xi ·(k+2)

equals some string in Si , where Si contains the projection of the strings
α((i−1)·2s(k)−1+1), . . . , α(i ·2s(k)−1) on the coordinates (i − 1) · (k + 2)+ 1, . . . , i · (k + 2).
Note that such an automaton accepts at least (�(k)/(k + 2)) · 2s(k)−1 = 2ε(k) · 2k of the
possible outputs of the generator, whereas a random (�(k)-bit long) string is accepted
with probability at most (�(k)/(k + 2)) · 2(s(k)−1)−(k+2) = ε(k)/2.

Exercise 8.26 (on the existence of (s, ε)-pseudorandom generators): In contrast to
Exercise 8.25, for any s and ε such that s(k) < k − 2 log2(k/ε(k))− O(1), prove the
existence of (non-efficient) (s, ε)-pseudorandom generators of stretch �(k) = �(ε(k)2 ·
2k−s(k)/s(k)).

Guideline: Use the Probabilistic Method as in Exercise 8.1. Note that non-uniform
automata of space s and time � can be described by strings of length � · 2s2s .

Exercise 8.27 (multiple samples and space-bounded distinguishers): Suppose that
two probability ensembles, {Xk}k∈N and {Yk}k∈N, are (s, ε)-indistinguishable by non-
uniform automata (i.e., the distinguishability-gap of any non-uniform automaton of
space s is bounded by the function ε). For any function t :N→N, prove that the ensem-
bles {(X (1)

k , . . . , X (t(k))
k )}k∈N and {(Y (1)

k , . . . , X (t(k))
k )}k∈N are (s, tε)-indistinguishable,

where X (1)
k through X (t(k))

k and Y (1)
k through Y (t(k))

k are independent random variables,
with each X (i)

k identical to Xk and each Y (i)
k identical to Yk .

Guideline: Use the hybrid technique. When distinguishing the i th and (i + 1)st hybrids,
note that the first i blocks (i.e., copies of Xk) as well as the last t(k)− (i + 1) blocks
(i.e., copies of Yk) can be fixed and hard-wired into the non-uniform distinguisher.

Exercise 8.28: Provide a more explicit description of the generator outlined in the proof
of Theorem 8.21.

Guideline: for r ∈ {0, 1}n and h(1), . . . , h(t) ∈ Hn , the generator outputs a 2t -long
sequence of n-bit strings such that the i th string in this sequence equals h′(r ), where
h′ is a composition of some of the h( j)’s.

Exercise 8.29 (adaptive t-wise independence tests): Recall that a generator G :
{0, 1}k → {0, 1}�′(k)·b(k) is called t-wise independent if for any t fixed block positions,
the distribution G(Uk) restricted to these t blocks is uniform over {0, 1}t ·b(k). Prove that
the output of a t-wise independence generator is (perfectly) indistinguishable from the
uniform distribution by any test that examines t of the blocks, even if the examined
blocks are selected adaptively (i.e., the location of the i th block to be examined is
determined based on the contents of the previously inspected blocks).

343



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

Guideline: First show that, without loss of generality, it suffices to consider determin-
istic (adaptive) testers. Next, show that the probability that such a tester sees any fixed
sequence of t values at the locations selected adaptively (in the generator’s output)
equals 2−t ·b(k), where b(k) is the block-length.

Exercise 8.30 (a t-wise independence generator): Prove that G as defined in Proposi-
tion 8.24 produces a t-wise independent sequence over GF(2b(k)).

Guideline: For every t fixed indices i1, . . . , it ∈ [�′(k)], consider the distribution
of G(Uk)i1,...,it (i.e., the projection of G(Uk) on locations i1, . . . , it ). Show that for
every sequence of t possible values v1, . . . , vt ∈ GF(2b(k)), there exists a unique seed
s ∈ {0, 1}k such that G(s)i1,...,it = (v1, . . . , vt ).

Exercise 8.31 (pairwise independence generators): As a warm-up, consider a con-
struction analogous to the one in Proposition 8.25, except that here the seed speci-
fies an arbitrary affine b(k)-by-m(k) transformation. That is, for s ∈ {0, 1}b(k)·m(k) and
r ∈ {0, 1}b(k), where k = b(k) · m(k)+ b(k), let

G(s, r )
def= (Asv1 + r , Asv2 + r , . . . , Asv�′(k) + r ) (8.23)

where As is a b(k)-by-m(k) matrix specified by the string s. Show that G as in Eq. (8.23)
is a pairwise independence generator of block-length b and stretch �. (Note that a related
construction appears in the proof of Theorem 7.7; see also Exercise 7.5.) Next, show
that G as in Eq. (8.17) is a pairwise independence generator of block-length b and
stretch �.

Guideline: The following description applies to both constructions. First, note that
for every fixed i ∈ [�′(k)], the i th element in the sequence G(Uk), denoted G(Uk)i , is
uniformly distributed in {0, 1}b(k). Actually, show that for every fixed s ∈ {0, 1}k−b(k),
it holds that G(s, Ub(k))i is uniformly distributed in {0, 1}b(k). Next, note that it suffices
to show that, for every j �= i , conditioned on the value of G(Uk)i , the value of G(Uk) j

is uniformly distributed in {0, 1}b(k). The key technical detail is showing that, for any
non-zero vector v ∈ {0, 1}m(k) and a uniformly selected s ∈ {0, 1}k−b(k), it holds that
Asv (resp., Tsv) is uniformly distributed in {0, 1}b(k). This is easy in the case of a
random b(k)-by-m(k) matrix, and can also be proven for a random Toeplitz matrix.

Exercise 8.32 (adaptive t-wise independence tests, revisited): Note that in contrast to
Exercise 8.29, with respect to non-perfect indistinguishability, there is a discrepancy
between adaptive and non-adaptive tests that inspects t locations.

1. Present a distribution over 2t−1-bit long strings in which every t fixed bit positions
induce a distribution that is t · 2−t -close to uniform, but there exists a test that
adaptively inspects t positions and distinguish this distribution from the uniform
one with gap 1/2.

Guideline: Modify the uniform distribution over ((t − 1)+ 2t−1)-bit long strings such that
the first t − 1 locations indicate a bit position (among the rest) that is set to zero.

2. On the other hand, prove that if every t fixed bit positions in a distribution X induce
a distribution that is ε-close to uniform, then every test that adaptively inspects t
positions can distinguish X from the uniform distribution with gap at most 2t · ε.

Guideline: See Exercise 8.29.

344



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 8.33: Suppose that G is an ε-bias generator with stretch �. Show that equality
between the �(k)-bit strings x and y can be probabilistically checked (with error
probability (1+ ε)/2) by comparing the inner product modulo 2 of x and G(s) to the
inner product modulo 2 of y and G(s), where s ∈ {0, 1}k is selected uniformly. Note that
this method is a randomness-efficient approximation of comparing the inner product
modulo 2 of x and r to the inner product modulo 2 of y and r , where r ∈ {0, 1}�(k) is
selected uniformly.

(Hint: Consider the special case in which y = 0�(k).)

Exercise 8.34 (bias versus statistical difference from uniform): Let X be a random
variable assuming values in {0, 1}t . Prove that if X has bias at most ε over any non-
empty set then the statistical difference between X and Ut is at most 2t/2 · ε, and that
for every x ∈ {0, 1}t it holds that Pr[X = x] = 2−t ± ε.

Guideline: Consider the probability function p : {0, 1}t → [0, 1] defined by
p(x)

def= Pr[X = x], and let δ(x)
def= p(x)− 2−t denote the deviation of p from the

uniform probability function. Viewing the set of real functions over {0, 1}t as a 2t -
dimensional vector space, consider two orthonormal bases for this space. The first
basis consists of the (Kroniker) functions {kα}α∈{0,1}t such that kα(x) = 1 if x = α

and kα(x) = 0 otherwise. The second basis consists of the (normalized Fourier)
functions { fS}S⊆[t] defined by fS(x1 · · · xt )

def= 2−t/2
∏

i∈S(−1)xi (where f∅ ≡ 2−t/2).54

Note that the bias of X over any S �= ∅ equals |∑x p(x) · 2t/2 fS(x)|, which in turn
equals 2t/2|∑x δ(x) fS(x)|. Thus, for every S (including the empty set), we have
|∑x δ(x) fS(x)| ≤ 2−t/2ε, which means that the representation of δ in the normal-
ized Fourier basis is by coefficients that have each an absolute value of at most
2−t/2ε. It follows that the Norm-2 of this vector of coefficients is upper-bounded by√

2t · (2−t/2ε)2 = ε, and the two claims follow by noting that they refer to norms of δ

according to the Kroniker basis. In particular, Norm-2 is preserved under orthonormal
bases, the max-norm is upper-bounded by Norm-2, and Norm-1 is upper-bounded by√

2t times the value of the Norm-2.

Exercise 8.35 (on the existence of (non-explicit) small-bias generators): Prove that,
for k = log2(�(k)/ε(k)2)+ O(1), there exists a function G : {0, 1}k → {0, 1}�(k) such
that G(Uk) has bias at most ε(k) over any non-empty subset of [�(k)].

Guideline: Use the Probabilistic Method as in Exercise 8.1.

Exercise 8.36 (The LFSR small-bias generator (following [10])): Using the following
guidelines (and letting t = k/2), analyze the construction outlined following Theo-
rem 8.26 (and depicted in Figure 8.5):

1. Prove that ri equals
∑t−1

j=0 c( f,i)
j · s j , where c( f,i)

j is the coefficient of z j in the (degree
t − 1) polynomial obtained by reducing zi modulo the polynomial f (z) (i.e., zi ≡∑t−1

j=0 c( f,i)
j z j (mod f (z))).

Guideline: Recall that zt ≡∑t−1
j=0 f j z j (mod f (z)), and thus for every i ≥ t it holds that

zi ≡∑t−1
j=0 f j zi−t+ j (mod f (z)). Note the correspondence to ri =

∑t−1
j=0 f j · ri−t+ j .

54Verify that both bases are indeed orthogonal (i.e.,
∑

x
kα(x)kβ (x) = 0 for every α �= β and

∑
x

fS(x) fT (x) = 0

for every S �= T ) and normal (i.e.,
∑

x
kα(x)2 = 1 and

∑
x

fS(x)2 = 1).

345



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

2. For any non-empty S ⊆ {0, . . . , �(k)− 1}, evaluate the bias of the sequence
r0, . . . , r�(k)−1 over S, where f is a random irreducible polynomial of degree t
and s = (s0, . . . , st−1) ∈ {0, 1}t is uniformly distributed. Specifically:
(a) For a fixed f and random s ∈ {0, 1}t , prove that

∑
i∈S ri has non-zero bias if

and only if f (z) divides
∑

i∈S zi .

(Hint: Note that
∑

i∈S ri =
∑t−1

j=0

∑
i∈S c( f,i)

j s j , and use Item 1.)

(b) Prove that the probability that a random irreducible polynomial of degree t
divides

∑
i∈S zi is �(�(k)/2t ).

(Hint: A polynomial of degree n can be divided by at most n/d different irreducible
polynomials of degree d . On the other hand, the number of irreducible polynomials of
degree d over GF(2) is �(2d/d).)

Conclude that for random f and s, the sequence r0, . . . , r�(k)−1 has bias O(�(k)/2t ).

Note that an implementation of the LFSR generator requires a mapping of random
k/2-bit long string to almost-random irreducible polynomials of degree k/2. Such a
mapping can be constructed in exp(k) time, which is poly(�(k)) if �(k) = exp(�(k)). A
more efficient mapping that uses an O(k)-bit long seek is described in [10, Sec. 8].

Exercise 8.37 (limitations on small-bias generators): Let G be an ε-bias generator with
stretch �, and view G as a mapping from GF(2)k to GF(2)�(k). As such, each bit in the
output of G can be viewed as a polynomial55 in the k input variables (each ranging in
GF(2)). Prove that if ε(k) < 1 and each of these polynomials has total degree at most
d, then �(k) ≤∑d

i=1

(k
i

)
. Derive the following corollaries:

1. If ε(k) < 1 then �(k) < 2k (regardless of d).56

2. If ε(k) < 1 and �(k) > k then G cannot be a linear transformation.57

Guideline (for the main claim): Note that, without loss of generality, all the aforemen-
tioned polynomials have a free term equal to zero (and have individual degree at most 1
in each variable). Next, consider the vector space spanned by all d-monomials over k
variables (i.e., monomial having at most d variables). Since ε(k) < 1, the polynomials
representing the output bits of G must correspond to a sequence of independent vectors
in this space.

Exercise 8.38 (a sanity check for space-bounded pseudorandomness): The following
fact is suggested as a sanity check for candidate pseudorandom generators with re-
spect to space-bounded automata. The fact (to be proven as an exercise) is that, for
every ε(·) and s(·) such that s(k) ≥ 1 for every k, if G is (s, ε)-pseudorandom (as per
Definition 8.20), then G is an ε-bias generator.

Exercise 8.39: In contrast to Exercise 8.38, prove that there exist exp(−�(n))-bias dis-
tributions over {0, 1}n that are not (2, 0.666)-pseudorandom.

55Recall that every Boolean function over GF(p) can be expressed as a polynomial of individual degree at most
p − 1.

56This upper bound is optimal, because (efficient) ε-bias generators of stretch �(k) = poly(ε(k)) · 2k do exist
(see [170]).

57In contrast, bilinear ε-bias generators (i.e., with �(k) > k) do exist; for example, G(s) = (s, b(s)), where

b(s1, . . . , sk ) =
∑k/2

i=1
si s(k/2)+i mod 2, is an ε-bias generator with ε(k) = exp(−�(k)).

(Hint: Focusing on bias over sets that include the last output bit, prove that without loss of generality it suffices to
analyze the bias of b(Uk )).

346



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Guideline: Show that the uniform distribution over the set{
σ1 · · · σn :

n∑
i=1

σi ≡ 0 (mod 3)

}
has bias exp(−�(n)).

Exercise 8.40 (approximate t-wise independence generators (following [170])): Com-
bining a small-bias generator as in Theorem 8.26 with the t-wise independence gen-
erator of Eq. (8.16), and relying on the linearity of the latter, construct a generator
producing �-bit long sequences in which any t positions are at most ε-away from uni-
form (in variation distance), while using a seed of length O(t + log(1/ε)+ log log �).
(For max-norm a seed of length O(log(t/ε)+ log log �) suffices.)

Guideline: First note that, for any t, �′ and b ≥ log2 �′, the transformation of Eq. (8.16)
can be implemented by a fixed linear (over GF(2)) transformation of a t · b-bit seed
into an �-bit long sequence, where � = �′ · b. It follows that, for b = log2 �′, there
exists a fixed GF(2)-linear transformation T of a random seed of length t · b into a
t-wise independent bit sequence of the length � (i.e., T Ut ·b is t-wise independent over
{0, 1}�). Thus, every t rows of T are linearly independent. The key observation is that
when we replace the aforementioned random seed by an ε′-bias sequence, every i ≤ t
positions in the output sequence induce a distribution that has bias at most ε′ (because
these bits define a non-zero linear test on the bits of the ε′-bias sequence used as seed).
Note that the length of the new seed (used to produce ε′-bias sequence of length t · b)
is O(log tb/ε′). Applying Exercise 8.34, we conclude that any t positions are at most
2t/2 · ε′-away from uniform (in variation distance). Recall that this was obtained using
a seed of length O(log(t/ε′)+ log log �), and the claim follows by using ε′ = 2−t/2 · ε.

Exercise 8.41 (small-bias generator and error-correcting codes): Show a correspon-
dence between ε-bias generators of stretch � and binary linear error-correcting codes
(cf. Appendix E.1.1) mapping �(k)-bit long strings to 2k-bit long strings such that every
two codewords are at distance (1± ε(k)) · 2k−1 apart.

Guideline: Associate {0, 1}k with [2k]. Then, a generator G : [2k] → {0, 1}�(k) corre-
sponds to the code C : {0, 1}�(k) → {0, 1}2k

such that, for every i ∈ [�(k)] and j ∈ [2k],
the i th bit of G( j) equals the j th bit of C(0i−110�(k)−i ).

Exercise 8.42 (on the bias of sequences over a finite field): For a prime p, let ζ be
a random variable assigned values in GF(p) and δ(v)

def= Pr[ζ = v]− (1/p). Prove
that maxv∈GF(p){|δ(v)|} is upper-bounded by b

def= maxc∈{1,...,p−1}{‖E[ωcζ ]‖}, where ω

denotes the pth (complex) root of unity, and that
∑

v∈GF(p) |δ(v)| is upper-bounded by√
p · b.

Guideline: Analogously to Exercise 8.34, view probability distributions over GF(p)
as p-dimensional vectors, and consider two bases for the set of complex functions over
GF(p): the Kroniker basis (i.e., ki (x) = 1 if x = i and ki (x) = 0) and the (normalized)
Fourier basis (i.e., fi (x) = p−1/2 · ωi x ). Note that the biases of ζ correspond to the
inner products of δ with the non-constant Fourier functions, whereas the distances of ζ

from the uniform distribution correspond to the inner products of δ with the Kroniker
functions.

Exercise 8.43 (a version of the Expander Random Walk Theorem): Using notations
as in Theorem 8.28, prove that the probability that a random walk of length �′ stays

347



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PSEUDORANDOM GENERATORS

in W is at most (ρ + (λ/d)2)�
′/2. In fact, prove a more general claim that refers to the

probability that a random walk of length �′ intersects W0 ×W1 × · · · ×W�′−1. The
claimed upper-bound is

√
ρ0 ·

�′−1∏
i=1

√
ρi + (λ/d)2, (8.24)

where ρi
def= |Wi |/|V |.

Guideline: View the random walk as the evolution of a corresponding probability
vector under suitable transformations. The transformations correspond to taking a
random step in the graph and to passing through a “sieve” that keeps only the entries
that correspond to the current set Wi . The key observation is that the first transformation
shrinks the component that is orthogonal to the uniform distribution (which is the first
eigenvalue of the adjacency matrix of the expander), whereas the second transformation
shrinks the component that is in the direction of the uniform distribution. For further
details, see §E.2.1.3.

Exercise 8.44: Using notations as in Theorem 8.28, prove that the probability that a
random walk of length �′ visits W more than α�′ times is smaller than

(
�′
α�′

) · (ρ +
(λ/d)2)α�′/2. For example, for α = 1/2 and λ/d <

√
ρ, we get an upper bound of

(32ρ)�
′/4. We comment that much better bounds can be obtained (cf., e.g., [120]).

Guideline: Use a union bound on all possible sequences of m = α�′ visits, and upper-
bound the probability of visiting W in steps j1, . . . , jm by applying Eq. (8.24) with
Wi = W if i ∈ { j1, . . . , jm} and W = V otherwise.

348



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NINE

Probabilistic Proof Systems

A proof is whatever convinces me.
Shimon Even (1935–2004)

The glory attached to the creativity involved in finding proofs makes us forget that it
is the less glorified process of verification that gives proofs their value. Conceptually
speaking, proofs are secondary to the verification process, whereas technically speaking,
proof systems are defined in terms of their verification procedures.

The notion of a verification procedure presumes the notion of computation and fur-
thermore the notion of efficient computation. This implicit stipulation is made explicit
in the definition of NP , where efficient computation is associated with deterministic
polynomial-time algorithms. However, as argued next, we can gain a lot if we are willing
to take a somewhat non-traditional step and allow probabilistic verification procedures.

In this chapter, we shall study three types of probabilistic proof systems, called inter-
active proofs, zero-knowledge proofs, and probabilistic checkable proofs. In each of these
three cases, we shall present fascinating results that cannot be obtained when considering
the analogous deterministic proof systems.

Summary: The association of efficient procedures with deterministic
polynomial-time procedures is the basis for viewing NP-proof systems
as the canonical formulation of proof systems (with efficient verifi-
cation procedures). Allowing probabilistic verification procedures and,
moreover, ruling by statistical evidence gives rise to various types of
probabilistic proof systems. Indeed, these probabilistic proof systems
carry a probability of error (which is explicitly bounded and can be
reduced by successive applications of the proof system), yet they of-
fer various advantages over the traditional (deterministic and errorless)
proof systems.

Randomized and interactive verification procedures, giving rise to inter-
active proof systems, seem much more powerful than their deterministic
counterparts. In particular, such interactive proof systems exist for any
set in PSPACE ⊇ coNP (e.g., for the set of unsatisfied propositional
formulae), whereas it is widely believed that some sets in coNP do not
have NP-proof systems (i.e., NP �= coNP). We stress that a “proof”
in this context is not a fixed and static object, but rather a randomized
(and dynamic) process in which the verifier interacts with the prover.

349



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Intuitively, one may think of this interaction as consisting of questions
asked by the verifier, to which the prover has to reply convincingly.

Such randomized and interactive verification procedures allow for the
meaningful conceptualization of zero-knowledge proofs, which are of
great theoretical and practical interest (especially in cryptography).
Loosely speaking, zero-knowledge proofs are interactive proofs that
yield nothing (to the verifier) beyond the fact that the assertion is in-
deed valid. For example, a zero-knowledge proof that a certain propo-
sitional formula is satisfiable does not reveal a satisfying assignment to
the formula nor any partial information regarding such an assignment
(e.g., whether the first variable can assume the value true). Thus, the
successful verification of a zero-knowledge proof exhibits an extreme
contrast between being convinced of the validity of a statement and
learning nothing else (while receiving such a convincing proof). It turns
out that, under reasonable complexity assumptions (i.e., assuming the
existence of one-way functions), every set in NP has a zero-knowledge
proof system.

NP-proofs can be efficiently transformed into a (redundant) form that
offers a trade-off between the number of locations (randomly) examined
in the resulting proof and the confidence in its validity. In particular,
it is known that any set in NP has an NP-proof system that supports
probabilistic verification such that the error probability decreases ex-
ponentially with the number of bits read from the alleged proof. These
redundant NP-proofs are called probabilistically checkable proofs (or
PCPs). In addition to their conceptually fascinating nature, PCPs are
closely related to the study of the complexity of numerous natural ap-
proximation problems.

Introduction and Preliminaries

Conceptually speaking, proofs are secondary to the verification process. Indeed, both
in mathematics and in real life, proofs are meaningful only with respect to commonly
agreed principles of reasoning, and the verification process amounts to checking that
these principles were properly applied. Thus, these principles, which are typically taken
for granted, are more fundamental than any specific proof that applies them; that is,
the mere attempt to reason about anything is based on commonly agreed principles of
reasoning.

The commonly agreed principles of reasoning are associated with a verification proce-
dure that distinguishes proper applications of these principles from improper ones. A line
of reasoning is considered valid with respect to such fixed principles (and is thus deemed
a proof) if and only if it proceeds by proper applications of these principles. Thus, a line of
reasoning is considered valid if and only if it is accepted by the corresponding verification
procedure. This means that, technically speaking, proofs are defined in terms of a prede-
termined verification procedure (or are defined with respect to such a procedure). Indeed,
this state of affairs is best illustrated in the formal study of proofs (i.e., logic), which is
actually the study of formally defined proof systems: The point is that these proof systems

350



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INTRODUCTION AND PRELIMINARIES

are defined (often explicitly and sometimes only implicitly) in terms of their verification
procedures.

The notion of a verification procedure presumes the notion of computation. This fact
explains the historical interest of logicians in computer science (cf. [225, 55]). Further-
more, the verification of proofs is supposed to be relatively easy, and hence, a natural
connection emerges between verification procedures and the notion of efficient computa-
tion. This connection was made explicit by complexity theorists, and is captured by the
definition of NP and NP-proof systems (cf. Definition 2.5), which targets all efficient
verification procedures.1

Recall that Definition 2.5 identifies efficient (verification) procedures with deterministic
polynomial-time algorithms, and that it explicitly restricts the length of proofs to be
polynomial in the length of the assertion. Thus, verification is performed in a number of
steps that is polynomial in the length of the assertion. We comment that deterministic
proof systems that allow for longer proofs (but require that verification is efficient in
terms of the length of the alleged proof) can be modeled as NP-proof systems by adequate
padding (of the assertion).

Indeed, NP-proofs provide the ultimate formulation of efficiently verifiable proofs
(i.e., proof systems with efficient verification procedures), provided that one associates
efficient procedures with deterministic polynomial-time algorithms. However, as we shall
see, we can gain a lot if we are willing to take a somewhat non-traditional step and allow
probabilistic (polynomial-time) algorithms and, in particular, probabilistic verification
procedures. In particular:

• Randomized and interactive verification procedures seem much more powerful than
their deterministic counterparts.

• Such interactive proof systems allow for the construction of (meaningful) zero-
knowledge proofs, which are of great conceptual and practical interest.

• NP-proofs can be efficiently transformed into a (redundant) form that supports super-
fast probabilistic verification via very few random probes into the alleged proof.

In all these cases, explicit bounds are imposed on the computational complexity of the
verification procedure, which in turn is personified by the notion of a verifier. Furthermore,
in all these proof systems, the verifier is allowed to toss coins and rule by statistical
evidence. Thus, all these proof systems carry a probability of error; yet, this probability
is explicitly bounded and, furthermore, can be reduced by successive application of the
proof system.

One important convention. When presenting a proof system, we state all complexity
bounds in terms of the length of the assertion to be proved (which is viewed as an input
to the verifier). Namely, when we say “polynomial time” we mean time that is polynomial
in the length of this assertion. Indeed, as will become evident, this is the natural choice in
all the cases that we consider. Note that this convention is consistent with the foregoing
discussion of NP-proof systems.2

1In contrast, traditional proof systems are formulated based on rules of inference that seem natural in the relevant
context. The fact that these inference rules yield an efficient verification procedure is merely a consequence of the
correspondence between processes that seem natural and efficient computation.

2Recall that Definition 2.5 refers to polynomial-time verification of alleged proofs, which in turn must have length
that is bounded by a polynomial in the length of the assertion.

351



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Notational conventions. We denote by poly the set of all integer functions that are
upper-bounded by a polynomial, and by log the set of all integer functions bounded
by a logarithmic function (i.e., f ∈ log if and only if f (n) = O(log n)). All complexity
measures mentioned in this chapter are assumed to be constructible in polynomial time.

Organization. In Section 9.1 we present the basic definitions and results regarding inter-
active proof systems. The definition of an interactive proof system is the starting point for a
discussion of zero-knowledge proofs, which is provided in Section 9.2. Section 9.3, which
presents the basic definitions and results regarding probabilistically checkable proofs
(PCP), can be read independently of the other sections.

Prerequisites. We assume a basic familiarity with elementary probability theory (see
Appendix D.1) and randomized algorithms (see Section 6.1).

9.1. Interactive Proof Systems

In light of the growing acceptability of randomized and interactive computations, it is only
natural to associate the notion of efficient computation with probabilistic and interactive
polynomial-time computations. This leads naturally to the notion of an interactive proof
system in which the verification procedure is interactive and randomized, rather than being
non-interactive and deterministic. Thus, a “proof” in this context is not a fixed and static
object, but rather a randomized (dynamic) process in which the verifier interacts with the
prover. Intuitively, one may think of this interaction as consisting of questions asked by
the verifier, to which the prover has to reply convincingly.

The foregoing discussion, as well as the definition provided in Section 9.1.2, makes
explicit reference to a prover, whereas a prover is only implicit in the traditional definitions
of proof systems (e.g., NP-proof systems). Before turning to the actual definition, we
highlight and further discuss this issue as well as some other conceptual issues.

9.1.1. Motivation and Perspective

We shall discuss the various interpretations given to the notion of a proof in different
human contexts, and the attitudes that underlie and/or accompany these interpretations.
This discussion is aimed at emphasizing that the motivation for the definition of interactive
proof systems is not to replace the notion of a mathematical proof, but rather to capture
other forms of proofs that are of natural interest. Specifically, we shall contrast “written
proofs” with “interactive proofs,” highlight the roles of the “prover” and the “verifier” in
any proof, and discuss the notions of completeness and soundness that underlie any proof.
(Some readers may find it useful to return to this section after reading Section 9.1.2.)

9.1.1.1. A Static Object Versus an Interactive Process
Traditionally in mathematics, a “proof” is a fixed sequence consisting of statements that
either are self-evident or are derived from previous statements via self-evident rules.
Actually, both conceptually and technically, it is more accurate to substitute for the phrase
“self-evident” the phrase “commonly agreed upon” (because, at the last account, self-
evidence is a matter of common agreement). In fact, in the formal study of proofs (i.e.,
logic), the commonly agreed upon statements are called axioms, whereas the commonly
agreed upon rules are referred to as derivation rules. We highlight a key property of
mathematical proofs: These proofs are fixed (static) objects.

352



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

In contrast, in other areas of human activity, the notion of a “proof” has a much wider
interpretation. In particular, in many settings, a proof is not a fixed object but rather a
process by which the validity of an assertion is established. For example, in the context of
law, withstanding a cross-examination by an opponent, who may ask tough and/or tricky
questions, is considered a proof of the facts claimed by the witness. Likewise, various
debates that take place in daily life have an analogous potential of establishing claims
and are then perceived as proofs. This perception is quite common in philosophical and
political debates, and applies even in scientific debates. Needless to say, a key property of
such debates is their interactive (“dynamic”) nature. Interestingly, the appealing nature
of such “interactive proofs” is reflected in the fact that they are mimicked (in a rigorous
manner) in some mathematical proofs by contradiction, which emulate an imaginary
debate with a potential (generic) skeptic.

Another difference between mathematical proofs and various forms of “daily proofs”
is that, while the former aim at certainty, the latter are intended (“only”) for establishing
claims beyond any reasonable doubt. Arguably, an explicitly bounded error probability
(as present in our definition of interactive proof systems) is an extremely strong form of
establishing a claim beyond any reasonable doubt.

We also note that, in mathematics, proofs are often considered more important than
their consequence (i.e., the theorem). In contrast, in many daily situations, proofs are
considered secondary (in importance) to their consequence. These conflicting attitudes
are well coupled with the difference between written proofs and “interactive” proofs: If
one values the proof itself, then one may insist on having it archived, whereas if one only
cares about the consequence, then the way in which it is reached is immaterial.

Interestingly, the foregoing set of daily attitudes (rather than the mathematical ones)
will be adequate in the current chapter, where proofs are viewed merely as a vehicle for
the verification of the validity of claims. (This attitude gets to an extreme in the case of
zero-knowledge proofs, where we actually require that the proofs themselves be useless
beyond being convincing of the validity of the claimed assertion.)

In general, we will be interested in modeling various forms of proofs that may occur
in the world, focusing on proofs that can be verified by automated procedures. These
verification procedures are designed to check the validity of potential proofs, and are
oblivious of additional features that may appeal to humans, such as beauty, insightfulness,
and so on. In the current section we will consider the most general form of proof systems
that still allow efficient verification.

We note that the proof systems that we study refer to mundane theorems (e.g., asserting
that a specific propositional formula is not satisfiable or that a party sent a message
as instructed by a predetermined protocol). We stress that the (meta) theorems that we
shall state regarding these proof systems will be proved in the traditional mathematical
sense.

9.1.1.2. Prover and Verifier
The wide interpretation of the notion of a proof system, which includes interactive pro-
cesses of verification, calls for the explicit introduction of two interactive players, called
the prover and the verifier. The verifier is the party that employs the verification proce-
dure, which underlies the definition of any proof system, while the prover is the party
that tries to convince the verifier. In the context of static (or non-interactive) proofs, the
prover is the transcendental entity providing the proof, and thus in this context the prover
is often not mentioned at all (when discussing the verification of alleged proofs). Still,

353



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

explicitly mentioning potential provers may be beneficial even when discussing such static
(non-interactive) proofs.

We highlight the “distrustful attitude” toward the prover, which underlies any proof sys-
tem. If the verifier trusts the prover, then no proof is needed. Hence, whenever discussing a
proof system, one should envision a setting in which the verifier is not trusting the prover,
and furthermore is skeptic of anything that the prover says. In such a setting the prover’s
goal is to convince the verifier, while the verifier should make sure that it is not fooled
by the prover. (See further discussion in §9.1.1.3.) Note that the verifier is “trusted” to
protect its own interests by employing the predetermined verification procedure; indeed,
the asymmetry with respect to whom we trust is an artifact of our focus on the verification
process (or task). In general, each party is trusted to protect its own interests (i.e., the
verifier is trusted to protect its own interests), but no party is trusted to protect the interests
of the other party (i.e., the prover is not trusted to protect the verifier’s interest in not being
fooled by the prover).

Another asymmetry between the two parties is that our discussion focuses on the
complexity of the verification task and ignores (as a first approximation) the complex-
ity of the proving task (which is only discussed in §9.1.5.1). Note that this asymmetry
is reflected in the definition of NP-proof systems; that is, verification is required to
be efficient, whereas for sets NP \ P finding adequate proofs is infeasible. Thus, as a
first approximation, we consider the question of what can be efficiently verified when
interacting with an arbitrary prover (which may be infinitely powerful). Once this ques-
tion is resolved, we shall also consider the complexity of the proving task (indeed, see
§9.1.5.1).

9.1.1.3. Completeness and Soundness
Two fundamental properties of a proof system (i.e., of a verification procedure) are
its soundness (or validity) and completeness. The soundness property asserts that the
verification procedure cannot be “tricked” into accepting false statements. In other words,
soundness captures the verifier’s ability to protect itself from being convinced of false
statements (no matter what the prover does in order to fool it). On the other hand,
completeness captures the ability of some prover to convince the verifier of true statements
(belonging to some predetermined set of true statements). Note that both properties are
essential to the very notion of a proof system.

We note that not every set of true statements has a “reasonable” proof system in
which each of these statements can be proved (while no false statement can be “proved”).
This fundamental phenomenon is given a precise meaning in results such as Gödel’s
Incompleteness Theorem and Turing’s theorem regarding the undecidability of the Halting
Problem. In contrast, recall that NP was defined as the class of sets having proof
systems that support efficient deterministic verification (of “written proofs”). This section
is devoted to the study of a more liberal notion of efficient verification procedures (allowing
both randomization and interaction).

9.1.2. Definition

Loosely speaking, an interactive proof is a “game” between a computationally bounded
verifier and a computationally unbounded prover whose goal is to convince the verifier of
the validity of some assertion. Specifically, the verifier employs a probabilistic polynomial-
time strategy (whereas no computational restrictions apply to the prover’s strategy). It is

354



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

required that if the assertion holds, then the verifier always accepts (i.e., when interacting
with an appropriate prover strategy). On the other hand, if the assertion is false then the
verifier must reject with probability at least 1

2 , no matter what strategy is being employed
by the prover. (The error probability can be reduced by running such a proof system
several times.)

We formalize the interaction between parties by referring to the strategies that the
parties employ.3 A strategy for a party is a function mapping the party’s view of the inter-
action so far to a description of this party’s next move; that is, such a strategy describes
(or rather prescribes) the party’s next move (i.e., its next message or its final decision) as
a function of the common input (i.e., the aforementioned assertion), the party’s internal
coin tosses, and all messages it has received so far. Note that this formulation presumes
(implicitly) that each party records the outcomes of its past coin tosses as well as all
the messages it has received, and determines its moves based on these. Thus, an inter-
action between two parties, employing strategies A and B, respectively, is determined
by the common input, denoted x , and the randomness of both parties, denoted rA and
rB . Assuming that A takes the first move (and B takes the last move), the correspond-
ing (t-round) interaction transcript (on common input x and randomness rA and rB) is
α1, β1, . . . , αt , βt , where αi = A(x, rA, β1, . . . , βi−1) and βi = B(x, rB, α1, . . . , αi ). The
corresponding final decision of A is defined as A(x, rA, β1, . . . , βt ).

We say that a party employs a probabilistic polynomial-time strategy if its next move
can be computed in a number of steps that is polynomial in the length of the common input.
In particular, this means that, on input common input x , the strategy may only consider
a polynomial in |x | many messages, which are each of poly(|x |) length.4 Intuitively, if
the other party exceeds an a priori (polynomial in |x |) bound on the total length of the
messages that it is allowed to send, then the execution is suspended. Thus, referring to
the aforementioned strategies, we say that A is a probabilistic polynomial-time strategy
if, for every i and rA, β1, . . . , βi , the value of A(x, rA, β1, . . . , βi ) can be computed in
time polynomial in |x |. Again, in proper use, it must hold that |rA|, t and the |βi |’s are all
polynomial in |x |.

Definition 9.1 (interactive proof system – IP): 5 An interactive proof system for a set
S is a two-party game, between a verifier executing a probabilistic polynomial-time
strategy, denoted V , and a prover that executes a (computationally unbounded)
strategy, denoted P, satisfying the following two conditions:

• Completeness: For every x ∈ S, the verifier V always accepts after interacting
with the prover P on common input x.

• Soundness: For every x �∈ S and every strategy P∗, the verifier V rejects with
probability at least 1

2 after interacting with P∗ on common input x.

We denote by IP the class of sets having interactive proof systems.

3An alternative formulation refers to the interactive machines that capture the behavior of each of the parties
(see, e.g., [91, Sec. 4.2.1.1]). Such an interactive machine invokes the corresponding strategy, while handling the
communication with the other party and keeping a record of all messages received so far.

4Needless to say, the number of internal coin tosses fed to a polynomial-time strategy must also be bounded by a
polynomial in the length of x .

5We follow the convention of specifying strategies for both the verifier and the prover. An alternative presentation
only specifies the verifier’s strategy, while rephrasing the completeness condition as follows: There exists a prover
strategy P such that, for every x ∈ S, the verifier V always accepts after interacting with P on common input x.

355



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

The error probability (in the soundness condition) can be reduced by successive applica-
tions of the proof system. (This is easy to see in the case of sequential repetitions, but
holds also for parallel repetitions; see Exercise 9.1.) In particular, repeating the proving
process for k times reduces the probability that the verifier is fooled (i.e., accepts a false
assertion) to 2−k , and we can afford doing so for any k = poly(|x |). Variants on the basic
definition are discussed in Section 9.1.4.

The role of randomness. Randomness is essential to the power of interactive proofs;
that is, restricting the verifier to deterministic strategies yields a class of interactive proof
systems that has no advantage over the class of NP-proof systems. The reason is that, in
case the verifier is deterministic, the prover can predict the verifier’s part of the interaction.
Thus, the prover can just supply its own sequence of answers to the verifier’s sequence of
(predictable) questions, and the verifier can just check that these answers are convincing.
Actually, we establish that soundness error (and not merely randomized verification) is
essential to the power of interactive proof systems (i.e., their ability to reach beyond
NP-proofs).

Proposition 9.2: Suppose that S has an interactive proof system (P, V ) with no
soundness error; that is, for every x �∈ S and every potential strategy P∗, the verifier
V rejects with probability one after interacting with P∗ on common input x. Then
S ∈ NP .

Proof: We may assume, without loss of generality, that V is deterministic (by just
fixing arbitrarily the contents of its random-tape (e.g., to the all-zero string) and
noting that both (perfect) completeness and perfect (i.e., errorless) soundness still
hold). Thus, the case of zero soundness error reduces to the case of deterministic
verifiers.

Now, since V is deterministic, the prover can predict each message sent by V ,
because each such message is uniquely determined by the common input and the
previous prover messages. Thus, a sequence of optimal prover’s messages (i.e., a
sequence of messages leading V to accept x ∈ S) can be (pre)determined (without
interacting with V ) based solely on the common input x .6 Hence, x ∈ S if and only if
there exists a sequence of (prover’s) messages that make (the deterministic) V accept
x , where the question of whether a specific sequence (of prover’s messages) makes
V accept x depends only on the sequence and on the common input x (because
V tosses no coins that may affect this decision).7 The foregoing condition can be
checked in polynomial time, and so a “passing sequence” constitutes an NP-witness
for x ∈ S. It follows that S ∈ NP .

Reflection. The moral of the reasoning underlying the proof Proposition 9.2 is that there
is no point to interact with a party whose moves are easily predictable, because such
moves can be determined without any interaction. This moral represents the prover’s point

6As usual, we do not care about the complexity of determining such a sequence, since no computational bounds
are placed on the prover.

7Recall that in the case that V is randomized, its final decision also depends on its internal coin tosses (and not
only on the common input and on the sequence of the prover’s messages). In that case, the verifier’s own messages
may reveal information about the verifier’s internal coin tosses, which in turn may help the prover to answer with
convincing messages.

356



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

of view (regarding interaction with deterministic verifiers). In contrast, even an infinitely
powerful party (e.g., a prover) may gain by interacting with an unpredictable party (e.g.,
a randomized verifier), because this interaction may provide useful information (e.g.,
information regarding the verifier’s coin tosses, which in turn allows the prover to increase
its probability of answering convincingly). Furthermore, from the verifier’s point of view
it is beneficial to interact with the prover, because the latter is computationally stronger
(and thus its moves may not be easily predictable by the verifier even in the case that they
are predictable in an information-theoretic sense).

9.1.3. The Power of Interactive Proofs

We have seen that randomness is essential to the power of interactive proof systems in the
sense that without randomness, interactive proofs are not more powerful than NP-proofs.
Indeed, the power of interactive proofs arises from the combination of randomization
and interaction. We first demonstrate this point by a simple proof system for a specific
coNP-set that is not known to have an NP-proof system, and next prove the celebrated
result IP = PSPACE , which suggests that interactive proofs are much stronger than
NP-proofs.

9.1.3.1. A Simple Example

One day on Olympus, bright-eyed Athena claimed that nectar poured
from new silver-coated jars tasted less sweet than nectar poured from
older gold-decorated jars. Mighty Zeus, who was forced to introduce
the new jars by the practically minded Hera, was annoyed at the claim.
He ordered that Athena be served one hundred glasses of nectar, each
poured at random either from an old jar or from a new one, and that
she tell the source of the drink in each glass. To everybody’s surprise,
wise Athena correctly identified the source of each serving, to which
the father of the gods responded, “My child, you are either right or
extremely lucky.” Since all the gods knew that being lucky was not one of
the attributes of Pallas-Athena, they all concluded that the impeccable
goddess was right in her claim.

The foregoing story illustrates the main idea underlying the interactive proof for Graph
Non-Isomorphism, presented in Construction 9.3. Informally, this interactive proof system
is designed for proving the dissimilarity of two given objects (in the foregoing story these
are the two brands of Nectar, whereas in Construction 9.3 these are two non-isomorphic
graphs). We note that, typically, proving similarity between objects is easy, because one
can present a mapping (of one object to the other) that demonstrates this similarity. In
contrast, proving dissimilarity seems harder, because in general there seems to be no
succinct proof of dissimilarity (e.g., clearly, showing that a particular mapping fails does
not suffice, while enumerating all possible mappings (and showing that each fails) does
not yield a succinct proof). More generally, it is typically easy to prove the existence of an
easily verifiable structure in a given object by merely presenting this structure, but proving
the non-existence of such a structure seems hard. Formally, membership in an NP-set is
proved by presenting an NP-witness, but it is not clear how to prove the non-existence of
such a witness. Indeed, recall that the common belief is that coNP �= NP .

357



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Two graphs, G1= (V1, E1) and G2= (V2, E2), are called isomorphic if there exists a
1-1 and onto mapping, φ, from the vertex set V1 to the vertex set V2 such that {u, v} ∈ E1

if and only if {φ(v), φ(u)} ∈ E2. This (“edge-preserving”) mapping φ, in case it exists,
is called an isomorphism between the graphs. The following protocol specifies a way of
proving that two graphs are not isomorphic, while it is not known whether such a statement
can be proved via a non-interactive process (i.e., via an NP-proof system).

Construction 9.3 (interactive proof for Graph Non-Isomorphism):

• Common Input: A pair of graphs, G1= (V1, E1) and G2= (V2, E2).
• Verifier’s first step (V1): The verifier selects at random one of the two input

graphs, and sends to the prover a random isomorphic copy of this graph. Namely,
the verifier selects uniformly σ ∈ {1, 2}, and a random permutation π from the
set of permutations over the vertex set Vσ . The verifier constructs a graph with
vertex set Vσ and edge set

E
def= {{π(u), π(v)} : {u, v}∈Eσ }

and sends (Vσ , E) to the prover.
• Motivating Remark: If the input graphs are non-isomorphic, as the prover claims,

then the prover should be able to distinguish (not necessarily by an efficient
algorithm) isomorphic copies of one graph from isomorphic copies of the other
graph. However, if the input graphs are isomorphic, then a random isomorphic
copy of one graph is distributed identically to a random isomorphic copy of the
other graph.

• Prover’s step: Upon receiving a graph, G ′ = (V ′, E ′), from the verifier, the prover
finds a τ ∈ {1, 2} such that the graph G ′ is isomorphic to the input graph Gτ .
(If both τ=1, 2 satisfy the condition then τ is selected arbitrarily. In case no
τ ∈ {1, 2} satisfies the condition, τ is set to 0). The prover sends τ to the verifier.

• Verifier’s second step (V2): If the message, τ , received from the prover equals σ

(chosen in Step V1) then the verifier outputs 1 (i.e., accepts the common input).
Otherwise the verifier outputs 0 (i.e., rejects the common input).

The verifier’s strategy in Construction 9.3 is easily implemented in probabilistic poly-
nomial time. We do not known of a probabilistic polynomial-time implementation of
the prover’s strategy, but this is not required. The motivating remark justifies the claim
that Construction 9.3 constitutes an interactive proof system for the set of pairs of non-
isomorphic graphs.8 Recall that the latter is a coNP-set (which is not known to be in
NP).

9.1.3.2. The Full Power of Interactive Proofs
The interactive proof system of Construction 9.3 refers to a specific coNP-set that is not
known to be in NP . It turns out that interactive proof systems are powerful enough to
prove membership in any coNP-set (e.g., prove that a graph is not 3-colorable). Thus,

8In case G1 is not isomorphic to G2, no graph can be isomorphic to both input graphs (i.e., both to G1 and to
G2). In this case the graph G ′ sent in Step (V1) uniquely determines the bit σ . On the other hand, if G1 and G2 are
isomorphic then, for every G ′ sent in Step (V1), the number of isomorphisms between G1 and G ′ equals the number
of isomorphisms between G2 and G ′. It follows that, in this case, G ′ yields no information about σ (chosen by the
verifier), and so no prover may convince the verifier with probability exceeding 1/2.

358



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

assuming that NP �= coNP , this establishes that interactive proof systems are more
powerful than NP-proof systems. Furthermore, the class of sets having interactive proof
systems coincides with the class of sets that can be decided using a polynomial amount
of work-space.

Theorem 9.4 (the IP Theorem): IP = PSPACE .

Recall that it is widely believed that NP is a proper subset of PSPACE . Thus, under
this conjecture, interactive proofs are more powerful than NP-proofs.

9.1.3.3. Sketch of the Proof of Theorem 9.4
We first show that coNP ⊆ IP by presenting an interactive proof system for the coNP-
complete set of unsatisfiable CNF formulae. Next we extend this proof system to obtain
one for thePSPACE-complete set of unsatisfiable Quantified Boolean Formulae. Finally,
we observe that IP ⊆ PSPACE . Indeed, proving that some coNP-complete set has an
interactive proof system is the core of the proof of Theorem 9.4 (see Exercise 9.2).

We show that the set of unsatisfiable CNF formulae has an interactive proof system
by using algebraic methods, which are applied to an arithmetic generalization of the said
Boolean problem (rather than to the problem itself). That is, in order to demonstrate that
this Boolean problem has an interactive proof system, we first introduce an arithmetic
generalization of CNF formulae, and then construct an interactive proof system for the
resulting arithmetic assertion (by capitalizing on the arithmetic formulation of the asser-
tion). Intuitively, we present an iterative process, which involves interaction between the
prover and the verifier, such that in each iteration the residual claim to be established
becomes simpler (i.e., contains one variable less). This iterative process seems to be en-
abled by the fact that the various claims refer to the arithmetic problem rather than to the
original Boolean problem. (Actually, one may say that the key point is that these claims
refer to a generalized problem rather than to the original one.)

Teaching note: We devote most of the presentation to establishing that coNP ⊆ IP , and
recommend doing the same in class. Our presentation focuses on the main ideas, and neglects
some minor implementation details (which can be found in [162, 202]).

The starting point. We prove that coNP ⊆ IP by presenting an interactive proof system
for the set of unsatisfiable CNF formulae, which is coNP-complete. Thus, our starting
point is a given Boolean CNF formula, which is claimed to be unsatisfiable.

Arithmetization of Boolean (CNF) formulae. Given a Boolean (CNF) formula, we
replace the Boolean variables by integer variables, and replace the logical operations
by corresponding arithmetic operations. In particular, the Boolean values false and
true are replaced by the integer values 0 and 1 (respectively), OR-clauses are replaced
by sums, and the top level conjunction is replaced by a product. This translation is
depicted in Figure 9.1. Note that the Boolean formula is satisfied (resp., unsatisfied) by a
specific truth assignment if and only if evaluating the resulting arithmetic expression at
the corresponding 0-1 assignment yields a positive (integer) value (resp., yields the value
zero). Thus, the claim that the original Boolean formula is unsatisfiable translates to the
claim that the summation of the resulting arithmetic expression, over all 0-1 assignments

359



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

BOOLEAN ARITHMETIC

variable values false, true 0, 1
connectives ¬x , ∨ and ∧ 1− x , + and ·
final values false, true 0, positive

Figure 9.1: Arithmetization of CNF formulae.

to its variables, yields the value zero. For example, the Boolean formula

(x3 ∨ ¬x5 ∨ x17) ∧ (x5 ∨ x9) ∧ (¬x3 ∨ ¬x4)

is replaced by the arithmetic expression

(x3 + (1− x5)+ x17) · (x5 + x9) · ((1− x3)+ (1− x4))

and the Boolean formula is unsatisfiable if and only if the sum of the corresponding
arithmetic expression, taken over all choices of x1, x2, . . . , x17 ∈ {0, 1}, equals 0. Thus,
proving that the original Boolean formula is unsatisfiable reduces to proving that the cor-
responding arithmetic summation evaluates to 0. We highlight two additional observations
regarding the resulting arithmetic expression:

1. The arithmetic expression is a low-degree polynomial over the integers; specifically,
its (total) degree equals the number of clauses in the original Boolean formula.

2. For any Boolean formula, the value of the corresponding arithmetic expression (for
any choice of x1, . . . , xn ∈ {0, 1}) resides within the interval [0, vm], where v is the
maximum number of variables in a clause, and m is the number of clauses. Thus,
summing over all 2n possible 0-1 assignments, where n ≤ vm is the number of
variables, yields an integer value in [0, 2nvm].

Moving to a finite field. In general, whenever we need to check equality between two
integers in [0, M], it suffices to check their equality mod q, where q > M . The benefit
is that, if q is prime, then the arithmetic is now in a finite field (mod q), and so certain
things are “nicer” (e.g., uniformly selecting a value). Thus, proving that a CNF formula
is not satisfiable reduces to proving an equality of the following form∑

x1=0,1

. . .
∑

xn=0,1

φ(x1, . . . , xn) ≡ 0 (mod q), (9.1)

where φ is a low-degree multivariate polynomial (and q can be represented using O(|φ|)
bits). In the rest of this exposition, all arithmetic operations refer to the finite field of q
elements, denoted GF(q).

Overview of the actual protocol: Stripping summations in iterations. Given a formal
expression as in Eq. (9.1), we strip off summations in iterations, stripping a single sum-
mation at each iteration, and instantiate the corresponding free variable as follows. At the
beginning of each iteration the prover is supposed to supply the univariate polynomial rep-
resenting the residual expression as a function of the (single) currently stripped variable.
(By Observation 1, this is a low-degree polynomial and so it has a short description.)9 The
verifier checks that the polynomial (say, p) is of low degree, and that it corresponds to the

9We also use Observation 2, which implies that we may use a finite field with elements having a description length
that is polynomial in the length of the original Boolean formula (i.e., log2 q = O(vm)).

360



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

current value (say, v) being claimed (i.e., it verifies that p(0)+ p(1) ≡ v). Next, the veri-
fier randomly instantiates the currently free variable (i.e., it selects uniformly r ∈ GF(q)),
yielding a new value to be claimed for the resulting expression (i.e., the verifier computes
v ← p(r ), and expects a proof that the residual expression equals v). The verifier sends
the uniformly chosen instantiation (i.e., r ) to the prover, and the parties proceed to the
next iteration (which refers to the residual expression and to the new value v). At the end
of the last iteration, the verifier has a closed form expression (i.e., an expression without
formal summations), which can be easily checked against the claimed value.

A single iteration (detailed): The i th iteration is aimed at proving a claim of the form∑
xi=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1, xi , xi+1, . . . , xn) ≡ vi−1 (mod q), (9.2)

where v0 = 0, and r1, . . . , ri−1 and vi−1 are as determined in previous iterations. The i th

iteration consists of two steps (messages): a prover step followed by a verifier step. The
prover is supposed to provide the verifier with the univariate polynomial pi that satisfies

pi (z)
def=

∑
xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1, z, xi+1, . . . , xn) mod q . (9.3)

Note that, module q, the value pi (0)+ pi (1) equals the l.h.s of Eq. (9.2). Denote by
p′i the actual polynomial sent by the prover (i.e., the honest prover sets p′i = pi ). Then,
the verifier first checks if p′i (0)+ p′i (1) ≡ vi−1 (mod q), and next uniformly selects
ri ∈ GF(q) and sends it to the prover. Needless to say, the verifier will reject if the first
check is violated. The claim to be proved in the next iteration is∑

xi+1=0,1

· · ·
∑

xn=0,1

φ(r1, . . . , ri−1, ri , xi+1, . . . , xn) ≡ vi (mod q), (9.4)

where vi
def= p′i (ri ) mod q is computed by each party.

Completeness of the protocol. When the initial claim (i.e., Eq. (9.1)) holds, the prover
can supply the correct polynomials (as determined in Eq. (9.3)), and this will lead the
verifier to always accept.

Soundness of the protocol. It suffices to upper-bound the probability that, for a particular
iteration, the entry claim (i.e., Eq. (9.2)) is false while the ending claim (i.e., Eq. (9.4)) is
valid. Indeed, let us focus on the i th iteration, and let vi−1 and pi be as in Eq. (9.2) and
Eq. (9.3), respectively; that is, vi−1 is the (wrong) value claimed at the beginning of the i th

iteration and pi is the polynomial representing the expression obtained when stripping the
current variable (as in Eq. (9.3)). Let p′i (·) be any potential answer by the prover. We may
assume, without loss of generality, that p′i (0)+ p′i (1) ≡ vi−1 (mod q) and that p′i is of
low-degree (since otherwise the verifier will definitely reject). Using our hypothesis (that
the entry claim of Eq. (9.2) is false), we know that pi (0)+ pi (1) �≡ vi−1 (mod q). Thus,
p′i and pi are different low-degree polynomials, and so they may agree on very few points
(if at all). Now, if the verifier’s instantiation (i.e., its choice of a random ri ) does not happen
to be one of these few points (i.e., pi (ri ) �≡ p′i (ri ) (mod q)), then the ending claim (i.e.,
Eq. (9.4)) is false too (because the new value (i.e., vi ) is set to p′i (ri ) mod q, while the
residual expression evaluates to pi (ri )). Details are left as an exercise (see Exercise 9.3).

This establishes that the set of unsatisfiable CNF formulae has an interactive proof
system. Actually, a similar proof system (which uses a related arithmetization – see

361



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Exercise 9.5) can be used to prove that a given formula has a given number of satisfying
assignments; i.e., prove membership in the (“counting”) set

{(φ, k) : |{τ : φ(τ ) = 1}| = k} . (9.5)

Using adequate reductions, it follows that every problem in #P has an interactive proof
system (i.e., for every R ∈ PC, the set {(x, k) : |{y : (x, y)∈ R}| = k} is in IP). Proving
that PSPACE ⊆ IP requires a little more work, as outlined next.

Obtaining interactive proofs for PSPACE (the basic idea). We present an interactive
proof for the set of satisfied Quantified Boolean Formulae (QBF), which is complete for
PSPACE (see Theorem 5.15).10 Recall that the number of quantifiers in such formulae is
unbounded (e.g., it may be polynomially related to the length of the input), that there are
both existential and universal quantifiers, and furthermore these quantifiers may alternate.
In the arithmetization of these formulae, we replace existential quantifiers by summations
and universal quantifiers by products. Two difficulties arise when considering the applica-
tion of the foregoing protocol to the resulting arithmetic expression. Firstly, the (integral)
value of the expression (which may involve a big number of nested formal products) is only
upper-bounded by a double-exponential function (in the length of the input). Secondly,
when stripping a summation (or a product), the expression may be a polynomial of high
degree (due to nested formal products that may appear in the remaining expression).11 For
example, both phenomena occur in the following expression∑

x=0,1

∏
y1=0,1

· · ·
∏

yn=0,1

(x + yn) ,

which equals
∑

x=0,1 x2n−1 · (1+ x)2n−1
. The first difficulty is easy to resolve by using the

fact (to be established in Exercise 9.7) that if two integers in [0, M] are different, then
they must be different modulo most of the primes in the interval [3, poly(log M)]. Thus,
we let the verifier selects a random prime q of length that is linear in the length of the
original formula, and the two parties consider the arithmetic expression reduced modulo
this q. The second difficulty is resolved by noting that PSPACE is actually reducible to a
special form of (non-canonical) QBF in which no variable appears both to the left and to the
right of more than one universal quantifier (see the proof of Theorem 5.15 or alternatively
Exercise 9.6). It follows that when arithmetizing and stripping summations (or products)
from the resulting arithmetic expression, the corresponding univariate polynomial is of
low degree (i.e., at most twice the length of the original formula, where the factor of two
is due to the single universal quantifier that has this variable quantified on its left and
appearing on its right).

10Actually, the following extension of the foregoing proof system yields a proof system for the set of unsatisfied
Quantified Boolean Formulae (which is also complete for PSPACE). Alternatively, an interactive proof system for
QBF can be obtained by extending the related proof system presented in Exercise 9.5.

11This high degree causes two difficulties, where only the second one is acute. The first difficulty is that the
soundness of the corresponding protocol will require working in a finite field that is sufficiently larger than this high
degree, but we can afford doing so (since the degree is at most exponential in the formula’s length). The second (and
more acute) difficulty is that the polynomial may have a large (i.e., exponential) number of non-zero coefficients and so
the verifier cannot afford to read the standard representation of this polynomial (as a list of all non-zero coefficients).
Indeed, other succinct and effective representations of such polynomials may exist in some cases (as in the following
example), but it is unclear how to obtain such representations in general.

362



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

IP is contained in PSPACE: We shall show that, for every interactive proof system, there
exists an optimal prover strategy that can be implemented in polynomial space, where an
optimal prover strategy is one that maximizes the probability that the prescribed verifier
accepts the common input. It follows that IP ⊆ PSPACE , because (for every S ∈ IP)
we can emulate, in polynomial space, all possible interactions of the prescribed verifier
with any fixed polynomial-space prover strategy (e.g., an optimal one).

Proposition 9.5: Let V be a probabilistic polynomial-time (verifier) strategy. Then,
there exists a polynomial-space computable (prover) strategy f that, for every x,
maximizes the probability that V accepts x. That is, for every P∗ and every x it holds
that the probability that V accepts x after interacting with P∗ is upper-bounded by
the probability that V accepts x after interacting with f .

Proof Sketch: For every common input x and any possible partial transcript γ of the
interaction so far, the strategy12 f determines an optimal next-message for the prover
by considering all possible coin tosses of the verifier that are consistent with (x, γ ).
Specifically, f is determined recursively such that f (x, γ ) = m if m maximizes
the number of outcomes of the verifier’s coin tosses that are consistent with (x, γ )
and lead the verifier to accept when subsequent prover moves are determined by
f (which is where recursion is used). That is, the verifier’s random sequence r
supports the setting f (x, γ ) = m, where γ = (α1, β1, . . . , αt , βt ), if the following
two conditions hold:

1. r is consistent with (x, γ ), which means that for every i ∈ {1, . . . , t} it holds that
βi = V (x, r, α1, . . . , αi ).

2. r leads V to accept when the subsequent prover moves are determined by f ,
which means at termination (i.e., after T rounds) it holds that

V (x, r, α1, . . . , αt , m, αt+2, . . . , αT ) = 1 ,

where for every i ∈ {t + 1, . . . , T − 1} it holds that αi+1 = f (x, γ, m, βt+1, . . . ,

αi , βi ) and βi = V (x, r, α1, . . . , αt , m, αt+2, . . . , αi ).

Thus, f (x, γ ) = m if m maximizes the value of E[ξ f,V (x, Rγ , γ, m)], where Rγ is
selected uniformly among the r ’s that are consistent with (x, γ ) and ξ f,V (x, r, γ, m)
indicates whether or not V accepts x in the subsequent interaction with f (which
refers to randomness r and partial transcript (γ, m)). It follows that the value f (x, γ )
can be computed in polynomial space when given oracle access to f (x, γ, ·, ·). The
proposition follows by standard composition of space-bounded computations (i.e.,
allocating separate space to each level of the recursion, while using the same space
in all recursive calls of each level).

9.1.4. Variants and Finer Structure: An Overview

In this subsection we consider several variants on the basic definition of interactive proofs
as well as finer complexity measures. This is an advanced subsection, which only provides
an overview of the various notions and results (as well as pointers to proofs of the latter).

12For the sake of convenience, when describing the strategy f , we refer to the entire partial transcript of the
interaction with V (rather than merely to the sequence of previous messages sent by V ).

363



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

9.1.4.1. Arthur-Merlin Games (Public-Coin Proof Systems)
The verifier’s messages in a general interactive proof system are determined arbitrarily
(but efficiently) based on the verifier’s view of the interaction so far (which includes
its internal coin tosses, which without loss of generality can take place at the onset of
the interaction). Thus, the verifier’s past coin tosses are not necessarily revealed by the
messages that it sends. In contrast, in public-coin proof systems (aka Arthur-Merlin proof
systems), the verifier’s messages contain the outcome of any coin that it tosses at the
current round. Thus, these messages reveal the randomness used toward generating them
(i.e., this randomness becomes public). Actually, without loss of generality, the verifier’s
messages can be identical to the outcome of the coins tossed at the current round (because
any other string that the verifier may compute based on these coin tosses is actually
determined by them).

Note that the proof systems presented in the proof of Theorem 9.4 are of the public-
coin type, whereas this is not the case for the Graph Non-Isomorphism proof system (of
Construction 9.3). Thus, although not all natural proof systems are of the public-coin
type, by Theorem 9.4 every set having an interactive proof system also has a public-coin
interactive proof system. This means that, in the context of interactive proof systems,
asking random questions is as powerful as asking clever questions. (A stronger statement
appears at the end of §9.1.4.3.)

Indeed, public-coin proof systems are interactive proof systems of a restricted form.
This restriction may make the design of such systems more difficult, but potentially
facilitates their analysis (and especially when the analysis refers to a generic system).
Another advantage of public-coin proof systems is that the verifier’s actions (except for its
final decision) are oblivious of the prover’s messages. This property is used in the proof
of Theorem 9.12.

9.1.4.2. Interactive Proof Systems with Two-Sided Error
In Definition 9.1 error probability is allowed in the soundness condition but not in the
completeness condition. In such a case, we say that the proof system has perfect com-
pleteness (or one-sided error probability). A more general definition allows an error
probability (upper-bounded by, say, 1/3) in both the completeness and the soundness
conditions. Note that sets having such generalized (two-sided error) interactive proofs are
also in PSPACE , and thus (by Theorem 9.4) allowing two-sided error does not increase
the power of interactive proofs. See further discussion at the end of §9.1.4.3.

9.1.4.3. A Hierarchy of Interactive Proof Systems
Definition 9.1 only refers to the total computation time of the verifier, and thus allows an
arbitrary (polynomial) number of messages to be exchanged. A finer definition refers to
the number of messages being exchanged (also called the number of rounds).13

Definition 9.6 (The round complexity of interactive proof):

• For an integer function m, the complexity class IP(m) consists of sets having an
interactive proof system in which, on common input x, at most m(|x |) messages
are exchanged between the parties.14

13An even finer structure emerges when considering also the total length of the messages sent by the prover
(see [106]).

14We count the total number of messages exchanged regardless of the direction of communication.

364



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

• For a set of integer functions, M, we let IP(M)
def= ⋃

m∈M IP(m). Thus, IP =
IP(poly).

For example, interactive proof systems in which the verifier sends a single message that is
answered by a single message of the prover corresponds to IP(2). Clearly, NP ⊆ IP(1),
yet the inclusion may be strict because in IP(1) the verifier may toss coins after receiving
the prover’s single message. (Also note that IP(0) = coRP .)

Definition 9.6 gives rise to a natural hierarchy of interactive proof systems, where
different “levels” of this hierarchy correspond to different “growth rates” of the round
complexity of these systems. The following results are known regarding this hierarchy.

• A linear speed-up (see Appendix F.2 (or [23] and [111])): For every integer function,
f , such that f (n) ≥ 2 for all n, the class IP(O( f (·))) collapses to the class IP( f (·)).
In particular, IP(O(1)) collapses to IP(2).

• The class IP(2) contains sets that are not known to be in NP; e.g., Graph Non-
Isomorphism (see Construction 9.3). However, under plausible intractability assump-
tions, IP(2) = NP (see [167]).

• If coNP ⊆ IP(2) then the Polynomial-time Hierarchy collapses (see [45]).

It is conjectured that coNP is not contained in IP(2), and consequently that interac-
tive proofs with an unbounded number of message exchanges are more powerful than
interactive proofs in which only a bounded (i.e., constant) number of messages are
exchanged.15

The class IP(1), also denoted MA, seems to be the “real” randomized (and yet
non-interactive) version of NP: Here, the prover supplies a candidate (polynomial-
size) “proof”, and the verifier assesses its validity probabilistically (rather than
deterministically).

The IP-hierarchy (i.e.,IP(·)) equals an analogous hierarchy, denotedAM(·), that refers
to public-coin (aka Arthur-Merlin) interactive proofs. That is, for every integer function f ,
it holds thatAM( f ) = IP( f ). For f ≥ 2, it is also the case thatAM( f ) = AM(O( f ));
actually, the aforementioned linear speed-up for IP(·) is established by combining the
following two results:

1. Emulating IP(·) by AM(·) (see Appendix F.2.1 or [111]): IP( f ) ⊆ AM( f + 3).
2. Linear speed-up for AM(·) (see Appendix F.2.2 or [23]): AM(2 f ) ⊆ AM( f + 1).

In particular, IP(O(1)) = AM(2), even if AM(2) is restricted such that the verifier
tosses no coins after receiving the prover’s message. (Note that IP(1) = AM(1) and
IP(0) = AM(0) are trivial.) We comment that it is common to shorthand AM(2) by
AM, which is indeed inconsistent with the convention of using IP as shorthand of
IP(poly).

The fact that IP(O( f )) = IP( f ) is proved by establishing an analogous result for
AM(·) demonstrates the advantage of the public-coin setting for the study of interactive
proofs. A similar phenomenon occurs when establishing that the IP-hierarchy equals an
analogous two-sided error hierarchy (see Exercise 9.8).

15Note that the linear speed-up cannot be applied for an unbounded number of times, because each application
may increase (e.g., square) the time complexity of verification.

365



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

9.1.4.4. Something Completely Different
We stress that although we have relaxed the requirements from the verification procedure
(by allowing it to interact with the prover, toss coins, and risk some (bounded) error
probability), we did not restrict the soundness of its verdict by assumptions concerning
the potential prover(s). This should be contrasted with other notions of proof systems,
such as computationally sound ones (see §9.1.5.2), in which the soundness of the verifier’s
verdict depends on assumptions concerning the potential prover(s).

9.1.5. On Computationally Bounded Provers: An Overview

Recall that our definition of interactive proofs (i.e., Definition 9.1) makes no refer-
ence to the computational abilities of the potential prover. This fact has two conflicting
consequences:

1. The completeness condition does not provide any upper bound on the complexity
of the corresponding proving strategy (which convinces the verifier to accept valid
assertions).

2. The soundness condition guarantees that, regardless of the computational effort spent
by a cheating prover, the verifier cannot be fooled into accepting invalid assertions
(with probability exceeding the soundness error).

Note that providing an upper bound on the complexity of the (prescribed) prover strategy
P of a specific interactive proof system (P, V ) only strengthens the claim that (P, V ) is a
proof system for the corresponding set (of valid assertions). We stress that the prescribed
prover strategy is referred to only in the completeness condition (and is irrelevant to the
soundness condition). On the other hand, relaxing the definition of interactive proofs such
that soundness holds only for a specific class of cheating prover strategies (rather than for
all cheating prover strategies) weakens the corresponding claim. In this advanced section
we consider both possibilities.

Teaching note: Indeed, this is an advanced subsection, which is best left for independent
reading. It merely provides an overview of the various notions, and the reader is directed to
the chapter’s notes for further detail (i.e., pointers to the relevant literature).

9.1.5.1. How Powerful Should the Prover Be?
Suppose that a set S is in IP . This means that there exists a verifier V that can be convinced
to accept any input in S but cannot be fooled into accepting any input not in S (except with
small probability). One may ask how powerful a prover should be such that it can convince
the verifier V to accept any input in S. Note that Proposition 9.5 asserts that an optimal
prover strategy (for convincing any fixed verifier V ) can be implemented in polynomial
space, and that we cannot expect any better for a generic set in PSPACE = IP (because
the emulation of the interaction of V with any optimal prover strategy yields a decision
procedure for the set). Still, we may seek better upper bounds on the complexity of some
prover strategy that convinces a specific verifier, which in turn corresponds to a specific
set S. More interestingly, considering all possible verifiers that give rise to interactive
proof systems for S, we wish to upper-bound the computational power that suffices for
convincing any of these verifiers (to accept any input in S).

366



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.1. INTERACTIVE PROOF SYSTEMS

We stress that, unlike the case of computationally sound proof systems (see §9.1.5.2),
we do not restrict the power of the prover in the soundness condition, but rather consider
the minimum complexity of provers meeting the completeness condition. Specifically,
we are interested in relatively efficient provers that meet the completeness condition. The
term “relatively efficient prover” has been given three different interpretations, which are
briefly surveyed next.

1. A prover is considered relatively efficient if, when given an auxiliary input (in addition
to the common input in S), it works in (probabilistic) polynomial time. Specifically,
in case S ∈ NP , the auxiliary input may be an NP-proof that the common input is
in the set. Still, even in this case the interactive proof need not consist of the prover
sending the auxiliary input to the verifier; for example, an alternative procedure may
allow the prover to be zero-knowledge (see Construction 9.10).

This interpretation is adequate and in fact crucial for applications in which such
an auxiliary input is available to the otherwise polynomial-time parties. Typically,
such auxiliary input is available in cryptographic applications in which parties wish
to prove in (zero-knowledge) that they have correctly conducted some computation.
In these cases, the NP-proof is just the transcript of the computation by which the
claimed result has been generated, and thus the auxiliary input is available to the party
that plays the role of the prover.

2. A prover is considered relatively efficient if it can be implemented by a probabilistic
polynomial-time oracle machine with oracle access to the set S itself. Note that the
prover in Construction 9.3 has this property (and see also Exercise 9.10).
This interpretation generalizes the notion of self-reducibility of NP-proof systems.
Recall that by self-reducibility of an NP-set (or rather of the corresponding NP-proof
system) we mean that the search problem of finding an NP-witness is polynomial-
time reducible to deciding membership in the set (cf. Definition 2.14). Here we
require that implementing the prover strategy (in the relevant interactive proof) be
polynomial-time reducible to deciding membership in the set.

3. A prover is considered relatively efficient if it can be implemented by a probabilistic
machine that runs in time that is polynomial in the deterministic complexity of the
set. This interpretation relates the time complexity of convincing a “lazy person” (i.e.,
a verifier) to the time complexity of determining the truth (i.e., deciding membership
in the set).

Hence, in contrast to the first interpretation, which is adequate in settings where
assertions are generated along with their NP-proofs, the current interpretation is
adequate in settings in which the prover is given only the assertion and has to find a
proof to it by itself (before trying to convince a lazy verifier of its validity).

9.1.5.2. Computational Soundness
Relaxing the soundness condition such that it only refers to relatively efficient ways of
trying to fool the verifier (rather than to all possible ways) yields a fundamentally different
notion of a proof system. The verifier’s verdict in such a system is not absolutely sound, but
is rather sound provided that the potential cheating prover does not exceed the presumed
complexity limits. As in §9.1.5.1, the notion of “relative efficiency” can be given different
interpretations, the most popular one being that the cheating prover strategy can be imple-
mented by a (non-uniform) family of polynomial-size circuits. The latter interpretation

367



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

coincides with the first interpretation used in §9.1.5.1 (i.e., a probabilistic polynomial-time
strategy that is given an auxiliary input (of polynomial length)). Specifically, in this case,
the soundness condition is replaced by the following computational soundness condition
that asserts that it is infeasible to fool the verifier into accepting false statements. Formally:

For every prover strategy that is implementable by a family of polynomial-
size circuits {Cn}, and every sufficiently long x ∈ {0, 1}∗ \ S, the proba-
bility that V accepts x when interacting with C|x | is less than 1/2.

As in the case of standard soundness, the computational-soundness error can be reduced
by repetitions. We warn, however, that unlike in the case of standard soundness (where
both sequential and parallel repetitions will do), the computational-soundness error cannot
always be reduced by parallel repetitions.

It is common and natural to consider proof systems in which the prover strategies
considered both in the completeness and soundness conditions satisfy the same notion
of relative efficiency. Protocols that satisfy these conditions with respect to the foregoing
interpretation are called arguments. We mention that argument systems may be more
efficient (e.g., in terms of their communication complexity) than interactive proof systems.

9.2. Zero-Knowledge Proof Systems

Standard mathematical proofs are believed to yield (extra) knowledge and not merely
establish the validity of the assertion being proved; that is, it is commonly believed that
(good) proofs provide a deeper understanding of the theorem being proved. At the technical
level, an NP-proof of membership in some set S ∈ NP \ P yields something (i.e., the
NP-proof itself) that is hard to compute (even when assuming that the input is in S). For
example, a 3-coloring of a graph constitutes an NP-proof that the graph is 3-colorable,
but it yields information (i.e., the coloring) that seems infeasible to compute (when given
an arbitrary 3-colorable graph).

A natural question that arises is whether or not proving an assertion always requires
giving away some extra knowledge. The setting of interactive proof systems enables a
negative answer to this fundamental question: In contrast to NP-proofs, which seem to
yield a lot of knowledge, zero-knowledge (interactive) proofs yield no knowledge at all;
that is, zero-knowledge proofs are both convincing and yet yield nothing beyond the validity
of the assertion being proved. For example, a zero-knowledge proof of 3-colorability does
not yield any information about the graph (e.g., partial information about a 3-coloring)
that is infeasible to compute from the graph itself. Thus, zero-knowledge proofs exhibit an
extreme contrast between being convincing (of the validity of an assertion) and teaching
anything on top of the validity of the assertion.

Needless to say, the notion of zero-knowledge proofs is fascinating (e.g., since it dif-
ferentiates proof-verification from learning). Still, the reader may wonder whether such
a phenomenon is desirable, because in many settings we do care to learn as much as
possible (rather than learn as little as possible). However, in other settings (most notably
in cryptography), we may actually wish to limit the gain that other parties may obtained
from a proof (and, in particular, limit this gain to the minimal level of being convinced
of the validity of the assertion). Indeed, the applicability of zero-knowledge proofs in
the domain of cryptography is vast; they are typically used as a tool for forcing (poten-
tially malicious) parties to behave according to a predetermined protocol (without having
them reveal their own private inputs). The interested reader is referred to discussions in

368



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

X

?
!

?
!

 !

??
X  is true!

Figure 9.2: Zero-knowledge proofs – an illustration.

§C.4.3.2 and §C.7.3.2 in Appendix C (and to detailed treatments in [91, 92]). We also men-
tion that, in addition to their direct applicability in cryptography, zero-knowledge proofs
serve as a good benchmark for the study of various questions regarding cryptographic
protocols.

Teaching note: We believe that the treatment of zero-knowledge proofs provided in this
section suffices for the purpose of a course in Complexity Theory. For an extensive treatment
of zero-knowledge proofs, the interested reader is referred to [91, Chap. 4].

9.2.1. Definitional Issues

Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity
of the assertion; that is, a verifier obtaining such a proof only gains conviction of the validity
of the assertion. This is formulated by saying that anything that can be feasibly obtained
from a zero-knowledge proof is also feasibly computable from the (valid) assertion itself.
The latter formulation follows the simulation paradigm, which is discussed next.

9.2.1.1. A Wider Perspective: The Simulation Paradigm
In defining zero-knowledge proofs, we view the verifier as a potential adversary that
tries to gain knowledge from the (prescribed) prover.16 We wish to state that no (feasible)
adversary strategy for the verifier can gain anything from the prover (beyond conviction
in the validity of the assertion). The question addressed here is how to formulate the “no
gain” requirement.

Let us consider the desired formulation from a wide perspective. A key question
regarding the modeling of security concerns is how to express the intuitive requirement
that an adversary “gains nothing substantial” by deviating from the prescribed behavior
of an honest user. The answer is that the adversary gains nothing if whatever it can
obtain by unrestricted adversarial behavior can be obtained within essentially the same
computational effort by a benign (or prescribed) behavior. The definition of the “benign
behavior” captures what we want to achieve in terms of security, and is specific to the

16Recall that when defining a proof system (e.g., an interactive proof system), we view the prover as a potential
adversary that tries to fool the (prescribed) verifier (into accepting invalid assertions).

369



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

security concern to be addressed. For example, in the context of zero-knowledge, a benign
behavior is any computation that is based (only) on the assertion itself (while assuming
that the latter is valid). Thus, a zero-knowledge proof is an interactive proof in which no
feasible adversarial verifier strategy can obtain from the interaction more than a “benign
party” (which believes the assertion) can obtain from the assertion itself.

The foregoing interpretation of “gaining nothing” means that any feasible adversarial
behavior can be “simulated” by a benign behavior (and thus there is no gain in the former).
This line of reasoning is called the simulation paradigm, and is pivotal to many definitions
in cryptography (e.g., it underlies the definitions of the security of encryption schemes
and cryptographic protocols); for further details, see Appendix C.

9.2.1.2. The Basic Definitions
We turn back to the concrete task of defining zero-knowledge. Firstly, we comment that
zero-knowledge is a property of some prover strategies; actually, more generally, zero-
knowledge is a property of some strategies. Fixing any strategy (e.g., a prescribed prover),
we consider what can be gained (i.e., computed) by an arbitrary feasible adversary (e.g.,
a verifier) that interacts with the aforementioned fixed strategy on a common input taken
from a predetermined set (in our case the set of valid assertions). This gain is compared
against what can be computed by an arbitrary feasible algorithm (called a simulator) that
is only given the input itself. The fixed strategy is zero-knowledge if the “computational
power” of these two (fundamentally different settings) is essentially equivalent. Details
follow.

The formulation of the zero-knowledge condition refers to two types of probability
ensembles, where each ensemble associates a single probability distribution with each
relevant input (e.g., a valid assertion). Specifically, in the case of interactive proofs, the
first ensemble represents the output distribution of the verifier after interacting with the
specified prover strategy P (on some common input), where the verifier is employing
an arbitrary efficient strategy (not necessarily the specified one). The second ensemble
represents the output distribution of some probabilistic polynomial-time algorithm (which
is only given the corresponding input (and does not interact with anyone)). The basic
paradigm of zero-knowledge asserts that for every ensemble of the first type there exist a
“similar” ensemble of the second type. The specific variants differ by the interpretation
given to the notion of similarity. The most strict interpretation, leading to perfect zero-
knowledge, is that similarity means equality.

Definition 9.7 (perfect zero-knowledge, oversimplified):17 A prover strategy, P, is
said to be perfect zero-knowledge over a set S if for every probabilistic polynomial-
time verifier strategy, V ∗, there exists a probabilistic polynomial-time algorithm,
A∗, such that

(P, V ∗)(x) ≡ A∗(x) , for every x ∈ S

where (P, V ∗)(x) is a random variable representing the output of verifier V ∗ after
interacting with the prover P on common input x, and A∗(x) is a random variable
representing the output of algorithm A∗ on input x.

17In the actual definition, one relaxes the requirement in one of the following two ways. The first alternative is
allowing A∗ to run for expected (rather than strict) polynomial time. The second alternative consists of allowing A∗

to have no output with probability at most 1/2 and considering the value of its output conditioned on it having output
at all. The latter alternative implies the former, but the converse is not known to hold.

370



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

We comment that any set in coRP has a perfect zero-knowledge proof system in which the
prover keeps silent and the verifier decides by itself. The same holds forBPP provided that
we relax the definition of an interactive proof system to allow two-sided error. Needless
to say, our focus is on non-trivial proof systems, that is, proof systems for sets outside of
BPP .

A somewhat more relaxed interpretation (of the notion of similarity), leading to almost-
perfect zero-knowledge (aka statistical zero-knowledge), is that similarity means statis-
tical closeness (i.e., negligible difference between the ensembles). The most liberal in-
terpretation, leading to the standard usage of the term zero-knowledge (and sometimes
referred to as computational zero-knowledge), is that similarity means computational
indistinguishability (i.e., failure of any efficient procedure to tell the two ensembles
apart). Combining the foregoing discussion with the relevant definition of computa-
tional indistinguishability (i.e., Definition C.5 in Appendix C.3), we obtain the following
definition.

Definition 9.8 (zero-knowledge, somewhat simplified): A prover strategy, P, is said
to be zero-knowledge over a set S if for every probabilistic polynomial-time verifier
strategy, V ∗, there exists a probabilistic polynomial-time simulator, A∗, such that
for every probabilistic polynomial-time distinguisher, D, it holds that

d(n)
def= max

x∈S∩{0,1}n
{|Pr[D(x, (P, V ∗)(x))=1]− Pr[D(x, A∗(x))=1]|}

is a negligible function.18 We denote by ZK the class of sets having zero-knowledge
interactive proof systems.

Definition 9.8 is a simplified version of the actual definition, which is presented in
Appendix C.4.2. Specifically, in order to guarantee that zero-knowledge is preserved under
sequential composition, it is necessary to slightly augment the definition (by providing
V ∗ and A∗ with the same value of an arbitrary (poly(|x |)-bit long) auxiliary input). Other
definitional issues and related notions are briefly discussed in Appendix C.4.4.

On the role of randomness and interaction. It can be shown that only sets in BPP
have zero-knowledge proofs in which the verifier is deterministic (see Exercise 9.13).
The same holds for deterministic provers, provided that we consider “auxiliary-input”
zero-knowledge (as in Definition C.9). It can also be shown that only sets in BPP have
zero-knowledge proofs in which a single message is sent (see Exercise 9.14). Thus, both
randomness and interaction are essential to the non-triviality of zero-knowledge proof
systems. (For further details, see [91, Sec. 4.5.1].)

Advanced comment: Knowledge Complexity. Zero-knowledge is the lowest level of a
knowledge-complexity hierarchy, which quantifies the “knowledge revealed in an inter-
action.” Specifically, the knowledge complexity of an interactive proof system may be
defined as the minimum number of oracle queries required in order to efficiently simulate
an interaction with the prover. (See [90, Sec. 2.3.1] for references.)

18That is, d vanishes faster that the reciprocal of any positive polynomial (i.e., for every positive polynomial p
and for sufficiently large n, it holds that d(n) < 1/p(n)). Needless to say, d(n)

def= 0 if S ∩ {0, 1}n = ∅.

371



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

9.2.2. The Power of Zero-Knowledge

When faced with a definition as complex (and seemingly self-contradictory) as that of
zero-knowledge, one should indeed wonder whether the definition can be met (in a non-
trivial manner).19 It turns out that the existence of non-trivial zero-knowledge proofs is
related to the existence of intractable problems in NP . In particular, we will show that
if one-way functions exist, then every NP-set has a zero-knowledge proof system. (For
the converse, see [91, Sec. 4.5.2] or [228].) But first, we demonstrate the non-triviality
of zero-knowledge by presenting a simple (perfect) zero-knowledge proof system for a
specific NP-set that is not known to be in BPP . In this case we make no intractability
assumptions (yet, the result is significant only if NP is not contained in BPP).

9.2.2.1. A Simple Example

A story not found in the Odyssey refers to the not-so-famous labyrinth of
the island of Aeaea. The sorceress Circe, daughter of Helius, challenged
godlike Odysseus to traverse the labyrinth from its north gate to its south
gate. Canny Odysseus doubted whether such a path existed at all and
asked beautiful Circe for a proof, to which she replied that showing him
a path would trivialize for him the challenge of traversing the labyrinth.
“Not necessarily,” clever Odysseus replied. “You can use your magic to
transport me to a random place in the labyrinth, and then guide me by
a random walk to a gate of my choice. If we repeat this enough times
then I’ll be convinced that there is a labyrinth-path between the two
gates, while you will not reveal to me such a path.” “Indeed,” wise Circe
thought to herself, “showing this mortal a random path from a random
location in the labyrinth to the gate he chooses will not teach him more
than his taking a random walk from that gate.”

The foregoing story illustrates the main idea underlying the zero-knowledge proof for
Graph Isomorphism presented next. Recall that the set of pairs of isomorphic graphs is
not known to be in BPP , and thus the straightforward NP-proof system (in which the
prover just supplies the isomorphism) may not be zero-knowledge. Furthermore, assuming
that Graph Isomorphism is not in BPP , this set has no zero-knowledge NP-proof system.
Still, as we shall shortly see, this set does have a zero-knowledge interactive proof system.

Construction 9.9 (zero-knowledge proof for Graph Isomorphism):

• Common Input: A pair of graphs, G1= (V1, E1) and G2= (V2, E2).

If the input graphs are indeed isomorphic, then we let φ denote an arbitrary
isomorphism between them; that is, φ is a 1-1 and onto mapping of the vertex set
V1 to the vertex set V2 such that {u, v} ∈ E1 if and only if {φ(v), φ(u)} ∈ E2.

• Prover’s first Step (P1): The prover selects a random isomorphic copy of G2,
and sends it to the verifier. Namely, the prover selects at random, with uniform
probability distribution, a permutation π from the set of permutations over the
vertex set V2, and constructs a graph with vertex set V2 and edge set

E
def= {{π(u), π(v)} : {u, v}∈E2} .

19Recall that any set in BPP has a trivial zero-knowledge (two-sided error) proof system in which the verifier just
determines membership by itself. Thus, the issue is the existence of zero-knowledge proofs for sets outside BPP .

372



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

The prover sends (V2, E) to the verifier.

• Motivating Remark: If the input graphs are isomorphic, as the prover claims,
then the graph sent in Step P1 is isomorphic to both input graphs. However, if
the input graphs are not isomorphic then no graph can be isomorphic to both of
them.

• Verifier’s first Step (V1): Upon receiving a graph, G ′ = (V ′, E ′), from the prover,
the verifier asks the prover to show an isomorphism between G ′ and one of the
input graphs, chosen at random by the verifier. Namely, the verifier uniformly
selects σ ∈ {1, 2}, and sends it to the prover (who is supposed to answer with an
isomorphism between Gσ and G ′).

• Prover’s second Step (P2): If the message, σ , received from the verifier equals 2
then the prover sends π to the verifier. Otherwise (i.e., σ �= 2), the prover sends
π ◦ φ (i.e., the composition of π on φ, defined as π ◦ φ(v)

def= π(φ(v))) to the
verifier.

(Indeed, the prover treats any σ �= 2 as σ = 1. Thus, in the analysis we shall
assume, without loss of generality, that σ ∈ {1, 2} always holds.)

• Verifier’s second Step (V2): If the message, denoted ψ , received from the prover
is an isomorphism between Gσ and G ′ then the verifier outputs 1, otherwise it
outputs 0.

The verifier strategy in Construction 9.9 is easily implemented in probabilistic polynomial
time. If the prover is given an isomorphism between the input graphs as auxiliary input,
then also the prover’s program can be implemented in probabilistic polynomial time. The
motivating remark justifies the claim that Construction 9.9 constitutes an interactive proof
system for the set of pairs of isomorphic graphs. Thus, we focus on establishing the
zero-knowledge property.

We consider first the special case in which the verifier actually follows the prescribed
strategy (and selects σ at random, and in particular obliviously of the graph G ′ it re-
ceives). The view of this verifier can be easily simulated by selecting σ and ψ at random,
constructing G ′ as a random isomorphic copy of Gσ (via the isomorphism ψ), and out-
putting the triple (G ′, σ, ψ). Indeed (even in this case), the simulator behaves differently
from the prescribed prover (which selects G ′ as a random isomorphic copy of G2, via
the isomorphism π), but its output distribution is identical to the verifier’s view in the
real interaction. However, the foregoing description assumes that the verifier follows the
prescribed strategy, while in general the verifier may (adversarially) select σ depending on
the graph G ′. Thus, a slightly more complicated simulation (described next) is required.

A general clarification may be in place. Recall that we wish to simulate the interaction
of an arbitrary verifier strategy with the prescribed prover. Thus, this simulator must
depend on the corresponding verifier strategy, and indeed we shall describe the simulator
while referring to such a generic verifier strategy. Formally, this means that the simulator’s
program incorporates the program of the corresponding verifier strategy. Actually, the
following simulator uses the generic verifier strategy as a subroutine.

Turning back to the specific protocol of Construction 9.9, the basic idea is that the
simulator tries to guess σ and completes a simulation if its guess turns out to be correct.
Specifically, the simulator selects τ ∈ {1, 2} uniformly (hoping that the verifier will later
select σ = τ ), and constructs G ′ by randomly permuting Gτ (and thus being able to
present an isomorphism between Gτ and G ′). Recall that the simulator is analyzed only

373



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

on yes-instances (i.e., the input graphs G1 and G2 are isomorphic). The point is that if
G1 and G2 are isomorphic, then the graph G ′ does not yield any information regarding
the simulator’s guess (i.e., τ ).20 Thus, the value σ selected by the adversarial verifier may
depend on G ′ but not on τ , which implies that Pr[σ =τ ] = 1/2. In other words, the
simulator’s guess (i.e., τ ) is correct (i.e., equals σ ) with probability 1/2. Now, if the guess
is correct then the simulator can produce an output that has the correct distribution, and
otherwise the entire process is repeated.

Digest: A few useful conventions. We highlight three conventions that were either used
(implicitly) in the foregoing analysis or can be used to simplify the description of (this
and/or) other zero-knowledge simulators.

1. Without loss of generality, we may assume that the cheating verifier strategy is imple-
mented by a deterministic polynomial-size circuit (or, equivalently, by a deterministic
polynomial-time algorithm with an auxiliary input).21

This is justified by fixing any outcome of the verifier’s coins, and observing that
our (“uniform”) simulation of the various (residual) deterministic strategies yields a
simulation of the original probabilistic strategy. Indeed, this justification relies on the
fact that the simulation refers to verifiers with arbitrary auxiliary inputs (of polynomial
length).

2. Without loss of generality, it suffices to consider cheating verifiers that (only) output
their view of the interaction (i.e., the common input, their internal coin tosses, and
the messages that they have received). In other words, it suffices to simulate the view
that cheating verifiers have of the real interaction.

This is justified by noting that the final output of any verifier can be obtained from its
view of the interaction, where the complexity of the transformation is upper-bounded
by the complexity of the verifier’s strategy.

3. Without loss of generality, it suffices to construct a “weak simulator” that produces
output with some noticeable22 probability such that whenever an output is produced it
is distributed “correctly” (i.e., similarly to the distribution occuring in real interactions
with the prescribed prover).

This is justified by repeatedly invoking such a weak simulator (polynomially) many
times and using the first output produced by any of these invocations. Note that by
using an adequate number of invocations, we fail to produce an output with negligible
probability. Furthermore, note that a simulator that fails to produce output with
negligible probability can be converted to a simulator that always produces an output,
while incurring a negligible statistic deviation in the output distribution.

9.2.2.2. The Full Power of Zero-Knowledge Proofs
The zero-knowledge proof system presented in Construction 9.9 refers to one specific
NP-set that is not known to be in BPP . It turns out that, under reasonable assumptions,

20Indeed, this observation is identical to the observation made in the analysis of the soundness of Construction 9.3.
21This observation is not crucial, but it does simplify the analysis (by eliminating the need to specify a sequence

of coin tosses in each invocation of the verifier’s strategy).
22Recall that a probability is called noticeable if it is greater than the reciprocal of some positive polynomial (in

the relevant parameter).

374



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

zero-knowledge can be used to prove membership in any NP-set. Intuitively, it suffices
to establish this fact for a single NP-complete set, and thus we focus on presenting a
zero-knowledge proof system for the set of 3-colorable graphs.

It is easy to prove that a given graph G is 3-colorable by just presenting a 3-coloring
of G (and the same holds for membership in any set in NP), but this NP-proof is not
a zero-knowledge proof (unless NP ⊆ BPP). In fact, assuming NP �⊆ BPP , graph
3-colorability has no zero-knowledge NP-proof system. Still, as we shall shortly see,
graph 3-colorability does have a zero-knowledge interactive proof system. This proof
system will be described while referring to “boxes” in which information can be hidden
and later revealed. Such boxes can be implemented using one-way functions (see, e.g.,
Theorem 9.11).

Construction 9.10 (Zero-knowledge proof of 3-colorability, abstract description):
The description refers to abstract non-transparent boxes that can be perfectly locked
and unlocked such that these boxes perfectly hide their contents while being locked.

• Common Input: A simple graph G= (V, E).
• Prover’s first step: Let ψ be a 3-coloring of G. The prover selects a random

permutation, π , over {1, 2, 3}, and sets φ(v)
def= π(ψ(v)), for each v ∈ V . Hence,

the prover forms a random relabeling of the 3-coloring ψ . The prover sends to
the verifier a sequence of |V | locked and non-transparent boxes such that the vth

box contains the value φ(v).
• Verifier’s first step: The verifier uniformly selects an edge {u, v} ∈ E, and sends

it to the prover.
• Motivating Remark: The boxes are supposed to contain a 3-coloring of the graph,

and the verifier asks to inspect the colors of vertices u and v. Indeed, for the
zero-knowledge condition, it is crucial that the prover only responds to pairs that
correspond to edges of the graph.

• Prover’s second step: Upon receiving an edge {u, v} ∈ E, the prover sends to the
verifier the keys to boxes u and v.

For simplicity of the analysis, if the verifier sends {u, v} �∈ E then the prover
behaves as if it has received a fixed (or random) edge in E, rather than suspending
the interaction, which would have been the natural thing to do.

• Verifier’s second step: The verifier unlocks and opens boxes u and v, and accepts
if and only if they contain two different elements in {1, 2, 3}.

The verifier strategy in Construction 9.10 is easily implemented in probabilistic polyno-
mial time. The same holds with respect to the prover’s strategy, provided that it is given
a 3-coloring of G as auxiliary input. Clearly, if the input graph is 3-colorable then the
verifier accepts with probability 1 when interacting with the prescribed prover. On the
other hand, if the input graph is not 3-colorable, then any contents put in the boxes must
be invalid with respect to at least one edge, and consequently the verifier will reject with
probability at least 1

|E | . Hence, the foregoing protocol exhibits a non-negligible gap in
the accepting probabilities between the case of 3-colorable graphs and the case of non-
3-colorable graphs. To increase the gap, the protocol may be repeated sufficiently many
times (of course, using independent coin tosses in each repetition).

So far we showed that Construction 9.10 constitutes (a weak form of) an interactive
proof system for Graph 3-Colorability. The point, however, is that the prescribed prover

375



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

strategy is zero-knowledge. This is easy to see in the abstract setting of Construction 9.10,
because all that the verifier sees in the real interaction is a sequence of boxes and a
random pair of different colors (which is easy to simulate). Indeed, the simulation of the
real interaction proceeds by presenting a sequence of boxes and providing a random pair
of different colors as the contents of the two boxes indicated by the verifier. Note that the
foregoing argument relies on the fact that the boxes (indicated by the verifier) correspond
to vertices that are connected by an edge in the graph.

This simple demonstration of the zero-knowledge property is not possible in the digital
implementation (discussed next), because in that case the boxes are not totally unaffected
by their contents (but are rather affected, yet in an indistinguishable manner). Thus, the
verifier’s selection of the inspected edge may depend on the “outside appearance” of the
various boxes, which in turn may depend (in an indistinguishable manner) on the contents
of these boxes. Consequently, we cannot determine the boxes’ contents after a pair of
boxes are selected, and so the simple foregoing simulation is inapplicable. Instead, we
simulate the interaction as follows.

1. We first guess (at random) which pair of boxes (corresponding to an edge) the verifier
would ask to open, and place a random pair of distinct colors in these boxes (and
garbage in the rest).23 Then, we hand all boxes to the verifier, which asks us to open a
pair of boxes (corresponding to an edge).

2. If the verifier asks for the pair that we chose (i.e., our guess is successful), then we can
complete the simulation by opening these boxes. Otherwise, we try again (i.e., repeat
Step 1 with a new random guess and random colors). The key observation is that if
the boxes hide the contents in the sense that the boxes’ contents are indistinguishable
based on their outside appearance, then our guess will succeed with probability
approximately 1/|E |. Furthermore, in this case, the simulated execution will be
indistinguishable from the real interaction.

Thus, it suffices to use boxes that hide their contents almost perfectly (rather than being
perfectly opaque). Such boxes can be implemented digitally.

Teaching note: Indeed, we recommend presenting and analyzing in class only the foregoing
abstract protocol. It suffices to briefly comment about the digital implementation, rather than
presenting a formal proof of Theorem 9.11 (which can be found in [100] (or [91, Sec. 4.4])).

Digital implementation (overview). We implement the abstract boxes (referred to in
Construction 9.10) by using adequately defined commitment schemes.

Loosely speaking, such a scheme is a two-phase game between a sender and a receiver
such that after the first phase the sender is “committed” to a value and yet, at this stage,
it is infeasible for the receiver to find out the committed value (i.e., the commitment is
“hiding”). The committed value will be revealed to the receiver in the second phase, and
it is guaranteed that the sender cannot reveal a value other than the one committed (i.e.,
the commitment is “binding”). Such commitment schemes can be implemented assuming
the existence of one-way functions (as in Definition 7.3); see §C.4.3.1 in Appendix C.

23An alternative (and more efficient) simulation consists of putting random independent colors in the various
boxes, hoping that the verifier asks for an edge that is properly colored. The latter event occurs with probability
(approximately) 2/3, provided that the boxes hide their contents (almost) perfectly.

376



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

Zero-knowledge proofs for other NP-sets. Using the fact that 3-colorability is NP-
complete, one can derive (from Construction 9.10) zero-knowledge proof systems for any
NP-set.24 Furthermore, NP-witnesses can be efficiently transformed into polynomial-size
circuits that implement the corresponding (prescribed zero-knowledge) prover strategies.

Theorem 9.11 (the ZK Theorem): Assuming the existence of (non-uniformly hard)
one-way functions, it holds that NP ⊆ ZK. Furthermore, every S ∈ NP has a
(computational) zero-knowledge interactive proof system in which the prescribed
prover strategy can be implemented in probabilistic polynomial time, provided that
it is given as auxiliary-input an NP-witness for membership of the common input
in S.

The hypothesis of Theorem 9.11 (i.e., the existence of one-way functions) seems un-
avoidable, because the existence of zero-knowledge proofs for “hard on the average”
problems implies the existence of one-way functions (and, likewise, the existence of zero-
knowledge proofs for sets outside BPP implies the existence of “auxiliary-input one-way
functions”).

Theorem 9.11 has a dramatic effect on the design of cryptographic protocols (see
Appendix C). In a different vein we mention that, under the same assumption, any interac-
tive proof can be transformed into a zero-knowledge one. (This transformation, however,
does not necessarily preserve the complexity of the prover.)

Theorem 9.12 (the ultimate ZK Theorem): Assuming the existence of (non-
uniformly hard) one-way functions, it holds that IP = ZK.

Loosely speaking, Theorem 9.12 can be proved by recalling that IP = AM(poly) and
modifying any public-coin protocol as follows: The modified prover sends commitments
to its messages rather than the messages themselves, and once the original interaction
is completed it proves (in zero-knowledge) that the corresponding transcript would have
been accepted by the original verifier. Indeed, the latter assertion is of the “NP type,” and
thus the zero-knowledge proof system guaranteed in Theorem 9.11 can be invoked for
proving it.

Reflection. The proof of Theorem 9.11 uses the fact that 3-colorability is NP-complete
in order to obtain a zero-knowledge proof for any set in NP by using such a protocol for
3-colorability (i.e., Construction 9.10). Thus, an NP-completeness result is used here in
a “positive” way, that is, in order to construct something rather than in order to derive a
(“negative”) hardness result (cf., Section 2.2.4).25

Perfect and Statistical Zero-Knowledge. The foregoing results, which refer to com-
putational zero-knowledge proof systems, should be contrasted with the known results

24Actually, we should either rely on the fact that the standard Karp-reductions are invertible in polynomial time
or on the fact that the 3-colorability protocol is actually zero-knowledge with respect to auxiliary inputs (as in
Definition C.9).

25Historically, the proof of Theorem 9.11 was probably the first positive application of NP-completeness. Sub-
sequent positive uses of completeness results have appeared in the context of interactive proofs (see the proof
of Theorem 9.4), probabilistically checkable proofs (see the proof of Theorem 9.16), and the study of statistical
zero-knowledge (cf. [227]).

377



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

regarding the complexity of statistical zero-knowledge proof systems: Statistical zero-
knowledge proof systems exist only for sets in IP(2) ∩ coIP(2), and thus are unlikely
to exist for all NP-sets. On the other hand, the class Statistical Zero-Knowledge is known
to contain some seemingly hard problems, and turns out to have interesting complexity-
theoretic properties (e.g., being closed under complementation, and having very natural
complete problems). The interested reader is referred to [227].

9.2.3. Proofs of Knowledge – A Parenthetical Subsection

Teaching note: Technically speaking, this topic belongs to Section 9.1, but its more in-
teresting demonstrations refer to zero-knowledge proofs of knowledge – hence its current
positioning.

Loosely speaking, “proofs of knowledge” are interactive proofs in which the prover asserts
“knowledge” of some object (e.g., a 3-coloring of a graph), and not merely its existence
(e.g., the existence of a 3-coloring of the graph, which in turn is equivalent to the assertion
that the graph is 3-colorable). Note that the entity asserting knowledge is actually the
prover’s strategy, which is an automated computing device, hereafter referred to as a
machine. This raises the question of what we mean by saying that a machine knows
something.

9.2.3.1. Abstract Reflections
Any standard dictionary suggests several meanings for the verb to know, but these are
typically phrased with reference to the notion of awareness, a notion that is certainly
inapplicable in the context of machines. Instead, we should look for a behavioristic
interpretation of the verb to know. Indeed, it is reasonable to link knowledge with the
ability to do something (e.g., the ability to write down whatever one knows). Hence, we
may say that a machine knows a string α if it can output the string α. But this seems as
total non-sense, too: A machine has a well defined output – either the output equals α or
it does not, so what can be meant by saying that a machine can do something?

Interestingly, a sound interpretation of the latter phrase does exist. Loosely speaking, by
saying that a machine can do something we mean that the machine can be easily modified
such that it (or rather its modified version) does whatever is claimed. More precisely, this
means that there exists an efficient machine that, using the original machine as a black-box
(or given its code as an input), outputs whatever is claimed.

Technically speaking, using a machine as a black-box seems more appealing when the
said machine is interactive (i.e., implements an interactive strategy). Indeed, this will be
our focus here. Furthermore, conceptually speaking, whatever a machine knows (or does
not know) is its own business, whereas what can be of interest and reference to the outside
is whatever can be deduced about the knowledge of a machine by interacting with it.
Hence, we are interested in proofs of knowledge (rather than in mere knowledge).

9.2.3.2. A Concrete Treatment
For sake of simplicity let us consider a concrete question: How can a machine prove
that it knows a 3-coloring of a graph? An obvious way is just sending the 3-coloring to

378



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.2. ZERO-KNOWLEDGE PROOF SYSTEMS

the verifier. Yet, we claim that applying the protocol in Construction 9.10 (i.e., the zero-
knowledge proof system for 3-Colorability) is an alternative way of proving knowledge
of a 3-coloring of the graph.

The definition of a verifier of knowledge of 3-coloring refers to any possible prover
strategy and links the ability to “extract” a 3-coloring (of a given graph) from such a
prover to the probability that this prover convinces the verifier. That is, the definition
postulates the existence of an efficient universal way of “extracting” a 3-coloring of a
given graph by using any prover strategy that convinces this verifier to accept this graph
with probability 1 (or, more generally, with some noticeable probability). On the other
hand, we should not expect this extractor to obtain much from prover strategies that fail
to convince the verifier (or, more generally, convince it with negligible probability). A
robust definition should allow a smooth transition between these two extremes (and in
particular between provers that convince the verifier with noticeable probability and those
that convince it with negligible probability). Such a definition should also support the
intuition by which the following strategy of Alice is zero-knowledge: Alice sends Bob a 3-
coloring of a given graph provided that Bob has successfully convinced her that he knows
this coloring.26 We stress that the zero-knowledge property of Alice’s strategy should
hold regardless of the proof-of-knowledge system used for proving Bob’s knowledge of a
3-coloring.

Loosely speaking, we say that a strategy, V , constitutes a verifier for knowledge of
3-coloring if, for any prover strategy P , the complexity of extracting a 3-coloring of
G when using P as a “black-box”27 is inversely proportional to the probability that V
is convinced by P (to accept the graph G). Namely, the extraction of the 3-coloring
is done by an oracle machine, called an extractor, that is given access to the strategy
P (i.e., the function specifying the message that P sends in response to any sequence
of messages it may receive). We require that the (expected) running time of the extrac-
tor, on input G and oracle access to P, be inversely related (by a factor polynomial in
|G|) to the probability that P convinces V to accept G. In particular, if P always con-
vinces V to accept G, then the extractor runs in expected polynomial time. The same
holds in case P convinces V to accept with noticeable probability. On the other hand,
if P never convinces V to accept, then nothing is required of the extractor. We stress
that the latter special cases do not suffice for a satisfactory definition; see discussion
in [91, Sec. 4.7.1].

Proofs of knowledge, and in particular zero-knowledge proofs of knowledge, have
many applications to the design of cryptographic schemes and cryptographic protocols
(see, e.g., [91, 92]). These are enabled by the following general result.

Theorem 9.13 (Theorem 9.11, revisited): Assuming the existence of (non-uniformly
hard) one-way functions, any NP-relation has a zero-knowledge proof of knowledge
(of corresponding NP-witnesses). Furthermore, the prescribed prover strategy can
be implemented in probabilistic polynomial time, provided it is given such an NP-
witness.

26For simplicity, the reader may consider graphs that have a unique 3-coloring (up to a relabeling). In general, we
refer here to instances that have unique solutions (cf. Section 6.2.3), which arise naturally in some (cryptographic)
applications.

27Indeed, one may consider also non-black-box extractors.

379



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

input

x verifier

direct  (oracle)  access

proof  (oracle)

Figure 9.3: The PCP model – an illustration.

9.3. Probabilistically Checkable Proof Systems

Teaching note: A probabilistically checkable proof (PCP) system may be viewed as a restricted
type of interactive proof system in which the prover is memoryless and responds to each verifier
message as if it were the first such message. This perspective creates a tighter link with previous
sections, but is somewhat contrived. Indeed, such a memoryless prover may be viewed as a
static object that the verifier may query at locations of its choice. But then it is more appealing
to present the model using the (more traditional) terminology of oracle machines, rather than
using (and degenerating) the terminology of interactive machines (or strategies).

Probabilistically checkable proof systems can be viewed as standard (deterministic) proof
systems that are augmented with a probabilistic procedure capable of evaluating the
validity of the assertion by examining few locations in the alleged proof. Actually, we
focus on the latter probabilistic procedure, which in turn implies the existence of a
deterministic verification procedure (obtained by going over all possible random choices
of the probabilistic procedure and making the adequate examinations).

Modeling such probabilistic verification procedures, which may examine few locations
in the alleged proof, requires providing these procedures with direct access to the individual
bits of the alleged proof (so that they need not scan the proof bit by bit). Thus, the
alleged proof is a string, as in the case of a traditional proof system, but the (probabilistic)
verification procedure is given direct access to individual bits of this string (see Figure 9.3).

We are interested in probabilistic verification procedures that access only few locations
in the proof, and yet are able to make a meaningful probabilistic verdict regarding the
validity of the alleged proof. Specifically, the verification procedure should accept any
valid proof (with probability 1), but reject with probability at least 1/2 any alleged proof
for a false assertion. Such probabilistic verification procedures are called probabilistically
checkable proof (PCP) systems.

380



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

The fact that one can (meaningfully) evaluate the correctness of proofs by examining
few locations in them is indeed amazing and somewhat counter-intuitive. Needless to
say, such proofs must be written in a somewhat non-standard format, because standard
proofs cannot be verified without reading them in full (since a flaw may be due to a single
improper inference). In contrast, proofs for a PCP system tend to be very redundant; they
consist of superfluously many pieces of information (about the claimed assertion), but their
correctness can be (meaningfully) evaluated by checking the consistency of a randomly
chosen collection of few related pieces. We stress that by a “meaningful evaluation” we
mean rejecting alleged proofs of false assertions with constant probability (rather than
with probability that is inversely proportional to the length of the alleged proof).

The main complexity measure associated with PCPs is indeed their query complexity.
Another complexity measure of natural concern is the length of the proofs being employed,
which in turn is related to the randomness complexity of the system. The randomness
complexity of PCPs plays a key role in numerous applications (e.g., in composing PCP
systems as well as when applying PCP systems to derive inapproximability results), and
thus we specify this parameter rather than the proof length.

Teaching note: Indeed, PCP systems are most famous for their role in deriving numerous
inapproximability results (see Section 9.3.3), but our view is that the latter is merely one
extremely important application of the fundamental notion of a PCP system. Our presentation
is organized accordingly.

9.3.1. Definition

Loosely speaking, a probabilistically checkable proof system consists of a probabilistic
polynomial-time verifier having access to an oracle that represents an alleged proof (in
redundant form). Typically, the verifier accesses only few of the oracle bits, and these bit
positions are determined by the outcome of the verifier’s coin tosses. As in the case of
interactive proof systems, it is required that if the assertion holds then the verifier always
accepts (i.e., when given access to an adequate oracle); whereas, if the assertion is false
then the verifier must reject with probability at least 1

2 , no matter which oracle is used.
The basic definition of the PCP setting is given in Part 1 of the following definition. Yet,
the complexity measures introduced in Part 2 are of key importance for the subsequent
discussions.

Definition 9.14 (probabilistically checkable proofs – PCP):

1. A probabilistically checkable proof system (PCP) for a set S is a probabilistic
polynomial-time oracle machine, called verifier and denoted V , that satisfies the
following two conditions:
{ Completeness: For every x ∈ S there exists an oracle πx such that, on input

x and access to oracle πx , machine V always accepts x.
{ Soundness: For every x �∈ S and every oracle π , on input x and access to

oracle π , machine V rejects x with probability at least 1
2 .

2. We say that a probabilistically checkable proof system has query complexity
q :N→N if, on any input of length n, the verifier makes at most q(n) oracle

381



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

queries.28 Similarly, the randomness complexity r :N→N upper-bounds the
number of coin tosses performed by the verifier on a generic n-bit long input.
For integer functions r and q, we denote by PCP(r, q) the class of sets having
probabilistically checkable proof systems of randomness complexity r and query
complexity q. For sets of integer functions, R and Q,

PCP(R, Q)
def=

⋃
r∈R , q∈Q

PCP(r, q) .

The error probability (in the soundness condition) of PCP systems can be reduced by
successive applications of the proof system. In particular, repeating the process for k
times reduces the probability that the verifier is fooled by a false assertion to 2−k , whereas
all complexities increase by at most a factor of k. Thus, PCP systems of non-trivial
query complexity (cf. Section 9.3.2) provide a trade-off between the number of locations
examined in the proof and the confidence in the validity of the assertion.

We note that the oracle πx referred to in the completeness condition of a PCP system
constitutes a proof in the standard mathematical sense. Indeed any PCP system yields
a standard proof system (with respect to a verification procedure that scans all possible
outcomes of V ’s internal coin tosses and emulates all the corresponding checks). Fur-
thermore, the oracles in PCP systems of logarithmic randomness complexity constitute
NP-proofs (see Exercise 9.15). However, the oracles of a PCP system have the extra re-
markable property of enabling a lazy verifier to toss coins, take its chances, and “assess”
the validity of the proof without reading all of it (but rather by reading a tiny portion of
it). Potentially, this allows the verifier to examine very few bits of an NP-proof and even
utilize very long proofs (i.e., of super-polynomial length).

Adaptive versus non-adaptive verifiers. Definition 9.14 allows the verifier to be adap-
tive; that is, the verifier may determine its queries based on the answers it has received to
previous queries (in addition to their dependence on the input and on the verifier’s internal
coin tosses). In contrast, non-adaptive verifiers determine all their queries based solely on
their input and internal coin tosses. Note that q adaptive (binary) queries can be emulated
by

∑q
i=1 2i−1 < 2q non-adaptive (binary) queries. We comment that most constructions

of PCP systems use non-adaptive verifiers, and in fact in many sources PCP systems are
defined as non-adaptive.

Randomness versus proof length. Fixing a verifier V , we say that location i (in the
oracle) is relevant to input x if there exists a computation of V on input x in which
location i is queried (i.e., there exists ω and π such that, on input x , randomness ω, and
access to the oracle π , the verifier queries location i). The effective proof length of V is the
smallest function � :N→N such that for every input x there are at most �(|x |) locations
(in the oracle) that are relevant to x . We claim that the effective proof length of any PCP
system is closely related to its randomness (and query) complexity. On the one hand, if
the PCP system has randomness complexity r and query complexity q, then its effective
proof length is upper-bounded by 2r+q , whereas a bound of 2r · q holds for non-adaptive
systems (see Exercise 9.15). Thus, PCP systems of logarithmic randomness complexity
have effective proof length that is polynomial, and hence yield NP-proof systems. On
the other hand, in some sense, the randomness complexity of a PCP system can be

28As usual in Complexity Theory, the oracle answers are binary values (i.e., either 0 or 1).

382



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

upper-bounded by the logarithm of the (effective) length of the proofs employed (provided
we allow non-uniform verifiers; see Exercise 9.16).

On the role of randomness. The PCP Theorem (i.e., NP ⊆ PCP(log, O(1))) asserts
that a meaningful probabilistic evaluation of proofs is possible based on a constant number
of examined bits. We note that, unless P = NP , such a phenomenon is impossible when
requiring the verifier to be deterministic. Firstly, note that PCP(0, O(1)) = P holds (as a
special case of PCP(r, q) ⊆ DTIME(22r q+r · poly); see Exercise 9.17). Secondly, as shown
in Exercise 9.19, P �= NP implies that NP is not contained in PCP(o(log), o(log)).
Lastly, assuming that not all NP-sets have NP-proof systems that employ proofs of length
� (e.g., �(n) = n), it follows that if 2r (n)q(n) < �(n) then PCP(r, q) does not contain NP
(see Exercise 9.17 again).

9.3.2. The Power of Probabilistically Checkable Proofs

The celebrated PCP Theorem asserts that NP = PCP(log, O(1)), and this result is
indeed the focus of the current section. But before getting to it we make several simple
observations regarding the PCP hierarchy.

We first note that PCP(poly, 0) equals coRP , whereas PCP(0, poly) equals NP .
It is easy to prove an upper bound on the non-deterministic time complexity of sets in the
PCP hierarchy (see Exercise 9.17):

Proposition 9.15 (upper bounds on the power of PCPs): For every polynomially
bounded integer function r , it holds that PCP(r, poly) ⊆ NTIME(2r · poly). In
particular, PCP(log, poly) ⊆ NP .

The focus on PCP systems of logarithmic randomness complexity reflects an interest
in PCP systems that utilize proof oracles of polynomial length (see discussion in Sec-
tion 9.3.1). We stress that such PCP systems (i.e., PCP(log, q)) are NP-proof systems
with a (potentially amazing) extra property: The validity of the assertion can be “proba-
bilistically evaluated” by examining a (small) portion (i.e., q(n) bits) of the proof. Thus,
for any fixed polynomially bounded function q, a result of the form

NP ⊆ PCP(log, q) (9.6)

is interesting (because it applies also to NP-sets having witnesses of length exceeding q).
Needless to say, the smaller q – the better. The PCP Theorem asserts the amazing fact by
which q can be made a constant.

Theorem 9.16 (the PCP Theorem): NP ⊆ PCP(log, O(1)).

Thus, probabilistically checkable proofs in which the verifier tosses only logarithmically
many coins and makes only a constant number of queries exist for every set in NP . This
constant is essentially three (see §9.3.4.1). Before reviewing the proof of Theorem 9.16,
we make a couple of comments.

Efficient transformation of NP-witnesses to PCP oracles. The proof of Theorem 9.16
is constructive in the sense that it allows for efficiently transforming any NP-witness
(for an instance of a set in NP) into an oracle that makes the PCP verifier accept (with

383



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

probability 1). That is, for every (NP-witness relation) R ∈ PC there exists a PCP verifier
V as in Theorem 9.16 and a polynomial-time computable function π such that for every
(x, y)∈ R the verifier V always accepts the input x when given oracle access to the proof
π(x, y) (i.e., Pr[V π(x,y)(x)=1] = 1). Recalling that the latter oracles are themselves NP-
proofs, it follows that NP-proofs can be transformed into NP-proofs that offer a trade-off
between the portion of the proof being read and the confidence it offers. Specifically, for
every ε > 0, if one is willing to tolerate an error probability of ε then it suffices to examine
O(log(1/ε)) bits of the (transformed) NP-proof. Indeed (as discussed in Section 9.3.1),
these bit locations need to be selected at random.

The foregoing strengthening of Theorem 9.16 offers a wider range of applications than
Theorem 9.16 itself. Indeed, Theorem 9.16 itself suffices for “negative” applications such
as establishing the infeasibility of certain approximation problems (see Section 9.3.3).
But for “positive” applications (see §9.3.4.2), typically some user (or a real entity) will
be required to actually construct the PCP-oracle, and in such cases the strengthening of
Theorem 9.16 will be useful.

A characterization of NP. Combining Theorem 9.16 with Proposition 9.15 we obtain
the following characterization of NP .

Corollary 9.17 (the PCP characterization of NP): NP = PCP(log, O(1)).

Road map for the proof of the PCP Theorem. Theorem 9.16 is a culmination of a
sequence of remarkable works, each establishing meaningful and increasingly stronger
versions of Eq. (9.6). A presentation of the full proof of Theorem 9.16 is beyond the scope
of the current work (and is, in our opinion, unsuitable for a basic course in Complexity
Theory). Instead, we present an overview of the original proof (see §9.3.2.2) as well as
of an alternative proof (see §9.3.2.3), which was found more than a decade later. We will
start, however, by presenting a weaker result that is used in both proofs of Theorem 9.16
and is also of independent interest. This weaker result (see §9.3.2.1) asserts that every NP-
set has a PCP system with constant query complexity (albeit with polynomial randomness
complexity); that is, NP ⊆ PCP(poly, O(1)).

Teaching note: In our opinion, presenting in class any part of the proof of the PCP Theorem
should be given low priority. In particular, presenting the connections between PCP and the
complexity of approximation should be given a higher priority. As for relative priorities among
the following three subsections, we strongly recommend giving §9.3.2.1 the highest priority,
because it offers a direct demonstration of the power of PCPs. As for the two alternative proofs
of the PCP Theorem itself, our recommendation depends on the intended goal. On the one
hand, for the purpose of merely giving a taste of the ideas involved in the proof, we prefer an
overview of the original proof (provided in §9.3.2.2). On the other hand, for the purpose of
actually providing a full proof, we definitely prefer the new proof (which is only outlined in
§9.3.2.3).

9.3.2.1. Proving That NP ⊆ PCP(poly, O(1))
The fact that every NP-set has a PCP system with constant query complexity (regardless
of its randomness complexity) already testifies to the power of PCP systems. It asserts
that probabilistic verification of proofs is possible by inspecting very few locations in a

384



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

(potentially huge) proof. Indeed, the PCP systems presented next utilize exponentially long
proofs, but they do so while inspecting these proofs at a constant number of (randomly
selected) locations.

We start with a brief overview of the construction. We first note that it suffices to
construct a PCP for proving the satisfiability of a given system of quadratic equations over
GF(2), because this problem is NP-complete (see Exercise 2.25).29 For an input consisting
of a system of quadratic equations with n variables, the oracle (of this PCP) is supposed
to provide the evaluation of all quadratic expressions (in these n variables) at some
fixed assignment to these variables. This assignment is supposed to satisfy the system of
quadratic equations that is given as input. We distinguish two tables in the oracle: the first
table corresponding to all 2n linear expressions and the second table to all 2n2

quadratic
expressions. Each table is tested for self-consistency (via a “linearity test”), and the two
tables are tested to be consistent with each other (via a “matrix-equality” test, which utilizes
“self-correction”). Finally, we test that the assignment encoded in these tables satisfies the
quadratic system that is given as input. This is done by taking a random linear combination
of the quadratic equations that appear in the quadratic system, and obtaining the value
assigned to the corresponding quadratic expression by the aforementioned tables (again,
via self-correction). The key point is that each of the foregoing tests utilizes a constant
number of Boolean queries, and has time (and randomness) complexity that is polynomial
in the size of the input. Details follow.

Teaching note: The following text refers to notions such as the Hadamard encod-
ing, testing, and self-correction, which appear in other parts of this work (see, e.g.,
§E.1.2.2 in Appendix E, Section 10.1.2. and §7.2.1.1, respectively). While a wider perspective
(provided in the aforementioned parts) is always useful, the current text is self-contained.

The starting point. We construct a PCP system for the set of satisfiable quadratic equa-
tions over GF(2). The input is a sequence of such equations over the variables x1, . . . , xn ,
and the proof oracle consists of two parts (or tables), which are supposed to provide
information regarding some satisfying assignment τ = τ1 · · · τn (also viewed as an n-ary
vector over GF(2)). The first part, denoted T1, is supposed to provide a Hadamard encod-
ing of the said satisfying assignment; that is, for every α ∈ GF(2)n this table is supposed
to provide the inner product mod 2 of the n-ary vectors α and τ (i.e., T1(α) is supposed
to equal

∑n
i=1 αiτi ). The second part, denoted T2, is supposed to provide all linear com-

binations of the values of the τiτ j ’s; that is, for every β ∈ GF(2)n2
(viewed as an n-by-n

matrix over GF(2)), the value of T2(β) is supposed to equal
∑

i, j βi, jτiτ j . (Indeed, T1 is
contained in T2, because σ 2 = σ for any σ ∈ GF(2).) The PCP verifier will use the two
tables for checking that the input (i.e., a sequence of quadratic equations) is satisfied by
the assignment that is encoded in the two tables. Needless to say, these tables may not
be a valid encoding of any n-ary vector (let alone one that satisfies the input), and so the
verifier also needs to check that the encoding is (close to being) valid. We will focus on
this task first.

Testing the Hadamard code. Note that T1 is supposed to encode a linear function; that
is, there must exist some τ = τ1 · · · τn ∈ GF(2)n such that T1(α) =∑n

i=1 τiαi holds for

29Here and elsewhere, we denote by GF(2) the 2-element field.

385



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

every α = α1 · · ·αn ∈ GF(2)n . This can be tested by selecting uniformly α′, α′′ ∈ GF(2)n

and checking whether T1(α′)+ T1(α′′) = T1(α′ + α′′), where α′ + α′′ denotes addition
of vectors over GF(2). The analysis of this natural tester turns out to be quite complex.
Nevertheless, it is indeed the case that any table that is 0.02-far from being linear is
rejected with probability at least 0.01 (see Exercise 9.20), where T is ε-far from being
linear if T disagrees with any linear function f on more than an ε fraction of the domain
(i.e., Prr [T (r ) �= f (r )] > ε).

By repeating the linearity test for a constant number of times, we may reject each table
that is 0.02-far from being a codeword of the Hadamard code with probability at least
0.99. Thus, using a constant number of queries, the verifier rejects any T1 that is 0.02-far
from being a Hadamard encoding of any τ ∈ GF(2)n , and likewise rejects any T2 that is
0.02-far from being a Hadamard encoding of any τ ′ ∈ GF(2)n2

. We may thus assume that
T1 (resp., T2) is 0.02-close to the Hadamard encoding of some τ (resp., τ ′).30 (Needless to
say, this does not mean that τ ′ equals the outer product of τ with itself (i.e., τ ′i, j does not
necessarily equal τiτ j ).)

In the rest of the analysis, we fix τ ∈ GF(2)n and τ ′ ∈ GF(2)n2
, and denote the Hadamard

encoding of τ (resp., τ ′) by fτ :GF(2)n→GF(2) (resp., fτ ′ :GF(2)n2→GF(2)). Recall that
T1 (resp., T2) is 0.02-close to fτ (resp., fτ ′).

Self-correction of the Hadamard code. Suppose that T is ε-close to a linear function
f :GF(2)m→GF(2) (i.e., Prr [T (r ) �= f (r )] ≤ ε). Then, we can recover the value of f at
any desired point x , by making two (random) queries to T . Specifically, for a uniformly
selected r ∈ GF(2)m , we use the value T (x + r )− T (r ). Note that the probability that
we recover the correct value is at least 1− 2ε, because Prr [T (x + r )− T (r ) = f (x +
r )− f (r )] ≥ 1− 2ε and f (x + r )− f (r ) = f (x) by linearity of f . (Needless to say,
for ε < 1/4, the function T cannot be ε-close to two different linear functions.)31 Thus,
assuming that T1 is 0.02-close to fτ (resp., T2 is 0.02-close to fτ ′), we may correctly
recover (i.e., with error probability 0.04) the value of fτ (resp., fτ ′) at any desired point
by making 2 queries to T1 (resp., T2). This process is called self-correction (cf., e.g.,
§7.2.1.1).

Checking consistency of fτ and fτ ′ . Suppose that we are given access to fτ : GF(2)n →
GF(2) and fτ ′ : GF(2)n2 → GF(2), where fτ (α) =∑

i τiαi and fτ ′(α′) =
∑

i, j τ ′i, jα
′
i, j ,

and that we wish to verify that τ ′i, j = τiτ j for every i, j ∈ {1, . . . , n}. In other words, we
are given a (somewhat weird) encoding of two matrices, A = (τiτ j )i, j and A′ = (τ ′i, j )i, j ,
and we wish to check whether or not these matrices are identical. It can be shown
(see Exercise 9.22) that if A �= A′ then Prr,s[r,As �= r,A′s] ≥ 1/4, where r and s are
uniformly distributed n-ary vectors. Note that, in our case (where A = (τiτ j )i, j and
A′ = (τ ′i, j )i, j ), it holds that r,As =∑

j (
∑

i riτiτ j )s j = fτ (r ) fτ (s) (see Figure 9.4) and
r,A′s =∑

j (
∑

i riτ
′
i, j )s j = fτ ′(rs,), where rs, is the outer-product of s and r . Thus,

(for (τiτ j )i, j �= (τ ′i, j )i, j ) we have Prr,s[ fτ (r ) fτ (s) �= fτ ′(rs,)] ≥ 1/4.
Recall, however, that we do not have direct access to the functions fτ and fτ ′ , but

rather to tables (i.e., T1 and T2) that are 0.02-close to these functions. Still, using

30Note that τ (resp., τ ′) is uniquely determined by T1 (resp., T2), because every two different linear functions
GF(2)m → GF(2) agree on exactly half of the domain (i.e., the Hadamard code has relative distance 1/2).

31Indeed, this fact follows from the self-correction argument, but a simpler proof merely refers to the fact that the
Hadamard code has relative distance 1/2.

386



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

= = f (r)  f (s) 

srr s

.
τ τ

τA τ

Figure 9.4: Detail for testing consistency of linear and quadratic forms.

self-correction, we can obtain the values of fτ and fτ ′ at any desired point, with very
high probability. Actually, when implementing the foregoing consistency test it suffices
to use self-correction only for fτ ′ , because we use the values of fτ at two independently
and uniformly distributed points in GF(2)n (i.e., r and s), whereas the value fτ ′ is re-
quired at rs,, which is not uniformly distributed in GF(2)n2

. Thus, we test the consistency
of fτ and fτ ′ by selecting uniformly r, s ∈ GF(2)n and R ∈ GF(2)n2

, and checking that
T1(r )T1(s) = T2(rs, + R)− T2(R).

By repeating the aforementioned (self-corrected) consistency test for a constant number
of times, we may reject an inconsistent pair of tables with probability at least 0.99. Thus,
in the rest of the analysis, we may assume that (τiτ j )i, j = (τ ′i, j )i, j .

Checking that τ satisfies the quadratic system. Suppose that we are given access to fτ
and fτ ′ as in the foregoing (where, in particular, τ ′ = ττ,). A key observation is that if τ

does not satisfy a system of (quadratic) equations then, with probability 1/2, it does not
satisfy a random linear combination of these equations. Thus, in order to check whether τ

satisfies the quadratic system (which is given as input), we create a single quadratic
equation by taking such a random linear combination, and check whether this
quadratic equation is satisfied by τ . The punch line is that testing whether τ satisfies
the quadratic equation Q(x) = σ amounts to testing whether fτ ′(Q) = σ . Again, the
actual checking is implemented by using self-correction (of the table T2).

This completes the description of the verifier. Note that this verifier performs a constant
number of codeword tests for the Hadamard code, and a constant number of consistency
and satisfiability tests, where each of the latter involves self-correction of the Hadamard
code. Each of the individual tests utilizes a constant number of queries (ranging between
two and four) and uses randomness that is quadratic in the number of variables (and linear
in the number of equations in the input). Thus, the query complexity is a constant and the
randomness complexity is at most quadratic in the length of the input (quadratic system).
Clearly, if the input quadratic system is satisfiable (by some τ ), then the verifier accepts
the corresponding tables T1 and T2 (i.e., T1 = fτ and T2 = fττ,) with probability 1. On
the other hand, if the input quadratic system is unsatisfiable, then any pair of tables (T1, T2)
will be rejected with constant probability (by one of the foregoing tests). It follows that
NP ⊆ PCP(q, O(1)), where q is a quadratic polynomial.

Reflection. Indeed, the actual test of the satisfiability of the quadratic system that is given
as input is facilitated by the fact that a satisfying assignment is encoded (in the oracle)
in a very redundant manner, which fits the final test of satisfiability. But then the burden
of testing moves to checking that this encoding is indeed valid. In fact, most of the tests
performed by the foregoing verifier are aimed at verifying the validity of the encoding.
Such a test of validity (of encoding) may be viewed as a test of consistency between

387



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

the various parts of the encoding. All these themes are present also in more advanced
constructions of PCP systems.

9.3.2.2. Overview of the First Proof of the PCP Theorem
The original proof of the PCP Theorem (Theorem 9.16) consists of three main conceptual
steps, which we briefly sketch first and further discuss later.

Step 1: Constructing a (non-adaptive) PCP system for NP having logarithmic ran-
domness and poly-logarithmic query complexity; that is, this PCP has the desired
randomness complexity and a very low (but non-constant) query complexity. Fur-
thermore, this proof system has additional properties that enable proof composition
as in the following Step 3.

Step 2: Constructing a PCP system for NP having polynomial randomness and con-
stant query complexity; that is, this PCP has the desired (constant) query complexity
but its randomness complexity is prohibitingly high. (Indeed, we showed such a con-
struction in §9.3.2.1.) Furthermore, this proof system too has additional properties
enabling proof composition as in Step 3.

Step 3: The proof composition paradigm:32 In general, this paradigm allows for com-
posing two proof systems such that the “inner” verifier is used for probabilistically
verifying the acceptance criteria of the “outer” verifier. That is, the combined verifier
selects coins for the “outer” verifier, determines the corresponding locations that the
“outer” verifier wishes to inspect (in the proof), and verifies that the “outer” verifier
would have accepted the values that reside in these locations. The latter verification
is performed by invoking the “inner” verifier, without reading the values residing in
all the aforementioned locations. Indeed, the aim is to conduct this (“composed”)
verification while using significantly fewer queries than the query complexity of the
“outer” proof system. In particular, the inner verifier cannot afford to read its input,
which makes the composition more subtle than the term suggests.

Loosely speaking, the outer verifier should be robust in the sense that its soundness
condition guarantees that, with high probability, the oracle answers are “far” from
satisfying the residual decision predicate (rather than merely not satisfying it). (Fur-
thermore, the latter predicate, which is well defined by the non-adaptive nature of
the outer verifier, must have a circuit of size bounded by a polynomial in the number
of queries.) The inner verifier is given oracle access to its input and is charged for
each query made to it, but is only required to reject (with high probability) inputs
that are far from being valid (and, as usual, to accept inputs that are valid). That is,
the inner verifier is actually a verifier of proximity.

Composing two such PCPs yields a new PCP for NP , where the new proof oracle
consists of the proof oracle of the “outer” system and a sequence of proof oracles
for the “inner” system (one “inner” proof per each possible random-tape of the
“outer” verifier). The resulting verifier selects coins for the outer-verifier and uses
the corresponding “inner” proof in order to verify that the outer-verifier would have
accepted under this choice of coins. Note that such a choice of coins determines
locations in the “outer” proof that the outer-verifier would have inspected, and the
combined verifier provides the inner-verifier with oracle access to these locations
(which the inner-verifier considers as its input) as well as with oracle access to the

32Our presentation of the composition paradigm follows [35], rather than the original presentation of [16, 15].

388



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

x combined  verifier

input proof

inner
verifier

(of prox.)

sequence  of  proofs  for  inner  verifierproof  for  the  outer  verifier

input

Figure 9.5: Composition of PCP system – an illustration. The dashed arrows indicate pointers from the
(virtual) input and proof oracles of the inner-verifier to the actual proof of the composed verifier. These
pointers (as well as the residual predicate) are determined by an invocation of the outer-verifier.

corresponding “inner” proof (which the inner-verifier considers as its proof-oracle).
See Figure 9.5 (and further details that follow the current sketch).
Note that composing an outer-verifier of randomness complexity r ′ and query com-
plexity q ′ with an inner-verifier of randomness complexity r ′′ and query complexity
q ′′ yields a PCP of randomness complexity r (n) = r ′(n)+ r ′′(q ′(n)) and query com-
plexity q(n) = q ′′(q ′(n)), because q ′(n) represents the length of the input (oracle)
that is accessed by the inner-verifier. Recall that the outer-verifier is non-adaptive,
and thus if the inner-verifier is non-adaptive (resp., robust) then so is the verifier
resulting from the composition, which is important in case we wish to compose the
latter verifier with another inner-verifier.

In particular, the proof system of Step 1 is composed with itself [using r ′(n) =
r ′′(n) = O(log n) and q ′(n) = q ′′(n) = poly(log n)] yielding a PCP system (for NP)
of randomness complexity r (n) = r ′(n)+ r ′′(q ′(n)) = O(log n) and query complexity
q(n) = q ′′(q ′(n)) = poly(log log n). Composing the latter system (used as an “outer” sys-
tem) with the PCP system of Step 2, yields a PCP system (for NP) of randomness
complexity r (n)+ poly(q(n)) = O(log n) and query complexity O(1), thus establishing
the PCP Theorem.

A more detailed overview – the plan. The foregoing description uses two (non-trivial)
PCP systems and refers to additional properties such as robustness and verification of
proximity. A PCP system of polynomial randomness complexity and constant query
complexity (as postulated in Step 2) was already presented in §9.3.2.1. We thus start by
discussing the notions of verifying proximity and being robust, while demonstrating their
applicability to the said PCP. Next, we detail the composition of an “outer” robust PCP

389



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

with an “inner” PCP of proximity. Finally, we outline the other PCP system that is used
(i.e., the one postulated in Step 1).

PCPs of Proximity. Recall that a standard PCP verifier gets an explicit input and is
given oracle access to an alleged proof (for membership of the input in a predetermined
set). In contrast, a PCP of proximity verifier is given (direct) access to two oracles, one
representing an input and the other being an alleged proof, and its queries to both oracles
are counted in its query complexity. Typically, the query complexity of this verifier is
lower than the length of the input-oracle, and hence this verifier cannot afford reading the
entire input and cannot be expected to make absolute statements about it. Indeed, instead
of deciding whether or not the input is in a predetermined set, the verifier is only required
to distinguish the case that the input is in the set from the case that the input is far from
the set (where far means being at relative Hamming distance at least 0.01 (or any other
small constant)).

For example, consider a variant of the system of §9.3.2.1 in which the quadratic system
is fixed33 and the verifier needs to determine whether the assignment appearing in the
input-oracle satisfies the said system or is far from any assignment that satisfies it. We
use a proof-oracle as in §9.3.2.1, and a PCP verifier of proximity that proceeds as in
§9.3.2.1, and in addition perform a proximity test to verify that the input-oracle is close
to the assignment encoded in the proof-oracle. Specifically, the verifier reads a uniformly
selected bit of the input-oracle and compares this value to the self-corrected value obtained
from the proof-oracle (i.e., for a uniformly selected i ∈ {1, . . . , n}, we compare the i th

bit of the input-oracle to the self-correction of the value T1(0i−110n−i ), obtained from the
proof oracle).

Robust PCPs. Composing an “outer” PCP verifier with an “inner” PCP verifier of prox-
imity makes sense provided that the outer verifier rejects in a “robust” manner. Hence, the
soundness condition of a robust verifier requires that (with probability at least 1/2) the or-
acle answers are far from any sequence that is acceptable by the residual predicate (rather
than merely that the answers are rejected by this predicate). That is, for every no-instance
x and every alleged proof π = π1π2 · · ·π� ∈ {0, 1}�, it is required that, with probability at
least 1/2 over the verifier’s choice of coins ω ∈ {0, 1}r , it holds that πiω,1πiω,2 · · ·πiω,q is far
from any assignment that satisfies Pω, where iω, j is the j th query made (non-adaptively)
on coins ω, and Pω is the residual predicate that determines which sequences of answers
are accepted in this case. Indeed, if the outer verifier is robust, then it suffices to distinguish
answers that are valid from answers that are far from being valid.

For example, if robustness is defined as referring to relative constant distance (which
is indeed the case), then the PCP of §9.3.2.1 (as well as any PCP of constant query
complexity) is trivially robust. However, we will not care about the robustness of this
PCP, because we only use this PCP as an inner verifier in proof composition. In contrast,
we will care about the robustness of PCPs that are used as outer verifiers (e.g., the PCP
postulated in Step 1 and outlined shortly).

A closer look at proof composition. Following the foregoing sketch, we further detail
the proof composition operation that is employed in the current subsection (i.e., §9.3.2.2).

33Indeed, in our applications the quadratic system will be “known” to the (“inner”) verifier, because it is determined
by the (“outer”) verifier.

390



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

We start by detailing the two PCPs being composed. Let V1 be a robust verifier of ran-
domness complexity r1 and query complexity q1, and suppose that its residual decision on
input x and random tape ω ∈ {0, 1}r1(|x |) can be described by a poly(q1(|x |))-size circuit,
denoted Cω. That is, on input x , access to an oracle π = π1π2 · · ·π�, and random-tape
ω ∈ {0, 1}r1(|x |), the verifier V1 accepts if and only if Cω(πiω,1πiω,2 · · ·πiω,q1(|x |) ) = 1, where
iω, j is the j th query made (non-adaptively) on input x and random-tape ω. Note that
membership in C−1

ω (1) can be determined in time poly(|C−1
ω |) = poly(q1(|x |)). Let V2 be

a verifier of proximity for membership in C−1
ω (1), and suppose that its proximity param-

eter equals (or is smaller than) the robustness parameter of V1. Actually, the verifier V2

should either depend on the circuit Cω or get the description of Cω as auxiliary input.34

Turning to the combined verifier resulting from the composition, we first postulate that,
on input x , this verifier utilizes proofs of the form (π, (π (ω))ω∈{0,1}r1(|x |) ), where π is a
proof for V1 (regarding the input x) and π (ω) is a proof for V2 (regarding membership of
the string πiω,1πiω,2 · · ·πiω,q1(|x |) in the set C−1

ω (1)). The combined verifier uniformly selects
a random-tape ω ∈ {0, 1}r1(|x |) (for V1), determines the locations iω,1, iω,2, . . . , iω,q1(|x |)
(which V1 would query on input x and random-tape ω), and invokes V2 while pro-
viding it with access to the input-oracle πiω,1πiω,2 · · ·πiω,q1(|x |) and the proof-oracle π (ω).
That is, if V2 queries the j th bit of its input (resp., its proof) then the combined ver-
ifier queries the i th

ω, j bit of π (resp., the j th bit of π (ω)) and provides V2 with the bit
retrieved.

Clearly, if x is a yes-instance, then using the adequate proofs π and (π (ω))ω∈{0,1}r1(|x |)

makes the combined verifier accept with probability 1. On the other hand, if x is a no-
instance, then V1 will “robustly reject” any π with probability at least 1/2 (i.e., with
probability at least 1/2 over the choice of ω ∈ {0, 1}r1(|x |), it holds that πiω,1πiω,2 · · ·πiω,q1(|x |)

is far from any string in the set C−1
ω (1)). Now, if V1 “robustly rejects” π when using

the random-tape ω ∈ {0, 1}r1(|x |), then (for any π (ω)) the corresponding executions of V2

will reject with probability at least 1/2. It follows that, for any choice of its proof oracle
(i.e., any π and (π (ω))ω∈{0,1}r1(|x |) ), the combined verifier rejects each no-instance with
probability at least 1/4. Needless to say, the rejection probability can be increased by
sequential repetitions.

Teaching note: Unfortunately, the construction of a PCP of logarithmic randomness and
poly-logarithmic query complexity for N P involves many technical details. Furthermore,
obtaining a robust version of this PCP is beyond the scope of the current text. Thus, the
following description should be viewed as merely providing a flavor of the underlying ideas.

PCP of logarithmic randomness and poly-logarithmic query complexity for N P . We
focus on showing that N P ⊆ PCP( f, f ), for f (n) = poly(log n), and the claimed result
will follow by a relatively minor modification (discussed afterward). The proof system

34In the former case, V2 is a circuit (with oracle access to its input and proof oracles), which incorporates the
circuit Cω . In the latter case, the formulation of PCP of proximity should be extended so as to account for inputs that
are given in two parts such that the first part (e.g., Cω) is given explicitly (as an ordinary input) and the second part
(e.g., the input to Cω) is given implicitly via oracle access. Either way, it is essential that the size of Cω is polynomial
in the length of its own input (i.e., |Cω| = poly(q1(|x |))). In fact, an asymptotic treatment is facilitated by using the
latter formulation (of two-part inputs). In this case, V2 is actually an (extended) PCP of proximity for statements in
P ⊆ NP , where the valid statements have the form (C, α) such that C(α) = 1 (where C is presented as explicit input
and α is presented as implicit input).

391



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

underlying N P ⊆ PCP( f, f ) is based on an arithmetization of 3CNF formulae, which
is different from the one used in §9.1.3.2 (for constructing an interactive proof system for
coNP). We start by describing this arithmetization, and later outline the PCP system that
is based on it.

In the current arithmetization, the names of the variables (resp., clauses) of a 3CNF
formula φ are represented by binary strings of logarithmic (in |φ|) length, and a generic
variable (resp., clause) of φ is represented by a logarithmic number of new variables,
which are assigned values in a finite field F ⊃ {0, 1}. Indeed, throughout the rest of the
description, we refer to the arithmetic operations of this finite field F (which will have
cardinality poly(|φ|)). The (structure of the) 3CNF formula φ(x1, . . . , xn) is represented
by a Boolean function Cφ : {0, 1}O(log n) → {0, 1} such that Cφ(α, β1, β2, β3) = 1 if and
only if, for i = 1, 2, 3, the i th literal in the αth clause of φ has index βi = (γi , σi ), which is
viewed as a variable name augmented by its sign. Thus, for every α ∈ {0, 1}log |φ| there is a
unique (β1, β2, β3) ∈ {0, 1}3 log 2n such that Cφ(α, β1, β2, β3) = 1 holds. Next, we consider
a multi-linear extension of Cφ over F, denoted �; that is, � is the (unique) multi-linear
polynomial that agrees with Cφ on {0, 1}O(log n) ⊂ FO(log n).

Turning to the PCP, we first note that the verifier can reduce the original 3SAT-instance
φ to the aforementioned arithmetic instance �; that is, on input a 3CNF formula φ,
the verifier first constructs Cφ and � (as in Exercise 7.12). Part of the proof oracle for
this verifier is viewed as function A : Flog n → F, which is supposed to be a multi-linear
extension of a truth assignment that satisfies φ (i.e., for every γ ∈ {0, 1}log n ≡ [n], the
value A(γ ) is supposed to be the value of the γ th variable in such an assignment). Thus,
we wish to check whether, for every α ∈ {0, 1}log |φ|, it holds that∑

β1β2β3∈{0,1}3 log 2n

�(α, β1, β2, β3) ·
3∏

i=1

(
1− A′(βi )

) = 0 (9.7)

where A′(β) is the value of the β th literal under the (variable) assignment A; that is, for
β = (γ, σ ), where γ ∈ {0, 1}log n is a variable name and σ ∈ {0, 1} indicates the literal’s
type (i.e., whether the variable is negated), it holds that A′(β) = (1− σ ) · A(γ )+ σ · (1−
A(γ )). Thus, Eq. (9.7) holds if and only if the αth clause is satisfied by the assignment
induced by A (because A′(β) = 1 must hold for at least one of the three literals β that
appear in this clause).35

As in §9.3.2.1, we cannot afford to verify all |φ| instances of Eq. (9.7). Further-
more, unlike in §9.3.2.1, we cannot afford to take a random linear combination of these
|φ| instances either (because this requires too much randomness). Fortunately, taking a
“pseudorandom” linear combination of these equations is good enough. Specifically, using
an adequate (efficiently constructible) small-bias probability space (cf. §8.5.2.3) will do.
Denoting such a space (of size poly(|φ| · |F |) and bias at most 1/6) by S ⊂ F|φ|, we may
select uniformly (s1, . . . , s|φ|) ∈ S and check whether∑

αβ1β2β3∈{0,1}�
sα ·�(α, β1, β2, β3) ·

3∏
i=1

(
1− A′(βi )

) = 0 (9.8)

where �
def= log |φ| + 3 log 2n. The small-bias property guarantees that if A fails to satisfy

any of the equations of type Eq. (9.7) then, with probability at least 1/3 (taken over

35Note that, for this α there exists a unique triple (β1, β2, β3) ∈ {0, 1}3 log 2n such that �(α, β1, β2, β3) �= 0. This
triple (β1, β2, β3) encodes the literals appearing in the αth clause, and this clause is satisfied by A if and only if
∃i ∈ [3] s.t. A′(βi ) = 1.

392



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

the choice of (s1, . . . , s|φ|) ∈ S), it is the case that A fails to satisfy Eq. (9.8). Since
|S| = poly(|φ| · |F |) rather that |S| = 2|φ|, we can select a sample in S using O(log |φ|)
coin tosses. Thus, we have reduced the original problem to checking whether, for a random
(s1, . . . , s|φ|) ∈ S, Eq. (9.8) holds.

Assuming (for a moment) that A is a low-degree polynomial, we can probabilistically
verify Eq. (9.8) by applying a “summation test” (as in the interactive proof for coNP);
that is, we refer to stripping the � binary summations in iterations, where in each iteration
the verifier obtains a corresponding univariate polynomial and instantiates it at a random
point. Indeed, the verifier obtains the relevant univariate polynomials by making adequate
queries (which specify the entire sequence of choices made so far in the summation test).36

Note that after stripping the � summations, the verifier ends up with an expression that
contains three unknown values of A′, which it may obtain by making corresponding queries
to A. The summation test involves tossing � · log |F| coins and making (�+ 3) · O(log |F|)
Boolean queries (which correspond to � queries that are each answered by a univariate
polynomial of constant degree (over F), and three queries to A (each answered by an
element of F)). Soundness of the summation test follows by setting |F | � O(�), where
� = O(log |φ|).

Recall, however, that we may not assume that A is a multivariate polynomial of low
degree. Instead, we must check that A is indeed a multivariate polynomial of low degree
(or rather that it is close to such a polynomial), and use self-correction for retrieving
the values of A (which are needed for the foregoing summation test). Fortunately, a
“low-degree test”37 of complexities similar to those of the summation test does exist (and
self-correction is also possible within these complexities). Thus, using a finite field F
of poly(log(n)) elements, the foregoing yields NP ⊆ PCP( f, f ) for f (n)

def= O(log(n) ·
log log(n)).

To obtain the desired PCP system of logarithmic randomness complexity, we rep-
resent the names of the original variables and clauses by O(log n)

log log n -long sequences over
{1, . . . , log n}, rather than by logarithmically long binary sequences. This requires using
low-degree polynomial extensions (i.e., polynomial of degree (log n)− 1), rather than
multi-linear extensions. We can still use a finite field of poly(log(n)) elements, and so
we need only O(log n)

log log n · O(log log n) random bits for the summation and low-degree tests.
However, the number of queries (needed for obtaining the answers in these tests) grows,
because now the polynomials that are involved have individual degree (log n)− 1 rather
than constant individual degree. This merely means that the query complexity increases by
a factor of log n

log log n (since the individual degree increases by a factor of log n but the number
of variables decreases by a factor of log log n). Thus, we obtain NP ⊆ PCP(log, q) for
q(n)

def= O(log2 n).

Warning: Robustness and PCP of proximity. Recall that, in order to use the latter PCP
system in composition, we need to guarantee that it (or a version of it) is robust as well
as to present a version that is a PCP of proximity. The latter version is relatively easy to
obtain (using ideas as applied to the PCP of §9.3.2.1), whereas obtaining robustness is
too complex to be described here. We comment that one way of obtaining a robust PCP

36The query will also contain a sequence (s1, . . . , s|φ|) ∈ S, selected at random (by the verifier) and fixed for the
rest of the process.

37By a low-degree test, we mean an oracle machine that accepts any low-degree polynomial (over F) with
probability 1, and rejects (with probability at least 1/2) any function that is far from all low-degree polynomials. An
appropriate test is presented in [195] (see also Exercise 9.23).

393



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

system is by a generic application of a (randomness-efficient) “parallelization” of PCP
systems (cf. [15]), which in turn depends heavily on highly efficient low-degree tests. An
alternative approach (cf. [35]) capitalizes on the specific structure of the summation test
(as well as on the evident robustness of a simple low-degree test).

Reflection. The PCP Theorem asserts a PCP system that obtains simultaneously the
minimal possible randomness and query complexity (up to a multiplicative factor, as-
suming that P �= NP). The foregoing construction obtains this remarkable result by
combining two different PCPs: The first PCP obtains logarithmic randomness but uses
poly-logarithmically many queries, whereas the second PCP uses a constant number of
queries but has polynomial randomness complexity. We stress that each of these two PCP
systems is highly non-trivial and very interesting by itself. We also highlight the fact
that these PCPs are combined using a very simple composition method (which refers to
auxiliary properties such as robustness and proximity testing).38

9.3.2.3. Overview of the Second Proof of the PCP Theorem
The original proof of the PCP Theorem focuses on the construction of two PCP systems
that are highly non-trivial and interesting by themselves, and combines them in a natural
manner. Loosely speaking, this combination (via proof composition) preserves the good
features of each of the two systems; that is, it yields a PCP system that inherits the
(logarithmic) randomness complexity of one system and the (constant) query complexity
of the other. In contrast, the following alternative proof is focused at the “amplification”
of (the quality of) PCP systems, via a gradual process of logarithmically many steps.
We start with a trivial “PCP” system that has the desired complexities but rejects false
assertions with probability inversely proportional to their length, and in each step we
double the rejection probability while essentially maintaining the initial complexities.
That is, in each step, the constant query complexity of the verifier is preserved, and its
randomness complexity is increased only by a constant term. Thus, the process gradually
transforms an extremely weak PCP system into a remarkably strong PCP system (i.e., a
PCP as postulated in the PCP Theorem).

In order to describe the aforementioned process we need to redefine PCP systems so as
to allow arbitrary soundness error. In fact, for technical reasons, it is more convenient to
describe the process as an iterated reduction of a “constraint satisfaction” problem to itself.
Specifically, we refer to systems of 2-variable constraints, which are readily represented
by (labeled) graphs such that the vertices correspond to (non-Boolean) variables and the
edges are associated with constraints.

Definition 9.18 (CSP with 2-variable constraints): For a fixed finite set �, an in-
stance of CSP consists of a graph G = (V, E) (which may have parallel edges and
self-loops) and a sequence of 2-variable constraints � = (φe)e∈E associated with
the edges, where each constraint has the form φe : �2 → {0, 1}. The value of an
assignment α : V → � is the number of constraints satisfied by α; that is, the value
of α is |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 1}|. We denote by vlt(G, �) (standing for

38Advanced comment: We comment that the composition of PCP systems that lack these extra properties is
possible, but is far more cumbersome and complex. In some sense, this alternative composition involves transforming
the given PCP systems to ones having properties related to robustness and proximity testing.

394



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

violation) the fraction of unsatisfied constraints under the best possible assignment;
that is,

vlt(G, �) = min
α:V→�

{ |{(u, v) ∈ E : φ(u,v)(α(u), α(v)) = 0}|
|E |

}
.

(9.9)

For various functions τ : N→ (0, 1], we will consider the promise problem
gapCSP�

τ , having instances as in the foregoing, such that the yes-instances, are
fully satisfiable instances (i.e., vlt = 0) and the no-instances are pairs (G, �) for
which vlt(G, �) ≥ τ (|G|) holds, where |G| denotes the number of edges in G.

Note that 3SAT is reducible to gapCSP{1,...,7}
τ0

for τ0(m) = 1/m; see Exercise 9.24. Our
goal is to reduce 3SAT (or rather gapCSP{1,...,7}

τ0
) to gapCSP�

c , for some fixed finite �

and constant c > 0. The PCP Theorem will follow by showing a simple PCP system
for gapCSP�

c ; see Exercise 9.26. (The relationship between constraint satisfaction prob-
lems and the PCP Theorem is further discussed in Section 9.3.3.) The desired reduction
of gapCSP�

τ0
to gapCSP�

�(1) is obtained by iteratively applying the following reduction
logarithmically many times.

Lemma 9.19 (amplifying reduction of gapCSP to itself): For some finite � and
constant c > 0, there exists a polynomial-time computable function f such that, for
every instance (G, �) of gapCSP� , it holds that (G ′, �′) = f (G, �) is an instance
of gapCSP� and the two instances are related as follows:

1. If vlt(G, �) = 0 then vlt(G ′, �′) = 0.
2. vlt(G ′, �′) ≥ min(2 · vlt(G, �), c).
3. |G ′| = O(|G|).

That is, satisfiable instances are mapped to satisfiable instances, whereas instances that
violate a ν fraction of the constraints are mapped to instances that violate at least a
min(2ν, c) fraction of the constraints. Furthermore, the mapping increases the number
of edges (in the instance) by at most a constant factor. We stress that both � and �′

consist of Boolean constraints defined over �2. Thus, by iteratively applying Lemma 9.19
for a logarithmic number of times, we reduce gapCSP�

τ0
to gapCSP�

�(1) and 3SAT ∈
PCP(log, O(1)) follows (as detailed in Exercise 9.24 and 9.26).

Proof Outline:39 Before turning to the proof, let us highlight the difficulty that
it needs to address. Specifically, the lemma asserts a “violation amplifying ef-
fect” (i.e., Items 1 and 2), while maintaining the alphabet � and allowing only a
moderate increase in the size of the graph (i.e., Item 3). Waiving the latter require-
ments allows a relatively simple proof that mimics (an augmented version of)40 the
“parallel repetition” of the corresponding PCP. Thus, the challenge is significantly
decreasing the “size blowup” that arises from parallel repetition and maintaining
a fixed alphabet. The first goal (i.e., Item 3) calls for a suitable derandomization,
and indeed we shall use the Expander Random Walk Generator (of Section 8.5.3).

39For details, see [67].
40Advanced comment: The augmentation is used to avoid using the Parallel Repetition Theorem of [185]. In the

augmented version, with constant probability (say half), a consistency check takes place between tuples that contain
copies of the same variable (or query).

395



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Those who read §9.3.2.2 may guess that the second goal (i.e., fixed alphabet)
can be handled using the proof composition paradigm. (The rest of the overview
is intended to be understood also by those who did not read Section 8.5.3 and
§9.3.2.2.)

The lemma is proved by presenting a three-step reduction. The first step is a
preprocessing step that makes the underlying graph suitable for further analysis
(e.g., the resulting graph will be an expander). The value of vlt may decrease
during this step by a constant factor. The heart of the reduction is the second step in
which we increase vlt by any desired constant factor. This is done by a construction
that corresponds to taking a random walk of constant length on the current graph.
The latter step also increases the alphabet �, and thus a post-processing step is
employed to regain the original alphabet (by using any inner PCP systems, e.g., the
one presented in §9.3.2.1). Details follow.

We first stress that the aforementioned � and c, as well as the auxiliary parameters
d and t (to be introduced in the following two paragraphs), are fixed constants that
will be determined such that various conditions (which arise in the course of our
argument) are satisfied. Specifically, t will be the last parameter to be determined
(and it will be made greater than a constant that is determined by all the other
parameters).

We start with the preprocessing step. Our aim in this step is to reduce the input
(G, �) of gapCSP� to an instance (G1, �1) such that G1 is a d-regular expander
graph.41 Furthermore, each vertex in G1 will have at least d/2 self-loops, the num-
ber of edges will be preserved up to a constant factor (i.e., |G1| = O(|G|)), and
vlt(G1, �1) = �(vlt(G, �)). This step is quite simple: Essentially, the original
vertices are replaced by expanders of size proportional to their degree, and a big
(dummy) expander is superimposed on the resulting graph (see Exercise 9.27).

The main step is aimed at increasing the fraction of violated constraints by
a sufficiently large constant factor. The intuition underlying this step is that the
probability that a random (t-edge long) walk on the expander G1 intersects a fixed
set of edges is closely related to the probability that a random sample of (t) edges
intersects this set. Thus, we may expect such walks to hit a violated edge with
probability that is min(�(t · ν), c), where ν is the fraction of violated edges. Indeed,
the current step consists of reducing the instance (G1, �1) of gapCSP� to an instance
(G2, �2) of gapCSP�′ such that �′ = �dt

and the following holds:

1. The vertex set of G2 is identical to the vertex set of G1, and each t-edge long
path in G1 is replaced by a corresponding edge in G2, which is thus a dt -regular
graph.

2. The constraints in �2 refer to each element of �′ as a �-labeling of the
(“distance≤ t”) neighborhood of a vertex (see Figure 9.6), and mandates that the
two corresponding labelings (of the endpoints of the G2-edge) are consistent as
well as satisfy �1. That is, the following two types of conditions are enforced by
the constraints of �2:

41A d-regular graph is a graph in which each vertex is incident to exactly d edges. Loosely speaking, an expander
graph has the property that each moderately balanced cut (i.e., partition of its vertex set) has relatively many edges
crossing it. An equivalent definition, also used in the actual analysis, is that, except for the largest eigenvalue (which
equals d), all the eigenvalues of the corresponding adjacency matrix have absolute value that is bounded away from d.
For further details, see §E.2.1.1 in Appendix E.

396



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

vu w

1

2

4

3

6

5 7

10

11

12

13

14

15

16
17

18

19

21 v

w6 7

3 4 5
19

8 109
18 19v

u w

u 7 20

22

23

23

21

20

89

Figure 9.6: The amplifying reduction. The alphabet �′ as a labeling of the distance t = 3 neighborhoods,
when repetitions are omitted. In this case d= 6 but the self-loops are not shown (and so the “effective”
degree is three). The two-sided arrow indicates one of the edges in G1 that will contribute to the edge
constraint between u and w in (G2, �2).

(consistency): If vertices u and w are connected in G1 by a path of length at
most t and vertex v resides on this path, then the �2-constraint associated
with the G2-edge between u and w mandates the equality of the entries
corresponding to vertex v in the �′-labeling of vertices u and w.

(satisfying �1): If the G1-edge (v, v′) is on a path of length at most t starting
at u, then the �2-constraint associated with the G2-edge that corresponds
to this path enforces the �1-constraint that is associated with (v, v′).

Clearly, |G2| = dt−1 · |G1| = O(|G1|), because d is a constant and t will be set
to a constant. (Indeed, the relatively moderate increase in the size of the graph
corresponds to the low randomness complexity of selecting a random walk of length
t in G1.)

Turning to the analysis of this step, we note that vlt(G1, �1) = 0 implies
vlt(G2, �2) = 0. The interesting fact is that the fraction of violated constraints in-
creases by a factor of �(

√
t); that is, vlt(G2, �2) ≥ min(�(

√
t · vlt(G1, �1)), c).

Here, we merely provide a rough intuition and refer the interested reader to [67]. We
may focus on any �′-labeling to the vertices of G2 that is consistent with some �-
labeling of G1, because relatively few inconsistencies (among the �-values assigned
to a vertex by the �′-labeling of other vertices) can be ignored, while relatively many
such inconsistencies yield violation of the “equality constraints” of many edges in
G2. Intuitively, relying on the hypothesis that G1 is an expander, it follows that
the set of violated edge-constraints (of �1) with respect to the aforementioned

397



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

�-labeling causes many more edge-constraints of �2 to be violated (because each
edge-constraint of �1 is enforced by many edge-constraints of �2). The point is
that any set F of edges of G1 is likely to appear on a min(�(t) · |F |/|G1|, �(1))
fraction of the edges of G2 (i.e., t-paths of G1). (Note that the claim would have
been obvious if G1 were a complete graph, but it also holds for an expander.)42

The factor of �(
√

t) gained in the second step makes up for the constant fac-
tor lost in the first step (as well as the constant factor to be lost in the last step).
Furthermore, for a suitable choice of the constant t , the aforementioned gain yields
an overall constant factor amplification (of vlt). However, so far we obtained an
instance of gapCSP�′ rather than an instance of gapCSP� , where �′ = �dt

. The
purpose of the last step is to reduce the latter instance to an instance of gapCSP� .
This is done by viewing the instance of gapCSP�′ as a PCP-system43 (analogously to
Exercise 9.26), and composing it with an inner-verifier using the proof composition
paradigm outlined in §9.3.2.2. We stress that the inner-verifier used here need only
handle instances of constant size (i.e., having description length O(dt log |�|)), and
so the verifier presented in §9.3.2.1 will do. The resulting PCP-system uses ran-
domness r

def= log2 |G2| + O(dt log |�|)2 and a constant number of binary queries,
and has rejection probability �(vlt(G2, �2)), which is independent of the choice
of the constant t . As in Exercise 9.24, for � = {0, 1}O(1), we can easily obtain an
instance of gapCSP� that has a �(vlt(G2, �2)) fraction of violated constraints.
Furthermore, the size of the resulting instance (which is used as the output (G ′, �′)
of the three-step reduction) is O(2r ) = O(|G2|), where the equality uses the fact that
d and t are constants. Recalling that vlt(G2, �2) ≥ min(�(

√
t · vlt(G1, �1)), c)

and vlt(G1, �1) = �(vlt(G, �)), this completes the (outline of the) proof of the
entire lemma.

Reflection. In contrast to the proof presented in §9.3.2.2, which combines two remarkable
constructs by using a simple composition method, the current proof of the PCP Theorem
is based on developing a powerful “combining method” that improves the quality of
the main system to which it is applied. This new method, captured by the Amplification
Lemma (Lemma 9.19), does not merely obtain the best of the combined systems, but rather
obtains a better system than the one given. However, the quality amplification offered by
Lemma 9.19 is rather moderate, and thus many applications are required in order to derive
the desired result. Taking the opposite perspective, one may say that remarkable results
are obtained by a gradual process of many moderate amplification steps.

9.3.3. PCP and Approximation

The characterization of NP in terms of probabilistically checkable proofs plays a central
role in the study of the complexity of natural approximation problems (cf. Section 10.1.1).
To demonstrate this relationship, we first note that any PCP system V gives rise to an
approximation problem that consists of estimating the maximum acceptance probabil-
ity for a given input; that is, on input x , the task is approximating the probability that

42We mention that, due to a technical difficulty, it is easier to establish the claimed bound of �(
√

t · vlt(G1, �1))
than �(t · vlt(G1, �1)).

43The PCP-system referred to here has arbitrary soundness error (i.e., it rejects the instance (G2, �2) with
probability vlt(G2,�2) ∈ [0, 1]).

398



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

V accepts x when given oracle access to the best possible π (i.e., we wish to approx-
imate maxπ {Pr[V π (x)=1]}). Thus, if S ∈ PCP(r, q) then deciding membership in S
is reducible to approximating the maximum among exp(2r+q ) quantities (correspond-
ing to all effective oracles), where each quantity can be evaluated in time 2r · poly.
For (the validity of) this reduction, an approximation up to a constant factor (of 2)
will do.

Note that the foregoing approximation problem is parameterized by a PCP verifier V ,
and its instances are given their value with respect to this verifier (i.e., the instance x
has value maxπ {Pr[V π (x)=1]}). This per se does not yield a “natural” approximation
problem. In order to link PCP-systems with natural approximation problems, we take a
closer look at the approximation problem associated with PCP(r, q).

For simplicity, we focus on the case of non-adaptive PCP-systems (i.e., all the queries
are determined beforehand based on the input and the internal coin tosses of the ver-
ifier). Fixing an input x for such a system, we consider the 2r (|x |) Boolean formulae
that represent the decision of the verifier on each of the possible outcomes of its coin
tosses after inspecting the corresponding bits in the proof oracle. That is, each of these
2r (|x |) formulae depends on q(|x |) Boolean variables that represent the values of the
corresponding bits in the proof oracle. Thus, if x is a yes-instance then there exists a
truth assignment (to these variables) that satisfies all 2r (|x |) formulae, whereas if x is a
no-instance then there exists no truth assignment that satisfies more than 2r (|x |)−1 for-
mulae. Furthermore, in the case that r (n) = O(log n), given x , we can construct the
corresponding sequence of formulae in polynomial time. Hence, the PCP Theorem (i.e.,
Theorem 9.16) yields NP-hardness results regarding the approximation of the number of
simultaneously satisfiable Boolean formulae of constant size. This motivates the following
definition.

Definition 9.20 (gap problems for SAT and generalized SAT): For constants q ∈ N

and ε > 0, the promise problem gapGSATq
ε refers to instances that are each a

sequence of q-variable Boolean formulae (i.e., each formula depends on at most
q variables). The yes-instances are sequences that are simultaneously satisfiable,
whereas the no-instances are sequences for which no Boolean assignment satisfies
more than a 1− ε fraction of the formulae in the sequence. The promise problem
gapSATq

ε is defined analogously, except that in this case each instance is a sequence
of disjunctive clauses (i.e., each formula in each sequence consists of a single
disjunctive clause).

Indeed, each instance of gapSATq
ε is naturally viewed as q-CNF formulae, and we consider

an assignment that satisfies as many clauses (of the input CNF) as possible. As hinted,
NP ⊆ PCP(log, O(1)) implies that gapGSATO(1)

1/2 is NP-complete, which in turn implies
that for some constant ε > 0 the problem gapSAT3

ε is NP-complete. The converses hold,
too. All these claims are stated and proved next.

Theorem 9.21 (equivalent formulations of the PCP Theorem): The following three
conditions are equivalent:

1. The PCP Theorem: There exists a constant q such that NP ⊆ PCP(log, q).
2. There exists a constant q such that gapGSATq

1/2 is NP-hard.
3. There exists a constant ε > 0 such that gapSAT3

ε is NP-hard.

399



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

The point of Theorem 9.21 is not its mere validity (which follows from the validity of each
of the three items), but rather the fact that its proof is quite simple. Note that Items 2 and 3
make no reference to PCP. Thus, their (easy-to-establish) equivalence to Item 1 manifests
that the hardness of approximating natural optimization problems lies at the heart of the
PCP Theorem. In general, probabilistically checkable proof systems for NP yield strong
inapproximability results for various classical optimization problems (cf. Exercise 9.18
and Section 10.1.1).

Proof: We first show that the PCP Theorem implies the NP-hardness of gapGSAT.
We may assume, without loss of generality, that, for some constant q and every
S ∈ NP , it holds that S ∈ PCP(O(log), q) via a non-adaptive verifier (because
q adaptive queries can be emulated by 2q non-adaptive queries). We reduce S to
gapGSAT as follows. On input x , we scan all 2O(log |x |) possible sequence of outcomes
of the verifier’s coin tosses, and for each such sequence of outcomes we determine
the queries made by the verifier as well as the residual decision predicate (where this
predicate determines which sequences of answers lead this verifier to accept). That
is, for each random outcome ω ∈ {0, 1}O(log |x |), we consider the residual predicate,
determined by x and ω, that specifies which q-bit long sequence of oracle answers
makes the verifier accept x on coins ω. Indeed, this predicate depends only on q
variables (which represent the values of the q corresponding oracle answers). Thus,
we map x to a sequence of poly(|x |) formulae, each depending on q variables,
obtaining an instance of gapGSATq . This mapping can be computed in polynomial
time, and indeed x ∈ S (resp., x �∈ S) is mapped to a yes-instance (resp., no-instance)
of gapGSATq

1/2.
Item 2 implies Item 3 by a standard reduction of GSAT to 3SAT. Specifically,

gapGSATq
1/2 reduces to gapSATq

2−(q+1) , which in turn reduces to gapSAT3
ε for ε =

2−(q+1)/(q − 2). Note that Item 3 implies Item 2 (e.g., given an instance of gapSAT3
ε ,

consider all possible conjunctions of 1/ε disjunctive clauses in the given instance).
We complete the proof by showing that Item 3 implies Item 1. (The same ar-

gument shows that Item 2 implies Item 1.) This is done by showing that gapSAT3
ε

is in PCP(ε−1 log, 3ε−1), and using the reduction of NP to gapSAT3
ε to derive

a corresponding PCP for each set in NP . In fact, we show that gapGSATq
ε is in

PCP(ε−1 log, ε−1q), and do so by presenting a very natural PCP-system. In this
PCP-system the proof oracle is supposed to be a satisfying assignment, and the ver-
ifier selects at random one of the (q-variable) formulae in the input sequence, and
checks whether it is satisfied by the (assignment given by the) oracle. This amounts
to tossing logarithmically many coins and making q queries. This verifier always
accepts yes-instances (when given access to an adequate oracle), whereas each no-
instance is rejected with probability at least ε (no matter which oracle is used). To
amplify the rejection probability (to the desired threshold of 1/2), we invoke the
foregoing verifier ε−1 times (and note that (1− ε)1/ε < 1/2).

Gap amplifying reductions – a reflection. Item 2 (resp., Item 3) of Theorem 9.21
implies that GSAT (resp., 3SAT) can be reduce to gapGSAT1/2 (resp., to gapSAT3

ε). This
means that there exist “gap amplifying” reductions of problems like 3SAT to themselves,
where these reductions map yes-instances to yes-instances (as usual), while mapping no-
instances to no-instances that are “far” from being yes-instances. That is, no-instances

400



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

are mapped to no-instances of a special type such that a “gap” is created between the
yes-instances and no-instances at the image of the reduction. For example, in the case of
3SAT, unsatisfiable formulae are mapped to formulae that are not merely unsatisfiable but
rather have no assignment that satisfies more than a 1− ε fraction of the clauses. Thus,
PCP constructions are essentially “gap amplifying” reductions.

9.3.4. More on PCP Itself: An Overview

We start by discussing variants of the PCP Characterization of NP, and next turn to
PCPs having expressing power beyond NP. Needless to say, the latter systems have super-
logarithmic randomness complexity.

9.3.4.1. More on the PCP Characterization of NP
Interestingly, the two complexity measures in the PCP characterization of NP can
be traded off such that at the extremes we get NP = PCP(log, O(1)) and NP =
PCP(0, poly), respectively.

Proposition 9.22: For every S ∈ NP , there exists a logarithmic function � (i.e.,
� ∈ log) such that, for every integer function k that satisfies 0≤k(n)≤�(n), it holds
that S ∈ PCP(�− k, O(2k)). (Recall that PCP(log, poly) ⊆ NP .)

Proof Sketch: By Theorem 9.16, we have S ∈ PCP(�, O(1)). To show that S ∈
PCP(�− k, O(2k)), we consider an emulation of the corresponding verifier in
which we try all possibilities for the k(n)-bit long prefix of its random-tape.

Following the establishment of Theorem 9.16, numerous variants of the PCP characteriza-
tion of NP were explored. These variants refer to a finer analysis of various parameters of
probabilistically checkable proof systems (for sets in NP). Following is a brief summary
of some of these studies.44

The length of PCPs. Recall that the effective length of the oracle in any PCP(log, log)
system is polynomial (in the length of the input). Furthermore, in the PCP-systems
underlying the proof of Theorem 9.16, the queries refer only to a polynomially long prefix
of the oracle, and so the actual length of these PCPs for NP is polynomial. Remarkably,
the length of PCPs for NP can be made nearly linear (in the combined length of the
input and the standard NP-witness), while maintaining constant query complexity, where
by nearly linear we mean linear up to a poly-logarithmic factor. (For details see [36, 67].)
This means that a relatively modest amount of redundancy in the proof oracle suffices for
supporting probabilistic verification via a constant number of probes.

The number of queries in PCPs. Theorem 9.16 asserts that a constant number of queries
suffice for PCPs with logarithmic randomness and soundness error of 1/2 (for NP). It is
currently known that this constant is at most five, whereas with three queries one may get
arbitrarily close to a soundness error of 1/2. The obvious trade-off between the number
of queries and the soundness error gives rise to the robust notion of amortized query
complexity, defined as the ratio between the number of queries and (minus) the logarithm

44With the exception of works that appeared after [90], we provide no references for the results quoted here. We
refer the interested reader to [90, Sec. 2.4.4].

401



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

(to based 2) of the soundness error. For every ε > 0, any set in NP has a PCP-system
with logarithmic randomness and amortized query complexity 1+ ε (cf. [119]), whereas
only sets in P have PCPs of logarithmic randomness and amortized query complexity less
than 1.

Free-bit complexity. The original motivation for the notion of free bits came from the
PCP–to–MaxClique connection (see Exercise 9.18 and [29, Sec. 8]), but we believe that
this notion is of independent interest. Intuitively, this notion distinguishes between queries
for which the acceptable answer is determined by previously obtained answers (i.e., the
verifier compares the answer to a value determined by the previous answers) and queries
for which the verifier only records the answer for future usage. The latter queries are called
free (because any answer to them is “acceptable”). For example, in the linearity test (see
§9.3.2.1) the first two queries are free and the third is not (i.e., the test accepts if and only if
f (x)+ f (y) = f (x + y)). The amortized free-bit complexity is defined analogously to the
amortized query complexity. Interestingly, NP has PCPs with logarithmic randomness
and amortized free-bit complexity less than any positive constant.

Adaptive versus non-adaptive verifiers. Recall that a PCP verifier is called non-adaptive
if its queries are determined solely based on its input and the outcome of its coin tosses.
(A general verifier, called adaptive, may determine its queries also based on previously
received oracle answers.) Recall that the PCP characterization of NP (i.e., Theorem 9.16)
is established using a non-adaptive verifier; however, it turns out that adaptive verifiers
are more powerful than non-adaptive ones in terms of quantitative results: Specifically,
for PCP verifiers making three queries and having logarithmic randomness complexity,
adaptive queries provide for soundness error at most 0.51 (actually 0.5+ ε for any ε > 0)
for any set in NP , whereas non-adaptive queries provide soundness error 5/8 (or less)
only for sets in P .

Non-binary queries. Our definition of PCP allows only binary queries. Certainly, non-
binary queries can be emulated by binary queries, but the converse does not necessarily
hold.45 For this reason, “parallel repetition” is highly non-trivial in the PCP setting. Still,
a Parallel Repetition Theorem that refers to independent invocations of the same PCP
is known, but it is not applicable for obtaining soundness error smaller than a constant
(while preserving logarithmic randomness). Nevertheless, using adequate “consistency
tests” one may construct PCP-systems for NP using logarithmic randomness, a constant
number of (non-binary) queries, and soundness error exponential in the length of the
answers. (Currently, this is known only for sub-logarithmic answer lengths.)

9.3.4.2. Stronger Forms of PCP-Systems for NP
Although the PCP Theorem is famous mainly for its negative applications to the study of
natural approximation problems (see Section 9.3.3 and §10.1.1.2), its potential for direct

45Advanced comment: The source of trouble is the adversarial settings (implicit in the soundness condition),
which means that when several binary queries are packed into one non-binary query, the adversary need not respect
the packing (i.e., it may answer inconsistently on the same binary query depending on the other queries packed with
it). This trouble becomes acute in the case of PCPs, because they do not correspond to a full information game.
Indeed, in contrast, parallel repetition is easy to analyze in the case of interactive proof systems, because they can
be modeled as full information games: This is obvious in the case of public-coin systems, but also holds for general
interactive proof systems (see Exercise 9.1).

402



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

9.3. PROBABILISTICALLY CHECKABLE PROOF SYSTEMS

positive applications is fascinating. Indeed, the vision of speeding up the verification
of mundane proofs is exciting, where these proofs may refer to mundane assertions
such as the correctness of a specific computation. Enabling such a speed-up requires a
strengthening of the PCP Theorem such that it mandates efficient verification time rather
than “merely” low query complexity of the verification task. Such a strengthening is
possible.

Theorem 9.23 (Theorem 9.16 – strengthened): Every set S in NP has a PCP-
system V of logarithmic randomness complexity, constant query complexity, and
quadratic time complexity. Furthermore, NP-witnesses for membership in S can be
transformed in polynomial time to corresponding proof-oracles for V .

The “furthermore” part was already stated in Section 9.3.2 (as a strengthening of Theo-
rem 9.16). Thus, the novelty in Theorem 9.23 is that it provides quadratic verification time,
rather than polynomial verification time (where the polynomial may depend arbitrarily on
the set S). Theorem 9.23 is proved by noting that the CNF formulae that is obtained by
reducing S to 3SAT are highly uniform, and thus the verifier V that is outlined in §9.3.2.2
can be implemented in quadratic time. Indeed, the most time-consuming operation re-
quired of V is evaluating the low-degree extension � (of Cφ), which corresponds to the
input formula φ, at a few points. In the context of §9.3.2.2, evaluating � in exponential
time suffices (since this means time that is polynomial in |φ|). Theorem 9.23 follows by
showing that a variant of � can be evaluated in polynomial time (since this means time
that is poly-logarithmic in |φ|); for details, see Exercise 9.30.

PCPs of Proximity. Clearly, we cannot expect a PCP-system (or any standard proof
system for that matter) to have sub-linear verification time (since linear time is required
for merely reading the input). Nevertheless, we may consider a relaxation of the verification
task (regarding proofs of membership in a set S). In this relaxation the verifier is only
required to reject any input that is “far” from S (regardless of the alleged proof), and, as
usual, accept any input that is in S (when accompanied by an adequate proof). Specifically,
in order to allow sub-linear time verification, we provide the verifier V with direct access
to the bits of the input (which is viewed as an oracle) as well as with direct access to the
usual (PCP) proof-oracle, and require that the following two conditions hold (with respect
to some constant ε > 0):

Completeness: For every x ∈ S there exists a string πx such that, when given access
to the oracles x and πx , machine V always accepts.

Soundness with respect to proximity ε: For every string x that is ε-far from S (i.e.,
for every x ′ ∈ {0, 1}|x | ∩ S it holds that x and x ′ differ on at least ε|x | bits) and
every string π , when given access to the oracles x and π , machine V rejects with
probability at least 1

2 .

Machine V is called a PCP of proximity, and its queries to both oracles are counted in
its query complexity. (Indeed, a PCP of proximity was used in §9.3.2.2, and the notion is
analogous to a relaxation of decision problems that is reviewed in Section 10.1.2.)

We mention that every set in NP has PCPs of proximity of logarithmic randomness
complexity, constant query complexity, and poly-logarithmic time complexity. This follows
by using ideas as underlying the proof of Theorem 9.23 (see also Exercise 9.30).

403



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

9.3.4.3. PCP with Super-logarithmic Randomness
Our focus so far was on the important case where the verifier tosses logarithmically many
coins, and hence the “effective proof length” is polynomial. Here we mention that the PCP
Theorem (or rather Theorem 9.23) scales up.46

Theorem 9.24 (Theorem 9.16 – generalized): Let t(·) be an integer function such
that n < t(n)<2poly(n). Then, NTIME(t) ⊆ PCP(O(log t), O(1)).

Recall that PCP(r, q) ⊆ NTIME(t), for t(n) = poly(n) · 2r (n). Thus, the NTIME Hierarchy
implies a hierarchy of PCP(·, O(1)) classes, for randomness complexity ranging between
logarithmic and polynomial functions.

Chapter Notes

(The following historical notes are quite long and still they fail to properly discuss several
important technical contributions that played an important role in the development of the
area. For further details, the reader is referred to [90, Sec. 2.6.2].)

Motivated by the desire to formulate the most general type of “proofs” that may
be used within cryptographic protocols, Goldwasser, Micali, and Rackoff [109] intro-
duced the notion of an interactive proof system. Although the main thrust of their work
was the introduction of a special type of interactive proofs (i.e., ones that are zero-
knowledge), the possibility that interactive proof systems may be more powerful than
NP-proof systems was pointed out in [109]. Independently of [109], Babai [18] suggested
a different formulation of interactive proofs, which he called Arthur-Merlin Games. Syn-
tactically, Arthur-Merlin Games are a restricted form of interactive proof systems, yet it
was subsequently shown that these restricted systems are as powerful as the general ones
(cf., [111]). The speed-up result (i.e., AM(2 f ) ⊆ AM( f )) is due to [23] (improving
over [18]).

The first evidence of the power of interactive proofs was given by Goldreich, Micali, and
Wigderson [100], who presented an interactive proof system for Graph Non-Isomorphism
(Construction 9.3). More importantly, they demonstrated the generality and wide appli-
cability of zero-knowledge proofs: Assuming the existence of one-way functions, they
showed how to construct zero-knowledge interactive proofs for any set in NP (Theo-
rem 9.11). This result has had a dramatic impact on the design of cryptographic protocols
(cf. [101]). For further discussion of zero-knowledge and its applications to cryptography,
see Appendix C. Theorem 9.12 (i.e., ZK = IP) is due to [32, 130].

Probabilistically checkable proof (PCP) systems are related to multi-prover interac-
tive proof systems, a generalization of interactive proofs that was suggested by Ben-Or,
Goldwasser, Kilian, and Wigderson [33]. Again, the main motivation came from the zero-
knowledge perspective, specifically, presenting multi-prover zero-knowledge proofs for
NP without relying on intractability assumptions. Yet, the complexity-theoretic prospects
of the new class, denoted MIP , have not been ignored.

The amazing power of interactive proof systems was demonstrated by using algebraic
methods. The basic technique was introduced by Lund, Fortnow, Karloff, and Nisan [162],
who applied it to show that the Polynomial-time Hierarchy (and actually P#P ) is in IP .
Subsequently, Shamir [202] used the technique to show that IP = PSPACE , and Babai,

46Note that the sketched proof of Theorem 9.23 yields verification time that is quadratic in the length of the input
and poly-logarithmic in the length of the NP-witness.

404



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

Fortnow, and Lund [21] used it to show that MIP = NEXP . (Our entire proof of
Theorem 9.4 follows [202].)

The aforementioned multi-prover proof system of Babai, Fortnow, and Lund [21]
(hereafter referred to as the BFL proof system) has been the starting point for fundamental
developments regarding NP . The first development was the discovery that the BFL proof
system can be “scaled down” from NEXP to NP . This important discovery was made
independently by two sets of authors: Babai, Fortnow, Levin, and Szegedy [20] and Feige,
Goldwasser, Lovász, and Safra [73]. However, the manner in which the BFL proof is
scaled down is different in the two papers, and so are the consequences of the scaling
down.

Babai et al. [20] start by considering (only) inputs encoded using a special error-
correcting code. The encoding of strings, relative to this error-correcting code, can be
computed in polynomial time. They presented an almost-linear time algorithm that trans-
forms NP-witnesses (to inputs in a set S ∈ NP) into transparent proofs that can be
verified (as vouching for the correctness of the encoded assertion) in (probabilistic)
poly-logarithmic time (by a random-access machine). Babai et al. [20] stress the prac-
tical aspects of transparent proofs, specifically, for rapidly checking transcripts of long
computations.

In contrast, in the proof system of Feige et al. [73, 74] the verifier stays polyno-
mial time and only two more refined complexity measures (i.e., the randomness and
query complexities) are reduced to poly-logarithmic. This eliminates the need to assume
that the input is in a special error-correcting form, and yields a refined (quantitative)
version of the notion of probabilistically checkable proof systems (introduced in [80]),
where the refinement is obtained by specifying the randomness and query complexities
(see Definition 9.14). Hence, whereas the BFL proof system [21] can be reinterpreted
as establishing NEXP = PCP(poly, poly), the work of Feige et al. [74] establishes
NP ⊆ PCP( f, f ), where f (n) = O(log n · log log n). (In retrospect, we note that the
work of Babai et al. [20] implies that NP ⊆ PCP(log, polylog).)

Interest in the new complexity class became immense since Feige et al. [73, 74] demon-
strated its relevance to proving the intractability of approximating some natural combina-
torial problems (specifically, for MaxClique). When using the PCP-to–MaxClique connec-
tion established by Feige et al., the randomness and query complexities of the verifier (in a
PCP-system for an NP-complete set) relate to the strength of the negative results obtained
for the approximation problems. This fact provided a very strong motivation for trying to
reduce these complexities and obtain a tight characterization of NP in terms of PCP(·, ·).
The obvious challenge was showing that NP equals PCP(log, log). This challenge was
met by Arora and Safra [16]. Actually, they showed that NP = PCP(log, q), where
q(n) = o(log n).

Hence, a new challenge arose, namely, further reducing the query complexity – in
particular, to a constant – while maintaining the logarithmic randomness complexity.
Again, additional motivation for this challenge came from the relevance of such a result
to the study of natural approximation problems. The new challenge was met by Arora,
Lund, Motwani, Sudan and Szegedy [15], and is captured by the PCP Characterization
Theorem, which asserts that NP = PCP(log, O(1)).

Indeed the PCP Characterization Theorem is a culmination of a sequence of impressive
works [162, 21, 20, 74, 16, 15]. These works are rich in innovative ideas (e.g., various
arithmetizations of SAT as well as various forms of proof composition) and employ
numerous techniques (e.g., low-degree tests, self-correction, and pseudorandomness).

405



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Our overview of the original proof of the PCP Theorem (in §9.3.2.1–9.3.2.2) is based
on [15, 16].47 The alternative proof outlined in §9.3.2.3 is due to Dinur [67].

We mention some of the ideas and techniques involved in deriving even stronger
variants of the PCP Theorem (which are surveyed in §9.3.4.1). These include the Parallel
Repetition Theorem [185], the use of the Long-Code [29], and the application of Fourier
analysis in this setting [116, 117]. We also highlight the notions of PCPs of proximity and
robustness (see [35, 68]).

Computationally Sound Proof Systems. Argument systems were defined by Brassard,
Chaum, and Crépeau [49], with the motivation of providing perfect zero-knowledge argu-
ments (rather than zero-knowledge proofs) forNP . A few years later, Kilian [145] demon-
strated their significance beyond the domain of zero-knowledge by showing that, under
some reasonable intractability assumptions, every set in NP has a computationally sound
proof in which the randomness and communication complexities are poly-logarithmic.48

Interestingly, these argument systems rely on the fact that NP ⊆ PCP( f, f ), for
f (n) = poly(log n). We mention that Micali [165] suggested a different type of com-
putationally sound proof systems (which he called CS-proofs).

Final comment. The current chapter is a revision of [90, Chap. 2]. In particular, more
details are provided here for the main topics, whereas numerous secondary topics discussed
in [90, Chap. 2] are not mentioned here (or are only briefly mentioned here). We note
that a few of the research directions that were mentioned in [90, Sec. 2.4.4] have received
considerable attention in the period that elapsed, and improved results are currently known.
In particular, the interested reader is referred to [35, 36, 67] for a study of the length of
PCPs, and to [119] for a study of their amortized query complexity. Likewise, a few open
problems mentioned in [90, Sec. 2.6.3] have been resolved; specifically, the interested
reader is referred to [25, 172] for breakthrough results regarding zero-knowledge.

Exercises

Exercise 9.1 (parallel error reduction for interactive proof systems): By t parallel
repetitions of the proof system (P, V ) we mean an interaction in which t copies of
the basic system are executed in parallel such that, at the i th move, the relevant party
performs the i th move for each of these t copies. Needless to say, an honest party (i.e.,
the verifier) will act in each copy independently of the other copies, but a dishonest
prover may determine its action in each copy based on the execution of all copies.
Nevertheless, prove that the error probability (in the soundness condition) decreases
exponentially with the number of parallel repetitions (of the proof system).

Guideline: As a warm-up, consider the special case of public-coin interactive proof
systems. Next, generalize the analysis to arbitrary interactive proof systems, by consid-
ering (as a mental experiment) a “powerful verifier” that emulates the original verifier
while behaving as in the public-coin model. (A direct proof appears in [90, Apdx. C.1].)

Exercise 9.2: Prove that if S is Karp-reducible to a set in IP , then S ∈ IP . Prove that
if S is Cook-reducible to a set S′ such that both S′ and {0, 1}∗ \ S′ are in IP , then
S ∈ IP .

47Our presentation also benefits from the notions of PCPs of proximity and robustness, put forward in [35, 68].
48We comment that interactive proofs are unlikely to have such low complexities; see [106].

406



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 9.3: Complete the details of the proof that coNP ⊆ IP (i.e., the first part of
the proof of Theorem 9.4). In particular, suppose that the protocol for unsatisfiability
is applied to a CNF formula with n variables and m clauses. Then, what is the length
of the messages sent by the two parties? What is the soundness error?

Exercise 9.4: Present an interactive proof system for unsatisfiability such that on input a
CNF formula having n variables the parties exchange n/O(log n) messages.

Guideline: Modify the (first part of the) proof of Theorem 9.4, by stripping O(log n)
summations in each round.

Exercise 9.5 (an interactive proof system for #P): Using the main part of the proof of
Theorem 9.4, present a proof system for the counting set of Eq. (9.5).

Guideline: Use a slightly different arithmetization of CNF formulae. Specifically,
instead of replacing the clause x ∨ ¬y ∨ z by the term (x + (1− y)+ z), replace it
by the term (1− ((1− x) · y · (1− z))). The point is that this arithmetization maps
Boolean assignments that satisfy the CNF formula to 0-1 assignments that when
substituted in the corresponding arithmetic expression yield the value 1 (rather than
yielding a somewhat arbitrary positive integer).

Exercise 9.6: Show that QBF can be reduced to a special form of (non-canonical)49 QBF
in which no variable appears both to the left and to the right of more than one universal
quantifier.

Guideline: Consider a process (which proceeds from left to right) of “refreshing”
variables after each universal quantifier. Let φ(x1, . . . , xs, y, xs+1, . . . , xs+t ) be a
quantifier-free Boolean formula and let Qs+1, . . . , Qs+t be an arbitrary sequence
of quantifiers. Then, we replace the quantified (sub-)formula

∀yQs+1xs+1 · · · Qs+t xs+t φ(x1, . . . , xs, y, xs+1, . . . , xs+t )

by the (sub-)formula

∀y∃x ′1 · · · ∃x ′s[ (∧s
i=1(x ′i = xi ))

∧Qs+1xs+1 · · · Qs+t xs+t φ(x ′1, . . . , x ′s, y, xs+1, . . . , xs+t ) ] .

Note that the variables x1, . . . , xs do not appear to the right of the quantifier Qs+1 in
the replaced formula, and that the length of the replaced formula grows by an additive
term of O(s). This process of refreshing variables is applied from left to right on the
entire sequence of universal quantifiers (except the inner one, for which this refreshing
is useless).50

49See Appendix G.2.
50For example,

∃z1∀z2∃z3∀z4∃z5∀z6 φ(z1, z2, z3, z4, z5, z6)

is first replaced by

∃z1∀z2∃z′1 [(z′1 = z1) ∧ ∃z3∀z4∃z5∀z6 φ(z′1, z2, z3, z4, z5, z6)]

and next (written as ∃z1∀z′2∃z′1 [(z′1 = z1) ∧ ∃z′3∀z′4∃z′5∀z′6 φ(z′1, z′2, z′3, z′4, z′5, z′6)]) is replaced by

∃z1∀z′2∃z′1 [(z′1 = z1) ∧ ∃z′3∀z′4∃z′′1∃z′′2∃z′′3

[(∧3
i=1(z′′i = z′i )) ∧ ∃z′5∀z′6φ(z′′1 , z′′2 , z′′3 , z′4, z′5, z′6)]].

407



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Exercise 9.7: Prove that if two integers in [0, M] are different then they must be different
modulo most of the primes in the interval [3, L], where L = poly(log M)]. Prove the
same for the interval [L , 2L].

Guideline: Let a �= b ∈ [0, M] and suppose that P1, . . . , Pt is an enumeration of
all the primes that satisfy a ≡ b (mod Pi ). Using the Chinese Reminder Theorem,
prove that Q

def= ∏t
i=1 Pi ≤ M (because otherwise a = b follows by combining a ≡ b

(mod Q) with the hypothesis a, b ∈ [0, M]). It follows that t < log2 M . Using a lower
bound on the density of prime numbers, the claim follows.

Exercise 9.8 (on interactive proofs with two-sided error (following [82])): Let IP ′( f )
denote the class of sets having a two-sided error interactive proof system in which a
total of f (|x |) messages are exchanged on common input x . Specifically, suppose that
a suitable prover may cause every yes-instance to be accepted with probability at least
2/3 (rather than 1), while no cheating prover can cause a no-instance to be accepted
with probability greater than 1/3 (rather than 1/2). Similarly, let AM′ denote the
public-coin version of IP ′.
1. Establish IP ′( f ) ⊆ AM′( f + 3) by noting that the proof of Theorem F.2, which

establishes IP( f ) ⊆ AM( f + 3), extends to the two-sided error setting.
2. Prove that AM′( f ) ⊆ AM( f + 1) by extending the ideas underlying the proof

of Theorem 6.9, which actually establishes that BPP ⊆ AM(1) (where BPP =
AM′(0)).

Using the Round Speed-up Theorem (i.e., Theorem F.3), conclude that, for every
function f : N→ N \ {1}, it holds that IP ′( f ) = AM( f ) = IP( f ).

Guideline (for Part 2): Fixing an optimal prover strategy for the given two-sided error
public-coin interactive proof, consider the set of verifier coins that make the verifier
accept any fixed yes-instance, and apply the ideas underlying the transformation of
BPP to MA = AM(1). For further details, see [82].

Exercise 9.9: In continuation of Exercise 9.8, show that IP ′( f ) = IP( f ) for every
function f : N→ N (including f ≡ 1).

Guideline: Focus on establishing IP ′(1) = IP(1), which is identical to Part 2 of
Exercise 6.12. Note that the relevant classes defined in Exercise 6.12 coincide with
IP(1) and IP ′(1); that is, MA = IP(1) and MA(2) = IP ′(1).

Exercise 9.10: Prove that every PSPACE-complete set S has an interactive proof system
in which the designated prover can be implemented by a probabilistic polynomial-time
oracle machine that is given oracle access to S.

Guideline: Use Theorem 9.4 and Proposition 9.5.

Exercise 9.11 (checkers (following [39])): A probabilistic polynomial-time oracle ma-
chine C is called a checker for the decision problem � if the following two conditions
hold:

1. For every x it holds that Pr[C�(x)=1] = 1, where (as usual) C f (x) denotes the
output of A on input x when given oracle access to f .

Thus, in the resulting formula, no variable appears both to the left and to the right of more than a single universal
quantifier.

408



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

2. For every f : {0, 1}∗ → {0, 1} and every x such that f (x) �= �(x) it holds that
Pr[C f (x)=1] ≤ 1/2.

Note that nothing is required in the case that f (x) = �(x) but f �= �. Prove that if both
S1 = {x : �(x)=1} and S0 = {x : �(x)=0} have interactive proof systems in which
the designated prover can be implemented by a probabilistic polynomial-time oracle
machine that is given oracle access to �, then � has a checker. Using Exercise 9.10,
conclude that any PSPACE-complete problem has a checker.

Guideline: On input x and oracle access to f , the checker first obtains σ
def= f (x). The

claim �(x) = σ is then checked by combining the verifier of Sσ with the probabilistic
polynomial-time oracle machine that describes the designated prover, while referring
its queries to the oracle f .

Exercise 9.12 (weakly optimal deciders for checkable problems (following [133])):
Prove that if a decision problem � has a checker (as defined in Exercise 9.11) then
there exists a probabilistic algorithm A that satisfies the following two conditions:

1. A solves the decision problem � (i.e., for every x it holds that Pr[A(x)=�(x)] ≥
2/3).

2. For every probabilistic algorithm A′ that solves the decision problem �, there
exists a polynomial p such that for every x it holds that tA(x) = p(|x |) ·
max|x ′|≤p(|x |){tA′(x ′)}, where tA(z) (resp., tA′(z)) denotes the number of steps taken
by A (resp., A′) on input z.

Note that, compared to Theorem 2.33, the claim of optimality is weaker, but on the
other hand it applies to decision problems (rather than to candid search problems).

Guideline: Use the ideas of the proof of Theorem 2.33, noting that the correctness
of the answers provided by the various candidate algorithms can be verified by using
the checker. That is, A invokes copies of the checker, while using different candidate
algorithms as oracles in the various copies.

Exercise 9.13 (on the role of soundness error in zero-knowledge proofs): Prove that
if S has a zero-knowledge interactive proof system with perfect soundness (i.e., the
soundness error equals zero) then S ∈ BPP .

Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier. Consider the algorithm that, on input x , accepts x if and only if M(x) represents
a valid view of the verifier in an accepting interaction (i.e., an interaction that leads
the verifier to accept the common input x). Use the simulation condition to analyze
the case x ∈ S, and the perfect soundness hypothesis to analyze the case x �∈ S.

Exercise 9.14 (on the role of interaction in zero-knowledge proofs): Prove that if S
has a zero-knowledge interactive proof system with a uni-directional communication
then S ∈ BPP .

Guideline: Let M be an arbitrary algorithm that simulates the view of the (honest)
verifier, and let M ′(x) denote the part of this view that consists of the prover message.
Consider the algorithm that, on input x , obtains m ← M ′(x), and emulates the verifier’s
decision on input x and message m. Note that this algorithm ignores the part of M(x)
that represents the verifier’s internal coin tosses, and uses fresh verifier’s coins when
deciding on (x, m).

409



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Exercise 9.15 (on the effective length of PCP oracles): Suppose that V is a PCP verifier
of query complexity q and randomness complexity r . Show that for every fixed x , the
number of possible locations in the proof oracle that are examined by V on input x
(when considering all possible internal coin tosses of V and all possible answers it may
receive) is upper bounded by 2q(|x |)+r (|x |). Show that if V is non-adaptive then the upper
bound can be improved to 2r (|x |) · q(|x |).

Guideline: In the non-adaptive case, all q queries are determined by V ’s internal coin
tosses.

Exercise 9.16 (on the effective randomness of PCPs): Suppose that a set S has a PCP of
query complexity q that utilizes proof oracles of length �. Show that, for every constant
ε > 0, the set S has a “non-uniform” PCP of query complexity q, soundness error
0.5+ ε, and randomness complexity r such that r (n) = log2(�(n)+ n)+ O(1). By a
“non-uniform PCP” we mean one in which the verifier is a probabilistic polynomial-
time oracle machine that is given direct access to the bits of a non-uniform poly(�(n)+
n)-bit long advice.

Guideline: Consider a PCP verifier V as in the hypothesis, and denote its randomness
complexity by rV . We construct a non-uniform verifier V ′ that, on input of length n,
obtains as advice a set Rn ⊆ {0, 1}rV (n) of cardinality O((�(n)+ n)/ε2), and emulates
V on a uniformly selected element of Rn . Show that for a random Rn of the said size,
the verifier V ′ satisfies the claims of the exercise.

(Extra hint: Fixing any input x �∈ S and any oracle π ∈ {0, 1}�(|x |), upper-bound the probability that a

random set Rn (of the said size) is bad, where Rn is bad if V accepts x with probability 0.5+ ε when

selecting its coins in Rn and using the oracle π .)

Exercise 9.17 (on the complexity of sets having certain PCPs): Suppose that a set S
has a PCP of query complexity q and randomness complexity r . Show that S can be
decided by a non-deterministic machine51 that, on input of length n, makes at most
2r (n) · q(n) truly non-deterministic steps (i.e., choosing between different alternatives)
and halts within a total number of 2r (n) · poly(n) steps. Conclude that S ∈ NTIME(2r ·
poly) ∩ DTIME(22r q+r · poly).

Guideline: For each input x ∈ S and each possible value ω ∈ {0, 1}r (|x |) of the verifier’s
random-tape, we consider a sequence of q(|x |) bit values that represent a sequence of
oracle answers that make the verifier accept. Indeed, for fixed x and ω ∈ {0, 1}r (|x |), each
setting of the q(|x |) oracle answers determines the computation of the corresponding
verifier (including the queries it makes).

Exercise 9.18 (The FGLSS-reduction [74]): For any S ∈ PCP(r, q), consider the fol-
lowing mapping of instances for S to instances of the Independent Set problem.
The instance x is mapped to a graph Gx = (Vx , Ex ), where Vx ⊆ {0, 1}r (|x |)+q(|x |) con-
sists of pairs (ω, α) such that the PCP verifier accepts the input x , when using coins
ω ∈ {0, 1}r (|x |) and receiving the answers α = α1 · · ·αq(|x |) (to the oracle queries deter-
mined by x , r and the previous answers). Note that Vx contains only accepting “views”
of the verifier. The set Ex consists of edges that connect vertices that represents mu-
tually inconsistent views of the said verifier; that is, the vertex v = (ω, α1 · · ·αq(|x |)) is
connected to the vertex v′ = (ω′, α′1 · · ·α′q(|x |)) if there exists i and i ′ such that αi �= α′i ′

51See §4.2.1.3 for definition of non-deterministic machines.

410



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

and qx
i (v) = qx

i ′(v
′), where qx

i (v) (resp., qx
i ′(v

′)) denotes the i-th (resp., i ′-th) query
of the verifier on input x , when using coins ω (resp., ω′) and receiving the answers
α1 · · ·αi−1 (resp., α′1 · · ·α′i ′−1). In particular, for every ω ∈ {0, 1}r (|x |) and α �= α′, if
(ω, α), (ω, α′) ∈ Vx , then {(ω, α), (ω, α′)} ∈ Ex .

1. Prove that the mapping x !→ Gx can be computed in time that is polynomial in
2r (|x |)+q(|x |) · |x |.
(Note that the number of vertices in Gx is upper-bounded by 2r (|x |)+ f (|x |), where
f ≤ q is the free-bit complexity of the PCP verifier.)

2. Prove that, for every x , the size of the maximum independent set in Gx is at most
2r (|x |).

3. Prove that if x ∈ S then Gx has an independent set of size 2r (|x |).
4. Prove that if x �∈ S then the size of the maximum independent set in Gx is at most

2r (|x |)−1.

In general, denoting the PCP verifier by V , prove that the size of the maximum
independent set in Gx is exactly 2r (|x |) ·maxπ {Pr[V π (x) = 1]}. (Note the similarity to
the proof of Proposition 2.26.)

Show that the PCP Theorem implies that the size of the maximum independent set
(resp., clique) in a graph is NP-hard to approximate to within any constant factor.

Guideline: Note that an independent set in Gx corresponds to a set of coins R and a
partial oracle π ′ such that V accepts x when using coins in R and accessing any oracle
that is consistent with π ′. The FGLSS-reduction creates a gap of a factor of 2 between
yes- and no-instances of S (having a standard PCP). Larger factors can be obtained by
considering a PCP that results from repeating the original PCP for a constant number
of times. The result for Clique follows by considering the complement graph.

Exercise 9.19: Using the ideas of Exercise 9.18, prove that, for any t(n) = o(log n), if
NP ⊆ PCP(t, t) then P = NP .

Guideline: We only use the fact that the FGLSS-reduction maps instances of S ∈
PCP(t, t) to instances of the Clique problem (and ignore the fact that we actually
get a stronger reduction to a “gap-Clique” problem). The key observation is that, when
applied to n-bit long instances of a problem in PCP(t, t), the FGLSS-reduction runs
in polynomial time and produces instances of size 22t(n) � n. Thus, the hypothesis
NP ⊆ PCP(t, t) implies that the FGLSS-reduction maps instances of the Clique
problem to shorter instances of the same problem. Hence, iteratively applying the
FGLSS-reduction, we can reduce instances of Clique to instances of constant size.
This yields a reduction of Clique to a finite set, and NP = P follows (by the
NP-completeness of Clique).

Exercise 9.20 (a simple but partial analysis of the BLR Linearity Test): For Abelian
groups G and H , consider functions from G to H . For such a (generic) function f ,
consider the linearity (or rather homomorphism) test that selects uniformly r, s ∈ G
and checks that f (r )+ f (s) = f (r + s). Let δ( f ) denote the distance of f from the
set of homomorphisms (of G to H ); that is, δ( f ) is the minimum taken over all
homomorphisms h : G → H of Prx∈G[ f (x) �= h(x)]. Using the following guidelines,
prove that the probability that the test rejects f , denoted ε( f ), is at least 3δ( f )− 6δ( f )2.

411



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

1. Suppose that h is the homomorphism closest to f (i.e., δ( f ) = Prx∈G[ f (x) �=
h(x)]). Prove that ε( f ) = Prx,y∈G[ f (x)+ f (y) �= f (x + y)] is lower-bounded by
3 · Prx,y[ f (x) �=h(x) ∧ f (y)=h(y) ∧ f (x + y)=h(x + y)].

(Hint: Consider three out of four disjoint cases (regarding f (x)
?=h(x), f (y)

?=h(y), and

f (x + y)
?= h(x + y)) that are possible when f (x)+ f (y) �= f (x + y), where these three

cases refer to the disagreement of h and f on exactly one out of the three relevant points.)

2. Prove that Prx,y[ f (x) �=h(x) ∧ f (y)=h(y) ∧ f (x + y)=h(x + y)] ≥ δ( f )−
2δ( f )2

(Hint: Lower-bound the said probability by Prx,y[ f (x) �= h(x)]− (Prx,y[ f (x) �= h(x) ∧
f (y) �= h(y)]+ Prx,y[ f (x) �= h(x) ∧ f (x + y) �= h(x + y)]).)

Note that the lower bound ε( f ) ≥ 3δ( f )− 6δ( f )2 increases with δ( f ) only in the case
that δ( f ) ≤ 1/4. Furthermore, the lower bound is useless in the case that δ( f ) ≥ 1/2.
Thus, an alternative lower bound is needed in case δ( f ) approaches 1/2 (or is larger
than it); see Exercise 9.21.

Exercise 9.21 (a better analysis of the BLR Linearity Test (cf. [40])): In con-
tinuation of Exercise 9.20, use the following guidelines in order to prove that
ε( f ) ≥ min(1/6, δ( f )/2). Specifically, focusing on the case that ε( f ) < 1/6, show
that f is 2ε( f )-close to some homomorphism (and thus ε( f ) ≥ δ( f )/2).

1. Define the vote of y regarding the value of f at x as φy(x)
def= f (x + y)− f (y), and

define φ(x) as the corresponding plurality vote (i.e., φ(x)
def= argmaxv∈H {|{y∈G :

φy(x)=v}|}).
Prove that, for every x ∈ G, it holds that Pry[φy(x) = φ(x)] ≥ 1− 2ε( f ).

Extra Guideline: Fixing x , call a pair (y1, y2) good if f (y1)+ f (y2 − y1) = f (y2) and
f (x + y1)+ f (y2 − y1) = f (x + y2). Prove that, for any x , a random pair (y1, y2) is good
with probability at least 1− 2ε( f ). On the other hand, for a good (y1, y2), it holds that
φy1 (x) = φy2 (x). Show that the graph in which edges correspond to good pairs must have a
connected component of size at least (1− 2ε( f )) · |G|. Note that φy(x) is identical for all
vertices y in this connected component, which in turn contains a majority of all y’s in G.

2. Prove that φ is a homomorphism; that is, prove that, for every x, y ∈ G, it holds
that φ(x)+ φ(y) = φ(x + y).

Extra Guideline: Prove that φ(x)+ φ(y) = φ(x + y) holds by considering the somewhat
fictitious expression px,y

def= Prr∈G[φ(x)+ φ(y) �= φ(x + y)], and showing that px,y < 1
(and hence φ(x)+ φ(y) �= φ(x + y) is false). Prove that px,y < 1, by showing that

px,y ≤ Prr

φ(x) �= f (x + r )− f (r )
∨ φ(y) �= f (r )− f (r − y)
∨ φ(x + y) �= f (x + r )− f (r − y)

 (9.10)

and using Item 1 (and some variable substitutions) for upper-bounding by 2ε( f ) < 1/3 the
probability of each of the three events in Eq. (9.10).

3. Prove that f is 2ε( f )-close to φ.

Extra Guideline: Denoting B = {x ∈G : Pry∈G[ f (x) �= φy(x)] ≥ 1/2}, prove that ε( f ) ≥
(1/2) · (|B|/|G|). Note that if x ∈ G \ B then f (x) = φ(x).

412



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

We comment that better bounds on the behavior of ε( f ) as a function of δ( f ) are
known.

Exercise 9.22 (testing matrix identity): Let M be a non-zero m-by-n matrix over GF(p).
Prove that Prr,s[r,Ms �= 0] ≥ (1− p−1)2, where r (resp., s) is a random m-ary (resp.,
n-ary) vector.

Guideline: Prove that if v �= 0n then Prs[v,s = 0] = p−1, and that if M has rank k
then Prr [r,M = 0n] = p−k .

Exercise 9.23 (low-degree tests (following [195])): For a field of prime cardinality F
and integers m and d < |F | − 1, we consider the set, denoted Pm,d , of all m-variate
polynomials of total degree at most d over F . We consider the low-degree test that, when
given oracle access to any function f : Fm → F , selects uniformly x, y ∈ Fm , queries
f at the points (x + i · y)i=0,...,d+1, and accepts if and only if

∑d+1
i=0 αi f (x + i · y) = 0,

where αi = (−1)i+1 · (d+1
i

)
. It is well known (cf. [195]) that f ∈ Pm,d if and only if for

every x, y ∈ Fm it holds that
∑d+1

i=0 αi f (x + i · y) = 0.

1. Following the outline of Exercise 9.20, prove that the test rejects f
with probability at least (d + 2) · δ( f )− (d + 2)(d + 1) · δ( f )2, where δ( f ) =
ming∈Pm,d {Prx∈Fm [ f (x) �= g(x)]}.

2. Following the outline of Exercise 9.21, prove that ε( f ) ≥ min((d + 2)−2, δ( f ))/2,
where ε( f ) denotes the probability that the test rejects f . That is, prove that if
ε( f ) < (d + 2)−2/2 then f is 2ε( f )-close to some function in Pm,d .

Guideline: Define φy(x)
def= ∑d+1

i=1 αi f (x + i · y), and note that ε( f ) =
Prx,y∈Fm [ f (x) �= φy(x)]. Part 1 follows by lower-bounding the probability that, for
random x, y ∈ Fm , there exists a unique i ∈ {0, 1, . . . , d + 1} such that f (x + i · y) �=
g(x + i · y), where g ∈ Pm,d is the low-degree polynomial closest to f . Part 2 follows
by defining φ(x) = argmaxv∈F {|{y∈Fm : φy(x)=v}|}, and proceeding analogously to
the three steps in the proof of Exercise 9.21. For example, analogously to the first step,
prove that for every x ∈ Fm it holds that Pry∈Fm [φ(x) = φy(x)] ≥ 1− 2(d + 1) · ε( f ).

(Extra hint: Prove that Pry1,y2∈Fm [φy1
(x) = φy2

(x)] ≥ 1− 2(d + 1) · ε( f ).)52

Exercise 9.24 (3SAT and CSP with two variables): Show that 3SAT is reducible to
gapCSP{1,...,7}

τ for τ (m) = 1/m, where gapCSP is as in Definition 9.18. Furthermore,
show that the size of the resulting gapCSP instance is linear in the length of the input
formula.

Guideline: Given an instance ψ of 3SAT, consider the graph in which vertices corre-
spond to clauses of ψ , edges correspond to pairs of clauses that share a variable, and the
constraints represent the natural consistency condition regarding partial assignments
that satisfy the clauses. See a related construction in Exercise 9.18.

Exercise 9.25 (CSP with two Boolean variables): In contrast to Exercise 9.24, prove
that for every positive function τ : N→ (0, 1] the problem gapCSP{0,1}

τ is solvable in
polynomial time.

52In the following probabilistic statements, we shall refer to uniformly distributed y1, y2 ∈ Fm . Note that φy1
(x) =∑d+1

i1=1
αi1 f (x + i1 · y1) which with probability at least 1− (d − 1) · ε( f ) equals

∑d+1
i1=1

αi1 φy2
(x + i1 · y1). The

latter expression equals
∑d+1

i1=1

∑d+1
i2=1

αi1 αi2 f (x + i1 · y1 + i2 · y2) =
∑d+1

i2=1
αi2 φy1

(x + i2 · y2), which with prob-

ability at least 1− (d − 1) · ε( f ) equals
∑d+1

i2=1
αi2 f (x + i2 · y2) = φy2

(x).

413



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

PROBABILISTIC PROOF SYSTEMS

Guideline: Reduce gapCSP{0,1}
τ to 2SAT.

Exercise 9.26: Show that, for any fixed finite � and constant c > 0, the problem gapCSP�
c

is in PCP(log, O(1)).

Guideline: Consider an oracle that, for some satisfying assignment for the CSP-
instance (G,�), provides a trivial encoding of the assignment; that is, for a satisfying
assignment α : V → �, the oracle responds to the query (v, i) with the i th bit in the
binary representation of α(v). Consider a verifier that uniformly selects an edge (u, v)
of G and checks the constraint φ(u,v) when applied to the values α(u) and α(v) obtained
from the oracle. This verifier makes log2 |�| queries and reject each no-instance with
probability at least c.

Exercise 9.27: For any constant � and d ≥ 14, show that gapCSP� can be reduced to
itself such that the instance at the target of the reduction is a d-regular expander, and
the fraction of violated constraints is preserved up to a constant factor. That is, the
instance (G, �) is reduced to (G1, �1) such that G1 is a d-regular expander graph and
vlt(G1, �1) = �(vlt(G, �)). Furthermore, make sure that |G1| = O(|G|) and that
each vertex in G1 has at least d/2 self-loops.

Guideline: First, replace each vertex of degree d ′ > 3 by a 3-regular expander of size
d ′, and connect each of the original d ′ edges to a different vertex of this expander,
thus obtaining a graph of maximum degree 4. Maintain the constraints associated with
the original edges, and associate the equality constraint (i.e., φ(σ, τ ) = 1 if and only
if σ = τ ) to each new edge (residing in any of the added expanders). Next, augment
the resulting N1-vertex graph by the edges of a 3-regular expander of size N1 (while
associating with these edges the trivially satisfied constraint; i.e., φ(σ, τ ) = 1 for all
σ, τ ∈ �). Finally, add at least d/2 self-loops to each vertex (using again trivially
satisfied constraints), so as to obtain a d-regular graph. Prove that this sequence of
modifications may only decrease the fraction of violated constraints, and that the de-
crease is only by a constant factor. The latter assertion relies on the equality constraints
associated with the small expanders used in the first step.

Exercise 9.28 (free-bit complexity zero): Note that only sets in coRP have PCPs of
query complexity zero. Furthermore, Exercise 9.17 implies that only sets in P have
PCP-systems of logarithmic randomness and query complexity zero.

1. Show that only sets in P have PCP-systems of logarithmic randomness and free-bit
complexity zero.

(Hint: Consider an application of the FGLSS-reduction to a set having a PCP of free-bit
complexity zero.)

2. In contrast, show that Graph Non-Isomorphism has a PCP-system of free-bit com-
plexity zero (and linear randomness complexity).

Exercise 9.29 (free-bit complexity one): In continuation of Exercise 9.28, prove that
only sets in P have PCP-systems of logarithmic randomness and free-bit complexity
one.

Guideline: Consider an application of the FGLSS-reduction to a set having a PCP
of free-bit complexity one and randomness complexity r . Note that the question of
whether the resulting graph has an independent set of size 2r can be expressed as a
2CNF formula of size poly(2r ), and see Exercise 2.22.

414



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 9.30 (proving theorem 9.23): Using the following guidelines, provide a proof
of Theorem 9.23. Let S ∈ NP and consider the 3CNF formulae that are obtained by the
standard reduction of S to 3SAT (i.e., the one provided by the proofs of Theorems 2.21
and 2.22). Decouple the resulting 3CNF formulae into pairs of formulae (ψx , φ) such
that ψx represents the “hard-wiring” of the input x and φ represents the computation
itself. Referring to the mapping of 3CNF formulae to low-degree extensions presented
in §9.3.2.2, show that the low-degree extension � that corresponds to φ can be evaluated
in polynomial time (i.e., polynomial in the length of the input to �, which is O(log |φ|)).
Conclude that the low-degree extension that corresponds to ψx ∧ φ can be evaluated
in time |x |2. Alternatively, note that it suffices to show that the assignment-oracle
A (considered in §9.3.2.2) satisfies � and is consistent with x (and is a low-degree
polynomial).

Guideline: Note that the circuit constructed in the proof of Theorem 2.21 is highly
uniform. In particular, the relation between wires and gates in this circuit can be
represented by constant-depth circuits of unbounded fan-in and polynomial size (i.e.,
size that is polynomial in the length of the indices of wires and gates).

415



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER TEN

Relaxing the Requirements

The philosophers have only interpreted the world, in various ways; the
point is to change it.

Karl Marx, “Theses on Feuerbach”

In light of the apparent infeasibility of solving numerous useful computational problems,
it is natural to ask whether these problems can be relaxed such that the relaxation is
both useful and allows for feasible solving procedures. We stress two aspects about the
foregoing question: On the one hand, the relaxation should be sufficiently good for the
intended applications; but, on the other hand, it should be significantly different from
the original formulation of the problem so as to escape the infeasibility of the latter. We
note that whether a relaxation is adequate for an intended application depends on the
application, and thus much of the material in this chapter is less robust (or generic) than
the treatment of the non-relaxed computational problems.

Summary: We consider two types of relaxations. The first type of re-
laxation refers to the computational problems themselves; that is, for
each problem instance we extend the set of admissible solutions. In the
context of search problems this means settling for solutions that have a
value that is “sufficiently close” to the value of the optimal solution (with
respect to some value function). Needless to say, the specific meaning
of “sufficiently close” is part of the definition of the relaxed problem. In
the context of decision problems this means that for some instances both
answers are considered valid; specifically, we shall consider promise
problems in which the no-instances are “far” from the yes-instances
in some adequate sense (which is part of the definition of the relaxed
problem).

The second type of relaxation deviates from the requirement that the
solver provides an adequate answer on each valid instance. Instead,
the behavior of the solver is analyzed with respect to a predetermined
input distribution (or a class of such distributions), and bad behavior
may occur with negligible probability where the probability is taken
over this input distribution. That is, we replace worst-case analysis by
average-case (or rather typical-case) analysis. Needless to say, a ma-
jor component in this approach is limiting the class of distributions
in a way that, on the one hand, allows for various types of natural

416



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

distributions and, on the other hand, prevents the collapse of the cor-
responding notion of average-case hardness to the standard notion of
worst-case hardness.

Organization. The first type of relaxation is treated in Section 10.1, where we consider
approximations of search (or rather optimization) problems as well as approximate deci-
sion problems (aka property testing); see Section 10.1.1 and Section 10.1.2, respectively.
The second type of relaxation, known as average/typicalcase-complexity, is treated in
Section 10.2. The treatment of these two types is quite different. Section 10.1 provides a
short and high-level introduction to various research areas, focusing on the main notions
and illustrating them by reviewing some results (while providing no proofs). In contrast,
Section 10.2 provides a basic treatment of a theory (of average/typical-case complex-
ity), focusing on some basic results and providing a rather detailed exposition of the
corresponding proofs.

10.1. Approximation

The notion of approximation is a very natural one, and has also arisen in other disciplines.
Approximation is most commonly used in references to quantities (e.g., “the length of one
meter is approximately forty inches”), but it is also used when referring to qualities (e.g.,
“an approximately correct account of a historical event”). In the context of computation,
the notion of approximation modifies computational tasks such as search and decision
problems. (In fact, we have already encountered it as a modifier of counting problems;
see Section 6.2.2.)

Two major questions regarding approximation are (1) what constitutes a “good” ap-
proximation, and (2) whether it can be found more easily than finding an exact solution.
The answer to the first question seems intimately related to the specific computational
task at hand and to its role in the wider context (i.e., the higher level application): A
good approximation is one that suffices for the intended application. Indeed, the impor-
tance of certain approximation problems is much more subjective than the importance
of the corresponding optimization problems. This fact seems to stand in the way of at-
tempts at providing a comprehensive theory of natural approximation problems (e.g.,
general classes of natural approximation problems that are shown to be computationally
equivalent).

Turning to the second question, we note that in numerous cases natural approximation
problems seem to be significantly easier than the corresponding original (“exact”) prob-
lems. On the other hand, in numerous other cases, natural approximation problems are
computationally equivalent to the original problems. We shall exemplify both cases by
reviewing some specific results, but will not provide a general systematic classification
(because such a classification is not known).1

We shall distinguish between approximation problems that are of a “search type” and
problems that have a clear “decisional” flavor. In the first case we shall refer to a function
that assigns values to possible solutions (of a search problem); whereas in the second case
we shall refer to the distance between instances (of a decision problem).2 We note that

1In contrast, systematic classifications of restricted classes of approximation problems are known. For example,
see [56] for a classification of (approximate versions of) Constraint Satisfaction Problems.

2In some sense, this distinction is analogous to the distinction between the two aforementioned uses of the word
approximation.

417



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

sometimes the same computational problem may be cast in both ways, but for most natural
approximation problems one of the two frameworks is more appealing than the other. The
common theme underlying both frameworks is that in each of them we extend the set
of admissible solutions. In the case of search problems, we augment the set of optimal
solutions by allowing also almost-optimal solutions. In the case of decision problems, we
extend the set of solutions by allowing an arbitrary answer (solution) to some instances,
which may be viewed as a promise problem that disallows these instances. In this case
we focus on promise problems in which the yes- and no-instances are far apart (and the
instances that violate the promise are closed to yes-instances).

Teaching note: Most of the results presented in this section refer to specific computational
problems and (with one exception) are presented without a proof. In view of the complexity
of the corresponding proofs and the merely illustrative role of these results in the context of
Complexity Theory, we recommend doing the same in class.

10.1.1. Search or Optimization

As noted in Section 2.2.2, many search problems involve a set of potential solutions (per
each problem instance) such that different solutions are assigned different “values” (resp.,
“costs”) by some “value” (resp., “cost”) function. In such a case, one is interested in find-
ing a solution of maximum value (resp., minimum cost). A corresponding approximation
problem may refer to finding a solution of approximately maximum value (resp., approx-
imately minimum cost), where the specification of the desired level of approximation is
part of the problem’s definition. Let us elaborate.

For concreteness, we focus on the case of a value that we wish to maximize. For greater
expressibility (or, actually, for greater flexibility), we allow the value of the solution to
depend also on the instance itself.3 Thus, for a (polynomially bounded) binary relation
R and a value function f : {0, 1}∗ × {0, 1}∗ → R, we consider the problem of finding
solutions (with respect to R) that maximize the value of f . That is, given x (such that
R(x) �= ∅), the task is finding y ∈ R(x) such that f (x, y) = vx , where vx is the maximum
value of f (x, y′) over all y′ ∈ R(x). Typically, R is in PC and f is polynomial-time
computable. Indeed, without loss of generality, we may assume that for every x it holds
that R(x) = {0, 1}�(|x |) for some polynomial � (see Exercise 2.8).4 Thus, the optimization
problem is recast as the following search problem: Given x, find y such that f (x, y) = vx ,
where vx = maxy′∈{0,1}�(|x |){ f (x, y′)}.

We shall focus on relative approximation problems, where for some gap function g :
{0, 1}∗ → {r ∈R : r≥1} the (maximization) task is finding y such that f (x, y) ≥ vx/g(x).
Indeed, in some cases the approximation factor is stated as a function of the length of the
input (i.e., g(x) = g′(|x |) for some g′ : N→ {r ∈R : r≥1}), but often the approximation

3This convention is only a matter of convenience: Without loss of generality, we can express the same optimization
problem using a value function that only depends on the solution by augmenting each solution with the corresponding
instance (i.e., a solution y to an instance x can be encoded as a pair (x, y), and the resulting set of valid solutions for x
will consist of pairs of the form (x, ·)). Hence, the foregoing convention merely allows for avoiding this cumbersome
encoding of solutions.

4However, in this case (and in contrast to footnote 3), the value function f must depend both on the instance and
on the solution (i.e., f (x, y) may not be oblivious of x).

418



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

factor is stated in terms of some more refined parameter of the input (e.g., as a function
of the number of vertices in a graph). Typically, g is polynomial-time computable.

Definition 10.1 (g-factor approximation): Let f : {0, 1}∗ × {0, 1}∗ → R, � :
N→N, and g : {0, 1}∗ → {r ∈R : r≥1}.

Maximization version: The g-factor approximation of maximizing f (wrt �) is the
search problem R such that R(x) = {y∈{0, 1}�(|x |) : f (x, y) ≥ vx/g(x)}, where
vx = maxy′∈{0,1}�(|x |){ f (x, y′)}.

Minimization version: The g-factor approximation of minimizing f (wrt �) is the
search problem R such that R(x) = {y∈{0, 1}�(|x |) : f (x, y) ≤ g(x) · cx}, where
cx = miny′∈{0,1}�(|x |){ f (x, y′)}.

We note that for numerous NP-complete optimization problems, polynomial-time al-
gorithms provide meaningful approximations. A few examples will be mentioned in
§10.1.1.1. In contrast, for numerous other NP-complete optimization problems, natural
approximation problems are computationally equivalent to the corresponding optimiza-
tion problem. A few examples will be mentioned in §10.1.1.2, where we also introduce
the notion of a gap problem, which is a promise problem (of the decision type) intended
to capture the difficulty of the (approximate) search problem.

10.1.1.1. A Few Positive Examples
Let us start with a trivial example. Considering a problem such as finding the maximum
clique in a graph, we note that finding a linear factor approximation is trivial (i.e., given
a graph G = (V, E), we may output any vertex in V as a |V |-factor approximation of the
maximum clique in G). A famous non-trivial example is presented next.

Proposition 10.2 (factor two approximation to minimum Vertex Cover):
There exists a polynomial-time approximation algorithm that given a graph
G = (V, E) outputs a vertex cover that is at most twice as large as the minimum
vertex cover of G.

We warn that an approximation algorithm for minimum Vertex Cover does not yield
such an algorithm for the complementary search problem (of maximum Indepen-
dent Set). This phenomenon stands in contrast to the case of optimization, where
an optimal solution for one search problem (e.g., minimum Vertex Cover) yields
an optimal solution for the complementary search problem (maximum Independent
Set).

Proof Sketch: The main observation is a connection between the set of maximal
matchings and the set of vertex covers in a graph. Let M be any maximal matching
in the graph G = (V, E); that is, M ⊆ E is a matching but augmenting it by any
single edge yields a set that is not a matching. Then, on the one hand, the set of
all vertices participating in M is a vertex cover of G, and, on the other hand, each
vertex cover of G must contain at least one vertex of each edge of M . Thus, we can
find the desired vertex cover by finding a maximal matching, which in turn can be
found by a greedy algorithm.

419



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

Another example. An instance of the traveling salesman problem (TSP) consists of a
symmetric matrix of distances between pairs of points, and the task is finding a shortest
tour that passes through all points. In general, no reasonable approximation is feasible
for this problem (see Exercise 10.1), but here we consider two special cases in which the
distances satisfy some natural constraints (and pretty good approximations are feasible).

Theorem 10.3 (approximations to special cases of TSP): Polynomial-time algo-
rithms exist for the following two computational problems.

1. Providing a 1.5-factor approximation for the special case of TSP in which the
distances satisfy the triangle inequality.

2. For every ε > 1, providing a (1+ ε)-factor approximation for the special case
of Euclidean TSP (i.e., for some constant k (e.g., k = 2), the points reside in a k-
dimensional Euclidean space, and the distances refer to the standard Euclidean
norm).

A weaker version of Part 1 is given in Exercise 10.2. A detailed survey of Part 2 is provided
in [13]. We note the difference exemplified by the two items of Theorem 10.3: Whereas
Part 1 provides a polynomial-time approximation for a specific constant factor, Part 2
provides such an algorithm for any constant factor. Such a result is called a polynomial-
time approximation scheme (abbreviated PTAS).

10.1.1.2. A Few Negative Examples
Let us start again with a trivial example. Considering a problem such as finding the
maximum clique in a graph, we note that given a graph G = (V, E) finding a (1+ |V |−1)-
factor approximation of the maximum clique in G is as hard as finding a maximum clique
in G. Indeed, this “result” is not really meaningful. In contrast, building on the PCP
Theorem (Theorem 9.16), one may prove that finding a |V |1−o(1)-factor approximation
of the maximum clique in a general graph G = (V, E) is as hard as finding a maximum
clique in a general graph. This follows from the fact that the approximation problem is
NP-hard (cf. Theorem 10.5).

The statement of such inapproximability results is made stronger by referring to a
promise problem that consists of distinguishing instances of sufficiently far-apart values.
Such promise problems are called gap problems, and are typically stated with respect
to two bounding functions g1, g2 : {0, 1}∗ → R (which replace the gap function g of
Definition 10.1). Typically, g1 and g2 are polynomial-time computable.

Definition 10.4 (gap problem for approximation of f ): Let f be as in Definition 10.1
and g1, g2 : {0, 1}∗ → R.

Maximization version: For g1 ≥ g2, the gapg1,g2
problem of maximizing f con-

sists of distinguishing between {x : vx ≥ g1(x)} and {x : vx < g2(x)}, where
vx = maxy∈{0,1}�(|x |){ f (x, y)}.

Minimization version: For g1 ≤ g2, the gapg1,g2
problem of minimizing f con-

sists of distinguishing between {x : cx ≤ g1(x)} and {x : cx > g2(x)}, where
cx = miny∈{0,1}�(|x |){ f (x, y)}.

For example, the gapg1,g2
problem of maximizing the size of a clique in a graph con-

sists of distinguishing between graphs G that have a clique of size g1(G) and graphs

420



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

G that have no clique of size g2(G). In this case, we typically let gi (G) be a function
of the number of vertices in G= (V, E); that is, gi (G) = g′i (|V |). Indeed, letting ω(G)
denote the size of the largest clique in the graph G, we let gapCliqueL ,s denote the
gap problem of distinguishing between {G= (V, E) : ω(G) ≥ L(|V |)} and {G= (V, E) :
ω(G) < s(|V |)}, where L ≥ s. Using this terminology, we restate (and strengthen)
the aforementioned |V |1−o(1)-factor inapproximability result of the maximum clique
problem.

Theorem 10.5: For some L(N ) = N 1−o(1) and s(N ) = N o(1), it holds that
gapCliqueL ,s is NP-hard.

The proof of Theorem 10.5 is based on a major refinement of Theorem 9.16 that refers to
a PCP-system of amortized free-bit complexity that tends to zero (cf. §9.3.4.1). A weaker
result, which follows from Theorem 9.16 itself, is presented in Exercise 10.3.

As we shall show next, results of the type of Theorem 10.5 imply the hardness of a cor-
responding approximation problem; that is, the hardness of deciding a gap problem implies
the hardness of a search problem that refers to an analogous factor of approximation.

Proposition 10.6: Let f, g1, g2 be as in Definition 10.4 and suppose that these
functions are polynomial-time computable. Then the gapg1,g2

problem of maximiz-
ing f (resp., minimizing f ) is reducible to the g1/g2-factor (resp., g2/g1-factor)
approximation of maximizing f (resp., minimizing f ).

Note that a reduction in the opposite direction does not necessarily exist (even in the case
that the underlying optimization problem is self-reducible in some natural sense). Indeed,
this is another difference between the current context (of approximation) and the context
of optimization problems, where the search problem is reducible to a related decision
problem.

Proof Sketch: We focus on the maximization version. On input x , we solve the
gapg1,g2

problem, by making the query x , obtaining the answer y, and ruling that x has
value at least g1(x) if and only if f (x, y) ≥ g2(x). Recall that we need to analyze this
reduction only on inputs that satisfy the promise. Thus, if vx ≥ g1(x) then the oracle
must return a solution y that satisfies f (x, y) ≥ vx/(g1(x)/g2(x)), which implies
that f (x, y) ≥ g2(x). On the other hand, if vx < g2(x) then f (x, y) ≤ vx < g2(x)
holds for any possible solution y.

Additional examples. Let us consider gapVCs,L , the gapgs ,gL
problem of minimizing the

vertex cover of a graph, where s and L are constants and gs(G) = s · |V | (resp., gL (G) =
L · |V |) for any graph G= (V, E). Then, Proposition 10.2 implies (via Proposition 10.6)
that, for every constant s, the problemgapVCs,2s is solvable in polynomial time. In contrast,
sufficiently narrowing the gap between the two thresholds yields an inapproximability
result. In particular:

Theorem 10.7: For some constants s > 0 and L < 1 such that L > 4
3 · s (e.g.,

s = 0.62 and L = 0.84), the problem gapVCs,L is NP-hard.

The proof of Theorem 10.7 is based on a complicated refinement of Theorem 9.16. Again,
a weaker result follows from Theorem 9.16 itself (see Exercise 10.4).

421



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

As noted, refinements of the PCP Theorem (Theorem 9.16) play a key role in estab-
lishing inapproximability results such as Theorems 10.5 and 10.7. In that respect, it is
adequate to recall that Theorem 9.21 establishes the equivalence of the PCP Theorem
itself and the NP-hardness of a gap problem concerning the maximization of the number
of clauses that are satisfied in a given 3-CNF formula. Specifically, gapSAT3

ε was defined
(in Definition 9.20) as the gap problem consisting of distinguishing between satisfiable
3-CNF formulae and 3-CNF formulae for which each truth assignment violates at least an
ε fraction of the clauses. Although Theorem 9.21 does not specify the quantitative relation
that underlies its qualitative assertion, when (refined and) combined with the best-known
PCP construction, it does yield the best-possible bound.

Theorem 10.8: For every v < 1/8, the problem gapSAT3
v is NP-hard.

On the other hand, gapSAT3
1/8 is solvable in polynomial time.

Sharp thresholds. The aforementioned opposite results (regarding gapSAT3
v) exemplify

a sharp threshold on the (factor of) approximation that can be obtained by an efficient
algorithm. Another appealing example refers to the following maximization problem in
which the instances are systems of linear equations over GF(2) and the task is finding
an assignment that satisfies as many equations as possible. Note that by merely selecting
an assignment at random, we expect to satisfy half of the equations. Also note that
it is easy to determine whether there exists an assignment that satisfies all equations.
Let gapLinL ,s denote the problem of distinguishing between systems in which one can
satisfy at least an L fraction of the equations and systems in which one cannot satisfy
an s fraction (or more) of the equations. Then, as just noted, gapLinL ,0.5 is trivial
(for every L ≥ 0.5) and gapLin1,s is feasible (for every s < 1). In contrast, moving
both thresholds (slightly) away from the corresponding extremes yields an NP-hard gap
problem:

Theorem 10.9: For every constant ε > 0, the problem gapLin1−ε,0.5+ε is NP-hard.

The proof of Theorem 10.9 is based on a major refinement of Theorem 9.16. In fact,
the corresponding PCP-system (for NP) is merely a reformulation of Theorem 10.9: The
verifier makes three queries and tests a linear condition regarding the answers, while
using a logarithmic number of coin tosses. This verifier accepts any yes-instance with
probability at least 1− ε (when given oracle access to a suitable proof), and rejects any
no-instance with probability at least 0.5− ε (regardless of the oracle being accessed). A
weaker result, which follows from Theorem 9.16 itself, is presented in Exercise 10.5.

Gap location. Theorems 10.8 and 10.9 illustrate two opposite situations with respect to
the “location” of the “gap” for which the corresponding promise problem is hard. Recall
that both gapSAT and gapLin are formulated with respect to two thresholds, where each
threshold bounds the fraction of “local” conditions (i.e., clauses or equations) that are
satisfiable in the case of yes- and no-instances, respectively. In the case of gapSAT, the
high threshold (referring to yes-instances) was set to 1, and thus only the low threshold
(referring to no-instances) remained a free parameter. Nevertheless, a hardness result was
established for gapSAT, and furthermore this was achieved for an optimal value of the

422



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

low threshold (cf. the foregoing discussion of sharp thresholds). In contrast, in the case of
gapLin, setting the high threshold to 1 makes the gap problem efficiently solvable. Thus,
the hardness of gapLin was established at a different location of the high threshold.
Specifically, hardness (for an optimal value of the ratio of thresholds) was established
when setting the high threshold to 1− ε, for any ε > 0.

A final comment. All the aforementioned inapproximability results refer to approxi-
mation (resp., gap) problems that are relaxations of optimization problems in NP (i.e.,
the optimization problem is computationally equivalent to a decision problem in NP;
see Section 2.2.2). In these cases, the NP-hardness of the approximation (resp., gap)
problem implies that the corresponding optimization problem is reducible to the ap-
proximation (resp., gap) problem. In other words, in these cases nothing is gained by
relaxing the original optimization problem, because the relaxed version remains just as
hard.

10.1.2. Decision or Property Testing

A natural notion of relaxation for decision problems arises when considering the distance
between instances, where a natural notion of distance is the Hamming distance (i.e., the
fraction of bits on which two strings disagree). Loosely speaking, this relaxation (called
property testing) refers to distinguishing inputs that reside in a predetermined set S from
inputs that are “relatively far” from any input that resides in the set. Two natural types of
promise problems emerge (with respect to any predetermined set S (and the Hamming
distance between strings)):

1. Relaxed decision wrt a fixed relative distance: Fixing a distance parameter δ, we
consider the problem of distinguishing inputs in S from inputs in �δ(S), where

�δ(S)
def= {x : ∀z ∈ S ∩ {0, 1}|x | �(x, z) > δ · |x |} (10.1)

and �(x1 · · · xm, z1 · · · zm) = |{i : xi �= zi }| denotes the number of bits on which x =
x1 · · · xm and z = z1 · · · zm disagree. Thus, here we consider a promise problem that
is a restriction (or a special case) of the problem of deciding membership in S.

2. Relaxed decision wrt a variable distance: Here the instances are pairs (x, δ), where x
is as in Type 1 and δ ∈ [0, 1] is a (relative) distance parameter. The yes-instances are
pairs (x, δ) such that x ∈ S, whereas (x, δ) is a no-instance if x ∈ �δ(S).

We shall focus on Type 1 formulation, which seems to capture the essential question of
whether or not these relaxations lower the complexity of the original decision problem.
The study of Type 2 formulation refers to a relatively secondary question, which assumes
a positive answer to the first question; that is, assuming that the relaxed form is easier
than the original form, we ask how the complexity of the problem is affected by making
the distance parameter smaller (which means making the relaxed problem “tighter” and
ultimately equivalent to the original problem).

We note that for numerous NP-complete problems there exist natural (Type 1) relax-
ations that are solvable in polynomial time. Actually, these algorithms run in sub-linear
time (specifically, in poly-logarithmic time), when given direct access to the input. A few
examples will be presented in §10.1.2.2 (but, as indicated in §10.1.2.2, this is not a generic
phenomenon). Before turning to these examples, we discuss several important definitional
issues.

423



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

10.1.2.1. Definitional Issues
Property testing is concerned not only with solving relaxed versions of NP-hard problems
but also with solving these problems (as well as problems in P) in sub-linear time.
Needless to say, such results assume a model of computation in which algorithms have
direct access to bits in the (representation of the) input (see Definition 10.10).

Definition 10.10 (a direct access model – conventions): An algorithm with direct
access to its input is given its main input on a special input device that is accessed
as an oracle (see §1.2.3.6). In addition, the algorithm is given the length of the input
and possibly other parameters on a secondary input device. The complexity of such
an algorithm is stated in terms of the length of its main input.

Indeed, the description in §5.2.4.2 refers to such a model, but there the main input is
viewed as an oracle and the secondary input is viewed as the input. In the current model,
poly-logarithmic time means time that is poly-logarithmic in the length of the main input,
which means time that is polynomial in the length of the binary representation of the
length of the main input. Thus, poly-logarithmic time yields a robust notion of extremely
efficient computations. As we shall see, such computations suffice for solving various
(property testing) problems.

Definition 10.11 (property testing for S): For any fixed δ > 0, the promise problem
of distinguishing S from �δ(S) is called property testing for S (with respect to δ).

Recall that we say that a randomized algorithm solves a promise problem if it accepts
every yes-instance (resp., rejects every no-instance) with probability at least 2/3. Thus, a
(randomized) property testing for S accepts every input in S (resp., rejects every input in
�δ(S)) with probability at least 2/3.

The question of representation. The specific representation of the input is of major
concern in the current context. This is due to (1) the effect of the representation on the
distance measure and to (2) the dependence of direct access machines on the specific
representation of the input. Let us elaborate on both aspects.

1. Recall that we defined the distance between objects in terms of the Hamming distance
between their representations. Clearly, in such a case, the choice of representation is
crucial and different representations may yield different distance measures. Further-
more, in this case, the distance between objects is not preserved under various (natural)
representations that are considered “equivalent” in standard studies of Computational
Complexity. For example, in previous parts of this book, when referring to computa-
tional problems concerning graphs, we did not care whether the graph was represented
by its adjacency matrix or by its incidence-list. In contrast, these two representations
induce very different distance measures and correspondingly different property test-
ing problems (see §10.1.2.2). Likewise, the use of padding (and other trivial syntactic
conventions) becomes problematic (e.g., when using a significant amount of padding,
all objects are deemed close to one another (and property testing for any set becomes
trivial)).

2. Since our focus is on sub-linear time algorithms, we may not afford transforming the
input from one natural format to another. Thus, representations that are considered

424



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

equivalent with respect to polynomial-time algorithms, may not be equivalent with
respect to sub-linear time algorithms that have a direct access to the representation of
the object. For example, adjacency queries and incidence queries cannot emulate one
another in small time (i.e., in time that is sub-linear in the number of vertices).

Both aspects are further clarified by the examples provided in §10.1.2.2.

The essential role of the promise. Recall that, for a fixed constant δ > 0, we consider the
promise problem of distinguishing S from �δ(S). The promise means that all instances that
are neither in S nor far from S (i.e., not in �δ(S)) are ignored, which is essential for sub-
linear algorithms for natural problems. This makes the property testing task potentially
easier than the corresponding standard decision task (cf. §10.1.2.2). To demonstrate the
point, consider the set S consisting of strings that have a majority of 1’s. Then, deciding
membership in S requires linear time, because random n-bit long strings with �n/2� ones
cannot be distinguished from random n-bit long strings with �n/2� + 1 ones by probing a
sub-linear number of locations (even if randomization and error probability are allowed –
see Exercise 10.8). On the other hand, the fraction of 1’s in the input can be approximated
by a randomized poly-logarithmic time algorithm (which yields a property tester for S;
see Exercise 10.9). Thus, for some sets, deciding membership requires linear time, while
property testing can be done in poly-logarithmic time.

The essential role of randomization. Referring to the foregoing example, we note that
randomization is essential for any sub-linear time algorithm that distinguishes this set S
from, say, �0.1(S). Specifically, a sub-linear time deterministic algorithm cannot distin-
guish 1n from any input that has 1’s in each position probed by that algorithm on input
1n . In general, on input x , a (sub-linear time) deterministic algorithm always reads the
same bits of x and thus cannot distinguish x from any z that agrees with x on these bit
locations.

Note that, in both cases, we are able to prove lower bounds on the time complexity of
algorithms. This success is due to the fact that these lower bounds are actually information
theoretic in nature; that is, these lower bounds actually refer to the number of queries
performed by these algorithms.

10.1.2.2. Two Models for Testing Graph Properties
In this subsection we consider the complexity of property testing for sets of graphs that
are closed under graph isomorphism; such sets are called graph properties. In view of the
importance of representation in the context of property testing, we explicitly consider two
standard representations of graphs (cf. Appendix G.1), which indeed yield two different
models of testing graph properties.

1. The adjacency matrix representation. Here a graph G = ([N ], E) is represented (in
a somewhat redundant form) by an N -by-N Boolean matrix MG = (mi, j )i, j∈[N ] such
that mi, j = 1 if and only if {i, j} ∈ E .

2. Bounded incidence-lists representation. For a fixed parameter d, a graph G = ([N ], E)
of degree at most d is represented (in a somewhat redundant form) by a mapping
µG : [N ]× [d] → [N ] ∪ {⊥} such that µG(u, i) = v if v is the i th neighbor of u and
µG(u, i) = ⊥ if v has fewer than i neighbors.

425



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

We stress that the aforementioned representations determine both the notion of distance
between graphs and the type of queries performed by the algorithm. As we shall see, the
difference between these two representations yields a big difference in the complexity of
corresponding property testing problems.

Theorem 10.12 (property testing in the adjacency matrix representation): For any
fixed δ > 0 and each of the following sets, there exists a poly-logarithmic time
randomized algorithm that solves the corresponding property testing problem (with
respect to δ).

• For every fixed k ≥ 2, the set of k-colorable graphs.
• For every fixed ρ > 0, the set of graphs having a clique (resp., independent set)

of density ρ.
• For every fixed ρ > 0, the set of N-vertex graphs having a cut5 with at least

ρ · N 2 edges.
• For every fixed ρ > 0, the set of N-vertex graphs having a bisection5 with at most

ρ · N 2 edges.

In contrast, for some δ > 0, there exists a graph property in NP for which property
testing (with respect to δ) requires linear time.

The testing algorithms (asserted in Theorem 10.12) use a constant number of queries,
where this constant is polynomial in the constant 1/δ. In contrast, exact decision proce-
dures for the corresponding sets require a linear number of queries. The running time of
the aforementioned algorithms hides a constant that is exponential in their query com-
plexity (except for the case of 2-colorability where the hidden constant is polynomial
in 1/δ). Note that such dependencies seem essential, since setting δ = 1/N 2 regains the
original (non-relaxed) decision problems (which, with the exception of 2-colorability,
are all NP-complete). Turning to the lower bound (asserted in Theorem 10.12), we men-
tion that the graph property for which this bound is proved is not a natural one. As in
§10.1.2.1, the lower bound on the time complexity follows from a lower bound on the query
complexity.

Theorem 10.12 exhibits a dichotomy between graph properties for which property
testing is possible by a constant number of queries and graph properties for which prop-
erty testing requires a linear number of queries. A combinatorial characterization of the
graph properties for which property testing is possible (in the adjacency matrix repre-
sentation) when using a constant number of queries is known.6 We note that the constant
in this characterization may depend arbitrarily on δ (and indeed, in some cases, it is
a function growing faster than a tower of 1/δ exponents). For example, property test-
ing for the set of triangle-free graphs is possible by using a number of queries that
depends only on δ, but it is known that this number must grow faster than any polynomial
in 1/δ.

Turning back to Theorem 10.12, we note that the results regarding property testing
for the sets corresponding to max-cut and min-bisection yield approximation algorithms

5A cut in a graph G = ([N ], E) is a partition (S1, S2) of the set of vertices (i.e., S1 ∪ S2 = [N ] and S1 ∩ S2 = ∅),
and the edges of the cut are the edges with exactly one end-point in S1. A bisection is a cut of the graph to two parts
of equal cardinality.

6Describing this fascinating result of Alon et al. [9], which refers to the notion of regular partitions (introduced
by Szemerédi), is beyond the scope of the current text.

426



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.1. APPROXIMATION

with an additive error term (of δN 2). For dense graphs (i.e., N -vertex graphs having
�(N 2) edges), this yields a constant factor approximation for the standard approximation
problem (as in Definition 10.1). That is, for every constant c > 1, we obtain a c-factor
approximation of the problem of maximizing the size of a cut (resp., minimizing the size
of a bisection) in dense graphs. On the other hand, the result regarding clique yields a
so-called dual-approximation for maximum clique; that is, we approximate the minimum
number of missing edges in the densest induced subgraph of a given size.

Indeed, Theorem 10.12 is meaningful only for dense graphs. This holds, in general, for
any graph property in the adjacency matrix representation.7 Also note that property testing
is trivial, under the adjacency matrix representation, for any graph property S satisfying
�o(1)(S) = ∅ (e.g., the set of connected graphs, the set of Hamiltonian graphs, etc).

We now turn to the bounded incidence-lists representation, which is relevant only
for bounded degree graphs. The problems of max-cut, min-bisection, and clique (as in
Theorem 10.12) are trivial under this representation, but graph connectivity becomes
non-trivial, and the complexity of property testing for the set of bipartite graphs changes
dramatically.

Theorem 10.13 (property testing in the bounded incidence-lists representation):
The following assertions refer to the representation of graphs by incidence-lists of
length d.

• For any fixed d and δ > 0, there exists a poly-logarithmic time randomized
algorithm that solves the property testing problem for the set of connected graphs
of degree at most d.

• For any fixed d and δ > 0, there exists a sub-linear time randomized algorithm
that solves the property testing problem for the set of bipartite graphs of degree at
most d. Specifically, on input an N-vertex graph, the algorithm runs for Õ(

√
N )

time.
• For any fixed d ≥ 3 and some δ > 0, property testing for the set of N-vertex

(3-regular) bipartite graphs requires �(
√

N ) queries.
• For some fixed d and δ > 0, property testing for the set of N-vertex 3-colorable

graphs of degree at most d requires �(N ) queries.

The running time of the algorithms (asserted in Theorem 10.13) hides a constant that
is polynomial in 1/δ. Providing a characterization of graph properties according to the
complexity of the corresponding tester (in the bounded incidence-lists representation) is
an interesting open problem.

Decoupling the distance from the representation. So far, we have confined our attention
to the Hamming distance between the representations of graphs. This made the choice
of representation even more important than usual (i.e., more crucial than is common in
Complexity Theory). In contrast, it is natural to consider a notion of distance between
graphs that is independent of their representation. For example, the distance between

7In this model, as shown next, property testing of non-dense graphs is trivial. Specifically, fixing the distance
parameter δ, we call an N -vertex graph non-dense if it has less than (δ/2) ·

(
N
2

)
edges. The point is that, for non-dense

graphs, the property testing problem for any set S is trivial, because we may just accept any non-dense (N -vertex)
graph if and only if S contains some non-dense (N -vertex) graph. Clearly, the decision is correct in the case that S
does not contain non-dense graphs. However, the decision is also admissible in the case that S does contain some
non-dense graph, because in this case every non-dense graph is “δ-close” to S (i.e., it is not in �δ(S)).

427



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

G1= (V1, E1) and G2= (V2, E2) can be defined as the minimum of the size of symmetric
difference between E1 and the set of edges in a graph that is isomorphic to G2. The
corresponding relative distance may be defined as the distance divided by |E1| + |E2| (or
by max(|E1|, |E2|)).

10.1.2.3. Beyond Graph Properties
Property testing has been applied to a variety of computational problems beyond the
domain of graph theory. In fact, computational problems such as these first emerged in
the algebraic domain, where the instances (to be viewed as inputs to the testing algorithm)
are functions and the relevant properties are sets of algebraic functions. The archetypical
example is the set of low-degree polynomials, that is, m-variate polynomials of total (or
individual) degree d over some finite field GF(q), where m, d, and q are parameters that
may depend on the length of the input (or satisfy some relationships; e.g., q = d3 = m6).
Note that, in this case, the input is the (“full” or “explicit”) description of an m-variate
function over GF(q), which means that it has length qm · log2 q. Viewing the problem
instance as a function suggests a natural measure of distance (i.e., the fraction of arguments
on which the functions disagree) as well as a natural way of accessing the instance (i.e.,
querying the function for the value of selected arguments).

Note that we have referred to these computational problems, under a different termi-
nology, in §9.3.2.2 and in §9.3.2.1. In particular, in §9.3.2.1 we refereed to the special
case of linear Boolean functions (i.e., individual degree 1 and q = 2), whereas in §9.3.2.2
we used the setting q = poly(d) and m = d/ log d (where d is a bound on the total
degree).

Other domains of computational problems in which property testing was studied in-
clude geometry (e.g., clustering problems), formal languages (e.g., testing membership in
regular sets), coding theory (cf. Appendix E.1.3), probability theory (e.g., testing equality
of distributions), and combinatorics (e.g., monotone and junta functions). As discussed
at the end of §10.1.2.2, it is often natural to decouple the distance measure from the
representation of the objects (i.e., the way of accessing the problem instance). This is
done by introducing a representation-independent notion of distance between instances,
which should be natural in the context of the problem at hand.

10.2. Average-Case Complexity

Teaching note: We view average-case complexity as referring to the performance on “average”
(or rather typical) instances, and not as the average performance on random instances. This
choice is justified in §10.2.1.1. Thus, it may be more justified to refer to the following theory
by the name typical-case complexity. Still, the name average-case complexity was retained for
historical reasons.

Our approach so far (including in Section 10.1) is termed worst-case complexity,
because it refers to the performance of potential algorithms on each legitimate instance
(and hence to the performance on the worst-possible instance). That is, computational
problems were defined as referring to a set of instances, and performance guarantees were
required to hold for each instance in this set. In contrast, average-case complexity allows
for ignoring a negligible measure of the possible instances, where the identity of the ignored

428



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

instances is determined by the analysis of potential solvers and not by the problem’s
statement.

A few comments are in place. Firstly, as just hinted, the standard statement of the
worst-case complexity of a computational problem (especially one having a promise)
may also ignore some instances (i.e., those considered inadmissible or violating the
promise), but these instances are determined by the problem’s statement. In contrast, the
inputs ignored in average-case complexity are not inadmissible in any inherent sense
(and are certainly not identified as such by the problem’s statement). It is just that they
are viewed as exceptional when claiming that a specific algorithm solves the problem;
that is, these exceptional instances are determined by the analysis of that algorithm.
Needless to say, these exceptional instances ought to be rare (i.e., occur with negligible
probability).

The last sentence raises a couple of issues. Most importantly, a distribution on the set
of admissible instances has to be specified. In fact, we shall consider a new type of com-
putational problems, each consisting of a standard computational problem coupled with
a probability distribution on instances. Consequently, the question of which distributions
should be considered in a theory of average-case complexity arises. This question and
numerous other definitional issues will be addressed in §10.2.1.1.

Before proceeding, let us spell out the rather straightforward motivation for the study of
the average-case complexity of computational problems: It is that, in real-life applications,
one may be perfectly happy with an algorithm that solves the problem fast on almost all
instances that arise in the relevant application. That is, one may be willing to tolerate error
provided that it occurs with negligible probability, where the probability is taken over
the distribution of instances encountered in the application. The study of average-case
complexity is aimed at exploring the possible benefit of such a relaxation, distinguishing
cases in which a benefit exists from cases in which it does not exist. A key aspect in such
a study is a good modeling of the type of distributions (of instances) that are encountered
in natural algorithmic applications.

Let us consider the foregoing motivation from a slightly different perspective: The
conjecture thatP �= NP (or ratherNP �⊆ BPP) only asserts that intractability is a feature
of some instances of some problems in NP . These intractable instances may be very
rare and pathological. The theory of average-case complexity addresses the question of
whether intractability can also be a feature of “typical” instances (i.e., whether intractable
instances may occur with noticeable probability with respect to some simple distributions).
Needless to say, the meaningfulness of the latter question depends on restricting the class of
distributions such that only simple (rather than pathological) distributions are allowed. We
shall consider two such classes of distributions (see §10.2.1.1 and §10.2.2.2, respectively)
and show that if intractability occurs with respect to the wider class, then it occurs also
with respect to the more restricted class (see Theorem 10.26).

An average-case version of the P �= NP question. Indeed, a fundamental question that
arises is whether every natural computational problem can be solved efficiently when
restricting attention to typical instances. The conjecture that underlies this section is that,
for a well-motivated choice of definitions, the answer is negative; that is, our conjecture
is that the “distributional version” of NP is not contained in the average-case (or typical-
case) version of P. This means that some NP problems are not merely hard in the worst
case, but are rather “typically hard” (i.e., hard on typical instances drawn from some
simple distribution). This suggests that hard instances may occur in natural algorithmic

429



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

applications (and not only in cryptographic (or other “adversarial”) applications that are
designed on purpose to produce hard instances).8

The foregoing conjecture motivates the development of an average-case analogue of
NP-completeness, which will be presented in this section. Indeed, the entire section may be
viewed as an average-case analogue of Chapter 2. In particular, this (average-case) theory
identifies distributional problems that are “typically hard” provided that distributional
problems that are “typically hard” exist at all. If one believes the foregoing conjecture
then, for such complete (distributional) problems, one should not seek algorithms that
solve these problems efficiently on typical instances.

Organization. A major part of our exposition is devoted to the definitional issues that
arise when developing a general theory of average-case complexity. These issues are
discussed in §10.2.1.1. In §10.2.1.2 we prove the existence of distributional problems that
are “NP-complete” in the corresponding average-case complexity sense. Furthermore, we
show how to obtain such a distributional version for any natural NP-complete decision
problem. In §10.2.1.3 we extend the treatment to randomized algorithms. Additional
ramifications are presented in Section 10.2.2.

10.2.1. The Basic Theory

In this section we provide a basic treatment of the theory of average-case complexity,
while postponing important ramifications to Section 10.2.2. The basic treatment consists
of the preferred definitional choices for the main concepts as well as the identification of
complete problems for a natural class of average-case computational problems.

10.2.1.1. Definitional Issues
The theory of average-case complexity is more subtle than may appear at first thought. In
addition to the generic conceptual difficulty involved in defining relaxations, difficulties
arise from the “interface” between standard probabilistic analysis and the conventions
of Complexity Theory. This is most striking in the definition of the class of feasible
average-case computations. Referring to the theory of worst-case complexity as a guide-
line, we shall address the following aspects of the analogous theory of average-case
complexity.

1. Setting the general framework. We shall consider distributional problems, which are
standard computational problems (see Section 1.2.2) coupled with distributions on
the relevant instances.

2. Identifying the class of feasible (distributional) problems. Seeking an average-case
analogue of classes such as P , we shall reject the first definition that comes to mind
(i.e., the naive notion of “average polynomial time”), briefly discuss several related
alternatives, and adopt one of them for the main treatment.

8We highlight two differences between the current context (of natural algorithmic applications) and the context of
cryptography. Firstly, in the current context and when referring to problems that are typically hard, the simplicity of
the underlying input distribution is of great concern: The simpler this distribution, the more appealing the hardness
assertion becomes. This concern is irrelevant in the context of cryptography. On the other hand (see discussion at
the beginning of Section 7.1.1 and/or at end of §10.2.2.2), cryptographic applications require the ability to efficiently
generate hard instances together with corresponding solutions.

430



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

3. Identifying the class of interesting (distributional) problems. Seeking an average-case
analogue of the class NP , we shall avoid both the extreme of allowing arbitrary
distributions (which collapses average-case hardness to worst-case hardness) and the
opposite extreme of confining the treatment to a single distribution such as the uniform
distribution.

4. Developing an adequate notion of reduction among (distributional) problems. As in
the theory of worst-case complexity, this notion should preserve feasible solvability
(in the current distributional context).

We now turn to the actual treatment of each of the aforementioned aspects.

Step 1: Defining distributional problems. Focusing on decision problems, we define
distributional problems as pairs consisting of a decision problem and a probability ensem-
ble.9 For simplicity, here a probability ensemble {Xn}n∈N is a sequence of random variables
such that Xn ranges over {0, 1}n . Thus, (S, {Xn}n∈N) is the distributional problem consist-
ing of the problem of deciding membership in the set S with respect to the probability
ensemble {Xn}n∈N. (The treatment of search problems is similar; see §10.2.2.1.) We denote
the uniform probability ensemble by U = {Un}n∈N; that is, Un is uniform over {0, 1}n .

Step 2: Identifying the class of feasible problems. The first idea that comes to mind is
defining the problem (S, {Xn}n∈N) as feasible (on the average) if there exists an algorithm
A that solves S such that the average running time of A on Xn is bounded by a polynomial
in n (i.e., there exists a polynomial p such that E[tA(Xn)] ≤ p(n), where tA(x) denotes
the running time of A on input x). The problem with this definition is that it very sensitive
to the model of computation and is not closed under algorithmic composition. Both
deficiencies are a consequence of the fact that tA may be polynomial on the average with
respect to {Xn}n∈N but t2

A may fail to be so (e.g., consider tA(x ′x ′′) = 2|x
′| if x ′ = x ′′

and tA(x ′x ′′) = |x ′x ′′|2 otherwise, coupled with the uniform distribution over {0, 1}n). We
conclude that the average running time of algorithms is not a robust notion. We also doubt
the soundness of the appeal of this notion, and view the typical running time of algorithms
(as defined next) as a more natural notion. Thus, we shall consider an algorithm as feasible
if its running time is typically polynomial.10

We say that A is typically polynomial time on X = {Xn}n∈N if there exists a polynomial
p such that the probability that A runs more that p(n) steps on Xn is negligible (i.e., for
every polynomial q and all sufficiently large n it holds that Pr[tA(Xn) > p(n)] < 1/q(n)).
The question is what is required in the “untypical” cases, and two possible definitions
follow.

1. The simpler option is saying that (S, {Xn}n∈N) is (typically) feasible if there exists an
algorithm A that solves S such that A is typically polynomial-time on X = {Xn}n∈N.

9We mention that even this choice is not evident. Specifically, Levin [154] (see discussion in [89]) advocates
the use of a single probability distribution defined over the set of all strings. His argument is that this makes the
theory less representation-dependent. At the time we were convinced of his argument (see [89]), but currently we feel
that the representation-dependent effects discussed in [89] are legitimate. Furthermore, the alternative formulation
of [154, 89] comes across as unnatural and tends to confuse some readers.

10An alternative choice, taken by Levin [154] (see discussion in [89]), is considering as feasible (wrt X = {Xn}n∈N)
any algorithm that runs in time that is polynomial in a function that is linear on the average (wrt X ); that is, requiring that
there exists a polynomial p and a function � : {0, 1}∗ → N such that t(x) ≤ p(�(x)) for every x and E[�(Xn)] = O(n).
This definition is robust (i.e., it does not suffer from the aforementioned deficiencies) and is arguably as “natural” as
the naive definition (i.e., E[tA(Xn)] ≤ poly(n)).

431



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

This effectively requires A to correctly solve S on each instance, which is more than
was required in the motivational discussion. (Indeed, if the underlying motivation is
ignoring rare cases, then we should ignore them altogether rather than ignoring them
in a partial manner (i.e., only ignore their affect on the running time).)

2. The alternative, which fits the motivational discussion, is saying that (S, X ) is (typi-
cally) feasible if there exists an algorithm A such that A typically solves S on X in
polynomial time; that is, there exists a polynomial p such that the probability that on
input Xn algorithm A either errs or runs more that p(n) steps is negligible. This for-
mulation totally ignores the untypical instances. Indeed, in this case we may assume,
without loss of generality, that A always runs in polynomial time (see Exercise 10.11),
but we shall not do so here (in order to facilitate viewing the first option as a special
case of the current option).

We stress that both alternatives actually define typical feasibility and not average-case
feasibility. To illustrate the difference between the two options, consider the distributional
problem of deciding whether a uniformly selected (n-vertex) graph is 3-colorable. In-
tuitively, this problem is “typically trivial” (with respect to the uniform distribution),11

because the algorithm may always say no and be wrong with exponentially vanish-
ing probability. Indeed, this trivial algorithm is admissible by the second approach, but
not by the first approach. In light of the foregoing discussions, we adopt the second
approach.

Definition 10.14 (the class tpcP): We say that A typically solves (S, {Xn}n∈N) in
polynomial time if there exists a polynomial p such that the probability that on input
Xn algorithm A either errs or runs more that p(n) steps is negligible.12 We denote by
tpcP the class of distributional problems that are typically solvable in polynomial
time.

Clearly, for every S ∈ P and every probability ensemble X , it holds that (S, X ) ∈ tpcP .
However, tpcP also contains distributional problems (S, X ) with S �∈ P (see Exer-
cises 10.12 and 10.13). The big question, which underlies the theory of average-case
complexity, is whether all natural distributional versions of NP are in tpcP . Thus, we
turn to identify such versions.

Step 3: Identifying the class of interesting problems. Seeking to identify reasonable
distributional versions of NP , we note that two extreme choices should be avoided. On
the one hand, we must limit the class of admissible distributions so as to prevent the
collapse of average-case hardness to worst-case hardness (by a selection of a pathological
distribution that resides on the “worst case” instances). On the other hand, we should
allow for various types of natural distributions rather than confining attention merely to
the uniform distribution.13 Recall that our aim is addressing all possible input distributions

11In contrast, testing whether a given graph is 3-colorable seems “typically hard” for other distributions (see either
Theorem 10.19 or Exercise 10.27). Needless to say, in the latter distributions both yes-instances and no-instances
appear with noticeable probability.

12Recall that a function µ : N→ N is negligible if for every positive polynomial q and all sufficiently large n it
holds that µ(n) < 1/q(n). We say that A errs on x if A(x) differs from the indicator value of the predicate x ∈ S.

13Confining attention to the uniform distribution seems misguided by the naive belief according to which this
distribution is the only one relevant to applications. In contrast, we believe that, for most natural applications, the
uniform distribution over instances is not relevant at all.

432



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

that may occur in applications, and thus there is no justification for confining attention
to the uniform distribution. Still, arguably, the distributions occuring in applications are
“relatively simple,” and so we seek to identify a class of simple distributions. One such
notion (of simple distributions) underlies the following definition, while a more liberal
notion will be presented in §10.2.2.2.

Definition 10.15 (the class distNP): We say that a probability ensemble X =
{Xn}n∈N is simple if there exists a polynomial-time algorithm that, on any in-
put x ∈ {0, 1}∗, outputs Pr[X |x | ≤ x], where the inequality refers to the standard
lexicographic order of strings. We denote by distNP the class of distributional
problems consisting of decision problems in NP coupled with simple probability
ensembles.

Note that the uniform probability ensemble is simple, but so are many other “simple”
probability ensembles. Actually, it makes sense to relax the definition such that the al-
gorithm is only required to output an approximation of Pr[X |x | ≤ x], say, to within a
factor of 1± 2−2|x |. We note that Definition 10.15 interprets simplicity in computa-
tional terms, specifically, as the feasibility of answering very basic questions regarding
the probability distribution (i.e., determining the probability mass assigned to a single
(n-bit long) string and even to an interval of such strings). This simplicity condition
is closely related to being polynomial-time samplable via a monotone mapping (see
Exercise 10.14).

Teaching note: The following two paragraphs attempt to address some doubts regarding
Definition 10.15. One may postpone such discussions to a later stage.

We admit that the identification of simple distributions as the class of interesting
distribution is significantly more questionable than any other identification advocated
in this book. Nevertheless, we believe that we were fully justified in rejecting both the
aforementioned extremes (i.e., of either allowing all distributions or allowing only the
uniform distribution). Yet, the reader may wonder whether or not we have struck
the right balance between “generality” and “simplicity” (in the intuitive sense). One
specific concern is that we might have restricted the class of distributions too much. We
briefly address this concern next.

A more intuitive and very robust class of distributions, which seems to contain all
distributions that may occur in applications, is the class of polynomial-time samplable
probability ensembles (treated in §10.2.2.2). Fortunately, the combination of the results
presented in §10.2.1.2 and §10.2.2.2 seems to retrospectively endorse the choice underly-
ing Definition 10.15. Specifically, we note that enlarging the class of distributions weakens
the conjecture that the corresponding class of distributional NP problems contains infea-
sible problems. On the other hand, the conclusion that a specific distributional problem
is not feasible becomes more appealing when the problem belongs to a smaller class
that corresponds to a restricted definition of admissible distributions. Now, the combined
results of §10.2.1.2 and §10.2.2.2 assert that a conjecture that refers to the larger class of
polynomial-time samplable ensembles implies a conclusion that refers to a (very) simple
probability ensemble (which resides in the smaller class). Thus, the current setting in

433



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

which both the conjecture and the conclusion refer to simple probability ensembles may
be viewed as just an intermediate step.

Indeed, the big question in the current context is whether distNP is contained in tpcP .
A positive answer (especially if extended to samplable ensembles) would deem the P-vs-
NP Question to be of little practical significant. However, our daily experience as well as
much research effort indicate that some NP problems are not merely hard in the worst
case, but rather “typically hard.” This leads to the conjecture that distNP is not contained
in tpcP .

Needless to say, the latter conjecture implies P �= NP , and thus we should not expect
to see a proof of it. In particular, we should not expect to see a proof that some specific
problem in distNP is not in tpcP . What we may hope to see is “distNP-complete”
problems; that is, problems in distNP that are not in tpcP unless the entire class distNP
is contained in tpcP . An adequate notion of a reduction is used toward formulating this
possibility.

Step 4: Defining reductions among (distributional) problems. Intuitively, such reduc-
tions must preserve average-case feasibility. Thus, in addition to the standard conditions
(i.e., that the reduction be efficiently computable and yield a correct result), we require
that the reduction “respects” the probability distribution of the corresponding distribu-
tional problems. Specifically, the reduction should not map very likely instances of the
first (“starting”) problem to rare instances of the second (“target”) problem. Otherwise,
having a typically polynomial-time algorithm for the second distributional problem does
not necessarily yield such an algorithm for the first distributional problem. Following
is the adequate analogue of a Cook-reduction (i.e., general polynomial-time reduction),
where the analogue of a Karp-reduction (many-to-one reduction) can be easily derived as
a special case.

Teaching note: One may prefer presenting in class only the special case of many-to-one
reductions, which suffices for Theorem 10.17. See footnote 15.

Definition 10.16 (reductions among distributional problems): We say that the oracle
machine M reduces the distributional problem (S, X ) to the distributional problem
(T, Y ) if the following three conditions hold.

1. Efficiency: The machine M runs in polynomial time.14

2. Validity: For every x ∈ {0, 1}∗, it holds that MT (x) = 1 if an only if x ∈ S,
where MT (x) denotes the output of the oracle machine M on input x and access
to an oracle for T .

3. Domination:15 The probability that, on input Xn and oracle access to T , machine
M makes the query y is upper-bounded by poly(|y|) · Pr[Y|y| = y]. That is, there
exists a polynomial p such that, for every y ∈ {0, 1}∗ and every n ∈ N, it holds

14In fact, one may relax the requirement and only require that M is typically polynomial time with respect to X .
The validity condition may also be relaxed similarly.

15Let us spell out the meaning of Eq. (10.2) in the special case of many-to-one reductions (i.e., MT (x) = 1 if
and only if f (x) ∈ T , where f is a polynomial-time computable function): In this case Pr[Q(Xn) - y] is replaced by
Pr[ f (Xn) = y]. That is, Eq. (10.2) simplifies to Pr[ f (Xn) = y] ≤ p(|y|) · Pr[Y|y| = y]. Indeed, this condition holds
vacuously for any y that is not in the image of f .

434



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

that

Pr[Q(Xn) - y] ≤ p(|y|) · Pr[Y|y| = y], (10.2)

where Q(x) denotes the set of queries made by M on input x and oracle access
to T .

In addition, we require that the reduction does not make too short queries; that
is, there exists a polynomial p′ such that if y ∈ Q(x) then p′(|y|) ≥ |x |.

The l.h.s. of Eq. (10.2) refers to the probability that, on input distributed as Xn , the
reduction makes the query y. This probability is required not to exceed the probability
that y occurs in the distribution Y|y| by more than a polynomial factor in |y|. In this case
we say that the l.h.s. of Eq. (10.2) is dominated by Pr[Y|y| = y].

Indeed, the domination condition is the only aspect of Definition 10.16 that extends
beyond the worst-case treatment of reductions and refers to the distributional setting. The
domination condition does not insist that the distribution induced by Q(X ) equals Y , but
rather allows some slackness that, in turn, is bounded so as to guarantee preservation of
typical feasibility (see Exercise 10.15).16

We note that the reducibility arguments extensively used in Chapters 7 and 8 (see
discussion in Section 7.1.2) are actually reductions in the spirit of Definition 10.16 (except
that they refer to different types of computational tasks).

10.2.1.2. Complete Problems
Recall that our conjecture is that distNP is not contained in tpcP , which in turn strengthens
the conjecture P �= NP (making infeasibility a typical phenomenon rather than a worst-
case one). Having no hope of proving that distNP is not contained in tpcP , we turn
to the study of complete problems with respect to that conjecture. Specifically, we say
that a distributional problem (S, X ) is distNP-complete if (S, X ) ∈ distNP and every
(S′, X ′) ∈ distNP is reducible to (S, X ) (under Definition 10.16).

Recall that it is quite easy to prove the mere existence of NP-complete problems
and that many natural problems are NP-complete. In contrast, in the current context,
establishing completeness results is quite hard. This should not be surprising in light of
the restricted type of reductions allowed in the current context. The restriction (captured
by the domination condition) requires that “typical” instances of one problem should
not be mapped to “untypical” instances of the other problem. However, it is fair to
say that standard Karp-reductions (used in establishing NP-completeness results) map
“typical” instances of one problem to somewhat “bizarre” instances of the second problem.
Thus, the current subsection may be viewed as a study of reductions that do not commit
this sin.17

16We stress that the notion of domination is incomparable to the notion of statistical (resp., computational)
indistinguishability. On the one hand, domination is a local requirement (i.e., it compares the two distribution on a
point-by-point basis), whereas indistinguishability is a global requirement (which allows rare exceptions). On the
other hand, domination does not require approximately equal values, but rather a ratio that is bounded in one direction.
Indeed, domination is not symmetric. We comment that a more relaxed notion of domination that allows rare violations
(as in footnote 14) suffices for the preservation of typical feasibility.

17The latter assertion is somewhat controversial. While it seems totally justified with respect to the proof of
Theorem 10.17, opinions regarding the proof of Theorem 10.19 may differ.

435



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

Theorem 10.17 (distNP-completeness): distNP contains a distributional prob-
lem (T, Y ) such that each distributional problem in distNP is reducible (per
Definition 10.16) to (T, Y ). Furthermore, the reductions are via many-to-one
mappings.

Proof: We start by introducing such a (distributional) problem, which is a natural
distributional version of the decision problem Su (used in the proof of Theorem 2.19).
Recall that Su contains the instance 〈M, x, 1t〉 if there exists y ∈ ∪i≤t{0, 1}i such
that machine M accepts the input pair (x, y) within t steps. We couple Su with
the “quasi-uniform” probability ensemble U ′ that assigns to the instance 〈M, x, 1t〉
a probability mass proportional to 2−(|M|+|x |). Specifically, for every 〈M, x, 1t〉 it
holds that

Pr[U ′
n = 〈M, x, 1t〉] = 2−(|M|+|x |)(n

2

) (10.3)

where n
def= |〈M, x, 1t〉| def= |M | + |x | + t . Note that, under a suitable natural encod-

ing, the ensemble U ′ is indeed simple.18

The reader can easily verify that the generic reduction used when reducing any
set in NP to Su (see the proof of Theorem 2.19), fails to reduce distNP to (Su, U ′).
Specifically, in some cases (see next paragraph), these reductions do not satisfy the
domination condition. Indeed, the difficulty is that we have to reduce all distNP
problems (i.e., pairs consisting of decision problems and simple distributions) to one
single distributional problem (i.e., (Su, U ′)). In contrast, considering the distributions
induced by the aforementioned reductions, we end up with many distributional
versions of Su, and furthermore the corresponding distributions are very different
(and are not necessarily dominated by a single distribution).

Let us take a closer look at the aforementioned generic reduction (of S to Su),
when applied to an arbitrary (S, X ) ∈ distNP . This reduction maps an instance
x to a triple (MS, x, 1pS(|x |)), where MS is a machine verifying membership in
S (while using adequate NP-witnesses) and pS is an adequate polynomial. The
problem is that x may have relatively large probability mass (i.e., it may be that
Pr[X |x | = x] � 2−|x |) while (MS, x, 1pS(|x |)) has “uniform” probability mass (i.e.,
〈MS, x, 1pS(|x |)〉 has probability mass smaller than 2−|x | in U ′). This violates the
domination condition (see Exercise 10.18), and thus an alternative reduction is
required.

The key to the alternative reduction is an (efficiently computable) encoding of
strings taken from an arbitrary simple distribution by strings that have a similar prob-
ability mass under the uniform distribution. This means that the encoding should
shrink strings that have relatively large probability mass under the original distribu-
tion. Specifically, this encoding will map x (taken from the ensemble {Xn}n∈N) to
a codeword x ′ of length that is upper-bounded by the logarithm of 1/Pr[X |x | = x],
ensuring that Pr[X |x | = x] = O(2−|x

′|). Accordingly, the reduction will map x to a
triple (MS,X , x ′, 1p′(|x |)), where |x ′| < O(1)+ log2(1/Pr[X |x | = x]) and MS,X is an

18For example, we may encode 〈M, x, 1t 〉, where M = σ1 · · · σk ∈ {0, 1}k and x = τ1 · · · τ� ∈ {0, 1}�, by the string
σ1σ1 · · · σkσk01τ1τ1 · · · τ�τ�01t . Then

(
n
2

)
· Pr[U ′n ≤ 〈M, x, 1t 〉] equals (i|M|,|x |,t − 1)+ 2−|M| · |{M ′ ∈{0, 1}|M| :

M ′ < M}| + 2−(|M|+|x |) · |{x ′ ∈{0, 1}|x | : x ′ ≤ x}|, where ik,�,t is the ranking of {k, k + �} among all 2-subsets of
[k + �+ t].

436



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

algorithm that (given x ′ and x) first verifies that x ′ is a proper encoding of x and next
applies the standard verification (i.e., MS) of the problem S. Such a reduction will
be shown to satisfy all three conditions (i.e., efficiency, validity, and domination).
Thus, instead of forcing the structure of the original distribution X on the target
distribution U ′, the reduction will incorporate the structure of X in the reduced
instance. A key ingredient in making this possible is the fact that X is simple (as
per Definition 10.15).

With the foregoing motivation in mind, we now turn to the actual proof, that is,
proving that any (S, X ) ∈ distNP is reducible to (Su, U ′). The following technical
lemma is the basis of the reduction. In this lemma as well as in the sequel, it will
be convenient to consider the (accumulative) distribution function of the probability
ensemble X . That is, we consider µ(x)

def= Pr[X |x | ≤ x], and note that µ : {0, 1}∗ →
[0, 1] is polynomial-time computable (because X satisfies Definition 10.15).

Coding Lemma.19 Let µ : {0, 1}∗ → [0, 1] be a polynomial-time computable func-
tion that is monotonically non-decreasing over {0, 1}n for every n (i.e., µ(x ′) ≤ µ(x ′′)
for any x ′ < x ′′ ∈ {0, 1}|x ′|). For x ∈ {0, 1}n \ {0n}, let x − 1 denote the string pre-
ceding x in the lexicographic order of n-bit long strings. Then there exists an
encoding function Cµ that satisfies the following three conditions.

1. Compression: For every x it holds that |Cµ(x)| ≤ 1+min{|x |, log2(1/µ′(x))},
where µ′(x)

def= µ(x)− µ(x − 1) if x �∈ {0}∗ and µ′(0n)
def= µ(0n) otherwise.

2. Efficient Encoding: The function Cµ is computable in polynomial time.
3. Unique Decoding: For every n ∈ N, when restricted to {0, 1}n , the function Cµ is

one-to-one (i.e., if Cµ(x) = Cµ(x ′) and |x | = |x ′| then x = x ′).

Proof. The function Cµ is defined as follows. If µ′(x) ≤ 2−|x | then Cµ(x) = 0x
(i.e., in this case x serves as its own encoding). Otherwise (i.e., µ′(x) > 2−|x |) then
Cµ(x) = 1z, where z is chosen such that |z| ≤ log2(1/µ′(x)) and the mapping of
n-bit strings to their encoding is one-to-one. Loosely speaking, z is selected to equal
the shortest binary expansion of a number in the interval (µ(x)− µ′(x), µ(x)].
Bearing in mind that this interval has length µ′(x) and that the different intervals
are disjoint, we obtain the desired encoding. Details follows.

We focus on the case that µ′(x) > 2−|x |, and detail the way that z is selected (for the
encoding Cµ(x) = 1z). If x > 0|x | and µ(x) < 1, then we let z be the longest common
prefix of the binary expansions of µ(x − 1) and µ(x); for example, if µ(1010) =
0.10010 and µ(1011) = 0.10101111 then Cµ(1011) = 1z with z = 10. Thus, in this
case 0.z1 is in the interval (µ(x − 1), µ(x)] (i.e., µ(x − 1) < 0.z1 ≤ µ(x)). For x =
0|x |, we let z be the longest common prefix of the binary expansions of 0 and µ(x) and
again 0.z1 is in the relevant interval (i.e., (0, µ(x)]). Finally, for x such that µ(x) = 1
and µ(x − 1) < 1, we let z be the longest common prefix of the binary expansions
of µ(x − 1) and 1− 2−|x |−1, and again 0.z1 is in (µ(x − 1), µ(x)] (because µ′(x) >

2−|x | and µ(x − 1) < µ(x) = 1 imply that µ(x − 1) < 1− 2−|x | < µ(x)). Note that
if µ(x) = µ(x − 1) = 1 then µ′(x) = 0 < 2−|x |.

19The lemma actually refers to {0, 1}n , for any fixed value of n, but the efficiency condition is stated more easily
when allowing n to vary (and using the standard asymptotic analysis of algorithms). Actually, the lemma is somewhat
easier to state and establish for polynomial-time computable functions that are monotonically non-decreasing over
{0, 1}∗ (rather than over {0, 1}n). See further discussion in Exercise 10.19.

437



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

We now verify that the foregoing Cµ satisfies the conditions of the lemma. We start
with the compression condition. Clearly, if µ′(x) ≤ 2−|x | then |Cµ(x)| = 1+ |x | ≤
1+ log2(1/µ′(x)). On the other hand, suppose that µ′(x) > 2−|x | and let us focus on
the sub-case that x > 0|x | and µ(x) < 1. Let z = z1 · · · z� be the longest common
prefix of the binary expansions of µ(x − 1) and µ(x). Then, µ(x − 1) = 0.z0u and
µ(x) = 0.z1v, where u, v ∈ {0, 1}∗. We infer that

µ′(x) = µ(x)− µ(x − 1) ≤
 �∑

i=1

2−i zi +
poly(|x |)∑
i=�+1

2−i

− �∑
i=1

2−i zi < 2−|z|,

and |z| < log2(1/µ′(x)) ≤ |x | follows. Thus, |Cµ(x)| ≤ 1+min(|x |, log2(1/µ′(x)))
holds in both cases. Clearly, Cµ can be computed in polynomial time by computing
µ(x − 1) and µ(x). Finally, note that Cµ satisfies the unique decoding condition, by
separately considering the two aforementioned cases (i.e., Cµ(x) = 0x and Cµ(x) =
1z). Specifically, in the second case (i.e., Cµ(x) = 1z), use the fact that µ(x − 1) <

0.z1 ≤ µ(x).

In order to obtain an encoding that is one-to-one when applied to strings of differ-
ent lengths, we augment Cµ in the obvious manner; that is, we consider C ′µ(x)

def=
(|x |, Cµ(x)), which may be implemented as C ′µ(x) = σ1σ1 · · · σ�σ�01Cµ(x) where
σ1 · · · σ� is the binary expansion of |x |. Note that |C ′µ(x)| = O(log |x |)+ |Cµ(x)|
and that C ′µ is one-to-one (over {0, 1}∗).

The machine associated with (S, X ). Let µ be the accumulative probability function
associated with the probability ensemble X , and MS be the polynomial-time machine
that verifies membership in S while using adequate NP-witnesses (i.e., x ∈ S if and
only if there exists y ∈ {0, 1}poly(|x |) such that M(x, y) = 1). Using the encoding
function C ′µ, we introduce an algorithm MS,µ with the intention of reducing the
distributional problem (S, X ) to (Su, U ′) such that all instances (of S) are mapped
to triples in which the first element equals MS,µ. Machine MS,µ is given an alleged
encoding (under C ′µ) of an instance to S along with an alleged proof that the
corresponding instance is in S, and verifies these claims in the obvious manner.
That is, on input x ′ and 〈x, y〉, machine MS,µ first verifies that x ′ = C ′µ(x), and next
verifiers that x ∈ S by running MS(x, y). Thus, MS,µ verifies membership in the set
S′ = {C ′µ(x) : x ∈ S}, while using proofs of the form 〈x, y〉 such that MS(x, y) = 1
(for the instance C ′µ(x)).20

The reduction. We map an instance x (of S) to the triple (MS,µ, C ′µ(x), 1p(|x |)),
where p(n)

def= pS(n)+ pC (n) such that pS is a polynomial representing the running
time of MS and pC is a polynomial representing the running time of the encoding
algorithm.

Analyzing the reduction. Our goal is proving that the foregoing mapping constitutes
a reduction of (S, X ) to (Su, U ′). We verify the corresponding three requirements
(of Definition 10.16).

20Note that |y| = poly(|x |), but |x | = poly(|C ′µ(x)|) does not necessarily hold (and so S′ is not necessarily in

NP). As we shall see, the latter point is immaterial.

438



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

1. Using the fact that C ′µ is polynomial-time computable (and noting that p is a
polynomial), it follows that the foregoing mapping can be computed in polynomial
time.

2. Recall that, on input (x ′, 〈x, y〉), machine MS,µ accepts if and only if x ′ = C ′µ(x)
and MS accepts (x, y) within pS(|x |) steps. Using the fact that C ′µ(x) uniquely
determines x , it follows that x ∈ S if and only if C ′µ(x) ∈ S′, which in turn holds
if and only if there exists a string y such that MS,µ accepts (C ′µ(x), 〈x, y〉) in at
most p(|x |) steps. Thus, x ∈ S if and only if (MS,µ, C ′µ(x), 1p(|x |)) ∈ Su, and the
validity condition follows.

3. In order to verify the domination condition, we first note that the foregoing
mapping is one-to-one (because the transformation x → C ′µ(x) is one-to-one).
Next, we note that it suffices to consider instances of Su that have a preimage
under the foregoing mapping (since instances with no preimage trivially satisfy
the domination condition). Each of these instances (i.e., each image of this
mapping) is a triple with the first element equal to MS,µ and the second element
being an encoding under C ′µ. By the definition of U ′, for every such image
〈MS,µ, C ′µ(x), 1p(|x |)〉 ∈ {0, 1}n , it holds that

Pr[U ′
n = 〈MS,µ, C ′µ(x), 1p(|x |)〉] =

(
n

2

)−1

· 2−(|MS,µ|+|C ′µ(x)|)

> c · n−2 · 2−(|Cµ(x)|+O(log |x |)),

where c = 2−|MS,µ|−1 is a constant depending only on S and µ (i.e., on the
distributional problem (S, X )). Thus, for some positive polynomial q, we have

Pr[U ′
n = 〈MS,µ, C ′µ(x), 1p(|x |)〉] > 2−|Cµ(x)|/q(n). (10.4)

By virtue of the compression condition (of the Coding Lemma), we have
2−|Cµ(x)| ≥ 2−1−min(|x |,log2(1/µ′(x))). It follows that

2−|Cµ(x)| ≥ Pr[X |x | = x]/2. (10.5)

Recalling that x is the only preimage that is mapped to 〈MS,µ, C ′µ(x), 1p(|x |)〉 and
combining Eq. (10.4) and (10.5), we establish the domination condition.

The theorem follows.

Reflections. The proof of Theorem 10.17 highlights the fact that the reduction used in the
proof of Theorem 2.19 does not introduce much structure in the reduced instances (i.e.,
does not reduce the original problem to a “highly structured special case” of the target
problem). Put in other words, unlike more advanced worst-case reductions, this reduc-
tion does not map “random” (i.e., uniformly distributed) instances to highly structured
instances (which occur with negligible probability under the uniform distribution). Thus,
the reduction used in the proof of Theorem 2.19 suffices for reducing any distributional
problem in distNP to a distributional problem consisting of Su coupled with some simple
probability ensemble (see Exercise 10.20).21

21Note that this cannot be said of most known Karp-reductions, which do map random instances to highly structured
ones. Furthermore, the same (structure-creating property) holds for the reductions obtained by Exercise 2.31.

439



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

However, Theorem 10.17 states more than the latter assertion. That is, it states that any
distributional problem in distNP is reducible to the same distributional version of Su.
Indeed, the effort involved in proving Theorem 10.17 was due to the need for mapping
instances taken from any simple probability ensemble (which may not be the uniform
ensemble) to instances distributed in a manner that is dominated by a single probability
ensemble (i.e., the quasi-uniform ensemble U ′).

Once we have established the existence of one distNP-complete problem, we may
establish the distNP-completeness of other problems (in distNP) by reducing some
distNP-complete problem to them (and relying on the transitivity of reductions (see
Exercise 10.17)). Thus, the difficulties encountered in the proof of Theorem 10.17 are
no longer relevant. Unfortunately, a seemingly more severe difficulty arises: Almost all
known reductions in the theory of NP-completeness work by introducing much structure
in the reduced instances (i.e., they actually reduce to highly structured special cases).
Furthermore, this structure is too complex in the sense that the distribution of reduced in-
stances does not seem simple (in the sense of Definition 10.15). Actually, as demonstrated
next, the problem is not the existence of a structure in the reduced instances but rather the
complexity of this structure. In particular, if the aforementioned reduction is “monotone”
and “length-regular” then the distribution of the reduced instances is simple enough (i.e.,
is simple in the sense of Definition 10.15):

Proposition 10.18 (sufficient condition for distNP-completeness): Suppose that
f is a Karp-reduction of the set S to the set T such that, for every x ′, x ′′ ∈ {0, 1}∗,
the following two conditions hold:

1. ( f is monotone): If x ′ < x ′′ then f (x ′) < f (x ′′), where the inequalities refer to
the standard lexicographic order of strings.22

2. ( f is length-regular): |x ′| = |x ′′| if and only if | f (x ′)| = | f (x ′′)|.

Then if there exists an ensemble X such that (S, X ) is distNP-complete then there
exists an ensemble Y such that (T, Y ) is distNP-complete.

Proof Sketch: Note that the monotonicity of f implies that f is one-to-one and that
for every x it holds that f (x) ≥ x . Furthermore, as shown next, f is polynomial-
time invertible. Intuitively, the fact that f is both monotone and polynomial-time
computable implies that a preimage can be found by a binary search. Specifically,
given y = f (x), we search for x by iteratively halving the interval of potential
solutions, which is initialized to [0, y] (since x ≤ f (x)). Note that if this search is
invoked on a string y that is not in the image of f , then it terminates while detecting
this fact.

Relying on the fact that f is one-to-one (and length-regular), we define the
probability ensemble Y ={Yn}n∈N such that for every x it holds that Pr[Y| f (x)| =
f (x)] = Pr[X |x | = x]. Specifically, letting �(m) = | f (1m)| and noting that � is

22In particular, if |z′| < |z′′| then z′ < z′′. Recall that for |z′| = |z′′| it holds that z′ < z′′ if and only if there exists
w, u′, u′′ ∈ {0, 1}∗ such that z′ = w0u′ and z′′ = w1u′′.

440



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

one-to-one and monotonically non-decreasing, we define

Pr[Y|y| = y] =


Pr[X |x | = x] if x = f −1(y)
0 if ∃m s.t. y ∈ {0, 1}�(m) \ { f (x) : x ∈{0, 1}m}
2−|y| otherwise (i.e., if |y| �∈ {�(m) : m∈N}).23

Clearly, (S, X ) is reducible to (T, Y ) (via the Karp-reduction f , which, due to
our construction of Y , also satisfies the domination condition). Thus, using the
hypothesis that distNP is reducible to (S, X ) and the transitivity of reductions (see
Exercise 10.17), it follows that every problem in distNP is reducible to (T, Y ). The
key observation, to be established next, is that Y is a simple probability ensemble,
and it follows that (T, Y ) is in distNP .

Loosely speaking, the simplicity of Y follows by combining the simplicity
of X and the properties of f (i.e., the fact that f is monotone, length-regular,
and polynomial-time invertible). The monotonicity and length-regularity of f im-
plies that Pr[Y| f (x)| ≤ f (x)] = Pr[X |x | ≤ x]. More generally, for any y ∈ {0, 1}�(m),
it holds that Pr[Y�(m)≤ y] = Pr[Xm≤ x], where x is the lexicographicly largest
string such that f (x) ≤ y (and, indeed, if |x | < m then Pr[Y�(m)≤ y] = Pr[Xm≤
x] = 0).24 Note that this x can be found in polynomial time by the inverting algo-
rithm sketched in the first paragraph of the proof. Thus, we may compute Pr[Y|y| ≤ y]
by finding the adequate x and computing Pr[X |x | ≤ x]. Using the hypothesis that X
is simple, it follows that Y is simple (and the proposition follows).

On the existence of adequate Karp-reductions. Proposition 10.18 implies that a suf-
ficient condition for the distNP-completeness of a distributional version of an (NP-
complete) set T is the existence of an adequate Karp-reduction from the set Su to the set
T ; that is, this Karp-reduction should be monotone and length-regular. While the length-
regularity condition seems easy to impose (by using adequate padding), the monotonicity
condition seems more problematic. Fortunately, it turns out that the monotonicity condi-
tion can also be imposed by using adequate padding (or rather an adequate “marking” –
see Exercises 2.30 and 10.21). We highlight the fact that the existence of an adequate
padding (or “marking”) is a property of the set T itself. In Exercise 10.21 we review a
method for modifying any Karp-reduction to a “monotonically markable” set T into a
Karp-reduction (to T ) that is monotone and length-regular. In Exercise 10.23 we provide
evidence for the thesis that all natural NP-complete sets are monotonically markable.
Combining all these facts, we conclude that any natural NP-complete decision problem
can be coupled with a simple probability ensemble such that the resulting distributional
problem is distNP-complete. As a concrete illustration of this thesis, we state the cor-
responding (formal) result for the twenty-one NP-complete problems treated in Karp’s
paper on NP-completeness [138].

Theorem 10.19 (a modest version of a general thesis): For each of the twenty-one
NP-complete problems treated in [138] there exists a simple probability ensemble
such that the combined distributional problem is distNP-complete.

23Having Yn be uniform in this case is a rather arbitrary choice, which is merely aimed at guaranteeing a “simple”
distribution on n-bit strings (also in this case).

24We also note that the case in which |y| is not in the image of � can be easily detected and taken care of
accordingly.

441



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

The said list of problems includes SAT, Clique, and 3-Colorability.

10.2.1.3. Probabilistic Versions
The definitions in §10.2.1.1 can be extended so as to account also for randomized com-
putations. For example, extending Definition 10.14, we have

Definition 10.20 (the class tpcBPP): For a probabilistic algorithm A, a Boolean
function f , and a time-bound function t :N→N, we say that the string x is t-bad for
A with respect to f if with probability exceeding 1/3, on input x, either A(x) �= f (x)
or A runs more that t(|x |) steps. We say that A typically solves (S, {Xn}n∈N) in
probabilistic polynomial time if there exists a polynomial p such that the probability
that Xn is p-bad for A with respect to the characteristic function of S is negligible.
We denote by tpcBPP the class of distributional problems that are typically solvable
in probabilistic polynomial time.

The definition of reductions can be similarly extended. This means that in Definition 10.16,
both MT (x) and Q(x) (mentioned in Items 2 and 3, respectively) are random variables
rather than fixed objects. Furthermore, validity is required to hold (for every input) only
with probability 2/3, where the probability space refers only to the internal coin tosses of
the reduction. Randomized reductions are closed under composition and preserve typical
feasibility (see Exercise 10.24).

Randomized reductions allow the presentation of a distNP-complete problem that
refers to the (perfectly) uniform ensemble. Recall that Theorem 10.17 establishes
the distNP-completeness of (Su, U ′), where U ′ is a quasi-uniform ensemble (i.e.,
Pr[U ′

n = 〈M, x, 1t〉] = 2−(|M|+|x |)/
(n

2

)
, where n = |〈M, x, 1t〉|). We first note that (Su, U ′)

can be randomly reduced to (S′u, U ′′), where S′u = {〈M, x, z〉 : 〈M, x, 1|z|〉 ∈ Su} and
Pr[U ′′

n = 〈M, x, z〉] = 2−(|M|+|x |+|z|)/
(n

2

)
for every 〈M, x, z〉 ∈ {0, 1}n . The randomized

reduction consists of mapping 〈M, x, 1t〉 to 〈M, x, z〉, where z is uniformly selected in
{0, 1}t . Recalling that U = {Un}n∈N denotes the uniform probability ensemble (i.e., Un is
uniformly distributed on strings of length n) and using a suitable encoding we get

Proposition 10.21: There exists S ∈ NP such that every (S′, X ′) ∈ distNP is ran-
domly reducible to (S, U ).

Proof Sketch: By the foregoing discussion, every (S′, X ′) ∈ distNP is randomly
reducible to (S′u, U ′′), where the reduction goes through (Su, U ′). Thus, we fo-
cus on reducing (S′u, U ′′) to (S′′u , U ), where S′′u ∈ NP is defined as follows.
The string bin�(|u|)·bin�(|v|)·u ·v ·w is in S′′u if and only if 〈u, v, w〉 ∈ S′u and
� = &log2 |uvw|' + 1, where bin�(i) denotes the �-bit long binary encoding of
the integer i ∈ [2�−1] (i.e., the encoding is padded with zeros to a total length
of �). The reduction maps 〈M, x, z〉 to the string bin�(|x |)·bin�(|M |)·M ·x ·z, where
� = &log2(|M | + |x | + |z|)' + 1. Noting that this reduction satisfies all conditions
of Definition 10.16, the proposition follows.

10.2.2. Ramifications

In our opinion, the most problematic aspect of the theory described in Section 10.2.1
is the choice to focus on simple probability ensembles, which in turn restricts

442



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

“distributional versions of NP” to the class distNP (Definition 10.15). As indicated
in §10.2.1.1, this restriction raises two opposite concerns (i.e., that distNP is either too
wide or too narrow).25 Here, we address the concern that the class of simple probability
ensembles is too restricted, and consequently that the conjecture distNP �⊆ tpcBPP is
too strong (which would mean that distNP-completeness is a weak evidence for typical-
case hardness). An appealing extension of the class of simple probability ensembles is
presented in §10.2.2.2, yielding a corresponding extension of distNP , and it is shown
that if this extension of distNP is not contained in tpcBPP then distNP itself is not
contained in tpcBPP . Consequently, distNP-complete problems enjoy the benefit of both
being in the more restricted class (i.e., distNP) and being hard as long as some problem
in the extended class is hard.

Another extension appears in §10.2.2.1, where we extend the treatment from decision
problems to search problems. This extension is motivated by the realization that search
problem are actually of greater importance to real-life applications (cf. Section 2.1.1), and
hence a theory motivated by real-life applications must address such problems, as we do
next.

Prerequisites. For the technical development of §10.2.2.1, we assume familiarity with
the notion of a unique solution and results regarding it as presented in Section 6.2.3. For
the technical development of §10.2.2.2, we assume familiarity with hashing functions as
presented in Appendix D.2. In addition, the technical development of §10.2.2.2 relies on
§10.2.2.1.

10.2.2.1. Search Versus Decision
Indeed, as in the case of worst-case complexity, search problems are at least as important
as decision problems. Thus, an average-case treatment of search problems is indeed called
for. We first present distributional versions of PF and PC (cf. Section 2.1.1), following
the underlying principles of the definitions of tpcP and distNP .

Definition 10.22 (the classes tpcPF and distPC): As in Section 2.1.1, we consider
only polynomially bounded search problems, that is, binary relations R ⊆ {0, 1}∗ ×
{0, 1}∗ such that for some polynomial q it holds that (x, y) ∈ R implies |y| ≤ q(|x |).
Recall that R(x)

def= {y : (x, y)∈ R} and SR
def= {x : R(x) �= ∅}.

• A distributional search problem consists of a polynomially bounded search prob-
lem coupled with a probability ensemble.

• The class tpcPF consists of all distributional search problems that are typically
solvable in polynomial time. That is, (R, {Xn}n∈N) ∈ tpcPF if there exists an
algorithm A and a polynomial p such that the probability that on input Xn

algorithm A either errs or runs more that p(n) steps is negligible, where A errs
on x ∈ SR if A(x) �∈ R(x) and errs on x �∈ SR if A(x) �= ⊥.

• A distributional search problem (R, X ) is in distPC if R ∈ PC and X is simple
(as in Definition 10.15).

Likewise, the class tpcBPPF consists of all distributional search problems that are
typically solvable in probabilistic polynomial time (cf. Definition 10.20). The definitions of

25On the one hand, if the definition of distNP were too liberal, then membership in distNP would mean less
than one may desire. On the other hand, if distNP were too restricted, then the conjecture that distNP contains hard
problems would have been very questionable.

443



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

reductions among distributional problems, presented in the context of decision problems,
extend to search problems.

Fortunately, as in the context of worst-case complexity, the study of distributional
search problems “reduces” to the study of distributional decision problems.

Theorem 10.23 (reducing search to decision): distPC ⊆ tpcBPPF if and only if
distNP ⊆ tpcBPP . Furthermore, every problem in distNP is reducible to some
problem in distPC, and every problem in distPC is randomly reducible to some
problem in distNP .

Proof Sketch: The furthermore part is analogous to the actual contents of the
proof of Theorem 2.6 (see also Step 1 in the proof of Theorem 2.16). Indeed, the
reduction of NP to PC presented in the proof of Theorem 2.6 extends to the current
context. Specifically, for any S ∈ NP , we consider a relation R ∈ PC such that
S = {x : R(x) �= ∅}, and note that, for any probability ensemble X , the identity
transformation reduces (S, X ) to (R, X ).

A difficulty arises in the opposite direction. Recall that in the proof of
Theorem 2.6 we reduced the search problem of R ∈ PC to deciding membership
in S′R

def= {〈x, y′〉 : ∃y′′ s.t. (x, y′y′′)∈ R} ∈ NP . The difficulty encountered here is
that, on input x , this reduction makes queries of the form 〈x, y′〉, where y′ is a
prefix of some string in R(x). These queries may induce a distribution that is not
dominated by any simple distribution. Thus, we seek an alternative reduction.

As a warm-up, let us assume for a moment that R has unique solutions (in the
sense of Definition 6.28); that is, for every x it holds that |R(x)| ≤ 1. In this case
we may easily reduce the search problem of R ∈ PC to deciding membership in
S′′R ∈ NP , where 〈x, i, σ 〉 ∈ S′′R if and only if R(x) contains a string in which the
i th bit equals σ . Specifically, on input x , the reduction issues the queries 〈x, i, σ 〉,
where i ∈ [�] (with � = poly(|x |)) and σ ∈ {0, 1}, which allows for determining the
single string in the set R(x) ⊆ {0, 1}� (whenever |R(x)| = 1). The point is that this
reduction can be used to reduce any (R, X ) ∈ distPC (having unique solutions) to
(S′′R, X ′′) ∈ distNP , where X ′′ equally distributes the probability mass of x (under
X ) to all the tuples 〈x, i, σ 〉; that is, for every i ∈ [�] and σ ∈ {0, 1}, it holds that
Pr[X ′′|〈x,i,σ 〉| = 〈x, i, σ 〉] equals Pr[X |x | = x]/2�.

Unfortunately, in the general case, R may not have unique solutions. Nevertheless,
applying the main idea that underlies the proof of Theorem 6.29, this difficulty
can be overcome. We first note that the foregoing mapping of instances of the
distributional problem (R, X ) ∈ distPC to instances of (S′′R, X ′′) ∈ distNP satisfies
the efficiency and domination conditions even in the case that R does not have unique
solutions. What may possibly fail (in the general case) is the validity condition (i.e.,
if |R(x)| > 1 then we may fail to recover any element of R(x)).

Recall that the main part of the proof of Theorem 6.29 is a randomized reduction
that maps instances of R to triples of the form (x, m, h) such that m is uniformly
distributed in [�] and h is uniformly distributed in a family of hashing functions
H m

� , where � = poly(|x |) and H m
� is as in Appendix D.2. Furthermore, if R(x) �=

∅ then, with probability �(1/�) over the choices of m ∈ [�] and h ∈ H m
� , there

exists a unique y ∈ R(x) such that h(y) = 0m . Defining R′(x, m, h)
def= {y∈ R(x) :

h(y)=0m}, this yields a randomized reduction of the search problem of R to the

444



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

search problem of R′ such that with noticeable probability26 the reduction maps
instances that have solutions to instances having a unique solution. Furthermore,
this reduction can be used to reduce any (R, X ) ∈ distPC to (R′, X ′) ∈ distPC,
where X ′ distributes the probability mass of x (under X ) to all the triples (x, m, h)
such that for every m ∈ [�] and h ∈ H m

� it holds that Pr[X ′|(x,m,h)| = (x, m, h)]
equals Pr[X |x | = x]/(� · |H m

� |). (Note that with a suitable encoding, X ′ is indeed
simple.)

The theorem follows by combining the two aforementioned reductions. That is,
we first apply the randomized reduction of (R, X ) to (R′, X ′), and next reduce the
resulting instance to an instance of the corresponding decision problem (S′′R′, X ′′),
where X ′′ is obtained by modifying X ′ (rather than X ). The combined randomized
mapping satisfies the efficiency and domination conditions, and is valid with notice-
able probability. The error probability can be made negligible by straightforward
amplification (see Exercise 10.24).

10.2.2.2. Simple Versus Samplable Distributions
Recall that the definition of simple probability ensembles (underlying Definition 10.15)
requires that the accumulating distribution function is polynomial-time computable. Recall
that µ : {0, 1}∗ → [0, 1] is called the accumulating distribution function of X = {Xn}n∈N

if for every n ∈ N and x ∈ {0, 1}n it holds that µ(x)
def= Pr[Xn ≤ x], where the inequality

refers to the standard lexicographic order of n-bit strings.
As argued in §10.2.1.1, the requirement that the accumulating distribution function

is polynomial-time computable imposes severe restrictions on the set of admissible en-
sembles. Furthermore, it seems that these simple ensembles are indeed “simple” in some
intuitive sense, and that they represent a reasonable (alas, disputable) model of distribu-
tions that may occur in practice. Still, in light of the fear that this model is too restrictive
(and consequently that distNP-hardness is weak evidence for typical-case hardness), we
seek a maximalistic model of distributions that may occur in practice. Such a model
is provided by the notion of polynomial-time samplable ensembles (underlying Defini-
tion 10.24). Our maximality thesis is based on the belief that the real world should be
modeled as a feasible randomized process (rather than as an arbitrary process). This belief
implies that all objects encountered in the world may be viewed as samples generated by
a feasible randomized process.

Definition 10.24 (samplable ensembles and the class sampNP): We say that a
probability ensemble X = {Xn}n∈N is (polynomial-time) samplable if there exists a
probabilistic polynomial-time algorithm A such that for every x ∈ {0, 1}∗ it holds
that Pr[A(1|x |)= x] = Pr[X |x | = x]. We denote by sampNP the class of distribu-
tional problems consisting of decision problems in NP coupled with samplable
probability ensembles.

We first note that all simple probability ensembles are indeed samplable (see Exer-
cise 10.25), and thus distNP ⊆ sampNP . On the other hand, there exist samplable
probability ensembles that do not seem simple (see Exercise 10.26).

26Recall that the probability of an event is said to be noticeable (in a relevant parameter) if it is greater than the
reciprocal of some positive polynomial. In the context of randomized reductions, the relevant parameter is the length
of the input to the reduction.

445



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

distNP

sampNP

tpcBPP

distNP-complete [Thm 10.17 and 10.19]

sampNP-complete [Thm 10.25]

Figure 10.1: Two types of average-case completeness.

Extending the scope of distributional problems (from distNP to sampNP) facilitates
the presentation of complete distributional problems. We first note that it is easy to prove
that every natural NP-complete problem has a distributional version in sampNP that is
distNP-hard (see Exercise 10.27). Furthermore, it is possible to prove that all natural
NP-complete problem have distributional versions that are sampNP-complete. (In both
cases, “natural” means that the corresponding Karp-reductions do not shrink the input,
which is a weaker condition than the one in Proposition 10.18.)

Theorem 10.25 (sampNP-completeness): Suppose that S ∈ NP and that every
set in NP is reducible to S by a Karp-reduction that does not shrink the input.
Then there exists a polynomial-time samplable ensemble X such that any problem
in sampNP is reducible to (S, X )

The proof of Theorem 10.25 is based on the observation that there exists a polynomial-
time samplable ensemble that dominates all polynomial-time samplable ensembles. The
existence of this ensemble is based on the notion of a universal (sampling) machine. For
further details, see Exercise 10.28.

Theorem 10.25 establishes a rich theory of sampNP-completeness, but does not relate
this theory to the previously presented theory of distNP-completeness (see Figure 10.1).
This is essentially done in the next theorem, which asserts that the existence of typically
hard problems in sampNP implies their existence in distNP .

Theorem 10.26 (sampNP-completeness versus distNP-completeness): If
sampNP is not contained in tpcBPP then distNP is not contained in tpcBPP .

Thus, the two “typical-case complexity” versions of the P-vs-NP Question are equivalent.
That is, if some “samplable distribution” versions of NP are not typically feasible then
some “simple distribution” versions of NP are not typically feasible. In particular, if
sampNP-complete problems are not in tpcBPP then distNP-complete problems are not
in tpcBPP .

The foregoing assertions would all follow if sampNP were (randomly) reducible to
distNP (i.e., if every problem in sampNP were reducible (under a randomized version
of Definition 10.16) to some problem in distNP); but, unfortunately, we do not know

446



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

whether such reductions exist. Yet, underlying the proof of Theorem 10.26 is a more
liberal notion of a reduction among distributional problems.

Proof Sketch: We shall prove that if distNP is contained in tpcBPP then the
same holds for sampNP (i.e., sampNP is contained in tpcBPP). Relying on
Theorem 10.23 and Exercise 10.29, it suffices to show that if distPC is contained
in tpcBPPF then the samplable version of distPC, denoted sampPC, is contained
in tpcBPPF . This will be shown by showing that, under a relaxed notion of a
randomized reduction, every problem in sampPC is reduced to some problem in
distPC. Loosely speaking, this relaxed notion (of a randomized reduction) only
requires that the validity and domination conditions (of Definition 10.16 (when
adapted to randomized reductions)) hold with respect to a noticeable fraction of
the probability space of the reduction.27 We start by formulating this notion, when
referring to distributional search problems.

Teaching note: The following proof is quite involved and is better left for advanced
reading. Its main idea is related to one of the central ideas underlying the currently
known proof of Theorem 8.11. This fact, as well as numerous other applications of this
idea, provide additional motivation for reading the following proof.

Definition. A relaxed reduction of the distributional problem (R, X ) to the distri-
butional problem (T, Y ) is a probabilistic polynomial-time oracle machine M that
satisfies the following conditions with respect to a family of sets {�x ⊆ {0, 1}m(|x |) :
x ∈{0, 1}∗}, where m(|x |) = poly(|x |) denotes an upper bound on the number of the
internal coin tosses of M on input x :

Density (of �x ): There exists a noticeable function ρ :N→ [0, 1] (i.e., ρ(n) >

1/poly(n)) such that, for every x ∈ {0, 1}∗, it holds that |�x | ≥ ρ(|x |) · 2m(|x |).
Validity (with respect to �x ): For every r ∈ �x the reduction yields a correct an-

swer; that is, MT (x, r ) ∈ R(x) if R(x) �= ∅ and MT (x, r ) = ⊥ otherwise, where
MT (x, r ) denotes the execution of M on input x , internal coins r , and oracle
access to T .

Domination (with respect to �x ): There exists a positive polynomial p such that, for
every y ∈ {0, 1}∗ and every n ∈ N, it holds that

Pr[Q′(Xn) - y] ≤ p(|y|) · Pr[Y|y| = y], (10.6)

where Q′(x) is a random variable, defined over the set �x , representing the set
of queries made by M on input x , coins in �x , and oracle access to T . That is,
Q′(x) is defined by uniformly selecting r ∈ �x and considering the set of queries
made by M on input x , internal coins r , and oracle access to T . (In addition, as
in Definition 10.16, we also require that the reduction does not make too short
queries.)

The reader may verify that this relaxed notion of a reduction preserves typical
feasibility; that is, for R ∈ PC, if there exists a relaxed reduction of (R, X ) to (T, Y )

27We warn that the existence of such a relaxed reduction between two specific distributional problems does not
necessarily imply the existence of a corresponding (standard average-case) reduction. Specifically, although standard
validity can be guaranteed (for problems in PC) by repeated invocations of the reduction, such a process will not
redeem the violation of the standard domination condition.

447



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

and (T, Y ) is in tpcBPPF then (R, X ) is in tpcBPPF . The key observation is that
the analysis may discard the case that, on input x , the reduction selects coins not in
�x . Indeed, the queries made in that case may be untypical and the answers received
may be wrong, but this is immaterial. What matter is that, on input x , with noticeable
probability the reduction selects coins in �x , and produces “typical with respect to
Y ” queries (by virtue of the relaxed domination condition). Such typical queries
are answered correctly by the algorithm that typically solves (T, Y ), and if x has a
solution then these answers yield a correct solution to x (by virtue of the relaxed
validity condition). Thus, if x has a solution, then with noticeable probability the
reduction outputs a correct solution. On the other hand, the reduction never outputs
a wrong solution (even when using coins not in �x ), because incorrect solutions are
detected by relying on R ∈ PC.

Our goal is presenting, for every (R, X ) ∈ sampPC, a relaxed reduction of (R, X )
to a related problem (R′, X ′) ∈ distPC. (We use the standard notation X = {Xn}n∈N

and X ′ = {X ′n}n∈N.)

An oversimplified case. For starters, suppose that Xn is uniformly distributed on
some set Sn ⊆ {0, 1}n and that there is a polynomial-time computable and invert-
ible mapping µ of Sn to {0, 1}�(n), where �(n) = log2 |Sn|. Then, mapping x to
1|x |−�(|x |)0µ(x), we obtain a reduction of (R, X ) to (R′, X ′), where X ′n+1 is uni-
form over {1n−�(n)0v : v ∈ {0, 1}�(n)} and R′(1n−�(n)0v) = R(µ−1(v)) (or, equiva-
lently, R(x) = R′(1|x |−�(|x |)0µ(x))). Note that X ′ is a simple ensemble and R′ ∈ PC;
hence, (R′, X ′) ∈ distPC. Also note that the foregoing mapping is indeed a valid
reduction (i.e., it satisfies the efficiency, validity, and domination conditions). Thus,
(R, X ) is reduced to a problem in distPC (and indeed the relaxation was not used
here).

A simple but more instructive case. Next, we drop the assumption that there is
a polynomial-time computable and invertible mapping µ of Sn to {0, 1}�(n), but
maintain the assumption that Xn is uniform on some set Sn ⊆ {0, 1}n and as-
sume that |Sn| = 2�(n) is easily computable (from n). In this case, we may map
x ∈ {0, 1}n to its image under a suitable randomly chosen hashing function h, which
in particular maps n-bit strings to �(n)-bit strings. That is, we randomly map x
to (h, 1n−�(n)0h(x)), where h is uniformly selected in a set H �(n)

n of suitable hash
functions (see Appendix D.2). This calls for redefining R′ such that R′(h, 1n−�(n)0v)
corresponds to the preimages of v under h that are in Sn . Assuming that h is
a 1-1 mapping of Sn to {0, 1}�(n), we may define R′(h, 1n−�(n)0v) = R(x) such
that x is the unique string satisfying x ∈ Sn and h(x) = v, where the condition
x ∈ Sn may be verified by providing the internal coins of the sampling proce-
dure that generate x . Denoting the sampling procedure of X by S, and letting
S(1n, r ) denote the output of S on input 1n and internal coins r , we actually redefine
R′ as

R′(h, 1n−�(n)0v) = {〈r, y〉 : h(S(1n, r ))=v ∧ y∈ R(S(1n, r ))}. (10.7)

We note that 〈r, y〉 ∈ R′(h, 1|x |−�(|x |)0h(x)) yields a desired solution y ∈ R(x) if
S(1|x |, r ) = x , but otherwise “all bets are off” (since y will be a solution for
S(1|x |, r ) �= x). Now, although typically h will not be a 1-1 mapping of Sn to
{0, 1}�(n), it is the case that for each x ∈ Sn, with constant probability over the

448



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

10.2. AVERAGE-CASE COMPLEXITY

choice of h, it holds that h(x) has a unique preimage in Sn under h. (See the proof
of Theorem 6.29.) In this case 〈r, y〉 ∈ R′(h, 1|x |−�(|x |)0h(x)) implies S(1|x |, r ) = x
(which, in turn, implies y ∈ R(x)). We claim that the randomized mapping of x to
(h, 1n−�(n)0h(x)), where h is uniformly selected in H �(|x |)

|x | , yields a relaxed reduction
of (R, X ) to (R′, X ′), where X ′n′ is uniform over H �(n)

n × {1n−�(n)0v : v ∈ {0, 1}�(n)}.
Needless to say, the claim refers to the reduction that (on input x , makes the
query (h, 1n−�(n)0h(x)), and) returns y if the oracle answer equals 〈r, y〉 and
y ∈ R(x).

The claim is proved by considering the set �x of choices of h ∈ H �(|x |)
|x | for which

x ∈ Sn is the only preimage of h(x) under h that resides in Sn (i.e., |{x ′ ∈ Sn : h(x ′)=
h(x)}| = 1). In this case (i.e., h ∈ �x ) it holds that 〈r, y〉 ∈ R′(h, 1|x |−�(|x |)0h(x))
implies that S(1|x |, r ) = x and y ∈ R(x), and the (relaxed) validity condition follows.
The (relaxed) domination condition follows by noting that Pr[Xn= x] ≈ 2−�(|x |),
that x is mapped to (h, 1|x |−�(|x |)0h(x)) with probability 1/|H �(|x |)

|x | |, and that x is the
only preimage of (h, 1|x |−�(|x |)0h(x)) under the mapping (among x ′ ∈ Sn such that
�x ′ - h).

Before going any further, let us highlight the importance of hashing Xn to �(n)-
bit strings. On the one hand, this mapping is “sufficiently” one-to-one, and thus
(with constant probability) the solution provided for the hashed instance (i.e., h(x))
yields a solution for the original instance (i.e., x). This guarantees the validity of the
reduction. On the other hand, for a typical h, the mapping of Xn to h(Xn) covers the
relevant range almost uniformly. This guarantees that the reduction satisfies the dom-
ination condition. Note that these two phenomena impose conflicting requirements
that are both met at the correct value of �; that is, the one-to-one condition requires
�(n) ≥ log2 |Sn|, whereas an almost uniform cover requires �(n) ≤ log2 |Sn|. Also
note that �(n) = log2(1/Pr[Xn= x]) for every x in the support of Xn; the latter
quantity will be in our focus in the general case.

The general case. Finally, we get rid of the assumption that Xn is uniformly dis-
tributed over some subset of {0, 1}n . All that we know is that there exists a prob-
abilistic polynomial-time (“sampling”) algorithm S such that S(1n) is distributed
identically to Xn . In this (general) case, we map instances of (R, X ) according to
their probability mass such that x is mapped to an instance (of R′) that consists of
(h, h(x)) and additional information, where h is a random hash function mapping
n-bit long strings to �x -bit long strings such that

�x
def= &log2(1/Pr[X |x | = x])'. (10.8)

Since (in the general case) there may be more than 2�x strings in the support of
Xn , we need to augment the reduced instance in order to ensure that it is uniquely
associated with x . The basic idea is augmenting the mapping of x to (h, h(x)) with
additional information that restricts Xn to strings that occur with probability at
least 2−�x . Indeed, when Xn is restricted in this way, the value of h(Xn) uniquely
determines Xn .

Let q(n) denote the randomness complexity of S and S(1n, r ) denote the output
of S on input 1n and internal coin tosses r ∈ {0, 1}q(n). Then, we randomly map x to
(h, h(x), h′, v′), where h : {0, 1}|x | → {0, 1}�x and h′ : {0, 1}q(|x |) → {0, 1}q(|x |)−�x

are random hash functions and v′ ∈ {0, 1}q(|x |)−�x is uniformly distributed. The

449



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

instance (h, v, h′, v′) of the redefined search problem R′ has solutions that consist
of pairs 〈r, y〉 such that h(S(1n, r ))=v ∧ h′(r ) = v′ and y∈ R(S(1n, r )). As we shall
see, this augmentation guarantees that, with constant probability (over the choice
of h, h′, v′), the solutions to the reduced instance (h, h(x), h′, v′) correspond to the
solutions to the original instance x .

The foregoing description assumes that, on input x , we can efficiently deter-
mine �x , which is an assumption that cannot be justified. Instead, we select �

uniformly in {0, 1, . . . , q(|x |)}, and so with noticeable probability we do select
the correct value (i.e., Pr[� = �x ] = 1/(q(|x |)+ 1) = 1/poly(|x |)). For clarity, we
make n and � explicit in the reduced instance. Thus, we randomly map x ∈ {0, 1}n to
(1n, 1�, h, h(x), h′, v′) ∈ {0, 1}n′ , where � ∈ {0, 1, . . . , q(n)}, h ∈ H �

n , h′ ∈ Hq(n)−�

q(n) ,
and v′ ∈ {0, 1}q(n)−� are uniformly distributed in the corresponding sets.28 This map-
ping will be used to reduce (R, X ) to (R′, X ′), where R′ and X ′ = {X ′n′ }n′∈N are
redefined (yet again). Specifically, we let

R′(1n, 1�, h, v, h′, v′) = {〈r, y〉 : h(S(1n, r ))=v ∧ h′(r )=v′ ∧ y∈ R(S(1n, r ))}
(10.9)

and X ′n′ assigns equal probability to each Xn′,� (for � ∈ {0, 1, . . . , n}), where each

Xn′,� is isomorphic to the uniform distribution over H �
n × {0, 1}� × Hq(n)−�

q(n) ×
{0, 1}q(n)−�. Note that indeed (R′, X ′) ∈ distPC.

The foregoing randomized mapping is analyzed by considering the correct choice
for �; that is, on input x , we focus on the choice � = �x . Under this conditioning (as
we shall show), with constant probability over the choice of h, h′ and v′, the instance
x is the only value in the support of Xn that is mapped to (1n, 1�x , h, h(x), h′, v′)
and satisfies {r : h(S(1n, r )) = h(x) ∧ h′(r ) = v′} �= ∅. It follows that (for such h, h′

and v′) any solution 〈r, y〉 ∈ R′(1n, 1�x , h, h(x), h′, v′) satisfies S(1n, r ) = x and
thus y ∈ R(x), which means that the (relaxed) validity condition is satisfied. The
(relaxed) domination condition is satisfied, too, because (conditioned on � = �x

and for such h, h′, v′) the probability that Xn is mapped to (1n, 1�x , h, h(x), h′, v′)
approximately equals Pr[X ′n′,�x

= (1n, 1�x , h, h(x), h′, v′)].
We now turn to analyzing the probability, over the choice of h, h′ and v′,

that the instance x is the only value in the support of Xn that is mapped
to (1n, 1�x , h, h(x), h′, v′) and satisfies {r : h(S(1n, r )) = h(x) ∧ h′(r ) = v′} �= ∅.
Firstly, we note that |{r : S(1n, r )= x}| ≥ 2q(n)−�x , and thus, with constant prob-
ability over the choice of h′ ∈ Hq(n)−�x

q(n) and v′ ∈ {0, 1}q(n)−�x , there exists r that
satisfies S(1n, r ) = x and h′(r ) = v′. Furthermore, with constant probability over
the choice of h′ ∈ Hq(n)−�x

q(n) and v′ ∈ {0, 1}q(n)−�x , it also holds that there are
at most O(2�x ) strings r such that h′(r ) = v′. Fixing such h′ and v′, we let
Sh′,v′ = {S(1n, r ) : h′(r ) = v′} and we note that, with constant probability over the
choice of h ∈ H �x

n , it holds that x is the only string in Sh′,v′ that is mapped to
h(x) under h. Thus, with constant probability over the choice of h, h′ and v′,
the instance x is the only value in the support of Xn that is mapped to (1n , 1�x ,

28As in other places, a suitable encoding will be used such that the reduction maps strings of the same length to
strings of the same length (i.e., n-bit strings are mapped to n′-bit strings, for n′ = poly(n)). For example, we may
encode 〈1n, 1�, h, h(x), h′, v′〉 as 1n01�01q(n)−�0〈h〉〈h(x)〉〈h′〉〈v′〉, where each 〈w〉 denotes an encoding of w by a
string of length (n′ − (n + q(n)+ 3))/4.

450



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

CHAPTER NOTES

P  is different from NP

one-way functions exist

distNP is not in tpcBPP
(equiv., sampNP is not in tpcBPP)

Figure 10.2: Worst-case versus average-case assumptions.

h, h(x), h′, v′) and satisfies {r : h(S(1n, r )) = h(x) ∧ h′(r ) = v′} �= ∅. The theorem
follows.

Reflection. Theorem 10.26 implies that if sampNP is not contained in tpcBPP then
every distNP-complete problem is not in tpcBPP . This means that the hardness of
some distributional problems that refer to samplable distributions implies the hardness of
some distributional problems that refer to simple distributions. Furthermore, by Proposi-
tion 10.21, this implies the hardness of distributional problems that refer to the uniform
distribution. Thus, hardness with respect to some distribution in an utmost wide class
(which arguably captures all distributions that may occur in practice) implies hardness
with respect to a single simple distribution (which arguably is the simplest one).

Relation to one-way functions. We note that the existence of one-way functions (see Sec-
tion 7.1) implies the existence of problems in sampPC that are not in tpcBPPF (which in
turn implies the existence of such problems in distPC). Specifically, for a length-preserving
one-way function f , consider the distributional search problem (R f , { f (Un)}n∈N), where
R f = {( f (r ), r ) : r ∈ {0, 1}∗}.29 On the other hand, it is not known whether the existence
of a problem in sampPC \ tpcBPPF implies the existence of one-way functions. In
particular, the existence of a problem (R, X ) in sampPC \ tpcBPPF represents the fea-
sibility of generating hard instances for the search problem R, whereas the existence of a
one-way function represents the feasibility of generating instance-solution pairs such that
the instances are hard to solve (see Section 7.1.1). Indeed, the gap refers to whether or not
hard instances can be efficiently generated together with corresponding solutions. Our
world view is thus depicted in Figure 10.2, where lower levels indicate seemingly weaker
assumptions.

Chapter Notes

In this chapter, we presented two different approaches to the relaxation of computational
problems. The first approach refers to the concept of approximation, while the second
approach refers to average-case analysis. We demonstrated that various natural notions
of approximation can be cast within the standard frameworks, where the framework of
promise problems (presented in Section 2.4.1) is the least-standard framework we used
(and it suffices for casting gap problems and property testing). In contrast, the study of

29Note that the distribution f (Un) is uniform in the special case that f is a permutation over {0, 1}n .

451



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

average-case complexity requires the introduction of a new conceptual framework as well
as addressing various definitional issues.

A natural question at this point is what we have gained by relaxing the requirements.
In the context of approximation, the answer is mixed: In some natural cases we gain a lot
(i.e., we obtained feasible relaxations of hard problems), while in other natural cases we
gain nothing (i.e., even extreme relaxations remain as intractable as the original versions).
In the context of average-case complexity, the negative side seems more prevailing (at
least in the sense of being more systematic). In particular, assuming the existence of
one-way functions, every natural NP-complete problem has a distributional version that
is (typical-case) hard, where this version refers to a samplable ensemble (and, in fact,
even to a simple ensemble). Furthermore, in this case, some problems in NP have hard
distributional versions that refer to the uniform distribution.

10.2.2.3. Approximation
The following bibliographic comments are quite laconic and neglect mentioning various
important works (including credits for some of the results mentioned in our text). As
usual, the interested reader is referred to corresponding surveys.

Search or Optimization. The interest in approximation algorithms increased consider-
ably following the demonstration of the NP-completeness of many natural optimization
problems. But, with some exceptions (most notably [179]), the systematic study of the
complexity of such problems stalled till the discovery of the “PCP connection” (see Sec-
tion 9.3.3) by Feige, Goldwasser, Lovász, and Safra [73]. Indeed the relatively “tight” inap-
proximation results for max-Clique, max-SAT, and the maximization of linear equations,
due to Håastad [116, 117], build on previous work regarding PCP and their connection to
approximation (cf., e.g., [74, 16, 15, 29, 185]). Specifically, Theorem 10.5 is due to [116],30

while Theorems 10.8 and 10.9 are due to [117]. The best-known inapproximation result
for minimum Vertex Cover (see Theorem 10.7) is due to [69], but we doubt it is tight
(see, e.g., [143]). Reductions among approximation problems were defined and presented
in [179]; see Exercise 10.7, which presents a major technique introduced in [179]. For
general texts on approximation algorithms and problems (as discussed in Section 10.1.1),
the interested reader is referred to the surveys collected in [122]. A compendium of NP
optimization problems is available at [64].

Recall that a different type of approximation problems, which are naturally associated
with search problems, refers to approximately counting the number of solutions. These
approximation problems were treated in Section 6.2.2 in a rather ad hoc manner. We note
that a more systematic treatment of approximate counting problems can be obtained by
using the definitional framework of Section 10.1.1 (e.g., the notions of gap problems,
polynomial-time approximation schemes, etc).

Property testing. The study of property testing was initiated by Rubinfeld and Su-
dan [195] and reinitiated by Goldreich, Goldwasser, and Ron [97]. While the focus of [195]
was on algebraic properties such as low-degree polynomials, the focus of [97] was on
graph properties (and Theorem 10.12 is taken from [97]). The model of bounded-degree
graphs was introduced in [103], and Theorem 10.13 combines results from [103, 104, 42].
For surveys of the area, the interested reader is referred to [77, 194].

30See also [244].

452



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Average-case complexity
The theory of average-case complexity was initiated by Levin [154], who in particular
proved Theorem 10.17. In light of the laconic nature of the original text [154], we refer
the interested reader to a survey [89], which provides a more detailed exposition of the
definitions suggested by Levin as well as a discussion of the considerations underlying
these suggestions. (This survey [89] also provides a brief account of further developments.)

As noted in §10.2.1.1, the current text uses a variant of the original definitions. In
particular, our definition of “typical-case feasibility” differs from the original definition of
“average-case feasibility” in totally discarding exceptional instances and in even allowing
the algorithm to fail on them (and not merely run for an excessive amount of time). The
alternative definition was suggested by several researchers, and appears as a special case
of the general treatment provided in [44].

Turning to §10.2.1.2, we note that while the existence of distNP-complete prob-
lems (cf. Theorem 10.17) was established in Levin’s original paper [154], the existence
of distNP-complete versions of all natural NP-complete decision problems (cf. Theo-
rem 10.19) was established more than two decades later in [158].

Section 10.2.2 is based on [30, 127]. Specifically, Theorem 10.23 (or rather the reduction
of search to decision) is due to [30] and so is the introduction of the class sampNP . A
version of Theorem 10.26 was proven in [127], and our proof follows their ideas, which
in turn are closely related to the ideas underlying the proof of Theorem 8.11 (proved
in [118]).

Recall that we know of the existence of problems in distNP that are hard provided
sampNP contains hard problems. However, these distributional problems do not seem
very natural (i.e., they refer either to somewhat generic decision problems such as Su or
to somewhat contrived probability ensembles (cf. Theorem 10.19)). The presentation of
distNP-complete problems that combine a more natural decision problem (like SAT or
Clique) with a more natural probability ensemble is an open problem.

Exercises

Exercise 10.1 (general TSP): For any adequate function g, prove that the following
approximation problem is NP-hard. Given a general TSP instance I , represented by
a symmetric matrix of pairwise distances, the task is finding a tour of length that is
at most a factor g(I ) of the minimum. Specifically, show that the result holds with
g(I ) = exp(|I |0.99) and for instances in which all distances are positive integers.

Guideline: Use a reduction from Hamiltonian cycle problem. Specifically, reduce
the instance G = ([n], E) to an n-by-n distance matrix D = (di, j )i, j∈[n] such that
di, j = exp(poly(n)) if {i, j} ∈ E and di, j = 1.

Exercise 10.2 (TSP with triangle inequalities): Provide a polynomial-time 2-factor
approximation for the special case of TSP in which the distances satisfy the triangle
inequality.

Guideline: First note that the length of any tour is lower-bounded by the weight of a
minimum spanning tree in the corresponding weighted graph. Next note that such a
tree yields a tour (of length twice the weight of this tree) that may visit some points
several times. The triangle inequality guarantees that the tour does not become longer
by “shortcuts” that eliminate multiple visits at the same point.

453



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

Exercise 10.3 (a weak version of Theorem 10.5): Using Theorem 9.16 prove that, for
some constants 0 < a < b < 1 when setting L(N ) = N b and s(N ) = N a , it holds that
gapCliqueL ,s is NP-hard.

Guideline: Starting with Theorem 9.16, apply the Expander Random Walk Generator
(of Proposition 8.29) in order to derive a PCP-system with logarithmic randomness
and query complexities that accepts no-instances of length n with probability at most
1/n. The claim follows by applying the FGLSS-reduction (of Exercise 9.18), while
noting that x is reduced to a graph of size poly(|x |) such that the gap between yes- and
no-instances is at least a factor of |x |.

Exercise 10.4 (a weak version of Theorem 10.7): Using Theorem 9.16 prove that, for
some constants 0 < s < L < 1, the problem gapVCs,L is NP-hard.

Guideline: Note that combining Theorem 9.16 and Exercise 9.18 implies that for
some constants b < 1 it holds that gapCliqueL ,s is NP-hard, where L(N ) = b · N and
s(N ) = (b/2) · N . The claim follows using the relations between cliques, independent
sets, and vertex covers.

Exercise 10.5 (a weak version of Theorem 10.9): Using Theorem 9.16 prove that, for
some constants 0.5 < s < L < 1, the problem gapLinL ,s is NP-hard.

Guideline: Recall that by Theorems 9.16 and 9.21, the gap problem gapSAT3
ε is NP-

hard. Note that the result holds even if we restrict the instances to having exactly
three (not necessarily different) literals in each clause. Applying the reduction of
Exercise 2.24, note that, for any assignment τ , a clause that is satisfied by τ is mapped
to seven equations of which exactly three are violated by τ , whereas a clause that is
not satisfied by τ is mapped to seven equations that are all violated by τ .

Exercise 10.6 (natural inapproximability without the PCP Theorem): In contrast to
the inapproximability results reviewed in §10.1.1.2, the NP-completeness of the fol-
lowing gap problem can be established (rather easily) without referring to the PCP
Theorem. The instances of this problem are systems of quadratic equations over GF(2)
(as in Exercise 2.25), yes-instances are systems that have a solution, and no-instances
are systems for which any assignment violates at least one-third of the equations.

Guideline: As stated in Exercise 2.25, when given such a quadratic system, it is
NP-hard to determine whether or not there exists an assignment that satisfies all
the equations. Using an adequate small-bias generator (cf. Section 8.5.2), present an
amplifying reduction (cf. Section 9.3.3) of the foregoing problem to itself. Specifically,
if the input system has m equations then we use a generator that defines a sample space
of poly(m) many m-bit strings, and consider the corresponding linear combinations
of the input equations. Note that it suffices to bound the bias of the generator by 1/6,
whereas using an ε-biased generator yields an analogous result with 1/3 replaced by
0.5− ε.

Exercise 10.7 (enforcing multi-way equalities via expanders): The aim of this exercise
is presenting a technique (of Papadimitriou and Yannakakis [179]) that is useful for
designing reductions among approximation problems. Recalling that gapSAT3

0.1 is NP-
hard, our goal is proving NP-hardness of the following gap problem, denotedgapSAT3,c

ε ,
which is a special case of gapSAT3

ε . Specifically, the instances are restricted to 3CNF
formulae with each variable appearing in at most c clauses, where c (as ε) is a fixed
constant. Note that the standard reduction of 3SAT to the corresponding special case

454



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

(see proof of Proposition 2.23) does not preserve an approximation gap.31 The idea is
enforcing equality of the values assigned to the auxiliary variables (i.e., the copies of
each original variable) by introducing equality constraints only for pairs of variables
that correspond to edges of an expander graph (see Appendix E.2). For example, we
enforce equality among the values of z(1), . . . , z(m) by adding the clauses z(i) ∨ ¬z( j)

for every {i, j} ∈ E , where E is the set of edges of an m-vertex expander graph. Prove
that, for some constants c and ε > 0, the corresponding mapping reduces gapSAT3

0.1
to gapSAT3,c

ε .

Guideline: Using d-regular expanders in the foregoing reduction, we map general
3CNF formulae to 3CNF formulae in which each variable appears in at most 2d + 1
clauses. Note that the number of added clauses is linearly related to the number of
original clauses. Clearly, if the original formula is satisfiable then so is the reduced
one. On the other hand, consider an arbitrary assignment τ ′ to the reduced formula φ′

(i.e., the formula obtained by mapping φ). For each original variable z, if τ ′ assigns the
same value to almost all copies of z then we consider the corresponding assignment in
φ. Otherwise, by virtue of the added clauses, τ ′ does not satisfy a constant fraction of
the clauses containing a copy of z.

Exercise 10.8 (deciding majority requires linear time): Prove that deciding majority
requires linear time even in a direct access model and when using a randomized
algorithm that may err with probability at most 1/3.

Guideline: Consider the problem of distinguishing Xn from Yn , where Xn (resp.,
Yn) is uniformly distributed over the set of n-bit strings having exactly �n/2� (resp.,
�n/2� + 1) zeros. For any fixed set I ⊂ [n], denote the projection of Xn (resp., Yn) on
I by X ′n (resp., Y ′n). Prove that the statistical difference between X ′n and Y ′n is bounded
by O(|I |/n). Note that the argument needs to be extended to the case that the examined
locations are selected adaptively.

Exercise 10.9 (testing majority in poly-logarithmic time): Show that testing majority
(in the sense of Definition 10.11) can be done in poly-logarithmic time by probing the
input at a constant number of randomly selected locations.

Exercise 10.10 (on the triviality of some testing problems): Show that the following
sets are trivially testable in the adjacency matrix representation (i.e., for every δ > 0
and any such set S, there exists a trivial algorithm that distinguishes S from �δ(S)).

1. The set of connected graphs.
2. The set of Hamiltonian graphs.
3. The set of Eulerian graphs.

Indeed, show that in each case �δ(S) = ∅.

31Recall that in this reduction, each occurrences of each Boolean variable is replaced by a new copy of this
variable, and clauses are added for enforcing the assignment of the same value to all these copies. Specifically, the
m occurrences of variable z are replaced by the variables z(1), . . . , z(m), while adding the clauses z(i) ∨ ¬z(i+1) and
z(i+1) ∨ ¬z(i) (for i = 1, . . . , m − 1). The problem is that almost all clauses of the reduced formula may be satisfied
by an assignment in which half of the copies of each variable are assigned one value and the rest are assigned
an opposite value. That is, an assignment in which z(1) = · · · = z(i) �= z(i+1) = · · · = z(m) violates only one of the
auxiliary clauses introduced for enforcing equality among the copies of z. Using an alternative reduction that adds
the clauses z(i) ∨ ¬z( j) for every i, j ∈ [m] will not do either, because the number of added clauses may be quadratic
in the number of original clauses.

455



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

Guideline (for Item 3): Note that, in general, the fact that the sets S′ and S′′ are
testable within some complexity does not imply the same for the set S′ ∩ S′′.

Exercise 10.11 (an equivalent definition of tpcP): Prove that (S, X ) ∈ tpcP if and only
if there exists a polynomial-time algorithm A such that the probability that A(Xn) errs
(in determining membership in S) is a negligible function in n.

Exercise 10.12 (tpcP versus P – Part 1): Prove that tpcP contains a problem (S, X )
such that S is not even recursive. Furthermore, use X = U .

Guideline: Let S = {0|x |x : x ∈ S′}, where S′ is an arbitrary (non-recursive) set.

Exercise 10.13 (tpcP versus P – Part 2): Prove that there exists a distributional problem
(S, X ) such that S �∈ P and yet there exists an algorithm solving S (correctly on all
inputs) in time that is typically polynomial with respect to X . Furthermore, use X = U .

Guideline: For any time-constructible function t : N→N that is super-polynomial and
sub-exponential, use S = {0|x |x : x ∈ S′} for any S′ ∈ DTIME(t) \ P .

Exercise 10.14 (simple distributions and monotone sampling): We say that a proba-
bility ensemble X = {Xn}n∈N is polynomial-time samplable via a monotone mapping
if there exists a polynomial p and a polynomial-time computable function f such that
the following two conditions hold:

1. For every n, the random variables f (Up(n)) and Xn are identically distributed.
2. For every n and every r ′ < r ′′ ∈ {0, 1}p(n) it holds that f (r ′) ≤ f (r ′′), where the

inequalities refer to the standard lexicographic order of strings.

Prove that X is simple if and only if it is polynomial-time samplable via a monotone
mapping.

Guideline: Suppose that X is simple, and let p be a polynomial bounding the
running time of the algorithm that on input x outputs Pr[X |x | ≤ x]. (Thus, the bi-
nary representation of Pr[X |x | ≤ x] has length at most p(|x |).) The desired function
f : {0, 1}p(n) → {0, 1}n is obtained by defining f (r ) = x if the number (represented
by) 0.r resides in the interval [Pr[Xn < x], Pr[Xn≤ x]). Note that f can be computed
by binary search, using the fact that X is simple. Turning to the opposite direction, we
note that any efficiently computable and monotone mapping f : {0, 1}p(n) → {0, 1}n
can be efficiently inverted by a binary search. Furthermore, similar methods allow for
efficiently determining the interval of p(n)-bit long strings that are mapped to any
given n-bit long string.

Exercise 10.15 (reductions preserve typical polynomial-time solvability): Prove that
if the distributional problem (S, X ) is reducible to the distributional problem (S′, X ′)
and (S′, X ′) ∈ tpcP , then (S, X ) is in tpcP .

Guideline: Let B ′ denote the set of exceptional instances for the distributional problem
(S′, X ′); that is, B ′ is the set of instances on which the solver in the hypothesis
either errs or exceeds the typical running time. Prove that Pr[Q(Xn) ∩ B ′ �= ∅] is
a negligible function (in n), using both Pr[y ∈ Q(Xn)] ≤ p(|y|) · Pr[X ′|y| = y] and
|x | ≤ p′(|y|) for every y ∈ Q(x). Specifically, use the latter condition for inferring
that

∑
y∈B ′ Pr[y ∈ Q(Xn)] equals

∑
y∈{y′∈B ′:p′(|y′ |)≥n} Pr[y ∈ Q(Xn)], which is upper-

bounded by
∑

m:p′(m)≥n p(m) · Pr[X ′m ∈ B ′] (which in turn is negligible in terms of n).

456



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

Exercise 10.16 (reductions preserve errorless solvability): In continuation of
Exercise 10.15, prove that reductions preserve errorless solvability (i.e., solvability
by algorithms that never err and typically run in polynomial time).

Exercise 10.17 (transitivity of reductions): Prove that reductions among distributional
problems (as in Definition 10.16) are transitive.

Guideline: The point is establishing the domination property of the composed reduc-
tion. The hypothesis that reductions do not make too short queries is instrumental
here.

Exercise 10.18: For any S ∈ NP present a simple probability ensemble X such that the
generic reduction used in the proof of Theorem 2.19, when applied to (S, X ), violates
the domination condition with respect to (Su, U ′).

Guideline: Consider X = {Xn}n∈N such that Xn is uniform over {0n/2x ′ : x ′ ∈
{0, 1}n/2}.

Exercise 10.19 (variants of the Coding Lemma): Prove the following two variants of
the Coding Lemma (which is stated in the proof of Theorem 10.17).

1. A variant that refers to any efficiently computable function µ : {0, 1}∗ → [0, 1]
that is monotonically non-decreasing over {0, 1}∗ (i.e., µ(x ′) ≤ µ(x ′′) for any x ′ <
x ′′ ∈ {0, 1}∗). That is, unlike in the proof of Theorem 10.17, here it holds that
µ(0n+1) ≥ µ(1n) for every n.

2. As in Part 1, except that in this variant the function µ is strictly increasing and the
compression condition requires that |Cµ(x)| ≤ log2(1/µ′(x)) rather than |Cµ(x)| ≤
1+min{|x |, log2(1/µ′(x))}, where µ′(x)

def= µ(x)− µ(x − 1).

In both cases, the proof is less cumbersome than the one presented in the main text.

Exercise 10.20: Prove that for any problem (S, X ) in distNP there exists a simple
probability ensemble Y such that the reduction used in the proof of Theorem 2.19
suffices for reducing (S, X ) to (Su, Y ).

Guideline: Consider Y = {Yn}n∈N such that Yn assigns to the instance 〈M, x, 1t 〉 a
probability mass proportional to πx

def= Pr[X |x | = x]. Specifically, for every 〈M, x, 1t 〉
it holds that Pr[Yn = 〈M, x, 1t 〉] = 2−|M| · πx/

(
n
2

)
, where n

def= |〈M, x, 1t 〉| def= |M | +
|x | + t . Alternatively, we may set Pr[Yn = 〈M, x, 1t 〉] = πx if M = MS and t =
pS(|x |) and Pr[Yn = 〈M, x, 1t 〉] = 0 otherwise, where MS and PS are as in the proof
of Theorem 2.19.

Exercise 10.21 (monotone markability and monotone reductions): In continuation
of Exercise 2.30, we say that a set T is monotonically markable if there exists a
polynomial-time (marking) algorithm M such that

1. For every z, α ∈ {0, 1}∗, it holds that M(z, α) ∈ T if and only if z ∈ T .
2. Monotonicity: for every |z′| = |z′′| and α′ < α′′, it holds that M(z′, α′) < M(z′′, α′′),

where the inequalities refer to the standard lexicographic order of strings.
3. Auxiliary length requirements:

(a) If |z′| = |z′′| and |α′| = |α′′|, then |M(z′, α′)| = |M(z′′, α′′)|.
(b) If |z′| ≤ |z′′| and |α′| < |α′′|, then |M(z′, α′)| < |M(z′′, α′′)|.

457



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

(c) There exists a 1-1 polynomial p : N→N such that for every � and every z ∈
∪�

i=1{0, 1}i there exists t ∈ [p(�)] such that |M(z, 1t )| = p(�).
The first two requirements (of Condition 3) imply that |M(z, α)| is a function of |z|
and |α|, which increases with |α|. The third requirement implies that, for every �,
each string of length at most � can be mapped to a string of length p(�).

Note that Condition 1 is reproduced from Exercise 2.30, whereas Conditions 2 and 3
are new. Prove that if the set S is Karp-reducible to the set T and T is monotonically
markable then S is Karp-reducible to T by a reduction that is monotone and length-
regular (i.e., the reduction satisfies the conditions of Proposition 10.18).

Guideline: Given a Karp-reduction f from S to T , first obtain a length-regular
reduction f ′ from S to T (by applying the marking algorithm to f (x), while us-
ing Conditions 1 and 3c). In particular, one can guarantee that if |x ′| > |x ′′| then
| f ′(x ′)| > | f ′(x ′′)|. Next, obtain a reduction f ′′ that is also monotone (e.g., by letting
f ′′(x) = M( f ′(x), x), while using Conditions 1 and 2).32

Exercise 10.22 (monotone markability and markability): Prove that if a set is mono-
tonically markable (as per Exercise 10.21) then it is markable (as per Exercise 2.30).

Guideline: Let M denote the guaranteed monotone-marking algorithm. For starters,
assume that M is 1-1, and define M ′(z, α) = M(z, 〈z, α〉). Note that the preim-
age (z, α) can be found by conducting a binary search (for each of the possible
values of |z|). In the general case, we modify the construction so as to guaran-
tee that M ′ is 1-1. Specifically, let idx(n, m) = n +∑n+m

i=2 (i − 1) be the index of
(n, m) in an enumeration of all pairs of positive integers, and p be as in Condi-
tion 3c. Then, let M ′(z, α) = M(z, Ct(|z|,|α|)(〈z, α〉)), where t(n, m) = ω(n + m) sat-
isfies |M(1n, 1t(n,m))| = p(idx(n, m)) and Ct (y) is a monotone encoding of y using a
t-bit long string.

Exercise 10.23 (some monotonically markable sets): Referring to Exercise 10.21, ver-
ify that each of the twenty-one NP-complete problems treated in Karp’s first paper on
NP-completeness [138] is monotonically markable. For starters, consider the sets SAT,
Clique, and 3-Colorability.

Guideline: For SAT consider the following marking algorithm M . This algorithm uses
two (fixed) satisfiable formulae of the same length, denoted ψ0 and ψ1, such that
ψ0 < ψ1. For any formula φ and any binary string σ1 · · · σm ∈ {0, 1}m , it holds that
M(φ, σ1 · · · σm) = ψσ1 ∧ · · · ∧ ψσm ∧ φ, where ψ0 and ψ1 use variables that do not
appear in φ. Note that the multiple occurrences of ψσ can be easily avoided (by using
“variations” of ψσ ).

Exercise 10.24 (randomized reductions): Following the outline in §10.2.1.3, provide a
definition of randomized reductions among distributional problems.

1. In analogy to Exercise 10.15, prove that randomized reductions preserve feasible
solvability (i.e., typical solvability in probabilistic polynomial time). That is, if the
distributional problem (S, X ) is randomly reducible to the distributional problem
(S′, X ′) and (S′, X ′) ∈ tpcBPP , then (S, X ) is in tpcBPP .

32Actually, Condition 2 (combined with the length regularity of f ′) only takes care of monotonicity with respect to
strings of equal length. To guarantee monotonicity with respect to strings of different length, we also use Condition 3b
(and | f ′(x ′)| > | f ′(x ′′)| for |x ′| > |x ′′|).

458



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EXERCISES

2. In analogy to Exercise 10.16, prove that randomized reductions preserve solvability
by probabilistic algorithms that err with probability at most 1/3 on each input and
typically run in polynomial time.

3. Prove that randomized reductions are transitive (cf. Exercise 10.17).
4. Show that the error probability of randomized reductions can be reduced (while

preserving the domination condition).

Extend the foregoing to reductions that involve distributional search problems.

Exercise 10.25 (simple vs samplable ensembles – Part 1): Prove that any simple prob-
ability ensemble is polynomial-time samplable.

Guideline: See Exercise 10.14.

Exercise 10.26 (simple vs samplable ensembles – Part 2): Assuming that #P con-
tains functions that are not computable in polynomial time, prove that there exists
polynomial-time samplable ensembles that are not simple.

Guideline: Consider any R ∈ PC and suppose that p is a polynomial such that (x, y) ∈
R implies |y| = p(|x |). Then consider the sampling algorithm A that, on input 1n ,
uniformly selects (x, y) ∈ {0, 1}n−1 × {0, 1}p(n−1) and outputs x1 if (x, y) ∈ R and x0
otherwise. Note that #R(x) = 2|x |+p(|x |) · Pr[A(1|x |+1)= x1].

Exercise 10.27 (distributional versions of NPC problems – Part 1 [30]): Prove that if
Su is Karp-reducible to S by a mapping that does not shrink the input then there exists a
polynomial-time samplable ensemble X such that any problem in distNP is reducible
to (S, X ).

Guideline: Prove that the guaranteed reduction of Su to S also reduces (Su, U ′) to
(S, X ), for some samplable probability ensemble X . Consider first the case that the
standard reduction of Su to S is length-preserving, and prove that, when applied to a
samplable probability ensemble, it induces a samplable distribution on the instances
of S. (Note that U ′ is samplable (by Exercise 10.25).) Next, extend the treatment to
the general case, where applying the standard reduction to U ′

n induces a distribution

on ∪poly(n)
m=n {0, 1}m (rather than a distribution on {0, 1}n).

Exercise 10.28 (distributional versions of NPC problems – Part 2 [30]): Prove Theo-
rem 10.25 (i.e., if Su is Karp-reducible to S by a mapping that does not shrink the input
then there exists a polynomial-time samplable ensemble X such that any problem in
sampNP is reducible to (S, X )).

Guideline: We establish the claim for S = Su, and the general claim follows by using
the reduction of Su to S (as in Exercise 10.27). Thus, we focus on showing that, for
some (suitably chosen) samplable ensemble X , any (S′, X ′) ∈ sampNP is reducible to
(Su, X ). Loosely speaking, X will be an adequate convex combination of all samplable
distributions (and thus X will neither equal U ′ nor be simple). Specifically, X =
{Xn}n∈N is defined such that the sampler for Xn uniformly selects i ∈ [n], emulates the
execution of the i th algorithm (in lexicographic order) on input 1n for n3 steps,33 and
outputs whatever the latter has output (or 0n in case the said algorithm has not halted

33Needless to say, the choice to consider n algorithms (in the definition of Xn) is quite arbitrary. Any other
unbounded function of n that is at most a polynomial (and is computable in polynomial time) will do. (More generally,
we may select the i th algorithm with pi , as long as pi is a noticeable function of n.) Likewise, the choice to emulate
each algorithm for a cubic number of steps (rather some other fixed polynomial number of steps) is quite arbitrary.

459



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

RELAXING THE REQUIREMENTS

within n3 steps). Prove that, for any (S′′, X ′′) ∈ sampNP such that X ′′ is samplable
in cubic time, the standard reduction of S′′ to Su reduces (S′′, X ′′) to (Su, X ) (as
per Definition 10.15; i.e., in particular, it satisfies the domination condition).34 Finally,
using adequate padding, reduce any (S′, X ′) ∈ sampNP to some (S′′, X ′′) ∈ sampNP
such that X ′′ is samplable in cubic time.

Exercise 10.29 (search vs decision in the context of samplable ensembles): Prove
that every problem in sampNP is reducible to some problem in sampPC, and every
problem in sampPC is randomly reducible to some problem in sampNP .

Guideline: See proof of Theorem 10.23.

34Note that applying this reduction to X ′′ yields an ensemble that is also samplable in cubic time. This claim uses
the fact that the standard reduction runs in time that is less than cubic (and in fact almost linear) in its output, and the
fact that the output is longer than the input.

460



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Epilogue

Farewell, Hans – whether you live or end where you are! Your chances
are not good. The wicked dance in which you are caught up will last a
few more sinful years, and we would not wager much that you will come
out whole. To be honest, we are not really bothered about leaving the
question open. Adventures in the flesh and spirit, which enhanced and
heightened your ordinariness, allowed you to survive in the spirit what
you probably will not survive in the flesh. There were majestic moments
when you saw the intimation of a dream of love rising up out of death
and the carnal body. Will love someday rise up out of this worldwide
festival of death, this ugly rutting fever that inflames the rainy evening
sky all round?

Thomas Mann, The Magic Mountain, “The Thunderbolt.”

We hope that this work has succeeded in conveying the fascinating flavor of the concepts,
results, and open problems that dominate the field of Computational Complexity. We
believe that the new century will witness even more exciting developments in this field,
and urge the reader to try to contribute to them. But before bidding good-bye, we wish to
express a few more thoughts.

As noted in Section 1.1.1, so far Complexity Theory has been far more successful
in relating fundamental computational phenomena than in providing definite answers
regarding fundamental questions. Consider, for example, the theory of NP-completeness
versus the P-vs-NP Question, or the theory of pseudorandomness versus establishing the
existence of one-way functions (even under P �= NP). The failure to resolve questions
of the “absolute” type is the source of common frustration, and one often wonders about
the reasons for this failure.

Our feeling is that many of these failures are really due to the difficulty of the questions
asked, and that one tends to underestimate their hardness because they are so appealing and
natural. Indeed, the underlying sentiment is that if a question is appealing and natural, then
answering it should not be hard. We doubt this sentiment. Our own feeling is that the more
intuitive a question is, the harder it may be to answer. Our view is that intuitive questions
arise from an encounter with the raw and chaotic reality of life, rather than from an
artificial construct that is typically endowed with a rich internal structure. Indeed, natural
complexity classes and natural questions regarding computation arise from looking at the
reality of computation from the outside and thus lack any internal structure. Specifically,
complexity classes are defined in terms of the “external behavior” of potential algorithms

461



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

EPILOGUE

(i.e., the resources such algorithms require), rather than in terms of the “internal structure”
(of the problem). In our opinion, this “external nature” of the definitions of complexity-
theoretic questions makes them hard to resolve.

Another hard aspect regarding the “absolute” (or “lower-bound”) type of questions
is the fact that they call for impossibility results. That is, the natural formulation of
these questions calls for proving the non-existence of something (i.e., the non-existence
of efficient procedures for solving the problem in question). Needless to say, proving
the non-existence of certain objects is typically harder than proving existence of related
objects (indeed, see Section 9.1). Still, proofs of non-existence of certain objects are
known in various fields and in particular in Complexity Theory, but such proofs tend to
either be trivial (see, e.g., Section 4.1) or be derived by exhibiting a sophisticated process
that transforms the original question into a trivial one. Indeed, the latter case is the one
that underlies many of the impressive successes of circuit complexity. Thus, we are not
suggesting that the “absolute” questions of Complexity Theory cannot be resolved, but
are rather suggesting an intuitive explanation for the difficulties of resolving them.

The obvious fact that difficult questions can be resolved is demonstrated by several
recent results, which are mentioned in this book and have “forced” us to modify earlier
drafts of it. Examples include the log-space graph exploration algorithm presented in
Section 5.2.4, the alternative proof of the PCP Theorem presented in §9.3.2.3, and the
enrichment of average-case completeness reflected in Theorem 10.19. We also mention the
results of [9, 113, 172, 242], which have significantly effected our perspective (although
this is reflected less drastically in the text).

462



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX A

Glossary of Complexity Classes

Summary: This glossary includes self-contained definitions of most
complexity classes mentioned in the book. Needless to say, the glossary
offers a very minimal discussion of these classes, and the reader is
referred to the main text for further discussion. The items are organized
by topics rather than by alphabetic order. Specifically, the glossary is
partitioned into two parts, dealing separately with complexity classes
that are defined in terms of algorithms and their resources (i.e., time and
space complexity of Turing machines) and complexity classes defined
in terms of non-uniform circuits (and referring to their size and depth).
The algorithmic classes include time complexity classes (such as P ,
NP , coNP , BPP , RP , coRP , PH, E , EXP , and NEXP) and the
space complexity classes,L,NL,RL, andPSPACE . The non-uniform
classes include the circuit classes P/poly as well as NCk and ACk .

Definitions (and basic results) regarding many other complexity classes are available at
the constantly evolving Complexity Zoo [1].

A.1. Preliminaries

Complexity classes are sets of computational problems, where each class contains prob-
lems that can be solved with specific computational resources. To define a complexity
class one specifies a model of computation, a complexity measure (like time or space),
which is always measured as a function of the input length, and a bound on the complexity
(of problems in the class).

We follow the tradition of focusing on decision problems, but refer to these problems
using the terminology of promise problems (see Section 2.4.1). That is, we will refer to the
problem of distinguishing inputs in �yes from inputs in �no, and denote the corresponding
decision problem by � = (�yes, �no). Standard decision problems are viewed as a special
case in which �yes ∪�no = {0, 1}∗, and the standard formulation of complexity classes
is obtained by postulating that this is the case. We refer to this case as the case of a trivial
promise.

The prevailing model of computation is that of Turing machines. This model captures
the notion of (uniform) algorithms (see Section 1.2.3). Another important model is the
one of non-uniform circuits (see Section 1.2.4). The term uniformity refers to whether the

463



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX A

algorithm is the same one for every input length or whether a different “algorithm” (or
rather a “circuit”) is considered for each input length.

We focus on natural complexity classes, obtained by considering natural complexity
measures and bounds. Typically, these classes contain natural computational problems
(which are defined in Appendix G). Furthermore, almost all of these classes can be
“characterized” by natural problems, which capture every problem in the class. Such
problems are called complete for the class, which means that they are in the class and
every problem in the class can be “easily” reduced to them, where “easily” means that
the reduction takes fewer resources than whatever seems to be required for solving each
individual problem in the class. Thus, any efficient algorithm for a complete problem
implies an algorithm of similar efficiency for all problems in the class.

Organization. The glossary is organized by topics (rather than by alphabetic order
of the various items). Specifically, we partition the glossary into classes defined in
terms of algorithmic resources (i.e., time and space complexity of Turing machines)
and classes defined in terms of circuit (size and depth). The former (algorithm-based)
classes are reviewed in Section A.2, while the latter (circuit-based) classes are reviewed in
Section A.3.

A.2. Algorithm-Based Classes

The two main complexity measures considered in the context of (uniform) algorithms are
the number of steps taken by the algorithm (i.e., its time complexity) and the amount of
“memory” or “work space” consumed by the computation (i.e., its space complexity). We
review the time complexity classes P , NP , coNP , BPP , RP , coRP , ZPP , PH, E ,
EXP , and NEXP as well as the space complexity classes L, NL, RL, and PSPACE .

By prepending the name of a complexity class (of decision problems) with the prefix
“co” we mean the class of complement problems; that is, the problem � = (�yes, �no) is
in coC if and only if (�no, �yes) is in C. Specifically, deciding membership in the set S is in
the class coC if and only if deciding membership in the set {0, 1}∗ \ S is in the class C. Thus,
the definition of coNP and coRP can be easily derived from the definitions of NP and
RP , respectively. Complexity classes defined in terms of symmetric acceptance criteria
(e.g., deterministic and two-sided error randomized classes) are trivially closed under
complementation (e.g., coP = P and coBPP = BPP) and so we do not present their
“co”-classes. In other cases (most notably NL), the closure property is highly non-trivial
and we comment about it.

A.2.1. Time Complexity Classes

We start with classes that are closely related to polynomial time computations (i.e., P ,
NP , BPP , RP , and ZPP), and later consider the classes PH, E , EXP , and NEXP .

A.2.1.1. Classes Closely Related to Polynomial Time
The most prominent complexity classes are P and NP , which are extensively discussed
in Section 2.1. We also consider classes related to randomized polynomial time, which
are discussed in Section 6.1.

464



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

A.2. ALGORITHM-BASED CLASSES

P and NP. The class P consists of all decision problem that can be solved in (determin-
istic) polynomial time. A decision problem � = (�yes, �no) is in NP if there exists a
polynomial p and a (deterministic) polynomial-time algorithm V such that the following
two conditions hold:

1. For every x ∈ �yes there exists y ∈ {0, 1}p(|x |) such that V (x, y) = 1.
2. For every x ∈ �no and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

A string y satisfying Condition 1 is called an NP-witness (for x). Clearly, P ⊆ NP .

Reductions and NP-completeness (NPC). A problem is NP-complete if it is in NP
and every problem in NP is polynomial-time reducible to it, where polynomial-time
reducibility is defined and discussed in Section 2.2. Loosely speaking, a polynomial-time
reduction of problem � to problem �′ is a polynomial-time algorithm that solves � by
making queries to a subroutine that solves problem �′, where the running time of the
subroutine is not counted in the algorithm’s time complexity. Typically, NP-completeness
is defined while restricting the reduction to make a single query and output its answer.
Such a reduction, called a Karp-reduction, is represented by a polynomial-time computable
mapping that maps yes-instances of � to yes-instances of �′ (and no-instances of � to
no-instances of �′). Hundreds of NP-complete problems are listed in [85].

Probabilistic polynomial time (BPP, RP and ZPP). A decision problem � =
(�yes, �no) is in BPP if there exists a probabilistic polynomial-time algorithm A such
that the following two conditions hold:

1. For every x ∈ �yes it holds that Pr[A(x)=1] ≥ 2/3.
2. For every x ∈ �no it holds that Pr[A(x)=0] ≥ 2/3.

That is, the algorithm has two-sided error probability (of 1/3), which can be further
reduced by repetitions. We stress that due to the two-sided error probability of BPP ,
it is not known whether or not BPP is contained in NP . In addition to the two-sided
error class BPP , we consider one-sided error and zero-error classes, denoted RP and
ZPP , respectively. A problem � = (�yes, �no) is in RP if there exists a probabilistic
polynomial-time algorithm A such that the following two conditions hold:

1. For every x ∈ �yes it holds that Pr[A(x)=1] ≥ 1/2.
2. For every x ∈ �no it holds that Pr[A(x)=0] = 1.

Again, the error probability can be reduced by repetitions, and thus RP ⊆ BPP ∩NP .
A problem � = (�yes, �no) is in ZPP if there exists a probabilistic polynomial-time
algorithm A, which may output a special (“don’t know”) symbol⊥, such that the following
two conditions hold:

1. For every x ∈ �yes it holds that Pr[A(x)∈{1,⊥}] = 1 and Pr[A(x)=1] ≥ 1/2.
2. For every x ∈ �no it holds that Pr[A(x)∈{0,⊥}] = 1 and Pr[A(x)=0] ≥ 1/2.

Note that P ⊆ ZPP = RP ∩ coRP . When defined in terms of promise problems, all
the aforementioned randomized classes have complete problems (wrt Karp-reductions),
but the same is not known when considering only standard decision problems (with trivial
promise).

465



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX A

The counting class #P . Functions in #P count the number of solutions to an NP-type
search problem (or, equivalently, the number of NP-witnesses for a yes-instance of a
decision problem in NP). Formally, a function f is in #P if there exists a polynomial
p and a (deterministic) polynomial-time algorithm V such that f (x) = |{y ∈ {0, 1}p(|x |) :
V (x, y)=1}|. Indeed, p and V are as in the definition of NP , and it follows that deciding
membership in the set {x : f (x) ≥ 1} is in NP . Clearly, #P problems are solvable in
polynomial space. Surprisingly, the permanent of positive integer matrices is #P-complete
(i.e., it is in #P and any function in #P is polynomial-time reducible to it).

Interactive proofs. A decision problem � = (�yes, �no) has an interactive proof sys-
tem if there exists a polynomial-time strategy V such that the following two conditions
hold:

1. For every x ∈ �yes there exists a prover strategy P such that the verifier V always
accepts after interacting with the prover P on common input x .

2. For every x �∈ �no and every strategy P∗, the verifier V rejects with probability at
least 1

2 after interacting with P∗ on common input x .

The corresponding class is denoted IP , and turns out to equal PSPACE . (For further
details see Section 9.1.)

A.2.1.2. Other Time Complexity Classes
The classes E and EXP correspond to problems that can be solved (by a deterministic
algorithm) in time 2O(n) and 2poly(n), respectively, for n-bit long inputs. Clearly, NP ⊆
EXP . We also mention NEXP , the class of problems that can be solved by a non-
deterministic machine in 2poly(n) steps.1

In general, one may define a complexity class for every time bound and every type
of machine (i.e., deterministic, probabilistic, and non-deterministic), but polynomial and
exponential bounds seem most natural and very robust. Another robust type of time bounds
that is sometimes used is quasi-polynomial time (i.e., P̃ denotes the class of problems
solvable by deterministic machines of time complexity exp(poly(log n))).

The Polynomial-time Hierarchy, PH. For any natural number k, the k th level of the
Polynomial-time Hierarchy consists of problems � = (�yes, �no) such that there exists
a polynomial p and a polynomial-time algorithm V that satisfies the following two
requirements:

1. For every x ∈�yes there exists y1 ∈ {0, 1}p(|x |) such that for every y2 ∈ {0, 1}p(|x |)

there exists y3 ∈ {0, 1}p(|x |) such that for every y4 ∈ {0, 1}p(|x |) . . . it holds that
V (x, y1, y2, y3, y4, . . . , yk)=1. That is, the condition regarding x consists of k alter-
nating quantifiers.

2. For every x ∈�no the foregoing (k-alternating) condition does not hold. That is, for
every y1 ∈ {0, 1}p(|x |) there exists y2 ∈ {0, 1}p(|x |) such that for every y3 ∈ {0, 1}p(|x |)

there exists y4 ∈ {0, 1}p(|x |) . . . it holds that V (x, y1, y2, y3, y4, . . . , yk)=0.

1Alternatively, analogously to the definition of NP , a problem � = (�yes,�no) is in NEXP if there exists a
polynomial p and a polynomial-time algorithm V such that the following two conditions hold:

1. For every x ∈ �yes there exists y ∈ {0, 1}2p(|x |)
such that V (x, y) = 1.

2. For every x ∈ �no and every y ∈ {0, 1}∗ it holds that V (x, y) = 0.

466



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

A.3. CIRCUIT-BASED CLASSES

Such a problem � is said to be in �k (and �k
def= co�k). Indeed, NP = �1 corresponds

to the special case where k = 1. Interestingly, PH is polynomial-time reducible to #P .

A.2.2. Space Complexity Classes

When defining space complexity classes, one counts only the space consumed by the actual
computation, and not the space occupied by the input and output. This is formalized by
postulating that the input is read from a read-only device (resp., the output is written on a
write-only device). Four important classes of decision problems are defined next.

• The class L consists of problems solvable in logarithmic space. That is, a problem � is
in L if there exists a standard (i.e., deterministic) algorithm of logarithmic space com-
plexity for solving �. This class contains some simple computational problems (e.g.,
matrix multiplication), and arguably captures the most space-efficient computations.
Interestingly, L contains the problem of deciding connectivity of (undirected) graphs.

• Classes of problems solvable by randomized algorithms of logarithmic space complex-
ity include RL and BPL, which are defined analogously to RP and BPP . That is,
RL corresponds to algorithms with one-sided error probability, whereas BPL allows
two-sided error.

• The class NL is the non-deterministic analogue of L, and is traditionally defined in
terms of non-deterministic machines of logarithmic space complexity.2 The class NL
contains the problem of deciding whether there exists a directed path between two
given vertexes in a given directed graph. In fact, the latter problem is complete for the
class (under logarithmic-space reductions). Interestingly, coNL equals NL.

• The class PSPACE consists of problems solvable in polynomial space. This class
contains very difficult problems, including the computation of winning strategies for
any “efficient 2-party games” (see Section 5.4).

Clearly, L ⊆ RL ⊆ NL ⊆ P and NP ⊆ PSPACE ⊆ EXP .

A.3. Circuit-Based Classes

We refer the reader to Section 1.2.4 for a definition of Boolean circuits as computing
devices. The two main complexity measures considered in the context of (non-uniform)
circuits are the number of gates (or wires) in the circuit (i.e., the circuit’s size) and the
length of the longest directed path from an input to an output (i.e., the circuit’s depth).

Throughout this section, when we talk of circuits, we actually refer to families of
circuits containing a circuit for each instance length, where the n-bit long instances of the
computational problem are handled by the nth circuit in the family. Similarly, when we
talk of the size and depth of a circuit, we actually mean the (dependence on n of the) size
and depth of the nth circuit in the family.

General polynomial-size circuits (P/poly). The main motivation for the introduction of
complexity classes based on (non-uniform) circuits is the development of lower bounds.
For example, the class of problems solvable by polynomial-size circuits, denoted P/poly,
is a (strict)3 superset of P . Thus, showing that NP is not contained in P/poly would

2See further discussion of this definition in Section 5.3.
3In particular, P/poly contains some decision problems that are not solvable by any uniform algorithm.

467



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX A

imply P �= NP . For further discussion, see Appendix B.2. An alternative definition of
P/poly in terms of “machines that take advice” is provided in Section 3.1.2. We mention
that if NP ⊂ P/poly then PH = �2.

The subclasses AC0 and TC0. The class AC0, discussed in Appendix B.2.3, consists
of problems solvable by constant-depth polynomial-size circuits of unbounded fan-in.
The analogue class that allows also (unbounded fan-in) majority-gates (or, equivalently,
threshold-gates) is denoted T C0.

The subclasses AC and NC. Turning back to the standard basis (of ¬, ∨ and ∧ gates),
for any non-negative integer k, we denote by NCk (resp., ACk) the class of problems
solvable by polynomial-size circuits of bounded fan-in (resp., unbounded fan-in) having
depth O(logk n), where n is the input length. Clearly, NCk ⊆ ACk ⊆ NCk+1. A class
commonly referred to is NC def= ∪k∈N NCk .

We mention that the class NC2 ⊇ NL is the habitat of most natural computational
problems of linear algebra: solving a linear system of equations as well as computing
the rank, inverse, and determinant of a matrix. The class NC1 contains all symmetric
functions, regular languages as well as word problems for finite groups and monoids. The
class AC0 contains all properties (of finite objects) that are expressible by first-order logic.

Uniformity. The foregoing classes make no reference to the complexity of constructing
the adequate circuits, and it is plausible that there is no effective way of constructing these
circuits (e.g., as in the case of circuits that trivially solve undecidable problems regarding
unary instances). A minimal notion of constructibility of such (polynomial-size) circuits
is the existence of a polynomial-time algorithm that given 1n produces the nth relevant
circuit (i.e., the circuit that solves the problem on instances of length n). Such a notion
of constructibility means that the family of circuits is “uniform” in some sense (rather
than consisting of circuits that have no relation between one another). Stronger notions of
uniformity (e.g., log-space constructibility) are more adequate for subclasses such as AC
and NC. We mention that log-space uniform NC circuits correspond to parallel algorithms
that use polynomially many processors and run in poly-logarithmic time.

468



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

On the Quest for Lower Bounds

Alas, Philosophy, Medicine, Law, and unfortunately also Theology, have
I studied in detail, and still remained a fool, not a bit wiser than before.
Magister and even Doctor am I called, and for a decade am I sick and
tired of pulling my pupils by the nose and understanding that we can
know nothing.1

J. W. Goethe, Faust, lines 354–64

Summary: This appendix briefly surveys some attempts at proving
lower bounds on the complexity of natural computational problems. In
the first part, devoted to circuit complexity, we describe lower bounds on
the size of (restricted) circuits that solve natural computational problems.
This can be viewed as a program whose long-term goal is proving that
P �= NP . In the second part, devoted to proof complexity, we describe
lower bounds on the length of (restricted) propositional proofs of natural
tautologies. This can be viewed as a program whose long-term goal is
proving that NP �= coNP .

We comment that while the activity in these areas is aimed toward
developing proof techniques that may be applied to the resolution of
the “big problems” (such as P versus NP), the current achievements
(though very impressive) seem very far from reaching this goal. Current
crown-jewel achievements in these areas take the form of tight (or strong)
lower bounds on the complexity of computing (resp., proving) “relatively
simple” functions (resp., claims) in restricted models of computation
(resp., proof systems).

B.1. Preliminaries

Circuit complexity refers to a non-uniform model of computation (see Section 1.2.4),
focusing on the size of such circuits, while ignoring the complexity of constructing
adequate circuits. Similarly, proof complexity refers to proofs of tautologies, focusing on
the length of such proofs, while ignoring the complexity of generating such proofs.

Both circuits and proofs are finite objects that are defined on top of the notion of a
directed acyclic graph (dag), reviewed in Appendix G.1. In such a dag, vertices with no
incoming edges are called inputs, vertices with no outgoing edges are called outputs,

1This quotation reflects a common sentiment, not shared by the author of the current book.

469



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

and the remaining vertices are called internal vertices. The size of a dag is defined as the
number of its edges. We will be mostly interested in dags of “bounded fan-in” (i.e., for
each vertex, the number of incoming edges is at most two).

In order to convert a dag into a computational device (resp., a proof), each internal
vertex is labeled by a rule, which transforms values assigned to its predecessors to values
at that vertex. Combined with any possible assignment of values to the inputs, these fixed
rules induce an assignment of values to all the vertices of the dag (by a process that starts
at the inputs, and assigns a value to each vertex based on the values of its predecessors
(and according to the corresponding rule)).

• In the case of computation devices, the internal vertices are labeled by (binary or unary)
functions over some fixed domain (e.g., a finite or infinite field). These functions are
called gates, and the labeled dag is called a circuit. Such a circuit (with n inputs
and m outputs) computes a finite function over the corresponding domain (mapping
sequences of length n to sequences of length m).

• In the case of proofs, the internal vertices are labeled by sound deduction (or inference)
rules of some fixed proof system. Any assignment of axioms (of the said system) to the
inputs of this labeled dag yields a sequence of tautologies (at all vertices). Typically
the dag is assumed to have a single output vertex, and the corresponding sequence of
tautologies is viewed as a proof of the tautology assigned to the output.

We note that both models partially adhere to the paradigm of simplicity that underlies
the definitions of (uniform) computational models (as discussed in Section 1.2.3): The
aforementioned rules are simple by definition – they are applied to at most two values.
However, unlike in the case of (uniform) computational models, the current models do not
mandate a “uniform” consideration of all possible “inputs” (but rather allow a separate
consideration of each finite “input” length). For example, each circuit can compute only
a finite function, that is, a function defined over a fixed number of values (i.e., fixed
input length). Likewise, a dag that corresponds to a proof system yields only proofs of
tautologies that refer to a fixed number of axioms.2

Focusing on circuits, we note that in order to allow the computation of functions that
are defined for all input lengths, one must consider infinite sequences of dags, one for
each length. This yields a model of computation in which each “machine” has an infinite
description (when referring to all input lengths). Indeed, this significantly extends the
power of the computation model beyond that of the notion of algorithm (discussed in
Section 1.2.3). However, since we are interested in lower bounds here, this extension is
certainly legitimate and hopefully fruitful: For example, one may hope that the finiteness
of the individual circuits will facilitate the application of combinatorial techniques toward
the analysis of the model’s power and limitations. Furthermore, as we shall see, these
models open the door to the introduction (and study) of meaningful restricted classes of
computations.

Organization. The rest of this appendix is partitioned into three parts. In Section B.2 we
consider Boolean circuits, which are the archetypical model of non-uniform computing
devices. In Section B.3 we generalize the treatment by considering arithmetic circuits,

2N.B., we refer to a fixed number of axioms, and not merely to a fixed number of axiom forms. Recall that an
axiom form like φ ∨ ¬φ yields an infinite number of axioms, each obtained by replacing the generic formula (or
symbol) φ with a fixed propositional formula.

470



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.2. BOOLEAN CIRCUIT COMPLEXITY

which may be defined for every algebraic structure (where Boolean circuits are viewed as
a special case referring to the two-element field, GF(2)). Lastly, in Section B.4 we consider
proof complexity.

B.2. Boolean Circuit Complexity

In Boolean circuits the values assigned to all inputs as well as the values induced (by the
computation) at all intermediate vertices and outputs are bits. The set of allowed gates is
taken to be any complete basis (i.e., one that allows for computing all Boolean functions).
The most popular choice of a complete basis is the set {∧,∨,¬} corresponding to (two-
bit) conjunction, (two-bit) disjunction, and negation (of a single bit), respectively. (The
specific choice of a complete basis hardly affects the study of circuit complexity.)

For a finite Boolean function f , we denote by S( f ) the size of the smallest Boolean
circuit computing f . We will be interested in sequences of functions { fn}, where fn is a
function on n input bits, and will study their size complexity (i.e., S( fn)) asymptotically
(as a function of n). With some abuse of notation, for f (x)

def= f|x |(x), we let S( f ) denote
the integer function that assigns to n the value S( fn). Thus, we refer to the following
definition.

Definition B.25 (circuit complexity): Let f :{0, 1}∗→{0, 1}∗ and { fn} be such that
f (x) = f|x |(x) for every x. The complexity of f (resp., { fn}), denoted S( f ) (resp.,
denoted n !→ S( fn)), is a function of n that represents the size of the smallest
Boolean circuit computing fn.

We stress that different circuits (e.g., having a different number of inputs) are used
for different fn’s. Still, there may be a simple description of this sequence of circuits,
say, an algorithm that on input n produces a circuit computing fn . In case such an
algorithm exists and works in time polynomial in the size of its output, we say that the
corresponding sequence of circuits is uniform. Note that if f has a uniform sequence
of polynomial-size circuits then f ∈ P . On the other hand, any f ∈ P has (a uniform
sequence of) polynomial-size circuits. Consequently, a super-polynomial-size lower bound
on any function in NP would imply that P �= NP .

Definition B.25 makes no reference to the uniformity condition (and indeed the se-
quence of smallest circuits computing { fn} may be “highly non-uniform”). Actually,
non-uniformity makes the circuit model stronger than Turing machines (or, equivalently,
stronger than the model of uniform circuits): There exist functions f that cannot be
computed by Turing machines (regardless of their running time), but do have linear-size
circuits.3 This raises the possibility that proving circuit lower bounds is even harder than
resolving the P versus NP Question.

The common belief is that the extra power provided by non-uniformity is irrelevant
to the P versus. NP Question; in particular, it is conjectured that NP-complete sets do
not have polynomial-size circuits. This conjecture is supported by the fact that its failure
will yield an unexpected collapse in the world of uniform computational complexity (see
Section 3.2). Furthermore, the hope is that abstracting away the (supposedly irrelevant)
uniformity condition will allow for combinatorial techniques to analyze the power and
limitations of polynomial-size circuits (wrt NP-sets). This hope has materialized in the

3See either Theorem 1.13 or Theorem 3.7.

471



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

study of restricted classes of circuits (see Sections B.2.2 and B.2.3). Indeed, another
advantage of the circuit model is that it offers a framework for describing naturally
restricted models of computation.

We also mention that Boolean circuits are a natural computational model, corresponding
to “hardware complexity” (which was indeed the original motivation for their introduction
by Shannon [203]), and so their study is of independent interest. Moreover, some of
the techniques for analyzing Boolean functions found applications elsewhere (e.g., in
computational learning theory, combinatorics, and game theory).

B.2.1. Basic Results and Questions

We have already mentioned several basic facts about Boolean circuits. Another basic fact
is that most Boolean functions require exponential-size circuits, which is due to the gap
between the number of functions and the number of small circuits.

Thus, hard functions (i.e., functions that require large circuits and thus have no efficient
algorithms) do exist, to say the least. However, the aforementioned hardness result is
proved via a counting argument, which provides no way of pointing to any specific hard
function. The situation is even worse: Super-linear circuit-size lower bounds are not known
for any explicit function f , even when explicitness is defined in a very mild sense that
only requires f ∈ EXP .4 One major open problem of circuit complexity is establishing
such lower bounds.

Open Problem B.2: Find an explicit function f :{0, 1}∗→{0, 1} (or even f :
{0, 1}∗→{0, 1}∗ such that | f (x)| = O(|x |)) for which S( f ) is not O(n).

A particularly basic special case of this open problem is the question of whether addition is
easier to perform than multiplication. Let ADDn :{0, 1}n×{0, 1}n→{0, 1}n+1 and MULTn :
{0, 1}n×{0, 1}n→{0, 1}2n , denote the addition and multiplication functions, respectively,
applied to a pair of integers (presented in binary). For addition we have an optimal upper
bound; that is, S(ADDn) = O(n). For multiplication, the standard (elementary school)
quadratic-time algorithm can be greatly improved (via Discrete Fourier Transforms) to
almost-linear time, yielding S(MULTn) = Õ(n). Now, the question is whether or not there
exist linear-size circuits for multiplication (i.e., is S(MULTn) = O(n)).

Unable to report on any super-linear lower bound (for an explicit function), we turn to
restricted types of Boolean circuits. There have been some remarkable successes in devel-
oping techniques for proving strong lower bounds for natural restricted classes of circuits.
We describe the most important ones, and refer the reader to [46, 236] for further detail.

Recall that general Boolean circuits can compute every function. In contrast, restricted
types of circuits (e.g., monotone circuits) may only be able to compute a subclass of all
functions (e.g., monotone functions), and in such a case we shall seek lower bounds on
the size of such restricted circuits that compute a function in the corresponding subclass.
Such a restriction is appealing provided that the corresponding class of functions and
the computations represented by the restricted circuits are natural (from a conceptual or
practical viewpoint). The models discussed next satisfy this condition.

4Indeed, a more natural (and still mild) notion of explicitness requires that f ∈ E . This notion implies that the
function’s description (restricted to n-bit long inputs) can be constructed in time that is polynomial in the length of
the description.

472



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.2. BOOLEAN CIRCUIT COMPLEXITY

B.2.2. Monotone Circuits

One very natural restriction on circuits arises by forbidding negation (in the set of gates),
namely, allowing only ∧ and ∨ gates. The resulting circuits are called monotone, and
they can compute a function f :{0, 1}n→{0, 1} if and only if f is monotone with respect
to the standard partial order on n-bit strings (i.e., x � y if and only if for every bit
position i we have xi ≤ yi ). An extremely natural question in this context is whether or
not non-monotone operations (in the circuit) help in computing monotone functions.

Before turning to this question, we note that most monotone functions require
exponential-size circuits (let alone monotone ones).5 Still, proving a super-polynomial
lower bound on the monotone circuit complexity of an explicit monotone function was
open for several decades, till the invention of the so-called approximation method (by
Razborov [187]).

Let CLIQUEn be the function that, given a graph on n vertices (by its adjacency
matrix), outputs 1 if and only if the graph contains a complete subgraph of size (say)√

n. This function is clearly monotone, and CLIQUE = {CLIQUEn} is known to be
NP-complete.

Theorem B.3 ([187], improved in [7]): There are no polynomial-size monotone
circuits for CLIQUE.

We note that the lower bounds are sub-exponential in the number of vertices (i.e.,
S(CLIQUEn) = exp(�(n1/8))), and that similar lower bounds are known for functions
in P . Thus, there exists an exponential separation between monotone circuit complex-
ity and non-monotone circuit complexity, where this separation refers (of course) to the
computation of monotone functions.

B.2.3. Bounded-Depth Circuits

The next restriction refers to the structure of the circuit (or rather to its underling graph):
We allow all gates, but limit the depth of the circuit. The depth of a dag is simply the
length of the longest directed path in it. So in a sense, depth captures the parallel time to
compute the function: If a circuit has depth d, then the function can be evaluated by enough
processors in d phases (where in each phase many gates are evaluated in parallel). Indeed,
parallel time is a natural and important computational resource, referring to the following
basic question: Can one speed up computation by using several computers in parallel?
Determining which computational tasks can be “parallelized” when many processors are
available and which are “inherently sequential” is clearly a fundamental question.

We will restrict d to be a constant, which still is interesting not only as a measure
of parallel time but also due to the relation of this model to expressibility in first-order
logic as well as to the Polynomial-time Hierarchy (defined in Section 3.2). In the current
setting (of constant-depth circuits), we allow unbounded fan-in (i.e., ∧-gates and ∨-gates
taking any number of incoming edges), as otherwise each output bit can depend only on
a constant number of input bits.

5A key observation is that it suffices to consider the set of n-bit monotone functions that evaluate to 1 (resp., to 0)
on each string x = x1 · · · xn satisfying

∑n
i=1

xi > �n/2� (resp.,
∑n

i=1
xi < �n/2�). Note that each such function is

specified by
(

n
�n/2�

)
bits.

473



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

Let PAR (for parity) denote the sum modulo two of the input bits, and MAJ (for majority)
be 1 if and only if there are more 1’s than 0’s among the input bits. The invention of the
random restriction method (by Furst, Saxe, and Sipser [83]) led to the following basic
result.

Theorem B.4 ([83], improved in [240, 115]): For all constant d, the functions PAR
and MAJ have no polynomial-size circuit of depth d.

The aforementioned improvement (of Håstad [115], following Yao [240]), gives a rel-
atively tight lower bound of exp(�(n1/(d−1))) on the size of n-input PAR circuits of
depth d.

Interestingly, MAJ remains hard (for constant-depth polynomial-size circuits) even if the
circuits are also allowed (unbounded fan-in) PAR-gates (this result is based on yet another
proof technique: approximation by polynomials [209, 188]). However, the “converse”
does not hold (i.e., constant-depth polynomial-size circuits with MAJ-gates can compute
PAR), and in general the class of constant-depth polynomial-size circuits with MAJ-gates
(denoted T C0) seems quite powerful. In particular, nobody has managed to prove that
there are functions in NP that cannot be computed by such circuits, even if their depth is
restricted to 3.

B.2.4. Formula Size

The final restriction is again structural – we require the underlying dag to be a tree (i.e.,
a dag in which each vertex has at most one outgoing edge). Intuitively, this forbids the
computation from reusing a previously computed intermediate value (and if this value
is needed again then it has to be recomputed). Thus, the resulting Boolean circuits are
simply Boolean formulae. (Indeed, we are back to the basic model allowing negation (¬),
and ∧,∨ gates of fan-in 2.)

Formulae are natural not only for their prevalent mathematical use but also because
their size can be related to the depth of general circuits and to the memory requirements
of Turing machines (i.e., their space complexity). One of the oldest results on circuit
complexity is that PAR and MAJ have non-trivial lower bounds in this model. The proof
follows a simple combinatorial (or information-theoretic) argument.

Theorem B.5 ([144]): Boolean formulae for n-bit PAR and MAJ require �(n2) size.

This should be contrasted with the linear-size circuits that exist for both functions.6

Encouraged by Theorem B.5, one may hope to see super-polynomial lower bounds on the
formula size of explicit functions. This is indeed a famous open problem.

Open Problem B.6: Find an explicit Boolean function f that requires super-
polynomial-size formulae.

An equivalent formulation of this open problem calls for proving a super-logarithmic
lower bound on the depth of formulae (or circuits) computing f .

6We comment that S(PAR) = O(n) is trivial, but S(MAJ) = O(n) is not.

474



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.3. ARITHMETIC CIRCUITS

One appealing method for addressing such challenges is the communication complexity
method (of Karchmer and Wigderson [137]). This method asserts that the depth of a
formula for a Boolean function f equals the communication complexity in the following
two-party game, G f . In the game, the first party is given x ∈ f −1(1) ∩ {0, 1}n , the second
party is given y ∈ f −1(0) ∩ {0, 1}n , and their goal is to find a bit location on which x
and y disagree (i.e., i such that xi �= yi , which clearly exists). To that end, the parties
exchange messages, according to a predetermined protocol, and the question is what is
the communication complexity (in terms of total number of bits exchanged on the worst-
case input pair) of the best such protocol. We stress that no computational restrictions are
placed on the parties in the game/protocol.

Note that proving a super-logarithmic lower bound on the communication complexity
of the game G f will establish a super-logarithmic lower bound on the depth of formulae (or
circuits) computing f (and thus a super-polynomial lower bound on the size of formulae
computing f ). We stress the fact that a lower bound of a purely information-theoretic
nature implies a computational lower bound!

We mention that the communication complexity method has a monotone version such
that the depth of monotone circuits is related to the communication complexity of protocols
that are required to find an i such that xi > yi (rather than any i such that xi �= yi ).7 In fact,
the monotone version is better known than the general one, due to its success in leading to
linear lower bounds on the monotone depth of natural problems such as perfect matching
(established by Raz and Wigderson [186]).

B.3. Arithmetic Circuits

We now leave the Boolean rind, and discuss circuits over general fields. Fixing any field
F , the gates of the dag will now be the standard + and × operations of the field, yielding
a so-called arithmetic circuit. The inputs of the dag will be assigned elements of the field
F , and these values induce an assignment of values (in F) to all other vertices. Thus, an
arithmetic circuit with n inputs and m outputs computes a polynomial map p : Fn → Fm ,
and every such polynomial map is computed by some circuit (modulo the convention of
allowing some inputs to be set to some constants, most importantly the constant −1).8

Arithmetic circuits provide a natural description of methods for computing polynomial
maps, and consequently their size is a natural measure of the complexity of such maps.
We denote by SF (p) the size of a smallest circuit computing the polynomial map p (and
when no subscript is specified, we mean that F = Q (the field of rational numbers)). As
usual, we shall be interested in sequences of functions, one per each input size, and will
study the corresponding circuit size asymptotically.

We note that, for any fixed finite field, arithmetic circuits can simulate Boolean circuits
(on Boolean inputs) with only constant factor loss in size. Thus, the study of arithmetic
circuits focuses more on infinite fields, where lower bounds may be easier to obtain.

As in the Boolean case, the existence of hard functions is easy to establish (via dimen-
sion considerations, rather than counting argument), and we will be interested in explicit
(families of) polynomials. Roughly speaking, a polynomial is called explicit if there exists

7Note that since f is monotone, f (x) = 1 and f (y) = 0 implies the existence of an i such that xi = 1 and yi = 0.
8This allows the emulation of adding a constant, multiplication by a constant, and subtraction. We mention that,

for the purpose of computing polynomials (over infinite fields), division can be efficiently emulated by the other
operations.

475



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

an efficient algorithm that, when given a degree sequence (which specifies a monomial),
outputs the (finite description of the) corresponding coefficient.

An important parameter, which is absent in the Boolean model, is the degree of the
polynomial(s) computed. It is obvious, for example, that a degree d polynomial (even in
one variable, i.e., n = 1) requires size at least log d. We briefly consider the univariate
case (where d is the only measure of “problem size”), which already contains striking and
important open problems. Then we move to the general multivariate case, in which (as
usual) the number of variables (i.e., n) will be the main parameter (and we shall assume
that d ≤ n). We refer the reader to [86, 215] for further detail.

B.3.1. Univariate Polynomials

How tight is the log d lower bounds for the size of an arithmetic circuit computing a degree
d polynomial? A simple dimension argument shows that for most degree d polynomials
p, it holds that S(p) = �(d). However, we know of no explicit one:

Open Problem B.7: Find an explicit polynomial p of degree d, such that S(p) is
not O(log d).

To illustrate this open problem, we consider the following two concrete polynomials
pd (x) = xd and qd (x) = (x + 1)(x + 2) · · · (x + d). Clearly, S(pd ) ≤ 2 log d (via re-
peated squaring), and so the trivial lower bound is essentially tight. On the other hand, it is
a major open problem to determine S(qd ), and the common conjecture is that S(qd ) is not
polynomial in log d. To realize the importance of this conjecture, we state the following
proposition:

Proposition B.8: If S(qd ) = poly(log d), then the integer factorization problem can
be solved by polynomial-size circuits.

Recall that it is widely believed that the integer factorization problem is intractable (and,
in particular, does not have polynomial-size circuits).

Proof Sketch: Proposition B.8 follows by observing that qd (t) = ((t + d)!)/(t!)
and that a small circuit for computing qd yields an efficient way of obtaining
the value ((t + d)!)/(t!) mod N (by emulating the computation of the former cir-
cuit modulo N ). Observing that (

∑�
i=1 Ki )! =

∏�
i=1 qKi (

∑�
j=i+1 K j ), it follows

that the value of (K !) mod N can be obtained by using circuits for the polynomi-
als 〈q2i : i = 1, . ., �log2 K �〉. Next, observe that (K !) mod N and N are relatively
prime if and only if all prime factors of N are bigger than K . Thus, given a com-
posite N (and circuits for 〈q2i : i = 1, . . . , �log2 N�〉), we can find a factor of N by
performing a binary search for a suitable K .

B.3.2. Multivariate Polynomials

We are now back to polynomials with n variables. To make n our only “problem size”
parameter, it is convenient to restrict ourselves to polynomials whose total degree is at
most n.

476



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.3. ARITHMETIC CIRCUITS

Once again, almost every polynomial p in n variables requires size S(p) ≥ exp(�(n)),
and we seek explicit polynomial (families) that are hard. Unlike in the Boolean world, here
there are slightly non-trivial lower bounds (via elementary tools from algebraic geometry).

Theorem B.9 ([26]): S(xn
1 + xn

2 + · · · + xn
n ) = �(n log n).

The same techniques extend to proving a similar lower bound for other natural polynomials
such as the symmetric polynomials and the determinant. Establishing a stronger lower
bound for any explicit polynomial is a major open problem. Another open problem is
obtaining a super-linear lower bound for a polynomial map of constant (even 1) total
degree. Outstanding candidates for the latter open problem are the linear maps computing
the Discrete Fourier Transform over the complex numbers, or the Walsh Transform over
the rationals (for both O(n log n)-time algorithms are known, but no super-linear lower
bounds are known).

We now focus on specific polynomials of central importance. The most natural and
well-studied candidate for the last open problem is the matrix multiplication function MM:
Let A and B be two m × m matrices over F , and define MMn(A, B) to be the sequence of
n = m2 values of the entries of the matrix A × B. Thus, MMn is a sequence of n explicit
bilinear forms over the 2n input variables (which represent the entries of both matrices).
It is known that SGF(2)(MMn) ≥ 3n (cf., [206]). On the other hand, the obvious algorithm
that takes O(m3) = O(n3/2) steps can be improved.

Theorem B.10 ([62]): For every field F, it holds that SF (MMn) = o(n1.19).

So what is the complexity of MM (even if one counts only multiplication gates)? Is it linear
or almost-linear or is it the case that S(MM) > nα for some α > 1? This is indeed a famous
open problem.

We next consider the determinant and permanent polynomials (DET and PER, resp.)
over the n = m2 variables representing an m × m matrix. While DET plays a major role
in classical mathematics, PER is somewhat esoteric in that context (though it appears in
statistical mechanics and quantum mechanics). In the context of Complexity Theory, both
polynomials are of great importance because they capture natural complexity classes. The
function DET has relatively low complexity (e.g., it is related to the class of polynomials
having polynomial-sized arithmetic formulae), whereas PER seems to have high complex-
ity (e.g., it is complete for the class of all “p-definable” polynomials (cf. [231]) and is
complete for the counting class #P (see §6.2.1)). Thus, it is conjectured that PER is not
polynomial-time reducible to DET. One restricted type of reduction that makes sense in
this algebraic context is a reduction by projection.

Definition B.11 (projections): Let pn : Fn → F� and qN : F N → F� be polyno-
mial maps and x1, . . . , xn be variables over F. We say that there is a projection from
pn to qN over F, if there exists a function π : [N ] → {x1, . . . , xn} ∪ F such that
pn(x1, . . . , xn) ≡ qN (π(1), . . . , π(N )).

Clearly, if there is a projection from pn to qN then SF (pn) ≤ SF (qN ). Let DETm and PERm

denote the functions DET and PER restricted to m-by-m matrices. It is known that there
is a projection from PERm to DET3m , but to yield a polynomial-time reduction one would

477



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

need a projection of PERm to DETpoly(m). Needless to say, it is conjectured that no such
projection exists.

B.4. Proof Complexity

It is common practice to classify proofs according to the level of their difficulty, but
can this appealing classification be put on sound grounds? This is essentially the task
undertaken by proof complexity. It seeks to classify theorems according to the difficulty
of proving them, much like circuit complexity seeks to classify functions according to the
difficulty of computing them. Furthermore, just like in circuit complexity, we shall also
refer to a few (restricted) models, called proof systems, which represent various methods
of reasoning. Thus, the difficulty of proving various theorems will be measured with
respect to various proof systems.

We will consider only propositional proof systems, and so the theorems (in these
systems) will be propositional tautologies. Each of these systems will be complete and
sound; that is, each tautology and only a tautology will have a proof relative to these
systems. The formal definition of a proof system spells out what we take for granted: the
efficiency of the verification procedure. In the following definition, the efficiency of the
verification procedure refers to its running time measured in terms of the total length of
the alleged theorem and proof.9

Definition B.12 ([61]): A (propositional) proof system is a polynomial-time Turing
machine M such that a formula T is a tautology if and only if there exists a string
π , called a proof, such that M(π, T ) = 1.

In agreement with standard formalisms, the proof is viewed as coming before the theorem.
Definition B.12 guarantees the completeness and soundness of the proof system as well
as verification efficiency (relative to the total length of the alleged proof–theorem pair).
Note that Definition B.12 allows proofs of arbitrary length, suggesting that the length of
the proof π is a measure of the complexity of the tautology T with respect to the proof
system M .

For each tautology T , let LM (T ) denote the length of the shortest proof of T in M
(i.e., the length of the shortest string π such that M accepts (π, T )). That is, LM captures
the proof complexity of various tautologies with respect to the proof system M . Abusing
notation, we let LM (n) denote the maximum LM (T ) over all tautologies T of length n.
(By definition, for every proof system M , the value LM (n) is well defined and so LM is a
total function over the natural numbers.) The following simple theorem provides a basic
connection between proof complexity (with respect to any propositional proof system)
and computational complexity (i.e., the NP-vs-coNP Question).

Theorem B.13 ([61]): There exists a propositional proof system M such that the
function LM is upper-bounded by a polynomial if and only if NP = coNP .

9Indeed, this convention differs from the convention emplyed in Chapter 9, where the complexity of verification
(i.e., verifier’s running time) was measured as a function of the length of the alleged theorem. Both approaches were
mentioned in Section 2.1, where the two approaches coincide, because in Section 2.1 we mandated proofs of length
polynomial in the alleged theorem.

478



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.4. PROOF COMPLEXITY

In particular, a propositional proof system M such that LM is upper-bounded by
a polynomial coincides with an NP-proof system (as in Definition 2.5) for the set of
propositional tautologies, which is a coNP-complete set.

The long-term goal of proof complexity is establishing super-polynomial lower
bounds on the length of proofs in any propositional proof system (and thus establish-
ing NP �= coNP). It is natural to start this formidable project by first considering simple
(and thus weaker) proof systems, and then moving on to more and more complex ones.
Moreover, various natural proof systems, capturing basic (restricted) types and “primi-
tives” of reasoning as well as natural tautologies, suggest themselves as objects for this
study. In the rest of this section we focus on such restricted proof systems.

Different branches of mathematics such as logic, algebra, and geometry give rise to
different proof systems, often implicitly. A typical system would have a set of axioms
and a set of deduction rules. A proof (in this system) would proceed to derive the desired
tautology in a sequence of steps, each producing a formula (often called a line of the proof),
which is either an axiom or follows from previous formulae via one of the deduction
rules. Regarding these proof systems, we make two observations. First, proofs in these
systems can be easily verified by an algorithm, and thus they fit the general framework of
Definition B.12. Second, these proof systems perfectly fit the model of a dag with internal
vertices labeled by deduction rules (as in Section B.1): When assigning axioms to the
inputs, the application of the deduction rules at the internal vertices yields a proof of the
tautology assigned to each output.10

For various proof systems �, we turn to study the proof length L�(T ) of tautologies
T in proof system �. The first observation, revealing a major difference between proof
complexity and circuit complexity, is that the trivial counting argument fails. The reason
is that, while the number of functions on n bits is 22n

, there are at most 2n tautologies
of this length. Thus, in proof complexity, even the existence of a hard tautology, not
necessarily an explicit one, would be of interest (and, in particular, if established for all
propositional proof systems, then it would yield NP �= coNP). (Note that here we refer
to hard instances of a problem and not to hard problems.) Anyhow, as we shall see, most
known proof-length lower bounds (with respect to restricted proof systems) apply to very
natural (let alone explicit) tautologies.

An important convention. There is an equivalent and somewhat more convenient view of
(simple) proof systems, namely, as (simple) refutation systems. First, recalling that 3SAT
is NP-complete, note that the negation of any (propositional) tautology can be written as
a conjunction of clauses, where each clause is a disjunction of only 3 literals (variables
or their negation). Now, if we take these clauses as axioms and derive (using the rules
of the system) an obvious contradiction (e.g., the negation of an axiom, or better yet the
empty clause), then we have proved the tautology (since we have proved that its negation
yields a contradiction). Proof complexity often takes the refutation viewpoint, and often
exchanges “tautology” with its negation (“contradiction”).

Organization. The rest of this section is divided into three parts, referring to logical,
algebraic, and geometric proof systems. We will briefly describe important representative

10General proof systems as in Definition B.12 can also be adapted to this formalism, by considering a deduction
rule that corresponds to a single step of the machine M . However, the deduction rules considered here are even
simpler, and more importantly they are more natural.

479



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX B

and basic results in each of these domains, and refer the reader to [27] for further detail
(and, in particular, to adequate references).

B.4.1. Logical Proof Systems

The proof systems in this section will all have lines that are Boolean formulae, and the
differences will be in the structural limits imposed on these formulae. The most basic
proof system, called a Frege system, puts no restriction on the formulae manipulated by
the proof. It has one derivation rule, called the cut rule: A ∨ C, B ∨ ¬C . A ∨ B (for
any propositional formulae A, B and C). Adding any other sound rule, like modus ponens,
has little effect on the length of proofs in this system.

Frege systems are basic in the sense that (in several variants) they are the most common
systems in logic. Indeed, polynomial-length proofs in Frege systems naturally correspond
to “polynomial-time reasoning” about feasible objects. The major open problem in proof
complexity is finding any tautology (i.e., a family of tautologies) that has no polynomial-
long proof in the Frege system.

Since lower bounds for Frege systems seem intractable at the moment, we turn to
subsystems of Frege, which are interesting and natural. The most widely studied system
(of refutation) is Resolution, whose importance stems from its use by most propositional
(as well as first-order) automated theorem provers. The formulae allowed as lines in
Resolution are clauses (disjunctions), and so the cut rule simplifies to the resolution rule:
A ∨ x, B ∨ ¬x . A ∨ B, for any clauses A, B and variable x .

The gap between the power of general Frege systems and Resolution is reflected by
the existence of tautologies that are easy for Frege and hard for Resolution. A specific
example is provided by the pigeonhole principle, denoted PHPm

n , which is a propositional
tautology that expresses the fact that there is no one-to-one mapping of m pigeons to
n < m holes.

Theorem B.14: LFrege(PHPn+1
n ) = nO(1) but LResolution(PHPn+1

n ) = 2�(n)

B.4.2. Algebraic Proof Systems

Just as a natural contradiction in the Boolean setting is an unsatisfiable collection of
clauses, a natural contradiction in the algebraic setting is a system of polynomials without
a common root. Moreover, CNF formulae can be easily converted to a system of poly-
nomials, one per clause, over any field. One often adds the polynomials x2

i − xi which
ensure Boolean values.

A natural proof system (related to Hilbert’s Nullstellensatz, and to computations of
Grobner bases in symbolic algebra programs) is Polynomial Calculus, abbreviated PC.
The lines in this system are polynomials (represented explicitly by all coefficients), and
it has two deduction rules: For any two polynomials g, h, the rule g, h . g + h, and
for any polynomial g and variable xi , the rule g, xi . xi g. Strong length lower bounds
(obtained from degree lower bounds) are known for this system. For example, encoding
the pigeonhole principle PHPm

n as a contradicting set of constant degree polynomials, we
have the following lower bound.

Theorem B.15: For every n and every m > n, it holds that LPC(PHPm
n ) ≥ 2n/2, over

every field.

480



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

B.4. PROOF COMPLEXITY

B.4.3. Geometric Proof Systems

Yet another natural way to represent contradictions is by a set of regions in space that have
empty intersection. Again, we care mainly about discrete (say, Boolean) domains, and a
wide source of interesting contradictions are integer programs arising from Combinatorial
Optimization. Here, the constraints are (affine) linear inequalities with integer coefficients
(so the regions are subsets of the Boolean cube carved out by half-spaces). The most
basic system is called Cutting Planes (CP), and its lines are linear inequalities with integer
coefficients. The deduction rules of PC are (the obvious) addition of inequalities, and the
(less obvious) division of the coefficients by a constant (and rounding, taking advantage
of the integrality of the solution space).

While PHPm
n is “easy” in this system, exponential lower bounds are known for other

tautologies. We mention that they are obtained from the monotone circuit lower bounds
of Section B.2.2.

481



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

On the Foundations of Modern
Cryptography

It is possible to build a cabin with no foundations, but not a lasting
building.

Eng. Isidor Goldreich (1906–95)

Summary: Cryptography is concerned with the construction of com-
puting systems that withstand any abuse: Such a system is constructed
so as to maintain a desired functionality, even under malicious attempts
aimed at making it deviate from this functionality.

This appendix is aimed at presenting the foundations of cryptography,
which are the paradigms, approaches, and techniques used to concep-
tualize, define, and provide solutions to natural security concerns. It
presents some of these conceptual tools as well as some of the funda-
mental results obtained using them. The emphasis is on the clarification
of fundamental concepts, and on demonstrating the feasibility of solving
several central cryptographic problems. The presentation assumes basic
knowledge of algorithms, probability theory, and complexity theory, but
nothing beyond this.

The appendix augments the treatment of one-way functions, pseudoran-
dom generators, and zero-knowledge proofs, given in Sections 7.1, 8.2,
and 9.2, respectively.1 Using these basic primitives, the appendix pro-
vides a treatment of basic cryptographic applications such as encryption,
signatures, and general cryptographic protocols.

C.1. Introduction and Preliminaries

The rigorous treatment and vast expansion of cryptography is one of the major achieve-
ments of theoretical computer science. In particular, classical notions such as secure
encryption and unforgeable signatures were placed on sound grounds, and new (unex-
pected) directions and connections were uncovered. Furthermore, this development was
coupled with the introduction of novel concepts such as computational indistinguishabil-
ity, pseudorandomness, and zero-knowledge interactive proofs, which are of independent
interest (see Sections 7.1, 8.2, and 9.2, respectively). Indeed, modern cryptography is

1These augmentations are important for cryptography, but are not central to Complexity Theory and thus were
omitted from the main text.

482



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.1. INTRODUCTION AND PRELIMINARIES

strongly coupled with Complexity Theory (in contrast to “classical” cryptography, which
is strongly related to information theory).

C.1.1. The Underlying Principles

Modern cryptography is concerned with the construction of information systems that are
robust against malicious attempts aimed at causing these systems to violate their pre-
scribed functionality. The prescribed functionality may be the secret and authenticated
communication of information over an insecure channel, the holding of incoercible and se-
cret electronic voting, or conducting any “fault-resilient” multi-party computation. Indeed,
the scope of modern cryptography is very broad, and it stands in contrast to “classical”
cryptography (which has focused on the single problem of enabling secret communication
over insecure channels).

C.1.1.1. Coping with Adversaries
Needless to say, the design of cryptographic systems is a very difficult task. One cannot rely
on intuitions regarding the “typical” state of the environment in which the system operates.
For sure, the adversary attacking the system will try to manipulate the environment into
“untypical” states. Nor can one be content with counter-measures designed to withstand
specific attacks, since the adversary (which acts after the design of the system is completed)
will try to attack the schemes in ways that are different from the ones the designer had
envisioned. Although the validity of the foregoing assertions seems self-evident, still some
people hope that in practice ignoring these tautologies will not result in actual damage.
Experience shows that these hopes rarely come true; cryptographic schemes based on
make-believe are broken, typically sooner than later.

In view of the foregoing, it makes little sense to make assumptions regarding the specific
strategy that the adversary may use. The only assumptions that can be justified refer to
the computational abilities of the adversary. Furthermore, the design of cryptographic
systems has to be based on firm foundations, whereas ad hoc approaches and heuristics
are a very dangerous way to go.

The foundations of cryptography are the paradigms, approaches, and techniques used
to conceptualize, define, and provide solutions to natural “security concerns.” Solving a
cryptographic problem (or addressing a security concern) is a two-stage process consisting
of a definitional stage and a constructive stage. First, in the definitional stage, the func-
tionality underlying the natural concern is to be identified, and an adequate cryptographic
problem has to be defined. Trying to list all undesired situations is infeasible and prone to
error. Instead, one should define the functionality in terms of operation in an imaginary
ideal model, and require a candidate solution to emulate this operation in the real, clearly
defined model (which specifies the adversary’s abilities). Once the definitional stage is
completed, one proceeds to construct a system that satisfies the definition. Such a con-
struction may use some simpler tools, and in such a case its security is proved relying on
the features of these tools.

Example. Starting with the wish to ensure secret (resp., reliable) communication over
insecure channels, the definitional stage leads to the formulation of the notion of se-
cure encryption schemes (resp., signature schemes). Next, such schemes are constructed
by using simpler primitives such as one-way functions, and the security of the con-
struction is proved via a “reducibility argument” (which demonstrates how inverting the

483



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

one-way function “reduces” to violating the claimed security of the construction; cf.,
Section 7.1.2).

C.1.1.2. The Use of Computational Assumptions
As in the case of the foregoing example, most of the tools and applications of cryptography
exist only if some sort of computational hardness exists. Specifically, these tools and
applications require (either explicitly or implicitly) the ability to generate instances of
hard problems. Such ability is captured in the definition of one-way functions. Thus, one-
way functions are the very minimum needed for doing most natural tasks of cryptography.
(It turns out, as we shall see, that this necessary condition is “essentially” sufficient; that is,
the existence of one-way functions (or augmentations and extensions of this assumption)
suffices for doing most of cryptography.)

Our current state of understanding of efficient computation does not allow us to prove
that one-way functions exist. In particular, as discussed in Sections 7.1.1 and C.2, proving
that one-way functions exist seems even harder than proving that P �= NP . Hence, we
have no choice (at this stage of history) but to assume that one-way functions exist. As
justification of this assumption, we can only offer the combined beliefs of hundreds (or
thousands) of researchers. Furthermore, these beliefs concern a simply stated assumption,
and their validity follows from several widely believed conjectures that are central to
various fields (e.g., the conjectured that intractability of integer factorization is central to
computational number theory).

Since we need assumptions anyhow, “why not just assume whatever we want” (i.e.,
the existence of a solution to some natural cryptographic problem)? Well, firstly, we need
to know what we want; that is, we must first clarify what exactly we want, which means
going through the typically complex definitional stage. But once this stage is completed
and a definition is obtained, can we just assume the existence of a system satisfying this
definition? Not really: The mere existence of a definition does not imply that it can be
satisfied by any system.

The way to demonstrate that a cryptographic definition is viable (and that the corre-
sponding intuitive security concern can be satisfied) is to prove that it can be satisfied based
on a better understood assumption (i.e., one that is more common and widely believed).
For example, looking at the definition of zero-knowledge proofs, it is not a priori clear
that such proofs exist at all (in a non-trivial sense). The non-triviality of the notion was
first demonstrated by presenting a zero-knowledge proof system for statements, regarding
Quadratic Residuosity, which are believed to be hard to verify (without extra information).
Furthermore, contrary to prior beliefs, it was later shown that the existence of one-way
functions implies that any NP-statement can be proved in zero-knowledge. Thus, facts
that were not known at all to hold (and were even believed to be false) have been shown to
hold by “reduction” to widely believed assumptions (without which most of cryptography
collapses anyhow).

In summary: not all assumptions are equal. Thus, “reducing” a complex, new and
doubtful assumption to a widely believed and simple (or even merely simpler) assumption
is of great value. Furthermore, “reducing” the solution of a new task to the assumed
security of a well-known primitive typically means providing a construction that, using
the known primitive, solves the new task. This means that we do not only gain confidence
about the solvability of the new task but also obtain a solution based on a primitive that,
being well known, typically has several candidate implementations.

484



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.1. INTRODUCTION AND PRELIMINARIES

C.1.2. The Computational Model

Cryptography, as surveyed here, is concerned with the construction of efficient schemes
for which it is infeasible to violate the security feature. Thus, we need a notion of efficient
computations as well as a notion of infeasible ones. The computations of the legitimate
users of the scheme ought be efficient, whereas violating the security features (by an
adversary) ought to be infeasible. We stress that we do not identify feasible computations
with efficient ones, but rather view the former notion as potentially more liberal. Let us
elaborate.

C.1.2.1. Efficient Computations and Infeasible ones
Efficient computations are commonly modeled by computations that are polynomial time
in the security parameter. The polynomial that bounds the running time of the legitimate
user’s strategy is fixed and typically explicit (and small). Indeed, our aim is to have a
notion of efficiency that is as strict as possible (or, equivalently, develop strategies that
are as efficient as possible). Here (i.e., when referring to the complexity of the legitimate
users) we are in the same situation as in any algorithmic setting. Things are different when
referring to our assumptions regarding the computational resources of the adversary,
where we refer to the notion of feasible, which we wish to be as wide as possible. A
common approach is to postulate that feasible computations are polynomial time, too, but
here the polynomial is not a priori specified (and is to be thought of as arbitrarily large).
In other words, the adversary is restricted to the class of polynomial-time computations
and anything beyond this is considered to be infeasible.

Although many definitions explicitly refer to the convention of associating feasible
computations with polynomial-time ones, this convention is inessential to any of the re-
sults known in the area. In all cases, a more general statement can be made by referring
to a general notion of feasibility, which should be preserved under standard algorithmic
composition, yielding theories that refer to adversaries of running time bounded by any
specific super-polynomial function (or class of functions). Still, for the sake of concrete-
ness and clarity, we shall use the former convention in our formal definitions (but our
motivational discussions will refer to an unspecified notion of feasibility that covers at
least efficient computations).

C.1.2.2. Randomized (or Probabilistic) Computations
Randomized computations play a central role in cryptography. One fundamental reason
for this fact is that randomness is essential for the existence (or rather the generation) of
secrets. Thus, we must allow the legitimate users to employ randomized computations, and
certainly (since we consider randomization as feasible) we must consider also adversaries
that employ randomized computations. This brings up the issue of success probability:
Typically, we require that legitimate users succeed (in fulfilling their legitimate goals) with
probability 1 (or negligibly close to this), whereas adversaries succeed (in violating the
security features) with negligible probability. Thus, the notion of a negligible probability
plays an important role in our exposition.

One requirement of the definition of negligible probability is to provide a robust notion
of rareness: A rare event should occur rarely even if we repeat the experiment for a
feasible number of times. That is, in case we consider any polynomial-time computation
to be feasible, a function µ :N→N is called negligible if 1− (1− µ(n))p(n) < 0.01 for

485



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

every polynomial p and sufficiently big n (i.e., µ is negligible if for every positive
polynomial p′ the function µ(·) is upper-bounded by 1/p′(·)).

We will also refer to the notion of noticeable probability. Here, the requirement is that
events that occur with noticeable probability will occur almost surely (i.e., except with
negligible probability) if we repeat the experiment for a polynomial number of times.
Thus, a function ν :N→N is called noticeable if for some positive polynomial p′ the
function ν(·) is lower-bounded by 1/p′(·).

C.1.3. Organization and Beyond

This appendix focuses on several archetypical cryptographic problems (e.g., encryption
and signature schemes) and on several central tools (e.g., computational difficulty, pseu-
dorandomness, and zero-knowledge proofs). For each of these problems, we start by
presenting the natural concern underlying it, then define the problem, and finally demon-
strate that the problem may be solved. In the latter step, our focus is on demonstrating the
feasibility of solving the problem, not on providing a practical solution.

Our aim is to present the basic concepts, techniques, and results in cryptography, and
our emphasis is on the clarification of fundamental concepts and the relationship among
them. This is done in a way independent of the particularities of some popular number
theoretic examples. These particular examples played a central role in the development of
the field and still offer the most practical implementations of all cryptographic primitives,
but this does not mean that the presentation has to be linked to them. On the contrary,
we believe that concepts are best clarified when presented at an abstract level, decoupled
from specific implementations.

Actual organization. The appendix is organized in two main parts, corresponding to the
Basic Tools of Cryptography and the Basic Applications of Cryptography.

The basic tools: The most basic tool is computational difficulty, which in turn is
captured by the notion of one-way functions. Another notion of key importance is
that of computational indistinguishability, underlying the theory of pseudorandom-
ness as well as much of the rest of cryptography. Pseudorandom generators and
functions are important tools that are frequently used. So are zero-knowledge proofs,
which play a key role in the design of secure cryptographic protocols and in their
study.
The basic applications: Encryption and signature schemes are the most basic ap-
plications of Cryptography. Their main utility is in providing secret and reliable
communication over insecure communication media. Loosely speaking, encryption
schemes are used for ensuring the secrecy (or privacy) of the actual information being
communicated, whereas signature schemes are used to ensure its reliability (or au-
thenticity). Another basic topic is the construction of secure cryptographic protocols
for the implementation of arbitrary functionalities.

The presentation of the basic tools in Sections C.2–C.4 augments (and sometimes repeats
parts of) Sections 7.1, 8.2, and 9.2 (which provide a basic treatment of one-way functions,
pseudorandom generators, and zero-knowledge proofs, respectively). Sections C.5–C.7
provide an overview of the basic applications; that is, encryption schemes, signature
schemes, and general cryptographic protocols.

486



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.2. COMPUTATIONAL DIFFICULTY

Suggestions for further reading. This appendix is a brief summary of the author’s
two-volume work on the subject [91, 92]. Furthermore, the first part (i.e., Basic Tools)
corresponds to [91], whereas the second part (i.e., Basic Applications) corresponds to [92].
Needless to say, the interested reader is referred to these textbooks for further detail (and,
in particular, for missing references).

Practice. The aim of this appendix is to introduce the reader to the theoretical foundations
of cryptography. As argued, such foundations are necessary for a sound practice of
cryptography. Indeed, practice requires much more than theoretical foundations, whereas
the current text makes no attempt to provide anything beyond the latter. However, given
a sound foundation, one can learn and evaluate various practical suggestions that appear
elsewhere. On the other hand, lack of sound foundations results in an inability to critically
evaluate practical suggestions, which in turn leads to unsound decisions. Nothing could
be more harmful to the design of schemes that need to withstand adversarial attacks than
misconceptions about such attacks.

C.2. Computational Difficulty

Modern Cryptography is concerned with the construction of systems that are easy to
operate (properly) but hard to foil. Thus, a complexity gap (between the ease of proper
usage and the difficulty of deviating from the prescribed functionality) lies at the heart of
modern cryptography. However, gaps as required for modern cryptography are not known
to exist; they are only widely believed to exist. Indeed, almost all of modern cryptography
rises or falls with the question of whether one-way functions exist. We mention that the
existence of one-way functions implies that NP contains search problems that are hard
to solve on the average, which in turn implies that NP is not contained in BPP (i.e., a
worst-case complexity conjecture).

Loosely speaking, one-way functions are functions that are easy to evaluate but hard (on
the average) to invert. Such functions can be thought of as an efficient way of generating
“puzzles” that are infeasible to solve (i.e., the puzzle is a random image of the function and
a solution is a corresponding preimage). Furthermore, the person generating the puzzle
knows a solution to it and can efficiently verify the validity of (possibly other) solutions
to the puzzle. Thus, one-way functions have, by definition, a clear cryptographic flavor
(i.e., they manifest a gap between the ease of one task and the difficulty of a related
one).

C.2.1. One-Way Functions

We start by reproducing the basic definition of one-way functions as appearing in
Section 7.1.1, where this definition is further discussed.

Definition C.1 (one-way functions, Definition 7.1 restated): A function f :
{0, 1}∗→{0, 1}∗ is called one-way if the following two conditions hold:

1. Easy to evaluate: There exists a polynomial-time algorithm A such that A(x) =
f (x) for every x ∈ {0, 1}∗.

487



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

2. Hard to invert: For every probabilistic polynomial-time algorithm A′, every
polynomial p, and all sufficiently large n,

Pr[A′( f (x), 1n) ∈ f −1( f (x))] <
1

p(n)

where the probability is taken uniformly over x ∈{0, 1}n and all the internal
coin tosses of algorithm A′.

Some of the most popular candidates for one-way functions are based on the conjectured
intractability of computational problems in number theory. One such conjecture is that it is
infeasible to factor large integers. Consequently, the function that takes as input two (equal-
length) primes and outputs their product is widely believed to be a one-way function.
Furthermore, factoring such a composite is infeasible if and only if squaring modulo such
a composite is a one-way function (see [183]). For certain composites (i.e., products of two
primes that are both congruent to 3 mod 4), the latter function induces a permutation over
the set of quadratic residues modulo this composite. A related permutation, which is widely
believed to be one-way, is the RSA function [193]: x !→ xe mod N , where N = P · Q is
a composite as above, e is relatively prime to (P − 1) · (Q − 1), and x ∈ {0, . . . , N − 1}.
The latter examples (as well as other popular suggestions) are better captured by the
following formulation of a collection of one-way functions (which is indeed related to
Definition C.1):

Definition C.2 (collections of one-way functions): A collection of functions, { fi :
Di → {0, 1}∗}i∈I , is called one-way if there exist three probabilistic polynomial-
time algorithms, I , D and F, such that the following two conditions hold:

1. Easy to sample and compute: On input 1n, the output of (the index selection)
algorithm I is distributed over the set I ∩ {0, 1}n (i.e., is an n-bit long index of
some function). On input (an index of a function) i ∈ I , the output of (the domain
sampling) algorithm D is distributed over the set Di (i.e., over the domain of the
function fi ). On input i ∈ I and x ∈ Di , (the evaluation) algorithm F always
outputs fi (x).

2. Hard to invert:2 For every probabilistic polynomial-time algorithm, A′, every
positive polynomial p(·), and all sufficiently large n’s

Pr
[

A′(i, fi (x))∈ f −1
i ( fi (x))

]
<

1

p(n)

where i ← I (1n) and x ← D(i).

The collection is said to be a collection of permutations if each of the fi ’s is a
permutation over the corresponding Di , and D(i) is almost uniformly distributed
in Di .

For example, in case of the RSA, one considers fN ,e : DN ,e → DN ,e that satisfies
fN ,e(x) = xe mod N , where DN ,e = {0, . . . , N − 1}. Definition C.2 is also a good starting

2Note that this condition refers to the distributions I (1n) and D(i), which are merely required to range over
I ∩ {0, 1}n and Di , respectively. (Typically, the distributions I (1n) and D(i) are (almost) uniform over I ∩ {0, 1}n and
Di , respectively.)

488



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.2. COMPUTATIONAL DIFFICULTY

point for the definition of a trapdoor permutation.3 Loosely speaking, the latter is a col-
lection of one-way permutations augmented with an efficient algorithm that allows for
inverting the permutation when given adequate auxiliary information (called a trapdoor).

Definition C.3 (trapdoor permutations): A collection of permutations as in Defi-
nition C.2 is called a trapdoor permutation if there are two auxiliary probabilistic
polynomial-time algorithms I ′ and F−1 such that (1) the distribution I ′(1n) ranges
over pairs of strings so that the first string is distributed as in I (1n), and (2) for
every (i, t) in the range of I ′(1n) and every x ∈ Di it holds that F−1(t, fi (x)) = x.
(That is, t is a trapdoor that allows for inverting fi .)

For example, in case of the RSA, the function fN ,e can be inverted by raising the image
to the power d (modulo N = P · Q), where d is the multiplicative inverse of e modulo
(P − 1) · (Q − 1). Indeed, in this case, the trapdoor information is (N , d).

Strong versus weak one-way functions (summary of Section 7.1.2). Recall that the
foregoing definitions require that any feasible algorithm succeeds in inverting the func-
tion with negligible probability. A weaker notion only requires that any feasible algorithm
fails to invert the function with noticeable probability. It turns out that the existence of
such weak one-way functions implies the existence of strong one-way functions (as in
Definition C.1). The construction itself is straightforward, but analyzing it transcends the
analogous information-theoretic setting. Instead, the security (i.e., hardness of inverting)
the resulting construction is proved via a so-called reducibility argument that transforms
the violation of the conclusion (i.e., the hypothetical insecurity of the resulting construc-
tion) into a violation of the hypothesis (i.e., insecurity of the given primitive). This strategy
(i.e., a “reducibility argument”) is used to prove all conditional results in the area.

C.2.2. Hard-Core Predicates

Recall that saying that a function f is one-way implies that, given a typical f -image y,
it is infeasible to find a preimage of y under f . This does not mean that it is infeasible
to find partial information about the preimage(s) of y under f . Specifically, it may be
easy to retrieve half of the bits of the preimage (e.g., given a one-way function f consider
the function g defined by g(x, r )

def= ( f (x), r ), for every |x |=|r |). As will become clear in
subsequent sections, hiding partial information (about the function’s preimage) plays an
important role in many advanced cryptographic constructs (e.g., secure encryption). This
partial information can be considered as a “hard-core” of the difficulty of inverting f .
Loosely speaking, a polynomial-time computable (Boolean) predicate b, is called a hard-
core of a function f if no feasible algorithm, given f (x), can guess b(x) with success
probability that is non-negligibly better than one half. The actual definition is presented
in Section 7.1.3 (i.e., Definition 7.6).

Note that if b is a hard-core of a 1-1 function f that is polynomial-time computable
then f is a one-way function. On the other hand, recall that Theorem 7.7 asserts that for
any one-way function f , the inner-product mod 2 of x and r is a hard-core of the function
f ′, where f ′(x, r ) = ( f (x), r ).

3Indeed, a more adequate term would be a collection of trapdoor permutations, but the shorter (and less precise)
term is the commonly used one.

489



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

C.3. Pseudorandomness

In practice, “pseudorandom” sequences are often used instead of truly random sequences.
The underlying belief is that if an (efficient) application performs well when using a truly
random sequence, then it will perform essentially as well when using a “pseudorandom”
sequence. However, this belief is not supported by ad hoc notions of “pseudorandomness”
such as passing the statistical tests in [146] or having large “linear complexity” (as defined
in [112]). Needless to say, using such “pseudorandom” sequences (instead of truly random
sequences) in a cryptographic application is very dangerous.

In contrast, truly random sequences can be safely replaced by pseudorandom sequences
provided that pseudorandom distributions are defined as being computationally indistin-
guishable from the uniform distribution. Such a definition makes the soundness of this
replacement an easy corollary. Loosely speaking, pseudorandom generators are then de-
fined as efficient procedures for creating long pseudorandom sequences based on few truly
random bits (i.e., a short random seed). The relevance of such constructs to cryptography
is in providing legitimate users that share short random seeds with a method for creating
long sequences that look random to any feasible adversary (which does not know the said
seed).

C.3.1. Computational Indistinguishability

A central notion in modern cryptography is that of “effective similarity” (aka computa-
tional indistinguishability; cf. [108, 239]). The underlying thesis is that we do not care
whether or not objects are equal; all we care about is whether or not a difference between
the objects can be observed by a feasible computation. In case the answer is negative,
the two objects are equivalent as far as any practical application is concerned. Indeed,
in the sequel we will often interchange such (computationally indistinguishable) objects.
In this section we recall the definition of computational indistinguishability (presented in
Section 8.2.3), and consider two variants.

Definition C.4 (computational indistinguishability, Definition 8.4 revised):4 We say
that X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguishable if for
every probabilistic polynomial-time algorithm D every polynomial p, and all suffi-
ciently large n,

|Pr[D(1n, Xn)=1]− Pr[D(1n, Yn)=1]| <
1

p(n)

where the probabilities are taken over the relevant distribution (i.e., either Xn or Yn)
and over the internal coin tosses of algorithm D.

See further discussion in Section 8.2.3. In particular, recall that for “efficiently con-
structible” distributions, indistinguishability by a single sample (as in Definition C.4)
implies indistinguishability by multiple samples (as in Definition 8.5).

4For the sake of streamlining Definition C.4 with Definition C.5 (and unlike in Definition 8.4), here the distinguisher
is explicitly given the index n of the distribution that it inspects. (In typical applications, the difference between
Definitions 8.4 and C.4 is immaterial because the index n is easily determined from any sample of the corresponding
distributions.)

490



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.3. PSEUDORANDOMNESS

Extension to ensembles indexed by strings. We consider a natural extension of Def-
inition C.4 in which, rather than referring to ensembles indexed by N, we refer to en-
sembles indexed by an arbitrary set S ⊆ {0, 1}∗. Typically, for an ensemble {Zα}α∈S , it
holds that Zα ranges over strings of length that is polynomially related to the length
of α.

Definition C.5: We say that {Xα}α∈S and {Yα}α∈S are computationally indistinguish-
able if for every probabilistic polynomial-time algorithm D, every polynomial p,
and all sufficiently long α ∈ S,

|Pr[D(α, Xα)=1]− Pr[D(α, Yα)=1]| <
1

p(|α|)
where the probabilities are taken over the relevant distribution (i.e., either Xα or
Yα) and over the internal coin tosses of algorithm D.

Note that Definition C.4 is obtained as a special case by setting S = {1n : n ∈ N}.

A non-uniform version. A non-uniform definition of computational indistinguishabil-
ity can be derived from Definition C.5 by artificially augmenting the indices of the
distributions. That is, {Xα}α∈S and {Yα}α∈S are computationally indistinguishable in a
non-uniform sense if for every polynomial p the ensembles {X ′α′ }α′∈S′ and {Y ′α′ }α′∈S′ are
computationally indistinguishable (as in Definition C.5), where S′ = {αβ : α∈ S ∧ β ∈
{0, 1}p(|α|)} and X ′αβ = Xα (resp., Y ′αβ = Yα) for every β ∈ {0, 1}p(|α|). An equivalent
(alternative) definition can be obtained by following the formulation that underlies
Definition 8.12.

C.3.2. Pseudorandom Generators

Loosely speaking, a pseudorandom generator is an efficient (deterministic) algorithm
that on input a short random seed outputs a (typically much) longer sequence that is
computationally indistinguishable from a uniformly chosen sequence.

Definition C.6 (pseudorandom generator, Definition 8.1 restated): Let � :N→N

satisfy �(n) > n, for all n ∈ N. A pseudorandom generator, with stretch function �,
is a (deterministic) polynomial-time algorithm G satisfying the following:

1. For every s ∈ {0, 1}∗, it holds that |G(s)| = �(|s|).
2. {G(Un)}n∈N and {U�(n)}n∈N are computationally indistinguishable, where Um

denotes the uniform distribution over {0, 1}m.

Indeed, the probability ensemble {G(Un)}n∈N is called pseudorandom.

We stress that pseudorandom sequences can replace truly random sequences not only in
“standard” algorithmic applications but also in cryptographic ones. That is, any crypto-
graphic application that is secure when the legitimate parties use truly random sequences
is also secure when the legitimate parties use pseudorandom sequences. The benefit in
such a substitution (of random sequences by pseudorandom ones) is that the latter se-
quences can be efficiently generated using much less true randomness. Furthermore, in an

491



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

interactive setting, it is possible to eliminate all random steps from the on-line execution
of a program, by replacing them with the generation of pseudorandom bits based on a
random seed selected and fixed off-line (or at setup time). This allows interactive parties
to generate a long sequence of common secret bits based on a shared random seed that
may have been selected at a much earlier time.

Various cryptographic applications of pseudorandom generators will be presented in
the sequel, but let us first recall that pseudorandom generators exist if and only if one-way
functions exist (see Theorem 8.11). For further treatment of pseudorandom generators,
the reader is referred to Section 8.2.

C.3.3. Pseudorandom Functions

Recall that pseudorandom generators provide a way to efficiently generate long pseu-
dorandom sequences from short random seeds. Pseudorandom functions, introduced and
constructed by Goldreich, Goldwasser, and Micali [95], are even more powerful: They
provide efficient direct access to the bits of a huge pseudorandom sequence (Which is
not feasible to scan bit by bit). More precisely, a pseudorandom function is an effi-
cient (deterministic) algorithm that given an n-bit seed, s, and an n-bit argument, x ,
returns an n-bit string, denoted fs(x), such that it is infeasible to distinguish the values
of fs , for a uniformly chosen s ∈ {0, 1}n , from the values of a truly random function
F : {0, 1}n → {0, 1}n . That is, the (feasible) testing procedure is given oracle access to
the function (but not its explicit description), and cannot distinguish the case in which it is
given oracle access to a pseudorandom function from the case in which it is given oracle
access to a truly random function.

Definition C.7 (pseudorandom functions): A pseudorandom function (ensemble),
is a collection of functions { fs :{0, 1}|s|→{0, 1}|s|}s∈{0,1}∗ that satisfies the following
two conditions:

1. (efficient evaluation) There exists an efficient (deterministic) algorithm that
given a seed, s, and an argument, x ∈ {0, 1}|s|, returns fs(x).

2. (pseudorandomness) For every probabilistic polynomial-time oracle machine,
M, every positive polynomial p, and all sufficiently large n’s∣∣Pr[M fUn (1n) = 1]− Pr[M Fn (1n) = 1]

∣∣< 1

p(n)

where Fn denotes a uniformly selected function mapping {0, 1}n to {0, 1}n.

One key feature of the foregoing definition is that pseudorandom functions can be gener-
ated and shared by merely generating and sharing their seed; that is, a “random-looking”
function fs : {0, 1}n → {0, 1}n , is determined by its n-bit seed s. Thus, parties wishing
to share a “random-looking” function fs (determining 2n-many values), merely need to
generate and share among themselves the n-bit seed s. (For example, one party may
randomly select the seed s, and communicate it, via a secure channel, to all other par-
ties.) Sharing a pseudorandom function allows parties to determine (by themselves and
without any further communication) random-looking values depending on their current
views of the environment (which need not be known a priori). To appreciate the potential
of this tool, one should realize that sharing a pseudorandom function is essentially as

492



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.3. PSEUDORANDOMNESS

good as being able to agree, on the fly, on the association of random values to (on-line)
given values, where the latter are taken from a huge set of possible values. We stress that
this agreement is achieved without communication and synchronization: Whenever some
party needs to associate a random value to a given value, v ∈ {0, 1}n , it will associate to v

the (same) random value rv ∈ {0, 1}n (by setting rv = fs(v), where fs is a pseudorandom
function agreed upon beforehand). Concrete applications of (this power of) pseudorandom
functions appear in Sections C.5.2 and C.6.2.

Theorem C.8 (How to construct pseudorandom functions): Pseudorandom func-
tions can be constructed using any pseudorandom generator.

Proof Sketch:5 Let G be a pseudorandom generator that stretches its seed by a factor
of two (i.e., �(n) = 2n), and let G0(s) (resp., G1(s)) denote the first (resp., last) |s|
bits in G(s). Let

Gσ|s|···σ2σ1 (s)
def= Gσ|s|(· · ·Gσ2 (Gσ1 (s)) · · ·),

define fs(x1x2 · · · xn)
def= Gxn ···x2x1 (s), and consider the function ensemble { fs :

{0, 1}|s|→{0, 1}|s|}s∈{0,1}∗ . Pictorially, the function fs is defined by n-step walks
down a full binary tree of depth n having labels at the vertices. The root of the tree,
hereafter referred to as the level 0 vertex of the tree, is labeled by the string s. If an
internal vertex is labeled r then its left child is labeled G0(r ) whereas its right child
is labeled G1(r ). The value of fs(x) is the string residing in the leaf reachable from
the root by a path corresponding to the string x .

We claim that the function ensemble { fs}s∈{0,1}∗ is pseudorandom. The proof
uses the hybrid technique (cf. Section 8.2.3): The i th hybrid, denoted Hi

n , is a
function ensemble consisting of 22i ·n functions {0, 1}n→{0, 1}n , each determined
by 2i random n-bit strings, denoted s = 〈sβ〉β∈{0,1}i . The value of such function hs

at x = αβ, where |β| = i , is defined to equal Gα(sβ). Pictorially, the function hs

is defined by placing the strings in s in the corresponding vertices of level i , and
labeling vertices of lower levels using the very rule used in the definition of fs .
The extreme hybrids correspond to our indistinguishability claim (i.e., H 0

n ≡ fUn

and H n
n is a truly random function), and the indistinguishability of neighboring

hybrids follows from our indistinguishability hypothesis (by using a reducibility
argument). Specifically, we show that the ability to distinguish Hi

n from Hi+1
n yields

an ability to distinguish multiple samples of G(Un) from multiple samples of U2n

(by placing, on the fly, halves of the given samples at adequate vertices of the i + 1st

level).

Variants. Useful variants (and generalizations) of the notion of pseudorandom func-
tions include Boolean pseudorandom functions that are defined over all strings (i.e.,
fs : {0, 1}∗ → {0, 1}) and pseudorandom functions that are defined for other domains
and ranges (i.e., fs : {0, 1}d(|s|) → {0, 1}r (|s|), for arbitrary polynomially bounded func-
tions d, r : N→ N). Various transformations between these variants are known (cf. [91,
Sec. 3.6.4] and [92, Apdx. C.2]).

5See details in [91, Sec. 3.6.2].

493



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

C.4. Zero-Knowledge

Zero-knowledge proofs provide a powerful tool for the design of cryptographic protocols
as well as a good bench mark for the study of various issues regarding such protocols.
Loosely speaking, zero-knowledge proofs are proofs that yield nothing beyond the validity
of the assertion. That is, a verifier obtaining such a proof only gains conviction in the
validity of the assertion (as if it were told by a trusted party that the assertion holds). This
is formulated by saying that anything that is feasibly computable from a zero-knowledge
proof is also feasibly computable from the (valid) assertion itself. The latter formulation
follows the simulation paradigm, which is discussed next, while reproducing part of the
discussion in §9.2.1.1 and making additional comments regarding the use of this paradigm
in cryptography.

C.4.1. The Simulation Paradigm

A key question regarding the modeling of security concerns is how to express the intuitive
requirement that an adversary “gains nothing substantial” by deviating from the prescribed
behavior of an honest user. The answer provided by the simulation paradigm is that the
adversary gains nothing if whatever it can obtain by unrestricted adversarial behavior can
also be obtained, within essentially the same computational effort, by a benign behavior.
The definition of the “benign behavior” captures what we want to achieve in terms
of security, and is specific to the security concern to be addressed. For example, in
the context of zero-knowledge, the unrestricted adversarial behavior is captured by an
arbitrary probabilistic polynomial-time verifier strategy, whereas the benign behavior is
any computation that is based (only) on the assertion itself (while assuming that the latter
is valid). Other examples are discussed in Sections C.5.1 and C.7.1.

The definitional approach to security represented by the simulation paradigm (and more
generally the entire definitional approach surveyed in this appendix) may be considered
overly cautious, because it seems to prohibit also “non-harmful” gains of some “far-
fetched” adversaries.6 We warn against this impression. Firstly, there is nothing more
dangerous in cryptography than to consider “reasonable” adversaries (a notion that is
almost a contradiction in terms): Typically, the adversaries will try exactly what the
system designer has discarded as “far-fetched.” Secondly, it seems impossible to come up
with definitions of security that distinguish “breaking the system in a harmful way” from
“breaking it in a non-harmful way”: What is harmful is application-dependent, whereas
a good definition of security ought to be application-independent (as otherwise using
the cryptographic system in any new application will require a full reevaluation of its
security). Furthermore, even with respect to a specific application, it is typically very hard
to classify the set of “harmful breakings.”

C.4.2. The Actual Definition

In §9.2.1.2 zero-knowledge was defined as a property of some prover strategies (within
the context of interactive proof systems, as defined in Section 9.1.2). More generally,
the term may apply to any interactive machine, regardless of its goal. A strategy A

6Indeed, according to the simulation paradigm, a system is called secure only if all possible adversaries can be
adequately simulated by adequate benign behavior. Thus, this approach also considers “far-fetched” adversaries and
does not disregard “non-harmful” gains that cannot be simulated.

494



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.4. ZERO-KNOWLEDGE

is zero-knowledge on (inputs from) the set S if, for every feasible strategy B∗, there
exists a feasible computation C∗ such that the following two probability ensembles are
computationally indistinguishable (according to Definition C.5):

1. {(A, B∗)(x)}x∈S
def= the output of B∗ after interacting with A on common input x ∈ S;

and
2. {C∗(x)}x∈S

def= the output of C∗ on input x ∈ S.

Recall that the first ensemble represents an actual execution of an interactive protocol,
whereas the second ensemble represents the computation of a stand-alone procedure
(called the “simulator”), which does not interact with anybody.

The foregoing definition does not account for auxiliary information that an adversary
B∗ may have prior to entering the interaction. Accounting for such auxiliary information
is essential for using zero-knowledge proofs as subprotocols inside larger protocols. This
is taken care of by a stricter notion called auxiliary-input zero-knowledge, which was not
presented in Section 9.2.

Definition C.9 (zero-knowledge, revisited): A strategy A is auxiliary-input zero-
knowledge on inputs from S if, for every probabilistic polynomial-time strategy B∗

and every polynomial p, there exists a probabilistic polynomial-time algorithm C∗

such that the following two probability ensembles are computationally indistinguish-
able:

1. {(A, B∗(z))(x)}x∈S , z∈{0,1}p(|x |)
def= the output of B∗ when having auxiliary-input

z and interacting with A on common input x ∈ S; and
2. {C∗(x, z)}x∈S , z∈{0,1}p(|x |)

def= the output of C∗ on inputs x ∈ S and z ∈ {0, 1}p(|x |).

Almost all known zero-knowledge proofs are in fact auxiliary-input zero-knowledge.
As hinted, auxiliary-input zero-knowledge is preserved under sequential composition.
A simulator for the multiple-session protocol can be constructed by iteratively invok-
ing the single-session simulator that refers to the residual strategy of the adversarial
verifier in the given session (while feeding this simulator with the transcript of pre-
vious sessions). Indeed, the residual single-session verifier gets the transcript of the
previous sessions as part of its auxiliary input (i.e., z in Definition C.9). For details,
see [91, Sec. 4.3.4].

C.4.3. A General Result and a Generic Application

A question avoided so far is whether zero-knowledge proofs exist at all. Clearly, every
set in P (or rather in BPP) has a “trivial” zero-knowledge proof (in which the verifier
determines membership by itself); however, what we seek is zero-knowledge proofs for
statements that the verifier cannot decide by itself.

Assuming the existence of “commitment schemes” (cf. §C.4.3.1), which in turn ex-
ist if one-way functions exist [169, 118], there exist (auxiliary-input) zero-knowledge
proofs of membership in any NP-set. These zero-knowledge proofs, abstractly depicted
in Construction 9.10, have the following important property: The prescribed prover strat-
egy is efficient, provided it is given as auxiliary-input an NP-witness to the assertion

495



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

(to be proved).7 Implementing the abstract boxes (referred to in Construction 9.10) by
commitment schemes, we get

Theorem C.10 (on the applicability of zero-knowledge proofs (Theorem 9.11, revis-
ited)): If (non-uniformly hard) one-way functions exist then every set S ∈ NP has
an auxiliary-input zero-knowledge interactive proof. Furthermore, the prescribed
prover strategy can be implemented in probabilistic polynomial time, provided that
it is given as auxiliary-input an NP-witness for membership of the common input
in S.

Theorem C.10 makes zero-knowledge a very powerful tool in the design of cryptographic
schemes and protocols (see §C.4.3.2). We comment that the intractability assumption used
in Theorem C.10 seems essential.

C.4.3.1. Commitment Schemes
Loosely speaking, commitment schemes are two-stage (two-party) protocols allowing for
one party to commit itself (at the first stage) to a value while keeping the value secret.
At a later (i.e., second) stage, the commitment is “opened” and it is guaranteed that the
“opening” can yield only a single value, which is determined during the committing phase.
Thus, the (first stage of the) commitment scheme is both binding and hiding.

A simple (uni-directional communication) commitment scheme can be constructed
based on any one-way 1-1 function f (with a corresponding hard-core b). To commit to a
bit σ , the sender uniformly selects s ∈ {0, 1}n , and sends the pair ( f (s), b(s)⊕ σ ). Note
that this is both binding and hiding. An alternative construction, which can be based on
any one-way function, uses a pseudorandom generator G that stretches its seed by a factor
of three (cf. Theorem 8.11). A commitment is established, via two-way communication, as
follows (cf. [169]): The receiver selects uniformly r ∈ {0, 1}3n and sends it to the sender,
which selects uniformly s ∈ {0, 1}n and sends r ⊕ G(s) if it wishes to commit to the value
one and G(s) if it wishes to commit to zero. To see that this is binding, observe that there
are at most 22n “bad” values r that satisfy G(s0) = r ⊕ G(s1) for some pair (s0, s1), and
with overwhelmingly high probability the receiver will not pick one of these bad values.
The hiding property follows by the pseudorandomness of G.

C.4.3.2. A Generic Application
As mentioned, Theorem C.10 makes zero-knowledge a very powerful tool in the design
of cryptographic schemes and protocols. This wide applicability is due to two important
aspects regarding Theorem C.10: Firstly, Theorem C.10 provides a zero-knowledge proof
for every NP-set, and secondly, the prescribed prover can be implemented in probabilistic
polynomial time when given an adequate NP-witness. We now turn to a typical application
of zero-knowledge proofs.

In a typical cryptographic setting, a user U has a secret and is supposed to take some
action based on its secret. For example, U may be instructed to send several different

7The auxiliary-input given to the prescribed prover (in order to allow for an efficient implementation of its strategy)
is not to be confused with the auxiliary-input that is given to malicious verifiers (in the definition of auxiliary-input
zero-knowledge). The former is typically an NP-witness for the common input, which is available to the user that
invokes the prover strategy (cf. the generic application discussed in §C.4.3.2). In contrast, the auxiliary-input that is
given to malicious verifiers models arbitrary partial information that may be available to the adversary.

496



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.4. ZERO-KNOWLEDGE

commitments (cf. §C.4.3.1) to a single secret value of its choice. The question is how
other users can verify that U indeed took the correct action (as determined by U ’s secret
and publicly known information). Indeed, if U discloses its secret, then anybody can
verify that U took the correct action. However, U does not want to reveal its secret. Using
zero-knowledge proofs we can satisfy both conflicting requirements (i.e., having other
users verify that U took the correct action without violating U ’s interest in not revealing
its secret). That is, U can prove in zero-knowledge that it took the correct action. Note
that U ’s claim to having taken the correct action is an NP-assertion (since U ’s legal action
is determined as a polynomial-time function of its secret and the public information), and
that U has an NP-witness to its validity (i.e., the secret is an NP-witness to the claim that
the action fits the public information). Thus, by Theorem C.10, it is possible for U to
efficiently prove the correctness of its action without yielding anything about its secret.
Consequently, it is fair to ask U to prove (in zero-knowledge) that it behaves properly,
and so to force U to behave properly. Indeed, “forcing proper behavior” is the canonical
application of zero-knowledge proofs (see §C.7.3.2).

This paradigm (i.e., “forcing proper behavior” via zero-knowledge proofs), which in
turn is based on Theorem C.10, has been utilized in numerous different settings. Indeed,
this paradigm is the basis for the wide applicability of zero-knowledge protocols in
cryptography.

C.4.4. Definitional Variations and Related Notions

In this section we consider numerous variants on the notion of zero-knowledge and the
underlying model of interactive proofs. These include black-box simulation and other
variants of zero-knowledge (cf. Section C.4.4.1), as well as notions such as proofs of
knowledge, non-interactive zero-knowledge, and witness indistinguishable proofs (cf. Sec-
tion C.4.4.2).

Before starting, we call the reader’s attention to the notion of computational soundness
and to the related notion of argument systems, discussed in §9.1.5.2. We mention that
argument systems may be more efficient than interactive proofs as well as provide stronger
zero-knowledge guarantees. Specifically, almost-perfect zero-knowledge arguments for
NP can be constructed based on any one-way function [172], where almost-perfect zero-
knowledge means that the simulator’s output is statistically close to the verifier’s view in
the real interaction (see a discussion in §C.4.4.1). Note that stronger security guarantee
for the prover (as provided by almost-perfect zero-knowledge) comes at the cost of weaker
security guarantee for the verifier (as provided by computational soundness). The answer
to the question of whether or not this trade-off is worthwhile seems to be application-
dependent, and one should also take into account the availability and complexity of the
corresponding protocols.

C.4.4.1. Definitional Variations
We consider several definitional issues regarding the notion of zero-knowledge (as defined
in Definition C.9).

Universal and black-box simulation. One strengthening of Definition C.9 is obtained by
requiring the existence of a universal simulator, denotedC, that can simulate (the interactive
gain of) any verifier strategy B∗ when given the verifier’s program an auxiliary-input; that
is, in terms of Definition C.9, one should replace C∗(x, z) by C(x, z, 〈B∗〉), where 〈B∗〉

497



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

denotes the description of the program of B∗ (which may depend on x and on z). That is,
we effectively restrict the simulation by requiring that it be a uniform (feasible) function
of the verifier’s program (rather than arbitrarily depending on it). This restriction is very
natural, because it seems hard to envision an alternative way of establishing the zero-
knowledge property of a given protocol. Taking another step, one may argue that since
it seems infeasible to reverse-engineer programs, the simulator may just as well use the
verifier strategy as an oracle (or as a “black-box”). This reasoning gave rise to the notion of
black-box simulation, which was introduced and advocated in [98] and further studied in
numerous works. The belief was that inherent limitations regarding black-box simulation
represent inherent limitations of zero-knowledge itself. For example, it was believed that
the fact that the parallel version of the interactive proof of Construction 9.10 cannot be
simulated in a black-box manner (unless NP is contained in BPP) implies that this
version is not zero-knowledge (as per Definition C.9 itself). However, the (underlying)
belief that any zero-knowledge protocol can be simulated in a black-box manner was later
refuted by Barak [25].

Honest verifier versus general cheating verifier. Definition C.9 refers to all feasible ver-
ifier strategies, which is most natural in the cryptographic setting, because zero-knowledge
is supposed to capture the robustness of the prover under any feasible (i.e., adversarial) at-
tempt to gain something by interacting with it. A weaker and still interesting notion of zero-
knowledge refers to what can be gained by an “honest verifier” (or rather a semi-honest
verifier)8 that interacts with the prover as directed, with the exception that it may maintain
(and output) a record of the entire interaction (i.e., even if directed to erase all records of the
interaction). Although such a weaker notion is not satisfactory for standard cryptographic
applications, it yields a fascinating notion from a conceptual as well as a complexity-
theoretic point of view. Furthermore, every proof system that is zero-knowledge with
respect to the honest-verifier can be transformed into a standard zero-knowledge proof
(without using intractability assumptions, and in the case of “public-coin” proofs this is
done without significantly increasing the prover’s computational effort; see [228]).

Statistical versus Computational Zero-Knowledge. Recall that Definition C.9 postu-
lates that for every probability ensemble of one type (i.e., representing the verifier’s output
after interaction with the prover), there exists a “similar” ensemble of a second type (i.e.,
representing the simulator’s output). One key parameter is the interpretation of “sim-
ilarity.” Three interpretations, yielding different notions of zero-knowledge, have been
extensively considered in the literature:

1. Perfect Zero-Knowledge requires that the two probability ensembles be identically
distributed.9

2. Statistical (or Almost-Perfect) Zero-Knowledge requires that these probability en-
sembles be statistically close (i.e., the variation distance between them should be
negligible).

8The term “honest verifier” is more appealing when considering an alternative (equivalent) formulation of Defini-
tion C.9. In the alternative definition (see [91, Sec. 4.3.1.3]), the simulator is “only” required to generate the verifier’s
view of the real interaction, where the verifier’s view includes its (common and auxiliary) inputs, the outcome of its
coin tosses, and all messages it has received.

9The actual definition of Perfect Zero-Knowledge allows the simulator to fail (while outputting a special symbol)
with negligible probability, and the output distribution of the simulator is conditioned on its not failing.

498



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.4. ZERO-KNOWLEDGE

3. Computational (or rather general) Zero-Knowledge requires that these probability
ensembles be computationally indistinguishable.

Indeed, Computational Zero-Knowledge is the most liberal notion, and is the notion
considered in Definition C.9. We note that the class of problems having statistical zero-
knowledge proofs contains several problems that are considered intractable. The interested
reader is referred to [227].

C.4.4.2. Related Notions: POK, NIZK, and WI
We briefly discuss the notions of proofs of knowledge (POK), non-interactive zero-
knowledge (NIZK), and witness indistinguishable proofs (WI).

Proofs of Knowledge. Loosely speaking, proofs of knowledge are interactive proofs in
which the prover asserts “knowledge” of some object (e.g., a 3-coloring of a graph),
and not merely its existence (e.g., the existence of a 3-coloring of the graph, which in
turn is equivalent to the assertion that the graph is 3-colorable). See further discussion
in Section 9.2.3. We mention that proofs of knowledge, and in particular zero-knowledge
proofs of knowledge, have many applications to the design of cryptographic schemes and
cryptographic protocols. One famous application of zero-knowledge proofs of knowledge
is to the construction of identification schemes (e.g., the Fiat-Shamir scheme).

Non-Interactive Zero-Knowledge. The model of non-interactive zero-knowledge
(NIZK) proof systems consists of three entities: a prover, a verifier, and a uniformly
selected reference string (which can be thought of as being selected by a trusted third
party). Both the verifier and prover can read the reference string (as well as the common
input), and each can toss additional coins. The interaction consists of a single message
sent from the prover to the verifier, who is then left with the final decision (whether
or not to accept the common input). The (basic) zero-knowledge requirement refers to a
simulator that outputs pairs that should be computationally indistinguishable from the dis-
tribution (of pairs consisting of a uniformly selected reference string and a random prover
message) seen in the real model.10 We mention that NIZK proof systems have numerous
applications (e.g., to the construction of public-key encryption and signature schemes,
where the reference string may be incorporated in the public-key), which in turn moti-
vate various augmentations of the basic definition of NIZK (see [91, Sec. 4.10] and [92,
Sec. 5.4.4.4]). Such NIZK proofs for any NP-set can be constructed based on standard
intractability assumptions (e.g., intractability of factoring), but even constructing basic
NIZK proof systems seems more difficult than constructing interactive zero-knowledge
proof systems.

Witness Indistinguishability. The notion of witness indistinguishability was suggested
in [76] as a meaningful relaxation of zero-knowledge. Loosely speaking, for any NP-
relation R, a proof (or argument) system for the corresponding NP-set is called witness
indistinguishable if no feasible verifier may distinguish the case in which the prover uses
one NP-witness to x (i.e., w1 such that (x, w1) ∈ R) from the case in which the prover is
using a different NP-witness to the same input x (i.e., w2 such that (x, w2) ∈ R). Clearly,

10Note that the verifier does not affect the distribution seen in the real model, and so the basic definition of
zero-knowledge does not refer to it. The verifier (or rather a process of adaptively selecting assertions to be proved)
is referred to in the adaptive variants of the definition.

499



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

any zero-knowledge protocol is witness indistinguishable, but the converse does not nec-
essarily hold. Furthermore, it seems that witness indistinguishable protocols are easier
to construct than zero-knowledge ones. Another advantage of witness indistinguishable
protocols is that they are closed under arbitrary concurrent composition, whereas (in
general) zero-knowledge protocols are not closed even under parallel composition. Wit-
ness indistinguishable protocols turned out to be an important tool in the construction of
more complex protocols. We refer, in particular, to the technique of [75] for constructing
zero-knowledge proofs (and arguments) based on witness indistinguishable proofs (resp.,
arguments).

C.5. Encryption Schemes

The problem of providing secret communication over insecure media is the traditional and
most basic problem of cryptography. The setting of this problem consists of two parties
communicating through a channel that is possibly tapped by an adversary. The parties
wish to exchange information with each other, but keep the “wiretapper” as ignorant as
possible regarding the contents of this information. The canonical solution to this problem
is obtained by the use of encryption schemes. Loosely speaking, an encryption scheme
is a protocol allowing these parties to communicate secretly with each other. Typically,
the encryption scheme consists of a pair of algorithms. One algorithm, called encryption,
is applied by the sender (i.e., the party sending a message), while the other algorithm,
called decryption, is applied by the receiver. Hence, in order to send a message, the sender
first applies the encryption algorithm to the message, and sends the result, called the
ciphertext, over the channel. Upon receiving a ciphertext, the other party (i.e., the receiver)
applies the decryption algorithm to it, and retrieves the original message (called the
plaintext).

In order for the foregoing scheme to provide secret communication, the receiver must
know something that is not known to the wiretapper. (Otherwise, the wiretapper can
decrypt the ciphertext exactly as done by the receiver.) This extra knowledge may take
the form of the decryption algorithm itself, or some parameters and/or auxiliary inputs
used by the decryption algorithm. We call this extra knowledge the decryption-key.
Note that, without loss of generality, we may assume that the decryption algorithm is
known to the wiretapper, and that the decryption algorithm operates on two inputs: a
ciphertext and a decryption-key. (This description implicitly presupposes the existence
of an efficient algorithm for generating (random) keys.) We stress that the existence of a
decryption-key, not known to the wiretapper, is merely a necessary condition for secret
communication.

Evaluating the “security” of an encryption scheme is a very tricky business. A prelim-
inary task is to understand what is “security” (i.e., to properly define what is meant by
this intuitive term). Two approaches to defining security are known. The first (“classical”)
approach, introduced by Shannon [205], is information-theoretic. It is concerned with the
“information” about the plaintext that is “present” in the ciphertext. Loosely speaking,
if the ciphertext contains information about the plaintext, then the encryption scheme is
considered insecure. It has been shown that such high (i.e., “perfect”) level of security
can be achieved only if the key in use is at least as long as the total amount of information
sent via the encryption scheme [205]. This fact (i.e., that the key has to be longer than the
information exchanged using it) is indeed a drastic limitation on the applicability of such
(perfectly secure) encryption schemes.

500



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.5. ENCRYPTION SCHEMES

The second (“modern”) approach, followed in the current text, is based on Computa-
tional Complexity. This approach is based on the thesis that it does not matter whether the
ciphertext contains information about the plaintext, but rather whether this information
can be efficiently extracted. In other words, instead of asking whether it is possible for the
wiretapper to extract specific information, we ask whether it is feasible for the wiretapper
to extract this information. It turns out that the new (i.e., “computational complexity”)
approach can offer security even when the key is much shorter than the total length of the
messages sent via the encryption scheme.

The Computational Complexity approach enables the introduction of concepts and
primitives that cannot exist under the information-theoretic approach. A typical example
is the concept of public-key encryption schemes, introduced by Diffie and Hellman [66]
(with the most popular candidate suggested by Rivest, Shamir, and Adleman [193]). Re-
call that in the foregoing discussion we concentrated on the decryption algorithm and
its key. It can be shown that the encryption algorithm must also get, in addition to the
message, an auxiliary input that depends on the decryption-key. This auxiliary input is
called the encryption-key. Traditional encryption schemes, and in particular all the en-
cryption schemes used in the millennia until the 1980s, operate with an encryption-key
that equals the decryption-key. Hence, the wiretapper in these schemes must be igno-
rant of the encryption-key, and consequently the key distribution problem arises; that is,
how can two parties wishing to communicate over an insecure channel agree on a se-
cret encryption/decryption-key. (The traditional solution is to exchange the key through
an alternative channel that is secure, though much more expensive to use.) The Com-
putational Complexity approach allows for the introduction of encryption schemes in
which the encryption-key may be given to the wiretapper without compromising the
security of the scheme. Clearly, the decryption-key in such schemes is different from
the encryption-key, and furthermore it is infeasible to obtain the decryption-key from
the encryption-key. Such encryption schemes, called public-key schemes, have the ad-
vantage of trivially resolving the key distribution problem (because the encryption-key
can be publicized). That is, once some Party X generates a pair of keys and publicizes
the encryption-key, any party can send encrypted messages to Party X such that Party X
can retrieve the actual information (i.e., the plaintext), whereas nobody else can learn
anything about the plaintext.

In contrast to public-key schemes, traditional encryption schemes in which the
encryption-key equals the decryption-key are called private-key schemes, because in these
schemes the encryption-key must be kept secret (rather than be public as in public-key
encryption schemes). We note that a full specification of either schemes requires the spec-
ification of the way in which keys are generated, that is, a (randomized) key-generation
algorithm that, given a security parameter, produces a (random) pair of corresponding
encryption/decryption-keys (which are identical in case of private-key schemes).

Thus, both private-key and public-key encryption schemes consist of three efficient
algorithms: a key-generation algorithm denoted G, an encryption algorithm denoted E ,
and a decryption algorithm denoted D. For every pair of encryption- and decryption-
keys (e, d) generated by G, and for every plaintext x , it holds that Dd (Ee(x)) = x ,
where Ee(x)

def= E(e, x) and Dd (y)
def= D(d, y). The difference between the two types of

encryption schemes is reflected in the definition of security: The security of a public-
key encryption scheme should hold also when the adversary is given the encryption-
key, whereas this is not required for a private-key encryption scheme. In the following
definitional treatment, we focus on the public-key case (and the private-key case can

501



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

be obtained by omitting the encryption-key from the sequence of inputs given to the
adversary).

C.5.1. Definitions

A good disguise should not reveal the person’s height.
Shafi Goldwasser and Silvio Micali, 1982

For simplicity, we first consider the encryption of a single message (which, for further
simplicity, is assumed to be of length that equals the security parameter, n).11 As implied
by the foregoing discussion, a public-key encryption scheme is said to be secure if it
is infeasible to gain any information about the plaintext by looking at the ciphertext
(and the encryption-key). That is, whatever information about the plaintext one may
compute from the ciphertext, and some a priori information, can be essentially computed
as efficiently from the a priori information alone. This fundamental definition of security,
called semantic security, was introduced by Goldwasser and Micali [108].

Definition C.11 (semantic security): A public-key encryption scheme (G, E, D) is
semantically secure if for every probabilistic polynomial-time algorithm, A, there
exists a probabilistic polynomial-time algorithm B such that for every two functions
f, h :{0, 1}∗→{0, 1}∗ and all probability ensembles {Xn}n∈N that satisfy |h(x)| =
poly(|x |) and Xn ∈ {0, 1}n, it holds that

Pr[A(e, Ee(x), h(x))= f (x)] < Pr[B(1n, h(x))= f (x)]+ µ(n)

where the plaintext x is distributed according to Xn, the encryption-key e is dis-
tributed according to G(1n), and µ is a negligible function.

That is, it is feasible to predict f (x) from h(x) as successfully as it is to predict f (x) from
h(x) and (e, Ee(x)), which means that nothing is gained by obtaining (e, Ee(x)). Note that
no computational restrictions are made regarding the functions h and f . We stress that
the foregoing definition (as well as the next one) refers to public-key encryption schemes,
and in the case of private-key schemes algorithm A is not given the encryption-key e.

The following technical interpretation of security states that it is infeasible to distinguish
the encryptions of any two plaintexts (of the same length).12 As we shall see, this definition
(also originating in [108]) is equivalent to Definition C.11.

Definition C.12 (indistinguishability of encryptions): A public-key encryption
scheme (G, E, D) has indistinguishable encryptions if for every probabilistic
polynomial-time algorithm, A, and all sequences of triples, (xn, yn, zn)n∈N, where
|xn| = |yn| = n and |zn| = poly(n), it holds that

|Pr[A(e, Ee(xn), zn)=1]− Pr[A(e, Ee(yn), zn)=1]| = µ(n)

Again, e is distributed according to G(1n), and µ is a negligible function.

11In the case of public-key schemes, no generality is lost by these simplifying assumptions, but in the case of
private-key schemes, one should consider the encryption of polynomially many messages (as we do at the end of this
section).

12Indeed, satisfying this condition requires using a probabilistic encryption algorithm.

502



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.5. ENCRYPTION SCHEMES

In particular, zn may equal (xn, yn). Thus, it is infeasible to distinguish the encryptions of
any two fixed messages (such as the all-zero message and the all-ones message). Thus,
the following motto is adequate, too:

A good disguise should not allow a mother to distinguish her own children.
Shafi Goldwasser and Silvio Micali, 1982

Definition C.11 is more appealing in most settings where encryption is considered the end
goal. Definition C.12 is used to establish the security of candidate encryption schemes
as well as to analyze their application as modules inside larger cryptographic protocols.
Thus, the equivalence of these definitions is of major importance.

Equivalence of Definitions C.11 and C.12 – proof ideas. Intuitively, indistinguishability
of encryptions (i.e., of the encryptions of xn and yn) is a special case of semantic security;
specifically, it corresponds to the case that Xn is uniform over {xn, yn}, the function f
indicates one of the plaintexts, and h does not distinguish them (i.e., f (w) = 1 if and only
if w = xn and h(xn) = h(yn) = zn , where zn is as in Definition C.12). The other direction
is proved by considering the algorithm B that, on input (1n, v) where v = h(x), generates
(e, d) ← G(1n) and outputs A(e, Ee(1n), v), where A is as in Definition C.11. Indistin-
guishability of encryptions is used to prove that B performs as well as A (i.e., for every h, f
and {Xn}n∈N, it holds that Pr[B(1n, h(Xn))= f (Xn)] = Pr[A(e, Ee(1n), h(Xn))= f (Xn)]
approximately equals Pr[A(e, Ee(Xn), h(Xn))= f (Xn)]).

Probabilistic Encryption. A secure public-key encryption scheme must employ a prob-
abilistic (i.e., randomized) encryption algorithm. Otherwise, given the encryption-key as
(additional) input, it is easy to distinguish the encryption of the all-zero message from the
encryption of the all-ones message.13 This explains the association of the robust definitions
of security with the paradigm of probabilistic encryption, an association that originates in
the title of the pioneering work of Goldwasser and Micali [108].

Further discussion. We stress that (the equivalent) Definitions C.11 and C.12 go way
beyond saying that it is infeasible to recover the plaintext from the ciphertext. The latter
statement is indeed a minimal requirement from a secure encryption scheme, but is far
from being a sufficient requirement. Typically, encryption schemes are used in applications
where even obtaining partial information on the plaintext may endanger the security
of the application. When designing an application-independent encryption scheme, we
do not know which partial information endangers the application and which does not.
Furthermore, even if one wants to design an encryption scheme tailored to a specific
application, it is rare (to say the least) that one has a precise characterization of all
possible partial information that endangers this application. Thus, we need to require
that it is infeasible to obtain any information about the plaintext from the ciphertext.
Furthermore, in most applications, the plaintext may not be uniformly distributed and
some a priori information regarding it may be available to the adversary. We require that
the secrecy of all partial information also be preserved in such a case. That is, even in
the presence of a priori information on the plaintext, it is infeasible to obtain any (new)

13The same holds for (stateless) private-key encryption schemes, when considering the security of encrypting
several messages (rather than a single message as in the foregoing text). For example, if one uses a deterministic
encryption, algorithm, then the adversary can distinguish two encryptions of the same message from the encryptions
of a pair of different messages.

503



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

information about the plaintext from the ciphertext (beyond what is feasible to obtain from
the a priori information on the plaintext). The definition of semantic security postulates
all of this. The equivalent definition of indistinguishability of encryptions is useful in
demonstrating the security of candidate constructions as well as for arguing about their
effect as part of larger protocols.

Security of multiple messages. Definitions C.11 and C.12 refer to the security of an
encryption scheme that is used to encrypt a single plaintext (per a generated key). Since
the plaintext may be longer than the key,14 these definitions are already non-trivial, and an
encryption scheme satisfying them (even in the private-key model) implies the existence
of one-way functions. Still, in many cases, it is desirable to encrypt many plaintexts
using the same encryption-key. Loosely speaking, an encryption scheme is secure in
the multiple-messages setting if conditions as in Definition C.11 (resp., Definition C.12)
hold when polynomially many plaintexts are encrypted using the same encryption-key
(cf. [92, Sec. 5.2.4]). In the public-key model, security in the single-message setting
implies security in the multiple-messages setting. We stress that this is not necessarily
true for the private-key model.

C.5.2. Constructions

It is common practice to use “pseudorandom generators” as a basis for private-key encryp-
tion schemes. We stress that this is a very dangerous practice when the “pseudorandom
generator” is easy to predict (such as the “linear congruential generator”). However, this
common practice becomes sound provided one uses pseudorandom generators (as defined
in Section C.3.2). An alternative and more flexible construction follows.

Private-Key Encryption Scheme based on Pseudorandom Functions. We present a
simple construction of a private-key encryption scheme that uses pseudorandom functions
as defined in Section C.3.3. The key-generation algorithm consists of uniformly selecting
a seed s ∈ {0, 1}n for a (pseudorandom) function, denoted fs . To encrypt a message
x ∈ {0, 1}n (using key s), the encryption algorithm uniformly selects a string r ∈ {0, 1}n
and produces the ciphertext (r, x ⊕ fs(r )), where⊕ denotes the exclusive-or of bit strings.
To decrypt the ciphertext (r, y) (using key s), the decryption algorithm just computes
y ⊕ fs(r ). The proof of security of this encryption scheme consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F :{0, 1}n→{0, 1}n , rather than the pseudorandom function fs , is
secure.

2. Concluding that the real scheme is secure (because otherwise one could distinguish a
pseudorandom function from a truly random one).

Note that we could have gotten rid of the randomization (in the encryption process) if we
had allowed the encryption algorithm to be history-dependent (e.g., use a counter in the
role of r ). This can be done if all parties that use the same key (for encryption) coordinate
their encryption actions (by maintaining a joint state (e.g., counter)). Indeed, when using

14Recall that for the sake of simplicity we have considered only messages of length n, but the general definitions
refer to messages of arbitrary (polynomial in n) length. We comment that, in the general form of Definition C.11, one
should provide the length of the message as an auxiliary input to both algorithms (A and B).

504



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.5. ENCRYPTION SCHEMES

a private-key encryption scheme, a common situation is that the same key is only used for
communication between two specific parties, which update a joint counter during their
communication. Furthermore, if the encryption scheme is used for FIFO communication
between the parties and both parties can reliably maintain the counter value, then there
is no need (for the sender) to send the counter value. (The resulting scheme is related to
“stream ciphers,” which are commonly used in practice.)

We comment that the use of a counter (or any other state) in the encryption process is
not reasonable in the case of public-key encryption schemes, because it is incompatible
with the canonical usage of such schemes (i.e., allowing all parties to send encrypted
messages to the “owner of the encryption-key” without engaging in any type of further
coordination or communication). Furthermore (unlike in the case of private-key schemes),
probabilistic encryption is essential for the security of public-key encryption schemes even
in the case of encrypting a single message. Following Goldwasser and Micali [108], we
now demonstrate the use of probabilistic encryption in the construction of public-key
encryption schemes.

Public-Key Encryption Scheme based on Trapdoor Permutations. We present two
constructions of public-key encryption schemes that employ a collection of trapdoor per-
mutations, as defined in Definition C.3. Let { fi : Di → Di }i be such a collection, and let b
be a corresponding hard-core predicate. In the first scheme, the key-generation algorithm
consists of selecting a permutation fi along with a corresponding trapdoor t , and outputting
(i, t) as the key-pair. To encrypt a (single) bit σ (using the encryption-key i), the encryption
algorithm uniformly selects r ∈ Di , and produces the ciphertext ( fi (r ), σ ⊕ b(r )). To de-
crypt the ciphertext (y, τ ) (using the decryption-key t), the decryption algorithm computes
τ ⊕ b( f −1

i (y)) (using the trapdoor t of fi ). Clearly, (σ ⊕ b(r ))⊕ b( f −1
i ( fi (r ))) = σ . In-

distinguishability of encryptions is implied by the hypothesis that b is a hard-core of fi . We
comment that this scheme is quite wasteful in bandwidth; nevertheless, the paradigm un-
derlying its construction (i.e., applying the trapdoor permutation to a randomized version
of the plaintext rather than to the actual plaintext) is valuable in practice.

A more efficient construction of a public-key encryption scheme, which uses the
same key-generation algorithm, follows. To encrypt an �-bit long string x (using
the encryption-key i), the encryption algorithm uniformly selects r ∈ Di , computes
y ← b(r ) · b( fi (r )) · · · b( f �−1

i (r )) and produces the ciphertext ( f �
i (r ), x ⊕ y). To decrypt

the ciphertext (u, v) (using the decryption-key t), the decryption algorithm first recovers
r = f −�

i (u) (using the trapdoor t of fi ), and then obtains v ⊕ b(r ) · b( fi (r )) · · · b( f �−1
i (r )).

Note the similarity to the Blum-Micali Construction (depicted in Eq. (8.10)), and the fact
that the proof of the pseudorandomness of Eq. (8.10) can be extended to establish the
computational indistinguishability of (b(r ) · · · b( f �−1

i (r )), f �
i (r )) and (r ′, f �

i (r )), for ran-
dom and independent r ∈ Di and r ′ ∈ {0, 1}�. Indistinguishability of encryptions follows,
and thus the second scheme is secure. We mention that, assuming the intractability of
factoring integers, this scheme has a concrete implementation with efficiency comparable
to that of RSA.

C.5.3. Beyond Eavesdropping Security

Our treatment so far has referred only to a “passive” attack in which the adversary merely
eavesdrops the line over which ciphertexts are sent. Stronger types of attacks (i.e., “active”
ones), culminating in the so-called chosen ciphertext attack, may be possible in various

505



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

applications. Specifically, in some settings it is feasible for the adversary to make the
sender encrypt a message of the adversary’s choice, and in some settings the adversary
may even make the receiver decrypt a ciphertext of the adversary’s choice. This gives rise
to chosen plaintext attacks and to chosen ciphertext attacks, respectively, which are not
covered by the security definitions considered in Sections C.5.1 and C.5.2. Here, we briefly
discuss such “active” attacks, focusing on chosen ciphertext attacks (of the strongest type,
known as “a posteriori” or “CCA2”).

Loosely speaking, in a chosen ciphertext attack, the adversary may obtain the de-
cryptions of ciphertexts of its choice, and is deemed successful if it learns something
regarding the plaintext that corresponds to some different ciphertext (see [92, Sec. 5.4.4]).
That is, the adversary is given oracle access to the decryption function corresponding to
the decryption-key in use (and, in the case of private-key schemes, it is also given oracle
access to the corresponding encryption function). The adversary is allowed to query the
decryption oracle on any ciphertext except for the “test ciphertext” (i.e., the very cipher-
text for which it tries to learn something about the corresponding plaintext). It may also
make queries that do not correspond to legitimate ciphertexts, and the answer will be
accordingly (i.e., a special “failure” symbol). Furthermore, the adversary may affect the
selection of the test ciphertext (by specifying a distribution from which the corresponding
plaintext is to be drawn).

Private-key and public-key encryption schemes secure against chosen ciphertext attacks
can be constructed under (almost) the same assumptions that suffice for the construction
of the corresponding passive schemes. Specifically:

Theorem C.13: Assuming the existence of one-way functions, there exist private-
key encryption schemes that are secure against chosen ciphertext attack.

Theorem C.14: Assuming the existence of enhanced15 trapdoor permutations, there
exist public-key encryption schemes that are secure against chosen ciphertext
attack.

Both theorems are proved by constructing encryption schemes in which the adversary’s
gain from a chosen ciphertext attack is eliminated by making it infeasible (for the adver-
sary) to obtain any useful knowledge via such an attack. In the case of private-key schemes
(i.e., Theorem C.13), this is achieved by making it infeasible (for the adversary) to produce
legitimate ciphertexts (other than those explicitly given to it, in response to its request to
encrypt plaintexts of its choice). This, in turn, is achieved by augmenting the ciphertext
with an “authentication tag” that is hard to generate without knowledge of the encryption-
key; that is, we use a message-authentication scheme (as defined in Section C.6). In the
case of public-key schemes (i.e., Theorem C.14), the adversary can certainly generate
ciphertexts by itself, and the aim is to make it infeasible (for the adversary) to produce
legitimate ciphertexts without “knowing” the corresponding plaintext. This, in turn, will
be achieved by augmenting the plaintext with a non-interactive zero-knowledge “proof of
knowledge” of the corresponding plaintext.

Security against chosen ciphertext attack is related to the notion of non-malleability
of the encryption scheme. Loosely speaking, in a non-malleable encryption scheme it is

15Loosely speaking, the enhancement refers to the hardness condition of Definition C.2, and requires that it be
hard to recover f −1

i (y) also when given the coins used to sample y (rather than merely y itself). See [92, Apdx. C.1].

506



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.6. SIGNATURES AND MESSAGE AUTHENTICATION

infeasible for an adversary, given a ciphertext, to produce a valid ciphertext for a related
plaintext (e.g., given a ciphertext of a plaintext 1x , for an unknown x , it is infeasible to
produce a ciphertext to the plaintext 0x). For further discussion, see [92, Sec. 5.4.5].

C.6. Signatures and Message Authentication

Both signature schemes and message authentication schemes are methods for “validating”
data, that is, verifying that the data were approved by a certain party (or set of parties).
The difference between signature schemes and message authentication schemes is that
signatures should be universally verifiable, whereas authentication tags are only required
to be verifiable by parties that are also able to generate them.

Signature schemes: The need to discuss “digital signatures” (cf. [66, 182]) has arisen
with the introduction of computer communication to the business environment (in which
parties need to commit themselves to proposals and/or declarations that they make).
Discussions of “unforgeable signatures” did take place also prior to the computer age,
but the objects of discussion were handwritten signatures (and not digital ones), and the
discussion was not perceived as related to cryptography. Loosely speaking, a scheme for
unforgeable signatures should satisfy the following requirements:

• each user can efficiently produce its own signature on documents of its choice;
• every user can efficiently verify whether a given string is a signature of another (specific)

user on a specific document; but
• it is infeasible to produce signatures of other users to documents they did not sign.

We note that the formulation of unforgeable digital signatures also provides a clear
statement of the essential ingredients of handwritten signatures. The ingredients are each
person’s ability to sign for him/herself, a universally agreed-upon verification procedure,
and the belief (or assertion) that it is infeasible (or at least hard) to forge signatures (i.e.,
produce some other person’s signatures to documents that were not signed by him/her
such that these “unauthentic” signatures are accepted by the verification procedure).

Message authentication schemes. Message authentication is a task related to the setting
considered for encryption schemes, that is, communication over an insecure channel. This
time, we consider an active adversary that is monitoring the channel and may alter the
messages sent over it. The parties communicating through this insecure channel wish
to authenticate the messages they send such that their counterpart can tell an original
message (sent by the sender) from a modified one (i.e., modified by the adversary).
Loosely speaking, a scheme for message authentication should satisfy the following
requirements:

• each of the communicating parties can efficiently produce an authentication tag to any
message of its choice;

• each of the communicating parties can efficiently verify whether a given string is an
authentication tag of a given message; but

• it is infeasible for an external adversary (i.e., a party other than the communicating
parties) to produce authentication tags to messages not sent by the communicating
parties.

507



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

Note that, in contrast to the specification of signature schemes, we do not require universal
verification: Only the designated receiver is required to be able to verify the authentication
tags. Furthermore, we do not require that the receiver cannot produce authentication
tags by itself (i.e., we only require that external parties can not do so). Thus, message
authentication schemes cannot convince a third party that the sender has indeed sent the
information (rather than the receiver having generated it by itself). In contrast, signatures
can be used to convince third parties: In fact, a signature to a document is typically sent
to a second party so that in the future this party may (by merely presenting the signed
document) convince third parties that the document was indeed generated (or rather
approved) by the signer.

C.6.1. Definitions

Both signature schemes and message authentication schemes consist of three efficient
algorithms: key generation, signing, and verification. As in the case of encryption schemes,
the key-generation algorithm, denoted G, is used to generate a pair of corresponding keys;
one is used for signing (via algorithm S) and the other is used for verification (via algorithm
V ). That is, Ss(α) denotes a signature produced by algorithm S on input a signing-key s
and a document α, whereas Vv(α, β) denotes the verdict of the verification algorithm V
regarding the document α and the alleged signature β relative to the verification-key v.
Needless to say, for any pair of keys (s, v) generated by G and for every α, it holds that
Vv(α, Ss(α)) = 1.

The difference between the two types of schemes is reflected in the definition of security.
In the case of signature schemes, the adversary is given the verification-key, whereas in
the case of message authentication schemes, the verification-key (which may equal the
signing-key) is not given to the adversary. Thus, schemes for message authentication
can be viewed as a private-key version of signature schemes. This difference yields
different functionalities (even more than in the case of encryption): In a typical use of a
signature scheme, each user generates a pair of signing- and verification-keys, publicizes
the verification-key and keeps the signing-key secret. Subsequently, each user may sign
documents using its own signing-key, and these signatures are universally verifiable with
respect to its public verification-key. In contrast, message authentication schemes are
typically used to authenticate information sent among a set of mutually trusting parties that
agree on a secret key, which is being used both to produce and to verify authentication-tags.
(Indeed, it is assumed that the mutually trusting parties have generated the key together or
have exchanged the key in a secure way, prior to the communication of information that
needs to be authenticated.)

We focus on the definition of secure signature schemes, and consider very powerful
attacks on the signature scheme as well as a very liberal notion of breaking it. Specifically,
the attacker is allowed to obtain signatures to any message of its choice. One may argue
that in many applications, such a general attack is not possible (because messages to be
signed must have a specific format). Yet, our view is that it is impossible to define a general
(i.e., application-independent) notion of admissible messages, and thus a general/robust
definition of an attack seems to have to be formulated as suggested here. (Note that at
worst, our approach is overly cautious.) Likewise, the adversary is said to be successful if
it can produce a valid signature to any message for which it has not asked for a signature
during its attack. Again, this means that the ability to form signatures to “nonsensical”
messages is also viewed as a breaking of the scheme. Yet, again, we see no way to have a

508



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.6. SIGNATURES AND MESSAGE AUTHENTICATION

general (i.e., application-independent) notion of “meaningful” messages (such that only
forging signatures to them will be considered a breaking of the scheme).

Definition C.15 (secure signature schemes – a sketch): A chosen message attack
is a process that, on input a verification-key, can obtain signatures (relative to the
corresponding signing-key) to messages of its choice. Such an attack is said to
succeed (in existential forgery) if it outputs a valid signature to a message for
which it has not requested a signature during the attack. A signature scheme is
secure (or unforgeable) if every feasible chosen message attack succeeds with at
most negligible probability, where the probability is taken over the initial choice of
the key-pair as well as over the adversary’s actions.

One popular suggestion is signing messages by applying the inverse of a trapdoor permu-
tation, where the trapdoor is used as a signing-key and the permutation itself is used (in
the forward direction) toward verification. We warn that, in general, this scheme does not
satisfy Definition C.15 (e.g., the permutation may be a homomorphism of some group).

C.6.2. Constructions

Secure message authentication schemes can be constructed using pseudorandom functions
(or rather the generalized notion of pseudorandom functions discussed at the end of
Section C.3.3). Specifically, the key-generation algorithm consists of uniformly selecting
a seed s ∈ {0, 1}n for such a function, denoted fs :{0, 1}∗→{0, 1}n , and the (only valid)
tag of message x with respect to the key s is fs(x). As in the case of our private-key
encryption scheme, the proof of security of the current message authentication scheme
consists of two steps:

1. Proving that an idealized version of the scheme, in which one uses a uniformly
selected function F :{0, 1}∗→{0, 1}n , rather than the pseudorandom function fs , is
secure (i.e., unforgeable).

2. Concluding that the real scheme is secure (because otherwise one could distinguish a
pseudorandom function from a truly random one).

Note that this message authentication scheme makes an “extensive use of pseudorandom
functions” (i.e., the pseudorandom function is applied directly to the message, which
may be rather long). More efficient schemes can be constructed either based on a more
restricted use of a pseudorandom function or based on other cryptographic primitives.

Constructing secure signature schemes seems more difficult than constructing message
authentication schemes. Nevertheless, secure signature schemes can be constructed based
on the same assumptions.

Theorem C.16: The following three conditions are equivalent:

1. One-way functions exist.
2. Secure signature schemes exist.
3. Secure message authentication schemes exist.

We stress that, unlike in the case of public-key encryption schemes, the construction
of signature schemes (which may be viewed as a public-key analogue of message

509



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

authentication) does not require a trapdoor property. Three central paradigms used in
the construction of secure signature schemes are the “refreshing” of the “effective”
signing-key, the usage of an “authentication tree,” and the “hashing paradigm” (all to
be discussed in the sequel). In addition to being used in the proof of Theorem C.16, these
three paradigms are of independent interest.

The refreshing paradigm. Introduced in [110], the refreshing paradigm is aimed at
limiting the potential dangers of chosen message attacks. This is achieved by signing the
actual document using a newly (and randomly) generated instance of the signature scheme,
and authenticating (the verification-key of) this random instance with respect to the fixed
and public verification-key.16 Intuitively, the gain in terms of security is that a full-fledged
chosen message attack cannot be launched on a fixed instance of the underlying signature
schemes (i.e., on the fixed verification-key that was published by the user and is known
to the attacker). All that an attacker may obtain (via a chosen message attack on the new
scheme) is signatures, relative to the original signing-key (which is coupled with the fixed
and public verification-key), to random strings (or rather random verification-keys) as well
as additional signatures that are each relative to a random and independently distributed
signing-key (which is coupled with a freshly generated verification-key).

Authentication trees. The security benefits of the refreshing paradigm are amplified when
combining it with the use of authentication trees. The idea is to use the public verification-
key (only) for authenticating several (e.g., two) fresh instances of the signature scheme,
use each of these instances for authenticating several additional fresh instances, and so
on. Thus, we obtain a tree of fresh instances of the basic signature scheme, where each
internal node authenticates its children. We can now use the leaves of this tree for signing
actual documents, where each leaf is used at most once. Thus, a signature to an actual
document consists of

1. a signature to this document authenticated with respect to the verification-key asso-
ciated with some leaf, and

2. a sequence of verification-keys associated with the nodes along the path from the
root to this leaf, where each such verification-key is authenticated with respect to the
verification-key of its parent.

We stress that the same signature, relative to the key of the parent node, is used for au-
thenticating the verification-keys of all its children. Thus, each instance of the signature
scheme is used for signing at most one string (i.e., a single sequence of verification-
keys if the instance resides in an internal node, and an actual document if the instance
resides in a leaf).17 Hence, it suffices to use a signature scheme that is secure as long
as it is applied for legitimately signing a single string. Such signature schemes, called

16That is, consider a basic signature scheme (G, S, V ) used as follows. Suppose that the user U has generated a
key-pair (s, v) ← G(1n), and has placed the verification-key v on a public-file. When a party asks U to sign some
document α, the user U generates a new (“fresh”) key-pair (s′, v′) ← G(1n), signs v′ using the original signing-key
s, signs α using the new signing-key s′, and presents (Ss (v′), v′, Ss′ (α)) as a signature to α. An alleged signature,
(β1, v

′, β2), is verified by checking whether both Vv(v′, β1) = 1 and Vv′ (α, β2) = 1 hold.
17A naive implementation of the foregoing (full-fledged) signature scheme calls for storing in (secure) memory

all the instances of the basic (one-time) signature scheme that are generated throughout the entire signing process
(which refers to numerous documents). However, we note that it suffices to be able to reconstruct the random coins
used for generating each of these instances, and the former can be determined by a pseudorandom function (applied

510



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

one-time signature schemes, are easier to construct than standard signature schemes,
especially if one only wishes to sign strings that are significantly shorter than the signing-
key (resp., than the verification-key). For example, using a one-way function f , we
may let the signing-key consists of a sequence of n pairs of strings, let the correspond-
ing verification-key consist of the corresponding sequence of images of f , and sign
an n-bit long message by revealing the adequate preimages. (That is, the signing-key
consists of a sequence ((s0

1 , s1
1 ), . . . , (s0

n , s1
n )) ∈ {0, 1}2n2

, the corresponding verification-
key is (( f (s0

1 ), f (s1
1 )), . . . , ( f (s0

n ), f (s1
n ))), and the signature of the message σ1 · · · σn is

(sσ1
1 , . . . , sσn

n ).)

The hashing paradigm. Note, however, that in the foregoing authentication-tree, the
instances of the signature scheme (associated with internal nodes) are used for signing
a pair of verification-keys. Thus, we need a one-time signature scheme that can be used
for signing messages that are longer than the verification-key. In order to bridge the gap
between (one-time) signature schemes that are applicable for signing short messages and
schemes that are applicable for signing long messages, we use the hashing paradigm.
This paradigm refers to the common practice of signing documents via a two-stage pro-
cess: First, the actual document is hashed to a (relatively) short string, and next, the
basic signature scheme is applied to the resulting string. This practice is sound pro-
vided that the hashing function belongs to a family of collision-resistant hashing (aka
collision-free hashing) functions. Loosely speaking, the collision-resistant requirement
means that, given a hash function that is randomly selected in such a family, it is in-
feasible to find two different strings that are hashed by this function to the same value.
We also refer the interested reader to a variant of the hashing paradigm that uses the
seemingly weaker notion of a family of universal one-way hash functions (see [171]
or [92, Sec. 6.4.3]).

C.7. General Cryptographic Protocols

The design of secure protocols that implement arbitrary desired functionalities is a major
part of modern cryptography. Taking the opposite perspective, the design of any cryp-
tographic scheme may be viewed as the design of a secure protocol for implementing a
corresponding functionality. Still, we believe that it makes sense to differentiate between
basic cryptographic primitives (which involve little interaction) like encryption and sig-
nature schemes, on the one hand, and general cryptographic protocols, on the other hand.

In this section, we survey general results concerning secure multi-party computations,
where the two-party case is an important special case. In a nutshell, these results assert that
one can construct protocols for securely computing any desirable multi-party functionality.
Indeed, what is striking about these results is their generality, and we believe that the
wonder is not diminished by the (various alternative) conditions under which these results
hold.

A general framework for casting (m-party) cryptographic (protocol) problems consists
of specifying a random process18 that maps m inputs to m outputs. The inputs to the

to the name of the corresponding vertex in the tree). Indeed, the seed of this pseudorandom function will be part of
the signing-key of the resulting (full-fledged) signature scheme.

18That is, we consider the secure evaluation of randomized functionalities, rather than “only” the secure evaluation
of functions. Specifically, we consider an arbitrary (randomized) process F that on input (x1, . . . , xm ), first selects

511



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

process are to be thought of as the local inputs of m parties, and the m outputs are their
corresponding local outputs. The random process describes the desired functionality. That
is, if the m parties were to trust each other (or trust some external party), then they could
each send their local input to the trusted party, who would compute the outcome of the
process and send to each party the corresponding output. A pivotal question in the area of
cryptographic protocols is to what extent this (imaginary) trusted party can be “emulated”
by the mutually distrustful parties themselves.

The results surveyed in this section describe a variety of models in which such an
“emulation” is possible. The models vary by the underlying assumptions regarding the
communication channels, numerous parameters governing the extent of adversarial be-
havior, and the desired level of emulation of the trusted party (i.e., level of “security”). Our
treatment refers to the security of stand-alone executions. The preservation of security in
an environment in which many executions of many protocols are attacked is beyond the
scope of this section, and the interested reader is referred to [92, Sec. 7.7.2].

C.7.1. The Definitional Approach and Some Models

Before describing the aforementioned results, we further discuss the notion of “emu-
lating a trusted party,” which underlies the definitional approach to secure multi-party
computation. This approach follows the simulation paradigm (cf. Section C.4.1), which
deems a scheme to be secure if whatever a feasible adversary can obtain after attacking
it is also feasibly attainable by a benign behavior. In the general setting of multi-party
computation, we compare the effect of adversaries that participate in the execution of the
actual protocol to the effect of adversaries that participate in an imaginary execution of a
trivial (ideal) protocol for computing the desired functionality with the help of a trusted
party. If whatever the adversaries can feasibly obtain in the real setting can also be feasibly
obtained in the ideal setting, then the actual protocol “emulates the ideal setting” (i.e.,
“emulates a trusted party”), and thus is deemed secure. This approach can be applied in
a variety of models, and is used to define the goals of security in these models.19 We first
discuss some of the parameters used in defining various models, and next demonstrate the
application of the foregoing approach in two important cases. For further details, see [92,
Sec. 7.2 and 7.5.1].

C.7.1.1. Some Parameters Used in Defining Security Models
The following parameters are described in terms of the actual (or real) computation.
In some cases, the corresponding definition of security is obtained by imposing some

at random (depending only on �
def=

∑m
i=1
|xi |) an m-ary function f , and then outputs the m-tuple f (x1, . . . , xm ) =

( f1(x1, . . . , xm ), . . . , fm (x1, . . . , xm )). In other words, F(x1, . . . , xm ) = F ′(r, x1, . . . , xm ), where r is uniformly
selected in {0, 1}�′ (with �′ = poly(�)), and F ′ is a function mapping (m + 1)-long sequences to m-long sequences.

19A few technical comments are in place. Firstly, we assume that the inputs of all parties are of the same length.
We comment that as long as the lengths of the inputs are polynomially related, the foregoing convention can be
enforced by padding. On the other hand, some length restriction is essential for the security results, because in general
it is impossible to hide all information regarding the length of the inputs to a protocol. Secondly, we assume that the
desired functionality is computable in probabilistic polynomial time, because we wish the secure protocol to run in
probabilistic polynomial time (and a protocol cannot be more efficient than the corresponding centralized algorithm).
Clearly, the results can be extended to functionalities that are computable within any given (time-constructible) time
bound, using adequate padding.

512



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

restrictions or provisions on the ideal model.20 In all cases, the desired notion of security
is defined by requiring that for any adequate adversary in the real model, there exists
a corresponding adversary in the corresponding ideal model that obtains essentially the
same impact (as the real-model adversary).

The communication channels. Most works in cryptography assume that communication
is synchronous and that point-to-point channels exist between every pair of processors (i.e.,
a complete network). It is further assumed that the adversary cannot modify (or omit or
insert) messages sent over any communication channel that connects honest parties. In the
standard model, the adversary may tap all communication channels, and thus obtain any
message sent between honest parties. In an alternative model, called the private-channel
model, one postulates that the adversary cannot obtain messages sent between any pair of
honest parties. Indeed, in some cases, the private-channel model can be emulated by the
standard model (e.g., by using a secure encryption scheme).

Setup assumptions. Unless stated differently, no setup assumptions are made (ex-
cept for the obvious assumption that all parties have identical copies of the protocol’s
program).

Computational limitations. Typically, the focus is on computationally bounded ad-
versaries (e.g., probabilistic polynomial-time adversaries). However, the private-channel
model allows for the (meaningful) consideration of computationally unbounded adver-
saries.21

Restricted adversarial behavior. The parameters of the model include questions like
whether the adversary is “active” or “passive” (i.e., whether a dishonest party takes
active steps to disrupt the execution of the protocol or merely gathers information) and
whether or not the adversary is “adaptive” (i.e., whether the set of dishonest parties
is fixed before the execution starts or is adaptively chosen by an adversary during the
execution).

Restricted notions of security. One important example is the willingness to tolerate
“unfair” protocols in which the execution can be suspended (at any time) by a dishonest
party, provided that it is detected doing so. We stress that in case the execution is suspended,
the dishonest party does not obtain more information than it could have obtained when
not suspending the execution. (What may happen is that the honest parties will not obtain
their desired outputs, but will detect that the execution was suspended.) We stress that

20For example, in the case of two-party computation (see §C.7.1.3), secure computation is possible only if
premature termination is not considered a breach of security. In that case, the suitable security definition is obtained
(via the simulation paradigm) by allowing (an analogue of) premature termination in the ideal model.

21We stress that, also in the case of computationally unbounded adversaries, security should be defined by requiring
that, for every real adversary, whatever the adversary can compute after participating in the execution of the actual
protocol is computable within comparable time by an imaginary adversary participating in an imaginary execution of
the trivial ideal protocol (for computing the desired functionality with the help of a trusted party). That is, although
no computational restrictions are made on the real-model adversary, it is required that the ideal-model adversary that
obtains the same impact does so within comparable time (i.e., within time that is polynomially related to the running
time of the real-model adversary being simulated).

513



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

the motivation for this restricted model is the impossibility of obtaining general secure
two-party computation in the unrestricted model.

Upper bounds on the number of dishonest parties. These are assumed in some models,
when required. For example, in some models, secure multi-party computation is possible
only if a majority of the parties is honest.

C.7.1.2. Example: Multi-party Protocols with Honest Majority
Here, we consider an active, non-adaptive, and computationally bounded adversary, and
do not assume the existence of private channels. Our aim is to define multi-party protocols
that remain secure provided that the honest parties are in the majority. (The reason for
requiring an honest majority will be discussed at the end of this subsection.)

We first observe that in any multi-party protocol, each party may change its local input
before even entering the execution of the protocol. However, this is also unavoidable when
the parties utilize a trusted party. Consequently, such an effect of the adversary on the
real execution (i.e., modification of its own input prior to entering the actual execution)
is not considered a breach of security. In general, whatever cannot be avoided when the
parties utilize a trusted party is not considered a breach of security. We wish secure
protocols (in the real model) to suffer only from whatever is also unavoidable when
the parties utilize a trusted party. Thus, the basic paradigm underlying the definitions
of secure multi-party computations amounts to requiring that the only situations that
may occur in the real execution of a secure protocol are those that can also occur in
a corresponding ideal model (where the parties may employ a trusted party). In other
words, the “effective malfunctioning” of parties in secure protocols is restricted to what
is postulated in the corresponding ideal model.

In light of the foregoing, we start by defining an ideal model (or rather the misbehavior
allowed in it). Since we are interested in executions in which the majority of parties are
honest, we consider an ideal model in which any minority group (of the parties) may
collude as follows:

1. First, the members of this dishonest minority share their original inputs and decide
together on replaced inputs to be sent to the trusted party. (The other parties send their
respective original inputs to the trusted party.)

2. Upon receiving inputs from all parties, the trusted party determines the corresponding
outputs and sends them to the corresponding parties. (We stress that the information
sent between the honest parties and the trusted party is not seen by the dishonest
colluding minority.)

3. Upon receiving the output-message from the trusted party, each honest party outputs
it locally, whereas the members of the dishonest minority share the output-messages
and determine their local outputs based on all they know (i.e., their initial inputs and
their received output-messages).

A secure multi-party computation with honest majority is required to emulate this ideal
model. That is, the effect of any feasible adversary that controls a minority of the parties
in a real execution of such a (real) protocol can be essentially simulated by a (different)
feasible adversary that controls the corresponding parties in the ideal model.

Definition C.17 (secure protocols – a sketch): Let f be an m-ary functionality and
� be an m-party protocol operating in the real model.

514



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

• For a real-model adversary A, controlling some minority of the parties (and
tapping all communication channels), and an m-sequence x, we denote by
REAL�,A(x) the sequence of m outputs resulting from the execution of � on
input x under the attack of the adversary A.

• For an ideal-model adversary A′, controlling some minority of the parties, and
an m-sequence x, we denote by IDEAL f,A′(x) the sequence of m outputs resulting
from the foregoing three-step ideal process, when applied to input x under the
attack of the adversary A′ and when the trusted party employs the functionality f .

We say that � securely implements f with honest majority if for every feasible real-
model adversary A, controlling some minority of the parties, there exists a feasible
ideal-model adversary A′, controlling the same parties, such that the probability
ensembles {REAL�,A(x)}x and {IDEAL f,A′(x)}x are computationally indistinguishable
(as in Definition C.5).

Thus, security means that the effect of each minority group in a real execution of a secure
protocol is “essentially restricted” to replacing its own local inputs (independently of the
local inputs of the majority parties) before the protocol starts, and replacing its own local
outputs (depending only on its local inputs and outputs) after the protocol terminates.
(We stress that in the real execution the minority parties do obtain additional pieces of
information; yet in a secure protocol they gain nothing from these additional pieces of
information, because they can actually reproduce those by themselves.)

The fact that Definition C.17 refers to a model without private channels is reflected in the
fact that our (sketchy) definition of the real-model adversary allowed it to tap all channels,
which in turn effects the set of possible ensembles {REAL�,A(x)}x . When defining security
in the private-channel model, the real-model adversary is not allowed to tap channels
between honest parties, and this again effects the possible ensembles {REAL�,A(x)}x . On
the other hand, when defining security with respect to passive adversaries, both the scope
of the real-model adversaries and the scope of the ideal-model adversaries change. In the
real-model execution, all parties follow the protocol but the adversary may alter the output
of the dishonest parties arbitrarily depending on their intermediate internal states during
the entire execution. In the corresponding ideal-model, the adversary is not allowed to
modify the inputs of dishonest parties (in Step 1), but is allowed to modify their outputs
(in Step 3).

We comment that a definition analogous to Definition C.17 can also be presented
in the case that the dishonest parties are not in the minority. In fact, such a definition
seems more natural, but the problem is that such a definition cannot be satisfied. That
is, most (natural) functionalities do not have protocols for computing them securely in
the case that at least half of the parties are dishonest and employ an adequate adversarial
strategy. This follows from an impossibility result regarding two-party computation, which
essentially asserts that there is no way to prevent a party from prematurely suspending the
execution. On the other hand, secure multi-party computation with a dishonest majority
is possible if premature suspension of the execution is not considered a breach of security
(see §C.7.1.3).

C.7.1.3. Another Example: Two-Party Protocols Allowing Abort
In light of the last paragraph, we now consider multi-party computations in which pre-
mature suspension of the execution is not considered a breach of security. For simplicity,

515



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

we focus on the special case of two-party computations. (As in §C.7.1.2, we consider a
non-adaptive, active, and computationally bounded adversary.)

Intuitively, in any two-party protocol, each party may suspend the execution at any
point in time, and furthermore it may do so as soon as it learns the desired output. Thus,
if the output of each party depends on the inputs of both parties, then it is always possible
for one of the parties to obtain the desired output while preventing the other party from
fully determining its own output.22 The same phenomenon occurs even in the case that
the two parties just wish to generate a common random value. In order to account for
this phenomenon, when considering active adversaries in the two-party setting, we do not
consider such premature suspension of the execution a breach of security. Consequently,
we consider an ideal model in which each of the two parties may “shut down” the trusted
(third) party at any point in time. In particular, this may happen after the trusted party
has supplied the outcome of the computation to one party but before it has supplied the
outcome to the other party. Thus, an execution in the corresponding ideal model proceeds
as follows:

1. Each party sends its input to the trusted party, where the dishonest party may re-
place its input or send no input at all (which can be treated as sending a default
value).

2. Upon receiving inputs from both parties, the trusted party determines the correspond-
ing pair of outputs, and sends the first output to the first party.

3. If the first party is dishonest, then it may instruct the trusted party to halt; otherwise
it always instructs the trusted party to proceed. If instructed to proceed, the trusted
party sends the second output to the second party.

4. Upon receiving the output-message from the trusted party, an honest party outputs
it locally, whereas a dishonest party may determine its output based on all it knows
(i.e., its initial input and its received output).

A secure two-party computation allowing abort is required to emulate this ideal model.
That is, as in Definition C.17, security is defined by requiring that for every feasible real-
model adversary A, there exists a feasible ideal-model adversary A′, controlling the same
party, such that the probability ensembles representing the corresponding (real and ideal)
executions are computationally indistinguishable. This means that each party’s “effective
malfunctioning” in a secure protocol is restricted to supplying an initial input of its choice
and aborting the computation at any point in time. (Needless to say, the choice of the
initial input of each party may not depend on the input of the other party.)

We mention that an alternative way of dealing with the problem of premature suspension
of execution (i.e., abort) is to restrict the attention to single-output functionalities, that is,
functionalities in which only one party is supposed to obtain an output. The definition of
secure computation of such functionalities can be made identical to Definition C.17, with
the exception that no restriction is made on the set of dishonest parties (and in particular
one may consider a single dishonest party in the case of two-party protocols). For further
details, see [92, Sec. 7.2.3].

22In contrast, in the case of an honest majority (cf., §C.7.1.2), the honest party that fails to obtain its output is
not alone. It may seek help from the other honest parties, which (being in the majority and) by joining forces can do
things that dishonest minorities cannot do: See §C.7.3.2.

516



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

C.7.2. Some Known Results

We next list some of the models for which general secure multi-party computation is known
to be attainable (i.e., models in which one can construct secure multi-party protocols for
computing any desired functionality). We mention that the first results of this type were
obtained by Goldreich, Micali, Wigderson, and Yao [100, 241, 101].

In the standard channel model. Assuming the existence of enhanced 23 trapdoor per-
mutations, secure multi-party computation is possible in the following three models
(cf. [100, 241, 101] and details in [92, Chap. 7]):

1. Passive adversaries, for any number of dishonest parties.
2. Active adversaries that may control only a minority of the parties.
3. Active adversaries, for any number of dishonest parties, provided that suspension of

execution is not considered a violation of security (cf. §C.7.1.3).

In all these cases, the adversaries are computationally bounded and non-adaptive. On
the other hand, the adversaries may tap the communication lines between honest parties
(i.e., we do not assume “private channels” here). The results for active adversaries as-
sume a broadcast channel. Indeed, the latter can be implemented (while tolerating any
number of dishonest parties) using a signature scheme and assuming that each party
knows (or can reliably obtain) the verification-key corresponding to each of the other
parties.

In the private channels model. Making no computational assumptions and allowing
computationally unbounded adversaries, but assuming private channels, secure multi-
party computation is possible in the following two models (cf. [34, 53]):

1. Passive adversaries that may control only a minority of the parties.
2. Active adversaries that may control only less than one-third of the parties.

In both cases the adversaries may be adaptive.

C.7.3. Construction Paradigms and Two Simple Protocols

We briefly sketch a couple of paradigms used in the construction of secure multi-party pro-
tocols. We focus on the construction of secure protocols for the model of computationally
bounded and non-adaptive adversaries [100, 241, 101]. These constructions proceed in
two steps (see details in [92, Chap. 7]): First, a secure protocol is presented for the model
of passive adversaries (for any number of dishonest parties), and next, such a protocol is
“compiled” into a protocol that is secure in one of the two models of active adversaries
(i.e., either in a model allowing the adversary to control only a minority of the parties or in
a model in which premature suspension of the execution is not considered a violation of
security). These two steps are presented in the following two corresponding subsections,
in which we also present two relatively simple protocols for two specific tasks, which in
turn are used extensively in the general protocols.

Recall that in the model of passive adversaries, all parties follow the prescribed protocol,
but at termination, the adversary may alter the outputs of the dishonest parties depending
on their intermediate internal states (during the entire execution). We refer to protocols

23See footnote 15.

517



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

that are secure in the model of passive (resp., active) adversaries by the term passively
secure (resp., actively secure).

C.7.3.1. Passively Secure Computation with Shares
For the sake of simplicity, we consider here only the special case of deterministic m-ary
functionalities (i.e., functions). We assume that the m parties hold a circuit for computing
the value of the function on inputs of the adequate length, and that the circuit contains
only and- and not-gates. The key idea is having each party “secretly share” its input
with everybody else, and having the parties “secretly transform” shares of the input wires
of the circuit into shares of the output wires of the circuit, thus obtaining shares of the
outputs (which allows for the reconstruction of the actual outputs). The value of each wire
in the circuit is shared such that all shares yield the value, whereas lacking even one of
the shares keeps the value totally undetermined. That is, we use a simple secret sharing
scheme such that a bit b is shared by a random sequence of m bits that sum up to b mod 2.
First, each party shares each of its input-bits with all parties (by secretly sending each
party a random value and setting its own share accordingly). Next, all parties jointly scan
the circuit from its input wires to its output wires, processing each gate as follows:

• When encountering a gate, the parties already hold shares of the values of the wires
entering the gate, and their aim is to obtain shares of the value of the wires exiting the
gate.

• For a not-gate this is easy: The first party just flips the value of its share, and all other
parties maintain their shares.

• Since an and-gate corresponds to multiplication modulo 2, the parties need to securely
compute the following randomized functionality (where the xi ’s denote shares of one
entry-wire, the yi ’s denote shares of the second entry-wire, the zi ’s denote shares of
the exit-wire, and the shares indexed by i are held by Party i):

((x1, y1), . . . , (xm, ym)) !→ (z1, . . . , zm) , where (C.1)
m∑

i=1

zi =
(

m∑
i=1

xi

)
·
(

m∑
i=1

yi

)
.

(C.2)

That is, the zi ’s are random subject to Eq. (C.2).

Finally, the parties send their shares of each circuit-output wire to the designated party,
which reconstructs the value of the corresponding bit. Thus, the parties have propagated
shares of the circuit-input wires into shares of the circuit-output wires, by repeatedly
conducting a passively secure computation of the m-ary functionality of Eq. (C.1) and
(C.2). That is, securely evaluating the entire (arbitrary) circuit “reduces” to securely
conducting a specific (very simple) multi-party computation. But things get even simpler:
The key observation is that(

m∑
i=1

xi

)
·
(

m∑
i=1

yi

)
=

m∑
i=1

xi yi +
∑

1≤i< j≤m

(
xi y j + x j yi

)
. (C.3)

Thus, the m-ary functionality of Eq. (C.1) and (C.2) can be computed as follows (where
all arithmetic operations are mod 2):

1. Each Party i locally computes zi,i
def= xi yi .

518



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

2. Next, each pair of parties (i.e., Parties i and j) securely compute random shares of
xi y j + yi x j . That is, Parties i and j (holding (xi , yi ) and (x j , y j ), respectively), need
to securely compute the randomized two-party functionality ((xi , yi ), (x j , y j )) !→
(zi, j , z j,i ), where the z’s are random subject to zi, j + z j,i = xi y j + yi x j . Equivalently,
Party j uniformly selects z j,i ∈ {0, 1}, and Parties i and j securely compute the
following deterministic functionality

((xi , yi ), (x j , y j , z j,i )) !→ (z j,i + xi y j + yi x j , λ), (C.4)

where λ denotes the empty string.
3. Finally, for every i = 1, . . . , m, the sum

∑m
j=1 zi, j yields the desired share of Party i .

The foregoing construction is analogous to a construction that was outlined in [101]. A
detailed description and full proofs appear in [92, Sec. 7.3.4 and 7.5.2].

The foregoing construction “reduces” the passively secure computation of any m-ary
functionality to the implementation of the simple 2-ary functionality of Eq. (C.4). The
latter can be implemented in a passively secure manner by using a 1-out-of-4 Oblivious
Transfer. Loosely speaking, a 1-out-of-k Oblivious Transfer is a protocol enabling one
party to obtain one out of k secrets held by another party, without the second party
learning which secret was obtained by the first party. That is, it allows a passively secure
computation of the two-party functionality

(i, (s1, . . . , sk)) !→ (si , λ). (C.5)

Note that any function f : [k]× {0, 1}∗ → {0, 1}∗ × {λ} can be computed in a pas-
sively secure manner by invoking a 1-out-of-k Oblivious Transfer on inputs i and
( f (1, y), . . . , f (k, y)), where i (resp., y) is the initial input of the first (resp., second)
party.

A passively secure 1-out-of-k Oblivious Transfer. Using a collection of enhanced trap-
door permutations, { fα : Dα → Dα}α∈I and a corresponding hard-core predicate b, we
outline a passively secure implementation of the functionality of Eq. (C.5), when restricted
to single-bit secrets.

Inputs: The first party, hereafter called the receiver, has input i ∈ {1, 2, . . . , k}. The
second party, called the sender, has input (σ1, σ2, . . . , σk) ∈ {0, 1}k .

Step S1: The sender selects at random a permutation fα along with a corresponding
trapdoor, denoted t , and sends the permutation fα (i.e., its index α) to the receiver.

Step R1: The receiver uniformly and independently selects x1, . . . , xk ∈ Dα , sets yi =
fα(xi ) and y j = x j for every j �= i , and sends (y1, y2, . . . , yk) to the sender.

Thus, the receiver knows f −1
α (yi ) = xi , but cannot predict b( f −1

α (y j )) for any
j �= i . Needless to say, the last assertion presumes that the receiver follows the
protocol (i.e., we only consider passive-security).

Step S2: Upon receiving (y1, y2, . . . , yk), using the inverting-with-trapdoor algorithm
and the trapdoor t , the sender computes z j = f −1

α (y j ), for every j ∈ {1, . . . , k}.
It sends the k-tuple (σ1 ⊕ b(z1), σ2 ⊕ b(z2), . . . , σk ⊕ b(zk)) to the receiver.

Step R2: Upon receiving (c1, c2, . . . , ck), the receiver locally outputs ci ⊕ b(xi ).

We first observe that this protocol correctly computes 1-out-of-k Oblivious Transfer;
that is, the receiver’s local output (i.e., ci ⊕ b(xi )) indeed equals (σi ⊕ b( f −1

α ( fα(xi ))))⊕
b(xi ) = σi . Next, we offer some intuition as to why this protocol constitutes a passively

519



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

secure implementation of 1-out-of-k Oblivious Transfer. Intuitively, the sender gets no
information from the execution because, for any possible value of i , the sender sees the
same distribution, specifically, a sequence of k uniformly and independently distributed
elements of Dα . (Indeed, the key observation is that applying fα to a uniformly distributed
element of Dα yields a uniformly distributed element of Dα .) As for the receiver, intu-
itively, it gains no computational knowledge from the execution because, for j �= i , the
only information that the receiver has regarding σ j is the triple (α, x j , σ j ⊕ b( f −1

α (x j ))),
where x j is uniformly distributed in Dα , and from this information it is infeasible to
predict σ j better than by a random guess.24 (See [92, Sec. 7.3.2] for a detailed proof of
security.)

C.7.3.2. From passively Secure Protocols to Actively Secure Ones
We show how to transform any passively secure protocol into a corresponding actively
secure protocol. The communication model in both protocols consists of a single broadcast
channel. Note that the messages of the original protocol may be assumed to be sent over a
broadcast channel, because the adversary may see them anyhow (by tapping the point-to-
point channels), and because a broadcast channel is trivially implementable in the case of
passive adversaries. As for the resulting actively secure protocol, the broadcast channel
it uses can be implemented via an (authenticated) Byzantine Agreement protocol, thus
providing an emulation of this model on the standard point-to-point model (in which a
broadcast channel does not exist). We mention that authenticated Byzantine Agreement
is typically implemented using a signature scheme (and assuming that each party knows
the verification-key corresponding to each of the other parties).

Turning to the transformation itself, the main idea (mentioned in §C.4.3.2) is using
zero-knowledge proofs in order to force parties to behave in a way that is consistent
with the (passively secure) protocol. Actually, we need to confine each party to a unique
consistent behavior (i.e., according to some fixed local input and a sequence of coin
tosses), and to guarantee that a party cannot fix its input (and/or its coin tosses) in a way
that depends on the inputs (and/or coin tosses) of honest parties. Thus, some preliminary
steps have to be taken before the step-by-step emulation of the original protocol may start.
Specifically, the compiled protocol (which, like the original protocol, is executed over a
broadcast channel) proceeds as follows:

1. Committing to the local input: Prior to the emulation of the original protocol, each
party commits to its input (using a commitment scheme as defined in §C.4.3.1).
In addition, using a zero-knowledge proofs-of-knowledge (see Section 9.2.3), each
party also proves that it knows its own input; that is, it proves that it can decommit
to the commitment it sent. (These zero-knowledge proofs-of-knowledge prevent dis-
honest parties from setting their inputs in a way that depends on inputs of honest
parties.)

2. Generation of local random-tapes: Next, all parties jointly generate a sequence of
random bits for each party such that only this party knows the outcome of the random
sequence generated for it, and everybody else gets a commitment to this outcome.
These sequences will be used as the random-inputs (i.e., sequence of coin tosses)

24The latter intuition presumes that sampling Dα is trivial (i.e., that there is an easily computable correspondence
between the coins used for sampling and the resulting sample), whereas in general the coins used for sampling may
be hard to compute from the corresponding outcome. This is the reason that an enhanced hardness assumption is used
in the general analysis of the foregoing protocol.

520



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

C.7. GENERAL CRYPTOGRAPHIC PROTOCOLS

for the original protocol. Each bit in the random sequence generated for Party X
is determined as the exclusive-or of the outcomes of instances of an (augmented)
coin-tossing protocol (cf. [92, Sec. 7.4.3.5]) that Party X plays with each of the
other parties. The latter protocol provides the other parties with a commitment to the
outcome obtained by Party X.

3. Effective prevention of premature termination: In addition, when compiling (the pas-
sively secure protocol to an actively secure protocol) for the model that allows the
adversary to control only a minority of the parties, each party shares its input and its
random-input with all other parties using a “Verifiable Secret Sharing” (VSS) protocol
(cf. [92, Sec. 7.5.5.1]). Loosely speaking, a VSS protocol allows for sharing a secret
in a way that enables each participant to verify that the share it got fits the publicly
posted information, which includes commitments to all shares, where a sufficient
number of the latter allow for the efficient recovery of the secret. The use of VSS
guarantees that if Party X prematurely suspends the execution, then the honest parties
can together reconstruct all Party X’s secrets and carry on the execution while playing
its role. This step effectively prevents premature termination, and is not needed in a
model that does not consider premature termination a breach of security.

4. Step-by-step emulation of the original protocol: Once all the foregoing steps are
completed, the new protocol emulates the steps of the original protocol. In each step,
each party augments the message determined by the original protocol with a zero-
knowledge proof that asserts that the message was indeed computed correctly. Recall
that the next message (as determined by the original protocol) is a function of the
sender’s own input, its random-input, and the messages it has received so far (where
the latter are known to everybody because they were sent over a broadcast channel).
Furthermore, the sender’s input is determined by its commitment (as sent in Step 1),
and its random-input is similarly determined (in Step 2). Thus, the next message (as
determined by the original protocol) is a function of publicly known strings (i.e., the
said commitments as well as the other messages sent over the broadcast channel).
Moreover, the assertion that the next message was indeed computed correctly is an
NP-assertion, and the sender knows a corresponding NP-witness (i.e., its own input
and random-input as well as the corresponding decommitment information). Thus,
the sender can prove in zero-knowledge (to each of the other parties) that the message
it is sending was indeed computed according to the original protocol.

The foregoing compilation was first outlined in [100, 101]. A detailed description and full
proofs appear in [92, Sec. 7.4 and 7.5].

A secure coin-tossing protocol. Using a commitment scheme, we outline a secure (or-
dinary, as opposed to augmented) coin-tossing protocol.

Step C1: Party 1 uniformly selects σ ∈ {0, 1} and sends Party 2 a commitment, denoted
c, to σ .

Step C2: Party 2 uniformly selects σ ′ ∈ {0, 1}, and sends σ ′ to Party 1.
Step C3: Party 1 outputs the value σ ⊕ σ ′, and sends σ along with the decommitment

information, denoted d, to Party 2.
Step C4: Party 2 checks whether or not (σ, d) fits the commitment c it has obtained in

Step 1. It outputs σ ⊕ σ ′ if the check is satisfied and halts with output ⊥ otherwise,
where ⊥ indicates that Party 1 has effectively aborted the protocol prematurely.

521



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX C

Intuitively, Steps C1–C2 may be viewed as “tossing a coin into the well.” At this point
(i.e., after Step C2), the value of the coin is determined (essentially as a random value),
but only one party (i.e., Party 1) “can see” (i.e., knows) this value. Clearly, if both parties
are honest, then they both output the same uniformly chosen bit, recovered in Steps C3
and C4, respectively. Intuitively, each party can guarantee that the outcome is uniformly
distributed, and Party 1 can cause premature termination by improper execution of Step 3.
Formally, we have to show how the effect of any real-model adversary can be simulated
by an adequate ideal-model adversary (which is allowed premature termination). This is
done in [92, Sec. 7.4.3.1].

C.7.4. Concluding Remarks

In Sections C.7.1–C.7.2 we have mentioned numerous definitions and results regarding
secure multi-party protocols, where some of these definitions are incomparable to others
(i.e., they neither imply the others nor are implied by them). For example, in §C.7.1.2
and §C.7.1.3, we have presented two alternative definitions of “secure multi-party proto-
cols,” one requiring an honest majority and the other allowing abort. These definitions are
incomparable and there is no generic reason to prefer one over the other. Actually, as men-
tioned in §C.7.1.2, one could formulate a natural definition that implies both definitions
(i.e., waiving the bound on the number of dishonest parties in Definition C.17). Indeed,
the resulting definition is free of the annoying restrictions that were introduced in each
of the two aforementioned definitions; the “only” problem with the resulting definition is
that it cannot be satisfied (in general). Thus, for the first time in this appendix, we have
reached a situation in which a natural (and general) definition cannot be satisfied, and we
are forced to choose between two weaker alternatives, where each of these alternatives
carries fundamental disadvantages.

In general, Section C.7 carries a stronger flavor of compromise (i.e., recognizing
inherent limitations and settling for a restricted meaningful goal) than previous sections.
In contrast to the impression given in other parts of this appendix, it turns out that we
cannot get all that we may want (and this is without mentioning the problems involved in
preserving security under concurrent composition; cf. [92, Sec. 7.7.2]). Instead, we should
study the alternatives, and go for the one that best suits our real needs.

Indeed, as stated in Section C.1, the fact that we can define a cryptographic goal does
not mean that we can satisfy it as defined. In case we cannot satisfy the initial definition,
we should search for relaxations that can be satisfied. These relaxations should be defined
in a clear manner such that it would be obvious what they achieve (and what they fail to
achieve). Doing so will allow a sound choice of the relaxation to be used in a specific
application.

522



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Probabilistic Preliminaries and
Advanced Topics in Randomization

What is this? Chicken Curry and Seafood Salad?
Fine, but in the same plate? This is disgusting!

Johan Håstad at Grendel’s, Cambridge (1985)

Summary: This appendix lumps together some preliminaries regarding
probability theory and some advanced topics related to the role and use
of randomness in computation. Needless to say, each of these topics
appears in a separate section.

The probabilistic preliminaries include our conventions regarding
random variables, which are used throughout the book. Also included are
overviews of three useful probabilistic inequalities: Markov’s Inequality,
Chebyshev’s Inequality, and the Chernoff Bound.

The advanced topics include hashing, sampling, and randomness
extraction. For hashing, we describe constructions of pairwise (and t-
wise independent) hashing functions and (a few variants of) the Leftover
Hashing Lemma (used a few times in the main text). We then review
the “complexity of sampling”: that is, the number of samples and the
randomness complexity involved in estimating the average value of an
arbitrary function defined over a huge domain. Finally, we provide an
overview on the question of extracting almost-perfect randomness from
sources of weak (or defected) randomness.

D.1. Probabilistic Preliminaries

Probability plays a central role in Complexity Theory (see, for example, Chapters 6–10).
We assume that the reader is familiar with the basic notions of probability theory. In this
section, we merely present the probabilistic notations that are used throughout the book
and three useful probabilistic inequalities.

D.1.1. Notational Conventions

Throughout the entire book we refer only to discrete probability distributions. Specifically,
the underlying probability space consists of the set of all strings of a certain length �,
taken with uniform probability distribution. That is, the sample space is the set of all
�-bit long strings, and each such string is assigned probability measure 2−�. Traditionally,

523



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

random variables are defined as functions from the sample space to the reals. Abusing the
traditional terminology, we also use the term random variable when referring to functions
mapping the sample space into the set of binary strings. We often do not specify the
probability space, but rather talk directly about random variables. For example, we may say
that X is a random variable assigned values in the set of all strings such that Pr[X=00] = 1

4
and Pr[X=111] = 3

4 . (Such a random variable may be defined over the sample space
{0, 1}2, so that X (11) = 00 and X (00) = X (01) = X (10) = 111.) One important case of
a random variable is the output of a randomized process (e.g., a probabilistic polynomial-
time algorithm, as in Section 6.1).

All our probabilistic statements refer to random variables that are defined beforehand.
Typically, we may write Pr[ f (X )=1], where X is a random variable defined beforehand
(and f is a function). An important convention is that all occurrences of the same symbol
in a probabilistic statement refer to the same (unique) random variable. Hence, if B(·, ·)
is a Boolean expression depending on two variables, and X is a random variable, then
Pr[B(X, X )] denotes the probability that B(x, x) holds when x is chosen with probability
Pr[X= x]. For example, for every random variable X , we have Pr[X= X ] = 1. We stress
that if we wish to discuss the probability that B(x, y) holds when x and y are chosen
independently with identical probability distribution, then we will define two independent
random variables each with the same probability distribution. Hence, if X and Y are
two independent random variables, then Pr[B(X, Y )] denotes the probability that B(x, y)
holds when the pair (x, y) is chosen with probability Pr[X= x] · Pr[Y = y]. For example,
for every two independent random variables, X and Y , we have Pr[X=Y ] = 1 only if
both X and Y are trivial (i.e., assign the entire probability mass to a single string).

Throughout the entire book, Un denotes a random variable uniformly distributed over
the set of all strings of length n. Namely, Pr[Un=α] equals 2−n if α ∈ {0, 1}n and equals 0
otherwise. We often refer to the distribution of Un as the uniform distribution (neglecting to
qualify that it is uniform over {0, 1}n). In addition, we occasionally use random variables
(arbitrarily) distributed over {0, 1}n or {0, 1}�(n), for some function � :N→N. Such random
variables are typically denoted by Xn , Yn , Zn , and so on. We stress that in some cases Xn

is distributed over {0, 1}n , whereas in other cases it is distributed over {0, 1}�(n), for some
function � (which is typically a polynomial). We often talk about probability ensembles,
which are infinite sequences of random variables {Xn}n∈N such that each Xn ranges over
strings of length bounded by a polynomial in n.

Statistical difference. The statistical distance (aka variation distance) between the ran-
dom variables X and Y is defined as

1

2
·
∑

v

|Pr[X = v]− Pr[Y = v]| = max
S
{Pr[X ∈ S]− Pr[Y ∈ S]}. (D.1)

We say that X is δ-close (resp., δ-far) to Y if the statistical distance between them is at
most (resp., at least) δ.

D.1.2. Three Inequalities

The following probabilistic inequalities are very useful. These inequalities refer to random
variables that are assigned real values and provide upper bounds on the probability that
the random variable deviates from its expectation.

524



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.1. PROBABILISTIC PRELIMINARIES

D.1.2.1. Markov’s Inequality
The most basic inequality is Markov’s Inequality, which applies to any random variable
with bounded maximum or minimum value. For simplicity, this inequality is stated for
random variables that are lower-bounded by zero, and reads as follows: Let X be a
non-negative random variable and v be a non-negative real number. Then

Pr [X≥v] ≤ E(X )

v
(D.2)

Equivalently, Pr[X ≥ r · E(X )] ≤ 1
r . The proof amounts to the following sequence:

E(X ) =
∑

x

Pr[X= x] · x

≥
∑
x<v

Pr[X= x] · 0+
∑
x≥v

Pr[X= x] · v

= Pr[X≥v] · v

D.1.2.2. Chebyshev’s Inequality
Using Markov’s Inequality, one gets a potentially stronger bound on the deviation of a
random variable from its expectation. This bound, called Chebyshev’s Inequality, is useful
when having additional information concerning the random variable (specifically, a good
upper bound on its variance). For a random variable X of finite expectation, we denote by
Var(X )

def= E[(X − E(X ))2] the variance of X , and observe that Var(X ) = E(X2)− E(X )2.
Chebyshev’s Inequality then reads as follows: Let X be a random variable, and δ > 0.
Then

Pr [|X − E(X )| ≥ δ] ≤ Var(X )

δ2
.

(D.3)

Proof: We define a random variable Y
def= (X − E(X ))2, and apply Markov’s Inequality.

We get

Pr [|X − E(X )|≥δ] = Pr
[
(X − E(X ))2 ≥ δ2

]
≤ E[(X − E(X ))2]

δ2

and the claim follows. �

Corollary (pairwise independent sampling): Chebyshev’s Inequality is particularly
useful in the analysis of the error probability of approximation via repeated sampling.
It suffices to assume that the samples are picked in a pairwise independent manner,
where X1, X2, . . . , Xn are pairwise independent if for every i �= j and every α, β it
holds that Pr[Xi=α ∧ X j=β] = Pr[Xi=α] · Pr[X j=β]. The corollary reads as fol-
lows: Let X1, X2, . . . , Xn be pairwise independent random variables with identical ex-
pectation, denoted µ, and identical variance, denoted σ 2. Then, for every ε > 0, it holds
that

Pr

[∣∣∣∣∑n
i=1 Xi

n
− µ

∣∣∣∣ ≥ ε

]
≤ σ 2

ε2n .
(D.4)

525



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Proof: Define the random variables Xi
def= Xi − E(Xi ). Note that the Xi ’s are pair-

wise independent, and each has zero expectation. Applying Chebyshev’s Inequality to
the random variable

∑n
i=1

Xi
n , and using the linearity of the expectation operator, we

get

Pr

[∣∣∣∣∣
n∑

i=1

Xi

n
− µ

∣∣∣∣∣ ≥ ε

]
≤

Var
[∑n

i=1
Xi
n

]
ε2

=
E
[(∑n

i=1 Xi
)2

]
ε2 · n2

Now (again using the linearity of expectation)

E

(
n∑

i=1

Xi

)2
 = n∑

i=1

E
[

X
2
i

]
+

∑
1≤i �= j≤n

E
[
Xi X j

]
By the pairwise independence of the Xi ’s, we get E[Xi X j ] = E[Xi ] · E[X j ], and using
E[Xi ] = 0, we get

E

(
n∑

i=1

Xi

)2
 = n · σ 2

The corollary follows. �

D.1.2.3. Chernoff Bound
When using pairwise independent sample points, the error probability in the approximation
decreases linearly with the number of sample points (see Eq. (D.4)). When using totally
independent sample points, the error probability in the approximation can be shown to
decrease exponentially with the number of sample points. (Recall that the random variables
X1, X2, . . . , Xn are said to be totally independent if for every sequence a1, a2, . . . , an

it holds that Pr[∧n
i=1 Xi=ai ] =

∏n
i=1 Pr[Xi=ai ].) Probability bounds supporting the

foregoing statement are given next. The first bound, commonly referred to as the Chernoff
Bound, concerns 0-1 random variables (i.e., random variables that are assigned as values
either 0 or 1), and asserts the following. Let p ≤ 1

2 , and X1, X2, . . . , Xn be independent
0-1 random variables such that Pr[Xi=1] = p, for each i . Then, for every ε ∈ (0, p], it
holds that

Pr

[∣∣∣∣∑n
i=1 Xi

n
− p

∣∣∣∣ > ε

]
< 2 · e−c·ε2·n , where c = max(2, 1

3p ). (D.5)

The more common formulation sets c = 2, but the case c = 1/3p is very useful when p
is small and one cares about a multiplicative deviation (e.g., ε = p/2).

Proof Sketch: We upper-bound Pr[
∑n

i=1 Xi − pn > εn], and Pr[pn −∑n
i=1 Xi > εn] is

bounded similarly. Letting Xi
def= Xi − E(Xi ), we apply Markov’s Inequality to the random

variable eλ
∑n

i=1
Xi , where λ ∈ (0, 1] will be determined to optimize the expressions that

526



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.1. PROBABILISTIC PRELIMINARIES

we derive. Thus, Pr[
∑n

i=1 Xi > εn] is upper-bounded by

E[eλ
∑n

i=1
Xi ]

eλεn
= e−λεn ·

n∏
i=1

E[eλXi ]

where the equality is due to the independence of the random variables. To simplify the
rest of the proof, we establish a sub-optimal bound as follows. Using a Taylor expansion
of ex (e.g., ex < 1+ x + x2 for |x | ≤ 1) and observing that E[Xi ] = 0, we get E[eλXi ] <

1+ λ2E[X
2
i ], which equals 1+ λ2 p(1− p). Thus, Pr[

∑n
i=1 Xi − pn > εn] is upper-

bounded by e−λεn · (1+ λ2 p(1− p))n < exp(−λεn + λ2 p(1− p)n), which is optimized
at λ = ε/(2p(1− p)) yielding exp(− ε2

4p(1−p) · n) ≤ exp(−ε2 · n). �

The foregoing proof strategy can be applied in more general settings.1 A more general
bound, which refers to independent random variables that are each bounded but are
not necessarily identical, is given next (and is commonly referred to as the Hoefding
Inequality). Let X1, X2, . . . , Xn be n independent random variables, each ranging in the
(real) interval [a, b], and let µ

def= 1
n

∑n
i=1 E(Xi ) denote the average expected value of

these variables. Then, for every ε > 0,

Pr

[∣∣∣∣∑n
i=1 Xi

n
− µ

∣∣∣∣ > ε

]
< 2 · e− 2ε2

(b−a)2
·n

(D.6)

The special case (of Eq. (D.6)) that refers to identically distributed random variables is
easy to derive from the foregoing Chernoff Bound (by recalling footnote 1 and using a
linear mapping of the interval [a, b] to the interval [0, 1]). This special case is useful
in estimating the average value of a (bounded) function defined over a large domain,
especially when the desired error probability needs to be negligible (i.e., decrease faster
than any polynomial in the number of samples). Such an estimate can be obtained provided
that we can sample the function’s domain (and evaluate the function).

D.1.2.4. Pairwise Independent Versus Totally Independent Sampling
To demonstrate the difference between the sampling bounds provided in §D.1.2.2 and
§D.1.2.3, we consider the problem of estimating the average value of a function f : �→
[0, 1]. In general, we say that a random variable Z provides an (ε, δ)-approximation of
a value v if Pr[|Z − v| > ε] ≤ δ. By Eq. (D.6), the average value of f evaluated at
n = O((ε−2 · log(1/δ)) independent samples (selected uniformly in �) yields an (ε, δ)-
approximation of µ =∑

x∈� f (x)/|�|. Thus, the number of sample points is polynomially
related to ε−1 and logarithmically related to δ−1. In contrast, by Eq. (D.4), an (ε, δ)-
approximation by n pairwise independent samples calls for setting n = O(ε−2 · δ−1). We
stress that in both cases the number of samples is polynomially related to the desired
accuracy of the estimation (i.e., ε). The only advantage of totally independent samples
over pairwise independent ones is in the dependency of the number of samples on the
error probability (i.e., δ).

1For example, verify that the current proof actually applies to the case that Xi ∈ [0, 1] rather than Xi ∈ {0, 1}, by
noting that Var[Xi ] ≤ p(1− p) still holds.

527



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

D.2. Hashing

Hashing is extensively used in Complexity Theory (see, e.g., §6.2.2.2, Section 6.2.3,
§6.2.4.2, §8.2.5.3, and §8.4.2.1). The typical application is for mapping arbitrary (unstruc-
tured) sets “almost uniformly” to a structured set of adequate size. Specifically, hashing
is used for mapping an arbitrary 2m-subset of {0, 1}n to {0, 1}m in an “almost-uniform”
manner.

For any fixed set S of cardinality 2m , there exists a 1-1 mapping fS : S → {0, 1}m ,
but this mapping is not necessarily efficiently computable (e.g., it may require “knowing”
the entire set S). On the other hand, no single function f : {0, 1}n → {0, 1}m can map
every 2m-subset of {0, 1}n to {0, 1}m in a 1-1 manner (or even approximately so). Nev-
ertheless, for every 2m-subset S ⊂ {0, 1}n , a random function f : {0, 1}n → {0, 1}m has
the property that, with overwhelmingly high probability, f maps S to {0, 1}m such that
no point in the range has too many f -preimages in S. The problem is that a truly random
function is unlikely to have a succinct representation (let alone an efficient evaluation
algorithm). We thus seek families of functions that have a “random mapping” property
(as in Condition 1 of the following definition), but do have a succinct representation
as well as an efficient evaluation algorithm (as in Conditions 2 and 3 of the following
definition).

D.2.1. Definitions

Motivated by the foregoing discussion, we consider families of functions {H m
n }m<n that

satisfy the following conditions:

1. For every S ⊂ {0, 1}n , with high probability, a function h selected uniformly in H m
n

maps S to {0, 1}m in an “almost-uniform” manner. For example, we may require that,
for any |S| = 2m and each point y, with high probability over the choice of h, it holds
that |{x ∈ S : h(x) = y}| ≤ poly(n).

2. The functions in H m
n have succinct representation. For example, we may require that

H m
n ≡ {0, 1}�(n,m), for some polynomial �.

3. The functions in H m
n can be efficiently evaluated. That is, there exists a polynomial-

time algorithm that, on input a representation of a function, h (in H m
n ), and a string

x ∈{0, 1}n , returns h(x). In some cases we make even more stringent requirements
regarding the algorithm (e.g., that it runs in linear space).

Condition 1 was left vague on purpose. At the very least, we require that the expected
size of {x ∈ S : h(x) = y} equals |S|/2m . We shall see (in Section D.2.3) that different
interpretations of Condition 1 are satisfied by different families of hashing functions. We
focus on t-wise independent hashing functions, defined next.

Definition D.1 (t-wise independent hashing functions): A family H m
n of functions

from n-bit strings to m-bit strings is called t-wise independent if for every t dis-
tinct domain elements x1, . . . , xt ∈ {0, 1}n and every y1, . . . , yt ∈ {0, 1}m it holds
that

Prh∈H m
n

[∧t
i=1h(xi ) = yi ] = 2−t ·m

That is, a uniformly chosen h ∈ H m
n maps every t domain elements to the range in a

totally uniform manner. Note that for t ≥ 2, it follows that the probability that a random

528



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.2. HASHING

h ∈ H m
n maps two distinct domain elements to the same image equals 2−m . Such (families

of) functions are called universal (cf. [50]), but we will focus on the stronger condition of
t-wise independence.

D.2.2. Constructions

The following constructions are merely a reinterpretation of the constructions presented
in §8.5.1.1. (Alternatively, one may view the constructions presented in §8.5.1.1 as a
reinterpretation of the following two constructions.)

Construction D.2 (t-wise independent hashing): For t, m, n ∈ N such that m ≤ n,
consider the following family of hashing functions mapping n-bit strings to m-bit
strings. Each t-sequence s = (s0, s1, . . . , st−1) ∈ {0, 1}t ·n describes a function hs :
{0, 1}n → {0, 1}m such that hs(x) equals the m-bit prefix of the binary representation
of

∑t−1
j=0 s j x j , where the arithmetic is that of GF(2n), the finite field of 2n elements.

Proposition 8.24 implies that Construction D.2 constitutes a family of t-wise independent
hash functions. Typically, we will use either t = 2 or t = �(n). To make the construction
totally explicit, we need an explicit representation of GF(2n); see comment following
Proposition 8.24. An alternative construction for the case of t = 2 may be obtained
analogously to the pairwise independent generator of Proposition 8.25. Recall that a
Toeplitz matrix is a matrix with all diagonals being homogeneous; that is, T = (ti, j ) is a
Toeplitz matrix if ti, j = ti+1, j+1, for all i, j .

Construction D.3 (alternative pairwise independent hashing): For m ≤ n, consider
the family of hashing functions in which each pair (T, b), consisting of an n-by-
m Toeplitz matrix T and an m-dimensional vector b, describes a function hT,b :
{0, 1}n → {0, 1}m such that hT,b(x) = T x + b.

Proposition 8.25 implies that Construction D.3 constitutes a family of pairwise indepen-
dent hash functions. Note that an n-by-m Toeplitz matrix can be specified by n + m − 1
bits, yielding a description length of n + 2m − 1 bits. An alternative construction (anal-
ogous to Eq. (8.23) and requiring m · n + m bits of representation) uses arbitrary n-by-m
matrices rather than Toeplitz matrices.

D.2.3. The Leftover Hash Lemma

We now turn to the “almost-uniform” cover condition (i.e., Condition 1) mentioned in
Section D.2.1. One concrete interpretation of this condition is given by the following
lemma (and another interpretation is implied by it – see Theorem D.5).

Lemma D.4: Let m ≤ n be integers, H m
n be a family of pairwise independent hash

functions, and S ⊆ {0, 1}n. Then, for every y ∈ {0, 1}m and every ε > 0, for all but
at most a 2m

ε2|S| fraction of h ∈ H m
n it holds that

(1− ε) · |S|
2m

< |{x ∈ S : h(x) = y}| < (1+ ε) · |S|
2m

.
(D.7)

529



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Note that by pairwise independence (or rather even by 1-wise independence), the expected
size of {x ∈ S : h(x) = y} is |S|/2m , where the expectation is taken uniformly over all
h ∈ H m

n . The lemma upper-bounds the fraction of h’s that deviate from the expected
behavior (i.e., for which |h−1(y) ∩ S| �= (1± ε) · |S|/2m). Needless to say, the bound is
meaningful only in case |S| > 2m/ε2. Focusing on the case that |S| > 2m and setting
ε = 3

√
2m/|S|, we infer that for all but at most a ε fraction of h ∈ H m

n it holds that
|{x ∈ S : h(x) = y}| = (1± ε) · |S|/2m . Thus, each range element has approximately the
right number of h-preimages in the set S, under almost all h ∈ H m

n .

Proof: Fixing an arbitrary set S ⊆ {0, 1}n and an arbitrary y ∈ {0, 1}m , we estimate
the probability that a uniformly selected h ∈ H m

n violates Eq. (D.7). We define
random variables ζx , over the aforementioned probability space, such that ζx =
ζx (h) equal 1 if h(x) = y and ζx = 0 otherwise. The expected value of

∑
x∈S ζx is

µ
def= |S| · 2−m , and we are interested in the probability that this sum deviates from

the expectation. Applying Chebyshev’s Inequality, we get

Pr

[∣∣∣∣∣µ−∑
x∈S

ζx

∣∣∣∣∣ ≥ ε · µ
]

<
µ

ε2µ2

because Var[
∑

x∈S ζx ] < |S| · 2−m by the pairwise independence of the ζx ’s and the
fact that E[ζx ] = 2−m . The lemma follows.

A generalization (called mixing). The proof of Lemma D.4 can be easily extended to
show that for every set T ⊂ {0, 1}m and every ε > 0, for all but at most a 2m

|T |·|S|ε2 fraction
of h ∈ H m

n it holds that |{x ∈ S : h(x) ∈ T }| = (1± ε) · |T | · |S|/2m . (Hint: Redefine
ζx = ζ (h) = 1 if h(x) ∈ T and ζx = 0 otherwise.) This assertion is meaningful provided
that |T | · |S| > 2m/ε2, and in the case that m = n it is called a mixing property.

An extremely useful corollary. The aforementioned generalization of Lemma D.4 asserts
that, for any fixed set of preimages S ⊂ {0, 1}n and any fixed sets of images T ⊂ {0, 1}m ,
most functions in H m

n behave well with respect to S and T (in the sense that they map
approximately the adequate fraction of S (i.e., |T |/2m) to T ). A seemingly stronger
statement, which is (non-trivially) implied by Lemma D.4 itself, reverses the order of
quantification with respect to T ; that is, for all adequate sets S, most functions in H m

n
map S to {0, 1}m in an almost-uniform manner (i.e., assign each set T approximately the
adequate fraction of S, where here the approximation is up to an additive deviation). As
we shall see, this is a consequence of the following theorem.

Theorem D.5 (aka Leftover Hash Lemma): Let H m
n and S ⊆ {0, 1}n be as in

Lemma D.4, and define ε = 3
√

2m/|S|. Consider random variables X and H that
are uniformly distributed on S and H m

n , respectively. Then, the statistical distance
between (H, H (X )) and (H, Um) is at most 2ε.

It follows that, for X and ε as in Theorem D.5 and any α > 0, for all but at most an α

fraction of the functions h ∈ H m
n it holds that h(X ) is (2ε/α)-close to Um .2 (Using the

2This follows by defining a random variable ζ = ζ (h) such that ζ equals the statistical distance between h(X ) and
Um , and applying Markov’s Inequality.

530



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.2. HASHING

terminology of the subsequent Section D.4, we may say that Theorem D.5 asserts that H m
n

yields a strong extractor (with parameters to be spelled out there).)

Proof: Let V denote the set of pairs (h, y) that violate Eq. (D.7), and V
def= (H m

n ×
{0, 1}m) \ V . Then for every (h, y) ∈ V it holds that

Pr[(H, H (X )) = (h, y)] = Pr[H = h] · Pr[h(X ) = y]

= (1± ε) · Pr[(H, Um) = (h, y)].

On the other hand, by the setting of ε and Lemma D.4 (which imply that Pr[(H, y) ∈
V ] ≤ ε for every y ∈ {0, 1}m), we have Pr[(H, Um) ∈ V ] ≤ ε. It follows that

Pr[(H, H (X )) ∈ V ] = 1− Pr[(H, H (X )) ∈ V ]

≤ 1− Pr[(H, Um)) ∈ V ]+ ε ≤ 2ε.

Using all these upper bounds, we upper bounded the statistical difference between
(H, H (X )) and (H, Um), denoted �, by separating the contribution of V and V .
Specifically, we have

� = 1

2
·

∑
(h,y)∈H m

n ×{0,1}m
|Pr[(H, H (X ))= (h, y)]− Pr[(H, Um)= (h, y)]|

≤ ε

2
+ 1

2
·

∑
(h,y)∈V

|Pr[(H, H (X ))= (h, y)]− Pr[(H, Um)= (h, y)]| ,

where the first term upper-bounds the contribution of all pairs (h, y) ∈ V . Hence,

� ≤ ε

2
+ 1

2
·

∑
(h,y)∈V

(Pr[(H, H (X ))= (h, y)]+ Pr[(H, Um)= (h, y)])

≤ ε

2
+ 1

2
· (2ε + ε) ,

where the first inequality is trivial (i.e., |α − β| ≤ α + β for any non-negative
α and β), and the second inequality uses the foregoing upper bounds (i.e.,
Pr[(H, H (X )) ∈ V ] ≤ 2ε and Pr[(H, Um) ∈ V ] ≤ ε). The theorem follows.

An alternative proof of Theorem D.5. Define the collision probability of a random
variable Z , denoted cp(Z ), as the probability that two independent samples of Z yield
the same result. Alternatively, cp(Z )

def= ∑
z Pr[Z = z]2. Theorem D.5 follows by com-

bining the following two facts:

1. A general fact: If Z ∈ [N ] and cp(Z ) ≤ (1+ 4ε2)/N then Z is ε-close to the uniform
distribution on [N ].

We prove the contrapositive: Assuming that the statistical distance between Z and
the uniform distribution on [N ] equals δ, we show that cp(Z ) ≥ (1+ 4δ2)/N . This is
done by defining L

def= {z : Pr[Z = z] < 1/N }, and lower-bounding cp(Z ) by using
the fact that the collision probability is minimized on uniform distributions. Specif-
ically, considering the uniform distributions on L and [N ] \ L , respectively, we have

cp(Z ) ≥ |L| ·
(

Pr[Z ∈ L]

|L|
)2

+ (N − |L|) ·
(

Pr[Z ∈ [N ] \ L]

N − |L|
)2

.

(D.8)

531



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Using δ = ρ − Pr[Z ∈ L], where ρ = |L|/N , the r.h.s of Eq. (D.8) equals (ρ−δ)2

ρN +
(1−(ρ−δ))2

(1−ρ)N =
(

1+ δ2

(1−ρ)ρ

)
· 1

N ≥
(
1+ 4δ2

) · 1
N .

2. The collision probability of (H, H (X )) is at most (1+ (2m/|S|))/(|H m
n | · 2m). (Fur-

thermore, this holds even if H m
n is only universal.)

The proof is by a straightforward calculation. Specifically, note that cp(H,

H (X )) = |H m
n |−1 · Eh∈H m

n
[cp(h(X ))], whereas Eh∈H m

n
[cp(h(X ))] = |S|−2 ∑

x1,x2∈S

Pr[H (x1) = H (x2)]. The sum equals |S| + (|S|2 − |S|) · 2−m , and so cp(H, H (X )) <

|H m
n |−1 · (2−m + |S|−1).

It follows that (H, H (X )) is 2
√

2m/|S|-close to (H, Um), which is actually a stronger
bound than the one asserted by Theorem D.5.

Stronger uniformity via higher independence. Recall that Lemma D.4 asserts that for
each point in the range of the hash function, with high probability over the choice of the
hash function, this fixed point has approximately the expected number of preimages in
S. A stronger condition asserts that, with high probability over the choice of the hash
function, every point in its range has approximately the expected number of preimages
in S. Such a guarantee can be obtained when using n-wise independent hash functions
(rather than using pairwise independent hash functions).

Lemma D.6: Let m ≤ n be integers, H m
n be a family of n-wise independent hash

functions, and S ⊆ {0, 1}n. Then, for every ε ∈ (0, 1), for all but at most a 2m · (n ·
2m/ε2|S|)n/2 fraction of the functions h ∈ H m

n , it is the case that Eq. (D.7) holds for
every y ∈ {0, 1}m.

Indeed, the lemma should be used with 2m < ε2|S|/4n. In particular, using m = log2 |S| −
log2(5n/ε2) guarantees that with high probability (i.e., 1− 2m · 5−n/2 ≥ 1− (4/5)n/2)
each range element has (1± ε) · |S|/2m preimages in S. Under this setting of parameters
|S|/2m = 5n/ε2, which is poly(n) whenever ε = 1/poly(n). Needless to say, this guarantee
is stronger than the conclusion of Theorem D.5.

Proof: The proof follows the footsteps of the proof of Lemma D.4, taking ad-
vantage of the fact that here the random variables (i.e., the ζx ’s) are n-wise in-
dependent. For t = n/2, this allows for using the so-called 2t th moment analysis,
which generalizes the second moment analysis of pairwise independent samplying
(presented in §D.1.2.2). As in the proof of Lemma D.4, we fix any S and y, and
define ζx = ζx (h) = 1 if and only if h(x) = y. Letting µ = E[

∑
x∈S ζx ] = |S|/2m

and ζ x = ζx − E(ζx ), we start with Markov’s Inequality:

Pr

[∣∣∣∣∣µ−∑
x∈S

ζx

∣∣∣∣∣ ≥ ε · µ
]
≤ E[(

∑
x∈S ζ x )2t ]

ε2tµ2t

=
∑

x1,...,x2t∈S E[
∏2t

i=1 ζ xi
]

ε2t · (|S|/2m)2t
(D.9)

Using 2t-wise independence, we note that only the terms in Eq. (D.9) that do not
vanish are those in which each variable appears with multiplicity. This mean that
only terms having less than t distinct variables contribute to Eq. (D.9). Now, for every

532



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.3. SAMPLING

j ≤ t , we have less than
(|S|

j

) · (2t!) < (2t!/j!) · |S| j terms with j distinct variables,

and each such term contributes less than (2−m) j to the sum (because for every e > 1
it holds that E[ζ

e
xi

] < E[ζxi ] = 2−m). Thus, Eq. (D.9) is upper-bounded by

2t!

(ε|S|/2m)2t
·

t∑
j=1

(|S|/2m) j

j!
< 2 · 2t!/t!

(ε2|S|/2m)t
<

(
2t · 2m

ε2|S|
)t

where the first inequality assumes |S| > n2m (which is justified by the fact that the
claim holds vacuously otherwise). This upper-bounds the probability that a random
h ∈ H m

n violates Eq. (D.7) with respect to a fixed y. Using a union bound on all
y ∈ {0, 1}m , the lemma follows.

D.3. Sampling

In many settings, repeated sampling is used to estimate the average (or other statistics)
of a huge set of values.3 Namely, given a “value” function ν :{0, 1}n→R, one wishes to
approximate ν̄

def= 1
2n

∑
x∈{0,1}n ν(x) without having to inspect the value of ν at each point

of the domain. The obvious thing to do is sample the domain at random, and obtain an
approximation to ν̄ by taking the average of the values of ν on the sample points. It turns
out that certain “pseudorandom” sequences of sample points may serve almost as well
as truly random sequences of sample points, and thus the foregoing problem is indeed
related to Section 8.5.

D.3.1. Formal Setting

It is essential for the range of the function ν to be bounded (since otherwise no reasonable
approximation is possible). For simplicity, we adopt the convention of having [0, 1] be the
range of ν, and the problem for other (predetermined) ranges can be treated analogously.
Our notion of approximation depends on two parameters: accuracy (denoted ε) and error
probability (denoted δ). We wish to have an algorithm that, with probability at least 1− δ,
gets within ε of the correct value. This leads to the following definition.

Definition D.7 (sampler): A sampler is a randomized oracle machine that on input
parameters n (length), ε (accuracy) and δ (error), and oracle access to any function
ν :{0, 1}n→ [0, 1], outputs, with probability at least 1− δ, a value that is at most ε

away from ν̄
def= 1

2n

∑
x∈{0,1}n ν(x). Namely,

Pr[|samplerν(n, ε, δ)− ν̄| > ε] < δ

where the probability is taken over the internal coin tosses of the sampler.
A non-adaptive sampler is a sampler that consists of two deterministic algorithms:
a sample-generating algorithm, G, and an evaluation algorithm, V . On input n, ε, δ

and a random seed of adequate length, algorithm G generates a sequence of queries,
denoted s1, . . . , sm ∈ {0, 1}n. Algorithm V is given the corresponding sequence of
ν-values (i.e., ν(s1), . . . , ν(sm)) and outputs an estimate to ν̄.

We are interested in “the complexity of sampling” quantified as a function of the parameters
n, ε and δ. Specifically, we will consider three complexity measures: the sample complexity

3Indeed, this problem was already mentioned in §D.1.2.4.

533



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

(i.e., the number of oracle queries made by the sampler); the randomness complexity (i.e.,
the length of the random seed used by the sampler); and the computational complexity (i.e.,
the running time of the sampler). We say that a sampler is efficient if its running time is
polynomial in the total length of its queries (i.e., polynomial in both its sample complexity
and in n). We will focus on efficient samplers. Furthermore, we will be most interested in
efficient samplers that have optimal (up to a constant factor) sample complexity, and will
seek to minimize the randomness complexity of such samplers. Note that minimizing the
randomness complexity without referring to the sample complexity makes no sense.

D.3.2. Known Results

We note that all the following positive results refer to non-adaptive samplers, whereas the
lower bound also holds for general samplers. For more details on these results, see [90,
Sec. 3.6.4] and the references therein.

The naive sampler. The straightforward method (aka the naive sampler) consists of
uniformly and independently selecting sufficiently many sample points (queries), and
outputting the average value of the function on these points. Using the Chernoff Bound
it follows that O( log(1/δ)

ε2 ) sample points suffice. As indicated next, the naive sampler
is optimal (up to a constant factor) in its sample complexity, but is quite wasteful in
randomness.

It is known that �( log(1/δ)
ε2 ) samples are needed in any sampler, and that any sampler

that makes s(n, ε, δ) queries must have randomness complexity at least n + log2(1/δ)−
log2 s(n, ε, δ)− O(1). These lower bounds are tight (as demonstrated by non-explicit
and inefficient samplers). The foregoing facts guide our quest for improvements, which
is aimed at finding more randomness-efficient ways of efficiently generating sample se-
quences that can be used in conjunction with an appropriate evaluation algorithm V .
(We stress that V need not necessarily take the average of the values of the sampled
points.)

The Pairwise Independent Sampler. Using a pairwise independence generator (cf.
§8.5.1.1) for generating sample points, along with the natural evaluation algorithm (which
outputs the average of the values of these points), we can obtain a great saving in the ran-
domness complexity: In particular, using a seed of length 2n, we can generate O(1/δε2)
pairwise independent sample points, which (by Eq. (D.4)) suffice for getting accuracy ε

with error δ. Thus, this (Pairwise Independent) sampler uses 2n coin tosses rather than
the �((log(1/δ))ε−2 · n) coin tosses used by the naive sampler. Furthermore, for constant
δ > 0, the Pairwise Independent Sampler is optimal up to a constant factor in both its
sample and randomness complexities. However, for small δ (i.e., δ = o(1)), this sampler
is wasteful in sample complexity.

The Median-of-Averages Sampler. A new idea is required for going further, and a rele-
vant tool – random walks on expander graphs (see Sections 8.5.3 and E.2) – is needed, too.
Specifically, we combine the Pairwise Independent Sampler with the Expander Random
Walk Generator (of Proposition 8.29) to obtain a new sampler. The new sampler uses a
t-long random walk on an expander with vertex set {0, 1}2n for generating a sequence
of t

def= O(log(1/δ)) related seeds for t invocations of the Pairwise Independent Sampler,
where each of these invocations uses the corresponding 2n bits to generate a sequence

534



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.3. SAMPLING

of O(1/ε2) samples in {0, 1}n . The new sampler, called the Median-of-Averages Sam-
pler, outputs the median of the t values obtained in these t invocations of the Pairwise
Independent Sampler. In analyzing this sampler, we first note that each of the foregoing
t invocations returns a value that, with probability at least 0.9, is ε-close to ν̄. By The-
orem 8.28 (see also Exercise 8.44), with probability at least 1− exp(−t) = 1− δ, most
of these t invocations return an ε-close approximation. Hence, the median among these t
values is an (ε, δ)-approximation to the correct value. The resulting sampler has sample
complexity O( log(1/δ)

ε2 ) and randomness complexity 2n + O(log(1/δ)), which is optimal
up to a constant factor in both complexities.

Further improvements. The randomness complexity of the Median-of-Averages Sam-
pler can be decreased from 2n + O(log(1/δ)) to n + O(log(1/δε)), while maintaining
its (optimal) sample complexity (of O( log(1/δ)

ε2 )). This is done by replacing the Pairwise
Independent Sampler with a sampler that picks a random vertex in a suitable expander,
samples all its neighbors, and outputs the average value seen.

Averaging samplers. Averaging (aka “oblivious”) samplers are non-adaptive samplers
in which the evaluation algorithm is the natural one – that is, it merely outputs the
average of the values of the sampled points. Indeed, the Pairwise Independent Sampler
is an averaging sampler, whereas the Median-of-Averages Sampler is not. Interestingly,
averaging samplers have applications for which ordinary non-adaptive samplers do not
suffice. Averaging samplers are closely related to randomness extractors, defined and
discussed in the subsequent Section D.4.

An odd perspective. Recall that a non-adaptive sampler consists of a sample generator
G and an evaluator V such that for every ν :{0, 1}n→ [0, 1] it holds that

Pr(s1,...,sm )←G(Uk )[|V (ν(s1), . . . , ν(sm))− ν̄| > ε] < δ, (D.10)

where k denotes the length of the sampler’s (random) seed. Thus, we may view G as a
pseudorandom generator that is subjected to a class of distinguishers that is determined by
a fixed algorithm V and an arbitrary function ν :{0, 1}n→ [0, 1]. Specifically, assuming
that V works well when the m samples are distributed uniformly and independently (i.e.,
Pr[|V (ν(U (1)

n ), . . . , ν(U (m)
n ))− ν̄| > ε] < δ), we require G to generate sequences that

satisfy the corresponding condition (as stated in Eq. (D.10)). What is a bit odd about
the foregoing perspective is that, except for the case of averaging samplers, the class of
distinguishers considered here is affected by a component (i.e., the evaluator V ) that is
potentially custom-made to help the generator G fool the distinguisher.4

D.3.3. Hitters

Hitters may be viewed as relaxations of samplers. Specifically, considering only Boolean
functions, hitters are required to generate a sample that contains a point evaluating to 1
whenever at least an ε fraction of the function values equal 1. That is, a hitter is a
randomized algorithm that on input parameters n (length), ε (accuracy), and δ (error),

4Another aspect in which samplers differ from the various pseudorandom generators discussed in Chapter 8 is
in the aim to minimize, rather than maximize, the number of “blocks” (denoted here by m) in the output sequence.
However, also in the case of samplers, the aim is to maximize the block-length (denoted here by n).

535



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

outputs a list of n-bit strings such that, for every set S ⊆ {0, 1}n of density greater than
ε, with probability at least 1− δ, the list contains at least one element of S. Note the
correspondence to the (ε, δ)-hitting problem defined in Section 8.5.3.

Needless to say, any sampler yields a hitter (with respect to essentially the same
parameters n, ε and δ).5 However, hitting is strictly easier than evaluating the density of the
target set: O(1/ε) (pairwise independent) random samples suffice to hit any set of density
ε with constant probability, whereas �(1/ε2) samples are needed for approximating the
average value of a Boolean function up to accuracy ε (with constant error probability).
Indeed, adequate simplifications of the samplers discussed in Appendix D.3.2 yield hitters
with sample complexity proportional to 1/ε (rather than to 1/ε2).

D.4. Randomness Extractors

Extracting almost-perfect randomness from sources of weak (i.e., defected) randomness
is crucial for the actual use of randomized algorithms, procedures, and protocols. The
latter are analyzed assuming that they are given access to a perfect random source,
while in reality one typically has access only to sources of weak (i.e., highly imperfect)
randomness. This gap is bridged by using randomness extractors, which are efficient
procedures that (possibly with the help of little extra randomness) convert any source
of weak randomness into an almost-perfect random source. Thus, randomness extractors
are devices that greatly enhance the quality of random sources. In addition, randomness
extractors are related to several other fundamental problems, to be further discussed
later.

One key parameter, which was avoided in the foregoing discussion, is the class of weak
random sources from which we need to extract almost-perfect randomness. Needless to
say, it is preferable to make as few assumptions as possible regarding the weak random
source. In other words, we wish to consider a wide class of such sources, and require that
the randomness extractor (often referred to as the extractor) “works well” for any source
in this class. A general class of such sources is defined in §D.4.1.1, but first we wish to
mention that even for very restricted classes of sources, no deterministic extractor can
work.6 To overcome this impossibility result, two approaches are used:

Seeded extractors: The first approach consists of considering randomized extractors
that use a relatively small amount of randomness (in addition to the weak random
source). That is, these extractors obtain two inputs: a short truly random seed and a
relatively long sequence generated by an arbitrary source that belongs to the specified
class of sources. This suggestion is motivated in two different ways:

1. The application may actually have access to an almost-perfect random source, but
bits from this high-quality source are much more expensive than bits from the weak
(i.e., low-quality) random source. Thus, it makes sense to obtain few high-quality

5Specifically, any sampler with respect to the parameters n, ε and δ, yields a hitter with respect to the parameters
n, 2ε and δ. (The need for slackness is easily demonstrated by noting that estimating the average with accuracy
ε = 1/2 is trivial, whereas hitting is non-trivial for any accuracy (density) ε < 1.) The claim is obvious for non-
adaptive samplers, but actually also holds for adaptive samplers. Note that adaptivity does not provide any advantage
in the context of hitters, because one may assume (without loss of generality) that all prior samples missed the
target set S.

6For example, consider the class of sources that output n-bit strings such that no string occurs with probability
greater than 2−(n−1) (i.e., twice its probability weight under the uniform distribution).

536



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.4. RANDOMNESS EXTRACTORS

bits from the almost-perfect source and use them to “purify” the cheap bits obtained
from the weak (low-quality) source. Thus, combining many cheap (but low-quality)
bits with few high-quality (but expensive) bits, we obtain many high-quality bits.

2. In some applications (e.g., when using randomized algorithms), it may be possible
to invoke the application multiple times, and use the “typical” outcome of these
invocations (e.g., rule by majority, in the case of a decision procedure). For such
applications, we may proceed as follows: First we obtain an outcome r of the weak
random source, then we invoke the application multiple times such that for every
possible seed s we invoke the application feeding it with extract(s, r ), and finally
we use the “typical” outcome of these invocations. Indeed, this is analogous to
the context of derandomization (see Section 8.3), and likewise this alternative is
typically not applicable to cryptographic and/or distributed settings.

Few independent sources: The second approach consists of considering determinis-
tic extractors that obtain samples from a few (say, two) independent sources of weak
randomness. Such extractors are applicable in any setting (including in cryptogra-
phy), provided that the application has access to the required number of independent
weak random sources.

In this section we focus on the first type of extractors (i.e., the seeded extractors). This
choice is motivated both by the relatively more mature state of the research of seeded
extractors and by the closer connection between seeded extractors and other topics in
Complexity Theory.

D.4.1. Definitions and Various Perspectives

We first present a definition that corresponds to the foregoing motivational discussion,
and later discuss its relation to other topics in complexity.

D.4.1.1. The Main Definition
A very wide class of weak random sources corresponds to sources in which no specific
output is too probable. That is, the class is parameterized by a (probability) bound β and
consists of all sources X such that for every x it holds that Pr[X = x] ≤ β. In such a case,
we say that X has min-entropy7 at least log2(1/β). Indeed, we represent sources as random
variables, and assume that they are distributed over strings of a fixed length, denoted n.
An (n, k)-source is a source that is distributed over {0, 1}n and has min-entropy at least k.

An interesting special case of (n, k)-sources is that of sources that are uniform over
some subset of 2k strings. Such sources are called (n, k)-flat. A useful observation is that
each (n, k)-source is a convex combination of (n, k)-flat sources.

Definition D.8 (extractor for (n, k)-sources):

1. An algorithm Ext :{0, 1}d×{0, 1}n→{0, 1}m is called an extractor with error ε

for the class C if for every source X in C it holds that Ext(Ud , X ) is ε-close to
Um. If C is the class of (n, k)-sources then Ext is called a (k, ε)-extractor.

2. An algorithm Ext is called a strong extractor with error ε for C if for every
source X in C it holds that (Ud , Ext(Ud , X )) is ε-close to (Ud , Um). A strong
(k, ε)-extractor is defined analogously.

7Recall that the entropy of a random variable X is defined as
∑

x
Pr[X = x] · log2(1/Pr[X = x]). Indeed, the

min-entropy of X equals minx {log2(1/Pr[X = x])}, and is always upper-bounded by its entropy.

537



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Using the aforementioned “decomposition” of (n, k)-sources into (n, k)-flat sources, it
follows that Ext is a (k, ε)-extractor if and only if it is an extractor with error ε for the
class of (n, k)-flat sources. (A similar claim holds for strong extractors.) Thus, much of the
technical analysis is conducted with respect to the class of (n, k)-flat sources. For example,
by analyzing the case of (n, k)-flat sources it is easy to see that, for d = log2(n/ε2)+
O(1), there exists a (k, ε)-extractor Ext : {0, 1}d × {0, 1}n → {0, 1}k . (The proof employs
the Probabilistic Method and uses a union bound on the (finite) set of all (n, k)-flat
sources.)8

We seek, however, explicit extractors, that is, extractors that are implementable by
polynomial-time algorithms. We note that the evaluation algorithm of any family of
pairwise independent hash functions mapping n-bit strings to m-bit strings constitutes a
(strong) (k, ε)-extractor for ε = 2−�(k−m) (see Theorem D.5). However, these extractors
necessarily use a long seed (i.e., d ≥ 2m must hold (and in fact d = n + 2m − 1 holds in
Construction D.3)). In Section D.4.2 we survey constructions of efficient (k, ε)-extractors
that obtain logarithmic seed-length (i.e., d = O(log(n/ε))). But before doing so, we
provide a few alternative perspectives on extractors.

An important note on logarithmic seed-length. The case of logarithmic seed-length
(i.e., d = O(log(n/ε))) is of particular importance for a variety of reasons. Firstly, when
emulating a randomized algorithm using a defected random source (as in Item 2 of the
motivational discussion of seeded extractors), the overhead is exponential in the length
of the seed. Thus, the emulation of a generic probabilistic polynomial-time algorithm
can be done in polynomial time only if the seed-length is logarithmic. Similarly, the
applications discussed in §D.4.1.2 and §D.4.1.3 are feasible only if the seed-length is
logarithmic. Lastly, we note that logarithmic seed-length is an absolute lower bound for
(k, ε)-extractors, whenever k < n − n�(1) (and the extractor is non-trivial (i.e., m ≥ 1 and
ε < 1/2)).

D.4.1.2. Extractors as Averaging Samplers
There is a close relationship between extractors and averaging samplers (which are defined
toward the end of Section D.3.2). We shall first show that any averaging sampler gives
rise to an extractor. Let G : {0, 1}n → ({0, 1}m)t be the sample-generating algorithm
of an averaging sampler having accuracy ε and error probability δ. That is, G uses n
bits of randomness and generates t sample points in {0, 1}m such that, for every f :
{0, 1}m → [0, 1] with probability at least 1− δ, the average of the f -values of these
t pseudorandom points resides in the interval [ f ± ε], where f

def= E[ f (Um)]. Define
Ext : [t]× {0, 1}n → {0, 1}m such that Ext(i, r ) is the i th sample generated by G(r ). We
shall prove that Ext is a (k, 2ε)-extractor, for k = n − log2(ε/δ).

Suppose toward the contradiction that there exists an (n, k)-flat source X such that
for some S ⊂ {0, 1}m it is the case that Pr[Ext(Ud , X ) ∈ S] > Pr[Um ∈ S]+ 2ε, where

8Indeed, the key fact is that the number of (n, k)-flat sources is N
def=

(
2n

2k

)
. The probability that a random

function Ext : {0, 1}d × {0, 1}n → {0, 1}k is not an extractor with error ε for a fixed (n, k)-flat source is upper-
bounded by p

def= 22k · exp(−�(2d+kε2)), because p bounds the probability that when selecting 2d+k random k-bit
long strings there exists a set T ⊂ {0, 1}k that is hit by more than ((|T |/2k )+ ε) · 2d+k of these strings. Note that for
d = log2(n/ε2)+ O(1) it holds that N · p � 1. In fact, the same analysis applies to the extraction of m = k + log2 n
bits (rather than k bits).

538



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.4. RANDOMNESS EXTRACTORS

d = log2 t and [t] ≡ {0, 1}d . Define

B = {x ∈ {0, 1}n : Pr[Ext(Ud , x) ∈ S] > (|S|/2m)+ ε}.
Then, |B| > ε · 2k = δ · 2n . Defining f (z) = 1 if z ∈ S and f (z) = 0 otherwise, we have
f

def= E[ f (Um)] = |S|/2m . But, for every r ∈ B the f -average of the sample G(r ) is greater
than f + ε, in contradiction to the hypothesis that the sampler has error probability δ (with
respect to accuracy ε).

We now turn to show that extractors give rise to averaging samplers. Let Ext : {0, 1}d ×
{0, 1}n → {0, 1}m be a (k, ε)-extractor. Consider the sample-generation algorithm G :
{0, 1}n → ({0, 1}m)2d

defined by G(r ) = (Ext(s, r ))s∈{0,1}d . We prove that G corresponds
to an averaging sampler with accuracy ε and error probability δ = 2−(n−k−1).

Suppose toward the contradiction that there exists a function f : {0, 1}m → [0, 1] such
that for δ2n = 2k+1 strings r ∈ {0, 1}n the average f -value of the sample G(r ) deviates
from f

def= E[ f (Um)] by more than ε. Suppose, without loss of generality, that for at least
half of these r ’s the average is greater than f + ε, and let B denote the set of these r ’s.
Then, for X that is uniformly distributed on B and is thus an (n, k)-source, we have

E[ f (Ext(Ud , X ))] > E[ f (Um)]+ ε,

which (using | f (z)| ≤ 1 for every z) contradicts the hypothesis that Ext(Ud , X ) is ε-close
to Um .

D.4.1.3. Extractors as Randomness-Efficient Error Reductions
As may be clear from the foregoing discussion, extractors yield randomness-efficient
methods for error reduction. This is the case because erro reduction is a special case of
the sampling problem, obtained by considering Boolean functions. Specifically, for a two-
sided error decision procedure A, consider the function fx : {0, 1}ρ(|x |) → {0, 1} such
that fx (r ) = 1 if A(x, r ) = 1 and fx (r ) = 0 otherwise. Assuming that the probability
that A is correct is at least 0.5+ ε (say ε = 1/6), error reduction amounts to provid-
ing a sampler with accuracy ε and any desired error probability δ � ε for the Boolean
function fx . Thus, by §D.4.1.2, any (k, ε)-extractor Ext : {0, 1}d × {0, 1}n → {0, 1}ρ(|x |)

with k = n − log(1/δ)− 1 yields the desired error reduction, provided that 2d is fea-
sible (e.g., 2d = poly(ρ(|x |)), where ρ(·) represents the randomness complexity of the
original algorithm A). The question of interest here is how n (which represents the
randomness complexity of the corresponding sampler) grows as a function of ρ(|x |)
and δ.

Error reduction using the extractor Ext : [poly(ρ(|x |))]×{0, 1}n→{0, 1}ρ(|x |)

error probability randomness complexity

original algorithm 1/3 ρ(|x |)
resulting algorithm δ (may depend on |x |) n (function of ρ(|x |) and δ)

Needless to say, the answer to the foregoing question depends on the quality of the extractor
that we use. In particular, using Part 1 of the forthcoming Theorem D.10, we note that for
every α > 1, one can obtain n = O(ρ(|x |))+ α log2(1/δ), for any δ > 2−poly(ρ(|x |)). Note
that, for δ < 2−O(ρ(|x |)), this bound on the randomness complexity of error reduction is
better than the bound of n = ρ(|x |)+ O(log(1/δ)) that is provided (for the reduction of
one-sided error) by the Expander Random Walk Generator (of Section 8.5.3), albeit the
number of samples here is larger (i.e., poly(ρ(|x |)/δ) rather than O(log(1/δ))).

539



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

Mentioning the reduction of one-sided error probability brings us to a corresponding
relaxation of the notion of an extractor, which is called a disperser. Loosely speaking, a
(k, ε)-disperser is only required to hit (with positive probability) any set of density greater
than ε in its image, rather than produce a distribution that is ε-close to uniform.

Definition D.9 (dispersers): An algorithm Dsp : {0, 1}d × {0, 1}n → {0, 1}m is
called a (k, ε)-disperser if for every (n, k)-source X the support of Dsp(Ud , X )
covers at least (1− ε) · 2m points. Alternatively, for every set S ⊂ {0, 1}m of size
greater than ε2m it holds that Pr[Dsp(Ud , X ) ∈ S] > 0.

Dispersers can be used for the reduction of one-sided error analogously to the use
of extractors for the reduction of two-sided error. Specifically, regarding the afore-
mentioned function fx (and assuming that Pr[ fx (U�(|x |))=1] > ε), we may use any
(k, ε)-disperser Dsp : {0, 1}d × {0, 1}n → {0, 1}�(|x |) toward finding a point z such that
fx (z) = 1. Indeed, if Pr[ fx (U�(|x |))=1] > ε then there are fewer than 2k points z such
that (∀s∈{0, 1}d ) fx (Dsp(s, z)) = 0, and thus the one-sided error can be reduced from
1− ε to 2−(n−k) while using n random bits. (Note that dispersers are closely related
to hitters (cf. Appendix D.3.3), analogously to the relation of extractors and averaging
samplers.)

D.4.1.4. Other Perspectives
Extractors and dispersers have an appealing interpretation in terms of bipartite graphs.
Starting with dispersers, we view any (k, ε)-disperser Dsp : {0, 1}d × {0, 1}n → {0, 1}m
as a bipartite graph G = (({0, 1}n, {0, 1}m), E) such that E = {(x, Dsp(s, x)) : x ∈
{0, 1}n, s ∈ {0, 1}d}. This graph has the property that any subset of 2k vertices on the
left (i.e., in {0, 1}n) has a neighborhood that contains at least a 1− ε fraction of the
vertices of the right, which is remarkable in the typical case where d is small (e.g.,
d = O(log n/ε)) and n � k ≥ m whereas m = �(k) (or at least m = k�(1)). Further-
more, if Dsp is efficiently computable, then this bipartite graph is strongly constructible
in the sense that, given a vertex on the left, one can efficiently find each of its neighbors.
Any (k, ε)-extractor Ext : {0, 1}d × {0, 1}n → {0, 1}m yields an analogous graph with an
even stronger property: The neighborhood multi-set of any subset of 2k vertices on the
left covers the vertices on the right in an almost-uniform manner.

An odd perspective. In addition to viewing extractors as averaging samplers, which in
turn may be viewed within the scope of the pseudorandomness paradigm, we mention
here an even odder perspective. Specifically, randomness extractors may be viewed as
randomized algorithms (distinguishers) designed on purpose so as to be fooled by any
weak random source (but not by an even worse source). Specifically, for any (k, ε)-
extractor Ext : {0, 1}d × {0, 1}n → {0, 1}m , where ε ≤ 1/100, m = k = ω(log n/ε) and
d = O(log n/ε), consider the following class of distinguishers (or tests), parameterized
by subsets of {0, 1}m such that the test associated with S ⊂ {0, 1}m , denoted TS , satisfies
Pr[TS(x) = 1] = Pr[Ext(Ud , x) ∈ S]; that is, on input x ∈ {0, 1}n , the test TS uniformly
selects s ∈ {0, 1}d , and outputs 1 if and only if Ext(s, x) ∈ S. Then, as shown next,
any (n, k)-source is “pseudorandom” with respect to this class of distinguishers, but
sufficiently “non-(n, k)-sources” are not “pseudorandom” with respect to this class of
distinguishers.

540



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.4. RANDOMNESS EXTRACTORS

1. For every (n, k)-source X and every S ⊂ {0, 1}m , the test TS does not distinguish X
from Un (i.e., Pr[TS(X )=1] = Pr[TS(Un)=1]± 2ε), because Ext(Ud , X ) is 2ε-close
to Ext(Ud , Un) (since each is ε-close to Um).

2. On the other hand, for every (n, k − d − 4)-flat source Y there exists a set S such that
TS distinguishes Y from Un with gap at least 0.9 (e.g., for S that equals the support of
Ext(Ud , Y ), it holds that Pr[TS(Y )=1] = 1 but Pr[TS(Un)=1] ≤ Pr[Um ∈ S]+ ε =
2d+(k−d−4)−m + ε < 0.1). Furthermore, any source that has entropy below (k/4)− d
will be detected as defected by this class (with probability at least 2/3).9

Thus, this weird class of tests deems each (n, k)-source as “pseudorandom” while deem-
ing sources of significantly lower entropy (e.g., entropy lower than (k/4)− d) as non-
pseudorandom. Indeed, this perspective stretches the pseudorandomness paradigm quite
far.

D.4.2. Constructions

Recall that we seek explicit constructions of extractors, that is, functions Ext : {0, 1}d ×
{0, 1}n → {0, 1}m that can be computed in polynomial time. The question, of course, is
of parameters, that is, having explicit (k, ε)-extractors with m as large as possible and d
as small as possible. We first note that, except in “pathological” cases,10 both m ≤ k +
d − (2 log2(1/ε)− O(1)) and d ≥ log2((n − k)/ε2)− O(1) must hold, regardless of the
explicitness requirement. The aforementioned bounds are in fact tight; that is, there exist
(non-explicit) (k, ε)-extractors with m = k + d − 2 log2(1/ε)− O(1) and d = log2((n −
k)/ε2)+ O(1). The obvious goal is meeting these bounds via explicit constructions.

D.4.2.1. Some Known Results
Despite tremendous progress on this problem (and occasional claims regarding “optimal”
explicit constructions), the ultimate goal has not been reached yet. Nevertheless, the
known explicit constructions are pretty close to being optimal.

Theorem D.10 (explicit constructions of extractors): Explicit (k, ε)-extractors of
the form Ext : {0, 1}d × {0, 1}n → {0, 1}m exist for the following cases (i.e., settings
of the parameters d and m):

1. For d = O(log n/ε) and m = (1− α) · (k − O(d)), where α > 0 is an arbitrar-
ily small constant and provided that ε > exp(−k1−α).

2. For d = (1+ α) · log2 n and m = k/poly(log n), where ε, α > 0 are arbitrarily
small constants.

Proofs of Part 1 and Part 2 can be found in [113] and [201], respectively. We note that,
for the sake of simplicity, we did not quote the best possible bounds. Furthermore, we did
not mention additional incomparable results (which are relevant for different ranges of
parameters).

9For any such source Y , the distribution Z = Ext(Ud , Y ) has entropy at most k/4 = m/4, and thus is 0.7-far from
Um (and 2/3-far from Ext(Ud , Un)). The lower bound on the statistical distance between Z and Um can be proved by
the contra positive: If Z is δ-close to Um then its entropy is at least (1− δ) · m − 1 (e.g., by using Fano’s inequality,
see [63, Thm. 2.11.1]).

10That is, for ε < 1/2 and m > d.

541



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

We refrain from providing an overview of the proof of Theorem D.10, but rather review
the proof of a weaker result that provides explicit (nγ , poly(1/n))-extractors for the case
of d = O(log n) and m = n�(γ ), where γ > 0 is an arbitrarily small constant. Indeed, in
§D.4.2.2, we review the conceptual insight that underlies this result (as well as much of
the subsequent developments in the area).

D.4.2.2. The Pseudorandomness Connection
We conclude this section with an overview of a fruitful connection between extractors
and certain pseudorandom generators. The connection, discovered by Trevisan [222], is
surprising in the sense that it goes in a non-standard direction: It transforms certain pseu-
dorandom generators into extractors. As argued throughout this book (most conspicuously
at the end of Section 7.1.2), computational objects are typically more complex than the
corresponding information-theoretical objects. Thus, if pseudorandom generators and ex-
tractors are at all related (which was not suspected before [222]), then this relation should
not be expected to help in the construction of extractors, which seem an information-
theoretic object. Nevertheless, the discovery of this relation did yield a breakthrough in
the study of extractors.11

Teaching note: The current text assumes familiarity with pseudorandom generators and in
particular with the Nisan-Wigderson Generator (presented in §8.3.2.1).

But before describing the connection, let us wonder for a moment. Just looking at
the syntax, we note that pseudorandom generators have a single input (i.e., the seed),
while extractors have two inputs (i.e., the n-bit long source and the d-bit long seed).
But taking a second look at the Nisan-Wigderson Generator (i.e., the combination of
Construction 8.17 with an amplification of worst-case to average-case hardness), we note
that this construction can be viewed as taking two inputs: a d-bit long seed and a “hard”
predicate on d ′-bit long strings (where d ′ = �(d)).12 Now, an appealing idea is to use the
n-bit long source as a (truth-table) description of a (worse-case) hard predicate (which
indeed means setting n = 2d ′). The key observation is that even if the source is only weakly
random, then it is likely to represent a predicate that is hard on the worst case.

Recall that the aforementioned construction is supposed to yield a pseudorandom gen-
erator whenever it starts with a hard predicate. In the current context, where there are
no computational restrictions, pseudorandomness is supposed to hold against any (com-
putationally unbounded) distinguisher, and thus here, pseudorandomness means being
statistically close to the uniform distribution (on strings of the adequate length, denoted
�). Intuitively, this makes sense only if the observed sequence is shorter than the amount
of randomness in the source (and seed), which is indeed the case (i.e., � < k + d, where k
denotes the min-entropy of the source). Hence, there is hope of obtaining a good extractor
this way.

To turn the hope into a reality, we need a proof (which is sketched next). Looking
again at the Nisan-Wigderson Generator, we note that the proof of indistinguishability

11We note that once the connection became better understood, influence started going in the “right” direction:
from extractors to pseudorandom generators.

12Indeed, to fit the current context, we have modified some notations. In Construction 8.17 the length of the seed
is denoted by k and the length of the input for the predicate is denoted by m.

542



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

D.4. RANDOMNESS EXTRACTORS

of this generator provides a black-box procedure for computing the underlying predicate
when given oracle access to any potential distinguisher. Specifically, in the proofs of
Theorems 7.19 and 8.18 (which holds for any � = 2�(d ′)),13 this black-box procedure was
implemented by a relatively small circuit (which depends on the underlying predicate).
Hence, this procedure contains relatively little information (regarding the underlying
predicate), on top of the observed �-bit long output of the extractor/generator. Specifically,
for some fixed polynomial p, the amount of information encoded in the procedure (and
thus available to it) is upper-bounded by b

def= p(�), while the procedure is supposed to
compute the underlying predicate correctly on each input. That is, b bits of information
are supposed to fully determined the underlying predicate, which in turn is identical
to the n-bit long source. However, if the source has min-entropy exceeding b, then it
cannot be fully determined using only b bits of information. It follows that the foregoing
construction constitutes a (b + O(1), 1/6)-extractor (outputting � = b�(1) bits), where the
constant 1/6 is the one used in the proof of Theorem 8.18 (and the argument holds provided
that b = n�(1)). Note that this extractor uses a seed of length d = O(d ′) = O(log n). The
argument can be extended to obtain (k, poly(1/k))-extractors that output k�(1) bits using
a seed of length d = O(log n), provided that k = n�(1).

We note that the foregoing description has only referred to two abstract properties of the
Nisan-Wigderson Generator: (1) the fact that this generator uses any worst-case hard predi-
cate as a black-box, and (2) the fact that its analysis uses any distinguisher as a black-box. In
particular, we viewed the amplification of worst-case hardness to inapproximability (per-
formed in Theorem 7.19) as part of the construction of the pseudorandom generator. An
alternative presentation, which is more self-contained, replaces the amplification step of
Theorem 7.19 with a direct argument in the current (information-theoretic) context
and plugs the resulting predicate directly into Construction 8.17. The advantages of
this alternative include using a simpler amplification (since amplification is simpler in
the information-theoretic setting than in the computational setting), and deriving trans-
parent construction and analysis (which mirror Construction 8.17 and Theorem 8.18,
respectively).

The alternative presentation. The foregoing analysis transforms a generic distinguisher
into a procedure that computes the underlying predicate correctly on each input, which
fully determines this predicate. Hence, an upper bound on the information available to
this procedure yields an upper bound on the number of possible outcomes of the source
that are bad for the extractor. In the alternative presentation, we transform a generic
distinguisher into a procedure that only approximates the underlying predicate; that is,
the procedure yields a function that is relatively close to the underlying predicate. If the
potential underlying predicates are far apart, then this yields the desired bound (on the
number of bad source-outcomes that correspond to such predicates). Thus, the idea is to
encode the n-bit long source by an error-correcting code of length n′ = poly(n) and rela-
tive distance 0.5− (1/n)2, and use the resulting codeword as a truth table of a predicate
for Construction 8.17.14 Such codes (coupled with efficient encoding algorithms) do exist
(see §E.1.2.5), and the benefit in using them is that each n′-bit long string (determined
by the information available to the aforementioned approximation procedure) may be

13Recalling that n = 2d ′ , the restriction � = 2�(d ′) implies � = n�(1).
14Indeed, the use of this error-correcting code replaces the hardness-amplification step of Theorem 7.19.

543



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX D

(0.5− (1/n))-close to at most O(n2) codewords15 (which correspond to potential predi-
cates). Thus, each approximation procedure rules out at most O(n2) potential predicates
(i.e., source outcomes). In summary, the resulting extractor converts the n-bit input x into
a codeword x ′ ∈ {0, 1}n′ , viewed as a predicate over {0, 1}d ′ (where d ′ = log2 n′), and
evaluates this predicate at the � projections of the d-bit long seed, where these projections
(to d ′ bits) are determined by the corresponding set system (i.e., the �-long sequence of
d ′-subsets of [d] that is used in Construction 8.17). The analysis mirrors the proof of
Theorem 8.18, and yields a bound of 2O(�2) · O(n2) on the number of bad outcomes for the
source, where O(�2) upper-bounds the amount of information encoded in (and available
to) the approximation procedure, and O(n2) upper-bounds the number of source-outcomes
that correspond to codewords that are each (0.5− (1/n))-close to any fixed approximation
procedure.

D.4.2.3. Recommended Reading
The interested reader is referred to a survey of Shaltiel [200]. This survey contains a
comprehensive introduction to the area, including an overview of the ideas that underlie
the various constructions. In particular, the survey describes the approaches used be-
fore the discovery of the pseudorandomness connection, the connection itself (and the
constructions that arise from it), and the “third generation” of constructions that followed.

The aforementioned survey predates the most recent constructions (of extractors) that
extract a constant fraction of the min-entropy using a logarithmically long seed (cf. Part 1
of Theorem D.10). Such constructions were first presented in [159] and improved (using
different ideas) in [113]. Indeed, we refer the reader to [113], which provides a self-
contained description of the best-known extractor (for almost all settings of the relevant
parameters).

15See Appendix E.1.4.

544



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

Explicit Constructions

It is easier for a camel to go through the eye of a needle, than for a rich
man to enter into the kingdom of God.

Matthew, 19:24.

Complexity Theory provides a clear definition of the intuitive notion of an explicit con-
struction. Furthermore, it also suggests a hierarchy of different levels of explicitness,
referring to the ease of constructing the said object.

The basic levels of explicitness are provided by considering the complexity of fully
constructing the object (e.g., the time it takes to print the truth table of a finite function).
In this context, explicitness often means outputting a full description of the object in time
that is polynomial in the length of that description. Stronger levels of explicitness emerge
when considering the complexity of answering natural queries regarding the object (e.g.,
the time it takes to evaluate a fixed function at a given input). In this context, (strong)
explicitness often means answering such queries in polynomial time.

The aforementioned themes are demonstrated in our brief review of explicit construc-
tions of error-correcting codes and expander graphs. These constructions are, in turn,
used in various parts of the main text.

Summary: This appendix provides a brief overview of aspects of coding
theory and expander graphs that are most relevant to Complexity Theory.
Starting with coding theory, we review several popular constructions
of error-correcting codes, culminating in the construction of a “good”
binary code (i.e., a code that achieves constant relative distance and
constant rate). The latter code is obtained by “concatenating” a Reed-
Solomon code with a “mildly explicit” construction of a “good” binary
code (which is applied to small pieces of information). We also briefly
review the notions of locally testable and locally decodable codes, and
present a useful “list-decoding bound” (i.e., an upper bound on the
number of codewords that are close to any single sequence).

Turning to expander graphs, we review two standard definitions of ex-
pansion (representing combinatorial and algebraic perspectives), and two
properties of expanders that are related to (single-step and multi-step)
random walks on them. We also spell out two levels of explicitness of
graphs, which correspond to the aforementioned notions of basic and
strong explicitness. Finally, we review two explicit constructions of ex-
pander graphs.

545



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

E.1. Error-Correcting Codes

In this section we highlight some issues and aspects of coding theory that are most relevant
to the current book. The interested reader is referred to [217] for a more comprehensive
treatment of the computational aspects of coding theory. Structural aspects of coding
theory, which are the traditional focus of that field, are covered in standard textbook such
as [163].

E.1.1. Basic Notions

Loosely speaking, an error-correcting code is a mapping of strings to longer strings such
that any two different strings are mapped to a corresponding pair of strings that are far
apart (and not merely different). Specifically, C : {0, 1}k → {0, 1}n is a (binary) code of
distance d if for every x �= y ∈ {0, 1}k it holds that C(x) and C(y) differ on at least d bit
positions. Indeed, the relation between k, n and d is of major concern: Typically, the aim
is to have a large distance (i.e., large d) without introducing too much redundancy1 (i.e.,
have n as small as possible with respect to k (and d)).

It will be useful to extend the foregoing definition to sequences over an arbitrary
(finite) alphabet �, and to use some notations. Specifically, for x ∈ �m , we denote the i th

symbol of x by xi (i.e., x = x1 · · · xm), and consider codes over � (i.e., mappings of �-
sequences to �-sequences). The mapping (code) C : �k → �n has distance d if for every
x �= y ∈ �k it holds that |{i : C(x)i �= C(y)i }| ≥ d. The members of {C(x) : x ∈ �k} are
called codewords (and in some texts this set itself is called a code).

In general, we define a metric, called the Hamming distance, over the set of n-long
sequences over �. The Hamming distance between y and z, where y, z ∈ �n , is defined
as the number of locations on which they disagree (i.e., |{i : yi �= zi }|). The Hamming
weight of such sequences is defined as the number of non-zero elements (assuming that
one element of � is viewed as zero). Typically, � is associated with an additive group,
and in this case the distance between y and z equals the Hamming weight of w = y − z,
where wi = yi − zi (for every i).

Asymptotics. We will actually consider infinite families of codes; that is, {Ck : �k
k →

�
n(k)
k }k∈S , where S ⊆ N (and typically S = N). (N.B., we allow �k to depend on k.) We

say that such a family has distance d : N→ N if for every k ∈ S it holds that Ck has
distance d(k). Needless to say, both n = n(k) (called the block-length) and d(k) depend
on k, and the aim is having a linear dependence (i.e., n(k) = O(k) and d(k) = �(n(k))).
In such a case, one talks of the relative rate of the code (i.e., the constant k/n(k)) and its
relative distance (i.e., the constant d(k)/n(k)). In general, we will often refer to relative
distances between sequences. For example, for y, z ∈ �n , we say that y and z are ε-close
(resp., ε-far) if |{i : yi �= zi }| ≤ ε · n (resp., |{i : yi �= zi }| ≥ ε · n).

Explicitness. A mild notion of explicitness refers to constructing the list of all codewords
in time that is polynomial in its length (which is exponential in k). A more standard
notion of explicitness refers to generating a specific codeword (i.e., producing C(x)
when given x), which coincides with the encoding task mentioned next. Stronger notions

1Note that a trivial way of obtaining distance d is to duplicate each symbol d times. This (“repetition”) code
satisfies n = d · k, while we shall seek n � d · k. Indeed, as we shall see, one can obtain simultaneously n = O(k)
and d = �(k).

546



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.1. ERROR-CORRECTING CODES

of explicitness refer to other computational problems concerning codes (e.g., various
decoding tasks).

Computational problems. The most basic computational tasks associated with codes are
encoding and decoding (under noise). The definition of the encoding task is straightforward
(i.e., map x ∈ �k

k to Ck(x)), and an efficient algorithm is required to compute each
symbol in Ck(x) in poly(k, log |�k |)-time.2 When defining the decoding task we note that
“minimum distance decoding” (i.e., given w ∈ �

n(k)
k , find x such that Ck(x) is closest to

w (in Hamming distance)) is just one natural possibility. Two related variants, regarding
a code of distance d, are:

Unique decoding: Given w ∈ �
n(k)
k that is at Hamming distance less than d(k)/2

from some codeword Ck(x), retrieve the corresponding decoding of Ck(x) (i.e.,
retrieve x).

Needless to say, this task is well defined because there cannot be two different
codewords that are each at Hamming distance less than d(k)/2 from w.

List decoding: Given w ∈ �
n(k)
k and a parameter d ′ (which may be greater than d(k)/2),

output a list of all codewords (or rather their decoding) that are at Hamming distance
at most d ′ from w. (That is, the task is outputting the list of all x ∈ �k

k such that
Ck(x) is at distance at most d ′ from w.)

Typically, one considers the case that d ′ < d(k). See Section E.1.4 for a discussion
of upper bounds on the number of codewords that are within a certain distance from
a generic sequence.

Two additional computational tasks are considered in Section E.1.3.

Linear codes. Associating �k with some finite field, we call a code Ck : �k
k → �

n(k)
k

linear if it satisfies Ck(x + y) = Ck(x)+ Ck(y), where x and y (resp., Ck(x) and Ck(y))
are viewed as k-dimensional (resp., n(k)-dimensional) vectors over �k , and the arithmetic
is of the corresponding vector space. A useful property of linear codes is that their
distance equals the Hamming weight of the lightest codeword other than Ck(0k) (=
0n(k)); that is, minx �=y{|{i : Ck(x)i �= Ck(y)i }|} equals minx �=0k {|{i : Ck(x)i �= 0}|}. Another
useful property of linear codes is that the code is fully specified by a k-by-n(k) matrix,
called the generating matrix, that consists of the codewords of some fixed basis of �k

k .
That is, the set of all codewords is obtained by taking all |�k |k different linear combination
of the rows of the generating matrix.

E.1.2. A Few Popular Codes

Our focus will be on explicitly constructible codes; that is, (families of) codes of the form
{Ck : �k

k → �
n(k)
k }k∈S that are coupled with efficient encoding and decoding algorithms.

But before presenting several such codes, let us consider a non-explicit code (having
“good parameters”); that is, the following result asserts the existence of certain codes
without pointing to any specific code (let alone an explicit one).

2The foregoing formulation is not the one that is common in coding theory, but it is the most natural one for our
applications. On the one hand, this formulation is also applicable to codes with super-polynomial block-length. On the
other hand, this formulation does not support a discussion of practical algorithms that compute the codeword faster
than is possible when computing each of the codeword’s bits separately.

547



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

Proposition E.1 (on the distance of random linear codes): Let n, d, t : N→ N be
such that, for all sufficiently large k, it holds that

n(k) ≥ max
(

2d(k),
k + t(k)

1− H2(d(k)/n(k))

)
, (E.1)

where H2(α)
def= α log2(1/α)+ (1− α) log2(1/(1− α)). Then, for all sufficiently

large k, with probability greater than 1− 2−t(k), a random linear transformation of
{0, 1}k to {0, 1}n(k) constitutes a code of distance d(k).

Indeed, for asserting that most random linear codes are good it suffices to set t = 1,
while for merely asserting the existence of a good linear code even setting t = 0 will do.
Also, for every constant δ ∈ (0, 0.5) there exists a constant ρ > 0 and an infinite family
of codes {Ck : {0, 1}k → {0, 1}k/ρ}k∈N of relative distance δ. Specifically, the constant
ρ = (1− H2(δ)) will do.

Proof: We consider a uniformly selected k-by-n(k) generating matrix over GF(2),
and upper-bound the probability that it yields a linear code of distance less than
d(k). We use a union bound on all possible 2k − 1 linear combinations of the
rows of the generating matrix, where for each such combination we compute
the probability that it yields a codeword of Hamming weight less than d(k). Ob-
serve that the result of each such linear combination is uniformly distributed over
{0, 1}n(k), and thus this codeword has Hamming weight less than d(k) with prob-
ability p

def= ∑d(k)−1
i=0

(n(k)
i

) · 2−n(k). Clearly, for d(k) ≤ n(k)/2, it holds that p <

d(k) · 2−(1−H2(d(k)/n(k)))·n(k), but actually p ≤ 2−(1−H2(d(k)/n(k)))·n(k) holds as well (e.g.,
use [11, Cor. 14.6.3]). Using (1− H2(d(k)/n(k))) · n(k) ≥ k + t(k), the proposition
follows.

E.1.2.1. A Mildly Explicit Version of Proposition E.1
Note that Proposition E.1 yields a deterministic algorithm that finds a linear code of
distance d(k) by conducting an exhaustive search over all possible generating matrices;
that is, a good code can be found in time exp(k · n(k)). The time bound can be improved
to exp(k + n(k)), by constructing the generating matrix in iterations such that, at each
iteration, the current set of rows is augmented with a single row while maintaining the
natural invariance (i.e., all non-empty linear combinations of the current rows have weight
at least d(k)). Thus, at each iteration, we conduct an exhaustive search over all possible
values of the next (n(k)-bit long) row, and for each such candidate value, we check whether
the foregoing invariance holds (by considering all linear combinations of the previous rows
and the current candidate).

Note that the proof of Proposition E.1 can be adapted to assert that, as long as we have
fewer than k rows, a random choice of the next row will do with positive probability. Thus,
the foregoing iterative algorithm finds a good code in time

∑k
i=1 2n(k) · 2i−1 · poly(n(k)) =

exp(n(k)+ k). In the case that n(k) = O(k), this yields an algorithm that runs in time that
is polynomial in the size of the code (i.e., the number of codewords (i.e., 2k)). Needless
to say, this mild level of explicitness is inadequate for most coding applications; however,
it will be useful to us in §E.1.2.5.

548



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.1. ERROR-CORRECTING CODES

E.1.2.2. The Hadamard Code
The Hadamard code is the longest (non-repetitive) linear code over {0, 1} ≡ GF(2). That
is, x ∈ {0, 1}k is mapped to the sequence of all n(k) = 2k possible linear combinations of
its bits; that is, bit locations in the codewords are associated with k-bit strings such that
location α ∈ {0, 1}k in the codeword of x holds the value

∑k
i=1 αi xi . It can be verified

that each non-zero codeword has weight 2k−1, and thus this code has relative distance
d(k)/n(k) = 1/2 (albeit its block-length n(k) is exponential in k).

Turning to the computational aspects, we note that encoding is very easy. As for
decoding, the warm-up discussion at the beginning of the proof of Theorem 7.7 provides a
very fast probabilistic algorithm for unique decoding, whereas Theorem 7.8 itself provides
a very fast probabilistic algorithm for list decoding.

We mention that the Hadamard code has played a key role in the proof of the PCP
Theorem (Theorem 9.16); see §9.3.2.1.

A propos long codes. We mention that the longest (non-repetitive) binary code (called
the Long-Code and introduced in [29]) is extensively used in the design of “advanced”
PCP-systems (see, e.g., [116, 117]). In this code, a k-bit long string x is mapped to the
sequence of n(k) = 22k

values, each corresponding to the evaluation of a different Boolean
function at x ; that is, bit locations in the codewords are associated with Boolean functions
such that the location associated with f :{0, 1}k→{0, 1} in the codeword of x holds the
value f (x).

E.1.2.3. The Reed–Solomon Code
Reed-Solomon codes can be defined for any adequate non-binary alphabet, where the
alphabet is associated with a finite field of n elements, denoted GF(n). For any k < n,
the code maps univariate polynomial of degree k − 1 over GF(n) to their evaluation at
all field elements. That is, p ∈ GF(n)k (viewed as such a polynomial), is mapped to the
sequence (p(α1), . . . , p(αn)), where α1, . . . , αn is a canonical enumeration of the elements
of GF(n).3 This mapping is called a Reed-Solomon code with parameters k and n, and
its distance is n − k + 1 (because any non-zero polynomial of degree k − 1 evaluates to
zero at less than k points). Indeed, this code is linear (over GF(n)), since p(α) is a linear
combination of p0, . . . , pk−1, where p(ζ ) =∑k−1

i=0 piζ
i .

The Reed-Solomon code yields infinite families of codes with constant rate and constant
relative distance (e.g., by taking n(k) = 3k and d(k) = 2k), but the alphabet size grows
with k (or rather with n(k) > k). Efficient algorithms for unique decoding and list decoding
are known (see [216] and references therein). These computational tasks correspond to
the extrapolation of polynomials based on a noisy version of their values at all possible
evaluation points.

E.1.2.4. The Reed–Muller Code
Reed-Muller codes generalize Reed-Solomon codes by considering multivariate poly-
nomials rather than univariate polynomials. Consecutively, the alphabet may be any
finite field, and in particular the two-element field GF(2). Reed-Muller codes (and vari-
ants of them) are extensively used in Complexity Theory; for example, they underlie

3Alternatively, we may map (v1, . . . , vk ) ∈ GF(n)k to (p(α1), . . . , p(αn)), where p is the unique univariate
polynomial of degree k − 1 that satisfies p(αi ) = vi for i = 1, . . . , k. Note that this modification amounts to a linear
transformation of the generating matrix.

549



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

Construction 7.11 and the PCP constructed at the end of §9.3.2.2. The relevant property
of these (non-binary) codes is that, under a suitable setting of parameters that satis-
fies n(k) = poly(k), they allow super-fast “codeword testing” and “self-correction” (see
discussion in Section E.1.3).

For any prime power q and parameters m and r , we consider the set, denoted Pm,r ,
of all m-variate polynomials of total degree at most r over GF(q). Each polynomial in
Pm,r is represented by the k = logq |Pm,r | coefficients of all relevant monomials, where in
the case that r < q it holds that k = (m+r

m

)
. We consider the code C : GF(q)k → GF(q)n ,

where n = qm , mapping m-variate polynomials of total degree at most r to their values
at all qm evaluation points. That is, the m-variate polynomial p of total degree at most r
is mapped to the sequence of values (p(α1), . . . , p(αn)), where α1, . . . , αn is a canonical
enumeration of all the m-tuples of GF(q). The relative distance of this code is lower-
bounded by (q − r )/q (cf., Lemma 6.8).

In typical applications one sets r = �(m2 log m) and q = poly(r ), which yields k > mm

and n = poly(r )m = poly(mm). Thus, we have n(k) = poly(k) but not n(k) = O(k). As
we shall see in Section E.1.3, the advantage (in comparison to the Reed-Solomon code)
is that codeword testing and self-correction can be performed at complexity related to
q = poly(log n). Actually, most complexity applications use a variant in which only m-
variate polynomials of individual degree r ′ = r/m are encoded. In this case, an alternative
presentation (analogous to the one presented in footnote 3) is preferred: The information
is viewed as a function f : H m → GF(q), where H ⊂ GF(q) is of size r ′ + 1, and is
encoded by the evaluation at all points in GF(q)m of the (unique) m-variate polynomial of
individual degree r ′ that extends the function f (see Construction 7.11).

E.1.2.5. Binary Codes of Constant Relative Distance and Constant Rate
Recall that we seek binary codes of constant relative distance and constant rate. Propo-
sition E.1 asserts that such codes exist, but does not provide an explicit construction.
The Hadamard code is explicit but does not have a constant rate (to say the least (since
n(k) = 2k)).4 The Reed-Solomon code has constant relative distance and constant rate
but uses a non-binary alphabet (which grows at least linearly with k). Thus, all codes we
have reviewed so far fall short of providing an explicit construction of binary codes of
constant relative distance and constant rate. We achieve the desired construction by using
the paradigm of concatenated codes [78], which is of independent interest. (Concatenated
codes may be viewed as a simple analogue of the proof composition paradigm presented
in §9.3.2.2.)

Intuitively, concatenated codes are obtained by first encoding information, viewed as a
sequence over a large alphabet, by some code and next encoding each resulting symbol,
which is viewed as a sequence over a smaller alphabet, by a second code. Formally, consider
�1 ≡ �

k2
2 and two codes, C1 : �

k1
1 → �

n1
1 and C2 : �

k2
2 → �

n2
2 . Then, the concatenated

code of C1 and C2 maps (x1, . . . , xk1 ) ∈ �
k1
1 ≡ �

k1k2
2 to (C2(y1), . . . , C2(yn1 )), where

(y1, . . . , yn1 ) = C1(x1, . . . , xk1 ).
Note that the resulting code C : �

k1k2
2 → �

n1n2
2 has constant rate and constant relative

distance if both C1 and C2 have these properties. Encoding in the concatenated code is
straightforward. To decode a corrupted codeword of C , we view the input as an n1-long
sequence of blocks, where each block is an n2-long sequence over �2. Applying the
decoder of C2 to each block, we obtain n1 sequences (each of length k2) over �2, and

4Binary Reed-Muller codes also fail to simultaneously provide constant relative distance and constant rate.

550



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.1. ERROR-CORRECTING CODES

interpret each such sequence as a symbol of �1. Finally, we apply the decoder of C1 to the
resulting n1-long sequence (over �1), and interpret the resulting k1-long sequence (over
�1) as a k1k2-long sequence over �2. The key observation is that if w ∈ �

n1n2
2 is ε1ε2-close

to C(x1, . . . , xk1 ) = (C2(y1), . . . , C2(yn1 )) then at least (1− ε1) · n1 of the blocks of w are
ε2-close to the corresponding C2(yi ).5

We are going to consider the concatenated code obtained by using the Reed-Solomon
code C1 : GF(n1)k1 → GF(n1)n1 as the large code, setting k2 = log2 n1, and using the
mildly explicit version of Proposition E.1 (see also §E.1.2.1) C2 : {0, 1}k2 → {0, 1}n2

as the small code. We use n1 = 3k1 and n2 = O(k2), and so the concatenated code is
C : {0, 1}k → {0, 1}n , where k = k1k2 and n = n1n2 = O(k). The key observation is that
C2 can be constructed in exp(k2)-time, whereas here exp(k2) = poly(k). Furthermore, both
encoding and decoding with respect to C2 can be performed in time exp(k2) = poly(k).
Thus, we get

Theorem E.2 (an explicit good code): There exist constants δ, ρ > 0 and an
explicit family of binary codes of rate ρ and relative distance at least δ. That is,
there exists a polynomial-time (encoding) algorithm C such that |C(x)| = |x |/ρ (for
every x) and a polynomial-time (decoding) algorithm D such that for every y that
is δ/2-close to some C(x) it holds that D(y) = x. Furthermore, C is a linear code.

The linearity of C is justified by using a Reed-Solomon code over the extension field
F = GF(2k2 ), and noting that this code induces a linear transformation over GF(2).
Specifically, the value of a polynomial p over F at a point α ∈ F can be obtained as a
linear transformation of the coefficient of p, when viewed as k2-dimensional vectors over
GF(2).

Relative distance approaching one half. Note that starting with a Reed-Solomon code
of relative distance δ1 and a smaller code C2 of relative distance δ2, we obtain a concate-
nated code of relative distance δ1δ2. Recall that, for any constant δ1 < 1, there exists a
Reed-Solomon code C1 : GF(n1)k1 → GF(n1)n1 of relative distance δ1 and constant rate
(i.e., 1− δ1). Thus, for any constant ε > 0, we may obtain an explicit code of constant
rate and relative distance (1/2)− ε (e.g., by using δ1 = 1− (ε/2) and δ2 = (1− ε)/2).
Furthermore, giving up on constant rate, we may start with a Reed-Solomon code of block-
length n1(k1) = poly(k1) and distance n1(k1)− k1 over [n1(k1)], and use a Hadamard
code (encoding [n1(k1)] ≡ {0, 1}log2 n1(k1) by {0, 1}n1(k1)) in the role of the small code
C2. This yields a (concatenated) binary code of block-length n(k) = n1(k)2 = poly(k)
and distance (n1(k)− k) · n1(k)/2. Thus, the resulting explicit code has relative distance
1
2 − k

2
√

n(k)
= 1

2 − o(1), provided that n(k) = ω(k2).

E.1.3. Two Additional Computational Problems

In this section we briefly review relaxations of two traditional coding-theoretic tasks. The
purpose of these relaxations is to enable the design of super-fast (randomized) algorithms
that provide meaningful information. Specifically, these algorithms may run in sub-linear

5This observation offers unique decoding from a fraction of errors that is the product of the fractions (of error)
associated with the two original codes. Stronger statements regarding unique decoding of the concatenated code can
be made based on more refined analysis (cf. [78]).

551



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

(e.g., poly-logarithmic) time, and thus cannot possibly solve the unrelaxed version of the
corresponding problem.

Local testability. This task refers to testing whether a given word is a codeword (in
a predetermined code), based on (randomly) inspecting few locations in the word.
Needless to say, we can only hope to make an approximately correct decision, that
is, accept each codeword and reject with high probability each word that is far
from the code. (Indeed, this task is within the framework of property testing; see
Section 10.1.2.)

Local decodability. Here, the task is to recover a specified bit in the plaintext by
(randomly) inspecting few locations in a mildly corrupted codeword. This task is
somewhat related to the task of self-correction (i.e., recovering a specified bit in the
codeword itself, by inspecting few locations in the mildly corrupted codeword).

Note that the Hadamard code is both locally testable and locally decodable as well as
self-correctable (based on a constant number of queries into the word); these facts were
demonstrated and extensively used in §9.3.2.1. However, the Hadamard code has an
exponential block-length (i.e., n(k) = 2k), and the question is whether one can achieve
analogous results with respect to a shorter code (e.g., n(k) = poly(k)). As hinted in
§E.1.2.4, the answer is positive (when we refer to performing these operations in time that
is poly-logarithmic in k):

Theorem E.3: For some constant δ > 0 and polynomials n, q : N→ N, there exists
an explicit family of codes {Ck : [q(k)]k → [q(k)]n(k)}k∈N of relative distance δ

that can be locally testable and locally decodable in poly(log k)-time. That is, the
following three conditions hold.

1. Encoding: There exists a polynomial-time algorithm that on input x ∈ [q(k)]k

returns Ck(x).
2. Local Testing: There exists a probabilistic polynomial-time oracle machine

T that given k (in binary)6 and oracle access to w ∈ [q(k)]n(k) (viewed as
w : [n(k)]→ [q(k)]) distinguishes the case that w is a codeword from the case
that w is δ/2-far from any codeword. Specifically:
(a) For every x ∈ [q(k)]k it holds that Pr[T Ck (x)(k)=1] = 1.
(b) For every w ∈ [q(k)]n(k) that is δ/2-far from any codeword of Ck it holds

that Pr[T w(k)=1] ≤ 1/2.

As usual, the error probability can be reduced by repetitions.

3. Local Decoding: There exists a probabilistic polynomial-time oracle machine
D that given k and i ∈ [k] (in binary) and oracle access to any w ∈ [q(k)]n(k)

that is δ/2-close to Ck(x) returns xi ; that is, Pr[Dw(k, i)= xi ] ≥ 2/3.

Self-correction holds, too: There exists a probabilistic polynomial-time oracle
machine M that given k and i ∈ [n(k)] (in binary) and oracle access to any
w ∈ [q(k)]n(k) that is δ/2-close to Ck(x) returns Ck(x)i ; that is, Pr[Dw(k, i)=
Ck(x)i ] ≥ 2/3.

We stress that all of these oracle machines work in time that is polynomial in the bi-
nary representation of k, which means that they run in time that is poly-logarithmic in k.

6Thus, the running time of T is poly(|k|) = poly(log k).

552



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.1. ERROR-CORRECTING CODES

The code asserted in Theorem E.3 is a (small modification of a) Reed-Muller code, for
r = m2 log m < q(k) = poly(r ) and [n(k)] ≡ GF(q(k))m (see §E.1.2.4).7 The aforemen-
tioned oracle machines query the oracle w : [n(k)]→GF(q(k)) at a non-constant number of
locations. Specifically, self-correction for location i ∈ GF(q(k))m is performed by select-
ing a random line (over GF(q(k))m) that passes through i , recovering the values assigned
by w to all q(k) points on this line, and performing univariate polynomial extrapolation
(under mild noise). Local testability is easily reduced to self-correction, and (under the
aforementioned modification) local decodability is a special case of self-correction.

Constant number of (binary) queries. The local testing and decoding algorithms as-
serted in Theorem E.3 make a poly-logarithmic number of queries into the oracle. Further-
more, these queries (which refer to a non-binary code) are non-binary (i.e., they are each
answered by a non-binary value). In contrast, the Hadamard code has local testing and de-
coding algorithms that use a constant number of binary queries. Can this be obtained with
much shorter (binary) codewords? That is, redefining local testability and decodability
as requiring a constant number of queries, we ask whether binary codes of significantly
shorter block-length can be locally testable and decodable. For local testability the answer
is definitely positive: One can construct such (locally testable and binary) codes with
block-length that is nearly linear (i.e., linear up to poly-logarithmic factors; see [36, 67]).
For local decodability, the shortest known code has super-polynomial length (see [242]).
In light of this state of affairs, we advocate natural relaxations of the local decodability
task (e.g., the one studied in [35]).

The interested reader is referred to [93], which includes more details on locally testable
and decodable codes as well as a wider perspective. (Note, however, that this survey was
written prior to [67] and [242], which resolve two major open problems discussed in [93].)

E.1.4. A List-Decoding Bound

A necessary condition for the feasibility of the list-decoding task is that the list of
codewords that are close to the given word be short. In this section we present an upper
bound on the length of such lists, noting that this bound has found several applications
in Complexity Theory (and specifically to studies related to the contents of this book). In
contrast, we do not present far more famous bounds (which typically refer to the relation
among the main parameters of codes (i.e., k, n and d)), because they seem less relevant
to the contents of this book.

We start with a general statement that refers to any alphabet � ≡ [q], and later spe-
cialize it to the case that q = 2. Especially in the general case, it is natural and convenient
to consider the agreement (rather than the distance) between sequences over [q]. Further-
more, it is natural to focus on an agreement rate of at least 1/q, and it is convenient to state
the following result in terms of the “excessive agreement rate” (i.e., the excess beyond
1/q).8 Loosely speaking, the following result upper-bounds the number of codewords that
have a (sufficiently) large agreement rate with any fixed sequence, where the upper bound

7The modification is analogous to the one presented in footnote 3: For a suitable choice of k points α1, . . . , αk ∈
GF(q(k))m , we map v1, . . . , vk to (p(α1), . . . , p(αn)), where p is the unique m-variate polynomial of degree at most
r that satisfies p(αi ) = vi for i = 1, . . . , k.

8Indeed, we only consider codes with distance d ≤ (1− 1/q) · n (i.e., agreement rate of at least 1/q) and words
that are at distance at most d from the code. Note that a random sequence is expected to agree with any fixed sequence
on a 1/q fraction of the locations.

553



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

depends only on this agreement rate and the agreement rate between codewords (as well
as on the alphabet size, but not on k and n).

Lemma E.4 (Part 2 [105, Thm. 15]): Let C : [q]k → [q]n be an arbitrary code of
distance d ≤ n − (n/q), and let ηC

def= (1− (d/n))− (1/q) ≥ 0 denote the corre-
sponding upper bound on the excessive agreement rate between codewords. Suppose
that η ∈ (0, 1) satisfies

η >

√(
1− 1

q

)
· ηC

.

(E.2)

Then, for any w ∈ [q]n, the number of codewords that agree with w on at least
((1/q)+ η) · n positions (i.e., are at distance at most (1− ((1/q)+ η)) · n from w)
is upper-bounded by

(1− (1/q))2 − (1− (1/q)) · ηC

η2 − (1− (1/q)) · ηC .

(E.3)

In the binary case (i.e., q = 2), Eq. (E.2) requires η >
√

ηC/2 and Eq. (E.3) yields the
upper bound (1− 2ηC)/(4η2 − 2ηC). We highlight two specific cases:

1. At the end of §D.4.2.2, we refer to this bound (for the binary case) while setting
ηC = (1/k)2 and η = 1/k. Indeed, in this case (1− 2ηC)/(4η2 − 2ηC) = O(k2).

2. In the case of the Hadamard code, we have ηC = 0. Thus, for every w ∈ {0, 1}n and
every η > 0, the number of codewords that are (0.5− η)-close to w is at most 1/4η2.

In the general case (and specifically for q � 2) it is useful to simplify Eq. (E.2) by
η > min{√ηC, (1/q)+√ηC − (1/q)} and Eq. (E.3) by 1

η2−ηC
.

E.2. Expander Graphs

In this section we review basic facts regarding expander graphs that are most relevant to
the current book. For a wider perspective, the interested reader is referred to [124].

Loosely speaking, expander graphs are regular graphs of small degree that exhibit
various properties of cliques.9 In particular, we refer to properties such as the relative
sizes of cuts in the graph (i.e., relative to the number of edges), and the rate at which a
random walk converges to the uniform distribution (relative to the logarithm of the graph
size to the base of its degree).

Some technicalities. Typical presentations of expander graphs refer to one of several
variants. For example, in some sources, expanders are presented as bipartite graphs,
whereas in others they are presented as ordinary graphs (and are in fact very far from
being bipartite). We shall follow the latter convention. Furthermore, at times we implicitly
consider an augmentation of these graphs where self-loops are added to each vertex. For
simplicity, we also allow parallel edges.

We often talk of expander graphs while we actually mean an infinite collection of graphs
such that each graph in this collection satisfies the same property (which is informally

9Another useful intuition is that expander graphs exhibit various properties of random regular graphs of the same
degree.

554



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

attributed to the collection). For example, when talking of a d-regular expander (graph) we
actually refer to an infinite collection of graphs such that each of these graphs is d-regular.
Typically, such a collection (or family) contains a single N -vertex graph for every N ∈ S,
where S is an infinite subset of N. Throughout this section, we denote such a collection by
{G N }N∈S, with the understanding that G N is a graph with N vertices and S is an infinite
set of natural numbers.

E.2.1. Definitions and Properties

We consider two definitions of expander graphs, two different notions of explicit con-
structions, and two useful properties of expanders.

E.2.1.1. Two Mathematical Definitions
We start with two different definitions of expander graphs. These definitions are quali-
tatively equivalent and even quantitatively related. We start with an algebraic definition,
which seems technical in nature but is actually the definition typically used in complexity-
theoretic applications, since it directly implies various “mixing properties” (see §E.2.1.3).
We later present a very natural combinatorial definition (which is the source of the term
“expander”).

The algebraic definition (eigenvalue gap). Identifying graphs with their adjacency ma-
trix, we consider the eigenvalues (and eigenvectors) of a graph (or rather of its adjacency
matrix). Any d-regular graph G = (V, E) has the uniform vector as an eigenvector cor-
responding to the eigenvalue d, and if G is connected and non-bipartite then the absolute
values of all other eigenvalues are strictly smaller than d. The eigenvalue bound, denoted
λ(G) < d, of such a graph G is defined as a tight upper bound on the absolute value of all
the other eigenvalues. (In fact, in this case it holds that λ(G) < d −�(1/d|V |2).)10 The al-
gebraic definition of expanders refers to an infinite family of d-regular graphs and requires
the existence of a constant eigenvalue bound that holds for all the graphs in the family.

Definition E.5: An infinite family of d-regular graphs, {G N }N∈S, where S ⊆ N,
satisfies the eigenvalue bound β if for every N ∈ S it holds that λ(G N ) ≤ β. In
such a case, we say that {G N }N∈S is a family of (d, β)-expanders, and call d − β

its eigenvalue gap.

It will often be convenient to consider relative (or normalized) versions of the foregoing
quantities, obtained by division by d.

The combinatorial definition (expansion). Loosely speaking, expansion requires that
any (not too big) set of vertices of the graph has a relatively large set of neighbors.
Specifically, a graph G = (V, E) is c-expanding if, for every set S ⊂ V of cardinality at
most |V |/2, it holds that

�G(S)
def= {v : ∃u ∈ S s.t. {u, v} ∈ E} (E.4)

has cardinality at least (1+ c) · |S|. Assuming the existence of self-loops on all vertices,
the foregoing requirement is equivalent to requiring that |�G(S) \ S| ≥ c · |S|. In this case,

10This follows from the connection to the combinatorial definition (see Theorem E.7). Specifically, the square of
this graph, denoted G2, is |V |−1-expanding and thus it holds that λ(G)2 = λ(G2) < d2 −�(|V |−2).

555



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

every connected graph G = (V, E) is (1/|V |)-expanding.11 The combinatorial definition
of expanders refers to an infinite family of d-regular graphs and requires the existence of
a constant expansion bound that holds for all the graphs in the family.

Definition E.6: An infinite family of d-regular graphs, {G N }N∈S is c-expanding if
for every N ∈ S it holds that G N is c-expanding.

The two definitions of expander graphs are related (see [11, Sec. 9.2] or [124, Sec. 4.5]).
Specifically, the “expansion bound” and the “eigenvalue bound” are related as follows.

Theorem E.7: Let G be a d-regular graph having a self-loop on each vertex.12

1. The graph G is c-expanding for c ≥ (d − λ(G))/2d.
2. If G is c-expanding then d − λ(G) ≥ c2/(4+ 2c2).

Thus, any non-zero bound on the combinatorial expansion of a family of d-regular graphs
yields a non-zero bound on its eigenvalue gap, and vice versa. Note, however, that the back-
and-forth translation between these measures is not tight. We note that the applications
presented in the main text (see, e.g., Section 8.5.3 and §9.3.2.3) refer to the algebraic
definition, and that the loss incurred in Theorem E.7 is immaterial for them.

Amplification. The “quality of expander graphs improves” by raising these graphs to any
power t > 1 (i.e., raising their adjacency matrix to the t th power), where this operation
corresponds to replacing t-paths (in the original graphs) by edges (in the resulting graphs).
Specifically, when considering the algebraic definition, it holds that λ(Gt ) = λ(G)t , but
indeed the degree also gets raised to the power t . Still, the ratio λ(Gt )/dt deceases with
t . An analogous phenomenon also occurs under the combinatorial definition, provided
that some suitable modifications are applied. For example, if for every S ⊆ V it holds
that |�G(S)| ≥ min((1+ c) · |S|, |V |/2), then for every S ⊆ V it holds that |�Gt (S)| ≥
min((1+ c)t · |S|, |V |/2).

The optimal eigenvalue bound. For every d-regular graph G = (V, E), it holds that
λ(G) ≥ 2γG ·

√
d − 1, where γG = 1− O(1/ logd |V |). Thus, for any infinite family of

(d, λ)-expanders, it must hold that λ ≥ 2
√

d − 1.

E.2.1.2. Two Levels of Explicitness
Toward discussing various notions of explicit constructions of graphs, we need to fix a
representation of such graphs. Specifically, throughout this section, when referring to an
infinite family of graphs {G N }N∈S, we shall assume that the vertex set of G N equals [N ].
Indeed, at times, we shall consider vertex sets having a different structure (e.g., [m]× [m]

11In contrast, a bipartite graph G = (V, E) is not expanding, because it always contains a set S of size at most
|V |/2 such that |�G (S)| ≤ |S| (although it may hold that |�G (S) \ S| ≥ |S|).

12Recall that in such a graph G = (V, E) it holds that �G (S) ⊇ S for every S ⊆ V , and thus |�G (S)| = |�G (S) \
S| + |S|. Furthermore, in such a graph all eigenvalues are greater than or equal to −d + 1, and thus if d − λ(G) < 1
then this is due to a positive eigenvalue of G. These facts are used for bridging the gap between Theorem E.7 and the
more standard versions (see, e.g., [11, Sec. 9.2]) that refer to variants of both definitions. Specifically, [11, Sec. 9.2]
refers to �+G (S) = �G (S) \ S and λ2(G), where λ2(G) is the second largest eigenvalue of G, rather than referring to
�G (S) and λ(G). Note that, in general, �G (S) may be attained by the difference between the smallest eigenvalue of
G (which may be negative) and −d.

556



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

for some m ∈ N), but in all of these cases there exists a simple isomorphism of these sets
to the canonical representation (i.e., there exists an efficiently computable and invertible
mapping of the vertex set of G N to [N ]).

Recall that a mild notion of explicit constructiveness refers to the complexity of con-
structing the entire object (i.e., the graph). Applying this notion to our setting, we say that
an infinite family of graphs {G N }N∈S is explicitly constructible if there exists a polynomial-
time algorithm that, on input 1N (where N ∈ S), outputs the list of the edges in the N-vertex
graph G N . That is, the entire graph is constructed in time that is polynomial in its size
(i.e., in poly(N )-time).

The foregoing (mild) level of explicitness suffices when the application requires holding
the entire graph and/or when the running time of the application is lower-bounded by the
size of the graph. In contrast, other applications refer to a huge virtual graph (which is much
bigger than their running time), and only require the computation of the neighborhood
relation in such a graph. In this case, the following stronger level of explicitness is
relevant.

A strongly explicit construction of an infinite family of (d-regular) graphs {G N }N∈S is
a polynomial-time algorithm that on input N ∈ S (in binary), a vertex v in the N-vertex
graph G N (i.e., v ∈ [N ]), and an index i ∈ [d], returns the i th neighbor of v. That is, the
“neighbor query” is answered in time that is poly-logarithmic in the size of the graph.
Needless to say, this strong level of explicitness implies the basic (mild) level.

An additional requirement, which is often forgotten but is very important, refers to the
“tractability” of the set S. Specifically, we require the existence of an efficient algorithm
that given any n ∈ N finds an s ∈ S such that n ≤ s < 2n. Corresponding to the two
foregoing levels of explicitness, “efficient” may mean either running in time poly(n) or
running in time poly(log n). The requirement that n ≤ s < 2n suffices in most applications,
but in some cases a smaller interval (e.g., n ≤ s < n +√n) is required, whereas in other
cases a larger interval (e.g., n ≤ s < poly(n)) suffices.

Greater flexibility. In continuation of the foregoing paragraph, we comment that ex-
panders can be combined in order to obtain expanders for a wider range of graph sizes.
For example, given two d-regular c-expanding graphs, G1 = (V1, E1) and G2 = (V2, E2)
where |V1| ≤ |V2| and c ≤ 1, we can obtain a (d + 1)-regular c/2-expanding graph on
|V1| + |V2| vertices by connecting the two graphs using a perfect matching of V1 and |V1|
of the vertices of V2 (and adding self-loops to the remaining vertices of V2). More gener-
ally, combining the d-regular c-expanding graphs G1 = (V1, E1) through Gt = (Vt , Et ),
where N ′ def= ∑t−1

i=1 |Vi | ≤ |Vt |, yields a (d + 1)-regular c/2-expanding graph on
∑t

i=1 |Vi |
vertices (by using a perfect matching of ∪t−1

i=1Vi and N ′ of the vertices of Vt ).

E.2.1.3. Two Properties
The following two properties provide a quantitative interpretation to the statement that
expanders approximate the complete graph (or behave approximately like a complete
graph). When referring to (d, λ)-expanders, the deviation from the behavior of a complete
graph is represented by an error term that is linear in λ/d.

The mixing lemma. Loosely speaking, the following (folklore) lemma asserts that in
expander graphs (for which λ� d), the fraction of edges connecting two large sets of
vertices approximately equals the product of the densities of these sets. This property is
called mixing.

557



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

Lemma E.8 (Expander Mixing Lemma): For every d-regular graph G = (V, E)
and for every two subsets A, B ⊆ V it holds that∣∣∣∣∣ |(A × B) ∩ /E |

| /E | − |A||V | ·
|B|
|V |

∣∣∣∣∣ ≤ λ(G)
√|A| · |B|
d · |V | ≤ λ(G)

d
(E.5)

where /E denotes the set of directed edges (i.e., vertex pairs) that correspond to the
undirected edges of G (i.e., /E = {(u, v) : {u, v} ∈ E} and | /E | = d|V |).

In particular, |(A × A) ∩ /E | = (ρ(A) · d ± λ(G)) · |A|, where ρ(A) = |A|/|V |. It follows
that |(A × (V \ A)) ∩ /E | = ((1− ρ(A)) · d ± λ(G)) · |A|.

Proof: Let N
def= |V | and λ

def= λ(G). For any subset of the vertices S ⊆ V , we denote
its density in V by ρ(S)

def= |S|/N . Hence, Eq. (E.5) is restated as∣∣∣∣∣ |(A × B) ∩ /E |
d · N

− ρ(A) · ρ(B)

∣∣∣∣∣ ≤ λ
√

ρ(A) · ρ(B)

d .

We proceed by providing bounds on the value of |(A × B) ∩ /E |. To this end we
let a denote the N -dimensional Boolean vector having 1 in the i th component if
and only if i ∈ A. The vector b is defined similarly. Denoting the adjacency matrix
of the graph G by M = (mi, j ), we note that |(A × B) ∩ /E | equals a,Mb (because
(i, j) ∈ (A × B) ∩ /E if and only if it holds that i ∈ A, j ∈ B and mi, j = 1). We
consider the orthogonal eigenvector basis, e1, . . . , eN , where e1 = (1, . . . , 1), and
ei
,ei = N for each i , and write each vector as a linear combination of the vectors in

this basis. Specifically, we denote by ai the coefficient of a in the direction of ei ; that
is, ai = (a,ei )/N and a =∑

i ai ei . Note that a1 = (a,e1)/N = |A|/N = ρ(A) and∑N
i=1 a2

i = (a,a)/N = |A|/N = ρ(A). Similarly for b. It now follows that

|(A × B) ∩ /E | = a,M
N∑

i=1

bi ei

=
N∑

i=1

biλi · a,ei

where λi denotes the i th eigenvalue of M . Note that λ1 = d and for every i ≥ 2 it
holds that |λi | ≤ λ. Thus,

|(A × B) ∩ /E |
d N

=
N∑

i=1

biλi · ai

d

= ρ(A)ρ(B)+
N∑

i=2

λi ai bi

d

∈
[
ρ(A)ρ(B)± λ

d
·

N∑
i=2

ai bi

]

Using
∑N

i=1 a2
i = ρ(A) and

∑N
i=1 b2

i = ρ(B), and applying the Cauchy-Schwartz
Inequality, we bound

∑N
i=2 ai bi by

√
ρ(A)ρ(B). The lemma follows.

558



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

The random walk lemma. Loosely speaking, the first part of the following lemma asserts
that, as far as remaining “trapped” in some subset of the vertex set is concerned, a random
walk on an expander approximates a random walk on the complete graph.

Lemma E.9 (Expander Random Walk Lemma): Let G = ([N ], E) be a d-regular
graph, and consider walks on G that start from a uniformly chosen vertex and take
�− 1 additional random steps, where in each such step we uniformly select one out
of the d edges incident at the current vertex and traverse it.

Theorem 8.28 (restated): Let W be a subset of [N ] and ρ
def= |W |/N. Then the

probability that such a random walk stays in W is at most

ρ ·
(

ρ + (1− ρ) · λ(G)

d

)�−1

.

(E.6)

Exercise 8.43 (restated): For any W0, . . . , W�−1 ⊆ [N ], the probability that a ran-
dom walk of length � intersects W0 ×W1 × · · · ×W�−1 is at most

√
ρ0 ·

�−1∏
i=1

√
ρi + (λ/d)2, (E.7)

where ρi
def= |Wi |/N.

The basic principle underlying Lemma E.9 was discovered by Ajtai, Komlos, and
Szemerédi [4], who proved a bound as in Eq. (E.7). The better analysis yielding The-
orem 8.28 is due to [135, Cor. 6.1]. A more general bound that refers to the probability
of visiting W for a number of times that approximates |W |/N is given in [120], which
actually considers an even more general problem (i.e., obtaining Chernoff-type bounds
for random variables that are generated by a walk on an expander).

Proof of Equation (E.7) The basic idea is to view events occurring during the
random walk as an evolution of a corresponding probability vector under suitable
transformations. The transformations correspond to taking a random step in G and
to passing through a “sieve” that keeps only the entries that correspond to the current
set Wi . The key observation is that the first transformation shrinks the component
that is orthogonal to the uniform distribution, whereas the second transformation
shrinks the component that is in the direction of the uniform distribution. Details
follow.

Let A be a matrix representing the random walk on G (i.e., A is the adjacency
matrix of G divided by d), and let λ̂

def= λ(G)/d (i.e., λ̂ upper-bounds the abso-
lute value of every eigenvalue of A except the first one). Note that the uniform
distribution, represented by the vector u = (N−1, . . . , N−1),, is the eigenvector
of A that is associated with the largest eigenvalue (which is 1). Let Pi be a 0-1
matrix that has 1-entries only on its diagonal such that entry ( j, j) is set to 1 if
and only if j ∈ Wi . Then, the probability that a random walk of length � intersects
W0 ×W1 × · · · ×W�−1 is the sum of the entries of the vector

v
def= P�−1 A · · · P2 AP1 AP0u. (E.8)

We are interested in upper-bounding ‖v‖1, and use ‖v‖1 ≤
√

N · ‖v‖, where ‖z‖1

and ‖z‖ denote the L1-norm and L2-norm of z, respectively (e.g., ‖u‖1 = 1 and

559



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

‖u‖ = N−1/2). The key observation is that the linear transformation Pi A shrinks
every vector.

Main Claim. For every z, it holds that ‖Pi Az‖ ≤ (ρi + λ̂2)1/2 · ‖z‖.

Proof. Intuitively, A shrinks the component of z that is orthogonal to u, whereas Pi

shrinks the component of z that is in the direction of u. Specifically, we decompose
z = z1 + z2 such that z1 is the projection of z on u and z2 is the component orthogonal
to u. Then, using the triangle inequality and other obvious facts (which imply
‖Pi Az1‖ = ‖Pi z1‖ and ‖Pi Az2‖ ≤ ‖Az2‖), we have

‖Pi Az1 + Pi Az2‖ ≤ ‖Pi Az1‖ + ‖Pi Az2‖
≤ ‖Pi z1‖ + ‖Az2‖
≤ √ρi · ‖z1‖ + λ̂ · ‖z2‖

where the last inequality uses the fact that Pi shrinks any uniform vector by elimi-
nating 1− ρi of its elements, whereas A shrinks the length of any eigenvector except
u by a factor of at least λ̂. Using the Cauchy-Schwartz Inequality,13 we get

‖Pi Az‖ ≤
√

ρi + λ̂2 ·
√
‖z1‖2 + ‖z2‖2

=
√

ρi + λ̂2 · ‖z‖
where the equality is due to the fact that z1 is orthogonal to z2.

Recalling Eq. (E.8) and using the Main Claim (and ‖v‖1 ≤
√

N · ‖v‖), we get

‖v‖1 ≤
√

N · ‖P�−1 A · · · P2 AP1 AP0u‖

≤
√

N ·
(

�−1∏
i=1

√
ρi + λ̂2

)
· ‖P0u‖.

Finally, using ‖P0u‖ =√
ρ0 N · (1/N )2 = √ρ0/N , we establish Eq. (E.7).

Rapid mixing. A property related to Lemma E.9 is that a random walk starting at
any vertex converges to the uniform distribution on the expander vertices after a log-
arithmic number of steps. Specifically, we claim that starting at any distribution s
(including a distribution that assigns all weight to a single vertex) after � steps on a
(d, λ)-expander G = ([N ], E), we reach a distribution that is

√
N · (λ/d)�-close to the

uniform distribution over [N ]. Using notation as in the proof of Eq. (E.7), the claim
asserts that ‖A�s − u‖1 ≤

√
N · λ̂�, which is meaningful only for � > 0.5 · log1/λ̂ N .

The claim is proved by recalling that ‖A�s − u‖1 ≤
√

N · ‖A�s − u‖ and using the
fact that s − u is orthogonal to u (because the former is a zero-sum vector). Thus,
‖A�s − u‖ = ‖A�(s − u)‖ ≤ λ̂�‖s − u‖ and using ‖s − u‖ < 1 the claim follows.

13That is we get
√

ρi‖z1‖ + λ̂‖z2‖ ≤
√

ρi + λ̂2 ·
√
‖z1‖2 + ‖z2‖2, by using

∑n
i=1

ai · bi ≤
(∑n

i=1
ai

2
)1/2 ·(∑n

i=1
bi

2
)1/2

, with n = 2, a1 = √ρi , b1 = ‖z1‖, etc.

560



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

E.2.2. Constructions

Many explicit constructions of (d, λ)-expanders are known. The first such construction was
presented in [164] (where λ < d was not explicitly bounded), and an optimal construction
(i.e., an optimal eigenvalue bound of λ = 2

√
d − 1) was first provided in [160]. Most of

these constructions are quite simple (see, e.g., §E.2.2.1), but their analysis is based on non-
elementary results from various branches of mathematics. In contrast, the construction of
Reingold, Vadhan, and Wigderson [191], presented in §E.2.2.2, is based on an iterative
process, and its analysis is based on a relatively simple algebraic fact regarding the
eigenvalues of matrices.

Before turning to these explicit constructions, we note that it is relatively easy to prove
the existence of 3-regular expanders, by using the Probabilistic Method (cf. [11]) and
referring to the combinatorial definition of expansion.14

E.2.2.1. The Margulis-Gabber-Galil Expander
For every natural number m, consider the graph with vertex set Zm × Zm and the edge set
in which every 〈x, y〉 ∈ Zm × Zm is connected to the vertices 〈x ± y, y〉, 〈x ± (y + 1), y〉,
〈x, y ± x〉, and 〈x, y ± (x + 1)〉, where the arithmetic is modulo m. This yields an ex-
tremely simple 8-regular graph with an eigenvalue bound that is a constant λ < 8 (which
is independent of m). Thus, we get

Theorem E.10: There exists a strongly explicit construction of a family of
(8, 7.9999)-expanders for graph sizes {m2 : m ∈ N}. Furthermore, the neighbors
of a vertex in these expanders can be computed in logarithmic space.15

An appealing property of Theorem E.10 is that, for every n ∈ N, it directly yields expanders
with vertex set {0, 1}n . This is obvious in case n is even, but can also be easily achieved
for odd n (e.g., use two copies of the graph for n − 1, and connect the two copies by the
obvious perfect matching).

Theorem E.10 is due to Gabber and Galil [84], building on the basic approach sug-
gested by Margulis [164]. We mention again that the (strongly explicit) (d, λ)-expanders
of [160] achieve the optimal eigenvalue bound (i.e., λ = 2

√
d − 1), but there are annoying

restrictions on the degree d (i.e., d − 1 should be a prime congruent to 1 modulo 4) and
on the graph sizes for which this construction works.16

14This can be done by considering a 3-regular graph obtained by combining an N -cycle with a random matching
of the first N/2 vertices and the remaining N/2 vertices. It is actually easier to prove the related statement that refers
to the alternative definition of combinatorial expansion that refers to the relative size of �+G (S) = �G (S) \ S (rather
than to the relative size of �G (S)). In this case, for a sufficiently small ε > 0 and all sufficiently large N , a random
3-regular N -vertex graph is “ε-expanding” with overwhelmingly high probability. The proof proceeds by considering
a (not necessarily simple) graph G obtained by combining three uniformly chosen perfect matchings of the elements
of [N ]. For every S ⊆ [N ] of size at most N/2 and for every set T of size ε|S|, we consider the probability that for a
random perfect matching M it holds that �+M (S) ⊆ T . The argument is concluded by applying a union bound.

15In fact, for m that is a power of two (and under a suitable encoding of the vertices), the neighbors can be
computed by an on-line algorithm that uses a constant amount of space. The same also holds for a variant in which
each vertex 〈x, y〉 is connected to the vertices 〈x ± 2y, y〉, 〈x ± (2y + 1), y〉, 〈x, y ± 2x〉, and 〈x, y ± (2x + 1)〉.
This variant yields a better (known) bound on λ, i.e., λ ≤ 5

√
2 ≈ 7.071.

16The construction in [160] allows graph sizes of the form (p3 − p)/2, where p ≡ 1 (mod 4) is a prime such
that d − 1 is a quadratic residue modulo p. As stated in [8, Sec. 2], the construction can be extended to graph sizes
of the form (p3k − p3k−2)/2, for any k ∈ N and p as in the foregoing.

561



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

1

2

35

6
1

2

35

6

4

4

u v

Figure E.1: Detail of the Zig-Zag product of G′ and G. In this example G′ is 6-regular and G is a
3-regular graph having six vertices. In the graph G′ (not shown), the 2nd edge of vertex u is incident
at v, as its 5th edge. The wide 3-segment line shows one of the corresponding edges of G′©z G, which
connects the vertices 〈u, 3〉 and 〈v, 2〉.

E.2.2.2. The Iterated Zig-Zag Construction
The starting point of the following construction is a very good expander G of constant
size, which may be found by an exhaustive search. The construction of a large expander
graph proceeds in iterations, where in the i th iteration the current graph Gi and the fixed
graph G are combined, resulting in a larger graph Gi+1. The combination step guarantees
that the expansion property of Gi+1 is at least as good as the expansion of Gi , while Gi+1

maintains the degree of Gi and is a constant time larger than Gi . The process is initiated
with G1 = G2 and terminates when we obtain a graph Gt of approximately the desired
size (which requires a logarithmic number of iterations).

The Zig-Zag product. The heart of the combination step is a new type of “graph product”
called the Zig-Zag product. This operation is applicable to any pair of graphs G = ([D], E)
and G ′ = ([N ], E ′), provided that G ′ (which is typically larger than G) is D-regular. For
simplicity, we assume that G is d-regular (where typically d � D). The Zig-Zag product
of G ′ and G, denoted G ′©z G, is defined as a graph with vertex set [N ]× [D] and
an edge set that includes an edge between 〈u, i〉 ∈ [N ]× [D] and 〈v, j〉 if and only if
{i, k}, {�, j} ∈ E and the k th edge incident at u equals the �th edge incident at v. That is,
〈u, i〉 and 〈v, j〉 are connected in G ′©z G if there exists a “three-step sequence” consisting
of a G-step from 〈u, i〉 to 〈u, k〉 (according to the edge {i, k} of G), followed by a G ′-step
from 〈u, k〉 to 〈v, �〉 (according to the k th edge of u in G ′ (which is the �th edge of v)), and
a final G-step from 〈v, �〉 to 〈v, j〉 (according to the edge {�, j} of G). See Figure E.1 as
well as further formalization (which follows).

Teaching note: The following paragraph, which provides a formal description of the Zig-Zag
product, can be ignored at the first reading but is useful for more advanced discussion.

It will be convenient to represent graphs like G ′ by their edge-rotation function, denoted
R′ : [N ]× [D] → [N ]× [D], such that R′(u, i) = (v, j) if {u, v} is the i th edge incident

562



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

at u as well as the j th edge incident at v. That is, R′ rotates the pair (u, i), which represents
one “side” of the edge {u, v} (i.e., the side incident at u as its i th edge), resulting in the pair
(v, j), which represents the other side of the same edge (which is the j th edge incident
at v). For simplicity, we assume that the (constant-size) d-regular graph G = ([D], E)
is edge-colorable with d colors, which in turn yields a natural edge-rotation function
(i.e., R(i, α) = ( j, α) if the edge {i, j} is colored α). We will denote by Eα(i) the vertex
reached from i ∈ [D] by following the edge colored α (i.e., Eα(i) = j if and only if
R(i, α) = ( j, α)). The Zig-Zag product of G ′ and G, denoted G ′©z G, is then defined as a
graph with the vertex set [N ]× [D] and the edge-rotation function

(〈u, i〉, 〈α, β〉) !→ (〈v, j〉, 〈β, α〉) if R′(u, Eα(i)) = (v, Eβ( j)). (E.9)

That is, edges are labeled by pairs over [d], and the 〈α, β〉th edge out of vertex 〈u, i〉 ∈
[N ]× [D] is incident at the vertex 〈v, j〉 (as its 〈β, α〉th edge) if R(u, Eα(i)) = (v, Eβ( j)),
where indeed Eβ(Eβ( j)) = j . Intuitively, based on 〈α, β〉, we first take a G-step from 〈u, i〉
to 〈u, Eα(i)〉; then viewing 〈u, Eα(i)〉 ≡ (u, Eα(i)) as a side of an edge of G ′ we rotate it
(i.e., we effectively take a G ′-step) reaching (v, j ′) def= R′(u, Eα(i)), and finally we take a
G-step from 〈v, j ′〉 to 〈v, Eβ( j ′)〉.

Clearly, the graph G ′©z G is d2-regular and has D · N vertices. The key fact, proved
in [191] (using techniques as in §E.2.1.3), is that the relative eigenvalue bound of the
Zig-Zag product is upper-bounded by the sum of the relative eigenvalue bound of the two
graphs; that is, λ̄(G ′©z G) ≤ λ̄(G ′)+ λ̄(G), where λ̄(·) denotes the relative eigenvalue
bound of the relevant graph. The (qualitative) fact that G ′©z G is an expander if both G ′

and G are expanders is very intuitive (e.g., consider what happens if G ′ or G is a clique).
Things are even more intuitive if one considers the (related) replacement product of G ′

and G, denoted G ′©r G, where there is an edge between 〈u, i〉 ∈ [N ]× [D] and 〈v, j〉 if
and only if either u = v and {i, j} ∈ E or the i th edge incident at u equals the j th edge
incident at v.

The iterated construction. The iterated expander construction uses the aforementioned
Zig-Zag product as well as graph squaring. Specifically, the construction starts17 with the
d2-regular graph G1 = G2 = ([D], E2), where D = d4 and λ̄(G) < 1/4, and proceeds
in iterations such that Gi+1 = G2

i©z G for i = 1, 2, . . . , t − 1, where t is logarithmic in
the desired graph size. That is, in each iteration, the current graph is first squared and
then composed with the fixed (d-regular D-vertex) graph G via the Zig-Zag product. This
process maintains the following two invariants:

1. The graph Gi is d2-regular and has Di vertices.

(The degree bound follows from the fact that a Zig-Zag product with a d-regular
graph always yields a d2-regular graph.)

2. The relative eigenvalue bound of Gi is smaller than one half (i.e., λ̄(Gi ) < 1/2).

(Here, we use the fact that λ̄(G2
i−1©z G) ≤ λ̄(G2

i−1)+ λ̄(G), which in turn equals
λ̄(Gi−1)2 + λ̄(G) < (1/2)2 + (1/4). Note that graph squaring is used to reduce the
relative eigenvalue of Gi before increasing it by a Zig-Zag product with G.)

In order to show that we can actually construct Gi , we show that we can compute the edge-
rotation function that corresponds to its edge set. This boils down to showing that, given

17Recall that, for a sufficiently large constant d, we first find a d-regular graph G = ([d4], E) satisfying λ̄(G) <

1/4, by exhaustive search.

563



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX E

the edge-rotation function of Gi−1, we can compute the edge-rotation function of G2
i−1 as

well as of its Zig-Zag product with G. Note that this entire computation amounts to two
recursive calls to computations regarding Gi−1 (and two computations that correspond to
the constant graph G). But since the recursion depth is logarithmic in the size of the final
graph (i.e., t = logD |vertices(Gt )|), the total number of recursive calls is polynomial in
the size of the final graph (and thus the entire computation is polynomial in the size of the
final graph). This suffices for the minimal (i.e., “mild”) notion of explicitness, but not for
the strong one.

The strongly explicit version. To achieve a strongly explicit construction, we slightly
modify the iterative construction. Rather than letting Gi+1 = G2

i©z G, we let Gi+1 =
(Gi × Gi )2©z G, where G ′ × G ′ denotes the tensor product of G ′ with itself; that is, if
G ′ = (V ′, E ′) then G ′ × G ′ = (V ′ × V ′, E ′′), where

E ′′ = {{〈u1, u2〉, 〈v1, v2〉} : {u1, v1}, {u2, v2} ∈ E ′
}

(i.e., 〈u1, u2〉 and 〈v1, v2〉 are connected in G ′ × G ′ if for i = 1, 2 it holds that ui is
connected to vi in G ′). The corresponding edge-rotation function is

R′′(〈u1, u2〉, 〈i1, i2〉) = (〈v1, v2〉, 〈 j1, j2〉),

where R′(u1, i1) = (v1, j1) and R′(u2, i2) = (v2, j2). We still use G1 = G2, where (as
before) G is d-regular and λ̄(G) < 1/4, but here G has D = d8 vertices.18 Using the fact
that the tensor product preserves the relative eigenvalue bound while squaring the degree
(and the number of vertices), we note that the modified iteration Gi+1 = (Gi × Gi )2©z G
yields a d2-regular graph with (D2i−1)2 · D = D2i+1−1 vertices, and that λ̄(Gi+1) < 1/2
(because λ̄((Gi × Gi )2©z G) ≤ λ̄(Gi )2 + λ̄(G)). Computing the neighbor of a vertex in
Gi+1 boils down to a constant number of such computations regarding Gi , but due to the
tensor product operation, the depth of the recursion is only double-logarithmic in the size
of the final graph (and hence logarithmic in the length of the description of vertices in this
graph).

Digest. In the first construction, the Zig-Zag product was used both in order to increase
the size of the graph and to reduce its degree. However, as indicated by the second
construction (where the tensor product of graphs is the main vehicle for increasing the
size of the graph), the primary effect of the Zig-Zag product is reducing the graph’s
degree, and the increase in the size of the graph is merely a side effect.19 In both cases,
graph squaring is used in order to compensate for the modest increase in the relative
eigenvalue bound caused by the Zig-Zag product. In retrospect, the second construction is
the “correct” one, because it decouples three different effects, and uses a natural operation
to obtain each of them: Increasing the size of the graph is obtained by the tensor product
of graphs (which in turn increases the degree), the desired degree reduction is obtained
by the Zig-Zag product (which in turn slightly increases the relative eigenvalue bound),
and graph squaring is used in order to reduce the relative eigenvalue bound.

18The reason for the change is that (Gi × Gi )2 will be d8-regular, since Gi will be d2-regular.
19We mention that this side effect may actually be undesired in some applications. For example, in Section 5.2.4

we would rather not have the graph grow in size, but we can tolerate the constant size blowup (caused by the Zig-Zag
product with a constant-size graph).

564



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

E.2. EXPANDER GRAPHS

Stronger bound regarding the effect of the Zig-Zag product. In the foregoing de-
scription we relied on the fact, proved in [191], that the relative eigenvalue bound of the
Zig-Zag product is upper-bounded by the sum of the relative eigenvalue bounds of the
two graphs (i.e., λ̄(G ′©z G) ≤ λ̄(G ′)+ λ̄(G)). Actually, a stronger upper bound is proved
in [191]: It holds that λ̄(G ′©z G) ≤ f (λ̄(G ′), λ̄(G)), where

f (x, y)
def= (1− y2) · x

2
+

√(
(1− y2) · x

2

)2

+ y2 (E.10)

Indeed, f (x, y) ≤ (1− y2) · x + y ≤ x + y. On the other hand, for x ≤ 1, we have
f (x, y) ≤ (1−y2)·x

2 + 1+y2

2 = 1− (1−y2)·(1−x)
2 , which implies

λ̄(G ′©z G) ≤ 1− (1− λ̄(G)2) · (1− λ̄(G ′))
2

. (E.11)

Thus, 1− λ̄(G ′©z G) ≥ (1− λ̄(G)2) · (1− λ̄(G ′))/2, and it follows that the Zig-Zag
product has a positive eigenvalue gap if both graphs have positive eigenvalue gaps
(i.e., λ(G ′©z G) < 1 if both λ(G) < 1 and λ(G ′) < 1). Furthermore, if λ̄(G) < 1/

√
3

then 1− λ̄(G ′©z G) > (1− λ̄(G ′))/3. This fact plays an important role in the proof of
Theorem 5.6.

565



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

Some Omitted Proofs

A word of a Gentleman is better than a proof, but since you are not a
Gentleman – please provide a proof.

Leonid A. Levin (1986)

The proofs presented in this appendix were not included in the main text for a variety of
reasons (e.g., they were deemed too technical and/or out of pace for the corresponding
location). On the other hand, since our presentation of them is sufficiently different from
the original and/or standard presentation, we see a benefit in including them in the current
book.

Summary: This appendix contains proofs of the following results:

1. PH is reducible to #P (and in fact to ⊕P) via randomized Karp-
reductions. The proof follows the underlying ideas of Toda’s original
proof, but the actual presentation is quite different.

2. For any integral function f that satisfies f (n) ∈ {2, . . . , poly(n)}, it
holds that IP( f ) ⊆ AM(O( f )) and AM(O( f )) ⊆ AM( f ). The
proofs differ from the original proofs (provided in [111] and [23],
respectively) only in the secondary details, but these details seem
significant.

F.1. Proving That PH Reduces to #P
Recall that Theorem 6.16 asserts that PH is Cook-reducible to #P (via deterministic
reductions). Here, we prove a closely related result (also due to Toda [220]), which relaxes
the requirement from the reduction (allowing it to be randomized) but uses an oracle to a
seemingly weaker class. The latter class is denoted ⊕P and is the “modulo 2 analogue”
of #P . Specifically, a Boolean function f is in ⊕P if there exists a function g ∈ #P such
that for every x it holds that f (x) = g(x) mod 2. Equivalently, f is in⊕P if there exists a
search problem R ∈ PC such that f (x) = |R(x)| mod 2, where R(x) = {y : (x, y) ∈ R}.
Thus, for any R ∈ PC, the set⊕R

def= {x : |R(x)| ≡ 1 (mod 2)} is in⊕P . (The⊕ symbol
in the notation⊕P actually represents parity, which is merely addition modulo 2. Indeed,
a notation such as #2P would have been more appropriate.)

566



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.1. PROVING THAT PH REDUCES TO #P

Theorem F.1: Every set in PH is reducible to ⊕P via a probabilistic polynomial-
time reduction. Furthermore, the reduction is via a many-to-one randomized map-
ping and it fails with negligible error probability.

The proof follows the underlying ideas of the original proof [220], but the actual presen-
tation is quite different. Alternative proofs of Theorem F.1 can be found in [136, 212].

Teaching note: It is quite easy to prove a non-uniform analogue of Theorem F.1, which
asserts that AC0 circuits can be approximated by circuits consisting of an unbounded parity
of conjunctions, where each conjunction has poly-logarithmic fan-in. Turning this argument
into a proof of Theorem F.1 requires a careful implementation as well as the use of transitions
of the type presented in Exercise 3.8. Furthermore, such a presentation tends to obscure the
conceptual steps that underlie the argument.

Proof Outline: The proof uses three main ingredients. The first ingredient is the fact
that NP is reducible to ⊕P via a probabilistic Karp-reduction, and that this reduction
“relativizes” (i.e., reduces NP A to ⊕P A for any oracle A).1 The second ingredient is the
fact that error reduction is available in the current context (of randomized reductions to
⊕P), resulting in reductions that have exponentially vanishing error probability.2 The third
ingredient is the extension of the first ingredient to �k , which relies on Proposition 3.9 as
well as on the aforementioned error reduction. These ingredients correspond to the three
main steps of the proof, which are outlined next:

Step 1: Present a randomized Karp-reduction of NP to ⊕P .
Step 2: Decrease the error probability of the foregoing Karp-reduction such that the error

probability becomes exponentially vanishing. Such a low error probability is crucial
as a starting point for the next step.

Step 3: Prove that �2 is randomly reducible to ⊕P by extending the reduction of Step 1
(while using Step 2). Intuitively, for any oracle A, the reduction of Step 1 offers
a reduction of NP A to ⊕P A, whereas a reduction of A to B having exponen-
tially vanishing error probability allows for reducing ⊕P A to ⊕P B (or, similarly,
reducing NP A to NP B). Observing that ⊕P⊕P = ⊕P , we obtain a randomized
Karp-reduction of �2 (viewed as NPNP ) to ⊕P .

When completing the third step, we shall have all the ingredients needed for the general
case (of randomly reducing �k to ⊕P , for any k ≥ 2). We shall finish the proof by
sketching the extension of the case of �2 (treated in Step 3) to the general case of �k (for
any k ≥ 2). The actual extension is quite cumbersome, but the ideas are all present in the
case of �2. Furthermore, we believe that the case of �2 is of significant interest per se.

1Indeed, the “relativization” requirement presumes that both NP and ⊕P are each associated with a class of
(standard) machines that generalizes to a class of corresponding oracle machines (see comment at Section 3.2.2). This
presumption holds for both classes, by virtue of a (deterministic polynomial-time) machine that decides membership in
the corresponding relation that belongs to PC. Alternatively, one may use the fact that the aforementioned reduction is
“highly structured” in the sense that for some polynomial-time computable predicate ψ this reduction maps x to 〈x, s〉
such that for every non-empty set Sx ⊆ {0, 1}p(|x |) it holds that Prs [|{y ∈ Sx : ψ(x, s, y)}| ≡ 1 (mod 2)] > 1/3.

2We comment that such an error reduction is not available in the context of reductions to unique solution problems.
This comment is made in view of the similarity between the reduction of NP to ⊕P and the reduction of NP to
problems of unique solution.

567



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

Teaching note: The foregoing sketch of Step 3 suggests an abstract treatment that evolves
around definitions such as NP A and ⊕P B . We prefer a concrete presentation that performs
Step 3 as an extension of Step 1 (while using Step 2). This is one reason for explicitly per-
forming Step 1 (i.e., present a randomized Karp-reduction of NP to ⊕P). We note that
Step 1 (i.e., a reduction of NP to ⊕P) follows immediately from the NP-hardness of decid-
ing unique solutions for some relations R ∈ PC (i.e., Theorem 6.29), because the promise
problem (USR, SR), where USR = {x : |R(x)| = 1} and SR = {x : |R(x)| = 0}, is reducible
to ⊕R = {x : |R(x)| ≡ 1 (mod 2)} by the identity mapping. However, for the sake of
self-containment and conceptual rightness, we present an alternative proof.

Step 1: A direct proof for the case ofNP . As in the proof of Theorem 6.29, we start with
any R ∈ PC and our goal is reducing SR = {x : |R(x)|≥1} to⊕P by a randomized Karp-
reduction.3 The standard way of obtaining such a reduction (e.g., in [136, 178, 212, 220])
consists of just using the reduction (to “unique solution”) that was presented in the proof
of Theorem 6.29, but we believe that this way is conceptually wrong. Let us explain.

Recall that the proof of Theorem 6.29 consists of implementing a randomized sieve that
has the following property. For any x ∈ SR , with noticeable probability, a single element
of R(x) passes the sieve (and this event can be detected by an oracle to a unique solution
problem). Indeed, an adequate oracle in ⊕P correctly detects the case in which a single
element of R(x) passes the sieve. However, by definition, this oracle correctly detects the
more general case in which any odd number of elements of R(x) pass the sieve. Thus,
insisting on a random sieve that allows the passing of a single element of R(x) seems an
overkill (or at least is conceptually wrong). Instead, we should just apply a less stringent
random sieve that, with noticeable probability, allows the passing of an odd number of
elements of R(x). The adequate tool for such a random sieve is a small-bias generator (see
Section 8.5.2).

Indeed, we randomly reduce SR to ⊕P by sieving potential solutions via a small-bias
generator. Intuitively, we randomly map x to 〈x, s〉, where s is a random seed for such a
generator, and y is considered a solution to the instance 〈x, s〉 if and only if y ∈ R(x) and
the yth bit of G(s) equals 1. (Indeed, if |R(x)| ≥ 1 then, with probability approximately 1/2,
the instance 〈x, s〉 has an odd number of solutions, whereas if |R(x)| = 0 then 〈x, s〉 has
no solutions.) Specifically, we use a strongly efficient generator (see §8.5.2.1), denoted
G : {0, 1}k → {0, 1}�(k), where G(Uk) has bias at most 1/6 and �(k) = exp(�(k)). That is,
given a seed s ∈ {0, 1}k and index i ∈ [�(k)], we can produce the i th bit of G(s), denoted
G(s, i), in polynomial time. Assuming, without loss of generality, that R(x) ⊆ {0, 1}p(|x |)

for some polynomial p, we consider the relation

R2
def= {(〈x, s〉, y) : (x, y) ∈ R ∧ G(s, y) = 1} (F.1)

where y ∈ {0, 1}p(|x |) ≡ [2p(|x |)] and s ∈ {0, 1}O(|y|) such that �(|s|) = 2|y|. In other words,
R2(〈x, s〉) = {y : y ∈ R(x) ∧ G(s, y) = 1}. Then, for every x ∈ SR , with probability at
least 1/3, a uniformly selected s ∈ {0, 1}O(|y|) satisfies |R2(〈x, s〉)| ≡ 1 (mod 2), whereas
for every x �∈ SR and every s ∈ {0, 1}O(|y|) it holds that |R2(〈x, s〉)| = 0. A key observation
is that R2 ∈ PC (and thus ⊕R2 is in ⊕P). Thus, deciding membership in SR is randomly

3As in Theorem 6.29, if any search problem in PC is reducible to R via a parsimonious reduction, then we
can reduce SR to ⊕R. Specifically, we shall show that SR is randomly reducible to ⊕R2, for some R2 ∈ PC, and a
reduction of SR to ⊕R follows (by using the parsimonious reduction of R2 to R).

568



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.1. PROVING THAT PH REDUCES TO #P

reducible to ⊕R2 (by the many-to-one randomized mapping of x to 〈x, s〉, where s is
uniformly selected in {0, 1}O(p(|x |))). Since the foregoing holds for any R ∈ PC, it follows
that NP is reducible to ⊕P via randomized Karp-reductions.

Dealing with coNP . We may Cook-reduce coNP to NP and thus prove that coNP
is randomly reducible to ⊕P , but we wish to highlight the fact that a randomized Karp-
reduction will also do. Starting with the reduction presented for the case of sets in NP , we
note that for S ∈ coNP (i.e., S = {x : R(x) = ∅}) we obtain a relation R2 such that x ∈ S
is indicated by |R2(〈x, ·〉)| ≡ 0 (mod 2). We wish to flip the parity such that x ∈ S will
be indicated by |R2(〈x, ·〉)| ≡ 1 (mod 2), and this can be done by augmenting the relation
R2 with a single dummy solution per each x . For example, we may redefine R2(〈x, s〉)
as {0y : y ∈ R2(〈x, s〉)} ∪ {10p(|x |)}. Indeed, we have just demonstrated and used the fact
that ⊕P is closed under complementation.

We note that dealing with the cases of NP and coNP is of interest only because we
reduced these classes to ⊕P rather than to #P . In contrast, even a reduction of �2 to #P
is of interest, and thus the reduction of �2 to ⊕P (presented in Step 3) is interesting.
This reduction relies heavily on the fact that error reduction is applicable to the context
of randomized Karp-reductions to ⊕P .

Step 2: Error reduction. An important observation, toward the core of the proof, is
that it is possible to drastically decrease the (one-sided) error probability in randomized
Karp-reductions to ⊕P . Specifically, let R2 be as in Eq. (F.1) and t be any polynomial.
Then, a binary relation R(t)

2 that satisfies

|R(t)
2 (〈x, s1, . . . , st(|x |)〉)| = 1+

t(|x |)∏
i=1

(1+ |R2(〈x, si 〉)|) (F.2)

offers such an error reduction, because |R(t)
2 (〈x, s1, . . . , st(|x |)〉)| is odd if and only if for

some i ∈ [t(|x |)] it holds that |R2(〈x, si 〉)| is odd. Thus,

Prs1,...,st(|x |) [|R(t)
2 (〈x, s1, . . . , st(|x |)〉)| ≡ 0 (mod 2)]

= Prs[|R2(〈x, s〉)| ≡ 0 (mod 2)]t(|x |)

where s, s1, . . . , st(|x |) are uniformly and independently distributed in {0, 1}O(p(|x |)) (and
p is such that R(x) ⊆ {0, 1}p(|x |)). This means that the one-sided error probability of a
randomized reduction of SR to⊕R2 (which maps x to 〈x, s〉) can be drastically decreased
by reducing SR to ⊕R(t)

2 , where the reduction maps x to 〈x, s1, . . . , st(|x |)〉. Specifically,
an error probability of ε (e.g., ε = 2/3) in the case that we desire an “odd outcome” (i.e.,
x ∈ SR) is decreased to error probability εt , whereas the zero error probability in the case
of a desired “even outcome” (i.e., x ∈ SR) is preserved.

A key question is whether ⊕R(t)
2 is in ⊕P , that is, whether R(t)

2 (as postulated in
Eq. (F.2)) can be implemented in PC. The answer is positive, and this can be shown by
using a Cartesian product construction (and adding some dummy solutions). For example,
let R(t)

2 (〈x, s1, . . . , st(|x |)〉) consists of tuples 〈σ0, y1, . . . , yt(|x |)〉 such that either σ0 = 1
and y1 = · · · = yt(|x |) = 0p(|x |)+1 or σ0 = 0 and for every i ∈ [t(|x |)] it holds that yi ∈
({0}×R2(〈x, si 〉)) ∪ {10p(|x |)} (i.e., either yi = 10p(|x |) or yi = 0y′i and y′i ∈ R2(〈x, si 〉)).

569



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

We wish to stress that, when starting with R2 as in Eq. (F.1), the foregoing process
of error reduction can be used for obtaining error probability that is upper-bounded by
exp(−q(|x |)) for any desired polynomial q. The importance of this comment will become
clear shortly.

Step 3: The case of �2. With the foregoing preliminaries, we are now ready to handle
the case of S ∈ �2. By Proposition 3.9, there exists a polynomial p and a set S′ ∈ �1 =
coNP such that S = {x : ∃y ∈ {0, 1}p(|x |) s.t. (x, y) ∈ S′}. Using S′ ∈ coNP , we apply
the foregoing reduction of S′ to ⊕P as well as an adequate error reduction that yields
an upper bound of ε · 2−p(|x |) on the error probability, where ε ≤ 1/7 is unspecified at
this point. (For the case of �2 the setting ε = 1/7 will do, but for the dealing with
�k we will need a much smaller value of ε > 0.) Thus, for an adequate polynomial
t (i.e., t(n + p(n)) = O(p(n) log(1/ε))), we obtain a relation R(t)

2 ∈ PC such that the
following holds: For every x and y ∈ {0, 1}p(|x |), with probability at least 1− ε · 2−p(|x |)

over the random choice of s ′ ∈ {0, 1}poly(|x |), it holds that x ′ def= (x, y) ∈ S′ if and only if
|R(t)

2 (〈x ′, s ′〉)| is odd.4

Using a union bound (over all possible y ∈ {0, 1}p(|x |)), it follows that, with probability
at least 1− ε over the choice of s ′, it holds that x ∈ S if and only if there exists a y such
that |R(t)

2 (〈(x, y), s ′〉)| is odd. Now, as in the treatment of NP , we wish to reduce the latter
“existential problem” to⊕P . That is, we wish to define a relation R3 ∈ PC such that for a
randomly selected s the value |R3(〈x, s, s ′〉)| mod 2 provides an indication as to whether
or not x ∈ S (by indicating whether or not there exists a y such that |R(t)

2 (〈(x, y), s ′〉)| is
odd). Analogously to Eq. (F.1), consider the binary relation

I3
def= {

(〈x, s, s ′〉, y) :
∣∣R(t)

2 (〈(x, y), s ′〉)∣∣ ≡ 1(mod 2) ∧ G(s, y) = 1
}
. (F.3)

In other words, I3(〈x, s, s ′〉) = {y : |R(t)
2 (〈(x, y), s ′〉)| ≡ 1(mod 2) ∧ G(s, y) = 1}. In-

deed, if x ∈ S then, with probability at least 1− ε over the random choice of s ′ and prob-
ability at least 1/3 over the random choice of s, it holds that |I3(〈x, s, s ′〉)| is odd, whereas
for every x �∈ S and every choice of s it holds that Prs ′[|I3(〈x, s, s ′〉)| = 0] ≥ 1− ε.5

Note that, for ε ≤ 1/7, it follows that for every x ∈ S we have Prs,s ′[|I3(〈x, s, s ′〉)| ≡
1 (mod 2)] ≥ (1− ε)/3 ≥ 2/7, whereas for every x �∈ S we have Prs,s ′[|I3(〈x, s, s ′〉)| ≡
1 (mod 2)] ≤ ε ≤ 1/7. Thus, |I3(〈x, ·, ·〉)| mod 2 provides a randomized indication to
whether or not x ∈ S, but it is not clear whether I3 is in PC (and in fact I3 is likely not
to be in PC). The key observation is that there exists R3 ∈ PC such that ⊕R3 = ⊕I3.

4Recall that |s′| = t(|x ′|) · O(p′(|x ′|)), where R′(x ′) ⊆ {0, 1}p′(|x ′ |) is the “witness relation” corresponding to S′

(i.e., x ′ ∈ S′ if and only if R′(x ′) = {0, 1}p′(|x ′ |)). Thus, R2(〈x ′, s′〉) ⊆ {0, 1}p′(|x ′ |)+1 and R(t)
2 (〈x ′, s′〉) is a subset of

{0, 1}1+t(|x ′ |)·(p′(|x ′ |)+2). Note that (since we started with S′ ∈ coNP) the error probability occurs on no-instances of
S′, whereas yes-instances are always accepted. However, to simplify the exposition, we allow possible errors also on
yes-instances of S′. This does not matter because we will anyhow have an error probability on yes-instances of S (see
footnote 5).

5In continuation of footnote 4, we note that actually, if x ∈ S then there exists a y such that (x, y) ∈ S′ and
consequently for every choice of s′ it holds that |R(t)

2 (〈(x, y), s′〉)| is odd (because the reduction from S′ ∈ coNP
to ⊕P has zero error on yes-instances). Thus, for every x ∈ S and s′, with probability at least 1/3 over the random
choice of s, it holds that |I3(〈x, s, s′〉)| is odd (because the reduction from S ∈ NP S′ to ⊕P S′ has non-zero error on
yes-instances). On the other hand, if x �∈ S then Prs′ [(∀y) |R(t)

2 (〈(x, y), s′〉)| ≡ 0 (mod 2)] ≥ 1− ε (because for every
y it holds that (x, y) �∈ S′ and the reduction from coNP to ⊕P has non-zero error on no-instances). Thus, for every
x �∈ S and s, it holds that Prs′ [|I3(〈x, s, s′〉)| = 0] ≥ 1− ε (because the reduction from S ∈ NP S′ to⊕P S′ has zero
error on no-instances). To sum up, the combined reduction has two-sided error, because each of the two reductions
introduces an error in a different direction.

570



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.1. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

Specifically, consider

R3
def= {

(〈x, s, s ′〉, 〈y, z〉) : (〈(x, y), s ′〉, z) ∈ R(t)
2 ∧ G(s, y) = 1

}
,

(F.4)

where 〈y, z〉 ∈ {0, 1}p(|x |) × {0, 1}poly(|x |). (That is, 〈y, z〉 is in R3(〈x, s, s ′〉) if
(〈(x, y), s ′〉, z) ∈ R(t)

2 and G(s, y) = 1.) Clearly R3 ∈ PC, and so it is left to show that
|R3(〈x, s, s ′〉)| ≡ |I3(〈x, s, s ′〉)| (mod 2). The claim follows by letting χy,z (resp., ξy)
indicate the event (〈(x, y), s ′〉, z)∈ R(t)

2 (resp., the event G(s, y) = 1), noting that

|R3(〈x, s, s ′〉)| mod 2 ≡ ⊕y,z(χy,z ∧ ξy)

|I3(〈x, s, s ′〉)| mod 2 ≡ ⊕y((⊕zχy,z) ∧ ξy)

and using the equivalence of the two corresponding Boolean expressions. Thus, S is
randomly Karp-reducible to ⊕R3 ∈ ⊕P (by the many-to-one randomized mapping of x
to 〈x, s, s ′〉, where (s, s ′) is uniformly selected in {0, 1}O(p(|x |)) × {0, 1}poly(|x |)). Since this
holds for any S ∈ �2, we conclude that �2 is randomly Karp-reducible to ⊕P .

Again, error reduction may be applied to this reduction (of �2 to ⊕P) such that the
resulting reduction can be used for dealing with �3 (viewed as NP�2 ). A technical
difficulty arises since the foregoing reduction has two-sided error probability, where one
type (or “side”) of error is due to the error in the reduction of S′ ∈ coNP to ⊕R(t)

2
(which occurs on no-instances of S′) and the second type (or “side”) of error is due to the
(new) reduction of S to ⊕R3 (and occurs on the yes-instances of S). However, the error
probability in the first reduction is (or can be made) very small and thus can be ignored
when applying error reduction to the second reduction. See following comments.

The general case. First note that, as in the case of coNP , we can obtain a similar reduction
(to ⊕P) for sets in �2 = co�2. It remains to extend the treatment of �2 to �k , for every
k ≥ 2. Indeed, we show how to reduce �k to ⊕P by using a reduction of �k−1 (or rather
�k−1) to ⊕P . Specifically, S ∈ �k is treated by considering a polynomial p and a set
S′ ∈ �k−1 such that S = {x : ∃y ∈ {0, 1}p(|x |) s.t. (x, y) ∈ S′}. Relying on the treatment
of �k−1, we use a relation R(tk )

k such that, with overwhelmingly high probability over
the choice of s ′, the value |R(tk )

k (〈(x, y), s ′〉)| mod 2 indicates whether or not (x, y) ∈ S′.
Using the ideas underlying the treatment of NP (and �2) we check whether there exists
y ∈ {0, 1}p(|x |) such that |R(tk )

k (〈(x, y), s ′〉)| ≡ 1 (mod 2). This yields a relation Rk+1 such
that for random s, s ′ the value |Rk+1(〈x, s, s ′〉)| mod 2 indicates whether or not x ∈ S.
Finally, we apply error reduction, while ignoring the probability that s ′ is bad, and obtain
the desired relation R(tk+1)

k+1 .
We comment that the foregoing inductive process should be implemented with some

care. Specifically, if we wish to upper-bound the error probability in the reduction (of S)
to ⊕R(tk+1)

k+1 by εk+1, then the error probability in the reduction (of S′) to ⊕R(tk )
k should be

upper-bounded by εk ≤ εk+1 · 2−p(|x |) (and tk should be set accordingly). Thus, the proof
that PH is randomly reducible to ⊕P actually proceeds “top down” (at least partially);
that is, starting with an arbitrary S ∈ �k , we first determine the auxiliary sets (as per
Proposition 3.9) as well as the error bounds that should be proved for the reductions of
these sets (which reside in lower levels of PH), and only then we establish the existence
of such reductions. Indeed, this latter (and main) step is done “bottom up” using the
reduction (to ⊕P) of the set in the i th level when reducing (to ⊕P) the set in the i + 1st

level.

571



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

F.2. Proving That IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

Using the notations presented in §9.1.4.3, we restate two results mentioned there.

Theorem F.2 (round-efficient emulation of IP by AM): Let f : N→ N be a
polynomially bounded function. Then IP( f ) ⊆ AM( f + 3).

We comment that, in light of the following linear speedup in round complexity for AM,
it suffices to establish IP( f ) ⊆ AM(O( f )).

Theorem F.3 (linear speedup forAM): Let f : N→ N be a polynomially bounded
function. Then AM(2 f ) ⊆ AM( f + 1).

Combining these two theorems, we obtain a linear speedup for IP; that is, for any
polynomially bounded f : N→ (N\{1}), it holds that IP(O( f )) ⊆ AM( f ) ⊆ IP( f ).
In this appendix we prove both theorems.

Note: The proof of Theorem F.2 relies on the fact that, for every f , error reduction is
possible for IP( f ). Specifically, error reduction can be obtained via parallel repetitions
(see [90, Apdx. C.1]). We mention that error reduction (in the context of AM( f )) is also
implicit in the proof of Theorem F.3 (and is explicit in the original proof of [23]).

F.2.1. Emulating General Interactive Proofs by AM-Games

In this section we prove Theorem F.2. Our proof differs from the original proof of Gold-
wasser and Sipser [111] only in the conceptualization and implementation of the iterative
emulation process.

F.2.1.1. Overview
Our aim is to transform a general interactive proof system (P, V ) into a public-coin inter-
active proof system for the same set. Suppose, without loss of generality, that P constitutes
an optimal prover with respect to V (i.e., P maximizes the acceptance probability of V on
any input). Then, for any yes-instance x , the set Ax of coin sequences that make V accept
when interacting with this optimal prover contains all possible outcomes, whereas for a
no-instance x (of equal length) the set Ax is significantly smaller. The basic idea is having
a public-coin system in which, on common input x , the prover proves to the verifier that
the said set Ax is big. Such a proof system can be constructed using ideas as in the case
of approximate counting (see the proof of Theorem 6.27), while replacing the NP-oracle
with a prover that is required to prove the correctness of its answers. Implementing this
idea requires taking a closer look at the set of coin sequences that make V accept an input.

A very restricted case. Let us first demonstrate the implementation of the foregoing
approach by considering a restricted type of a two-message interactive proof system.
Recall that in a two-message interactive proof system the verifier, denoted V , sends a
single message (based on the common input and its internal coin tosses) to which the
prover, denoted P , responds with a single message and then V decides whether to accept
or reject the input. We further restrict our attention by assuming that each possible message
of V is equally likely and that the number of possible V -messages is easy to determine

572



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.2. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

from the input. Thus, on input x , the verifier V tosses � = �(|x |) coins and sends one out
of N = N (x) possible messages. Note that if x is a yes-instance then for each possible
V -message there exists a P-response that is accepted by the 2�/N corresponding coin
sequences of V (i.e., the coin sequences that lead V to send this V -message). On the
other hand, if x is a no-instance then, in expectation, for a uniformly selected V -message,
the optimal P-response is accepted by a significantly smaller number of corresponding
coin sequences. We now show how such an interactive proof system can be emulated by
a public-coin system.

In the public-coin system, on input x , the prover will attempt to prove that for each
possible V -message (in the original system) there exists a response (by the original prover)
that is accepted by 2�/N corresponding coin sequences of V . Recall that N = N (x) and
� = �(|x |) are easily determined by both parties, and so if the foregoing claim holds then
x must be a yes-instance. The new interaction itself proceeds as follows: First, the verifier
selects uniformly a coin sequence for V , denoted r , and sends it to the prover. The coin
sequence r determines a V -message, denoted α. Next, the prover sends back an adequate
P-message, denoted β, and interactively proves to the verifier that β would have been
accepted by 2�/N possible coin sequences of V that correspond to the V -message α

(i.e., β should be accepted not only by r but also by the 2�/N coin sequences of V that
correspond to the V -message α). The latter interactive proof follows the idea of the proof
of Theorem 6.27: The verifier applies a random sieve that lets only a (2�/N )−1 fraction
of the elements pass, and the prover shows that some adequate sequence of V -coins has
passed this sieve (by merely presenting such a sequence).6 We stress that the foregoing
interaction (and in particular the random sieve) can be implemented in the public-coin
model.

Waiving one restriction. Next, we waive the restriction that the number of possible V -
messages is easy to determine from the input, but still assume that all possible V -messages
are equally likely. In this case, the prover should provide the number N of possible V -
messages and should prove that indeed there exist at least N possible V -messages (and
that, as in the prior case, for each V -message there exists a P-response that is accepted
by 2�/N corresponding coin sequences of V ). That is, the prover should prove that
for at least N possible V -messages there exists a P-response that is accepted by 2�/N
corresponding coin sequences of V . This calls for a double (or rather nested) application
of the aforementioned “lower-bound” protocol. That is, first the parties apply a random
sieve to the set of possible V -messages such that only a N−1 fraction of these messages
pass, and next the parties apply a random sieve to the set coin sequences that fit a passing
V -message such that only a (2�/N )−1 fraction of these sequences pass.

The general case of IP(2). Treating general two-message interactive proofs requires
waiving also the restriction that all possible V -messages are equally likely. In this case,
the prover may cluster the V -messages into few (say, �) clusters such that the messages
in each cluster are sent (by V ) with roughly the same probability (say, up to a factor
of two). Then, focusing on the cluster having the largest probability weight, the prover
can proceed as in the previous case (i.e., send i and claim that there are 2�/� possible

6Indeed, the verifier can easily check whether a coin sequence r ′ passes the sieve as well as fits the initial message
α and would have made V accept when the prover responds with β (i.e., V would have accepted the input, on coins
r ′, when receiving the prover message β).

573



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

V -messages that are each supported by 2i coin sequences). This has a potential of cutting
the probabilistic gap between yes-instances and no-instances by a factor related to the
number of clusters times the approximation level within clusters (e.g., a factor of O(�)),7

but this loss is negligible in comparison to the initial gap (which can be obtained via error
reduction).

Dealing with all levels of IP . So far, we have only dealt with two-message systems (i.e.,
IP(2)). We shall see that the general case of IP( f ) can be dealt with by recursion (or
rather by iterations), where each level of recursion (resp., each iteration) is analogous to
the (general) case of IP(2). Recall that our treatment of the case of IP(2) boils down
to selecting a random V -message, α, and having the prover send a P-response, β, and
prove that β is acceptable by many V -coins. In other words, the prover should prove that
in the conditional probability space defined by a V -message α, the original verifier V
accepts with high probability. In the general case (of IP( f )), the latter claim refers to the
probability of accepting in the residual interaction, which consists of f − 2 messages, and
thus the very same protocol can be applied iteratively (until we get to the last message,
which is dealt with as in the case of IP(2)). The only problem is that, in the residual
interactions, it may not be easy for the verifier to select a random V -message (as done in
the very restricted case). However, as already done when waiving the first restriction, the
verifier can be assisted by the prover, while making sure that it is not being fooled by the
prover. This process is made explicit in §F.2.1.2, where we define an adequate notion of a
“random selection” protocol (which needs to be implemented in the public-coin model).
For simplicity, we may consider the problem of uniformly selecting a sequence of coins in
the corresponding (residual) probability space, because such a sequence determines the
desired random V -message.

F.2.1.2. Random Selection
Various types of “random selection” protocols have appeared in the literature (see,
e.g., [227, Sec. 6.4]). The common theme in these protocols is that they allow for a prob-
abilistic polynomial-time player (called the verifier) to sample a set, denoted S ⊂ {0, 1}�,
while being assisted by a second player (called the prover) that is powerful but not trust-
worthy. These nicknames fit the common conventions regarding interactive proofs and
are further justified by the typical applications of such protocols as subroutines within
an interactive proof system (where indeed the first party is played by the higher-level
verifier while the second party is played by the higher-level prover). The various types of
random-selection protocols differ by what is known about the set S and what is required
from the protocol.

Here, we will assume that the verifier is given a parameter N , which is supposed to
equal |S|, and the performance guarantee of the protocol will be meaningful only for
sets of size at most N . We seek a constant-round (preferably two-message) public-coin
protocol (for this setting) such that the following two conditions hold, with respect to a
security parameter ε ≥ 1/poly(�).

7The loss is due to the fact that the distribution of (probability) weights may not be identical on all instances. For
example, in one case (e.g., of some yes-instance) all clusters may have equal weight, and thus a corresponding factor
is lost, while in another case (e.g., of some no-instance) all the probability mass may be concentrated in a single
cluster.

574



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.2. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

1. If both players follow the protocol and N = |S| then the verifier’s output is ε-close to
the uniform distribution over S. Furthermore, the verifier always outputs an element
of S.

2. For any set S′ ⊆ {0, 1}� if the verifier follows the protocol then, no matter how the
prover behaves, the verifier’s output resides in S′ with probability at most poly(�/ε) ·
(|S′|/N ).

Indeed, the second property is meaningful only for sets S′ having size that is (significantly)
smaller than N . We shall be using such a protocol while setting ε to be a constant (say,
ε = 1/2).

A three-message public-coin protocol that satisfies the foregoing properties can
be obtained by using the ideas that underlie Construction 6.32. Specifically, we set
m = max(0, log2 N − O(log �/ε)) in order to guarantee that if |S| = N then, with over-
whelmingly high probability, each of the 2m cells defined by a uniformly selected hashing
function contains (1± ε) · |S|/2m elements of S. In the protocol, the prover arbitrarily
selects a good hashing function (i.e., one defining such a good partition of S) and sends it
to the verifier, which answers with a uniformly selected cell, to which the prover responds
with a uniformly selected element of S that resides in this cell.8

We stress that the foregoing protocol is indeed in the public-coin model, and comment
that the fact that it uses three messages rather than two will have a minor effect on our
application (see §F.2.1.3). Indeed, this protocol satisfies the two foregoing properties. In
particular, the second property follows because for every possible hashing function, the
fraction of cells containing an element of S′ is at most |S′|/2m , which is upper-bounded
by poly(�/ε) · |S′|/N .

F.2.1.3. The Iterated Partition Protocol
Using the random selection protocol of §F.2.1.2, we now present a public-coin emulation
of an arbitrary interactive proof system, (P, V ). We start with some notations.

Fixing any input x to (P, V ), we denote by t = t(|x |) the number of pairs of messages
exchanged in the corresponding interaction, while assuming that the verifier takes the first
move in (P, V ).9 We denote by � = �(|x |) the number of coins tossed by V , and assume
that � > t . Recall that we assume that P is an optimal prover (with respect to V ), and that
(without loss of generality) P is deterministic. Let us denote by 〈P, V (r )〉(x) the full tran-
script of the interaction of P and V on input x , when V uses coins r ; that is, 〈P, V (r )〉(x) =
(α1, β1, . . . , αt , βt , σ ) if σ = V (x, r, β1, . . . , βt ) ∈ {0, 1} is V ’s final verdict and for
every i = 1, . . . , t it holds that αi = V (x, r, β1, . . . , βi−1) and βi = P(x, α1, . . . , αi ).

8We mention that the foregoing protocol is but one of several possible implementations of the ideas that underlie
Construction 6.32. Firstly, note that an alternative implementation may designate the task of selecting a hashing
function to the verifier, who may do so by selecting a function at random. Although this seems more natural, it
actually offers no advantage with respect to the “soundness-like” property (i.e., the second property). Furthermore,
in this case, it may happen (rarely) that the hashing function selected by the verifier is not good, and consequently the
furthermore clause of the first property (i.e., requiring that the output always reside in S) is not satisfied. Secondly,
recall that in the foregoing protocol the last step consists of the prover selecting a random element of S that resides
in the selected (by the verifier) cell. An alternative implementation may replace this step by two steps such that first
the prover sends a list of (1− ε) · N/2m elements (of S) that resides in the said cell, and then the verifier outputs a
uniformly selected element of this list. This alternative yields an improvement in the “soundness-like” property (i.e.,
the verifier’s output resides in S′ with probability at most (|S′|/N )+ ε), but requires an additional message (which
we prefer to avoid, although this is not that crucial).

9We note if the prover takes the first move in (P, V ) then its first message can be emulated with no cost (in the
number of rounds).

575



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

For any partial transcript ending with a P-message, γ = (α1, β1, . . . , αi−1, βi−1), we de-
note by ACCx (γ ) the set of coin sequences that are consistent with the partial transcript
γ and lead V to accept x when interacting with P; that is, r ∈ ACCx (γ ) if and only if for
some γ ′ ∈ {0, 1}2(t−i)·poly(|x |) it holds that 〈P, V (r )〉(x) = (α1, β1, . . . , αi−1, βi−1, γ

′, 1).
The same notation is also used for a partial transcript ending with a V-message; that
is, r ∈ ACCx (α1, β1, . . . , αi ) if and only if 〈P, V (r )〉(x) = (α1, β1, . . . , αi , γ

′, 1) for
some γ ′.

Motivation. By suitable error reduction, we may assume that (P, V ) has soundness error
µ = µ(|x |) that is smaller than poly(�)−t . Thus, for any yes-instance x it holds that
|ACCx (λ)| = 2�, whereas for any no-instance x it holds that |ACCx (λ)| ≤ µ · 2�. Indeed,
the gap between the initial set sizes is huge, and we can maintain a gap between the sizes of
the corresponding residual sets (i.e., ACCx (α1, β1, . . . , αi )) provided that we lose at most
a factor of poly(�) per each round. The key observations is that, for any partial transcript
γ = (α1, β1, . . . , αi−1, βi−1), it holds that

|ACCx (γ )| =
∑

α

|ACCx (γ, α)|, (F.5)

whereas |ACCx (γ, α)| = maxβ{|ACCx (γ, α, β)|}. Clearly, we can prove that
|ACCx (γ, α)| is big by providing an adequate β and proving that |ACCx (γ, α, β)| is big.
Likewise, proving that |ACCx (γ )| is big reduces to proving that the sum

∑
α |ACCx (γ, α)|

is big. The problem is that this sum may contain exponentially many terms, and so we
cannot even afford reading the value of each of these terms.10 As hinted in §F.2.1.1, we
may cluster these terms into � clusters, such that the j th cluster contains sets of cardinality
approximately 2 j (i.e., α’s such that 2 j ≤ |ACCx (γ, α)| < 2 j+1). One of these clusters
must account for a 1/2� fraction of the claimed size of |ACCx (γ )|, and so we focus on
this cluster; that is, the prover we construct will identify a suitable j (i.e., such that there
are at least |ACCx (γ )|/2� elements in the sets of the j th cluster), and prove that there
are at least N = |ACCx (γ )|/(2� · 2 j+1) sets (i.e., ACCx (γ, α)’s) each of size at least 2 j .
Note that this establishes that |ACCx (γ )| is bigger than N · 2 j = |ACCx (γ )|/O(�), which
means that we have lost a factor of O(�) of the size of ACCx (γ ). But as stated previously,
we may afford such a loss.

Before we turn to the actual protocol, let us discuss the method of proving that there
are at least N sets (i.e., ACCx (γ, α)’s) each of size at least 2 j . This claim is proved by
employing the random-selection protocol (while setting the size parameter to N ) with
the goal of selecting such a set (or rather its index α). If indeed N such sets exist, then
the first property of the protocol guarantees that such a set is always chosen, and we
will proceed to the next iteration with this set, which has size at least 2 j (and so we
should be able to establish a corresponding lower bound there). Thus, entering the current
iteration with a valid claim, we proceed to the next iteration with a new valid claim.
On the other hand, suppose that |ACCx (γ )| � N · 2 j . Then, the second property of the
protocol implies11 that, with probability at least 1− (1/3t), the selected α is such that

10Furthermore, we cannot afford verifying more than a single claim regarding the value of one of these terms,
because examining at least two values per round will yield an exponential blowup (i.e., time complexity that is
exponential in the number of rounds).

11For a loss factor L = poly(�), consider the set S′ = {α : |ACCx (γ, α)| ≥ L · |ACCx (γ )|/N }. Then |S′| ≤ N/L ,
and it follows that an element in S′ is selected with probability at most poly(�)/L , which is upper-bounded by 1/3t
when using a suitable choice of L .

576



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.2. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

|ACCx (γ, α)| < poly(�) · |ACCx (γ )|/N � 2 j , whereas at the next iteration we will need
to prove that the selected set has size at least 2 j . Thus, entering the current iteration with
a false claim that is wrong by a factor F � poly(�), with probability at least 1− (1/3t),
we proceed to the next iteration with a false claim that is wrong by a factor of at least
F/poly(�).

We note that, although the foregoing motivational discussion refers to proving lower
bounds on various set sizes, the actual implementation refers to randomly selecting ele-
ments in such sets. If the sets are smaller than claimed, the selected elements are likely to
reside outside these sets, which will be eventually detected.

Construction F.4 (the actual protocol): On common input x, the 2t-message in-
teraction of P and V is “quasi-emulated” in t iterations, where t = t(|x |). The
i th iteration starts with a partial transcript γi−1 = (α1, β1, . . . , αi−1, βi−1) and a
claimed bound Mi−1, where in the first iteration γ0 is the empty sequence and
M0 = 2�. The i th iteration proceeds as follows.

1. The prover determines an index j such that the cluster C j = {α : 2 j ≤
|ACCx (γi−1, α)| < 2 j+1} has size at least N

def= Mi−1/(2 j+2�), and sends j
to the verifier. Note that if |ACCx (γi−1)| ≥ Mi−1 then such a j exists.

2. The prover invokes the random-selection protocol with size parameter N in order
to select α ∈ C j , where for simplicity we assume that C j ⊆ {0, 1}�. Recall that
this public-coin protocol involves three messages with the first and last message
being sent by the prover. Let us denote the outcome of this protocol by αi .

3. The prover determines βi such that ACCx (γi−1, αi , βi ) = ACCx (γi−1, αi ) and
sends βi to the verifier.

Toward the next iteration Mi ← 2 j and γi = (α1, β1, . . . , αi , βi )
≡ (γi−1, αi , βi ).

After the last iteration,12 the prover invokes the random-selection protocol with size
parameter N = Mt in order to select r ∈ ACCx (α1, β1, . . . , αt , βt ). Upon obtaining
this r , the verifier accepts if and only if V (x, r, β1, . . . , βt ) = 1 and for every
i = 1, . . . , t it holds that αi = V (x, r, β1, . . . , βi−1), where the αi ’s and βi ’s are as
determined in the foregoing iterations.

Note that the three steps of each iteration involve a single message by the (public-coin)
verifier, and thus the foregoing protocol can be implemented using 2t + 3 messages.

Clearly, if x is a yes-instance then the prover can make the verifier accept with prob-
ability one (because an adequately large cluster exists at each iteration, and the random-
selection protocol guarantees that the selected αi will reside in this cluster).13 On the other
hand, if x is a no-instance then by using the low soundness error of (P, V ) we can establish
the soundness of Construction F.4. This is proved in the following claim, which refers to
a polynomial p that is sufficiently large.

12Alternatively, we may modify (P, V ) by adding a last V -message in which V sends its internal coin tosses (i.e.,
r ). In this case, the additional invocation of the random-selection protocol occurs as a special case of handling the
added t + 1st iteration.

13Thus, at the last invocation of the random-selection protocol, the verifier always obtains r ∈ ACCx (γt ) and
accepts.

577



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

Proposition F.5: Suppose that |ACCx (λ)| < δt+1 · 2�, where δ = 1/p(�). Then, the
verifier of Construction F.4 accepts x with probability smaller than 1/2.

Proof Sketch: We first prove that, for every i = 1, . . . , t , if |ACCx (γi−1)| <
δt+1−(i−1) · Mi−1 then, with probability at least 1− (1/3t), it holds that |ACCx (γi )| <
δt+1−i · Mi . Fixing any i , let j be the value selected by the prover in Step 1 of iteration
i , and define S′ = {α : |ACCx (γi−1, α)| ≥ δt+1−i · 2 j }. Then

|S′| · δt+1−i 2 j ≤ |ACCx (γi−1)| < δt+1−(i−1) · Mi−1,

where the second inequality represents the claim’s hypothesis. Letting N =
Mi−1/(2 j+2�) (as in Step 1 of this iteration), it follows that |S′| < 4�δ · N . By
the second property of the random-selection protocol (invoked in Step 2 of this
iteration with size parameter N ), it follows that

Pr[αi ∈ S′] ≤ poly(�) · |S
′|

N
≤ poly(�) · δ,

which is smaller than 1/3t (provided that the polynomial p that determines δ =
1/p(�) is sufficiently large). Thus, with probability at least 1− (1/3t), it holds that
|ACCx (γi−1, αi )| < δt+1−i · 2 j . The claim regarding |ACCx (γi )| follows by recalling
that Mi = 2 j (in Step 3) and that for every β it holds that |ACCx (γi−1, αi , β)| ≤
|ACCx (γi−1, αi )|.

Using the hypothesis |ACCx (γ0)| < δt+1 · M0 and the foregoing claim, it follows
that, with probability at least 2/3, the execution of the aforementioned t iterations
yields values γt and Mt such that |ACCx (γt )| < δ · Mt . In this case, the last invoca-
tion of the random-selection protocol (invoked with size parameter Mt ) produces an
element of ACCx (γt ) with probability at most poly(�) · δ < 1/6, and otherwise the
verifier rejects (because the conditions that the verifier checks regarding the output
r of the random-selection protocol are logically equivalent to r ∈ ACCx (γt )). The
proposition follows.

F.2.2. Linear Speedup for AM
In this section we prove Theorem F.3. Our proof differs from the original proof of Babai
and Moran [23] in the way that we analyze the basic switch (of MA to AM).

We adopt the standard terminology of public-coin (aka Arthur-Merlin) interactive
proof systems, where the verifier is called Arthur and the prover is called Merlin. More
importantly, we view the execution of such a proof system, on any fixed common input
x , as a (full-information) game (indexed by x) between an honest Arthur and a powerful
Merlin. These parties alternate in taking moves such that Arthur takes random moves
and Merlin takes optimal moves with respect to a fixed (polynomial-time computable)
predicate vx that is evaluated on the full transcript of the game’s execution. We stress that
(in contrast to general interactive proof systems), each of Arthur’s moves is uniformly
distributed in a set of possible values that is predetermined independently of prior moves
(e.g., the set {0, 1}�(|x |)). The value of the game is defined as the expected value of an
execution of the game, where the expectation is taken over Arthur’s moves (and Merlin’s
moves are assumed to be optimal).

We shall assume, without loss of generality, that all messages of Arthur are of the same
length, denoted � = �(|x |). Similarly, each of Merlin’s messages is of length m = m(|x |).

578



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.2. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

ArthurMerlin

β

α

ArthurMerlin

β

αα . . .(1) (t)

The original  MA game The new AM game

Figure F.1: The transformation of an MA-game into an AM-game. The value of the transcript (β, α) of
the original MA-game is given by vx(β, α), whereas the value of the transcript ((α(1), . . . , α(t)), β) of the
new AM-game is given by

∏t
i=1 vx(β, α(i )).

Recall that AM = AM(2) denotes a two-message system in which Arthur moves
first and does not toss coins after receiving Merlin’s answer, whereas MA = AM(1)
denotes a one-message system in which Merlin sends a single message and Arthur tosses
additional coins after receiving this message. Thus, both AM and MA are viewed as
two-move games, and differ in the order in which the two parties take these moves. As
we shall shortly see (in §F.2.2.1), the “MA order” can be emulated by the “AM order”
(i.e., MA ⊆ AM). This fact will be the basis of the “round speedup” transformation
(presented in §F.2.2.2).

F.2.2.1. The Basic Switch (from MA to AM)
The basic idea is transforming an MA-game (i.e., a two-move game in which Merlin
moves first and Arthur follows) into an AM-game (in which Arthur moves first and Merlin
follows). In the original game (on input x), first Merlin sends a message β ∈ {0, 1}m , then
Arthur responds with a random α ∈ {0, 1}�, and Arthur’s verdict (i.e., the value of this
execution of the game) is given by vx (β, α) ∈ {0, 1}. In the new game (see Figure F.1),
the order of these moves will be switched, but to limit Merlin’s potential gain from the
switch, we require it to provide a single answer that should “fit” several random messages
of Arthur. That is, for a parameter t to be specified, first Arthur sends a random sequence
(α(1), . . . , α(t)) ∈ {0, 1}t ·�, then Merlin responds with a string β ∈ {0, 1}m , and Arthur
accepts if and only if for every i ∈ {1, . . . t} it holds that vx (β, α(i)) = 1 (i.e., the value of
this transcript of the new game is defined as

∏t
i=1 vx (β, α(i))). Intuitively, Merlin gets the

advantage of choosing its move after seeing Arthur’s move(s), but Merlin’s choice must
fit the t choices of Arthur’s move, which leaves Merlin with little gain (if t is sufficiently
large).

Recall that the value, v′x , of the transcript (α, β) of the new game, where α =
(α(1), . . . , α(t)), is defined as

∏t
i=1 vx (β, α(i)). Thus, the value of the new game is de-

fined as

Eα

[
max

β

{
t∏

i=1

vx (β, α(i))

}]
,

(F.6)

which is upper-bounded by

Eα

[
max

β

{
1

t

t∑
i=1

vx (β, α(i))

}]
.

(F.7)

Note that the upper bound provided in Eq. (F.7) is tight in the case that the value of the
original MA-game equals one (i.e., if x is a yes-instance), and that in this case the value

579



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

of the new game is one (because in this case there exists a move β such that vx (β, α) = 1
holds for every α). However, the interesting case, where Merlin may gain something by
the switch, is when the value of the original MA-game is strictly smaller than one (i.e.,
when x is a no-instance). The main observation is that, for a suitable choice of t , it is
highly improbable that Merlin’s gain from the switch is significant.

Recall that in the original MA-game, Merlin selects β obliviously of Arthur’s
choice of α, and thus Merlin’s “profit” (i.e., the value of the game) is represented by
maxβ{Eα(vx (β, α))}. In the new AM-game, Merlin selects β based on the sequence α

chosen by Arthur, and we have upper-bounded its “profit” (in the new AM-game) by
Eq. (F.7). Merlin’s gain from the switch is thus the excess profit (of the new AM-game as
compared to the original MA-game). We upper-bound the probability that Merlin’s gain
from the switch exceeds a parameter, denoted δ, as follows.

px,δ
def= Pr(α(1),...,α(t))

[
max

β

{
1

t
·

t∑
i=1

vx (β, α(i))

}
> max

β
{Eα(vx (β, α))} + δ

]

≤ Pr(α(1),...,α(t))

[
∃β ∈ {0, 1}m s.t.

∣∣∣∣∣1

t
·

t∑
i=1

vx (β, α(i))− Eα(vx (β, α))

∣∣∣∣∣ > δ

]

≤ 2m · exp(−�(δ2 · t)),
where the last inequality is due to combining the union bound with the Chernoff Bound.
Denoting by Vx = maxβ{Eα(vx (β, α))} the value of the original game, we upper-bound
Eq. (F.7) by px,δ + Vx + δ. Using t = O((m + k)/δ2) we have px,δ ≤ 2−k , and thus

V ′x
def= Eα

[
max

β

{
1

t

t∑
i=1

vx (β, α(i))

}]
≤ max

β
{Eα(vx (β, α))} + δ + 2−k . (F.8)

Needless to say, Eq. (F.7) is lower-bounded by Vx (since Merlin may just use the optimal
move of the MA-game). In particular, using δ = 2−k = 1/8 and assuming that Vx ≤ 1/4,
we obtain V ′x < 1/2. Thus, starting from an MA proof system for some set, we obtain an
AM proof system for the same set; that is, we just proved that MA ⊆ AM.

Extension. We note that the foregoing transformation as well as its analysis does not refer
to the fact that vx (β, α) is efficiently computable from (β, α). Furthermore, the analysis
remains valid for arbitrary vx (·, ·) ∈ [0, 1], because for any v1, . . . , vt ∈ [0, 1] it holds that∏t

i=1 vi ≤ (
∏t

i=1 vi )1/t ≤∑t
i=1 vi/t . Thus, we may apply the foregoing transformation to

any two consecutive Merlin-Arthur moves in any public-coin interactive proof, provided
that all the subsequent moves are performed in t copies, where each copy corresponds
to a different α(i) used in the switch. That is, if the j th move is by Merlin, then we can
switch the players in the j and j + 1 moves, by letting Arthur take the j th move, sending
(α(1), . . . , α(t)), followed by Merlin’s move, answering β. Subsequent moves will be played
in t copies such that the i th copy corresponds to the moves α(i) and β. The value of the
new game may increase by at most 2−k + δ < 1/4, and so we obtain an “equivalent” game
with the two steps switched. Schematically, acting on the middle MA (indicated in bold
font), we can replace [AM] j1 AMA[MA] j2 by [AM] j1 AAM[MA] j2 , which in turn allows
the collapse of two consecutive A-moves (and two consecutive M-moves if j2 ≥ 1). In
particular (using only the case j1 = 0), we get A[MA] j+1 = A[MA] j = · · · = AMA =
AM. Thus, for any constant f , we get AM( f ) = AM(2).

580



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

F.2. PROVING THAT IP( f ) ⊆ AM(O( f )) ⊆ AM( f )

ArthurMerlin ArthurMerlin

. . .

The   MAMA  game The   AMA  game

(1)α1 α1
(t)

1

α1

α

β

β2

2

1β
(1)β β

α2

i

(t)
2 2

Figure F.2: The transformation of MAMA into AMA. The value of the transcript (β1, α1, β2, α2)
of the original MAMA-game is given by vx(β1, α1, β2, α2), whereas the value of the transcript
((α(1)

1 , . . . , α
(t)
1 ), (β1, β

(1)
2 , . . . , β

(t)
2 ), (i, α2)) of the new AMA-game is given by vx(β1, α

(i )
1 , β

(i )
2 , α2).

We stress that the foregoing switching process can be applied only a constant number
of times, because each time we apply the switch, the length of messages increases by a
factor of t = �(m). Thus, a different approach is required to deal with a non-constant
number of messages (i.e., unbounded function f ).

F.2.2.2. The Augmented Switch (from [M AM A] j to [AM A] j A)
Sequential applications of the “MA-to-AM switch” allows for reducing the number of
rounds by any additive constant. However, each time this switch is applied, all subsequent
moves are performed t times (in parallel). That is, the “MA-to-AM switch” splits the
rest of the game to t independent copies, and thus this switch cannot be performed more
than a constant number of times. Fortunately, Eq. (F.7) suggests a way of shrinking the
game back to a single copy: Just have Arthur select i ∈ [t] uniformly and have the parties
continue with the i th copy.14 In order to avoid introducing an Arthur-Merlin alternation, the
extra move of Arthur is postponed to after the following move of Merlin (see Figure F.2).
Schematically (indicating the action by bold font), we replace MAMA by AMMAA =
AMA (rather than replacing MAMA by AMAMA and obtaining no reduction in the
number of move alternations).

The value of the game obtained via the aforementioned augmented switch is given by
Eq. (F.7), which can be written as

Eα(1),...,α(t) [max
β
{Ei∈[t](vx (β, α(i)))}],

which in turn is upper-bounded (in Eq. (F.8)) by maxβ{Eα(vx (β, α))} + δ + 2−k . As in
§F.2.2.1, the argument applies to any two consecutive Merlin-Arthur moves in any public-
coin interactive proof. Recall that in order to avoid the introduction of an extra Arthur
move, we actually postpone the last move of Arthur to after the next move of Merlin. Thus,
we may apply the augmented switch to the first two moves in any block of four consecutive
moves that start with a Merlin move, transforming the schematic sequence MAMA into
AMMAA=AMA (see Figure F.2). The key point is that the moves that take place after the
said block remain intact. Hence, we may apply the augmented “MA-to-AM switch” (which

14Indeed, the relaxed form of Eq. (F.7) plays a crucial role here (in contrast to Eq. (F.6)).

581



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX F

is actually an “MAMA-to-AMA switch”) concurrently to disjoint segments of the game.
Schematically, we can replace [MAMA] j by [AMA] j = A[MA] j . Note that Merlin’s
gain from each such switch is upper-bounded by δ + 2−k , but selecting t = Õ( f (|x |)2 ·
m(|x |)) = poly(|x |) allows for upper-bounding the total gain by a constant (using, say,
δ = 2−k = 1/8 f (|x |)). We thus obtain AM(4 f ) ⊆ AM(2 f + 1), and Theorem F.3
follows.

582



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX G

Some Computational Problems

Although we view specific (natural) computational problems as secondary to (natural)
complexity classes, we do use the former for clarification and illustration of the latter.
This appendix provides definitions of such computational problems, grouped according
to the type of objects to which they refer (e.g., graphs, Boolean formula, etc.).

We start by addressing the central issue of the representation of the various objects
that are referred to in the aforementioned computational problems. The general principle
is that elements of all sets are “compactly” represented as binary strings (without much
redundancy). For example, the elements of a finite set S (e.g., the set of vertices in a
graph or the set of variables appearing in a Boolean formula) will be represented as binary
strings of length log2 |S|.

G.1. Graphs

Graph theory has long become recognized as one of the more useful mathemat-
ical subjects for the computer science student to master. The approach which
is natural in computer science is the algorithmic one; our interest is not so
much in existence proofs or enumeration techniques, as it is in finding efficient
algorithms for solving relevant problems, or alternatively showing evidence that
no such algorithms exist. Although algorithmic graph theory was started by
Euler, if not earlier, its development in the last ten years has been dramatic and
revolutionary.

Shimon Even, Graph Algorithms [71]

A simple graph G = (V, E) consists of a finite set of vertices V and a finite set of edges E ,
where each edge is an unordered pair of vertices; that is, E ⊆ {{u, v} : u, v ∈ V ∧ u �= v}.
This formalism does not allow self-loops and parallel edges, which are allowed in general
(i.e., non-simple) graphs, where E is a multi-set that may contain (in addition to two-
element subsets of V also) singletons (i.e., self-loops). The vertex u is called an end point
of the edge {u, v}, and the edge {u, v} is said to be incident at v. In such a case we say that
u and v are adjacent in the graph, and that u is a neighbor of v. The degree of a vertex in
G is defined as the number of edges that are incident at this vertex.

We will consider various sub-structures of graphs, the simplest one being paths. A
path in a graph G = (V, E) is a sequence of vertices (v0, . . . , v�) such that for every
i ∈ [�]

def= {1, . . . , �} it holds that vi−1 and vi are adjacent in G. Such a path is said to
have length �. A simple path is a path in which each vertex appears at most once, which

583



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX G

implies that the longest possible simple path in G has length |V | − 1. The graph is called
connected if there exists a path between each pair of vertices in it.

A cycle is a path in which the last vertex equals the first one (i.e., v� = v0). The cycle
(v0, . . . , v�) is called simple if � > 2 and |{v0, . . . , v�}| = � (i.e., if vi = v j then i ≡ j
(mod �), and the cycle (u, v, u) is not considered simple). A graph is called acyclic (or a
forest) if it has no simple cycles, and if it is also connected then it is called a tree. Note
that G = (V, E) is a tree if and only if it is connected and |E | = |V | − 1, and that there
is a unique simple path between each pair of vertices in a tree.

A subgraph of the graph G = (V, E) is any graph G ′ = (V ′, E ′) satisfying V ′ ⊆ V
and E ′ ⊆ E . Note that a simple cycle in G is a connected subgraph of G in which each
vertex has degree exactly two. An induced subgraph of the graph G = (V, E) is any
subgraph G ′ = (V ′, E ′) that contains all edges of E that are contained in V ′. In such a
case, we say that G ′ is the subgraph induced by V ′.

Directed graphs. We will also consider (simple) directed graphs (aka digraphs),
where edges are ordered pairs of vertices. In this case the set of edges is a subset of
V × V \ {(v, v) : v ∈ V }, and the edges (u, v) and (v, u) are called anti-parallel. General
(i.e., non-simple) directed graphs are defined analogously. The edge (u, v) is viewed as
going from u to v, and thus is called an outgoing edge of u (resp., incoming edge of
v). The out-degree (resp., in-degree) of a vertex is the number of its outgoing edges
(resp., incoming edges). Directed paths and the related objects are defined analogously;
for example, v0, . . . , v� is a directed path if for every i ∈ [�] it holds that (vi−1, vi ) is a
directed edge (which is directed from vi−1 to vi ). It is common to consider also a pair of
anti-parallel edges as a simple directed cycle.

A directed acyclic graph (dag) is a digraph that has no directed cycles. Every dag has at
least one vertex having out-degree (resp., in-degree) zero, called a sink (resp., a source).
A simple directed acyclic graph G = (V, E) is called an inward (resp., outward) directed
tree if |E | = |V | − 1 and there exists a unique vertex, called the root, having out-degree
(resp., in-degree) zero. Note that each vertex in an inward (resp., outward) directed tree
can reach the root (resp., is reachable from the root) by a unique directed path.1

Representation. Graphs are commonly represented by their adjacency matrix and/or
their incidence lists. The adjacency matrix of a simple graph G = (V, E) is a |V |-by-|V |
Boolean matrix in which the (i, j)-th entry equals 1 if and only if i and j are adjacent
in G. The incidence list representation of G consists of |V | sequences such that the i th

sequence is an ordered list of the set of edges incident at vertex i .

Computational problems. Simple computational problems regarding graphs include
determining whether a given graph is connected (and/or acyclic) and finding shortest
paths in a given graph. Another simple problem is determining whether a given graph is
bipartite, where a graph G = (V, E) is bipartite (or 2-colorable) if there exists a 2-coloring
of its vertices that does not assign neighboring vertices the same color. All these problems
are easily solvable by BFS.

1Note that in any dag, there is a directed path from each vertex v to some sink (resp., from some source to
each vertex v). In an inward (resp., outward) directed tree this sink (resp., source) must be unique. The condition
|E | = |V | − 1 enforces the uniqueness of these paths, because (combined with the reachability condition) it implies
that the underlying graph (obtained by disregarding the orientation of the edges) is a tree.

584



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

G.2. BOOLEAN FORMULAE

Moving to more complicated tasks that are still solvable in polynomial time, we mention
the problem of finding a perfect matching (or a maximum matching) in a given graph,
where a matching is a subgraph in which all vertices have degree 1, a perfect matching is
a matching that contains all the graph’s vertices, and a maximum matching is a matching
of maximum cardinality (among all matching of the said graph).

Turning to seemingly hard problems, we mention that the problem of determining
whether a given graph is 3-colorable (i.e., G3C) is NP-complete. A few additional NP-
complete problems follow.

• A Hamiltonian path (resp., Hamiltonian cycle) in the graph G = (V, E) is a simple
path (resp., cycle) that passes through all the vertices of G. Such a path (resp., cycle)
has length |V | − 1 (resp., |V |). The problem is to determine whether a given graph
contains a Hamiltonian path (resp., cycle).

• An independent set (resp., clique) of the graph G = (V, E) is a set of vertices V ′ ⊆ V
such that the subgraph induced by V ′ contains no edges (resp., contains all possible
edges). The problem is to determine whether a given graph has an independent set
(resp., a clique) of a given size.

A vertex cover of the graph G = (V, E) is a set of vertices V ′ ⊆ V such that each edge
in E has at least one end point in V ′. Note that V ′ is a vertex cover of G if and only if
V \ V ′ is an independent set of V .

A natural computational problem, which is believed to be neither in P nor NP-complete,
is the Graph Isomorphism problem. The input consists of two graphs, G1 = (V1, E1)
and G2 = (V2, E2), and the question is whether there exist a 1-1 and onto mapping
φ : V1 → V2 such that {u, v} is in E1 if and only if {φ(u), φ(v)} is in E2. (Such a mapping
is called an isomorphism.)

G.2. Boolean Formulae

In §1.2.4.3, Boolean formulae are defined as a special case of Boolean circuits (§1.2.4.1).
Here, we take the more traditional approach, and define Boolean formulae as structured
sequences over an alphabet consisting of variable names and various connectives. It is
most convenient to define Boolean formulae recursively as follows:

• A variable is a Boolean formula.
• If φ1, . . . , φt are Boolean formulae and ψ is a t-ary Boolean operation then

ψ(φ1, . . . , φt ) is a Boolean formula.

Typically, we consider three Boolean operations: the unary operation of negation (denoted
neg or ¬), and the (bounded or unbounded) conjunction and disjunction (denoted ∧ and
∨, respectively). Furthermore, the convention is to use the shorthand ¬φ for ¬(φ), and to
write (∧t

i=1φi ) or (φ1 ∧ · · · ∧ φt ) instead of ∧(φ1, . . . , φt ), and similarly for ∨.
Two important special cases of Boolean formulae are CNF and DNF formulae. A CNF

formula is a conjunction of disjunctions of variables and/or their negation; that is, ∧t
i=1φi

is a CNF if each φi has the form (∨ti
j=1φi, j ), where each φi, j is either a variable or a

negation of a variable (and is called a literal). If for every i it holds that ti ≤ 3 then we
say that the formula is a 3CNF. Similarly, DNF formulae are defined as disjunctions of
conjunctions of literals.

585



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX G

The value of a Boolean formula under a truth assignment to its variables is de-
fined recursively along its structure. For example, ∧t

i=1φi has the value true under an
assignment τ if and only if every φi has the value true under τ . We say that a formula
φ is satisfiable if there exists a truth assignment τ to its variables such that the value of φ

under τ is true.
The set of satisfiable CNF (resp., 3CNF) formulae is denoted SAT (resp., 3SAT), and

the problem of deciding membership in it is NP-complete. The set of tautologies (i.e.,
formulae that have the value true under any assignment) is coNP-complete, even when
restricted to 3DNF formulae.

Quantified Boolean formulae. In contrast to the foregoing that refers to unquantified
Boolean formulae, a quantified Boolean formula is a formula augmented with quantifiers
that refer to each variable appearing in it. That is, if φ is a formula in the Boolean variables
x1, . . . , xn and Q1, . . . , Qn are Boolean quantifiers (i.e., each Qi is either ∃ or ∀), then
Q1 x1 · · · Qn xn φ(x1, . . . , xn) is a quantified Boolean formula. A k-alternating quantified
Boolean formula is a quantified Boolean formula with up to k alternating sequences of
existential and universal quantifiers, starting with an existential quantifier. For example,
∃x1∃x2∀x3φ(x1, x2, x3) is a 2-alternating quantified Boolean formula. (We say that a
quantified Boolean formula is satisfiable if it evaluates to true.)

The set of satisfiable k-alternating quantified Boolean formulae is denoted kQBF and
is �k-complete, whereas the set of all satisfiable quantified Boolean formulae is denoted
QBF and is PSPACE-complete.

The foregoing definition refers to the canonical form of quantified Boolean formulae,
in which all the quantifiers appear at the leftmost side of the formula. A more general
definition allows each variable to be quantified at an arbitrary place to the left of its
leftmost occurrence in the formula (e.g., (∀x1)(∃x2) (x1 = x2) ∧ (∃x3)(x3 = x1)). Note
that such generalized formulae (used in the proof of Theorems 5.15 and 9.4) can be
transformed to the canonical form by “pulling” all quantifiers to the left of the formula
(e.g., ∀x1∃x2∃x3 ((x1 = x2) ∧ (x3 = x1))).

G.3. Finite Fields, Polynomials, and Vector Spaces

Various algebraic objects, computational problems, and techniques play an important role
in Complexity Theory. The most dominant such objects are finite fields as well as vector
spaces and polynomials over such fields.

Finite Fields. We denote by GF(q) the finite field of q elements and note that q may be
either a prime or a prime power. In the first case, GF(q) is viewed as consisting of the
elements {0, . . . , q − 1}with addition and multiplication being defined modulo q. Indeed,
GF(2) is an important special case. In the case that q = pe, where p is a prime and e > 1,
the standard representation of GF(pe) refers to an irreducible polynomial of degree e over
GF(p). Specifically, if f is an irreducible polynomial of degree e over GF(p), then GF(pe)
can be represented as the set of polynomials of degree at most e − 1 over GF(p) with
addition and multiplication defined modulo the polynomial f .

We mention that finding representations of large finite fields is a non-trivial computa-
tional problem, where in both cases we seek an efficient algorithm that finds a represen-
tation (i.e., either a large prime or an irreducible polynomial) in time that is polynomial
in the length of the representation. In the case of a field of prime cardinality, this calls for

586



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

G.4. THE DETERMINANT AND THE PERMANENT

generating a prime number of adequate size, which can be done efficiently by a random-
ized algorithm (while a corresponding deterministic algorithm is not known). In the case
of GF(pe), where p is a prime and e > 1, we need to find an irreducible polynomial of de-
gree e over GF(p). Again, this task is efficiently solvable by a randomized algorithm (see
[24]), but a corresponding deterministic algorithm is not known for the general case (i.e.,
for arbitrary prime p and e > 1). Fortunately, for e = 2 · 3e′ (with e′ being an integer), the
polynomial xe + xe/2 + 1 is irreducible over GF(2), which means that finding a represen-
tation of GF(2e) is easy in this case. Thus, there exists a strongly explicit construction of
an infinite family of finite fields (i.e., {GF(2e)}e∈L, where L = {2 · 3e′ : ε′ ∈ N}).

Polynomials and Vector Spaces. The set of degree d − 1 polynomials over a finite field
F (of cardinality at least d) forms a d-dimensional vector space over F (e.g., consider the
basis {1, x, . . . , xd−1}). Indeed, the standard representation of this vector space refers to
the basis 1, x, . . . , xd−1, and (when referring to this basis) the polynomial

∑d−1
i=0 ci xi is

represented as the vector (c0, c1, . . . , cd−1). An alternative basis is obtained by considering
the evaluation at d distinct points α1, . . . , αd ∈ F ; that is, the degree d − 1 polynomial
p is represented by the sequence of values (p(α1), . . . , p(αd )). Needless to say, moving
between such representations (i.e., representations with respect to different bases) amounts
to applying an adequate linear transformation; that is, for p(x) =∑d−1

i=0 ci xi , we have
p(α1)
p(α2)

...
p(αd )

 =


1 α1 · · · αd−1
1

1 α2 · · · αd−1
2

...
... · · · ...

1 αd · · · αd−1
d




c0

c1
...

cd−1

 (G.1)

where the (full rank) matrix in Eq. (G.1) is called a Vandermonde matrix. The foregoing
transformation (or rather its inverse) is closely related to the task of polynomial interpola-
tion (i.e., given the values of a degree d − 1 polynomial at d points, find the polynomial
itself).

G.4. The Determinant and the Permanent

Recall that the permanent of an n-by-n matrix M = (ai, j ) is defined as the sum∑
π

∏n
i=1 ai,π( j) taken over all permutations π of the set {1, . . . , n}. This is related to

the definition of the determinant in which the same sum is used except that some elements
are negated; that is, the determinant of M = (ai, j ) is defined as

∑
π (−1)σ (π) ∏n

i=1 ai,π( j),
where σ (π) = 1 if π is an even permutation (i.e., can be expressed by an even number of
transpositions) and σ (π) = −1 otherwise.

The corresponding computational problems (i.e., computing the determinant or per-
manent of a given matrix) seem to have vastly different complexities. The determinant
can be computed in polynomial time; moreover, it can be computed in uniform NC2. In
contrast, computing the permanent is #P-complete, even in the special case of matrices
with entries in {0, 1} (see Theorem 6.20).

G.5. Primes and Composite Numbers

A prime is a natural number that is not divisible by any natural number other than itself
and 1. A natural number that is not a prime is called composite, and its prime factorization

587



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

APPENDIX G

is the set of primes that divide it; that is, if N = ∏t
i=1 Pei

i , where the Pi ’s are distinct
primes (greater than 1) and ei ≥ 1, then {Pi : i = 1, . . . , t} is the prime factorization of
N . (If t = 1 then N is a prime power.)

Two famous computational problems, identified by Gauss as fundamental ones, are
testing primality (i.e., given a natural number, determine whether it is prime or composite)
and factoring composite integers (i.e., given a composite number, find its prime factor-
ization). Needless to say, in both cases, the input is presented in binary representation.
Although testing primality is reducible to integer factorization, the problems seem to have
different complexities: While testing primality is in P (see [3] (and §6.1.2.2 showing that
the problem is in BPP)), it is conjectured that factoring composite integers is intractable.
In fact, many popular candidates for various cryptographic systems are based on this
conjecture.

Extracting modular square roots. Two related computational problems are extract-
ing (modular) square roots with respect to prime and composite moduli. Specifically,
a quadratic residue modulo a prime P is an integer s such that there exists an integer
r satisfying s ≡ r2 (mod P). The corresponding search problem (i.e., given such P
and s, find r ) can be solved in probabilistic polynomial time (see Exercise 6.16). The
corresponding problem for composite moduli is computationally equivalent to factoring
(see [183]); furthermore, extracting square roots modulo N is easily reducible to factoring
N , and factoring N is randomly reducible to extracting square roots modulo N (even in a
typical-case sense). We mention that even the problem of deciding whether or not a given
integer has a modular square root modulo a given composite is conjectured to be hard
(but is not known to be computationally equivalent to factoring).

588



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Bibliography

[1] S. Aaronson. Complexity Zoo. A continueously updated Web site at http://
qwiki.caltech.edu/wiki/Complexity Zoo/.

[2] L. M. Adleman and M. Huang. Primality Testing and Abelian Varieties Over Finite Fields.
Springer-Verlag Lecture Notes in Computer Science (Vol. 1512), 1992. Preliminary version
in 19th STOC, 1987.

[3] M. Agrawal, N. Kayal, and N. Saxena. PRIMES Is in P. Annals of Mathematics, Vol. 160 (2),
pages 781–793, 2004.

[4] M. Ajtai, J. Komlos, and E. Szemerédi. Deterministic Simulation in LogSpace. In 19th ACM
Symposium on the Theory of Computing, pages 132–140, 1987.

[5] R. Aleliunas, R. M. Karp, R. J. Lipton, L. Lovász, and C. Rackoff. Random Walks, Universal
Traversal Sequences, and the Complexity of Maze Problems. In 20th IEEE Symposium on
Foundations of Computer Science, pages 218–223, 1979.

[6] N. Alon, L. Babai, and A. Itai. A Fast and Simple Randomized Algorithm for the Maximal
Independent Set Problem. J. of Algorithms, Vol. 7, pages 567–583, 1986.

[7] N. Alon and R. Boppana. The Monotone Circuit Complexity of Boolean Functions. Combi-
natorica, Vol. 7 (1), pages 1–22, 1987.

[8] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth. Construction of Asymptotically Good,
Low-Rate Error-Correcting Codes Through Pseudo-Random Graphs. IEEE Transactions on
Information Theory, Vol. 38, pages 509–516, 1992.

[9] N. Alon, E. Fischer, I. Newman, and A. Shapira. A Combinatorial Characterization of the
Testable Graph Properties: It’s All About Regularity. In 38th ACM Symposium on the Theory
of Computing, pages 251–260, 2006.

[10] N. Alon, O. Goldreich, J. Håstad, and R. Peralta. Simple Constructions of Almost k-wise
Independent Random Variables. Journal of Random Structures and Algorithms, Vol. 3 (3),
pages 289–304, 1992. Preliminary version in 31st FOCS, 1990.

[11] N. Alon and J. H. Spencer. The Probabilistic Method. John Wiley & Sons, 1992. Second
edition 2000.

[12] R. Armoni. On the Derandomization of Space-Bounded Computations. In the proceedings of
Random98, Springer-Verlag Lecture Notes in Computer Science (Vol. 1518), pages 49–57,
1998.

[13] S. Arora. Approximation Schemes for NP-Hard Geometric Optimization Problems: A Survey.
Math. Programming, Vol. 97, pages 43–69, July 2003.

[14] S. Arora and B. Barak. Complexity Theory: A Modern Approach. Cambridge University
Press, forthcoming.

[15] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof Verification and In-
tractability of Approximation Problems. Journal of the ACM, Vol. 45, pages 501–555, 1998.
Preliminary version in 33rd FOCS, 1992.

589



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[16] S. Arora and S. Safra. Probabilistic Checkable Proofs: A New Characterization of NP.
Journal of the ACM, Vol. 45, pages 70–122, 1998. Preliminary version in 33rd FOCS,
1992.

[17] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations and Advanced
Topics. McGraw-Hill, 1998.

[18] L. Babai. Trading Group Theory for Randomness. In 17th ACM Symposium on the Theory
of Computing, pages 421–429, 1985.

[19] L. Babai. Random Oracles Separate PSPACE from the Polynomial-Time Hierarchy. Infor-
mation Processing Letters, Vol. 26, pages 51–53, 1987.

[20] L. Babai, L. Fortnow, L. Levin, and M. Szegedy. Checking Computations in Polylogarithmic
Time. In 23rd ACM Symposium on the Theory of Computing, pages 21–31, 1991.

[21] L. Babai, L. Fortnow, and C. Lund. Non-Deterministic Exponential Time Has Two-Prover
Interactive Protocols. Computational Complexity, Vol. 1 (1), pages 3–40, 1991. Preliminary
version in 31st FOCS, 1990.

[22] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP Has Subexponential Time Simula-
tions Unless EXPTIME Has Publishable Proofs. Complexity Theory, Vol. 3, pages 307–318,
1993.

[23] L. Babai and S. Moran. Arthur-Merlin Games: A Randomized Proof System and a Hierarchy
of Complexity Classes. Journal of Computer and System Science, Vol. 36, pages 254–276,
1988.

[24] E. Bach and J. Shallit. Algorithmic Number Theory (Volume I: Efficient Algorithms). MIT
Press, 1996.

[25] B. Barak. Non-Black-Box Techniques in Crypptography. Ph.D. thesis, Weizmann Institute
of Science, 2004.

[26] W. Baur and V. Strassen. The Complexity of Partial Derivatives. Theor. Comput. Sci. 22,
pages 317–330, 1983.

[27] P. Beame and T. Pitassi. Propositional Proof Complexity: Past, Present, and Future. In Bulletin
of the European Association for Theoretical Computer Science, Vol. 65 (June), pages 66–89,
1998.

[28] M. Bellare, O. Goldreich, and E. Petrank. Uniform Generation of NP-Witnesses Using an
NP-Oracle. Information and Computation, Vol. 163, pages 510–526, 2000.

[29] M. Bellare, O. Goldreich, and M. Sudan. Free Bits, PCPs and Non-Approximability – Towards
Tight Results. SIAM Journal on Computing, Vol. 27 (3), pages 804–915, 1998. Extended
abstract in 36th FOCS, 1995.

[30] S. Ben-David, B. Chor, O. Goldreich, and M. Luby. On the Theory of Average Case Com-
plexity. Journal of Computer and System Science, Vol. 44 (2), pages 193–219, 1992.

[31] A. Ben-Dor and S. Halevi. In 2nd Israel Symp. on Theory of Computing and Systems, IEEE
Computer Society Press, pages 108-117, 1993.

[32] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håastad, J. Kilian, S. Micali, and P. Rogaway.
Everything Provable Is Probable in Zero-Knowledge. In Crypto88, Springer-Verlag Lecture
Notes in Computer Science (Vol. 403), pages 37–56, 1990.

[33] M. Ben-Or, S. Goldwasser, J. Kilian, and A. Wigderson. Multi-Prover Interactive Proofs:
How to Remove Intractability. In 20th ACM Symposium on the Theory of Computing, pages
113–131, 1988.

[34] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation. In 20th ACM Symposium on the
Theory of Computing, pages 1–10, 1988.

[35] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. Vadhan. Robust PCPs of Proximity,
Shorter PCPs, and Applications to Coding. SIAM Journal on Computing, Vol. 36 (4), pages
889–974, 2006. Extended abstract in 36th STOC, 2004.

[36] E. Ben-Sasson and M. Sudan. Simple PCPs with Poly-log Rate and Query Complexity. In
37th ACM Symposium on the Theory of Computing, pages 266–275, 2005.

590



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[37] L. Berman and J. Hartmanis. On Isomorphisms and Density of NP and Other Complete Sets.
SIAM Journal on Computing, Vol. 6 (2), 1977, pages 305–322.

[38] M. Blum. A Machine-Independent Theory of the Complexity of Recursive Functions. Journal
of the ACM, Vol. 14 (2), pages 290–305, 1967.

[39] M. Blum and S. Kannan. Designing Programs That Check Their Work. In 21st ACM Sym-
posium on the Theory of Computing, pages 86–97, 1989.

[40] M. Blum, M. Luby, and R. Rubinfeld. Self-Testing/Correcting with Applications to Nu-
merical Problems. Journal of Computer and System Science, Vol. 47 (3), pages 549–595,
1993.

[41] M. Blum and S. Micali. How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits. SIAM Journal on Computing, Vol. 13, pages 850–864, 1984. Preliminary
version in 23rd FOCS, 1982.

[42] A. Bogdanov, K. Obata, and L. Trevisan. A Lower Bound for Testing 3-Colorability in
Bounded-Degree Graphs. In 43rd IEEE Symposium on Foundations of Computer Science,
pages 93–102, 2002.

[43] A. Bogdanov and L. Trevisan. On Worst-Case to Average-Case Reductions for NP Problems.
SIAM Journal on Computing, Vol. 36 (4), pages 1119–1159, 2006. Extended abstract in 44th
FOCS, 2003.

[44] A. Bogdanov and L. Trevisan. Average-Case Complexity. Foundations and Trends in Theo-
retical Computer Science, Vol. 2 (1), 2006.

[45] R. Boppana, J. Håstad, and S. Zachos. Does Co-NP Have Short Interactive Proofs? Informa-
tion Processing Letters, Vol. 25 (May), pages 127–132, 1987.

[46] R. Boppana and M. Sipser. The Complexity of Finite Functions. In Handbook of Theoretical
Computer Science: Volume A – Algorithms and Complexity, J. van Leeuwen (ed.), MIT
Press/Elsevier, pages 757–804, 1990.

[47] A. Borodin. Computational Complexity and the Existence of Complexity Gaps. Journal of
the ACM, Vol. 19 (1), pages 158–174, 1972.

[48] A. Borodin. On Relating Time and Space to Size and Depth. SIAM Journal on Computing,
Vol. 6 (4), pages 733–744, 1977.

[49] G. Brassard, D. Chaum, and C. Crépeau. Minimum Disclosure Proofs of Knowledge. Journal
of Computer and System Science, Vol. 37 (2), pages 156–189, 1988. Preliminary version by
Brassard and Crépeau in 27th FOCS, 1986.

[50] L. Carter and M. Wegman. Universal Hash Functions. Journal of Computer and System
Science, Vol. 18, pages 143–154, 1979.

[51] G. J. Chaitin. On the Length of Programs for Computing Finite Binary Sequences. Journal
of the ACM, Vol. 13, pages 547–570, 1966.

[52] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, Vol. 28,
pages 114–133, 1981.

[53] D. Chaum, C. Crépeau, and I. Damgård. Multi-party Unconditionally Secure Protocols. In
20th ACM Symposium on the Theory of Computing, pages 11–19, 1988.

[54] B. Chor and O. Goldreich. On the Power of Two–Point Based Sampling. Jour. of Complexity,
Vol. 5, pages 96–106, 1989. Preliminary version dates 1985.

[55] A. Church. An Unsolvable Problem of Elementary Number Theory. Amer. J. of Math., Vol. 58,
pages 345–363, 1936.

[56] N. Creignou, S. Khanna, and M. Sudan. Complexity Classifications of Boolean Constraint
Satisfaction Problems. SIAM Monographs on Discrete Mathematics and Applications, 2001.

[57] A. Cobham. The Intristic Computational Difficulty of Functions. In Proc. 1964 Iternational
Congress for Logic Methodology and Philosophy of Science, pages 24–30, 1964.

[58] S. A. Cook. The Complexity of Theorem Proving Procedures. In 3rd ACM Symposium on
the Theory of Computing, pages 151–158, 1971.

[59] S. A. Cook. An Overview of Computational Complexity. Turing Award Lecture. CACM,
Vol. 26 (6), pages 401–408, 1983.

591



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[60] S. A. Cook. A Taxonomy of Problems with Fast Parallel Algorithms. Information and Control,
Vol. 64, pages 2–22, 1985.

[61] S. A. Cook and R. A. Reckhow. The Relative Efficiency of Propositional Proof Systems. J.
of Symbolic Logic, Vol. 44 (1), pages 36–50, 1979.

[62] D. Coppersmith and S. Winograd. Matrix Multiplication via Arithmetic Progressions. Journal
of Symbolic Computation, Vol. 9, pages 251–280, 1990.

[63] T. M. Cover and G. A. Thomas. Elements of Information Theory. John Wiley & Sons, 1991.
[64] P. Crescenzi and V. Kann. A Compendium of NP Optimization problems. Available at

http://www.nada.kth.se/∼viggo/wwwcompendium/
[65] R. A. DeMillo and R. J. Lipton. A Probabilistic Remark on Algebraic Program Testing.

Information Processing Letters, Vol. 7 (4), pages 193–195, 1978.
[66] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Transactions on

Information Theory, IT-22 (Nov.), pages 644–654, 1976.
[67] I. Dinur. The PCP Theorem by Gap Amplification. In 38th ACM Symposium on the Theory

of Computing, pages 241–250, 2006.
[68] I. Dinur and O. Reingold. Assignment-Testers: Towards a Combinatorial Proof of the PCP-

Theorem. SIAM Journal on Computing, Vol. 36 (4), pages 975–1024, 2006. Extended abstract
in 45th FOCS, 2004.

[69] I. Dinur and S. Safra. The Importance of Being Biased. In 34th ACM Symposium on the
Theory of Computing, pages 33–42, 2002.

[70] J. Edmonds. Paths, Trees, and Flowers. Canad. J. Math., Vol. 17, pages 449–467, 1965.
[71] S. Even. Graph Algorithms. Computer Science Press, 1979.
[72] S. Even, A. L. Selman, and Y. Yacobi. The Complexity of Promise Problems with Ap-

plications to Public-Key Cryptography. Information and Control, Vol. 61, pages 159–173,
1984.

[73] U. Feige, S. Goldwasser, L. Lovász, and S. Safra. On the Complexity of Approximating the
Maximum Size of a Clique. Unpublished manuscript, 1990.

[74] U. Feige, S. Goldwasser, L. Lovász, S. Safra, and M. Szegedy. Approximating Clique is
Almost NP-Complete. Journal of the ACM, Vol. 43, pages 268–292, 1996. Preliminary
version in 32nd FOCS, 1991.

[75] U. Feige, D. Lapidot, and A. Shamir. Multiple Non-Interactive Zero-Knowledge Proofs
Under General Assumptions. SIAM Journal on Computing, Vol. 29 (1), pages 1–28, 1999.
Preliminary version in 31st FOCS, 1990.

[76] U. Feige and A. Shamir. Witness Indistinguishability and Witness Hiding Protocols. In 22nd
ACM Symposium on the Theory of Computing, pages 416–426, 1990.

[77] E. Fischer. The Art of Uninformed Decisions: A Primer to Property Testing. Bulletin of the
European Association for Theoretical Computer Science, Vol. 75, pages 97–126, 2001.

[78] G. D. Forney. Concatenated Codes. MIT Press, 1966.
[79] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-Space Lower Bounds for

Satisfiability. Journal of the ACM, Vol. 52 (6), pages 835–865, 2005.
[80] L. Fortnow, J. Rompel, and M. Sipser. On the Power of Multi-Prover Interactive Protocols.

In 3rd IEEE Symp. on Structure in Complexity Theory, pages 156–161, 1988. See errata in
5th IEEE Symp. on Structure in Complexity Theory, pages 318–319, 1990.

[81] S. Fortune. A Note on Sparse Complete Sets. SIAM Journal on Computing, Vol. 8, pages
431–433, 1979.

[82] M. Fürer, O. Goldreich, Y. Mansour, M. Sipser, and S. Zachos. On Completeness and
Soundness in Interactive Proof Systems. Advances in Computing Research: A Research
Annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages 429–442, 1989.

[83] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, Circuits, and the Polynomial-Time Hierarchy.
Mathematical Systems Theory, Vol. 17 (1), pages 13–27, 1984. Preliminary version in 22nd
FOCS, 1981.

592



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[84] O. Gabber and Z. Galil. Explicit Constructions of Linear Size Superconcentrators. Journal
of Computer and System Science, Vol. 22, pages 407–420, 1981.

[85] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman, 1979.

[86] J. von zur Gathen. Algebraic Complexity Theory. Ann. Rev. Comput. Sci., Vol. 3, pages
317–347, 1988.

[87] O. Goldreich. Foundation of Cryptography – Class Notes. Computer Science Dept., Technion,
Israel, Spring 1989. Superseded by [91, 92].

[88] O. Goldreich. A Note on Computational Indistinguishability. Information Processing Letters,
Vol. 34 (May), pages 277–281, 1990.

[89] O. Goldreich. Notes on Levin’s Theory of Average-Case Complexity. ECCC, TR97-058,
1997.

[90] O. Goldreich. Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Algo-
rithms and Combinatorics Series (Vol. 17), Springer, 1999.

[91] O. Goldreich. Foundation of Cryptography: Basic Tools. Cambridge University Press, 2001.
[92] O. Goldreich. Foundation of Cryptography: Basic Applications. Cambridge University Press,

2004.
[93] O. Goldreich. Short Locally Testable Codes and Proofs (Survey). ECCC, TR05-014, 2005.
[94] O. Goldreich. On Promise Problems (a survey in memory of Shimon Even [1935-2004]).

ECCC, TR05-018, 2005.
[95] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions. Journal

of the ACM, Vol. 33 (4), pages 792–807, 1986.
[96] O. Goldreich, S. Goldwasser, and A. Nussboim. On the Implementation of Huge Random

Objects. In 44th IEEE Symposium on Foundations of Computer Science, pages 68–79, 2003.
[97] O. Goldreich, S. Goldwasser, and D. Ron. Property Testing and Its Connection to Learning

and Approximation. Journal of the ACM, pages 653–750, July 1998. Extended abstract in
37th FOCS, 1996.

[98] O. Goldreich and H. Krawczyk. On the Composition of Zero-Knowledge Proof Systems.
SIAM Journal on Computing, Vol. 25 (1), pages 169–192, 1996. Preliminary version in 17th
ICALP, 1990.

[99] O. Goldreich and L.A. Levin. Hard-Core Predicates for Any One-Way Function. In 21st
ACM Symposium on the Theory of Computing, pages 25–32, 1989.

[100] O. Goldreich, S. Micali, and A. Wigderson. Proofs That Yield Nothing but Their Validity
or All Languages in NP Have Zero-Knowledge Proof Systems. Journal of the ACM, Vol. 38
(3), pages 691–729, 1991. Preliminary version in 27th FOCS, 1986.

[101] O. Goldreich, S. Micali, and A. Wigderson. How to Play Any Mental Game – A Completeness
Theorem for Protocols with Honest Majority. In 19th ACM Symposium on the Theory of
Computing, pages 218–229, 1987.

[102] O. Goldreich, N. Nisan, and A. Wigderson. On Yao’s XOR-Lemma. ECCC, TR95-050, 1995.
[103] O. Goldreich and D. Ron. Property Testing in Bounded Degree Graphs. Algorithmica, pages

302–343, 2002. Extended abstract in 29th STOC, 1997.
[104] O. Goldreich and D. Ron. A Sublinear Bipartite Tester for Bounded Degree Graphs. Combi-

natorica, Vol. 19 (3), pages 335–373, 1999. Extended abstract in 30th STOC, 1998.
[105] O. Goldreich, R. Rubinfeld, and M. Sudan. Learning Polynomials with Queries: The Highly

Noisy Case. SIAM J. Discrete Math., Vol. 13 (4), pages 535–570, 2000.
[106] O. Goldreich, S. Vadhan, and A. Wigderson. On Interactive Proofs with a Laconic Provers.

Computational Complexity, Vol. 11, pages 1–53, 2002.
[107] O. Goldreich and A. Wigderson. Computational Complexity. In The Princeton Companion

to Mathematics, forthcoming.
[108] S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System

Science, Vol. 28 (2), pages 270–299, 1984. Preliminary version in 14th STOC, 1982.

593



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[109] S. Goldwasser, S. Micali, and C. Rackoff. The Knowledge Complexity of Interactive Proof
Systems. SIAM Journal on Computing, Vol. 18, pages 186–208, 1989. Preliminary version
in 17th STOC, 1985. Earlier versions date to 1982.

[110] S. Goldwasser, S. Micali, and R. L. Rivest. A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM Journal on Computing, Vol. 17, pages 281–308,
1988.

[111] S. Goldwasser and M. Sipser. Private Coins Versus Public Coins in Interactive Proof Systems.
Advances in Computing Research: A Research Annual, Vol. 5 (Randomness and Computa-
tion, S. Micali, ed.), pages 73–90, 1989. Extended abstract in 18th STOC, 1986.

[112] S. W. Golomb. Shift Register Sequences. Holden-Day, 1967. (Aegean Park Press, revised
edition, 1982.)

[113] V. Guruswami, C. Umans, and S. Vadhan. Unbalanced Expanders and Randomness Extractors
from Parvaresh-Vardy Codes. In 22nd IEEE Conference on Computational Complexity, pages
96–108, 2007.

[114] J. Hartmanis and R. E. Stearns. On the Computational Complexity of Algorithms. Transac-
tions of the AMS, Vol. 117, pages 285–306, 1965.

[115] J. Håastad. Almost Optimal Lower Bounds for Small Depth Circuits. Advances in Computing
Research: A Research Annual, Vol. 5 (Randomness and Computation, S. Micali, ed.), pages
143–170, 1989. Extended abstract in 18th STOC, 1986.

[116] J. Håastad. Clique Is Hard to Approximate Within n1−ε . Acta Mathematica, Vol. 182, pages
105–142, 1999. Preliminary versions in 28th STOC (1996) and 37th FOCS (1996).

[117] J. Håastad. Getting Optimal In-Approximability Results. Journal of the ACM, Vol. 48, pages
798–859, 2001. Extended abstract in 29th STOC, 1997.

[118] J. Håastad, R. Impagliazzo, L. A. Levin, and M. Luby. A Pseudorandom Generator from
Any One-way Function. SIAM Journal on Computing, Vol. 28 (4), pages 1364–1396, 1999.
Preliminary versions by Impagliazzo et al. in 21st STOC (1989) and Håastad in 22nd STOC
(1990).

[119] J. Håastad and S. Khot. Query Efficient PCPs with Pefect Completeness. In 42nd IEEE
Symposium on Foundations of Computer Science, pages 610–619, 2001.

[120] A. Healy. Randomness-Efficient Sampling Within NC1. Computational Complexity, in press.
Preliminary version in 10th RANDOM, 2006.

[121] A. Healy, S. Vadhan, and E. Viola. Using Nondeterminism to Amplify Hardness. SIAM
Journal on Computing, Vol. 35 (4), pages 903–931, 2006.

[122] D. Hochbaum (ed.). Approximation Algorithms for NP-Hard Problems. PWS Publishing,
1996.

[123] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages and Compu-
tation. Addison-Wesley, 1979.

[124] S. Hoory, N. Linial, and A. Wigderson. Expander Graphs and Their Applications. Bull. AMS,
Vol. 43 (4), pages 439–561, 2006.

[125] N. Immerman. Nondeterministic Space Is Closed Under Complementation. SIAM Journal
on Computing, Vol. 17, pages 760–778, 1988.

[126] R. Impagliazzo. Hard-Core Distributions for Somewhat Hard Problems. In 36th IEEE Sym-
posium on Foundations of Computer Science, pages 538–545, 1995.

[127] R. Impagliazzo and L. A. Levin. No Better Ways to Generate Hard NP Instances Than Picking
Uniformly at Random. In 31st IEEE Symposium on Foundations of Computer Science, pages
812–821, 1990.

[128] R. Impagliazzo and A. Wigderson. P = BPP If E Requires Exponential Circuits: Deran-
domizing the XOR Lemma. In 29th ACM Symposium on the Theory of Computing, pages
220–229, 1997.

[129] R. Impagliazzo and A. Wigderson. Randomness vs Time: Derandomization under a Uni-
form Assumption. Journal of Computer and System Science, Vol. 63 (4), pages 672-688,
2001.

594



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[130] R. Impagliazzo and M. Yung. Direct Zero-Knowledge Computations. In Crypto87, Springer-
Verlag Lecture Notes in Computer Science (Vol. 293), pages 40–51, 1987.

[131] M. Jerrum, A. Sinclair, and E. Vigoda. A Polynomial-Time Approximation Algorithm for
the Permanent of a Matrix with Non-Negative Entries. Journal of the ACM, Vol. 51 (4), pages
671–697, 2004.

[132] M. Jerrum, L. Valiant, and V. V. Vazirani. Random Generation of Combinatorial Struc-
tures from a Uniform Distribution. Theoretical Computer Science, Vol. 43, pages 169–188,
1986.

[133] B. Juba and M. Sudan. Towards Universal Semantic Communication. ECCC, TR07-084,
2007.

[134] V. Kabanets and R. Impagliazzo. Derandomizing Polynomial Identity Tests Means Proving
Circuit Lower Bounds. Computational Complexity, Vol. 13, pages 1-46, 2004. Preliminary
version in 35th STOC, 2003.

[135] N. Kahale. Eigenvalues and Expansion of Regular Graphs. Journal of the ACM, Vol. 42 (5),
pages 1091–1106, 1995.

[136] R. Kannan, H. Venkateswaran, V. Vinay, and A. C. Yao. A Circuit-Based Proof of Toda’s
Theorem. Information and Computation, Vol. 104 (2), pages 271–276, 1993.

[137] M. Karchmer and A. Wigderson. Monotone Circuits for Connectivity Require Super-
logarithmic Depth. SIAM J. Discrete Math., Vol. 3 (2), pages 255–265, 1990. Preliminary
version in 20th STOC, 1988.

[138] R. M. Karp. Reducibility Among Combinatorial Problems. In Complexity of Computer
Computations, R. E. Miller and J. W. Thatcher (eds.), Plenum Press, pages 85–103,
1972.

[139] R. M. Karp and R. J. Lipton. Some Connections Between Nonuniform and Uniform Com-
plexity Classes. In 12th ACM Symposium on the Theory of Computing, pages 302–309,
1980.

[140] R. M. Karp and M. Luby. Monte-Carlo Algorithms for Enumeration and Reliability Problems.
In 24th IEEE Symposium on Foundations of Computer Science, pages 56-64, 1983.

[141] R. M. Karp and V. Ramachandran. Parallel Algorithms for Shared-Memory Machines. In
Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity, J. van
Leeuwen (ed.), MIT Press/Elsevier, pages 869–942, 1990.

[142] M. J. Kearns and U. V. Vazirani. An Introduction to Computational Learning Theory. MIT
Press, 1994.

[143] S. Khot and O. Regev. Vertex Cover Might Be Hard to Approximate to Within 2− ε. In 18th
IEEE Conference on Computational Complexity, pages 379–386, 2003.

[144] V. M. Khrapchenko. A Method of Determining Lower Bounds for the Complexity of Pi-
Schemes. In Matematicheskie Zametki, Vol. 10 (1), pages 83–92, 1971 (in Russian). English
translation in Mathematical Notes of the Academy of Sciences of the USSR, Vol. 10 (1), pages
474–479, 1971.

[145] J. Kilian. A Note on Efficient Zero-Knowledge Proofs and Arguments. In 24th ACM Sympo-
sium on the Theory of Computing, pages 723–732, 1992.

[146] D. E. Knuth. The Art of Computer Programming, Vol. 2 (Seminumerical Algorithms).
Addison-Wesley, 1969 (first edition) and 1981 (second edition).

[147] A. Kolmogorov. Three Approaches to the Concept of “The Amount of Information.” Probl.
of Inform. Transm., Vol. 1 (1), 1965.

[148] E. Kushilevitz and N. Nisan. Communication Complexity. Cambridge University Press, 1996.
[149] R. E. Ladner. On the Structure of Polynomial Time Reducibility. Journal of the ACM, Vol. 22,

1975, pages 155–171.
[150] C. Lautemann. BPP and the Polynomial Hierarchy. Information Processing Letters, Vol. 17,

pages 215–217, 1983.
[151] F.T. Leighton. Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-

cubes. Morgan Kaufmann Publishers, San Mateo, CA, 1992.

595



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[152] L. A. Levin. Universal Search Problems. Problemy Peredaci Informacii 9, pages 115–116,
1973 (in Russian). English translation in Problems of Information Transmission 9, pages
265–266. A better English translation appears in [221].

[153] L. A. Levin. Randomness Conservation Inequalities: Information and Independence in Math-
ematical Theories. Information and Control, Vol. 61, pages 15–37, 1984.

[154] L. A. Levin. Average Case Complete Problems. SIAM Journal on Computing, Vol. 15, pages
285–286, 1986.

[155] L. A. Levin. Fundamentals of Computing. SIGACT News, Education Forum, special 100th
issue, Vol. 27 (3), pages 89–110, 1996.

[156] M. Li and P. Vitanyi. An Introduction to Kolmogorov Complexity and Its Applications.
Springer Verlag, August 1993.

[157] R. J. Lipton. New Directions in Testing. Distributed Computing and Cryptography, J. Feigen-
baum and M. Merritt (eds.), DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science, American Mathematics Society, Vol. 2, pages 191–202, 1991.

[158] N. Livne. All Natural NPC Problems Have Average-Case Complete Versions. ECCC, TR06-
122, 2006.

[159] C.-J. Lu, O. Reingold, S. Vadhan, and A. Wigderson. Extractors: Optimal up to Constant
Factors. In 35th ACM Symposium on the Theory of Computing, pages 602–611, 2003.

[160] A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan Graphs. Combinatorica, Vol. 8, pages
261–277, 1988.

[161] M. Luby and A. Wigderson. Pairwise Independence and Derandomization. Foundations and
Trends in Theoretical Computer Science, Vol. (4), 2005. Preliminary version: TR-95-035,
ICSI, Berkeley, 1995.

[162] C. Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic Methods for Interactive Proof
Systems. Journal of the ACM, Vol. 39 (4), pages 859–868, 1992. Preliminary version in 31st
FOCS, 1990.

[163] F. MacWilliams and N. Sloane. The Theory of Error-Correcting Codes. North-Holland, 1981.
[164] G. A. Margulis. Explicit Construction of Concentrators. Prob. Per. Infor., Vol. 9 (4), pages

71–80, 1973 (in Russian). English translation in Problems of Infor. Trans., pages 325–332,
1975.

[165] S. Micali. Computationally Sound Proofs. SIAM Journal on Computing, Vol. 30 (4), pages
1253–1298, 2000. Preliminary version in 35th FOCS, 1994.

[166] G. L. Miller. Riemann’s Hypothesis and Tests for Primality. Journal of Computer and System
Science, Vol. 13, pages 300–317, 1976.

[167] P. B. Miltersen and N. V. Vinodchandran. Derandomizing Arthur-Merlin Games Using Hitting
Sets. Computational Complexity, Vol. 14 (3), pages 256–279, 2005. Preliminary version in
40th FOCS, 1999.

[168] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.
[169] M. Naor. Bit Commitment Using Pseudorandom Generators. Journal of Cryptology, Vol. 4,

pages 151–158, 1991.
[170] J. Naor and M. Naor. Small-Bias Probability Spaces: Efficient Constructions and Applica-

tions. SIAM Journal on Computing, Vol. 22, pages 838–856, 1993. Preliminary version in
22nd STOC, 1990.

[171] M. Naor and M. Yung. Universal One-Way Hash Functions and Their Cryptographic Appli-
cation. In 21st ACM Symposium on the Theory of Computing, pages 33–43, 1989.

[172] M. Nguyen, S. J. Ong, and S. Vadhan. Statistical Zero-Knowledge Arguments for NP from
Any One-Way Function. In 47th IEEE Symposium on Foundations of Computer Science,
pages 3-14, 2006.

[173] N. Nisan. Pseudorandom Bits for Constant Depth Circuits. Combinatorica, Vol. 11 (1), pages
63–70, 1991.

[174] N. Nisan. Pseudorandom Generators for Space Bounded Computation. Combinatorica,
Vol. 12 (4), pages 449–461, 1992. Preliminary version in 22nd STOC, 1990.

596



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[175] N. Nisan. RL ⊆ SC. Computational Complexity, Vol. 4, pages 1-11, 1994. Preliminary
version in 24th STOC, 1992.

[176] N. Nisan and A. Wigderson. Hardness vs Randomness. Journal of Computer and System
Science, Vol. 49 (2), pages 149–167, 1994. Preliminary version in 29th FOCS, 1988.

[177] N. Nisan and D. Zuckerman. Randomness Is Linear in Space. Journal of Computer and
System Science, Vol. 52 (1), pages 43–52, 1996. Preliminary version in 25th STOC, 1993.

[178] C. H. Papadimitriou. Computational Complexity. Addison Wesley, 1994.
[179] C. H. Papadimitriou and M. Yannakakis. Optimization, Approximation, and Complexity

Classes. In 20th ACM Symposium on the Theory of Computing, pages 229–234, 1988.
[180] N. Pippenger and M. J. Fischer. Relations Among Complexity Measures. Journal of the

ACM, Vol. 26 (2), pages 361–381, 1979.
[181] E. Post. A Variant of a Recursively Unsolvable Problem. Bull. AMS, Vol. 52, pages 264–268,

1946.
[182] M. O. Rabin. Digitalized Signatures. In Foundations of Secure Computation (R. A. DeMillo

et al. eds.), Academic Press, 1977.
[183] M. O. Rabin. Digitalized Signatures and Public Key Functions as Intractable as Factoring.

MIT/LCS/TR-212, 1979.
[184] M. O. Rabin. Probabilistic Algorithm for Testing Primality. Journal of Number Theory,

Vol. 12, pages 128–138, 1980.
[185] R. Raz. A Parallel Repetition Theorem. SIAM Journal on Computing, Vol. 27 (3), pages

763–803, 1998. Extended abstract in 27th STOC, 1995.
[186] R. Raz and A. Wigderson. Monotone Circuits for Matching Require Linear Depth. Journal

of the ACM, Vol. 39 (3), pages 736–744, 1992. Preliminary version in 22nd STOC, 1990.
[187] A. Razborov. Lower Bounds for the Monotone Complexity of some Boolean Functions. In

Doklady Akademii Nauk SSSR, Vol. 281 (4), pages 798–801, 1985 (in Russian). English
translation in Soviet Math. Doklady, Vol. 31, pages 354–357, 1985.

[188] A. Razborov. Lower Bounds on the Size of Bounded-Depth Networks over a Complete Basis
with Logical Addition. In Matematicheskie Zametki, Vol. 41 (4), pages 598–607, 1987 (in
Russian). English translation in Mathematical Notes of the Academy of Sci. of the USSR,
Vol. 41 (4), pages 333–338, 1987.

[189] A. R. Razborov and S. Rudich. Natural Proofs. Journal of Computer and System Science,
Vol. 55 (1), pages 24–35, 1997. Preliminary version in 26th STOC, 1994.

[190] O. Reingold. Undirected ST-Connectivity in Log-Space. In 37th ACM Symposium on the
Theory of Computing, pages 376–385, 2005.

[191] O. Reingold, S. Vadhan, and A. Wigderson. Entropy Waves, the Zig-Zag Graph Product,
and New Constant-Degree Expanders and Extractors. Annals of Mathematics, Vol. 155 (1),
pages 157–187, 2001. Preliminary version in 41st FOCS, pages 3–13, 2000.

[192] H. G. Rice. Classes of Recursively Enumerable Sets and Their Decision Problems. Trans.
AMS, Vol. 89, pages 25–59, 1953.

[193] R. L. Rivest, A. Shamir, and L. M. Adleman. A Method for Obtaining Digital Signatures and
Public Key Cryptosystems. CACM, Vol. 21 (Feb.), pages 120–126, 1978.

[194] D. Ron. Property Testing. In Handbook on Randomization, Volume 2, S. Rajasekaran,
P. M. Pardalos, J. H. Reif, and J. D. P. Rolim (eds.), pages 597–649, 2001.

[195] R. Rubinfeld and M. Sudan. Robust Characterization of Polynomials with Applications to
Program Testing. SIAM Journal on Computing, Vol. 25 (2), pages 252–271, 1996.

[196] M. Saks and S. Zhou. BPHSPACE(S) ⊆ DSPACE(S3/2). Journal of Computer and System
Science, Vol. 58 (2), pages 376–403, 1999. Preliminary version in 36th FOCS, 1995.

[197] W. J. Savitch. Relationships Between Nondeterministic and Deterministic Tape Complexities.
Journal of Computer and System Science, Vol. 4 (2), pages 177–192, 1970.

[198] A. Selman. On the Structure of NP. Notices Amer. Math. Soc., Vol. 21 (6), page 310, 1974.
[199] J. T. Schwartz. Fast Probabilistic Algorithms for Verification of Polynomial Identities. Journal

of the ACM, Vol. 27 (4), pages 701–717, October 1980.

597



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[200] R. Shaltiel. Recent Developments in Explicit Constructions of Extractors. In Current Trends
in Theoretical Computer Science: The Challenge of the New Century, Vol. 1: Algorithms
and Complexity, G. Paun, G. Rozenberg, and A. Salomaa (eds.), World Scientific, 2004.
Preliminary version in Bulletin of the EATCS 77, pages 67–95, 2002.

[201] R. Shaltiel and C. Umans. Simple Extractors for All Min-Entropies and a New Pseudo-
Random Generator. In 42nd IEEE Symposium on Foundations of Computer Science, pages
648–657, 2001.

[202] A. Shamir. IP = PSPACE. Journal of the ACM, Vol. 39 (4), pages 869–877, 1992. Preliminary
version in 31st FOCS, 1990.

[203] C. E. Shannon. A Symbolic Analysis of Relay and Switching Circuits. Trans. American
Institute of Electrical Engineers, Vol. 57, pages 713–723, 1938.

[204] C. E. Shannon. A Mathematical Theory of Communication. Bell Sys. Tech. Jour., Vol. 27,
pages 623–656, 1948.

[205] C. E. Shannon. Communication Theory of Secrecy Systems. Bell Sys. Tech. Jour., Vol. 28,
pages 656–715, 1949.

[206] A. Shpilka. Lower Bounds for Matrix Product. SIAM Journal on Computing, pages 1185-
1200, 2003.

[207] M. Sipser. A Complexity Theoretic Approach to Randomness. In 15th ACM Symposium on
the Theory of Computing, pages 330–335, 1983.

[208] M. Sipser. Introduction to the Theory of Computation. PWS Publishing, 1997.
[209] R. Smolensky. Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit

Complexity. In 19th ACM Symposium on the Theory of Computing, pages 77–82, 1987.
[210] R. J. Solomonoff. A Formal Theory of Inductive Inference. Information and Control, Vol. 7

(1), pages 1–22, 1964.
[211] R. Solovay and V. Strassen. A Fast Monte-Carlo Test for Primality. SIAM Journal on Com-

puting, Vol. 6, pages 84–85, 1977. Addendum in SIAM Journal on Computing, Vol. 7, page
118, 1978.

[212] D. A. Spielman. Advanced Complexity Theory, Lectures 10 and 11. Notes (by D. Lewin
and S. Vadhan), March 1997. Available from http://www.cs.yale.edu/homes/
spielman/AdvComplexity/1998/ as lect10.ps and lect11.ps.

[213] L. J. Stockmeyer. The Polynomial-Time Hierarchy. Theoretical Computer Science, Vol. 3,
pages 1–22, 1977.

[214] L. Stockmeyer. The Complexity of Approximate Counting. In 15th ACM Symposium on the
Theory of Computing, pages 118–126, 1983.

[215] V. Strassen. Algebraic Complexity Theory. In Handbook of Theoretical Computer Science:
Volume A: Algorithms and Complexity, J. van Leeuwen (ed.), MIT Press/Elsevier, pages
633–672, 1990.

[216] M. Sudan. Decoding of Reed Solomon Codes Beyond the Error-Correction Bound. Journal
of Complexity, Vol. 13 (1), pages 180–193, 1997.

[217] M. Sudan. Algorithmic Introduction to Coding Theory. Lecture notes, available from
http://theory.csail.mit.edu/ ˜madhu/FT01/, 2001.

[218] M. Sudan, L. Trevisan, and S. Vadhan. Pseudorandom Generators Without the XOR Lemma.
Journal of Computer and System Science, Vol. 62 (2), pages 236–266, 2001.

[219] R. Szelepcsenyi. A Method of Forced Enumeration for Nondeterministic Automata. Acta
Informatica, Vol. 26, pages 279–284, 1988.

[220] S. Toda. PP Is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing,
Vol. 20 (5), pages 865–877, 1991.

[221] B. A. Trakhtenbrot. A Survey of Russian Approaches to Perebor (Brute Force Search)
Algorithms. Annals of the History of Computing, Vol. 6 (4), pages 384–398, 1984.

[222] L. Trevisan. Extractors and Pseudorandom Generators. Journal of the ACM, Vol. 48 (4),
pages 860–879, 2001. Preliminary version in 31st STOC, 1999.

598



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

BIBLIOGRAPHY

[223] L. Trevisan. On Uniform Amplification of Hardness in NP. In 37th ACM Symposium on the
Theory of Computing, pages 31–38, 2005.

[224] V. Trifonov. An O(log n log log n) Space Algorithm for Undirected st-Connectivity. In 37th
ACM Symposium on the Theory of Computing, pages 623–633, 2005.

[225] A. M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem.
Proc. Londom Mathematical Soceity, Ser. 2, Vol. 42, pages 230–265, 1936. A Correction,
ibid., Vol. 43, pages 544–546.

[226] C. Umans. Pseudo-Random Generators for All Hardness. Journal of Computer and System
Science, Vol. 67 (2), pages 419–440, 2003.

[227] S. Vadhan. A Study of Statistical Zero-Knowledge Proofs. Ph.D. thesis, MIT, 1999.
Available from http://www.eecs.harvard.edu/∼salil/papers/phdthesis-
abs.html.

[228] S. Vadhan. An Unconditional Study of Computational Zero Knowledge. SIAM Journal on
Computing, Vol. 36 (4), pages 1160–1214, 2006. Extended abstract in 45th FOCS, 2004.

[229] S. Vadhan. Lecture Notes for CS 225: Pseudorandomness, Spring 2007. Available from
http://www.eecs.harvard.edu/∼salil.

[230] L. G. Valiant. The Complexity of Computing the Permanent. Theoretical Computer Science,
Vol. 8, pages 189–201, 1979.

[231] L. G. Valiant. Completeness Classes in Algebra. In 11th ACM Symposium on the Theory of
Computing, pages 249–261, 1979.

[232] L. G. Valiant. A Theory of the Learnable. CACM, Vol. 27 (11), pages 1134–1142, 1984.
[233] L. G. Valiant and V. V. Vazirani. NP Is as Easy as Detecting Unique Solutions. Theoretical

Computer Science, Vol. 47 (1), pages 85–93, 1986.
[234] J. von Neumann. First Draft of a Report on the EDVAC, 1945. Contract No. W-670-ORD-

492, Moore School of Electrical Engineering, Univ. of Pennsylvania. Reprinted (in part) in
Origins of Digital Computers: Selected Papers, Springer-Verlag, pages 383–392, 1982.

[235] J. von Neumann, Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, pages
295–320, 1928.

[236] I. Wegener. The Complexity of Boolean Functions. Wiley-Teubner, 1987.
[237] I. Wegener. Branching Programs and Binary Decision Diagrams – Theory and Applications.

SIAM Monographs on Discrete Mathematics and Applications, 2000.
[238] A. Wigderson. The Amazing Power of Pairwise Independence. In 26th ACM Symposium on

the Theory of Computing, pages 645–647, 1994.
[239] A. C. Yao. Theory and Application of Trapdoor Functions. In 23rd IEEE Symposium on

Foundations of Computer Science, pages 80–91, 1982.
[240] A. C. Yao. Separating the Polynomial-Time Hierarchy by Oracles. In 26th IEEE Symposium

on Foundations of Computer Science, pages 1-10, 1985.
[241] A. C. Yao. How to Generate and Exchange Secrets. In 27th IEEE Symposium on Foundations

of Computer Science, pages 162–167, 1986.
[242] S. Yekhanin. Towards 3-Query Locally Decodable Codes of Subexponential Length. In 39th

ACM Symposium on the Theory of Computing, pages 266–274, 2007.
[243] R. E. Zippel. Probabilistic Algorithms for Sparse Polynomials. In the Proceedings of

EUROSAM ’79: International Symposium on Symbolic and Algebraic Manipulation, E.
Ng (ed.). Lecture Notes in Computer Science (Vol. 72), pages 216–226, Springer, 1979.

[244] D. Zuckerman. Linear-Degree Extractors and the Inapproximability of Max-Clique and
Chromatic Number. In 38th ACM Symposium on the Theory of Computing, pages 681–690,
2006.

599



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

600



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

Index

Author Index
Adleman, L. M., 227, 501
Agrawal, M., 227
Ajtai, M., 337
Aleliunas, R., 228
Arora, S., 406

Babai, L., 405, 406, 578
Barak, B., 498
Ben-Or, M., 405
Blum, M., 140, 227, 277, 278, 335
Borodin, A., 140, 175
Brassard, G., 407

Chaitin, G. J., 285, 307
Chaum, D., 407
Church, A., 43
Cobham, A., 43
Cook, S. A., 97, 98, 229
Crépeau, C., 407

Diffie, W., 277, 501
Dinur, I., 407

Edmonds, J., 43
Even, S., 99

Feige, U., 406, 453
Fortnow, L., 405, 406
Furst, M. L., 474

Goldreich, O., 277, 336, 405, 453, 492, 517
Goldwasser, S., 335, 336, 405, 406, 453, 492,

502, 503, 505, 572

Hartmanis, J., 140
Håstad, J., 336, 453, 474
Hellman, M. E., 277, 501
Huang, M., 227

Immerman, N., 175
Impagliazzo, R., 278, 336

Jerrum, M., 229

Karchmer, M., 475
Karloff, H., 405
Karp, R. M., 97, 98, 121, 122,

228
Kayal, N., 227
Kilian, J., 405, 407
Kolmogorov, A., 285, 307
Komlos, J., 337

Ladner, R. E., 98
Lautemann, C., 228
Levin, L. A., 97, 98, 277, 336, 406, 454
Lipton, R. J., 122, 228, 278
Lovász, L., 228, 406, 453
Luby, M., 278, 336
Lund, C., 405, 406

Micali, S., 277, 335, 336, 405, 407, 492, 502,
503, 505, 517

Miller, G. L., 227
Moran, S., 578
Motwani, R., 406

Naor, J., 337
Naor, M., 337
Nisan, N., 277, 336, 337, 405

Papadimitriou, C. H., 455

Rabin, M. O., 227
Rackoff, C., 228, 277, 405
Raz, R., 475
Razborov, A. R., 473
Reingold, O., 175, 561

601



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INDEX

Rivest, R. L., 501
Ron, D., 453
Rubinfeld, R., 278, 453

Safra, S., 406, 453
Savitch, W. J., 175
Saxe, J. B., 474
Saxena, N., 227
Selman, A. L., 99
Shamir, A., 405, 501
Shannon, C. E., 43, 285, 472, 500
Sipser, M., 228, 229, 474, 572
Solomonoff, R. J., 285
Solovay, R., 227
Stearns, R. E., 140
Stockmeyer, L. J., 121, 229
Strassen, V., 227
Sudan, M., 278, 406, 453
Szegedy, M., 406
Szelepcsenyi, R., 175
Szemerédi, E., 337

Toda, S., 229, 566
Trevisan, L., 278, 542
Turing, A. M., 43, 354

Vadhan, S., 278, 561
Valiant, L. G., 229
Vazirani, V. V., 229

Wigderson, A., 278, 336, 405, 475, 517,
561

Yacobi, Y., 99
Yannakakis, M., 455
Yao, A. C., 277, 335, 336, 474, 517

Zuckerman, D., 337

Subject Index
algorithms, see computability theory
approximate counting, 211–216, 221–224

satisfying assignments to a DNF, 212–214
approximation, 418–429

counting, see approximate counting
hardness, see hardness of approximation

arithmetic circuits, 475–478
average-case complexity, 429–452

Blum-Micali Generator, see pseudorandom
generators

Boolean circuits, 37–42, 72–77, 109–113, 129,
304, 471–475

bounded fan-in, 39

constant-depth, 42, 314, 473–474
depth, 42
Monotone, 42, 472–473
natural proofs, 306
size, 39–40, 109–110
unbounded fan-in, 39, 41, 42
uniform, 40, 110–111, 155

Boolean formulae, 37, 41–42, 474–475, 585–586
clauses, 41
CNF, 41, 72–77, 585–586
DNF, 42, 585–586
literals, 41
Monotone, 475
Quantified, 586

Byzantine Agreement, 520

Chebyshev’s Inequality, 525–526, 530
Chernoff Bound, 526–527
Chinese Reminder Theorem, 409
Church-Turing Thesis, 25, 33
circuits, see Boolean circuits
CNF, see Boolean formulae
Cobham-Edmonds Thesis, 33, 46, 75, 128, 130
coding theory, 546–554

concatenated codes, 550–551
connection to hardness amplification, 257,

266–270
good codes, 551
Hadamard code, 254, 255, 282, 386–387, 549
list decoding, 254, 255, 266–270, 543, 547,

553
locally decodable, 552–553
locally testable, 552–553
Long-Code, 549
Reed-Muller code, 267, 549–550
Reed-Solomon code, 549
unique decoding, 547

commitment schemes, see cryptography
communication complexity, 474–475
complexity classes
⊕P, 566–571
�P, 202–216, 465, 566–571
AC0, 117, 314, 468
AM, 365
BPL, 200–201, 319, 323–325, 467
BPP, 189–193, 195–199, 304–305, 308–312,

319, 465
coNL, 143, 168–171
coNP, 82, 94–97, 116, 143, 167, 469, 478
coRP, 193–198, 199
distNP, 434–442, 446–452
distPC, 444
DSPACE, 139, 144, 166
DTIME, 130

602



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INDEX

complexity classes (cont.)
DTISP, 153
E, 466
EXP, 55, 466, 467
IP, see interactive proof systems, 352, 355, 359,

365, 377, 466
L, 154–156, 467
MA, 199, 365
NC, 155, 167, 468
NEXP, 466
NL, 143, 164–171, 200, 323, 467
NP, 44–97, 113–116, 119–121, 143, 164, 167,

315, 356, 359, 365, 377, 383–404,
465–467, 469, 477, 478

as proof system, 51–53
as search problem, 48–50
optimal search, 92–94
traditional definition, 55–57, 117–119, 163,

186
NPC, see NP-completeness
NPI, 82
NSPACE, 166

two models, 162–164
NTIME, 134
P, 44–97, 111, 112, 114, 116, 153–155, 164,

465, 469, 471, 473
as search problem, 48–50

P/poly, 108–113, 119–121, 468
PC, 48–50, 54–55, 57, 60–70, 72, 75, 88, 89,

92–95, 202–227, 419, 444
PCP, see probabilistic checkable proof systems
PF, 48–50, 54–55, 444
PH, 113–121, 191, 203, 466, 566–571
PSPACE, 172–175, 359, 467
quasi-P, 314, 466
RL, 200–202, 323, 467
RP, 193–199, 199, 465
sampNP, 446–452
SC, 152, 323
SZK, 378
TC0, 468
tpcBPP, 443
tpcP, 433, 435–436
tpcPF, 444
ZK, see zero-knowledge proof systems, 368,

371, 377
ZPP, 199, 465

computability theory, 17–36
computational indistinguishability, 289, 291, 292,

295–299, 335, 490–491
multiple samples, 296–299
non-triviality, 296
the hybrid technique, 297–299, 303, 312, 322,

335

vs statistical closeness, 296
computational learning theory, 306
computational problems

3SAT, 77, 586
3XC, 78
bipartiteness, 427, 428, 584
Bounded Halting, 70
Bounded Non-halting, 70–71
CEVL, 154
Clique, 80, 420–422, 427, 585
CSAT, 72–77
CSP, 395–399
Determinant, 205, 477–478, 587
Directed Connectivity, 164–171, 201
Exact Set Cover, 79
extracting modular square roots, 588
factoring integers, 97, 99, 102, 484, 488, 505,

588
Graph 2-Colorability, 584
Graph 3-Colorability, 80, 375, 428, 585
Graph Isomorphism, 358, 372, 585
Graph k-Colorability, 427
Graph Non-Isomorphism, 358
Halting Problem, 27–28, 70, 71, 354
Hamiltonian path, 585
Independent Set, 80, 585
kQBF, 123, 586
Perfect Matching, 205–211, 221, 585
Permanent, 205–211, 236, 477–478, 587
primality testing, 99, 192–193, 588
QBF, 172–175, 362, 408, 586
SAT, 64–65, 72–77, 94, 423, 586
Set Cover, 78
st-CONN, 164–171
testing Polynomial Identity, 194–195
TSP, 421
UCONN, 155–162
Undirected Connectivity, 155–162, 165,

201–202, 584
Vertex Cover, 80, 420, 422, 585

computational tasks and models, 17
computationally sound proof systems

arguments, 407
constant-depth circuits, see Boolean circuits
constraint satisfaction problems, see CSP
Cook-reductions, see Reduction
counting problems, 202–227

approximation, see approximate counting
perfect matching, 205–211
satisfying assignments to a DNF, 204

cryptography, 482–522
coin tossing, 521–522
commitment schemes, 376, 495–496,

520–522

603



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INDEX

cryptography (cont.)
computational indistinguishability, see

computational indistinguishability
encryption schemes, 500–507
general protocols, 511–522
hard-core predicates, see one-way functions
hashing, see hashing
message authentication schemes, 507–511
modern vs classical, 483, 500
Oblivious Transfer, 519–520
one-way functions, see one-way functions
pseudorandom functions, see pseudorandom

functions
pseudorandom generators, see pseudorandom

generators
secret sharing, 518–519, 521
signature schemes, 507–511
trapdoor permutations, 488–489, 505–506,

509, 517, 519–520
Verifiable Secret Sharing, 521
zero-knowledge, see zero-knowledge proof

systems
CSP, see computational problems

decision problems, 19, 20, 50–55, 444–446
unique solutions, see unique solutions

diagonalization, 133
direct product theorems, 261–266, 277
dispersers, 540

error-correcting codes, see coding theory
error reduction, 188, 190, 212, 214, 220,

230–232, 351, 355, 356, 368, 383, 403,
407, 572

randomness-efficient, 539–540
expander graphs, 332, 333, 554–565

amplification, 556
constructions, 560–565
eigenvalue gap, 555–556
expansion, 555–556
explicitness, 556–557
mixing, 557–559
random walk, 333–334, 559–560

extractors, see randomness extractors

finite automata, 36
finite fields, 586
formulae, see Boolean formulae
fourier coefficients, 329

game theory
Min-Max Principle, 272–273

gap problems, see promise problems
gap theorems, see time gaps

GF(2), 586
GF(2n), 587
Gödel’s Incompleteness Theorem, 354
graph properties, 426
graph theory, 583–585

Hadamard code, see coding theory
Halting Problem, see computational problems
hard regions, see inapproximable predicates
hardness of approximation

Max3SAT, 401
MaxClique, 403
the PCP connection, 399–403, 421–424

hashing, 527–533
as a random sieve, 215–216, 218–220,

224–227
collision-free, 511
collision-resistant, 511
extraction property, 538
highly independent, 529, 532–533
Leftover Hash Lemma, 529–533
mixing property, 319, 530
pairwise independent, 529–532
universal, 304, 529
Universal One-Way, 511

hierarchy theorems, see time hierarchies
hitters, 535–536
Hoefding Inequality, 527

inapproximable predicates, 255–277
hard regions, 271–274

Information Theory, 249–250, 285, 483
interactive proof systems, 352–368, 405

algebraic methods, 359
Arthur-Merlin, 364, 365, 571–582
computational soundness, 367–368, 497
constant-round, 314, 336, 365
for Graph Non-Isomorphism, 358
for PSPACE, 359–363
hierarchy, 364–365, 571–582
linear speedup, 365
power of the prover, 366–367
public-coin, 314, 364, 365, 571–582
two-sided error, 364, 365

Karp-reductions, see reduction
knowledge complexity, 371
Kolmogorov Complexity, 31–32, 39, 286, 307

Levin-reductions, see reduction
Linear Feedback Shift Registers, 330
list decoding, see coding theory
low-degree tests, see property testing
lower bounds, 469–481

604



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INDEX

Markov’s Inequality, 525
Min-Max Principle, see game theory
Monotone circuits, see Boolean circuits
multi-prover interactive proof systems, 403,

405

Nisan-Wigderson Generator, see pseudorandom
generators

non-interactive zero-knowledge, 499
notation

asymptotic, 16
combinatorial, 16
graph theory, 16
integrality issues, 16

NP-completeness, 67–87, 95–97, 154, 377, 465

one-way functions, 242–255, 296, 375, 377, 452,
483–484, 487–489, 492, 495–496, 506,
509

hard-core predicates, 250–255, 336, 489, 496,
505, 519

strong vs weak, 245–250
optimal search for NP, 92–94
oracle machines, 35–36

P versus NP Question, 46–58, 115, 430, 435, 436,
447, 471

PCP, see probabilistically checkable proof
systems

polynomial-time reductions, see reduction
Post Correspondence Problem, 29, 31
probabilistic log-space, 199–202
probabilistic polynomial time, 184–202
probabilistic proof systems, 349–416
probabilistically checkable proof systems,

380–407
adaptive, 383, 403
approximation, see hardness of approximation
composition, 389–392, 395, 399
for NEXP, 405
for NP, 384–399, 402–404
free-bit complexity, 403, 412
non-adaptive, 383, 389, 390, 400, 403
non-binary queries, 403
of proximity, 391, 394, 404
proof length, 402
query complexity, 402
robustness, 391, 394

probability theory
conventions, 523–524
inequalities, 524–527

promise problems, 20, 87–92, 95, 192, 217,
424–429

gap problems, 421–424

proof complexity, 470, 478–481
proofs of knowledge, 378–380, 499
property testing, 424–429

codeword testing, see coding theory
for graph properties, 426–429
low-degree tests, 394, 395, 429
self-correcting, see self-correcting
self-testing, see self-testing

pseudorandom functions, 306, 336, 492–493
pseudorandom generators, 284–348

archetypical case, 290–307, 335–336
Blum-Micali Construction, 303, 505
conceptual discussion, 306–307, 315
connection to extractors, 542–544
derandomization, 304–305, 307–315, 336

high end, 312
low end, 312

discrepancy sets, 332
expander random walks, 276, 332–334
extractors, see randomness extractors
general paradigm, 285–290, 334–335
general-purpose, 290–307, 335–336

application, 292–295
construction, 301–304
definition, 290–292
stretch, 299–303

hitting, 333–334, 536
Nisan-Wigderson Construction, 277, 310–315,

335, 336, 542
pairwise independence, 274, 326–329
samplers, see sampling
small-bias, 329–332, 393
space, 315–325, 336
special purpose, 325–334, 337
universal sets, 332
unpredictability, 301–303, 312, 335

random variables, 523–527
pairwise independent, 525–527
totally independent, 526–527

randomized computation
log-space, see probabilistic log-space
polynomial time, see probabilistic polynomial-

time
proof systems, see probabilistic proof systems
reductions, see reductions
sub-linear time, see property testing

randomness extractors, 336, 536–544
connection to error reduction, 539–540
connection to pseudorandomness, 542–544
connection to samplers, 538–539
from few independent sources, 537
seeded extractors, 536–537
using weak random sources, 536–537

605



CUUS063 main CUUS063 Goldreich 978 0 521 88473 0 March 31, 2008 18:49

INDEX

reductions
among distributional problems, 435–446, 448
Cook-reductions, 59–68, 81–85, 95–96,

202–227, 435
downward self-reducibility, 101, 125
gap amplifying, 401
Karp-reductions, 60–61, 68–81, 95, 203–204,

435, 465
Levin-reductions, 60–61, 63, 68–77
parsimonious, 105, 203–204, 217–224
polynomial-time reductions, 58–85, 188–189,

465, 466
randomized reductions, 195–198, 230
reducibility argument, 247–249, 251, 255, 298,

312, 436, 483, 489
self-reducibility, 63–67, 367
space-bounded, 149–152, 154–155, 158–162,

164–165
Turing-reductions, 28, 35–36
worst-case to average-case, 257–260, 266-269

Rice’s Theorem, 29

samplers, see sampling
sampling, 533–536

averaging samplers, 535, 538–539
search problems, 18–19, 47–50, 54–55, 152, 165,

444–446
uniform generation, see uniform generation
unique solutions, see unique solutions
versus decision, 54–55, 60–61, 63–67, 152,

165, 444–446
self-correcting, 258–260, 278, 386–388, 394,

550, 552–553
self-reducibility, see reduction
self-testing, 386, 387, 550
space complexity, 34–35, 143–183

Circuit Evaluation, 153–155
composition lemmas, 146–148, 161–162
conventions, 144–145
logarithmic space, 153–162
non-determinism, 162–172
polynomial space, 172–175
pseudorandomness, see pseudorandom

generators
randomness, see probabilistic log-space
reductions, see reductions
sub-logarithmic, 145–146
versus time complexity, 146–153

space gaps, 139, 152
space hierarchies, 139, 152
space-constructible, 139
speedup theorems, 138–139
statistical difference, 296, 524
st-CONN, see computational problems

time complexity, 21–22, 32–34
time gaps, 136–138
time hierarchies, 129–136
time-constructible, 130, 131, 136, 309
Turing machines, 22–26

multi-tape, 24, 130
non-deterministic, 55–57
single-tape, 24
with advice, 40–41, 111–113, 128–129,

305
Turing-reductions, see reductions

UCONN, see computational problems
uncomputable functions, 26–29
undecidability, 27, 29, 354
uniform generation, 220–227
unique solutions, 205, 216–220, 236,

445–446
universal algorithms, 29–32, 34, 133–134
universal machines, 29–32

variation distance, see statistical difference

witness indistinguishability, 499

Yao’s XOR Lemma, 257, 260–266, 270–271
derandomized version, 274–277

zero-knowledge proof systems, 368–380, 405,
493–500, 520–521

almost-perfect, 377
black-box simulation, 498
computational, 371, 499
for 3-Colorability, 375
for Graph Non-Isomorphism, 372
for NP, 374
honest verifier, 498
knowledge complexity, 371
perfect, 370, 377, 407, 498
statistical, 371, 377, 498
universal simulation, 498

606


	Cover
	Half-title
	Title
	Copyright
	Dedication
	Contents
	List of Figures
	Preface
	Organization and Chapter Summaries
	Acknowledgments
	Charptr 1 Introduction and Preliminaries
	1.1 Introduction
	1.1.1 A Brief Overview of Complexity Theory
	1.1.2 Characteristics of Complexity Theory
	1.1.3 Contents of This Book
	1.1.3.1 Overall Organization of the Book
	1.1.3.2 Contents of the Specific Parts

	1.1.4 Approach and Style of This Book
	1.1.4.1 The General Principle
	1.1.4.2 On a Few Specific Choices
	1.1.4.3 On the Presentation of Technical Details
	1.1.4.4 Organizational Principles
	1.1.4.5 A Call for Tolerance
	1.1.4.6 Additional Comments Regarding Motivation

	1.1.5 Standard Notations and Other Conventions

	1.2 Computational Tasks and Models
	1.2.1 Representation
	1.2.2 Computational Tasks
	1.2.2.1 Search Problems
	1.2.2.2 Decision Problems
	1.2.2.3 Promise Problems (an Advanced Comment)

	1.2.3 Uniform Models (Algorithms)
	1.2.3.1 Overview and General Principles
	1.2.3.2 A Concrete Model: Turing Machines
	1.2.3.3 Uncomputable Functions
	1.2.3.4 Universal Algorithms
	1.2.3.5 Time and Space Complexity
	1.2.3.6 Oracle Machines
	1.2.3.7 Restricted Models

	1.2.4 Non-uniform Models (Circuits and Advice)
	1.2.4.1 Boolean Circuits
	1.2.4.2 Machines That Take Advice
	1.2.4.3 Restricted Models

	1.2.5 Complexity Classes

	Chapter Notes

	Chapter 2 P, NP, and NP-Completeness
	2.1 The P Versus NP Question
	2.1.1 The Search Version: Finding Versus Checking
	2.1.1.1 The Class P as a Natural Class of Search Problems
	2.1.1.2 The Class NP as Another Natural Class of Search Problems
	2.1.1.3 The P Versus NP Question in Terms of Search Problems

	2.1.2 The Decision Version: Proving Versus Verifying
	2.1.2.1 The Class P as a Natural Class of Decision Problems
	2.1.2.2 The Class NP and NP-proof Systems
	2.1.2.3 The P Versus NP Question in Terms of Decision Problems

	2.1.3 Equivalence of the Two Formulations
	2.1.4 Two Technical Comments Regarding NP
	2.1.5 The Traditional Definition of NP
	2.1.6 In Support of P Different from NP
	2.1.7 Philosophical Meditations

	2.2 Polynomial-Time Reductions
	2.2.1 The General Notion of a Reduction
	2.2.1.1 The Actual Formulation
	2.2.1.2 Special Cases
	2.2.1.3 Terminology and a Brief Discussion

	2.2.2 Reducing Optimization Problems to Search Problems
	2.2.3 Self-Reducibility of Search Problems
	2.2.3.1 Examples
	2.2.3.2 Self-Reducibility of NP-Complete Problems

	2.2.4 Digest and General Perspective

	2.3 NP-Completeness
	2.3.1 Definitions
	2.3.2 The Existence of NP-Complete Problems
	2.3.3 Some Natural NP-Complete Problems
	2.3.3.1 Circuit and Formula Satisfiability: CSAT and SAT
	2.3.3.2 Combinatorics and Graph Theory

	2.3.4 NP Sets That Are Neither in P nor NP-Complete
	2.3.5 Reflections on Complete Problems

	2.4 Three Relatively Advanced Topics
	2.4.1 Promise Problems
	2.4.1.1 Definitions
	2.4.1.2 Applications
	2.4.1.3 The Standard Convention of Avoiding Promise Problems

	2.4.2 Optimal Search Algorithms for NP
	2.4.3 The Class coNP and Its Intersection with NP

	Chapter Notes
	Exercises

	Chapter 3 Variations on P and NP
	3.1 Non-uniform Polynomial Time (P/poly)
	3.1.1 Boolean Circuits
	3.1.2 Machines That Take Advice

	3.2 The Polynomial-Time Hierarchy (PH)
	3.2.1 Alternation of Quantifiers
	3.2.2 Non-deterministic Oracle Machines
	3.2.3 The P/poly Versus NP Question and PH

	Chapter Notes
	Exercises

	Chapter 4 More Resources, More Power?
	4.1 Non-uniform Complexity Hierarchies
	4.2 Time Hierarchies and Gaps
	4.2.1 Time Hierarchies
	4.2.1.1 The Time Hierarchy Theorem
	4.2.1.2 Impossibility of Speedup for Universal Computation
	4.2.1.3 Hierarchy Theorem for Non-deterministic Time

	4.2.2 Time Gaps and Speedup

	4.3 Space Hierarchies and Gaps
	Chapter Notes
	Exercises

	Chapter 5 Space Complexity
	5.1 General Preliminaries and Issues
	5.1.1 Important Conventions
	5.1.2 On the Minimal Amount of Useful Computation Space
	5.1.3 Time Versus Space
	5.1.3.1 Two Composition Lemmas
	5.1.3.2 An Obvious Bound
	5.1.3.3 Subtleties Regarding Space-Bounded Reductions
	5.1.3.4 Search Versus Decision
	5.1.3.5 Complexity Hierarchies and Gaps
	5.1.3.6 Simultaneous Time-Space Complexity

	5.1.4 Circuit Evaluation

	5.2 Logarithmic Space
	5.2.1 The Class L
	5.2.2 Log-Space Reductions
	5.2.3 Log-Space Uniformity and Stronger Notions
	5.2.4 Undirected Connectivity
	5.2.4.1 The Basic Approach
	5.2.4.2 The Actual Implementation


	5.3 Non-deterministic Space Complexity
	5.3.1 Two Models
	5.3.2 NL and Directed Connectivity
	5.3.2.1 Completeness and Beyond
	5.3.2.2 Relating NSPACE to DSPACE
	5.3.2.3 Complementation or NL = coNL

	5.3.3 A Retrospective Discussion

	5.4 PSPACE and Games
	Chapter Notes
	Exercises

	Chapter 6 Randomness and Counting
	6.1 Probabilistic Polynomial Time
	6.1.1 Basic Modeling Issues
	6.1.2 Two-Sided Error: The Complexity Class BPP
	6.1.2.1 On the Power of Randomization
	6.1.2.2. A Probabilistic Polynomial-Time Primality Test

	6.1.3 One-Sided Error: The Complexity Classes RP and coRP
	6.1.3.1 Testing Polynomial Identity
	6.1.3.2 Relating BPP to RP

	6.1.4 Zero-Sided Error: The Complexity Class ZPP
	6.1.5 Randomized Log-Space
	6.1.5.1 Definitional Issues
	6.1.5.2 The Accidental Tourist Sees It All


	6.2 Counting
	6.2.1 Exact Counting
	6.2.1.1 On the Power of #P
	6.2.1.2 Completeness in #P

	6.2.2 Approximate Counting
	6.2.2.1 Relative Approximation for #Rdnf
	6.2.2.2 Relative Approximation for #P

	6.2.3 Searching for Unique Solutions
	6.2.4 Uniform Generation of Solutions
	6.2.4.1 Relation to Approximate Counting
	6.2.4.2 A Direct Procedure for Uniform Generation


	Chapter Notes
	Exercises

	Chapter 7 The Bright Side of Hardness
	7.1 One-Way Functions
	7.1.1 Generating Hard Instances and One-Way Functions
	7.1.2 Amplification of Weak One-Way Functions
	7.1.3 Hard-Core Predicates
	7.1.4 Reflections on Hardness Amplification

	7.2 Hard Problems in E
	7.2.1 Amplification with Respect to Polynomial-Size Circuits
	7.2.1.1 From Worst-Case Hardness to Mild Average-Case Hardness
	7.2.1.2 Yao's XOR Lemma
	7.2.1.3 List Decoding and Hardness Amplification

	7.2.2 Amplification with Respect to Exponential-Size Circuits
	7.2.2.1 Hard Regions
	7.2.2.2 Hardness Amplification via Hard Regions


	Chapter Notes
	Exercises

	Chapter 8 Pseudorandom Generators
	Introduction
	8.1 The General Paradigm
	8.2 General-Purpose Pseudorandom Generators
	8.2.1 The Basic Definition
	8.2.2 The Archetypical Application
	8.2.3 Computational Indistinguishability
	8.2.3.1 The General Formulation
	8.2.3.2 Relation to Statistical Closeness
	8.2.3.3 Indistinguishability by Multiple Samples

	8.2.4 Amplifying the Stretch Function
	8.2.5 Constructions
	8.2.5.1 A Simple Construction
	8.2.5.2 An Alternative Presentation
	8.2.5.3 A General Condition for the Existence of Pseudorandom Generators

	8.2.6 Non-uniformly Strong Pseudorandom Generators
	8.2.7 Stronger Notions and Conceptual Reflections
	8.2.7.1 Stronger (Uniform-Complexity) Notions
	8.2.7.2 Conceptual Reflections


	8.3 Derandomization of Time-Complexity Classes
	8.3.1 Defining Canonical Derandomizers
	8.3.2 Constructing Canonical Derandomizers
	8.3.2.1 The Construction and Its Consequences
	8.3.2.2 Analyzing the Construction (i.e., Proof of Theorem 8.18)

	8.3.3 Technical Variations and Conceptual Reflections
	8.3.3.1 Construction 8.17 as a General Framework
	8.3.3.2 Reflections Regarding Derandomization


	8.4 Space-Bounded Distinguishers
	8.4.1 Definitional Issues
	8.4.2 Two Constructions
	8.4.2.1 Sketches of the Proofs of Theorems 8.21 and 8.22
	8.4.2.2 Derandomization of Space-Complexity Classes


	8.5 Special-Purpose Generators
	8.5.1 Pairwise Independence Generators
	8.5.1.1 Constructions
	8.5.1.2 Applications (a Brief Review)

	8.5.2 Small-Bias Generators
	8.5.2.1 Constructions
	8.5.2.2 Applications (a Brief Review)
	8.5.2.3 Generalization

	8.5.3 Random Walks on Expanders

	Chapter Notes
	Exercises

	Chapter 9 Probabilistic Proof Systems
	Introduction and Preliminaries
	9.1 Interactive Proof Systems
	9.1.1 Motivation and Perspective
	9.1.1.1 A Static Object Versus an Interactive Process
	9.1.1.2 Prover and Verifier
	9.1.1.3 Completeness and Soundness

	9.1.2 Definition
	9.1.3 The Power of Interactive Proofs
	9.1.3.1 A Simple Example
	9.1.3.2 The Full Power of Interactive Proofs
	9.1.3.3 Sketch of the Proof of Theorem 9.4

	9.1.4 Variants and Finer Structure: An Overview
	9.1.4.1 Arthur-Merlin Games (Public-Coin Proof Systems)
	9.1.4.2 Interactive Proof Systems with Two-Sided Error
	9.1.4.3 A Hierarchy of Interactive Proof Systems
	9.1.4.4 Something Completely Different

	9.1.5 On Computationally Bounded Provers: An Overview
	9.1.5.1 How Powerful Should the Prover Be?
	9.1.5.2 Computational Soundness


	9.2 Zero-Knowledge Proof Systems
	9.2.1 Definitional Issues
	9.2.1.1 A Wider Perspective: The Simulation Paradigm
	9.2.1.2 The Basic Definitions

	9.2.2 The Power of Zero-Knowledge
	9.2.2.1 A Simple Example
	9.2.2.2 The Full Power of Zero-Knowledge Proofs

	9.2.3 Proofs of Knowledge -- A Parenthetical Subsection*-0pt
	9.2.3.1 Abstract Reflections
	9.2.3.2 A Concrete Treatment


	9.3 Probabilistically Checkable Proof Systems
	9.3.1 Definition
	9.3.2 The Power of Probabilistically Checkable Proofs
	9.3.2.1 Proving That NPPCP(poly,O(1))
	9.3.2.2 Overview of the First Proof of the PCP Theorem
	9.3.2.3 Overview of the Second Proof of the PCP Theorem

	9.3.3 PCP and Approximation
	9.3.4 More on PCP Itself: An Overview
	9.3.4.1 More on the PCP Characterization of NP
	9.3.4.2 Stronger Forms of PCP-Systems for NP
	9.3.4.3 PCP with Super-logarithmic Randomness


	Chapter Notes
	Exercises

	Chapter 10 Relaxing the Requirements
	10.1 Approximation
	10.1.1 Search or Optimization
	10.1.1.1 A Few Positive Examples
	10.1.1.2 A Few Negative Examples

	10.1.2 Decision or Property Testing
	10.1.2.1 Definitional Issues
	10.1.2.2 Two Models for Testing Graph Properties
	10.1.2.3 Beyond Graph Properties


	10.2 Average-Case Complexity
	10.2.1 The Basic Theory
	10.2.1.1 Definitional Issues
	10.2.1.2 Complete Problems
	10.2.1.3 Probabilistic Versions

	10.2.2 Ramifications
	10.2.2.1 Search Versus Decision
	10.2.2.2 Simple Versus Samplable Distributions


	Chapter Notes
	10.2.2.3 Approximation

	Exercises

	Epilogue
	Appendix A Glossary of Complexity Classes
	A.1 Preliminaries
	A.2 Algorithm-Based Classes
	A.2.1 Time Complexity Classes
	A.2.1.1 Classes Closely Related to Polynomial Time
	A.2.1.2 Other Time Complexity Classes

	A.2.2 Space Complexity Classes

	A.3 Circuit-Based Classes

	Appendix B On the Quest for Lower Bounds
	B.1 Preliminaries
	B.2 Boolean Circuit Complexity
	B.2.1 Basic Results and Questions
	B.2.2 Monotone Circuits
	B.2.3 Bounded-Depth Circuits
	B.2.4 Formula Size

	B.3 Arithmetic Circuits
	B.3.1 Univariate Polynomials
	B.3.2 Multivariate Polynomials

	B.4 Proof Complexity
	B.4.1 Logical Proof Systems
	B.4.2 Algebraic Proof Systems
	B.4.3 Geometric Proof Systems


	Appendix C On the Foundations of Modern Cryptography
	C.1 Introduction and Preliminaries
	C.1.1 The Underlying Principles
	C.1.1.1 Coping with Adversaries
	C.1.1.2 The Use of Computational Assumptions

	C.1.2 The Computational Model
	C.1.2.1 Efficient Computations and Infeasible ones
	C.1.2.2 Randomized (or Probabilistic) Computations

	C.1.3 Organization and Beyond

	C.2 Computational Difficulty
	C.2.1 One-Way Functions
	C.2.2 Hard-Core Predicates

	C.3 Pseudorandomness
	C.3.1 Computational Indistinguishability
	C.3.2 Pseudorandom Generators
	C.3.3 Pseudorandom Functions

	C.4 Zero-Knowledge
	C.4.1 The Simulation Paradigm
	C.4.2 The Actual Definition
	C.4.3 A General Result and a Generic Application
	C.4.3.1 Commitment Schemes
	C.4.3.2 A Generic Application

	C.4.4 Definitional Variations and Related Notions
	C.4.4.1 Definitional Variations
	C.4.4.2 Related Notions: POK, NIZK, and WI


	C.5 Encryption Schemes
	C.5.1 Definitions
	C.5.2 Constructions
	C.5.3 Beyond Eavesdropping Security

	C.6 Signatures and Message Authentication
	C.6.1 Definitions
	C.6.2 Constructions

	C.7 General Cryptographic Protocols
	C.7.1 The Definitional Approach and Some Models
	C.7.1.1 Some Parameters Used in Defining Security Models
	C.7.1.2 Example: Multi-party Protocols with Honest Majority
	C.7.1.3 Another Example: Two-Party Protocols Allowing Abort

	C.7.2 Some Known Results
	C.7.3 Construction Paradigms and Two Simple Protocols
	C.7.3.1 Passively Secure Computation with Shares
	C.7.3.2 From passively Secure Protocols to Actively Secure Ones

	C.7.4 Concluding Remarks


	Appendix D Probabilistic Preliminaries and Advanced Topics in Randomization
	D.1 Probabilistic Preliminaries
	D.1.1 Notational Conventions
	D.1.2 Three Inequalities
	D.1.2.1 Markov's Inequality
	D.1.2.2 Chebyshev's Inequality
	D.1.2.3 Chernoff Bound
	D.1.2.4 Pairwise Independent Versus Totally Independent Sampling


	D.2 Hashing
	D.2.1 Definitions
	D.2.2 Constructions
	D.2.3 The Leftover Hash Lemma

	D.3 Sampling
	D.3.1 Formal Setting
	D.3.2 Known Results
	D.3.3 Hitters

	D.4 Randomness Extractors
	D.4.1 Definitions and Various Perspectives
	D.4.1.1 The Main Definition
	D.4.1.2 Extractors as Averaging Samplers
	D.4.1.3 Extractors as Randomness-Efficient Error Reductions
	D.4.1.4 Other Perspectives

	D.4.2 Constructions
	D.4.2.1 Some Known Results
	D.4.2.2 The Pseudorandomness Connection
	D.4.2.3 Recommended Reading



	Appendix E Explicit Constructions
	E.1 Error-Correcting Codes
	E.1.1 Basic Notions
	E.1.2 A Few Popular Codes
	E.1.2.1 A Mildly Explicit Version of Proposition E.1
	E.1.2.2 The Hadamard Code
	E.1.2.3 The Reed--Solomon Code
	E.1.2.4 The Reed--Muller Code
	E.1.2.5 Binary Codes of Constant Relative Distance and Constant Rate

	E.1.3 Two Additional Computational Problems
	E.1.4 A List-Decoding Bound

	E.2 Expander Graphs
	E.2.1 Definitions and Properties
	E.2.1.1 Two Mathematical Definitions
	E.2.1.2 Two Levels of Explicitness
	E.2.1.3 Two Properties

	E.2.2 Constructions
	E.2.2.1 The Margulis-Gabber-Galil Expander
	E.2.2.2 The Iterated Zig-Zag Construction



	Appendix F Some Omitted Proofs
	F.1. Proving That PH Reduces to #P
	F.2. Proving That IP( f ) ⊆ AM(O( f )) ⊆ AM( f )
	F.2.1 Emulating General Interactive Proofs by AM-Games
	F.2.1.1 Overview
	F.2.1.2 Random Selection
	F.2.1.3 The Iterated Partition Protocol

	F.2.2 Linear Speedup for AM
	F.2.2.1 The Basic Switch (from MA to AM)
	F.2.2.2 The Augmented Switch (from [MAMA]j to [AMA]jA)



	Appendix G Some Computational Problems
	G.1 Graphs
	G.2 Boolean Formulae
	G.3 Finite Fields, Polynomials, and Vector Spaces
	G.4 The Determinant and the Permanent
	G.5 Primes and Composite Numbers

	Bibliography
	Index

